

Frito - Lay

Office Contacts Vincent Frisina, P.E. Michael Brady, P.E.

GF Project No. 47743

SUPPLEMENTAL REMEDIAL INVESTIGATION AND SECOND SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

202-218 MORGAN AVENUE
BROOKLYN, NEW YORK
NEW YORK STATE BROWNFIELD CLEANUP PROGRAM
SITE NUMBER C224133

PROJECT #47743
April 2011

Page No.

NEV	W YO	RK STA	TE PROFESSIONAL ENGINEER'S CERTIFICATION	EC-1
EXI	ECUT	IVE SU	MMARY	ES-1
1.0	INT	RODU	CTION	1
	1.1	Supplei	mental Remedial Investigation Sampling Program	2
	1.2	Purpose	e and Objectives of the Supplemental RI Sampling Program	3
	1.3	Second	Supplemental Remedial Investigation Sampling Program	4
	1.4	Purpose	e and Objectives of the Second Supplemental RI Sampling Program	6
	1.5	Scope of	of Work for the Supplemental RI and Second Supplemental RI Sampling	Programs7
	1.6	Organiz	zation of the Supplemental RI and Second Supplemental RI Report	7
2.0	SCO	OPE OF	WORK - SUPPLEMENTAL AND SECOND SUPPLEMENT	AL RI 9
	2.1	Utilities	s Clearance	10
	2.2	Supple	mental RI Soil Boring Drilling and Sampling	10
	2.3	Second	Supplemental RI Soil Boring Drilling and Sampling	11
	2.4	Surveyi	ing	13
	2.5	Analyti	cal Services	13
	2.6	Quality	Assurance / Quality Control	14
	2.7	Commu	unity Air Monitoring Program	15
		2.7.1	Particulate Monitoring	15
		2.7.2	Volatile Organic Compound Monitoring	17
	2.8	PID Re	adings during Supplemental RI Activities	18
	2.9	PID Re	adings during Second Supplemental RI Activities	20
	2.10	Laborat	tory Analysis	22
3.0	SUI	PPLEMI	ENTAL RI ANALYTICAL RESULTS	24
	3.1	Supple	mental RI Soil Sample Results	24
		3.1.1	Soil Boring SB-29	24
		3.1.2	Soil Boring SB-30	26
		3.1.3	Soil Boring SB-31	27
		3.1.4	Soil Boring SB-32	28
		3.1.5	Soil Boring SB-33	30
		3.1.6	Soil Boring SB-34	31
		3.1.7	Soil Boring SB-35	33
		3.1.8	Soil Boring SB-36	34
		3.1.9	Soil Boring SB-37	36
		3.1.10	Soil Boring SB-38	37

		3.1.11	Soil Boring SB-39	38
		3.1.12	Soil Boring SB-40	40
		3.1.13	Soil Boring SB-41	41
		3.1.14	Soil Boring SB-42	42
		3.1.15	Soil Boring SB-43	44
		3.1.16	Soil Boring SB-44	45
		3.1.17	Soil Boring SB-45	47
		3.1.18	Soil Boring SB-46	48
		3.1.19	Soil Boring SB-47	49
		3.1.20	Soil Boring SB-48	51
		3.1.21	Soil Boring SB-49	52
		3.1.22	Soil Boring SB-50	53
		3.1.23	Soil Boring SB-51	55
		3.1.24	Soil Boring SB-52	56
		3.1.25	Soil Boring SB-53	57
		3.1.26	Soil Boring SB-54	59
		3.1.27	Soil Boring SB-55	60
		3.1.28	TCLP Soil Samples for Arsenic	61
		3.1.29	Duplicate Soil Samples	63
	3.2	Commu	unity Air Monitoring Results	63
	3.3	Data U	sability Summary Report	
		3.3.1	Usability of Remedial Investigation Data	64
4.0	SE	COND S	SUPPLEMENTAL RI ANALYTICAL RESULTS	67
	4.1	Second	Supplemental RI Soil Sample Results	67
		4.1.1	Soil Boring SB-2-1	
		4.1.2	Soil Boring SB-2-2	
		4.1.3	Soil Boring SB-2-3	
		4.1.4	Soil Boring SB-6-1	
		4.1.5	Soil Boring SB-6-2	
		4.1.6	Soil Boring SB-6-3	70
		4.1.7	Soil Boring SB-7-1	70
		4.1.8	Soil Boring SB-7-2	71
		4.1.9	Soil Boring SB-8-1	71
		4.1.10	Soil Boring SB-8-2	72
		4.1.11	Soil Boring SB-9-1	74
		4.1.12	Soil Boring SB-9-2	74
		4.1.13	Soil Boring SB-9-3	75
		4.1.14	Soil Boring SB-16-1	75
		4.1.15	Soil Boring SB-16-2	76

6.0	CO	NCLUSI	ONS AND RECOMMENDATIONS	134
	5.4	Insignif	icant and Significant Soil Contaminants Identified at the Site	131
	5.3		nental RI and Second Supplemental RI Conclusions	
		5.2.1	Soil	
	5.2		nental Remedial Investigation and Second Supplemental Remedial Investiga	
		5.1.2	Polychlorinated Biphenyls	
	J.1	5.1.1	TAL Metals	
	5.1		nple Results – Results Assessment	
5.0	SO		PLE RESULTS ASSESSMENT	
		4.3.1	Usability of Remedial Investigation Data	
	4.3		ability Summary Report	
	4.2		nity Air Monitoring Results	
		4.1.40	TCLP Soil Samples for Lead	
		4.1.39	TCLP Soil Samples for Arsenic	
		4.1.38	Soil Boring SB-57	
		4.1.36	Soil Boring SB-2/-3	
		4.1.35 4.1.36	Soil Boring SB-27-4	
		4.1.34	Soil Boring SB-27-3.	
		4.1.33	Soil Boring SB-27-2.	
		4.1.32	Soil Boring SB-27-1	
		4.1.31	Soil Boring SB-24-3	
		4.1.30	Soil Boring SB-24-2	
		4.1.29	Soil Boring SB-24-1	
		4.1.28	Soil Boring SB-23-4	
		4.1.27	Soil Boring SB-23-3	
		4.1.26	Soil Boring SB-23-2	84
		4.1.25	Soil Boring SB-23-1	83
		4.1.24	Soil Boring SB-22-3	82
		4.1.23	Soil Boring SB-22-2	81
		4.1.22	Soil Boring SB-22-1	
		4.1.21	Soil Boring SB-20-3	79
		4.1.20	Soil Boring SB-20-2	79
		4.1.19	Soil Boring SB-20-1	
		4.1.18	Soil Boring SB-17-2	
		4.1.17	Soil Boring SB-17-1	
		4.1.16	Soil Boring SB-16-3	77

TABLE OF CONTENTS

	6.1	Results of Previous Environmental Investigations
	6.2	Purpose of Supplemental Remedial Investigation
	6.3	Supplemental Remedial Investigation Work Plan
		6.3.1 Soil Sample Results
	6.4	Purpose of the Second Supplemental RI
	6.5	Second Supplemental Remedial Investigation Work Plan
	0.5	6.5.1 Soil Sample Results
	6.6	Remedial Work Plan 139
	0.0	Remediai Work Flaii
TAI	BLES	
<u>No.</u>		Description
3-1		Supplemental RI Sampling Locations
3-2		Soil Boring Sample Results - Arsenic - Restricted Use - Protection of Groundwater SCOs
3-3		Soil Boring Sample Results - TAL Metals - Unrestricted Use SCOs
3-4		Soil Boring Sample Results - PCBs - Unrestricted Use SCOs
3-5		Soil Boring Sample Results - TCLP (Arsenic) - August 2010
3-6		Community Air Monitoring Program Summary Table
4-1		Supplemental RI Sampling Locations
4-2		Soil Boring Sample Results - PCBs - Unrestricted Use SCOs
4-3		Soil Boring Sample Results - Arsenic - Restricted Use - Protection of Groundwater SCOs
4-4		Soil Boring Sample Results - TAL Metals - Unrestricted Use SCOs
4-5		Soil Boring Sample Results - TCLP (Arsenic) - August 2010
4-6		Community Air Monitoring Program Summary Table
FIG	URES	S
<u>No.</u>		Description
1-1		Site Location Map - USGS
1-2		Site Location Map - Aerial Photograph
3-1		Supplemental RI Sampling Locations
3-2		Soil Boring Survey Locations
3-3		Arsenic Soil Results (0-4') - Restricted Use – Protection of Groundwater SCOs
3-4		Arsenic Soil Results (4-11') - Restricted Use – Protection of Groundwater SCOs
3-5		TAL Metals Soil Results (0-4') - Unrestricted Use SCOs
3-6		TAL Metals Soil Results (4-11') - Unrestricted Use SCOs
3-7		PCB Soil Results (0-4') - Unrestricted Use SCOs
3-8		PCB Soil Results (4-11') - Unrestricted Use SCOs
3-9		Total Arsenic and TCLP Soil Results
4-1		Second Supplemental RI Sampling Locations
4-2		Soil Boring Survey Locations
4-3		PCB Soil Results (0-4') - Unrestricted Use SCOs
Frito	Lav Ir	nc., Brooklyn, New York April 2011

iv

TABLE OF CONTENTS

4-4	PCB Soil Results (4-11') - Unrestricted Use SCOs
4-5	Arsenic Soil Results (0-4') - Restricted Use – Protection of Groundwater SCOs
4-6	Arsenic Soil Results (4-11') - Restricted Use – Protection of Groundwater SCOs
4-7	TAL Metals Soil Results (0-4') - Unrestricted Use SCOs

4-7 TAL Metals Soil Results (0-4') - Unrestricted Use SCOs
4-8 TAL Metals Soil Results (4-11') - Unrestricted Use SCOs

4-9 Total Arsenic, Total Lead, and TCLP Soil Results

APPENDICES

APPENDIX A	Soil Boring Logs
APPENDIX B	Laboratory Data Reports (2010) (Provided on CD)
APPENDIX C	Data Usability Summary Report (2010) (Provided on CD)

NEW YORK STATE PROFESSIONAL ENGINEER'S CERTIFICATION

"I certify that this Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with applicable guidance for site investigation and remediation, and that all activities were performed in full accordance with the DER approved work plan and any DER approved modifications."

4/13/2011059115-1Vincent Frisina, P.E. (Seal and Signature)DateRegistration No:Gannett Fleming Engineers, P.C.State of New York

EXECUTIVE SUMMARY

Gannett Fleming Engineer, P.C. (GF) was retained by Frito-Lay to implement a Supplemental Remedial Investigation (SRI) Work Plan and Second Supplemental Remedial Investigation (SSRI) Work Plan to further assess environmental conditions at the 202-218 Morgan Avenue site (Site) located in Brooklyn, New York (Figure 1-1). The SRI Work Plan was prepared and submitted to New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) for review and acceptance. On August 2, 2010, NYSDEC accepted the SRI Work Plan for the Site and field sampling activities were performed on August 4 through 10, 2010. A SSRI Work Plan was prepared in response to meetings and discussions with the United States Environmental Protection Agency (EPA) regarding Toxic Substances Control Act (TSCA) requirements and submitted to NYSDEC DER for informational purposes. On September 21, 2010, NYSDEC stated that they did not have comments to the SSRI Work Plan for the Site and field sampling activities were performed on October 4 through 14, 2010. A Phase II Environmental Site Assessment (ESA) was conducted on the Site in December 2007 and January 2008 and the RI was conducted in November 2009 in response to NYSDEC's May 5, 2009 comment letter requesting the collection of additional Site data. NYSDEC has assigned site number C224133 to the Site within the Brownfields Clean-up Program. This document presents the findings of both the SRI and SSRI.

Previous soil and groundwater investigations, including the Phase II ESA, have been conducted at the Site since 2003. Soil and groundwater samples have been collected to evaluate the presence of contaminants above NYSDEC Technical and Administrative Guidance Memorandum (TAGM) Recommended Soil Cleanup Objectives (RSCOs), 6 NYCRR Part 375-6 - Soil Cleanup Objectives (SCOs), and the Technical and Operational Guidance (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Standards (TOGS standards). The results of these investigations have concluded that both the soil and groundwater quality at the Site have likely been impacted by on-site and possibly by off-site sources.

The results of previous environmental investigation conducted in December 2007 and January 2008 indicate that volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), target analyte list (TAL) Metals, and polychlorinated biphenyls (PCBs) are present in the soil at concentrations exceeding the NYSDEC TAGM RSCOs and/or 6 NYCRR Part 375-6 - Unrestricted Use SCOs.

The results of RI conducted in November 2009 indicate that VOCs, SVOCs, TAL Metals, and PCBs are present in the soil at concentrations exceeding the 6 NYCRR Part 375-6 - Unrestricted and Restricted Use SCOs and were present throughout a majority of the Site. VOC concentrations were detected at concentrations exceeding the Unrestricted Use SCOs, but did not exceed the Restricted Use SCOs. SVOC (carcinogenic polycyclic aromatic hydrocarbons [PAHs]) concentrations were detected at concentrations exceeding the Unrestricted and Restricted Use SCOs throughout a majority of the Site.

The SRI sampling program included the collection of: soil samples from twenty-seven (27) soil borings advanced at various on site locations across the Site to complete a 50' x 50' sampling grid, as well as to further delineate arsenic concentrations exceeding the Unrestricted Use and Restricted Use - Protection of Groundwater SCOs, and lead, mercury, and PCB concentrations exceeding the Unrestricted Use SCOs.

The soil sample results collected during the SRI indicated that arsenic concentrations exceeding the Unrestricted Use and Restricted Use - Protection of Groundwater SCOs, and barium, cadmium, chromium, copper, lead, mercury, nickel, zinc, and PCB concentrations exceeding the Unrestricted Use were detected in surface and subsurface soils in most soil borings completed. The soil contamination is located throughout the Site to depths of 10 to 11 feet below ground surface (ft-bgs), which is the approximate depth of groundwater beneath the Site. Potentially hazardous levels or concentrations of lead were detected in several soil sample locations collected during the SRI sampling program. Potentially hazardous levels or concentrations of PCBs were not detected at any of the soil samples collected during the SRI.

The results of the TCLP analysis indicated that arsenic concentrations exceeding the Resource Conservation and Recovery Act (RCRA) Hazardous Waste Regulatory Level of 5 mg/L were not present in any of the six (6) samples collected for analysis. The analytical data demonstrated that arsenic contaminated soil at concentrations at or below 140 mg/kg have recorded no detection for TCLP analyses in all concurrent sampling pairs.

Prior to conducting the SSRI sampling program, a meeting was held with United States Environmental Protection Agency (EPA) (Region 2) representatives on August 26, 2010 and on September 23, 2010. The purpose of these meetings was to discuss the PCB soil contamination at the Site, to determine Toxic Substance Control Act (TSCA) requirements for disposal of PCB contaminated soil exceeding 50 mg/kg, to determine EPA's PCB soil delineation requirements, and to discuss EPA's High Occupancy Area (HOA) criteria of 10 milligrams per kilogram (mg/kg) and the Low Occupancy Area (LOA) criteria of 25 mg/kg in relation to the proposed remedial alternatives for the Site. In addition, EPA representatives provided guidance for the preparation of the "Notification for Self-Implementing on-site cleanup and disposal of PCB remediation waste" which must be approved prior to excavation and disposal of PCB contaminated soil with concentrations exceeding the TSCA criteria of 50 mg/kg. The EPA representatives did not have comments to the proposed PCB soil delineation sampling plan that was proposed in the SSRI sampling program.

The SSRI sampling program included the collection of: soil samples from thirty-eight (38) soil borings advanced at various on site locations to further delineate PCBs concentrations exceeding either the EPA's HOA criteria of 10 mg/kg or the EPA's LOA criteria of 25 mg/kg within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids for the collection of delineation samples. The purpose of this sampling program was to assess whether PCBs have impacted the entire 50' x 50' sampling grid or individual 25' x 25' sampling grids to adequately assess the quantity of soil requiring excavation and disposal. Additional soil samples were collected for arsenic and lead to further evaluate the leaching potential of these compounds in relation to their total concentrations.

The soil sample results collected during the SSRI indicated that arsenic concentrations exceeding the Unrestricted Use and Restricted Use - Protection of Groundwater SCOs, and lead, mercury, and PCB concentrations exceeding the Unrestricted Use were detected in most soil borings completed. The soil contamination is at various locations at the Site to depths of 10 to 11 feet below ground surface (ft-bgs), which is the approximate depth of groundwater beneath the Site. Potentially hazardous levels or concentrations of lead were detected at one (1) soil sample location collected during the SSRI sampling program. Potentially hazardous levels or concentrations of PCBs were detected at one (1) soil sample location collected during the SSRI.

Potentially hazardous levels of lead were detected at one (1) soil sample location collected during the SSRI. Potentially hazardous levels or concentrations of PCBs exceeding the Industrial SCOs were detected at one (1) soil sample location collected during the SSRI.

The results of the TCLP analysis indicated that arsenic concentrations exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L were not present in any of the 10 samples collected for analysis. The analytical data demonstrated that arsenic contaminated soil at concentrations at or below 140 mg/kg have recorded no detection for TCLP analyses in all concurrent sampling pairs.

The results of the TCLP analysis indicated that lead concentrations exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L were present in one (1) of the 11 samples collected for analysis.

The soil contaminants of concern (COCs) identified during the RI, SRI, and SSRI sampling programs are arsenic, lead, mercury, PCBs, and SVOCs (carcinogenic PAHs) were selected due to their potential for mobility to other environmental media and subsequent adverse effects to human health and the environment, if left in-place without proper management (e.g., remediation, disposal, capping, etc.).

The remedial cleanup objectives of the BCP are to remove or eliminate significant threats to public health and the environment, as well as implementing soil cleanup levels that are consistent with current and intended Site use. A remedial work plan (RWP) will be developed to assess applicable remedial alternatives for the Site to address contaminated soil, groundwater, and soil gas conditions.

1.0 INTRODUCTION

Gannett Fleming Engineers, P.E. (GF) was retained by Frito-Lay to prepare a Supplemental Remedial Investigation (SRI) Work Plan to further assess environmental conditions at the 202-218 Morgan Avenue site (Site) located in Brooklyn, New York (Figures 1-1 and 1-2). The SRI Work Plan was prepared and submitted to New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER) for review and acceptance. On August 2, 2010, NYSDEC accepted the SRI Work Plan for the Site and field sampling activities were performed on August 4 through 10, 2010. A Second Supplemental Remedial Investigation (SSRI) Work Plan was prepared in response to meetings and discussions with the United States Environmental Protection Agency (EPA) regarding Toxic Substances Control Act (TSCA) requirements and submitted to NYSDEC DER for informational purposes. On September 21, 2010, NYSDEC stated that they did not have comments to the SSRI Work Plan for the Site and field sampling activities were performed on October 4 through 14, 2010. A Phase II Environmental Site Assessment (ESA) was conducted on the Site in December 2007 and January 2008 and the 2009 RI was conducted in response to NYSDEC's May 5, 2009 comment letter requesting the collection of additional Site data.

All work was performed in accordance with NYSDEC Brownfield Cleanup Program (BCP), DER-10 Technical Guidance for Site Investigation and Remediation, the signed BCP Agreement with Frito-Lay dated August 21, 2009, and the NYSDEC Approved RI Work Plan dated September 2009. NYSDEC has assigned site number C224133 to the Site.

Previous soil and groundwater investigations, including the Phase II ESA, have been conducted at the Site since 2003. Soil and groundwater samples have been collected to evaluate the presence of contaminants above NYSDEC Technical and Administrative Guidance Memorandum (TAGM) Recommended Soil Cleanup Objectives (RSCOs), 6 NYCRR Part 375-6 - Soil Cleanup Objectives (SCOs), and the Technical and Operational Guidance (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Standards

(TOGS standards). The results of these investigations have concluded that both the soil and groundwater quality at the Site have likely been impacted by on-site and possibly by off-site sources, as well as potentially impacting off-site receptors.

The results of Phase II ESA conducted in December 2007 and January 2008 indicate that volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) are present in the soil at concentrations exceeding the NYSDEC TAGM RSCOs and/or 6 NYCRR Part 375-6 - Unrestricted and Restricted Use SCOs.

The results of the RI conducted in November 2009 indicate that VOCs, SVOCs (carcinogenic polycyclic aromatic hydrocarbons [PAHs]), target analyte list (TAL) Metals, and PCBs are present in the soil at concentrations exceeding the 6 NYCRR Part 375-6 - Unrestricted Use SCOs. The RI results indicated that TAL Metals and PCB soil concentrations exceeding the Unrestricted Use SCOs are present throughout a majority of the Site. VOC concentrations were detected at concentrations exceeding the Unrestricted Use SCOs, but these concentrations did not exceed the Restricted Use SCOs. SVOC concentrations were also detected at concentrations exceeding the Unrestricted use SCOs are present throughout a majority of the Site.

1.1 Supplemental Remedial Investigation Sampling Program

The SRI sampling program was prepared based on the results of GF's Phase II ESA Soils and Groundwater sampling program conducted in December 2007 and January 2008 which was submitted to NYSDEC for review and comment in March 2008 and the RI sampling program conducted in November 2009. On May 5, 2009, NYSDEC provided a comment letter to Frito-Lay concerning the proposed RIWP. NYSDEC requested the drilling and sampling of several additional soil borings, as well the collection of surface water and sediment samples from the English Kills, and the installation of soil gas probes to assess surface and subsurface soil contamination at the Site.

The RI sampling program was implemented from November 4 through 6, 2009 and on November 20, 2009. The RI sampling program was conducted to assess surface and subsurface soil concentrations related to VOCs, SVOCs (PAHs), PCBs, and metals. The RI sampling program also assessed the presence of sediment and surface water contamination and the presence of soil gas vapors along the northern and western property boundaries of the Site in the vicinity of Morgan Avenue.

The SRI sampling program was prepared to determine the nature and extent of contamination and to further quantify and delineate surface and subsurface impacted soil identified during the December 2007 and January 2008 and November 2009 sampling programs. The SRI sampling program included the collection of an additional 27 soil borings. The onsite soil boring locations are proposed throughout the Site to complete a 50' x 50' sampling grid. Each boring was advanced using a track mounted hollow stem auger drill rig to the approximate depth of groundwater or approximately 10 to 11 feet below ground surface (ft-bgs). The actual locations of the proposed soil borings were biased towards areas of concern identified during the December 2007/January2008 sampling program, the results of the November 2009 RI, discussion with NYSDEC representatives on July 27, 2010, discussions with EPA representatives on July 31, 2010, and in accordance with NYSDEC recommendations to sample in 50' x 50' grid pattern across the site.

1.2 Purpose and Objectives of the Supplemental RI Sampling Program

The purpose of the SRI was to determine the nature and extent of contamination and to further quantify and delineate surface and subsurface impacted soil identified during the December 2007 and January 2008, and the November 2009 soil sampling activities.

The scope of work as presented in the SRI WP included the following:

• Twenty-seven (27) soil borings advanced at various on site locations across the to complete the 50' x 50' sampling grid;

- The first soil sample was to be collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was to be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest photoionization detector (PID) reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table; and,
- All soil samples were to be analyzed for PCBs by EPA Method 8082 and Target Analyte
 List (TAL) metals by EPA Method 6010/7471 in conformance with Analytical Services
 Protocol (ASP) Category B protocol. In addition, six (6) soil samples were to be
 analyzed for Toxicity Characteristics Leaching Potential (TCLP) by EPA Method 1311.

The objectives of the SRI sampling program were to:

- further characterize the nature and extent of contamination and to delineate surface and subsurface soil impacts related to arsenic, lead, mercury, and PCB contaminated soil;
- provide data for development of the SRI Report; and,
- provide site-specific information for the development and selection of remedial alternative to reduce and/or eliminate the toxicity, volume, or mobility of site-specific contaminants.

1.3 Second Supplemental Remedial Investigation Sampling Program

The SSRI sampling program was prepared based on the results of GF's SRI Sampling Program conducted in August 2010, the need to further delineate PCB contamination at the Site, and for PCB disposal purposes, in accordance with discussions with EPA (Region 2) representatives. The SSRI sampling program was performed to further delineate PCB contamination at the Site to meet TSCA requirements for disposal in accordance with our meeting with the United States EPA (Region 2) representatives on August 26, 2010 and further discussions on September 23, 2010.

The SSRI Work Plan was prepared and submitted to NYSDEC DER for informational purposes. On September 21, 2010, NYSDEC stated that they did not have comments to the SSRI Work Plan for the Site and field sampling activities were performed on October 4 through 14, 2010.

The SSRI sampling program was also designed to further delineate PCB concentrations exceeding either the EPA's High Occupancy Area (HOA) criteria of 10 milligrams per kilogram (mg/kg) or EPA's Low Occupancy Area (LOA) criteria of 25 mg/kg within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids for the collection of delineation samples. The purpose of this sampling program is to assess whether PCBs have impacted the entire 50' x 50' sampling grid or individual 25' x 25' sampling grids to adequately assess the quantity of soil requiring excavation and disposal.

The SSRI sampling program included the installation of an additional 38 soil borings. The soil boring locations were proposed throughout the Site to further delineate PCB concentrations exceeding either the HOA criteria of 10 mg/kg or the LOA criteria of 25 mg/kg within specific 50' x 50' sampling grids. PCB concentrations exceeding the HOA criteria of 10 mg/kg will be further delineated in areas where expansion of the adjacent warehouse could occur in the future to satisfy EPA high occupancy area requirements. The actual locations of the proposed soil borings were biased towards soil sample locations which contain PCB concentrations exceeding either the HOA criteria of 10 mg/kg or the LOA criteria of 25 mg/kg identified during the December 2007/January2008 and November 2009 sampling programs, discussions with EPA on August 26, 2010 and September 23, 2010, and discussions with NYSDEC representatives on July 27, 2010, August 27, 2010, and September 9, 2010. Each boring was proposed to be advanced using a track mounted hollow stem auger drill rig to the approximate depth of groundwater which is approximately 12 to 15 feet below ground surface (ft-bgs) consistent with the initial RI and SRI sampling programs.

1.4 Purpose and Objectives of the Second Supplemental RI Sampling Program

The purpose of the SSRI was to further delineate PCBs concentrations exceeding either the HOA criteria of 10 mg/kg or the LOA criteria of 25 mg/kg within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids for the collection of delineation samples. The SSRI sampling program was also performed to further delineate PCB contamination at the Site to meet TSCA requirements for disposal.

The scope of work as presented in the SSRI WP included the following:

- Thirty-eight (38) soil borings advanced within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids;
- The first soil sample was to be collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was to be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table; and,
- All soil samples were to be analyzed for PCBs by EPA Method 8082 and select soil samples were analyzed for arsenic or lead by EPA Method 6010B in conformance with ASP Category B protocol. In addition, twenty (20) soil samples were to be analyzed for TCLP by EPA Method 1311.

The objectives of the SSRI sampling program were to:

- further characterize the nature and extent of contamination and to delineate surface and subsurface soil impacts related to PCB contaminated soil;
- provide data for development of the SRI and SSRI Report; and,
- provide site-specific information for the development and selection of remedial alternative to reduce and/or eliminate the toxicity, volume, or mobility of site-specific contaminants.

1.5 Scope of Work for the Supplemental RI and Second Supplemental RI Sampling Programs

The SRI and SSRI Sampling Programs were implemented to collect surface and subsurface soil samples to further characterize the nature and extent of contamination and to delineate lead, mercury, and PCB soil concentrations which exceed the Part 375 Unrestricted Use SCOs and to further characterize the nature and extent of contamination and to delineate arsenic concentrations which exceed Restricted Use - Protection of Groundwater SCOs since it has been determined that arsenic is a site-specific source of groundwater contamination.

Project-specific Health and Safety Plan (HASP) and Quality Assurance Project Plan (QAPP) were prepared and followed to provide safe procedures, practices, and quality assurance criteria for GF employees and their subcontractor personnel engaged in performing RI and RD activities at the Site. The HASP and QAPP were included in Appendix A and in Section 5.0, respectively, in the NYSDEC Approved RI Work Plan dated September 2009. A Community Air Monitoring Program (CAMP) was prepared and followed to provide air quality monitoring procedures to be followed to protect the downwind community (i.e., off-site receptors, including residents and off-site outside workers) from potential airborne contaminant releases that may be as a direct result of the sampling activities.

The soil samples were collected for constituents of concern that have established NYSDEC standards, criteria, and guidance (SCGs) to evaluate potential impacts on human health, and/or the environment.

1.6 Organization of the Supplemental RI and Second Supplemental RI Report

The SRI and SSRI Report discusses the following topics:

- Introduction: Background and objectives of the project and sampling programs;
- Soil sampling procedures and analytical results;

- SRI and SSRI Sampling Plans: Scope of work for the investigation of surface and subsurface soils;
- Soil results assessment; and,
- Conclusions and Recommendations.

2.0 SCOPE OF WORK – SUPPLEMENTAL AND SECOND SUPPLEMENTAL RI

The scope of work as presented in the SRI Work Plan included the following:

- Twenty-seven (27) soil borings were advanced at various on site locations across the to complete the 50' x 50' sampling grid;
- The first soil sample was collected from equal portions of the soil boring from 0 to 2 ftbgs and the other half from 2 to 4 ft-bgs. The second soil sample was collected from 4 ftbgs to just above the water table; and,
- All soil samples were analyzed for PCBs by EPA Method 8082 and TAL metals by EPA
 Method 6010/7471 in conformance with ASP Category B protocol. In addition, six (6)
 soil samples were collected for arsenic to be analyzed for TCLP by EPA Method 1311.

The scope of work as presented in the SSRI Work Plan included the following:

- Thirty-eight (38) soil borings advanced within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids;
- The first soil sample was to be collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was to be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest photoionization detector (PID) reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table; and,
- All soil samples were to be analyzed for PCBs by EPA Method 8082 and select soil samples were analyzed for arsenic or lead by EPA Method 6010B in conformance with ASP Category B protocol. In addition, twenty (20) soil samples were collected for arsenic and lead to be analyzed for TCLP by EPA Method 1311.

2.1 Utilities Clearance

The geophysical survey performed by Naeva Geophysics, Inc. in January 2008 was reviewed to identify any potential underground obstructions prior to on-site drilling activities. The drilling contractor (Aquifer Drilling) contacted New York One-Call to perform public property utility markouts for the off-site well installation.

2.2 Supplemental RI Soil Boring Drilling and Sampling

The SRI included the drilling and sampling of 27 additional soil borings based on discussions with the NYSDEC representatives. The on-site boring locations were proposed throughout the Site to complete a 50' x 50' sampling grid. Each boring was advanced using a track mounted hollow stem auger (HSA) drill rig to groundwater, approximately 10 to 11 ft-bgs. The actual locations of borings were biased towards areas of concern identified by the Phase I and II ESAs, geophysical survey, historical investigation results, the November 2009 RI soil sample results, and in accordance with NYSDEC recommendations to complete sampling from a 50' x 50' grid pattern across the Site.

On August 4 through 10, 2010, 27 borings were advanced as shown on Figure 3-1. Twelve (12) borings were advanced along the east side (SB-31, SB-34, SB-35, SB-36, SB-38, SB-39, SB-43, SB-44, SB-47, SB-48, SB-52, and SB-54) and fifteen (15) borings on the west side (SB-29, SB-30, SB-32, SB-33, SB-37, SB-40, SB-41, SB-42, SB-45, SB-46, SB-49, SB-50, SB-51, SB-53, and SB-55) of the Site. HSA services were provided by Aquifer Drilling and Testing (New Hyde Park, New York).

There were two (2) sample deviations from the NYSDEC-approved August 2010 SRI Work Plan that resulted during implementing the SRI sampling program. Soil boring SB-55 was added to the program to complete the 50' x 50' grid pattern along the southwestern portion of the Site. In addition, soil samples SB-32 (0-4), SB-38 (0-4), SB-42 (0-4), SB-42 (4-10), SB-43 (4-8), and SB-53 (4-10) were also collected for TCLP analysis (arsenic only) using EPA Method 1311.

The purpose of the TCLP analysis was to assess the concentration arsenic begins to leach to the subsurface (and/or groundwater) at the Site. There were no other sampling deviations during the RI sampling program.

The first soil sample was collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading. If the second soil sample depth could not be determined visually or using the PID, the default sample collection depth was just above the water table. Soil samples were collected continuously from the surface to the groundwater table using stainless steel spilt spoons. All drill cuttings were drummed and temporarily stored on site pending results of waste characterization analysis.

GF personnel documented soil lithology and field screen soil vapor headspace in sealable plastic bags using a PID calibrated to a 100 parts per million (ppm) isobutylene standard. Sample depths were altered, when necessary, due to field limitations and the actual depth of groundwater at the time of sampling. Soil samples were placed into laboratory-supplied glassware, immediately stored in an ice-filled cooler, and shipped with chain-of-custody documentation to Test America, Edison, New Jersey, a NYSDOH-certified laboratory. All soil samples were analyzed for TAL metals by EPA Method 6010/7471 and PCBs by EPA Method 8082, and in conformance with Category B protocol. Six (6) soil samples were analyzed for TCLP (arsenic only) by EPA Method 1311.

2.3 Second Supplemental RI Soil Boring Drilling and Sampling

The SSRI included the drilling and sampling of 38 additional soil borings based on discussions with the EPA representatives. The SSRI sampling program was designed to further delineate PCB concentrations exceeding either the EPA's HOA criteria of 10 mg/kg or EPA's LOA criteria of 25 mg/kg within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids for the collection of delineation samples. The purpose of

this sampling program is to assess whether PCBs have impacted the entire 50' x 50' sampling grid or individual 25' x 25' sampling grids to adequately assess the quantity of soil requiring excavation and disposal. The SSRI sampling program was also performed to further delineate PCB contamination at the Site to meet TSCA requirements for disposal.

Each boring was advanced using a track mounted HSA drill rig to the approximate depth of groundwater which is approximately 10 to 11 ft-bgs. The actual locations of borings were biased towards areas of concern identified by the Phase I and II ESAs, geophysical survey, historical investigation results, the November 2009 RI soil sample results, the SRI results, and to further delineate PCB concentrations exceeding either the HOA criteria or LOA criteria within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids f.

On October 4 through 14, 2010, 38 borings were advanced as shown on Figure 4-1. Thirteen (13) borings were advanced along the east side (SB-16-1, SB-16-2, SB-16-3, SB-17-1, SB-17-2, SB-20-1, SB-20-2, SB-20-3, SB-22-1, SB-22-2, SB-22-3, SB-56, and SB-57) and twenty-five (25) borings on the west side (SB-2-1, SB-2-2, SB-2-3, SB-6-1, SB-6-2, SB-6-3, SB-7-1, SB-7-2, SB-8-1, SB-8-2, SB-9-1, SB-9-2, SB-9-3, SB-23-1, SB-23-2, SB-23-3, SB-23-4, SB-24-1, SB-24-2, SB-24-3, SB-27-1, SB-27-2, SB-27-3, SB-27-4, and SB-27-5) of the Site. HSA services were provided by Aquifer Drilling and Testing (New Hyde Park, New York).

There were several sample deviations from the September 2010 SSRI WP that resulted during implementing the sampling program. Soil boring SB-23-4, SB-27-4, and SB-27-5 were added to the program to assess potential contamination in the vicinity of the 50' 50' grid boundaries along the southwestern portion of the Site. Since SB-27 registered the highest reported PCB concentration on the Site, several additional soil borings were installed to further assess PCB contamination in this section of the Site. In addition, SB-6-1, SB-6-3, SB-24-1, and SB-24-2 could not be advanced below either 2 or 4 ft-bgs due to the shallow groundwater depth encountered in this portion of the Site.

The first soil sample was collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading. If the second soil sample depth could not be determined visually or using the PID, the default sample collection depth was just above the water table. Soil samples were collected continuously from the surface to the groundwater table using stainless steel spilt spoons. All drill cuttings were drummed and temporarily stored on site pending results of waste characterization analysis.

GF personnel documented soil lithology and field screen soil vapor headspace in sealable plastic bags using a PID calibrated to a 100 ppm isobutylene standard. Sample depths were altered, when necessary, due to field limitations and the actual depth of groundwater at the time of sampling. Soil samples were placed into laboratory-supplied glassware, immediately stored in an ice-filled cooler, and shipped with chain-of-custody documentation to Test America, Edison, New Jersey, a NYSDOH-certified laboratory. Select soil samples were analyzed for TAL metals by EPA Method 6010/7471, for arsenic and lead by EPA Method 6010B, and PCBs by EPA Method 8082, and in conformance with Category B protocol. Ten (10) soil samples were analyzed for TCLP (arsenic only) by EPA Method 1311.

2.4 Surveying

On August 4, 2010 and October 7, 2010, Naik Consulting Group, P.C. (Naik) performed a location and elevation survey for the proposed soil borings locations at the Site. The drawing provided by the surveyor is depicted on Figures 3-2 and 4-2.

2.5 Analytical Services

Analytical services were provided by Test America of Edison, New Jersey. Laboratory data reports were provided in the NYSDEC Full ASP Category B Deliverables reporting format. The laboratory data reports are provided in Appendix B.

2.6 Quality Assurance / Quality Control

The integrity, representativeness and usability of the data generated by the SRI and SSRI sampling programs were evaluated, maintained and controlled through the use of various quality assurance and quality control QA/QC procedures in the field, including equipment calibration checks, decontamination of non-dedicated sampling equipment, and collection of field duplicates, and field and trip blank samples.

Disposable sampling equipment was used to the extent practicable to minimize the need for field decontamination. When non-dedicated equipment was necessary, the decontamination process consisted of a potable water rinse followed by scrubbing in a solution of potable water and laboratory-grade detergent. The equipment was then rinsed again with potable water followed by distilled water. Soil sampling equipment used for PCB sample collection were decontaminated in the field following the procedures outlined in 40 CFR 761.79 (PCB Decontamination Standards and Procedures).

Field blanks, trip blanks, field duplicates and MS/MSD samples were collected to provide additional QA/QC support. Field blanks were used to document the adequacy of the field decontamination process. The blanks were collected by pouring analyte-free water provided by the laboratory over cleaned field equipment, capturing the rinsate in sample containers and submitting the samples to the laboratory for analysis. The field blanks were analyzed for the same suite of parameters as the field samples collected that day. The blanks were prepared by the laboratory, shipped to the Site with the sample containers then returned to the laboratory unopened with the field samples. MS/MSD samples were used to document sample matrix effects on the analytical process. The MS/MSD samples consisted of a three volume sample set from one sample location.

2.7 Community Air Monitoring Program

A Community Air Monitoring program (CAMP) was implemented during the SRI and SSRI sampling programs. Specifically, this CAMP outlines the air quality monitoring procedures followed to protect the downwind community (i.e., off-site receptors, including residents and off-site outside workers) from potential airborne contaminant releases that may be as a direct result of the sampling activities. This CAMP is consistent with the NYSDOH Generic CAMP.

The following sections describe the specific CAMP monitoring procedures for both VOCs and particulates.

2.7.1 Particulate Monitoring

The air was monitored in real-time during the SRI and SSRI sampling programs. Air monitoring for particulates (i.e., dust) was performed continuously during sampling using both air monitoring equipment and visual observations. Monitoring equipment capable of measuring particulate matter smaller than 10 microns (PM-10) and capable of integrating (averaging) over periods of 15 minutes or less, at a minimum, were set up at one upwind (background) and one downwind location, at heights approximately 4 feet to 5 feet above land surface (i.e., the breathing zone). This equipment logged the 15-minute average concentrations for subsequent downloading and reporting. An audible alarm on the downwind particulate monitoring device was set at 100 micrograms per cubic meter (μ g/m³) above the background level (i.e., the upwind location).

Upwind concentrations were measured at the start of each workday and periodically throughout the day thereafter to establish background conditions. The CAMP coordinator recorded the wind direction and speed as described below. These readings allowed the CAMP coordinator to ensure that CAMP equipment was located appropriately based upon the wind direction. The particulate monitoring equipment was calibrated at the start of each day and as necessary throughout the day.

The monitoring results were compared to the following:

• If the downwind PM-10 particulate level was 100 μg/m³ greater than background (upwind perimeter) for the 15-minute period or if airborne dust was observed leaving the work area, then dust suppression techniques (e.g., soil wetting) were employed. Work may continue with dust suppression techniques, provided that downwind PM-10 particulate levels do not exceed 150 μg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

• If, after implementation of dust suppression techniques, downwind PM-10 particulate levels were greater than 150 µg/m³ above the upwind level, work was reevaluated and changes initiated to reduce particulate levels to less than 150 µg/m³ above background conditions and to prevent visible dust migration, including work stoppage if necessary.

Meteorological Data - Meteorological data consisting of wind speed, wind direction, temperature, and barometric pressure were recorded at a minimum of three times each day. These results were utilized to position the particulate monitoring equipment in appropriate upwind and downwind locations. A Davis Corporation wireless instrument station (or equivalent) was used to collect all meteorological monitoring data.

Potential Suppression Techniques - If the integrated particulate level at the downwind location exceeds the upwind level by more than $100~\mu g/m^3$ at any time during sampling activities, then dust suppression techniques were to be employed.

Work may continue with dust suppression techniques, provided that downwind PM-10 levels are not more than 150 μ g/m³ greater than the upwind levels; all measures necessary to ensure PM-10 levels of less than 150 μ g/m³ above background were utilized. There may also be situations where visible dust was generated by sampling activities and migrates to downwind locations but was not detected by the monitoring equipment at or above the action levels. Therefore, if visible dust was observed leaving the working area, dust suppression techniques was to be employed. If dust suppression techniques did not lower particulates to below 150 μ g/m³ or visible dust

persists, additional measures, including work suspension if necessary, was to be implemented to remedy the situation.

2.7.2 Volatile Organic Compound Monitoring

VOCs were monitored at the downwind perimeter of the immediate work area on a continuous basis. Upwind concentrations were measured at the start of each workday and periodically thereafter (not less than three times per day) to establish background conditions. The monitoring work was performed using equipment appropriate to measure the types of contaminants known or suspected to be present (MiniRAE 2000 PID or equivalent). The equipment was calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment was capable of calculating 15-minute running average concentrations, which was compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area exceeds 5 ppm above background for the 15-minute average, work activities must be temporarily halted in the area of concern and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities at the Site must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level at the downwind perimeter of the work area is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is more than 25 ppm above background at the downwind perimeter of the work area, activities must be halted in the area of concern until corrective measures are identified and implemented to reduce emissions as described above.

All air monitoring data and the locations of monitoring equipment were recorded in the on-site files and are available for review.

2.8 PID Readings during Supplemental RI Activities

The following table lists the PID results for each soil sample, and rationale for collecting each sample that was laboratory analyzed.

Sample Location	Sample Depth (feet)	PID Reading (ppm)	Reason for Sample Collection	Description
SB-29	0-4	0.0	Initial Sampling Depth	No odor
SB-29	4-10	8.2	Deeper Sampling Depth	Petroleum odor
SB-30	0-4	6.2	Initial Sampling Depth	Slight petroleum odor
SB-30	4-10	0.0	Deeper Sampling Depth	Petroleum odor
SB-31	0-4	0.5	Initial Sampling Depth	No odor
SB-31	4-10	2.3	Deeper Sampling Depth	Petroleum odor
SB-32	0-4	0.4	Initial Sampling Depth	No odor
SB-32	4-10	4.0	Deeper Sampling Depth	Petroleum odor
SB-33	0-4	4.0	Initial Sampling Depth	Petroleum odor
SB-33	4-10	3.0	Deeper Sampling Depth	Petroleum odor
SB-34	0-4	14.0	Initial Sampling Depth	Strong petroleum odor
SB-34	4-10	10.0	Deeper Sampling Depth	Strong petroleum odor
SB-35	0-4	5.0	Initial Sampling Depth	Slight petroleum odor
SB-35	4-10	0.8	Deeper Sampling Depth	Organic odor
SB-36	0-4	0.0	Initial Sampling Depth	No odor
SB-36	6-10	0.8	Deeper Sampling Depth	Petroleum odor
SB-37	0-4	0.3	Initial Sampling Depth	Organic odor
SB-37	4-10	1.3	Deeper Sampling Depth	Petroleum odor
SB-38	0-4	4.0	Initial Sampling Depth	Petroleum odor
SB-38	4-10	3.0	Deeper Sampling Depth	Petroleum odor
SB-39	0-4	0.7	Initial Sampling Depth	No odor
SB-39	4-10	4.0	Deeper Sampling Depth	Petroleum odor
SB-40	0-4	2.3	Initial Sampling Depth	Organic odor
SB-40	4-10	2.0	Deeper Sampling Depth	No odor
SB-41	0-4	0.0	Initial Sampling Depth	Slight petroleum odor
SB-41	4-11	1.6	Deeper Sampling Depth	No odor
SB-42	0-4	30.1	Initial Sampling Depth	No odor
SB-42	4-10	1.5	Deeper Sampling Depth	Slight petroleum odor

Sample Location	Sample Depth (feet)	PID Reading (ppm)	Reason for Sample Collection	Description
SB-43	0-4	14.8	Initial Sampling Depth	Organic odor
SB-43	4-8	4.1	Deeper Sampling Depth	No odor
SB-44	0-4	0.7	Initial Sampling Depth	Petroleum odor
SB-44	4-10	2.1	Deeper Sampling Depth	Petroleum odor
SB-45	0-4	0.2	Initial Sampling Depth	No odor
SB-45	4-10	1.0	Deeper Sampling Depth	No odor
SB-46	0-4	37.8	Initial Sampling Depth	Petroleum odor
SB-46	4-10	20.0	Deeper Sampling Depth	Petroleum odor
SB-47	0-4	5.7	Initial Sampling Depth	No odor
SB-47	4-10	10.0	Deeper Sampling Depth	Petroleum odor
SB-48	0-4	5.9	Initial Sampling Depth	No odor
SB-48	4-6	11.0	Deeper Sampling Depth	No odor
SB-49	0-4	0.0	Initial Sampling Depth	No odor
SB-49	4-10	0.1	Deeper Sampling Depth	No odor
SB-50	0-4	0.2	Initial Sampling Depth	No odor
SB-50	4-10	4.3	Deeper Sampling Depth	Slight petroleum odor
SB-51	0-4	0.5	Initial Sampling Depth	No odor
SB-51	4-8	0.2	Deeper Sampling Depth	Petroleum odor
SB-52	0-4	0.0	Initial Sampling Depth	No odor
SB-52	4-10	3.0	Deeper Sampling Depth	Petroleum odor
SB-53	0-4	23.7	Initial Sampling Depth	Slight petroleum odor
SB-53	4-10	12.6	Deeper Sampling Depth	Slight petroleum odor
SB-54	0-4	57.0	Initial Sampling Depth	Organic odor
SB-54	4-10	2.0	Deeper Sampling Depth	Slight petroleum odor
SB-55	0-4	0.9	Initial Sampling Depth	No odor
SB-55	4-10	1.2	Deeper Sampling Depth	No odor

Organic vapors were detected with the PID at most of the soil boring locations. PID readings ranged from 0.0 to 57 ppm. The highest reading was reported from the shallow SB-54 soil sample. The boring logs are presented in Appendix A and were prepared for each soil boring indicating the depth interval, lithologic description, and headspace PID measurements for each sample.

2.9 PID Readings during Second Supplemental RI Activities

The following table lists the PID results for each soil sample, and rationale for collecting each sample that was laboratory analyzed.

Sample Location	Sample Depth (feet)	PID Reading (ppm)	Reason for Sample Collection	Description
SB-27-1	0-4	0.2	Initial Sampling Depth	Slight petroleum odor
SB-27-1	4-6	1.0	Deeper Sampling Depth	Slight petroleum odor
SB-27-2	0-4	0.0	Initial Sampling Depth	Organic odor
SB-27-2	9-10	0.0	Deeper Sampling Depth	No odor
SB-27-3	0-4	0.0	Initial Sampling Depth	No odor
SB-27-3	4-6	0.0	Deeper Sampling Depth	Slight petroleum odor
SB-23-4	0-4	0.1	Initial Sampling Depth	Petroleum odor
SB-23-4	4-6	0.8	Deeper Sampling Depth	Petroleum odor
SB-2-3	0-4	23.8	Initial Sampling Depth	Slight petroleum odor
SB-2-3	10-11	2.6	Deeper Sampling Depth	No odor
SB-2-2	1-4	0.6	Initial Sampling Depth	No odor
SB-2-2	6-8	40.1	Deeper Sampling Depth	No odor
SB-2-1	0-4	27.0	Initial Sampling Depth	Petroleum odor
SB-2-1	6-8	38.0	Deeper Sampling Depth	Petroleum odor
SB-24-1	0-4	29.0	Initial Sampling Depth	No odor
SB-24-2	0-2	0.1	Initial Sampling Depth	Slight petroleum odor
SB-24-3	0-4	2.9	Initial Sampling Depth	Strong petroleum odor
SB-24-3	4-6	7.1	Deeper Sampling Depth	Strong petroleum odor
SB-7-2	0-4	1.7	Initial Sampling Depth	Strong petroleum odor
SB-7-2	4-6	68.0	Deeper Sampling Depth	Strong petroleum odor
SB-7-1	0-4	0.5	Initial Sampling Depth	Slight organic odor
SB-7-1	4-6	0.0	Deeper Sampling Depth	Slight organic odor
SB-6-1	0-2	0.0	Initial Sampling Depth	No odor
SB-6-2	0-4	260.0	Initial Sampling Depth	Strong petroleum odor
SB-6-2	6-8	41.6	Deeper Sampling Depth	Strong petroleum odor
SB-6-3	0-4	1.8	Initial Sampling Depth	Petroleum odor
SB-9-1	0-4	29.6	Initial Sampling Depth	Petroleum odor
SB-9-1	10-11	20.0	Deeper Sampling Depth	Petroleum odor
SB-9-3	0-4	31.2	Initial Sampling Depth	Strong petroleum odor
SB-9-3	4-6	45.0	Deeper Sampling Depth	Strong petroleum odor
SB-9-2	0-4	33.0	Initial Sampling Depth	Strong petroleum odor
SB-9-2	8-10	10.9	Deeper Sampling Depth	Strong petroleum odor

Sample	Sample	PID Reading	Reason for Sample	Description
Location	Depth (feet)	(ppm)	Collection	•
SB-20-2	0-4	6.1	Initial Sampling Depth	Strong organic odor
SB-20-2	4-6	3.8	Deeper Sampling Depth	Strong organic odor
SB-20-3	0-4	1.5	Initial Sampling Depth	Sweet organic odor
SB-20-3	6-8	1.3	Deeper Sampling Depth	Sweet organic odor
SB-20-1	0-4	366.0	Initial Sampling Depth	Strong petroleum odor
SB-20-1	6-8	21.6	Deeper Sampling Depth	Strong organic odor
SB-17-2	0-4	16.0	Initial Sampling Depth	Strong organic odor
SB-17-2	4-6	31.0	Deeper Sampling Depth	Strong organic odor
SB-17-1	0-4	0.4	Initial Sampling Depth	Organic odor
SB-17-1	4-6	1.7	Deeper Sampling Depth	Strong organic odor
SB-16-1	0-4	7.0	Initial Sampling Depth	Petroleum odor
SB-16-1	6-8	63.0	Deeper Sampling Depth	Petroleum odor
SB-16-3	0-4	6.1	Initial Sampling Depth	Petroleum odor
SB-16-3	4-6	31.0	Deeper Sampling Depth	Petroleum odor
SB-16-2	0-4	0.0	Initial Sampling Depth	Petroleum odor
SB-16-2	6-8	0.0	Deeper Sampling Depth	Petroleum odor
SB-56	0-4	0.0	Initial Sampling Depth	No odor
SB-56	6-8	130.0	Deeper Sampling Depth	Strong petroleum odor
SB-57	0-4	0.0	Initial Sampling Depth	No odor
SB-57	6-8	0.2	Deeper Sampling Depth	No odor
SB-22-1	0-4	3.6	Initial Sampling Depth	Strong organic odor
SB-22-1	4-6	11.2	Deeper Sampling Depth	Petroleum odor
SB-22-3	0-4	5.1	Initial Sampling Depth	Organic odor
SB-22-3	6-8	43.0	Deeper Sampling Depth	Strong organic odor
SB-22-2	0-4	5.1	Initial Sampling Depth	Strong organic odor
SB-22-2	4-6	15.4	Deeper Sampling Depth	Strong organic odor
SB-8-1	0-4	211.0	Initial Sampling Depth	Strong organic odor
SB-8-1	4-6	43.0	Deeper Sampling Depth	Petroleum odor
SB-8-2	0-4	13.3	Initial Sampling Depth	Light petroleum odor
SB-8-2	4-6	28.0	Deeper Sampling Depth	Strong petroleum odor
SB-23-2	0-4	211.0	Initial Sampling Depth	Strong petroleum odor
SB-23-2	6-8	36.0	Deeper Sampling Depth	Petroleum odor
SB-23-3	0-4	19.2	Initial Sampling Depth	Petroleum odor
SB-23-3	4-6	93.0	Deeper Sampling Depth	Strong petroleum odor
SB-23-1	0-4	11.6	Initial Sampling Depth	Strong petroleum odor
SB-23-1	4-6	23.6	Deeper Sampling Depth	Strong petroleum odor
SB-27-4	0-4	0.0	Initial Sampling Depth	Slight petroleum odor
SB-27-4	6-8	1.2	Deeper Sampling Depth	No odor
SB-27-5	0-4	0.0	Initial Sampling Depth	No odor

Sample Location	Sample Depth (feet)	PID Reading (ppm)	Reason for Sample Collection	Description
SB-27-5	8-10	11.1	Deeper Sampling Depth	Organic odor

Organic vapors were detected with the PID at most of the soil boring locations. PID readings ranged from 0.0 to 366 ppm. The highest reading was reported from the shallow SB-20-1 soil sample. The boring logs are presented in Appendix A and were prepared for each soil boring indicating the depth interval, lithologic description, and headspace PID measurements for each sample.

2.10 Laboratory Analysis

Soil samples were analyzed by a laboratory certified by the NYSDOH ELAP. Sample analysis were performed primarily using methodology contained in *Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Office of Solid Waste, EPA (with latest updates)*. Additional methodology is contained in *Methods for the Evaluation of Water and Waste, EPA 600/4-79-02, revised March 1983 (with latest updates)*. The laboratory methods for the selected comprehensive analysis and recommended holding times for soil and water matrices are presented in the following table.

Sample Parameters, Analytical Methods, Containers, Holding Times			
Parameter	Analytical Method	Containers/ Preservation	Holding Time
	Matri	x: Soil/Sediment	
PCB	8082 1	1-8oz glass, Teflon lined cap Cool to 4°C	14 days
TAL Metals	6010/7471 1	1-8oz glass, Teflon lined cap Cool to 4°C	6 months
TCLP Metals	1311 1	1-8oz plastic Cool to 4°C	180 days to extraction and analysis

Notes: 1. Test Methods for Evaluating Solid Waste, SW-846, Office of Solid Waste, USEPA (latest update)

A review of the laboratory data packages, as well as confirmation with Test America, indicated that all holding times were met for TAL Metals samples collected for soil (EPA Method 6010/7471), PCB samples collected for soil (EPA Methods 8081A/8082), and TCLP (arsenic only) collected for soil (EPA Method 1311) in accordance with the New York State Analytical Service Protocol.

3.0 SUPPLEMENTAL RI ANALYTICAL RESULTS

The SRI soil sample results were compared to NYSDEC Part 375 Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR Part 375) Brownfield Cleanup Program for Unrestricted Use SCOs. The arsenic soil samples results were compared to the Restricted Use - Protection of Groundwater SCOs since it has been determined that arsenic is a site-specific source of groundwater contamination.

3.1 Supplemental RI Soil Sample Results

The SRI soil sampling locations, sample designations, sample depth intervals, and analytical parameters are presented in Table 3-1. The soil sample analytical results are presented in Tables 3-2 through 3-4 and Figures 3-3 through 3-8. In accordance with the BCP Agreement and the intended future use of the Site as industrial, the TAL Metal and PCB sample results were compared to the Unrestricted Use SCOs and arsenic soil sample results were compared to the Restricted Use - Protection of Groundwater SCOs which is further discussed in this section and all exceedances to these SCOs have been listed within the following tables.

3.1.1 Soil Boring SB-29

TAL Metals

Arsenic was detected at SB-29 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	1,160
Barium	BCO Unrestricted=350 mg/kg	427
Cadmium	BCO Unrestricted=2.5 mg/kg	18.4
Chromium	BCO Unrestricted=1/30 mg/kg	71.3

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Copper	BCO Unrestricted=50 mg/kg	7,060 B
Lead	BCO Unrestricted=63 mg/kg	3,830
Mercury	BCO Unrestricted=0.18 mg/kg	10
Nickel	BCO Unrestricted=30 mg/kg	120
Selenium	BCO Unrestricted=3.9 mg/kg	8.4
Silver	BCO Unrestricted=2 mg/kg	5.9
Zinc	BCO Unrestricted=109 mg/kg	2,960

Arsenic was detected at SB-29 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
	200	
Arsenic	BCO Protection of GW=16 mg/kg	1,140
Barium	BCO Unrestricted=350 mg/kg	1,190
Cadmium	BCO Unrestricted=2.5 mg/kg	13.5
Chromium	BCO Unrestricted=1/30 mg/kg	101
Copper	BCO Unrestricted=50 mg/kg	5,480 B
Lead	BCO Unrestricted=63 mg/kg	2,050
Mercury	BCO Unrestricted=0.18 mg/kg	4.2
Nickel	BCO Unrestricted=30 mg/kg	150
Selenium	BCO Unrestricted=3.9 mg/kg	6.3
Silver	BCO Unrestricted=2 mg/kg	4.3
Zinc	BCO Unrestricted=109 mg/kg	5,310

PCBs

PCBs (total) were not detected at SB-29 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4.

