KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK

Remedial Action Work Plan

NYSDEC BCP Number: C224140

Prepared for:

PTMA 5200 Kings Highway LLC (c/o Bridges Development Group) 150 East 58th Street, 15th Floor New York, NY 10155

Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 209 Shafter Street Islandia, NY 11749 (631) 232-2600

AUGUST 2018

REMEDIAL ACTION WORK PLAN TABLE OF CONTENTS

CERTIFICATIONS	ix
LIST OF ACRONYMS	x
EXECUTIVE SUMMARY	xiii
1.0 INTRODUCTION	1
1.1 Site Location and Description	2
1.2 Contemplated Redevelopment Plan	2
1.3 Description of Surrounding Property	3
2.0 DESCRIPTION OF REMEDIAL INVESTIGATION FINDINGS	3
2.1 Summary Remedial Investigations Performed	4
2.1.1 Soil Borings, Monitoring Wells and Soil Vapor Points Installation	4
2.1.2 Samples Collected	8
2.1.3 Chemical Analytical Work Performed	10
2.1.4 Documentation	12
2.2 Significant Threat	23
2.3 Site History	24
2.3.1 Past Uses and Ownership	24
2.3.2 Phase I and Phase II Reports	24
2.3.3 Sanborn Maps	26
2.4 Geological Conditions	27
2.5 Contamination Conditions	28
2.5.1 Conceptual Model of Site Contamination	29
2.5.2 Description of Areas of Concern	29
2.5.3 Identification of Standards, Criteria and Guidance	30
2.5.4 Soil/Fill Contamination	34
2.5.5 On-Site and Off-Site Groundwater Contamination	38
2.5.6 On-Site and Off-Site Soil Vapor Contamination	40

2.6 Env	ironmental and Public health Assessments	42
2.6.1	Qualitative Human Health Exposure Assessment	42
	Fish and Wildlife Remedial Impact Analysis	
2.7 Inter	rim Remedial Action	48
2.8 Rem	nedial Action Objectives	48
2.8.1	Groundwater	49
2.8.2	Soil	49
2.8.3	Soil Vapor	50
3.0 DESC	RIPTION OF REMEDIAL ACTION PLAN	51
3.1 Eval	luation of Remedial Alternatives	55
3.1.1	Overall Protection of Human Health and the Environment	57
3.1.2	Standards, Criteria, and Guidance	58
3.1.3	Long-Term Effectiveness and Permanence	60
3.1.4	Reduction Toxicity, Mobility or Volume of Contamination through Treatment	61
3.1.5	Short-Term Impacts and Effectiveness	62
3.1.6	Implementability	64
3.1.7	Cost Effectiveness	64
3.1.8	Community Acceptance	65
3.1.9	Land Use	65
3.2 Sele	ction of the Preferred Remedy	66
3.2.1	Surrounding Property Uses	67
3.2.2	Citizen Participation	67
3.2.3	Environmental Justice Concerns	67
3.2.4	Land Use Designations	68
3.2.5	Population Growth Patterns	68
3.2.6	Accessibility to Existing Infrastructure	68
3.2.7	Proximity to Cultural Resources	68
3.2.8	Proximity to Natural Resources	68
3.2.9	Off-Site Groundwater Impacts	68
3.2.10	Proximity to Floodplains	69
3.2.11	Geography and Geology of the Site	69

3.2.12 Current Institutional Controls	69
3.3 Summary of Selected Remedial Actions	69
4.0 REMEDIAL ACTION PROGRAM	1
4.1 Governing Documents	1
4.1.1 Site Specific Health and Safety Plan (HASP)	1
4.1.2 Quality Assurance Project Plan (QAPP)	1
4.1.3 Construction Quality Assurance Plan (CQAP)	2
4.1.4 Soil/Materials Management Plan (SoMP)	7
4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)	8
4.1.6 Community Air Monitoring Plan (CAMP)	8
4.1.7 Contractors Site Operations Plan (SOP)	8
4.1.8 Citizen Participation Plan	8
4.2 General Remedial Construction Information	9
4.2.1 Project Organization	9
4.2.2 Remedial Engineer	9
4.2.3 Remedial Action Construction Schedule	10
4.2.4 Site Security	10
4.2.5 Traffic Control	11
4.2.6 Contingency Plan	12
4.2.7 Worker Training and Monitoring	12
4.2.8 Agency Approvals	12
4.2.9 NYSDEC BCP Signage	13
4.2.10 Pre-Construction Meeting with NYSDEC	13
4.2.11 Emergency Contact Information.	13
4.2.12 Remedial Action Costs	14
4.3 Remedial Design	14
4.4 Site Preparation	
4.4.1 Mobilization	15
4.4.2 Erosion and Sedimentation Controls	15
4.4.3 Stabilized Construction Entrance(s)	15
4.4.4 Utility Marker and Easements Layout	16

4.4.5 Foundation	16
4.4.6 Support of Excavation	16
4.4.7 SSDS	17
4.4.8 Equipment and Material Staging	17
4.4.9 Decontamination Area	17
4.4.10 Site Fencing	18
4.4.11 Demobilization	18
4.5 Reporting	18
4.5.1 Daily Reports	18
4.5.2 Monthly Reports	19
4.5.3 Other Reporting	20
4.5.4 Complaint Management Plan	20
4.5.5 Deviations from the Remedial Action Work Plan	20
5.0 REMEDIAL ACTION: MATERIAL REMOVAL FROM SITE	21
5.1 Soil Cleanup Objectives	21
5.2 Pre-excavation delineation and remedial performance evaluation	22
5.2.1 Sampling Frequency	22
5.2.2 Methodology	23
5.2.3 Reporting of Results	23
5.2.4 QA/QC	24
5.2.5 DUSR	24
5.2.6 Reporting of Data in FER	24
5.3 Estimated Material Removal Quantities	24
5.4 Soil/Materials Management Plan	24
5.4.1 Soil Screening Methods	25
5.4.2 Stockpile Methods	25
5.4.3 Materials Excavation and Load Out	26
5.4.4 Materials Transport Off-Site	28
5.4.5 Materials Disposal Off-Site	29
5.4.6 Materials Reuse On-Site	31
5.4.7 Fluids Management	32

5.4.8 Demarcation	32
5.4.9 Backfill from Off-Site Sources	33
5.4.10 Stormwater Pollution Prevention	34
5.4.11 Contingency Plan	34
5.4.12 Community Air Monitoring Plan	35
5.4.13 Odor, Dust and Nuisance Control Plan	35
5.5 Vapor Intrusion Evaluation	37
6.0 ENGINEERING CONTROLS: TREATMENT SYSTEMS	38
6.1 LNAPL Recovery	38
6.2 In Situ Chemical Oxidation	38
6.2.1 Chemical Oxidant	38
6.2.2 Groundwater Monitoring	39
6.2.3 Data Evaluation and Reporting	40
7.0 CRITERIA FOR COMPLETION OF REMEDIATION/TERMINATION OF REMEDIAL SYSTEMS	41
8.0 RESIDUAL CONTAMINATION TO REMAIN ON -SITE	
9.0 CONTINGENCY PLAN ENGINEERING CONTROLS	
9.1 Composite Cover system	
9.2 SSDS	
10.0 CONTINGENCY PLAN INSTITUTIONAL CONTROLS	
10.1 Environmental Easement	
10.2 Site Management Plan	
11.0 FINAL ENGINEERING REPORT	
11.1 Certifications	
12.0 SCHEDULE	
14.0 JCHEDULE	J 4

FINAL REMEDIAL ACTION WORK PLAN TABLE OF CONTENTS

LIST OF TABLES

- 1. Summary of Water Level Elevations and Product Thickness
- 2. Summary of Volatile Organic Compounds in Soil
- 3. Summary of Semivolatile Organic Compounds in Soil
- 4. Summary of Volatile Organic Compounds in Groundwater
- 5. Summary of Semivolatile Organic Compounds in Groundwater
- 6. Summary of Metals in Groundwater
- 7. Summary of Volatile Organic Compounds in Soil Vapor
- 8. Remedial Cost Estimate for Remedial Alternative 1
- 9. Remedial Cost Estimate for Remedial Alternative 2
- 10. Remedial Cost Estimate for Remedial Alternative 3
- 11. List of Required Permits
- 12. Emergency Contact List
- 13. List of Soil Cleanup Objectives

LIST OF FIGURES

- 1. Site Location Map
- 2. Site Map
- 3. Proposed Redevelopment Plans
- 4. Tax Map
- 5. Land Use and Surrounding Property Owners
- 6. Groundwater Contour Map
- 7. Extent of Free-Phase Hydrocarbon
- 8. Truck Transport Route
- 9. Proposed Schedule

LIST OF APPENDICES

- A. Tax Map, Metes and Bounds
- B. Soil Boring and Well Construction Logs
- C. Groundwater Sampling Forms
- D. Laboratory Reports
- E. Soil Vapor Sampling Forms
- F. Data Usability Summary Reports
- G. Sanborn Maps
- H. Health and Safety Plan and Community Air Monitoring Plan
- I. Quality Assurance Project Plan

Updated April 29, 2014

- J. Citizen Participation Plan
- K. Resumes of Key Personnel
- L. BCP Site Sign Requirements
- M. Engineering Controls Product Sheets
- N. Proposed Support of Excavation

LIST OF PLATES

- 1. Soil Chemistry Results
- 2. Groundwater Chemistry Results
- 3. Historical Groundwater Sample Results
- 4. Soil Vapor Chemistry Results
- 5. Remedial Alternative 1 Track 1 Unrestricted
- 6. SSDS Piping Contingency

CERTIFICATIONS

I, Charles McGuckin, P.E., certify that I am currently a NYS registered professional engineer and that this Remedial Action Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Charles J. McGuckin, P.E. NYS Professional Engineer #069509

August 13, 2018
Date

It is a violation of Article 145 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 145, New York State Education Law.

LIST OF ACRONYMS

Acronym	Definition
ug/kg	Micrograms per Kilogram
ug/L	Micrograms per Liter
mg/kg	Milligrams per Kilogram
AOCs	Areas of Concern
ASP	Analytical Services Protocol
AWQSGVs	Ambient Water Quality Standards and Guidance Values
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
bls	Below Land Surface
CAMP	Community Air Monitoring Plan
CFR	Code of Federal Regulations
CSM	Conceptual Site Model
CY	Cubic Yards
DEC	Department of Environmental Conservation
DER-10	NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation
DUSR	Data Usability Summary Report
EC	Engineering Control
ECL	Environmental Conservation Law
EDD	Electronic Data Deliverable
EJ	Environmental Justice
ELAP	Environmental Laboratory Approval Program
ft	Feet/Foot
HASP	Health and Safety Plan

Acronym	Definition
HAZWOPER	Hazardous Waste Operations and Emergency Response
HVAC	Heating, Ventilation and Air Conditioning
IC	Institutional Control
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MTA	Metropolitan Transit Authority
MW	Monitoring Well
NAVD 88	North American Vertical Datum of 1988
NYCDEP	New York City Department of Environmental Protection
NYCDOT	New York City Department of Transportation
NYCRR	New York Codes, Rules and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSDOT	New York State Department of Transportation
OSHA	Occupational Safety and Health Administration
PCBs	Polychlorinated Biphenyls
PCE	Tetrachloroethene (Perchloroethene)
PEJA	Potential Environmental Justice Area
PDF	Portable Document Format
PID	Photo Ionization Detector
PPE	Personal Protective Equipment
PVC	Polyvinyl Chloride
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
RAOs	Remedial Action Objectives
RAWP	Remedial Action Work Plan
RI	Remedial Investigation
RIR	Remedial Investigation Report

Acronym	Definition
SCG	Standards, Criteria and Guidance
SCOs	Soil Cleanup Objectives
SEQRA	State Environmental Quality Review Act
SGC	Short-Term Guidance Concentration
SMP	Site Management Plan
SoMP	Soil Management Plan
SOE	Support of Excavation
SOP	Site Operations Plan
SRI	Supplemental Remedial Investigation
SSDS	Sub-Slab Depressurization System
SSO	Site Safety Officer
SVI	Soil Vapor Intrusion
SVOCs	Semivolatile Organic Compounds
SWPPP	Stormwater Pollution Prevention Plan
TAGM	Technical and Administrative Memorandum
TAL	Target Analyte List
TBCs	To Be Considered
TCE	Trichloroethene
TCL	Target Compound List
TOGS	Technical and Operational Guidance Series
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VOCs	Volatile Organic Compounds

Updated April 29, 2014

EXECUTIVE SUMMARY

Site Description/Physical Setting/Site History

Roux Environmental Engineering and Geology, D.P.C. (Roux), on behalf of PTMA 5200 Kings Highway LLC (c/o Bridges Development Group) [PTMA 5200 or Volunteer], has prepared this Revised Remedial Action Work Plan (RAWP) for the property identified as the Kristal Auto Mall (KAM) located at 5200 Kings Highway, Brooklyn, New York (Site). The Site location is shown on Figure 1. The Site was accepted into the Brownfield Cleanup Program (BCP) and assigned Site Number C224140. The former owner, Irma C. Pollack, LLC (Pollack or Participant) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) which was executed on May 1, 2012. In anticipation of the sale of the Site to PTMA 5200, Pollack and PTMA 5200 submitted a Request to Amend the BCA to add PTMA 5200; the Amendment was executed and effective on March 23, 2018. A Site Map showing the BCP boundary is presented as Figure 2 and the proposed redevelopment plan is presented as Figure 3.

The Site is located at 5200 Kings Highway, in Kings County, New York and is identified as Section 3, Block 7969, Lot 9 on the New York City Tax Map. A United States Geological Survey (USGS) topographical quadrangle map of Brooklyn, New York (Figure 1) shows the Site location. The Site is approximately 2.28 acres and is bounded by a plastic manufacturing company, Favorite Plastics Corp., to the north, a car dealership to the south, Utica Avenue to the west and Kings Highway to the east. A single slab-on-grade building is present on the Site, which includes both one story and one and a half story sections. The 53,000 square foot building houses offices, an automobile showroom, auto repair facilities, paint shop, car wash, and employee locker rooms. The remainder of the Site consists of paved parking areas and vehicle storage.

The Site property formerly was occupied by Kristal Auto Mall Corp. f/k/a S&S Cadillac Motors Corp but is currently vacated. KAM is a retail General Motors dealership whose operations include a new car showroom, an auto service area with approximately 24 service bays, parts storage, paint booth/body shop, vehicle storage and administrative offices.

The Site has been in use since its original construction in 1959. From 1959 to 1968, the Site was occupied by a bowling alley. In 1968, new occupants expanded the existing building and began operation of a retail automobile dealership including sales and auto service. The Site was being operated as an auto dealership and repair shop until it was vacated in April 2018.

Prior to 1959, the Site included several single-family homes and vacant lots. As described above, the original building at the Site was constructed in 1959 and operated as a bowling alley until 1968. In 1968, an addition was constructed on the eastern side of the building, bringing the building to its current configuration. Since that time, the Site has been operated as an auto dealership and repair shop.

The proposed redevelopment includes the demolition of the existing building and the construction of a retail development occupying the majority of the Site (Figure 3). The primary retail space, mechanical rooms and covered plaza will include approximately 77,000SF. The building will be set eight feet below grade. Parking for 210 cars will be provided on the roof. An additional 7,000 SF of retail space will be slab-on-grade construction. The remainder of the property, approximately 15,000SF, will consist of paved entrance/exit areas.

A tax map is provided as Figure 4 and the corresponding metes and bounds description is provided in Appendix A. A figure presenting the land use and surrounding property owners is provided as Figure 5.

The following areas of concern (AOCs) were identified during previous investigations:

Above Ground Storage Tanks (ASTs)

Historically, the Kristal Auto Mall operated two ASTs at the Site. The ASTs included one 550-gallon waste oil AST on the northeastern side of the building and one 550-gallon fuel oil AST on the southwest side of the building. Both ASTs were operated on impermeable surfaces and there is no indication releases have occurred from either AST. Both of these ASTs are out of service and are not considered to be potential AOCs.

<u>Underground Storage Tanks (USTs)</u>

A total of three USTs historically has been present at the site. The tanks included two 550-gallon USTs in the eastern corner of the building (hydraulic fluid and motor oil) and one 550-gallon UST outside to the east of the building (waste oil). In July 2011, Energy Fueling Systems, Inc. was contracted to clean the USTs at the Site and close them in place. All three USTs were registered with NYSDEC (PBS #2-610629) and were closed in place on July 7, 2011. Documentation of the registration and closure of the USTs was provided in the RIWP.

Soil samples collected adjacent to the three USTs during previous environmental investigations indicated that releases of various petroleum hydrocarbons have occurred. All three former USTs were considered to be AOCs for the purpose of the RI. Based on the analytical data from Testwell's first round of field work, a spill was reported to NYSDEC and spill number 0701186 was assigned on April 27, 2007. The spill was reported due to hydrocarbon and solvent contamination that was found to have impacted both soil and groundwater.

During the RI, Roux advanced three soil borings to confirm and delineate the results obtained by Testwell in 2007. Two monitoring wells (a shallow and deep pair) were also installed to evaluate groundwater quality in the vicinity of this AOC.

Trench drains

In 1968, when the building was converted from a bowling alley to an auto dealership, a series of trench drains was installed in the service area and the body shop in the rear of the building. A review of the original architect's plans shows the trench drains are simple concrete troughs inset into the floor and covered with a steel grate. The trench drains on the western side of the building appear to be pitched so they drain in two locations on the south side of the building. The trench drains in the center and eastern side of the building are pitched so they drained to a former UST as described below. The drains are believed to be the primary AOC at the site.

Previous investigations have indicated the trench drains in the center and eastern portions of the service area have been the apparent source of petroleum and chlorinated solvent releases based on

soil and groundwater sampling conducted around the drains. Available documentation does not indicate that any drains have been sampled directly. During Roux's Site inspection, the drains in the Auto Repair Shop were found to be dry and clear of debris. Historically, the trench drains in the Auto Repair Shop area received fluids generated during auto repair and service activities. These fluids historically were collected in a UST formerly located on the eastern side of the building. This UST has since been closed in place. During the RI, Roux advanced seven soil borings and installed eleven monitoring wells to evaluate the potential impacts from the eastern trench drains.

The drains on the western side of the Site near Utica Avenue currently are used to collect wash water from the Auto Wash. During Roux's inspection, the drains were wet from car wash activities, but clear of debris. During the RI, Roux advanced three soil borings and installed one monitoring well to evaluate the potential impacts from the western trench drains.

Hydraulic lifts

Building plans showing the redevelopment of the site into an auto dealership in 1968 included the installation details for 21 hydraulic lifts. The lifts include a concrete lined pit that houses the hydraulic oil storage unit and the lift machinery. Most of the pits are accessible and open for inspection. The lifts were taken out of service in the past and are no longer used although they remain in place.

During the RI, Roux conducted visual inspections of the lift pits and hydraulic oil storage units to determine whether the lifts are AOCs and warranted adjacent sampling. Seven of the 21 lift pits were found to be dry and clear of debris. Three of the lift pits (#1, 2, and 3) contained a measurable amount of petroleum hydrocarbon that was analytically identified as motor oil not hydraulic fluid. A total of six lift pits (#4, 5, 7, 9, 15, and 16) were found to contain a minimal amount (less than one-inch thickness) of sludge and/or moist debris, but no measurable product. Four of the lifts were inaccessible for the following reasons: two were sealed shut (#19, and 20), one was beneath equipment (#6) and one was beneath shelving and storage (#13). One lift was unable to be located (#14, inside the paint booth).

Based on the inspections, the hydraulic lifts appear to be intact overall and do not represent a concern. It is assumed the free phase motor oil found in the nearby wells seeped into the lift pits based on the analytical typing of the product (motor oil vs. hydraulic fluid), and the depth of the lift pits.

Site-Wide

Groundwater Sampling

Three monitoring wells (MW-1 through MW-3) were installed at the Site as part of Testwell's previous investigations. These wells, however, were installed only to determine groundwater flow direction and the wells were never sampled. During the RI, Roux installed a total of 19 additional monitoring wells (MW-4S, MW-4D, MW-5 through MW-21) and sampled all monitoring wells that didn't contain free phase hydrocarbons to evaluate groundwater conditions.

Soil Vapor Sampling

Soil vapor impacts were not evaluated as part of Testwell's previous investigations. During the RI, Roux collected eleven sub-slab and one soil vapor sample along with one indoor air sample in the office area, two indoor air samples in the auto repair shop and two outdoor ambient air samples.

Summary of Remedial Investigations

Previous investigations conducted by Testwell in 2007 documented the presence of the following areas of contamination:

- PCE, DCE, and petroleum hydrocarbons in groundwater grab samples above AGWQS; and
- TCE, PCE, DCE, and petroleum hydrocarbons in soil above Unrestricted Use (UU) and Protection of Groundwater (PGW) Soil Cleanup Objectives (SCOs) under the central and eastern side of the Repair Shop; Three SVOCs exceed Restricted Commercial (RC) SCOs in one sample in the same area.

Based on the previous environmental investigations and known data gaps, the following objectives were identified for the RIWP:

• Confirm previous data collected by Testwell;

- Delineate the horizontal and vertical extent of previously identified soil contamination;
- Evaluate soil quality in uninvestigated areas at the Site;
- Complete the installation of a comprehensive groundwater monitoring well network to provide coverage for all potential AOCs and accurately determine the direction of groundwater flow;
- Delineate the three-dimensional extent of previously documented VOC impacts to groundwater;
- Evaluate potential soil vapor impacts; and
- Evaluate the potential for offsite soil vapor and groundwater migration.

Environmental data collected during the RI was used to qualitatively assess the potential exposure of receptors to Site contaminants and develop the information necessary to support the development of this RAWP.

A careful inspection of the building was conducted on October 24, 2011 to evaluate and identify all potential areas of environmental concern. The inspection determined the location of one waste oil AST, one former fuel oil AST, three former USTs (closed-in-place), a manifolded concrete trench drain system throughout the facility, a former sump, and a total of 21 former hydraulic lifts. No additional AOCs were identified during the implementation of the RI field work.

Soil

During the RI, a total of 18 soil borings were advanced at the locations shown in Figure 2, and a total of 49 soil samples were collected for laboratory analysis. Soil sample results are summarized on Tables 2 and 3, and Plate 1.

Soil samples were collected for laboratory analysis from two intervals within each borehole for vertical delineation of previously detected contaminants. Soil borings extended to a minimum of 10 feet below the water table, with the exception of MW-4D, which extended to 40 feet below the concrete slab.

In soil borings RSB-1, RSB-3, RSB-4, RSB-5, RSB-6/MW-5, RSB-7, RSB-9, RSB-10, RSB-11, RSB-12/MW-7, RSB-13/MW-6, and MW-4D, two soil samples were collected: one from the two-foot interval immediately above the water table and one from the terminal depth of the boring. In soil borings RSB-2, RSB-8 and RSB-14/MW-4S, soil samples were collected from four intervals; the 1-3-foot interval, 5-7-foot interval, the two-foot interval immediately above the water table, and the terminal depth of the boring to confirm and vertically delineate previously identified soil contamination. In soil borings RSB/MW-14, RSB/MW-15, RSB/MW-16 and RSB/MW-17, soil samples were collected from three intervals; a shallow interval (1-3 or 2-4-foot interval), the two-foot interval immediately above the water table, and the terminal depth of the boring to confirm and horizontally delineate previously identified soil contamination in RSB-2.

Analytical results for soil samples were compared to NYSDEC UU, PGW, and RC SCOs for the Protection of Public Health presented in 6 NYCRR Subpart 375-6. These SCOs were selected based on the future use of the Site, as well as the anticipated BCP cleanup Tracks for soil remediation that are proposed for the Site.

Underground Storage Tanks

Three soil borings (RSB-2, RSB-8, and RSB-14) were advanced in the vicinity of the former UST area located on the northeastern side of the repair shop. These soil borings were intended to confirm and delineate previous sample results obtained by Testwell in 2007. A total of four soil samples were collected from each soil boring.

In general, though there were several detections of VOCs (a total of 10 compounds) that exceeded the UU and PGW SCOs (SCOs are the same for both criteria for the VOCs discussed below, with the exception of total xylenes), none of these exceeded the RC SCOs. The majority of the remainder of the VOC detections were petroleum hydrocarbons, with the exception of three chlorinated hydrocarbons [tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (1,2 DCE)]. There were several VOC detections exceeding the PGW SCOs at or near the water table in soil boring locations RSB-2 and RSB-14/4D. As will be discussed below in the groundwater results section, the compounds also exceeding the respective Ambient Water

Quality Standards and Guidance Values (AWQSGVs) in downgradient groundwater samples included only three compounds: benzene, 1,2-DCE, and MTBE. The remaining VOCs detected in the soil samples were either not detected in corresponding downgradient groundwater samples, or detected at low-level or estimated concentrations not exceeding the AWQSGVs, indicating the impacts are limited and localized in nature.

There were several SVOCs detected in the soil samples collected from this area. As shown on Table 3, the majority of compounds were reported at concentrations below the SCOs or not detected. The only compounds that exceeded the UU, PGW or RC SCOs were polycyclic aromatic hydrocarbons (PAHs) and included: Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, and Indeno[1,2,3-cd]pyrene. Similar to the VOC detections, there were several SVOCs exceeding the respective PGW SCOs at or near the water table in soil boring location RSB-8. As will be discussed below in the groundwater results section, only two compounds also exceeded the respective AWQSGVs in downgradient groundwater samples: benzo[a]anthracene and chrysene. The remaining SVOCs detected in the soil samples were not detected in corresponding downgradient groundwater samples, indicating the impacts are limited and localized in nature.

Trench Drains

Nine soil borings (RSB-3, RSB-4, RSB-5, RSB-6, RSB-7, RSB-9, RSB-10, RSB-11, and RSB-12) were advanced in the vicinity of the trench drains located throughout the Site. These soil borings were intended to evaluate potential impacts in the vicinity of the trench drains. A total of two samples were collected from each soil boring.

There were a total of eight VOCs detected in 12 soil samples collected from the nine soil borings. These included MEK, ethylbenzene, MTBE, toluene, total xylenes, 1,2-DCE, PCE, and TCE. As shown on Table 2, all the compounds were reported at concentrations below the SCOs or not detected at all.

There were a total of 12 SVOCs detected in ten soil samples collected from the nine soil borings. As shown on Table 3, all the compounds were reported at concentrations below the SCOs or not detected at all.

Supplemental RI Delineation Soil Borings

Four soil borings (RSB/MW-14, RSB/MW-15, RSB/MW-16, and RSB/MW-17) were advanced in the vicinity of soil boring RSB-2. These soil borings were intended to evaluate and delineate elevated PCE and TCE detections observed at the water table in RSB-2 during the first sampling round in March 2014. A total of twelve soil samples were collected from these locations, three samples from each soil boring.

In general, though there were several detections of VOCs (a total of five compounds) that exceeded the UU and PGW SCOs (SCOs are the same for both criteria for the VOCs discussed below, with the exception of total xylenes), none of these exceeded the RC SCOs. The two compounds of concern in these borings were either not detected (TCE) or detected at concentrations well below the UU and PGW SCO [PCE ranging from $3.3 \mu g/kg$ (estimated) to $5.4 \mu g/kg$].

The only VOC detection exceeding the PGW SCO at or near the water table was 1,2-DCE in soil boring locations RSB/MW-15 and RSB/MW-16. This compound also exceeded the respective AWQSGV in one of the downgradient groundwater samples. The remaining VOCs detected in the soil samples were either not detected in corresponding downgradient groundwater samples or were detected at low-level or estimated concentrations not exceeding the AWQSGVs, indicating that the impacts are limited and localized in nature.

There were a total of ten SVOCs detected in seven of the soil samples collected from the four soil borings. As shown on Table 3, all the compounds were reported at concentrations below the SCOs or not detected at all, with the exception of chrysene in the 1-3-foot interval in soil boring RSB/MW-17, which was detected at an estimated concentration of 1,050 μ g/kg. This slightly exceeds both the UU and PGW SCO for this compound (1,000 μ g/kg for both criteria), but does not exceed the RC SCO (56,000 μ g/kg).

Groundwater

A total of 19 new monitoring wells (MW-4S, MW-4D, and MW-5 through MW-21) were installed at the Site over the course of three field mobilizations, in accordance with the NYSDEC-approved RIWP, and two subsequent Supplemental RIWPs.

Following soil sampling activities, monitoring wells were installed at soil boring locations RSB-6, RSB-12, RSB-13, RSB-14, RSB/MW-14, RSB/MW-15. RSB/MW-16, and RSB/MW-17 to a depth of approximately 20 feet bls, and at MW-4D to a depth of approximately 40 feet bls.

Monitoring wells were constructed of 2-inch-inside-diameter, Schedule 40 polyvinyl chloride (PVC) casing and, 0.020-inch slot, machined screen. Well screens are 10 feet long and were installed from approximately 10 to 20 feet bls in MW-4S, MW-5, MW-6 and MW-7, and from approximately 30 to 40 feet in MW-4D.

All monitoring wells were surveyed to obtain horizontal and vertical survey coordinates, and water level elevations were calculated for each well. Figure 6 shows the groundwater elevation contours. Groundwater at the Site is approximately 10 feet below grade, and groundwater flow is to the southeast.

Following installation and/or development, thirteen of the monitoring wells exhibited free-phase hydrocarbon. Samples of the free-phase hydrocarbon was collected and submitted to the laboratory for identification. The result was reported as "Pattern is similar to Motor Oil". Motor oil has a higher viscosity than other petroleum hydrocarbons, therefore it's less mobile in the subsurface. In addition, motor oil has a lower percentage of VOC content compared to other petroleum hydrocarbons such as gasoline or #2 fuel oil and therefore the potential for generation of soil vapor and vapor intrusion issues is lower. The estimated extent of the free-phase hydrocarbon plume is shown on Figure 7.

To characterize groundwater flow and quality conditions, the existing network of monitoring wells was sampled. Nineteen new monitoring wells were also installed at the Site including the north

portion of the garage, and the southwest and northwest corners of the Site (MW-4S, MW-4D, and MW-5 through MW-21) to evaluate groundwater quality in these areas. [Note: MW-4S and MW-4D is a shallow (20 ft bls) and deep (40 ft bls) pair of wells to evaluate vertical extent of chlorinated VOC impacts]. The monitoring well locations are shown on Figure 2.

Following well development, one round of groundwater samples was collected and analyzed for:

- TCL VOCs;
- TCL SVOCs (only for the February 24, 2014 and October 27, 2015 sample rounds); and
- Metals (only for the February 24, 2014 and October 27, 2015 sample rounds).

A total of ten groundwater samples and two duplicate samples were collected from MW-1 through MW-3, MW-4D, MW-6, MW-7, MW-9, MW-19 and MW-20 over the course of the three field mobilizations, in accordance with the RIWP, Supplemental RIWPs, and QAPP. A total of 13 monitoring wells were not sampled due to the presence of free-phase hydrocarbons (MW-4S, MW-5, MW-8, MW-10 through MW-17, MW-18, and MW-21).

The groundwater laboratory analytical results were compared to NYSDEC AWQSGVs for Class GA groundwater (even though the groundwater at the Site is not used for drinking since the area is connected to the public water supply). Laboratory analytical data for groundwater are shown on Plate 2, and are summarized in Tables 4, 5, and 6. For reference, the historical groundwater sample results are summarized on Plate 3. It should be noted that the historical groundwater samples were collected as grab samples from soil borings during Testwell's 2007 Site work.

Analytical data for VOCs indicated detections above the NYSDEC AWQSGVs in two of the groundwater samples. Detections above the NYSDEC AWQSGVs included benzene, chloroethane, cis-1,2-dichloroethane, methyl tert butyl ether (MTBE), and vinyl chloride. There were detections also of low-level estimated concentrations of methylene chloride (5.1 ug/l to 14 ug/l) in three out of seven field blanks, and two out of eight trip blanks, indicating these detections likely are laboratory artifacts. This conclusion is confirmed by the non-detect or

low-level estimated results for methylene chloride in all ten groundwater samples and the duplicate samples.

A total of nine groundwater samples and one duplicate sample were analyzed for SVOCs. As shown on Table 5, limited SVOCs were detected in three of the groundwater samples collected during this investigation. The only detections of SVOCs that exceeded the NYSDEC AWQSGVs were benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, bis(2-ethylhexyl) phthalate, chrysene, and indeno[1,2,3-cd]pyrene in MW-6, MW-7, and MW-20.

A total of nine groundwater samples and one duplicate sample were analyzed for metals. As shown on Table 6, five metals (iron, lead, manganese, selenium and sodium) were detected above NYSDEC AWQSGV criteria. Iron, manganese and sodium are naturally occurring in regional groundwater.

Soil Vapor

Soil vapor and sub-slab vapor samples were collected from five locations at the Site. A summary of the soil vapor sampling program conducted during the RI is provided below. The complete soil vapor sampling results are shown on Plate 4 and summarized in Table 7.

Four of the five soil vapor points are located inside the building and one point (SV-2) is located on the southern property boundary, outside the building. In February 2014, the four sub-slab soil vapor points (SV-1, and SV-3 through SV-5) were installed as temporary points due to large void spaces that were encountered in several locations during pre-clearance of the soil borings. In September 2014, temporary sub-slab vapor points SV-4 and SV-5 in the auto repair shop area, were converted to permanent sub-slab vapor points, to facilitate future sample rounds and protect the integrity of the sample points in high traffic areas. In September 2014, an additional sub-slab vapor sample point (SV-6) was installed per the Supplemental RIWP, to evaluate soil vapor conditions on the eastern portion of the Site.

Soil vapor point (SV-2) was installed using a Geoprobe® rig to the target depth of five feet. For the outdoor soil vapor samples, they were advanced 4.5 to 5 feet into the ground.

On February 24, 2014, summa canister soil vapor samples were collected to evaluate the potential VOC soil vapor impacts. One soil vapor sample (SV-2) was collected from the area outside of the building (in the southern portion). Four additional soil vapor samples were collected from directly beneath the building slab [one in the office space (SV-1), one in the northern portion (SV-4), one in the central portion of the Auto Repair Shop (SV-5), and one in the western portion (SV-3)]. Sub-slab vapor samples were collected directly below the slab, using temporary soil vapor points. In addition, one outdoor ambient air sample (Outdoor Ambient) and one indoor air sample from within the office space (IA-1) were collected.

On September 25, 2014 and March 18, 2015, sub-slab vapor samples were collected from SV-4, SV-5 and SV-6. In addition, one indoor air sample and an outdoor ambient sample were collected concurrently with the sub-slab vapor samples.

All vapor samples were collected in 6-liter, laboratory pre-cleaned, Summa canisters fitted with an 8-hour flow controller. All soil vapor samples, sub slab vapor samples, indoor air and ambient air samples were analyzed using USEPA Method TO-15 for VOCs.

The laboratory analytical results for soil vapor samples generated during the RI are summarized on Plate 4 and Table 7. A total of 11 soil vapor samples were collected as part of the multiple RI sampling events. Ten samples (SV-1, SV-3, SV-4, and SV-5) were sub-slab samples collected within the onsite building and the remaining sample point (SV-2) was a soil vapor point collected beneath the asphalt pavement on the south side of the Site. As shown on Table 7, the majority of compounds that were analyzed were reported at low and/or estimated concentrations or not detected in any of the samples.

The following seven (7) compounds are discussed because they are either COCs at the Site (PCE) or present on the NYSDOH Guidance Soil Vapor Matrices. Matrix A provides guidance relative

to Carbon Tetrachloride, TCE, and 1,2 DCE; Matrix B provides guidance relative to 1,1,1-Trichloroethane (TCA), Methylene Chloride, and PCE; and Matrix C provides guidance relative to VC.

Matrix A Compounds

- Carbon tetrachloride was not detected during the February 2014 sample event.
 - September 2014 sample event, carbon tetrachloride was detected in the indoor air sample at a concentration of 0.5 μg/m³; however, carbon tetrachloride was not detected in any of the sub-slab vapor samples during this sample event. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)
 - March 2015 sample event, carbon tetrachloride was detected in two of the sub-slab vapor samples (SV-4 and SV-6), at concentrations of 0.63 μg/m³ and 0.81 μg/m³, respectively, but was not detected in any of the sub-slab samples during this sample event. (Matrix Result No Further Action)
- TCE was detected in samples collected during each sample event.
 - February 2014 sample event, TCE was detected in one of the sub-slab vapor samples (SV-5), at a concentration of 13 μg/m³. TCE was also detected in the indoor air sample (IA-1) at a concentration of 1.2 μg/m³, but was not detected in the corresponding sub-slab vapor sample (SV-1) collected at this location. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures)
 - September 2014 sample event, TCE was detected in SV-5 at a concentration of $21 \,\mu g/m^3$, but was not detected in the corresponding indoor air sample (IA092514). (Matrix Result No Further Action) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)
 - March 2015 sample event, TCE was detected in SV-4 at a concentration of 1.1 μg/m³, and in SV-5 at a concentration of 6.9 μg/m³, but was not detected in the corresponding indoor air sample (IA031815). (Matrix Result No Further Action)
- 1,2-DCE was detected in the indoor air sample (IA-1) during the February 2014 sample event, at a concentration of 0.58 µg/m³. 1,2-DCE was not detected in the corresponding sub-slab soil vapor sample (SV-1). 1,2-DCE was not detected in samples collected during any of the subsequent sample events. (Matrix Result- No Further Action)

Matrix B Compounds

• 1,1,1-Trichloroethane was not detected in any of the soil vapor or indoor air samples.

- 1,1-Dichloroethene was not detected in any of the soil vapor or indoor air samples.
- PCE was detected in samples collected during each sample event.
 - February 2014 sample event, PCE was detected in two sub-slab vapor samples, at $88 \mu g/m^3$ and $1{,}100 \mu g/m^3$ in samples SV-5 and SV-4, respectively. PCE was also detected in the Outdoor Ambient air sample, at a concentration of $0.83 \mu g/m^3$. (Note: These sample results do not have a corresponding data point for indoor air.)
 - September 2014 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5, and SV-6), at concentrations of 220 μg/m³, 210 μg/m³, and 43 μg/m³, respectively. PCE was detected in the corresponding indoor air sample IA092514 at a concentration of 0.47 μg/m³. PCE was not detected in the outdoor ambient sample. [Matrix Result Monitor (SV-4 and SV-5), No Further Action (SV-6)]. (Note: The data validator rejected the indoor air sample and SV-6 sample for this sample round due to improper vacuum issues)
 - March 2015 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5 and SV-6), at concentrations of 100 μg/m³, 70 μg/m³, and 5.8 μg/m³, respectively. PCE was detected in the corresponding indoor air sample IA031815 at a concentration of 2.1 μg/m³. [Matrix Result Monitor (SV-4), No Further Action (SV-5 and SV-6)]

Matrix C Compounds

• VC was not detected in any of the soil vapor samples.

Qualitative Human Health Exposure Assessment

As described in Appendix 3B of DER-10, "The overall purpose of the Qualitative Human Health Exposure Assessment (or the exposure assessment) is to evaluate and document how people might be exposed to site related contaminants, and to identify and characterize the potentially exposed population(s) now and under the reasonably anticipated future use of the site." The following section details the Qualitative Human Health Exposure Assessment based on data collected during the RI.

According to Section 3.10 of DER-10, and the Fish and Wildlife Resources Impact Analysis Decision Key in DER-10 Appendix 3C, a Fish and Wildlife exposure assessment is not needed.

Soil Exposure

Soil samples collected during the RI indicated the presence of VOCs and SVOCs at concentrations above the UU and PGW SCOs. An individual could be exposed to these contaminants through direct contact with site soil during ground intrusive work at the site. Direct contact without the use of proper personal protective equipment (PPE) and personal hygiene measures could lead to dermal contact and incidental ingestion of these compounds. As the Site is fully paved or covered with the existing Site building, and fully fenced, access is controlled; potential contact with Site soil is restricted to remedial contract workers at the Site performing ground intrusive activities. The general public is not exposed to direct contact with Site soil.

The proposed redevelopment includes the demolition of the existing building and the construction of a retail development occupying the majority of the Site area (Figure 3). The primary retail space, mechanical rooms and covered plaza will include approximately 77,000SF. The building will be set eight feet below grade. Parking for 210 cars will be provided on the roof. An additional 7,000 SF of retail space will be slab on grade construction. The remainder of the property, approximately 15,000SF, will consist of paved entrance/exit areas. The proposed remedy for the site is a Track 1 cleanup. The new building will continue to be serviced by the public water supply.

The details of the proposed remedy to address the free-phase hydrocarbons will be described further in this RAWP, but the remedy generally consists of soil excavation, free-phase hydrocarbon recovery through the use of skimming technology such as vacuum trucks and oil absorbent booms, and ISCO application through the use of a sodium persulfate-based technology to address residual free-phase hydrocarbons and associated groundwater impacts, and a groundwater monitoring program to evaluate the success of the ISCO application. Based on this plan, the potential for exposure by direct contact with contaminated soil will be eliminated for both the public and employees of the commercial operation. Direct contact without the use of proper PPE and personal hygiene measures could lead to dermal contact and incidental ingestion of these compounds for any future construction workers performing ground intrusive activities at the Site.

Groundwater Exposure

Groundwater samples collected during the RI indicate the presence of limited VOCs, SVOCs and metals above the AWQSGVs, and the presence of free-phase motor oil in 13 monitoring wells. As the groundwater table is encountered at approximately 9.5 to 12.5 ft below land surface, and groundwater is not used for drinking (the area is connected to the New York City public water supply), there is no direct contact with or ingestion of groundwater by the general public. Individuals who perform groundwater sampling, free-phase hydrocarbon recovery, or other remedial activities may come into contact with contaminated groundwater if proper PPE and personal hygiene measures are not used, which could lead to dermal contact and the potential for incidental ingestion of these compounds.

The proposed redevelopment includes the demolition of the existing building and the entire Site will be covered with a new building and pavement. The proposed remedy for the site is a Track 1 cleanup. The new building will continue to be serviced by the public water supply. The details of the proposed remedy to address the free-phase hydrocarbon will be described further in this RAWP, and generally consists of excavation, free-phase hydrocarbon recovery through the use of skimming technology such as vacuum trucks and oil absorbent booms, and ISCO application through the use of a sodium persulfate-based technology to address residual free-phase hydrocarbons and associated groundwater impacts, and a groundwater monitoring program to evaluate the success of the ISCO application. Based on this remedy, the potential for public or employee exposure by direct contact with contaminated groundwater will be reduced or eliminated.