PCBs (total) were detected at SB-29 (4-10) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.24

3.1.2 Soil Boring SB-30

TAL Metals

Arsenic was detected at SB-30 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	23.9
Barium	BCO Unrestricted=350 mg/kg	808
Cadmium	BCO Unrestricted=2.5 mg/kg	15.6
Chromium	BCO Unrestricted=1/30 mg/kg	120
Copper	BCO Unrestricted=50 mg/kg	860
Lead	BCO Unrestricted=63 mg/kg	5,410
Mercury	BCO Unrestricted=0.18 mg/kg	4.9
Nickel	BCO Unrestricted=30 mg/kg	82.9
Zinc	BCO Unrestricted=109 mg/kg	3,080

Arsenic was detected at SB-30 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	27.6
Barium	BCO Unrestricted=350 mg/kg	455
Cadmium	BCO Unrestricted=2.5 mg/kg	9.1
Chromium	BCO Unrestricted=1/30 mg/kg	76.5
Copper	BCO Unrestricted=50 mg/kg	765
Lead	BCO Unrestricted=63 mg/kg	1,630
Mercury	BCO Unrestricted=0.18 mg/kg	1.7
Nickel	BCO Unrestricted=30 mg/kg	140
Zinc	BCO Unrestricted=109 mg/kg	2,410

PCBs

PCBs (total) were detected at SB-30 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	PCO Unrastriated—0.1 mg/lsg	0.45
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.49

PCBs (total) were detected at SB-30 (4-10) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.31
Aroclor-1260	BCO Officerricted=0.1 flig/kg	0.21

3.1.3 Soil Boring SB-31

TAL Metals

TAL Metals were detected at SB-31 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	794
Cadmium	BCO Unrestricted=2.5 mg/kg	32.8
Chromium	BCO Unrestricted=1/30 mg/kg	483
Copper	BCO Unrestricted=50 mg/kg	19,800 B
Lead	BCO Unrestricted=63 mg/kg	2,060
Mercury	BCO Unrestricted=0.18 mg/kg	9.8
Nickel	BCO Unrestricted=30 mg/kg	331
Silver	BCO Unrestricted=2 mg/kg	7.9 J
Zinc	BCO Unrestricted=109 mg/kg	14,200

TAL Metals were detected at SB-31 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	444
Cadmium	BCO Unrestricted=2.5 mg/kg	9.9
Chromium	BCO Unrestricted=1/30 mg/kg	142
Copper	BCO Unrestricted=50 mg/kg	1,100 B
Lead	BCO Unrestricted=63 mg/kg	1,220
Mercury	BCO Unrestricted=0.18 mg/kg	6.0
Nickel	BCO Unrestricted=30 mg/kg	90.7
Silver	BCO Unrestricted=2 mg/kg	2.0 J
Zinc	BCO Unrestricted=109 mg/kg	6,240

PCBs

PCBs (total) were detected at SB-31 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	DCO Hamatriotad O 1 mg/lsg	4.2
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.7

PCBs (total) were detected at SB-31 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.32

3.1.4 Soil Boring SB-32

TAL Metals

Arsenic was detected at SB-32 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	144
Barium	BCO Unrestricted=350 mg/kg	3,900
Cadmium	BCO Unrestricted=2.5 mg/kg	14
Chromium	BCO Unrestricted=1/30 mg/kg	222
Copper	BCO Unrestricted=50 mg/kg	1,170
Lead	BCO Unrestricted=63 mg/kg	17,000
Mercury	BCO Unrestricted=0.18 mg/kg	14.2
Nickel	BCO Unrestricted=30 mg/kg	142
Selenium	BCO Unrestricted=3.9 mg/kg	16.4
Silver	BCO Unrestricted=2 mg/kg	2.1 J
Zinc	BCO Unrestricted=109 mg/kg	11,600

Arsenic was detected at SB-32 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	26.6
Barium	BCO Unrestricted=350 mg/kg	1,090
Cadmium	BCO Unrestricted=2.5 mg/kg	6.4
Chromium	BCO Unrestricted=1/30 mg/kg	90.2
Copper	BCO Unrestricted=50 mg/kg	643
Lead	BCO Unrestricted=63 mg/kg	6,580
Mercury	BCO Unrestricted=0.18 mg/kg	4.5
Nickel	BCO Unrestricted=30 mg/kg	76.3
Zinc	BCO Unrestricted=109 mg/kg	2,740

<u>PCBs</u>

PCBs (total) were detected at SB-32 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	14.0

PCBs (total) were detected at SB-32 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.7

3.1.5 Soil Boring SB-33

TAL Metals

Arsenic was detected at SB-33 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	26.7
Barium	BCO Unrestricted=350 mg/kg	1,200
Cadmium	BCO Unrestricted=2.5 mg/kg	13
Chromium	BCO Unrestricted=1/30 mg/kg	177
Copper	BCO Unrestricted=50 mg/kg	607
Lead	BCO Unrestricted=63 mg/kg	3,510
Mercury	BCO Unrestricted=0.18 mg/kg	3.2
Nickel	BCO Unrestricted=30 mg/kg	179
Zinc	BCO Unrestricted=109 mg/kg	3,060

Arsenic was detected at SB-33 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	21.3
Barium	BCO Unrestricted=350 mg/kg	819
Cadmium	BCO Unrestricted=2.5 mg/kg	11.7
Chromium	BCO Unrestricted=1/30 mg/kg	138
Copper	BCO Unrestricted=50 mg/kg	1,480
Lead	BCO Unrestricted=63 mg/kg	6,070
Mercury	BCO Unrestricted=0.18 mg/kg	3.7

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Nickel	BCO Unrestricted=30 mg/kg	254
Zinc	BCO Unrestricted=109 mg/kg	12,400

<u>PCBs</u>

PCBs (total) were detected at SB-33 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		0.58
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.86
Aroclor-1260		0.33

PCBs (total) were detected at SB-33 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	DCO Umastriatad - 0.1 ma/lea	0.93 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.76 J

3.1.6 Soil Boring SB-34

TAL Metals

Arsenic was detected at SB-34 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	16.3
Barium	BCO Unrestricted=350 mg/kg	675
Cadmium	BCO Unrestricted=2.5 mg/kg	18.3
Chromium	BCO Unrestricted=1/30 mg/kg	486
Copper	BCO Unrestricted=50 mg/kg	4,460

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report April 2011

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Lead	BCO Unrestricted=63 mg/kg	1,740
Mercury	BCO Unrestricted=0.18 mg/kg	12.6
Nickel	BCO Unrestricted=30 mg/kg	330
Silver	BCO Unrestricted=2 mg/kg	2.5 J
Zinc	BCO Unrestricted=109 mg/kg	4,570

Arsenic was detected at SB-34 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	24.7
Barium	BCO Unrestricted=350 mg/kg	599
Cadmium	BCO Unrestricted=2.5 mg/kg	19.7
Chromium	BCO Unrestricted=1/30 mg/kg	304
Copper	BCO Unrestricted=50 mg/kg	923
Lead	BCO Unrestricted=63 mg/kg	2,350
Mercury	BCO Unrestricted=0.18 mg/kg	4.9
Nickel	BCO Unrestricted=30 mg/kg	245
Selenium	BCO Unrestricted=3.9 mg/kg	28.4
Silver	BCO Unrestricted=2 mg/kg	2.3 J
Zinc	BCO Unrestricted=109 mg/kg	3,430

<u>PCBs</u>

PCBs (total) were detected at SB-34 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242		4.1
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.2 J
Aroclor-1260		0.33 J

PCBs (total) were detected at SB-34 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248		2.0 J
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.6
Aroclor-1260		0.56

3.1.7 Soil Boring SB-35

TAL Metals

Arsenic was detected at SB-35 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	16.2
Barium	BCO Unrestricted=350 mg/kg	439
Cadmium	BCO Unrestricted=2.5 mg/kg	25
Chromium	BCO Unrestricted=1/30 mg/kg	257
Copper	BCO Unrestricted=50 mg/kg	4,210 B
Lead	BCO Unrestricted=63 mg/kg	1,580
Mercury	BCO Unrestricted=0.18 mg/kg	5.8
Nickel	BCO Unrestricted=30 mg/kg	124
Selenium	BCO Unrestricted=3.9 mg/kg	19.5
Silver	BCO Unrestricted=2 mg/kg	2.5
Zinc	BCO Unrestricted=109 mg/kg	8,290

Arsenic was detected at SB-35 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	22.5
Barium	BCO Unrestricted=350 mg/kg	807
Cadmium	BCO Unrestricted=2.5 mg/kg	29
Chromium	BCO Unrestricted=1/30 mg/kg	155
Copper	BCO Unrestricted=50 mg/kg	1,520 B
Lead	BCO Unrestricted=63 mg/kg	5,120
Mercury	BCO Unrestricted=0.18 mg/kg	4.7
Nickel	BCO Unrestricted=30 mg/kg	332

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Selenium	BCO Unrestricted=3.9 mg/kg	9.2
Zinc	BCO Unrestricted=109 mg/kg	15,400

<u>PCBs</u>

PCBs (total) were detected at SB-35 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	DCO Unanatorista di Oil manilla	3.2
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.8

PCBs (total) were detected at SB-35 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.92

3.1.8 Soil Boring SB-36

TAL Metals

Arsenic was detected at SB-36 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	16.4
Barium	BCO Unrestricted=350 mg/kg	1,090
Cadmium	BCO Unrestricted=2.5 mg/kg	41.2
Chromium	BCO Unrestricted=1/30 mg/kg	142
Copper	BCO Unrestricted=50 mg/kg	10,000
Lead	BCO Unrestricted=63 mg/kg	1,580
Mercury	BCO Unrestricted=0.18 mg/kg	7.1

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Nickel	BCO Unrestricted=30 mg/kg	189
Silver	BCO Unrestricted=2 mg/kg	3.7 J
Zinc	BCO Unrestricted=109 mg/kg	11,700

TAL Metals were detected at SB-36 (6-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	817
Cadmium	BCO Unrestricted=2.5 mg/kg	18
Chromium	BCO Unrestricted=1/30 mg/kg	184
Copper	BCO Unrestricted=50 mg/kg	2,340
Lead	BCO Unrestricted=63 mg/kg	4,490
Mercury	BCO Unrestricted=0.18 mg/kg	9.1
Nickel	BCO Unrestricted=30 mg/kg	204
Silver	BCO Unrestricted=2 mg/kg	2.6 J
Zinc	BCO Unrestricted=109 mg/kg	5,550

<u>PCBs</u>

PCBs (total) were detected at SB-36 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248		14 J
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	3.9
Aroclor-1260		0.71 J

PCBs (total) were detected at SB-36 (6-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	4.0 J
Aroclor-1254		1.9

3.1.9 Soil Boring SB-37

TAL Metals

TAL Metals were detected at SB-37 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	656
Cadmium	BCO Unrestricted=2.5 mg/kg	8.5
Chromium	BCO Unrestricted=1/30 mg/kg	198
Copper	BCO Unrestricted=50 mg/kg	635
Lead	BCO Unrestricted=63 mg/kg	3,840
Mercury	BCO Unrestricted=0.18 mg/kg	5.3
Nickel	BCO Unrestricted=30 mg/kg	93.4
Zinc	BCO Unrestricted=109 mg/kg	3,650

TAL Metals were detected at SB-37 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	355
Cadmium	BCO Unrestricted=2.5 mg/kg	2.6 J
Chromium	BCO Unrestricted=1/30 mg/kg	52.5
Copper	BCO Unrestricted=50 mg/kg	304
Lead	BCO Unrestricted=63 mg/kg	993
Mercury	BCO Unrestricted=0.18 mg/kg	2.0
Nickel	BCO Unrestricted=30 mg/kg	42.4 J
Zinc	BCO Unrestricted=109 mg/kg	762

<u>PCBs</u>

PCBs (total) were detected at SB-37 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.25

PCBs (total) were detected at SB-37 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.56
Aroclor-1260		0.29

3.1.10 Soil Boring SB-38

TAL Metals

Arsenic was detected at SB-38 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	45.9
Barium	BCO Unrestricted=350 mg/kg	1,080
Cadmium	BCO Unrestricted=2.5 mg/kg	17
Chromium	BCO Unrestricted=1/30 mg/kg	406
Copper	BCO Unrestricted=50 mg/kg	2,800 B
Lead	BCO Unrestricted=63 mg/kg	1,450
Mercury	BCO Unrestricted=0.18 mg/kg	4.1
Nickel	BCO Unrestricted=30 mg/kg	101
Selenium	BCO Unrestricted=3.9 mg/kg	4.8
Silver	BCO Unrestricted=2 mg/kg	3.0
Zinc	BCO Unrestricted=109 mg/kg	6,430

TAL Metals

Arsenic was detected at SB-38 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	25.8
Barium	BCO Unrestricted=350 mg/kg	482
Cadmium	BCO Unrestricted=2.5 mg/kg	28
Chromium	BCO Unrestricted=1/30 mg/kg	198
Copper	BCO Unrestricted=50 mg/kg	864 B
Lead	BCO Unrestricted=63 mg/kg	2,870
Mercury	BCO Unrestricted=0.18 mg/kg	6.9
Nickel	BCO Unrestricted=30 mg/kg	410
Selenium	BCO Unrestricted=3.9 mg/kg	9.9
Silver	BCO Unrestricted=2 mg/kg	2.2 J
Zinc	BCO Unrestricted=109 mg/kg	9,040

PCBs

PCBs (total) were detected at SB-38 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.3

PCBs (total) were detected at SB-38 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.49

3.1.11 Soil Boring SB-39

TAL Metals

TAL Metals were detected at SB-39 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	961
Cadmium	BCO Unrestricted=2.5 mg/kg	50.7
Chromium	BCO Unrestricted=1/30 mg/kg	305
Copper	BCO Unrestricted=50 mg/kg	12,800 B
Lead	BCO Unrestricted=63 mg/kg	2,180
Mercury	BCO Unrestricted=0.18 mg/kg	9.9
Nickel	BCO Unrestricted=30 mg/kg	327
Silver	BCO Unrestricted=2 mg/kg	24.8
Zinc	BCO Unrestricted=109 mg/kg	18,700

Arsenic was detected at SB-39 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	20.2
Barium	BCO Unrestricted=350 mg/kg	1,090
Cadmium	BCO Unrestricted=2.5 mg/kg	30.5
Chromium	BCO Unrestricted=1/30 mg/kg	201
Copper	BCO Unrestricted=50 mg/kg	1,470 B
Lead	BCO Unrestricted=63 mg/kg	4,850
Mercury	BCO Unrestricted=0.18 mg/kg	14.3
Nickel	BCO Unrestricted=30 mg/kg	168
Selenium	BCO Unrestricted=3.9 mg/kg	15.3
Silver	BCO Unrestricted=2 mg/kg	3.3 J
Zinc	BCO Unrestricted=109 mg/kg	6,150

PCBs

PCBs (total) were detected at SB-39 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.1

PCBs (total) were detected at SB-39 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.73

3.1.12 Soil Boring SB-40

TAL Metals

TAL Metals were detected at SB-40 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	376
Cadmium	BCO Unrestricted=2.5 mg/kg	6
Chromium	BCO Unrestricted=1/30 mg/kg	54
Copper	BCO Unrestricted=50 mg/kg	1,490
Lead	BCO Unrestricted=63 mg/kg	1,000
Nickel	BCO Unrestricted=30 mg/kg	91.3
Zinc	BCO Unrestricted=109 mg/kg	1,700

TAL Metals were detected at SB-40 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	371
Cadmium	BCO Unrestricted=2.5 mg/kg	3 Ј
Chromium	BCO Unrestricted=1/30 mg/kg	66.7
Copper	BCO Unrestricted=50 mg/kg	562
Lead	BCO Unrestricted=63 mg/kg	857
Mercury	BCO Unrestricted=0.18 mg/kg	1.2
Nickel	BCO Unrestricted=30 mg/kg	53.5
Zinc	BCO Unrestricted=109 mg/kg	857

PCBs

PCBs (total) were detected at SB-40 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	PCO Unrestriated - 0.1 mg/kg	0.41 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.21 J

PCBs (total) were detected at SB-40 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.41 J
Aroclor-1260		0.24 J

3.1.13 Soil Boring SB-41

TAL Metals

TAL Metals were detected at SB-41 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	24.6
Copper	BCO Unrestricted=50 mg/kg	152
Lead	BCO Unrestricted=63 mg/kg	388
Mercury	BCO Unrestricted=0.18 mg/kg	1.0
Zinc	BCO Unrestricted=109 mg/kg	735

TAL Metals were detected at SB-41 (4-11) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	36.2
Copper	BCO Unrestricted=50 mg/kg	137
Lead	BCO Unrestricted=63 mg/kg	521
Mercury	BCO Unrestricted=0.18 mg/kg	1.4
Zinc	BCO Unrestricted=109 mg/kg	394

<u>PCBs</u>

PCBs (total) were detected at SB-41 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.24
Aroclor-1260		0.14 J

PCBs (total) were detected at SB-41 (4-11) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.11

3.1.14 Soil Boring SB-42

TAL Metals

Arsenic was detected at SB-42 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	67.4
Barium	BCO Unrestricted=350 mg/kg	785
Cadmium	BCO Unrestricted=2.5 mg/kg	29.5

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	823
Copper	BCO Unrestricted=50 mg/kg	1,150
Lead	BCO Unrestricted=63 mg/kg	6,240
Nickel	BCO Unrestricted=30 mg/kg	796
Selenium	BCO Unrestricted=3.9 mg/kg	17.3
Silver	BCO Unrestricted=2 mg/kg	5.3 J
Zinc	BCO Unrestricted=109 mg/kg	7,350

Arsenic was detected at SB-42 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	35.8
Cadmium	BCO Unrestricted=2.5 mg/kg	3.7
Chromium	BCO Unrestricted=1/30 mg/kg	163
Copper	BCO Unrestricted=50 mg/kg	221
Lead	BCO Unrestricted=63 mg/kg	768
Mercury	BCO Unrestricted=0.18 mg/kg	0.93
Nickel	BCO Unrestricted=30 mg/kg	182
Zinc	BCO Unrestricted=109 mg/kg	1,650

PCBs

PCBs (total) were detected at SB-42 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242		0.86
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.58
Aroclor-1260		0.14

PCBs (total) were detected at SB-42 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	PCO Unrestricted - 0.1 mg/kg	0.32
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.17

3.1.15 Soil Boring SB-43

TAL Metals

Arsenic was detected at SB-43 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	21
Barium	BCO Unrestricted=350 mg/kg	767
Cadmium	BCO Unrestricted=2.5 mg/kg	27.2
Chromium	BCO Unrestricted=1/30 mg/kg	174
Copper	BCO Unrestricted=50 mg/kg	11,700
Lead	BCO Unrestricted=63 mg/kg	2,230
Mercury	BCO Unrestricted=0.18 mg/kg	5.7
Nickel	BCO Unrestricted=30 mg/kg	328
Silver	BCO Unrestricted=2 mg/kg	3.3 J
Zinc	BCO Unrestricted=109 mg/kg	9,850

Arsenic was detected at SB-43 (4-8) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	29.5
Barium	BCO Unrestricted=350 mg/kg	853
Cadmium	BCO Unrestricted=2.5 mg/kg	24.8
Chromium	BCO Unrestricted=1/30 mg/kg	260
Copper	BCO Unrestricted=50 mg/kg	1,290
Lead	BCO Unrestricted=63 mg/kg	4,080
Mercury	BCO Unrestricted=0.18 mg/kg	6.0
Nickel	BCO Unrestricted=30 mg/kg	257
Selenium	BCO Unrestricted=3.9 mg/kg	11.7
Silver	BCO Unrestricted=2 mg/kg	3.4 J

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Zinc	BCO Unrestricted=109 mg/kg	6,030

<u>PCBs</u>

PCBs (total) were detected at SB-43 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242		5.1
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.0
Aroclor-1260		0.27 J

PCBs (total) were detected at SB-43 (4-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248		1.9
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.2
Aroclor-1260		0.31

3.1.16 Soil Boring SB-44

TAL Metals

TAL Metals were detected at SB-44 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	693
Cadmium	BCO Unrestricted=2.5 mg/kg	39.2
Chromium	BCO Unrestricted=1/30 mg/kg	173
Copper	BCO Unrestricted=50 mg/kg	4,540 B
Lead	BCO Unrestricted=63 mg/kg	2,950

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Mercury	BCO Unrestricted=0.18 mg/kg	11.6
Nickel	BCO Unrestricted=30 mg/kg	153
Silver	BCO Unrestricted=2 mg/kg	3.6 J
Zinc	BCO Unrestricted=109 mg/kg	8,150

Arsenic was detected at SB-44 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	32.5
Barium	BCO Unrestricted=350 mg/kg	950
Cadmium	BCO Unrestricted=2.5 mg/kg	37
Chromium	BCO Unrestricted=1/30 mg/kg	335
Copper	BCO Unrestricted=50 mg/kg	3,690 B
Lead	BCO Unrestricted=63 mg/kg	5,050
Mercury	BCO Unrestricted=0.18 mg/kg	11.7
Nickel	BCO Unrestricted=30 mg/kg	287
Selenium	BCO Unrestricted=3.9 mg/kg	12 J
Silver	BCO Unrestricted=2 mg/kg	5.8 J
Zinc	BCO Unrestricted=109 mg/kg	7,590

PCBs

PCBs (total) were detected at SB-44 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	2.9
Aroclor-1254		1.4

PCBs (total) were detected at SB-44 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.4

3.1.17 Soil Boring SB-45

TAL Metals

TAL Metals were detected at SB-45 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Cadmium	BCO Unrestricted=2.5 mg/kg	3.3
Chromium	BCO Unrestricted=1/30 mg/kg	61.3
Copper	BCO Unrestricted=50 mg/kg	225
Lead	BCO Unrestricted=63 mg/kg	1,240
Mercury	BCO Unrestricted=0.18 mg/kg	4.9
Nickel	BCO Unrestricted=30 mg/kg	50.1
Zinc	BCO Unrestricted=109 mg/kg	757

TAL Metals were detected at SB-45 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	30.1
Copper	BCO Unrestricted=50 mg/kg	77
Lead	BCO Unrestricted=63 mg/kg	316
Mercury	BCO Unrestricted=0.18 mg/kg	1.0
Zinc	BCO Unrestricted=109 mg/kg	257

<u>PCBs</u>

PCBs (total) were detected at SB-45 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.52
Aroclor-1260		0.34

PCBs (total) were detected at SB-45 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.17

3.1.18 Soil Boring SB-46

TAL Metals

TAL Metals were detected at SB-46 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	1,020
Cadmium	BCO Unrestricted=2.5 mg/kg	38.3
Chromium	BCO Unrestricted=1/30 mg/kg	450
Copper	BCO Unrestricted=50 mg/kg	1,150
Lead	BCO Unrestricted=63 mg/kg	5,110
Mercury	BCO Unrestricted=0.18 mg/kg	9.2
Nickel	BCO Unrestricted=30 mg/kg	353
Silver	BCO Unrestricted=2 mg/kg	8.5 J
Zinc	BCO Unrestricted=109 mg/kg	9,910

Arsenic was detected at SB-46 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	20.1
Barium	BCO Unrestricted=350 mg/kg	1,380

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Cadmium	BCO Unrestricted=2.5 mg/kg	50.5
Chromium	BCO Unrestricted=1/30 mg/kg	327
Copper	BCO Unrestricted=50 mg/kg	1,100
Lead	BCO Unrestricted=63 mg/kg	8,760
Mercury	BCO Unrestricted=0.18 mg/kg	9.7
Nickel	BCO Unrestricted=30 mg/kg	273
Silver	BCO Unrestricted=2 mg/kg	4.4 J
Zinc	BCO Unrestricted=109 mg/kg	16,400

PCBs

PCBs were detected at SB-46 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	2.7
Aroclor-1260		0.5

PCBs were detected at SB-46 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		6.7
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	6.2
Aroclor-1260		1.7

3.1.19 Soil Boring SB-47

TAL Metals

Arsenic was detected at SB-47 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	69.6
Barium	BCO Unrestricted=350 mg/kg	849
Cadmium	BCO Unrestricted=2.5 mg/kg	20.5
Chromium	BCO Unrestricted=1/30 mg/kg	276
Copper	BCO Unrestricted=50 mg/kg	1,260
Lead	BCO Unrestricted=63 mg/kg	5,810
Mercury	BCO Unrestricted=0.18 mg/kg	9.6
Nickel	BCO Unrestricted=30 mg/kg	201
Silver	BCO Unrestricted=2 mg/kg	4.3 J
Zinc	BCO Unrestricted=109 mg/kg	7,800

Arsenic was detected at SB-47 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	18.5
Barium	BCO Unrestricted=350 mg/kg	1,090
Cadmium	BCO Unrestricted=2.5 mg/kg	32.8
Chromium	BCO Unrestricted=1/30 mg/kg	297
Copper	BCO Unrestricted=50 mg/kg	1,440
Lead	BCO Unrestricted=63 mg/kg	6,080
Mercury	BCO Unrestricted=0.18 mg/kg	6.0
Nickel	BCO Unrestricted=30 mg/kg	168
Selenium	BCO Unrestricted=3.9 mg/kg	11.5
Silver	BCO Unrestricted=2 mg/kg	3.3 J
Zinc	BCO Unrestricted=109 mg/kg	6,130

<u>PCBs</u>

PCBs were detected at SB-47 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242		1.4
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.83
Aroclor-1260		0.19

PCBs were detected at SB-47 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242		3.3
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.5
Aroclor-1260		0.95

3.1.20 Soil Boring SB-48

TAL Metals

Arsenic was detected at SB-48 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	17.2
Barium	BCO Unrestricted=350 mg/kg	773
Cadmium	BCO Unrestricted=2.5 mg/kg	38.2
Chromium	BCO Unrestricted=1/30 mg/kg	278
Copper	BCO Unrestricted=50 mg/kg	11,200 B
Lead	BCO Unrestricted=63 mg/kg	2,330
Mercury	BCO Unrestricted=0.18 mg/kg	9.1
Nickel	BCO Unrestricted=30 mg/kg	292
Selenium	BCO Unrestricted=3.9 mg/kg	14.9
Silver	BCO Unrestricted=2 mg/kg	4.8 J
Zinc	BCO Unrestricted=109 mg/kg	12,800

Arsenic was detected at SB-48 (4-6) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	18.3
Barium	BCO Unrestricted=350 mg/kg	970
Cadmium	BCO Unrestricted=2.5 mg/kg	41.5

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	301
Copper	BCO Unrestricted=50 mg/kg	3,980 B
Lead	BCO Unrestricted=63 mg/kg	4,220
Mercury	BCO Unrestricted=0.18 mg/kg	13.5
Nickel	BCO Unrestricted=30 mg/kg	350
Silver	BCO Unrestricted=2 mg/kg	5.2 J
Zinc	BCO Unrestricted=109 mg/kg	10,600

<u>PCBs</u>

PCBs (total) were detected at SB-48 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.83

PCBs (total) were detected at SB-48 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	2.6
Aroclor-1254		1.2

3.1.21 Soil Boring SB-49

TAL Metals

TAL Metals were detected at SB-49 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	51.1
Copper	BCO Unrestricted=50 mg/kg	153

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Lead	BCO Unrestricted=63 mg/kg	232
Mercury	BCO Unrestricted=0.18 mg/kg	0.72
Nickel	BCO Unrestricted=30 mg/kg	51.8
Zinc	BCO Unrestricted=109 mg/kg	408

TAL Metals were detected at SB-49 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Chromium	BCO Unrestricted=1/30 mg/kg	27
Copper	BCO Unrestricted=50 mg/kg	145
Lead	BCO Unrestricted=63 mg/kg	212
Mercury	BCO Unrestricted=0.18 mg/kg	1.0
Zinc	BCO Unrestricted=109 mg/kg	331

PCBs

PCBs (total) were not detected at SB-49 (0-4) and SB-49 (4-10) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4.

3.1.22 Soil Boring SB-50

TAL Metals

Arsenic was detected at SB-50 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	23.2
Barium	BCO Unrestricted=350 mg/kg	714
Cadmium	BCO Unrestricted=2.5 mg/kg	21.4
Chromium	BCO Unrestricted=1/30 mg/kg	118
Copper	BCO Unrestricted=50 mg/kg	1,140
Lead	BCO Unrestricted=63 mg/kg	1,720
Mercury	BCO Unrestricted=0.18 mg/kg	4.5

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report April 2011 47743

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Nickel	BCO Unrestricted=30 mg/kg	92.6
Selenium	BCO Unrestricted=3.9 mg/kg	194
Zinc	BCO Unrestricted=109 mg/kg	3,330

Arsenic was detected at SB-50 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	39.8
Cadmium	BCO Unrestricted=2.5 mg/kg	5 Ј
Chromium	BCO Unrestricted=1/30 mg/kg	112
Copper	BCO Unrestricted=50 mg/kg	688
Lead	BCO Unrestricted=63 mg/kg	662
Mercury	BCO Unrestricted=0.18 mg/kg	2.1
Nickel	BCO Unrestricted=30 mg/kg	42.2 J
Zinc	BCO Unrestricted=109 mg/kg	1,520

PCBs

PCBs (total) were detected at SB-50 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.31
Aroclor-1260		0.18

PCBs (total) were detected at SB-50 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.59 J

3.1.23 Soil Boring SB-51

TAL Metals

TAL Metals were detected at SB-51 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	563
Cadmium	BCO Unrestricted=2.5 mg/kg	3.9 J
Chromium	BCO Unrestricted=1/30 mg/kg	82.8
Copper	BCO Unrestricted=50 mg/kg	1,910
Lead	BCO Unrestricted=63 mg/kg	1,730
Mercury	BCO Unrestricted=0.18 mg/kg	1.0
Nickel	BCO Unrestricted=30 mg/kg	69.2
Zinc	BCO Unrestricted=109 mg/kg	1,930

TAL Metals were detected at SB-51 (4-8) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	437
Chromium	BCO Unrestricted=1/30 mg/kg	26.6
Copper	BCO Unrestricted=50 mg/kg	179
Lead	BCO Unrestricted=63 mg/kg	752
Mercury	BCO Unrestricted=0.18 mg/kg	0.95
Zinc	BCO Unrestricted=109 mg/kg	746

<u>PCBs</u>

PCBs (total) were not detected at SB-51 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4.

PCBs (total) were detected at SB-51 (4-8) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.21

3.1.24 Soil Boring SB-52

TAL Metals

TAL Metals were detected at SB-52 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	1,150
Cadmium	BCO Unrestricted=2.5 mg/kg	24.7
Chromium	BCO Unrestricted=1/30 mg/kg	834
Copper	BCO Unrestricted=50 mg/kg	1,910 B
Lead	BCO Unrestricted=63 mg/kg	2,200
Mercury	BCO Unrestricted=0.18 mg/kg	13.6
Nickel	BCO Unrestricted=30 mg/kg	280
Selenium	BCO Unrestricted=3.9 mg/kg	7.2
Silver	BCO Unrestricted=2 mg/kg	3.8
Zinc	BCO Unrestricted=109 mg/kg	11,300

TAL Metals were detected at SB-52 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	498
Cadmium	BCO Unrestricted=2.5 mg/kg	8.3
Chromium	BCO Unrestricted=1/30 mg/kg	149
Copper	BCO Unrestricted=50 mg/kg	2,900 B
Lead	BCO Unrestricted=63 mg/kg	898
Mercury	BCO Unrestricted=0.18 mg/kg	2.9
Nickel	BCO Unrestricted=30 mg/kg	90.4
Selenium	BCO Unrestricted=3.9 mg/kg	64.7
Zinc	BCO Unrestricted=109 mg/kg	4,120

<u>PCBs</u>

PCBs (total) were detected at SB-52 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.0

PCBs (total) were detected at SB-52 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.55 J

3.1.25 Soil Boring SB-53

TAL Metals

Arsenic was detected at SB-53 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	13.9
Barium	BCO Unrestricted=350 mg/kg	907
Cadmium	BCO Unrestricted=2.5 mg/kg	32.3
Chromium	BCO Unrestricted=1/30 mg/kg	231
Copper	BCO Unrestricted=50 mg/kg	2,820
Lead	BCO Unrestricted=63 mg/kg	2,680
Mercury	BCO Unrestricted=0.18 mg/kg	4.3
Nickel	BCO Unrestricted=30 mg/kg	190
Selenium	BCO Unrestricted=3.9 mg/kg	7.1 J
Silver	BCO Unrestricted=2 mg/kg	4.8 J
Zinc	BCO Unrestricted=109 mg/kg	9,110

Arsenic was detected at SB-53 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	25.1
Barium	BCO Unrestricted=350 mg/kg	652
Cadmium	BCO Unrestricted=2.5 mg/kg	26.7
Chromium	BCO Unrestricted=1/30 mg/kg	249
Copper	BCO Unrestricted=50 mg/kg	789
Lead	BCO Unrestricted=63 mg/kg	2,330
Mercury	BCO Unrestricted=0.18 mg/kg	7.9
Nickel	BCO Unrestricted=30 mg/kg	162
Silver	BCO Unrestricted=2 mg/kg	2.9 J
Zinc	BCO Unrestricted=109 mg/kg	3,120

<u>PCBs</u>

PCBs (total) were detected at SB-53 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	5.5
Aroclor-1254		1.0

PCBs (total) were detected at SB-53 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	1.6
Aroclor-1260		5.1

3.1.26 Soil Boring SB-54

TAL Metals

TAL Metals were detected at SB-54 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	1,920
Cadmium	BCO Unrestricted=2.5 mg/kg	21.8
Chromium	BCO Unrestricted=1/30 mg/kg	214
Copper	BCO Unrestricted=50 mg/kg	1,560
Lead	BCO Unrestricted=63 mg/kg	1,760
Mercury	BCO Unrestricted=0.18 mg/kg	12.6
Nickel	BCO Unrestricted=30 mg/kg	205
Silver	BCO Unrestricted=2 mg/kg	3 J
Zinc	BCO Unrestricted=109 mg/kg	6,250

Arsenic was detected at SB-54 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	27.1
Barium	BCO Unrestricted=350 mg/kg	985
Cadmium	BCO Unrestricted=2.5 mg/kg	29.4
Chromium	BCO Unrestricted=1/30 mg/kg	794
Copper	BCO Unrestricted=50 mg/kg	1,860
Lead	BCO Unrestricted=63 mg/kg	4,530
Mercury	BCO Unrestricted=0.18 mg/kg	8.5
Nickel	BCO Unrestricted=30 mg/kg	800
Selenium	BCO Unrestricted=3.9 mg/kg	5.4 J
Silver	BCO Unrestricted=2 mg/kg	4 J
Zinc	BCO Unrestricted=109 mg/kg	7,430

<u>PCBs</u>

PCBs (total) were detected at SB-54 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	5.6
Aroclor-1254	BCO Officsurcted=0.1 fflg/kg	1.4 J

PCBs (total) were not detected at SB-54 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		5.0
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.9
Aroclor-1260		0.6

3.1.27 Soil Boring SB-55

TAL Metals

TAL Metals were detected at SB-55 (0-4) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Tables 3-2 and 3-3, and Figures 3-3 through 3-6. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Barium	BCO Unrestricted=350 mg/kg	713
Cadmium	BCO Unrestricted=2.5 mg/kg	8.4
Chromium	BCO Unrestricted=1/30 mg/kg	206
Copper	BCO Unrestricted=50 mg/kg	741
Lead	BCO Unrestricted=63 mg/kg	3,470
Mercury	BCO Unrestricted=0.18 mg/kg	5.4
Nickel	BCO Unrestricted=30 mg/kg	290
Silver	BCO Unrestricted=2 mg/kg	2.6 J
Zinc	BCO Unrestricted=109 mg/kg	3,240

TAL Metals were detected at SB-55 (4-10) with concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations were not detected exceeding the Restricted Use - Protection of Groundwater SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Barium	BCO Unrestricted=350 mg/kg	392
Cadmium	BCO Unrestricted=2.5 mg/kg	3.9 J
Chromium	BCO Unrestricted=1/30 mg/kg	59.3
Copper	BCO Unrestricted=50 mg/kg	458
Lead	BCO Unrestricted=63 mg/kg	864
Mercury	BCO Unrestricted=0.18 mg/kg	1.5
Nickel	BCO Unrestricted=30 mg/kg	40.2 J
Selenium	BCO Unrestricted=3.9 mg/kg	19.7
Zinc	BCO Unrestricted=109 mg/kg	905

PCBs

PCBs (total) were detected at SB-55 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 3-4 and Figures 3-7 and 3-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	DCO Umusetnista d-0.1 ma/lea	1.7
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.7

PCBs (total) were not detected at SB-55 (4-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	DCO Umastriated -0.1 mg/lsg	0.34 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.24 J

3.1.28 TCLP Soil Samples for Arsenic

Soil samples were analyzed from select SRI sample locations to assess whether specific arsenic concentrations that exceed the Restricted Use - Protection of Groundwater SCO of 16 mg/kg also exceed the RCRA Hazardous Waste Regulatory Level of 5 mg/L. These samples were collected

to assess whether there was a correlation between the total arsenic concentrations (dry weight) and the leachability of this contaminant in the subsurface environment at the Site. The results of this data will likely show the approximate arsenic concentration that has the potential to leach into or impact groundwater quality beneath the Site. Once this data is evaluated, a site-specific cleanup level for arsenic can be presented to NYSDEC for consideration as a possible alternative SCO for this contaminant.

Six (6) soil samples collected on August 5, 6, and 9, 2010 were analyzed to assess the leaching potential for soil samples SB-32 (0-4) (144 mg/kg), SB-38 (0-4) (45.9 mg/kg), SB-42 (0-4) (67.4 mg/kg), SB-42 (4-10) (35.8 mg/kg), SB-43 (4-8) (29.5 mg/kg), and SB-53 (4-10) (25.1 mg/kg). A total of six (6) soil samples were analyzed from sample depth intervals of 0 to 4 ft-bgs and 4 to 10 ft-bgs to compare arsenic concentrations in relation to TCLP concentrations. Arsenic was detected at concentrations exceeding the Restricted Use - Protection of Groundwater SCO of 16 mg/kg at all six (6) sample locations which were also analyzed to assess the corresponding TCLP concentrations. The following table lists the arsenic and TCLP analytical results:

Sample	Sample	Restricted Use	Analytical	RCRA Level	TCLP Results
Location	Depth	Protection of	Results (mg/kg)	(mg/L)	(mg/L)
		GW SCOs			
SB-32 (0-4)	0-4 ft-bgs	16	144	5	0.025 U
SB-38 (0-4)	0-4 ft-bgs	16	45.9	5	0.025 U
SB-42 (0-4)	0-4 ft-bgs	16	67.4	5	0.025 U
SB-42 (4-10)	4-10 ft-bgs	16	35.8	5	0.025 U
SB-43 (4-8)	4-8 ft-bgs	16	29.5	5	0.025 U
SB-53 (4-10)	4-10 ft-bgs	16	25.1	5	0.025 U

Note: U = The analyte was analyzed for, but not detected above the sample reporting limits.

Arsenic was detected at concentrations ranging from 25.1 mg/kg to 144 mg/kg which exceed the Restricted Use - Protection of Groundwater SCO of 16 mg/kg at all six (6) sample locations. The corresponding TCLP concentrations of 0.025 mg/L for all of the six (6) samples indicate that these arsenic concentrations are not leaching and are significantly below the RCRA Hazardous Waste Regulatory Level of 5 mg/L, as presented in Table 3-5 and Figure 3-9.

3.1.29 Duplicate Soil Samples

Three (3) duplicate soil samples were collected as part of the SRI sampling program. DUP-1 (SB-42 0-4), DUP-2 (SB-36 6-10), and DUP-3 (SB-32 0-4) were collected during the SRI sampling program on August 5, 9, and 10, 2010. A review of the analytical results compared to the duplicate samples indicates that the duplicate samples are generally consistent with the results collected from the original soils samples.

A summary of the laboratory results for each soil sample are included on Tables 3-2, 3-3, and 3-4. Laboratory analytical data and chain-of-custody are included in Appendix B.

3.2 Community Air Monitoring Results

Air monitoring was conducted in accordance with the NYSDOH CAMP provided in the RI Work Plan dated September 2009. VOCs and particulates were monitored continuously during all intrusive investigation activities. Action levels described in the CAMP were utilized to monitor site activities. Monitors were set upgradient and downgradient of the intrusive investigation areas. A particulate monitor capable of measuring particulate matter less than 10 micrometers (µm) in size and capable of integrating over a period of 15 minutes (or less) was used for comparison to the airborne particulate action levels.

The particulate monitor used during the SRI was equipped with data logging capabilities. However, it appears that the datalog file from the previous day was overwritten either by an equipment malfunction or by accidental resetting the monitor. The only datalog file from the dust monitor was for the last day of work at the Site on November 6, 2009. The alarms for the dust monitor were set daily at the threshold values assigned in the CAMP. If the alarm sounded, work would have immediately been stopped to allow for the air particulate to disperse. Periodic checks were made to make sure the alarms and particulate monitor were working properly. High dust levels were not observed during work performed at the site. The results of the daily monitoring conducted as part of the CAMP did not exceed applicable action levels established in

Section 2-6. The results of the daily monitoring conducted as part of the CAMP are provided in Table 3-6.

Future intrusive activities at the Site will require daily datalog downloads to prevent the overwriting of the previous day's results or a comparable particulate monitor without a datalog overwrite feature will be used to ensure that daily records are maintained to provide the necessary records to conform with the CAMP requirements.

3.3 Data Usability Summary Report

To conform to NYSDEC requirements as specified in DER-10 (2002), data validation was performed on the analytical samples collected during the SRI conducted in August 2010 at the Site. Data validation services were provided by Environmental Data Services (EDS), Inc. located at 1156 Jamestown Road, Suite A in Williamsburg, VA. The complete SDGs from the laboratory which were validated by EDS included:

- J15947
- J16006
- J16056
- J16132
- J16171

The analytical data generated during the SRI was subjected to validation and usability review to verify that the data satisfy project objectives. The data usability summary report (DUSR) for the August 2010 SRI sampling program is presented in Appendix C.

3.3.1 Usability of Remedial Investigation Data

There are five (5) SDGs that were analyzed by Test America. The media include soil analyzed for PCBs and metals. There were no rejections of the data collected during the August 2010 sampling event. The analytical data was acceptable for their intended use. As a result of the data validation for the August 2010 sampling program, the following deficiencies were noted:

- Aroclor 1260 was qualified as estimated in three samples due to high %D values between columns (J15947).
- Antimony was qualified as estimated in all samples due to low matrix spike recovery (J15947).
- Sodium was qualified as non-detect in all samples due to low matrix spike recovery (J15947).
- Aroclor 1254 was qualified as estimated in one samples due to high %D values between columns (J16006).
- Several analytes were qualified as estimated in all samples due to low matrix spike recoveries or high duplicate RPDs (J16006).
- Mercury was qualified as estimated in the field duplicate pair due to poor duplicate precision (J16006).
- Aroclor 1248 was qualified as estimated in one samples due to high %D values between columns (J16056).
- Six metal compounds were qualified as estimated in all samples due to low/high matrix spike recoveries or high duplicate RPDs (J16056).
- Sodium was qualified as non-detect in thirteen samples due to field blank contamination (J16056).
- Several PCB compounds were qualified as estimated in several samples due to low/high matrix spike recoveries or high duplicate RPDs (J16132).
- Nine metal compounds were qualified as estimated in all samples due to low/high matrix spike recoveries or high duplicate RPDs (J16132).
- Potassium was qualified as non-detect in ten samples due to method blank contamination (J16132).
- Cadmium and silver were qualified as estimated in the field duplicate pair due to poor duplicate precision (J16132).
- Aroclor 1254 and aroclor 1260 were qualified as estimated in three samples due to high surrogate recoveries (J16171).

- Vanadium was qualified as estimated in all samples due to low matrix spike recovery (J16171).
- Arsenic was qualified as estimated in the field duplicate samples due to poor duplicate precision (J16171).

4.0 SECOND SUPPLEMENTAL RI ANALYTICAL RESULTS

The SSRI soil sample results were compared to Part 375 Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR Part 375) Brownfield Cleanup Program for Unrestricted Use SCOs. The arsenic soil samples results were compared to the Restricted Use - Protection of Groundwater SCOs since it has been determined that arsenic is a site-specific source of groundwater contamination. The soil sample locations that were completed during the SSRI are presented on Figures 4-1 and 4-2.

4.1 Second Supplemental RI Soil Sample Results

The SSRI soil sampling locations, sample designations, sample depth intervals, and analytical parameters are presented in Table 4-1. The soil sample analytical results are presented in Tables 4-2, 4-3, and 4-4 and Figures 4-3 through 4-8. TAL Metal and PCB sample results were compared to the Unrestricted Use SCOs and arsenic soil sample results were compared to the Restricted Use - Protection of Groundwater SCOs which is further discussed in this section and all exceedances to these SCOs have been listed within the following tables.

4.1.1 Soil Boring SB-2-1

PCBs

PCBs (total) were detected at SB-2-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	DCO Umastriatad — 0.1 ma/lea	0.48
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.55

PCBs (total) were detected at SB-2-1 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.13

4.1.2 Soil Boring SB-2-2

PCBs

PCBs (total) were detected at SB-2-2 (1-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.40

PCBs (total) were not detected at SB-2-2 (6-8) with concentrations exceeding the Unrestricted Use SCOs.

4.1.3 Soil Boring SB-2-3

PCBs

PCBs (total) were detected at SB-2-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.47

PCBs (total) were detected at SB-2-3 (10-11) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.15

4.1.4 Soil Boring SB-6-1

PCBs

PCBs (total) were detected at SB-6-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	12

4.1.5 Soil Boring SB-6-2

PCBs

PCBs (total) were detected at SB-6-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.6

PCBs (total) were detected at SB-6-2 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	6.1 J

4.1.6 Soil Boring SB-6-3

PCBs

PCBs (total) were detected at SB-6-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.69

4.1.7 Soil Boring SB-7-1

<u>PCBs</u>

PCBs (total) were detected at SB-7-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		0.76
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.67
Aroclor-1260		0.16

PCBs (total) were detected at SB-7-1 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242		2.1
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	4.4
Aroclor-1260		1.5

4.1.8 Soil Boring SB-7-2

PCBs

PCBs (total) were detected at SB-7-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		1.3
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.2
Aroclor-1260		0.39

PCBs (total) were detected at SB-7-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248		2.1
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	3.2
Aroclor-1260		3.0

4.1.9 Soil Boring SB-8-1

Arsenic and Lead

Arsenic was detected at SB-8-1 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	30.9 J
Lead	BCO Unrestricted=63 mg/kg	5,470 J

Arsenic was detected at SB-8-1 (4-6) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the

Unrestricted Use SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	33.7 J
Lead	BCO Unrestricted=63 mg/kg	10,700 J

PCBs

PCBs (total) were detected at SB-8-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	2.4
Aroclor-1260	DCO Officsurcted=0.1 flig/kg	0.56

PCBs (total) were detected at SB-8-1 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	DCO Umastriated -0.1 mg/lsg	13
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	4.1

4.1.10 Soil Boring SB-8-2

Arsenic and Lead

Arsenic was detected at SB-8-2 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	23.2 J
Lead	BCO Unrestricted=63 mg/kg	21,700 J

Arsenic was detected at SB-8-2 (4-6) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	47.5 J
Lead	BCO Unrestricted=63 mg/kg	10,600 J

PCBs

PCBs (total) were detected at SB-8-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	14.0
Aroclor-1260		12.0

PCBs (total) were detected at SB-8-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	6.0
Aroclor-1260		2.4

4.1.11 Soil Boring SB-9-1

PCBs

PCBs (total) were detected at SB-9-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	6.7 J

PCBs (total) were detected at SB-9-1 (10-11) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.49
Aroclor-1260		0.26

4.1.12 Soil Boring SB-9-2

PCBs

PCBs (total) were detected at SB-9-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	7.8

PCBs (total) were detected at SB-9-2 (8-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	2.1
Aroclor-1260		0.59

4.1.13 Soil Boring SB-9-3

PCBs

PCBs (total) were detected at SB-9-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	11 J

PCBs (total) were detected at SB-9-3 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	5.9 J

4.1.14 Soil Boring SB-16-1

<u>Lead</u>

Lead was detected at SB-16-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-4 and Figures 4-7 and 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Lead	BCO Unrestricted=63 mg/kg	11,600 J

PCBs

PCBs (total) were detected at SB-16-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	9.3 J
Aroclor-1260		0.89

PCBs (total) were detected at SB-16-1 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	PCO Unrestricted—0.1 mg/kg	2.8
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.2

4.1.15 Soil Boring SB-16-2

PCBs

PCBs (total) were detected at SB-16-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Ummostnieto d—0.1 maylica	7.0 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.57

PCBs (total) were detected at SB-16-2 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umastriotad - 0.1 mg/l/s	0.43
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.26

4.1.16 Soil Boring SB-16-3

PCBs

PCBs (total) were detected at SB-16-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	12.0
Aroclor-1260	BCO Officsurcted=0.1 flig/kg	0.92 J

PCBs (total) were detected at SB-16-3 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umusetnista d-0.1 ma/lsa	15.0
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	2.6

4.1.17 Soil Boring SB-17-1

PCBs

PCBs (total) were detected at SB-17-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umastriotad - 0.1 mg/l/s	31.0
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	8.3

PCBs (total) were detected at SB-17-1 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	0.29 J

4.1.18 Soil Boring SB-17-2

PCBs

PCBs (total) were detected at SB-17-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	16.0
Aroclor-1260	BCO Officsurcted=0.1 flig/kg	1.9

PCBs (total) were detected at SB-17-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	27.0
Aroclor-1260	BCO Officsurcted=0.1 mg/kg	3.0

4.1.19 Soil Boring SB-20-1

<u>PCBs</u>

PCBs (total) were detected at SB-20-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umusetnista d-0.1 ma/lsa	13.0 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.4 J

PCBs (total) were detected at SB-20-1 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	1.7

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1260		0.89

4.1.20 Soil Boring SB-20-2

PCBs

PCBs (total) were detected at SB-20-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	7.4
Aroclor-1260		0.83

PCBs (total) were detected at SB-20-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Hamaday 1 O 1 mg/l	16.0
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.5

4.1.21 Soil Boring SB-20-3

PCBs

PCBs (total) were detected at SB-20-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umastriated 0.1 mg/lca	11.0 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.89 J

PCBs (total) were detected at SB-20-3 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	0.96
Aroclor-1260		0.33

4.1.22 Soil Boring SB-22-1

Arsenic and Lead

Arsenic was detected at SB-22-1 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	25.6 Ј
Lead	BCO Unrestricted=63 mg/kg	1,830 J

Arsenic was detected at SB-22-1 (4-6) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	16.3 J
Lead	BCO Unrestricted=63 mg/kg	4,970 J

PCBs

PCBs (total) were detected at SB-22-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Unwestricted - 0.1 mg/lrg	6.2
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.61

PCBs (total) were detected at SB-22-1 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Hamatriatad O 1 mayllar	11.0
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	2.1

4.1.23 Soil Boring SB-22-2

<u>Lead</u>

Lead was detected at SB-22-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-4 and Figures 4-7 and 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Lead	BCO Unrestricted=63 mg/kg	3,910 J

Lead was detected at SB-22-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Lead	BCO Unrestricted=63 mg/kg	6,660 J

PCBs

PCBs (total) were detected at SB-22-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Hamatainta d O 1 mar/lan	4.5
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.84

PCBs (total) were detected at SB-22-2 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	2.6
Aroclor-1260		0.92

4.1.24 Soil Boring SB-22-3

<u>PCBs</u>

PCBs (total) were detected at SB-22-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umusatuistad—0.1 ma/lsa	9.5
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.4

PCBs (total) were detected at SB-22-3 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	4.4
Aroclor-1260		0.78

4.1.25 Soil Boring SB-23-1

Arsenic and Lead

Arsenic was detected at SB-23-1 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	23.1
Lead	BCO Unrestricted=63 mg/kg	7,330

Arsenic was detected at SB-23-1 (4-6) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and lead was not detected with concentrations exceeding the Unrestricted Use SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	17.5

PCBs

PCBs (total) were detected at SB-23-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	3.5
Aroclor-1260		1.1 J

PCBs (total) were detected at SB-23-1 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	3.1
Aroclor-1260		0.83

4.1.26 Soil Boring SB-23-2

<u>Arsenic</u>

Arsenic was detected at SB-23-2 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs, as presented in Table 4-3 and Figures 4-5 and 4-6. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	17.5

Arsenic was not detected at SB-23-2 (6-8) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs. No other TAL Metals were analyzed from this sampling location during the SSRI sampling program.

PCBs

PCBs (total) were detected at SB-23-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umusatuistad—0.1 ma/lsa	1.0
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.23

PCBs (total) were detected at SB-23-2 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	14.0
Aroclor-1260		0.67 J

4.1.27 Soil Boring SB-23-3

PCBs

PCBs (total) were detected at SB-23-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	7.5
Aroclor-1260		1.7

PCBs (total) were detected at SB-23-3 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Hamatriatad O 1 maylar	7.0 J
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.2

4.1.28 Soil Boring SB-23-4

PCBs

PCBs (total) were detected at SB-23-4 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.6 J

PCBs (total) were detected at SB-23-4 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	55.0

4.1.29 Soil Boring SB-24-1

<u>PCBs</u>

PCBs (total) were detected at SB-24-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umusetnista d-0.1 ma/lea	4.2
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.1

4.1.30 Soil Boring SB-24-2

<u>PCBs</u>

PCBs (total) were detected at SB-24-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242		2.8 J
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.1 J
Aroclor-1260		0.22

4.1.31 Soil Boring SB-24-3

<u>PCBs</u>

PCBs (total) were detected at SB-24-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1248		1.9 J
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.72 J
Aroclor-1260		0.78

PCBs (total) were detected at SB-24-3 (4-6) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242		1.0 J
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	0.9 J
Aroclor-1260		0.46

4.1.32 Soil Boring SB-27-1

PCBs

PCBs (total) were detected at SB-27-1 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.8

PCBs (total) were detected at SB-27-1 (9-10) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	0.60

4.1.33 Soil Boring SB-27-2

PCBs

PCBs (total) were detected at SB-27-2 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	2.8

PCBs (total) were detected at SB-27-2 (4-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	BCO Unrestricted=0.1 mg/kg	4.2
Aroclor-1260		0.41

4.1.34 Soil Boring SB-27-3

PCBs

PCBs (total) were detected at SB-27-3 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	1.6
Aroclor-1260		2.0 J

PCBs (total) were not detected at SB-27-3 (9-10) with concentrations exceeding the Unrestricted Use SCOs.

4.1.35 Soil Boring SB-27-4

<u>PCBs</u>

PCBs (total) were detected at SB-27-4 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.38
Aroclor-1260		0.31

PCBs (total) were not detected at SB-27-4 (6-8) with concentrations exceeding the Unrestricted Use SCOs.

4.1.36 Soil Boring SB-27-5

<u>PCBs</u>

PCBs (total) were detected at SB-27-5 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	BCO Unrestricted=0.1 mg/kg	0.85
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.21

PCBs (total) were not detected at SB-27-5 (8-10) with concentrations exceeding the Unrestricted Use SCOs.

4.1.37 Soil Boring SB-56

TAL Metals

Arsenic was detected at SB-56 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. The following table lists the reported exceedence:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	16.7
Barium	BCO Unrestricted=350 mg/kg	538 J
Cadmium	BCO Unrestricted=2.5 mg/kg	19.2
Chromium	BCO Unrestricted=1/30 mg/kg	99.9

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and April 2011

47743

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Copper	BCO Unrestricted=50 mg/kg	3,530
Lead	BCO Unrestricted=63 mg/kg	931 J
Mercury	BCO Unrestricted=0.18 mg/kg	2.9
Nickel	BCO Unrestricted=30 mg/kg	128
Silver	BCO Unrestricted=2 mg/kg	2.1 J
Zinc	BCO Unrestricted=109 mg/kg	7,080

Arsenic was detected at SB-56 (6-8) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	23 J
Barium	BCO Unrestricted=350 mg/kg	893 J
Cadmium	BCO Unrestricted=2.5 mg/kg	30.7
Chromium	BCO Unrestricted=1/30 mg/kg	237
Copper	BCO Unrestricted=50 mg/kg	1,570
Lead	BCO Unrestricted=63 mg/kg	4,090 J
Mercury	BCO Unrestricted=0.18 mg/kg	8.6
Nickel	BCO Unrestricted=30 mg/kg	232
Selenium	BCO Unrestricted=3.9 mg/kg	14.3
Silver	BCO Unrestricted=2 mg/kg	5.1
Zinc	BCO Unrestricted=109 mg/kg	8,110

<u>PCBs</u>

PCBs (total) were detected at SB-56 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		(mg/kg)
Aroclor-1242		5.5
Aroclor-1254	BCO Unrestricted=0.1 mg/kg	0.45
Aroclor-1260		0.43 J

PCBs (total) were detected at SB-56 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1248	PCO Unrestricted—0.1 mg/l/g	1.1
Aroclor-1262	BCO Unrestricted=0.1 mg/kg	0.77 J

4.1.38 Soil Boring SB-57

TAL Metals

Arsenic was detected at SB-57 (0-4) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs, as presented in Tables 4-3 and 4-4, and Figures 4-5 through 4-8. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	17.5
Barium	BCO Unrestricted=350 mg/kg	897 J
Cadmium	BCO Unrestricted=2.5 mg/kg	26.3
Chromium	BCO Unrestricted=1/30 mg/kg	327
Copper	BCO Unrestricted=50 mg/kg	1,870
Lead	BCO Unrestricted=63 mg/kg	4,890 J
Mercury	BCO Unrestricted=0.18 mg/kg	5.3
Nickel	BCO Unrestricted=30 mg/kg	201
Selenium	BCO Unrestricted=3.9 mg/kg	6.7
Silver	BCO Unrestricted=2 mg/kg	5.2
Zinc	BCO Unrestricted=109 mg/kg	9,160

Arsenic was detected at SB-57 (4-10) with concentrations exceeding the Restricted Use - Protection of Groundwater SCOs and TAL Metals were detected with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Arsenic	BCO Protection of GW=16 mg/kg	19.1
Barium	BCO Unrestricted=350 mg/kg	839 J
Cadmium	BCO Unrestricted=2.5 mg/kg	24.2
Chromium	BCO Unrestricted=1/30 mg/kg	152
Copper	BCO Unrestricted=50 mg/kg	8,510
Lead	BCO Unrestricted=63 mg/kg	2,960 J
Mercury	BCO Unrestricted=0.18 mg/kg	5.8
Nickel	BCO Unrestricted=30 mg/kg	333

Frito Lay, Inc., Brooklyn, New York
Supplemental Remedial Investigation and
Second Supplemental Remedial Investigation Report

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Selenium	BCO Unrestricted=3.9 mg/kg	7
Silver	BCO Unrestricted=2 mg/kg	3.2
Zinc	BCO Unrestricted=109 mg/kg	8,570

PCBs

PCBs (total) were detected at SB-57 (0-4) with concentrations exceeding the Unrestricted Use SCOs, as presented in Table 4-2 and Figures 4-3 and 4-4. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Unacetricated 1 mg/lsg	5.6
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	1.0

PCBs (total) were detected at SB-57 (6-8) with concentrations exceeding the Unrestricted Use SCOs. The following table lists the reported exceedences:

COMPOUND	CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
Aroclor-1242	DCO Umastriatad O 1 malla	2.5
Aroclor-1260	BCO Unrestricted=0.1 mg/kg	0.51

4.1.39 TCLP Soil Samples for Arsenic

Soil samples were analyzed from select SSRI sample locations to assess whether specific arsenic concentrations that exceed the Restricted Use - Protection of Groundwater SCO of 16 mg/kg also exceed the RCRA Hazardous Waste Regulatory Level of 5 mg/L. These samples were collected to assess whether there was a correlation between the total arsenic concentrations (dry weight) and the leachability of this contaminant in the subsurface environment at the Site. The results of this data will likely show the approximate arsenic concentration that has the potential to leach into or impact groundwater quality beneath the Site. Once this data is evaluated, a site-specific cleanup level for arsenic can be presented to NYSDEC for consideration as a possible alternative SCO for this contaminant.

Ten (10) soil samples collected on October 13 and 14, 2010 were analyzed to assess the leaching potential of arsenic for soil samples SB-8-1 (0-4) (30.9 mg/kg), SB-8-1 (4-6) (33.7 mg/kg), SB-8-2 (0-4) (23.2 mg/kg), SB-8-2 (4-10) (47.5 mg/kg), SB-22-1 (0-4) (25.6 mg/kg), SB-22-1 (4-6) (16.3 mg/kg), SB-23-1 (0-4) (23.1 mg/kg), and SB-23-1 (4-6) (17.5 mg/kg) which contained arsenic concentration exceeding the Restricted Use - Protection of Groundwater SCO of 16 mg/kg. However, SB-23-2 (0-4) (14.1 mg/kg) and SB-23-2 (6-8) (8.3 mg/kg) did not exceed the Restricted Use - Protection of Groundwater SCO of 16 mg/kg for arsenic.

A total of ten (10) soil samples were analyzed from sample depth intervals of 0 to 4 ft-bgs and 4 to 10 ft-bgs to compare arsenic concentrations in relation to TCLP concentrations. Arsenic was detected at concentrations exceeding the Restricted Use - Protection of Groundwater SCO of 16 mg/kg in 8 of the 10 sample locations which were also analyzed to assess the corresponding TCLP concentrations. The following table lists the arsenic and TCLP analytical results:

Sample Location	Sample Depth	Restricted Use Protection of GW SCO	Analytical Results (mg/kg)	RCRA Level (mg/L)	TCLP Results (mg/L)
SB-8-1 (0-4)	0-4 ft-bgs	16	30.9	5	0.025 U
SB-8-1 (4-6)	4-6 ft-bgs	16	33.7	5	0.025 U
SB-8-2 (0-4)	0-4 ft-bgs	16	23.2	5	0.025 U
SB-8-2 (4-10)	4-10 ft-bgs	16	47.5	5	0.025 U
SB-22-1 (0-4)	0-4 ft-bgs	16	25.6	5	0.025 U
SB-22-1 (4-6)	4-6 ft-bgs	16	16.3	5	0.025 U
SB-23-1 (0-4)	0-4 ft-bgs	16	23.1	5	0.025 U
SB-23-1 (4-6)	4-6 ft-bgs	16	17.5	5	0.025 U

Note: U =The analyte was analyzed for, but not detected above the sample reporting limits.