Soil Vapor Exposure

Soil vapor samples collected during the RI indicated the presence of VOCs in sub-slab soil vapor. The Site was formerly an active retail automobile sales and service operation, with an auto wash, paint shop, showroom and office space. Although several VOCs were detected in the indoor air sample collected from the office space, the only VOC compound detected in the corresponding sub-slab soil vapor sample was methylene chloride, indicating there is no vapor intrusion pathway within the office space at the Site.

Currently the vapor intrusion study in the auto repair shop yields either No Further Action or Monitor results when compared to the NYSDOH Guidance Matrix. The building currently has a vehicular exhaust venting system to reduce or eliminate vehicular exhaust from accumulating in the workspace.

At the request of NYSDEC, multiple unsuccessful attempts were made to collect soil vapor and indoor air samples at the adjacent property. As such, the presence of soil vapor impacts at the adjacent property cannot be definitively determined at this time. However; historical soil samples collected on the adjacent property (Plate 1) indicated no detections of VOCs, with the exception of methylene chloride detected at estimated concentrations of 4.5 ug/kg and 5.1 ug/kg, well below the UU SCO of 50 ug/kg for this compound. Based on this data, it is unlikely that impacted soil vapor has migrated to the adjacent property.

As described above, the remedial elements including excavation, free-phase hydrocarbon recovery, ISCO application are proposed to address soil and groundwater and are expected to improve onsite soil vapor quality by reducing or eliminating potential source material.

As part of construction, a waterproofing barrier will be installed below the foundation and the along subsurface walls which will also act as a vapor barrier to reduce vapor migration. The small slab on grade portion of the building will also include a vapor barrier. As a contingency, SSDS piping will be installed underneath the cellar slab, if possible. The SSDS installation determination will be based on the final elevation of the foundation and whether enough vertical space exists between the slab and the water table. If active SSDS operation is not required, an unconditional Track 1 cleanup will be achieved for the Site. If active SSDS operation is required a conditional Track 1 cleanup will be achieved. If SSDS operation is needed for more than 5 years, then a Track 2 Restricted Commercial cleanup will be achieved for the Site. If an unconditional Track 1 cleanup is not achieved, preparation of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement, including institutional and engineering controls, monitoring, operation and maintenance and reporting will be required.

Exposure Assessment Summary

The following table summarizes the exposure assessment.

Environmental Media and Exposure Route	Human Exposure Assessment
Direct contact with subsurface soils (and incidental ingestion)	Remedial workers can come in contact with contaminated soil if they perform ground intrusive activities.
	During remediation and construction, remedial workers, trespassers, passersby, and utility workers could come into contact with contaminated soil contained in dust through inhalation, incidental ingestion and dermal contact. This potential exposure will be mitigated through the implementation of the HASP, dust mitigation measures, and CAMP.
	 Future exposure will be reduced or eliminated by addressing free-phase hydrocarbon that may be acting as a source of contamination to soil via excavation and offsite disposal of contaminated soil, free-phase product recovery and ISCO application.
Ingestion of groundwater	Contaminated groundwater is not used for drinking water, as the Site is connected to the public water supply.
Direct contact with groundwater (and incidental ingestion)	Remedial workers and construction workers could come into contact with contaminated groundwater through dermal contact and incidental ingestion during ground intrusive work, free-phase hydrocarbon recovery, ISCO application and sampling activities. This potential exposure will be mitigated through the implementation of the HASP.
	Future exposure will be reduced or eliminated by addressing free-phase hydrocarbon that may be acting as a

Environmental Media and Exposure Route	Human Exposure Assessment
	source of contamination to soil via excavation and offsite disposal of contaminated soil, free-phase product recovery and ISCO application.
Inhalation of air (exposures related to soil vapor intrusion)	Remedial and construction workers may be exposed to contaminated soil vapor inside the building or within open excavations. This potential exposure will be mitigated through the implementation of the HASP.
	• Future exposure will be reduced through via excavation and offsite disposal of contaminated soil, free-phase product recovery and ISCO application. In addition, a vapor barrier and contingency SSDS piping will be installed underneath the cellar slab (if feasible depending on cellar slab elevation and groundwater table elevation) in the event soil vapor concern is identified after the cellar construction is completed and operation of a SSDS is deemed necessary.

Summary of the Remedy

The selected remedy will result in a Track 1 Unrestricted Use Cleanup. The selected remedy is referred to as the Excavation and Groundwater Treatment remedy. The elements of the selected remedy include: pre-design investigation, remedial design program, support of excavation (SOE) and sheeting installation, excavation, soil disposal, groundwater extraction and treatment (including free-phase product recovery using vacuum truck/oil absorbent booms), ISCO application and vapor intrusion evaluation. Details of each element are described below.

1. A Pre-design Investigation (PDI) will be conducted to collect waste characterization samples and collect in-situ end-point samples that will pre-establish the lower limit of the excavation that is required to meet Unrestricted Use SCOs. Soil sampling on the western edge of the Site along Utica Avenue (which will not be excavated for development purposes) and the east side of the Site along Kings Highway (which will have limited excavation where only slab-on-grade retail construction is proposed) will also be conducted

during the PDI. Soil samples will also be collected from the 24-inch strip between the planned SOE and the adjacent property. A PDI work plan will be submitted to NYSDEC under separate cover.

- 2. A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program.
- 3. Survey existing soil borings and monitoring well locations prior to demolition.
- 4. Site mobilization involving Site security setup, equipment mobilization, utility markouts and marking and staking excavation areas.
- 5. Implementation of erosion and sediment controls.
- 6. Site monitoring of airborne VOCs and particulates in accordance with a NYSDEC approved CAMP will be conducted during all ground intrusive and soil handling activities. Odor suppression equipment including foaming agents and dispersion pumps and sprayers will be mobilized to the Site before the start of ground intrusive activities.
- 7. The SOE consisting of a drilled cut-off wall will be installed on the northern side of the Site bordering Favorite Plastics. Approximately 212 linear feet of the drilled cut-off wall will be installed to approximately 29 feet below grade. For structural reasons, the drilled piles will be installed approximately 24 inches away from the property line. The quality of soil in the 24-inch strip will be determined during the PDI.
- 8. Soils in the 24-inch strip behind the SOE that exceed Track 1 SCOs will be removed to a depth of approximately 12 feet. LNAPL, if present, will also be removed. The total depth of removal will be based on the depth of the Favorite Plastics footings. If PDI results indicate that soils with compounds of concern above impact to groundwater SCOs will remain below the excavation limit, an ISCO application will be completed in this strip prior to backfill (see Item 15 below).
- 9. Unsaturated soils will be initially excavated to approximately nine feet below grade across the 77,000 SF of the site where below grade construction is proposed. These soils will be disposed of offsite. Soils will also be excavated to a depth of approximately four feet below grade from the 7,000SF area on the east side of the Site where slab-on-grade retail development is proposed.
- 10. Steel sheet piling will be installed along the perimeter of the LNAPL Zone. This will include approximately 332 linear feet of the steel sheet piling being installed to approximately 28 feet below grade.
- 11. Four feet of smear zone soils that straddle the water table within the LNAPL Zone will be excavated and disposed of offsite. These saturated soils will be stockpiled for shipping the following day. These soils will be managed with drying agents (such as saw dust or fly

- ash) as necessary prior to shipment offsite. The soils will also be covered overnight to manage odors.
- 12. Free-product recovery will be actively conducted in the open excavation via skimming technology using a combination of vacuum truck and oil absorbent booms. Recovered free-product will be temporarily stored onsite in an aboveground tank or drums (depending on quantity generated) for future offsite disposal. Recovery will continue as long as oil recharge occurs. When only small amounts of sheen are present, oil absorbent booms will be deployed in the area to recover the residual product.
- 13. Dewatering at the Site will be required to enable the excavation and subgrade work. Contaminated groundwater from dewatering operations will be treated as necessary prior to discharge to the municipal sewer system. Excavation will be conducted in conjunction with controlled dewatering using well points to final depths ranging from 15 to 19 feet below grade. Actual depths will be based on the results of the in-situ endpoint sampling results that will establish the excavation depth needed to achieve Unrestricted Use SCOs. Onsite treatment or offsite disposal of groundwater will proceed as needed.
- 14. Appropriate offsite disposal of all material removed from the Site to permitted facilities in accordance with all Federal, State and local rules and regulations for handling, transport and disposal, and this plan. Sampling and analysis of excavated media as required by the disposal facilities.
- 15. An ISCO application of a sodium persulfate-based technology for treatment of VOCs in soil and groundwater will be conducted following the completion of product recovery and remedial excavation. The chemical will be placed at the bottom of the final excavation depth as well as along sidewalls. ISCO application will also include the 24-inch strip behind the SOE if residual soils with compounds of concern exceed impacted to groundwater SCOS.
- 16. Controlled backfill of the excavated areas to the desired grade with recycled concrete aggregate (RCA), clean stone and/or reuse clean onsite soil from the excavation (as available). Backfill will be protected from contaminated soils using plastic sheeting as necessary. RCA will meet NYSDEC Part 360-1.15 requirements and will be free of asphalt. Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) will be brought in to complete the backfilling of the excavation and establish the designed grades at the Site.
- 17. A waterproofing barrier (Grace Preprufe or equivalent) will be installed on the underside of the foundation slab and on the walls below grade. The waterproofing barrier will act as the primary vapor barrier that will minimize any potential vapor intrusion.
- 18. Install temporary downgradient monitoring well and collect groundwater samples to evaluate the effectiveness of the ISCO treatment.

- 19. As part of the Track 1 remedy, a soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.
- 20. All responsibilities associated with the remedial action, including permitting requirements and pre-treatment requirements, will be addressed in accordance with all applicable Federal, State and local rules and regulations.
- 21. Submission of a Final Engineering Report (FER) that describes the remedial activities, certifies that the remedial requirements have been achieved, defines the Site boundaries, and describes all Engineering and Institutional Controls to be implemented at the Site (if applicable), and lists any changes from this RAWP.

Contingent Track 1

The intent of the remedy is to achieve Track 1 Unrestricted Use; therefore, no Environmental Easement or Site Management Plan is anticipated. In the event that a Track 1 Unrestricted Use is not achieved, the following contingent remedial elements will be required and the remedy will achieve a minimum Track 4 Restricted Commercial Cleanup:

- A Site cover system consisting of building foundation and pavement areas will be installed
 onsite. The site cover system will be required to allow for commercial use of the Site in
 areas where the upper one foot of exposed surface soil will exceed the applicable SCOs.
- SSDS piping will be installed underneath the cellar slab as a contingency, if possible. The vertical space between the slab and the water table will determine whether installation of the SSDS piping and the monitoring points is possible.
- If an "unconditional" Track 1 is not achieved, recording of an Environmental Easement, including ICs and ECs, to prevent future exposure to any residual contamination remaining at the Site will be required. A copy of the Environmental Easement will be submitted as part of the FER and it will be recorded in the property title records for the Site.
- If an "unconditional" Track 1 is not achieved, preparation of a Site Management Plan (SMP) is required for long term management of residual contamination as required by the Environmental Easement, including plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.

REMEDIAL ACTION WORK PLAN

1.0 INTRODUCTION

Roux Environmental Engineering and Geology, D.P.C. (Roux), on behalf of PTMA 5200 Kings Highway LLC (c/o Bridges Development Group) [PTMA 5200 or Volunteer], has prepared this Revised Remedial Action Work Plan (RAWP) for the property identified as the Kristal Auto Mall (KAM) located at 5200 Kings Highway, Brooklyn, New York (Site). The Site location is shown on Figure 1. The Site was accepted into the Brownfield Cleanup Program (BCP) and assigned Site Number C224140. The former owner, Irma C. Pollack, LLC (Pollack or Participant) entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) which was executed on May 1, 2012. In anticipation of the sale of the Site to PTMA 5200, Pollack and PTMA 5200 submitted a Request to Amend the BCA to add PTMA 5200; the Amendment was executed and effective on March 23, 2018. Commercial use is proposed for the property.

This RAWP summarizes the nature and extent of contamination as determined from data gathered during the Remedial Investigation (RI) and Supplemental RI, performed between February and March 2014, September 2014 and March 2015. It provides an evaluation of a Track 1 cleanup and other applicable remedial action alternatives, their associated costs, and the recommended and preferred remedy. The remedy described in this document is consistent with the procedures defined in DER-10 and complies with all applicable standards, criteria and guidance. The remedy described in this document also complies with all applicable Federal, State and local laws, regulations and requirements. The NYSDEC and New York State Department of Health (NYSDOH) have determined that this Site does not pose a significant threat to human health and the environment. The RI for this Site did not identify fish and wildlife resources.

A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring if the remedial program.

Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31 (see Section 4.3).

1.1 SITE LOCATION AND DESCRIPTION

The Site is located in the County of Kings, New York City, New York and is identified as Block 7969, Lot 9 on the New York City Tax Map. A United States Geological Survey (USGS) topographical quadrangle map (Figure 1) shows the Site location. The Site is situated on an approximately 2.28-acre area bounded by a plastic manufacturing company, Favorite Plastics Corp., to the north, a car dealership to the south, Utica Avenue to the west and Kings Highway to the east (see Figure 2). A boundary map is attached to the BCA as required by Environmental Conservation Law (ECL) Title 14 Section 27-1419.

1.2 CONTEMPLATED REDEVELOPMENT PLAN

The Remedial Action to be performed under the RAWP is intended to make the Site protective of human health and the environment consistent with the contemplated end use. The proposed redevelopment plan and end use is described here to provide the basis for this assessment. However, the Remedial Action contemplated under this RAWP will be implemented independent of the proposed redevelopment plan.

The proposed redevelopment includes the demolition of the existing building and the construction of a retail development occupying the majority of the Site area (Figure 3). The primary retail space, mechanical rooms and covered plaza will include approximately 77,000SF. The building will be set eight feet below grade. Parking for 210 cars will be provided on the roof. An additional 7,000 SF of retail space will be slab on grade construction. The remainder of the property, approximately 15,000SF, will consist of paved entrance/exit areas.

1.3 DESCRIPTION OF SURROUNDING PROPERTY

Review of neighboring properties from the Site and from public thoroughfares, and research of available information regarding the neighboring properties, was performed to identify evidence of environmental concerns that could adversely impact the Site or the results of the RIR.

The Site is bordered to the east and southeast by Kings Highway and to the west by Utica Avenue. The Site is bordered to the south by Premier Ford auto dealership. To the north the Site is bordered by the Favorite Plastics Corporation. The Site is bordered to the northeast at 5226 Kings Highway by the Kristal Auto Mall Used Cars. This site occupies a different tax lot, has a different owner from 5222 Kings Highway and is not part of the BCP.

The site is located in an area that is industrial to the northeast, north, northwest, west and southwest. A warehouse owned by H. Schier, Inc., a food wholesaler occupies the entire block to the west across Utica Avenue. Father to the west and north of the Site is continued industrial and commercial land use. To the east and southeast, across Kings Highway, is a residential community consisting of attached one and two-family homes. The closest residences on the corner of Kings Highway, Foster Avenue, and East 52nd Street are approximately 300 feet away from the front of the auto dealership and 400 feet away from the service area. Approximately ½ mile southeast of the Site is the Parkway Preschool. Paerdegat Basin, a tidal inlet is located approximately 0.6 miles southeast of the Site. There is no agricultural or recreational land use within 0.5 mile of the Site.

A tax map is provided as Figure 4. A figure presenting the land use and surrounding property owners is provided as Figure 5.

2.0 DESCRIPTION OF REMEDIAL INVESTIGATION FINDINGS

The Site was investigated in accordance with the scope of work presented in the NYSDEC-approved Remedial Investigation (RI) Work Plan dated October 2013. The investigation was conducted between February and March 2014, September 2014 and March 2015. The RI Summary Report was submitted to NYSDEC in January 2016.

2.1 SUMMARY REMEDIAL INVESTIGATIONS PERFORMED

This section presents a detailed description of the RI activities performed to characterize the soil, groundwater and soil vapor at the Site. Previous investigations conducted by Testwell in 2007 documented the presence of the following areas of contamination:

- PCE, DCE, and petroleum hydrocarbons in groundwater grab samples above AGWQS;
 and
- TCE, PCE, DCE, and petroleum hydrocarbons in soil above Unrestricted Use (UU) and Protection of Groundwater (PGW) Soil Cleanup Objectives (SCOs) under the central and eastern side of the Repair Shop; Three SVOCs exceed Restricted Commercial (RC) SCOs in one sample in the same area.

Environmental data collected during the RI was used to qualitatively assess the potential exposure of receptors to Site contaminants and develop the information necessary to support the development of this RAWP. The sample locations are shown on Figure 2, and sample results are summarized in Tables 1 through 7, and on Plates 1, 2 and 4.

2.1.1 Soil Borings, Monitoring Wells and Soil Vapor Points Installation

Soil Borings

To characterize the soil conditions for the Areas of Concern (AOCs) at the Site, soil borings were advanced at the locations shown in Plate 1. Boring logs are provided as Appendix B.

Soil borings were advanced using a track-mounted direct-push Geoprobe[®] 7720DT. Geoprobe[®] samples were collected continuously in five-foot increments using a 2-inch diameter macrocore sampler. Soil samples were collected for laboratory analysis from two intervals within each borehole for vertical delineation of previously detected contaminants. Soil borings extended to a minimum of 10 feet below the water table, with the exception of MW-4D, which extended to 40 feet below the concrete slab.

A total of 18 soil borings were advanced at the locations shown in Figure 2, and a total of 49 soil samples were collected for laboratory analysis.

- Underground Storage Tanks AOC Roux advanced three soil borings (RSB-2, RSB-8, and RSB-14) to confirm and delineate the results obtained by Testwell in 2007. Two monitoring wells (a shallow and deep pair) were also installed to evaluate groundwater quality in the vicinity of this AOC.
- Trench drains AOC Roux advanced nine soil borings (RSB-3, RSB-4, RSB-5, RSB-6, RSB-7, RSB-9, RSB-10, RSB-11, and RSB-12) and installed one monitoring well to evaluate the potential impacts from the western trench drains.
- Hydraulic lifts AOC Roux only conducted visual inspection in this AOC as they appear intact.
- Supplemental RI delineation Four soil borings (RSB/MW-14, RSB/MW-15, RSB/MW-16, and RSB/MW-17) were advanced in the vicinity of soil boring RSB-2. These soil borings were intended to evaluate and delineate elevated PCE and TCE detections observed at the water table in RSB-2 during the first sampling round in March 2014.

Monitoring Wells

Three monitoring wells (MW-1 through MW-3) were installed at the Site as part of Testwell's previous investigations. These wells, however, were installed only to determine groundwater flow direction and the wells were never sampled. During the RI, Roux installed a total of 19 additional monitoring wells (MW-4S, MW-4D, MW-5 through MW-21) and sampled all monitoring wells that didn't contain free phase hydrocarbons to evaluate groundwater conditions in accordance with the approved RIWP and Supplemental RIWPs.

Monitoring wells were installed at soil boring locations RSB-6, RSB-12, RSB-13, RSB-14, RSB/MW-14, RSB/MW-15, RSB/MW-16, and RSB/MW-17 to a depth of approximately 20 feet bls, and at MW-4S to a depth of approximately 40 feet bls. No soil samples were collected from the soil borings at locations MW-8 through MW-13, and MW-18 through MW-21. Monitoring wells were constructed of 2-inch-inside-diameter, Schedule 40 polyvinyl chloride (PVC) casing and, 0.020-inch slot, machined screen. Well screens are 10 feet long and were installed from approximately 10 to 20 feet bls in MW-4S, MW-5, MW-6, and MW-7, and from approximately 30 to 40 feet in MW-4D. A sand pack was placed around the well screen, extending two feet above the top of the screened zone. A minimum two-foot-thick bentonite pellet seal was placed above the sand pack. Once the pellets were allowed to hydrate, a cement-bentonite grout was pumped

into the remaining annular space from the bottom up using a tremie pipe lowered to just above the bentonite seal. The wells are completed using locking well plugs, and flush mounted, bolt down, watertight, manhole covers cemented into place.

Each well that did not exhibit free phase product after installation, was developed to ensure good hydraulic connection and to reduce/eliminate turbidity of the water. The wells were developed using a submersible pump and surged periodically until well yield was consistent and had a turbidity below 50 nephelometric turbidity units (NTUs), if possible.

All monitoring wells were surveyed to obtain horizontal and vertical survey coordinates, and water level elevations were calculated for each well and included on Table 1. Figure 6 shows the groundwater elevation contours. Groundwater at the Site is approximately 10 feet below grade and groundwater flow is to the southeast. Monitoring well development logs and groundwater sampling purge logs are included in Appendix C.

Following installation and/or development, thirteen of the monitoring wells exhibited free-phase hydrocarbon. Samples of the free-phase hydrocarbon was collected and submitted to the laboratory for identification. The result was reported as "Pattern is similar to Motor Oil". Motor oil has a higher viscosity than other petroleum hydrocarbons, therefore it's less mobile in the subsurface. In addition, motor oil has a lower percentage of VOC content compared to other petroleum hydrocarbons such as gasoline or #2 fuel oil and therefore the potential for generation of soil vapor and vapor intrusion issues is lower. A copy of the laboratory reports is included in Appendix D. A summary of free-phase hydrocarbon thicknesses from the March 2015 gauging event is provided in Table 1. The estimated extent of the free-phase hydrocarbon plume is shown on Figure 7.

Soil Vapor Points

Soil vapor impacts were not evaluated as part of Testwell's previous investigations. During the RI, Roux collected eleven sub-slab and one soil vapor sample along with one indoor air sample in the office area, two indoor air samples in the auto repair shop and two outdoor ambient air samples.

Soil vapor and sub-slab vapor samples were collected from five locations at the Site. Soil vapor sampling forms are provided in Appendix E. A summary of the soil vapor sampling program conducted during the RI is provided in the following sections. The complete soil vapor sampling results are shown on Plate 4 and summarized in Table 7.

Four of the five soil vapor points are located inside the building and one point (SV-2) is located on the southern property boundary, outside the building. In February 2014, the four sub-slab soil vapor points (SV-1, and SV-3 through SV-5) were installed as temporary points due to large void spaces that were encountered in several locations during pre-clearance of the soil borings. It was decided that temporary points would require a much smaller penetration through the slab, and therefore would provide a better seal for each location. These points were installed using a hammer drill to penetrate the concrete floor slab. In September 2014, temporary sub-slab vapor points SV-4 and SV-5 in the auto repair shop area, were converted to permanent sub-slab vapor points, to facilitate future sample rounds and protect the integrity of the sample points in high traffic areas. In September 2014, an additional sub-slab vapor sample point (SV-6) was installed per the Supplemental RIWP, to evaluate soil vapor conditions on the eastern portion of the Site.

Soil vapor point (SV-2) was installed using a Geoprobe® rig to the target depth of five feet. For the outdoor soil vapor samples, a Geoprobe® rod equipped with a Geoprobe® soil vapor sampling connector and a disposable drive point was advanced 4.5 to 5 feet into the ground. A temporary soil vapor sampling port consisting of a six-inch long stainless steel screen was advanced to the bottom of the Geoprobe® rod with a Teflon-lined sampling tube running to the surface. The annular space around the screen was filled with sand and a surface seal consisting of bentonite clay was installed to prevent ambient air intrusion. The end of the sampling tube was fitted with Master-Flex flexible tubing and tied off to prevent ambient air and/or water from entering the tubing prior to sample collection.

2.1.2 Samples Collected

Soil Borings

Soil samples were collected using a track-mounted direct-push Geoprobe[®] 7720DT. Geoprobe[®] samples were collected continuously in five-foot increments using a 2-inch diameter macrocore sampler. Soil samples were collected for laboratory analysis from two intervals within each borehole for vertical delineation of previously detected contaminants. Soil borings extended to a minimum of 10 feet below the water table, with the exception of MW-4D, which extended to 40 feet below the concrete slab.

During installation of the soil borings, the lithology was recorded and soil was field screened for VOCs using a PID, every two and a half feet. The soil from each five-foot interval was observed for lithology and evidence of contamination (e.g., staining, odors, and/or visible free product) and placed immediately thereafter into large Zip-locTM bags for recording headspace. After a minimum of 15 minutes for equilibration with the headspace in the Zip-locTM bag, each sample was screened for organic vapors using a PID. Samples for VOC analysis were placed in a laboratory-supplied jar prior to screening, due to the potential for loss of VOCs through volatilization. In soil borings RSB-1, RSB-3, RSB-4, RSB-5, RSB-6/MW-5, RSB-7, RSB-9, RSB-10, RSB-11, RSB-12/MW-7, RSB-13/MW-6, and MW-4D, two soil samples were collected: one from the two-foot interval immediately above the water table and one from the terminal depth of the boring. The samples were placed in the laboratory-supplied containers and shipped to the laboratory under chain of custody procedures in accordance with Roux standard operating procedures.

In soil borings RSB-2, RSB-8 and RSB-14/MW-4S, soil samples were collected from four intervals; the one to three-foot interval, five to seven-foot interval, the two-foot interval immediately above the water table, and the terminal depth of the boring to confirm and vertically delineate previously identified soil contamination.

In soil borings RSB/MW-14, RSB/MW-15, RSB/MW-16 and RSB/MW-17, soil samples were collected from three intervals; a shallow interval (one to 3- or two to four-foot interval), the two-

foot interval immediately above the water table, and the terminal depth of the boring to confirm and horizontally delineate previously identified soil contamination in RSB-2.

Monitoring Wells

To characterize groundwater flow and quality conditions, the existing network of three monitoring wells was sampled. Nineteen new monitoring wells were also installed at the Site including the north portion of the garage, and the southwest and northwest corners of the Site (MW-4S, MW-4D, and MW-5 through MW-21) to evaluate groundwater quality in these areas. [Note: MW-4S and MW-4D is a shallow (20 ft bls) and deep (40 ft bls) pair of wells to evaluate vertical extent of chlorinated VOC impacts]. The monitoring well locations are shown on Figure 2.

A total of ten groundwater samples and two duplicate samples were collected from MW-1 through MW-3, MW-4D, MW-6, MW-7, MW-9, MW-19, and MW-20 over the course of the three field mobilizations, in accordance with the RIWP, Supplemental RIWPs, and QAPP. A total of 13 monitoring wells were not sampled due to the presence of free-phase hydrocarbons (MW-4S, MW-5, MW-8, MW-10 through MW-17, MW-18, and MW-21).

Field parameters, including temperature, pH, conductivity, turbidity, and dissolved oxygen concentration, were also collected during well sampling. Prior to sampling, depth to water was measured at each well using an electronic water level indicator with an accuracy of +/-0.01 feet. At each groundwater sampling location, groundwater samples were collected using low-flow (minimal drawdown) procedures. Prior to sample collection, each point was purged at low-flow evacuation rates of 0.1 to 0.5 liters per minute (L/min) using a peristaltic pump. Groundwater samples were collected at the same flow rate as purging using the same device as was used for purging.

Soil Vapor Points

On February 24, 2014, summa canister soil vapor samples were collected to evaluate the potential VOC soil vapor impacts. One soil vapor sample (SV-2) was collected from the area outside of the building (in the southern portion) from a boring installed using a Geoprobe, to the target depth of

five feet. Four additional soil vapor samples were collected from directly beneath the building slab [one in the office space (SV-1), one in the northern portion (SV-4), one in the central portion of the Auto Repair Shop (SV-5), and one in the western portion (SV-3)]. Sub-slab vapor samples were collected directly below the slab, using temporary soil vapor points. In addition, one outdoor ambient air sample (Outdoor Ambient) and one indoor air sample (IA-1) from within the office space were collected.

On September 25, 2014 and March 18, 2015, sub-slab vapor samples were collected from SV-4, SV-5, and SV-6. In addition, one indoor air sample and an outdoor ambient sample were collected concurrently with the sub-slab vapor samples.

2.1.3 Chemical Analytical Work Performed

Soil

Soil samples were packed into laboratory supplied containers and stored on ice. Soil samples were analyzed by York Analytical Laboratories, Inc. (York), an Environmental Laboratory Approval Program (ELAP) certified laboratory (Lab ID #10854) located in Stratford, Connecticut. Selected samples were analyzed for Target Compound List (TCL) VOCs and TCL SVOCs per the NYSDEC-approved RIWP.

Analytical data was provided in NYSDEC ASP Category B deliverable packages with case narratives describing how closely the data met the quality objectives as described by the NYSDEC ASP. A data usability summary report (DUSR) is provided in Appendix F. The DUSR was prepared by an independent party and in accordance with Appendix 2B, Section 2.0 of DER-10 for all samples generated during the RI.

Analytical results for soil samples were compared to NYSDEC UU, PGW, and RC SCOs for the Protection of Public Health presented in 6 NYCRR Subpart 375-6. These SCOs were selected based on the future use of the Site, as well as the anticipated BCP cleanup Tracks for soil remediation that are proposed for the Site. The locations of the soil samples are shown on Plate 1, along with their respective summarized soil sample results. Exceedances of the UU SCOs are

shown in black and exceedances of the RC SCOs are shown in yellow. Exceedances of the PGW SCOs are shown in blue when the detection occurs below the water table, and the compound is also detected in groundwater samples. Complete soil sample results are summarized in Tables 2 and 3. Soil boring logs are provided in Appendix B.

Groundwater

Following well development, one round of groundwater samples was collected and analyzed for:

- TCL VOCs;
- TCL SVOCs (only for the February 24, 2014 and October 27, 2015 sample rounds); and
- Metals (only for the February 24, 2014 and October 27, 2015 sample rounds).

Field parameters, including temperature, pH, conductivity, turbidity, and dissolved oxygen concentration, were also collected during well sampling. Prior to sampling, depth to water was measured at each well using an electronic water level indicator with an accuracy of +/-0.01 feet. At each groundwater sampling location, groundwater samples were collected using low-flow (minimal drawdown) procedures. Prior to sample collection, each point was purged at low-flow evacuation rates of 0.1 to 0.5 liters per minute (L/min) using a peristaltic pump. Groundwater samples were collected at the same flow rate as purging using the same device as was used for purging. Groundwater sampling forms are provided in Appendix C.

Soil Vapor

All vapor samples were collected in 6-liter, laboratory pre-cleaned, Summa canisters fitted with an 8-hour flow controller. All soil vapor samples, sub slab vapor samples, indoor air and ambient air samples were analyzed using USEPA Method TO-15 for VOCs.

2.1.4 Documentation

2.1.4.1 Soil Results

Underground Storage Tanks

Three soil borings (RSB-2, RSB-8, and RSB-14) were advanced in the vicinity of the former UST area located on the northeastern side of the repair shop. These soil borings were intended to confirm and delineate previous sample results obtained by Testwell in 2007. A total of four soil samples were collected from each soil boring.

VOCs

In general, though there were several detections of VOCs (a total of 10 compounds) that exceeded the UU and PGW SCOs (SCOs are the same for both criteria for the VOCs discussed below, with the exception of total xylenes), none of these exceeded the RC SCOs. As shown on Tables 2 and 4, the compounds acetone and methylene chloride were detected in every soil sample, and the majority of field blanks, and trip blanks. Methylene chloride sample results were rejected by the data validator in all of the soil samples, and acetone sample results were rejected in all but two of the samples (RSB-8 in the five to seven-foot and eight and half to ten and half-foot intervals) for this reason. These compounds are considered to be common lab contaminants and are not contaminants of concern at the Site; therefore, these results will not be discussed in further detail. The majority of the remainder of the VOC detections were petroleum hydrocarbons, with the exception of three chlorinated hydrocarbons [tetrachloroethene (PCE), trichloroethene (TCE), and cis-1,2,-dichloroethene (1,2 DCE)]. The results for the detected compounds are summarized below, and on Table 2.

- 2-butanone (MEK) was detected in four samples, ranging in concentration from 4.4 (estimated) to 1800 μg/kg. MEK exceeded the UU and PWG SCO (120 μg/kg) in one sample, RSB-14/4D__10-11 at a concentration of 1800 μg/kg. This detection does not exceed the RC SCO of 500,000 μg/kg.
- Benzene was detected in three samples, ranging in concentration from 4.4 $\mu g/kg$ (estimated) to 1200 $\mu g/kg$. Benzene exceeded the UU and PGW SCO (60 $\mu g/kg$) in two samples, RSB-2_11-13 and RSB-14__10-11 at concentrations of 470 $\mu g/kg$ (estimated) and 1,200 $\mu g/kg$, respectively. Neither of these detections exceeded the RC SCO of 44,000 $\mu g/kg$.

- Ethylbenzene was detected in four samples, ranging in concentration from $3 \,\mu g/kg$ (estimated) to $12,000 \,\mu g/kg$. Ethylbenzene exceeded the UU and PWG SCO $(1,000 \,\mu g/kg)$ in two samples, at concentrations as follows: RSB-2_11-13 $(12,000 \,\mu g/kg)$, and RSB-14/14D_10-11 $(6,700 \,\mu g/kg)$. Neither of these detections exceeded the RC SCO of $390,000 \,\mu g/kg$.
- MTBE was detected in two samples, ranging in concentration from 420 μg/kg (estimated) to 2,000 μg/kg. MTBE exceeded the UU and PWG SCO (930 μg/kg) in one sample, RSB-2_11-13 at a concentration of 2,000 μg/kg. This detection does not exceed the RC SCO of 500,000 μg/kg.
- Toluene was detected in 10 samples, ranging in concentration from 5.1 µg/kg (estimated) to 340,000 µg/kg. Toluene exceeded the UU and PGW SCO (700 µg/kg) in two samples, at concentrations as follows: RSB-2_11-13 (340,000 µg/kg), and RSB-14/4D_10-11 (30,000 µg/kg). Neither of these detections exceeded the RC SCO of 500,000 µg/kg.
- Xylenes (total) were detected in eight samples, ranging in concentration from 7.5 μg/kg (estimated) to 51,000 μg/kg. Xylene exceeded the UU SCO (260 μg/kg) in two samples, at concentrations as follows: RSB-2_11-13 (51,000 μg/kg), and RSB-14/4D_10-11 (32,000 μg/kg). Neither of these detections exceeded the PGW SCO (1,600 μg/kg) or the RC SCO (500,000 μg/kg).
- 1,2-DCE was detected in three soil samples, ranging in concentration from 3.2 μg/kg (estimated) to 12,000 μg/kg. 1,2-DCE exceeded the UU and PGW SCO (250 μg/kg) in two samples, at concentrations as follows: RSB-2_11-13 (12,000 μg/kg), and RSB-14/4D_10-11 (2,900 μg/kg). Neither of these detections exceeded the RC SCO of 500,000 μg/kg.
- PCE was detected in seven soil samples, ranging in concentration from 3.1 μ g/kg (estimated) to 6,100 μ g/kg. PCE exceeded the UU and PGW SCO (1,300 μ g/kg) in one sample, RSB-2_11-13, at a concentration of 6,100 μ g/kg. This detection does not exceed the RC SCO of 150,000 μ g/kg.
- TCE was detected in two soil samples, ranging in concentration from 590 μ g/kg (estimated) to 760 μ g/kg (estimated). TCE exceeded the UU and PGW SCO (470 μ g/kg) in both samples, RSB-2_11-13 and RSB-14_10-11, at 760 μ g/kg (estimated) and 590 μ g/kg, respectively. Neither of these detections exceeded the RC SCO of 200,000 μ g/kg.

There were several VOC detections exceeding the PGW SCOs at or near the water table in soil boring locations RSB-2 and RSB-14/4D. As discussed below in the groundwater results section, three compounds: benzene, 1,2-DCE, and MTBE also exceed the respective Ambient Water Quality Standards and Guidance Values (AWQSGVs) in downgradient groundwater samples.

The remaining VOCs detected in the soil samples did not exceed the AWQSGVs, indicating that the impacts are limited and localized in nature.

SVOCs

There were several SVOCs detected in the soil samples collected from this area. As shown on Table 3, the majority of compounds were reported at concentrations below the SCOs or not detected. The only compounds that exceeded the UU, PGW or RC SCOs were polycyclic aromatic hydrocarbons (PAHs) and included: Benzo[a]anthracene, Benzo[a]pyrene, Benzo[b]fluoranthene, Benzo[k]fluoranthene, Chrysene, Dibenzo[a,h]anthracene, and Indeno[1,2,3-cd]pyrene. The results for these compounds are summarized below.

- Benzo[a]anthracene was detected in seven soil samples, ranging in concentration from 943 μg/kg (estimated) to 4,750 μg/kg. Benzo[a]anthracene exceeded the UU and PGW SCO (1000 μg/kg, SCO is the same for both criteria) in six samples, ranging in concentration from 1,480 μg/kg (estimated) at RSB-14_10-11 to a concentration of 4,750 μg/kg at RSB-2_1-3. None of these detections exceeded the RC SCO of 5,600 μg/kg.
- Benzo[a]pyrene was detected in seven samples, ranging in concentration from 1,120 μg/kg (estimated) in RSB-2_5-7 to 5,550 μg/kg in RSB-2_1-3. Benzo[a]pyrene exceeded both the UU and RC SCO (1,000 μg/kg, SCO is the same for both criteria) in all seven samples. None of the samples exceeded the PGW SCO (22,000 μg/kg) for this compound.
- Benzo[b]fluoranthene was detected in seven samples, ranging in concentration from 961 µg/kg (estimated) to 4,110 µg/kg (estimated). Benzo[b]fluoranthene exceeded the UU SCO (1,000 µg/kg) in six samples, ranging in concentration from 1,410 µg/kg (estimated) at RSB-8_8.5-10.5 and RSB-14/4D_5-7 to a concentration of 4,110 µg/kg (estimated) at RSB-2_1-3. Benzo[b]fluoranthene exceeded the PGW SCO (1,700 µg/kg) in four samples, ranging in concentration from 4,110 µg/kg (estimated) at RSB-14_5-7 to 1,990 µg/kg at RSB-14/4D_2.5-3. None of these detections exceeded the RC SCO of 5,600 µg/kg.
- Benzo[k]fluoranthene was detected in seven samples, ranging in concentration from 1,070 $\mu g/kg$ (estimated) to 5,080 $\mu g/kg$. Benzo[k]fluoranthene exceeded the UU SCO (800 $\mu g/kg$) at all seven locations. Benzo[k]fluoranthene exceeded the PGW SCO (1,700 $\mu g/kg$) at four locations, ranging in concentration from 1,780 $\mu g/kg$ at RSB-14/4D_5-7 to a concentration of 5,080 $\mu g/kg$ (estimated) at RSB-2_1-3. None of these detections exceeded the RC SCO of 56,000 $\mu g/kg$.
- Chrysene was detected in seven samples, ranging in concentration from 1,000 μg/kg (estimated) to 4,760 μg/kg. Chrysene exceeded the UU and PGW SCO (1,000 μg/kg, SCO is the same for both criteria) in six samples, ranging in concentration from 1,610 μg/kg

(estimated) at RSB-14_2.5-3 to 4,760 μ g/kg at RSB-2_1-3. None of these detections exceeded the RC SCO of 56,000 μ g/kg.

- Dibenzo[a,h]anthracene was detected in one sample at a concentration of 510 μg/kg (estimated) at RSB-8_5-7. This exceeds the UU SCO (330 μg/kg), but does not exceed the RC SCO (560 μg/kg) or the PGW SCO (1,000,000 μg/kg).
- Indeno[1,2,3-cd]pyrene was detected in six samples, ranging in concentration from 489 μ g/kg (estimated) to 1,280 μ g/kg (estimated). Indeno[1,2,3-cd]pyrene exceeded the UU SCO (500 μ g/kg) in five samples, ranging in concentration from 522 μ g/kg (estimated) in RSB-8_8.5-10.5 to 1,280 μ g/kg (estimated) in RSB-2_1-3. None of these detections exceeded the RC SCO (5,600 μ g/kg) or the PGW SCO (8,200 μ g/kg).

Similar to the VOC detections, there were several SVOCs exceeding the respective PGW SCOs at or near the water table in soil boring location RSB-8. Only two compounds, benzo[a]anthracene and chrysene, also exceeded the respective AWQSGVs in downgradient groundwater samples. The remaining SVOCs detected in the soil samples were not detected in corresponding downgradient groundwater samples, indicating that the impacts are limited and localized in nature.

Trench Drains

Nine soil borings (RSB-3, RSB-4, RSB-5, RSB-6, RSB-7, RSB-9, RSB-10, RSB-11, and RSB-12) were advanced in the vicinity of the trench drains located throughout the Site. These soil borings were intended to evaluate potential impacts in the vicinity of the trench drains. A total of two samples were collected from each soil boring.

VOCs

There were a total of eight VOCs detected in 12 soil samples collected from the nine soil borings. These included MEK, ethylbenzene, MTBE, toluene, total xylenes, 1,2-DCE, PCE, and TCE. As shown on Table 2, all of the compounds were reported at concentrations below the SCOs or not detected at all.

SVOCs

There were a total of 12 SVOCs detected in ten soil samples collected from the nine soil borings. As shown on Table 3, all of the compounds were reported at concentrations below the SCOs or not detected at all.

Supplemental RI Delineation Soil Borings

Four soil borings (RSB/MW-14, RSB/MW-15, RSB/MW-16, and RSB/MW-17) were advanced in the vicinity of soil boring RSB-2. These soil borings were intended to evaluate and delineate elevated PCE and TCE detections observed at the water table in RSB-2 during the first sampling round in March 2014. A total of twelve soil samples were collected from these locations, three samples from each soil boring.

<u>VOCs</u>

In general, though there were several detections of VOCs (a total of five compounds) that exceeded the UU and PGW SCOs (SCOs are the same for both criteria for the VOCs discussed below, with the exception of total xylenes), none of these exceeded the RC SCOs. The two compounds of concern in these borings were either not detected (TCE) or detected at concentrations well below the UU and PGW SCO [PCE ranging from $3.3 \,\mu\text{g/kg}$ (estimated) to $5.4 \,\mu\text{g/kg}$]. The results for the detected compounds are summarized below, and on Table 2.

- 2-butanone (MEK) was detected in three samples, ranging in concentration from 2.8 (estimated) to 450 μ g/kg. MEK exceeded the UU and PWG SCO (120 μ g/kg) in one sample, RSB/MW-14_12-14 at a concentration of 450 μ g/kg. This detection does not exceed the RC SCO of 500,000 μ g/kg.
- Ethylbenzene was detected in six samples, ranging in concentration from 11 μ g/kg to 5,700 μ g/kg. Ethylbenzene exceeded the UU and PWG SCO (1,000 μ g/kg) in five samples, at concentrations ranging from 1,200 μ g/kg in RSB/MW-14_12-14, to 5,700 μ g/kg in RSB/MW-15_10-11. None of these detections exceeded the RC SCO of 390,000 μ g/kg.
- Toluene was detected in seven samples, ranging in concentration from 23 μ g/kg to 100,000 μ g/kg. Toluene exceeded the UU and PGW SCO (700 μ g/kg) in four samples, at concentrations ranging from 930 μ g/kg in RSB/MW-14_12-14 to 100,000 μ g/kg in RSB/MW-15_10-11. None of these detections exceeded the RC SCO of 500,000 μ g/kg.

- Xylenes (total) were detected in seven samples, ranging in concentration from 7.8 μg/kg (estimated) to 28,000 μg/kg. Xylenes exceeded the UU SCO (260 μg/kg) and PGW SCO (1,600 μg/kg) in four samples, at concentrations ranging from 5,800 μg/kg in RSB/MW-14_12-14 to 28,000 μg/kg in RSB/MW-15. None of these detections exceeded the RC SCO (500,000 μg/kg).
- 1,2-DCE was detected in six soil samples, ranging in concentration from 3.7 μ g/kg (estimated) to 2,300 μ g/kg. 1,2-DCE exceeded the UU and PGW SCO (250 μ g/kg) in three samples, at concentrations ranging from 330 μ g/kg (estimated) in RSB/MW-17_13-15 to 4,100 μ g/kg in RSB/MW-16_11-13. None of these detections exceeded the RC SCO of 500,000 μ g/kg.
- PCE was detected in two soil samples, ranging in concentration from 3.3 μg/kg (estimated) to 5.4 μg/kg. PCE did not exceed the UU and PGW SCO (1,300 μg/kg), or RC SCO (150,000 μg/kg).

The only VOC detections exceeding the PGW SCO at or near the water table were 1,2-DCE in soil boring locations RSB/MW-15 and RSB/MW-16. As discussed below, this compound also exceeded the respective AWQSGV in one of the downgradient groundwater samples. The remaining VOCs detected in the soil samples did not exceed the AWQSGVs, indicating that the impacts are limited and localized in nature.

SVOCs

There were a total of ten SVOCs detected in seven of the soil samples collected from the four soil borings. As shown on Table 3, all of the compounds were reported at concentrations below the SCOs or not detected at all, with the exception of chrysene in the 1-3 foot interval in soil boring RSB/MW-17, which was detected at an estimated concentration of $1,050 \,\mu\text{g/kg}$. This slightly exceeds both the UU and PGW SCO for this compound $(1,000 \,\mu\text{g/kg})$ for both criteria), but does not exceed the RC SCO $(56,000 \,\mu\text{g/kg})$.

In summary, soil sample results confirm previous investigations that identified petroleum contamination surrounding the former USTs in the northeastern corner of the auto repair shop. Only one compound (benzo[a]pyrene) was detected above the RC SCOs in three soil borings in this area. These detections were observed to a maximum depth of 10.5 feet below land surface. Soil sample results from the remainder of the Site show no exceedances of the RC SCOs. Several

VOCs and SVOCs exceeded the PGW SCOs in the vicinity of the water table; however, only five of these compounds were also detected in downgradient groundwater samples. These detections were observed to a maximum depth of 15 feet below land surface.

These sample results illustrate the extremely limited nature of SVOC detections in one small area of the Site (northeast corner of the auto repair shop). The proposed remedial action will include excavation, free-phase hydrocarbon recovery followed by ISCO application to remediate unrecoverable residual free-phase hydrocarbons. The details of the proposed remedy to reduce or eliminate the free-phase hydrocarbons and residual soil impacts present at the Site will be fully described in the RAWP.

2.1.4.2 Groundwater Results

A total of ten groundwater samples and two duplicate samples were collected from MW-1 through MW-3, MW-4D, MW-6, MW-7, MW-9, MW-19, and MW-20 over the course of the three field mobilizations, in accordance with the RIWP, Supplemental RIWPs, and QAPP. A total of 13 monitoring wells were not sampled due to the presence of free-phase hydrocarbons (MW-4S, MW-5, MW-8, MW-10 through MW-17, MW-18, and MW-21).

The groundwater laboratory analytical results were compared to NYSDEC AWQSGVs for Class GA groundwater (even though the groundwater at the Site is not used for drinking since the area is connected to the public water supply). Laboratory analytical data for groundwater are shown on Plate 2, and are summarized in Tables 4, 5, and 6. For reference, the historical groundwater sample results are summarized on Plate 3. It should be noted that the historical groundwater samples were collected as grab samples from soil borings during Testwell's 2007 Site work.

<u>VOCs</u>

A summary of laboratory analytical data for VOCs detected in groundwater is presented in Table 4 and Plate 2. A total of ten groundwater samples and two duplicate samples were analyzed for VOCs. As shown on Table 4, all of compounds were reported at low concentrations or not detected in any of the samples. Analytical data for VOCs indicated detections above the NYSDEC

AWQSGVs in two of the groundwater samples. Detections above the NYSDEC AWQSGVs included benzene, chloroethane, cis-1,2-dichloroethane, methyl tert butyl ether (MTBE), and vinyl chloride. There were also detections of low-level estimated concentrations of methylene chloride (5.1 μ g/L to 14 μ g/L) in three out of seven field blanks, and two out of eight trip blanks, indicating that these detections are likely laboratory artifacts. This is confirmed by the non-detect or low-level estimated results for methylene chloride in all ten groundwater samples and the duplicate samples. A summary of the exceedances is provided below.

- Benzene exceeded the AWQSGV (1 μ g/L) in two samples, at concentrations of 1.2 μ g/L in MW-19 and 5.2 μ g/L in MW-20.
- Chloroethane exceeded the AWQSGV (5 μ g/L) in MW-20 at a concentration of 11 μ g/L.
- Cis-1,2-dichloroethane exceeded the AWQSGV (5 μ g/L) in MW-20 at a concentration of 350 μ g/L.
- MTBE exceeded the AWQSGV (10 μ g/L) in two samples, at concentrations of 22 μ g/L in MW-19 and 100 μ g/L in MW-20.
- Vinyl chloride exceeded the AWQSGV (2 μ g/L) in two samples, at concentrations of 42 μ g/L in MW-19 and 66 μ g/L in MW-20.

SVOCs

A summary of laboratory analytical data for SVOCs detected in groundwater samples is presented in Table 5 and on Plate 2. A total of nine groundwater samples and one duplicate sample were analyzed for SVOCs. As shown on Table 5, limited SVOCs were detected in three of the groundwater samples collected during this investigation. The only detections of SVOCs that exceeded the NYSDEC AWQSGVs were benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, bis(2-ethylhexyl) phthalate, chrysene, and indeno[1,2,3-cd]pyrene in MW-6, MW-7, and MW-20. A summary of the exceedances is provided below.

- Benzo[a]anthracene exceeded the AWQSGV (0.002 μ g/L) in two samples, at concentrations of 0.0686 μ g/L in MW-6 and 0.144 μ g/L in MW-20.
- Benzo[a]pyrene exceeded the AWQSGV (0 μ g/L) in MW-20, at a concentration of 0.144 μ g/L.
- Benzo[b]fluoranthene exceeded the AWQSGV (0.002 μ g/L) in MW-20, at a concentration of 0.0821 μ g/L.

- Bis(2-ethylhexyl) phthalate exceeded the AWQSGV (5 μ g/L) in MW-7 and the duplicate of this sample, at estimated concentrations of 39.6 μ g/L and 6.98 μ g/L, respectively.
- Chrysene exceeded the AWQSGV (0.002 μ g/L) in two samples, at concentrations of 0.0686 μ g/L in MW-6 and 0.144 μ g/L in MW-20.
- Indeno[1,2,3-cd]pyrene exceeded the AWQSGV (0.002 $\mu g/L$) in MW-20, at a concentration of 0.0718 $\mu g/L$.

Metals

A summary of laboratory analytical data for metals detected in groundwater samples is presented in Table 6 and on Plate 2. A total of nine groundwater samples and one duplicate sample were analyzed for metals. As shown on Table 6, five metals (Iron, Lead, Manganese, Selenium, and Sodium) were detected above NYSDEC AWQSGV criteria. Iron, manganese, and sodium are naturally occurring in regional groundwater. A summary of the detections of Lead and Selenium are described below.

- Lead was detected in four locations at concentrations ranging from 27 μ g/L in MW-1 to 63 μ g/L in MW-20, exceeding the respective NYSDEC AWQSGV (25 μ g/L) in all four locations.
- Selenium was detected in two locations at concentrations ranging from 10 μ g/L in MW-7 to 15 μ g/L in MW-2, slightly exceeding the respective NYSDEC AWQSGV (10 μ g/L) in MW-2.

In summary, groundwater sample results indicate limited pockets of groundwater contamination (SVOCs and metals). There were limited exceedances of VOCs in two monitoring wells (MW-19 and MW-20) located downgradient of the free-phase hydrocarbon extent. Thirteen monitoring wells (MW-4S, MW-5, MW-8, MW-10 through MW-18, and MW-21) could not be sampled due to the presence of free-phase motor oil.

The deep groundwater monitoring well (MW-4D) that was requested by NYSDEC to evaluate potential groundwater impacts by chlorinated VOCs (mainly PCE), showed no exceedances of VOCs, SVOCs, or metals. These results illustrate that there are no major sources, particularly of PCE, impacting deep groundwater at the Site.

Due to the limited nature of groundwater contamination observed at the Site, the proposed remedial action for groundwater at the Site is free-phase hydrocarbon recovery, followed by ISCO application and groundwater monitoring, as needed to evaluate remedial progress. The details of the proposed remedy to reduce or eliminate the free-phase hydrocarbons and residual groundwater impacts present at the Site will be fully described in the RAWP.

2.1.4.3 Soil Vapor Results

The laboratory analytical results for soil vapor samples generated during the RI are summarized on Plate 4 and Table 7. A total of 11 soil vapor samples were collected as part of the multiple RI sampling events. Ten samples (SV-1, SV-3, SV-4, and SV-5) were sub-slab samples collected within the onsite building and the remaining sample point (SV-2) was a soil vapor point collected beneath the asphalt pavement on the south side of the Site. As shown on Table 7, the majority of compounds were reported at low and/or estimated concentrations or not detected in any of the samples.

The following seven (7) compounds are discussed because they are either COCs at the Site (PCE) or present on the NYSDOH Guidance Soil Vapor Matrices. Matrix A provides guidance relative to Carbon Tetrachloride, 1,2-DCE, TCE; and Matrix B provides guidance relative to 1,1,1-Trichloroethane, 1,1-Dichloroethene, and PCE. Matrix C guidance relative to VC. A summary of the detections is described below along with the corresponding Matrix results. Additional compounds besides these seven were detected and are included Table 7.

Matrix A Compounds

- Carbon tetrachloride was not detected during the February 2014 sample event.
 - September 2014 sample event, carbon tetrachloride was detected in the indoor air sample at a concentration of 0.5 μg/m³; however, carbon tetrachloride was not detected in any of the sub-slab vapor samples during this sample event. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)

- March 2015 sample event, carbon tetrachloride was detected in two of the sub-slab vapor samples (SV-4 and SV-6), at concentrations of 0.63 μg/m³ and 0.81 μg/m³, respectively, but was not detected in any of the sub-slab samples during this sample event. (Matrix Result No Further Action)
- TCE was detected in samples collected during each sample event.
 - February 2014 sample event, TCE was detected in one of the sub-slab vapor samples (SV-5), at a concentration of 13 μ g/m³. TCE was also detected in the indoor air sample (IA-1) at a concentration of 1.2 μ g/m³, but was not detected in the corresponding sub-slab vapor sample (SV-1) collected at this location. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures)
 - September 2014 sample event, TCE was detected in SV-5 at a concentration of 21 μg/m³, but was not detected in the corresponding indoor air sample (IA092514).
 (Matrix Result No Further Action) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)
 - March 2015 sample event, TCE was detected in SV-4 at a concentration of 1.1 μg/m³, and in SV-5 at a concentration of 6.9 μg/m³, but was not detected in the corresponding indoor air sample (IA031815). (Matrix Result No Further Action)
- 1,2-DCE was detected in the indoor air sample (IA-1) during the February 2014 sample event, at a concentration of 0.58 μg/m³. 1,2-DCE was not detected in the corresponding sub-slab soil vapor sample (SV-1). 1,2-DCE was not detected in samples collected during any of the subsequent sample events. (Matrix Result- No Further Action)

Matrix B Compounds

- 1,1,1-Trichloroethane was not detected in any of the soil vapor or indoor air samples.
- 1,1-Dichloroethene was not detected in any of the soil vapor or indoor air samples.
- PCE was detected in samples collected during each sample event.
 - February 2014 sample event, PCE was detected in two sub-slab vapor samples, at $88 \,\mu g/m^3$ and $1{,}100 \,\mu g/m^3$ in samples SV-5 and SV-4, respectively. PCE was also detected in the Outdoor Ambient air sample, at a concentration of $0.83 \,\mu g/m^3$. (Note: These sample results do not have a corresponding data point for indoor air.)
 - September 2014 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5, and SV-6), at concentrations of 220 μg/m³, 210 μg/m³, and 43 μg/m³, respectively. PCE was detected in the corresponding indoor air sample IA092514 at a concentration of 0.47 μg/m³. PCE was not detected in the outdoor ambient sample. [Matrix Result Monitor (SV-4 and SV-5), No Further Action

(SV-6)]. (Note: The data validator rejected the indoor air sample and SV-6 sample for this sample round due to improper vacuum issues)

– March 2015 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5 and SV-6), at concentrations of $100 \,\mu\text{g/m}^3$, $70 \,\mu\text{g/m}^3$, and $5.8 \,\mu\text{g/m}^3$, respectively. PCE was detected in the corresponding indoor air sample IA031815 at a concentration of $2.1 \,\mu\text{g/m}^3$. [Matrix Result – Monitor (SV-4), No Further Action (SV-5 and SV-6)]

Matrix C Compounds

• VC was not detected in any of the soil vapor samples.

In summary, soil vapor intrusion results indicate there is no vapor intrusion pathway in the office space at the Site. Currently the vapor intrusion study in the auto repair shop yields either No Further Action or Monitor results when compared to the NYSDOH Guidance Matrix.

No access was granted to evaluate offsite vapor intrusion conditions at the neighboring property to the north. Based on historical soil sample results collected by Testwell (i.e., no VOC detections) it is unlikely that impacted soil vapor has migrated to the north of the Site.

As a contingency, a sub-slab depressurization system (SSDS) piping will be installed underneath the cellar slab, if possible. The SSDS installation determination will be based on the final elevation of the foundation and whether enough vertical space exists between the slab and the water table.

2.2 SIGNIFICANT THREAT

The NYSDEC and NYSDOH have determined that this Site does not pose a significant threat to human health and the environment. Notice of that determination was provided in the Fact Sheet distributed in September 2016 for public review.

2.3 SITE HISTORY

2.3.1 Past Uses and Ownership

The following summary of Site history was based on a review of the following documents and research performed by Roux:

2.3.2 Phase I and Phase II Reports

The following section provides a brief overview of the results of previous environmental investigations at the Site. The historic reports were reviewed by Roux and are included in the RIR and summarized below.

- Phase II Environmental Site Assessment Report prepared by Testwell Laboratories, Inc. on behalf of Benenson Capital Partners, LLC, dated April 27, 2007.
- Additional Remedial Investigation Report prepared by Testwell Laboratories, Inc., dated October 30, 2007.
- Interim Remedial Measure Monthly Report prepared by Roux, Inc. on behalf of Irma C. Pollack, LLC, dated January 18, 2017.

Phase II Environmental Site Assessment Report, 2007

On July 11, 2003, Testwell Laboratories, Inc. (TLI) conducted a Phase II Environmental Investigation by performing ground penetrating radar (GPR) survey and collecting and analyzing subsurface soil samples. Twelve soil borings (SB-1 to SB-12) were advanced around the building and at each soil boring location, soil samples were continuously collected in a 4' sample tube with liner. Based upon visual inspection and headspace measurement, one grab soil sample was submitted for laboratory analysis from each boring. Samples were analyzed for VOCs (EPA method 8260), SVOCs (EPA method 8270) and heavy metals (EPA method 6010). Groundwater depth ranged from 8 to 16 feet below grade and the direction was reported to be to the northwest.

Analytical data was compared against the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) #4046. Results indicated that heavy metal (mercury), some VOCs and SVOCs (including fuel and gasoline related and chlorinated compounds) exceeded the soil cleanup

objective in multiple boring locations. The results indicate that soil contamination exists and may have impacted the groundwater table.

Additional Remedial Investigation Report, 2007

This additional investigation was conducted by TLI to further delineate the extent of soil contamination that was identified during the initial Phase II Environmental Site Assessment.

On September 8, 2007, TLI performed a GPR survey to attempt to identify the exact location of the three underground storage tanks (USTs) and to determine if obstructions were present at the proposed locations of additional borings. The GPR survey was unable to locate the exact position of the tanks but they were approximately located close to the east wall of the building, based on the location of the tank ports and vents.

On September 15 and 16, 2007, TLI advanced eight soil borings (SB-13 to SB-20). On September 22 and 29, 2007, TLI installed three monitoring wells (MW-1 to MW-3) to determine groundwater flow direction and one additional soil boring (SB-21) was advanced to further delineate the extent of soil contamination found at SB-15. The groundwater flow was determined to be in westerly direction.

Results indicate that of the nine soil samples taken, eight revealed no VOC or SVOCs exceedances of NYSDEC Recommended Soil Cleanup Objectives listed in the NYSDEC TAGM #4046. Only in SB-15 few SVOCs (PAHs) were detected above the soil cleanup objectives.

Interim Remedial Measure Monthly Report, 2017

On March 7, 2017, NYSDEC approved an Interim Remedial Measure Work Plan prepared by Roux for the Site. The work plan prescribed the use of manual bailing of the free-phase product on a bi weekly basis from all accessible wells onsite that exhibited free-phase product. This effort has been ongoing since April 2017 and will continue to be performed by Roux until just before demolition activities are set to begin for the new development or when measurable free-phase product is no longer encountered in any of the wells onsite, whichever comes first. The results of

the bailing/gauging activities have been included in the monthly reports submitted to NYSDEC. The last monthly report indicated that an average of 6 gallons of free-product was recovered in the month of April 2018.

2.3.3 Sanborn Maps

A collection of Sanborn fire insurance maps covering the Site for the years 1907, 1930, 1950, 1968, 1969, 1977, 1979, 1980, 1981, 1983, 1987 through 1990, 1992, 1993, 1995, 1996, and 2001 through 2007 were obtained from EDR of Milford, Connecticut. The fire insurance maps were reviewed for historical uses and evidence of environmental concern on or near the Site. The following is a discussion of the fire insurance maps.

- **1907:** The 1907 fire insurance map does not show the actual Site, however "Penn R.R (LIRR) Manhattan Beach Div" is shown crossing to the northwest, and tax blocks 4789, 7969 and 7970 are shown to the north of the area where the Site should be. Utica Avenue is depicted; however, Kings Highway does not yet exist.
- 1930: Review of the 1930 fire insurance map reveals that the former blocks 4789, 7969 and 1970 were merged into block 7969F, which are occupied by two filling stations to the northeast, an ice manufacturer to the north and Serota Brothers Coal Yard to the north/northwest of the Site. The area of the Site is occupied by a vacant lot and a street named Folger Place. The area to the south of the Site is identified as block 7969G and is vacant. Kings Highway is shown bordering the Site to the east and Utica Avenue borders the Site to the west. The lots to the east across Kings Highway are vacant.
- **1950:** Review of the 1950 fire insurance map shows the area of the site and the lot to the south to be unchanged. The ice manufacturer to the north shows an additional structure, and to the northeast there are three small structures shown. To the south across Glenwood Road, a Laundromat is depicted. The lots to the east across Kings Highway are developed with residences.
- 1968: Review of the 1968 fire insurance map reveals that Folger Place no longer exists and the subject property is shown to be developed with a building that occupies approximately half of the lot, with the remainder as parking. The building is labeled "Bowling". The property to the north is now identified as Favorite Plastics Corp., and to the north/northeast a Used Auto Sales lot is shown. Further northeast, across Kings Highway, a storage yard is depicted, along with a Con Edison Transit Yard. Lot 7969G to the south is improved with four small buildings identified as Auto Sales and Auto Repair. Further south, across Glenwood Road, a filling station is depicted north of the Laundromat. To the east across Kings Highway are a denser cluster of residences as compared to the 1950 map.

- **1969:** Review of the 1969 fire insurance map reveals no major changes to the Site or surrounding area, with the exception of an addition to the eastern side of the building on the subject property.
- **1977:** Review of the 1977 fire insurance map shows the subject property largely unchanged, with the exception that is now identified as Auto Sales and Service. The surrounding areas appear unchanged.
- **1979:** Review of the 1979 fire insurance map reveals no major changes to the Site or surrounding area, with the exception that the Laundromat south of Glenwood Road is replaced by a filling station that occupies the entire lot.
- **1980, 1981, 1983, 1987-1990, 1992, 1993, 1995, 1996, 2001-2003, 2005-2007:** Review of these fire insurance maps reveals no major changes to the Site or surrounding area.

All Sanborn Maps (Appendix G) available for this Site were reviewed prior to preparation of the RAWP.

2.4 GEOLOGICAL CONDITIONS

Review of the United States Geological Survey (USGS) 7.5-minute series topographic quadrangle map of Brooklyn, New York reveals that the elevation of the Site is approximately 14 feet above mean sea level. The topography of the Site is essentially flat with only a slight grade toward the southeast. According to water level data for Long Island (USGS 1989), the water table at the Site is in the Upper Glacial aquifer and the regional depth to groundwater ranges from 8 to 16 feet below land surface within ½ mile of the Site. The regional groundwater flow direction is South-southeast. Local groundwater is expected to mirror local topography and migrate to the South-southeast.

The site is trapezoidal in shape and is bordered to the east and southeast by Kings Highway and to the west by Utica Avenue. Surface runoff enters the municipal system by storm drains located onsite.

Based on a review of the United States Department of Agriculture, Soil Conservation Service's soil maps as presented in the EDR Report, soils in the area of the Site are classified as Urban land (Ug).

Urban land consists of areas where at least 80-85 percent of the surface is covered by asphalt, concrete, or other impervious building materials.

According to the *Surficial Geologic Map of New York* (1989), outwash and fluvial sand and gravel underlie the Site. Outwash and fluvial sand and gravel consist of deposits of sand and gravel with occasional laterally continuous lenses of silt. The sands and gravel were deposited by glacial activity.

Based on soil borings advanced at the Site, the upper 20 feet of surficial geology is dominated by urban fill consisting of sand, gravel, and minor amounts of brick.

Based on a review of the Hydrologic Framework of Long Island, New York (1989), the principal aquifer in the vicinity of the Site is the Upper Glacial Aquifer. The Upper Glacial Aquifer is known as an unconsolidated coastal plain aquifer and is one of the major aquifers of Brooklyn, New York.

Based on the review of the above referenced document and the USGS topographic quadrangle map of Brooklyn, New York, it is expected that the depth to shallow groundwater is approximately 12 feet below land surface (bls). Previous investigations have reported groundwater depths at the site ranging from 8 to 16 feet bls across the site. Local groundwater is expected to flow toward the southeast based on local topography and the proximity of the Paerdegat Basin to the southeast.

Although there are multiple USGS monitoring wells within ½ mile of the site, there are no public water supply wells within a ½ mile of the Site as reported in the EDR Report.

2.5 CONTAMINATION CONDITIONS

This section applies the general concept of Areas of Concern (AOC) based on past land usage and observed distributions of contamination.

2.5.1 Conceptual Model of Site Contamination

Based on the results of previous investigations and data collected during the RI, impacts related to historical Site operations appear primarily limited to an accumulation of LNAPL beneath the service area and outside the northeast corner of the service area. Free phase product thickness (based on the April 2018 gauging data) ranges from 0.714 to 2.96 ft. Groundwater samples indicate limited pockets of shallow groundwater contamination with primarily VOCs, SVOCs and metals. Groundwater sampling indicates there are no major sources impacting deep groundwater at the Site. Soil vapor sampling indicate that additional delineation is required in the vicinity of the auto repair shop area. Existing data indicate that there is no vapor intrusion pathway in the office space at the Site.

2.5.2 Description of Areas of Concern

Site AOCs for soil, groundwater and soil vapor that have been delineated through the RI are described below:

Free-Phase Hydrocarbons beneath the Service Area

Soil contamination that exceeds either Unrestricted, Restricted Commercial and/or Impact to Groundwater SCOs are located beneath the free-product impacted area located in the northeast portion of the garage and outside the courtyard. The soil exceedances extent from surface to approximately 15 feet below grade. The western boundary of the exceedances in the service area has not been determined. Currently, an interim remedial measure consisting of biweekly bailing of all monitoring wells containing free-phase product is ongoing.

Groundwater

Groundwater is impacted beneath the free-product and downgradient to the south with chlorinated hydrocarbons.

Soil Vapor

Three sub slab soil vapor samples collected in the service area show elevated concentrations of chlorinated hydrocarbons (TCE, PCE). The extent of the sub slab soil vapor impacts has not been fully delineated during the previous investigation.

2.5.3 Identification of Standards, Criteria and Guidance

Standards, Criteria and Guidance (SCGs) are promulgated requirements ("standards" and "criteria") and non-promulgated guidance ("guidance") that govern activities that may affect the environment and are used by the NYSDEC at various stages in the investigation and remediation of a site. SCGs incorporate both the concept of "applicable or relevant and appropriate requirements" (ARARs) and the "to be considered" (TBCs) category of non-enforceable criteria or guidance, consistent with USEPA remediation programs. The following table provides a list of SCGs potentially applicable to the Site. Key SCGs are discussed in greater detail below.

		Regulatory
Citation	Title	Agency
General		
6 NYCRR Part 375	Environmental Remediation Programs	NYSDEC
29 CFR 1910.120	Hazardous Waste Operations and Emergency Response	US Department of Labor, OSHA
29 CFR 1926	Safety and Health Regulations for Construction	US Department of Labor, OSHA
TAGM HWR-4031	Fugitive Dust Suppression and Particulate Monitoring Program at Inactive Hazardous Waste Sites	NYSDEC
No Cite	Analytical Services Protocol	NYSDEC
DER-10	Technical Guidance for Site Investigation and Remediation	NYSDEC
Soil		
6 NYCRR Part 375	Environmental Remediation Programs	NYSDEC
CP-51	Soil Cleanup Guidance	NYSDEC
Groundwater		
6 NYCRR Part 700-705	Surface Water and Ground Water Classification Standards	NYSDEC
TOGS 1.1.1	Ambient Water Quality Standards and Guidance Values (AWQSGVs)	NYSDEC
TOGS 2.1.3	Primary and Principal Aquifer	NYSDEC
Air		
Air Guide No. 1	Guidelines for the control of toxic ambient air contaminants	NYSDEC
No Cite	Final - Guidance for Evaluating Soil Vapor Intrusion in the State of New York	NYSDOH
Solid Waste		
6 NYCRR 360	Solid Waste Management Facilities	NYSDEC
6 NYCRR 364	Waste Transporters	NYSDEC
Hazardous Waste		
6 NYCRR Part 371	Identification and Listing of Hazardous Wastes	NYSDEC
6 NYCRR 372	Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities	NYSDEC
6 NYCRR 376	Land Disposal Restrictions	NYSDEC
Site Management		
No Cite	Groundwater Monitoring Well Decommissioning Procedures	NYSDEC

Legend:

Updated April 29, 2014

SCG: Standards, Criteria and Guidelines
NYCRR: New York Code of Rules and Regulations

NYSDEC: New York State Department of Environmental Conservation

NYSDOH: New York State Department of Health

OSHA: Occupational Safety and Health Administration

TOGS: Technical Operational Guidance Series

TAGM HWR: Technical and Administrative Guidance Memorandum - Hazardous Waste Remediation

SCGs for Soil

SCGs for soil at BCP Sites are the numerical soil cleanup objectives presented in Part 375. The soil cleanup objectives are categorized into Unrestricted Use criteria and Restricted Use (Residential, Restricted-Residential, Commercial, or Industrial) criteria, as well as criteria for protection of groundwater and ecological resources (which can also be satisfied by application of the unrestricted use criteria). The applicability of each category of soil cleanup objectives is determined based upon the current and reasonably anticipated future use of the Site, as well as cleanup tracks being evaluated.

The proposed remedy will achieve a Track 1 Unrestricted Use cleanup as set forth in 6 NYCRR Part 375-6 based on the intended future use of the Site. Based upon the evaluation of the current soil data discussed in the RI and the proposed use of the Site, the SCOs for soil are the Unrestricted Use SCOs. All soils exceeding Unrestricted Use SCOs, including grossly contaminated soils, soils impacted with free-phase product will be removed and/or treated.

If a Track 2 or Track 4 Restricted Commercial Cleanup is determined to be the only practicable option for the Site, the Restricted Commercial Use SCOs will be the SCOs.

Soil exceeding Unrestricted SCOs will be addressed by the Remedial Action. Some of these soils contain sources or substantial quantities of mobile contamination in the form of NAPL, as defined in subdivision 375-1.2 (asc), that is identifiable either visually, through strong odor, by elevated contaminant vapor levels or is otherwise readily detectable without laboratory analysis. To verify the removal of the mobile LNAPL, grossly contaminated soil will be excavated, LNAPL will be recovered to the extent possible via vacuum truck and absorbent booms, and polished/treated with

ISCO application. Endpoint soil samples will be collected to verify residual concentrations are below the Unrestricted Use SCOs.

SCOs for the Protection of Ecological Resources were considered but were determined not to be applicable based on site-specific conditions. In accordance with the Part 375 Regulations, protection of ecological resources SCOs do not and/will not apply to sites or portion of sites where the condition of the land (e.g., paved, covered by impervious surfaces, buildings and other structures) precludes the existence of an ecological resource that constitutes an important component of the environment. At this site, the on-site areas are either paved or covered by buildings, therefore, us of SCOs for protection of ecological resources is not applicable.

In addition to the Part 375 Regulations, the following SCGs apply to soil:

- 6 NYCRR Part 364- NYS Waste Transporter Permits; and
- 6 NYCRR Part 360 and Part 364- NYS Solid Waste Management Requirements.

SCG for Groundwater

SCOs for the protection of groundwater were considered. In accordance with Part 375, the SCO for soil for protection of groundwater may not be applicable where:

- The groundwater standard exceedances are the result of an onsite source which is addressed by the remedial program.
- An environmental easement will be put in place which provides for a groundwater use restriction on the Site as set forth in paragraph 375 1.8(h)(2).

The Department determines that contaminated groundwater at the Site:

- is not migrating, or likely to migrate, offsite; or
- is migrating, or is likely to migrate, offsite; however, the remedy includes controls or treatment to address offsite migration; and
- the Department determines the groundwater quality will improve over time.

Although the groundwater beneath the Site is not used as drinking water source, based upon the evaluation of the current groundwater data discussed in the RI, the following SCGs will be considered:

• NYSDEC AWQSGVs- TOGS 1.1.1.

The ecological criteria are not applicable since there are no sensitive ecological habitats on the Site.

SCG for Soil Vapor

The Final "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," issued by the NYSDOH in May 2017, presents the guidelines that were used to evaluate potential soil vapor intrusion issues for the Site.

2.5.4 Soil/Fill Contamination

A total of 18 soil borings were advanced at the locations shown in Figure 2, and a total of 49 soil samples were collected for laboratory analysis as part of the RI. Site-wide analytical soil data was compared to the following NYSDEC Subpart 375-6 Soil Cleanup Objectives (SCOs) in order to evaluate Site-wide soil quality and to determine contamination in soil, if present:

- NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives;
- NYSDEC Part 375 Restricted Commercial Soil Cleanup Objectives; and
- NYSDEC Part 375 Protection of Groundwater Soil Cleanup Objectives.

The evaluation of the analytical data and the statistical summary of soil data indicate the following about the Site-wide soil conditions:

Underground Storage Tanks

- 2-butanone (MEK) was detected in four samples, ranging in concentration from 4.4 (estimated) to 1800 μg/kg. MEK exceeded the UU and PWG SCO (120 μg/kg) in one sample, RSB-14/4D__10-11 at a concentration of 1800 μg/kg. This detection does not exceed the RC SCO of 500,000 μg/kg.
- Benzene was detected in three samples, ranging in concentration from 4.4 μ g/kg (estimated) to 1200 μ g/kg. Benzene exceeded the UU and PGW SCO (60 μ g/kg) in two samples, RSB-2_11-13 and RSB-14__10-11 at concentrations of 470 μ g/kg (estimated)

- and 1,200 μ g/kg, respectively. Neither of these detections exceeded the RC SCO of 44,000 μ g/kg.
- Ethylbenzene was detected in four samples, ranging in concentration from $3 \mu g/kg$ (estimated) to $12,000 \mu g/kg$. Ethylbenzene exceeded the UU and PWG SCO $(1,000 \mu g/kg)$ in two samples, at concentrations as follows: RSB-2_11-13 $(12,000 \mu g/kg)$, and RSB-14/14D_10-11 $(6,700 \mu g/kg)$. Neither of these detections exceeded the RC SCO of $390,000 \mu g/kg$.
- MTBE was detected in two samples, ranging in concentration from 420 μ g/kg (estimated) to 2,000 μ g/kg. MTBE exceeded the UU and PWG SCO (930 μ g/kg) in one sample, RSB-2_11-13 at a concentration of 2,000 μ g/kg. This detection does not exceed the RC SCO of 500,000 μ g/kg.
- Toluene was detected in 10 samples, ranging in concentration from 5.1 μg/kg (estimated) to 340,000 μg/kg. Toluene exceeded the UU and PGW SCO (700 μg/kg) in two samples, at concentrations as follows: RSB-2_11-13 (340,000 μg/kg), and RSB-14/4D_10-11 (30,000 μg/kg). Neither of these detections exceeded the RC SCO of 500,000 μg/kg.
- Xylenes (total) were detected in eight samples, ranging in concentration from 7.5 μ g/kg (estimated) to 51,000 μ g/kg. Xylene exceeded the UU SCO (260 μ g/kg) in two samples, at concentrations as follows: RSB-2_11-13 (51,000 μ g/kg), and RSB-14/4D_10-11 (32,000 μ g/kg). Neither of these detections exceeded the PGW SCO (1,600 μ g/kg) or the RC SCO (500,000 μ g/kg).
- 1,2-DCE was detected in three soil samples, ranging in concentration from 3.2 μ g/kg (estimated) to 12,000 μ g/kg. 1,2-DCE exceeded the UU and PGW SCO (250 μ g/kg) in two samples, at concentrations as follows: RSB-2_11-13 (12,000 μ g/kg), and RSB-14/4D_10-11 (2,900 μ g/kg). Neither of these detections exceeded the RC SCO of 500,000 μ g/kg.
- PCE was detected in seven soil samples, ranging in concentration from 3.1 μ g/kg (estimated) to 6,100 μ g/kg. PCE exceeded the UU and PGW SCO (1,300 μ g/kg) in one sample, RSB-2_11-13, at a concentration of 6,100 μ g/kg. This detection does not exceed the RC SCO of 150,000 μ g/kg.
- TCE was detected in two soil samples, ranging in concentration from 590 μ g/kg (estimated) to 760 μ g/kg (estimated). TCE exceeded the UU and PGW SCO (470 μ g/kg) in both samples, RSB-2_11-13 and RSB-14_10-11, at 760 μ g/kg (estimated) and 590 μ g/kg, respectively. Neither of these detections exceeded the RC SCO of 200,000 μ g/kg.
- Benzo[a]anthracene was detected in seven soil samples, ranging in concentration from 943 μg/kg (estimated) to 4,750 μg/kg. Benzo[a]anthracene exceeded the UU and PGW SCO (1000 μg/kg, SCO is the same for both criteria) in six samples, ranging in

concentration from 1,480 μ g/kg (estimated) at RSB-14_10-11 to a concentration of 4,750 μ g/kg at RSB-2_1-3. None of these detections exceeded the RC SCO of 5,600 μ g/kg.

- Benzo[a]pyrene was detected in seven samples, ranging in concentration from 1,120 μg/kg (estimated) in RSB-2_5-7 to 5,550 μg/kg in RSB-2_1-3. Benzo[a]pyrene exceeded both the UU and RC SCO (1,000 μg/kg, SCO is the same for both criteria) in all seven samples. None of the samples exceeded the PGW SCO (22,000 μg/kg) for this compound.
- Benzo[b]fluoranthene was detected in seven samples, ranging in concentration from 961 µg/kg (estimated) to 4,110 µg/kg (estimated). Benzo[b]fluoranthene exceeded the UU SCO (1,000 µg/kg) in six samples, ranging in concentration from 1,410 µg/kg (estimated) at RSB-8_8.5-10.5 and RSB-14/4D_5-7 to a concentration of 4,110 µg/kg (estimated) at RSB-2_1-3. Benzo[b]fluoranthene exceeded the PGW SCO (1,700 µg/kg) in four samples, ranging in concentration from 4,110 µg/kg (estimated) at RSB-14_5-7 to 1,990 µg/kg at RSB-14/4D_2.5-3. None of these detections exceeded the RC SCO of 5,600 µg/kg.
- Benzo[k]fluoranthene was detected in seven samples, ranging in concentration from 1,070 μg/kg (estimated) to 5,080 μg/kg. Benzo[k]fluoranthene exceeded the UU SCO (800 μg/kg) at all seven locations. Benzo[k]fluoranthene exceeded the PGW SCO (1,700 μg/kg) at four locations, ranging in concentration from 1,780 μg/kg at RSB-14/4D_5-7 to a concentration of 5,080 μg/kg (estimated) at RSB-2_1-3. None of these detections exceeded the RC SCO of 56,000 μg/kg.
- Chrysene was detected in seven samples, ranging in concentration from 1,000 μg/kg (estimated) to 4,760 μg/kg. Chrysene exceeded the UU and PGW SCO (1,000 μg/kg, SCO is the same for both criteria) in six samples, ranging in concentration from 1,610 μg/kg (estimated) at RSB-14_2.5-3 to 4,760 μg/kg at RSB-2_1-3. None of these detections exceeded the RC SCO of 56,000 μg/kg.
- Dibenzo[a,h]anthracene was detected in one sample at a concentration of 510 μg/kg (estimated) at RSB-8_5-7. This exceeds the UU SCO (330 μg/kg), but does not exceed the RC SCO (560 μg/kg) or the PGW SCO (1,000,000 μg/kg).
- Indeno[1,2,3-cd]pyrene was detected in six samples, ranging in concentration from 489 μg/kg (estimated) to 1,280 μg/kg (estimated). Indeno[1,2,3-cd]pyrene exceeded the UU SCO (500 μg/kg) in five samples, ranging in concentration from 522 μg/kg (estimated) in RSB-8_8.5-10.5 to 1,280 μg/kg (estimated) in RSB-2_1-3. None of these detections exceeded the RC SCO (5,600 μg/kg) or the PGW SCO (8,200 μg/kg).

Trench Drains

There were a total of eight VOCs detected in 12 soil samples collected from the nine soil borings. These included MEK, ethylbenzene, MTBE, toluene, total xylenes, 1,2-DCE, PCE, and TCE. As

shown on Table 2, all of the compounds were reported at concentrations below the SCOs or not detected at all.

There were a total of 12 SVOCs detected in ten soil samples collected from the nine soil borings. As shown on Table 3, all of the compounds were reported at concentrations below the SCOs or not detected at all.

Supplemental RI Delineation Soil Borings

- 2-butanone (MEK) was detected in three samples, ranging in concentration from 2.8 (estimated) to 450 μg/kg. MEK exceeded the UU and PWG SCO (120 μg/kg) in one sample, RSB/MW-14__12-14 at a concentration of 450 μg/kg. This detection does not exceed the RC SCO of 500,000 μg/kg.
- Ethylbenzene was detected in six samples, ranging in concentration from 11 μg/kg to 5,700 μg/kg. Ethylbenzene exceeded the UU and PWG SCO (1,000 μg/kg) in five samples, at concentrations ranging from 1,200 μg/kg in RSB/MW-14_12-14, to 5,700 μg/kg in RSB/MW-15_10-11. None of these detections exceeded the RC SCO of 390,000 μg/kg.
- Toluene was detected in seven samples, ranging in concentration from 23 μg/kg to 100,000 μg/kg. Toluene exceeded the UU and PGW SCO (700 μg/kg) in four samples, at concentrations ranging from 930 μg/kg in RSB/MW-14_12-14 to 100,000 μg/kg in RSB/MW-15_10-11. None of these detections exceeded the RC SCO of 500,000 μg/kg.
- Xylenes (total) were detected in seven samples, ranging in concentration from 7.8 μg/kg (estimated) to 28,000 μg/kg. Xylenes exceeded the UU SCO (260 μg/kg) and PGW SCO (1,600 μg/kg) in four samples, at concentrations ranging from 5,800 μg/kg in RSB/MW-14_12-14 to 28,000 μg/kg in RSB/MW-15. None of these detections exceeded the RC SCO (500,000 μg/kg).
- 1,2-DCE was detected in six soil samples, ranging in concentration from 3.7 μ g/kg (estimated) to 2,300 μ g/kg. 1,2-DCE exceeded the UU and PGW SCO (250 μ g/kg) in three samples, at concentrations ranging from 330 μ g/kg (estimated) in RSB/MW-17_13-15 to 4,100 μ g/kg in RSB/MW-16_11-13. None of these detections exceeded the RC SCO of 500,000 μ g/kg.
- PCE was detected in two soil samples, ranging in concentration from 3.3 μg/kg (estimated) to 5.4 μg/kg. PCE did not exceed the UU and PGW SCO (1,300 μg/kg), or RC SCO (150,000 μg/kg).