Arsenic was detected at concentrations ranging from 16.3 mg/kg to 47.5 mg/kg which exceed the Restricted Use - Protection of Groundwater SCO of 16 mg/kg at eight (8) sample locations. The corresponding TCLP concentrations of 0.025 mg/L for all of the eight (8) samples indicate that these arsenic concentrations are not leaching and are reported as "non detected" which is significantly below the RCRA Hazardous Waste Regulatory Level of 5 mg/L, as presented in Table 4-5 and Figure 4-9.

4.1.40 TCLP Soil Samples for Lead

Soil samples were analyzed from select SSRI sample locations to assess whether specific lead concentrations that exceed the Unrestricted Use SCO of 63 mg/kg also exceed the RCRA Hazardous Waste Regulatory Level of 5 mg/L. These samples were collected to assess whether there was a correlation between the total lead concentrations (dry weight) and the leachability of this contaminant in the subsurface environment at the Site. The results of this data will likely show the approximate lead concentration that has the potential to leach into or impact groundwater quality beneath the Site. Once this data is evaluated, a site-specific cleanup for lead can be presented to NYSDEC for consideration as a possible alternative SCO for this contaminant.

Eleven (11) soil samples collected on August 10, 2010, October 13, 2010, and October 14, 2010 were analyzed to assess the leaching potential of lead for soil samples SB-8-1 (0-4) (5,470 mg/kg), SB-8-1 (4-6) (10,700 mg/kg), SB-8-2 (0-4) (21,700 mg/kg), SB-8-2 (4-10) (10,600 mg/kg), SB-16-1 (0-4) (11,600 mg/kg), SB-22-1 (0-4) (1,830 mg/kg), SB-22-1 (4-6) (4,970 mg/kg), SB-22-2 (0-4) (3,910 mg/kg), SB-22-2 (4-6) (6,660 mg/kg), SB-23-1 (0-4) (7,330 mg/kg), and SB-32 (0-4) (17,000 mg/kg) which contained lead concentration exceeding the Unrestricted Use SCO.

A total of eleven (11) soil samples were analyzed from sample depth intervals of 0 to 4 ft-bgs and 4 to 8 ft-bgs to compare lead concentrations in relation to TCLP concentrations. Lead was detected at concentrations exceeding the Unrestricted Use SCO of 63 mg/kg in all 11 sample locations which were also analyzed to assess the corresponding TCLP concentrations. An additional sample (SB-32 0-4) was collected during the SRI which was also analyzed for TCLP (lead). The following table lists the lead and TCLP analytical results:

Sample Location	Sample Depth	Unrestricted Use SCO	Analytical Results (mg/kg)	RCRA Level (mg/L)	TCLP Results (mg/L)
SB-8-1 (0-4)	0-4 ft-bgs	63	5,470	5	0.292
SB-8-1 (4-6)	4-6 ft-bgs	63	10,700	5	3.99
SB-8-2 (0-4)	0-4 ft-bgs	63	21,700	5	5.37
SB-8-2 (4-10)	4-10 ft-bgs	63	10,600	5	2.81
SB-16-1 (0-4)	0-4 ft-bgs	63	11,600	5	1.14

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

Sample Location	Sample Depth	Unrestricted Use SCO	Analytical Results (mg/kg)	RCRA Level (mg/L)	TCLP Results (mg/L)
SB-22-1 (0-4)	0-4 ft-bgs	63	1,830	5	0.855
SB-22-1 (4-6)	4-6 ft-bgs	63	4,790	5	0.353
SB-22-2 (0-4)	0-4 ft-bgs	63	3,910	5	0.025 U
SB-22-2 (4-6)	4-6 ft-bgs	63	6,660	5	0.963
SB-23-1 (0-4)	0-4 ft-bgs	63	7,330	5	0.271
SB-32 (0-4)	0-4 ft-bgs	63	17,000	5	2.87

Note: U =The analyte was analyzed for, but not detected above the sample reporting limits.

Lead was detected at concentrations ranging from 1,830 mg/kg to 21,700 mg/kg which exceed the Unrestricted Use SCO of 63 mg/kg at ten (10) sample locations. The corresponding TCLP concentrations for all eleven (11) samples indicate that one (1) lead concentration detected at SB-8-2 (0-4) exceeded the RCRA Hazardous Waste Regulatory Level of 5 mg/L, as presented in Table 4-5 and Figure 4-9.

4.2 Community Air Monitoring Results

Air monitoring was conducted in accordance with the NYSDOH CAMP provided in the RI Work Plan dated September 2009 for both the SRI and the SSRI sampling programs. VOCs and particulates were monitored continuously during all intrusive investigation activities. Action levels described in the CAMP were utilized to monitor site activities. Monitors were set upgradient and downgradient of the intrusive investigation areas. A particulate monitor capable of measuring particulate matter less than 10 micrometers (µm) in size and capable of integrating over a period of 15 minutes (or less) was used for comparison to the airborne particulate action levels.

The particulate monitor used during the SSRI was equipped with data logging capabilities. The dust monitoring results from October 4, 2010 indicated that highest average concentration during the sampling program was 13 μ g/m³ from the downwind dust monitor during periods of heavy rain, as presented in Table 4-6. There were two (2) exceedance above the 100 μ g/m³ action level from the downwind dust monitor with a recorded concentration of 1,109 μ g/m³ and from the upwind dust monitor of 24,678 μ g/m³. These exceedances were caused by the dust monitors

being blown over onto the ground during windy conditions. Several other exceedances were recorded above the $100~\mu g/m^3$ action level from both the upwind and downwind monitors. The recorded dust concentration exceedances dissipated within a few minutes well below the $100~\mu g/m^3$ action level. The results of the daily monitoring conducted as part of the CAMP are provided in Table 4-6.

4.3 Data Usability Summary Report

To conform to NYSDEC requirements as specified in DER-10, data validation was performed on the analytical samples collected during the SRI conducted in August 2010 at the Site. Data validation services were provided by EDS. The complete SDGs from the laboratory which were validated by EDS included:

- 460-18182
- 460-18223
- 460-18281
- 460-18326
- 460-18409
- 460-18510
- 460-18562
- 460-18599
- 460-18631

The analytical data generated during the SSRI was subjected to validation and usability review to verify that the data satisfy project objectives. The DUSR for the October 2010 SSRI sampling program is presented in Appendix C.

4.3.1 Usability of Remedial Investigation Data

There are nine (9) SDGs that were analyzed by Test America. The media include soil analyzed for PCBs and metals. There were no rejections of the data collected during the October 2010

sampling event. The analytical data was acceptable for their intended use. As a result of the data validation for the October 2010 sampling program, the following deficiencies were noted:

- One Aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18182).
- One Aroclor was qualified as estimated in one sample due to a high %D value between reporting columns (460-18223).
- One Aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18281).
- Several Aroclor's were qualified as estimated in three samples due to high %D values between reporting columns (460-18326).
- One Aroclor was qualified as estimated in two samples due to high surrogate recoveries (460-18409).
- One Aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18409).
- Two Aroclor's were qualified as estimated in one sample due to high surrogate recoveries (460-18510).
- Two Aroclor's were qualified as estimated in the field duplicate sample due to poor duplicate precision (460-18510).
- One Aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18510).
- One aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18562).
- Three metals compounds were qualified as estimated in several samples due to low/high matrix spike recoveries (460-18562).
- Arsenic and lead were qualified as estimated in several samples due to high matrix duplicate RPD values (460-18599).
- One aroclor was qualified as estimated in two samples due to high %D values between reporting columns (460-18631).

5.0 SOIL SAMPLE RESULTS ASSESSMENT

The soil analytical results collected as part of the SRI and SSRI sampling programs were compared to NYSDEC the Unrestricted Use SCOs. The arsenic soil samples results were compared to the Restricted Use - Protection of Groundwater SCOs since it has been determined that arsenic is a site-specific source of groundwater contamination. This section discusses the results of the sampling program and provides the conclusions and recommendations associated with the soil samples collected during the SRI and SSRI sampling programs.

5.1 Soil Sample Results – Results Assessment

The results of the SRI and SSRI soil sampling programs indicate that there is contamination onsite and remedial actions will be required for several areas investigated during the December 2007, November 2009, August 2010, and October 2010 sampling programs conducted at the Site. Section 5.2 discusses the extent of soil contamination associated with TAL Metals and PCBs.

The following section discusses the sample location, sample depth, compound, Unrestricted Use SCOs, Restricted Use - Protection of Groundwater SCOs for arsenic, and sample results.

5.1.1 TAL Metals

The results of the SRI and SSRI soil sampling programs indicated the presence of TAL Metal (barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) concentrations in soil exceeding the Unrestricted Use SCOs and arsenic concentrations in soil exceeding the Restricted Use - Protection of Groundwater SCOs.

The following table lists the reported arsenic concentrations that exceed the Restricted Use - Protection of Groundwater SCOs:

SAMPLE LOCATION	AMPLE LOCATION COMPOUND PART 375 SOIL CLEANUP		ANALYTICAL
		OBJECTIVES	RESULTS
			(mg/kg)
SB-8-1 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	30.9
SB-8-1 (4-6)			33.7
SB-8-2 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	23.2
SB-8-2 (4-6)			47.5
SB-22-1 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	25.6
SB-22-1 (4-6)			16.3
SB-23-1 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	23.1
SB-23-1 (4-6)			17.5
SB-29 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	1,160
SB-29 (4-10)			1,140
SB-30 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	23.9
SB-30 (4-10)			27.6
SB-32 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	144
SB-32 (4-10)			26.6
SB-33 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	26.7
SB-33 (4-10)			21.3
SB-34 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	16.3
SB-34 (4-10)			24.7
SB-35 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	16.2
SB-35 (4-10)			22.5
SB-36 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	16.4
SB-38 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	45.9
SB-38 (4-10)			25.8
SB-39 (4-10)	Arsenic	BCO Protection of GW=16 mg/kg	20.2
SB-42 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	67.4
SB-42 (4-10)			35.8
SB-43 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	21
SB-43 (4-8)			29.5
SB-44 (4-10)	Arsenic	BCO Protection of GW=16 mg/kg	32.5
SB-46 (4-10)	Arsenic	BCO Protection of GW=16 mg/kg	20.1
SB-47 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	69.6
SB-47 (4-10)			18.5
SB-48 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	17.2
SB-48 (4-6)			18.3
SB-50 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	23.2
SB-50 (4-10)			39.8
SB-53 (4-10)	Arsenic	BCO Protection of GW=16 mg/kg	25.1
SB-54 (4-10)	Arsenic	BCO Protection of GW=16 mg/kg	27.1
SB-56 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	16.7
SB-56 (6-8)			23 J
SB-57 (0-4)	Arsenic	BCO Protection of GW=16 mg/kg	17.5
SB-57 (6-8)			19.1

The following table lists the reported barium concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4)	Barium	BCO Unrestricted=350 mg/kg	427
SB-29 (4-10)			1,190
SB-30 (0-4)	Barium	BCO Unrestricted=350 mg/kg	808
SB-30 (4-10)			455
SB-31 (0-4)	Barium	BCO Unrestricted=350 mg/kg	794
SB-31 (4-10)			444
SB-32 (0-4)	Barium	BCO Unrestricted=350 mg/kg	3,900
SB-32 (4-10)			1,090
SB-33 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,200
SB-33 (4-10)			819
SB-34 (0-4)	Barium	BCO Unrestricted=350 mg/kg	675
SB-34 (4-10)			599
SB-35 (0-4)	Barium	BCO Unrestricted=350 mg/kg	439
SB-35 (4-10)			807
SB-36 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,090
SB-36 (6-10)			817
SB-37 (0-4)	Barium	BCO Unrestricted=350 mg/kg	656
SB-37 (4-10)			355
SB-38 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,080
SB-38 (4-10)			482
SB-39 (0-4)	Barium	BCO Unrestricted=350 mg/kg	961
SB-39 (4-10)			1,090
SB-40 (0-4)	Barium	BCO Unrestricted=350 mg/kg	376
SB-40 (4-10)			371
SB-42 (0-4)	Barium	BCO Unrestricted=350 mg/kg	785
SB-43 (0-4)	Barium	BCO Unrestricted=350 mg/kg	767
SB-43 (4-8)			853
SB-44 (0-4)	Barium	BCO Unrestricted=350 mg/kg	693
SB-44 (4-10)			950
SB-46 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,020
SB-46 (4-10)			1,380
SB-47 (0-4)	Barium	BCO Unrestricted=350 mg/kg	849
SB-47 (4-10)			1,090
SB-48 (0-4)	Barium	BCO Unrestricted=350 mg/kg	773
SB-48 (4-6)			970
SB-50 (0-4)	Barium	BCO Unrestricted=350 mg/kg	714
SB-51 (0-4)	Barium	BCO Unrestricted=350 mg/kg	563
SB-51 (4-10)			437
SB-52 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,150
SB-52 (4-10)			498

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS
			(mg/kg)
SB-53 (0-4)	Barium	BCO Unrestricted=350 mg/kg	907
SB-53 (4-10)			652
SB-54 (0-4)	Barium	BCO Unrestricted=350 mg/kg	1,920
SB-54 (4-10)			985
SB-55 (0-4)	Barium	BCO Unrestricted=350 mg/kg	713
SB-55 (4-10)			392
SB-56 (0-4)	Barium	BCO Unrestricted=350 mg/kg	583 J
SB-56 (6-8)			893 J
SB-57 (0-4)	Barium	BCO Unrestricted=350 mg/kg	897 J
SB-57 (6-8)			839 J

The following table lists the reported cadmium concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	18.4
SB-29 (4-10)			13.5
SB-30 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	15.6
SB-30 (4-10)			9.1
SB-31 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	32.8
SB-31 (4-10)			9.9
SB-32 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	14
SB-32 (4-10)			6.4
SB-33 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	13
SB-33 (4-10)			11.7
SB-34 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	18.3
SB-34 (4-10)			19.7
SB-35 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	25
SB-35 (4-10)			29
SB-36 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	41.2
SB-36 (6-10)			18
SB-37 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	8.5
SB-37 (4-10)			2.6 J
SB-38 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	17
SB-38 (4-10)			28
SB-39 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	50.7
SB-39 (4-10)			30.5
SB-40 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	6
SB-40 (4-10)			3 J
SB-42 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	29.5
SB-42 (4-10)			3.7

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-43 (0-4) SB-43 (4-8)	Cadmium	BCO Unrestricted=2.5 mg/kg	27.2 24.8
SB-44 (0-4) SB-44 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	39.2 37
SB-45 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	3.3
SB-46 (0-4) SB-46 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	38.3 50.5
SB-47 (0-4) SB-47 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	20.5 32.8
SB-48 (0-4) SB-48 (4-6)	Cadmium	BCO Unrestricted=2.5 mg/kg	38.2 41.5
SB-50 (0-4) SB-50 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	21.4 5 J
SB-51 (0-4)	Cadmium	BCO Unrestricted=2.5 mg/kg	3.9 J
SB-52 (0-4) SB-52 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	24.7 8.3
SB-53 (0-4) SB-53 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	32.3 26.7
SB-54 (0-4) SB-54 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	21.8 29.4
SB-55 (0-4) SB-55 (4-10)	Cadmium	BCO Unrestricted=2.5 mg/kg	8.4 3.9 J
SB-56 (0-4) SB-56 (6-8)	Cadmium	BCO Unrestricted=2.5 mg/kg	19.2 30.7
SB-57 (0-4) SB-57 (6-8)	Cadmium	BCO Unrestricted=2.5 mg/kg	26.3 24.2

The following table lists the reported chromium concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS
			(mg/kg)
SB-29 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	71.3
SB-29 (4-10)			101
SB-30 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	120
SB-30 (4-10)			76.5
SB-31 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	483
SB-31 (4-10)			142
SB-32 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	222
SB-32 (4-10)			90.2
SB-33 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	177
SB-33 (4-10)			138

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-34 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	486
SB-34 (4-10)		DG0 XX	304
SB-35 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	257
SB-35 (4-10)	CI.	DCO Hamatriata 1 1/20 mar/lan	155
SB-36 (0-4) SB-36 (6-10)	Chromium	BCO Unrestricted=1/30 mg/kg	142 184
SB-37 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	198
SB-37 (4-10)	Cinomium	Bed emestreed—1730 mg/kg	52.5
SB-38 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	406
SB-38 (4-10)			198
SB-39 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	305
SB-39 (4-10)			201
SB-40 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	54
SB-40 (4-10)		DG0 11 1 1 100 11	66.7
SB-41 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	24.6
SB-41 (4-11)	Chromium	BCO Unrestricted=1/30 mg/kg	36.2 823
SB-42 (0-4) SB-42 (4-10)	Chromium	BCO Unrestricted=1/30 mg/kg	163
SB-43 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	174
SB-43 (4-8)	Cinomium	Dec emegateted 1730 mg/kg	260
SB-44 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	173
SB-44 (4-10)			335
SB-45 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	61.3
SB-45 (4-10)			30.1
SB-46 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	450
SB-46 (4-10)			327
SB-47 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	276
SB-47 (4-10)	CI.	DCO H 1 1/20 /l .	297
SB-48 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	278 301
SB-48 (4-6) SB-49 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	51.1
SB-49 (4-6)	Cinominani	BCO Chiestreted=1730 hig/kg	27
SB-50 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	118
SB-50 (4-10)	Cinomian		112
SB-51 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	82.8
SB-51 (4-8)			26.6
SB-52 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	834
SB-52 (4-10)			149
SB-53 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	231
SB-53 (4-10)	CI.	DCO Haradia 1 1/20	249
SB-54 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	214
SB-54 (4-10)	Chromium	BCO Unrestricted=1/30 mg/kg	794 206
SB-55 (0-4) SB-55 (4-10)	Chromium	BCO Officsurcted=1/30 ffig/kg	59.3
3D-33 (4-10)			37.3

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP	ANALYTICAL
		OBJECTIVES	RESULTS
			(mg/kg)
SB-56 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	99.9
SB-56 (6-8)			237
SB-57 (0-4)	Chromium	BCO Unrestricted=1/30 mg/kg	327
SB-57 (6-8)			152

The following table lists the reported copper concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4)	Copper	BCO Unrestricted=50 mg/kg	7,060 B
SB-29 (4-10)			5,480 B
SB-30 (0-4)	Copper	BCO Unrestricted=50 mg/kg	860
SB-30 (4-10)			765
SB-31 (0-4)	Copper	BCO Unrestricted=50 mg/kg	19,800 B
SB-31 (4-10)			1,100 B
SB-32 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,170
SB-32 (4-10)			643
SB-33 (0-4)	Copper	BCO Unrestricted=50 mg/kg	607
SB-33 (4-10)			1,480
SB-34 (0-4)	Copper	BCO Unrestricted=50 mg/kg	4,460
SB-34 (4-10)			923
SB-35 (0-4)	Copper	BCO Unrestricted=50 mg/kg	4,210 B
SB-35 (4-10)			1,520 B
SB-36 (0-4)	Copper	BCO Unrestricted=50 mg/kg	10,000
SB-36 (6-10)			2,340
SB-37 (0-4)	Copper	BCO Unrestricted=50 mg/kg	635
SB-37 (4-10)			304
SB-38 (0-4)	Copper	BCO Unrestricted=50 mg/kg	2,800 B
SB-38 (4-10)			864 B
SB-39 (0-4)	Copper	BCO Unrestricted=50 mg/kg	12,800 B
SB-39 (4-10)			1,470 B
SB-40 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,490
SB-40 (4-10)			562
SB-41 (0-4)	Copper	BCO Unrestricted=50 mg/kg	152
SB-41 (4-11)			137
SB-42 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,150
SB-42 (4-10)			221
SB-43 (0-4)	Copper	BCO Unrestricted=50 mg/kg	11,700
SB-43 (4-8)			1,290
SB-44 (0-4)	Copper	BCO Unrestricted=50 mg/kg	4,540 B
SB-44 (4-10)			3,690 B

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS
CD 45 (0.4)	Campan	BCO Unrestricted=50 mg/kg	(mg/kg)
SB-45 (0-4)	Copper	BCO Officestricted=30 flig/kg	225 77
SB-45 (4-10)	Common	BCO Unrestricted=50 mg/kg	1,150
SB-46 (0-4)	Copper	BCO Officestricted=30 flig/kg	•
SB-46 (4-10)	C	DCO Hamatriata 4 50 mar/lan	1,100
SB-47 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,260
SB-47 (4-10)		DC0 IV	1,440
SB-48 (0-4)	Copper	BCO Unrestricted=50 mg/kg	11,200 B
SB-48 (4-6)			3,980 B
SB-49 (0-4)	Copper	BCO Unrestricted=50 mg/kg	153
SB-49 (4-6)			145
SB-50 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,140
SB-50 (4-10)			688
SB-51 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,910
SB-51 (4-8)			179
SB-52 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,910 B
SB-52 (4-10)			2,900 B
SB-53 (0-4)	Copper	BCO Unrestricted=50 mg/kg	2,820
SB-53 (4-10)			789
SB-54 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,560
SB-54 (4-10)			1,860
SB-55 (0-4)	Copper	BCO Unrestricted=50 mg/kg	741
SB-55 (4-10)			458
SB-56 (0-4)	Copper	BCO Unrestricted=50 mg/kg	3,530
SB-56 (6-8)			1,570
SB-57 (0-4)	Copper	BCO Unrestricted=50 mg/kg	1,870
SB-57 (6-8)	11		8,510

The following table lists the reported lead concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP	ANALYTICAL
		OBJECTIVES	RESULTS
			(mg/kg)
SB-8-1 (0-4)	Lead	BCO Unrestricted=63 mg/kg	5,470 J
SB-8-1 (4-6)			10,700 J
SB-8-2 (0-4)	Lead	BCO Unrestricted=63 mg/kg	21,700 J
SB-8-2 (4-6)			10,600 J
SB-16-1 (0-4)	Lead	BCO Unrestricted=63 mg/kg	11,600 J
SB-22-1 (0-4)	Lead	BCO Unrestricted=63 mg/kg	1,830 J
SB-22-1 (4-6)			4,970 J
SB-22-2 (0-4)	Lead	BCO Unrestricted=63 mg/kg	3,910 J
SB-22-2 (4-6)			6,660 J
SB-23-1 (0-4)	Lead	BCO Unrestricted=63 mg/kg	7,330

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4) SB-29 (4-10)	Lead	BCO Unrestricted=63 mg/kg	3,830 2,050
SB-30 (0-4) SB-30 (4-10)	Lead	BCO Unrestricted=63 mg/kg	5,410 1,630
SB-31 (0-4) SB-31 (4-10)	Lead	BCO Unrestricted=63 mg/kg	2,060 1,220
SB-32 (0-4) SB-32 (4-10)	Lead	BCO Unrestricted=63 mg/kg	17,000 6,580
SB-33 (0-4) SB-33 (4-10)	Lead	BCO Unrestricted=63 mg/kg	3,510 6,070
SB-34 (0-4) SB-34 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,740 2,350
SB-35 (0-4) SB-35 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,580 5,120
SB-36 (0-4) SB-36 (6-10)	Lead	BCO Unrestricted=63 mg/kg	1,580 4,490
SB-37 (0-4) SB-37 (4-10)	Lead	BCO Unrestricted=63 mg/kg	3,840 993
SB-38 (0-4) SB-38 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,450 2,870
SB-39 (4-10) SB-39 (4-10)	Lead	BCO Unrestricted=63 mg/kg	2,180 4,850
SB-40 (0-4) SB-40 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,000 857
SB-41 (0-4) SB-41 (4-11)	Lead	BCO Unrestricted=63 mg/kg	388 521
SB-42 (0-4) SB-42 (4-10)	Lead	BCO Unrestricted=63 mg/kg	6,240 768
SB-43 (0-4) SB-43 (4-8)	Lead	BCO Unrestricted=63 mg/kg	2,230 4,080
SB-44 (0-4) SB-44 (4-10)	Lead	BCO Unrestricted=63 mg/kg	2,950 5,050
SB-45 (0-4) SB-45 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,240 316
SB-46 (0-4) SB-46 (4-10)	Lead	BCO Unrestricted=63 mg/kg	5,110 8,760
SB-47 (0-4) SB-47 (4-10)	Lead	BCO Unrestricted=63 mg/kg	5,810 6,080
SB-48 (0-4) SB-48 (4-6)	Lead	BCO Unrestricted=63 mg/kg	2,330 4,220
SB-49 (0-4) SB-49 (4-6)	Lead	BCO Unrestricted=63 mg/kg	232 212
SB-50 (0-4) SB-50 (4-10)	Lead	BCO Unrestricted=63 mg/kg	1,720 662
SB-51 (0-4)	Lead	BCO Unrestricted=63 mg/kg	1,730

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP	ANALYTICAL
		OBJECTIVES	RESULTS
			(mg/kg)
SB-51 (4-8)			752
SB-52 (0-4)	Lead	BCO Unrestricted=63 mg/kg	2,200
SB-52 (4-10)			898
SB-53 (0-4)	Lead	BCO Unrestricted=63 mg/kg	2,630
SB-53 (4-10)			2,330
SB-54 (0-4)	Lead	BCO Unrestricted=63 mg/kg	1,760
SB-54 (4-10)			4,530
SB-55 (0-4)	Lead	BCO Unrestricted=63 mg/kg	3,470
SB-55 (4-10)			864
SB-56 (0-4)	Lead	BCO Unrestricted=63 mg/kg	931 J
SB-56 (6-8)			4,090 J
SB-57 (0-4)	Lead	BCO Unrestricted=63 mg/kg	4,890 J
SB-57 (6-8)			2,960 J

The following table lists the reported mercury concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4) SB-29 (4-10)	Mercury	BCO Unrestricted=0.18 mg/kg	10 4.2
SB-30 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.9
SB-30 (4-10) SB-31 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	9.8
SB-31 (4-10) SB-32 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	6 14.2
SB-32 (4-10) SB-33 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.5 3.2
SB-33 (4-10) SB-34 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	3.7 12.6
SB-34 (4-10) SB-35 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.9 5.8
SB-35 (4-10) SB-36 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.7 7.1
SB-36 (6-10) SB-37 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	9.1 5.3
SB-37 (4-10) SB-38 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.1
SB-38 (4-10) SB-39 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	6.9 9.9
SB-39 (4-10) SB-40 (4-10)	Mercury	BCO Unrestricted=0.18 mg/kg	14.3 1.2

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-41 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	1
SB-41 (4-11)			1.4
SB-42 (4-10)	Mercury	BCO Unrestricted=0.18 mg/kg	0.93
SB-43 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	5.7
SB-43 (4-8)			6
SB-44 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	11.6
SB-44 (4-10)			11.7
SB-45 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.9
SB-45 (4-10)			1
SB-46 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	9.2
SB-46 (4-10)			9.7
SB-47 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	9.6
SB-47 (4-10)	-		6
SB-48 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	9.1
SB-48 (4-6)	-		13.5
SB-49 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	0.72
SB-49 (4-6)	-		1
SB-50 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.5
SB-50 (4-10)			2.1
SB-51 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	1
SB-51 (4-8)			0.95
SB-52 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	13.6
SB-52 (4-10)			2.9
SB-53 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	4.3
SB-53 (4-10)			7.9
SB-54 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	12.6
SB-54 (4-10)			8.5
SB-55 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	5.4
SB-55 (4-10)			1.52
SB-56 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	2.9
SB-56 (6-8)			8.6
SB-57 (0-4)	Mercury	BCO Unrestricted=0.18 mg/kg	5.3
SB-57 (6-8)			5.8

The following table lists the reported nickel concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	120
SB-29 (4-10)			150

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-30 (0-4) SB-30 (4-10)	Nickel	BCO Unrestricted=30 mg/kg	82.9 140
SB-31 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	331
SB-31 (4-10)			90.7
SB-32 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	142
SB-32 (4-10)		DG0 11	76.3
SB-33 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	179 254
SB-33 (4-10) SB-34 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	254 330
SB-34 (0-4) SB-34 (4-10)	Nickei	Deo omestricted=30 mg/kg	245
SB-35 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	124
SB-35 (4-10)	TVICKOI	200 omesmeet to mg/ng	332
SB-36 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	189
SB-36 (6-10)			204
SB-37 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	93.4
SB-37 (4-10)			42.4 J
SB-38 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	101
SB-38 (4-10)			410
SB-39 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	327
SB-39 (4-10)	Nr. 1 1	DCO H	168
SB-40 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	91.3 53.5
SB-40 (4-10) SB-42 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	796
SB-42 (4-10)	INICKCI	Dec omesticied 50 mg/kg	182
SB-43 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	328
SB-43 (4-8)			257
SB-44 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	153
SB-44 (4-10)			287
SB-45 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	50.1
SB-46 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	353
SB-46 (4-10)	XY 1 1	DCO II 1 20 . #	273
SB-47 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	201
SB-47 (4-10) SB-48 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	168 292
SB-48 (4-6)	NICKEI	Deo omestricted=30 mg/kg	350
SB-49 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	51.8
SB-50 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	92.6
SB-50 (4-10)		6-6	42.2 J
SB-51 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	69.2
SB-52 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	280
SB-52 (4-10)			90.4
SB-53 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	190
SB-53 (4-10)	NT 1 1	DCO Hamatian 1 20 //	162
SB-54 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	205
SB-54 (4-10)	<u> </u>		800

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-55 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	290
SB-55 (4-10)			40.2 J
SB-56 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	128
SB-56 (6-8)			232
SB-57 (0-4)	Nickel	BCO Unrestricted=30 mg/kg	201
SB-57 (6-8)			333

The following table lists the reported selenium concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	8.4
SB-29 (4-10)			6.3
SB-32 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	16.4
SB-34 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	28.4
SB-35 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	19.5
SB-35 (4-10)			9.2
SB-38 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	4.8
SB-38 (4-10)			9.9
SB-39 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	15.3
SB-42 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	17.3
SB-43 (4-8)	Selenium	BCO Unrestricted=3.9 mg/kg	11.7
SB-44 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	12 J
SB-47 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	11.5
SB-48 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	14.9
SB-50 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	194
SB-52 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	7.2
SB-52 (4-10)			64.7
SB-53 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	7.1 J
SB-54 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	5.4 J
SB-55 (4-10)	Selenium	BCO Unrestricted=3.9 mg/kg	19.7
SB-56 (6-8)	Selenium	BCO Unrestricted=3.9 mg/kg	14.3
SB-57 (0-4)	Selenium	BCO Unrestricted=3.9 mg/kg	6.7
SB-57 (6-8)			7

The following table lists the reported silver concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-29 (0-4) SB-29 (4-10)	Silver	BCO Unrestricted=2 mg/kg	5.9 4.3
SB-31 (0-4)	Silver	BCO Unrestricted=2 mg/kg	7.9 J
SB-32 (0-4)	Silver	BCO Unrestricted=2 mg/kg	2.1 J
SB-34 (0-4)	Silver	BCO Unrestricted=2 mg/kg	2.1 J 2.5 J
SB-34 (4-10)	Silver	Bee emestreed=2 mg/kg	2.3 J
SB-35 (0-4)	Silver	BCO Unrestricted=2 mg/kg	2.5
SB-36 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3.7 J
SB-36 (6-10)			2.6 J
SB-38 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3
SB-38 (4-10)			2.2 J
SB-39 (0-4)	Silver	BCO Unrestricted=2 mg/kg	24.8
SB-39 (4-10)			3.3 J
SB-42 (0-4)	Silver	BCO Unrestricted=2 mg/kg	5.3 J
SB-43 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3.3 J
SB-43 (4-8)			3.4 J
SB-44 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3.6 J
SB-44 (4-10)			5.8 J
SB-46 (0-4)	Silver	BCO Unrestricted=2 mg/kg	8.5 J
SB-46 (4-10)			4.4 J
SB-47 (0-4)	Silver	BCO Unrestricted=2 mg/kg	4.3 J
SB-47 (4-10)			3.3 J
SB-48 (0-4)	Silver	BCO Unrestricted=2 mg/kg	4.8 J
SB-48 (4-6)			5.2 J
SB-52 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3.8
SB-53 (0-4)	Silver	BCO Unrestricted=2 mg/kg	4.8 J
SB-53 (4-10)			2.9 J
SB-54 (0-4)	Silver	BCO Unrestricted=2 mg/kg	3 J
SB-54 (4-10)			4 J
SB-55 (0-4)	Silver	BCO Unrestricted=2 mg/kg	2.6 J
SB-56 (0-4)	Silver	BCO Unrestricted=2 mg/kg	2.1 J
SB-56 (6-8)			5.1
SB-57 (0-4)	Silver	BCO Unrestricted=2 mg/kg	5.2
SB-57 (6-8)			3.2

The following table lists the reported zinc concentrations that exceed the Unrestricted Use SCOs:

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP	ANALYTICAL
	001121 0 01 12	OBJECTIVES	RESULTS
			(mg/kg)
SB-29 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	2,960
SB-29 (4-10)			5,310
SB-30 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	3,080
SB-30 (4-10)			2,410
SB-31 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	14,200
SB-31 (4-10)			6,240
SB-32 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	11,600
SB-32 (4-10)			2,740
SB-33 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	3,060
SB-33 (4-10)			12,400
SB-34 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	4,570
SB-34 (4-10)			3,430
SB-35 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	8,290
SB-35 (4-10)			15,400
SB-36 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	11,700
SB-36 (6-10)			5,550
SB-37 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	3,650
SB-37 (4-10)		700 11 1100 11	762
SB-38 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	6,430
SB-38 (4-10)		DC0 11 1 100 #	9,040
SB-39 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	18,700
SB-39 (4-10)		DCO H	6,150
SB-40 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	1,700
SB-40 (4-10)	7:	BCO Unrestricted=109 mg/kg	857
SB-41 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	735 394
SB-41 (4-11) SB-42 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	7,350
SB-42 (0-4) SB-42 (4-10)	ZIIIC	Deo Chiestricica-109 hig/kg	1,650
SB-43 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	9,850
SB-43 (4-8)	Zinc	Deo emestreted-109 mg/kg	6,030
SB-44 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	8,150
SB-44 (4-10)			7,590
SB-45 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	757
SB-45 (4-10)			257
SB-46 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	9,910
SB-46 (4-10)			16,400
SB-47 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	7,800
SB-47 (4-10)			6,130
SB-48 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	12,800
SB-48 (4-6)			10,600
SB-49 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	408
SB-49 (4-6)			331
SB-50 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	3,330
SB-50 (4-10)			1,520

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP	ANALYTICAL
		OBJECTIVES	RESULTS
			(mg/kg)
SB-51 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	1,930
SB-51 (4-8)			746
SB-52 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	11,300
SB-52 (4-10)			4,120
SB-53 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	9,110
SB-53 (4-10)			3,120
SB-54 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	6,250
SB-54 (4-10)			7,430
SB-55 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	3,240
SB-55 (4-10)			905
SB-56 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	7,080
SB-56 (6-8)			8,110
SB-57 (0-4)	Zinc	BCO Unrestricted=109 mg/kg	9,160
SB-57 (6-8)			8.570

5.1.2 Polychlorinated Biphenyls

The results of the SRI and SSRI soil sampling programs indicated the presence of PCB concentrations in soil that exceed the Unrestricted Use SCOs.

The following table provides the sample location, sample depth, compound and corresponding analytical results which exceed the Unrestricted Use SCOs.

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		-	(mg/kg)
SB-2-1 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.48
	Aroclor 1260		0.55
SB-2-1 (6-8)	Aroclor 1260	BCO Unrestricted=0.1 mg/kg	0.13
SB-2-2 (1-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.40
SB-2-3 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.47
SB-2-3 (10-11)	Aroclor 1260	BCO Unrestricted=0.1 mg/kg	0.15
SB-6-1 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	12
SB-6-2 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	1.6
SB-6-2 (6-8)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	6.1 J
SB-6-3 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.69
SB-7-1 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.76
	Aroclor 1254		0.67
	Aroclor 1260		0.16
SB-7-1 (4-6)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	2.1
	Aroclor 1254		4.4
	Aroclor 1260		1.5

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS
		OBJECTIVES	(mg/kg)
SB-7-2 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.3
	Aroclor 1254		1.2
	Aroclor 1260		0.39
SB-7-2 (4-6)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	2.1
	Aroclor 1254		3.2
	Aroclor 1260		3
SB-8-1 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	2.4
	Aroclor 1260		0.56
SB-8-1 (4-6)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	13
	Aroclor 1260		4.1
SB-8-2 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	14
	Aroclor 1260		12
SB-8-2 (4-6)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	6
	Aroclor 1260		2.4
SB-9-1 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	6.7 J
SB-9-1 (10-11)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.49
	Aroclor 1260		0.26
SB-9-2 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	7.8
SB-9-2 (8-10)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	2.1
	Aroclor 1260		0.59
SB-9-3 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	11 J
SB-9-3 (4-6)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	5.9 J
SB-16-1 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	9.3 J
	Aroclor 1260		0.89
SB-16-1 (6-8)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	2.8
	Aroclor 1260		1.2
SB-16-2 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	7 J
	Aroclor 1260	DGO V	0.57
SB-16-2 (6-8)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.43
SD 16 2 (0.4)	Aroclor 1260	DCO Harris and Data and Land	0.26
SB-16-3 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	12
SB-16-3 (4-6)	Aroclor 1260 Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.92 J 15
SD-10-3 (4-0)	Aroclor 1242 Aroclor 1260	BCO Ullestricted=0.1 hig/kg	2.6
SB-17-1 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	31
3D-17-1 (U-4)	Aroclor 1242 Aroclor 1260	BCO Officstricted=0.1 mg/kg	8.3
SB-17-1 (4-6)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.29 J
SB-17-1 (4-0) SB-17-2 (0-4)	Aroclor 1242 Aroclor 1242	BCO Unrestricted=0.1 mg/kg	16
SB-17-2 (0-4)	Aroclor 1242 Aroclor 1260	Des emesareted on mg/kg	1.9
SB-17-2 (4-6)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	27
(. 0)	Aroclor 1260		3
SB-20-1 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	13 J
- (* -)	Aroclor 1260		1.4 J
SB-20-1 (6-8)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	1.7
l ` ´	Aroclor 1260		0.89

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-20-2 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	7.4 0.83
SB-20-2 (6-8)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	16 1.5
SB-20-3 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	11 J 0.89 J
SB-20-3 (6-8)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	0.96 0.33
SB-22-1 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	6.2 0.61
SB-22-1 (4-6)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	11 2.1
SB-22-2 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	4.5 0.84
SB-22-2 (4-6)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	2.6 0.92
SB-22-3 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	9.5 1.4
SB-22-3 (4-6)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	4.4 0.78
SB-23-1 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	3.5 1.1 J
SB-23-1 (4-6)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	3.1 0.83
SB-23-2 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	1 0.23
SB-23-2 (6-8)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	14 0.67 J
SB-23-3 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	7.5 1.7
SB-23-3 (4-6)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	7 J 1.2
SB-23-4 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	1.6 J
SB-23-4 (4-6)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	55
SB-24-1 (0-4)	Aroclor 1242 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	4.2 2.1
SB-24-2 (0-4)	Aroclor 1242 Aroclor 1254 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	2.8 J 1.1 J 0.22
SB-24-3 (0-4)	Aroclor 1242 Aroclor 1254 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	1.9 J 0.72 J 0.78
SB-24-3 (4-6)	Aroclor 1248 Aroclor 1254 Aroclor 1260	BCO Unrestricted=0.1 mg/kg	1 J 0.9 0.46

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-27-1 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	2.8
SB-27-1 (9-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.6
SB-27-2 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	2.8
SB-27-2 (4-8)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	4.2
	Aroclor 1260		0.41
SB-27-3 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	1.6
	Aroclor 1260		2 J
SB-27-4 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.38
	Aroclor 1260		0.31
SB-27-5 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.85
	Aroclor 1260		0.21
SB-29 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.24
SB-30 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.45
	Aroclor 1260		0.49
SB-30 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.31
	Aroclor 1260		0.21
SB-31 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	4.2
	Aroclor 1254		1.7
SB-31 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.32
SB-32 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	14
SB-32 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.7
SB-33 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.58
	Aroclor 1254		0.86
	Aroclor 1260		0.33
SB-33 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.93 J
	Aroclor 1260		0.76 J
SB-34 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	4.1
	Aroclor 1254		1.2 J
	Aroclor 1260		0.33 J
SB-34 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	2 J
	Aroclor 1254		2.6
	Aroclor 1260		0.56
SB-35 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	3.2
	Aroclor 1254		1.8
SB-35 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.92
SB-36 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	14 J
	Aroclor 1254		3.9
	Aroclor 1260		0.71 J
SB-36 (6-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	4 J
	Aroclor 1254		1.9
SB-37 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.25
SB-37 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.56
	Aroclor 1260		0.29
SB-38 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.3
SB-38 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.49

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-39 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.1
SB-39 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.73
SB-40 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.41 J
	Aroclor 1260		0.21 J
SB-40 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.41 J
	Aroclor 1260		0.26 J
SB-41 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.24
	Aroclor 1260		0.14 J
SB-41 (4-11)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.11
SB-42 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.86
	Aroclor 1254		0.58
	Aroclor 1260		0.14
SB-42 (4-10)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	0.32
	Aroclor 1260		0.17
SB-43 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	5.1
	Aroclor 1254		1
	Aroclor 1260		0.27 J
SB-43 (4-8)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.9
	Aroclor 1254		1.2
	Aroclor 1260		0.31
SB-44 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	2.9
	Aroclor 1254		1.4
SB-44 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.4
SB-45 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.52
	Aroclor 1260		0.34
SB-45 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.17
	Aroclor 1260		1 J
SB-46 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	2.7
	Aroclor 1260		0.5
SB-46 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	6.7
	Aroclor 1254		6.2
	Aroclor 1260		1.7
SB-47 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	1.4
	Aroclor 1254		0.83
	Aroclor 1260		0.19
SB-47 (4-10)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	3.3
	Aroclor 1254		2.5
	Aroclor 1260		0.95
SB-48 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.83
SB-48 (4-6)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	2.6
	Aroclor 1254		1.2
SB-50 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.31
	Aroclor 1260		0.18
SB-50 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.59 J
-= 00 (. 10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.21

Frito Lay, Inc., Brooklyn, New York Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Report

SAMPLE LOCATION	COMPOUND	PART 375 SOIL CLEANUP OBJECTIVES	ANALYTICAL RESULTS (mg/kg)
SB-52 (0-4)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.0
SB-52 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	0.55 J
SB-53 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	5.5
	Aroclor 1254		1.0
SB-53 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.6
	Aroclor 1260		5.1
SB-54 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	5.6
	Aroclor 1254		1.4 J
SB-54 (4-10)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	5
	Aroclor 1254		2.9
	Aroclor 1260		0.6
SB-55 (0-4)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	1.7
	Aroclor 1260		1.7
SB-55 (4-10)	Aroclor 1254	BCO Unrestricted=0.1 mg/kg	0.34 J
	Aroclor 1260		0.24 J
SB-56 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	5.5
	Aroclor 1254		0.45
	Aroclor 1260		0.43 J
SB-56 (6-8)	Aroclor 1248	BCO Unrestricted=0.1 mg/kg	1.1
	Aroclor 1262		0.77 J
SB-57 (0-4)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	5.6
	Aroclor 1260		1
SB-57 (6-8)	Aroclor 1242	BCO Unrestricted=0.1 mg/kg	2.5
	Aroclor 1260		0.51

5.2 Supplemental Remedial Investigation and Second Supplemental Remedial Investigation Results

The results of the SRI and SSRI sampling programs have indicated that the on-site surface and subsurface soil concentrations exceed the Part 375 the Unrestricted Use SCOs for TAL Metals and PCBs, and the Restricted Use - Protection of Groundwater SCOs for arsenic. The following section describes the extent of TAL Metal and PCB soil contamination that was detected during the SRI and SSRI sampling program.

5.2.1 Soil

The results of the SRI and SSRI indicate the presence of TAL Metals and PCBs in soil with concentrations exceeding Part 375 Unrestricted Use SCOs and the presence of arsenic in soil with concentrations exceeding Part 375 Restricted Use - Protection of Groundwater SCOs at the

Site. TAL Metals (including arsenic) and PCB contaminated soils are present in the surface and subsurface soil throughout the Site. Barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc concentrations exceeding the Unrestricted Use SCOs were detected during the SRI and SSRI sampling programs. Arsenic concentrations exceeding the Restricted Use - Protection of Groundwater SCOs were also detected during the SRI and SSRI sampling programs

Arsenic concentrations exceeding the Restricted Use - Protection of Groundwater SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 13 soil samples exceeded 16 mg/kg (Restricted Use - Protection of Groundwater SCOs) with the highest concentrations reported at SB-29 (1,160 mg/kg), SB-32 (144 mg/kg), SB-47 (69.6 mg/kg), and SB-42 (67.4 mg/kg). The average concentration of arsenic, which exceeds the Restricted Use - Protection of Groundwater SCOs, detected from the 0 to 4 ft-bgs depth interval is 100.0 mg/kg. Of the 7 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 6 soil samples exceeded 16 mg/kg (Restricted Use - Protection of Groundwater SCOs) with the highest concentrations reported at SB-8-1 (30.9 mg/kg) and SB-22-1 (25.6 mg/kg). The average concentration of arsenic, which exceeds the Unrestricted Use SCOs and the Restricted Use - Protection of Groundwater SCOs, detected from the 0 to 4 ft-bgs depth interval is 22.8 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 17 soil samples exceeded 16 mg/kg (Restricted Use - Protection of Groundwater SCOs) with the highest concentrations reported at SB-29 (1,140 mg/kg), SB-34 (35.8 mg/kg), SB-36 (32.5 mg/kg), and SB-43 (29.5 mg/kg). The average concentration of arsenic, which exceeds the Unrestricted Use SCOs and the Restricted Use - Protection of Groundwater SCOs, detected from the 4 to 11 ft-bgs depth interval is 82.0 mg/kg. Of the 7 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 6 soil samples exceeded 16 mg/kg (Restricted Use -Protection of Groundwater SCOs) with the highest concentrations reported at SB-8-2 (47.5 mg/kg). The average concentration of arsenic, which exceeds the Unrestricted Use SCOs and the Restricted Use - Protection of Groundwater SCOs, detected from the 4 to 11 ft-bgs depth interval is 26.2 mg/kg.

The highest arsenic concentrations exceeding the Restricted Use - Protection of Groundwater SCOs are present along the northwestern portion of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-29, SB-32, and SB-50. Arsenic concentrations are also present within the central interior portion of the Site with several additional exceedances in the 4 to 11 ft-bgs sampling interval as compared to the 0 to 4 ft-bgs sampling interval. Figures 3-3, 3-4, 4-5, and 4-6 depict the sampling locations which exceed the Restricted Use - Protection of Groundwater SCOs for arsenic in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Barium concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 24 soil samples exceeded 350 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-32 (3,900 mg/kg), SB-54 (1,920 mg/kg), SB-33 (1,200 mg/kg), and SB-52 (1,150 mg/kg). The average concentration of barium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 1,100 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 350 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (897 mg/kg). The average concentration of barium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 717.5 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 22 soil samples exceeded 350 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-46 (1,380 mg/kg), SB-29 (1,190 mg/kg), SB-32 (1,090 mg/kg), and SB-39 (1,090 mg/kg). The average concentration of barium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 775.5 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 350 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-56 (893 mg/kg). The average concentration of barium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 866 mg/kg.

The highest barium concentrations exceeding the Unrestricted Use SCOs are present along the northwestern, central and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-32, SB-33, SB-36, SB-38, SB-39, SB-46, SB-47, and SB-54. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for barium in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Cadmium concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 25 soil samples exceeded 2.5 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-39 (50.7 mg/kg), SB-36 (41.2 mg/kg), SB-44 (39.2 mg/kg), and SB-46 (38.2 mg/kg). The average concentration of cadmium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 22.9 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 2.5 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (26.3 mg/kg). The average concentration of cadmium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 22.7 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 22 soil samples exceeded 2.5 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-46 (50.5 mg/kg), SB-48 (41.5 mg/kg), SB-47 (32.8 mg/kg), and SB-39 (30.5 mg/kg). The average concentration of cadmium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 23.1 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 2.5 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-56 (30.7 mg/kg). The average concentration of cadmium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 27.5 mg/kg.

The highest cadmium concentrations exceeding the Unrestricted Use SCOs are present along the eastern and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-31, SB-36, SB-39, SB-43, SB-44, SB-46, and SB-53. Figures 3-5, 3-6, 4-7, and

4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for cadmium in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Chromium concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 27 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-52 (834 mg/kg), SB-34 (486 mg/kg), SB-31 (483 mg/kg), and SB-46 (450 mg/kg). The average concentration of chromium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 271.2 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (327 mg/kg). The average concentration of chromium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 213 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 25 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-54 (794 mg/kg), SB-46 (327 mg/kg), SB-34 (304 mg/kg), and SB-38 (301 mg/kg). The average concentration of chromium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 186.6 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-56 (237 mg/kg). The average concentration of chromium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 194.5 mg/kg.

The highest chromium concentrations exceeding the Unrestricted Use SCOs are present along the eastern and south-central portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-31, SB-34, SB-38, SB-39, SB-42, SB-46, SB-52, and SB-55. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for chromium in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Copper concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 27 soil samples exceeded 50 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-31 (19,800 mg/kg), SB-39 (12,800 mg/kg), SB-43 (11,700 mg/kg), and SB-48 (11,2000 mg/kg). concentration of copper, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ftbgs depth interval is 3,740 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 50 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-56 (3,580 mg/kg). The average concentration of copper, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 2,700 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 27 soil samples exceeded 50 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-29 (5,480 mg/kg), SB-48 (3,980 mg/kg), SB-44 (3,690 mg/kg), and SB-52 (2,900 mg/kg). The average concentration of copper, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 1,338.1 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 50 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-57 (8,510 mg/kg). The average concentration of copper, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 5,040 mg/kg.

The highest copper concentrations exceeding the Unrestricted Use SCOs are present along the northeastern, eastern, and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-29, SB-31, SB-36, SB-39, SB-43, SB-44, and SB-48. Figures 3-3, 3-4, 4-5, and 4-6 depict the sampling locations which exceed the Unrestricted Use SCOs for copper in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Lead concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during the SRI, from the 0 to 4 ft-bgs depth interval, 27 soil samples exceeded 63 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-32 (17,000 mg/kg).

mg/kg), SB-47 (5,810 mg/kg), SB-30 (5,410 mg/kg), and SB-46 (5,110 mg/kg). The average concentration of lead, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 3,672.6 mg/kg. Of the 8 soil samples collected, during the SSRI, from the 0 to 4 ft-bgs depth interval, 8 soil samples exceeded 63 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-8-2 (21,700 mg/kg), SB-16-1 (11,600 mg/kg), SB-23-1 (7,330 mg/kg), and SB-8-1 (5,470 mg/kg). The average concentration of lead, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 7,208 mg/kg. Of the 27 soil samples collected, during the SRI, from the 4 to 11 ft-bgs depth interval, 27 soil samples exceeded 63 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-46 (8,760 mg/kg), SB-32 (6,580 mg/kg), SB-33 (6,070 mg/kg), and SB-39 (4,850 mg/kg). The average concentration of lead, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 2,882.1 mg/kg. Of the 8 soil samples collected, during the SSRI, from the 4 to 11 ft-bgs depth interval, 8 soil samples exceeded 63 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-8-1 (10,700 mg/kg), SB-8-2 (10,600 mg/kg), SB-22-2 (6,660 mg/kg), and SB-22-1 (4,970 mg/kg). The average concentration of lead, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 6,663 mg/kg.

The highest lead concentrations exceeding the Unrestricted Use SCOs, that was detected the SRI, are present at one (1) location along the northwestern portion of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-32. Lead concentrations are also present within the central interior portion of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-33, SB-39, SB-46, SB-47, and SB-54. In addition, the lead concentrations exceeding the Unrestricted Use SCOs in the 0 to 4 ft-bgs are predominately present in the western portion of the Site while lead concentrations exceeding the Unrestricted Use SCOs in the 4 to 11 ft-bgs are predominately present in the eastern portion of the Site. Figures 3-5 and 3-6 depict the sampling locations which exceed the Unrestricted Use SCOs for lead in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

The highest lead concentrations exceeding the Unrestricted Use SCOs, that was detected the SSRI, are present at one (1) location in the south-central portion of the Site in the 0 to 4 ft-bgs sampling intervals in SB-8-2. Lead concentrations are also present within the central portion of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-8-1, SB-8-2, SB-16-1, SB-22-1, and SB-22-2. Figures 4-7 and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for lead in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Mercury concentrations exceeding the Unrestricted Use SCOs, that was detected the SRI, are present from the ground surface to an approximate depth of 0 to 11 ft-bgs at several locations at the Site. Of the 27 soil samples collected from the 0 to 4 ft-bgs depth interval, 26 soil samples exceeded 0.18 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-32 (14.2 mg/kg), SB-52 (13.6 mg/kg), SB-54 (12.6 mg/kg), and SB-29 (10 mg/kg). The average concentration of mercury, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ftbgs depth interval is 7.5 mg/kg. Of the 2 soil samples collected, during SRI, from the 0 to 4 ftbgs depth interval, 2 soil samples exceeded 0.18 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-57 (5.3 mg/kg). The average concentration of mercury, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 4.1 mg/kg. Of the 27 soil samples collected from the 4 to 11 ft-bgs depth interval, 27 soil samples exceeded 0.18 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-39 (14.3 mg/kg), SB-48 (13.5 mg/kg), SB-44 (11.7 mg/kg), and SB-46 (9.7 mg/kg). The average concentration of mercury, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 5.4 mg/kg. Of the 2 soil samples collected, during SSRI, from the 6 to 8 ft-bgs depth interval, 2 soil samples exceeded 0.18 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-56 (8.6 mg/kg). The average concentration of mercury, which exceeds the Unrestricted Use SCOs, detected from the 6 to 8 ft-bgs depth interval is 7.2 mg/kg.

Mercury concentrations are present within the central interior portion of the Site in the 0 to 4 ftbgs and in the 4 to 11 ft-bgs sampling intervals in SB-31, SB-34, SB-35, SB-36, SB-38, SB-39,

SB-43, SB-44, SB-46, SB-48, SB-53, and SB-54. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for mercury in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Nickel concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 26 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-42 (796 mg/kg), SB-46 (353 mg/kg), SB-31 (331 mg/kg), and SB-34 (330 mg/kg). The average concentration of nickel, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 250.1 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (201 mg/kg). The average concentration of nickel, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 164.5 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 23 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-54 (800 mg/kg), SB-38 (410 mg/kg), SB-48 (350 mg/kg), and SB-35 (332 mg/kg). The average concentration of nickel, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 210.8 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 30 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-57 (333 mg/kg). The average concentration of nickel, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 282.5 mg/kg.

The highest nickel concentrations exceeding the Unrestricted Use SCOs are present along the eastern and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-34, SB-38, SB-39, SB-42, SB-43, SB-46, SB-48, and SB-54. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for nickel in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Selenium concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 10 soil samples exceeded 3.9 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-50 (194 mg/kg), SB-35 (19.5 mg/kg), SB-42 (17.3 mg/kg), and SB-32 (16.4 mg/kg). The average concentration of selenium, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 10.1 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 1 soil samples exceeded 3.9 mg/kg (Unrestricted Use SCOs) with a concentration reported at SB-57 (6.7 mg/kg). Of the 27 soil samples collected, during SRI, from the 4 to 11 ftbgs depth interval, 10 soil samples exceeded 3.9 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-52 (64.7 mg/kg), SB-34 (28.4mg/kg), SB-55 (19.7 mg/kg), and SB-35 (15.3 mg/kg). The average concentration of selenium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 18.2 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 3.9 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-56 (14.3 mg/kg). The average concentration of selenium, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 5.65 mg/kg.

The highest selenium concentrations exceeding the Unrestricted Use SCOs are present along the northeast, central, and eastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-32, SB-34, SB-35, SB-39, SB-42, SB-50, SB-52, and SB-55. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for selenium in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Silver concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 19 soil samples exceeded 2 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-39 (24.8 mg/kg), SB-46 (8.5 mg/kg), SB-31 (7.9 mg/kg), and SB-34 (5.9 mg/kg). The average concentration of silver, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 5.5

mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 2 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (5.2 mg/kg). The average concentration of silver, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 3.65 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 13 soil samples exceeded 2 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-44 (5.8 mg/kg), SB-48 (5.2 mg/kg), SB-46 (4.4 mg/kg), and SB-29 (4.3 mg/kg). The average concentration of silver, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 5.1 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 2 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-57 (5.1 mg/kg). The average concentration of silver, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 4.15 mg/kg.

The highest silver concentrations exceeding the Unrestricted Use SCOs are present along the eastern and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-29, SB-31, SB-39, SB-44, SB-46, and SB-48. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for silver in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

Zinc concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 27 soil samples exceeded 109 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-39 (18,700 mg/kg), SB-31 (14,200 mg/kg), SB-48 (12,800 mg/kg), SB-36 (11,700 mg/kg), and SB-32 (11,600 mg/kg). The average concentration of zinc, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 7,031.8 mg/kg. Of the 2 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 2 soil samples exceeded 109 mg/kg (Unrestricted Use SCOs) with the highest concentration reported at SB-57 (9,160 mg/kg). The average concentration of zinc, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 8,120 mg/kg. Of the 27 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth

interval, 27 soil samples exceeded 109 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-46 (16,400 mg/kg), SB-35 (15,400 mg/kg), SB-33 (12,400 mg/kg), SB-48 (10,600 mg/kg), and SB-38 (9,040 mg/kg). The average concentration of zinc, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 5,168.2 mg/kg. Of the 2 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 2 soil samples exceeded 109 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-57 (8,570 mg/kg). The average concentration of zinc, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 8,340 mg/kg.

The highest zinc concentrations exceeding the Unrestricted Use SCOs are present along the northern, eastern and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-31, SB-32, SB-33, SB-35, SB-36, SB-39, SB-46, SB-48, and SB-52. Figures 3-5, 3-6, 4-7, and 4-8 depict the sampling locations which exceed the Unrestricted Use SCOs for zinc in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

PCB concentrations exceeding the Unrestricted Use SCOs are present from the ground surface to an approximate depth of 0 to 11 ft-bgs in several locations at the Site. Of the 27 soil samples collected, during SRI, from the 0 to 4 ft-bgs depth interval, 25 soil samples exceeded 0.1 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-36 (18.6 mg/kg), SB-32 (14 mg/kg), SB-54 (7 mg/kg), SB-43 (6.47 mg/kg), and SB-31 (5.9 mg/kg). The average concentration of PCBs, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 2.12 mg/kg. Of the 38 soil samples collected, during SSRI, from the 0 to 4 ft-bgs depth interval, 38 soil samples exceeded 0.1 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-17-1 (39.3 mg/kg), SB-8-2 (26 mg/kg), SB-17-2 (17.9 mg/kg), SB-20-1 (14.4 mg/kg), SB-16-3 (12.92 mg/kg), and SB-6-1 (12 mg/kg). The average concentration of PCBs, which exceeds the Unrestricted Use SCOs, detected from the 0 to 4 ft-bgs depth interval is 3.27 mg/kg. Of the 28 soil samples collected, during SRI, from the 4 to 11 ft-bgs depth interval, 27 soil samples exceeded 0.1 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-23-4 (55 mg/kg), SB-17-2 (30 mg/kg), SB-16-3 (17.6 mg/kg), SB-20-2 (17.5 mg/kg), and SB-8-1 (17.1 mg/kg). The average concentration of PCBs,

which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 1.55 mg/kg. Of the 34 soil samples collected, during SSRI, from the 4 to 11 ft-bgs depth interval, 32 soil samples exceeded 0.1 mg/kg (Unrestricted Use SCOs) with the highest concentrations reported at SB-46 (14.6 mg/kg), SB-54 (8.5 mg/kg), SB-53 (6.7 mg/kg), SB-36 (5.9 mg/kg), and SB-47 (5.9 mg/kg). The average concentration of PCBs, which exceeds the Unrestricted Use SCOs, detected from the 4 to 11 ft-bgs depth interval is 4.56 mg/kg.

The highest PCB concentrations exceeding the Unrestricted Use SCOs are present along the northern, eastern, south, and southeastern portions of the Site in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals in SB-6-1, SB-8-1, SB-9-3, SB-16-3, SB-17-1, SB-17-2, SB-20-2, SB-23-2, SB-23-4, SB-36, and SB-46. Figures 3-7, 3-8, 4-3, and 4-4 depict the sampling locations which exceed the Unrestricted Use SCOs for PCBs in the 0 to 4 ft-bgs and in the 4 to 11 ft-bgs sampling intervals, respectively.