There were a total of ten SVOCs detected in seven of the soil samples collected from the four soil borings. As shown on Table 3, all of the compounds were reported at concentrations below the SCOs or not detected at all, with the exception of chrysene in the 1-3 foot interval in soil boring RSB/MW-17, which was detected at an estimated concentration of $1,050 \,\mu\text{g/kg}$. This slightly exceeds both the UU and PGW SCO for this compound $(1,000 \,\mu\text{g/kg})$ for both criteria) but does not exceed the RC SCO $(56,000 \,\mu\text{g/kg})$.

Tables 2 through 6 shows exceedances from NYSDEC Unrestricted Use, Restricted Commercial Use and Protection of Groundwater SCOs for all soil/fill at the Site. Plate 1 is a spider map that shows the location and summarizes exceedances from these criteria for all soil/fill.

2.5.5 On-Site and Off-Site Groundwater Contamination

A total of ten groundwater samples were collected from nine monitoring wells and submitted for laboratory analysis as part of the RI. Site-wide analytical groundwater data was compared to NYSDEC AWQSGVs for Class GA groundwater in order to evaluate groundwater quality and to determine the contamination in groundwater, if present.

Field parameters measured during groundwater sampling purging activities are provided on field datasheets included in the RIR. The field parameter data were reviewed to evaluate any potential anomalies in general groundwater chemistry that could potentially be influencing the groundwater sampling results. No anomalies were noted and the field parameters measured during purging appear to be consistent with values expected to occur in the natural environment.

Analytes that exceeded NYSDEC Protection of Groundwater SCOs in Site-wide soil were compared to analyte detections in Site-wide groundwater to assess whether, and to what extent, constituents detected in soil are impacting groundwater quality. Five compounds (benzene, 1,2 dichloroethane, MTBE, benzo(a)anthracene, chrysene) were detected at concentrations exceeding NYSDEC Protection of Groundwater SCOs.

The evaluation of the analytical data and the statistical summary of groundwater data indicate the following about the Site-wide groundwater conditions:

- Benzene exceeded the AWQSGV (1 μ g/L) in two samples, at concentrations of 1.2 μ g/L in MW-19 and 5.2 μ g/L in MW-20.
- Chloroethane exceeded the AWQSGV (5 μ g/L) in MW-20 at a concentration of 11 μ g/L.
- Cis-1,2-dichloroethane exceeded the AWQSGV (5 μ g/L) in MW-20 at a concentration of 350 μ g/L.
- MTBE exceeded the AWQSGV (10 μ g/L) in two samples, at concentrations of 22 μ g/L in MW-19 and 100 μ g/L in MW-20.
- Vinyl chloride exceeded the AWQSGV (2 μ g/L) in two samples, at concentrations of 42 μ g/L in MW-19 and 66 μ g/L in MW-20.
- Benzo[a]anthracene exceeded the AWQSGV (0.002 μ g/L) in two samples, at concentrations of 0.0686 μ g/L in MW-6 and 0.144 μ g/L in MW-20.
- Benzo[a]pyrene exceeded the AWQSGV (0 μ g/L) in MW-20, at a concentration of 0.144 μ g/L.
- Benzo[b]fluoranthene exceeded the AWQSGV (0.002 μ g/L) in MW-20, at a concentration of 0.0821 μ g/L.
- Bis(2-ethylhexyl) phthalate exceeded the AWQSGV (5 μ g/L) in MW-7 and the duplicate of this sample, at estimated concentrations of 39.6 μ g/L and 6.98 μ g/L, respectively.
- Chrysene exceeded the AWQSGV (0.002 μ g/L) in two samples, at concentrations of 0.0686 μ g/L in MW-6 and 0.144 μ g/L in MW-20.
- Indeno[1,2,3-cd]pyrene exceeded the AWQSGV (0.002 $\mu g/L$) in MW-20, at a concentration of 0.0718 $\mu g/L$.
- Lead was detected in four locations at concentrations ranging from 27 μ g/L in MW-1 to 63 μ g/L in MW-20, exceeding the respective NYSDEC AWQSGV (25 μ g/L) in all four locations.
- Selenium was detected in two locations at concentrations ranging from 10 μ g/L in MW-7 to 15 μ g/L in MW-2, slightly exceeding the respective NYSDEC AWQSGV (10 μ g/L) in MW-2.

A table that indicates exceedances from GA groundwater standards in monitoring wells prior to the remedy is shown in Tables 4 through 6. A spider map that indicates the location(s) of and summarizes exceedances from GA groundwater standards prior to the remedy is shown in Plate 2.

2.5.6 On-Site and Off-Site Soil Vapor Contamination

A total of eleven soil vapor samples were collected from five soil vapor points and submitted for laboratory analysis as part of the RI.

A statistical summary was not generated for soil vapor data since there are no NYSDEC or NYSDOH soil vapor standards for comparison.

Analytical data for soil vapor VOCs indicate that there were detections of seven different VOCs across the Site, including chlorinated VOCs.

VOC Detections in Soil Vapor

Analyte	Detection	Range in Concentration (µg/m³)	Sample with Maximum Detection
Carbon Tetrachloride	2	0.63-0.81	SV-6
TCE	3	1.1-21	SV-5
Vinyl Chroride	0		
1,1,1-Trichloroethane	0		
1,1-Dichloroethane	0		
1,2-DCE	0		
PCE	5	0.26-210	SV-5

The following seven compounds are discussed because they are either COCs at the Site (namely chlorinated-related compounds) or due to their presence on the NYSDOH Guidance Soil Vapor Matrices (updated May 2017). Matrix A provides guidance relative to Carbon Tetrachloride, 1,2-DCE, and TCE, and Matrix B provides guidance relative to 1,1,1- Trichloroethane, 1,1-

Dichloroethene, and PCE; and Matrix C provides guidance relative to VC. A summary of the detections is described below along with the corresponding Matrix results. A summary of the detections is described below.

Matrix A Compounds

- Carbon tetrachloride was not detected during the February 2014 sample event.
 - September 2014 sample event, carbon tetrachloride was detected in the indoor air sample at a concentration of $0.5 \,\mu g/m^3$; however, carbon tetrachloride was not detected in any of the sub-slab vapor samples during this sample event. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)
 - March 2015 sample event, carbon tetrachloride was detected in two of the sub-slab vapor samples (SV-4 and SV-6), at concentrations of 0.63 μg/m³ and 0.81 μg/m³, respectively, but was not detected in any of the sub-slab samples during this sample event. (Matrix Result No Further Action)
- TCE was detected in samples collected during each sample event.
 - February 2014 sample event, TCE was detected in one of the sub-slab vapor samples (SV-5), at a concentration of 13 μg/m³. TCE was also detected in the indoor air sample (IA-1) at a concentration of 1.2 μg/m³, but was not detected in the corresponding sub-slab vapor sample (SV-1) collected at this location. (Matrix Result Take reasonable and practical actions to identify source and reduce exposures)
 - September 2014 sample event, TCE was detected in SV-5 at a concentration of 21 μg/m³, but was not detected in the corresponding indoor air sample (IA092514).
 (Matrix Result No Further Action) (Note: The data validator rejected the indoor air sample that corresponded to this location due to improper vacuum issues)
 - March 2015 sample event, TCE was detected in SV-4 at a concentration of 1.1 μg/m³, and in SV-5 at a concentration of 6.9 μg/m³, but was not detected in the corresponding indoor air sample (IA031815). (Matrix Result No Further Action)
- 1,2-DCE was detected in the indoor air sample (IA-1) during the February 2014 sample event, at a concentration of 0.58 µg/m³. 1,2-DCE was not detected in the corresponding sub-slab soil vapor sample (SV-1). 1,2-DCE was not detected in samples collected during any of the subsequent sample events. (Matrix Result- No Further Action)

Matrix B Compounds

- 1,1,1-Trichloroethane was not detected in any of the soil vapor or indoor air samples.
- 1,1-Dichloroethene was not detected in any of the soil vapor or indoor air samples.
- PCE was detected in samples collected during each sample event.
 - February 2014 sample event, PCE was detected in two sub-slab vapor samples, at $88 \mu g/m^3$ and $1{,}100 \mu g/m^3$ in samples SV-5 and SV-4, respectively. PCE was also detected in the Outdoor Ambient air sample, at a concentration of $0.83 \mu g/m^3$. (Note: These sample results do not have a corresponding data point for indoor air.)
 - September 2014 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5, and SV-6), at concentrations of $220\,\mu\text{g/m}^3$, $210\,\mu\text{g/m}^3$, and $43\,\mu\text{g/m}^3$, respectively. PCE was detected in the corresponding indoor air sample IA092514 at a concentration of 0.47 μg/m³. PCE was not detected in the outdoor ambient sample. [Matrix Result Monitor (SV-4 and SV-5), No Further Action (SV-6)]. (Note: The data validator rejected the indoor air sample and SV-6 sample for this sample round due to improper vacuum issues)
 - March 2015 sample event, PCE was detected in all three sampled sub-slab vapor points (SV-4, SV-5 and SV-6), at concentrations of $100 \,\mu\text{g/m}^3$, $70 \,\mu\text{g/m}^3$, and $5.8 \,\mu\text{g/m}^3$, respectively. PCE was detected in the corresponding indoor air sample IA031815 at a concentration of $2.1 \,\mu\text{g/m}^3$. [Matrix Result Monitor (SV-4), No Further Action (SV-5 and SV-6)]

Matrix C Compounds

• VC was not detected in any of the soil vapor samples.

A table of soil vapor data collected prior to the remedy is shown in Table 7. A spider map that indicates the location(s) of and summarizes soil vapor data prior to the remedy is shown in Plate 4.

2.6 ENVIRONMENTAL AND PUBLIC HEALTH ASSESSMENTS

2.6.1 Qualitative Human Health Exposure Assessment

As described in Appendix 3B of DER-10, "The overall purpose of the Qualitative Human Health Exposure Assessment (or the exposure assessment) is to evaluate and document how people might be exposed to site related contaminants, and to identify and characterize the potentially exposed

population(s) now and under the reasonably anticipated future use of the site." The following section details the Qualitative Human Health Exposure Assessment based on data collected during the RI.

According to Section 3.10 of DER-10, and the Fish and Wildlife Resources Impact Analysis Decision Key in DER-10 Appendix 3C, a Fish and Wildlife exposure assessment is not needed.

Soil Exposure

Soil samples collected during the RI indicated the presence of VOCs and SVOCs at concentrations above the UU and PGW SCOs. An individual could be exposed to these contaminants through direct contact with site soil during ground intrusive work at the site. Direct contact without the use of proper personal protective equipment (PPE) and personal hygiene measures could lead to dermal contact and incidental ingestion of these compounds. As the Site is fully paved or covered with the existing Site building, and fully fenced, access is controlled; potential contact with Site soil is restricted to remedial contract workers at the Site performing ground intrusive activities. The general public is not exposed to direct contact with Site soil.

The proposed redevelopment includes the demolition of the existing building and the construction of a retail development occupying the majority of the Site area (Figure 3). The primary retail space, mechanical rooms and covered plaza will include approximately 77,000SF. The building will be set eight feet below grade. Parking for 210 cars will be provided on the roof. An additional 7,000 SF of retail space will be slab on grade construction. The remainder of the property, approximately 15,000SF, will consist of paved entrance/exit areas. The proposed remedy for the site is a Track 1 cleanup. The new building will continue to be serviced by the public water supply.

The details of the proposed remedy to address the free-phase hydrocarbons will be described further in this RAWP, but the remedy generally consists of soil excavation, free-phase hydrocarbon recovery through the use of skimming technology such as vacuum trucks and oil absorbent booms, and ISCO application through the use of a sodium persulfate-based technology to address residual free-phase hydrocarbons and associated groundwater impacts, and a groundwater monitoring

program to evaluate the success of the ISCO application. Based on this plan, the potential for exposure by direct contact with contaminated soil will be eliminated for both the public and employees of the commercial operation. Direct contact without the use of proper PPE and personal hygiene measures could lead to dermal contact and incidental ingestion of these compounds for any future construction workers performing ground intrusive activities at the Site.

Groundwater Exposure

Groundwater samples collected during the RI indicate the presence of limited VOCs, SVOCs and metals above the AWQSGVs, and the presence of free-phase motor oil in 13 monitoring wells. As the groundwater table is encountered at approximately 9.5 to 12.5 ft below land surface, and groundwater is not used for drinking (the area is connected to the New York City public water supply), there is no direct contact with or ingestion of groundwater by the general public. Individuals who perform groundwater sampling, free-phase hydrocarbon recovery, or other remedial activities may come into contact with contaminated groundwater if proper PPE and personal hygiene measures are not used, which could lead to dermal contact and the potential for incidental ingestion of these compounds.

The proposed redevelopment entails the demolition of the existing building and the entire Site will be covered with a new building and pavement. The proposed remedy for the site is a Track 1 cleanup. The new building will continue to be serviced by the public water supply. The details of the proposed remedy to address the free-phase hydrocarbon will be described further in this RAWP, and generally consists of excavation, free-phase hydrocarbon recovery through the use of skimming technology such as vacuum trucks and oil absorbent booms, and ISCO application through the use of a sodium persulfate-based technology to address residual free-phase hydrocarbons and associated groundwater impacts, and a groundwater monitoring program to evaluate the success of the ISCO application. Based on this remedy, the potential for public or employee exposure by direct contact with contaminated groundwater will be reduced or eliminated.

Soil Vapor Exposure

Soil vapor samples collected during the RI indicated the presence of VOCs in sub-slab soil vapor. The Site was formerly an active retail automobile sales and service operation, with an auto wash, paint shop, showroom and office space. Although several VOCs were detected in the indoor air sample collected from the office space, the only VOC compound detected in the corresponding sub-slab soil vapor sample was methylene chloride, indicating there is no vapor intrusion pathway within the office space at the Site.

Currently the vapor intrusion study in the auto repair shop yields either No Further Action or Monitor results when compared to the NYSDOH Guidance Matrix. The building currently has a vehicular exhaust venting system, the integrity of which should be evaluated and any necessary repairs made to the system to reduce or eliminate vehicular exhaust from accumulating in the workspace.

At the request of NYSDEC, multiple unsuccessful attempts were made to collect soil vapor and indoor air samples at the adjacent property. As such, the presence of soil vapor impacts at the adjacent property cannot be definitively determined at this time. However; historical soil samples collected on the adjacent property indicated no detections of VOCs, with the exception of methylene chloride detected at estimated concentrations of 4.5 ug/kg and 5.1 ug/kg, well below the UU SCO of 50 ug/kg for this compound. Based on this data, it is unlikely that impacted soil vapor has migrated to the adjacent property.

As described above, the remedial elements including excavation, free-phase hydrocarbon recovery, ISCO application are proposed to address soil and groundwater and are expected to improve onsite soil vapor quality by reducing or eliminating potential source material.

A waterproofing barrier will be installed underneath the cellar slab and the along subsurface walls which will also act as a vapor barrier to reduce vapor migration. The small slab on grade portion of the building will also include a vapor barrier.

As part of the Track 1 remedy, a soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.

As a contingent Track 1, SSDS piping will be installed underneath the cellar slab, if possible. The SSDS installation determination will be based on the final elevation of the foundation and whether enough vertical space exists between the slab and the water table. If active SSDS operation is not required, an unconditional Track 1 cleanup will be achieved for the Site. If active SSDS operation is required, a conditional Track 1 cleanup will be achieved. If SSDS operation is needed for more than 5 years, then a Track 2 Restricted Commercial cleanup will be achieved for the Site. If an unconditional Track 1 cleanup is not achieved, preparation of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement, including institutional and engineering controls, monitoring, operation and maintenance and reporting will be required.

Exposure Assessment Summary

The following table summarizes the exposure assessment.

Environmental Media and Exposure Route	Human Exposure Assessment
Direct contact with subsurface soils (and incidental ingestion)	Remedial workers can come in contact with contaminated soil if they perform ground intrusive activities.
	 During remediation and construction, remedial workers, trespassers, passersby, and utility workers could come into contact with contaminated soil contained in dust through inhalation, incidental ingestion and dermal contact. This potential exposure will be mitigated through the implementation of the HASP, dust mitigation measures, and CAMP. Future exposure will be reduced or eliminated by addressing free-phase

Environmental Media and Exposure Route	Human Exposure Assessment
	hydrocarbon that may be acting as a source of contamination to soil via excavation and offsite disposal of contaminated soil, freephase product recovery and ISCO application.
Ingestion of groundwater	Contaminated groundwater is not used for drinking water, as the Site is connected to the public water supply.
Direct contact with groundwater (and incidental ingestion)	 Remedial workers and construction workers could come into contact with contaminated groundwater through dermal contact and incidental ingestion during ground intrusive work, free-phase hydrocarbon recovery, ISCO application and sampling activities. This potential exposure will be mitigated through the implementation of the HASP. Future exposure will be reduced or eliminated by addressing free-phase hydrocarbon that may be acting as a source of contamination to soil via excavation and offsite disposal of contaminated soil, free-phase product recovery and ISCO application.
Inhalation of air (exposures related to soil vapor intrusion)	 Remedial and construction workers may be exposed to contaminated soil vapor inside the building or within open excavations. This potential exposure will be mitigated through the implementation of the HASP. Future exposure will be reduced through via excavation and offsite disposal of contaminated soil, free-phase product recovery and ISCO application. In addition, a vapor barrier and contingency SSDS piping will be installed underneath the cellar slab (if feasible depending on cellar slab elevation and groundwater table elevation) in the event soil vapor concern is identified after the cellar construction is completed and operation of a SSDS is deemed necessary.

2.6.2 Fish and Wildlife Remedial Impact Analysis

There are no identified wetlands on or adjacent to the Site. There are no mapped wetlands within ½ mile of the Site.

There are no surface water bodies on or adjacent to the site, however, Paerdegat Basin (a tidal inlet), and Jamaica Bay are approximately 6/10 of a mile and 2 miles southeast of the Site, respectively.

A fish and wildlife remedial impact analysis is not required since there are no important federal, state or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species impacted by the Site.

2.7 INTERIM REMEDIAL ACTION

An Interim Remedial Measure (IRM) Work Plan dated January 18, 2017 was submitted and approved by the NYSDEC on March 7, 2017. The work plan prescribed the use of manual bailing of the free-phase product on a bi weekly basis from all accessible wells onsite that exhibited free-phase product. This effort has been ongoing since April 2017 and will continue to be performed by Roux until just before demolition activities are set to begin for the new development or when measurable free-phase product is no longer encountered in any of the wells onsite, whichever comes first. The results of the bailing/gauging activities have been included in the monthly reports submitted to NYSDEC. The last monthly report indicated that an average of 6 gallons of free-product was recovered in the month of April 2018.

2.8 REMEDIAL ACTION OBJECTIVES

The goal of the remedy selection process in the BCP is to select a remedy for a site that is protective of public health and the environment, taking into account the current, intended and reasonably anticipated land use of the site.

The remedial goals for soil at the Site are to meet the Unrestricted Use SCOs for all onsite areas. Groundwater beneath the Site will be addressed through LNAPL recovery, in-situ chemical oxidation treatment and removal of grossly contaminated soil. Consistent with Part 375, the proposed remedies for the site will be fully protective of public health and the environment, taking into account the current, intended and potential future land use.

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) have been identified for this Site.

2.8.1 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

2.8.2 Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater contamination.

Updated April 29, 2014

2.8.3 Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the Site.

3.0 DESCRIPTION OF REMEDIAL ACTION PLAN

This section of the RAWP was prepared in accordance with Subpart 375 - 3.8(f), Subpart 375 – 1.8(f), and Section 4.3 of DER-10. Three remedial alternatives (one being an unrestricted use scenario) are evaluated, as follows:

- One alternative (Remedial Alternative 1) that will achieve unrestricted use relative to onsite soil (Track 1) without the use of long-term ICs or ECs;
- One alternative (Remedial Alternative 2) that will achieve a restricted use (Restricted Commercial) cleanup scenario coupled with the use of ICs and ECs (Track 2); and
- One alternative (Remedial Alternative 3) that will achieve a restricted use (Restricted Commercial) cleanup scenario coupled with the use of ICs and ECs (Track 4).

The following is a detailed description of the alternatives analysis and remedy selection process to address impacted media at the Site.

Remedial Alternative 1: Track 1 Unrestricted Use Cleanup (Plate 5):

- A Pre-design Investigation (PDI) will be conducted to collect waste characterization samples and collect in-situ end-point samples that will pre-establish the lower limit of the excavation that is required to meet Unrestricted Use SCOs. Soil sampling on the western edge of the Site along Utica Avenue (which will not be excavated for development purposes) and the east side of the Site along Kings Highway (which will have limited excavation where only slab-on-grade retail construction is proposed) will also be conducted during the PDI. Soil samples will also be collected from the 24-inch strip between the planned SOE and the adjacent property. A PDI work plan will be submitted to NYSDEC under separate cover.
- A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program.
- Survey existing soil borings and monitoring well locations prior to demolition.
- Site mobilization involving Site security setup, equipment mobilization, utility markouts and marking and staking excavation areas.
- Implementation of erosion and sediment controls.

- Site monitoring of airborne VOCs and particulates in accordance with a NYSDEC approved CAMP will be conducted during all ground intrusive and soil handling activities.
 Odor suppression equipment including foaming agents and dispersion pumps and sprayers will be mobilized to the Site before the start of ground intrusive activities.
- Excavation and offsite disposal of approximately 33,000 cubic yards (cy) of fill/soil (i.e., all soil exceeding Unrestricted Use SCOs) over the majority of the Site. The excavation depth would be up to approximately 19 feet below grade in the LNAPL zone and shallower for the remainder of the Site (to 9 feet below grade across the area where the cellar is proposed and to 4 feet below grade across the east side of the Site where only slab-ongrade retail development is proposed.
- The SOE consisting of a drilled cut-off wall will be installed on the northern side of the Site bordering Favorite Plastics. Approximately 212 linear feet of the tangent grout filled piles will be installed to approximately 29 feet below grade. The drilled pile size is to be confirmed but is expected to be approximately 24 inches in diameter. For structural reasons, the drilled piles will be installed approximately 24 inches away from the property line. The quality of soil between the SOE and the Favorite Plastics building will be determined by installing five soil borings during the PDI. Soil samples from the borings will be collected to a planned depth of 16 feet below grade.
 - Unsaturated soils will be initially excavated to approximately nine feet below grade across the 77,000 SF of the site where below grade construction is proposed. Immediately adjacent to Favorite Plastics, soils will be excavated only to a depth of five to seven feet. These soils will be disposed of offsite. Soils will also be excavated to a depth of approximately four feet below grade from the 7,000SF area on the east side of the Site where slab-on-grade retail development is proposed.
 - Steel sheet piling will be installed along the perimeter of the LNAPL Zone. This will include approximately 332 linear feet of the steel sheet piling being installed to approximately 28 feet below grade.
 - Soils that exceed Track 1 SCOs between the SOE and Favorite Plastics will be excavated to a depth of approximately 12 feet, the depth of the Favorite Plastics footings. LNAPL will also be removed during the excavation.
 - Four feet of smear zone soils that straddle the water table within the LNAPL Zone will be excavated and disposed of offsite. These saturated soils will be stockpiled for shipping the following day. These soils will be managed with drying agents (such as saw dust or fly ash) as necessary prior to shipment offsite. The soils will also be covered overnight to manage odors.
 - Free-product recovery will be actively conducted in the open excavation via skimming technology using a combination of vacuum truck and oil absorbent booms. Recovered free-product will be temporarily stored onsite in an aboveground tank or drums

(depending on quantity generated) for future offsite disposal. Recovery will continue as long as oil recharge occurs. When only small amounts of sheen are present, oil absorbent booms will be deployed in the area to recover the residual product.

- Dewatering at the Site will be required to enable the excavation and subgrade work. Contaminated groundwater from dewatering operations will be treated as necessary prior to discharge to the municipal sewer system. Excavation in the LNAPL area will be conducted in conjunction with controlled dewatering using well points to final depths ranging from 15 to 19 feet below grade. Actual depths will be based on the results of the in-situ endpoint sampling results that will establish the excavation depth needed to achieve Unrestricted Use SCOs. Onsite treatment or offsite disposal of groundwater will proceed as needed.
- Appropriate offsite disposal of all material removed from the Site to permitted facilities in accordance with all Federal, State and local rules and regulations for handling, transport and disposal, and this plan. Sampling and analysis of excavated media as required by the disposal facilities.
- ISCO application of a sodium persulfate-based technology for treatment of VOCs in soil and groundwater after product recovery and remedial excavation have been completed. The chemical will be placed at the bottom of the final excavation depth as well as along sidewalls. ISCO application will also include the 24-inch strip behind the SOE if residual soil with compounds of concern exceed impact to groundwater SCOs.
- Controlled backfill of the excavated areas to the desired grade with recycled concrete aggregate (RCA), clean stone and/or reuse clean onsite soil from the excavation (as available). Backfill will be protected from contaminated soils using plastic sheeting as necessary. RCA will meet NYSDEC Part 360-1.15 requirements and will be free of asphalt. Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) will be brought in to complete the backfilling of the excavation and establish the designed grades at the Site.
- A waterproofing barrier (Grace Preprufe or equivalent) will be installed on the underside of the foundation slab and on the walls below grade. The waterproofing barrier will act as the primary vapor barrier that will minimize any potential vapor intrusion.
- Install temporary downgradient monitoring well and collect groundwater samples to evaluate the effectiveness of the ISCO treatment.
- As part of the Track 1 remedy, a soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.

- All responsibilities associated with the remedial action, including permitting requirements and pre-treatment requirements, will be addressed in accordance with all applicable Federal, State and local rules and regulations.
- Submission of a Final Engineering Report (FER) that describes the remedial activities, certifies that the remedial requirements have been achieved, defines the Site boundaries, and describes all Engineering and Institutional Controls to be implemented at the Site (if applicable), and lists any changes from this RAWP.

Contingent Track 1

The intent of the remedy is to achieve Track 1 Unrestricted Use; therefore, no Environmental Easement or Site Management Plan is anticipated. In the event that a Track 1 Unrestricted Use is not achieved, the following contingent remedial elements will be required and the remedy will achieve a minimum Track 4 Restricted Commercial Cleanup:

- A Site cover system consisting of building foundation and pavement areas will be installed onsite. The site cover system will be required to allow for commercial use of the Site in areas where the upper one foot of exposed surface soil will exceed the applicable SCOs.
- SSDS piping will be installed underneath the cellar slab as a contingency, if possible. The vertical space between the slab and the water table will determine whether installation of the SSDS piping is possible. Following enclosure of the cellar,
- If an "unconditional" Track 1 is not achieved, recording of an Environmental Easement, including ICs and ECs, to prevent future exposure to any residual contamination remaining at the Site will be required. A copy of the Environmental Easement will be submitted as part of the FER and it will be recorded in the property title records for the Site.
- If an "unconditional" Track 1 is not achieved, preparation of a Site Management Plan (SMP) is required for long term management of residual contamination as required by the Environmental Easement, including plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.

Remedial Alternative 2: Track 2 Restricted Commercial Use Cleanup

The Remedial Alternative 2 has the same remedial components described above for the Remedial Alternative 1 (excavation, soil disposal, installation of the SOE, free-product recovery, dewatering, ISCO application, backfilling and installation of contingency SSDS). The Remedial Alternative 2 is a fall back alternative in case the Remedial Alternative 1 cannot be achieved. As such, if endpoint samples results do not meet Track 1, a Track 2 Restricted Commercial cleanup will be achieved for the Site which will include the preparation of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement, including institutional and engineering controls, monitoring, operation and maintenance and reporting. For the Track 2, excavation will meet Restricted Commercial Use Cleanup in the upper 15 feet.

Remedial Alternative 3: Track 4 Restricted Commercial Use Cleanup

The Remedial Alternative 3 has the same remedial components described above for the Remedial Alternatives 1 and 2 (excavation, soil disposal, installation of the SOE, free-product recovery, dewatering, ISCO application, backfilling and installation of contingency SSDS piping [if feasible]). The Remedial Alternative 3 is a fall back alternative in case Remedial Alternative 2 cannot be achieved based on endpoint and delineation sampling results. Some residual contaminated Site soils above 15 feet below grade will remain in place and addressed with a site cover system comprised of building foundation, vapor/waterproofing barrier and pavement areas will be in place and serve as engineering controls. The Track 4 will be achieved for the Site and will include the preparation of a Site Management Plan for long term management of residual contamination as required by the Environmental Easement, including institutional and engineering controls, monitoring, operation and maintenance and reporting.

3.1 EVALUATION OF REMEDIAL ALTERNATIVES

The goal of the remedy selection process under the BCP is to select a remedy that is protective of human health and the environment taking into consideration the current, intended, and reasonably anticipated future use of the property. Each remedial alternative is evaluated based on the factors listed below:

Protection of human health and the environment;

- Compliance with SCGs;
- Short-term effectiveness and impacts;
- Long-term effectiveness and permanence;
- Reduction of toxicity, mobility, or volume of contaminated material;
- Implementability;
- Cost effectiveness;
- Community Acceptance; and
- Land use.

SCGs applicable to the Site remediation are discussed in Section 2.4.3 of this RAWP and described briefly below.

- 6 NYCRR Part 375-6 Soil Cleanup Objectives- The Unrestricted Use, Restricted Commercial Use, and Protection of Groundwater SCOs listed in the guidance were used to evaluate soils, delineate areas with impacts, and specify cleanup objectives;
- New York State Groundwater Quality Standards 6 NYCRR Part 703- 6 NYCRR Subpart 703; the standards listed in the guidance were used to evaluate groundwater quality, delineate areas with impacts, and specify cleanup objectives;
- NYSDEC Ambient Water Quality Standards and Guidance Values TOGS 1.1.1- the standards listed in the guidance were used to evaluate groundwater quality, delineate areas with impacts, and specify cleanup objectives (TOGS 1.1.1 incorporates the same standards as listed in 6 NYCRR Part 703 for the constituents of concern at the Site);
- NYSDEC Draft DER-10 Technical Guidance for Site Investigation and Remediation May 2010 - the proposed remedial alternatives were developed in accordance with the abovementioned document;
- NYSDEC Draft Brownfield Cleanup Program Guide May 2004- the project is part of the BCP, and as such, the abovementioned guidance document was used to prepare this report;
- New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP) will be required for all ground intrusive activities, and the abovementioned document was used to prepare the CAMP;

- NYS Waste Transporter Permits 6 NYCRR Part 364 As the remedial alternatives may include excavation and disposal of soil, the abovementioned guidance document applies; and
- NYS Solid Waste Management Requirements 6 NYCRR Part 360 and Part 364 As the remedial alternatives include excavation and disposal of soil, the abovementioned guidance document applies.

3.1.1 Overall Protection of Human Health and the Environment

This criterion is an evaluation of the ability of each alternative remedy to protect public health and the environment.

Remedial Alternative 1 will be protective of human health and the environment by removing all soil at the Site that exceeds the Unrestricted Use SCOs and backfilling any areas as needed with material meeting the Unrestricted Use SCOs, thus eliminating the potential for human and environmental exposure to contaminated soil/fill once construction is complete and eliminating the risk of contamination leaching from the soil/fill into underlying groundwater and soil vapor intrusion. Though there is minimal potential for contact with contaminated groundwater as it is not used for potable purposes, the concentration of any contaminants in groundwater will be addressed by the removal of the impacted soil, LNAPL product recovery and ISCO application to address residual contamination. Removal of source material will remove sources of potential impacts to soil vapor. The building foundation and a waterproofing barrier will be installed during construction that will serve as a vapor barrier to minimize vapor intrusion. If feasible (depending on the final elevation of the foundation and whether sufficient vertical space exists between the cellar slab and the water table), SSDS piping will be installed below the foundation. The only area that may not be included in Remedial Alternative 1 Track 1 is the area between the north property line and the proposed SOE location, which will be installed approximately 2 feet away from the property line. This area is approximately 420SF of the 99,300SF total Site area.

Remedial Alternative 2 will also be protective of human health and the environment by removing all soil at the Site that exceeds the Restricted Commercial Use SCOs in the upper 15 feet and backfilling any areas as needed with material meeting the Restricted Commercial Use SCOs.

Though there is minimal potential for contact with contaminated groundwater as it may not be used for potable purposes, the concentration of any contaminants in groundwater will be addressed by the removal of the grossly contaminated soil, LNAPL product recovery and ISCO application to address residual soil and groundwater contamination. Removal of source material will remove sources of potential impacts to soil vapor. The building foundation and a waterproofing barrier will be installed during construction that will serve as a vapor barrier to minimize vapor intrusion. If feasible (depending on the final elevation of the foundation and whether sufficient vertical space exists between the cellar slab and the water table), SSDS piping will be installed underneath the cellar slab.. Implementing ICs and ECs including a Site Management Plan (SMP) and Environmental Easement will ensure that use of groundwater is restricted, and the SSDS operation will be protective of human health from any potential soil vapor intrusion.

Remedial Alternative 3 will also be protective of human health and the environment by removing all grossly impacted soils and COC source areas and backfilling any areas as needed with material meeting the Restricted Commercial Use SCOs. The difference between the Remedial Alternative 2 and 3 is that some soil in the upper 15 feet will not be excavated in Remedial Alternative 3 but will be addressed with a site cover system consisting of building slab and pavement, which will prevent direct contact with any remaining onsite soils, soil vapor and groundwater.

For all alternatives, during Site remediation and other construction activities, workers may be exposed to impacted soil, groundwater and soil vapor. Potential worker and community exposure to contaminated media during remediation activities will be mitigated through the implementation of the Site-Specific HASP, which includes the CAMP, and required worker training.

3.1.2 Standards, Criteria, and Guidance

The remedy must conform to officially promulgated standards and criteria that are directly applicable or that are relevant and appropriate. The selection of a remedy must also take into consideration guidance as appropriate.

Remedial Alternative 1 will achieve compliance with the Track 1 Unrestricted Use SCOs for all onsite areas (with the possible exception of the 420SF area between the north property line and the proposed drilled cutoff wall location). Removal of soil exceeding Unrestricted Use SCOs, LNAPL product recovery and ISCO application is expected to result in significant reductions in soil vapor and onsite groundwater concentrations that will meet AWQSGVs or contain only residual contamination demonstrating there has been a bulk reduction in groundwater contamination to asymptotic conditions. The handling, management and disposal of contaminated materials will be in compliance with the applicable SCGs. The remedial excavation will be backfilled as needed with material meeting Unrestricted Use SCOs and/or clean stone.

Remedial Alternative 2 will achieve compliance with the remedial goals, SCGs and RAOs for soil through the removal of grossly contaminated soil and impacted groundwater in LNAPL source areas to meet Protection of Groundwater SCOs, removal of LNAPL through vacuum truck/absorbent booms and in-situ chemical oxidation as a final polishing step. The SMP would ensure that these engineering controls remain protective for the long term.

Remedial Alternative 3 will achieve compliance with the remedial goals, SCGs and RAOs for soil through the removal of grossly contaminated soil and impacted groundwater in LNAPL source areas to meet Protection of Groundwater SCOs, removal of LNAPL through vacuum truck/absorbent booms and in-situ chemical oxidation as a final polishing step. All grossly impacted soils and COC source areas will be removed and backfilled with material meeting Restricted Commercial Use SCO, but any remnant soil above Track 2 will meet RAOs through implementation of site cover system consisting of the building foundation and pavement. The SMP would ensure that these engineering controls remain protective for the long term.

For all alternatives, focused attention on means and methods employed during the remedial action would ensure that handling and management of contaminated material would be in compliance with the applicable SCGs.

3.1.3 Long-Term Effectiveness and Permanence

This criterion is an evaluation of the long-term effectiveness and permanence of an alternative or remedy after implementation.

Remedial Alternative 1 removes all soil that was impacted by the historical releases/historical fill that exceeds the Unrestricted Use SCOs. Groundwater will improve based on the removal of source material. Free-product will be pumped out and ISCO application will provide the final polishing step. Sources of potential impacts to soil vapor are addressed. Therefore, incremental risk from soil, groundwater, and soil vapor impacts will be eliminated, ECs and ICs are not necessary, and the remedy will continue to meet RAOs in the future, thus providing a permanent solution for the Site.

Remedial Alternative 2 provides a long-term solution for the Site using ICs and ECs to mitigate human health and environmental exposures to and offsite migration of impacted soil, soil vapor and groundwater by removing/treating the impacted soil that exceeds the Unrestricted Use SCOs and Protection of Groundwater SCOs (via excavation of the upper 15 feet, free product recovery, in-situ chemical application), by installation of a site cover system comprised of the building foundation and pavement, a waterproofing/vapor barrier, and, if feasible, the installation of SSDS piping underneath the cellar slab to address any potential vapor intrusion. Establishing institutional controls to ensure long term management including use restrictions, an SMP, and placement of an Environmental Easement to memorialize these controls for the long term will ensure long-term effectiveness by requiring periodic inspection and certification that these controls and restrictions continue to be in place and are functioning as intended and assuring that protections designed by the remedy will provide continued high level of protection, in perpetuity.

Remedial Alternative 3 provides the same long-term solution for the Site in comparison to Remedial Alternative 2 using ICs and ECs to mitigate human health and environmental exposures to and offsite migration of impacted soil, soil vapor and groundwater by removing all grossly impacted soils and COC source areas and backfilling with material meeting Restricted Commercial Use SCOs, free product recovery, in-situ chemical application), by installation of a site cover

system comprised of the building foundation and pavement, a waterproofing/vapor barrier, and, if feasible, the installation of SSDS piping underneath the cellar slab to address any potential vapor intrusion. Establishing institutional controls to ensure long term management including use restrictions, an SMP, and placement of an Environmental Easement to memorialize these controls for the long term will ensure long-term effectiveness by requiring periodic inspection and certification that these controls and restrictions continue to be in place and are functioning as intended and assuring that protections designed by the remedy will provide continued high level of protection, in perpetuity.

3.1.4 Reduction Toxicity, Mobility or Volume of Contamination through Treatment

This criterion is an evaluation of the ability of an alternative or remedy to reduce the toxicity, mobility and volume of Site contamination. Preference should be given to remedies that permanently or significantly reduce the toxicity, mobility, or volume of the contamination at the Site.

- removal and/or treatment;
- containment;
- elimination of exposure; and
- treatment of source at the point of exposure.

Remedial alternatives that use treatment or removal to eliminate contaminants at a Site, reduce the total mass of toxic contaminants, cause irreversible reduction in contaminants mobility, or reduce of total volume of contaminated media are preferable.

Remedial Alternative 1 permanently eliminates the toxicity, mobility, and volume of contaminants within the Site by removing all soil with concentrations that exceeded the Unrestricted Use SCOs, as well as LNAPL product recovery and ISCO application as a final polishing step. Removal of impacted soil and LNAPL is expected to result in significant reductions in onsite groundwater concentrations and meet AWQSGVs or achieve bulk reductions in

groundwater concentrations. Removal of source material and in situ groundwater treatment will also remove sources of potential impacts to soil vapor.

Remedial Alternative 2 will also permanently eliminate the toxicity, mobility, and volume of contaminants from on-site soil and groundwater by removing soil in the upper 15 feet that exceeded the Restricted Commercial Use SCOs and groundwater in LNAPL source area, LNAPL product recovery and ISCO application as a final polishing step and a waterproofing/vapor barrier. A SSDS will be installed, if feasible, underneath the cellar slab to address any potential soil vapor intrusion. The site will be capped to permanently eliminate exposures and associated toxicity.

Remedial Alternative 3 will also permanently eliminate the toxicity, mobility, and volume of contaminants from on-site soil and groundwater by removing all grossly contaminated soils and COC source areas and backfilling with material meeting Restricted Commercial Use SCOs, LNAPL product recovery and ISCO application as a final polishing step and a waterproofing/vapor barrier. A SSDS will be installed, if feasible, underneath the cellar slab to address any potential soil vapor intrusion. Some soils above 15 feet will remain in place but they will be addressed by implementation of EC and ICs. The site will be capped to permanently eliminate exposures and associated toxicity.

An environmental easement will ensure long-term management of ECs and implementation of use restrictions. The SMP will ensure long-term effectiveness of all ECs and ICs by requiring periodic inspection and certification that these controls and restrictions continue to be in place and are functioning as intended.

3.1.5 Short-Term Impacts and Effectiveness

This criterion is an evaluation of the potential short-term adverse environmental impacts and human exposures during the construction and/or implementation of an alternative or remedy.

Remedial Alternative 1 poses minimal health and environmental risks during implementation. The remedy implementation time (approximately 6 months) is relatively short and the potential

adverse impacts to the community and workers (e.g., increased traffic or exposure to contaminants during soil excavation and transportation, LNALP recovery) can be mitigated with ECs (e.g., dust, odor and traffic controls). Other potential risks include material and equipment handling, electrical shock, off-gas vapor inhalation, general trip hazards, and noise. These potential impacts will be mitigated through implementation of the Site-specific HASP and CAMP and the Soil/Materials Management Plan (SoMP), which detail monitoring during the construction and describe ECs to be implemented as necessary (e.g., dust/odor suppression and traffic control). The handling of chemicals during the application of oxidants will be managed by proper PPE and by following the manufacturer's instructions.

Remedial Alternative 2 poses the same minimal health and environmental risks during implementation and will be effectively mitigated in the same manner as for Remedial Alternative 1. Potential worker exposure to soil, LNALP and groundwater during remediation activities will be mitigated through the required OSHA training and appropriate HASPs. Construction workers operating under appropriate management procedures and a HASP will be protected from onsite contaminants. Any potential environmental exposure will be mitigated by engineering controls implemented during construction, including a vacuum truck to immediately remove LNAPL that may accumulate in the excavation. The handling of chemicals during the application of oxidants will be managed by proper PPE and by following the manufacturer's instructions.

Remedial Alternative 3 poses the same minimal health and environmental risks during implementation and will be effectively mitigated in the same manner as for Remedial Alternatives 1 and 2. Potential worker exposure to soil, LNALP and groundwater during remediation activities will be mitigated through the required OSHA training and appropriate HASPs. Construction workers operating under appropriate management procedures and a HASP will be protected from onsite contaminants. Any potential environmental exposure will be mitigated by engineering controls implemented during construction, including a vacuum truck to immediately remove LNAPL that may accumulate in the excavation. The handling of chemicals

during the application of oxidants will be managed by proper PPE and by following the manufacturer's instructions.

3.1.6 Implementability

This criterion is an evaluation of the technical and administrative feasibility of implementing an alternative or remedy.

The techniques, materials and equipment to implement **Remedial Alternatives 1, 2 and 3** are readily-available and have been proven effective in remediating the contaminants associated with the Site. Standard materials, services, and well-established technologies will be implemented. There are no specific difficulties associated with any of the activities proposed, which utilize standard construction methods.

In all Alternatives, the existing building will be demolished and SOE will need to be installed in the area of the LNAPL zone. To address free-product, vacuum trucks and absorbent booms will be deployed and in-situ chemical application will be performed as a final polishing step. In addition, if feasible, SSDS piping will be installed underneath the cellar slab to address any potential soil vapor intrusion in the cellar. Remedial Alternative 1 would require excavation of all soils above Unrestricted SCO. Remedial Alternative 2 would require excavation of all soils above Restricted Commercial Use SCO to at least 15 feet below grade. For Remedial Alternative 3, all grossly contaminated impacted soils and COC source areas will be removed. Any remaining soils above Track 2 will be addressed by the implementation of ECs and ICs.

3.1.7 Cost Effectiveness

This criterion is an evaluation of the overall cost effectiveness of an alternative or remedy, including capital costs (such as construction costs, equipment costs, disposal costs, engineering expenses) and site management costs (costs incurred after remedial construction is complete) necessary to ensure the continued effectiveness of a Remedial Action.

Cost estimates for each alternative are shown in Tables 8, 9 and 10.

The total cost for **Remedial Alternative 1** is \$11,532,762 for implementation of the remedy.

The total cost for **Remedial Alternative 2** is \$10,971,102 for implementation of this remedy.

The total cost for **Remedial Alternative 3** is \$10,365,691 for implementation of this remedy.

3.1.8 Community Acceptance

This criterion is evaluated after the public review of the remedy selection process as part of the final DER selection/approval of a remedy for a site. Any public comment relative to these criteria will be considered by DER after the close of the public comment period. Documentation of the public comments received is to be consistent with the Citizen Participation Plan (CPP) identified for a remedial program in accordance with applicable DEC policy.

A full evaluation of this criterion cannot be made until after the public comment period is complete, but because the measures to be employed for both alternatives consist of standard construction methods, including ECs to minimize impacts to the surrounding community, community acceptance of both alternatives is anticipated.

3.1.9 Land Use

This criterion is an evaluation of the current, intended, and reasonably anticipated future use of the Site and its surroundings, as it relates to an alternative or remedy, when unrestricted levels would not be achieved.

This evaluation has considered reasonably-anticipated future uses of the Site and takes into account:

- current use and historical and/or recent development patterns;
- applicable zoning laws and maps;
- NYS Department of State's Brownfield Opportunity Areas (BOA) pursuant to section 970-r of the general municipal law;
- applicable land use plans;

- proximity to real property currently used for residential use, and to commercial, industrial, agricultural, and/or recreational areas;
- environmental justice impacts, Federal or State land use designations;
- population growth patterns and projections;
- accessibility to existing infrastructure;
- proximity of the Site to important cultural resources and natural resources, potential vulnerability of groundwater to contamination that might emanate from the Site, proximity to flood plains, geography and geology; and
- current ICs applicable to the Site.

Remedial Alternative 1, would render the Site available for unrestricted use following remedial construction.

Remedial Alternatives 2 and 3, will allow the Site to be used for restricted commercial use and less restrictive uses such as industrial use. The planned use of the Site will ensure that the remedy is protective of human health and the environment by eliminating potential exposure pathways to residual contamination.

3.2 SELECTION OF THE PREFERRED REMEDY

The Preferred Remedy for the Site, Remedial Alternative 1, was selected for implementation since it meets each of the evaluation criteria. In summary, the Preferred Remedy for the Site:

- Is protective of public health and the environment.
- Complies with the appropriate Track 1 Unrestricted Use SCOs.
- Provides long-term effectiveness and permanence through removal of all soil above unrestricted levels, including soil impacted with free-phase product, coupled with product recovery pumping and final polishing step with the use of chemical oxidant.
- Provides short-term effectiveness, including minimal impacts to workers or the surrounding neighborhood through the implementation of ECs during construction.
- Is readily implementable.

• Is compatible with the existing and proposed land use.

The Preferred Remedy for the Site is consistent with the approach for a Track 1 scenario described in the Part 375 Regulations.

A land use factor evaluation of the Preferred Remedy for the Site is provided below based on the following criteria as required by Article 27, Title 14 of the Environmental Conservation Law 27-1415.

Zoning

As depicted in the Land Use Map (Figure 5), the redevelopment of the Site is consistent with the local land use in the surrounding area.

Applicable land use plan

As depicted in the Land Use Map (Figure 5), the redevelopment of Site is consistent with the surrounding community redevelopment plans.

3.2.1 Surrounding Property Uses

As described in the BCP application, the property uses surrounding the Site are commercial and residential. Adjacent uses are shown on the Land Use and Adjacent Property Owners Map provided as Figure 5.

3.2.2 Citizen Participation

Citizen participation will be pursued throughout the remedial process in accordance with the BCP guide and the CPP for the Site.

3.2.3 Environmental Justice Concerns

As presented in the BCP application, according to the NYSDEC data base for environmental justice concerns, 5200 Kings Highway, Brooklyn, New York is not part of any Potential Environmental Justice Area (PEJA).

3.2.4 Land Use Designations

As presented in the BCP application, there are no federal or state land use designations related to the Site.

3.2.5 Population Growth Patterns

As indicated in the BCP application for the Site, according to population growth patterns and projections, the proposed redevelopment of the Site into commercial, will be supportive of the growing community and the surrounding land use.

3.2.6 Accessibility to Existing Infrastructure

As indicated in the BCP application for the Site, the Site's location in Brooklyn is accessible to existing infrastructure.

3.2.7 Proximity to Cultural Resources

As indicated in the BCP application for the Site, there are no historic landmarks and historic districts within ½ mile of the Site.

3.2.8 Proximity to Natural Resources

Paerdegat Basin, a tidal inlet is located approximately 0.6 miles southeast of the Site. Removal of all impacted soil, including grossly contaminated soil, installation of product recovery pumps and polishing with chemical oxidant will eliminate any potential impacts to the basin. Natural resources will not be endangered by the preferred remedy for the Site.

3.2.9 Off-Site Groundwater Impacts

There are no known wellhead protection areas or specifically designated groundwater recharge areas in the vicinity of the Site. Based on information generated during the RI, contamination migrating from the Site would likely flow in a southeast direction towards the Paerdegat Basin.

3.2.10 Proximity to Floodplains

As described in the BCP Application, there are no floodplains within ½ mile of the Site.

3.2.11 Geography and Geology of the Site

The site is trapezoidal in shape and is bordered to the east and southeast by Kings Highway and to the west by Utica Avenue. The site topography is generally flat with an elevation of approximately 20 feet above mean sea level. Regional elevation slopes gently to the east and south. Surface runoff enters the municipal system by storm drains located onsite.

Based on soil borings advanced at the Site, the upper 20 feet of surficial geology is dominated by urban fill consisting of sand, gravel, and minor amounts of brick. Groundwater was encountered at depths ranging from 8 to 16 feet below land surface.

3.2.12 Current Institutional Controls

As described in the BCP Application, there currently are no ICs on the property.

3.3 SUMMARY OF SELECTED REMEDIAL ACTIONS

The Remedial Action will consist of the following remedial components:

- 1. A Pre-design Investigation (PDI) will be conducted to collect waste characterization samples and collect in-situ end-point samples that will pre-establish the lower limit of the excavation that is required to meet Unrestricted Use SCOs. Soil sampling on the western edge of the Site along Utica Avenue (which will not be excavated for development purposes) and the east side of the Site along Kings Highway (which will have limited excavation where only slab-on-grade retail construction is proposed) will also be conducted during the PDI. Soil samples will also be collected from the 24-inch strip between the planned SOE and the adjacent property. A PDI work plan will be submitted to NYSDEC under separate cover.
- 2. A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program.
- 3. Survey existing soil borings and monitoring well locations prior to demolition.

- 4. Site mobilization involving Site security setup, equipment mobilization, utility markouts and marking and staking excavation areas.
- 5. Implementation of erosion and sediment controls.
- 6. Site monitoring of airborne VOCs and particulates in accordance with a NYSDEC approved CAMP will be conducted during all ground intrusive and soil handling activities. Odor suppression equipment including foaming agents and dispersion pumps and sprayers will be mobilized to the Site before the start of ground intrusive activities.
- 7. The SOE consisting of a drilled cut-off wall will be installed on the northern side of the Site bordering Favorite Plastics. Approximately 212 linear feet of the drilled cut-off wall will be installed to approximately 29 feet below grade. For structural reasons, the drilled piles will be installed approximately 24 inches away from the property line. The quality of soil in the 24-inch strip will be determined during the PDI.
- 8. Soils in the 24-inch strip behind the SOE that exceed Track 1 SCOs will be removed to a depth of approximately 12 feet. LNAPL, if present, will also be removed. The total depth of removal will be based on the depth of the Favorite Plastics footings. If PDI results indicate that soils with compounds of concern above impact to groundwater SCOs will remain below the excavation limit, an ISCO application will be completed in this strip prior to backfill (see Item 15 below).
- 9. Unsaturated soils will be initially excavated to approximately nine feet below grade across the 77,000 SF of the site where below grade construction is proposed. These soils will be disposed of offsite. Soils will also be excavated to a depth of approximately four feet below grade from the 7,000SF area on the east side of the Site where slab-on-grade retail development is proposed.
- 10. Steel sheet piling will be installed along the perimeter of the LNAPL Zone. This will include approximately 332 linear feet of the steel sheet piling being installed to approximately 28 feet below grade.
- 11. Four feet of smear zone soils that straddle the water table within the LNAPL Zone will be excavated and disposed of offsite. These saturated soils will be stockpiled for shipping the following day. These soils will be managed with drying agents (such as saw dust or fly ash) as necessary prior to shipment offsite. The soils will also be covered overnight to manage odors.
- 12. Free-product recovery will be actively conducted in the open excavation via skimming technology using a combination of vacuum truck and oil absorbent booms. Recovered free-product will be temporarily stored onsite in an aboveground tank or drums (depending on quantity generated) for future offsite disposal. Recovery will continue as long as oil recharge occurs. When only small amounts of sheen are present, oil absorbent booms will be deployed in the area to recover the residual product.

- 13. Dewatering at the Site will be required to enable the excavation and subgrade work. Contaminated groundwater from dewatering operations will be treated as necessary prior to discharge to the municipal sewer system. Excavation will be conducted in conjunction with controlled dewatering using well points to final depths ranging from 15 to 19 feet below grade. Actual depths will be based on the results of the in-situ endpoint sampling results that will establish the excavation depth needed to achieve Unrestricted Use SCOs. Onsite treatment or offsite disposal of groundwater will proceed as needed.
- 14. Appropriate offsite disposal of all material removed from the Site to permitted facilities in accordance with all Federal, State and local rules and regulations for handling, transport and disposal, and this plan. Sampling and analysis of excavated media as required by the disposal facilities.
- 15. An ISCO application of a sodium persulfate-based technology for treatment of VOCs in soil and groundwater will be conducted following the completion of product recovery and remedial excavation. The chemical will be placed at the bottom of the final excavation depth as well as along sidewalls. ISCO application will also include the 24-inch strip behind the SOE if residual soils with compounds of concern exceed impacted to groundwater SCOS.
- 16. Controlled backfill of the excavated areas to the desired grade with recycled concrete aggregate (RCA), clean stone and/or reuse clean onsite soil from the excavation (as available). Backfill will be protected from contaminated soils using plastic sheeting as necessary. RCA will meet NYSDEC Part 360-1.15 requirements and will be free of asphalt. Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) will be brought in to complete the backfilling of the excavation and establish the designed grades at the Site.
- 17. A waterproofing barrier (Grace Preprufe or equivalent) will be installed on the underside of the foundation slab and on the walls below grade. The waterproofing barrier will act as the primary vapor barrier that will minimize any potential vapor intrusion.
- 18. Install temporary downgradient monitoring well and collect groundwater samples to evaluate the effectiveness of the ISCO treatment.
- 19. As part of the Track 1 remedy, a soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.
- 20. All responsibilities associated with the remedial action, including permitting requirements and pre-treatment requirements, will be addressed in accordance with all applicable Federal, State and local rules and regulations.
- 21. Submission of a Final Engineering Report (FER) that describes the remedial activities, certifies that the remedial requirements have been achieved, defines the Site boundaries,

and describes all Engineering and Institutional Controls to be implemented at the Site (if applicable), and lists any changes from this RAWP.

Contingent Track 1

The intent of the remedy is to achieve Track 1 Unrestricted Use; therefore, no Environmental Easement or Site Management Plan is anticipated. In the event that a Track 1 Unrestricted Use is not achieved, the following contingent remedial elements will be required and the remedy will achieve a minimum Track 4 Restricted Commercial Cleanup:

- A Site cover system consisting of building foundation and pavement areas will be installed onsite. The site cover system will be required to allow for commercial use of the Site in areas where the upper one foot of exposed surface soil will exceed the applicable SCOs.
- SSDS piping will be installed underneath the cellar slab as a contingency, if possible. The vertical space between the slab and the water table will determine whether installation of the SSDS piping is possible.
- If an "unconditional" Track 1 is not achieved, recording of an Environmental Easement, including ICs and ECs, to prevent future exposure to any residual contamination remaining at the Site will be required. A copy of the Environmental Easement will be submitted as part of the FER and it will be recorded in the property title records for the Site.
- If an "unconditional" Track 1 is not achieved, preparation of a Site Management Plan (SMP) is required for long term management of residual contamination as required by the Environmental Easement, including plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.

Generic RAWP Template: May 7, 2007

Updated April 29, 2014

Remedial activities will be performed at the Site in accordance with this NYSDEC-approved RAWP and the Department-issued Decision Document. All deviations from the RAWP and/or Decision Document will be promptly reported to NYSDEC for approval and fully explained in the FER.

4.0 REMEDIAL ACTION PROGRAM

The following sections describe the Remedial Action program.

4.1 GOVERNING DOCUMENTS

The applicable documents governing the remedial action are described below.

4.1.1 Site Specific Health and Safety Plan (HASP)

The Site-specific HASP is included in Appendix H and the CAMP is included within the HASP. All remedial work performed under this plan will be in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Volunteer and associated parties preparing the remedial documents submitted to the State and those performing the construction work, are completely responsible for the preparation of an appropriate HASP and for the appropriate performance of work according to that plan and applicable laws.

The HASP and requirements defined in this Remedial Action Work Plan pertain to all remedial and invasive work performed at the Site until the issuance of a Certificate of Completion.

The Roux Site Safety Coordinator will be determined prior to implementation of the Remedial Action. A resume will be provided to NYSDEC prior to the start of remedial construction.

If required, confined space entry will comply with all OSHA requirements to address the potential risk posed by combustible and toxic gasses.

4.1.2 Quality Assurance Project Plan (QAPP)

The Quality Assurance Project Plan (QAPP, Appendix I) includes all procedures to be followed for sampling and analysis during the remedial action. The QAPP includes all requirements outlined in DER-10 Section 2.4.

4.1.3 Construction Quality Assurance Plan (CQAP)

Quality assurance/quality control procedures for all construction activities associated implementation of the remedial action construction are established in the Construction Quality Assurance Plan (CQAP), which is included in this section of the RAWP. The CQAP describes the site-specific construction quality assurance and control measures that will be performed during remediation that will be implemented at the Site during implementation of the RAWP. The CQAP includes a program for construction observation and testing to verify performance of the remedial construction in accordance with the RAWP.

4.1.3.1 Organization/ Personnel

The implementation of the remedial action construction will be sequenced based on construction requirements, environmental considerations, and logistic limitations posed by the size of the Site and proximity of adjacent structures. The project team is comprised of the Owner (PTMA 5200 Kings Highway LLC), contractors, and consultants specializing in one or more critical aspects of the project. It is understood by the project team that close coordination and proper sequencing of all activities occurring on the Site will be crucial to the success of the remediation. The project team and associated responsibilities are as follows. If changes are made the project team, the CQAP will be amended.

4.1.3.2 Owner/Volunteer – Site Redevelopment and Regulatory Interaction

Craig Werle, Project Coordination

As the site owner's representative, Craig Werle, Principal at Roux [Project Manager], will coordinate communications with regulatory agencies and will provide general oversight of all aspects of the remediation. Mr. Werle will be responsible for the review of all documents, reports, correspondence, etc., required by the RAWP and/or the BCA with the NYSDEC dated May 1, 2012 and amended March 23, 2018.

PTMA 5200's Project Manager will be responsible for community notifications and addressing concerns with the adjacent property owners and local community on all remediation-related issues.

Mr. Werle will be immediately notified by the onsite team of any complaints or concerns regarding the work raised by the adjacent property owners and or the general public.

4.1.3.3 – General Contractor/ Construction Manager

TBD, Project Quality Control Officer

The General Contractor/ Construction Manager and will be responsible for the quality assurance of all of the tasks being implemented. The General Contractor/ Construction Manager will confirm that all components of the Site activities are conducted according to the requirements of the RAWP. The General Contractor/ Construction Manager will be responsible for verifying that the daily Site construction activities are in compliance with all of the safety requirements and regulations governing the Site activity, however, each subcontractor is responsible for the health and safety of their own personnel.

4.1.3.4 Roux – RAWP and Environmental Monitoring Compliance

Craig Werle – Roux/ Quality Assurance Officer Wendy Shen – Ouality Control Project Manager

TBD - Field Manager/ Site Safety Officer (SSO)

Roux will coordinate all Site activities being implemented to achieve the remedial objectives defined in the RAWP and will act as the SSO. Roux will provide continual review of all quality control measures implemented by the contractors to ensure compliance with the Site's remedial objectives and the Site-specific HASP. As such, Roux will provide oversight services for the duration of the remedial activities. Roux will be responsible for managing the transportation and disposal of contaminated waste and materials generated during the construction, including:

- fill/soil;
- free-product;
- impacted groundwater;
- contaminated concrete, bricks or other construction debris; and
- personal protective equipment and other miscellaneous debris.

Roux will implement the CAMP. CAMP monitoring data will be reported daily to the SSO and will be maintained onsite. Action level exceedances will be reported to the SSO, the Project Manager and appropriate communication and action taken. All CAMP monitoring records will be included in the overall FER that will be submitted to the NYSDEC and NYSDOH and will include all the CAMP data collected, daily monitoring station location maps, and copies of the action limit reports (if any). If an action limit report is generated due to VOC exceedances, the NYSDEC and NYSDOH will be notified within 24 hours of the exceedance. Action limit exceedances for dust, if any, will be discussed in the daily report. A brief summary of CAMP activities, including any action limit reports generated, will be provided in the daily report.

All onsite quality control persons identified in the CQAP will provide daily briefings and/or reports to Roux onsite personnel, identifying the tasks completed, the remedial measures achieved, and any other issues of concern. Additionally, Mr. Charles J. McGuckin, the "Remedial Engineer", a professional engineer licensed in the State of New York, will be responsible for certifying that the remediation construction was completed in substantial conformance with the approved RAWP and/or any NYSDEC-approved field changes.

4.1.3.5 Environmental Laboratory

Alpha Analytical (Alpha) will be utilized for all remediation construction-related analytical requirements. Alpha is a NYSDOH ELAP certified laboratory. All results will be reported in EDDs prepared in accordance with NYSDEC requirements. Formal laboratory qualifications and QA/QC information packages for Alpha and any other analytical laboratories proposed for the project will be submitted to the NYSDEC, if requested.

4.1.3.6 Surveying Firm

A NYS-licensed surveying firm, will be contracted by PTMA 5200 Kings Highway LLC to provide lines, grades, boundaries, benchmarks, topographic surveys, as-built drawings, and any other survey work required for the proper execution and documentation of the work as required by the RAWP.

4.1.3.7 Waste Disposal Facilities

Waste from the Site will be transported to appropriately-permitted waste disposal facilities. This CQAP will be updated with the names of the facility or facilities, as required. If any is generated, non-impacted construction debris will be transported to a registered construction and demolition disposal facility.

4.1.3.8 Waste Transporter and Disposal Facility Qualifications

As required, a qualifications package will be provided by each vendor contracted to transport waste from the Site to the designated soil disposal facilities and each designated disposal facility. The package shall include the following:

- Proof of insurance and all current necessary waste transport permits for the waste type(s) being transported.
- Letters of Commitment or other appropriate documentation from all waste haulers and from all transfer, treatment, storage and disposal facilities to be used for the project. The letters of commitment shall specifically identify the types and quantities of waste that the facility will be able to accept, the permit numbers for all facilities at which the waste will be accepted and all waste characterization requirements, if additional to waste characterization samples already collected. In the event that a facility (such as a privately-owned treatment works) is prohibited from issuing a letter of commitment without a sample of the waste, a conditional type letter will be acceptable. Such a conditional letter shall specifically state what types and quantities of waste the facility will accept.
- For each waste hauler:
 - Name and federal and state identification numbers, as applicable.
 - Address.
 - Name of responsible contact for the hauler.
 - Telephone number for the contact.
 - List of types and sizes of all transport vehicles and equipment to be used.
 - A description of proposed transportation route, method and procedures for hauling waste material, including type of vehicles that will be used for each type of waste.
 - Copies of any and all necessary permits and authorizations for each type of waste transported.

- For each transfer, treatment, storage and disposal facility, the Contractor shall submit the following information:
 - Facility name and federal and state identification numbers.
 - Facility location.
 - Name of responsible contact for the facility.
 - Telephone number for contact.
 - Signed letter of agreement to accept waste.
 - Unit of measure utilized at facility for costing purposes.
 - Copies of all permits, licenses, letters of approval, and other authorizations to operate, held by the proposed facility as they pertain to receipt and management of waste derived from this Contract.

4.1.3.9 Construction Quality Control Testing

Implementation of quality control testing and measurement will be performed by the contractors conducting the specific Site tasks, as required. The quality control officers, defined in Section 4.1.3, will be responsible for providing documentation of all testing and measurement results to Roux. Roux will be responsible for verifying that all quality control testing has been conducted in compliance with the RAWP and as specified herein.

Prior to initial quality control testing procedures:

- 1. Verify that the testing procedures are within the manufacturer's recommendations.
- 2. Verify that the facilities' testing equipment is available and comply with testing standards.
- 3. Check testing instrument calibrations against certified standards.
- 4. Verify the recording forms, including all the test documentation requirements have been prepared.

Specific task-driven testing/certification obligations as they relate to environmental aspects of the project are as follows:

• A New York State-licensed surveyor will conduct all of the necessary measurements.

- Excavated soil will require waste characterization analyses prior to disposal. Waste characterization analysis parameters and frequency for waste leaving the Site are determined by the waste disposal facility's acceptance requirements. As required, waste will be tested in accordance with the soil disposal facility's analytical acceptance requirements. Results will be provided to the disposal facility for review.
- The CAMP requires continuous real-time monitoring of VOCs and particulates during all intrusive Site activities. This monitoring equipment will be inspected periodically throughout each day to check and manually record the concentrations of VOCs and particulates and to ensure that the equipment is working properly. The equipment will be repaired, recalibrated, or replaced, as necessary. The periodic measurements will be used to identify any potential risks of offsite migration. This monitoring data will be collected and logged for review daily by Roux and made available for regulatory agency review. Action Limit Reports will be completed to document any and all action level exceedances, as defined in the CAMP.

All testing data will be managed in accordance with the above requirements and will be included in the FER to be prepared by Roux upon completion of all remedial objectives defined in the RAWP.

4.1.3.10 Project Coordination

During implementation of the remedial action construction, progress meetings/conference calls will be conducted periodically to assess the progress of the work, overall progress to date, quality control requirements, environmental and construction health and safety requirements, and future progress expectations. Those in attendance will include representatives from the Owner/Contractor, Roux and other subcontractors, as necessary. The NYSDEC and NYSDOH will attend the progress meetings at their discretion. This will provide the opportunity for all Site tasks to be integrated and discussed collectively and provide for coordination of all Site activities to maintain the overall construction schedule. Routine task meetings will also be conducted on an as-needed basis to insure proper communication between the contractors, tradesman, and supervisory personnel.

4.1.4 Soil/Materials Management Plan (SoMP)

The SoMP is included in Section 5.4 of this RAWP.

4.1.5 Storm-Water Pollution Prevention Plan (SWPPP)

The erosion and sediment controls will be in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control. A Stormwater Pollution Prevention Plan (SWPPP) is required for the remedial action since the area of disturbance will be more than one acre.

4.1.6 Community Air Monitoring Plan (CAMP)

All invasive work will be completed in accordance with the CAMP that is included as Appendix H within the HASP.

4.1.7 Contractors Site Operations Plan (SOP)

Contractor plans for remediation have not been prepared at this time. The Remedial Engineer will review all plans and submittals for this remedial project (including those listed above and contractor and sub-contractor document submittals) and confirm that they are in compliance with this RAWP. The Remedial Engineer is responsible to ensure that all later document submittals for this remedial project, including contractor and sub-contractor document submittals, are in compliance with this RAWP. All remedial documents will be submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.8 Citizen Participation Plan

A certification of mailing will be sent by the Volunteer to the NYSDEC project manager following the distribution of all Fact Sheets and notices that includes: (1) certification that the Fact Sheets were mailed, (2) the date they were mailed; (3) a copy of the Fact Sheet, (4) a list of recipients (contact list); and (5) a statement that the repository was inspected on (specific date) and that it contained all of applicable project documents.

No changes will be made to approved Fact Sheets authorized for release by NYSDEC without written consent of the NYSDEC. No other information, such as brochures and flyers, will be included with the Fact Sheet mailing.

The approved Citizen Participation Plan for this project is attached in Appendix J.

Document repositories have been established at the following locations and contain all applicable project documents:

Brooklyn Public Library Rugby Branch 1000 Utica Avenue Brooklyn, New York 11203-4310 Phone: (718) 566-0054

Brooklyn Community Board 18 1097 Bergen Avenue Brooklyn, New York 11234-4841

Phone: (718) 241-0422 Fax: (718) 531-3199

Email: <u>bkbrd18@optonline.net</u>

Chair: Saul Needle

District Manager: Dorothy Turano

4.2 GENERAL REMEDIAL CONSTRUCTION INFORMATION

4.2.1 Project Organization

Once established, a listing of key personnel involved in the Remedial Action will be provided to the NYSDEC. A copy of professional profiles for the Project Principal and Remedial Engineer for Roux and for the data validator are presented in Appendix K.

4.2.2 Remedial Engineer

The Remedial Engineer for this project will be Charles J. McGuckin. The Remedial Engineer is a registered professional engineer licensed by the State of New York. The Remedial Engineer will have primary direct responsibility for implementation of the remedial program for the PTMA 5200 Kings Highway LLC Site (NYSDEC BCA Index No. C224140-02-12 Site No. C224140). The Remedial Engineer will certify in the FER that the remedial activities were observed by qualified environmental professionals under his supervision and that the remediation requirements set forth

in the Remedial Action Work Plan and any other relevant provisions of ECL 27-1419 have been achieved in full conformance with that Plan. Other Remedial Engineer certification requirements are listed later in this RAWP.

The Remedial Engineer will coordinate the work of other contractors and subcontractors involved in all aspects of remedial construction, including soil excavation, stockpiling, characterization, removal and disposal, free-product recovery, ISCO application, air monitoring, emergency spill response services, import of backfill material, and management of waste transport and disposal. The Remedial Engineer will be responsible for all appropriate communication with NYSDEC and NYSDOH.

The Remedial Engineer will review all pre-remedial plans submitted by contractors for compliance with this Remedial Action Work Plan and will certify compliance in the FER.

The Remedial Engineer will provide the certifications listed in Section 10.1 in the FER.

4.2.3 Remedial Action Construction Schedule

A schedule for the major elements of the remedial construction and the redevelopment construction is presented on Figure 9.

Work Hours

The hours for operation of remedial construction will conform to the New York City Department of Buildings construction code requirements or according to specific variances issued by that agency. NYSDEC will be notified by the Volunteer of any variances issued by the Department of Buildings. NYSDEC reserves the right to deny alternate remedial construction hours.

4.2.4 Site Security

Security for the work, equipment, materials, supplies, facilities, personnel, and incidentals will be provided throughout the performance of the work at the Site. A perimeter chain-link fence is in place and will be maintained and upgraded to construction fence, as appropriate, by the Volunteer

during implementation of the remedial action and redevelopment. The Site security will maintain a sign in/sign out sheet for all visitors to the Site.

4.2.5 Traffic Control

All construction work will occur between 7 A.M. and 6 P.M. from Monday to Friday. The General Contractor may work longer hours and/or weekends, as permitted by the proper authorities. If work beyond these hours or on weekends is required, the proper authorities will be notified. Disturbances to the local community will be minimized to the extent practical.

Trucking for waste disposal from the Site and for backfill materials into the Site is anticipated based on the preferred remedy described in this RAWP. For any trucking required, the proposed truck routes for ingress and egress to the Site are shown in Figure 8.

The inbound truck route to the Site is:

- From Nassau Expressway take Linden Boulevard West
- Take Kings Highway South
- Site is located on the right

The outbound truck route from the Site is:

- Exit the Site on Kings Highway and go north
- Take Linden Boulevard East
- Get on Nassau Expressway

All trucks loaded with Site materials will exit the vicinity of the Site using only these approved truck routes. These are the most appropriate routes and take into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting offsite queuing of trucks entering the facility, to the extent practicable; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project Site, to the extent practical.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during Site remediation.

The contractors operating on the Site will be responsible for providing all necessary personnel and materials (i.e., traffic lanes, safety cones, etc.) to control traffic entering and exiting the Site and for coordinating traffic control measures with the New York City Police Department, as necessary. Contractors operating on the Site shall be responsible for all applicable New York City Department of Transportation (NYCDOT) traffic control and notification requirements and incorporating those elements into this Traffic Control Plan.

4.2.6 Contingency Plan

The Contingency Plan is described in Section 5.5.11.

4.2.7 Worker Training and Monitoring

All general Site workers (as defined in OSHA 1910.120 (e)(3)(i)) that will be involved with earth disturbance activities will have received a minimum of 40 hours of initial health and safety training for hazardous waste site operations (40-Hour HAZWOPER training) and meet the medical surveillance requirements included in the HASP.

4.2.8 Agency Approvals

The Volunteer has addressed all SEQRA requirements for this Site. All permits or government approvals required for remedial construction have been, or will be, obtained prior to the start of remedial construction.

The planned end use for the Site is in conformance with the current zoning for the property as determined by New York City Department of Planning. A Certificate of Completion will not be issued for the project unless conformance with zoning designation is demonstrated.

A complete list of all local, regional and national governmental permits, certificates or other approvals or authorizations required to perform the remedial and development work is attached in Table 11. This list includes a citation of the law, statute or code to be complied with, the originating agency, and a contact name and phone number in that agency. This list will be updated in the FER.

All planned remedial or construction work in regulated wetlands and adjacent areas will be specifically approved by the NYSDEC Division of Natural Resources to ensure that it meets the requirements for substantive compliance with those regulations prior to the start of construction. Nothing in the approved Remedial Action Work Plan or its approval by NYSDEC should be construed as an approval for this purpose.

4.2.9 NYSDEC BCP Signage

A project sign will be erected at the main entrance to the Site prior to the start of any remedial activities. The sign will indicate that the project is being performed under the New York State Brownfield Cleanup Program. The sign will meet the detailed specifications provided by the NYSDEC Project Manager and contained in Appendix L.

4.2.10 Pre-Construction Meeting with NYSDEC

A project kick-off meeting will be conducted with the Volunteer, Roux and the major subcontractors prior to the commencement of any intrusive remedial activities proposed in this RAWP. The NYSDEC and NYSDOH will be notified at least seven days in advance of the proposed meeting date and will attend the pre-construction meeting at their discretion.

4.2.11 Emergency Contact Information

An emergency contact sheet with names and phone numbers is included in Table 12. That document will define the specific project contacts for use by NYSDEC and NYSDOH in the case of a day or night emergency.

4.2.12 Remedial Action Costs

The total estimated cost of the Remedial Action is \$11,532,762. An itemized and detailed summary of estimated costs for all remedial activity is attached as Table 8. This will be revised based on actual costs and submitted as an Appendix to the FER.

4.3 REMEDIAL DESIGN

A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31.

The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;
- Increasing energy efficiency and minimizing use of non-renewable energy;
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals; and
- Integrating the remedy with the end use where possible and encouraging green and sustainable redevelopment.
- Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this Site, any future on-site buildings will include, at a minimum, a 20-mil vapor/waterproofing membrane on the foundation to improve energy efficiency as an element of construction.

4.4 SITE PREPARATION

The following sections describe the Site preparation activities associated with the preferred remedy for the Site.

4.4.1 Mobilization

Mobilization and Site preparation activities include:

- 1. Mobilization of equipment to the work area.
- 2. Traffic control measures.
- 3. Work zone demarcation.
- 4. Installation of erosion and sediment control measures in accordance with the New York Guidelines for Urban Erosion and Sediment Control.
- 5. Set-up of decontamination facilities.
- 6. Installation of temporary facilities.
- 7. Installation of perimeter air monitoring system.

4.4.2 Erosion and Sedimentation Controls

Soil erosion and sediment control measures for management of storm water will be installed in accordance with the New York Guidelines for Urban Erosion and Sediment Control. Hay bales and/or silt fence will be placed by the remedial contractor at locations surrounding excavation areas, within the perimeter fencing, to control storm water runoff and surface water from entering or exiting the excavation. These control measures will be installed prior to initiating the soil excavation.

4.4.3 Stabilized Construction Entrance(s)

Stabilized construction entrances will be installed at the egress points from the Site. Any soil spilled on the sidewalk or street immediately adjacent to the Site will be promptly removed and the street will be cleaned.

4.4.4 Utility Marker and Easements Layout

The Volunteer and its contractors are solely responsible for the identification of utilities that might be affected by work under the RAWP and implementation of all required, appropriate, or necessary health and safety measures during performance of work under this RAWP. The Volunteer and its contractors are solely responsible for safe execution of all invasive and other work performed under this RAWP. The Volunteer and its contractors must obtain any local, State or Federal permits or approvals pertinent to such work that may be required to perform work under this RAWP. Approval of this RAWP by NYSDEC does not constitute satisfaction of these requirements.

The presence of utilities and easements on the Site has been investigated by the Remedial Engineer. It has been determined that no risk or impediment to the planned work under this Remedial Action Work Plan is posed by utilities or easements on the Site.

4.4.5 Foundation

The proposed redevelopment will include a two-story commercial building occupying the majority of the Site area (Figure 3). The primary retail space, mechanical rooms and covered plaza will include approximately 77,000SF. The building will be set eight feet below grade. Parking for 210 cars will be provided on the roof. An additional 7,000 SF of retail space will be slab on grade construction. The foundation will consist of reinforced concrete slabs supported on spread footings and/or grade beams. Subgrade walls will be reinforced concrete supported on the slab and footings. A waterproofing barrier (Grace Preprufe or equivalent) will be installed on the underside of the foundation slab and on the walls below grade. The foundation and the waterproofing barrier will act as a vapor barrier and will minimize any potential vapor intrusion.

4.4.6 Support of Excavation

Appropriate management of structural stability of on-Site or off-Site structures during on-Site activities including excavation is the sole responsibility of the Volunteer and its contractors. The Volunteer and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan. The Volunteer and its contractors must obtain any local, State or

Federal permits or approvals that may be required to perform work under this Plan. Further, the Volunteer and its contractors are solely responsible for the implementation of all required, appropriate, or necessary health and safety measures during performance of work under the approved Plan. As described previously, the support of excavation will consist of approximately 212 linear feet of drilled cutoff pile wall (24-inch diameter tangent grout filled piles) which will be installed to approximately 29 feet below grade. For structural reasons, the drilled cutoff wall will be installed approximately 2 feet from the property line.

Steel sheet piling will be installed along the perimeter of the LNAPL zone. This will include approximately 332 linear feet of steel sheeting being installed to approximately 28 feet below grade. This will facilitate excavation and product recovery of the LNAPL zone.

4.4.7 **SSDS**

If sufficient vertical clearance exists between the underside of the foundation and the water table, SSDS piping will be installed. This will consist of 4-inch perforated PVC piping set in a gravel backfill envelope. If it is installed, it is anticipated that the piping network will include approximately 900 feet of PVC.

4.4.8 Equipment and Material Staging

Equipment and materials for the remedial construction will be onsite in a designated area.

4.4.9 Decontamination Area

A temporary decontamination pad will be constructed to decontaminate excavation equipment prior to leaving the Site. The decontamination pad will be constructed using polyethylene liner sloped to a low-lying sump to collect any liquids. All decontamination material will be collected and properly disposed of offsite. All trucks will be kept away from the petroleum source area to reduce the potential for contamination of truck tires.

4.4.10 Site Fencing

The fences and gates will be closed and locked when there is no activity on the Site and any breaks or gaps will be repaired immediately. Temporary fencing (e.g., cones, caution tape, etc.) will supplement the perimeter fencing to delineate and secure the area of ongoing remediation activities within the Site such as soil stockpiles, and health and safety exclusion zones.

4.4.11 Demobilization

Remedial action construction and redevelopment construction will likely occur concurrently onsite. However, redevelopment construction not involving disturbance of existing Site soil could extend beyond the completion of the remedial action construction. The Demobilization plan will include:

- Restoration of areas that may have been disturbed to accommodate support areas (e.g., staging areas, decontamination areas, storage areas, temporary water management area[s], and access area);
- Removal of temporary access areas (whether on-Site or off-Site) and restoration of disturbed access areas to pre-remediation conditions;
- Removal of sediment and erosion control measures and disposal of materials in accordance with acceptable rules and regulations;
- Equipment decontamination; and
- General refuse disposal.

4.5 REPORTING

All daily and monthly Reports will be included in the FER.

4.5.1 Daily Reports

Daily reports will be submitted to NYSDEC and NYSDOH Project Managers by the end of each day following the reporting period and will include:

- An update of progress made during the reporting day;
- Locations of work and quantities of material imported and exported from the Site;

- References to alpha-numeric map for Site activities;
- A summary of any and all complaints with relevant details (names, phone numbers);
- A summary of CAMP finding, including excursions; and
- An explanation of notable Site conditions.

Daily reports are not intended to be the mode of communication for notification to the NYSDEC of emergencies (accident, spill), requests for changes to the RAWP or other sensitive or time critical information. However, such conditions must also be included in the daily reports. Emergency conditions and changes to the RAWP will be addressed directly to NYSDEC Project Manager via personal communication.

Daily Reports will include a description of daily activities keyed to an alpha-numeric map for the Site that identifies work areas. These reports will include a summary of air sampling results, odor and dust problems and corrective actions, and all complaints received from the public.

A Site map that shows a predefined alpha-numeric grid for use in identifying locations described in reports submitted to NYSDEC will be provided in the waste characterization plan.

The NYSDEC assigned project number will appear on all reports.

4.5.2 Monthly Reports

Monthly reports will be submitted to NYSDEC and NYSDOH Project Managers within one week following the end of the month of the reporting period and will include:

- Activities relative to the Site during the previous reporting period and those anticipated for the next reporting period, including a quantitative presentation of work performed (i.e. tons of material exported and imported, etc.);
- Description of approved activity modifications, including changes of work scope and/or schedule;
- Sampling results received following internal data review and validation, as applicable; and
- An update of the remedial schedule including the percentage of project completion, unresolved delays encountered or anticipated that may affect the future schedule, and efforts made to mitigate such delays.

4.5.3 Other Reporting

Photographs will be taken of all remedial activities and submitted to NYSDEC in digital (JPEG) format. Photos will illustrate all remedial program elements and will be of acceptable quality. Representative photos of the Site prior to any Remedial Actions will be provided. Representative photos will be provided of each contaminant source, source area and Site structures before, during and after remediation. Photos will be included in the daily reports as needed, and a comprehensive collection of photos will be included in the FER.

Job-site record keeping for all remedial work will be appropriately documented. These records will be maintained on-Site at all times during the project and be available for inspection by NYSDEC and NYSDOH staff.

4.5.4 Complaint Management Plan

If an odor or dust complaint is received, the following procedure will be implemented:

- 1. Work in the affected area will be halted, and the source of odors/dust will be identified.
- 2. NYSDEC, NYSDOH, and the Volunteer will be notified of the complaint.
- 3. Nuisance odors, if any, will be abated through covering/containerizing excavated materials, backfilling open excavations in a timely manner; and/or using a foam suppressing agents or other appropriate measures.
- 4. Nuisance dust, if any, will be abated through covering/containerizing excavated materials, and/or using water on excavations.
- 5. Work will resume in the affected area when the nuisance odors/dust have been abated, as determined by the Roux onsite personnel.

4.5.5 Deviations from the Remedial Action Work Plan

Deviations from the RAWP will be reported to NYSDEC for approval and fully explained in the FER. At a minimum, it should include the following:

- Reasons for deviating from the approved RAWP;
- Approval process to be followed for changes/editions to the RAWP; and
- Effect of the deviations on overall remedy.

5.0 REMEDIAL ACTION: MATERIAL REMOVAL FROM SITE

The preferred soil remediation alternative is a Track 1 cleanup. The remedial action will include the following components:

- Pre-excavation (soil) and post-excavation (groundwater, soil vapor) confirmation/documentation sampling;
- Support of excavation and dewatering;
- Excavation of all soil above Unrestricted Use SCO, including grossly contaminated soil in the LNAPL source area;
- Offsite disposal of excavated soils exceeding unrestricted SCOs;
- Free-product recovery via vacuum truck/absorbent socks; and
- In-situ chemical application as a final polishing step.

These elements are described in detail in the subsections below.