5.3 Supplemental RI and Second Supplemental RI Conclusions

The results of the SRI and SSRI indicate the continued presence of soil concentrations in excess of the Part 375 Unrestricted Use SCOs for TAL Metals and PCBs, and the Restricted Use - Protection of Groundwater SCOs for arsenic at the Site, which further verifies the results of the RI completed in August 2009. Arsenic, barium, cadmium, chromium, copper, lead, nickel, mercury, selenium, silver, and zinc were detected in the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals in a majority of the 27 soil borings completed during the SRI sampling program and in 2 soil borings completed during the SSRI sampling program. Lead concentrations were detected exceeding the Unrestricted Use SCOs in 8 of the 9 soil borings and arsenic concentrations were detected exceeding the Restricted Use - Protection of Groundwater SCOs in 6 of the 9 soil borings completed during the SSRI.

The primary contaminants of concern (COCs) detected during the RI, SRI, and SSRI sampling programs were identified as arsenic, lead, mercury, PCBs, and SVOCs (carcinogenic PAHs) and were selected due to their potential for mobility to other environmental media and subsequent

130

adverse effects to human health and the environment, if left in-place without proper management (e.g., remediation, disposal, capping, etc.).

Arsenic concentrations exceeding the Unrestricted Use SCOs and the Restricted Use - Protection of Groundwater SCOs were detected throughout a majority of the Site in both the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals, with the highest concentrations located along the western property boundary. Lead concentrations exceeding the Unrestricted Use SCOs were detected throughout a majority of the Site in both the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals. Mercury concentrations exceeding the Unrestricted Use SCOs were detected throughout a majority of the Site in both the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals. PCB concentrations exceeding the Unrestricted Use SCOs were detected predominately in the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals in the northern, eastern, southern, and southeastern portions of the Site. SVOC concentrations exceeding the Unrestricted Use SCOs were detected predominately in the 0 to 4 ft-bgs and 4 to 11 ft-bgs sampling intervals in the northern, southern, eastern, and western portions of the Site.

5.4 Insignificant and Significant Soil Contaminants Identified at the Site

The results of the RI, SRI, and SSRI sampling programs have identified the presence of insignificant and significant soil contaminants at the Site. Insignificant soil contaminants are identified as contaminated soil, if left in-place without proper management (e.g., remediation, disposal, engineered cover system, etc.), will have insignificant impact to human health and the environment. Significant soil contaminants are identified as contaminated soil, if left in-place without proper management (e.g., remediation, disposal, engineered cover system, etc.), has the potential to have a significant impact human health and the environment.

Insignificant soil contaminants that has been identified at the Site includes barium, cadmium, chromium, copper, nickel, selenium, silver, zinc, and VOCs. If exposure (dermal contact, investigation, and inhalation) occurs to these contaminants at their current concentrations, they are not considered a significant threat to human health and the environment. VOC soil

concentrations exceeding the Unrestricted Use SCOs were detected at several sampling locations with a majority of the VOC contamination associated with acetone (a common laboratory contaminant). Several sampling locations where VOC concentrations exceeded the Unrestricted Use SCOs will be likely be managed for off-site disposal as part of the proposed remedial alternatives associated with significant COCs detected at the same sampling locations. The overall remedial strategy for the entire Site will likely include the placement of an engineered cover system which would effectively eliminate potential exposure (physical contact, inhalation, or ingestion) pathways to the insignificant soil contaminants.

Significant soil contaminants (COCs) that has been identified at the Site includes arsenic, lead, mercury, PCBs, and SVOCs (PAHs). Arsenic soil contaminants have likely impacted on-site groundwater quality due to the presence of arsenic concentrations in groundwater which exceed the TOGS standards and will be further addressed in the remedial work plan (RWP). To eliminate potential future contributions of arsenic soil contaminants to the Site's groundwater quality, the highest lead concentrations (greater than 100 mg/kg) will be further addressed in the RWP.

Lead concentrations detected in the on-site monitoring wells do not contain dissolved lead concentrations above the TOGS standard and are likely the result of lead containing soil particles being collected as part of the groundwater sample and/or the results of impacts identified in the upgradient monitoring well. Lead groundwater concentrations detected at the upgradient and off-site groundwater monitoring wells are higher in concentration than the downgradient and on-site and groundwater monitoring wells. To eliminate potential future contributions of lead soil contaminants to the Site's groundwater quality, the highest lead concentrations (greater than 10,000 mg/kg) will be further addressed in the RWP.

Mercury groundwater concentrations detected from the on-site monitoring wells do not contain dissolved mercury concentrations above the TOGS standard and are likely the result of mercury containing soil particles collected as part of the groundwater sample and/or the results of impacts identified in the upgradient monitoring wells. To eliminate potential future contributions of

mercury to the Site's groundwater quality, the highest mercury concentrations (greater than 15 mg/kg) will be addressed in the RWP.

SVOCs (PAHs) are present at concentrations exceeding the Unrestricted Use SCOs in a majority of the sampling locations at the Site. SVOCs were not detected at concentrations exceeding the TOGS standards in any of the groundwater samples collected since 2003. SVOCs are the least mobile of the COCs at the Site and will not pose a significant threat to human health and the environment, if left in-place covered by an engineered cover system. If exposure (dermal contact, investigation, and inhalation) occurs to these contaminants at their current concentrations, SVOCs are not considered a significant threat to human health and the environment. To eliminate potential future exposure (dermal contact, inhalation, or ingestion), SVOC soil contamination will be likely be managed for off-site disposal as part of the proposed remedial alternatives associated with significant COCs detected at the same sampling locations. The overall remedial strategy for the entire Site will also likely include the placement of an engineered cover system which would effectively eliminate potential exposure (physical contact, inhalation, or ingestion) pathways to the remaining SVOC soil contamination. The engineered cover system would also provide protection to human health exposure from carcinogenic PAHs in surface soil.

6.0 CONCLUSIONS AND RECOMMENDATIONS

GF was retained by Frito-Lay to prepare SRI and SSRI Work Plans to determine the nature and extent of contamination and to further quantify and delineate surface and subsurface impacted soil identified at the Site. A Phase II ESA was conducted on the Site in December 2007 and January 2008 and the RI was conducted on the Site in November 2009 in response to NYSDEC's May 5, 2009 comment letter requesting the collection of additional Site data.

The SRI and SSRI Work Plans were prepared and submitted to NYSDEC DER for review and approval. On August 2, 2010, NYSDEC approved the SRI Work Plan for the Site and field sampling activities were performed on August 4 through 10, 2010. On September 21, 2010, NYSDEC did not have any further comments to the SSRI Work Plan for the Site and field sampling activities were performed on October 4 through 14, 2010. All work conducted as part of the SRI and SSRI was performed in accordance with NYSDEC BCP and DER-10 Technical Guidance for Site Investigation and Remediation.

6.1 Results of Previous Environmental Investigations

The results of Phase II ESA sampling program which was performed in December 2007 and January 2008 and the RI sampling program which was performed in November 2009 indicated that VOCs, SVOCs (carcinogenic PAHs), metals, and PCBs are present in the soil at concentrations exceeding the 6 NYCRR Part 375-6 Unrestricted Use SCOs. The results of the RI sampling program indicated the presence of COC's which included arsenic, lead, mercury, PCBs, and SVOCs (carcinogenic PAHs) with concentrations exceeding the Unrestricted Use SCOs.

6.2 Purpose of Supplemental Remedial Investigation

The purpose of the SRI was to determine the nature and extent of contamination and to further quantify and delineate surface and subsurface impacted soil identified during the December 2007 and January 2008, and the November 2009 soil sampling activities.

The scope of work as presented in the SRI and SSRI included the following:

- Twenty-seven (27) soil borings advanced at various on site locations across the to complete the 50' x 50' sampling grid;
- The first soil sample was to be collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was to be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table; and,
- All soil samples were to be analyzed for PCBs by EPA Method 8082 and TAL metals by EPA Method 6010/7471 in conformance with ASP Category B protocol. In addition, soil samples were also collected and analyzed for TCLP by EPA Method 1311.

The objectives of the SRI sampling program were to:

- further characterize and delineate surface subsurface soil impacts related to arsenic, lead, mercury, and PCB contaminated soil;
- provide data for development of the SRI Report;
- provide site-specific information for the development and selection of remedial alternative to reduce and/or eliminate the toxicity, volume, or mobility of site-specific contaminants.

6.3 Supplemental Remedial Investigation Work Plan

The SRI sampling program included the collection of: twenty-seven (27) soil borings advanced at various on site locations across the to complete the 50' x 50' sampling grid; the first soil sample was collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs and the second soil sample was collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table. All soil samples were analyzed for PCBs and TAL Metals in conformance with ASP Category B protocol. In addition, six (6) soil samples were also collected for TCLP analyses (arsenic only).

6.3.1 Soil Sample Results

The soil sample results indicate that TAL Metal and PCB soil concentrations are present in surface and subsurface soils at concentrations exceeding the Unrestricted Use SCOs are present in surface and subsurface soils in most soil borings completed during the SRI. The detected soil contamination is located throughout the Site to depths of 11 ft-bgs or greater, which is the approximate depth of groundwater beneath the Site. Several soil borings containing lead concentrations exceeding the Unrestricted Use SCOs may fail TCLP analysis and will require proper disposal to an appropriate disposal facility. Potentially hazardous levels of PCBs were not detected during the performance of the SRI sampling program.

The results of the arsenic TCLP analysis indicated that concentrations exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L were not present in any of the six (6) samples collected for analysis. The analytical data demonstrated that arsenic contaminated soil at concentrations at or below 140 mg/kg have recorded no detection for TCLP analyses in all concurrent sampling pairs.

6.4 Purpose of the Second Supplemental RI

The purpose of the SSRI sampling program was to further delineate PCB contamination at the Site to meet TSCA requirements for disposal purposes, in accordance with discussions with EPA representatives. The SSRI was also conducted to further delineate PCBs concentrations exceeding either the HOA criteria of 10 mg/kg or the LOA criteria of 25 mg/kg within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids for the collection of delineation samples.

The scope of work as presented in the SSRI WP included the following:

- Thirty-eight (38) soil borings advanced within individual 50' x 50' sampling grids by subdividing the sampling grid into four (4) 25' x 25' sampling grids;
- The first soil sample was to be collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs. The second soil sample was to be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table; and,
- All soil samples were to be analyzed for PCBs by EPA Method 8082 and select soil samples were analyzed for arsenic or lead by EPA Method 6010B in conformance with ASP Category B protocol. In addition, twenty (20) soil samples were to be analyzed for TCLP by EPA Method 1311.

The objectives of the SSRI sampling program were to:

- further characterize the nature and extent of contamination and to delineate surface and subsurface soil impacts related to PCB contaminated soil;
- provide data for development of the SRI and SSRI Report; and,
- provide site-specific information for the development and selection of remedial alternative to reduce and/or eliminate the toxicity, volume, or mobility of site-specific contaminants.

6.5 Second Supplemental Remedial Investigation Work Plan

The SSRI sampling program included the collection of: thirty-eight (38) soil borings advanced at various on site locations across the to complete the 50' x 50' sampling grid; the first soil sample was collected from equal portions of the soil boring from 0 to 2 ft-bgs and the other half from 2 to 4 ft-bgs and the second soil sample was collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest PID reading or if the second soil sample depth could not be determined visually or using the PID, the default sample collection depth will be just above the water table. All soil samples were analyzed for PCBs and select soil samples were analyzed for TAL metals in conformance with ASP Category B protocol. In addition, selected soil samples were also collected for TCLP analyses (arsenic and lead only).

6.5.1 Soil Sample Results

The soil sample results indicate that TAL Metal and PCB soil concentrations are present at concentrations exceeding the Unrestricted Use SCOs and arsenic concentrations are present at concentrations exceeding the Restricted Use - Protection of Groundwater SCOs in surface and subsurface soils in most soil borings completed during the SSRI. The detected soil contamination is located throughout the Site to depths 11 ft-bgs or greater, which is the approximate depth of groundwater beneath the Site.

Potentially hazardous levels of lead were detected at one (1) soil sample location collected during the SSRI. Potentially hazardous levels or concentrations of PCBs exceeding the Industrial SCOs were detected at one (1) soil sample location collected during the SSRI.

The results of the TCLP analysis indicated that arsenic concentrations exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L were not present in any of the 10 samples collected for analysis. The analytical data demonstrated that arsenic contaminated soil at concentrations at or below 140 mg/kg have recorded no detection for TCLP analyses in all concurrent sampling pairs.

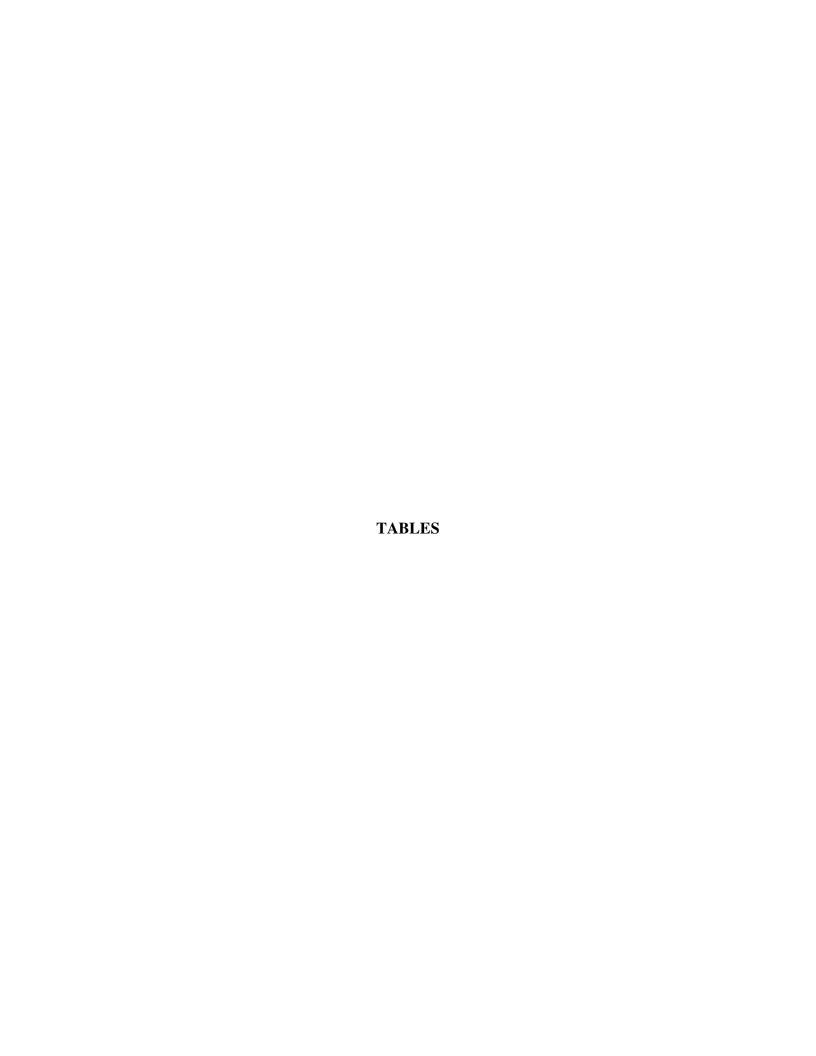
The results of the TCLP analysis indicated that lead concentrations exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L were present at one (1) of the 11 samples collected for analysis. Soil sample SB-8-2 (0-4) recorded a concentration of 21,700 mg/kg which resulted in a TCLP concentration of 5.37 mg/L which exceeds the RCRA Hazardous Waste Regulatory Level of 5 mg/L. This sample location was the only sample collected from the Site which recorded a TCLP concentration exceeding the RCRA Hazardous Waste Regulatory Level of 5 mg/L.

Although, lead contamination in soil appears to be leaching, the results of the dissolved groundwater analysis indicated non-detect for lead. Evidence does suggest that residual contamination levels of lead could migrate to groundwater but does not appear to pose a significant threat to public health or the environment, as documented in the dissolved groundwater analytical results.

6.6 Remedial Work Plan

The remedial cleanup objectives of the BCP are to remove or eliminate significant threats to public health and the environment, as well as implementing soil cleanup levels that are consistent with current and intended Site use. A RWP will be developed to assess applicable remedial alternatives for the Site to address COCs in soil, groundwater, and soil gas.

The environmental investigations conducted at the Site since 2003 have identified COCs in the soil, soil gas, and groundwater. In soil, arsenic, lead, mercury, PCBs, and SVOCs (carcinogenic PAHs) have been detected at concentrations exceeding 6 NYCRR 375 Unrestricted and Restricted Use SCOs predominantly in the surface and in the subsurface soils.


Where concentrations of contaminants in soil exceed the Restricted Use - Protection of Groundwater SCOs for arsenic and the Restricted Use SCOs for lead, mercury, PCBs, and SVOCs (carcinogenic PAHs), a combination of soil removal and an "engineered cover system" will be evaluated to prevent exposures in accordance with restricted use, as well as being

protective of human health and the environment. The COCs expected to remain on-site as are arsenic, lead, mercury, and SVOCs (carcinogenic PAHs) which will be further evaluated in the RWP to determine their potential to migrate to other environmental media and the appropriate remedial strategy to prevent exposures in accordance with restricted use.

Arsenic, lead (total analysis only), and VOCs have been detected at concentrations exceeding the TOGS standards in groundwater, and VOC concentrations have been detected in soil gas but below the NYSDOH's Soil Vapor/Indoor Air Matrix (Guidance for Evaluating Soil Vapor Intrusion in the State of New York, 2006).

Where concentrations of contaminants in groundwater exceed the TOGS standards, groundwater treatment and monitored natural attenuation (MNA) will be evaluated in the RWP to develop an appropriate remedial strategy for groundwater. For soil gas concentrations exceeding the Air guideline values derived by the NYSDOH, soil gas extraction and mitigation will be evaluated in the RWP to develop an appropriate remedial strategy for soil gas.

SUPPLEMENTAL REMEDIAL INVESTIGATION SAMPLING PROGRAM

SAMPLING DESIGNATION AND LABORATORY SAMPLING AND ANALYSIS

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

Comple Designation	Comple Designation	Duamanad Cam	nling Donaha*	S	oil Sample Analy	rsis
Sample Designation	Sample Designation	Proposed Sam	pling Depths"	PCBs	TAL Metals	TCLP - Arsenic
SB-29	SB-29 (0-4)	0 to 2 feet	2 to 4 feet	х	х	
3D-29	SB-29 (4-11)	4 to 1 foot agw	N/A	Х	Х	
SB-30	SB-30 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х	
3B-30	SB-30 (4-11)	4 to 1 foot agw	N/A	Х	х	
SB-31	SB-31 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х	
3B-31	SB-31 (4-11)	4 to 1 foot agw	N/A	Х	Х	
SB-32	SB-32 (0-4)	0 to 2 feet	2 to 4 feet	X	Х	Х
36-32	SB-32 (4-11)	4 to 1 foot agw	N/A	X	Х	
SB-33	SB-33 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х	
3B-33	SB-33 (4-11)	4 to 1 foot agw	N/A	X	Х	
SB-34	SB-34 (0-4)	0 to 2 feet	2 to 4 feet	X	Х	
SD-34	SB-34 (4-11)	4 to 1 foot agw	N/A	Х	Х	
SB-35	SB-35 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х	
SB-35	SB-35 (4-11)	4 to 1 foot agw	N/A	X	Х	
CD OC	SB-36 (0-4)	0 to 2 feet	2 to 4 feet	Х	X	
SB-36	SB-36 (4-11)	4 to 1 foot agw	N/A	Х	Х	
CD 07	SB-37 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х	
SB-37	SB-37 (4-11)	4 to 1 foot agw	N/A	Х	Х	
CD 20	SB-38 (0-4)	0 to 2 feet	2 to 4 feet	Х	х	Х
SB-38	SB-38 (4-11)	4 to 1 foot agw	N/A	Х	х	
CD 00	SB-39 (0-4)	0 to 2 feet	2 to 4 feet	Х	х	
SB-39	SB-39 (4-11)	4 to 1 foot agw	N/A	Х	х	
OD 40	SB-40 (0-4)	0 to 2 feet	2 to 4 feet	Х	х	
SB-40	SB-40 (4-11)	4 to 1 foot agw	N/A	X	х	
OD 44	SB-41 (0-4)	0 to 2 feet	2 to 4 feet	х	х	
SB-41 —	SB-41 (4-11)	4 to 1 foot agw	N/A	X	х	
OD 40	SB-42 (0-4)	0 to 2 feet	2 to 4 feet	Х	х	х
SB-42	SB-42 (4-11)	4 to 1 foot agw	N/A	X	x	X
OD 40	SB-43 (0-4)	0 to 2 feet	2 to 4 feet	X	х	
SB-43	SB-43 (4-11)	4 to 1 foot agw	N/A	X	x	х
OD 44	SB-44 (0-4)	0 to 2 feet	2 to 4 feet	X	х	
SB-44	SB-44 (4-11)	4 to 1 foot agw	N/A	X	X	
05.45	SB-45 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-45	SB-45 (4-11)	4 to 1 foot agw	N/A	X	X	
00.40	SB-46 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-46	SB-46 (4-11)	4 to 1 foot agw	N/A	X	X	
05.45	SB-47 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-47	SB-47 (4-11)	4 to 1 foot agw	N/A	X	X	
00.10	SB-48 (0-4)	0 to 2 feet	2 to 4 feet	X	х	
SB-48	SB-48 (4-11)	4 to 1 foot agw	N/A	X	X	
	SB-49 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-49	SB-49 (4-11)	4 to 1 foot agw	N/A	X	X	
	SB-50 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-50	SB-50 (4-11)	4 to 1 foot agw	N/A	X	x	1
	SB-51 (0-4)	0 to 2 feet	2 to 4 feet	x	x	†
SB-51	SB-51 (4-11)	4 to 1 foot agw	N/A	X	X	1
OD 50	SB-52 (0-4)	0 to 2 feet	2 to 4 feet	X	x	1
SB-52	SB-52 (4-11)	4 to 1 foot agw	N/A	X	X	†
	SB-53 (0-4)	0 to 2 feet	2 to 4 feet	X	X	
SB-53	SB-53 (4-11)	4 to 1 foot agw	N/A	X	X	х
	SB-54 (0-4)	0 to 2 feet	2 to 4 feet	X	X	^
SB-54	SB-54 (4-11)	4 to 1 foot agw	N/A	X	X	+

Notes:

^{*} The first soil sample at each location was composed of equal portions from the 0 to 2 foot and 2 to 4 foot sample intervals. The second soil sample was collected from 4 ft-bgs to 1 foot above the groundwater table.

TABLE 3-2 SOIL ANALYTICAL RESULTS - TAL METALS

Restricted Use - Groundwater Comparison

SUPPLEMENTAL REMEDIAL INVESTIGATION FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

		SI	3-29	S	B-30	SE	3-31	SI	3-32	SE	B-33	S	B-34	SE	3-35	SE	3-36
Compound	NYSDEC Brownfields Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-29 (0-4)	SB-29 (4-10)	SB-30 (0-4)	SB-30 (4-10)	SB-31 (0-4)	SB-31 (4-10)	SB-32 (0-4)	SB-32 (4-10)	SB-33 (0-4)	SB-33 (4-10)	SB-34 (0-4)	SB-34 (4-10)	SB-35 (0-4)	SB-35 (4-10)	SB-36 (0-4)	SB-36 (6-10)
	Date	8/6/	/2010	8/9	/2010	8/6/	2010	8/10)/2010	8/9/	/2010	8/9	9/2010	8/6/	/2010	8/9/	/2010
TAL Metals (mg/l	kg) Method 6010/7471																
Aluminum		5360	6570	8690	7530	17800	7920	9060	6800	8490	6940	10800	13600	8840	7750	10900	12600
Antimony		52	57	11.6	11.3 U	19.2	10.4	20.6	8 J	6 J	10.2 J	11.3 U	11 U	8.3	34.3	32.4	8.9 J
Arsenic	16	1160	1140	23.9	27.6	10.9	6.7	144	26.6	26.7	21.3	16.3	24.7	16.2	22.5	16.4	12.3
Barium	820	427	1190	808	455	794	444	3900	1090	1200	819	675	599	439	807	1090	817
Beryllium	47	0.43	0.42 J	2.2 U	2.3 U	2.2 U	0.3 J	2.1 U	2.3 U	2.1 U	2.2 U	2.3 U	2.2 U	0.33 J	0.32 J	2.4 U	2.5 U
Cadmium	7.5	18.4	13.5	15.6	9.1	32.8	9.9	14	6.4	13	11.7	18.3	19.7	25	29	41.2	18
Calcium		38900 B	48500 B	49900	37500	35600 B	48700 B	48200	36000	50700	29200	55000	50800	59600 B	27500 B	67700	63100
Chromium*	19	71.3	101	120	76.5	483	142	222	90.2	177	138	486	304	257	155	142	184
Cobalt		11.8	11.8	14 J	11.4 J	28 J	10.2 J	19.9 J	13.8 J	17.3 J	14.5 J	16.2 J	16.1 J	17.1	18.2	37.9 J	20.6 J
Copper	1720	7060 B	5480 B	860	765	19800 B	1100 B	1170	643	607	1480	4460	923	4210 B	1520 B	10000	2340
Iron		71700	40700	82800 B	58900 B	75800	35200	134000	82400	94000 B	88400 B	74500 B	109000 B	91900	132000	104000 B	82900 B
Lead	450	3830	2050	5410	1630	2060	1220	17000	6580	3510	6070	1740	2350	1580	5120	1580	4490
Magnesium		3870	5180	6560	4580 J	6060	5500	4480 J	3380 J	9020	7640	6610	6730	5090	3980	8130	6230 J
Manganese	2000	610	418	756	645	673	486	815	684	599	592	640	784	694	810	706	672
Mercury	0.73	10	4.2	4.9	1.7	9.8	6	14.2	4.5	3.2	3.7	12.6	4.9	5.8	4.7	7.1	9.1
Nickel	130	120	150	82.9	140	331	90.7	142	76.3	179	254	330	245	124	332	189	204
Potassium		545 J	843 J	1030 J	1040 J	622 J	781 J	1570 J	903 J	2180 J	1060 J	1140 J B	882 J B	504 J	594 J	916 J B	785 J B
Selenium	4	8.4	6.3	10.9 U	11.3 U	10.9 U	2.3 U	16.4	11.3 U	10.5 U	10.8 U	11.3 U	28.4	19.5	9.2	12.1 U	12.7 U
Silver	8.3	5.9	4.3	10.9 U	11.3 U	7.9 J	2 J	2.1 J	11.3 U	0.8 J	1.9 J	2.5 J	2.3 J	2.5	1.9 J	3.7 J	2.6 J
Sodium		324 J	1210	505 J	5640 U	5450 U	383 J	3540 J	795 J	5270 U	5400 U	605 J	531 J	381 J	367 J	799 J	742 J
Thallium		5.4 U	2.2 U	10.9 U	11.3 U	10.9 U	2.3 U	10.6 U	11.3 U	10.5 U	10.8 U	11.3 U	11 U	6.2 U	2.3 U	12.1 U	12.7 U
Vanadium	2480	468 2960	54.9 5310	75 3080	53.5 J 2410	31 J 14200	26.8 6240	202 11600	67.7 2740	67.5 3060	64.6 12400	36.1 J 4570	42.4 J 3430	35.2 8290	51.8 15400	29 J 11700	67.4 5550

		SI	B-37	SE	3-38	SB	-39	S	SB-40	SE	3-41	SI	3-42	S	B-43	SE	3-44
Compound	NYSDEC Brownfields Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-37 (0-4)	SB-37 (4-10)	SB-38 (0-4)	SB-38 (4-10)	SB-39 (0-4)	SB-39 (4-10)	SB-40 (0-4)	SB-40 (4-10)	SB-41 (0-4)	SB-41 (4-11)	SB-42 (0-4)	SB-42 (4-10)	SB-43 (0-4)	SB-43 (4-8)	SB-44 (0-4)	SB-44 (4-10)
	Date	8/10	0/2010	8/6/	2010	8/6/	2010	8/1	0/2010	8/4/	/2010	8/5/	/2010	8/5	/2010	8/6/	/2010
TAL Metals (mg/	kg) Method 6010/7471																
Aluminum		6550	8940	8730	6620	19800	9180	7680	8310	4010	5,760	14000	5190	12400	12300	12200	13300
Antimony		11.7 U	11.3 U	11.2	11.3	33.2	36.3	11.6 U	11.5 U	2 U	1 J	6.6 J	1.2 J	24.9	47.8	187	24.8
Arsenic	16	9.5	11.4	45.9	25.8	11.6	20.2	12.6	14.8	3.7	8.8	67.4	35.8	21	29.5	10.2 J	32.5
Barium	820	656	355	1080	482	961	1090	376	371	109	145	785	218	767	853	693	950
Beryllium	47	2.3 U	2.3 U	0.22 J	0.28 J	2.3 U	0.98 J	2.3 U	2.3 U	0.4 U	0.45 U	2.4 U	0.42 U	2.4 U	2.2 U	5.6 U	2.5 U
Cadmium	7.5	8.5	2.6 J	17	28	50.7	30.5	6	3 J	1.8	1.3	29.5	3.7	27.2	24.8	39.2	37
Calcium		42100	29300	64700 B	63200 B	51700 B	55700 B	30900	46500	44,900	28,600	49700	75100	57800	46000	34400 B	34200 B
Chromium*	19	198	52.5	406	198	305	201	54	66.7	24.6	36.2	823	163	174	260	173	335
Cobalt		11 J	8.4 J	14.2	17.4	38.6 J	30.3 J	9.8	9.2 J	7.9 J	9.9 J	82.3	11	21.3 J	22.6 J	19 J	26.7 J
Copper	1720	635	304	2800 B	864 B	12800 B	1470 B	1490	562	152	137	1150	221	11700	1290	4540 B	3690 B
Iron	450	79700	35500	57200	119000	67500	136000	44400	39800	35,800	20,100	111000	30800 768	70700	127000	62800 2950	155000
Lead	450	3840	993	1450	2870	2180	4850	1000	857	388	521	6240		2230	4080		5050
Magnesium		4480 J	4200 J	7690 475	7690	5540 J	6760	4140 J	6820 537	21,200 263	6,660 229	6320 945	18800	6660 594	8340	3370 J 491	6790
Manganese	2000	595	349		871	767	942	481		263			312		983		1210
Mercury	0.73	5.3	2	4.1	6.9	9.9	14.3	0.17	1.2	1	1.4	0.12	0.93	5.7	057	11.6	11.7
Nickel	130	93.4	42.4 J	101	410	327	168	91.3	53.5	29	27	796 769 J	182	328	257	153	287
Potassium		569 J 11.7 U	1190 J	932 J	476 J	547 J	1340 J	937 J	1140 J	656 J 1.4 J	906 J		789 J 2.1 U	825 J	5410 U	13900 U	533 J
Selenium	4		11.3 U	4.8	9.9	11.6 U	15.3	11.6 U	11.5 U		2.2 U	17.3		11.8 U	11.7	27.8 U	12 J
Silver	8.3	11.7 U 5830 U	0.91 J	3 341 J	2.2 J 514 J	24.8 425 J	3.3 J 3190 J	1.2 J 5810 U	11.5 U 380 J	0.34 J 273 J	0.52 J 564 J	5.3 J 656 J	1.1 J 305 J	3.3 J 2600 J	3.4 J 1720 J	3.6 J 13900 U	5.8 J 573 J
Sodium			5630 U														
Thallium		11.7 U	11.3 U	2.2 U	2.3 U	11.6 U	11.1 U	11.6 U	11.5 U	2 U	2.2 U	12.1 U	2.1 U	11.8 U	10.8 U	27.8 U	12.5 U
Vanadium	2400	104 3650	55.4 J 762	25.3 6430	64.5 9040	25.2 J 18700	65.6 6150	156 1700	86.8 857	65.5 735	31.4 394	110 7350	55.9 1650	38 J 9850	51.6 J 6030	29 J 8150	141 7590
Zinc	2480	3030	/0∠	0430	9040	18/00	UCIO	1700	85/	/ 30	394	/350	UCOI	9830	0030	8150	/ 590

NOTES:
NYSDEC - New York State Department of Environmental Conservation
Sample analysis by Test America of Edison, NJ
All units are in milligrams per kilogram(mg/kg) - parts per million (ppm)
Values in **bold** exceed the NYSDEC Brownfields Soil Cleanup Objective for Protection of Groundwater

U = Analyte not detected

B = Compound was found in the blank and sample.

J = The reported value was obtained from a reading that was less than the Contract Required Detection Limit,

but greater than or equal to the Instrument Detection Limit

D = The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range ... - No standard available

**Chromium standard is for Hexavalent/Trivalent Chromium

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate

TABLE 3-2 SOIL ANALYTICAL RESULTS - TAL METALS Restricted Use - Groundwater Comparison

SUPPLEMENTAL REMEDIAL INVESTIGATION FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

		S	B-45	S	B-46	SE	3-47	S	B-48	Sl	B-49	S	B-50	SE	B-51	SI	3-52
Compound	NYSDEC Brownfields Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-45 (0-4)	SB-45 (4-10)	SB-46 (0-4)	SB-46 (4-10)	SB-47 (0-4)	SB-47 (4-10)	SB-48 (0-4)	SB-48 (4-6)	SB-49 (0-4)	SB-49 (4-10)	SB-50 (0-4)	SB-50 (4-10)	SB-51 (0-4)	SB-51 (4-8)	SB-52 (0-4)	SB-52 (4-10)
	Date	8/4	/2010	8/9	9/2010	8/5/	2010		•	8/4	1/2010	8/9	9/2010	8/9/	2010	8/6	/2010
TAL Metals (mg/	/kg) Method 6010/7471			•		•											
Aluminum		7,200	6,280	12100	14800	15100	9750	12000	11500	6,350	6,970	13900	6430	5890	8630	12800	6740
Antimony		1.3 J	1.3 J	13.6	11.4	21.7	5.6 J	14.4	13.7	2.1 U	2.1 U	10.4 U	10.7 U	7.4 J	10.6 U	21.7	4.5
Arsenic	16	10.1	8.8	12.3	20.1	69.6	18.5	17.2	18.3	7.3	6.2	23.2	39.8	12.7	7.8	15.4	9.9
Barium	820	272	92.6	1020	1380	849	1090	773	970	191	114	714	311	563	437	1150	498
Beryllium	47	0.26 J	0.3 J	2.4 U	2.2 U	1.3 J	2.2 U	2.1 U	2.3 U	0.27 J	0.38 J	2.1 U	2.1 U	2 U	2.1 U	0.37 J	0.23 J
Cadmium	7.5	3.3	0.84 J	38.3	50.5	20.5	32.8	38.2	41.5	0.81 J	0.8 J	21.4	5 J	3.9 J	2 J	24.7	8.3
Calcium		26,400	109,000	49200	39100	41600	52400	39100 B	30200 B	62,800	26,500	59700	29500	74600	40900	72200 B	65100 B
Chromium*	19	61.3	30.1	450	327	276	297	278	301	51.1	27	118	112	82.8	26.6	834	149
Cobalt		26.4	8.6 J	24.6 J	25.3 J	17.2 J	20.6 J	45.5 J	32.3 J	5.6 J	6.1 J	10.9 J	7 J	10.9 J	6.9 J	21.8	9.6 J
Copper	1720	225	77	1150	1100	1260	1440	11200 B	3980 B	153	145	1140	688	1910	179	1910 B	2900 B
Iron		28,700	15,100	96900 B	120000 B	90300	101000	188000	182000	28,400	24,200	69300 B	34000 B	28100 B	23900 B	65300	37800
Lead	450	1,240	316	5110	8760	5810	6080	2330	4220	232	212	1720	662	1730	752	2200	898
Magnesium		6,310	17,000	8660	8400	5540 J	7250	4470 J	4180 J	22,000	9,650	6710	3110 J	14400	6240	6840	5470
Manganese	2000	297	176	994	905	741	912	1070	1140	349	344	544	397	230	301	527	338
Mercury	0.73	4.9	1	9.2	9.7	9.6	6	9.1	13.5	0.72	1	4.5	2.1	1	0.95	13.6	2.9
Nickel	130	50.1	19.3	353	273	201	168	292	350	51.8	19.9	92.6	42.2 J	69.2	24.8 J	280	90.4
Potassium		748 J	1,100	801 J B	988 J B	1260 J	509 J	488 J	437 J	896 J	935 J	2040 J	759 J	1360 J B	1240 J B	657 J	672 J
Selenium	4	1.1 J	2.2 U	12 U	11 U	11.7 U	11.5	14.9	11.5 U	2.1 U	2.1 U	194	10.7 U	9.9 U	10.6 U	7.2	64.7
Silver	8.3	0.73 J	0.48 J	8.5 J	4.4 J	4.3 J	3.3 J	4.8 J	5.2 J	0.77 J	0.49 J	1.6 J	1 J	9.9 U	0.94 J	3.8	1.5 J
Sodium		225 J	302 J	616 J	1250 J	1840 J	448 J	389 J	811 J	163 J	181 J	346 J	5360 U	906 J	5320 U	684 J	278 J
Thallium		2.2 U	2.2 U	12 U	11 U	11.7 U	11.1 U	10.7 U	11.5 U	2.1 U	2.1 U	10.4 U	10.7 U	9.9 U	10.6 U	2.2 U	2.2 U
Vanadium		56.8	26.6	66.2	70.5	98.6	85.1	35.5 J	68.9	35.6	35.4	58.6	25.6 J	15.2 J	23.8 J	36.4	32
Zinc	2480	757	257	9910	16400	7800	6130	12800	10600	408	331	3330	1520	1930	746	11300	4120

		SB	3-53	SI	B-54	SB	-55	DUP-1 (SB-42 0-4)	DUP-2 (SB-36 6-10)	DUP-3 (SB-32 0-4)			
Compound	NYSDEC Brownfields Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-53 (0-4)	SB-53 (4-10)	SB-54 (0-4)	SB-54 (4-10)	SB-55 (0-4)	SB-55 (4-10)	DUP-1 8/5/2010	DUP-2 8/9/2010	DUP-3 8/10/2010			
	Date	8/5/	2010	8/5	5/2010	8/10/	2010	8/5/2010	8/9/2010	8/10/2010			
1 0	kg) Method 6010/7471	0.100	1 0000		1 11000		0050	T 0010	0.1100		 		
Aluminum		9430	9320	10500	14200	9100	8050	9240	21400	14700			
Antimony	16	7.4 J	11.3 U	5.4 J	47.1 27.1	11.3 U	10.8 U	7 J	12.2	47.1			
Arsenic	16	13.9	25.1	12.8		12.4	13.9	68.7	13.9	40.3			
Barium	820	907	652 2.3 U	1920	985 2.3 U	713	392	548 2.4 U	1230 2.4 U	4660 2.4 U			
Beryllium	47	2.3 U		1.3 U		2.3 U	2.2 U						
Cadmium	7.5	32.3 43000	26.7 63100	21.8 58100	29.4 63000	8.4 74000	3.9 J 38200	30.7 48000	103 39600	15.4 48400			
Calcium Chromium*	19	43000 231	249	214	794	206	59.3	732	219	48400 171			
	· ·	231 75	18.4 J	214 21.1 J	47 J	12.3	8.6 J	66.1	219 23 J	17.1 19.9 J			
Cobalt	1720	2820	789	1560	1860	741	458	981	1900	1340			
Copper	1720	96100	71300	81400	100000	84500	36000	109000	93300 B	129000			
Iron Lead	450	2680	2330	1760	4530	3470	864	4220	2900	16700			
		6160	9810	18800	5780	5530 J	3780 J	6500	7350	4990 J			
Magnesium	2000	781	633	668	886	639	464	1020	718	871			
Manganese Mercury	0.73	4.3	7.9	12.6	8.5	5.4	1.5	7.9	10.2	15.5			
Nickel	130	190	162	205	800	290	40.2 J	1100	192	161			
Potassium	130	846 J	363 J	906 J	451 J	792 J	965 J	538 J	707 J B	2520 J			
Selenium	4	7.1 J	11.3 U	6.3 U	5.4 J	11.3 U	19.7	5.9 J	12.1 U	13.2			
Silver	8.3	4.8 J	2.9 J	3 J	4 J	2.6 J	10.8 U	4.1 J	22.6	2.3 J			
Sodium	6.5	702 J	1530 J	723 J	573 J	414 J	5420 U	514 J	761 J	6950			
Thallium		11.6 U	11.3 U	6.3 U	11.4 U	11.3 U	10.8 U	11.9 U	12.1 U	11.8 U			
Vanadium		47.5 J	71.3	29.5 J	55.3 J	105	46.2 J	92.9	48.9 J	217			
Zinc	2480	9110	3120	6250	7430	3240	905	5760	9920	14400			

NOTES:

NYSDEC - New York State Department of Env Sample analysis by Test America of Edisor All units are in milligrams per kilogram(mg/kg) Values in **bold** exceed the NYSDEC Brownfiel U = Analyte not detected

B = Compound was found in the blank and san J = The reported value was obtained from a read but greater than or equal to the Instrument Dete

but greater than or equal to the Instrument Dete

but greater than or equal to the instrument Dete
D = The reported value is from a secondary ana
... - No standard available
*Chromium standard is for Hexavalent/Trivaler
UJ = The analyte was not detected above the

TABLE 3-3 SOIL ANALYTICAL RESULTS - TAL METALS

Unrestricted Use SCOs

SUPPLEMENTAL REMEDIAL INVESTIGATION FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

		SE	1-29	SI	B-30	SB	-31	SB	3-32	S	SB-33	SI	3-34	SE	3-35	SE	3-36
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objective	SB-29 (0-4)	SB-29 (4-10)	SB-30 (0-4)	SB-30 (4-10)	SB-31 (0-4)	SB-31 (4-10)	SB-32 (0-4)	SB-32 (4-10)	SB-33 (0-4)	SB-33 (4-10)	SB-34 (0-4)	SB-34 (4-10)	SB-35 (0-4)	SB-35 (4-10)	SB-36 (0-4)	SB-36 (6-10)
	Date	8/6/	2010	8/9	/2010	8/6/	2010	8/10	/2010	8/9	9/2010	8/9	/2010	8/6/	2010	8/9/	2010
TAL Metals (mg/	kg) Method 6010/7471																
Aluminum		5360	6570	8690	7530	17800	7920	9060	6800	8490	6940	10800	13600	8840	7750	10900	12600
Antimony		52	57	11.6	11.3 U	19.2	10.4	20.6	8 J	6 J	10.2 J	11.3 U	11 U	8.3	34.3	32.4	8.9 J
Arsenic	13	1160	1140	23.9	27.6	10.9	6.7	144	26.6	26.7	21.3	16.3	24.7	16.2	22.5	16.4	12.3
Barium	350	427	1190	808	455	794	444	3900	1090	1200	819	675	599	439	807	1090	817
Beryllium	7.2	0.43	0.42 J	2.2 U	2.3 U	2.2 U	0.3 J	2.1 U	2.3 U	2.1 U	2.2 U	2.3 U	2.2 U	0.33 J	0.32 J	2.4 U	2.5 U
Cadmium	2.5	18.4	13.5	15.6	9.1	32.8	9.9	14	6.4	13	11.7	18.3	19.7	25	29	41.2	18
Calcium	1 / 30*	38900 B 71.3	48500 B 101	49900 120	37500 76.5	35600 B 483	48700 B 142	48200	36000	50700 177	29200 138	55000 486	50800 304	59600 B 257	27500 B	67700 142	63100
Chromium*				120 14 J		483 28 J		222 19.9 J	90.2 13.8 J		14.5 J			17.1	155 18.2	37.9 J	184 20.6 J
Cobalt		11.8 7060 B	11.8 5480 B	860	11.4 J 765	19800 B	10.2 J 1100 B	19.9 J 1170	643	17.3 J 607	14.5 J 1480	16.2 J 4460	16.1 J 923	4210 B	18.∠ 1520 B	10000	20.6 J 2340
Copper	50	71700 B	40700	82800 B	58900 B	75800 B	35200	134000	82400	94000 B	88400 B	74500 B	109000 B	91900	132000 132000	104000 B	82900 B
Iron Lead	63	3830	2050	5410	1630	2060	1220	17000	6580	3510	6070	17400 B	2350	1580	5120	1580	4490
Magnesium		3870	5180	6560	4580 J	6060	5500	4480 J	3380 J	9020	7640	6610	6730	5090	3980	8130	6230 J
Manganese	1600	610	418	756	645	673	486	815	684	599	592	640	784	694	810	706	672
Mercury	0.18	10	4.2	4.9	1.7	9.8	6	14.2	4.5	3.2	3.7	12.6	4.9	5.8	4.7	7.1	9.1
Nickel	30	120	150	82.9	140	331	90.7	142	76.3	179	254	330	245	124	332	189	204
Potassium		545 J	843 J	1030 J	1040 J	622 J	781 J	1570 J	903 J	2180 J	1060 J	1140 J B	882 J B	504 J	594 J	916 J B	785 J B
Selenium	3.9	8.4	6.3	10.9 U	11.3 U	10.9 U	2.3 U	16.4	11.3 U	10.5 U	10.8 U	11.3 U	28.4	19.5	9.2	12.1 U	12.7 U
Silver	2	5.9	4.3	10.9 U	11.3 U	7.9 J	2 J	2.1 J	11.3 U	0.8 J	1.9 J	2.5 J	2.3 J	2.5	1.9 J	3.7 J	2.6 J
Sodium		324 J	1210	505 J	5640 U	5450 U	383 J	3540 J	795 J	5270 U	5400 U	605 J	531 J	381 J	367 J	799 J	742 J
Thallium		5.4 U	2.2 U	10.9 U	11.3 U	10.9 U	2.3 U	10.6 U	11.3 U	10.5 U	10.8 U	11.3 U	11 U	6.2 U	2.3 U	12.1 U	12.7 U
Vanadium		468	54.9	75	53.5 J	31 J	26.8	202	67.7	67.5	64.6	36.1 J	42.4 J	35.2	51.8	29 J	67.4
Zinc	109	2960	5310	3080	2410	14200	6240	11600	2740	3060	12400	4570	3430	8290	15400	11700	5550

		SB	-37	SB	1-38	SE	1-39	SE	3-40	SB	3-41	SE	3-42	S	B-43	SE	3-44
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objective	SB-37 (0-4)	SB-37 (4-10)	SB-38 (0-4)	SB-38 (4-10)	SB-39 (0-4)	SB-39 (4-10)	SB-40 (0-4)	SB-40 (4-10)	SB-41 (0-4)	SB-41 (4-11)	SB-42 (0-4)	SB-42 (4-10)	SB-43 (0-4)	SB-43 (4-8)	SB-44 (0-4)	SB-44 (4-10)
	Date	8/10	/2010	8/6/	2010	8/6/	2010	8/10	/2010	8/4/	2010	8/5/	2010	8/5	7/2010	8/6/	2010
TAL Metals (mg/k	kg) Method 6010/7471							•		•		•					
Aluminum		6550	8940	8730	6620	19800	9180	7680	8310	4010	5,760	14000	5190	12400	12300	12200	13300
Antimony		11.7 U	11.3 U	11.2	11.3	33.2	36.3	11.6 U	11.5 U	2 U	1 J	6.6 J	1.2 J	24.9	47.8	187	24.8
Arsenic	13	9.5	11.4	45.9	25.8	11.6	20.2	12.6	14.8	3.7	8.8	67.4	35.8	21	29.5	10.2 J	32.5
Barium	350	656	355	1080	482	961	1090	376	371	109	145	785	218	767	853	693	950
Beryllium	7.2	2.3 U	2.3 U	0.22 J	0.28 J	2.3 U	0.98 J	2.3 U	2.3 U	0.4 U	0.45 U	2.4 U	0.42 U	2.4 U	2.2 U	5.6 U	2.5 U
Cadmium	2.5	8.5	2.6 J	17	28	50.7	30.5	6	3 J	1.8	1.3	29.5	3.7	27.2	24.8	39.2	37
Calcium		42100	29300	64700 B	63200 B	51700 B	55700 B	30900	46500	44,900	28,600	49700	75100	57800	46000	34400 B	34200 B
Chromium*	1 / 30*	198	52.5	406	198	305	201	54	66.7	24.6	36.2	823	163	174	260	173	335
Cobalt		11 J	8.4 J	14.2	17.4	38.6 J	30.3 J	9.8	9.2 J	7.9 J	9.9 J	82.3	11	21.3 J	22.6 J	19 J	26.7 J
Copper	50	635	304	2800 B	864 B	12800 B	1470 B	1490	562	152	137	1150	221	11700	1290	4540 B	3690 B
Iron		79700	35500	57200	119000	67500	136000	44400	39800	35,800	20,100	111000	30800	70700	127000	62800	155000
Lead	63	3840	993	1450	2870	2180	4850	1000	857	388	521	6240	768	2230	4080	2950	5050
Magnesium		4480 J	4200 J	7690	7690	5540 J	6760	4140 J	6820	21,200	6,660	6320	18800	6660	8340	3370 J	6790
Manganese	1600	595 5.3	349	475 4 .1	871 6.9	767 9.9	942 14.3	481 0.17	537 1.2	263	229 1.4	945 0.12	312 0.93	594 5.7	983	491 11.6	1210
Mercury	0.18	5.3 93.4	42.4 J	4.1 101	410	327	14.3	91.3	53.5	29	1. 4 27	796	182	328	257	153	11.7 287
Nickel	30	569 J	1190 J	932 J	476 J	547 J	1340 J	937 J	1140 J	656 J	906 J	769 J	789 J	825 J	5410 U	13900 U	533 J
Potassium Selenium	3.9	11.7 U	11.3 U	932 J 4.8	9.9	11.6 U	15.3	11.6 U	1140 J 11.5 U	1.4 J	2.2 U	17.3	2.1 U	11.8 U	11.7	27.8 U	12 J
Silver	3.9	11.7 U	0.91 J	4.0	9.9 2.2 J	24.8	3.3 J	11.6 U 1.2 J	11.5 U	0.34 J	0.52 J	5.3 J	2.1 U 1.1 J	3.3 J	3.4 J	27.6 J	5.8 J
	2	5830 U	5630 U	341 J	514 J	425 J	3190 J	5810 U	380 J	273 J	564 J	656 J	305 J	2600 J	1720 J	13900 U	573 J
Sodium		11.7 U	11.3 U	2.2 U	2.3 U	11.6 U	11.1 U	11.6 U	11.5 U	273 J 2 U	2.2 U	12.1 U	2.1 U	11.8 U	10.8 U	27.8 U	12.5 U
Thallium Vanadium		104	55.4 J	25.3	64.5	25.2 J	65.6	156	86.8	65.5	31.4	110	55.9	38 J	51.6 J	27.8 U 29 J	12.5 0
Zinc	109	3650	762	6430	9040	18700	6150	1700	857	735	394	7350	1650	9850	6030	8150	7590

NOTES:
NYSDEC - New York State Department of Environmental Conservation
Sample analysis by Test America of Edison, NJ
All units are in milligrams per kilogram(mg/kg) - parts per million (ppm)
Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives

U = Analyte not detected

B = Compound was found in the blank and sample.

J = The reported value was obtained from a reading that was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit
 D = The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range

... - No standard available

*Chromium standard is for Hexavalent/Trivalent Chromium

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate

TABLE 3-3 SOIL ANALYTICAL RESULTS - TAL METALS Unrestricted Use SCOs

SUPPLEMENTAL REMEDIAL INVESTIGATION FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

		S	B-45	S	B-46	SI	3-47	S	B-48		SB-49	SI	3-50	SE	3-51	SI	3-52
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objective	SB-45 (0-4)	SB-45 (4-10)	SB-46 (0-4)	SB-46 (4-10)	SB-47 (0-4)	SB-47 (4-10)	SB-48 (0-4)	SB-48 (4-6)	SB-49 (0-4)	SB-49 (4-10)	SB-50 (0-4)	SB-50 (4-10)	SB-51 (0-4)	SB-51 (4-8)	SB-52 (0-4)	SB-52 (4-10)
	Date	8/4	1/2010	8/9	9/2010	8/5	/2010		1	8/	/4/2010	8/9	/2010	8/9/	/2010	8/6	/2010
TAL Metals (ma	/kg) Method 6010/7471	G,	72010	Gr,	7,2010	Great	2010	ı			172010	0,7	2010	0171	2010	0,70	12010
Aluminum		7,200	6,280	12100	14800	15100	9750	12000	11500	6,350	6,970	13900	6430	5890	8630	12800	6740
Antimony		1.3 J	1.3 J	13.6	11.4	21.7	5.6 J	14.4	13.7	2.1 U	2.1 U	10.4 U	10.7 U	7.4 J	10.6 U	21.7	4.5
Arsenic	13	10.1	8.8	12.3	20.1	69.6	18.5	17.2	18.3	7.3	6.2	23.2	39.8	12.7	7.8	15.4	9.9
Barium	350	272	92.6	1020	1380	849	1090	773	970	191	114	714	311	563	437	1150	498
Beryllium	7.2	0.26 J	0.3 J	2.4 U	2.2 U	1.3 J	2.2 U	2.1 U	2.3 U	0.27 J	0.38 J	2.1 U	2.1 U	2 U	2.1 U	0.37 J	0.23 J
Cadmium	2.5	3.3	0.84 J	38.3	50.5	20.5	32.8	38.2	41.5	0.81 J	0.8 J	21.4	5 J	3.9 J	2 J	24.7	8.3
Calcium		26.400	109,000	49200	39100	41600	52400	39100 B	30200 B	62,800	26,500	59700	29500	74600	40900	72200 B	65100 B
Chromium*	1 / 30*	61.3	30.1	450	327	276	297	278	301	51.1	27	118	112	82.8	26.6	834	149
Cobalt		26.4	8.6 J	24.6 J	25.3 J	17.2 J	20.6 J	45.5 J	32.3 J	5.6 J	6.1 J	10.9 J	7 J	10.9 J	6.9 J	21.8	9.6 J
Copper	50	225	77	1150	1100	1260	1440	11200 B	3980 B	153	145	1140	688	1910	179	1910 B	2900 B
Iron		28,700	15,100	96900 B	120000 B	90300	101000	188000	182000	28,400	24,200	69300 B	34000 B	28100 B	23900 B	65300	37800
Lead	63	1,240	316	5110	8760	5810	6080	2330	4220	232	212	1720	662	1730	752	2200	898
Magnesium		6,310	17,000	8660	8400	5540 J	7250	4470 J	4180 J	22,000	9,650	6710	3110 J	14400	6240	6840	5470
Manganese	1600	297	176	994	905	741	912	1070	1140	349	344	544	397	230	301	527	338
Mercury	0.18	4.9	1	9.2	9.7	9.6	6	9.1	13.5	0.72	1	4.5	2.1	1	0.95	13.6	2.9
Nickel	30	50.1	19.3	353	273	201	168	292	350	51.8	19.9	92.6	42.2 J	69.2	24.8 J	280	90.4
Potassium		748 J	1,100	801 J B	988 J B	1260 J	509 J	488 J	437 J	896 J	935 J	2040 J	759 J	1360 J B	1240 J B	657 J	672 J
Selenium	3.9	1.1 J	2.2 U	12 U	11 U	11.7 U	11.5	14.9	11.5 U	2.1 U	2.1 U	194	10.7 U	9.9 U	10.6 U	7.2	64.7
Silver	2	0.73 J	0.48 J	8.5 J	4.4 J	4.3 J	3.3 J	4.8 J	5.2 J	0.77 J	0.49 J	1.6 J	1 J	9.9 U	0.94 J	3.8	1.5 J
Sodium		225 J	302 J	616 J	1250 J	1840 J	448 J	389 J	811 J	163 J	181 J	346 J	5360 U	906 J	5320 U	684 J	278 J
Thallium		2.2 U	2.2 U	12 U	11 U	11.7 U	11.1 U	10.7 U	11.5 U	2.1 U	2.1 U	10.4 U	10.7 U	9.9 U	10.6 U	2.2 U	2.2 U
Vanadium		56.8	26.6	66.2	70.5	98.6	85.1	35.5 J	68.9	35.6	35.4	58.6	25.6 J	15.2 J	23.8 J	36.4	32
Zinc	109	757	257	9910	16400	7800	6130	12800	10600	408	331	3330	1520	1930	746	11300	4120

		SI	B-53	SE	3-54	SB	-55	DUP-1 (SB-42 0-4)	DUP-2 (SB-36 6-10)	DUP-3 (SB-32 0-4)			
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objective	SB-53 (0-4)	SB-53 (4-10)	SB-54 (0-4)	SB-54 (4-10)	SB-55 (0-4)	SB-55 (4-10)	DUP-1 8/5/2010	DUP-2 8/9/2010	DUP-3 8/10/2010			
	Date	8/5/	/2010	8/5/	2010	8/10/	2010	8/5/2010	8/9/2010	8/10/2010			
TAL Metals (mg/k	g) Method 6010/7471												
Aluminum		9430	9320	10500	14200	9100	8050	9240	21400	14700			
Antimony		7.4 J	11.3 U	5.4 J	47.1	11.3 U	10.8 U	7 J	12.2	47.1			
Arsenic	13	13.9	25.1	12.8	27.1	12.4	13.9	68.7	13.9	40.3			
Barium	350	907	652	1920	985	713	392	548	1230	4660			
Beryllium	7.2	2.3 U	2.3 U	1.3 U	2.3 U	2.3 U	2.2 U	2.4 U	2.4 U	2.4 U			
Cadmium	2.5	32.3	26.7	21.8	29.4	8.4	3.9 J	30.7	103	15.4			
Calcium		43000	63100	58100	63000	74000	38200	48000	39600	48400			
Chromium*	1 / 30*	231	249	214	794	206	59.3	732	219	171			
Cobalt		75	18.4 J	21.1 J	47 J	12.3	8.6 J	66.1	23 J	19.9 J			
Copper	50	2820	789	1560	1860	741	458	981	1900	1340			
Iron		96100	71300	81400	100000	84500	36000	109000	93300 B	129000			
Lead	63	2680	2330	1760	4530	3470	864	4220	2900	16700			
Magnesium		6160	9810	18800	5780	5530 J	3780 J	6500	7350	4990 J			
Manganese	1600	781	633	668	886 8.5	639	464	1020 7.9	718	871 15.5			
Mercury	0.18	4.3 190	7.9 162	12.6	800	5.4 290	1.5		10.2 192	161			
Nickel	30	190 846 J	363 J	205 906 J	451 J	792 J	40.2 J 965 J	1100 538 J	707 J B	2520 J			
Potassium Selenium	3.9	7.1 J	11.3 U	6.3 U	5.4 J	11.3 U	19.7	5.9 J	12.1 U	13.2			
Silver	3.9	7.1 J 4.8 J	2.9 J	6.3 U 3 J	5.4 J	2.6 J	19.7 10.8 U	5.9 J 4.1 J	22.6	2.3 J			
	4	4.6 J 702 J	1530 J	723 J	573 J	2.6 J 414 J	5420 U	514 J	761 J	6950			
Sodium		702 J 11.6 U	11.3 U	6.3 U	11.4 U	11.3 U	10.8 U	11.9 U	761 J 12.1 U	11.8 U			
Thallium Vanadium		47.5 J	71.3	29.5 J	55.3 J	105	46.2 J	92.9	48.9 J	217			
Zinc	109	9110	3120	6250	7430	3240	905	5760	9920	14400			

NOTES: NYSDEC - New York State Department of Env Sample analysis by Test America of Edisor All units are in milligrams per kilogram(mg/kg) Values in **bold** exceed the NYSDEC Brownfiel

U = Analyte not detected

U = Analyte not detected
B = Compound was found in the blank and san
J = The reported value was obtained from a read
but greater than or equal to the Instrument Dete
D = The reported value is from a secondary ana
... - No standard available
*Chromium standard is for Hexavalent/Trivaler
UJ = The analyte was not detected above th

TABLE 3-4 SOIL ANALYTICAL RESULTS - POLYCHLORINATED BIPHENYLS (PCBs)

Unrestricted Use SCOs

SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	MYCDEC P C 11	SE	3-29	SB	-30	SE	3-31	SE	3-32	SI	3-33	SB	-34
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives	SB-29 (0-4)	SB-29 (4-10)	SB-30 (0-4)	SB-30 (4-10)	SB-31 (0-4)	SB-31 (4-10)	SB-32 (0-4)	SB-32 (4-10)	SB-33 (0-4)	SB-33 (4-10)	SB-34 (0-4)	SB-34 (4-10)
Date	;	8/6/	2010	8/9/2	2010	8/6/	2010	8/9/	/2010	8/9	/2010	8/9/2	2010
PCBs (mg/kg) - Method 8082													
Aroclor 1016	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	0.39 U	0.15 U
Aroclor 1221	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	0.39 U	0.15 U
Aroclor 1232	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	0.39 U	0.15 U
Aroclor 1242	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	4.10	0.15 U
Aroclor 1248	0.1*	0.076 U	0.077 U	0.45	0.31	4.2	0.32	14.00	1.700	0.580	0.077 U	0.39 U	2.00 J
Aroclor 1254	0.1*	0.045 J	0.24	0.076 U	0.08 U	1.7	0.083 U	0.75 U	0.077 U	0.860	0.930 J	1.20 J	2.60
Aroclor 1260	0.1*	0.076 U	0.077 U	0.49	0.21	0.38 U	0.083 U	0.75 U	0.077 U	0.330	0.760 J	0.33 J	0.56
Aroclor 1262	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	0.39 U	0.15 U
Aroclor 1268	0.1*	0.076 U	0.077 U	0.076 U	0.08 U	0.38 U	0.083 U	0.75 U	0.077 U	0.073 U	0.077 U	0.39 U	0.15 U
Total Arochlors	0.1*	0.045 J	0.24	0.94	0.52	5.9	0.32	14	1.7	1.77	1.69	5.63	5.16

	NYSDEC Brownfields	SB	-35	SE	3-36	SE	1-37	SE	3-38	SE	3-39	SE	3-40
Compound	Unrestricted Use Soil Cleanup Objectives	SB-35 (0-4)	SB-35 (4-10)	SB-36 (0-4)	SB-36 (6-10)	SB-37 (0-4)	SB-37 (4-10)	SB-38 (0-4)	SB-38 (4-10)	SB-39 (0-4)	SB-39 (4-10)	SB-40 (0-4)	SB-40 (4-10)
	Date	8/6/	2010	8/9/	2010	8/9/	2010	8/6/	/2010	8/6/	/2010	8/9/	/2010
PCBs (µg/kg) - Method 8082													
Aroclor 1016	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Aroclor 1221	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Aroclor 1232	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Aroclor 1242	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Aroclor 1248	0.1*	3.2	0.92	14.00 J	4.00 J	0.078 U	0.076 U	1.3	0.49	1.1	0.73	0.083 U	0.078 U
Aroclor 1254	0.1*	1.8	0.08 U	3.90	1.90	0.250	0.560	0.077 U	0.078 U	0.081 U	0.082 U	0.410 J	0.410 J
Aroclor 1260	0.1*	0.41 U	0.08 U	0.71 J	0.44 U	0.078 U	0.290	0.077 U	0.078 U	0.081 U	0.082 U	0.210 J	0.240 J
Aroclor 1262	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Aroclor 1268	0.1*	0.41 U	0.08 U	0.82 U	0.44 U	0.078 U	0.076 U	0.077 U	0.078 U	0.081 U	0.082 U	0.083 U	0.078 U
Total Arochlors	0.1*	5	0.92	17.9	5.9	0.25	0.85	1.3	0.49	1.1	0.73	0.62	0.65

	NYSDEC Brownfields	SE	3-41	SE	3-42	SE	-43	S	B-44	SI	B-45	SB	3-46
Compound	Unrestricted Use Soil Cleanup Objectives	SB-41 (0-4)	SB-41 (4-11)	SB-42 (0-4)	SB-42 (4-10)	SB-43 (0-4)	SB-43 (4-8)	SB-44 (0-4)	SB-44 (4-10)	SB-45 (0-4)	SB-45 (4-10)	SB-46 (0-4)	SB-46 (4-10)
Dat	e	8/4/	2010	8/5/	2010	8/5/	2010	8/6	5/2010	8/4/	/2010	8/9/	2010
PCBs (mg/kg) - Method 8082													
Aroclor 1016	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Aroclor 1221	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Aroclor 1232	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Aroclor 1242	0.1*	0.072 U	0.078 U	0.86	0.32	5.1	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Aroclor 1248	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	1.9	2.9	1.4	0.076 U	0.075 U	2.70	6.70
Aroclor 1254	0.1*	0.24	0.11	0.58	0.17	1	1.2	1.4	0.087 U	0.52	0.17	0.16 U	6.20
Aroclor 1260	0.1*	0.14 J	0.034 J	0.14	0.074 U	0.27 J	0.31	0.40 U	0.087 U	0.34	0.1 J	0.50	1.70
Aroclor 1262	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Aroclor 1268	0.1*	0.072 U	0.078 U	0.081 U	0.074 U	0.42 U	0.15 U	0.40 U	0.087 U	0.076 U	0.075 U	0.16 U	0.78 U
Total Arochlors	0.1*	0.38	0.11	1.58	0.49	6.1	3.41	4.3	1.4	0.86	0.27	3.2	14.6

NOTES

**Sample analysis by Test America of Edison, NJ

* Standard applies to total arochlors

All units are milligrams per kilogram (mg/kg) - parts per billion (ppm)

U = Not Detected

D = Diluted Sample

Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives

J = Estimated Value

TABLE 3-4 SOIL ANALYTICAL RESULTS - POLYCHLORINATED BIPHENYLS (PCBs)

Unrestricted Use SCOs

SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	MARKED CIT	SB	-47	SB	-48	SE	3-49	SE	3-50	SE	3-51	SB	1-52
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives	SB-47 (0-4)	SB-47 (4-10)	SB-48 (0-4)	SB-48 (4-6)	SB-49 (0-4)	SB-49 (4-10)	SB-50 (0-4)	SB-50 (4-10)	SB-51 (0-4)	SB-51 (4-8)	SB-52 (0-4)	SB-52 (4-10)
Date		8/5/2	2010	8/6/	2010	8/4/	2010	8/9/	2010	8/9/	2010	8/6/	2010
PCBs (mg/kg) - Method 8082													
Aroclor 1016	0.1*	0.16 U	0.38 U	0.072 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1221	0.1*	0.16 U	0.38 U	0.072 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1232	0.1*	0.16 U	0.38 U	0.072 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1242	0.1*	1.4	3.3	0.072 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1248	0.1*	0.16 U	0.38 U	0.83	2.6	0.074 U	0.075 U	0.31	0.59 J	0.078	0.21	1.0	0.55 J
Aroclor 1254	0.1*	0.83	2.5	0.07 U	1.2	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1260	0.1*	0.19	0.95	0.07 U	0.16 U	0.019 J	0.032 J	0.18	0.073 U	0.097	0.066 J	0.074 U	0.075 U
Aroclor 1262	0.1*	0.16 U	0.38 U	0.07 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Aroclor 1268	0.1*	0.16 U	0.38 U	0.07 U	0.16 U	0.074 U	0.075 U	0.072 U	0.073 U	0.07 U	0.075 U	0.074 U	0.075 U
Total Arochlors	0.1*	2.42	6.75	0.83	3.8	0.019 J	0.032 J	0.49	0.59	0.175	0.21	1.0	0.55

	NYSDEC Brownfields	SB	-53	SB	3-54	S	B-55	DUP-1 (SB-42 0-4)	DUP-2 (SB-36 6-10)	DUP-3 (SB-32 0-4)		
Compound	Unrestricted Use Soil Cleanup Objectives	SB-53 (0-4)	SB-53 (4-10)	SB-54 (0-4)	SB-54 (4-10)	SB-55 (0-40	SB-55 (4-10)	DUP-1 8/5/2010	DUP-2 8/9/2010	DUP-3 8/10/2010		
Date		8/5/2	2010	8/5/	2010	8/9	/2010	8/5/2010	8/9/2010	8/10/2010	I.	
PCBs (µg/kg) - Method 8082												
Aroclor 1016	0.1*	0.4 U	0.39 U	0.43 U	0.39 U	0.078 U	0.76 U	0.081 U	0.16 U	0.84 U		
Aroclor 1221	0.1*	0.4 U	0.39 U	0.43 U	0.39 U	0.078 U	0.76 U	0.081 U	0.16 U	0.84 U		
Aroclor 1232	0.1*	0.4 U	0.39 U	0.43 U	0.39 U	0.078 U	0.76 U	0.081 U	0.16 U	0.84 U		
Aroclor 1242	0.1*	5.5	0.39 U	5.6	0.39 U	0.078 U	0.76 U	1.400	0.16 U	0.84 U		
Aroclor 1248	0.1*	0.4 U	1.6	0.43 U	5	0.078 U	0.76 U	0.081 U	3.50	16		
Aroclor 1254	0.1*	1	0.39 U	1.4 J	2.9	1.7	0.34 J	1.0	2.40 J	0.84 U		
Aroclor 1260	0.1*	0.4 U	5.1	0.43 U	0.6	1.7	0.24 J	0.280	0.16 U	0.84 U		
Aroclor 1262	0.1*	0.4 U	0.39 U	0.43 U	0.39 U	0.078 U	0.76 U	0.081 U	0.16 U	0.84 U		
Aroclor 1268	0.1*	0.4 U	0.39 U	0.43 U	0.39 U	0.078 U	0.76 U	0.081 U	0.16 U	0.84 U		
Total Arochlors	0.1*	6.5	6.7	7.0	7.9	3.4	0.58	268	5.9	16		

Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives
Date	
PCBs (mg/kg) - Method 8082	
Aroclor 1016	0.1*
Aroclor 1221	0.1*
Aroclor 1232	0.1*
Aroclor 1242	0.1*
Aroclor 1248	0.1*
Aroclor 1254	0.1*
Aroclor 1260	0.1*
Aroclor 1262	0.1*
Aroclor 1268	0.1*
Total Arochlors	0.1*

<u>NOTES</u>

Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Sc

^{*}Sample analysis by Test America of Edison, NJ

* Standard applies to total arochlors
All units are milligrams per kilogram (mg/kg) - parts per billion (ppm)

U = Not Detected

D = Diluted Sample

J = Estimated Value

TABLE 3-5 SOIL ANALYTICAL RESULTS - TCLP ARSENIC

SUPPLEMENTAL REMEDIAL INVESTIGATION

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	RCRA Hazardous	NYSDEC	SB-32	SB-38	SB-42	SB-42	SB-43	SB-53
Compound	Level Date		0 - 4 ft	0 - 4 ft	0 - 4 ft	4 - 10 ft	4 - 8 ft	4 - 10 ft
Date			8/9/2010	8/6/2010	8/5/2010	8/5/2010	8/5/2010	8/5/2010
TCLP Metals (mg/L) Metho	d 1311							
Arsenic	5	5	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U

NOTES

Resource Conservation and Recovery Act (RCRA)

NYSDEC - New York State Department of Environmental Conservation

Sample analysis by Test America in Edison, New Jersey.

All units are milligrams per liter (mg/L) - parts per million (ppm).

Values in **bold** exceed the RCRA/NYSDEC Hazardous Waste Regulatory Levels.

U = The analyte was analyzed for, but not detected above the sample reporting limits.

TABLE 3-6 COMMUNITY AIR MONITORING SUMMARY SUPPLEMENTAL REMEDIAL INVESTIGATION

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

						Max	Max	Overall	
	Model		Start		Elapsed	Display	STEL	Average	
Date	No.	Location	Time	Stop Time	Time	Conc	Conc	Conc	Comments
8/4/2010	6144	SW Corner-Upwind	7:56:53	15:27:53	07:31:00	3.181	0.067	0.026	Humid day
8/4/2010	6147	NE Corner- Downwind	8:00:42	15:30:42	7:30:00	0.56	0.103		Humid day
8/5/2010	6144	NE Corner- Downwind	7:29:19	13:56:19	6:27:00	1.25	0.008		Humid day
8/5/2010	6147	SW Corner-Upwind	7:33:48	13:52:48	06:19:00	1.973	0.096		Humid day
8/6/10	6144	N side Centrally located	7:29:11	13:15:11	5:46:00	0.468	0.005	0.000	Humid day
8/6/10	6147	S side Centrally located	7:32:42	13:17:42	5:45:00	0.235	0.021	0.005	Humid day
8/9/10	6147	SE Corner-Upwind							Equipment Error, No Data was logged (Humid Day)
8/9/10	6144	NW Corner-Downwind	7:33:18	15:08:18	07:35:00	0.779	0.006	0.000	Humid day
8/10/10	6147	NW Corner-Downwind	7:36:31	10:02:31	2:26:00	5.805	0.138		Humid day
8/10/10	6144	SE Corner- Upwind	7:27:00	10:15:00	2:48:00	2.075	0.039	0.000	Humid day
		1							

SECOND SUPPLEMENTAL REMEDIAL INVESTIGATION SAMPLING PROGRAM

SAMPLING DESIGNATION AND LABORATORY SAMPLING AND ANALYSIS

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

Sample	Sample Depth	Burn and Comm	line Doublest			Soil Sam	ple Analysis)	
Designation	Intervals	Proposed Samp	oling Depths"	PCBs	TAL Metals	Total Arsenic	Total Lead	TCLP Arsenic	TCLP Lead
SB-2-1	SB-2-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
0021	SB-2-1 (4-11)	4 to 1 foot agw	N/A	X					
SB-2-2	SB-2-2 (0-4)	0 to 2 feet	2 to 4 feet	X					
00 2 2	SB-2-2 (4-11)	4 to 1 foot agw	N/A	X					
SB-2-3	SB-2-3 (0-4)	0 to 2 feet	2 to 4 feet	X					
3D-2-3	SB-2-3 (4-11)	4 to 1 foot agw	N/A	Х					
SB-6-1	SB-6-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
3D-0-1	SB-6-1 (4-11)	4 to 1 foot agw	N/A	X					
SB-6-2	SB-6-2 (0-4)	0 to 2 feet	2 to 4 feet	X					
3D-0-2	SB-6-2 (4-11)	4 to 1 foot agw	N/A	Х					
SB-6-3	SB-6-3 (0-4)	0 to 2 feet	2 to 4 feet	Х					
36-0-3	SB-6-3 (4-11)	4 to 1 foot agw	N/A	Х					
SB-7-1	SB-7-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
SD-7-1	SB-7-1 (4-11)	4 to 1 foot agw	N/A	Х					
CD 7.0	SB-7-2 (0-4)	0 to 2 feet	2 to 4 feet	Х					
SB-7-2	SB-7-2 (4-11)	4 to 1 foot agw	N/A	Х					
CD 0 1	SB-8-1 (0-4)	0 to 2 feet	2 to 4 feet	Х		Х	X	X	Х
SB-8-1	SB-8-1 (4-11)	4 to 1 foot agw	N/A	Х		Х	Х	Х	Х
CD 0 0	SB-8-2 (0-4)	0 to 2 feet	2 to 4 feet	Х		Х	Х	Х	х
SB-8-2	SB-8-2 (4-11)	4 to 1 foot agw	N/A	Х		х	Х	х	х
OD 0.4	SB-9-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
SB-9-1	SB-9-1 (4-11)	4 to 1 foot agw	N/A	Х					
00.00	SB-9-2 (0-4)	0 to 2 feet	2 to 4 feet	Х					
SB-9-2	SB-9-2 (4-11)	4 to 1 foot agw	N/A	X					
	SB-9-3 (0-4)	0 to 2 feet	2 to 4 feet	X					
SB-9-3	SB-9-3 (4-11)	4 to 1 foot agw	N/A	X	1				
	SB-16-1 (0-4)	0 to 2 feet	2 to 4 feet	X					
SB-16-1	SB-16-1 (4-11)	4 to 1 foot agw	N/A	X	1		Х		х
	SB-16-2 (0-4)	0 to 2 feet	2 to 4 feet	X					^
SB-16-2	SB-16-2 (4-11)	4 to 1 foot agw	N/A	X	1				
-	SB-16-3 (0-4)	0 to 2 feet	2 to 4 feet	X					
SB-16-3	SB-16-3 (4-11)	4 to 1 foot agw	N/A	X					
	SB-17-1 (0-4)	0 to 2 feet	2 to 4 feet	X					
SB-17-1	SB-17-1 (0-4)	4 to 1 foot agw	N/A	X					
	SB-17-1 (4-11)	0 to 2 feet	2 to 4 feet	X					
SB-17-2	SB-17-2 (0-4)	4 to 1 foot agw	N/A	X					
-	SB-20-1 (0-4)				1				
SB-20-1	SB-20-1 (4-11)	0 to 2 feet	2 to 4 feet N/A	X	+				
-	SB-20-2 (0-4)	4 to 1 foot agw		X	1				
SB-20-2	SB-20-2 (0-4)	0 to 2 feet	2 to 4 feet		+				
		4 to 1 foot agw	N/A	X					
SB-20-3	SB-20-3 (0-4) SB-20-3 (4-11)	0 to 2 feet	2 to 4 feet N/A	X					
-		4 to 1 foot agw	,	X					
SB-22-1	SB-22-1 (0-4)	0 to 2 feet	2 to 4 feet	Х		X	Х	X	Х
	SB-22-1 (4-11)	4 to 1 foot agw	N/A	Х		Х	Х	Х	Х
SB-22-2	SB-22-2 (0-4)	0 to 2 feet	2 to 4 feet	X			X		X
ļ———	SB-22-2 (4-11)	4 to 1 foot agw	N/A	Х	ļ		Х		Х
SB-22-3	SB-22-3 (0-4)	0 to 2 feet	2 to 4 feet	Х	ļ				
	SB-22-3 (4-11)	4 to 1 foot agw	N/A	Х					
SB-23-1	SB-23-1 (0-4)	0 to 2 feet	2 to 4 feet	Х		Х	Х	Х	Х
	SB-23-1 (4-11)	4 to 1 foot agw	N/A	Х		Х		Х	
SB-23-2	SB-23-2 (0-4)	0 to 2 feet	2 to 4 feet	Х		Х		Х	
	SB-23-2 (4-11)	4 to 1 foot agw	N/A	Х	<u> </u>	Х		Х	
SB-23-3	SB-23-3 (0-4)	0 to 2 feet	2 to 4 feet	Х					
00 20 0	SB-23-3 (4-11)	4 to 1 foot agw	N/A	Х	<u> </u>				

SECOND SUPPLEMENTAL REMEDIAL INVESTIGATION SAMPLING PROGRAM

SAMPLING DESIGNATION AND LABORATORY SAMPLING AND ANALYSIS

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

Sample	Sample Depth	Dropood Comr	ling Dontho*			Soil Sam	ple Analysis	3	
Designation	Intervals	Proposed Samp	ning Deptils	PCBs	TAL Metals	Total Arsenic	Total Lead	TCLP Arsenic	TCLP Lead
SB-24-1	SB-24-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
3D-24-1	SB-24-1 (4-11)	4 to 1 foot agw	N/A	Х					
SB-24-2	SB-24-2 (0-4)	0 to 2 feet	2 to 4 feet	X					
3D-24-2	SB-24-2 (4-11)	4 to 1 foot agw	N/A	X					
SB-24-3	SB-24-3 (0-4)	0 to 2 feet	2 to 4 feet	X					
3D-24-3	SB-24-3 (4-11)	4 to 1 foot agw	N/A	Х					
SB-27-1	SB-27-1 (0-4)	0 to 2 feet	2 to 4 feet	Х					
36-27-1	SB-27-1 (4-11)	4 to 1 foot agw	N/A	Х					
SB-27-2	SB-27-2 (0-4)	0 to 2 feet	2 to 4 feet	Х					
30-21-2	SB-27-2 (4-11)	4 to 1 foot agw	N/A	X					
SB-27-3	SB-27-3 (0-4)	0 to 2 feet	2 to 4 feet	Х					
36-27-3	SB-27-3 (4-11)	4 to 1 foot agw	N/A	Х					
SB-56	SB-56 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х				
30-30	SB-56 (4-11)	4 to 1 foot agw	N/A	Х	Х				
SB-57	SB-57 (0-4)	0 to 2 feet	2 to 4 feet	Х	Х				
36-37	SB-57 (4-11)	4 to 1 foot agw	N/A	Х	Х				

Notes:

^{*} The first soil sample at each location was composed of equal portions from the 0 to 2 foot and 2 to 4 foot sample intervals. The second soil sample will be collected from the most contaminated depth below 4 ft-bgs determined visually by staining and/or by the highest photoionization detector (PID) reading.

SOIL ANALYTICAL RESULTS - PCBs

Unrestricted Use SCOs

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	MWGDEG P. C.11	SB	3-2-1	SE	3-2-2	SE	3-2-3	SB-6-1	SB	-6-2	SB-6-3	SE	3-7-1
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives	SB-2-1 (0-4)	SB-2-1 (6-8)	SB-2-2 (1-4)	SB-2-2 (6-8)	SB-2-3 (0-4)	SB-2-3 (10-11)	SB-6-1 (0-4)	SB-6-2 (0-4)	SB-6-2 (6-8)	SB-6-3 (0-4)	SB-7-1 (0-4)	SB-7-1 (4-6)
Da	te	10/6	5/2010	10/6	5/2010	10/6	5/2010	10/8/2010	10/8	/2010	10/8/2010	10/7	7/2010
PCBs (mg/kg) - Method 8082								•				•	
Aroclor 1016	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	0.42 U
Aroclor 1221	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	0.42 U
Aroclor 1232	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	0.42 U
Aroclor 1242	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	2.1
Aroclor 1248	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	12.0	0.084 U	6.1 J	0.079 U	0.76	0.42 U
Aroclor 1254	0.1*	0.48	0.078 U	0.40	0.076 U	0.47	0.078 U	0.94 U	1.6	0.43 U	0.69	0.67	4.4
Aroclor 1260	0.1*	0.55	0.13	0.076 U	0.076 U	0.077 U	0.15	0.94 U	0.084 U	0.43 U	0.079 U	0.16	1.5
Aroclor 1262	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	0.42 U
Aroclor 1268	0.1*	0.079 U	0.078 U	0.076 U	0.076 U	0.077 U	0.078 U	0.94 U	0.084 U	0.43 U	0.079 U	0.077 U	0.42 U
Total Arochlors	0.1*	1.03	0.13	0.40	0.076 U	0.47	0.15	12.0	1.6	6.1 J	0.69	1.59	8.0

	NYSDEC Brownfields	SB-	-7-2	SB-	8-1	SB	-8-2	SB	3-9-1	SB	-9-2	SB-	9-3
Compound	Unrestricted Use Soil Cleanup Objectives	SB-7-2 (0-4)	SB-7-2 (4-6)	SB-8-1 (0-4)	SB-8-1 (4-6)	SB-8-2 (0-4)	SB-8-2 (4-6)	SB-9-1 (0-4)	SB-9-1 (10-11)	SB-9-2 (0-4)	SB-9-2 (8-10)	SB-9-3 (0-4)	SB-9-3 (4-6)
Date	e	10/7/	2010	10/13	/2010	10/13	3/2010	10/8	3/2010	10/8/2010	10/11/2010	10/8/	2010
PCBs (µg/kg) - Method 8082													
Aroclor 1016	0.1*	0.078 U	0.16 U	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.078 U	0.84 U	0.16 U	0.80 U	0.41 U
Aroclor 1221	0.1*	0.078 U	0.16 U	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.078 U	0.84 U	0.16 U	0.80 U	0.41 U
Aroclor 1232	0.1*	0.078 U	0.16 U	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.078 U	0.94 U	0.16 U	0.80 U	0.41 U
Aroclor 1242	0.1*	0.078 U	0.16 U	2.4	0.79 U	0.84 U	6	0.80 U	0.078 U	0.84 U	2.1	0.80 U	0.41 U
Aroclor 1248	0.1*	1.3	2.1	0.16 U	13	14	0.4 U	6.7 J	0.078 U	7.8	0.16 U	11 J	5.9 J
Aroclor 1254	0.1*	1.2	3.2	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.49	0.84 U	0.16 U	0.80 U	0.41 U
Aroclor 1260	0.1*	0.39	3.0	0.56	4.1	12	2.4	0.80 U	0.26	0.84 U	0.59	0.80 U	0.41 U
Aroclor 1262	0.1*	0.078 U	0.16 U	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.078 U	0.84 U	0.16 U	0.80 U	0.41 U
Aroclor 1268	0.1*	0.078 U	0.16 U	0.16 U	0.79 U	0.84 U	0.4 U	0.80 U	0.078 U	0.84 U	0.16 U	0.80 U	0.41 U
Total Arochlors	0.1*	2.89	8.3	2.96	17.1	26	8.4	6.7 J	0.75	7.80	2.69	11 J	5.9 J

	NYSDEC Brownfields	SB-	16-1	SB-16-2		SB	-16-3	SB-	-17-1	SB-	17-2	SB-	20-1
Compound	Unrestricted Use Soil Cleanup Objectives	SB-16-1 (0-4)	SB-16-1 (6-8)	SB-16-2 (0-4)	SB-16-2 (6-8)	SB-16-3 (0-4)	SB-16-3 (4-6)	SB-17-1 (0-4)	SB-17-1 (4-6)	SB-17-2 (0-4)	SB-17-2 (4-6)	SB-20-1 (0-4)	SB-20-1 (6-8)
	Date	10/12	2/2010	10/12	2/2010	10/1:	2/2010	10/1	1/2010	10/11	/2010	10/11	/2010
PCBs (mg/kg) - Method 8082													
Aroclor 1016	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1221	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1232	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1242	0.1*	9.3 J	2.8	7 J	0.43	12.0	15	31	0.29 J	16	27	13 J	1.7
Aroclor 1248	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1254	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1260	0.1*	0.89	1.2	0.57	0.26	0.92 J	2.6	8.3	0.053 J	1.9	3	1.4 J	0.89
Aroclor 1262	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Aroclor 1268	0.1*	0.89 U	0.16 U	0.46 U	0.078 U	0.94 U	0.78 U	2.4 U	0.088 U	0.85 U	1.7 U	0.81 U	0.16 U
Total Arochlors	0.1*	10.19 J	4.0	7.57 J	0.69	12.92	17.6	39.3	0.290	17.9	30	14.4 J	2.56

NOTES
Sample analysis by Test America of Edison, NJ
* Standard applies to total arochlors
All units are milligrams per kilogram (mg/kg) - parts per billion (ppm)

U = Not Detected

D = Diluted Sample

J = Estimated Value

Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives

SOIL ANALYTICAL RESULTS - PCBs

Unrestricted Use SCOs

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	MYGDEG D C 11	SB-	20-2	SB-	20-3	SB-	22-1	SB-	22-2	SB-	22-3	SB-	23-1
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives	SB-20-2 (0-4)	SB-20-2 (4-6)	SB-20-3 (0-4)	SB-20-3 (6-8)	SB-22-1 (0-4)	SB-22-1 (4-6)	SB-22-2 (0-4)	SB-22-2 (4-6)	SB-22-3 (0-4)	SB-22-3 (6-8)	SB-23-1 (0-4)	SB-23-1 (4-6)
Date		10/11	/2010	10/11	/2010	10/13	3/2010	10/13	/2010	10/13	/2010	10/14	/2010
PCBs (mg/kg) - Method 8082				•									
Aroclor 1016	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1221	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1232	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1242	0.1*	7.4	16.0	11 J	0.96	6.2	11	4.5	2.6	9.5	4.4	3.5	3.1
Aroclor 1248	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1254	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1260	0.1*	0.83	1.5	0.89 J	0.33	0.61	2.1	0.84	0.92	1.4	0.78	1.1 J	0.83
Aroclor 1262	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Aroclor 1268	0.1*	0.48 U	0.79 U	0.52 U	0.082 U	0.42 U	0.82 U	0.43 U	0.17 U	0.9 U	0.38 U	0.41 U	0.41 U
Total Arochlors	0.1*	8.23	17.5	11.89 J	1.29	6.81	13.1	5.34	3.52	10.9	5.18	4.6 J	3.93

	NYSDEC Brownfields	SB-	23-2	SB-	SB-23-3		23-4	SB-24-1	SB-24-2	SB-	24-3	SB-	-27-1
Compound	Unrestricted Use Soil Cleanup Objectives	SB-23-2 (0-4)	SB-23-2 (6-8)	SB-23-3 (0-4)	SB-23-3 (4-6)	SB-23-4 (0-4)	SB-23-4 (4-6)	SB-24-1 (0-4)	SB-24-2 (0-2)	SB-24-3 (0-4)	SB-24-3 (4-6)	SB-27-1 (0-4)	SB-27-1 (9-10)
	Date	10/14	/2010	10/14	4/2010	10/4	/2010	10/7/2010	10/7/2010	10/7/	/2010	10/4	/2010
PCBs (µg/kg) - Method 808	32												
Aroclor 1016	0.1*	0.08 U	0.78	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	0.077 U	0.17 U	0.078 U
Aroclor 1221	0.1*	0.08 U	0.78	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	0.077 U	0.17 U	0.078 U
Aroclor 1232	0.1*	0.08 U	0.78	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	0.077 U	0.17 U	0.078 U
Aroclor 1242	0.1*	1	14	7.5	7 J	0.084 U	4.1 U	4.2	2.8 J	1.9 J	0.077 U	0.17 U	0.078 U
Aroclor 1248	0.1*	0.08 U	0.78 U	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	1.0 J	0.17 U	0.60
Aroclor 1254	0.1*	0.08 U	0.78 U	0.41 U	0.47 U	1.6 J	55	2.1	1.1 J	0.72 J	0.9	2.8	0.078 U
Aroclor 1260	0.1*	0.23	0.67 J	1.7	1.2	1.1 U	4.1 U	0.42 J	0.22	0.78	0.46	0.17 U	0.078 U
Aroclor 1262	0.1*	0.08 U	0.78 U	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	0.077 U	0.17 U	0.078 U
Aroclor 1268	0.1*	0.08 U	0.78 U	0.41 U	0.47 U	0.084 U	4.1 U	0.43 U	0.17 U	0.16 U	0.077 U	0.17 U	0.078 U
Total Arochlors	0.1*	1.23	14.7	9.2	8.2 J	2.7	55	6.3	4.12	3.4	2.36	2.8	0.60

	NYSDEC Brownfields	SB-	-27-2	SB-	27-3	SB-	-27-4	SB-	-27-5	SB	-56	SB	3-57
Compound	Unrestricted Use Soil Cleanup Objectives	SB-27-2 (0-4)	SB-27-2 (4-8)	SB-27-3 (0-4)	SB-27-3 (9-10)	SB-27-4 (0-4)	SB-27-4 (6-8)	SB-27-5 (0-4)	SB-27-5 (8-10)	SB-56 (0-4)	SB-56 (6-8)	SB-57 (0-4)	SB-57 (6-8)
Date		10/4/2010		10/4/2010		10/14/2010		10/14/2010		10/12/2010		10/12	2/2010
PCBs (mg/kg) - Method 8082													
Aroclor 1016	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	0.080 U	0.49 U	0.19 U
Aroclor 1221	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	0.080 U	0.49 U	0.19 U
Aroclor 1232	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	0.080 U	0.49 U	0.19 U
Aroclor 1242	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.85	0.078 U	5.5	0.080 U	5.6	2.5
Aroclor 1248	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	1.1	0.49 U	0.19 U
Aroclor 1254	0.1*	2.8	4.2	1.6	0.079 J	0.38	0.08 U	0.074 U	0.078 U	0.45 U	0.080 U	0.49 U	0.19 U
Aroclor 1260	0.1*	0.16 U	0.41 U	2 J	0.081 U	0.31	0.08 U	0.21	0.078 U	0.43 J	0.080 U	1.0	0.51
Aroclor 1262	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	0.77 J	0.49 U	0.19 U
Aroclor 1268	0.1*	0.16 U	0.41 U	0.066 U	0.081 U	0.076 U	0.08 U	0.074 U	0.078 U	0.45 U	0.080 U	0.49 U	0.19 U
Total Arochlors	0.1*	2.8	4.2	3.6	0.079 J	0.69	0.08 U	1.06	0.078 U	5.93	1.87 J	6.6	3.01

NOTES
Sample analysis by Test America of Edison, NJ
* Standard applies to total arochlors
*** The activities are as kilogram (mg/kg) and the standard applies to total arochlors

All units are milligrams per kilogram (mg/kg) - parts per billion (ppm)

U = Not Detected

D = Diluted Sample J = Estimated Value

Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Sc

SOIL ANALYTICAL RESULTS - PCBs

Unrestricted Use SCOs

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK

	NWODEG D. C.11								
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives	DUP-1 (SB-7-1 0-4)	DUP-2 (SB-20-1 0-4)	DUP-3 (SB-22-3 6-8)	DUP-4 (SB-23-4 0-4)				
Date		10/7/2010	10/11/2010	10/13/2010	10/14/2010			•	
PCBs (mg/kg) - Method 8082									
Aroclor 1016	0.1*	0.075 U	0.16 U	1.6 U	0.43 U				
Aroclor 1221	0.1*	0.075 U	0.16 U	1.6 U	0.43 U				
Aroclor 1232	0.1*	0.075 U	0.16 U	1.6 U	0.43 U				
Aroclor 1242	0.1*	0.075 U	1.8 J	14	6.1				
Aroclor 1248	0.1*	0.84	0.16 U	1.6 U	0.43 U				
Aroclor 1254	0.1*	0.71	0.16 U	1.6 U	0.43 U				
Aroclor 1260	0.1*	0.22	0.21 J	2.6	1.4				
Aroclor 1262	0.1*	0.075 U	0.16 U	1.6 U	0.43 U				
Aroclor 1268	0.1*	0.075 U	0.16 U	1.6 U	0.43 U				
Total Arochlors	0.1*	1.77	2.01 J	16.6	7.5				

Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives
Date	
PCBs (µg/kg) - Method 8082	
Aroclor 1016	0.1*
Aroclor 1221	0.1*
Aroclor 1232	0.1*
Aroclor 1242	0.1*
Aroclor 1248	0.1*
Aroclor 1254	0.1*
Aroclor 1260	0.1*
Aroclor 1262	0.1*
Aroclor 1268	0.1*
Total Arochlors	0.1*

Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives
Date	
PCBs (mg/kg) - Method 8082	
Aroclor 1016	0.1*
Aroclor 1221	0.1*
Aroclor 1232	0.1*
Aroclor 1242	0.1*
Aroclor 1248	0.1*
Aroclor 1254	0.1*
Aroclor 1260	0.1*
Aroclor 1262	0.1*
Aroclor 1268	0.1*
Total Arochlors	0.1*

NOTES
Sample analysis by Test America of Edison, NJ
* Standard applies to total arochlors
All units are milligrams per kilogram (mg/kg) - parts per billion (ppm) U = Not Detected

D = Diluted Sample

J = Estimated Value

Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Sc

SOIL ANALYTICAL RESULTS - TAL METALS

Unrestricted Use SCOs

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

	AMADEG B. C. II	SB	-8-1	SB-	8-2	SB-16-1	SB-2	22-1	SB-	-22-2	SB-	-23-1	SB-	23-2	,	SB-56
Compound	NYSDEC Brownfields Unrestricted Use Soil Cleanup Objective	SB-8-1 (0-4)	SB-8-1 (4-6)	SB-8-2 (0-4)	SB-8-2 (4-6)	SB-16-1 (0-4)	SB-22-1 (0-4)	SB-22-1 (4-6)	SB-22-2 (0-4)	SB-22-2 (4-6)	SB-23-1 (0-4)	SB-23-1 (4-6)	SB-23-2 (0-4)	SB-23-2 (6-8)	SB-56 (0-4)	SB-56 (6-8)
	Date	10/13/2010		10/13/2010		10/12/2010	10/13	/2010	10/13	3/2010	10/14/2010		10/14/2010		10.	12/2010
TAL Metals (mg/	/kg) Method 6010/7471															
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8,400	11,000
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.9 J	13.9 J
Arsenic	13	30.9 J	33.7 J	23.2 J	47.5 J	NA	25.6 J	16.3 J	NA	NA	23.1	17.5	14.1	8.3	16.7	23 J
Barium	350	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	538 J	893 J
Beryllium	7.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.34 J	0.44 J
Cadmium	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.2	30.7
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	93,000	35,200
Chromium*	1 / 309*	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	99.9	237
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.2	20.1
Copper	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,530	1,570
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63,700	129,000
Lead	63	5,470 J	10,700 J	21,700 J	10,600 J	11,600 J	1,830 J	4,970 J	3,910 J	6,660 J	7,330	NA	NA	NA	931 J	4,090 J
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23,600	6,430
Manganese	1600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	503	959
Mercury	0.18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9	8.6
Nickel	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	128	232
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	814 J	949 J
Selenium	3.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.9	14.3
Silver	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1 J	5.1
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	402 J	473 J
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.6 U	2.3 U
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24	104
Zinc	109	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7,080	8,110

	NYSDEC Brownfields		
Compound	Unrestricted Use Soil Cleanup	S	SB-57
	Objective		
		SB-57 (0-4)	SB-57 (6-8)
	Date	10/	12/2010
	g/kg) Method 6010/7471		
Aluminum		11,500	11,500
Intimony		23.5 J	15.9 J
Arsenic Barium	13	17.5	19.1
Barium	350	897 J	839 J
eryllium admium	7.2	0.55 J	0.43 J
admium	2.5	26.3	24.2
Calcium Chromium*		45,000	42,400
Chromium*	1 / 30*	327	152
Cobalt Copper		25.1	23.5
Copper	50	1,870	8,510
ron		92,400	99,300
₋ead	63	4,890 J	2,960 J
Magnesium		5,300	4,980
Manganese	1600	769	724
Manganese Mercury	0.18	5.3	5.8
Vickel	30	201	333
Potassium		1,160 J	1,310 J
Selenium	3.9	6.7	7
Silver	2	5.2	3.2
Sodium		415 J	583 J
Γhallium		2.8 U	2.7 U
Vanadium		57.1	50.5
inc.	109	9,160	8,570

NOTES:

NYSDEC - New York State Department of Environmental Conservation

Sample analysis by Test America of Edison, NI
All units are in milligrams per kilogram(mg/kg) - parts per million (ppm)
Values in **bold** exceed the NYSDEC Brownfields Unrestricted Use Soil Cleanup Objectives

U = Analyte not detected

B = Compound was found in the blank and sample.

D = Compound was found in the trains and sample.

J = The reported value was obtained from a reading that was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit

D = The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range
... - No standard available

*Chromium standard is for Hexavalent/Trivalent Chromium

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate

NA = Not analyzed.

SOIL ANALYTICAL RESULTS - TAL METALS

Restricted Use - Protection of Groundwater SCOs

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

	NYSDEC Brownfields	SB	-8-1	SB	-8-2	SB-16-1	SB-	22-1	SB-	-22-2	SB-	23-1	SB-	-23-2	SI	B-56
Compound	Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-8-1 (0-4)	SB-8-1 (4-6)	SB-8-2 (0-4)	SB-8-2 (4-6)	SB-16-1 (0-4)	SB-22-1 (0-4)	SB-22-1 (4-6)	SB-22-2 (0-4)	SB-22-2 (4-6)	SB-23-1 (0-4)	SB-23-1 (4-6)	SB-23-2 (0-4)	SB-23-2 (6-8)	SB-56 (0-4)	SB-56 (6-8)
	Date	10/13/2010		10/13	3/2010	10/12/2010	10/13	/2010	10/13	3/2010	10/14	1/2010	10/14	4/2010	10/12/2010	
TAL Metals (mg/k	g) Method 6010/7471															
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	8,400	11,000
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.9 J	13.9 J
Arsenic	16	30.9 J	33.7 J	23.2 J	47.5 J	NA	25.6 J	16.3 J	NA	NA	23.1	17.5	14.1	8.3	16.7	23 J
Barium	820	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	538 J	893 J
Beryllium	47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.34 J	0.44 J
Cadmium	7.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.2	30.7
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	93,000	35,200
Chromium*	19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	99.9	237
Cobalt		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.2	20.1
Copper	1720	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,530	1,570
Iron		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	63,700	129,000
Lead	450	5,470 J	10,700 J	21,700 J	10,600 J	11,600 J	1,830 J	4,970 J	3,910 J	6,660 J	7,330	NA	NA	NA	931 J	4,090 J
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23,600	6,430
Manganese	2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	503	959
Mercury	0.73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.9	8.6
Nickel	130	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	128	232
Potassium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	814 J	949 J
Selenium	4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.9	14.3
Silver	8.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.1 J	5.1
Sodium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	402 J	473 J
Thallium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.6 U	2.3 U
Vanadium		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24	104
Zinc	2480	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7,080	8,110

Compound	NYSDEC Brownfields Restricted Use Protection of Groundwater Soil Cleanup Objective	SB-57							
		SB-57 (0-4)	SB-57 (6-8)						
	Date	10/1:	2/2010						
TAL Metals (mg/	kg) Method 6010/7471								
Aluminum		11,500	11,500						
Antimony		23.5 J	15.9 J						
Arsenic	16	17.5	19.1						
Barium	820	897 J	839 J						
Beryllium	47	0.55 J	0.43 J						
Cadmium	7.5	26.3	24.2						
Calcium		45,000	42,400						
Chromium*	19	327	152						
Cobalt		25.1	23.5						
Copper	1720	1,870	8,510						
Iron		92,400	99,300						
Lead	450	4,890 J	2,960 J						
Magnesium		5,300	4,980						
Manganese	2000	769	724						
Mercury	0.73	5.3	5.8						
Nickel	130	201	333						
Potassium		1,160 J	1,310 J						
Selenium	4	6.7	7						
Silver	8.3	5.2	3.2						
Sodium		415 J	583 J						
Thallium		2.8 U	2.7 U						
Vanadium		57.1	50.5						
Zinc	2480	9,160	8,570	1					

NOTES:

NYSDEC - New York State Department of Environmental Conservation

Sample analysis by Test America of Edison, NJ
All units are in milligrams per kilogram(mg/kg) - parts per million (ppm)
Values in **bold** exceed the NYSDEC Brownfields Restricted Use Soil Cleanup Objective for Protection of Groundwater

U = Analyte not detected

B = Compound was found in the blank and sample.

D = Compound was found in the totals and sample.

J = The reported value was obtained from a reading that was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit

D = The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range ... - No standard available

*Chromium standard is for Hexavalent/Trivalent Chromium

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate

NA = Not analyzed.

SOIL ANALYTICAL RESULTS - TCLP METALS

SECOND SUPPLEMENTAL REMEDIAL INVESTIGATION

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NY

		SB-8-1		SB	SB-8-2		SB-22-1		SB-22-2		SB-23-1		SB-23-2	
Compound	RCRA Hazardous Waste Regulatory Level	SB-8-1 (0-4)	SB-8-1 (4-6)	SB-8-2 (0-4)	SB-8-2 (4-10)	SB-16-1 (0-4)	SB-22-1 (0-4)	SB-22-1 (4-6)	SB-22-2 (0-4)	SB-22-2 (4-6)	SB-23-1 (0-4)	SB-23-1 (4-6)	SB-23-2 (0-4)	SB-23-2 (0-4)
	Date	10/13	/2010	10/13	3/2010	10/12/2010	10/1	3/2010	10/13	/2010	10/14	/2010	10/14	/2010
TCLP Metals (M	g/L) Method 1311													
Arsenic	5	0.025 U	0.025 U	0.025 U	0.025 U	NA	0.025 U	0.025 U	NA	NA	0.025 U	0.025 U	0.025 U	0.025 U
Lead	5	0.292	3.99	5.37	2.81	1.14	0.885	0.353	0.025 U	0.963	0.271	NA	NA	NA

Sample analysis by Test America of Edison, NJ
All units are in milligrams per liter (mg/L) - parts per million (ppm)

Values in **bold** exceed the RCRA Hazardous Waste Regulatory Level

U = Analyte not detected

B = Compound was found in the blank and sample.

J = The reported value was obtained from a reading that was less than the Contract Required Detection Limit,

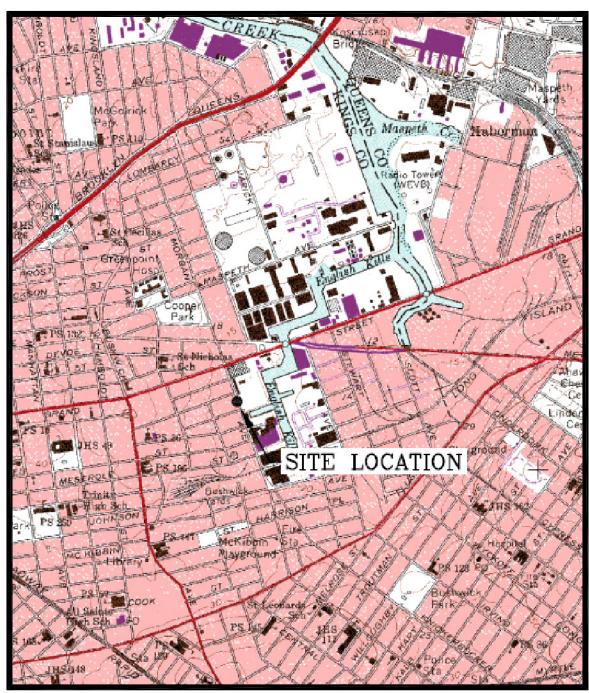
but greater than or equal to the Instrument Detection Limit

NA = Not analyzed.

COMMUNITY AIR MONITORING SUMMARY TABLE

SECOND SUPPLEMENTAL RI

FRITO-LAY 202-218 MORGAN AVENUE - C224133 BROOKLYN, NEW YORK


						Max	Max	Overall	
	Model		Start		Elapsed	Display	STEL	Average	
Date	No.	Location	Time	Stop Time	Time	Conc	Conc	Conc	Comments/Weather
10/4/2010	6144	SE Corner - Downgradient	9:35:23	11:09:23	1:34:00	0.048	0.020	0.013	Heavy Rain
10/4/2010	6147	NW Corner - Upgradient	9:40:11	11:14:11	1:34:00	0.046	0.007	0.000	Heavy Rain
10/5/2010	6144	SE Corner - Downgradient	8:37:48	15:13:48	6:36:00	0.055	0.012	0.000	Cloudy, periods of rain
10/5/2010	6147	NW Corner - Upgradient	8:41:20	15:16:20	06:35:00	0.154	0.003	0.000	Cloudy, periods of rain
10/6/2010	6144	SE Corner - Downgradient	8:24:27	15:12:27	6:48:00	0.000	0.000	0.000	Cloudy, no rain
10/6/2010	6147	NW Corner - Upgradient	8:28:31	15:25:31	6:57:00	0.420	0.000	0.000	Cloudy, no rain
10/7/2010	6144	Central East - Downgradient	9:36:42	14:57:42	5:21:00	0.023	0.000	0.000	Cloudy, periods of rain
10/7/2010	6147	Central West - Upgradient	9:41:06	15:00:06	5:19:00	0.253	0.017	0.002	Cloudy, periods of rain
10/8/2010	6144	Central East - Downgradient	7:53:11	15:03:11	7:10:00	1.109	0.002	0.000	Clear skies
10/8/2010	6147	Central West - Upgradient	7:52:48	15:07:48	7:15:00	0.138	0.011	0.004	Clear skies
10/11/2010	6144	SE Corner - Downgradient	8:11:11	14:55:11	6:44:00	0.075	0.000	0.000	Cloudy, no rain
10/11/2010	6147	NW Corner - Upgradient	8:16:25	15:00:25	6:44:00	24.678	0.293	0.000	Cloudy, no rain
10/12/2010	6144	SE Corner - Downgradient	7:46:25	14:44:25	6:58:00	0.132	0.004	0.000	Cloudy, no rain
10/12/2010	6147	NW Corner - Upgradient	8:11:00	14:49:00	6:38:00	0.078	0.008	0.000	Cloudy, no rain
10/13/2010	6144	SE Corner - Downgradient	8:03:57	15:05:57	7:02:00	0.199	0.000	0.000	Cloudy, periods of rain
10/13/2010	6147	NW Corner - Upgradient	8:05:10	15:10:10	7:05:00	0.515	0.000	0.000	Cloudy, periods of rain
10/14/2010	6144	NW Corner - Downgradient	8:14:51	14:15:51	6:01:00	0.443	0.002	0.000	Cloudy, no rain
10/14/2010	6147	Not operational							Equipment Error, No Data was logged

OTECTS/47743 - Ento Lav/Brady Files/New Froures/Site Plan/Fig1IRE 1-1 TOPO dwg. 4/6/2010 7:51:56 AM

202-218 MORGAN AVENUE BROOKLYN, NEW YORK

SCALE 1"=2000'

U.S.G.S. 7.5 MINUTE QUADRANGLE ELMIRA, NEW YORK

AERIAL LOCATION MAP FRITO LAY, INC. 202-218 MORGAN AVENUE BROOKLYN, NEW YORK

LEGEND

MONITORING WELL

2007 AND 2009 SOIL BORING LOCATIONS

2010 SUPPLEMENTAL RI SOIL BORING LOCATIONS

MEADOW STREET **■** MW-7 ₩W-8 MORGAN AVENUE **(**) <u>0</u> S SB-40⊙ SB-28⊙ SB-29⊙ TRAILER SB-26 ⊙sB-32 SB-45 ⊙ ⊙ SB-1 SB-55 ⊙ SB-37⊙ **→**MW-1/SB-2 \mathbb{B} ⊙₈-50 CORRUGATED SB-41① ⊙ SB-4 ⊙sB-51 SB-30⊙ SB-24(•) SB−6 D CHAIN SB-7 MW-3/SB-9 SB-8⊙ Ę SB-46⊙ SB-53 ⊙ FENCE \Box ENGLISH KILLS SB-19 ⊙SB-21 SB-43① SB-34⊙ H SB-52 ⊙ SB-20 SB-11(•) MW-6 SB-47⊙ SB-38⊙ \bigcirc ⊙ SB-12 SB-35⊙ SB-44① H SB-31 SB-18 SB-48() SB-39 ⊙ SB-36⊙, FENCE Scale In Feet ENGLISH KILLS

SUPPLEMENTAL RI SOIL SAMPLE FRITO LAY, INC. 202-218 MORGAN AVENUE, BROOKLYN, LOCATIONS

NEW YORK

218 MORGAN AVENUE BROOKLYN, NEW YORK LOCATION OF MONITORING WELLS AND SOIL BORINGS ____AUGUST 4, 2010

DRAWING IS NOT TO SCALE

DRAWING SOURCE:
NAIK CONSULTING GROUP, P.C.

Gannett Fleming
ASSES OUT A MEDDELD OF DOAD OUT TO AN

3575 QUAKERBRIDGE ROAD, SUITE 203 HAMILTON, NJ 08619 (609) 584-9592 WWW.GFNET.COM

PROJECT#	47743	SOIL, SOIL GAS AND MONITORING	FIGURE
DRAWN BY:	DAB	WELL SURVEY LOCATIONS	
DATE DRAWN:	NOV 2010	FRITO-LAY	∃3-2
REVISED BY:		218 MORGAN AVENUE	_
DATE REVISED:		BROOKLYN, NEW YORK	

LEGEND

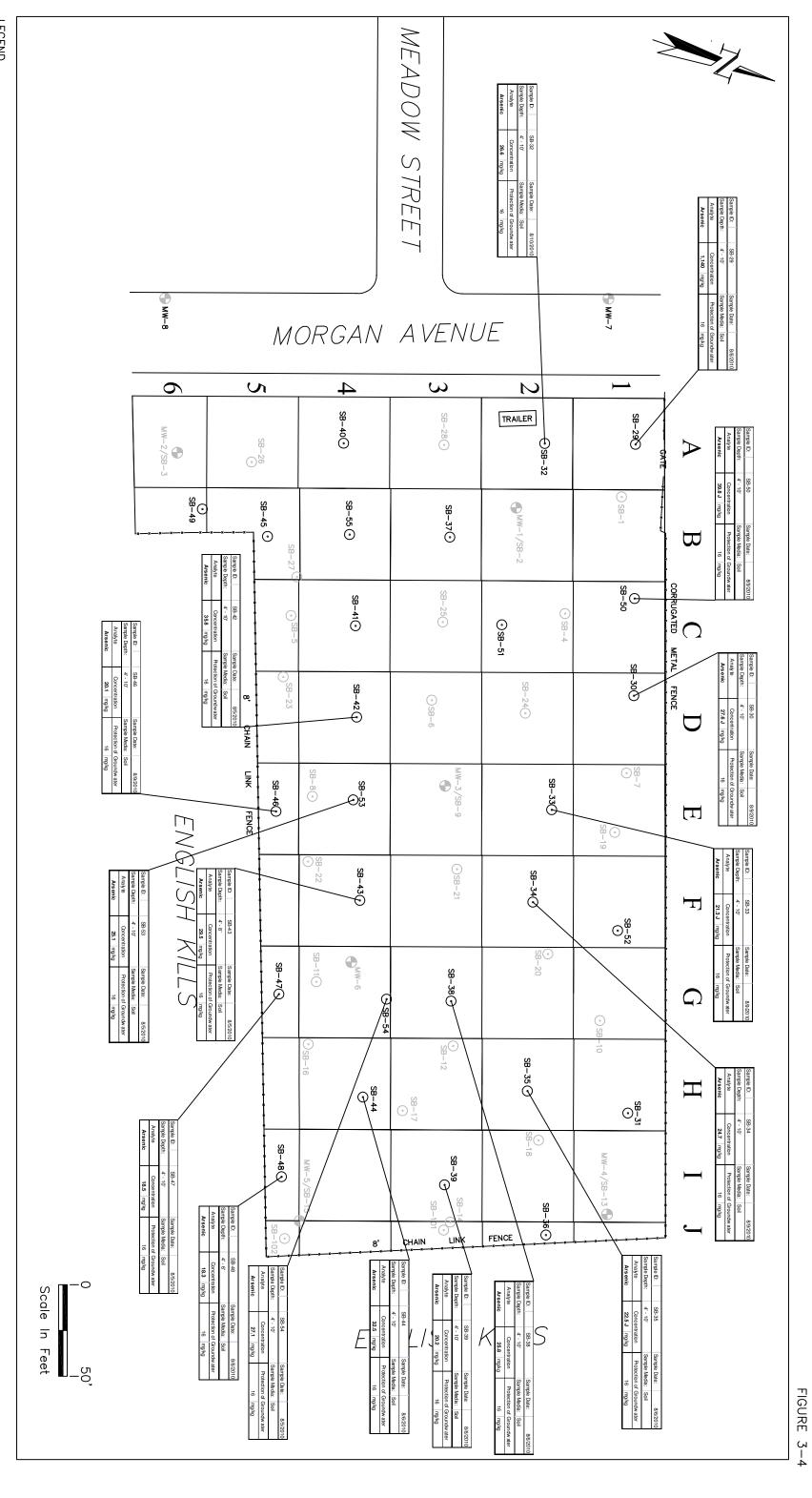
MONITORING WELL

2007 AND 2009 SOIL BORING LOCATIONS

2010 SUPPLEMENTAL RI SOIL BORING LOCATIONS

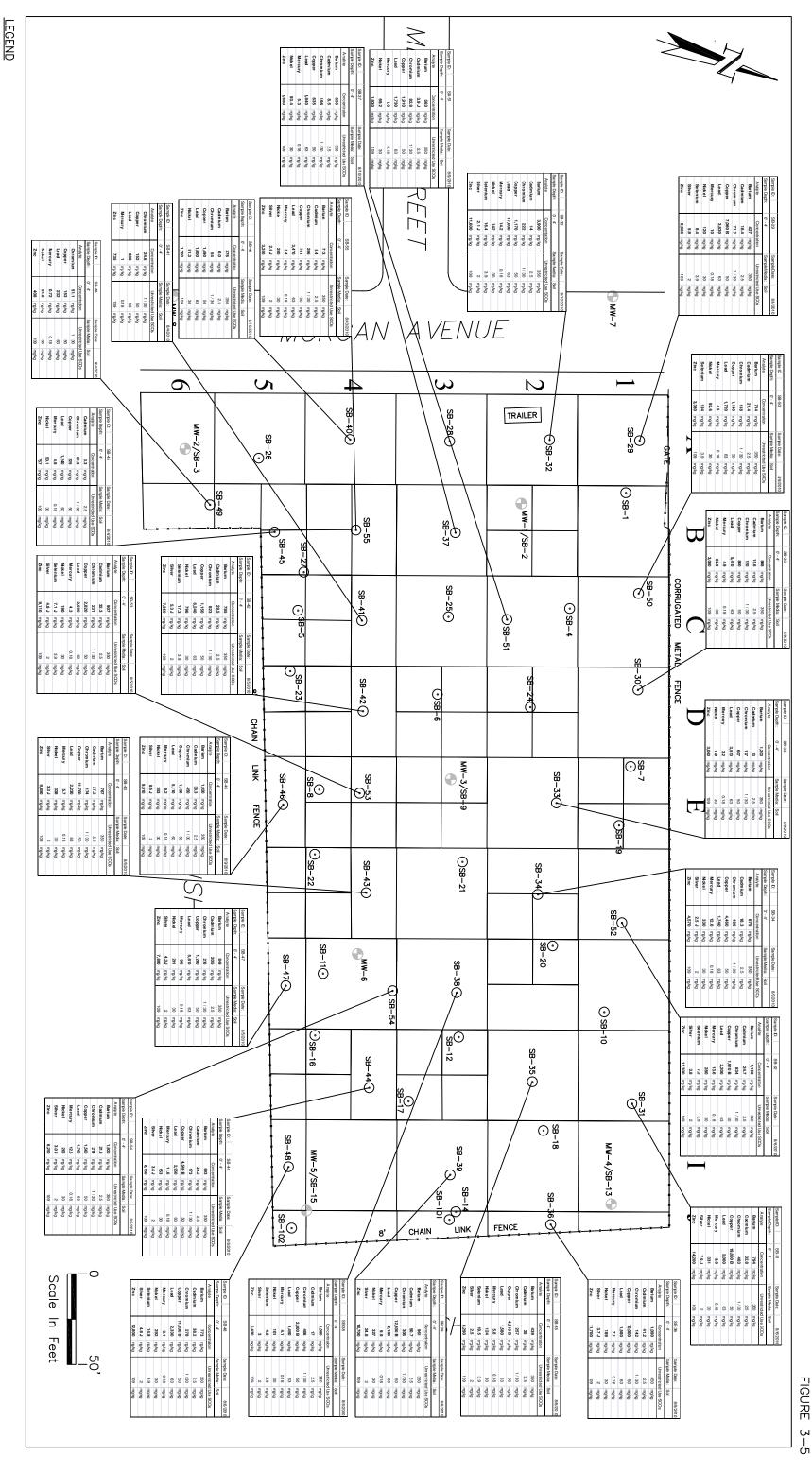
MEADOW STREET ₩W-8 **■ MW-7** MORGAN AVENUE **(**) 6 S SB-40⊙ SB-28⊙ SB-29(S) TRAILER SB-26 ⊙ ⊕sB-32 SB-45 ⊙ ⊙ SB-1 SH ⊙ SB-55 ⊙ ₩-1/SB-2 SB-37⊙ \square 8-50 SB-50 CORRUGATED SB-25(•) SB-41① ⊙ SB-4 ⊙sB-51 SB−30⊘ SB-24(•) FENCE SB−6 CH/IN MW-3/SB-9 ⊙ SB SB-8⊙ SB-46⊙ SB-53 ⊙ \Box FENCE SB-19 ⊙SB-21 SB-34() H SB-52 ○/ ⊙ SB-20 SB-11(•) MW-6 SB-38() \bigcirc ⊙ SB-54 SB-35() SB-44① H ⊙^{SB}-31 ⊙ SB-18 SB-48() SB-39 ⊙ MW-4/SB-13 ♣ SB−36⊘; SB-10 LINK FENCE CHAIN 8' Scale In Feet GLISH 50,