5.1 SOIL CLEANUP OBJECTIVES

The SCOs for this Site are to remove all soils exceeding Unrestricted Use SCOs, including grossly contaminated soils that are acting as LNAPL source areas. LNAPL will be recovered via vacuum truck/absorbent booms to the extent possible and ISCO application will be performed as a final polishing step following the LNAPL recovery efforts. The SCOs for this Site are listed in Table 13.

Soil and materials management on-Site and off-Site will be conducted in accordance with the Soil Management Plan as described below.

Tables 2 through 6 summarize all soil samples that exceed the SCOs proposed for this Remedial Action. A spider map that shows all soil samples that exceed the SCOs proposed for this Remedial Action is shown in Plate 1.

UST closures, if required will be performed in accordance with the criteria defined in DER-10.

5.2 PRE-EXCAVATION DELINEATION AND REMEDIAL PERFORMANCE EVALUATION

A pre-excavation delineation sampling will be conducted in the areas it was not previously delineated during the RI and where excavation is limited to none for development purposes: the west side of the Site along Utica Avenue and southeast corner of the Site will not be excavated since it will be a loading dock area/parking area and encompasses approximately 15,000 square feet. The east side of the Site along Kings Highway will be slab-on-grade retail and therefore will only be excavated to approximately 4 feet below grade. This area encompasses approximately 7,000 square feet. Delineation sampling will also be conducted in the 24-inch strip between the planned SOE and the adjacent northern side of the property.

In-situ end-point confirmation sampling will be conducted (concurrently with in-situ waste characterization sampling for soil disposal) to satisfy DER-10 requirements related to documentation of the limits of soil removal for remedial purposes.

Pre-excavation delineation samples will be collected from the areas mentioned above to verify compliance with SCOs. This is included in the Pre-Design Investigation (PDI) work plan which was submitted to the NYSDEC on May 9, 2018 under separate cover for review and approval.

5.2.1 Sampling Frequency

End-point samples will be collected to verify compliance with SCOs. End-point excavation bottom samples will be collected at a frequency of one per 900 square feet of excavation bottom inside the LNAPL zone and one per approximately 1,400 square feet outside the LNAPL zone. Sidewall samples will be collected at a frequency of one per 30 liner feet of excavation in accordance with NYSDEC DER-10 Section 5.4.

Delineation sampling adjacent to Utica Avenue, southeast corner of the Site, Kings Highway area and SOE area will be completed concurrently with the endpoint sampling event. The sampling frequency is described in the PDI.

The end-point, sidewall and delineation samples will be analyzed for VOCs, SVOCs, Metals, PCBs and Pesticides/Herbicides.

Waste characterization sampling frequency will be dictated by the requirements from the disposal facilities.

5.2.2 Methodology

Each sample will be inspected for visual evidence of contamination (i.e., staining, presence of petroleum or odors) and field screened for VOCs using a portable photoionization detector (PID). If samples are free from visual evidence of contamination and PID indicates soil is not contaminated, the sample will be sent to a lab. Soil samples to be submitted for analysis will be place into a laboratory sample jar and transported to the laboratory in an iced container. Laboratory analysis will be performed by a NYSDOH ELAP-approved laboratory.

5.2.3 Reporting of Results

The laboratory will report analytical results for the pre-excavation delineation and end-point confirmation samples in ASP Category B deliverable packages. An EDD in the required NYSDEC format will also be provided by the laboratory.

All pre-excavation delineation and end-point confirmation sample data generated for the Remedial Action will be logged in a database and organized to facilitate data review and evaluation. The electronic dataset will include the data flags provided in accordance with USEPA Laboratory Data Validation Functional Guidelines for Evaluating Organic Analysis and Inorganic Analyses, as well as additional comments of the data review for ASP/CLP analyses. The data flags include such items as: 1) concentration below required detection limit, 2) estimated concentration due to poor recovery below required detection limit, 3) estimated concentration due to poor spike recovery, and 4) concentration of chemical also found in laboratory blank.

5.2.4 QA/QC

Quality control (QC) samples serve as checks on both the sampling and measurements systems and assist in determining the overall data quality with regard to representation, accuracy, and precision. The QAPP, included as Appendix I to this RAWP, describes QA/QC procedures and sampling for the project.

5.2.5 DUSR

A DUSR will be prepared to evaluate the pre-excavation delineation and end-point confirmation samples by a party independent from the laboratory performing the analysis in accordance with Appendix 2B of DER-10. The QAPP, included as Appendix I to this RAWP, describes the DUSR to be prepared for the project.

5.2.6 Reporting of Data in FER

Chemical labs used for all sample results and contingency sampling will be NYSDOH ELAP certified.

Delineation and end-point sampling will be performed in accordance with DER-10 sample frequency requirements. Bottom samples will be collected at a rate of one for every 900 to 1,400 square feet. Sidewall samples will be collected at a rate of approximately one for every 30 linear feet. The FER will provide a tabular and map summary of all end-point sample results and exceedances of SCOs.

5.3 ESTIMATED MATERIAL REMOVAL QUANTITIES

The estimated quantity of material to be removed from the Site is 33,000 cubic yards.

5.4 SOIL/MATERIALS MANAGEMENT PLAN

The following sections provide the Soil/Material Management Plan (SoMP) to be implemented during the Remedial Action, as necessary.

5.4.1 Soil Screening Methods

Visual, olfactory and PID soil screening and assessment will be performed by a qualified environmental professional or experienced field geologist under the direction of the Remedial Engineer during all remedial and development excavations into known or potentially contaminated material. Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during the remedy and during development phase, such as excavations for foundations and utility work, prior to issuance of the COC.

All primary contaminant sources (including but not limited to tanks and hotspots) identified during Site Characterization, Remedial Investigation, and Remedial Action will be surveyed by a surveyor licensed to practice in the State of New York. This information will be provided on maps in the FER.

Screening will be performed by qualified environmental professionals. Resumes will be provided for all personnel responsible for field screening (i.e. those representing the Remedial Engineer) of invasive work for unknown contaminant sources during remediation and development work.

5.4.2 Stockpile Methods

If possible, excavated soils will be directly loaded into trucks. It is anticipated that excavated soils from the LNAPL zone will be saturated, therefore temporary stockpiling may be necessary so drying agents can be mixed with the soil prior to loading the material onto the trucks.

Stockpiles will be inspected periodically and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by NYSDEC.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Soil stockpiles will be continuously encircled with silt fences. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Water will be available on-site at suitable supply and pressure for use in dust control.

5.4.3 Materials Excavation and Load Out

The Remedial Engineer or a qualified environmental professional under his/her supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The Volunteer and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site has been investigated by the Remedial Engineer. It has been determined that no risk or impediment to the planned work under this Remedial Action Work Plan is posed by utilities or easements on the Site.

The remedy includes excavation and off-site disposal of contaminant source areas, including:

- grossly contaminated soil, as defined in 6 NYCRR Part 375-1.2(u);
- non-aqueous phase liquids;
- soil with visual waste material or non-aqueous phase liquid; and
- soils which exceed the Protection of Groundwater Soil Cleanup Objectives (PGWSCOs), as defined by 6 NYCRR Part 375-6.8 for those contaminants found in Site groundwater above standards.

Excavation and offsite disposal of all onsite soils which exceed Unrestricted SCOs, as defined by 6 NYCRR Part 375-6.8. If a Track 1 is achieved, a cover system will not be a required element of the remedy.

Approximately 33,000 CY of contaminated soil will be removed from the Site. The excavation depth would be to approximately 19 feet below grade in the LNAPL zone and shallower for the remainder of the Site.

Any excavated saturated soils will be managed with the use of drying agents such as fly ash or sawdust to minimize loading of soils with high moisture content.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-Site. The Remedial Engineer will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the Site until the remedial construction is complete.

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-Site sediment tracking.

The Remedial Engineer will be responsible for ensuring that all egress points for truck and equipment transport from the Site will be clean of dirt and other materials derived from the Site during Site remediation and development. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site -derived materials.

The Volunteer and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all invasive work, the structural integrity of excavations, and for structures that may be affected by excavations (such as building foundations and bridge footings).

The Remedial Engineer will ensure that Site development activities will not interfere with, or otherwise impair or compromise, remedial activities proposed in this Remedial Action Work Plan.

Each hotspot and structure to be remediated (USTs, vaults and associated piping, etc.) will be removed and end-point remedial performance sampling completed before excavations related to Site development commence proximal to the hotspot or structure.

Development-related grading cuts and fills will not be performed without NYSDEC approval and will not interfere with, or otherwise impair or compromise, the performance of remediation required by this plan.

Mechanical processing of historical fill and contaminated soil on-Site is prohibited.

All primary contaminant sources (including but not limited to tanks and hotspots) identified during Site Characterization, Remedial Investigation, and Remedial Action will be surveyed by a surveyor licensed to practice in the State of New York. The survey information will be shown on maps to be reported in the FER.

5.4.4 Materials Transport Off-Site

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Truck transport routes are described in Section 4.2.6. All trucks loaded with Site materials will exit the vicinity of the Site using only these approved truck routes.

Proposed in-bound and out-bound truck routes to the Site are shown in Figure 8. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off- Site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project Site.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during Site remediation and development.

Queuing of trucks will be performed on-Site in order to minimize off-Site disturbance. Off-Site queuing will be minimized to the extent practical.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the Site. Truck wash waters will be collected and disposed of off-Site in an appropriate manner.

5.4.5 Materials Disposal Off-Site

The disposal locations have not yet been determined. Disposal locations will be reported to the NYSDEC Project Manager when established.

The total quantity of material expected to be disposed off-Site is approximately 33,000 cubic yards.

All soil/fill/solid/liquid waste excavated and removed from the Site will be treated as contaminated and regulated material and will be disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this Site is proposed for unregulated disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to NYSDEC's Project Manager. Unregulated off-Site management of materials from this Site is prohibited without formal NYSDEC approval.

Any excavated soil with significant moisture content (sediments, wet soil) must be pre-treated onsite with the use of drying agents before it can be disposed of offsite.

Material that does not meet Track 1 Unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

The following documentation will be obtained and reported by the Remedial Engineer for each disposal location used in this project to fully demonstrate and document that the disposal of

material derived from the Site conforms with all applicable laws: (1) a completed disposal facility application for each receiving facility describing the material to be disposed and requesting formal written acceptance of the material. This application will state that material to be disposed is contaminated material generated at an environmental remediation Site in New York State. The application will provide the project identity and the name and phone number of the Remedial Engineer. The application will include as an attachment a summary of all chemical data for the material being transported (including Site Characterization data); and (2) a letter from all receiving facilities stating it is in receipt of the correspondence (above) and is approved to accept the material. These documents will be included in the FER.

Non-hazardous historic fill and contaminated soils taken off-Site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2

Historical fill and contaminated soils from the Site are prohibited from being disposed at Part 360-16 Registration Facilities (also known as Soil Recycling Facilities).

Soils that are contaminated but non-hazardous and are being removed from the Site are considered by the Division of Materials Management (DMM) in NYSDEC to be Construction and Demolition (C/D) materials with contamination not typical of virgin soils. These soils may be sent to a permitted Part 360 landfill. They may be sent to a permitted C/D processing facility without permit modifications only upon prior notification of NYSDEC Region 2 DMM. This material is prohibited from being sent or redirected to a Part 360-16 Registration Facility. In this case, as dictated by DMM, special procedures will include, at a minimum, a letter to the C/D facility that provides a detailed explanation that the material is derived from a DER remediation Site, that the soil material is contaminated and that it must not be redirected to on-Site or off-Site Soil Recycling Facilities. The letter will provide the project identity and the name and phone number of the Remedial Engineer. The letter will include as an attachment a summary of all chemical data for the material being transported.

The FER will include an accounting of the destination of all material removed from the Site during this Remedial Action, including excavated soil, contaminated soil, historic fill, solid waste, and

hazardous waste, non-regulated material, and fluids. Documentation associated with disposal of all material must also include records and approvals for receipt of the material. This information will also be presented in a tabular form in the FER.

Bill of Lading system or equivalent will be used for off-Site movement of non-hazardous wastes and contaminated soils. This information will be reported in the FER.

Hazardous wastes derived from on-Site will be stored, transported, and disposed of in full compliance with applicable local, State, and Federal regulations.

Appropriately licensed haulers will be used for material removed from this Site and will be in full compliance with all applicable local, State and Federal regulations.

Waste characterization will be performed for off-Site disposal in a manner suitable to the receiving facility and in conformance with applicable permits. Sampling and analytical methods, sampling frequency, analytical results and QA/QC will be reported in the FER. All data available for soil/material to be disposed at a given facility must be submitted to the disposal facility with suitable explanation prior to shipment and receipt.

5.4.6 Materials Reuse On-Site

Where appropriate, on-site soil will be reused for backfill. In the event this occurs, chemical criteria for on-Site reuse of material has been approved by NYSDEC. This criterion is listed in Table 13. The Remedial Engineer will ensure that procedures defined for materials reuse in this RAWP are followed and that unacceptable material will not remain on-Site.

Acceptable demolition material proposed for reuse on-Site, if any, will be sampled for asbestos.

Concrete crushing or processing on-Site is prohibited.

Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the Site is prohibited for reuse on-Site.

Contaminated on-Site material, including historic fill and contaminated soil, removed for grading or other purposes will not be reused onsite. This will be expressed in the final Site Management Plan.

5.4.7 Fluids Management

Dewatering at the Site will be required to enable the excavation and subgrade work. Contaminated groundwater from dewatering operations will be treated as necessary prior to discharge to the municipal sewer system. The well point system will lower the groundwater level to approximately two feet below the proposed depth of excavation.

All liquids to be removed from the Site, including dewatering fluids (free-product, groundwater), will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Liquids discharged into the New York City sewer system will be addressed through approval by NYCDEP.

Dewatered fluids will not be recharged back to the land surface or subsurface of the Site. Dewatering fluids will be managed off-Site.

Discharge of water generated during remedial construction to surface waters (i.e. a local pond, stream or river) is prohibited without a SPDES permit.

Free-product recovery will be actively conducted in the open excavation via skimming technology using a combination of vacuum truck and oil absorbent booms. Recovered free-product will be temporarily stored onsite in an appropriate above ground tank or disposed of offsite daily. The free-product will be trucked off site periodically by a licensed waste hauler for disposal at an NYSDEC-licensed facility.

5.4.8 Demarcation

A Track 1 Unrestricted Use cleanup is anticipated for the Site, therefore a physical demarcation is not required. A land survey will be performed by a New York State licensed surveyor.

Updated April 29, 2014

5.4.9 Backfill from Off-Site Sources

RCA and/or pea gravel may be used to backfill any area to meet the redevelopment grade. The RCA will be free of asphalt. Pea gravel will be from a virgin source and will meet the requirements of DER-10 Section 5.4. Any additional soil required to backfill the excavated areas will meet the clean fill requirements of 6 NYCRR Part 375-6(d). All materials proposed for import onto the Site will be approved by the Remedial Engineer and will be in compliance with provisions in this RAWP prior to receipt at the Site.

Material from industrial sites, spill sites, other environmental remediation sites or other potentially contaminated sites will not be imported to the Site.

The FER will include the following certification by the Remedial Engineer: "I certify that all import of soils from off-Site, including source evaluation, approval and sampling, has been performed in a manner that is consistent with the methodology defined in the Remedial Action Work Plan".

All imported soils will meet NYSDEC approved backfill or cover soil quality objectives for this Site. These NYSDEC approved backfill or cover soil quality objectives are the Unrestricted Use Soil Cleanup Objectives set forth in Table 375-6.8(a) of 6 NYCRR Part 375 and listed in Table 13. Non-compliant soils will not be imported onto the Site without prior approval by NYSDEC. Nothing in the approved Remedial Action Work Plan or its approval by NYSDEC should be construed as an approval for this purpose.

Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Nothing in this Remedial Action Work Plan should be construed as an approval for this purpose.

Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers.

5.4.10 Stormwater Pollution Prevention

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the RAWP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the remedial construction area.

5.4.11 Contingency Plan

If underground tanks or other previously unidentified contaminant sources are found during on-Site remedial excavation or development related construction, sampling will be performed on product, sediment and surrounding soils, etc. Chemical analytical work will be for full scan parameters (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs). These analyses will not be limited to STARS parameters where tanks are identified without prior approval by NYSDEC. Analyses will not be otherwise limited without NYSDEC approval. Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone to NYSDEC's Project Manager. These findings will be also included in daily and periodic electronic media reports.

5.4.12 Community Air Monitoring Plan

The CAMP is included within the HASP in Appendix H. Exceedances observed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers and included in the Daily Report.

5.4.13 Odor, Dust and Nuisance Control Plan

The FER will include the following certification by the Remedial Engineer: "I certify that all invasive work during the remediation and all invasive development work were conducted in accordance with dust and odor suppression methodology defined in the Remedial Action Work Plan."

5.4.13.1 Odor Control Plan

This odor control plan is capable of controlling emissions of nuisance odors off-Site and on-Site. Odor suppression equipment including foaming agents and dispersion pumps and sprayers will be mobilized to the Site before the start of ground intrusive activities. Specific odor control methods to be used on a routine basis will include limiting open excavation areas and covering excavated soil. In addition, a vacuum truck will be deployed at all times during excavation if any LNAPL accumulates in the excavation area that could potentially cause odors. The LNAPL is comprised of motor oil based on previous fingerprinting during the RI and as such, is a petroleum hydrocarbon with high viscosity and low volatility compared to other petroleum hydrocarbons such as gasoline or diesel. If nuisance odors are identified, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of all other complaints about the project. Implementation of all odor controls, including the halt of work, will be the responsibility of the Volunteer's Remedial Engineer, who is responsible for certifying the FER.

All necessary means will be employed to prevent on- and off-Site nuisances. At a minimum, procedures will include: (a) limiting the area of open excavations; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils; If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-Site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

Where odor nuisances have developed during remedial work and cannot be corrected, or where the release of nuisance odors cannot otherwise be avoided due to on-Site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering excavation and handling areas under tented containment structures equipped with appropriate air venting/filtering systems.

5.4.13.2 Dust Control Plan

A dust suppression plan that addresses dust management during invasive on-Site work, will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-Site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-Site roads will be limited in total area to minimize the area required for water spraying.

5.4.13.3 Other Nuisances

A plan for rodent control will be developed and utilized by the contractor prior to and during Site clearing and Site grubbing, and during all remedial work.

A plan will be developed and utilized by the contractor for all remedial work and will conform, at a minimum, to NYCDEP noise control standards.

5.5 VAPOR INTRUSION EVALUATION

As part of the Track 1 remedy, a soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.

6.0 ENGINEERING CONTROLS: TREATMENT SYSTEMS

6.1 LNAPL RECOVERY

LNAPL recovery using a combination of vacuum truck and absorbent socks will be performed to collect any mobile LNAPL. All recovered LNAPL will be either temporarily stored onsite in an aboveground storage tank or disposed of offsite at the end of the day depending on the quantity of product recovered. This recovery effort will be managed in a controlled manner to avoid odors and minimize the spread of contamination to other site areas. Soil will be excavated in segments to just below the water table until the LNAPL is exposed and recovery can be initiated. Once the majority of the LNAPL is recovered from the first segment, then excavation will proceed to the next segment along with controlled dewatering efforts. This will minimize odor generation and facilitate the LNAPL recovery gradually. If necessary, odor suppression techniques will be applied in the event odors become a nuisance.

6.2 IN SITU CHEMICAL OXIDATION

Following the LNAPL recovery and excavation, ISCO application is proposed to address residual VOCs in soil and groundwater in the excavated LNAPL zone. One temporary monitoring well is proposed to be installed downgradient of the LNALP area to verify the effectiveness of the remedy.

6.2.1 Chemical Oxidant

As discussed above, an in situ chemical oxidation application program will be performed to address contaminated soil and groundwater in the LNAPL area. The proposed chemical oxidant will be applied at the base and sidewalls of the excavation to destroy the contaminants in the LNAPL area and in the 24-inch strip behind the SOE if residual soils with compounds of concern exceed groundwater protection SCOs.

The proposed chemical oxidant will be comprised of Oxygen BioChem (OBC) from Redox Tech, LLC, which is a mixture of sodium persulfate and calcium peroxide as the main chemical agents. The sodium persulfate is a strong oxidant that will remediate the VOC and SVOC compounds. The calcium peroxide will add the benefit of providing long-term show release source of hydrogen

peroxide (which will decompose to oxygen and water) and calcium hydroxide, providing extended oxygen source for subsequent bioremediation of petroleum hydrocarbons. Specifications of this product is included in Appendix M.

The OBC will be applied to the open excavation at rates of 1 to 2 lbs per square foot of open excavation. The product will be applied in the bottom of the excavation and along the sidewalls prior to backfilling. It is anticipated that approximately 18,000 lbs of OBC will be required for the application pending results of a bench test to be completed during the pre-design investigation.

During performance of the ISCO application, the staging and work areas will be kept clean and well-maintained and the Site-specific health and safety plan discussing personal protective equipment, material handling, storage procedures, and spill response will be utilized. Community air monitoring will not be performed due to the negligible quantity of VOC vapors that could be released. Wastes will be containerized in 55-gallon drums to be disposed off-Site at an approved facility.

6.2.2 Groundwater Monitoring

To assess the performance of the oxidant application, a groundwater monitoring program will be performed. This will include two components: baseline sampling and performance monitoring. The sampling, sample handling, decontamination, and field instrument calibration procedures will be performed in accordance with DER-10 and established procedures for the Site during the RI.

Baseline Sampling

The results of the groundwater sampling performed during the RI will be considered the baseline round against which remedial progress will be measured. The amount of oxidant proposed to be injected will be based on the baseline sampling results and the results of the pre-excavation sampling program.

Performance Monitoring

New wells (MW-21, MW-22 and MW-23) will be installed on a temporary basis following the remedial excavation of petroleum hydrocarbon impacted soils. The location of the new wells will be hydraulically downgradient of the LNAPL zone as shown on Plate 5.

Approximately four weeks after the oxidant application event, performance monitoring samples will be collected from these wells, based on construction progress. If the sample results demonstrate attainment of AWQSVGs or bulk reduction in groundwater concentrations, no further monitoring will be conducted. The monitoring wells will be sampled for Target Compound List (TCL) of VOCs using USEPA SW846 Method 8260. The construction schedule may limit the opportunity to assess the performance of the application of the oxidant and complete additional application of the oxidant.

6.2.3 Data Evaluation and Reporting

After the application and the performance monitoring have been completed, Roux will evaluate the results the chemical application round to determine the effectiveness of the oxidant at reducing the residual impacts in the soil and groundwater. The evaluation and recommended course of action will be summarized in a report to NYSDEC, and as necessary, any additional rounds of chemical application and monitoring will be conducted as needed.

All as-built drawings, diagrams, calculation and manufacturer documentation for treatment components will be presented in the FER.

7.0 CRITERIA FOR COMPLETION OF REMEDIATION/TERMINATION OF REMEDIAL SYSTEMS

The remediation will be considered complete when all soil impacted above Unrestricted Use SCOs is excavated and/or treated and groundwater has been remediated to AWQSGSs or asymptotic bulk reduction of residual groundwater concentrations has been achieved. To meet Track 1, a post-construction soil vapor intrusion evaluation will be performed in the new building.

If remediation is not successful, the contingency plan described below in Sections 8 through 10 will be implemented.

Updated April 29, 2014

8.0 RESIDUAL CONTAMINATION TO REMAIN ON -SITE

The selected remedial alternative is designed to eliminate/reduce the concentrations of Site contaminates to below the Unrestricted Use SCOs and AWQSGVs (asymptotic bulk reduction of residual groundwater concentrations) through soil excavation, followed by product recovery and in-situ chemical oxidation as a polishing step. A temporary groundwater well will be installed downgradient of the LNAPL source area to verify the success of the remedy. In addition, as a contingency and if feasible, SSDS piping will be installed underneath the cellar slab.

It is anticipated that there will be no residual contaminated soil, groundwater and soil vapor beneath the Site after all the remedy is complete, therefore long-term Engineering and Institutional Controls (ECs and ICs) will not be required to protect human health and the environment.

If a Track 1 SCO is not achieved, then a Track 2 (or Track 4 if Track 2 is not achieved) Restricted Commercial Use SCO will be achieved, and long-term management of EC/ICs of any residual contamination will be executed under a site-specific SMP that will be developed and included in the FER.

ECs will be implemented to protect public health and the environment by appropriately managing residual contamination. For Track 2 or 4, the Controlled Property (the Site) will have two primary ECs:

- Site cover system comprised of concrete building slab and pavement (Track 4); and
- SSDS (if feasible).

The FER will report any residual contamination on the Site in tabular and map form.

9.0 CONTINGENCY PLAN ENGINEERING CONTROLS

If a Track 1 is achieved, long-term ECs are not required, however, SSDS piping will be installed if possible as a contingency (see Section 9.2 below). If a Track 4 Restricted Commercial Use is achieved, the following a composite cover system ECs will be applicable as described below.

9.1 COMPOSITE COVER SYSTEM

A composite cover system will be required to allow for restricted commercial use of the Site in areas where the upper one foot of exposed surface soil will exceed the applicable SCOs. Where a soil cover is to be used it will be a minimum of one foot of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative cover. Soil cover material, including any fill brought to the Site, will meet the SCOs for cover material for the use of the Site as set forth in 6 NYCRR Part 375-6.7(d). Substitution of other materials and components may be allowed where such components already exist or are a component of the tangible property to be placed as part of Site redevelopment. Such components may include, but are not necessarily limited to: pavement, concrete, paved surface parking areas, sidewalks, building foundations and building slabs. The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

A Soil and Underground Structure Management Plan will be included in the SMP and will outline the procedures to be followed in the event that the composite cover system and underlying residual contamination are disturbed after the Remedial Action is complete. Maintenance of this composite cover system will be described in the SMP in the FER.

9.2 SSDS

Migration of soil vapor into the new building will be mitigated with the construction of an active SSDS (if feasible). The active SSDS will consist of 4-inch diameter perforated piping installed in a gravel trench below the new concrete slab. The gravel trench will be wrapped with a 10-ounce non-woven geo-textile fabric to prevent entry of fines into the piping. A 3-horsepower regenerative blower would be procured and installed in the new building. The blower cut sheet is provided in Appendix M. The discharge of the blower will be connected to a 6-inch diameter riser

steel pipe that will extend internally to the outside. The configuration of the anticipated SSDS design for the Site is shown on Plate 6. Start up and system performance verification procedures would be provided in the Site Management Plan as necessary.

The SSDS will be inspected and its performance certified at specified intervals as required by this RAWP and the SMP. Maintenance of this SSDS will be described in the SMP in the Remedial Action Report. The location and layout of the SSDS is shown in Plate 6.

10.0 CONTINGENCY PLAN INSTITUTIONAL CONTROLS

As the preferred remedial alternative consists of Track 1 remedy, long-term ECs and/or ICs are not required. If the remediation is not successful (i.e., UU SCOs are not achieved), long-term ECs and/or ICs are required. ECs will be incorporated into the remedy to render the overall Site remedy protective of public health and the environment. Two elements have been designed to ensure continual and proper management if residual contamination in perpetuity: an Environmental Easement and a SMP.

A Site-specific Environmental Easement will be recorded with Kings County to provide an enforceable means of ensuring the continual and proper management of residual contamination and protection of public health and the environment in perpetuity or until released in writing by NYSDEC. It requires that the grantor of the Environmental Easement and the grantor's successors and assigns adhere to all ECs and ICs placed on this Site by the NYSDEC-approved remedy. ICs provide restrictions on Site usage and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs.

The SMP describes appropriate method and procedures to ensure compliance with all ECs and ICs required by the Environmental Easement. Once the SMP has been approved by the NYSDEC, compliance with the SMP is required by the grantor of the Environmental Easement and grantor's successors and assigns.

The specific requirements of the Environmental Easement and SMP are detailed below.

10.1 ENVIRONMENTAL EASEMENT

An Environmental Easement, as defined in Article 71 Title 36 of the Environmental Conservation Law, is required when residual contamination is left on-Site after the Remedial Action is complete. As part of this remedy, an Environmental Easement approved by NYSDEC will be filed and recorded with the Kings County Office of the City Register. The Environmental Easement will be submitted as part of the FER.

The Environmental Easement renders the Site a Controlled Property. The Environmental Easement must be recorded with the Kings County Office of the City Register before the Certificate of Completion can be issued by NYSDEC. A series of ICs are required under this remedy to implement, maintain and monitor these EC systems, prevent future exposure to residual contamination by controlling disturbances of the subsurface soil and restricting the use of the Site to Restricted Commercial use only. These ICs are requirements or restrictions placed on the Site that are listed in, and required by, the Environmental Easement. ICs can, generally, be subdivided between controls that support ECs, and those that place general restrictions on Site usage or other requirements. ICs in both of these groups are closely integrated with the SMP, which provides all of the methods and procedures to be followed to comply with this remedy.

The ICs that support ECs are:

- Compliance with the Environmental Easement by the Grantee and the Grantee's successors and adherence of all elements of the SMP is required;
- All ECs must be operated and maintained as specified in this SMP;
- A composite cover system consisting of concrete building slabs and asphalt pavement must be inspected, certified and maintained as required in the SMP;
- Vapor mitigation through the installation and operation of a SSDS underneath the building cellar slab must be inspected, operated and maintained as required by the SMP;
- Sampling and analysis of all appropriate media will be required by the SMP;
- All ECs on the Controlled Property must be inspected and certified at a frequency and in a manner defined in the SMP;
- Groundwater, soil vapor and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- On-Site environmental monitoring devices, including but not limited to, groundwater monitor wells, must be protected and replaced as necessary to ensure proper functioning in the manner specified in the SMP; and
- ECs may not be discontinued without an amendment or extinguishment of the Environmental Easement.

Note: ICs may be modified, added or deleted from this list as warranted by Site conditions and deemed necessary by NYSDEC.

Adherence to these ICs for the Site is mandated by the Environmental Easement and will be implemented under the SMP (discussed in the next section). The Controlled Property (Site) will also have a series of ICs in the form of Site restrictions and requirements. The Site restrictions that apply to the Controlled Property are:

- Vegetable gardens and farming on the Controlled Property are prohibited;
- Use of groundwater underlying the Controlled Property is prohibited without treatment rendering it safe for intended purpose as determined by the NYSDOH or County DOH;
- All future activities on the Controlled Property that will disturb residual contaminated
 material are prohibited unless they are conducted in accordance with the soil management
 provisions in the SMP;
- The Controlled Property may be used for Restricted Commercial use only, provided the long-term ECs and ICs included in the SMP are employed;
- The Controlled Property may not be used for a higher level of use, such as Restricted Residential use without an amendment or extinguishment of this Environmental Easement; and
- Grantor agrees to submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow. This annual statement must be certified by an expert that the NYSDEC finds acceptable and must be in accordance with Part 375-1.8(h)(3).

10.2 SITE MANAGEMENT PLAN

Site Management is the last phase of remediation and begins with the approval of the FER and issuance of the Certificate of Completion (COC) for the Remedial Action. The SMP is submitted as part of the FER but will be written in a manner that allows its removal and use as a complete and independent document. Site Management continues in perpetuity or until released in writing

by NYSDEC. The property owner is responsible to ensure that all Site Management responsibilities defined in the Environmental Easement and the SMP are performed.

The SMP is intended to provide a detailed description of the procedures required to manage residual contamination left in place at the Site following completion of the Remedial Action in accordance with the BCA with the NYSDEC. This includes: (1) development, implementation, and management of all EC and ICs; (2) development and implementation of monitoring systems and a Monitoring Plan; (3) development of a plan to operate and maintain any treatment, collection, containment, or recovery systems (including, where appropriate, preparation of an Operation and Maintenance Manual); (4) submittal of Site Management Reports, performance of inspections and certification of results, and demonstration of proper communication of Site information to NYSDEC; and (5) defining criteria for termination of treatment system operation.

The SMP will include the following:

- a. An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the Site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:
 - Institutional Controls: The Environmental Easement discussed in Section 10.1 above.
 - Engineering Controls: This Plan includes, but may not be limited to:
 - an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination; and
 - descriptions of the provisions of the environmental easement including any land use and groundwater use restrictions.
 - a provision for evaluation of the potential for soil vapor intrusion for any buildings developed on the Site, including a provision for implementing actions recommended to address exposures related to soil vapor intrusion;
 - provisions for the management and inspection of the identified engineering controls:
 - maintaining Site access controls and Department notification; and
 - the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.

- b. A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:
 - monitoring of groundwater to assess performance and effectiveness of remedy;
 - a schedule of monitoring and frequency of submittals to the Department; and
 - monitoring for soil vapor intrusion for any buildings developed on the Site, as may be required by the Institutional and Engineering Control Plan discussed above.
- c. An Operation and Maintenance (O&M) Plan to ensure continued operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy. The plan includes, but is not limited to:
 - compliance monitoring of treatment systems to ensure proper O&M as well as providing the data for any necessary permit or permit equivalent reporting;
 - maintaining Site access controls and Department notification; and
 - providing the Department access to the Site and O&M records.

The operation of the components of the remedy will continue until the remedial objectives have been achieved, or until the Department determines that continued operation is technically impracticable or not feasible.

11.0 FINAL ENGINEERING REPORT

A FER will be submitted to NYSDEC following implementation of the Remedial Action defined in this RAWP. The FER provides the documentation that the remedial work required under this RAWP has been completed and has been performed in compliance with this plan. The FER will provide a comprehensive account of the locations and characteristics of all material removed from the Site including the surveyed map(s) of all sources. The FER will include as-built drawings for all constructed elements, calculation and manufacturer documentation for treatment systems, certifications, manifests, bills of lading as well as the complete Site Management Plan (formerly the Operation and Maintenance Plan). The FER will provide a description of the changes in the Remedial Action from the elements provided in the RAWP and associated design documents. The FER will provide a tabular summary of all performance evaluation sampling results and all material characterization results and other sampling and chemical analysis performed as part of the Remedial Action. The FER will provide test results demonstrating that all mitigation and remedial systems are functioning properly. The FER will be prepared in conformance with DER-10.

Where determined to be necessary by NYSDEC, a Financial Assurance Plan will be required to ensure the sufficiency of revenue to perform long-term operations, maintenance and monitoring tasks defined in the Site Management Plan and Environmental Easement. This determination will be made by NYSDEC in the context of the FER review.

The FER will include written and photographic documentation of all remedial work performed under this remedy.

The FER will include an itemized tabular description of actual costs incurred during all aspects of the Remedial Action.

The FER will provide a thorough summary of all residual contamination left on the Site, if any, after the remedy is complete. Residual contamination includes all contamination that exceeds the Track 1 Unrestricted Use SCO in 6NYCRR Part 375-6. A table that shows exceedances from

Track 1 Unrestricted SCOs for all soil/fill remaining at the Site after the Remedial Action and a map that shows the location and summarizes exceedances from Track 1 Unrestricted SCOs for all soil/fill remaining at the Site after the Remedial Action will be included in the FER.

The FER will provide a thorough summary of all residual contamination that exceeds the SCOs defined for the Site in the RAWP and must provide an explanation for why the material was not removed as part of the Remedial Action. A table that shows residual contamination in excess of Site SCOs and a map that shows residual contamination in excess of Site SCOs will be included in the FER.

The FER will include an accounting of the destination of all material removed from the Site, including excavated contaminated soil, historic fill, solid waste, hazardous waste, non-regulated material, and fluids. Documentation associated with disposal of all material must also include records and approvals for receipt of the material. It will provide an accounting of the origin and chemical quality of all material imported onto the Site.

Before approval of a FER and issuance of a Certificate of Completion, all project reports must be submitted in digital form on electronic media (PDF).

11.1 CERTIFICATIONS

The following certification will appear in front of the Executive Summary of the FER. The certification will be signed by the Remedial Engineer, Charles J. McGuckin, who is a Professional Engineer registered in New York State. This certification will be appropriately signed and stamped. The certification will include the following statements:

I, Charles J. McGuckin, am currently a registered professional engineer licensed by the State of New York. I had primary direct responsibility for implementation of the remedial program for the PTMA 5200 Kings Highway LLC Site (NYSDEC BCA Index No. C224140-02-12 Site No. C224140).

I certify that the Site description presented in this FER is identical to the Site descriptions presented in the Environmental Easement, the Site Management Plan, and the Brownfield Cleanup Agreement for PTMA 5200 Kings Highway LLC and related amendments.

I certify that the Remedial Action Work Plan dated May 11, 2018 and Stipulations [if any] in a letter dated [month day year] and approved by the NYSDEC were implemented and that all requirements in those documents have been substantively complied with.

I certify that the remedial activities were observed by qualified environmental professionals under my supervision and that the remediation requirements set forth in the Remedial Action Work Plan and any other relevant provisions of ECL 27-1419 have been achieved.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and all operation and maintenance requirements applicable to the Site are contained in an Environmental Easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded. A Site Management Plan has been submitted by the Volunteer for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the NYSDEC.

I certify that the export of all contaminated soil, fill, water or other material from the property was performed in accordance with the Remedial Action Work Plan and were taken to facilities licensed to accept this material in full compliance with all Federal, State and local laws.

I certify that all import of soils from off-Site, including source approval and sampling, has been performed in a manner that is consistent with the methodology defined in the Remedial Action Work Plan.

I certify that all invasive work during the remediation and all invasive development work were conducted in accordance with dust and odor suppression methodology and soil screening methodology defined in the Remedial Action Work Plan.

I certify that all information and statements in this certification are true. I understand that a false statement made herein is punishable as Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

It is a violation of Article 130 of New York State Education Law for any person to alter this document in any way without the express written verification of adoption by any New York State licensed engineer in accordance with Section 7209(2), Article 130, New York State Education Law.

Updated April 29, 2014

12.0 SCHEDULE

A proposed schedule of Remedial Actions is provided in Figure 9.

TABLES

- 1. Summary of Water Level Elevations and Product Thickness
- 2. Summary of Volatile Organic Compounds in Soil
- 3. Summary of Semivolatile Organic Compounds in Soil
- 4. Summary of Volatile Organic Compounds in Groundwater
- 5. Summary of Semivolatile Organic Compounds in Groundwater
- 6. Summary of Metals in Groundwater
- 7. Summary of Volatile Organic Compounds in Soil Vapor
- 8. Remedial Cost Estimate for Remedial Alternative 1
- 9. Remedial Cost Estimate for Remedial Alternative 2
- 10. Remedial Cost Estimate for Remedial Alternative 3
- 11. List of Required Permits
- 12. Emergency Contact List
- 13. List of Soil Cleanup Objectives

ROUX 2861.0001Y.102/CVRS

Table 1. Summary of Water Level Elevations and Product Thickness, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

MW ID	GAUGING DATE	MEASURING POINT ELEVATION	DEPTH TO WATER	DEPTH TO PRODUCT	GROUNDWATER ELEVATION	PRODUCT THICKNESS	COMMENTS
MW-12	5/11/2015	89.34	12.02	10.06	NA	1.96	
MW-21	5/11/2015	89.35	11.76	10.21	NA	1.55	
MW-3	5/11/2015	89.49	10.5		78.99		
MW-7	5/11/2015	89.47	8.77		80.7		
MW-6	5/11/2015	89.31	8.16		81.15		
MW-5	5/11/2015	89.33	11.56	10.04	NA	1.52	
MW-19	5/11/2015	89.45	10.29		79.16		
MW-13	5/11/2015	89.28	12.35	10.13	NA	2.22	
MW-20	5/11/2015	89.46	10.4		79.06		
MW-16	5/11/2015	89.43	10.64	10.24	NA	0.4	
MW-18	5/11/2015	89.46	9.66	9.64	NA	0.02	
MW-9	5/11/2015	89.46	10.35		79.11		
MW-14	5/11/2015	89.39	10.53	10.16	NA	0.37	
MW-15	5/11/2015	89.32	11.7	10.12	NA	1.58	
MW-17	5/11/2015	90.10	11.66	9.28	NA	2.38	
MW-4S	5/11/2015	89.27	12.67	10.08	NA	2.59	
MW-11	5/11/2015	89.23	12.8	10.08	NA	2.72	

NA - Not applicable

Page 1 of 1 2861.0001Y.102/T1

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-1	RSB-1	RSB-2	RSB-2
Parameter	Unrestricted	Protection of	Commercial	Sample Date:		2/20/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	10	20	1	5
F 3 - 37			(1-557					
1,1,1-Trichloroethane	680	680	500000		2.6 U	2.8 U	3.2 U	2.4 U
1,1,2,2-Tetrachloroethane					2.6 U	2.8 U	3.2 U	2.4 U
1,1,2-Trichloroethane					2.6 U	2.8 U	3.2 U	2.4 U
1,1-Dichloroethane	270	270	240000		2.6 U	2.8 U	3.2 U	2.4 U
1,1-Dichloroethene	330	330	500000		2.6 U	2.8 U	3.2 U	2.4 U
1,2,3-Trichlorobenzene					2.6 U	2.8 U	3.2 U	2.4 U
1,2,4-Trichlorobenzene					2.6 U	2.8 U	3.2 U	2.4 U
1,2-Dibromoethane					2.6 U	2.8 U	3.2 U	2.4 U
1,2-Dichlorobenzene	1100	1100	500000		2.6 U	2.8 U	3.2 U	2.4 U
1,2-Dichloroethane	20	20	30000		2.6 U	2.8 U	3.2 U	2.4 U
1,2-Dichloropropane					2.6 U	2.8 U	3.2 U	2.4 U
1,3-Dichlorobenzene	2400	2400	280000		2.6 U	2.8 U	3.2 U	2.4 U
1,4-Dichlorobenzene	1800	1800	130000		2.6 U	2.8 U	3.2 U	2.4 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		2.6 U	2.8 U	4.4 J	2.4 U
2-Hexanone					2.6 U	2.8 U	3.2 U	2.4 U
4-Methyl-2-pentanone (MIBK)					2.6 U	2.8 U	3.2 U	2.4 U
Acetone	50	50	500000		10 UV	7.3 UV	79 UV	19 UV
Benzene	60	60	44000		2.6 U	2.8 U	4.4 J	2.4 U
Bromochloromethane					2.6 U	2.8 U	3.2 U	2.4 U
Bromodichloromethane					2.6 U	2.8 U	3.2 U	2.4 U
Bromoform					2.6 U	2.8 U	3.2 U	2.4 U
Bromomethane					2.6 U	2.8 U	3.2 U	2.4 U
Carbon disulfide					2.6 U	2.8 U	3.2 U	2.4 U
Carbon tetrachloride	760	760	22000		2.6 U	2.8 U	3.2 U	2.4 U
Chlorobenzene	1100	1100	500000		2.6 U	2.8 U	3.2 U	2.4 U
Chloroethane					2.6 U	2.8 U	3.2 U	2.4 U
Chloroform	370	370	350000		2.6 U	2.8 U	3.2 U	2.4 U
Chloromethane					2.6 U	2.8 U	3.2 U	2.4 U
cis-1,2-Dichloroethene	250	250	500000		2.6 U	2.8 U	3.2 U	2.4 U
cis-1,3-Dichloropropene					2.6 U	2.8 U	3.2 U	2.4 U
Cyclohexane					2.6 U	2.8 U	3.2 U	2.4 U
Dibromochloromethane					2.6 UJV	2.8 UJV	3.2 UJV	2.4 UJV
Dibromochloropropane					2.6 U	2.8 U	3.2 U	2.4 U
Dichlorodifluoromethane					2.6 U	2.8 U	3.2 U	2.4 U

Page 1 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-1	RSB-1	RSB-2	RSB-2
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/20/2014	2/20/2014	2/21/2014	2/21/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	10	20	11	5
Ethylbenzene	1000	1000	390000		2.6 U	2.8 U	3.2 U	2.4 U
Freon 113					2.6 U	2.8 U	3.2 U	2.4 U
Isopropylbenzene					2.6 U	2.8 U	3.2 U	2.4 U
m+p-Xylene					5.3 U	5.7 U	7 J	4.8 U
Methyl acetate					2.6 U	2.8 U	3.2 U	2.4 U
Methylcyclohexane					2.6 U	2.8 U	3.2 U	2.4 U
Methylene chloride	50	50	500000		3.6 UV	3.1 UV	6.3 UV	4.6 UV
MTBE	930	930	500000		2.6 U	2.8 U	3.2 U	2.4 U
o-Xylene					2.6 U	2.8 U	3.2 J	2.4 U
Styrene					2.6 U	2.8 U	3.2 U	2.4 U
Tetrachloroethene	1300	1300	150000		2.6 U	2.8 U	21	3.1 J
Toluene	700	700	500000		2.6 U	2.8 U	20	2.4 U
trans-1,2-Dichloroethene	190	190	500000		2.6 U	2.8 U	3.2 U	2.4 U
trans-1,3-Dichloropropene					2.6 U	2.8 U	3.2 U	2.4 U
Trichloroethene	470	470	200000		2.6 U	2.8 U	3.2 U	2.4 U
Trichlorofluoromethane					2.6 U	2.8 U	3.2 U	2.4 U
Vinyl chloride	20	20	13000		2.6 U	2.8 U	3.2 U	2.4 U
Xylenes (total)	260	1600	500000		7.9 U	8.5 U	10 J	7.2 U
, ,								

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards

Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwater Standards

Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 2 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample

µg/kg - Micrograms per kilogram

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-2	RSB-2	RSB-3	RSB-3
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/21/2014	2/21/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	11	18	8	18
			(1 0 0)	1 1 7				
1,1,1-Trichloroethane	680	680	500000		440 U	2.8 U	2.7 U	2.7 U
1,1,2,2-Tetrachloroethane					440 U	2.8 U	2.7 U	2.7 U
1,1,2-Trichloroethane					440 U	2.8 U	2.7 U	2.7 U
1,1-Dichloroethane	270	270	240000		440 U	2.8 U	2.7 U	2.7 U
1,1-Dichloroethene	330	330	500000		440 U	2.8 U	2.7 U	2.7 U
1,2,3-Trichlorobenzene					440 U	2.8 U	2.7 U	2.7 U
1,2,4-Trichlorobenzene					440 U	2.8 UV	2.7 U	2.7 U
1,2-Dibromoethane					440 U	2.8 U	2.7 U	2.7 U
1,2-Dichlorobenzene	1100	1100	500000		440 U	2.8 U	2.7 U	2.7 U
1,2-Dichloroethane	20	20	30000		440 U	2.8 U	2.7 U	2.7 U
1,2-Dichloropropane					440 U	2.8 U	2.7 U	2.7 U
1,3-Dichlorobenzene	2400	2400	280000		440 U	2.8 U	2.7 U	2.7 U
1,4-Dichlorobenzene	1800	1800	130000		440 U	2.8 U	2.7 U	2.7 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		440 UV	2.8 U	7	2.7 U
2-Hexanone					440 U	2.8 U	2.7 U	2.7 U
4-Methyl-2-pentanone (MIBK)					4000 D	2.8 U	2.7 U	2.7 U
Acetone	50	50	500000		6200 UV	28 UV	42 UV	16 UV
Benzene	60	60	44000		470 JD	2.8 U	2.7 U	2.7 U
Bromochloromethane					440 U	2.8 U	2.7 U	2.7 U
Bromodichloromethane					440 U	2.8 U	2.7 U	2.7 U
Bromoform					440 U	2.8 U	2.7 U	2.7 U
Bromomethane					440 U	2.8 U	2.7 U	2.7 U
Carbon disulfide					440 U	2.8 U	2.7 U	2.7 U
Carbon tetrachloride	760	760	22000		440 U	2.8 U	2.7 U	2.7 U
Chlorobenzene	1100	1100	500000		440 U	2.8 U	2.7 U	2.7 U
Chloroethane					440 U	2.8 U	2.7 U	2.7 U
Chloroform	370	370	350000		440 U	2.8 U	2.7 U	2.7 U
Chloromethane					440 U	2.8 U	2.7 U	2.7 U
cis-1,2-Dichloroethene	250	250	500000		12000 D	2.8 U	2.7 U	2.7 U
cis-1,3-Dichloropropene					440 U	2.8 U	2.7 U	2.7 U
Cyclohexane					440 U	2.8 U	2.7 U	2.7 U
Dibromochloromethane					440 UJV	2.8 UJV	2.7 UJV	2.7 UJV
Dibromochloropropane					440 U	2.8 U	2.7 U	2.7 U
Dichlorodifluoromethane					440 U	2.8 U	2.7 U	2.7 U

Page 3 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-2	RSB-2	RSB-3	RSB-3
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/21/2014	2/21/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	11	18	8	18
Ethylbenzene	1000	1000	390000		12000 D	2.8 U	2.7 U	2.7 U
Freon 113					440 U	2.8 U	2.7 U	2.7 U
Isopropylbenzene					790 JD	2.8 U	2.7 U	2.7 U
m+p-Xylene					39000 D	5.6 U	5.3 U	5.4 U
Methyl acetate					440 U	2.8 U	2.7 U	2.7 U
Methylcyclohexane					2100 D	2.8 U	2.7 U	2.7 U
Methylene chloride	50	50	500000		440 U	4.5 UV	3.1 UV	5 UV
MTBE	930	930	500000		2000 D	2.8 U	2.7 U	2.7 U
o-Xylene					12000 D	2.8 U	2.7 U	2.7 U
Styrene					440 U	2.8 U	2.7 U	2.7 U
Tetrachloroethene	1300	1300	150000		6100 D	2.8 U	2.7 U	2.7 U
Toluene	700	700	500000		340000 D	11	2.7 U	2.7 U
trans-1,2-Dichloroethene	190	190	500000		440 U	2.8 U	2.7 U	2.7 U
trans-1,3-Dichloropropene					440 U	2.8 U	2.7 U	2.7 U
Trichloroethene	470	470	200000		760 JD	2.8 U	2.7 U	2.7 U
Trichlorofluoromethane					440 U	2.8 U	2.7 U	2.7 U
Vinyl chloride	20	20	13000		440 U	2.8 U	2.7 U	2.7 U
Xylenes (total)	260	1600	500000		51000 D	8.3 U	8 U	8.1 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 4 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-4	RSB-4	RSB-5	RSB-5
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/21/2014	2/21/2014	2/18/2014	2/18/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	8	18	8.5	18.5
1,1,1-Trichloroethane	680	680	500000		3.1 U	2 U	2.7 U	2.5 U
1,1,2,2-Tetrachloroethane					3.1 U	2 U	2.7 U	2.5 U
1,1,2-Trichloroethane					3.1 U	2 U	2.7 U	2.5 U
1,1-Dichloroethane	270	270	240000		3.1 U	2 U	2.7 U	2.5 U
1,1-Dichloroethene	330	330	500000		3.1 U	2 U	2.7 U	2.5 U
1,2,3-Trichlorobenzene					3.1 U	2 U	2.7 U	2.5 U
1,2,4-Trichlorobenzene					3.1 U	2 U	2.7 U	2.5 U
1,2-Dibromoethane					3.1 U	2 U	2.7 U	2.5 U
1,2-Dichlorobenzene	1100	1100	500000		3.1 U	2 U	2.7 U	2.5 U
1,2-Dichloroethane	20	20	30000		3.1 U	2 U	2.7 U	2.5 U
1,2-Dichloropropane					3.1 U	2 U	2.7 U	2.5 U
1,3-Dichlorobenzene	2400	2400	280000		3.1 U	2 U	2.7 U	2.5 U
1,4-Dichlorobenzene	1800	1800	130000		3.1 U	2 U	2.7 U	2.5 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		7.1	2 U	2.7 U	2.5 U
2-Hexanone					3.1 U	2 U	2.7 U	2.5 U
4-Methyl-2-pentanone (MIBK)					3.1 U	2 U	2.7 U	2.5 U
Acetone	50	50	500000		84 UV	37 UV	18 UV	20 UV
Benzene	60	60	44000		3.1 U	2 U	2.7 U	2.5 U
Bromochloromethane					3.1 U	2 U	2.7 U	2.5 U
Bromodichloromethane					3.1 U	2 U	2.7 U	2.5 U
Bromoform					3.1 U	2 U	2.7 U	2.5 U
Bromomethane					3.1 U	2 U	2.7 U	2.5 U
Carbon disulfide					3.1 U	2 U	2.7 U	2.5 U
Carbon tetrachloride	760	760	22000		3.1 U	2 U	2.7 U	2.5 U
Chlorobenzene	1100	1100	500000		3.1 U	2 U	2.7 U	2.5 U
Chloroethane					3.1 U	2 U	2.7 U	2.5 U
Chloroform	370	370	350000		3.1 U	2 U	2.7 U	2.5 U
Chloromethane					3.1 U	2 U	2.7 U	2.5 U
cis-1,2-Dichloroethene	250	250	500000		64	9.2	2.7 U	2.5 U
cis-1,3-Dichloropropene					3.1 U	2 U	2.7 U	2.5 U
Cyclohexane					3.1 U	2 U	2.7 U	2.5 U
Dibromochloromethane					3.1 UJV	2 UJV	2.7 U	2.5 U
Dibromochloropropane					3.1 U	2 U	2.7 U	2.5 U
Dichlorodifluoromethane					3.1 U	2 U	2.7 U	2.5 U

Page 5 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-4	RSB-4	RSB-5	RSB-5
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/21/2014	2/21/2014	2/18/2014	2/18/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	8	18	8.5	18.5
Ethylbenzene	1000	1000	390000		3.1 U	2 U	2.7 U	2.5 U
Freon 113					3.1 U	2 U	2.7 U	2.5 U
Isopropylbenzene					3.1 U	2 U	2.7 U	2.5 U
m+p-Xylene					6.3 U	4 U	5.3 U	5 U
Methyl acetate					3.1 U	2 U	2.7 U	2.5 U
Methylcyclohexane					3.1 U	2 U	2.7 U	2.5 U
Methylene chloride	50	50	500000		5.4 UV	3.2 UV	4.6 UV	7 UV
MTBE	930	930	500000		3.1 U	3.3 J	2.7 U	5.1
o-Xylene					3.1 U	2 U	2.7 U	2.5 U
Styrene					3.1 U	2 U	2.7 U	2.5 U
Tetrachloroethene	1300	1300	150000		3.1 U	2 U	2.7 U	2.5 U
Toluene	700	700	500000		4 J	3.3 J	2.7 U	2.5 U
trans-1,2-Dichloroethene	190	190	500000		3.1 U	2 U	2.7 U	2.5 U
trans-1,3-Dichloropropene					3.1 U	2 U	2.7 U	2.5 U
Trichloroethene	470	470	200000		3.1 U	2 U	2.7 U	2.5 U
Trichlorofluoromethane					3.1 U	2 U	2.7 U	2.5 U
Vinyl chloride	20	20	13000		3.1 U	2 U	2.7 U	2.5 U
Xylenes (total)	260	1600	500000		9.4 U	6 U	8 U	7.4 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 6 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-6	RSB-6	RSB-7	RSB-7
Parameter	Unrestricted	Protection of	Commercial	Sample Date:		2/18/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	9	19	8.5	18.5
(Correctitione in pg/kg)		Crounawater	(P9/119)	campie Deptii (it bio).		10	0.0	10.0
1,1,1-Trichloroethane	680	680	500000		2.3 U	2.3 U	3 U	2.7 U
1,1,2,2-Tetrachloroethane					2.3 U	2.3 U	3 U	2.7 U
1,1,2-Trichloroethane					2.3 U	2.3 U	3 U	2.7 U
1,1-Dichloroethane	270	270	240000		2.3 U	2.3 U	3 U	2.7 U
1,1-Dichloroethene	330	330	500000		2.3 U	2.3 U	3 U	2.7 U
1,2,3-Trichlorobenzene					2.3 U	2.3 U	3 U	2.7 U
1,2,4-Trichlorobenzene					2.3 U	2.3 U	3 U	2.7 U
1,2-Dibromoethane					2.3 U	2.3 U	3 U	2.7 U
1,2-Dichlorobenzene	1100	1100	500000		2.3 U	2.3 U	3 U	2.7 U
1,2-Dichloroethane	20	20	30000		2.3 U	2.3 U	3 U	2.7 U
1,2-Dichloropropane					2.3 U	2.3 U	3 U	2.7 U
1,3-Dichlorobenzene	2400	2400	280000		2.3 U	2.3 U	3 U	2.7 U
1,4-Dichlorobenzene	1800	1800	130000		2.3 U	2.3 U	3 U	2.7 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		2.3 U	2.3 U	3 U	2.7 U
2-Hexanone					2.3 U	2.3 U	3 U	2.7 U
4-Methyl-2-pentanone (MIBK)					2.3 U	2.3 U	3 U	2.7 U
Acetone	50	50	500000		49 UV	47 UV	38 UV	19 UV
Benzene	60	60	44000		2.3 U	2.3 U	3 U	2.7 U
Bromochloromethane					2.3 U	2.3 U	3 U	2.7 U
Bromodichloromethane					2.3 U	2.3 U	3 U	2.7 U
Bromoform					2.3 U	2.3 U	3 U	2.7 U
Bromomethane					2.3 U	2.3 U	3 U	2.7 U
Carbon disulfide					2.3 U	2.3 U	3 U	2.7 U
Carbon tetrachloride	760	760	22000		2.3 U	2.3 U	3 U	2.7 U
Chlorobenzene	1100	1100	500000		2.3 U	2.3 U	3 U	2.7 U
Chloroethane					2.3 U	2.3 U	3 U	2.7 U
Chloroform	370	370	350000		2.3 U	2.3 U	3 U	2.7 U
Chloromethane					2.3 U	2.3 U	3 U	2.7 U
cis-1,2-Dichloroethene	250	250	500000		18	2.3 U	3 U	2.7 U
cis-1,3-Dichloropropene					2.3 U	2.3 U	3 U	2.7 U
Cyclohexane					2.3 U	2.3 U	3 U	2.7 U
Dibromochloromethane					2.3 U	2.3 U	RV	RV
Dibromochloropropane					2.3 U	2.3 U	3 U	2.7 U
Dichlorodifluoromethane					2.3 U	2.3 U	3 U	2.7 U

Page 7 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-6	RSB-6	RSB-7	RSB-7
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/18/2014	2/18/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	9	19	8.5	18.5
Ethylbenzene	1000	1000	390000		2.3 U	2.3 U	3 U	2.7 U
Freon 113					2.3 U	2.3 U	3 U	2.7 U
Isopropylbenzene					2.3 U	2.3 U	3 U	2.7 U
m+p-Xylene					4.5 U	4.7 U	6.1 U	5.4 U
Methyl acetate					2.3 U	2.3 U	3 U	2.9 J
Methylcyclohexane					2.3 U	2.3 U	3 U	2.7 U
Methylene chloride	50	50	500000		8.4 UV	8.9 UV	4.3 UV	4 UV
MTBE	930	930	500000		3.1 J	2.3 U	3 U	2.7 U
o-Xylene					2.3 U	2.3 U	3 U	2.7 U
Styrene					2.3 U	2.3 U	3 U	2.7 U
Tetrachloroethene	1300	1300	150000		2.3 U	2.3 U	3 U	2.7 U
Toluene	700	700	500000		2.3 J	2.4 J	3.2 J	2.7 U
trans-1,2-Dichloroethene	190	190	500000		2.3 U	2.3 U	3 U	2.7 U
trans-1,3-Dichloropropene					2.3 U	2.3 U	3 U	2.7 U
Trichloroethene	470	470	200000		2.3 U	2.3 U	3 U	2.7 U
Trichlorofluoromethane					2.3 U	2.3 U	3 U	2.7 U
Vinyl chloride	20	20	13000		2.3 U	2.3 U	3 U	2.7 U
Xylenes (total)	260	1600	500000		6.8 U	7 U	9.1 U	8.2 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 8 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-8	RSB-8	RSB-8	RSB-8
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/19/2014	2/19/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	1.5	5	8.5	18.5
1,1,1-Trichloroethane	680	680	500000		3.4 U	2.8 U	2.4 U	2.4 U
1,1,2,2-Tetrachloroethane					3.4 U	2.8 UJV	2.4 U	2.4 U
1,1,2-Trichloroethane					3.4 U	2.8 U	2.4 U	2.4 U
1,1-Dichloroethane	270	270	240000		3.4 U	2.8 U	2.4 U	2.4 U
1,1-Dichloroethene	330	330	500000		3.4 U	2.8 U	2.4 U	2.4 U
1,2,3-Trichlorobenzene					3.4 U	2.8 UJV	2.4 U	2.4 U
1,2,4-Trichlorobenzene					3.4 U	2.8 UJV	2.4 U	2.4 U
1,2-Dibromoethane					3.4 U	2.8 U	2.4 U	2.4 U
1,2-Dichlorobenzene	1100	1100	500000		3.4 U	2.8 UJV	2.4 U	2.4 U
1,2-Dichloroethane	20	20	30000		3.4 U	2.8 U	2.4 U	2.4 U
1,2-Dichloropropane					3.4 U	2.8 U	2.4 U	2.4 U
1,3-Dichlorobenzene	2400	2400	280000		3.4 U	2.8 UJV	2.4 U	2.4 U
1,4-Dichlorobenzene	1800	1800	130000		3.4 U	2.8 UJV	2.4 U	2.4 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		3.4 U	2.8 U	8.5	2.4 U
2-Hexanone					3.4 U	2.8 U	2.4 U	2.4 U
4-Methyl-2-pentanone (MIBK)					3.4 U	2.8 U	2.4 U	2.4 U
Acetone	50	50	500000		54 UV	680 JD	99	27 UV
Benzene	60	60	44000		3.4 U	2.8 U	2.4 U	2.4 U
Bromochloromethane					3.4 U	2.8 U	2.4 U	2.4 U
Bromodichloromethane					3.4 U	2.8 U	2.4 U	2.4 U
Bromoform					3.4 U	2.8 UJV	2.4 U	2.4 U
Bromomethane					3.4 U	2.8 U	2.4 U	2.4 U
Carbon disulfide					3.4 U	2.8 U	2.4 U	2.4 U
Carbon tetrachloride	760	760	22000		3.4 U	2.8 U	2.4 U	2.4 U
Chlorobenzene	1100	1100	500000		3.4 U	2.8 U	2.4 U	2.4 U
Chloroethane					3.4 U	2.8 U	2.4 U	2.4 U
Chloroform	370	370	350000		3.4 U	2.8 U	2.4 U	2.4 U
Chloromethane					3.4 U	2.8 U	2.4 U	2.4 U
cis-1,2-Dichloroethene	250	250	500000		3.4 U	2.8 U	3.2 J	2.4 U
cis-1,3-Dichloropropene					3.4 U	2.8 U	2.4 U	2.4 U
Cyclohexane					3.4 U	2.8 U	2.4 U	2.4 U
Dibromochloromethane					RV	2.8 UJV	2.4 UJV	RV
Dibromochloropropane					3.4 U	2.8 UJV	2.4 U	2.4 U
Dichlorodifluoromethane					3.4 U	2.8 U	2.4 U	2.4 U

Page 9 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-8	RSB-8	RSB-8	RSB-8
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/19/2014	2/19/2014	2/19/2014	2/19/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	1.5	5	8.5	18.5
Ethylbenzene	1000	1000	390000		3.4 U	4.3 JV	3 J	2.4 U
Freon 113					3.4 U	2.8 U	2.4 U	2.4 U
Isopropylbenzene					3.4 U	2.8 UJV	2.4 U	2.4 U
m+p-Xylene					8.6 J	14 JV	10	5.6 J
Methyl acetate					3.4 U	2.8 U	2.4 U	2.4 U
Methylcyclohexane					3.6 J	2.8 U	3 J	2.4 U
Methylene chloride	50	50	500000		8.8 UV	8.5 UV	3.5 UV	5 UV
MTBE	930	930	500000		3.4 U	2.8 U	2.4 U	2.4 U
o-Xylene					3.4 U	4.4 JV	4.7	2.4 U
Styrene					3.4 U	2.8 U	2.4 U	2.4 U
Tetrachloroethene	1300	1300	150000		3.4 U	23 JV	4.2 J	2.4 U
Toluene	700	700	500000		16	64 JV	46	9.7
trans-1,2-Dichloroethene	190	190	500000		3.4 U	2.8 U	2.4 U	2.4 U
trans-1,3-Dichloropropene					3.4 U	2.8 U	2.4 U	2.4 U
Trichloroethene	470	470	200000		3.4 U	2.8 U	2.4 U	2.4 U
Trichlorofluoromethane					3.4 U	2.8 U	2.4 U	2.4 U
Vinyl chloride	20	20	13000		3.4 U	2.8 U	2.4 U	2.4 U
Xylenes (total)	260	1600	500000		12 J	18 JV	15	7.5 J

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 10 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-9	RSB-9	RSB-10	RSB-10
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/19/2014	2/19/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	8.5	18.5	7.5	17.5
1,1,1-Trichloroethane	680	680	500000		2.1 UJV	2.5 U	2 U	2.6 U
1,1,2,2-Tetrachloroethane					2.1 UJV	2.5 U	2 U	2.6 U
1,1,2-Trichloroethane					2.1 UJV	2.5 U	2 U	2.6 U
1,1-Dichloroethane	270	270	240000		2.1 UJV	2.5 U	2 U	2.6 U
1,1-Dichloroethene	330	330	500000		2.1 UJV	2.5 U	2 U	2.6 U
1,2,3-Trichlorobenzene					2.1 UJV	2.5 U	2 U	2.6 U
1,2,4-Trichlorobenzene					2.1 UJV	2.5 U	2 U	2.6 U
1,2-Dibromoethane					2.1 UJV	2.5 U	2 U	2.6 U
1,2-Dichlorobenzene	1100	1100	500000		2.1 UJV	2.5 U	2 U	2.6 U
1,2-Dichloroethane	20	20	30000		2.1 UJV	2.5 U	2 U	2.6 U
1,2-Dichloropropane					2.1 UJV	2.5 U	2 U	2.6 U
1,3-Dichlorobenzene	2400	2400	280000		2.1 UJV	2.5 U	2 U	2.6 U
1,4-Dichlorobenzene	1800	1800	130000		2.1 UJV	2.5 U	2 U	2.6 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		2.1 UJV	2.5 U	2 U	2.6 U
2-Hexanone					2.1 UJV	2.5 U	2 U	2.6 U
4-Methyl-2-pentanone (MIBK)					2.1 UJV	2.5 U	2 U	2.6 U
Acetone	50	50	500000		64 U V	35 UV	14 UV	25 UV
Benzene	60	60	44000		2.1 UJV	2.5 U	2 U	2.6 U
Bromochloromethane					2.1 UJV	2.5 U	2 U	2.6 U
Bromodichloromethane					2.1 UJV	2.5 U	2 U	2.6 U
Bromoform					2.1 UJV	2.5 U	2 U	2.6 U
Bromomethane					2.1 UJV	2.5 U	2 U	2.6 U
Carbon disulfide					2.1 UJV	2.5 U	2 U	2.6 U
Carbon tetrachloride	760	760	22000		2.1 UJV	2.5 U	2 U	2.6 U
Chlorobenzene	1100	1100	500000		2.1 UJV	2.5 U	2 U	2.6 U
Chloroethane					2.1 UJV	2.5 U	2 U	2.6 U
Chloroform	370	370	350000		2.1 UJV	2.5 U	2 U	2.6 U
Chloromethane					2.1 UJV	2.5 U	2 U	2.6 U
cis-1,2-Dichloroethene	250	250	500000		2.1 UJV	2.5 U	2 U	2.6 U
cis-1,3-Dichloropropene					2.1 UJV	2.5 U	2 U	2.6 U
Cyclohexane					2.1 UJV	2.5 U	2 U	2.6 U
Dibromochloromethane					RV	RV	2 UJV	2.6 UJV
Dibromochloropropane					2.1 UJV	2.5 U	2 U	2.6 U
Dichlorodifluoromethane					2.1 UJV	2.5 U	2 U	2.6 U

Page 11 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-9	RSB-9	RSB-10	RSB-10
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/19/2014	2/19/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	8.5	18.5	7.5	17.5
E	4000	1000	00000		70 11/	0.511	0.11	0.011
Ethylbenzene	1000	1000	390000		78 JV	2.5 U	2 U	2.6 U
Freon 113					2.1 UJV	2.5 U	2 U	2.6 U
Isopropylbenzene					81 JV	2.5 U	2 U	2.6 U
m+p-Xylene					16 JV	5 U	4.1 U	5.2 U
Methyl acetate					2.1 UJV	2.5 U	2 U	2.6 U
Methylcyclohexane					100 JV	2.5 U	2 U	2.6 U
Methylene chloride	50	50	500000		2.1 UJV	6.7 UV	3.5 UV	3.7 UV
MTBE	930	930	500000		2.1 UJV	2.5 U	2 U	2.6 U
o-Xylene					18 JV	2.5 U	2 U	2.6 U
Styrene					2.1 UJV	2.5 U	2 U	2.6 U
Tetrachloroethene	1300	1300	150000		170 JV	2.5 U	2 U	2.6 U
Toluene	700	700	500000		15 JV	3.7 J	2 U	2.6 U
trans-1,2-Dichloroethene	190	190	500000		2.1 UJV	2.5 U	2 U	2.6 U
trans-1,3-Dichloropropene					2.1 UJV	2.5 U	2 U	2.6 U
Trichloroethene	470	470	200000		9.7 JV	2.5 U	2 U	2.6 U
Trichlorofluoromethane					2.1 UJV	2.5 U	2 U	2.6 U
Vinyl chloride	20	20	13000		2.1 UJV	2.5 U	2 U	2.6 U
Xylenes (total)	260	1600	500000		34 JV	7.6 U	6.1 U	7.8 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 12 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-11	RSB-11	RSB-11	RSB-12
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/20/2014	2/20/2014	2/20/2014	2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	7.5	7.5	17.5	9
(00110011110111011111111111111111111111		0.00	(49,119)	campic zopin (it ale).				
1,1,1-Trichloroethane	680	680	500000		2.8 U	2.3 U	3.5 U	1.5 U
1,1,2,2-Tetrachloroethane					2.8 U	2.3 U	3.5 U	1.5 U
1,1,2-Trichloroethane					2.8 U	2.3 U	3.5 U	1.5 U
1,1-Dichloroethane	270	270	240000		2.8 U	2.3 U	3.5 U	1.5 U
1,1-Dichloroethene	330	330	500000		2.8 U	2.3 U	3.5 U	1.5 U
1,2,3-Trichlorobenzene					2.8 U	2.3 U	3.5 U	1.5 U
1,2,4-Trichlorobenzene					2.8 U	2.3 U	3.5 U	1.5 U
1,2-Dibromoethane					2.8 U	2.3 U	3.5 U	1.5 U
1,2-Dichlorobenzene	1100	1100	500000		2.8 U	2.3 U	3.5 U	1.5 U
1,2-Dichloroethane	20	20	30000		2.8 U	2.3 U	3.5 U	1.5 U
1,2-Dichloropropane					2.8 U	2.3 U	3.5 U	1.5 U
1,3-Dichlorobenzene	2400	2400	280000		2.8 U	2.3 U	3.5 U	1.5 U
1,4-Dichlorobenzene	1800	1800	130000		2.8 U	2.3 U	3.5 U	1.5 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		9.2	13	15	1.5 U
2-Hexanone					2.8 U	2.3 U	3.5 U	1.5 U
4-Methyl-2-pentanone (MIBK)					2.8 U	2.3 U	3.5 U	1.5 U
Acetone	50	50	500000		35 UV	40 UV	94 UV	7 UV
Benzene	60	60	44000		2.8 U	2.3 U	3.5 U	1.5 U
Bromochloromethane					2.8 U	2.3 U	3.5 U	1.5 U
Bromodichloromethane					2.8 U	2.3 U	3.5 U	1.5 U
Bromoform					2.8 U	2.3 U	3.5 U	1.5 U
Bromomethane					2.8 U	2.3 U	3.5 U	1.5 U
Carbon disulfide					2.8 U	2.3 U	3.5 U	1.5 U
Carbon tetrachloride	760	760	22000		2.8 U	2.3 U	3.5 U	1.5 U
Chlorobenzene	1100	1100	500000		2.8 U	2.3 U	3.5 U	1.5 U
Chloroethane					2.8 U	2.3 U	3.5 U	1.5 U
Chloroform	370	370	350000		2.8 U	2.3 U	3.5 U	1.5 U
Chloromethane					2.8 U	2.3 U	3.5 U	1.5 U
cis-1,2-Dichloroethene	250	250	500000		2.8 U	2.3 U	3.5 U	1.5 U
cis-1,3-Dichloropropene					2.8 U	2.3 U	3.5 U	1.5 U
Cyclohexane					2.8 U	2.3 U	3.5 U	1.5 U
Dibromochloromethane					2.8 UJV	2.3 UJV	3.5 UJV	1.5 U
Dibromochloropropane					2.8 U	2.3 U	3.5 U	1.5 U
Dichlorodifluoromethane					2.8 U	2.3 U	3.5 U	1.5 U

Page 13 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-11	RSB-11	RSB-11	RSB-12
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/20/2014	2/20/2014	2/20/2014	2/12/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	7.5	7.5	17.5	9
Ed. 11	1000	1000	00000		0.011	0.011	0.511	4.5.11
Ethylbenzene	1000	1000	390000		2.8 U	2.3 U	3.5 U	1.5 U
Freon 113					2.8 U	2.3 U	3.5 U	1.5 U
Isopropylbenzene					2.8 U	2.3 U	3.5 U	1.5 U
m+p-Xylene					5.6 U	4.6 U	7 U	3.1 U
Methyl acetate					2.8 U	3.2 J	17	1.5 U
Methylcyclohexane					2.8 U	3.9 J	3.5 U	1.5 U
Methylene chloride	50	50	500000		6.5 UV	3.7 UV	5 UV	2.7 UV
MTBE	930	930	500000		2.8 U	2.3 U	3.5 U	1.5 U
o-Xylene					2.8 U	2.3 U	3.5 U	1.5 U
Styrene					2.8 U	2.3 U	3.5 U	1.5 U
Tetrachloroethene	1300	1300	150000		2.8 U	2.3 U	3.5 U	1.5 U
Toluene	700	700	500000		2.8 U	10	3.5 U	1.5 U
trans-1,2-Dichloroethene	190	190	500000		2.8 U	2.3 U	3.5 U	1.5 U
trans-1,3-Dichloropropene					2.8 U	2.3 U	3.5 U	1.5 U
Trichloroethene	470	470	200000		2.8 U	2.3 U	3.5 U	1.5 U
Trichlorofluoromethane					2.8 U	2.3 U	3.5 U	1.5 U
Vinyl chloride	20	20	13000		2.8 U	2.3 U	3.5 U	1.5 U
Xylenes (total)	260	1600	500000		8.5 U	7 U	10 U	4.6 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 14 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-12	RSB-13	RSB-13	RSB-13
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/12/2014	2/12/2014	2/12/2014	2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	18	9	9	19
1,1,1-Trichloroethane	680	680	500000		2.5 U	2.1 U	1.2 U	1.8 U
1,1,2,2-Tetrachloroethane					2.5 U	2.1 U	1.2 U	1.8 U
1,1,2-Trichloroethane					2.5 U	2.1 U	1.2 U	1.8 U
1,1-Dichloroethane	270	270	240000		2.5 U	2.1 U	1.2 U	1.8 U
1,1-Dichloroethene	330	330	500000		2.5 U	2.1 U	1.2 U	1.8 U
1,2,3-Trichlorobenzene					2.5 U	2.1 U	1.2 U	1.8 U
1,2,4-Trichlorobenzene					2.5 U	2.1 U	1.2 U	1.8 U
1,2-Dibromoethane					2.5 U	2.1 U	1.2 U	1.8 U
1,2-Dichlorobenzene	1100	1100	500000		2.5 U	2.1 U	1.2 U	1.8 U
1,2-Dichloroethane	20	20	30000		2.5 U	2.1 U	1.2 U	1.8 U
1,2-Dichloropropane					2.5 U	2.1 U	1.2 U	1.8 U
1,3-Dichlorobenzene	2400	2400	280000		2.5 U	2.1 U	1.2 U	1.8 U
1,4-Dichlorobenzene	1800	1800	130000		2.5 U	2.1 U	1.2 U	1.8 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		2.5 U	2.1 U	2.5	1.8 U
2-Hexanone					2.5 U	2.1 U	1.2 U	1.8 U
4-Methyl-2-pentanone (MIBK)					2.5 U	2.1 U	1.2 U	1.8 U
Acetone	50	50	500000		9.2 UV	15 UV	8.9 UV	5.3 UV
Benzene	60	60	44000		2.5 U	2.1 U	1.2 U	1.8 U
Bromochloromethane					2.5 U	2.1 U	1.2 U	1.8 U
Bromodichloromethane					2.5 U	2.1 U	1.2 U	1.8 U
Bromoform					2.5 U	2.1 U	1.2 U	1.8 U
Bromomethane					2.5 U	2.1 UJV	1.2 UJV	1.8 UJV
Carbon disulfide					2.5 U	2.1 U	1.2 U	1.8 U
Carbon tetrachloride	760	760	22000		2.5 U	2.1 U	1.2 U	1.8 U
Chlorobenzene	1100	1100	500000		2.5 U	2.1 U	1.2 U	1.8 U
Chloroethane					2.5 U	2.1 U	1.2 U	1.8 U
Chloroform	370	370	350000		2.5 U	2.1 U	1.2 U	1.8 U
Chloromethane					2.5 U	2.1 U	1.2 U	1.8 U
cis-1,2-Dichloroethene	250	250	500000		2.5 U	2.1 U	1.2 U	1.8 U
cis-1,3-Dichloropropene					2.5 U	2.1 U	1.2 U	1.8 U
Cyclohexane					2.5 U	2.1 U	1.2 U	1.8 U
Dibromochloromethane					2.5 U	2.1 U	1.2 U	1.8 U
Dibromochloropropane					2.5 U	2.1 U	1.2 U	1.8 U
Dichlorodifluoromethane					2.5 U	2.1 U	1.2 U	1.8 U

Page 15 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-12	RSB-13	RSB-13	RSB-13
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/12/2014	2/12/2014	2/12/2014	2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	18	9	9	19
Ethylbenzene	1000	1000	390000		2.5 U	2.1 U	1.2 U	1.8 U
Freon 113					2.5 U	2.1 U	1.2 U	1.8 U
Isopropylbenzene					2.5 U	2.1 U	1.2 U	1.8 U
m+p-Xylene					4.9 U	4.3 U	2.3 U	3.6 U
Methyl acetate					2.5 U	2.1 U	1.2 U	1.8 U
Methylcyclohexane					2.5 U	2.1 U	1.2 U	1.8 U
Methylene chloride	50	50	500000		2.5 U	2.1 U	1.2 U	1.8 U
MTBE	930	930	500000		2.5 U	2.1 U	1.2 U	1.8 U
o-Xylene					2.5 U	2.1 U	1.2 U	1.8 U
Styrene					2.5 U	2.1 U	1.2 U	1.8 U
Tetrachloroethene	1300	1300	150000		2.5 U	2.1 U	1.2 U	1.8 U
Toluene	700	700	500000		2.5 U	2.1 U	1.2 U	1.8 U
trans-1,2-Dichloroethene	190	190	500000		2.5 U	2.1 U	1.2 U	1.8 U
trans-1,3-Dichloropropene					2.5 U	2.1 U	1.2 U	1.8 U
Trichloroethene	470	470	200000		2.5 U	2.1 U	1.2 U	1.8 U
Trichlorofluoromethane					2.5 U	2.1 U	1.2 U	1.8 U
Vinyl chloride	20	20	13000		2.5 U	2.1 U	1.2 U	1.8 U
Xylenes (total)	260	1600	500000		7.4 U	6.4 U	3.5 U	5.5 U

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 16 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample

 $[\]mu g/kg$ - Micrograms per kilogram

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Sample Designation:	RSR_1///D	RSB-14/4D	RSB-14/4D	RSB-14/4D
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/10/2014	2/10/2014	2/10/2014	2/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	2.5	5	10	38
(Concentrations in µg/kg)	036	Oroundwater	(µg/kg)	Cample Depth (it bis).	2.0		10	30
1,1,1-Trichloroethane	680	680	500000		2.8 U	3.3 U	210 U	2.4 U
1,1,2,2-Tetrachloroethane					2.8 U	3.3 U	210 U	2.4 U
1,1,2-Trichloroethane					2.8 U	3.3 U	210 U	2.4 U
1,1-Dichloroethane	270	270	240000		2.8 U	3.3 U	210 U	2.4 U
1,1-Dichloroethene	330	330	500000		2.8 U	3.3 U	210 U	2.4 U
1,2,3-Trichlorobenzene					2.8 U	3.3 U	210 U	2.4 U
1,2,4-Trichlorobenzene					2.8 U	3.3 U	210 U	2.4 U
1,2-Dibromoethane					2.8 U	3.3 U	210 U	2.4 U
1,2-Dichlorobenzene	1100	1100	500000		2.8 U	3.3 U	210 U	2.4 U
1,2-Dichloroethane	20	20	30000		2.8 U	3.3 U	210 U	2.4 U
1,2-Dichloropropane					2.8 U	3.3 U	210 U	2.4 U
1,3-Dichlorobenzene	2400	2400	280000		2.8 U	3.3 U	210 U	2.4 U
1,4-Dichlorobenzene	1800	1800	130000		2.8 U	3.3 U	210 U	2.4 U
1,4-Dioxane	100	100	130000		RV	RV	RV	RV
2-Butanone (MEK)	120	120	500000		12	3.3 U	1800 D	2.4 U
2-Hexanone					2.8 U	3.3 U	210 U	2.4 U
4-Methyl-2-pentanone (MIBK)					4.2 J	3.3 U	210 U	2.4 U
Acetone	50	50	500000		190 UV	50 UV	1300 UV	100 UV
Benzene	60	60	44000		2.8 U	3.3 U	1200 D	2.4 U
Bromochloromethane					2.8 U	3.3 U	210 U	2.4 U
Bromodichloromethane					2.8 U	3.3 U	210 U	2.4 U
Bromoform					2.8 U	3.3 U	210 U	2.4 U
Bromomethane					2.8 U	3.3 U	210 U	2.4 U
Carbon disulfide					2.8 U	3.3 U	210 U	2.4 U
Carbon tetrachloride	760	760	22000		2.8 U	3.3 U	210 U	2.4 U
Chlorobenzene	1100	1100	500000		2.8 U	3.3 U	210 U	2.4 U
Chloroethane					2.8 U	3.3 U	210 U	2.4 U
Chloroform	370	370	350000		2.8 U	3.3 U	210 U	2.4 U
Chloromethane					2.8 U	3.3 U	210 U	2.4 U
cis-1,2-Dichloroethene	250	250	500000		2.8 U	3.3 U	2900 D	2.4 U
cis-1,3-Dichloropropene					2.8 U	3.3 U	210 U	2.4 U
Cyclohexane					2.8 U	3.3 U	3200 D	2.4 U
Dibromochloromethane					2.8 U	3.3 U	210 U	2.4 U
Dibromochloropropane					2.8 U	3.3 U	210 U	2.4 U
Dichlorodifluoromethane					2.8 U	3.3 U	210 U	2.4 U

Page 17 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

-	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-14/4D	RSB-14/4D	RSB-14/4D	RSB-14/4D
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/10/2014	2/10/2014	2/10/2014	2/10/2014
Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	2.5	5	10	38
Ethylbenzene	1000	1000	390000		2.8 U	3.3 U	6700 D	2.4 U
Freon 113					2.8 U	3.3 U	210 U	2.4 U
Isopropylbenzene					2.8 U	3.3 U	820 D	2.4 U
m+p-Xylene					5.7 U	6.5 U	22000 D	6.2 J
Methyl acetate					2.8 U	3.3 U	210 U	2.4 U
Methylcyclohexane					2.8 U	3.3 U	2200 D	2.4 U
Methylene chloride	50	50	500000		2.8 U	3.3 U	210 U	2.4 U
MTBE	930	930	500000		2.8 U	3.3 U	420 JD	2.4 U
o-Xylene					2.8 U	3.3 U	10000 D	2.4 U
Styrene					2.8 U	3.3 U	210 U	2.4 U
Tetrachloroethene	1300	1300	150000		2.8 U	4 J	930 D	2.4 U
Toluene	700	700	500000		5.1 J	3.3 U	30000 D	12
trans-1,2-Dichloroethene	190	190	500000		2.8 U	3.3 U	210 U	2.4 U
trans-1,3-Dichloropropene					2.8 U	3.3 U	210 U	2.4 U
Trichloroethene	470	470	200000		2.8 U	3.3 U	590 D	2.4 U
Trichlorofluoromethane					2.8 U	3.3 U	210 U	2.4 U
Vinyl chloride	20	20	13000		2.8 U	3.3 U	210 U	2.4 U
Xylenes (total)	260	1600	500000		8.5 U	9.8 U	32000 D	8.4 J