ARSENIC SOIL RESULTS (0'-4')I PROTECTION OF GROUNDWATER SCOS


FRITO LAY, INC. 202-218 MORGAN AVENUE, BROOKLYN, NEW YORK

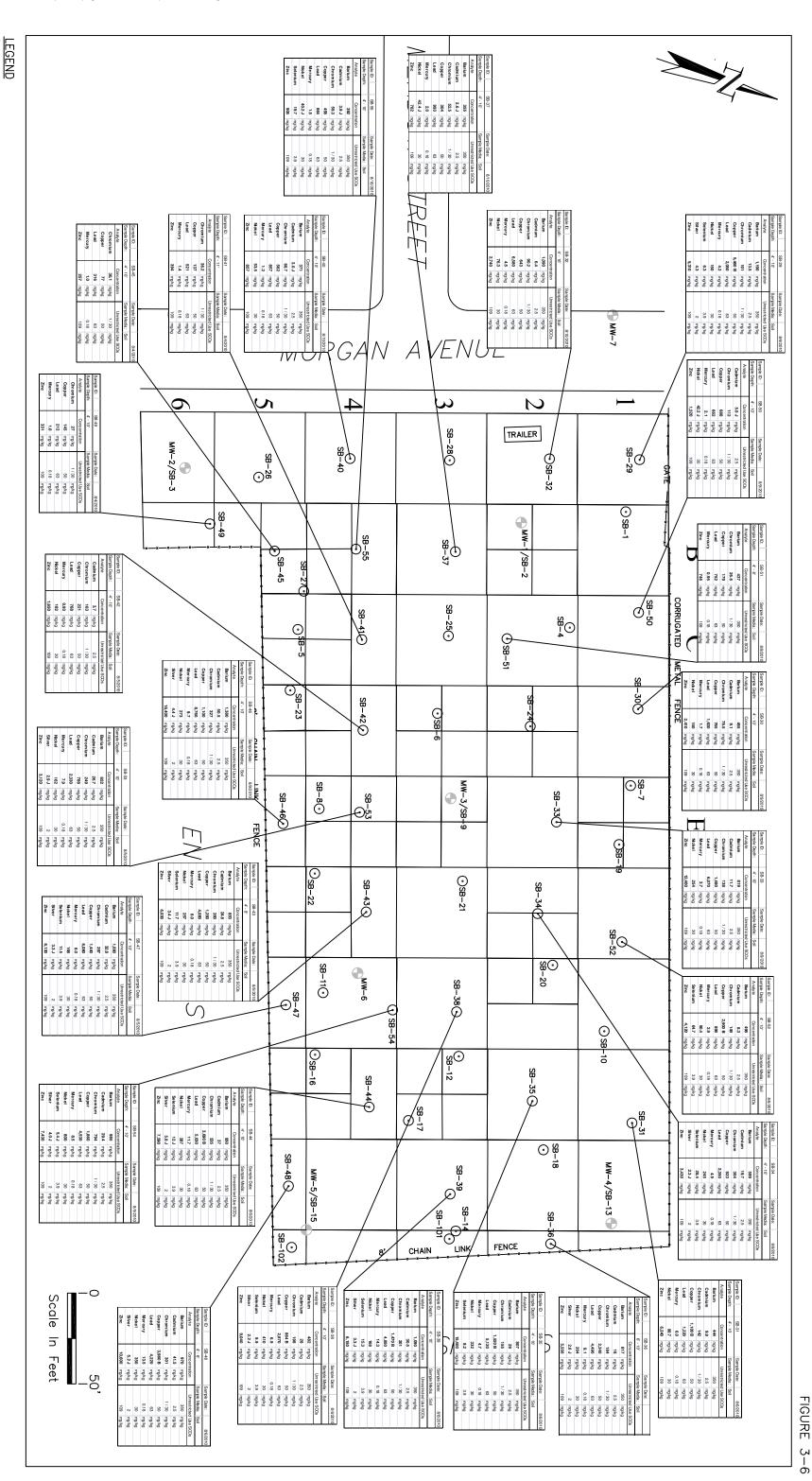
LEGEND

MONITORING WELL


2007 AND 2009 SOIL BORING LOCATIONS

2010 SUPPLEMENTAL RI SOIL BORING LOCATIONS

Gannett Fleming

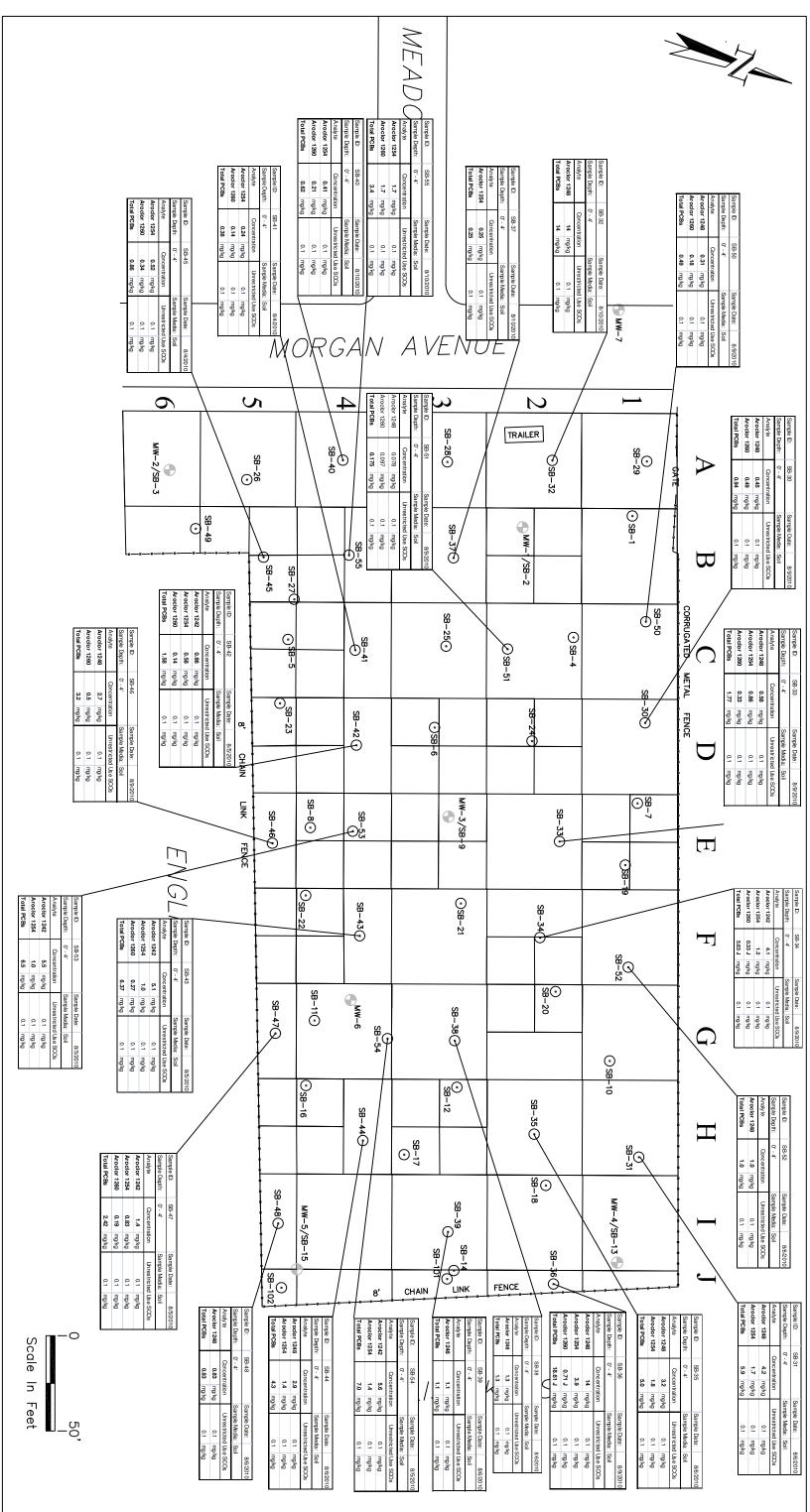

ARSENIC SOIL RESULTS (4'-11') – PROTECTION OF GROUNDWATER SCOS

TAL METALS SOILS RESULTS (0'-4') - UNRESTRICTED USE SCOS

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

TAL METALS SOILS RESULTS (4'-11')NRESTRICTED USE SCOS


NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

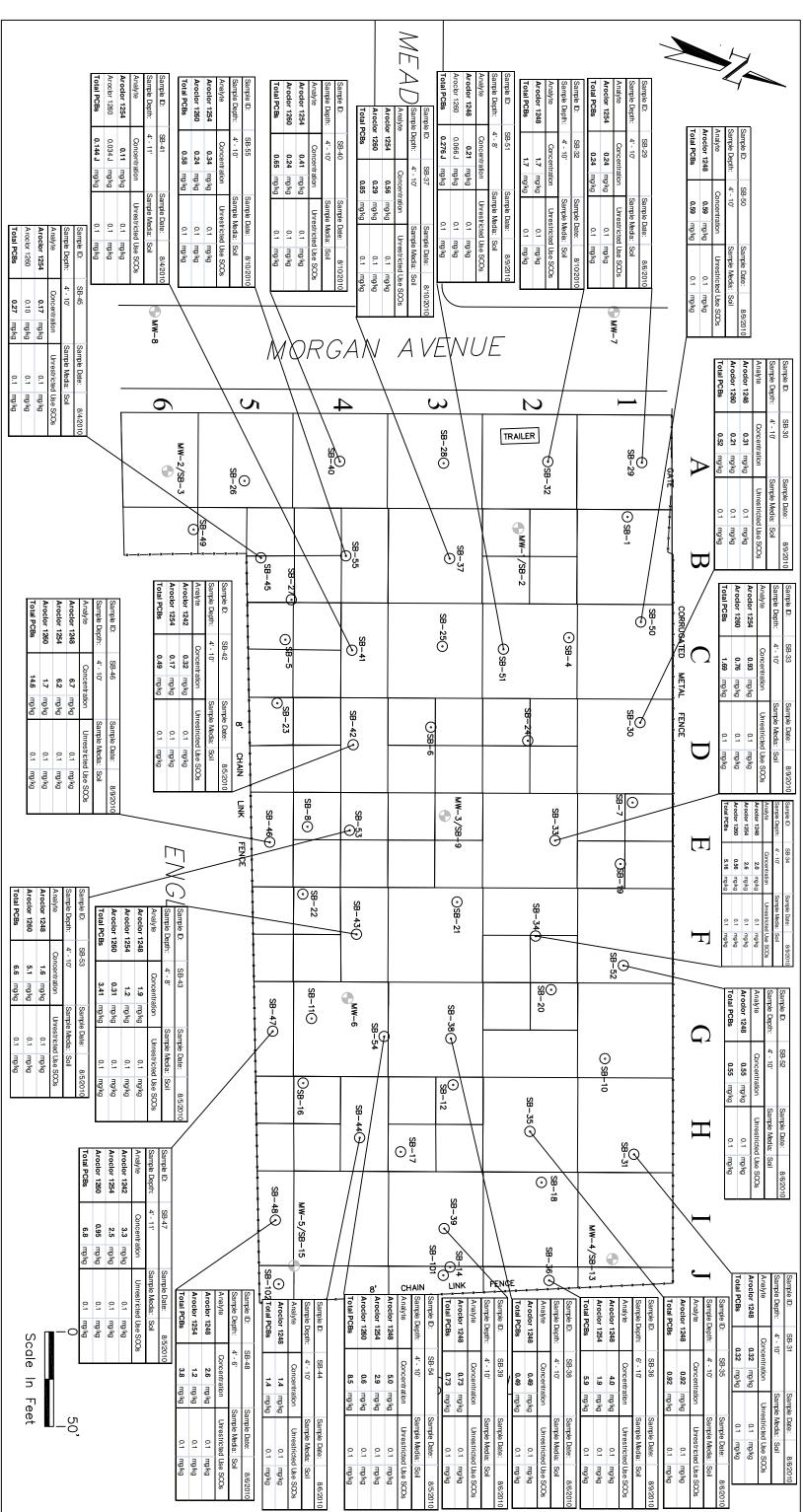
2007 AND 2009 SOIL BORING LOCATIONS
2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

•

Gannett Fleming

PCB SOIL RESULTS (0'-4')l UNRESTRICTED USE SCOS

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES


2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

MONITORING WELL

<u>LEGEND</u>

Gannett Fleming

PCB SOIL RESULTS (4'-11') - UNRESTRICTED USE SCOs

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

MONITORING WELL

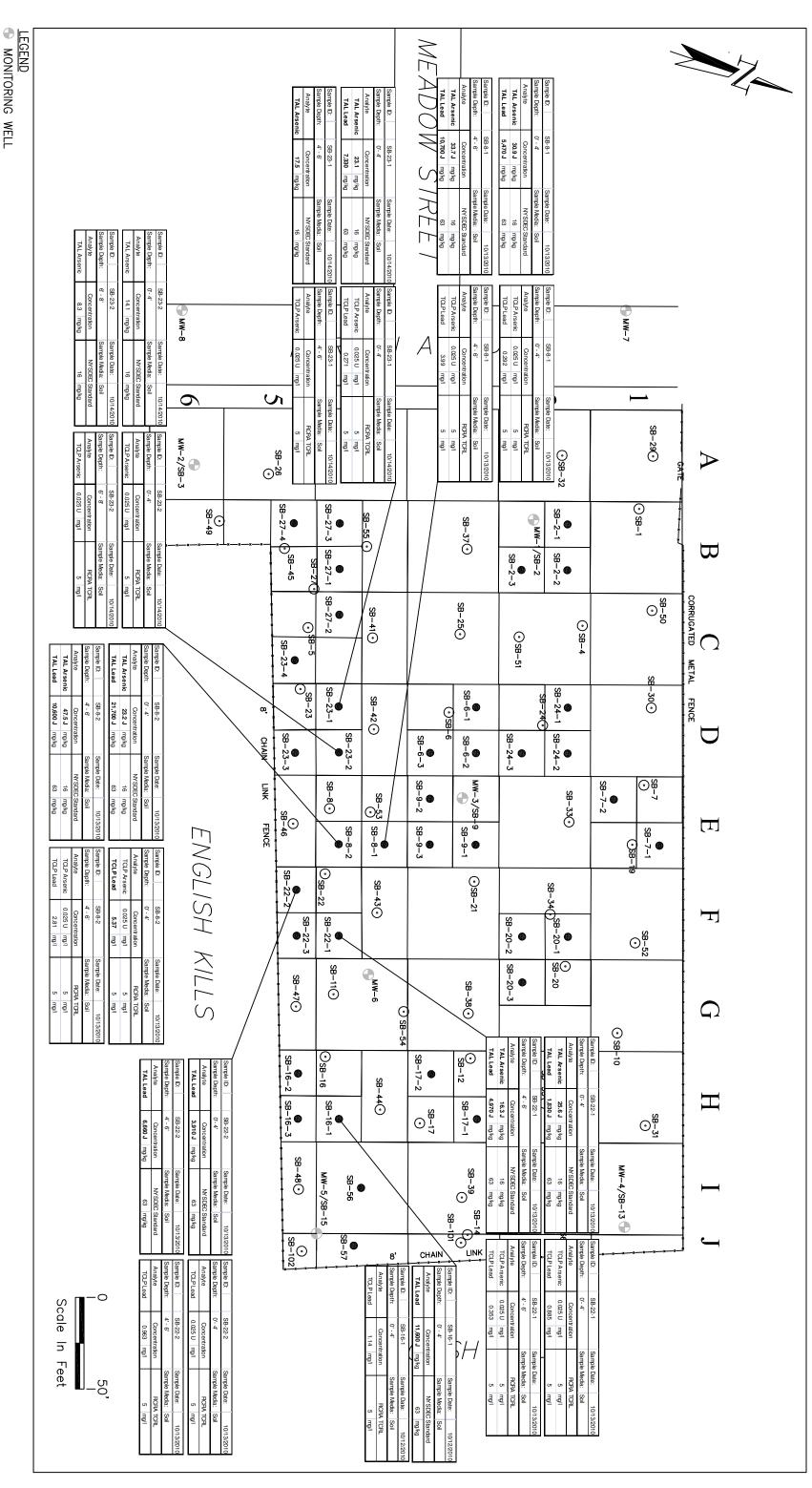
<u>LEGEND</u>

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

NEW YORK

NOTE:

2007 AND 2009 SOIL BORING LUCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS
IOTE: -RCRA TCRL IS THE RCRA TOXICITY CHARACTERISTIC


OTERINATION OF THE TOXICITY CHARACTERISTIC

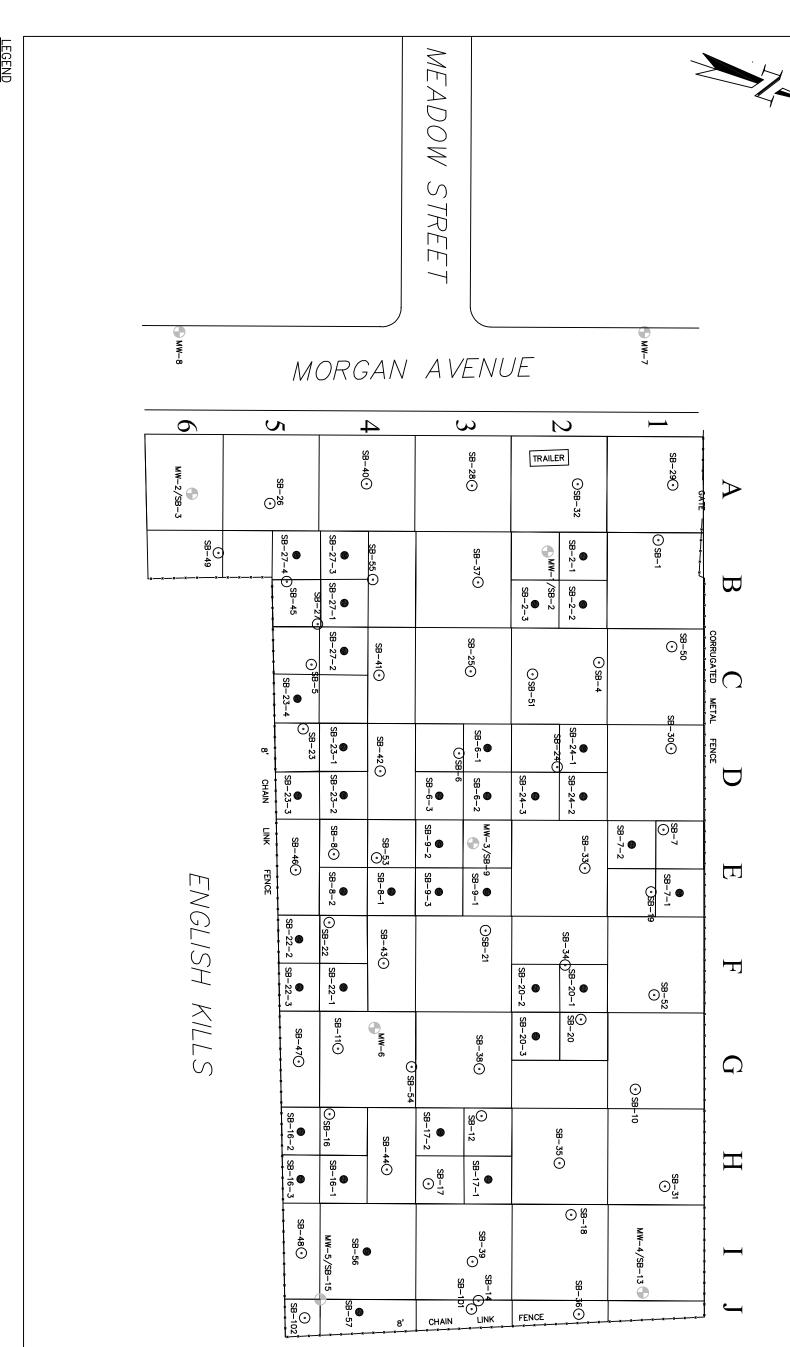
OTERINATION OF THE TOXICITY OF THE TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY OF THE TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY OF THE

TOTAL ARSENIC, TOTAL LEAD, CLP SOIL RESULTS

FRITO LAY, INC. 202-218 MORGAN AVENUE, BROOKLYN, NEW YORK

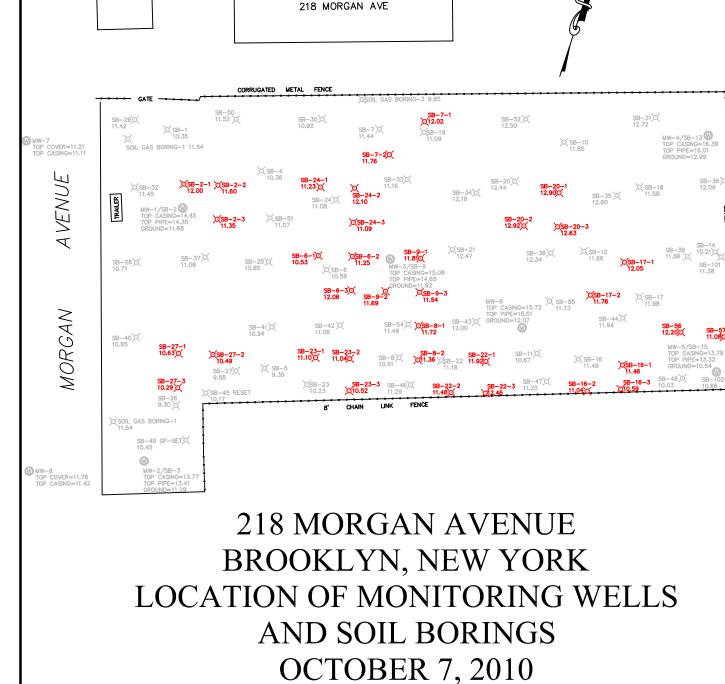

REGULATORY LEVEL IN MILLIGRAMS PER LITER (MG/L)
-TAL LEAD IS COMPARED TO THE UNRESTRICTED USE SOIL CLEANUP OBJECTIVES
-TAL ARSENIC IS COMPARED TO THE RESTRICTED USE PROTECTION OF GROUNDWATER SOIL CLEANUP OBJECTIVES

LEGEND

MONITORING WELL

2007 AND 2009 SOIL BORING LOCATIONS

2010 SOIL BORING LOCATIONS



ENGLISH KILLS

SECOND SUPPLEMENTAL RI SAMPLING LOCATIONS

Scale In Feet

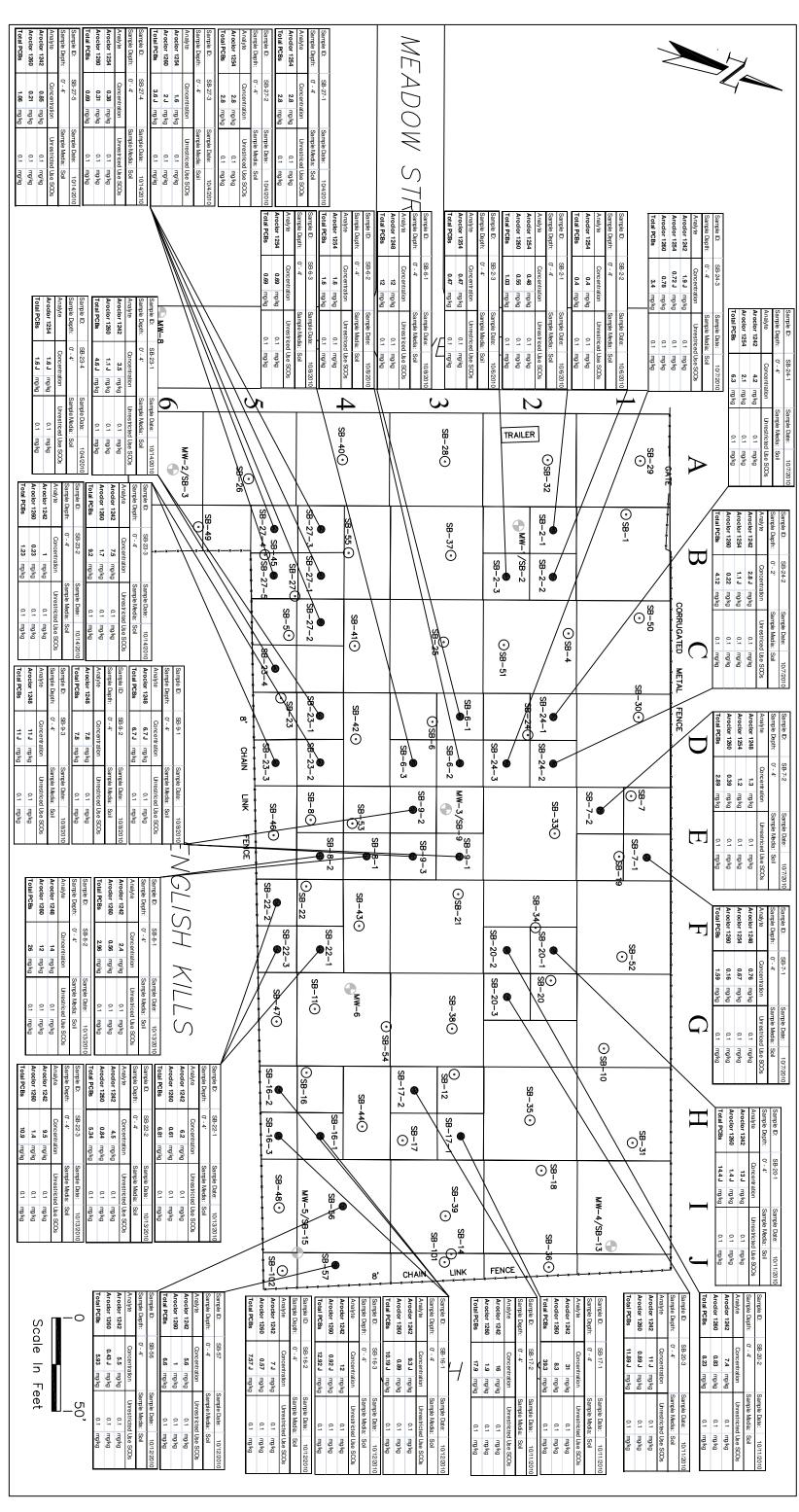
Gannett Fleming FIGURE 4-1

1'' = 50'

1 STORY STUCCO W / ALUMINUM SIDING WAREHOUSE

DRAWING IS NOT TO SCALE

DRAWING SOURCE:
NAIK CONSULTING GROUP, P.C.


Sannett Fleming

1000 ATRIUM WAY, ATRIUM I, SUITE 300, MOUNT LAUREL, NEW JERSEY 08054 WWW.GFNET.COM

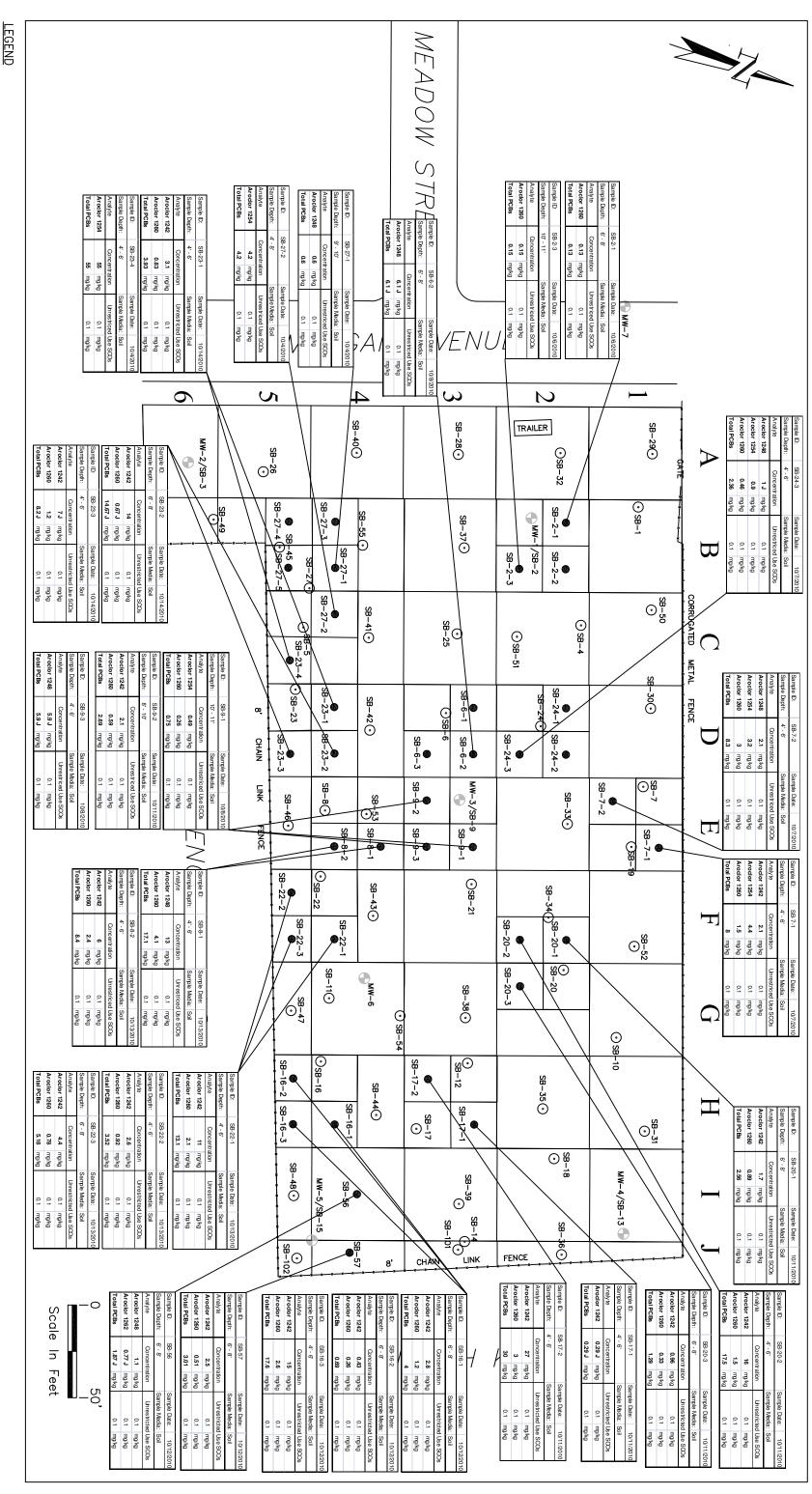
PROJECT #	47743	SOIL, SOIL GAS AND MONITORING	FIGURE	ı
DRAWN BY:	DAB	WELL SURVEY LOCATIONS		١
DATE DRAWN:	NOV 2010	FRITO-LAY	4-2	١
REVISED BY:		218 MORGAN AVENUE		l
DATE REVISED:		BROOKLYN, NEW YORK		

Gannett Fleming

FIGURE 4-3

PCB SOIL RESULTS (0'-4')UNRESTRICTED USE SCOS

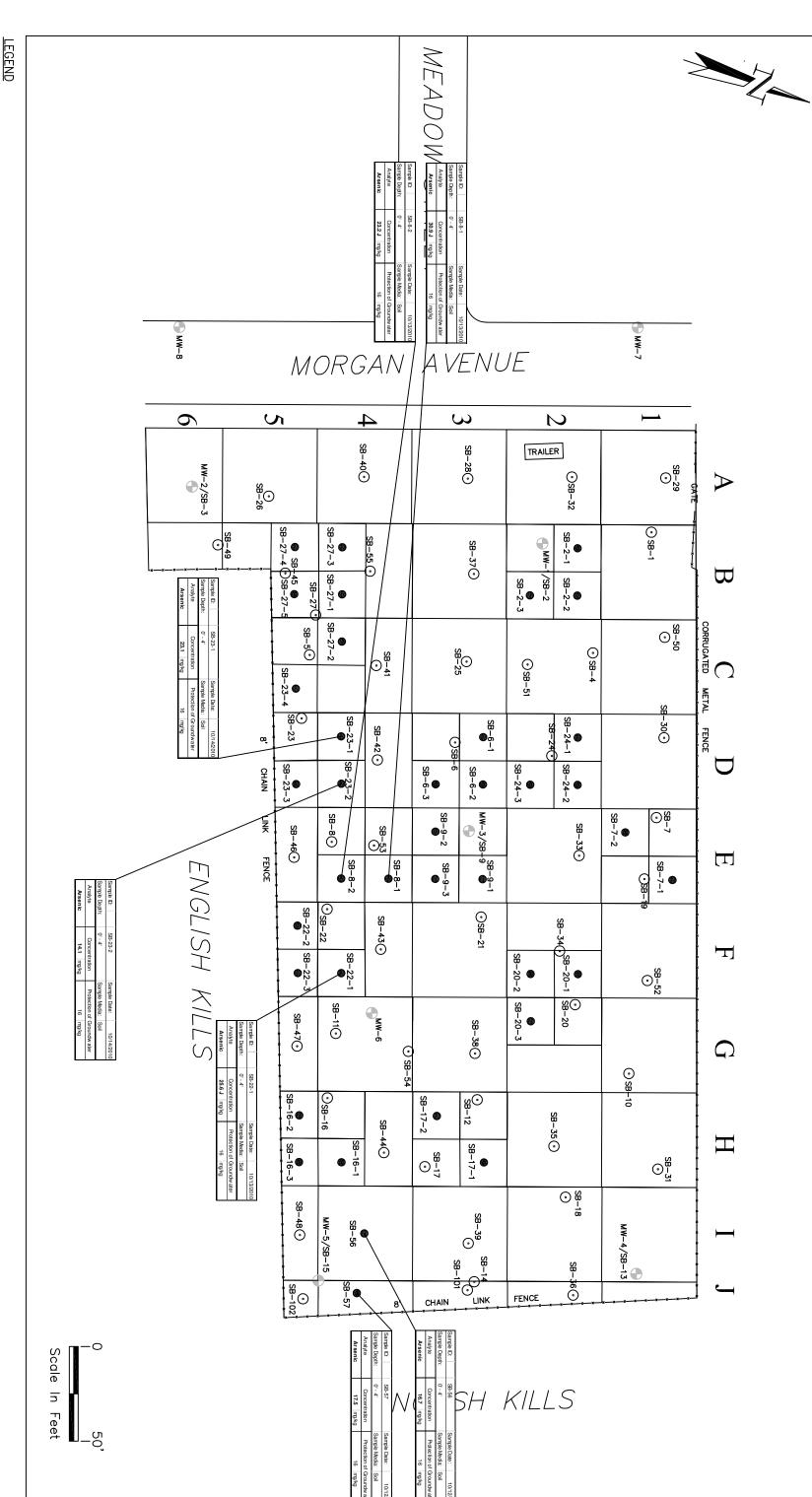
NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES


2007 AND 2009 SOIL BORING LOCATIONS 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

MONITORING WELL

LEGEND

Gannett Fleming

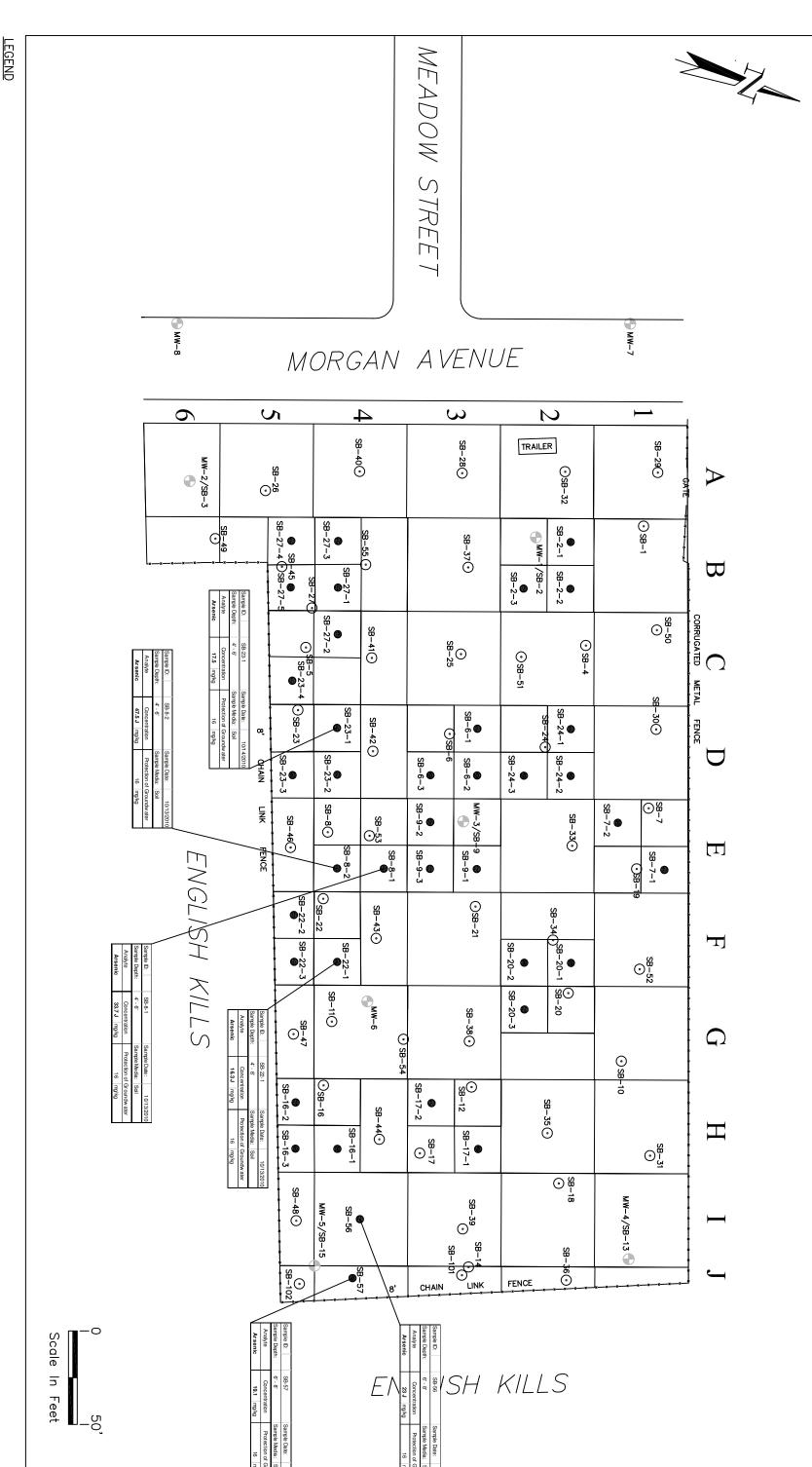


PCB SOIL RESULTS (4'-11')UNRESTRICTED USE SCOS

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

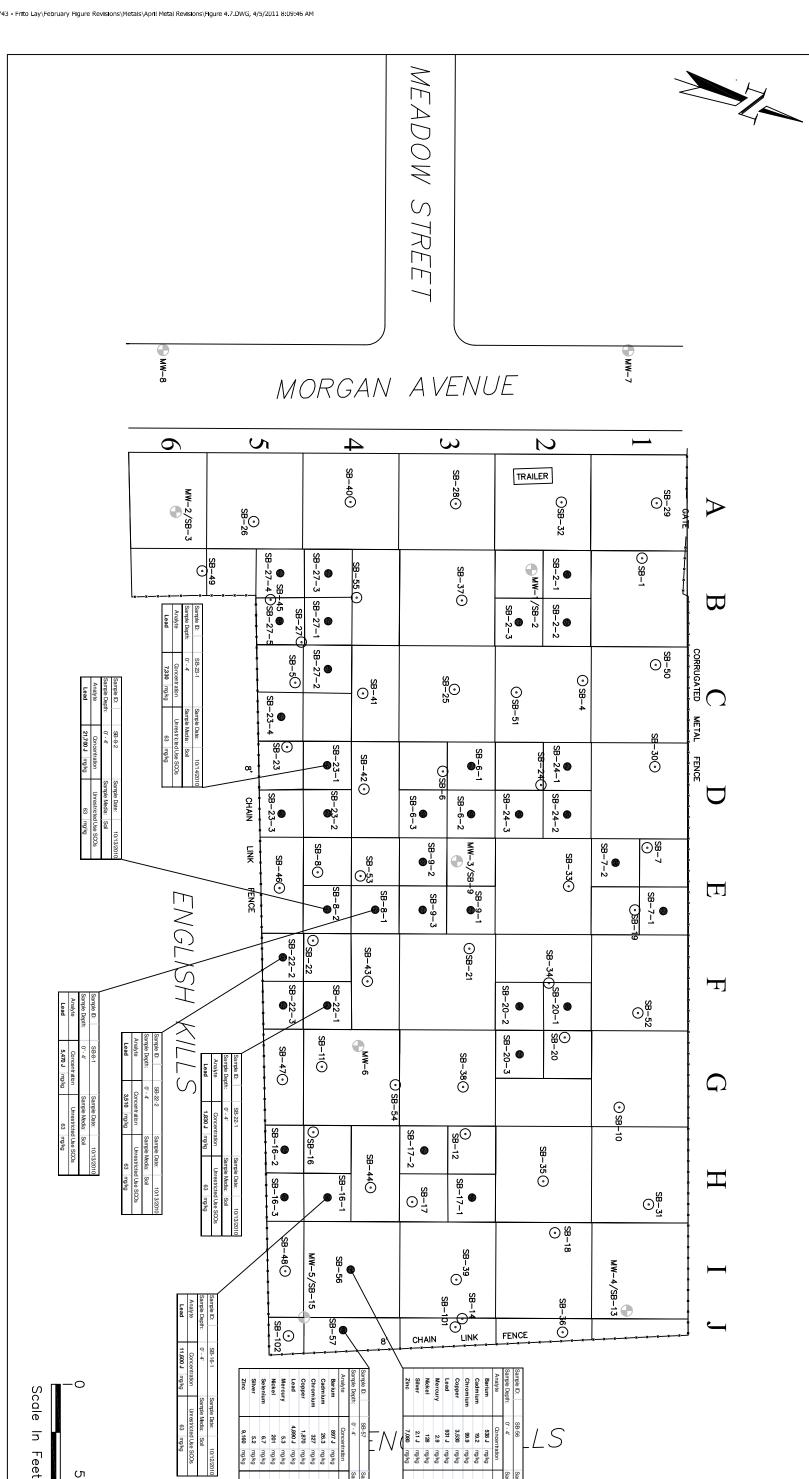
Gannett Fleming FIGURE 4-5



ARSENIC METALS SOILS RESULTS (0'-4')PROTECTION OF GROUNDWATER SCOS

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE PROTECTION OF GROUNDWATER SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS


Gannett Fleming FIGURE 4-6

ARSENIC SOILS RESULTS (4'-PROTECTI ION OF GROUNDWATER SCOS

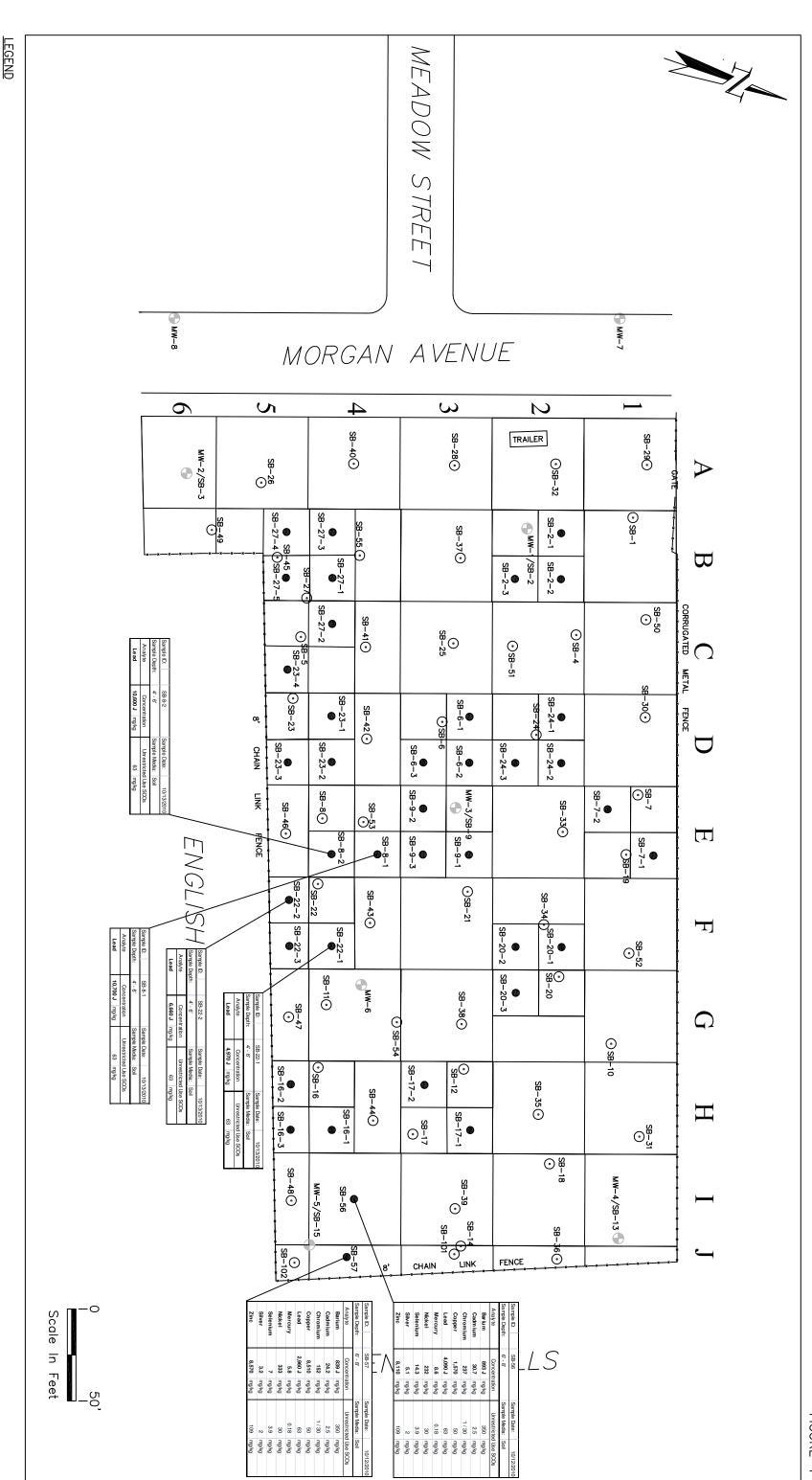
NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE PROTECTION OF GROUNDWATER SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

TAL METALS SOILS RESULTS (0'-4')NRESTRICED USE SCOS

-50

restricted Use SC 350 mg/kg 2.5 mg/kg 50 mg/kg 50 mg/kg 63 mg/kg 0.18 mg/kg 0.18 mg/kg 3.0 mg/kg 3.0 mg/kg 3.0 mg/kg 3.0 mg/kg 3.0 mg/kg


350 mg/kg
2.5 mg/kg
1/30 mg/kg
50 mg/kg
63 mg/kg
0.18 mg/kg
0.18 mg/kg
70 mg/kg
71 mg/kg
72 mg/kg

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

MONITORING WELL

<u>LEGEND</u>

TAL METALS SOILS RESULTS (4'-11') - UNRESTRICTED USE SCOS

NOTE: BOLD ANALYTES AND CONCENTRATIONS EXCEED THE BROWNFIELDS UNRESTRICTED USE SOIL CLEANUP OBJECTIVES

2007 AND 2009 SOIL BORING LOCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS

16 mg/kg

Analyte TAL Arsenic

Sample Depth:
Analyte
TCLP Arsenic
TCLP Lead

Sample Media: Soil
RCRA TCRL
5 mg/l

5.37

-0

50,

Scale In Feet

TAL Arsenic

2.81

ng/i

mg/l

0

MW-2/SB-3

•

ME

TAL Arsenic
TAL Lead

23.1 7,330

TCLP Arsenic

5 mg/l

● SB-27-3

SB-27-1

SB-41⊙

SB-42⊙

SB-53 ⊙

SB-8-1

SB-43①

₩W-6

SB-44①

○ SB-54

SB-23-2

SB-8-2

SB-8⊙

SB-22-1

SB-11⊙

⊙sB-16

ВŖ

MW-5/SB-15

<u>-16</u> €

SB-56

● SB-57

S

SB-26 ⊙

SB-27-4

⊕SB-45

0

SB-23

CHAIN

Ę

ENGLISH KILLS

Sample Date: 10/13
Sample Media: Soil

NY SDEC Standard

ample Date:

ample Media: Soil

RCRA TCRL

5 mg/l

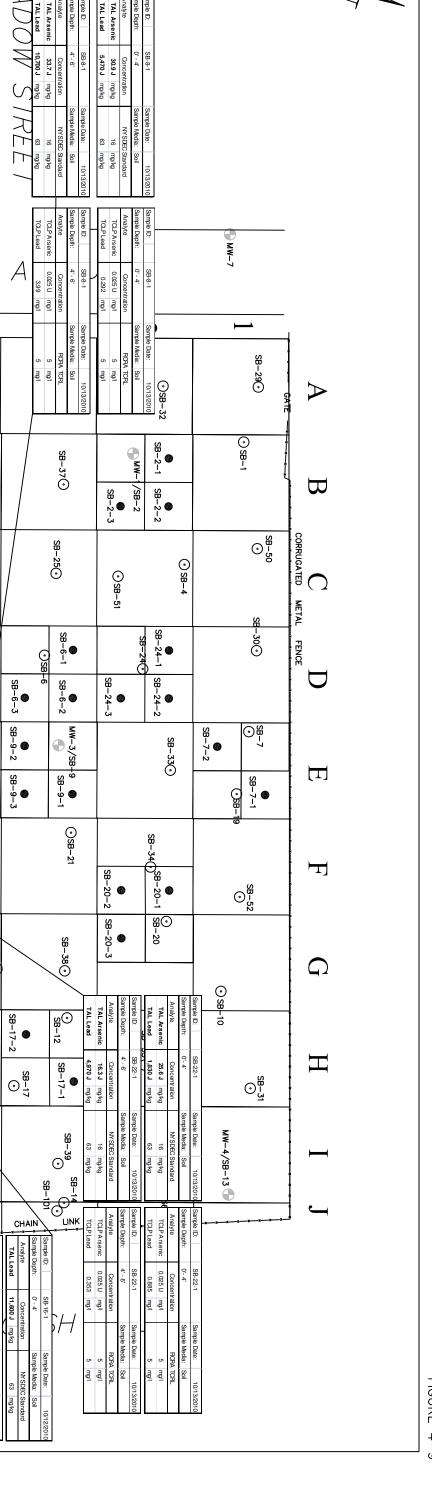
SB-46 FENCE

SB-22-2

SB-22-3

SB-47⊙

SB-16-2


SB-

16-3

SB-48⊙

O | SB-102|

SB-23-1

LEGEND

MONITORING WELL

NOTE:

2007 AND 2009 SOIL BORING LUCATIONS
 2010 SECOND SUPPLEMENTAL REMEDIAL DELINEATION SOIL BORING LOCATIONS
IOTE: -RCRA TCRL IS THE RCRA TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY OF THE TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY OF THE TOXICITY CHARACTERISTIC

OTERINATION OF THE TOXICITY OF THE

REGULATORY LEVEL IN MILLIGRAMS PER LITER (MG/L)
-TAL LEAD IS COMPARED TO THE UNRESTRICTED USE SOIL CLEANUP OBJECTIVES
-TAL ARSENIC IS COMPARED TO THE RESTRICTED USE PROTECTION OF GROUNDWATER SOIL CLEANUP OBJECTIVES

TOTAL ARSENIC, TOTAL LEAD, CLP SOIL RESULTS

FRITO LAY, INC. 202-218 MORGAN AVENUE, BROOKLYN, NEW YORK

APPENDIX A SOIL BORING LOGS

Client: Frit	to-Lay						Boring No.:	SB-2-1		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 7 of 38			ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/6/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT	<u>.</u>)						
Method:	Hollow Ste	em Auger								
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, D.	Carter (A	DT)				
Total Depth:	12	ı	Depth to Wa	ter:	10					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	5	Soil Classifica	Remarks	
	0.4	6 15	SB-2-1 (0-4)	0-2'	Dry	10/24"	Black F-C SA Gravel, little R		, some F-M	Slight Petro odor Some black staining
— 1 ——		15	(0 .)					211011		Some one standing
_ 2		41								
	27.0	8 11		2-4'	Moist	13/24"	5" F-C SAND	and SILT, so	me Red Brick	Heavy petro. odor, black staining
3 —		11 14			Dry		8" Brown F-C	SAND, little	Silt	Light petro. odor, light staining
4	0.0	16		4-6'	Dry	13.5/24"	Red-Brown F-			No odor
<u> </u>		17 11					Gravel, trace F	Red Brick, trac	ce White Plastic	No staining
- -		16								
 6 	38.0	23	SB-2-1	6-8'	Dry	8.5/24"	Dk Brown F-C	Sandy SILT,	some F-M	Petro odor
_		19	(6-8)		J		Gravel, trace F			Black staining
		18								
8	NT/A	15		0.101	27/4	0.12.411	D			
_	N/A	8 7		8-10'	N/A	0/24"	No Recovery			
9		4								
10		4								
	N/A	4 5		10-12'	Saturated		Saturated - No	sample		Groundwater at 10'
11		9								
12		8								
13										
14	1									
14										
15										
	-									
										
	1									
17										
_ 18										
	1									
<u> </u>		_								
20										

Client: Frit	o-Lay						Boring No.:	SB-2-2		ning Engineers, P.C. s Park Dr. W. Ste 300	
Project #: 477	43.034						Sheet 6 of 3	8	Woodb	ury, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/6/2010	(51)	16) 364-4140	
Drilling Co:	Aquifer Dı	rilling and	Testing (ADT	")				_			
Method:	Hollow Ste	em Auger									
Personnel:	B. Tiskow	itz, M. Bori	ruso (GF); C.	Migliore, D.	Carter (A	DT)					
Total Depth:	12'		Depth to Wa	ter:	10'						
4 41-	DID	D1	C	Daniela	Moisture	Recovery		Soil Classifica	tion	Remarks	
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Content				uioii		
			SB-2-2	0-1'	N/A	0/24"	1' Gray CON	NCRETE		Drilled down to 1'	
<u> </u>	0.3	17	(1-4)	1-2'	Der	12/24"	Black E C S	AND some F	M Gravel, trace	Concrete not in sample	
	0.3	50/5		1-2	Dry	12/24		race Wood, trace		No odor, some staining	
2	0.6	14		2-4'		20/24"		C SAND, some		No odor, dark staining	
		31		_ `				rick, trace Woo		throughout	
<u> </u>	0.7	26						own F-M SAN			
	0.3	35					4" Red BRIG				
	2.1	11		4-6'	Dry	22/24"		wn F-M SAND	Y SILT, trace F	No odor, light black	
5		11					Gravel		staining		
		12						own F-M SANI	No odor, no staining		
 6 	40.1	8	GD 2 2	6.01	D	12/24!!	little F-M G		NT 1		
	40.1	11	SB-2-2 (6-8)	6-8'	Dry	13/24"			No odor, no staining		
 		11 12	(0-8)				Gravel, trace		SILT, little F-M	No odor, no staining	
		9						M SAND, som	e F-M Gravel	No odor, no staining	
 	4.7	4		8-10'	Moist	16/24"		n F SANDY SII		No odor, no staining	
		6						wn F SANDY		Black staining, slight	
<u> </u>		8					Gravel, trace			petroleum odor	
10		5									
_ 10	N/A	3		10-12'	Saturated	17/24"	Brown F SA	NDY SILT		Groundwater at 10'	
<u> </u>		3									
		2									
		3									
_											
 13											
1.4											
14											
16											
<u> </u>											
 17 											
	}										
— 18 —											
- 19 											
]										
20											

Client: Frit	o-Lay						Boring No.:	SB-2-3		ng Engineers, P.C. Park Dr. W. Ste 300		
Project #: 477	43.034						Sheet 5 of 38		Woodburg	y, NY 11797		
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/6/2010	(516)	6) 364-4140		
Drilling Co:	Aquifer D	rilling and	Testing (ADT	")								
Method:	Hollow Ste	em Auger										
Personnel:	B. Tiskow	itz, M. Borr	ruso (GF); C.	Migliore, D.	Carter (A	DT)						
Total Depth:	12'		Depth to Wa	ter:	12'							
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classific	eation	Remarks		
	1.7	20	SB-2-3	0-2'	Dry	16.5/24"	11" Brown F-I	M SILTY SA	ND and GRAVEL,	No odor, no staining		
1 —		35	(0-4)				trace Red Bric					
_ 2	23.8	42 32					5.5" Red BRIO	CK, some F-N	I Sand	Slight petro odor, slight staining		
_ <i>-</i>	3.9	60		2-4'	Dry	18.5/24"	8.5" Dk Browi			No odor, no staining		
3		56						ittle Red Bricl	k, trace Plastic,			
<u> </u>	3.3	37 25					trace Metal 10" Red BRIC	'V				
 4 	0.0	6		4-6'	Dry	7/24"	F-M Sandy SI		A Gravel trace	No odor, no staining		
- -	0.0	11		4-0	Diy	1124	Red Brick	L1, some 1-iv	I Graver, trace	ivo odor, no staming		
5		13										
		16										
	0.2	10		6-8'	Dry	8/24"	4" Dark Brown	n F-M SAND	Y SILT, some F-M	No odor, no staining		
7 		10					Gravel					
L		11							Y SILT, some F-M	No odor, no staining		
8 —	2.0	7		0.10	Descri	10/24"	Gravel, trace I		A CD AVEL	Nia adam ma atainina		
_	2.0	5 4		8-10'	Dry	10/24"	Dark Brown M	1-C SAND ar	IG GRAVEL	No odor, no staining		
9 —		3					1					
		5										
10	2.6	4	SB-2-3	10-12'	Moist	23/24"	12" Dark Brov	wn F-M SANI	DY SILT, some	No odor, no staining		
11		5	(10-11)				F-M Gravel					
_ ` _	N/A	3			Saturated				DY SILT, some	Groundwater at		
12 —		3					F-M Gravel, tı	race Red Bric	k	11.75'		
- -												
13							1					
—— 14 ———							1					
15												
13												
16												
L												
												
<u> </u>												
- 18 												
_ 19 <u></u>												
_												
20												

Client: Fri	to-Lay						Boring No.:	SB-6-1		ing Engineers, P.C. Park Dr. W. Ste 300		
Project #: 477	743.034						Sheet 13 of 38			iry, NY 11797		
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date:	10/8/2010		(516) 364-4140		
Drilling Co:	Aquifer D	rilling and	Testing (ADT	.)								
Method:	Hollow Ste											
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.			.DT)						
Total Depth:	4'	•	Depth to Wa	ter:	2'	ı.						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	S	oil Classifica	tion	Remarks		
	0.0	6 8	SB-6-1 (0-2)	0-2'	Moist	6/24"	Brown F-M SA	ANDY SILT,	little F Gravel	No odor, no staining		
1 —		12	(0-2)									
_ 2	N/A	6 13		2-4'	Saturated	10/24"	Black F-M SA	NDY SILT, I	ittle F Gravel	Groundwater at 2'		
3		10 14								Strong petro. odor,		
–	_	10								black staining		
— 4 —		10										
	_											
 6 												
/												
8												
9												
10												
	_											
— 11 —												
12												
13												
–	-											
14												
15												
	_											
												
17												
— 18 —												
	1											
	1											
20	1		 	1			1					

Client: Frit	to-Lay						Boring No.:	SB-6-2		g Engineers, P.C.
Project #: 477	743.034						Sheet 14 of 38		-	ark Dr. W. Ste 300 , NY 11797
Site Location:		Iorgan Ave	. Brooklyn N	Y			Date:	10/8/2010	•	664-4140
Orilling Co:			Testing (ADT						(8.2.0)	
Method:	Hollow Ste		<u> </u>							
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, C.	Fodice (A	.DT)				
Γotal Depth:	8'		Depth to Wat	ter:	N/A	ı				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classific	ation	Remarks
	1.4	5 35	SB-6-2 (0-4)	0-2'	Dry	21/24"	Brown F-C SA trace Red Bric		some F-M Gravel,	No odor, no staining
_ 2		14 27								
_ 3	82.0	9 11		2-4'	Wet	24/24"	6" Black F-C S trace Glass	SANDY SILT	, some F-M Gravel,	Strong petro. odor, black staining
3 4	260.0	13 12			Moist		18" Black F-M	I SANDY SIL	T, some F Gravel	
_ 5	2.5	35 15		4-6'	Dry	7/24"	Brown F-C SA Gravel, trace C			No odor, no staining
		50/3								
6 — - 7 —	41.6	N/A	SB-6-2 (6-8)	6-8'	Moist	24/24"	Black F-M SA Fibers, trace R		t, few Wood	Strong petro. odor, black staining 6-8' spoon refusal,
8 — - 9 —										collected sample off of auger
12										
13										
14										
15	<u> </u>									
16										
17										
- 18 -										
- 19 -										

							ī	ī		
Client: Fri	to-Lay						Boring No.:	SB-6-3		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 15 of 38		_	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/8/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	")						
Method:	Hollow Ste									
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, C.	Fodice (A	DT)				
Fotal Depth:	6'	ı	Depth to Wat	ter:	4'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	oil Classifica	tion	Remarks
_	0.3	20	SB-6-3	0-2'	Dry	14/24"				No odor, no staining
 1	1.8	25 4	(0-4)		Saturated		Gravel, little Co 4" Black F-M O			Slight petro. odor,
—	1.0	3			Saturated		4 Diack I'-WI	JKA VEL, SU	me r-c Sand	black staining
_ 2	9.0	19		2-4'	Wet	13/24"	4" Black F-M (GRAVEL, so	me F-C Sand	Petro. odor,
3		<u>4</u> 5					9" CONCRETI	E and E-C SA	AND, some F-M	black staining Slight petro. odor,
- , -		5					gravel	z and r-c sz	and, some 1-wi	black staining
4	N/A	4		4-6'	Saturated		Black F-M GR	AVEL, some	F-C Sand	Slight petro. odor,
5		5								black staining
	1	10 14								Groundwater at 4'
<u> </u>										
 7 										
	1									
8										
<u> </u>										
_	_									
										
	_									
										
	-									
13										
14										
	_									
15										
16	1									
16										
17										
	_									
– 18 –										
- 19 -										
	4									
20										

Client: Fri	to-Lay						Boring No.:	SB-7-1		ing Engineers, P.C.
Project #: 477	743 034						Sheet 12 of 38			Park Dr. W. Ste 300 ry, NY 11797
Site Location:		Iorgan Ave	. Brooklyn N	Y			Date:	10/7/2010		364-4140
Drilling Co:			Testing (ADT						()	
Method:	Hollow Ste	em Auger								
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Campbell	(ADT)				
Total Depth:	8'		Depth to Wa	ter:	6'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	S	oil Classifica	tion	Remarks
_	0.5	9 29	SB-7-1 (0-4)	0-2'	Slightly moist	13/24"	Brown F-C SA	ND and SILT		Slight organic odor, no staining
1		11	Dup-1		HOIST					no stanning
_ 2	0.0	9		2-4'	Slightly	10/24"	Brown F-C SA	ND and SILT	Γ	Slight organic odor,
3		4			moist					no staining
 _ 4	1	5 6								
4 5	0.0	8	SB-7-1 (4-6)	4-6'	Moist	12/24"	Black F-M SA trace Paper	NDY SILT, s	ome Red Brick,	Slight organic odor, black staining
		12 13					•			
6 —	N/A	5 8		6-8'	Saturated	14/24"	Black F-M SA trace Paper	NDY SILT, s	some Red Brick,	Groundwater at 6' No odor, black
7 <u></u>		13 14					trace raper			staining
8 —		14								
<u> </u>										
10										
 11	1									
_ '''										
12										
13										
	1									
14										
15										
	1									
16										
										
- 18 -										
	-									
- 19 							1			
20										

Client: Frit	to-Lay						Boring No.:	SB-7-2		ing Engineers, P.C. Park Dr. W. Ste 300	
Project #: 477	743.034						Sheet 11 of 38		Woodbu	ıry, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/7/2010	(516)	6) 364-4140	
Drilling Co:	Aquifer D	rilling and	Testing (ADT	")							
Method:	Hollow Ste	em Auger									
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Campbell	(ADT)					
Total Depth:	10'		Depth to War	ter:	9.5'		1				
1 1 .	DID	D1.	C1.	Dd.	Moisture	Recovery		Soil Classifica	4:	D 1 .	
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Content	Recovery	٥	on Ciassifica	uon	Remarks	
	0.9	2	SB-7-2	0-2'	Dry	11/24"	Brown F-M S	ANDY SILT	little F Gravel,	No odor,	
F . —	0.5	4	(0-4)	0 2	Dij	11,21	trace White Pl			black staining	
1		8	, ,								
_ 2		12									
Ļ ~ _	1.7	13		2-4'	Dry	20/24"			ND, some F-M	Strong petro. odor,	
3		14					Gravel, little R	ted Brick, trac	ce Paper	black staining	
<u> </u>	-	26 29									
4	68.0	19	SB-7-2	4-6'	Dry	10/24"	Black F-M SA	ND and SILT	Some F-M	Strong petro. odor,	
├ <u>-</u> -	00.0	50/2	(4-6)	10	Diy	10/21	Gravel, little R			black staining	
_ 5							trace Glass	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	8	
L	1.4	5		6-8'	Dry	11/24"	Dark Brown F	-M SAND, so	ome Silt, little	Organic odor,	
7 <u></u>		11					Red Brick			no staining	
<u> </u>	-	13									
— 8 ——	0.1	18 9		8-9.5'	Moist	17/24"	Dark Brown F	M SAND an	d SII T little	No odor,	
⊢	0.1	10		0-7.5	Wioist	17724	Red Brick	-IVI SAND all	d SIL1, Ittle	some black staining	
9	N/A	12		9.5-10'	Saturated	8/24"	Dark Brown F	-M SAND an	d SILT, little	Groundwater at 9.5'	
10 —		18					Red Brick				
11											
<u> </u>	-										
12											
⊢ −	1										
13 —											
14											
15											
F -											
											
F	1										
											
18 —	1										
10		_									
1 9 —											
20											
				<u> </u>			<u> </u>				

Client: Fri	to-Lay					Boring No.: SB-8-1 Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 30				
Project #: 47	743.034						Sheet 32 of 38	_	ry, NY 11797	
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 10/13/2010	(516)	364-4140	
Drilling Co:	Aquifer D	rilling and T	Γesting (ADT	')						
Method:	Hollow Sto									
Personnel:			ruso (GF); C.		McGill (A N/A	DT)				
Γotal Depth:	11.5'	1	Depth to Wa	ter:						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	tion	Remarks	
	5.1	28	SB-8-1	0-2'	Slightly	17/24"	F-M SAND, some Silt, little	Metal, trace	Light organic odor,	
— 1 —		33	(0-4)		moist		Glass, trace Red Brick		black staining	
	1	50/1								
_ 2	211.0	N/A		2-4'	Dry		Black F SANDY SILT, little trace Wood	F-M Gravel,	Strong organic odor, black staining	
3									oluen summing	
 4 										
	43.0	22	SB-8-1	4-6'	Dry		F-M SAND and SILT, some	Petro. odor,		
 5		26 37	(4-6)				little Concrete, trace Glass		black staining	
	1	24								
6 —	17.0	31		6-8'	Dry	23/24"	Dk Brown F-M SAND and S	Light organic odor,		
 7 		35					F-M Gravel, trace Red Brick	ζ	black staining	
	4	29								
8	6.1	32 31		8-10'	Dry	16/24"	Black F-M SAND and SILT	some	Light petro. odor,	
	- 0.1	30		0.10	Diy		F-M Gravel, trace Red Brick		black staining	
9		32								
10		30								
	13.1	38 49		10-11.5'	Moist		Dark Brown F-M SAND and		Light petro. odor,	
		50/3					F-M Gravel, trace Red Brick	k, trace Metai	black staining	
12		00,0								
12										
 13										
	-									
										
	1									
										
	1									
										
- 18 —	<u> </u>									
– 19 –										
	1									
20										

Client: Fri	to-Lay					Boring No.: SB-8-2 Gannett Fleming Engineers, 100 Crossways Park Dr. W. S						
Project #: 477	743.034						Sheet 33 of 38		ry, NY 11797			
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Υ			Date: 10/13/2010	(516)	364-4140			
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	")								
Method:	Hollow Ste	em Auger										
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.								
Total Depth:	10'		Depth to War	ter:								
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classificat	tion	Remarks			
	0.1	22	SB-8-2	0-2'	Moist	14/24"	Brown F-M SAND and SILT		No odor,			
1 —		25	(0-4)				Gravel, trace Red Brick, trac	e Ceramic Tile,	light black staining			
	-	27 22					trace Wood					
2	13.3	28		2-4'	Slightly	10/24"	Black F-C SAND, some Silt,	little F-M	Light petro. odor,			
⊢ _ −	13.5	28		2.1	moist	10/21	Gravel, trace Red Brick, trac		black staining			
3		32										
4		30										
<u> </u>	28.0	23 24	SB-8-2 (4-6)	4-6'	Dry	22/24"	Black F-C SAND, some Silt, Gravel, trace Red Brick, trace	Light petro. odor, black staining				
5 —	_	28 30	(4-0)				Graver, trace Red Brick, trac	ver, trace Neu Brick, trace Glass				
 6 	0.5	42		6-8'	Dry	14/24"	Black F-C SAND, some Silt,	little F-M	Strong petro. odor,			
		39				-	Gravel, trace Red Brick, trac		black staining			
		46										
8		51										
<u> </u>	11.0	N/A		8-10'	Dry	24/24"	Black F-C SAND, some Silt,	little F Gravel,	Light organic odor,			
9 —							trace Wood		black staining Spoon refusal at 8',			
	1								sample collected			
10 —							1		off of auger			
11												
<u> </u>	4											
12												
	1											
13							1					
14												
<u> </u>	4											
15												
— 16 ——												
17												
	_											
- 18 												
_ 19 <u></u>												
<u> </u>	-											
20							1					

Client: Fri	to-Lay						Boring No.:	SB-9-1	ng Engineers, P.C. Park Dr. W. Ste 300	
Project #: 47	743.034						Sheet 16 of 38		_	ry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	10/8/2010	(516)	364-4140
Drilling Co:			Testing (ADT							
Method:	Hollow Ste		<i>U</i> \	/			1			
Personnel:			ruso (GF); C.	Migliore C	Fodice (A	DT)	1			
Total Depth:	12'		Depth to War		12'	(D1)	1			
Total Deptil.	12		Depth to wa	tc1.	12					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	S	Remarks		
	1.6	33 35	SB-9-1 (0-4)	0-2'	Dry	14/24"	3" Brown F-M 11" Brown F-M			No odor, no staining Petro. odor,
_	29.6	49 46					Gravel, little R			black staining
_ 2	3.1	35 38		2-4'	Dry	18/24"	Dark Brown F- Red Brick, littl	Slight petro. odor, black staining		
_ 3		22					Red Brick, IItti	i, trace wood	orack staining	
4	1.7	27 38		4-6'	Dry	17/24"	Black F SAND	Y SILT, little	Petro. odor,	
5		50/2					trace Sticks/Wo	ood Fibers, tra	black staining	
_ ₆	_									
	1.5	10 6		6-8'	Dry	19/24"	Black F SAND trace Wood Fib		Slight petro. odor, black staining	
7		8 24						,		_
8 —	9.6	5 4		8-10'	Dry	15/24"	F-M Sandy SII Red Brick	T, some M C	Gravel, little	Slight petro. odor, black staining
 9 		8					Red Blick			black staining
10		9								
	20.0	54 75	SB-9-1 (10-11)	10-12'	Moist	16/24"	12" Black F-M Gravel, little R			Petro. odor, black staining
11	N/A	50/5			Saturated		4" Black F-M S Gravel, little R			
12							. 014 (01, 11410 11	ou 211011, true	• 11 GOG	Groundwater at 12'
13										
14										
15										
	1									
<u> </u>										
	4									
20										

Client: Frit	to-Lay						Boring No.:	SB-9-2		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 18 of 38		Woodbu	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/8/2010	(516)	364-4140
Drilling Co:	Aquifer Dr	rilling and	Testing (ADT)						
Method:	Hollow Ste	em Auger								
Personnel:	B. Tiskowi	itz, M. Bor	ruso (GF); C.	Migliore, C.	Fodice (A	DT)				
Total Depth:	14'		Depth to Wa	ter:	13'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classification			Remarks
- <u> </u>	33.0	9 12	SB-9-2 (0-4)	0-2'	Dry	21/24"	F-M SANDY S Wood, trace Pa		-M Gravel, trace	Strong petro. odor, black staining
-	-	15 24					trace Glass			
2	25.0	10 11		2-4'	Dry	20/24"		-M Gravel, trace	Strong petro. odor, black staining	
_ 3		31					Wood, trace Fa	aper, nace Fla	istic, trace Glass	black staining
4	6.1	25 25		4-6'	Dry	11/24"	Black F SAND	Strong petro. odor, black staining		
5		35 15					Plastic, trace V			
<u> </u>	2.2	10 11		6-8'	Dry	19/24"			some Red Brick,	Strong petro. odor,
7		10 10					little Plastic, tr	black staining		
8	10.9	7 17	SB-9-2	8-10'	Dry	18/24"	Black F-M SA	Strong petro. odor,		
<u> </u>		31 35	(8-10)				trace Red Bric	k, trace Wood	l, trace Metal	black staining
10	2.5	21 16		10-12'	Dry	8/24"	F-M SANDY	SILT, little F	Gravel, trace	Slight petro. odor,
11		9 7			·		Glass, trace W			black staining
	0.4	4		12 14!	C-44	6/24"	E M CANDY	CH T 1:44 - D -	d Duinh toons	No odou
13	0.4	4		12-14'	Saturated	6/24"	F-M SANDY S Glass, trace W		d Brick, trace	No odor, black staining
		2 1								Groundwater at 13'
	-									
_ 18 <u></u>]			
_ 19 _							1			
20										

Client: Fri	to-Lay						Boring No.: SB-9-3 Gannett Fleming Engineers, P.C 100 Crossways Park Dr. W. Ste 30				
Project #: 47	743.034						Sheet 17 of 38	_	ry, NY 11797		
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date: 10/8/2010	(516)	364-4140		
Drilling Co:	Aquifer Di	rilling and '	Testing (ADT	')							
Method:	Hollow Ste										
Personnel:	B. Tiskow		ruso (GF); C.		Fodice (A	DT)					
Fotal Depth:	8		Depth to Wa	ter:							
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	Remarks			
	0.0	8 12	SB-9-3 (0-4)	0-2'	Wet	12/24"	5" F SANDY SILT, some F Glass, trace Plastic, trace R	-	No odor, no staining		
1 	10.1	16			Dry		7" Black F-C SAND, some	F-M Gravel,	Petro. odor,		
<u> </u>	31.2	16 24		2-4'	Moist	11.5/24"	trace Wood, trace Red Brick F-M SANDY SILT, little F		black staining Strong petro. odor,		
3	31.2	25		2-4	Worst	11.5/24	Red Brick, trace Wood	-ivi Giavei, iiace	black staining		
3 4		18 26					ŕ		S		
	45.0	N/A	SB-9-3 (4-6)	4-6'	Moist	48/48"	F-M SANDY SILT, some F Wood, trace Metal Rods	F-M Gravel, little	Strong petro. odor, black staining		
	1										
6 7	21.2	N/A		6-8'	Moist	19/24"	F-M SANDY SILT, trace F Wood	Gravel, trace	Petro. odor, black staining		
-											
8 	N/A	N/A		8-10'	N/A		No Recovery		Spoon and auger refusal at 10'		
	-										
	_										
11											
<u> </u>											
	_										
											
15											
	1										
16											
17											
10	1										
_ 18											
- 19 -											

Client: Fri	to-Lay					Boring No.: SB-16-1 Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 30				
Project #: 477	743.034						Sheet 24 of 38		-	ry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	10/12/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT	')						
Method:	Hollow St	em Auger								
Personnel:	B. Tiskow	itz, M. Born	ruso (GF); C.	Migliore, J.						
Total Depth:	10'		Depth to Wa	ter:						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Se	oil Classificat	ion	Remarks
	0.0	11 15	SB-16-1 (0-4)	0-2'	Moist		11" Brown F-M trace Plastic, M		T, some Wood,	No odor, no staining
1 	7.0	13 10	(0 1)		Moist		5" Black F-M S trace Plastic, M	ANDY SILT	, some Wood,	Petro odor, black staining
2	1.1	38		2-4'	Moist		F-C SANDY SI		M Gravel, little	Petro odor,
_ 3		30					Wood, trace Pla			black staining
_		13								
 4 	18.1	17		4.61	N f	1.4/2.4"	E C CANDY C	T.T. 1541 . W.	. 1. (D. 1	Datas
	10.1	13 15		4-6'	Moist		F-C SANDY SI Brick	L1, mue wo	Petro odor, black staining	
5		21					Dilok			oluck stanning
 6 	63.0	30 N/A	SB-16-1	6-8'	Moist	24/24"	F-M SANDY S	ILT_some F-l	M Gravel little	Petro odor,
	03.0	1071	(6-8)		Wiolst	2 1/2 1	Wood, trace Me		oraver, mine	black staining
/							·			
8	11.0			0.401	25.1	10/0/4				
	11.0	7.5/5		8-10'	Moist		F-M SAND, some Silt, little Red Brick, trace Concrete, trace Metal, trace Wood			Petro odor,
 9 							trace Concrete,	trace Metal, t	race wood	black staining
10										Spoon refusal at 10'
 11 										
	_									
12										
13	=									
										
	_									
 15										
16										
16										
										
– 18 –										
- 19 -										
	-									
20										

Client: Frit	o-Lay						1DOURS NO : 3D-10-7. 1			eming Engineers, P.C. ys Park Dr. W. Ste 300	
Project #: 477	43.034						Sheet 26 of 38	Sheet 26 of 38 Woodbury, NY 11797			
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/12/2010	(516	364-4140	
Drilling Co:	Aquifer Di	rilling and	Testing (ADT	·)							
Method:	Hollow Ste	em Auger									
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.							
Total Depth:	10'		Depth to Wa	ter:	8'						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classificat	ion	Remarks	
	0.0	6	SB-16-2	0-2'	Moist	10/24"	Dark Brown F	-C SAND, som	ne Silt, little	No odor,	
		8	(0-4)				F-M Gravel, to	race Plastic, Mo	etal, Red Brick	black staining	
		9 9									
	0.0	8		2-4'	Wet	9/24"		-C SAND, som		Petro. odor,	
3		5						race Plastic, tra		black staining	
		5					trace Red Bric	Bolt			
4 —	0.0	8		4-6'	Saturated	14/24"	7" Black F-M	SAND some S	Strong petro. odor,		
-	0.0	12		. 0	Suturuteu	1 1/2 1	trace M Grave		black staining Petro. odor,		
	3.6	20			Slightly		7" F-M SAND	, some Silt, litt			
6		33			moist			, trace Metal, t		black staining	
_				6-8'	Saturated	12/24"	7" F-M SAND	OY SILT, some	Petro. odor,		
 	0.0	22	CD 16.2		D		5" CONCRET	TE I DDIGI	black staining		
<u> </u>	0.0	22 23	SB-16-2 (6-8)		Dry		Sand, trace M	E and BRICK,	Slight petro. odor, some staining		
8	N/A	31	(0-0)	8-10'	Saturated	24/24"	4	SILT, some M	Gravel trace	Petro. odor, black staining	
	1 1/21	37		0.10	Suturated	21/21	Red Brick	SIL1, some W	Graver, trace		
9		29								Groundwater at 8'	
10		35									
		55									
11		67									
12							1				
13											
											
15											
_											
							1				
]										
17											
— 18 —											
- 19 											
<u> </u>											
20											

Client: Fri	to-Lay						Boring No.:	SB-16-3	Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 300		
Project #: 477	43.034						Sheet 25 of 38 Woodb			ury, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/12/2010	(516)	364-4140	
Drilling Co:	Aquifer D	rilling and T	Testing (ADT	')							
Method:	Hollow Ste										
Personnel:											
Total Depth:	12' Depth to Water: 11.5'										
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classificat	Remarks		
_	0.0	7	SB-16-3	0-2'	Slightly	20/24"		ed F-M SAND,		No odor, no staining	
— 1 —	0.1	8	(0-4)		moist		4	Concrete, trace F	•	D. G. C. L.	
-	0.1	10			Slightly			l F-M SAND, so Red Brick, trace		Petro. odor, black staining	
├ <u>,</u> —	1	7			moist		Concrete, trac			Side R Stanning	
	6.1	13		2-4'	Slightly	14/24"	F-M SANDY	SILT, some F-I		Petro. odor,	
3		10			moist		Green Plastic	black staining			
<u> </u>		16 25									
— 4 —	31.0	N/A	SB-16-3	4-6'	Dry	24/24"	Black F-M SA	ANDY SILT, lit	Petro. odor,		
		- ,,	(4-6)				trace Wood		black staining		
_ ,											
<u> </u>	0.2			6.01	Б	0.7/24!!	D 1 D .		City livel D. 1	D 1	
_	8.3	7 6		6-8'	Dry	8.5/24"		F-C SAND, som oncrete, trace M	Petro. odor, black staining		
7		8					Drick, trace C	oncrete, trace iv	olack stanning		
_		8									
_	7.2	5		8-10'	Dry	11/24"	Dark Brown F-C SAND, some Silt, little Red			Petro. odor,	
<u> </u>		6 7					Brick, trace C Metal	oncrete, trace M	I Gravel, trace	black staining	
	1	6					iviciai				
10 —	4.9	2		10-12'	Moist	12/24"	9" F-M SANI	OY SILT, few F	-M Gravel, trace	Slight petro. odor,	
11		3					Wood, trace R			black staining	
	1.4	2			Saturated		3" F-M SANI	OY SILT, few F	-M Gravel		
12		2									
	<u> </u>										
13											
 14											
<u> </u>											
15							1				
16											
											
H —											
- 18 											
⊢											
20											

Client: Fri	to-Lay						Boring No.: SB-17-1		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 23 of 38		rry, NY 11797
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date: 10/11/2010		364-4140
Drilling Co:			Testing (ADT						
Method:	Hollow Ste								
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Kamenicek	(ADT)	1		
Total Depth:	8'		Depth to Wa	ter:	8'				
depth	PID	Blow	Sample	Depth	Moisture	Recovery	Soil Classificat	tion	Remarks
(feet)	(ppm)	Counts	ID	(From-To)	Content				
<u> </u>	0.1	2	SB-17-1	0-2'	Dry	7/24"	Brown F SANDY SILT, little		Slight organic odor,
1 —		3	(0-4)				trace Metal, trace Wood, trac	e Plastic	no staining
<u> </u>	_	2							
2	N/A	23		2-4'	Saturated	10/24"	3" Brown F SANDY SILT, t	race F Gravel,	Organic odor,
_ 3		11					trace Wood		no staining
	0.4	10			Dry		7" Black F-C SAND, some S		Organic odor,
<u> </u>	1.7	10	CD 17 1	4.61	Б	1.4/0.411	trace Rubber, trace Concrete		black staining
<u> </u>	1.7	9 10	SB-17-1 (4-6)	4-6'	Dry	14/24"	Black F-C SAND and SILT, Gravel, trace Red Brick, trac		Strong organic odor, black staining
5		11	(4-0)				trace Concrete, trace Plastic,		black staining
_ 6		17					,		
	0.0	33		6-8'	Saturated	3/24"	F-M GRAVEL, some F-M S	and	Organic odor,
<u> </u>		55							black staining
<u> </u>	4	61 75							Groundwater at 8'
8 —		13					1		Groundwater at 6
9							1		
10									
<u> </u>									
— 11 ——							1		
12 —									
12									
13									
<u> </u>	4								
							1		
15									
15							1		
16									
	_								
									
	_								
18							1		
19 —									
<u> </u>	4								
20							1		

Client: I	Frito-Lay						Boring No.: SB-17-2	ng Engineers, P.C. Park Dr. W. Ste 300	
Project #: 4	17743.034						Sheet 22 of 38		ry, NY 11797
Site Locatio	n: 202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 10/11/2010	(516)	364-4140
Drilling Co:			Testing (AD7						
Method:	Hollow St		<u> </u>	,			1		
Personnel:			ruso (GF); C.	Migliore I	Kamenicek	(ADT)	1		
Total Depth		102, 111, 201	Depth to Wa		8'	(1121)	1		
		I	1	Ī		I			1
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	tion	Remarks
	16.0	N/A	SB-17-2 (0-4)	0-4'	Dry	48/48"	F-M SANDY SILT, little Wo Gravel, trace Concrete, trace		Strong organic odor, black staining
_	_						trace Metal		Spoon refusal, sample collected
								off of auger	
3 —									
4 	31.0		SB-17-2 (4-6)	4-6'	Moist	24/24"	Black F-M SANDY SILT, lit trace Wood	tle Metal Wire,	Strong organic odor, black staining
5 			(1.0)						owen swiming
6 	0.6			6-8'	Saturated	24/24"	Dark Brown F SANDY SILT trace Wood	, little F Gravel,	
7 <u></u>							liace wood		
8 —									Groundwater at 8'
9 									
10 —									
—— 11 —— ——									
12 —									
13									
14									
15									
<u> </u>									
17 —									
<u> </u>									
<u> </u>									
20									

Client: Frit	o-Lay						Boring No.:	SB-20-1		ning Engineers, P.C. s Park Dr. W. Ste 300	
Project #: 477	43.034						Sheet 21 of 38	3	-	ury, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/11/2010	(516	5) 364-4140	
Drilling Co:	Aquifer Di	rilling and '	Testing (ADT	.)				<u>-</u>			
Method:	Hollow Ste	em Auger									
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Kamenicek	(ADT)					
Total Depth:	12'		Depth to Wa	ter:	N/A						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	ID (From-To) Content						Remarks	
	0.2	25	SB-20-1	0-2'	Dry	18/24"	12" F-M SILT	Y SAND, little	Black Plastic,	No odor, no staining	
1 —		35	(0-4)					k, trace Wood,	trace Glass		
_ _	0.3	38	Dup-2				6" Stained Re	d BRICK		Slight petro. odor,	
2	266.0	44		2.41	D.	1.4/2.4"	E C CH TV C	AND Eat D	Daiala Assess	black staining	
 	366.0	25 27		2-4'	Dry	14/24"		AND, little Red Green Plastic E	,	Strong petro. odor, black staining	
3 —		23		 			соррсі, пасе	Green r lasue E	, ag	orack stanning	
		21									
4	0.8	25		4-6'	Wet	15/24"	5" Black F-M	SAND and SII	T, some	Strong organic odor,	
5		27					Wood, trace R			black staining	
	12.0	20 50/5			Moist		10" Red BRIC Wood	CK and F-M SA	ND, trace		
6	21.6	N/A	Sb-20-1	6-8'	Dry	24/24"		DY SILT, some	F-M Gravel,	Strong organic odor,	
			(6-8)				few Wood Fib	oers		black staining	
_ ′											
8	0.0								_		
<u> </u>	0.2	25		8-10'	Dry	23/24"		ome Silt, little (Cement,	No odor,	
9 —		29 31					little Pumice S	Stone		black staining	
		32									
10	0.0	29		10-12'		12/24"	Red BRICK,	some F-C Sand		No odor,	
		41								black staining	
		37									
<u> </u>		39					ļ				
<u> </u>											
13							1				
											
											
	1										
13							1				
 16 											
_											
				-							
<u> </u>											
- 18 											
10	1										
_ 19							1				
20											
20											

Client: Fri	to-Lay						Boring No.: SB-20-2 Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 30				
Project #: 477	743.034						Sheet 19 of 38		ry, NY 11797		
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date: 10/11/2010		364-4140		
Drilling Co:	Aquifer D	rilling and T	Γesting (ADT	')							
Method:	Hollow Ste										
Personnel:	B. Tiskow		ruso (GF); C.		Kamenicek	(ADT)					
Total Depth:	6'	ı	Depth to Wa	ter:	N/A						
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classific	ation	Remarks		
	0.0	10 22	SB-20-2 (0-4)	0-2'	Dry	17/24"	5" Brown F-M SAND and S F-M Gravel	SILT, some	No odor, no staining		
_ 1	2.4	24 28	(0 1)				12" F-C SAND, some Silt, trace Concrete, trace Wood	ittle Red Brick,	Light petro. odor,		
_ 2	6.1	N/A		2-4'	Dry	24/24"	Black F-M SANDY SILT,	few Wood pieces,	black staining Strong organic odor,		
3							trace M Gravel	black staining Spoon refusal 2-4'			
4	3.8	30	SB-20-2	4-6'	Dry	13/24"	Black F-M SANDY SILT,	_	Strong organic odor,		
5		25 24	(4-6)				trace M Gravel, trace Plasti Brick	c, trace Red	black staining		
_ ₆		66					Blick				
_ ′											
8											
9 —											
10											
	_										
	-										
13											
14											
15											
16											
	_										
_											
_ 19											
20											

Client: Fri	to-Lay						Boring No.: SB-20-3		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 20 of 38		ıry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 10/11/2010	(516	364-4140
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	')					
Method:	Hollow Ste	em Auger							
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Kamenicek	(ADT)			
Total Depth:	10'		Depth to Wa	ter:	N/A				
depth (feet)	PID (ppm)	(ppm) Counts ID (From-To) Content					Soil Classifica	ition	Remarks
	1.5	N/A	SB-20-3	0-4'	Dry	48/48"	Black F-M SANDY SILT, s	ome Red Brick,	No odor,
1			(0-4)				little Wood, trace Metal, trac	ce Plastic	black staining
			SB-20-3						Spoon refusal,
2			(0-4) MS SB-20-3						collect sample off
_			(0-4) MSD						of auger
3			(0- 1) MDD						
- , -									
4	0.6	12		4-6'	Dry	23/24"	Black F-M SANDY SILT, s	ome Red Brick,	Sweet organic odor,
5		17					little Wood, trace Metal, trac	ce Plastic	black staining
		19							
<u> </u>	1.2	22	CD 20 2	(0)	D	24/24"	DL. LEMCANDY CHT.	D. 1 D. 1 1	G
	1.3	N/A	SB-20-3 (6-8)	6-8'	Dry	24/24"	Black F-M SANDY SILT, s little Wood, trace Metal, trace		Sweet organic odor, black staining
 			(0-0)				inthe wood, trace Metal, trac	e Flastic	black stalling
8	0.0	19		8-10'	Dry	10/24"	3" CONCRETE and F-C SA	ND	No odor, no staining
9		18							
	0.2	41					7" Black F-C SAND, some I		Slight organic odor,
10		53					trace Red Brick, trace Wood	l, trace Plastic	black staining
<u> </u>									Spoon refusal at 10'
— 11 ——									Speed rerusar at 10
12									
13									
_	_								
 14									
-	1								
15									
16									
16 —									
 17 									
- 18 									
	1								
- 19 									
20	1 .								
20									

Client: Fri	to-Lay						Boring No.:	SB-22-1		ng Engineers, P.C. Park Dr. W. Ste 300		
Project #: 477	743.034						Sheet 29 of 38	3		y, NY 11797		
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date:	10/13/2010		364-4140		
Drilling Co:	Aquifer D	rilling and	Testing (ADT	")				•				
Method:	Hollow Ste	em Auger										
Personnel:			ruso (GF); C.		McGill (A	DT)						
Total Depth:	6'		Depth to Wa	ter:	N/A							
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classification Re own F SANDY SILT, some Wood, No odor,				
	0.0	18 20	SB-22-1 (0-4)	0-2'	Dry	16/24"		SANDY SILT, Plastic, trace Til		No odor, no staining		
 1 	2.9	27	(0-4)					some Silt, littl		Strong organic odor,		
_ 2		29					trace Glass, tra	black staining				
	3.6	25		2-4'	Dry	11/24"	5" F-M SAND	Organic odor,				
3	1.7	18					trace Metal, tr	black staining				
	1.7	44 48					6" Red BRICI trace Wood	Slight petro. odor, light staining				
	11.2	20	SB-22-1	4-6'		8/24"	Black F-C SA	Petro. odor,				
_		24	(4-6)				Gravel, trace I	Red Brick, trace	e Metal	black staining		
	_	50/4										
 6 												
/												
8												
	1											
9												
10												
												
12												
	-											
13												
15												
<u> </u>												
												
	1											
<u> </u>												
- 19 -												
	4											
20												

Client: Frit	o-Lay						Boring No.:	SB-22-2		ng Engineers, P.C. Park Dr. W. Ste 300	
Project #: 477	43.034						Sheet 31 of 38	8	_	ıry, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/13/2010	(516)	364-4140	
Drilling Co:			Γesting (ADT	<u>(1)</u>							
	Hollow Ste						-				
Personnel:			ruso (GF); C.			DT)					
Total Depth:	12'		Depth to Wa	ter:	11.5'	T					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classificat	Remarks		
<u> </u>	2.1	N/A	SB-22-2 (0-4)	0-2'	Slightly moist	24/24"	Dk Brown F-0 little Wood, tr	C SANDY SILT	Γ, some Metal,	Light organic odor, black staining	
1 —			(0 1)		moist		11110 11000, 11	acc i lastic		olden stamming	
_ 2	5.1	N/A		2-4'	Moist	24/24"		DY SILT, some	e Metal, little	Strong organic odor,	
3 —							Wood, trace P	Paper		black staining	
4 —	15.4	N/A	SB-22-2 (4-6)	4-6'	Moist	24/24"	F-C SANDY Gravel, trace	SILT, some Me	etal, little F-M	Strong organic odor, black staining	
5 —			(4-0)				Oraver, trace	Wood		black stalling	
6 —	11.1	N/A		6-8'	Slightly moist	24/24"	F-C SANDY Gravel, trace	SILT, some Me	etal, little F-M	Strong organic odor, black staining	
7 —					Inolov					orden stamming	
8 —	0.3	23 24		8-10'	Dry	22/24"		and SILT, some		Strong organic odor, black staining	
10		27 31									
	0.3	6 7		10'12'	Wet	23/24"	18" Black F S trace Wood	SANDY SILT, s	some F-M Gravel	Strong organic odor, black staining	
12 —	0.0	4 4					5" Dark Gray	F SANDY CLA	AY, trace Wood	Light organic odor, black staining	
13										Groundwater at 11.5'	
14											
15							-				
16											
17 —											
_ 18 <u></u>											
_ ₁₉											
20											

Client: Frit	o-Lay						Boring No.: SB-22-3		ming Engineers, P.C.	
Project #: 477	43.034						Sheet 30 of 38	-	ıry, NY 11797	
Site Location:	202-218 M	lorgan Ave	, Brooklyn N	Y			Date: 10/13/2010	(516) 364-4140	
Drilling Co:			Testing (ADT	')						
Method:	Hollow Ste									
Personnel:			ruso (GF); C.			DT)				
Total Depth:	14'		Depth to Wa	ter:	12'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classificat	Remarks		
	2.1	N/A	SB-22-3 (0-4)	0-2'	Slightly moist	24/24"	Black F-M SANDY SILT, so F Gravel, trace Wood	ome Metal, little	Organic odor, black staining	
_ 2	5.1	N/A		2-4'	Slightly moist	24/24"	Black F-M SANDY SILT, so F Gravel, trace Wood	ome Metal, little	Organic odor, black staining	
_ 3							,	Č		
_ 4	31.0	N/A		4-6'	Slightly moist	24/24"	Black F SANDY SILT, some Gravel, trace Glass, Wood	Strong organic odor, black staining		
5					moist		Graver, trace Glass, wood		orack stanning	
6 —	43.0	N/A	SB-22-3	6-8'	Slightly	24/24"	Black F-M SANDY SILT, so	Strong organic odor,		
7			(6-8) Dup-3		moist		Wood, trace F Gravel, trace C	black staining		
8 —	4.1	25 21		8-10'	Dry	23/24"	Black F-C SAND and SILT, little Brick, trace Wood, trace		Strong organic odor, black staining	
9 <u></u>		20					trace F-M Gravel	л арсі,	black staining	
10	12.4	18 17		10-12'	Dry	7/24"	Black F-C SAND and SILT, trace Wood, trace Paper, trace		Strong organic odor, black staining	
— 11 — —		14 12					, 1.1.00 if 000, 1.1.00 if upo1, 1.1.1		orach stanning	
— 12 — — —	0.0	5 5		12-14'	Dry	3/24"	Black F-C SAND and SILT, trace Wood, trace Paper, trace		Strong organic odor, black staining	
13 14		4 4							Groundwater at 12'	
15										
17										
18										
_ 18 <u></u>										
20										

Client: Fri	to-Lay						Boring No.: SB-23-1		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 36 of 38		ry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 10/14/2010		364-4140
Drilling Co:			Testing (ADT						
Method:	Hollow Ste		<u> </u>	,			1		
Personnel:			ruso (GF); C.	Migliore B	Cruz (AD	T)	1		
Total Depth:	10'		Depth to Wa		Cruz (rib	1)			
Total Depth.			Depui to wa	T		·			
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classificat	ion	Remarks
_	11.6	N/A	SB-23-1	0-4'	Slightly	48/48"	Black F-M SAND and SILT,	some Metal,	Strong petro. odor,
1			(0-4)		moist		trace Concrete, trace Brick		black staining
_									
<u> </u>									
3									
	4								
4	22.6	1.1	CD 22 1	4.61	01: 1.1	1.670.411	DI LEMGAND LOUT		C. 1
	23.6	11	SB-23-1	4-6'	Slightly	16/24"	Black F-M SAND and SILT,	some F	Strong petro. odor,
5		15 21	(4-6)		moist		Gravel, trace Wood		black staining
	1	19							
 6 	4.6	14		6-8'	Moist	13/24"	Black F-M SAND And SILT	few Metal	Strong organic odor,
	1.0	23			Wioist	13/21	trace Red Brick	, iew wietai,	black staining
 		26					udee Red Briek		olden stammig
	1	40							
8	10.1	38		8-10'	Moist	8/24"	Black F-M SAND and SILT,	some Metal,	Strong organic odor,
		44					trace Red Brick, trace Concre		black staining
		50/0							
10 —									
<u> </u>									
	4								
12									
	-								
13									
	1								
									
	1								
15							1		
	1								
							1		
				<u> </u>					
18									
]								
– 19 –									
20									
	1		1	I		Ī	1		

Client: Frit	to-Lay						Boring No.: SB-23-2		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43.034						Sheet 34 of 38	-	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date: 10/14/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Γesting (ADT	")					
Method:	Hollow Ste	em Auger							
Personnel:			ruso (GF); C.	Migliore, B.	Cruz (AD	T)			
Total Depth:	10'		Depth to Wa		N/A				
	DID		_	1		D	0.11.0110	4	D 1
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	LUON	Remarks
	211.0	10 25	SB-23-2 (0-4)	0-2'	Dry	11/24"	Black F-C SAND, some F-M Silt, trace Concrete	Gravel, little	Strong petro. odor, black staining
— 1 ——		19	(, ,)						
_ , _		16							
_ 3	25.1	N/A		2-4'	Dry	24/24"	Black F-M SAND, some Silt trace F Gravel, trace Glass	, little Wood,	Light petro. odor, black staining
	0.0	19 27		4-6'	Dry	20/24"	Black F-M SAND and SILT Gravel, trace Wood, trace Re		Light petro. odor, black staining
		28					, ,	one summing	
6	26.0	30	CD 22.2	(0)	011.1.41	17/04"	DI. I EMCAND C'I	Pal. EM	D. (1
-	36.0	9 18	SB-23-2 (6-8)	6-8'	Slightly	17/24"	Black F-M SAND, some Silt Gravel, trace Concrete, trace		Petro. odor, black staining
 		19	(0-8)		moist		Graver, trace Concrete, trace	Red Blick	black staining
		19							
8 <u></u>	13.6	17 14		8-10'	Slightly moist	11/24"	Black F-M SAND, some Silt trace Metal, trace Wood	, little Concrete,	Light petro. odor, black staining
— 9 —		20			moist		trace Wetar, trace wood		black stalling
10		50/1							
<u> — 11 ——</u>									
	-								
12									
13									
_ 13									
—— 14 ——									
	-								
 15									
	1								
16									
17									
<u> </u>									
_ 18									
19									

Client: Frit	o-Lay						Boring No.:	SB-23-3	Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 300		
Project #: 477	43.034						Sheet 35 of 3	8	Woodbu	dbury, NY 11797	
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/14/2010	(516)	364-4140	
Drilling Co:	Aquifer Dı	rilling and	Testing (ADT	")				_			
Method:	Hollow Ste	em Auger									
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, B.	Cruz (AD	T)					
Total Depth:	10'		Depth to Wa	ter:		-					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classifica	Remarks		
	1.8	7	SB-23-3	0-2'	Slightly	23/24"	12" Red-Broy	vn F-M SAND a	and SILT,	No odor, no staining	
		10	(0-4)		moist			el, trace Wood, t		, , , , , , , , , , , , , , , , , , ,	
1	19.2	17	Dup-4					ID, some F-M C		Petro. odor,	
		22					silt, trace Wo	od, trace Paper		black staining	
	6.1	26		2-4'	Slightly	7/24"		ND, some Red	Brick, little	Light petro. odor,	
3		50/3			moist		Wood, trace N	black staining			
 4 	93.0	20	SB-23-3	4-6'		17/04"	EMCAND	10H T 1541 Y	Vari turi	Common market in the	
_	93.0	29 41	SB-23-3 (4-6)	4-0	moist	17/24"	Red Brick, tra	nd SILT, little V	Strong petro. odor, black staining		
 5		43	(+-0)				Neu Diick, lie	ace ivicial		black stailing	
—		48									
<u> </u>	37.0	24		6-8'	Moist	11/24"	F-M SAND a	nd SILT, little V	Vood, trace	Petro. odor,	
		26					Red Brick, tra		,	black staining	
/		29									
8		40									
_	19.0	39		8-10'	Moist	18/24"		nd SILT, little V		Petro. odor,	
<u> </u>		39					Red Brick, trace Metal, trace Paper, trace			black staining	
		47					Glass				
10		50/4					-			Spoon and auger refusal at 10'	
-										ieiusai at 10	
— 11 ——							1				
12							1				
13											
 14 											
15											
							1				
							1				
- 18 —											
10											
20							4				

Client: Frito-Lay Boring No.: SB-23-4 Gannett Fleming Engineers, I 100 Crossways Park Dr. W. St Woodbury, NY 11797 Site Location: 202-218 Morgan Ave, Brooklyn NY Date: 10/5/2010 Control of the propert of the property	
Site Location: 202-218 Morgan Ave, Brooklyn NY Date: 10/5/2010 (516) 364-4140 Drilling Co: Aquifer Drilling and Testing (ADT) Method: Hollow Stem Auger	
Drilling Co: Aquifer Drilling and Testing (ADT) Method: Hollow Stem Auger	
Drilling Co: Aquifer Drilling and Testing (ADT) Method: Hollow Stem Auger	
Method: Hollow Stem Auger	
13450000	
Total Depth: 12' Depth to Water: 11'	
Total Deptil. 12 Deptil to Water. 11	
depth (feet) PID Blow Counts ID Depth (From-To) Moisture Content Recovery Soil Classification Remark	3
0.0 12 SB-23-4 0-2' Moist 17/24" 11" Red-brown F-M SANDY SILT, some F No odor, no stai	ning
Gravel, trace Wood, trace Red Brick	
6" Gray F-C SAND and CONCRETE, little No odor, no stai	ning
2 50 F-M Gravel	
0.1 50/2 2-4' Moist 6/24" Black stained WOOD Petro. odor,	Petro. odor,
black staining	
Refusal due to v	ood
0.8 15 SB-23-4 4-6' Moist 22/24" Black F-M SANDY SILT, some Wood, little Petro. odor,	
5 Red Brick, trace Glass black staining	
6 15	
0.5 50/4 6-8' Moist 12/24" Black F-M SANDY SILT, some Wood, little Light petro. odd	r,
Red Brick, trace Glass black staining	
8 0.6 5 8-10' 6.52/24" Black WOOD, some F-M Sand No odor, black s	,
'	taining
9 7 on Wood	
10 0.1 5 10-12' Brown F-M SANDY SILT and F-M Gravel No odor,	
come staining	
11 5 Groundwater at	11'
	- 1
- , -	
13	
- ,	
15	
16	
17	
_ ''	
_ 18	
_ ~ _	
_ 19	
_	

Client: Fri	to-Lay						Boring No.:	SB-24-1		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #: 47	743.034						Sheet 8 of 38			ıry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	10/7/2010	(516) 364-4140
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	<u>'</u>)						
Method:	Hollow Ste	em Auger								
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, J.	Campbell	(ADT)				
Total Depth:	8'		Depth to Wa	ter:	4'					
depth	PID	Blow	Sample	Depth	Moisture	Recovery	S	oil Classific	ration	Remarks
(feet)	(ppm)	Counts	ID	(From-To)	Content	Recovery	5	on Classific	Aution	Remarks
	29.0	N/A	SB-24-1	0-4'	Moist	48/48"	Brown F-M SA	NDY SILT	, little F Gravel,	Refusal, collected
			(0-4)							sample off of auger
			SB-24-1				trace White Pla	astic, trace T		No odor, no staining
2			(0-4) MS							
L	_		SB-24-1							
3			(0-4) MSD							
<u> </u>	_									
4	N/A	6		4-6'	Saturated	8/24"	Brown F-M GF	RAVEL son	ne F-C Sand, little	Perched Water Table
⊢ <u> </u>	1,,,,	8			Saturated	0/21	Concrete, trace		ne i e suna, nuie	No odor, no staining
_ 3		8					,			,
6		12								
L	N/A	4		6-8'	Saturated	6/24"	Black SAND a	nd SILT, so	me F-M Gravel	No odor, black staining
— 7 ——		9								
- -		8 9								
8 —		9								
–	_									
9							,			
11										
<u> </u>	4									
12 —							,			
	_									
13										
14										
15										
<u> </u>	4									
 16 										
-										
17										
18 —										
_ 18 _ 19	↓									
– 19 –							<u>'</u>			
<u> </u>	-									
20										

Client: Frit	to-Lay						Boring No.:	SB-24-2		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43.034						Sheet 9 of 38			ry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	10/7/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	· ()				<u>-</u>		
Method:	Hollow Ste									
Personnel:			ruso (GF); C.			(ADT)				
Total Depth:	4'		Depth to Wa	ter:	2'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classifica	ntion	Remarks
_	0.1	5	SB-24-2	0-2'	Dry	7/24"			ne Silt, few M	Slight petro odor
1		8	(0-2)				Gravel, trace l	Paper, trace G	ass	Slight black staining
_	1	7 12								
2	N/A	31		2-4'	Saturated	8/24"	Dark Brown F	F-C SAND, so	me Silt, few M	Groundwater at 2'
_ 3		7							ass, trace Wood	
		9								
 4 		7								
	-									
5										
6										
_										
 										
–	1									
8 —										
9										
L										
										
11 —										
12										
_										
13										
	1									
14 —										
15										
_										
 16 										
├	1									
17										
18 —			<u> </u>							
_										
– 19 –							}			
	1									
	1		†	1			1			1

Client: Fri	to-Lay						Boring No.:	SB-24-3		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 10 of 38		-	y, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	10/7/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT	')						
Method:	Hollow Ste									
Personnel:			ruso (GF); C.			(ADT)				
Fotal Depth:	8'		Depth to Wa	ter:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		Soil Classifica	tion	Remarks
_ 1	1.5	2 4	SB-24-3 (0-4)	0-2'	Dry		Brown F-C SA Gravel, trace V			No odor, no staining
_ 2		21 37					Black Plastic,	trace Concrete	2	
3	2.9	24 23		2-4'	Dry				SILT, some F-M e White Plastic	Strong petro odor, staining
_ 3		34 35								-
4 5	7.1	21 29	SB-24-3 (4-6)	4-6'	Dry		10' Black F-C Brick, trace W			Strong petro odor, black staining
		27 31					trace Leaves/C 2" CONCRET			No odor, no staining
6	0.0	50/5		6-8'	N/A	0/24"	No Recovery			Spoon Refusal 6-8'
7 <u></u>										
8 —										
9 <u></u>										
10										
— 11 ——										
12										
13										
14										
15	-									
<u> </u>										
<u> </u>										
- 18 -										
<u> </u>										
20										

Client: I	Frito-Lay						Boring No.:	SB-27-1		ming Engineers, P.C. ys Park Dr. W. Ste 300
Project #: 4	7743.034						Sheet 1 of 38			bury, NY 11797
Site Locatio	n: 202-218 N	Morgan Ave	, Brooklyn N	Y			Date:	10/4/2010	(51	6) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				-		
Method:	Hollow St	em Auger								
Personnel:			ruso (GF); C.	Stratton, D.	Moon (AD	T)	1			
Total Depth			Depth to Wa		N/A					
ما مسفاء	DID	D1	C1-	Danth	Maintana	Recovery	C.	oil Classificat		D
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Content	Recovery	50	on Classificat	.1011	Remarks
(====)	0.2	8	SB-27-1	0-2'	Dry	23.5/24"	10" Brown F-C	SAND com	a M E Graval	No odor, no staining
- -	0.2	10	(0-4)	0-2	Diy	23.3124	little Red Brick			1vo odor, no stanning
— 1 —		12	(0 .)		Dry					Light petroleum odor,
_		12					some Red Bric			some staining
							trace Wood			
2										
	0.1	6		2-4'	Dry	15/24"			F Gravel, little	No odor, no staining
<u> </u>		8 20					Concrete, trace 5" Gray CONC			No odor, no staining
		17							F Gravel little	No odor, no staining
		1,					Concrete, trace		T Graver, mule	rvo odor, no stanning
_ 4 _	1.0	15	SB-27-1	4-6'	Dry	13/24"	Black F-C SAI	ND, some Silt	t, some F Gravel	Light petroleum odor,
5		50/3	(4-6)				little Red Brick	k, trace Wood		some staining.
<u> </u>										C 1
										Spoon and auger refusal at 6' depth.
— 7 —										at o deptil.
8 —										
										
—— 11 ——										
10										
12 —										
13										
—— 14 ——										
— 15 —										
_ 16 _										
17 -										
18										
			<u> </u>							

Client: Frit	to-Lay						Boring No.:	SB-27-2		ning Engineers, P.C.
Project #: 477							Sheet 2 of 38			s Park Dr. W. Ste 300 ary, NY 11797
_		Jorgan Ave	e, Brooklyn N	Y			Date:	10/4/2010) 364-4140
	Aquifer Dr Hollow Ste	rilling and Tem Auger vitz, M. Borr	Testing (ADT ruso (GF); C. Depth to Wat	Stratton, D.	Moon (AD	OT)			,	
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	,	Soil Classificat	tion	Remarks
1 — 1 — — — — — — — — — — — — — — — — —	0.0	N/A	SB-27-2 (0-4)	0-4'	Moist		Brown F-M SA Gravel, some V		ome F-M etal, trace Glass	Spoon refusal, sample collected off of auger Organic odor, some staining
- 3	0.0	17 20		4-6'	Moist		Black F-C SAl Gravel, tract P		some F-M	Light petroleum odor, some staining
- 6 — - 7 —	0.0	37 20 50 5		6-8'	Dry	23/24"	Brown F-C SA	AND and F-M (Gravel	No odor, no staining
- 8 — - 9 —	0.0	5 4 5 4	SB-27-2 (9-10)	8-9'	Moist		Brown F-C SA	AND and F-M (Gravel	No odor, no staining
10		3 3		9-10'	Moist		Brown F-C SA	AND and F-M (Gravel	No odor, no staining Groundwater at 10'
11 — 12 —										
13 —										
15										
16 17										
- 18 — - 19 —										

Client: Fri	to-Lay						Boring No.:	SB-27-3		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 3 of 38		-	ıry, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 1	10/5/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and '	Testing (ADT	<u>'</u>)						
Method:	Hollow Ste	em Auger								
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Stratton, D.	Moon (AD	T)				
Total Depth:	10'	ī	Depth to Wa	ter:	10'					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	il Classifica	ation	Remarks
	0.0	N/A	SB-27-3 (0-4)	0-4'	Dry	48/48"	4" Gray CONCI 44" Dark Brown		OY SILT, some	Spoon refusal, collect sample off of auger
1 			(0 1)				F-M Gravel, litt		· ·	No odor, no staining
2										
_ 3										
	-									
4 	0.0	12 15	SB-27-3	4-6'	Dry	16/24"	Brown F-C SAN Red Brick, little			Light petro. odor,
5		20	(4-6)				Plastic	wood, trac	e Glass, trace	some staining
6 —	0.0	12 17		6-8'	Saturated	48/48"	Brown F-C SAN	ND and F-M	I GRAVEL, some	Spoon refusal, collect
	0.0	15		0-0	Saturated	40/40	Red Brick, little			sample off of auger
		12					Plastic			Light petro. odor,
8	0.0	2		0.101	0 1	0.5/0.41	D EGGA	ID LEM	CDANEL	some staining
<u> </u>	0.0	25 8		8-10'	Saturated	8.5/24"	Red Brick, little			Light petro. odor, some staining
9		5					Plastic	,	, , , , , , , , , ,	<i>β</i>
10		2								
	1									
11										
12										
	-									
13							1			
14 <i></i>										
15										
 16 							1			
17										
— 18 —										
_ 19 _	1]			
	1									
20										

Client: Fri	to-Lay						Boring No.: SB-27-4		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 47'	743.034						Sheet 38 of 38		ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date: 10/14/2010	(516)	364-4140
Drilling Co:			Γesting (ADT	")					
Method:	Hollow Ste								
Personnel:			uso (GF); C.			T)			
Total Depth:	12'		Depth to Wa	ter:	11'				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	tion	Remarks
	_	N/A	SB-27-4 (0-4)	0-2'	Dry	3/24"	Gray CONCRETE		
<u> </u>	-								
_ 2	0.0	6 9		2-4'	Dry	14/24"	Dark Brown F-C SAND, son Red Brick	ne Silt, little	Slight petro. odor, black staining
_		9 8							-
4 —	0.0			4-6'	Dry	16/24"	6" Gray CONCRETE 10" Dark Brown F-C SAND	And SILT some	No odor, no staining
_ 5		8					F Gravel	And SiL1, some	black staining
6 —	1.2	10 6	SB-27-4	6-8'	Dry	11/24"	3" Gray CONCRETE		No odor, no staining
7 —		5 6	(6-8)				8" Brown F-M GRAVEL, lit trace Glass	tle Red Brick,	Light petro. odor, black staining
		6							orack stanning
	0.2	3 4		8-10'		14/24"	3" Gray CONCRETE 11" Brown F-C SAND and S	SILT, some	No odor, no staining No odor,
		4 4			Moist		F-M Gravel, trace Concrete		black staining
10		2 2		10-12'	Saturated	12/24"	Gray F-M SAND and SILT,	trace F Gravel	No odor, no staining
11 —		3							Groundwater at 11'
 12 		3							
13									
	1								
— 14 — — —									
15 —									
16 —									
17 —	1								
10	-								
_ 18 <u></u>	1								
<u> </u>									
20									

Client: Fri	to-Lay						Boring No.: SB-27-5		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	743.034						Sheet 37 of 38	_	ry, NY 11797
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date: 10/14/2010		364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT	.")					
Method:	Hollow Ste	em Auger							
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); C.	Migliore, B.	Cruz (AD	T)			
Total Depth:	10'		Depth to Wa	ter:					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classificat	tion	Remarks
	0.0	7	SB-27-5	0-2'	Dry	8/24"	F-M SAND, some Silt, little	Red Brick,	No odor, no staining
1		8	(0-4)				trace Wood		
		14 11							
	0.0	23		2-4'	Dry	9/24"	F-M SAND, some Silt, little	Red Brick,	No odor, no staining
3		50/4					trace Wood		
_	_								
	0.0	11		4-6'	Dry	10/24"	7" Dark Brown F-C SAND a	nd F-M GRAVEI	No odor, no staining
		10					trace Concrete, trace Red Bri		8
	0.0	39 17					3" Gray CONCRETE		No odor, no staining
6 —	0.0	18		6-8'	Dry	6/24"	Dark Brown F-M SAND, sor	ne Silt, trace F	No odor, no staining
7		21					Gravel, trace Red Brick, trace	e Wood	
_	_	27 28							
8 —	0.0	21	SB-27-5	8-10'	Moist	12/24"	9" Dark Brown F-M SAND,	some Silt_trace	No odor, no staining
	0.0	10	(8-10)	0.10	TVIOISC	12/21	F Gravel, trace Red Brick, tra		Two odor, no stanning
9	11.1	7	,				3" F-C SAND, some F-M Gr		Organic odor,
10		6					Brick, trace Concrete		black staining
<u> </u>	4								Spoon and auger
11									refusal at 10'
	1								
12 —									
13 —									
<u> </u>	4								
—— 14 ——									
├ ─	1								
15									
16									
	_								
									
- <u>- </u>	1								
_ 18 <u></u>	<u> </u>								
– 19 –									
	_								
20							1		

Client: Frit	o-Lay						Boring No.:	SB-29		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1		·-	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	ľ			Date:	8/6/2010		364-4140
Drilling Co:	Aquifer Dı	rilling and	Testing (ADT)				Location of	of boring (not to so	cale)
Method:	Hollow Ste	em Auger					Soil Boring 29:			
Personnel:	B. Tiskowi	itz, M. Bor	ruso (GF); S. l	Miller, G. To	orres (AD7	.)				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	oil Classifica	tion	Remarks
_	0.0	11 12	SB-29 (0-4)	0-2'	Dry	16/24"	8" Brown SAN trace Red Brick		ome F-M Gravel,	No odor, no staining
— 1 ——		15			Dry		8" Dark Brown		Y SILT, some	No odor, no staining
_ 2		20			J		F-M Gravel, lit			<i>g</i>
<u> </u>	0.0	15 4		2-4'	Dry	9/24"	5" Brown SILT Red Brick	and F-M Gr	avel, trace	No odor, no staining
_ 3		3 4					4	NDY SILT,	some Red Brick	No odor, no staining
4 —	8.2	40	SB-29 (4-10)	4-6'	Dry	18/24"	3" Brown SILT	and F-M Gr	avel, trace	No odor, no staining
5		17 9			Dry		White Plastic	III TV SANI	and F-M Gravel	Petro. odor, staining
		9			Dry					No odor, no staining
6 —	0.0	44		6-8'	Dry	8/24"	Brown F SANI			No odor, no staining
<u> </u>		50/2					trace White Pla	stic, trace Re	ed Brick	
<u> </u>										
8 —	0.8	17		8-10'	Dry	11/24"	Brown F-M SII	LTY SAND.	some F Gravel,	No odor, no staining
_		10			J		trace White Pla		,	<i>g</i>
	•	4								
10		3								
11										
12										
	1									
13										
14										
15										
	1									
										
17										
— 18 —										
<u> </u>										
- 19 										
20										
20										

Client: Frit	o-Lay						Boring No.:	SB-30		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1		_	ry, NY 11797
Site Location:		lorgan Ave	, Brooklyn N	Y			Date:	8/9/2010		364-4140
Drilling Co:	Aquifer Dı	rilling and	Testing (ADT)				Location of	of boring (not to so	cale)
_	Hollow Ste		-				Soil Boring 30:			
Personnel:	B. Tiskowi	itz, M. Bor	ruso (GF); S. l	Miller, G. To	orres (AD7	Γ)				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth	PID	Blow	Sample	Depth	Moisture	Recovery	Sc	oil Classifica	tion	Remarks
(feet)	(ppm)	Counts	ID	(From-To)	Content	recovery		JII		TOMARIO
	0.7	11	SB-30 (0-4)	0-2'	Dry	20/24"	4" CONCRETE	E and F-M G	ravel	No odor, no staining
		14	, ,	,	Dry		16" Black F-C S			Slight Petro. odor,
_ '		21					little Concrete			black staining
2		28								
<u> </u>	6.2	35		2-4'	Dry	17/24"				No odor, no staining
3		48 50/2					8" Black F-C Salittle Wood, trac		· ·	Petro. odor, black staining
-		3012					nttic wood, trac	c Red Blick		orack starring
 4 	0.0	27	SB-30 (4-10)	4-6'	Dry	12/24"	Black F-C SILT	ΓY SAND ar	nd F-M Gravel,	Petro. odor,
_		11					little Wood, trac	ce Glass		black staining
		9								
 6 	0.0	10		6.01		1.5.10.411		E		NT 1
<u> </u>	0.0	28 15		6-8'	Dry Maist	15/24"	6" Gray F-C SA 9" F SANDY S			No odor, no staining Petro. odor,
 		15			Moist		Red Brick, trace		i Graver, trace	black staining
		18					Red Brick, trace	e Glass		orack starring
8 —	0.0	5		8-10'	Moist	8/24"	Black F-M SAN	NDY SILT, s	ome White Resin	No odor,
_ 9		2					trace Plastic, tra	ace Paper		black staining
_ ´ _		3								
10		3								
- -										
— 11 ——										
12 <i></i>										
13										
- -										
 14 										
15										
16 —										
 17 										
- -										
— 18 —										
_ 19 <u></u>										
20										

Client: Fri	to-Lay						Boring No.:	SB-31		g Engineers, P.C. ark Dr. W. Ste 300
Project #: 47	743						Sheet 1 of 1		-	, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn NY	Y			Date:	8/6/2010	(516) 3	64-4140
Drilling Co:			Testing (ADT					Location	n of boring (not to sca	le)
Method:	Hollow Ste			,			Soil Boring 31:			
Personnel:			ruso (GF); S. I	Miller, G. To	orres (AD]	Γ)	C			
Total Depth:	10'		Depth to Wat		N/A	,				
			<u> </u>					a 11 a1 1 1 1 1		
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	;	Soil Classifi	cation	Remarks
(ICCI)						0.40.411	D 51664		*** 1	
	0.0	10	SB-31 (0-4)	0-2'	Dry	8/24"	Brown F-M SA			No odor, no staining
— 1 —		12 6					trace Rope, trac Yellow Plastic	e Plastic Ba	g, trace	
	_	11					1 chow 1 lastic			
2	0.5	9		2-4'	Dry	10/24"	Dark Brown F S	SANDY SIL	T, little M Gravel,	No odor, no staining
_ 3		15			,				ace Steel Wool,	,
		13					trace Paper			
4		12								
	0.8		SB-31 (4-10)	4-6'	Dry	10.25/24"			SILT, some F Gravel	No odor, no staining
<u> </u>	2.3	11 11			Davi		little Red Brick	_		Petro. odor,
	2.3	9			Dry		Plastic	M Graver, u		no staining
 6 	0.2	7		6-8'	Dry	21/24"		F SANDY S		No odor, no staining
	-	27					trace Duct Tape		,	2 2
/		32			Dry		18" Black F-M		e Silt, trace	Petro. odor,
8		30					M Gravel			black staining
_ <u> </u>	0.3	59		8-10'	Dry	12/24"			ttle Silt, trace rope,	No odor, no staining
<u> </u>		50/0					trace Red Brick	t, trace Glass	i	
	4									
										
										
12										
_										
 13										
_	_									
										
15										
16										
										
	_									
– 18 –										
	1									
– 19 –										

Client:	Frit	o-Lay						Boring No.:	SB-32		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #	: 477	43						Sheet 1 of 1			ary, NY 11797
Site Loca	tion:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	8/10/2010	(516	364-4140
Drilling C	Co:	Aquifer D	rilling and	Testing (ADT)				Location of	f boring (not to	scale)
Method:		Hollow Ste	em Auger					Soil Boring 32	2:		
Personnel	l:	B. Tiskow	itz, M. Bor	ruso (GF); S.	Miller, G. To	orres (AD	Γ)				
Total Dep	oth:	10'		Depth to Wat	ter:	N/A	-				
depth (feet)		PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Se	oil Classificat	ion	Remarks
_ 1 _		0.4	N/A	SB-32 (0-4) DUP-3	0-2'	Dry	24/24"	Brown F-M S. Gravel, little C		e Wood,	Spoon refusal 0-2' Sample collected
_ 2 -								trace Red Brid			from 0-4' cuttings No staining
3 -		0.4	N/A		2-4'	Dry	24/24"	Brown F-M S. Gravel, little (Concrete, trace		No staining
Η,	_							trace Red Brid	CK		
4 - 5 -		1.2	29 32	SB-32 (4-10)	4-6'	Dry	17/24"	Dark Brown F F-M Gravel, l		,	No odor, no staining
			22 29					trace Red Brid			
<u> </u>		1.0	14 19		6-8'	Dry	24/24"	Gravel, trace l		e Silt, little F-M Red Brick,	Petro. odor, black staining
		4.0	21 11					trace Wood 14" Dark Brov			
<u> </u>		0.4			0.10	36.11	11/24!!	Gravel, little F			N T 1
<u> </u>		0.4	6 8 4		8-10'	Moist	11/24"	Dark Brown F M Gravel, trac			No odor, no staining
10 -			5								
11 -	-										
12											
13 -											
_ 14 -	-										
15 -	-										
_ 16 -											
— — 17											
_ _ 18	_										
_ 19 -											

Clie	nt:	Frit	o-Lay						Boring No.: SB-3	<i>)</i>	ning Engineers, P.C. s Park Dr. W. Ste 300
Proje	ect#	: 477	43						Sheet 1 of 1		ury, NY 11797
Site	Loca	tion:	202-218 M	Iorgan Ave	e, Brooklyn N	Y			Date: 8/9/20	10 (516	5) 364-4140
Drill	ing (Co:	Aquifer D	rilling and	Testing (ADT)			Loca	ion of boring (not to	scale)
Meth	nod:		Hollow Ste	em Auger					Soil Boring 33:		
Pers	onne	1:	B. Tiskow	itz, M. Bor	ruso (GF); S. I	Miller, G. To	orres (AD	Γ)			
Tota	l De _l	pth:	10'		Depth to Wat	er:	N/A				
	dept	h	PID	Blow	Sample	Depth	Moisture	Recovery	Soil Class	rification	Remarks
	(feet		(ppm)	Counts	ID	(From-To)	Content				
l-			0.0	2	SB-33 (0-4)	0-2'	Dry	8/24"	Gray F-C SAND, some	Silt, some F-M	No odor, no staining
<u> </u>	1 -			10 50/4					Gravel, trace Wood		
⊩			1	30/4							
	2 -		1.1	11		2-4'	Dry	12/24"	3.5" Black F-M SAND	, some Silt, trace	Petro. odor,
				12			,		Wood, trace Paper	,	black staining
	-		4.0	13					4.5" Gray F-M SAND,	some silt, little	No odor, no staining
	3 -			17					Concrete, trace Tile, tra		
<u> </u>	Ü								4" Black F-C SAND ar	nd F-M Gravel,	No odor,
 	-								trace White Plastic		some black staining
⊩											
<u> </u>	4 -		1.3	9	SB-33 (4-10)	4-6'	Dry	16/24"	6" Gray F-M SAND ar	d F Gravel trace	No odor
	_		1.5	15	SB 33 (1 10)	1 0	Diy	10/21	White Plastic	No odor some black staining	
	5 -		3.0	39			Dry		10" Black F-C GRAVI	EL, some Red Brick,	Petro. odor, black staining
	6 -			31			,		trace Metal		
	0 -		0.0	23		6-8'	Dry	10/24"	7" Black F-C SAND, li		No odor,
	7 -			5					F Gravel, trace Red Br	ck	black staining
 			0.1	10					3" Brown WOOD		No odor,
-	8 -		0.0	9		8-10'	Dry	16/24"	4" Black F-M SILTY S	AND some E Grave	black staining
			0.0	10		0-10	Diy	10/24	trace Red Brick	AND, some i Grave	black staining
	9 -		0.0	7			Dry		2" Red crushed BRICK	t, trace F-M Sand	No odor, no staining
	10		0.6	5			J		10" Black F-M SAND		Slight Petro. odor,
	10 -										black staining
<u> </u>	11 -										
 	-										
\vdash	12 -										
\vdash			-								
\vdash	13 -										
	1.4]								
	14 -										
	15 -										
L											
<u> </u>	16										
⊩											
⊩	17										
	18 -										

Client: Frit	to-Lay						Boring No.:	SB-34		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #: 477	743						Sheet 1 of 1		-	ary, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	8/9/2010	(516	3) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				Location o	f boring (not to	scale)
Method:	Hollow Ste	em Auger					Soil Boring 34			
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. l	Miller, G. To	orres (AD7	Γ)				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth	PID	Blow	Sample	Depth	Moisture	Recovery	S.	oil Classificat	ion	Remarks
(feet)	(ppm)	Counts	ID	(From-To)	Content	Recovery	30	ni Ciassificat	.1011	Remarks
	0.5	10	SB-34 (0-4)	0-2'	Dry	18/24"	8" Brown SIL7	TY F SAND a	and F-M Gravel,	No odor, no staining
		15			Ĭ		trace Wood, tra			,
_ 1	14.0	26			Dry		10" Black F-M			Strong Petro. odor,
2		15			_		Gravel, trace V			black staining
⊩ —	5.6	17		2-4'	Dry		Black F SAND			Strong Petro. odor,
3		50/4					little Wood, tra	ice Ked Brick		black staining
	1									
4	2.4	14	SB-34 (4-10)	4-6'	Dry	11.5/24"	4" Brown SIL7	TY F SAND a	and F Gravel,	No odor, no staining
		12			J		little Wood, tra		,	8
		19			Moist		7.5" Black F-M	I SAND, son	ne Silt, little	No odor,
6 —		18					M Gravel, trac			black staining
<u> </u>	10.0	11		6-8'	Dry		8" Brown F-C			No odor, no staining
7		12 7			Dry		M Gravel, track 3" Black F-M			Strong Petro. odor,
 		9			Dry		trace Red Brick		J, some wood,	black staining
8	6.7	29		8-10'	Dry		7" Brown F-C		-M Gravel,	No odor, no staining
		50/3			Ĭ		little Red Brick			,
							2" Black F-M	SAND, some	Red Brick,	No odor,
10							trace Wood			black staining
<u> </u>										
							1			
<u> </u>										
— 12 —										
13										
										
 - -	-									
15										
16	1									
16 —										
17										
L ' _										
– 18 –	<u> </u>									
⊩ –	-									
– 19 –										
F 20	1									
20										

Client: Frit	to-Lay						Boring No.:	SB-35		ning Engineers, P.C.
Project #: 477	743						Sheet 1 of 1		-	ary, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date:	8/6/2010		364-4140
Drilling Co:			Testing (ADT	')					f boring (not to	scale)
Method:	Hollow Sto						Soil Boring 35	:		
Personnel:		itz, M. Bor	ruso (GF); S.			Γ)				
Total Depth:	10'		Depth to Wa	ter:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Sc	oil Classificat	tion	Remarks
_	0.3	6 8	SB-35 (0-4)	0-2'	Dry	16/24"	12" Brown F S trace Plastic, tr		, little M Grave	No odor, no staining
1 —	5.0	14			Dry			_	some Red Brick.	Slight Petro. odor,
_ 2		15					trace M Grave			black staining
	1.8	19		2-4'	Dry	8.75/24"	Black F-M SII		little Green	Slight Petro. odor,
3 —		15					Plastic, trace C	Cloth		black staining
<u> </u>	_	50/3								
4 —	0.0	33	SB-35 (4-10)	4-6'	Dry	6/24"		SANDY SIL	T, some Wood,	No odor, no staining
5		39 26					trace F Gravel			
├ ृ —		13								
6 —	0.8	20		6-8'	Dry	12.5/24"	Black SILTY I	F-M SAND, I	little F Gravel,	Organic odor,
7		35					trace Plastic, tr	ace Metal		black staining
<u> </u>	_	44								
8 —	0.8	14 58		8-10'	Derri	19/24"	Doult Brown E	MCANDY	SILT, some Red	No odon
├ . —	0.8	50/0		8-10	Dry	19/24	Brick, little Me			some black staining
9 —		2 3, 3						,		g
10										
L	_									
11							 			
├										
12 —										
13										
- -	4									
							 			
├ . _.	†									
15										
16 —							ļ			
<u> </u>	4									
							ļ			
F	†									
_ 18							†			
19 —										
⊩	1									
20							<u> </u>			
<u> </u>			<u> </u>							

Client: Frit	o-Lay						Boring No.:	SB-36		eming Engineers, P.C. ays Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1		Wood	lbury, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn NY				Date:	8/9/2010	(5	16) 364-4140
Drilling Co:	Aquifer Dr	illing and	Testing (ADT)					Location	of boring (not t	o scale)
_	Hollow Ste	em Auger	•				Soil Boring 36	:		
			ruso (GF); S. Miller,	G. Torres (ADT)					
Total Depth:	10'		Depth to Water:		N/A					
-			1				_			
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		il Classificati		Remarks
	0.0	N/A	SB-36 (0-4) SB-36 (0-4)MS	0-2'	Dry	24/24"	Dark Brown F- Gravel, some V			Spoon refusal 0-2', Sample collected from 0-4' cuttings
			SB-36 (0-4)MSD				Paper, trace Pla	astic Bag, trac	ce Red Brick	No odor, no staining
	0.0	N/A		2-4'	Dry	24/24"	Dark Brown F- Gravel, some V			No odor, no staining
_ 3							Paper, trace Pla			
4 —	N/A	27 35		4-6'	N/A	None	1			No recovery 4-6'
_ 5		24 50					1			
6 —	0.8	21 41	SB-36 (6-10) DUP-2	6-8'	Moist	9/24"	Dark Brown F- trace Red Bricl			Petro. Odor, black staining
7 —		19 36	Der 2				Truce Rea Brief	a, trace wood	•	onek staming
- 8	0.5	50/3		8-10'	Moist	7.5/24"	Dark Brown F- trace Red Brick		d F Gravel,	Light Petro. odor, black staining
9 —										3
10 —							1			
11 							1			
12 —							1			
13							1			
14 —							1			
15										
16							1			
17							}			
18										
19										
20										

Client: Fri	to-Lay						Boring No.: S	D-3/ I	eming Engineers, P.C. ays Park Dr. W. Ste 300
Project #: 477	743						Sheet 1 of 1		dbury, NY 11797
-		Iorgan Ave	, Brooklyn NY				Date: 8/1		516) 364-4140
Drilling Co: Method: Personnel: Total Depth:	Hollow St	em Auger	ruso (GF); S. Miller Depth to Water:	, G. Torres (ADT) N/A		Soil Boring 37:	Location of boring (not	to scale)
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil	Classification	Remarks
	0.3	N/A	SB-37 (0-4) SB-37 (0-4)MS SB-37 (0-4)MSD	0-2'	Dry	24/24"	Dark Brown F SAN Gravel, little Paper, White Plastic, trace		Spoon refusal 0-2', Sample collected from 0-4' cuttings Organic odor, no staining
3 —	0.3	N/A		2-4'	Dry	24/24"	Dark Brown F SAN Gravel, little Paper, White Plastic, trace		
5	1.2	11 14 9 10	SB-37 (4-10)	4-6'	Dry	19/24"	Gravel, some Red F 9" Gray F-C SAND	NDY SILT and F-M Brick, trace Wood DY SILT, some F-M Grave Red Brick, Wood, Glas	
7 —	1.3	6 7 9 3		6-8'	Moist	7/24"	Brown F-C SANDY Wood	Y SILT and F Gravel, tra	Petro. odor, black staining
9 —	0.3	4 6 2 4		8-10'	Dry	7.5/24"	Brown F-C SANDY trace Wood	Y SILT and F Gravel,	Petro. odor, black staining
10									
12 13									
14 — 14 — — 15 — — 15 — — 15 — — — — — — — — —									
16 17									
18 19									

Client: Frit	o-Lay						Boring No.:	SB-38		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1		_	ury, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	8/6/2010	(516	5) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				Location o	f boring (not to	scale)
Method:	Hollow Ste						Soil Boring 38	:		
	B. Tiskow	itz, M. Bor	ruso (GF); S. I			Γ)				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	oil Classificat	ion	Remarks
_ 1	3.2	7 12	SB-38 (0-4)	0-2'	Dry	9.5/24"	Brown F SAN some Wood, tr			No odor, no staining
<u> </u>		4 50/1								
2 —	4.0	11		2-4'	Dry	16/24"			some F Gravel,	No odor, no staining
3		11 11			Dry		some Wood, tr 9" Gray CONO	_		
		50/4			Dry		4" Black F-M		d Wood, trace	Petro. odor,
							Red Brick			black staining
4 —	3.0	30 41	SB-38 (4-10)	4-6'	Dry	10/24"	2" F SANDY S Plastic	SILT and M	Gravel, trace	No odor, no staining
5		5					8" Gray CONO	CRETE		No odor, no staining
6 —		50					, 1	-		,
_ 0	1.4	25		6-8'	Dry	14/24"	Black F-M SA			Petro. odor,
7		46 50/1					M Gravel, trac	e Wood, trac	e Plastic	black staining
- -		30/1								
8 —	2.1	20		8-10'	Dry	11/24"	Dark Brown F			No odor, no staining
9 —		17 50/1					M Gravel, trac	e Glass, trace	e Paper	
10	1	50/1								
10 —										
<u> </u>										
_										
12 —										
13										
 14 										
15										
15										
16 —										
_										
- 17 										
<u> </u>							i i			
19										
			<u> </u>							

Client: Frit	o-Lay						Boring No.:	SB-39		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1		·-	y, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn NY	Y			Date:	8/6/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				Location	of boring (not to sc	ale)
Method:	Hollow St	em Auger					Soil Boring 39:	:		
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. l	Miller, G. To	orres (AD7	Γ)				
Γotal Depth:	10'		Depth to Wat	er:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	S	Soil Classifica	ntion	Remarks
_	0.0	8 10	SB-39 (0-4)	0-2'	Dry		10" Brown F-M trace Plastic, tr			No odor, no staining
1 		7 9			Dry			F-M SILTY	SAND, little M	No odor, no staining
_ 2	0.7	8		2-4'	Dry	7/24"	Brown F-M SII	LTY SAND,	little M Gravel,	No odor, no staining
_ 3		50/2					trace Plastic, tr	ace Duct Tap	e, trace Tile	
_ 4	4.0	4 6	SB-39 (4-10)	4-6'	Dry		Brown F SILT trace Rope	Y SAND, litt	le F Gravel,	No odor, no staining
_ 5		14 10					uude mape			
6 —	1.3	7 11		6-8'	Dry		Black F SAND Paper, trace Gl		·	Petro. odor, black staining
_ 7		14 19					i apei, trace Gi	ass, trace Rec	I BICK	black staining
- 8 - 9	0.6	66 100/3		8-10'	Dry	8/24"	Black F SAND	Y SILT and	F-M Gravel	Petro. odor, black staining
 11										
<u> </u>	•									
- — 14 ——										
-										
16										
<u> </u>										
- 18 										
- 19 -										
20										

Client: Fri	to-Lay						Boring No.: SB-40		ming Engineers, P.C.
Project #: 47	743						Sheet 1 of 1	_	oury, NY 11797
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date: 8/10/201		6) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT	')			Locati	on of boring (not to	scale)
Method:	Hollow Ste						Soil Boring 40:		
Personnel:		ritz, M. Bor	ruso (GF); S.			Γ)			
Total Depth:	10'	•	Depth to Wat	ter:	N/A				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifi	cation	Remarks
	2.3	N/A	SB-40 (0-4)	0-2'	Dry	24/24"	Black F-M SANDY SILT		Spoon refusal 0-2', Sample
<u> </u>							little Wood, trace Tile, trace Blue Plastic	ce Red Brick,	collected from 0-4' cuttings Organic odor, black staining
2	2.3	N/A		2-4'	Dry	24/24"	Black F-M SANDY SILT	and F-M Gravel,	Organic odor,
_ 3					·		little Wood, trace Tile, tra		black staining
							trace Blue Plastic		
 4 	0.5	29	SB-40 (4-10)	4-6'	Dry	15/24"	Black F SANDY SILT, li	ttle F Gravel, trace	No odor.
		21		. •	5		Wood, trace Red Brick, tr		black staining
		11 7							
<u> </u>	2.0	8		6-8'	Dry	8/24"	Gray F SAND, little Silt,	some F Gravel,	No odor, no staining
7		4					trace Red Brick, trace Gla	ss, trace Metal,	
		3					trace Concrete		
8 —	0.5	6 4		8-10'	Dry	6/24"	Brown F-M SAND, some F Gravel, trace Red Brick		No odor, no staining
9 <u></u>		3							
10		4							
	_								
 12 									
13									
	_								
									
15									
									
<u> </u>									
17									
— 18 —									
	_								
20									

Client: Fri	to-Lay						Boring No.: SB-4	1 1	ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 47	743						Sheet 1 of 1		y, NY 11797
Site Location:	202-218 N	Iorgan A	ve, Brooklyn	NY			Date: 8/4/20	10 (516)	364-4140
Drilling Co:	Aquifer D	rilling an	d Testing (Al	DT)			Loca	tion of boring (not to se	cale)
Method:	Hollow St	em Auge	r				Soil Boring 41:		
Personnel:	B. Tiskow	itz, M. B	orruso (GF);	S. Miller, G	. Torres (A	ADT)			
Total Depth:	12'	i	Depth to Wa	iter:	12'				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Clas	sification	Remarks
	0.0	16 5	SB-41 (0-4)	0-2'	Dry	9/24"	Black F-M SAND, sor	ne Gravel	Slight Petro. odor Black staining
_ 2	_	6 11							
├	0.0	22 50/2		2-4'	Dry	10.5/24"	Black F-M SAND, sor	ne Gravel	Slight Petro. odor Black staining
3 —									
4 —	0.0	13 30	SB-41 (4-11)	4-6'	Dry	11.5/24"	1.5" Brown SILTY F-l trace Asphalt, trace W		, No odor, no staining
_ 5		50/4			Dry		6" Dark Brown SILTY Gravel, trace Wood		No odor, no staining
6 —	1.6	16		6-8'	Dry	20/24"	9" Brown F-M SAND	some F Gravel	No odor, no staining
7 —		25			Dry		2.5" Black stained WO		Petro odor, staining
<u> </u>	4	11			Dry		4" crushed Red BRICI		No odor, no staining
— 8 —		10			Dry		5.5" Black SILTY F-M trace M Gravel	I SAND and F Gravel,	Petro odor, staining
	0.3	7		8-10'	Dry	4.25/24"	Brown F-M SAND and	d F Gravel, trace M	No odor, no staining
├		7 4					Gravel, trace Red Bric	k	
10 —	0.0	6		10-12'	Dry	17.5/24"	5" Dark Brown F SILT	Y SAND, some M	No odor, no staining
<u> </u>		5			Dry		Gravel		
<u> </u>	_	5 4			Dry Wet		2.5" Brown F SILTY S 4.5" Brown F-M SAN		No odor, no staining No odor, no staining
12 —		7			vv Ct		5" Black F-M SAND,		_
13							Sand		Black staining
_ 13 _									Groundwater at 12'
14									
15 —									
16									
<u> </u>									
18 —									
— 19 —									
	-								

Client: Fri	to-Lay						Boring No.: SI	B-42		ming Engineers, P.C. ys Park Dr. W. Ste 300
Project #: 477	743						Sheet 1 of 1			oury, NY 11797
		Iorgan Av	e, Brooklyn NY				Date: 8/5/	/2010		6) 364-4140
Drilling Co:			Testing (ADT)						of boring (not to	
Method:	Hollow Ste						Soil Boring 42:		8 (,
Personnel:			orruso (GF); S. Mille	ar G Torres	(ADT)		Son Bornig 42.			
Total Depth:	10'		Depth to Water:	1, G. 1011Cs	N/A		1			
Total Depth.	10									
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery		assificati		Remarks
	30.1	N/A	SB-42 (0-4) SB-42 (0-4) MS	0-2'	Dry	24/24"	Black F SANDY SII Wood	LT and l		Sample collected
			SB-42 (0-4) MSD DUP-1							from 0-4' cuttings No odor, black staining
	30.1	N/A		2-4'	Dry	24/24"	Black F SANDY SII Wood	LT and l	F Gravel, some	No odor, black staining
	1.5	15 15	SB-42 (4-10)	4-6'	Dry Dry	17/24"	7" Black F-M GRA' 7" Black F-M GRA'			No odor, black staining No odor, black staining
		22 50			•		trace Red Brick, trac 3" Black WOOD, lit	ce Glass		Slight Petro. odor
_ 6	0.3	20 35		6-8'	Dry	9/24"	Black F-M GRAVE little Orange painted	L and F	-C Sand,	Slight Petro. odor, black staining
7 —		23 48								<i>9</i>
8 —	0.4	15 20		8-10'	Dry	3/24"	Black F-M GRAVE little Orange painted			Slight Petro. odor, black staining
9 —		25 38								
10 —										
11 —										
12 —										
13										
14 —										
15 —										
16 —										
17 —										
_ 18 <u></u>										
<u> </u>										
20										

Project #: 47743Sheet 1 of 1Woodbury, NY 11797Site Location: 202-218 Morgan Ave, Brooklyn NYDate: 8/5/2010(516) 364-4140Drilling Co: Aquifer Drilling and Testing (ADT)Location of boring (not to scale)	Client:	Frit	o-Lay						Boring No.:	SB-43		eming Engineers, P.C. ys Park Dr. W. Ste 300
Site Location 20-218 Morgan Ave, Brooklyn NY Date: 8/5/2010 (516) 364 4140	Project #:	477	43						Sheet 1 of 1			
Method: Hollow Stem Auger B. Tiskowitz, M. Borniso (GF); S. Miller, G. Torres (ADT)	Site Locat	ion:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	8/5/2010		
Methods Meth	Drilling C	o:	Aquifer D	rilling and	Testing (ADT	')				Location	of boring (not to	scale)
Personner B. Tiskowitz, M. Borruss (GF); S. Miller, G. Torres (ADT)	Method:				<u> </u>	•			Soil Boring 43:			
Total Depth: S					ruso (GF); S.	Miller, G. To	orres (AD	Γ)	C			
depth (feet)				,								
Circle Circle Circle Counts C			DVD	D.	_			_	G '1	G1 16"	.	
14.8								Recovery	Soil	Classificat	ion	Remarks
1	(Icci)					,		2.4/2.411	D. 1 D. 2 L. 1 D. 1			
1	_		14.8	N/A	SB-43 (0-4)	0-2'	Dry	24/24"		SILT, som		
14.8									Metai			_
14.8	_											~
Metal Metal No staining	2		14.8	N/A		2-4'	Drv	24/24"	Black F SANDY	SILT, som		_
1.0 50 5B-43 (4-8) 4-6' Dry 19/24" 7.5" Brown F SILTY SAND, little F Gravel, Inco dor, no staining trace Circuit Board Material, trace Glass 18 20 11/24" 17 18 18 18 19 11/24" 18 18 18 19 11/24" 18 18 18 19 19 19 19 19	_ ,			-			,	-		,		
1.0 50 SB-43 (4-8) 4-6' Dry 19/24' 7.5" Brown F SILTY SAND, itate F Gravel, No odor, no staining trace Circuit Board Material, trace G lass 11" Black F SILTY SAND, trace M Gravel, trace Wood, trace Glass 11" Black F SILTY SAND, some F-M Gravel, trace Wood, trace Glass 11" Brown F SILTY SAND, some F-M Gravel, trace Wood, trace Glass 4" Dark Brown F SILTY SAND, some F Gravel, trace Wood, trace Glass 8									*			-
1.0 50 SB-43 (4-8) 4-6' Dry 19/24' 7.5" Brown F SILTY SAND, itate F Gravel, No odor, no staining trace Circuit Board Material, trace G lass 11" Black F SILTY SAND, trace M Gravel, trace Wood, trace Glass 11" Black F SILTY SAND, some F-M Gravel, trace Wood, trace Glass 11" Brown F SILTY SAND, some F-M Gravel, trace Wood, trace Glass 4" Dark Brown F SILTY SAND, some F Gravel, trace Wood, trace Glass 8	4 _								ı			
33	_		1.0		SB-43 (4-8)	4-6'	Dry	19/24"				No odor, no staining
Company Comp	5 _						-		•			.
1	<u> </u>	_					Dry				trace M Gravel,	No odor, no staining
Total Program Total Progra			4.1			6-8'	Dry	11/24"			some F ₋ M	
Soli	<u> </u>		1.1			0 0	Diy	11/21				
F Gravel, trace Wood, trace Glass Refusal at 8', no recovery 10							Dry					
N/A N/A N/A 8-10' N/A N/A Refusal at 8, no recovery 10							Ĭ					
			N/A	N/A	N/A	8-10'	N/A	N/A				Refusal at 8',
	9 _											no recovery
	L											
												
	_											
									,			
	12											
	12								*			
	13											
	_											
												
	_											
	—— 15 —								,			
	_											
	— 16 —								•			
	_ 17											
	– 18											
	_	_										
	- 19											
	_	_										
	20								•			

Client: Fri	to-Lay						Boring No.:	SB-44		g Engineers, P.C. Park Dr. W. Ste 300
Project #: 47	743						Sheet 1 of 1		_	, NY 11797
Site Location:		Iorgan Ave	, Brooklyn N	Y			Date:	8/6/2010	·	364-4140
Drilling Co:			Testing (ADT					Location	of boring (not to sca	ale)
Method:	Hollow St			<i>,</i>			Soil Boring 44:			
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. I	Miller, G. To	orres (ADT	Γ)				
Total Depth:	10'		Depth to Wat	er:	N/A					
-1 41-	PID	Blow	Camarila	Danish	Moisture	D		Soil Classific	nation	Remarks
depth (feet)	(ppm)	Counts	Sample ID	Depth (From-To)	Content	Recovery	, c	SOII CIASSIIIC	cation	Remarks
	1.0	11	SB-44 (0-4)	0-2'	Dry	17/24"	8 5" Brown F S	II TV SANI) little F-M Gravel	No odor, no staining
	1.0	7	3D-44 (0-4)	0-2	Diy	17724			ood, trace Glass	140 odor, no stanning
— 1 —		6			Dry					Petro. odor,
		5			,		trace Wood			black staining
	0.4	10		2-4'	Dry	13/24"			and F-M Gravel,	No odor, no staining
<u> </u>	0.5	13			_				rire, trace Wood	
	0.7	11			Dry		8" Black F-M C			Petro. odor,
4	2.1	7	SB-44 (4-10)	4-6'	Dry	13/24"	some Steel Woo 7" Dark Brown			black staining No odor, no staining
—	2.1	7	SD-++ (+-10)	4-0	Diy	13/24	Gravel, trace W			140 odor, no stanning
<u> </u>		9			Dry		6" Black F-M S		-	Petro. odor,
6		21			·		trace Wood, tra	ce Paper		black staining
_	1.1	22		6-8'	Dry	22/24"			ND, trace Plastic,	No odor, no staining
 7		20					trace Wood, tra	ce Paper, tra	ce Glass	
	_	10 55								
8	1.1	48		8-10'	Dry	8.25/24"	3 5" Brown F-N	A SII TV SA	ND some F Gravel	No odor, no staining
	1.1	50/1		0-10	Diy	0.23/24			ce White Plastic	140 odor, no staming
<u> </u>					Dry			_	, some F Gravel,	Black staining
10					-			_	ce White Plastic,	No odor
	_						trace Plastic Ba	ıg		
										
12										
13										
										
	_									
15										
	_									
 16 										
– 18 –										
	-									
– 19 –										
	1									
20										

Client: Fri	to-Lay						Boring No.: SB-45		ming Engineers, P.C.
Project #: 47	743						Sheet 1 of 1	_	oury, NY 11797
Site Location:	202-218 N	Iorgan Av	ve, Brooklyn N	Y			Date: 8/4/2010	(510	6) 364-4140
Drilling Co:	Aquifer D	rilling and	d Testing (ADT)			Location of	of boring (not to	scale)
Method:	Hollow St						Soil Boring 45:		
Personnel:		itz, M. Bo	orruso (GF); S.			Γ)			
Total Depth:	10'		Depth to Wate	er:	10'				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifica	tion	Remarks
_	0.0	8	SB-45 (0-4)	0-2'	Dry	12/24"	2" CONCRETE, 2" Brown	SAND, some F	
_ 1		11 10			Dry		Gravel, trace Red Brick 8" Dark Brown SILTY SA	ND some	No staining No odor, no staining
├	1	15			Diy		F Gravel, trace Red Brick	ND, Some	No odor, no stanning
	0.2	30		2-4'	Dry	17/24"	8" Gray CONCRETE		
3		13			Dry		9" Dark Brown F SAND ar	nd Silt, trace	
<u> </u>	1	15 9					M Gravel		
4 —	0.6	5	SB-45 (4-10)	4-6'	Dry	7/24"	Gray CONCRETE		No odor
_ 5		4					·		No staining
L _	4	5							
6 —	1.0	5		6-8'	Dry	6.5/24"	Gray CONCRETE		No odor
├ ,	1.0	5		0 0	Diy	0.3721	Giay Corvered L		No staining
		4							-
8 —	0.0	4		0.101	ъ.	10/24!!	0.75" D. 1.D. EGANT	NV CH T	N. 1
<u> </u>	0.0	27 8		8-10'	Dry	10/24"	8.75" Dark Brown F SANI F Gravel, trace Red Brick	OY SIL1, trace	No odor No staining
9 —		3			Wet		1.25" Dark Brown F SANI	OY SILT, trace	No odor
10		1					F Gravel, trace Red Brick		No staining
<u> </u>									Groundwater at 10'
11									
12 —									
13									
├ 14									
14 —									
15									
⊩ –	_								
16 —									
17 —									
⊢	-								
_ 18									
10	1								
19 —									
20									

Client: Frit	to-Lay						Boring No.: SB-46		eming Engineers, P.C. ys Park Dr. W. Ste 300
Project #: 477	743						Sheet 1 of 1	· ·	bury, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 8/9/2010	(51	6) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)			Location	of boring (not to	scale)
Method:	Hollow Ste	em Auger					Soil Boring 46:		
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. I	Miller, G. To	orres (AD7)			
Total Depth:	10'		Depth to Wat	er:	N/A				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classificat	ion	Remarks
` /	34.8	N/A	SB-46 (0-4)	0-2'	Dry	24/24"	Black F SANDY SILT, som	ne F-M Gravel	Spoon refusal 0-2', Sample
	3 1.0	14/21	SB 10 (0 1)	0.2	Diy	21/21	little Wood, trace Glass, trac		collected from 0-4' cuttings
1							trace Metal, trace Paper	,	Petro. odor,
_ 2									black staining
	37.8	N/A		2-4'	Dry	24/24"	Black F SANDY SILT, som		Petro. odor,
3							little Wood, trace Glass, trac	e Plastic,	black staining
	1						trace Metal, trace Paper		
4 	20.0	20	SB-46 (4-10)	4-6'	Dry	10/24"	4" Brown F SANDY SILT,	little E Grevel	No odor, no staining
- -	20.0	10	SD-40 (4-10)	4-0	Diy	10/24	trace Gray Plastic	ilule F Glavel,	No odor, no stanning
5		9			Dry		6" Black F SANDY SILT at	nd F-M Gravel.	Petro, odor,
_		13			,		little Concrete, trace Paper,		black staining
							trace Green Plastic		
<u> </u>									
_	8.4	18		6-8'	Dry	22/24"	Black F-M SANDY SILT at		· ·
— 7 ——		21					some Wood, trace Glass, tra	ce Plastic,	black staining
		37 17					trace Red Brick		
 	8.0	18		8-10'	Dry	15/24"	Black F-C SAND and Silt, s	ome F-M	Petro. odor,
	0.0	21		0-10	Diy	13/24	Gravel, little Wood, trace Pl		black staining
 9 		37					Paper, trace Glass		
10		17					•		
— 11 ——									
<u> </u>	-								
12							-		
	1								
13									
14	1								
14							1		
15									
 16 									
- -	1								
- 17 							1		
10	1								
18							1		
19									
19									

Client: Frit	to-Lay						Boring No.: SB-47		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	43						Sheet 1 of 1	-	y, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn NY	7			Date: 8/5/2010	(516)	364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT))			Location	of boring (not to sc	ale)
Method:	Hollow Ste						Soil Boring 47:		
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. N	Miller, G. To	rres (ADT)	-		
Total Depth:	10'		Depth to Wate	er:	N/A				
J4l-	DID	D1	C1-	Danth	Moisture	D	Soil Classific	ation	Damada
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Content	Recovery	Son Classific	ation	Remarks
(reet)	5.7		SB-47 (0-4)			24/24"	Dla ala E M CH TV CAND	iula M.Cassal	C
	3.7	N/A	SB-47 (0-4)	0-2'	Dry	24/24"	Black F-M SILTY SAND, I trace Glass, trace Plastic, tra		Spoon refusal 0-2' Sample collected
 1 							trace Wood	ice i apei,	from 0-4' cuttings
	1						uace wood		No odor, no staining
2	5.7	N/A		2-4'	Dry	24/24"	Black F-M SILTY SAND, I	ittle M Gravel.	No odor, no staining
					,		trace Glass, trace Plastic, tra		<i>8</i>
3							trace Wood		
_									
	10.0	8	SB-47 (4-10)	4-6'	Dry	6.5/24"	Black F-M SILTY SAND,		No odor,
5		17					trace Paper, trace Metal, tra	ce Blue Plastic	black staining
<u> </u>		12							
6	5.0	17 21		6-8'	Desi	20/24"	4" Danson E CH TV CAND	EM Consul	Datus adau
-	3.0	29		0-8	Dry	20/24"	4" Brown F SILTY SAND, little Wood, trace Green Gla		no staining
 		54					16" Black F-C SILTY SAN		C
_		61					some Red Brick, trace Black		black staining
							Metal, trace Wire	,	δ
_	6.3	60		8-10'	Dry	7/24"	Dark Brown F-M SILTY SA		No odor, no staining
9		50/2					Gravel, trace Paper, trace W	hite Plastic	
_									
10									
									
	1								
12 —									
13									
<u> </u>									
15									
-									
 16 									
- 17 									
10]]								
 19 									
	I								

Client: Frito-Lay Boring No.: SB-48	Crossways Park Dr. W. Ste 300
Project #: 47743 Sheet 1 of 1	Woodbury, NY 11797
Site Location: 202-218 Morgan Ave, Brooklyn NY Date: 8/6/2010	(516) 364-4140
Drilling Co: Aquifer Drilling and Testing (ADT) Location of bori	ring (not to scale)
Method: Hollow Stem Auger Soil Boring 48:	
Personnel: B. Tiskowitz, M. Borruso (GF); S. Miller, G. Torres (ADT)	
Total Depth: 6' Depth to Water: N/A	
depth (feet) PID Blow Sample Depth Moisture Recovery Soil Classification (From-To) Content	Remarks
	M Gravel, No odor, no staining
5.9 17 2-4' Dry 8.5/24" F-M SAND and Metal, trace Wi	ire, trace No odor, no staining
2 16 Wood	
3 42	
11.0 20 SB-48 (4-6) 4-6' Dry 11/24" 10" Brown F SILTY SAND, sor Gravel, trace Wood, trace Glass,	-
	ace Rock, No odor, no staining
5 N/A N/A N/A 6-10' N/A None	Refusal at 6',
6	no recovery
_ 8	
10	
12	
13	
15	
16	
17	
18	
19	

Client: Fri	to-Lay						Boring No.: SB-49		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #: 47	743						Sheet 1 of 1	_	ury, NY 11797
•		Iorgan Ave	, Brooklyn NY				Date: 8/4/2010		5) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				Locatio	of boring (not to	scale)
Method:	Hollow Ste	em Auger					Soil Boring 49:		
Personnel:	J. Ferngrei	n, B. Tisko	witz, M. Borru	so (GF); S. N	Miller, G. T	orres (ADT)			
Total Depth:	12'		Depth to Wate	er:	12'				
depth (feet)	PID	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classifi	cation	Remarks
	N/A	N/A		0-2'	N/A	N/A			Refusal 0-2',
 1 									no recovery
	-								
2	0.0	3	SB-49 (0-4)	2-4'	Dry	10/24"	6" ASPHALT		No odor, no staining
_ 3	0.0	15	55 17 (0 1)	2 '	Dry	10/21	2.5" C GRAVEL, some I	-M Dark Brown	rio odor, no staming
		6					Sand		
 4		3	~~		Dry		1.5" Brown M GRAVEL		
	0.1	7 7	SB-49 (4-10)	4-6'	Dry	8/24"	Brown M GRAVEL, son	e F-M Dark	No odor, no staining
<u> </u>		6					Brown Sand, trace Wood		
	1	6							
6 —	0.0	4		6-8'	Dry	4/24"	Brown M GRAVEL, son		No odor, no staining
<u> </u>		3					Brown Sand, trace Wood	trace Red Brick	
<u> </u>		6 2							
8	0.0	5		8-10'	Dry	13/24"	Brown M GRAVEL, son	e F-M Dark	No odor, no staining
_		5		0 10	21)	10,2.	Brown Sand, trace Wood		rie euer, ne summig
		3							
	27/4	6	27/4	10.121	27/4				G
	N/A	5 2	N/A	10-12'	N/A	None			Spoon wet at bottom
		3							No recovery
12 <i></i>		2							
13									
<u> </u>									
 14 									
15									
									
	-								
									
	<u> </u>								
- 10									
— 19 —									
<u> </u>	1								
20									

Client: Frit	to-Lay						Boring No.:	SB-50		ning Engineers, P.C.
Project #: 477	743						Sheet 1 of 1		-	ary, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y			Date:	8/9/2010		364-4140
Drilling Co:			Testing (ADT)					f boring (not to	scale)
Method:	Hollow Ste						Soil Boring 50	:		
Personnel:		itz, M. Bor	ruso (GF); S. I			Γ)				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Sc	oil Classificat	ion	Remarks
	0.2	10 11	SB-50 (0-4)	0-2'	Dry		Brown F SANI trace White Pla			No odor, no staining
		14 40								
2	0.0	28		2-4'	Dry	12.5/24"	Brown F SANI	DY SILT, so	me F-M Gravel,	No odor, no staining
_ 3		50/3			•		trace White Pla Glass	astic, trace Ro	ed Brick, trace	
4 —	0.1	9	SB-50 (4-10)	4-6'	Dono	18/24"		NDdEM	Constant	Clické Deéna a dan
	0.1	24	3B- 30 (4-10)	4-0	Dry	16/24	Black F-M SA Glass, trace W		Graver, trace	Slight Petro. odor, black staining
		29 15								
6 —	4.3	19		6-8'	Dry	9.5/24"				No odor, no staining
7 —		20 14			Dry		Gravel, trace T 2" Red BRICK			No odor, no staining
8 —	0.5	10 7		8-10'	Dry	5.5/24"	Brown F-M SA	MDV CII T	aama E M	No odor, no staining
9 —	0.5	5		6-10	Diy	5.3/24	Gravel, trace T		Some r-wi	No odor, no stanning
<u> </u>	1	3								
10 —										
 11 										
12 —										
<u> </u>	-									
13										
 14 										
15 —	<u> </u>									
<u> </u>										
16										
17										
_ 18										
├ —										
20										

Client: Frit	o-Lay						Boring No.:	SB-51		ing Engineers, P.C. Park Dr. W. Ste 300
Project #: 477	'43						Sheet 1 of 1		•	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn NY	<i>Y</i>			Date:	8/9/2010	(516)	364-4140
Drilling Co:	Aquifer Dı	rilling and	Testing (ADT)				Location o	of boring (not to s	cale)
Method:	Hollow Ste	em Auger					Soil Boring 51:			
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. l	Miller, G. To	orres (ADT	. ()				
Total Depth:	10'		Depth to Wat	er:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	il Classificat	tion	Remarks
_	0.5	N/A	SB-51 (0-4)	0-2'	Dry	24/24"	Brown F SILTY	SAND and	Concrete,	Spoon refusal 0-2'
— 1 —							some F-M Grav	el		Sample collected
_										from 0-4' cuttings
2	0.5	N/A		2-4'	Derv	24/24"	Dansum E CH TV	CAND and	Camarata	No staining, no odor No staining, no odor
<u> </u>	0.5	IN/A		2-4	Dry	24/24"	Brown F SILTY some F-M Grav		Concrete,	No stanning, no odor
3							some i wi Giav	01		
_										
_	0.0	40	SB-51 (4-8)	4-6'	Dry	23.5/24"	3" Brown F-M S			No odor, no staining
5		37					Gravel, some Re		ce Wood	
		18 15					14" CONCRET 6.5" Black F SA		some Ped	No odor, no staining Petro. odor,
		13					Brick, trace Wo		, some Keu	black staining
							Diren, auce (10			oracii staming
6	0.2	30		6-8'	Dry	23/24"	7" Gray F-M SA	NDY SILT	and F-M Gravel	No odor, no staining
<u> </u>		19					little Red Brick,	trace Black	Plastic, trace	
<u> </u>		12					Paper		T. IEM	Cl' da Datas a la s
		16					16" Black F-M S Gravel, trace Re		LI and F-M	Slight Petro. odor, black staining
							Graver, trace Re	d Dilek		black staining
8 —	N/A	12		8-10'	N/A	None				Refusal at 8',
9		10								no recovery
		15								
10		8								
 11 										
12										
13										
_										
 14 										
15										
15										
- 16 										
- 17 										
10										
18										

Client: Fri	to-Lay						Boring No.:	SB-52		ning Engineers, P.C.
Project #: 477	743						Sheet 1 of 1		-	ıry, NY 11797
Site Location:	202-218 N	Iorgan Ave	e, Brooklyn N	Y			Date:	8/6/2010) 364-4140
Drilling Co:			Testing (ADT	')					f boring (not to	scale)
Method:	Hollow Sto						Soil Boring 52:			
Personnel:		itz, M. Bor	ruso (GF); S.			Γ)				
Total Depth:	10'		Depth to Wat	ter:	N/A					
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	il Classificat	ion	Remarks
	0.0	9 7	SB-52 (0-4)	0-2'	Dry	9/24"	Brown F SILT: little Plastic, tra			No odor, no staining
	_	7								
2	0.0	5 17		2-4'	Dry	10/24"	Brown F SANI	OY SILT and	F-M Gravel	No odor, no staining
		50/1			21,		little Rope, trac		7 117 014 (01,	rve eder, ne summig
4 —	3.0	20 17	SB-52 (4-10)	4-6'	Dry	12/24"	8" Brown F SA trace Plastic Ba			No odor, no staining
5 —		6 4			Dry		4" Black F-M (Red Brick, trac	Gravel and F	Sand, some	Petro. odor, black staining
6 —	2.4	23		6-8'	Dry	13/24"	3" Brown F SA			No odor, no staining
7 —		50/2			Dry		trace Plastic 10" Black F-M	SAND and	Pad Brick	Petro. odor,
					Diy		some M Gravel			black staining
8 —	1.0	51		8-10'	Dry	7/24"			l F Gravel, some	No odor, no staining
9 —		50/3					White Plastic, t	race Thread		
10										
_ 10	_									
— 11 ——										
12 —										
13										
14										
14 —										
15			-							
16	1									
16 —										
 17 							<u> </u>			
10	†									
<u> </u>							1			
– 19 –										
├ ~ -	-									
20			<u> </u>				<u> </u>			

Client: Frit	to-Lay						Boring No.:	SB-53		ning Engineers, P.C. s Park Dr. W. Ste 300
Project #: 477	743						Sheet 1 of 1		-	ury, NY 11797
Site Location:	202-218 N	Iorgan A	ve, Brooklyn l	NY			Date:	8/5/2010		5) 364-4140
Drilling Co:	Aquifer D	rilling and	d Testing (AD	OT)				Location o	f boring (not to	scale)
Method:	Hollow St						Soil Boring 53:			
Personnel:			orruso (GF); S			OT)				
Total Depth:	10'		Depth to War	ter:	N/A	i				
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	So	il Classificat	ion	Remarks
	9.2	N/A	SB-53 (0-4)	0-1.5'	Dry	24/24"	Brown F-C SA	ND and F Gr	ravel	
	23.7	N/A		1.5-4'	Dry		Black F-M SAN	NDY SILT. s	ome F-M	Slight Petro. odor,
_ 2							Gravel, some W			black staining
3 —										
4 —	1.6	15 29	SB-53 (4-10)	4-6"	Dry	12/24"	Black F-M SAN trace White Pla		Gravel,	No odor, no staining
5 —		10					race mine rid	.5.110		
6 —	1.1	66 48		6-8'	Dry	20/24"	5" Black F-M S trace Wood	SAND and F-	M Gravel,	Slight Petro. odor, staining
7 —	12.6	50/1			Dry		5.5" Brown F-M	M GRAVEL	and F-M Sand,	No odor, no staining
	11.1				Moist		9.5" Black F-M trace Glass	SAND, som	ne Wood,	No odor,
8 —	10.0	50		8-10'	Moist	5.25/24"	Black F-M SAN	ND, some F	Gravel, trace	black staining No odor,
<u> </u>		12 20					Red Brick			black staining
10 —		50/2								
11										
<u> </u>	-									
12										
13										
<u> </u>	-									
—— 14 ——										
	1									
15 —										
<u> </u>										
_	-									
— 17 —										
<u> </u>										
 19 										
	<u> </u>									

Client: Fri	to-Lay					Boring No.: SB-54 Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 300			
Project #: 47	743						Sheet 1 of 1	·-	oury, NY 11797
Site Location:	202-218 N	Iorgan Ave	, Brooklyn NY	,			Date: 8/5/2010	(51	6) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)				Location	of boring (not to	scale)
Method:	Hollow Ste	em Auger					Soil Boring 54:		
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. N	Miller, G. To	rres (ADT)			
Total Depth:	10'		Depth to Wate						
11.	DID	D1.	C1.	D1.	Maria	Recovery	Soil Classifica	··	D1.
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Son Classifica	HOH	Remarks
(====)	57.0	N/A	SB-54 (0-4)	0-2'	Dry	24/24"	Black F SILTY SAND, son	no E M Graval	Spoon refusal 0-2', Sample
-	37.0	N/A	3D-34 (0-4)	0-2	Diy	24/24	trace Wood, trace Plastic, tr		collected from 0-4' cuttings
1							trace Glass, trace Tile	ace Rubber,	Organic odor,
–							auce Glass, trace The		black staining
2	57.0	N/A		2-4'	Dry	24/24"	Black F SILTY SAND, son	ne F-M Gravel,	Organic odor,
_ 3							trace Wood, trace Plastic, tr	ace Rubber,	black staining
							trace Glass, trace Tile		
4									
<u> </u>	0.1	10	SB-54 (4-10)	4-6'	Dry	7.25/24"	Brown F-M SAND, little F	Gravel, trace	No odor, no staining
5		11					Paper, trace Plastic		
- -		25 14							
 6 	2.0	29		6-8'	Dry	11 5/24"	8.5" Black F SILTY SAND	some F Gravel	Slight Petro, odor
	2.0	19		0 0	Diy	11.3/21	trace Paper, trace Wood, tra		black staining
— 7 —		16			Dry		3" Black stained WOOD		No odor,
		14							black staining
_ 。	0.9	15		8-10'	Dry	6.75/24"	5" Brown F SILTY SAND a	and F-M Gravel,	
9 —		10					trace Paper, trace Blue and		
L _	_	22			Dry		1.75" Black M GRAVEL, s	ome F Silty	No odor
10		18					Sand, trace Paper		black staining
-									
— 11 ——									
12									
13									
_ 13 _									
—— 14 ——									
<u> </u>									
15									
F -	_								
									
17									
_ 18									
L	4								
– 19 –									
<u> </u>	-								
20									
			I				l .		

Client: Frit	to-Lay					Boring No.:	SB-55		ning Engineers, P.C. s Park Dr. W. Ste 300	
Project #: 477	743						Sheet 1 of 1			ury, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn NY				Date:	8/10/2010	(516	6) 364-4140
Drilling Co:	Aquifer D	rilling and	Testing (ADT)					Location of	f boring (not to	scale)
Method:	Hollow Ste	em Auger				Soil Boring 55:				
Personnel:	B. Tiskow	itz, M. Bor	ruso (GF); S. M	Iiller, G. Tor	res (ADT))				
Total Depth:	10'		Depth to Wate	r:	N/A					
depth	PID	Blow	Sample	Depth	Moisture	Recovery	Sc	oil Classificat	ion	Remarks
(feet)	(ppm)	Counts	ID	(From-To)	Content					
<u> </u>	0.9	N/A	SB-55 (0-4)	0-2'	Dry	24/24"	Dark Brown F			Spoon refusal 0-2'
1							F Gravel, trace trace White Pla		race Wood,	Sample collected from 0-4' cuttings
<u> </u>	_						liace wille Fi	astic		No odor, no staining
2	0.9	N/A		2-4'	Dry	24/24"	Dark Brown F	-M SAND, so	ome Silt, little	No odor, no staining
					,		F Gravel, trace			
							trace White Pla	astic		
<u> </u>	1.0	2.4	CD 55 (4.10)	4.61	ъ	22/2/11	D E140		95 - 10 d - 20 3.6	
-	1.2	24 36	SB-55 (4-10)	4-6'	Dry	22/24"	Brown F-M SA Gravel, trace R			No odor, no staining
5		23					trace Paper, tra			
		21					and Tuper, as		.5020	
_ 0	0.8	5		6-8'	Dry	23/24"	16" Brown F-N	M SAND, son	ne F Gravel,	No odor, no staining
7		4					little Red Bricl			
⊢	0.2	3			Moist		7" Brown F SA	ANDY SILT,	No odor, no staining	
— 8 ——	0.4	5		8-10'	Dry	9/24'	trace Wood	DV SII T litt	le F ₋ M Gravel	No odor, no staining
– –	0.1	6		0-10	Diy	7124	trace White Pla			Two odor, no stanning
9		3					Glass	,	,	
10		3								
<u> </u>	_									
— 11 ——							1			
⊢ −										
12 —							1			
13										
	4									
 14 							1			
<u> </u>	_									
15							1			
16 —										
										
├ —	1									
– 18 –										
<u> </u>										
19										
20										

Sheet 27 of 38 Woodbury, NY 11797 Sheet 27 of 38 Woodbury, NY 11797 Sheet 27 of 38 Woodbury, NY 11797 Sheet 27 of 38 Sheet 27	Client: Frit	o-Lay						Boring No.: SB-56 Gannett Fleming Engineers, P.C. 100 Crossways Park Dr. W. Ste 30			
Adulfer Drilling and Testing (ADT) Hollow Stem Auger	Project #: 477	43.034						Sheet 27 of 38			
Acthod Bollow Stem Auger Strisowitz M. Borruso (GF); C. Migliore, J. Kamenicek (ADT)	Site Location:	202-218 N	Iorgan Ave	, Brooklyn N	Y			Date: 10/12/2010	(516)	364-4140	
Acthod Bollow Stem Auger Strisowitz M. Borruso (GF); C. Migliore, J. Kamenicek (ADT)	Drilling Co:	Aquifer D	rilling and T	Γesting (ADT	")				-		
B. Tiskowitz, M. Borruso (GF): C. Migliore, J. Kamenicek (ADT) 14" Depth to Water: 12" Depth (Geet) 14" Depth to Water: 12" Depth (Geet) 1910 Rows Sample Depth (From-To) Content Depth (From-To) Cont	Method:	Hollow Ste	em Auger	<u> </u>							
Depth Dept				ruso (GF): C.	Migliore, J.	Kamenicek	(ADT)				
Depth (feet) PID (ppm) Counts ID Depth (from-To) Content Conte											
Creek Company Counts ID Content Co				_	ı						
1							Recovery	Soil Classific	ntion	Remarks	
Sample collected off of auger Sample collected off of auger		0.0	N/A		0-4'	Dry				No odor, no staining	
off of auger off off off auger off off off auger off auger off off auger off off off auger off auger off off off auger off	_ 1			Ì						Spoon refusal,	
Strong petro. odor, black staining Strong petro. odor, black staining										sample collected	
130.0 N/A 3B-56 6-8' Dry 24/24" Black F-M SANDY SILT, some Metal, little Wood, trace F-M Gravel Strong petro. odor, black staining										off of auger	
130.0 N/A 38-56 6-8' Dry 24/24" Black F-M SANDY SILT, some Metal, little Wood, trace F-M Gravel Strong petro. odor, black staining	3										
Sight organic odor, Sight black staining black stai											
Sight organic odor, Sight black staining black stai	4	540	NT/ A		4.61	D	24/24"	DI LEMGANDA CHE	3.6 . 1.151	C	
130.0 N/A SB-56 6-8" Dry 24/24" Black F-M SANDY SILT, some Metal, little Wood, trace F-M Gravel Wood, trace F-M Gravel Wood, trace F-M Gravel Wood, trace F-M Gravel Slight organic odor, light black staining Slight organic odor, light black staining Dark Brown F-M SANDY SILT, little F-M Gravel, trace Metal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Metal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M GRAVEL, some Betal Dark Brown F-M SANDY SILT, little F-M G		34.0	N/A		4-6	Dry	24/24		ome Metal, little		
130.0 N/A SB-56	5							wood, trace r-wi Graver		black staining	
130.0 N/A SB-56		1									
The state of the	 6 	130.0	N/A	SB-56	6-8'	Drv	24/24"	Black F-M SANDY SILT.	ome Metal, little	Strong petro, odor,	
Note									,,		
Sight organic odor, Sand, trace Metal, trace Concrete Sight organic odor, Sand, trace Metal, trace Metal Sight organic odor, Sand, trace Metal Sight petro. odor, Some staining Sight organic odor, Sand, trace Metal Sight petro. odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sight organic odor, Sand, trace Metal Sight petro. odor,	/			` '				ŕ	Č		
Sight organic odor, Sand, trace Metal, trace Concrete Sight organic odor, Sand, trace Metal, trace Metal Sight organic odor, Sand, trace Metal Sight petro. odor, Some staining Sight organic odor, Sand, trace Metal Sight petro. odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sand, trace Metal Sight petro. odor, Sight organic odor, Sight organic odor, Sand, trace Metal Sight petro. odor,	_ 8										
10	_	0.0			8-10'	Moist	16/24"				
10	<u> </u>							Sand, trace Metal, trace Cor	crete	light black staining	
10											
11		0.1			10 12'	Moist	24/24"	Dork Proum E M CANDV	HT little E M	Slight patro ador	
11		0.1			10-12	MOIST			oilt, iille r-wi		
12								Graver, trace Metar		some staming	
13	10										
- 13	12		5		12-14'	Saturated		Dark Brown F-M SANDY	SILT, little F-M	Petro. odor,	
- 14	13							Gravel, trace Metal		black staining	
- 15 — — — — — — — — — — — — — — — — — —			5								
- 16 -											
- 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19											
- 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		1									
- 18											
- 18		1									
- 19 - 	<u> </u>										
- 19 - 	18										
	10										
	– 19 –										
	20										

Client: Frito-Lay							Boring No.: SB-57		ng Engineers, P.C. Park Dr. W. Ste 300
Project #: 47743.034							Sheet 28 of 38	·-	ry, NY 11797
Site Location:	202-218 M	Iorgan Ave	, Brooklyn N	Y	Date: 10/12/2010	(516)	364-4140		
	Orilling Co: Aquifer Drilling and Testing (ADT)								
Method: Hollow Stem Auger						1			
Personnel: B. Tiskowitz, M. Borruso (GF); C. Migliore, J. Kamenicek (ADT)						1			
Total Depth: 10' Depth to Water: 9'									
								1	
depth (feet)	PID (ppm)	Blow Counts	Sample ID	Depth (From-To)	Moisture Content	Recovery	Soil Classification		Remarks
	0.0	N/A	SB-57 (0-4)	0-4'	Moist	48/48"	F-M SANDY SILT, some Metal, little Wood, trace F-M Gravel		No odor, no staining
— 1 ——			(0 .)						
_ 2									
3									
4									
	0.0	5 2		4-6'	Moist	6/24"	Brown F-C SAND and SILT, trace F-M Gravel No odor, no staining		
		3 2							
— 6 —	0.2	4	SB-57	6-8'	Moist	9/24"	F-C SANDY SILT, some F-I	M Gravel, little	No odor, no staining
_ 7		3	(6-8)				Red Brick, trace Metal, trace	e Wood, trace	
_ ′		2					Plastic		
8		2							
	N/A	1		8-10'	Saturated	8/24"	F-C SANDY SILT, some F-I		No odor, no staining
<u> </u>		5					Red Brick, trace Metal, trace	e Wood, trace	
							Plastic		
10 —									
_									
— 11 ——									
12									
12							1		
13									
<u> </u>									
15									
<u> </u>									
 16 									
- -									
									
_ 18							1		
20									
·				I					

APPENDIX B LABORATORY DATA REPORTS (2010) (PROVIDED ON CD) APPENDIX C
DATA USABILITY SUMMARY REPORT (2010) (PROVIDED ON CD)