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 18 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-14	RSB/MW-14	RSB/MW-14	RSB/MW-15
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/9/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	12	17	1	4
(Concontitutions in pg/kg/		Crounawater	(P9/N9)	Campio Doptii (it bio).	12	.,	•	•
1,1,1-Trichloroethane	680	680	500000		220 U	2.1 U	2 U	2.4 U
1,1,2,2-Tetrachloroethane					220 U	2.1 U	2 U	2.4 U
1,1,2-Trichloroethane					220 U	2.1 U	2 U	2.4 U
1,1-Dichloroethane	270	270	240000		220 U	2.1 U	2 U	2.4 U
1,1-Dichloroethene	330	330	500000		220 U	2.1 U	2 U	2.4 U
1,2,3-Trichlorobenzene					220 U	2.1 U	2 U	2.4 U
1,2,4-Trichlorobenzene					220 U	2.1 U	2 U	2.4 U
1,2-Dibromoethane					220 U	2.1 U	2 U	2.4 U
1,2-Dichlorobenzene	1100	1100	500000		220 U	2.1 U	2 U	2.4 U
1,2-Dichloroethane	20	20	30000		220 U	2.1 U	2 U	2.4 U
1,2-Dichloropropane					220 U	2.1 U	2 U	2.4 U
1,3-Dichlorobenzene	2400	2400	280000		220 U	2.1 U	2 U	2.4 U
1,4-Dichlorobenzene	1800	1800	130000		220 U	2.1 U	2 U	2.4 U
1,4-Dioxane	100	100	130000		4300 U	43 U	41 U	48 U
2-Butanone (MEK)	120	120	500000		450 BD	2.1 U	2.8 J	3.6 J
2-Hexanone					220 U	2.1 U	2 U	2.4 U
4-Methyl-2-pentanone (MIBK)					220 U	2.1 U	2 U	2.4 U
Acetone	50	50	500000		4400 BD	2.1 U	40	43 UV
Benzene	60	60	44000	'	220 U	2.1 U	2 U	2.4 U
Bromochloromethane					220 U	2.1 U	2 U	2.4 U
Bromodichloromethane					220 U	2.1 U	2 U	2.4 U
Bromoform					220 U	2.1 U	2 U	2.4 U
Bromomethane					220 U	2.1 U	2 U	2.4 U
Carbon disulfide					220 U	2.1 U	2 U	2.4 U
Carbon tetrachloride	760	760	22000		220 U	2.1 U	2 U	2.4 U
Chlorobenzene	1100	1100	500000		220 U	2.1 U	2 U	2.4 U
Chloroethane					220 U	2.1 U	2 U	2.4 U
Chloroform	370	370	350000		220 U	2.1 U	2 U	2.4 U
Chloromethane					220 U	2.1 U	2 UJV	2.4 U
cis-1,2-Dichloroethene	250	250	500000		220 U	3.7 J	2 U	2.4 U
cis-1,3-Dichloropropene					220 U	2.1 U	2 U	2.4 U
Cyclohexane					220 U	2.1 U	2 U	2.4 U
Dibromochloromethane					220 U	2.1 U	2 U	2.4 U
Dibromochloropropane					220 U	2.1 U	2 U	2.4 U
Dichlorodifluoromethane					220 U	2.1 U	2 UJV	2.4 U

Page 19 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-14	RSB/MW-14	RSB/MW-14	RSB/MW-15
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/9/2014	9/10/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	12	17	1	4
Ethylbenzene	1000	1000	390000		1200 D	24	2 U	2.4 U
Freon 113					220 U	2.1 U	2 U	2.4 U
Isopropylbenzene					220 U	2.9 J	2 U	2.4 U
m+p-Xylene					4700 D	89	4.1 U	4.8 U
Methyl acetate					220 U	4.9	2 U	2.4 U
Methylcyclohexane					220 U	5.6	2 U	2.4 U
Methylene chloride	50	50	500000		220 U	2.1 U	2 U	2.4 U
MTBE	930	930	500000		220 U	2.1 U	2 U	2.4 U
o-Xylene					1200 D	27	2 U	2.4 U
Styrene					220 U	2.1 U	2 U	2.4 U
Tetrachloroethene	1300	1300	150000		220 U	2.1 U	2 U	3.3 J
Toluene	700	700	500000		930 D	23	2 U	2.4 U
trans-1,2-Dichloroethene	190	190	500000		220 U	2.1 U	2 U	2.4 U
trans-1,3-Dichloropropene					220 U	2.1 U	2 U	2.4 U
Trichloroethene	470	470	200000		220 U	2.1 U	2 U	2.4 U
Trichlorofluoromethane					220 U	2.1 U	2 U	2.4 U
Vinyl chloride	20	20	13000		220 U	2.1 U	2 U	2.4 U
Xylenes (total)	260	1600	500000		5800 D	120	6.1 U	7.2 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 20 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-15	RSB/MW-15	RSB/MW-15	RSB/MW-16
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/10/2014	9/9/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	4	10	14	1
1,1,1-Trichloroethane	680	680	500000		2.3 U	240 U	2.3 U	2.3 U
1,1,2,2-Tetrachloroethane					2.3 U	240 U	2.3 U	2.3 U
1,1,2-Trichloroethane					2.3 U	240 U	2.3 U	2.3 U
1,1-Dichloroethane	270	270	240000		2.3 U	240 U	2.3 U	2.3 U
1,1-Dichloroethene	330	330	500000		2.3 U	240 U	2.3 U	2.3 U
1,2,3-Trichlorobenzene					2.3 U	240 U	2.3 U	2.3 U
1,2,4-Trichlorobenzene					2.3 U	240 U	2.3 U	2.3 U
1,2-Dibromoethane					2.3 U	240 U	2.3 U	2.3 U
1,2-Dichlorobenzene	1100	1100	500000		2.3 U	240 U	2.3 U	2.3 U
1,2-Dichloroethane	20	20	30000		2.3 U	240 U	2.3 U	2.3 U
1,2-Dichloropropane					2.3 U	240 U	2.3 U	2.3 U
1,3-Dichlorobenzene	2400	2400	280000		2.3 U	240 U	2.3 U	2.3 U
1,4-Dichlorobenzene	1800	1800	130000		2.3 U	240 U	2.3 U	2.3 U
1,4-Dioxane	100	100	130000		46 U	4800 U	47 U	45 U
2-Butanone (MEK)	120	120	500000		2.3 U	240 U	2.3 U	2.3 U
2-Hexanone					2.3 U	240 U	2.3 UV	2.3 U
4-Methyl-2-pentanone (MIBK)					2.3 U	240 U	2.3 U	2.3 U
Acetone	50	50	500000		44 UV	240 U	12 UV	9.9
Benzene	60	60	44000		2.3 U	240 U	2.3 U	2.3 U
Bromochloromethane					2.3 U	240 U	2.3 U	2.3 U
Bromodichloromethane					2.3 U	240 U	2.3 U	2.3 U
Bromoform					2.3 U	240 U	2.3 U	2.3 U
Bromomethane					2.3 U	240 U	2.3 U	2.3 U
Carbon disulfide					2.3 U	240 U	2.3 U	2.3 U
Carbon tetrachloride	760	760	22000		2.3 U	240 U	2.3 U	2.3 U
Chlorobenzene	1100	1100	500000		2.3 U	240 U	2.3 U	2.3 U
Chloroethane					2.3 U	240 U	2.3 U	2.3 U
Chloroform	370	370	350000		2.3 U	240 U	2.3 U	2.3 U
Chloromethane					2.3 U	240 U	2.3 U	2.3 UJV
cis-1,2-Dichloroethene	250	250	500000		2.3 U	2300 D	2.3 U	2.3 U
cis-1,3-Dichloropropene					2.3 U	240 U	2.3 U	2.3 U
Cyclohexane					2.3 U	240 U	2.3 U	2.3 U
Dibromochloromethane					2.3 U	240 U	2.3 U	2.3 U
Dibromochloropropane					2.3 U	240 U	2.3 U	2.3 U
Dichlorodifluoromethane					2.3 U	240 U	2.3 U	2.3 UJV

Page 21 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-15	RSB/MW-15	RSB/MW-15	RSB/MW-16
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/10/2014	9/9/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	4	10	14	1
Ethylbenzene	1000	1000	390000		2.3 U	5700 D	2.3 U	2.3 U
Freon 113					2.3 U	240 U	2.3 U	2.3 U
Isopropylbenzene					2.3 U	450 JD	2.3 U	2.3 U
m+p-Xylene					4.6 U	21000 D	4.7 U	5.4 J
Methyl acetate					2.3 U	240 U	2.3 U	2.3 U
Methylcyclohexane					2.3 U	1000 D	2.3 U	2.3 U
Methylene chloride	50	50	500000		2.3 U	240 U	2.3 U	2.3 U
MTBE	930	930	500000		2.3 U	240 U	2.3 U	2.3 U
o-Xylene					2.3 U	6400 D	2.3 U	2.4 J
Styrene					2.3 U	240 U	2.3 U	2.3 U
Tetrachloroethene	1300	1300	150000		2.3 U	240 U	2.3 U	5.4
Toluene	700	700	500000		2.3 U	100000 D	2.3 U	2.3 U
trans-1,2-Dichloroethene	190	190	500000		2.3 U	240 U	2.3 U	2.3 U
trans-1,3-Dichloropropene					2.3 U	240 U	2.3 U	2.3 U
Trichloroethene	470	470	200000		2.3 U	240 U	2.3 U	2.3 U
Trichlorofluoromethane					2.3 U	240 U	2.3 U	2.3 U
Vinyl chloride	20	20	13000		2.3 U	240 U	2.3 U	2.3 U
Xylenes (total)	260	1600	500000		6.9 U	28000 D	7 U	7.8 J

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 22 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Parameter	NYSDEC Part 375 Unrestricted	NYSDEC Part 375 Protection of	NYSDEC Part 375 Commercial	Sample Designation: Sample Date:	RSB/MW-16 9/9/2014	RSB/MW-16 9/9/2014	RSB/MW-17 9/10/2014	RSB/MW-17 9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	11	17	1	13
(Concentrations in µg/kg)	036	Orounawater	(µg/kg)	Cample Depth (it bis).				10
1,1,1-Trichloroethane	680	680	500000		390 U	2.3 U	2.3 U	220 U
1,1,2,2-Tetrachloroethane					390 U	2.3 U	2.3 U	220 U
1,1,2-Trichloroethane					390 U	2.3 U	2.3 U	220 U
1,1-Dichloroethane	270	270	240000		390 U	2.3 U	2.3 U	220 U
1,1-Dichloroethene	330	330	500000		390 U	2.3 U	2.3 U	220 U
1,2,3-Trichlorobenzene					390 U	2.3 U	2.3 U	220 U
1,2,4-Trichlorobenzene					390 U	2.3 U	2.3 U	220 U
1,2-Dibromoethane					390 U	2.3 U	2.3 U	220 U
1,2-Dichlorobenzene	1100	1100	500000		390 U	2.3 U	2.3 U	220 U
1,2-Dichloroethane	20	20	30000		390 U	2.3 U	2.3 U	220 U
1,2-Dichloropropane					390 U	2.3 U	2.3 U	220 U
1,3-Dichlorobenzene	2400	2400	280000		390 U	2.3 U	2.3 U	220 U
1,4-Dichlorobenzene	1800	1800	130000		390 U	2.3 U	2.3 U	220 U
1,4-Dioxane	100	100	130000		7800 U	46 U	46 U	4500 U
2-Butanone (MEK)	120	120	500000		390 U	2.3 U	2.3 U	220 U
2-Hexanone					390 U	2.3 U	2.3 U	220 U
4-Methyl-2-pentanone (MIBK)					390 U	2.3 U	2.3 J	220 U
Acetone	50	50	500000		390 U	20	10 UV	340 UV
Benzene	60	60	44000		390 U	2.3 U	2.3 U	220 U
Bromochloromethane					390 U	2.3 U	2.3 U	220 U
Bromodichloromethane					390 U	2.3 U	2.3 U	220 U
Bromoform					390 U	2.3 U	2.3 U	220 U
Bromomethane					390 U	2.3 U	2.3 U	220 U
Carbon disulfide					390 U	2.3 U	2.3 U	220 U
Carbon tetrachloride	760	760	22000		390 U	2.3 U	2.3 U	220 U
Chlorobenzene	1100	1100	500000		390 U	2.3 U	2.3 U	220 U
Chloroethane					390 U	2.3 U	2.3 U	220 U
Chloroform	370	370	350000		390 U	2.3 U	2.3 U	220 U
Chloromethane					390 UJV	2.3 UJV	2.3 U	220 U
cis-1,2-Dichloroethene	250	250	500000		4100 D	8.7	8.2	330 JD
cis-1,3-Dichloropropene					390 U	2.3 U	2.3 U	220 U
Cyclohexane					390 U	2.3 U	2.3 U	220 U
Dibromochloromethane					390 U	2.3 U	2.3 U	220 U
Dibromochloropropane					390 U	2.3 U	2.3 U	220 U
Dichlorodifluoromethane					390 UJV	2.3 UJV	2.3 U	220 U

Page 23 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-16	RSB/MW-16	RSB/MW-17	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/9/2014	9/9/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	11	17	1	13
Ethylbenzene	1000	1000	390000		4500 D	2.3 U	11	2900 D
Freon 113				'	390 U	2.3 U	2.3 U	220 U
Isopropylbenzene					390 U	2.3 U	2.3 U	330 JD
m+p-Xylene					15000 D	4.6 U	39	10000 D
Methyl acetate					390 U	2.3 U	2.3 U	220 U
Methylcyclohexane					860 D	2.3 U	2.3 U	410 JD
Methylene chloride	50	50	500000		390 U	2.3 U	2.3 U	220 U
MTBE	930	930	500000		390 U	2.3 U	2.3 U	220 U
o-Xylene					5400 D	2.3 U	17	3700 D
Styrene					390 U	2.3 U	2.3 U	220 U
Tetrachloroethene	1300	1300	150000		390 U	2.3 U	2.3 U	220 U
Toluene	700	700	500000		70000 D	27	85	27000 D
trans-1,2-Dichloroethene	190	190	500000		390 U	2.3 U	2.3 U	220 U
trans-1,3-Dichloropropene					390 U	2.3 U	2.3 U	220 U
Trichloroethene	470	470	200000		390 U	2.3 U	2.3 U	220 U
Trichlorofluoromethane					390 U	2.3 U	2.3 U	220 U
Vinyl chloride	20	20	13000		390 U	2.3 U	2.3 U	220 U
Xylenes (total)	260	1600	500000		20000 D	6.9 U	56	14000 D

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 24 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

⁻⁻ No Standards available

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC	Commis Designed	DCD/MAY 47
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	17
1,1,1-Trichloroethane	680	680	500000		2.5 U
1,1,2,2-Tetrachloroethane					2.5 U
1,1,2-Trichloroethane					2.5 U
1,1-Dichloroethane	270	270	240000		2.5 U
1,1-Dichloroethene	330	330	500000		2.5 U
1,2,3-Trichlorobenzene					2.5 U
1,2,4-Trichlorobenzene					2.5 U
1,2-Dibromoethane					2.5 U
1,2-Dichlorobenzene	1100	1100	500000		2.5 U
1,2-Dichloroethane	20	20	30000		2.5 U
1,2-Dichloropropane					2.5 U
1,3-Dichlorobenzene	2400	2400	280000		2.5 U
1,4-Dichlorobenzene	1800	1800	130000		2.5 U
1,4-Dioxane	100	100	130000		50 U
2-Butanone (MEK)	120	120	500000		2.5 U
2-Hexanone					2.5 U
4-Methyl-2-pentanone (MIBK)					2.5 U
Acetone	50	50	500000		2.5 UV
Benzene	60	60	44000		2.5 U
Bromochloromethane					2.5 U
Bromodichloromethane					2.5 U
Bromoform					2.5 U
Bromomethane					2.5 U
Carbon disulfide					2.5 U
Carbon tetrachloride	760	760	22000		2.5 U
Chlorobenzene	1100	1100	500000		2.5 U
Chloroethane					2.5 U
Chloroform	370	370	350000		2.5 U
Chloromethane					2.5 U
cis-1,2-Dichloroethene	250	250	500000		2.5 U
cis-1,3-Dichloropropene					2.5 U
Cyclohexane					2.5 U
Dibromochloromethane					2.5 U
Dibromochloropropane					2.5 U
Dichlorodifluoromethane					2.5 U

Page 25 of 26 2861.0001Y.102/T2

Table 2. Summary of Volatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC		
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	Sample Depth (ft bls):	17
Ethylbenzene	1000	1000	390000		2.5 U
Freon 113					2.5 U
Isopropylbenzene					2.5 U
m+p-Xylene					5 U
Methyl acetate					7.6
Methylcyclohexane					2.5 U
Methylene chloride	50	50	500000		2.5 U
MTBE	930	930	500000		2.5 U
o-Xylene					2.5 U
Styrene					2.5 U
Tetrachloroethene	1300	1300	150000		2.5 U
Toluene	700	700	500000		10 UV
trans-1,2-Dichloroethene	190	190	500000		2.5 U
trans-1,3-Dichloropropene					2.5 U
Trichloroethene	470	470	200000		2.5 U
Trichlorofluoromethane					2.5 U
Vinyl chloride	20	20	13000		2.5 U
Xylenes (total)	260	1600	500000		7.5 U

J - Estimated value

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwate Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 26 of 26 2861.0001Y.102/T2

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample $\mu g/kg$ - Micrograms per kilogram

ft bls - Feet below land surface

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-1	RSB-1	RSB-2	RSB-2	RSB-2
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/20/2014	2/20/2014	2/21/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	20	1	5	11
1,1'-Biphenyl					48 U	49.6 U	1160 U	464 U	4800 U
1,2,4,5-Tetrachlorobenzene					96 U	99.3 U	2320 U	928 U	9610 U
2,2'-oxybis (1-chloropropane)					48 UJV	49.6 UJV	1160 U	464 U	4800 U
2,4,5-Trichlorophenol					48 U	49.6 U	1160 U	464 U	4800 U
2,4,6-Trichlorophenol					48 U	49.6 U	1160 U	464 U	4800 U
2,4-Dichlorophenol					96 U	99.3 U	2320 U	928 U	9610 U
2,4-Dimethylphenol					48 U	49.6 U	1160 U	464 U	4800 U
2,4-Dinitrophenol					191 U	197 U	4600 U	1850 U	19100 U
2,4-Dinitrotoluene					96 U	99.3 U	2320 U	928 U	9610 U
2,6-Dinitrotoluene					48 U	49.6 U	1160 U	464 U	4800 U
2-Chloronaphthalene					48 U	49.6 U	1160 U	464 U	4800 U
2-Chlorophenol					48 U	49.6 U	1160 U	464 U	4800 U
2-Methylnaphthalene					48 U	49.6 U	1160 U	464 U	13000 JD
2-Methylphenol	330	330	500000		96 U	99.3 U	2320 U	928 U	9610 U
2-Nitroaniline					48 U	49.6 U	1160 U	464 U	4800 U
2-Nitrophenol					48 U	49.6 U	1160 U	464 U	4800 U
3&4-Methylphenol	330	330	500000		96 U	99.3 U	2320 U	928 U	9610 U
3,3'-Dichlorobenzidine					191 UJV	197 UJV	4600 U	1850 U	19100 U
3-Nitroaniline					96 U	99.3 U	2320 U	928 U	9610 U
4,6-Dinitro-2-methylphenol					96 U	99.3 U	2320 U	928 U	9610 U
4-Bromophenyl phenyl ether					48 U	49.6 U	1160 U	464 U	4800 U
4-Chloro-3-methylphenol					96 U	99.3 U	2320 U	928 U	9610 U
4-Chloroaniline					96 UJV	99.3 UJV	2320 U	928 U	9610 U
4-Chlorophenyl phenyl ether					48 U	49.6 U	1160 U	464 U	4800 U
4-Nitroaniline					96 U	99.3 U	2320 U	928 U	9610 U
4-Nitrophenol					96 U	99.3 U	2320 U	928 U	9610 U
Acenaphthene	20000	98000	500000		48 U	49.6 U	1160 U	464 U	4800 U
Acenaphthylene	100000	107000	500000		48 U	49.6 U	1160 U	464 U	4800 U
Acetophenone					48 UJV	49.6 UJV	1160 U	464 U	4800 U
Anthracene	100000	1000000	500000		48 U	49.6 U	2590 JD	464 U	4800 U
Atrazine					48 U	49.6 U	1160 U	464 U	4800 U

Page 1 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-1	RSB-1	RSB-2	RSB-2	RSB-2
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/20/2014	2/20/2014	2/21/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	20	1	5	11
Ponzoldobudo					48 UJV	49.6 UJV	1160 U	464 U	4800 U
Benzaldehyde	1000	1000	 E600						
Benzo[a]anthracene	1000	1000	5600		48.4 J	49.6 U	4750 D	943 JD	4800 U
Benzo[a]pyrene	1000	22000	1000		58.6 J	49.6 U	5500 D	1120 JD	4800 U
Benzo[b]fluoranthene	1000	1700	5600		48 U	49.6 U	4110 JD	961 JD	4800 U
Benzo[g,h,i]perylene	100000	1000000	500000		96 U	99.3 U	2320 U	928 U	9610 U
Benzo[k]fluoranthene	800	1700	56000		49.9 J	49.6 U	5080 D	1070 JD	4800 U
Bis(2-chloroethoxy)methane					48 UJV	49.6 UJV	1160 U	464 U	4800 U
Bis(2-chloroethyl) ether					48 U	49.6 U	1160 U	464 U	4800 U
Bis(2-ethylhexyl) phthalate					48 UJV	49.6 UJV	1160 U	464 U	4800 U
Butylbenzyl phthalate					48 U	49.6 U	1160 U	464 U	8430 JD
Caprolactam					48 U	49.6 U	1160 U	464 U	4800 U
Carbazole					48 U	49.6 U	1160 U	464 U	4800 U
Chrysene	1000	1000	56000		52.2 J	49.6 U	4760 D	1000 JD	4800 U
Dibenzo[a,h]anthracene	330	1000000	560		48 U	49.6 U	1160 U	464 U	4800 U
Dibenzofuran	7000	210000	350000		48 U	49.6 U	1160 U	464 U	4800 U
Diethyl phthalate					48 U	49.6 U	1160 U	464 U	4800 U
Dimethyl phthalate					48 U	49.6 U	1160 U	464 U	4800 U
Di-n-butyl phthalate					48 U	49.6 U	1160 U	464 U	4800 U
Di-n-octyl phthalate					48 U	49.6 U	1160 U	464 U	4800 U
Fluoranthene	100000	1000000	500000		104 J	49.6 U	11500 D	1810 JD	4800 U
Fluorene	30000	386000	500000		48 U	49.6 U	1200 JD	464 U	4800 U
Hexachlorobenzene	330	3200	6000		48 U	49.6 U	1160 U	464 U	4800 U
Hexachlorobutadiene					48 U	49.6 U	1160 U	464 U	4800 U
Hexachlorocyclopentadiene					96 UJV	99.3 UJV	2320 U	928 U	9610 U
Hexachloroethane					48 U	49.6 U	1160 U	464 U	4800 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		48 U	49.6 U	1280 JD	464 U	4800 U
Isophorone					48 U	49.6 U	1160 U	464 U	4800 U
Naphthalene	12000	12000	500000		48 U	49.6 U	1160 U	464 U	6980 JD
Nitrobenzene					48 U	49.6 U	1160 U	464 U	4800 U
n-Nitrosodi-n-propylamine					48 U	49.6 U	1160 U	464 U	4800 U
n-Nitrosodiphenylamine					48 U	49.6 U	1160 U	464 U	4800 U

Page 2 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-1	RSB-1	RSB-2	RSB-2	RSB-2
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/20/2014	2/20/2014	2/21/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	20	1	5	11
Pentachlorophenol	800	800	6700		96 U	99.3 U	2320 U	928 U	9610 U
Phenanthrene	100000	1000000	500000		59 J	49.6 U	10100 D	578 JD	4800 U
Phenol	330	330	500000		48 U	49.6 U	1160 U	464 U	4800 U
Pyrene	100000	1000000	500000		93.3 J	49.6 U	11900 D	1870 D	4800 U

J - Estimated value

µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Standards

Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Groundwater Standards

Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial Standards

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 3 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the original sample

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-2	RSB-3	RSB-3	RSB-4	RSB-4
Parameter	Unrestricted	Protection of	Commercia	•		2/20/2014	2/20/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18	8	18	8	18
			., 0						
1,1'-Biphenyl					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
1,2,4,5-Tetrachlorobenzene					103 U	99.5 U	199 U	98.9 U	103 U
2,2'-oxybis (1-chloropropane)					51.5 UJV	49.8 UJV	99.6 UJV	49.5 UJV	51.3 UJV
2,4,5-Trichlorophenol					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2,4,6-Trichlorophenol					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2,4-Dichlorophenol					103 U	99.5 U	199 U	98.9 U	103 U
2,4-Dimethylphenol					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2,4-Dinitrophenol					205 U	198 U	396 U	197 U	204 U
2,4-Dinitrotoluene					103 U	99.5 U	199 U	98.9 U	103 U
2,6-Dinitrotoluene					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2-Chloronaphthalene					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2-Chlorophenol					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2-Methylnaphthalene					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2-Methylphenol	330	330	500000		103 U	99.5 U	199 U	98.9 U	103 U
2-Nitroaniline					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
2-Nitrophenol					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
3&4-Methylphenol	330	330	500000		103 U	99.5 U	199 U	98.9 U	103 U
3,3'-Dichlorobenzidine					205 UJV	198 UJV	396 UJV	197 UJV	204 UJV
3-Nitroaniline					103 U	99.5 U	199 U	98.9 U	103 U
4,6-Dinitro-2-methylphenol					103 U	99.5 U	199 U	98.9 U	103 U
4-Bromophenyl phenyl ether					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
4-Chloro-3-methylphenol					103 U	99.5 U	199 U	98.9 U	103 U
4-Chloroaniline					103 UJV	99.5 UJV	199 UJV	98.9 UJV	103 UJV
4-Chlorophenyl phenyl ether					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
4-Nitroaniline					103 U	99.5 U	199 U	98.9 U	103 U
4-Nitrophenol					103 U	99.5 U	199 U	98.9 U	103 U
Acenaphthene	20000	98000	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Acenaphthylene	100000	107000	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Acetophenone					51.5 UJV	49.8 UJV	99.6 UJV	49.5 UJV	51.3 UJV
Anthracene	100000	1000000	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Atrazine					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U

Page 4 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-2	RSB-3	RSB-3	RSB-4	RSB-4
Parameter	Unrestricted	Protection of	Commercia	•		2/20/2014	2/20/2014		2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18	8	18	8	18
Benzaldehyde					51.5 UJV	49.8 UJV	99.6 UJV	49.5 UJV	51.3 UJV
Benzo[a]anthracene	1000	1000	5600		51.5 U	49.8 U	232 JD	49.5 U	51.3 U
Benzo[a]pyrene	1000	22000	1000		51.5 U	49.8 U	270 JD	49.5 U	51.3 U
Benzo[b]fluoranthene	1000	1700	5600		51.5 U	49.8 U	233 JD	49.5 U	51.3 U
Benzo[g,h,i]perylene	100000	1000000	500000		103 U	99.5 U	199 U	98.9 U	103 U
Benzo[k]fluoranthene	800	1700	56000		51.5 U	49.8 U	254 JD	49.5 U	51.3 U
Bis(2-chloroethoxy)methane					51.5 UJV	49.8 UJV	99.6 UJV	49.5 UJV	51.3 UJV
Bis(2-chloroethyl) ether					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Bis(2-ethylhexyl) phthalate					51.5 UJV	49.8 UJV	99.6 UJV	49.5 UJV	51.3 UJV
Butylbenzyl phthalate					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Caprolactam					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Carbazole					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Chrysene	1000	1000	56000		51.5 U	49.8 U	247 JD	49.5 U	51.3 U
Dibenzo[a,h]anthracene	330	1000000	560		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Dibenzofuran	7000	210000	350000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Diethyl phthalate					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Dimethyl phthalate					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Di-n-butyl phthalate					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Di-n-octyl phthalate					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Fluoranthene	100000	1000000	500000		51.5 U	49.8 U	500 D	49.5 U	51.3 U
Fluorene	30000	386000	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Hexachlorobenzene	330	3200	6000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Hexachlorobutadiene					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Hexachlorocyclopentadiene					103 UJV	99.5 UJV	199 UJV	98.9 UJV	103 UJV
Hexachloroethane					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		51.5 U	49.8 U	101 JD	49.5 U	51.3 U
Isophorone					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Naphthalene	12000	12000	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Nitrobenzene					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
n-Nitrosodi-n-propylamine					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
n-Nitrosodiphenylamine					51.5 U	49.8 U	99.6 U	49.5 U	51.3 U

Page 5 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-2	RSB-3	RSB-3	RSB-4	RSB-4
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/21/2014	2/20/2014	2/20/2014	2/21/2014	2/21/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18	8	18	8	18
									_
Pentachlorophenol	800	800	6700		103 U	99.5 U	199 U	98.9 U	103 U
Phenanthrene	100000	1000000	500000		51.5 U	49.8 U	350 JD	49.5 U	51.3 U
Phenol	330	330	500000		51.5 U	49.8 U	99.6 U	49.5 U	51.3 U
Pyrene	100000	1000000	500000		51.5 U	49.8 U	422 D	49.5 U	51.3 U

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 6 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-5	RSB-5	RSB-6	RSB-6	RSB-7
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/18/2014	2/18/2014	2/18/2014	2/18/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	9	19	8.5
1,1'-Biphenyl					52.2 U	48 U	47.7 U	49 U	49.1 U
1,2,4,5-Tetrachlorobenzene					104 U	95.9 U	95.4 U	97.9 U	98.2 U
2,2'-oxybis (1-chloropropane)					52.2 U	48 U	47.7 U	49 U	49.1 U
2,4,5-Trichlorophenol					52.2 U	48 U	47.7 U	49 U	49.1 U
2,4,6-Trichlorophenol					52.2 U	48 U	47.7 U	49 U	49.1 U
2,4-Dichlorophenol					104 U	95.9 U	95.4 U	97.9 U	98.2 U
2,4-Dimethylphenol					52.2 U	48 U	47.7 U	49 U	49.1 U
2,4-Dinitrophenol					208 U	191 U	190 U	195 U	195 U
2,4-Dinitrotoluene					104 U	95.9 U	95.4 U	97.9 U	98.2 U
2,6-Dinitrotoluene					52.2 U	48 U	47.7 U	49 U	49.1 U
2-Chloronaphthalene					52.2 U	48 U	47.7 U	49 U	49.1 U
2-Chlorophenol					52.2 U	48 U	47.7 U	49 U	49.1 U
2-Methylnaphthalene					52.2 U	48 U	47.7 U	49 U	49.1 U
2-Methylphenol	330	330	500000		104 U	95.9 U	95.4 U	97.9 U	98.2 U
2-Nitroaniline					52.2 U	48 U	47.7 U	49 U	49.1 U
2-Nitrophenol					52.2 U	48 U	47.7 U	49 U	49.1 U
3&4-Methylphenol	330	330	500000		104 U	95.9 U	95.4 U	97.9 U	98.2 U
3,3'-Dichlorobenzidine					208 U	191 U	190 U	195 U	195 U
3-Nitroaniline					104 U	95.9 U	95.4 U	97.9 U	98.2 U
4,6-Dinitro-2-methylphenol					104 U	95.9 U	95.4 U	97.9 U	98.2 U
4-Bromophenyl phenyl ether					52.2 U	48 U	47.7 U	49 U	49.1 U
4-Chloro-3-methylphenol					104 U	95.9 U	95.4 U	97.9 U	98.2 U
4-Chloroaniline					104 UJV	95.9 UJV	95.4 UJV	97.9 UJV	98.2 UJV
4-Chlorophenyl phenyl ether					52.2 U	48 U	47.7 U	49 U	49.1 U
4-Nitroaniline					104 U	95.9 U	95.4 U	97.9 U	98.2 U
4-Nitrophenol					RV	RV	RV	RV	RV
Acenaphthene	20000	98000	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Acenaphthylene	100000	107000	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Acetophenone					52.2 U	48 U	47.7 U	49 U	49.1 U
Anthracene	100000	1000000	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Atrazine					52.2 U	48 U	47.7 U	49 U	49.1 U

Page 7 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-5	RSB-5	RSB-6	RSB-6	RSB-7
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/18/2014	2/18/2014	2/18/2014	2/18/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	9	19	8.5
Benzaldehyde					52.2 UJV	48 UJV	47.7 UJV	49 UJV	49.1 UJV
Benzo[a]anthracene	1000	1000	5600		52.2 U	48 U	104 J	49 U	170 J
Benzo[a]pyrene	1000	22000	1000		55.1 J	48 U	125 J	49 U	192 J
Benzo[b]fluoranthene	1000	1700	5600		52.2 U	48 U	131 J	49 U	194 J
Benzo[g,h,i]perylene	100000	1000000	500000		104 U	95.9 U	95.4 U	97.9 U	98.2 U
Benzo[k]fluoranthene	800	1700	56000		69.6 J	48 U	122 J	49 U	193 J
Bis(2-chloroethoxy)methane					52.2 U	48 U	47.7 U	49 U	49.1 U
Bis(2-chloroethyl) ether					52.2 U	48 U	47.7 U	49 U	49.1 U
Bis(2-ethylhexyl) phthalate					101 J	48 U	47.7 U	49 U	49.1 U
Butylbenzyl phthalate					52.2 U	48 U	47.7 U	49 U	49.1 U
Caprolactam					52.2 U	48 U	47.7 U	49 U	49.1 U
Carbazole					52.2 U	48 U	47.7 U	49 U	49.1 U
Chrysene	1000	1000	56000		56.3 J	48 U	113 J	49 U	179 J
Dibenzo[a,h]anthracene	330	1000000	560		52.2 U	48 U	47.7 U	49 U	49.1 U
Dibenzofuran	7000	210000	350000		52.2 U	48 U	47.7 U	49 U	49.1 U
Diethyl phthalate					52.2 U	48 U	47.7 U	49 U	49.1 U
Dimethyl phthalate					52.2 U	48 U	47.7 U	49 U	49.1 U
Di-n-butyl phthalate					70 J	48 U	47.7 U	100 J	49.1 U
Di-n-octyl phthalate					52.2 U	48 U	47.7 U	49 U	49.1 U
Fluoranthene	100000	1000000	500000		103 J	48 U	198	49 U	325
Fluorene	30000	386000	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Hexachlorobenzene	330	3200	6000		52.2 U	48 U	47.7 U	49 U	49.1 U
Hexachlorobutadiene					52.2 U	48 U	47.7 U	49 U	49.1 U
Hexachlorocyclopentadiene					104 UJV	95.9 UJV	95.4 UJV	97.9 UJV	98.2 UJV
Hexachloroethane					52.2 U	48 U	47.7 U	49 U	49.1 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		52.2 U	48 U	47.7 U	49 U	54.2 J
Isophorone					52.2 U	48 U	47.7 U	49 U	49.1 U
Naphthalene	12000	12000	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Nitrobenzene					52.2 U	48 U	47.7 U	49 U	49.1 U
n-Nitrosodi-n-propylamine					52.2 U	48 U	47.7 U	49 U	49.1 U
n-Nitrosodiphenylamine					52.2 U	48 U	47.7 U	49 U	49.1 U

Page 8 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-5	RSB-5	RSB-6	RSB-6	RSB-7
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/18/2014	2/18/2014	2/18/2014	2/18/2014	2/19/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	9	19	8.5
Dantachlaranhanal	900	900	6700		10411	95.9 U	05.411	07.011	00 2 1 1
Pentachlorophenol	800	800	6700		104 U		95.4 U	97.9 U	98.2 U
Phenanthrene	100000	1000000	500000		52.2 U	48 U	106 J	49 U	192 J
Phenol	330	330	500000		52.2 U	48 U	47.7 U	49 U	49.1 U
Pyrene	100000	1000000	500000		94.9 J	48 U	200	49 U	334

J - Estimated value

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 9 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-7	RSB-8	RSB-8	RSB-8	RSB-8
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/19/2014	2/19/2014	2/19/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18.5	1.5	5	8.5	18.5
1,1'-Biphenyl					50.2 U	457 U	476 U	480 U	50.3 U
1,2,4,5-Tetrachlorobenzene					100 U	915 U	951 U	960 U	101 U
2,2'-oxybis (1-chloropropane)					50.2 U	457 U	476 U	480 U	50.3 U
2,4,5-Trichlorophenol					50.2 U	457 U	476 U	480 U	50.3 U
2,4,6-Trichlorophenol					50.2 U	457 U	476 U	480 U	50.3 U
2,4-Dichlorophenol					100 U	915 U	951 U	960 U	101 U
2,4-Dimethylphenol					50.2 U	457 U	476 U	480 U	50.3 U
2,4-Dinitrophenol					200 U	1820 U	1890 U	1910 U	200 U
2,4-Dinitrotoluene					100 U	915 U	951 U	960 U	101 U
2,6-Dinitrotoluene					50.2 U	457 U	476 U	480 U	50.3 U
2-Chloronaphthalene					50.2 U	457 U	476 U	480 U	50.3 U
2-Chlorophenol					50.2 U	457 U	476 U	480 U	50.3 U
2-Methylnaphthalene					50.2 U	457 U	476 U	480 U	50.3 U
2-Methylphenol	330	330	500000		100 U	915 U	951 U	960 U	101 U
2-Nitroaniline					50.2 U	457 U	476 U	480 U	50.3 U
2-Nitrophenol					50.2 U	457 U	476 U	480 U	50.3 U
3&4-Methylphenol	330	330	500000		100 U	915 U	951 U	960 U	101 U
3,3'-Dichlorobenzidine					200 U	1820 U	1890 U	1910 U	200 U
3-Nitroaniline					100 U	915 U	951 U	960 U	101 U
4,6-Dinitro-2-methylphenol					100 U	915 U	951 U	960 U	101 U
4-Bromophenyl phenyl ether					50.2 U	457 U	476 U	480 U	50.3 U
4-Chloro-3-methylphenol					100 U	915 U	951 U	960 U	101 U
4-Chloroaniline					100 UJV	915 UJV	951 UJV	960 UJV	101 UJV
4-Chlorophenyl phenyl ether					50.2 U	457 U	476 U	480 U	50.3 U
4-Nitroaniline					100 U	915 U	951 U	960 U	101 U
4-Nitrophenol					RV	RV	RV	RV	RV
Acenaphthene	20000	98000	500000		50.2 U	457 U	476 U	480 U	50.3 U
Acenaphthylene	100000	107000	500000		50.2 U	457 U	476 U	480 U	50.3 U
Acetophenone					50.2 U	457 U	476 U	480 U	50.3 U
Anthracene	100000	1000000	500000		50.2 U	827 JD	1270 JD	625 JD	50.3 U
Atrazine					50.2 U	457 U	476 U	480 U	50.3 U

Page 10 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-7	RSB-8	RSB-8	RSB-8	RSB-8
Parameter	Unrestricted	Protection of				2/19/2014	2/19/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18.5	1.5	5	8.5	18.5
			., 0						
Benzaldehyde					50.2 UJV	457 UJV	476 UJV	480 UJV	50.3 UJV
Benzo[a]anthracene	1000	1000	5600		50.2 U	2580 D	3430 D	1680 JD	50.3 U
Benzo[a]pyrene	1000	22000	1000		50.2 U	2710 D	3510 D	1690 JD	50.3 U
Benzo[b]fluoranthene	1000	1700	5600		50.2 U	2080 D	2750 D	1410 JD	50.3 U
Benzo[g,h,i]perylene	100000	1000000	500000		100 U	1030 JD	1050 JD	960 U	101 U
Benzo[k]fluoranthene	800	1700	56000		50.2 U	2530 D	3490 D	1690 JD	50.3 U
Bis(2-chloroethoxy)methane					50.2 U	457 U	476 U	480 U	50.3 U
Bis(2-chloroethyl) ether					50.2 U	457 U	476 U	480 U	50.3 U
Bis(2-ethylhexyl) phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Butylbenzyl phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Caprolactam					50.2 U	457 U	476 U	480 U	50.3 U
Carbazole					50.2 U	457 U	517 JD	480 U	50.3 U
Chrysene	1000	1000	56000		50.2 U	2540 D	3420 D	1650 JD	50.3 U
Dibenzo[a,h]anthracene	330	1000000	560		50.2 U	457 U	510 JD	480 U	50.3 U
Dibenzofuran	7000	210000	350000		50.2 U	457 U	476 U	480 U	50.3 U
Diethyl phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Dimethyl phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Di-n-butyl phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Di-n-octyl phthalate					50.2 U	457 U	476 U	480 U	50.3 U
Fluoranthene	100000	1000000	500000		50.2 U	5240 D	7200 D	3940 D	50.3 U
Fluorene	30000	386000	500000		50.2 U	457 U	476 JD	480 U	50.3 U
Hexachlorobenzene	330	3200	6000		50.2 U	457 U	476 U	480 U	50.3 U
Hexachlorobutadiene					50.2 U	457 U	476 U	480 U	50.3 U
Hexachlorocyclopentadiene					100 UJV	915 UJV	951 UJV	960 UJV	101 UJV
Hexachloroethane					50.2 U	457 U	476 U	480 U	50.3 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		50.2 U	929 JD	1050 JD	522 JD	50.3 U
Isophorone					50.2 U	457 U	476 U	480 U	50.3 U
Naphthalene	12000	12000	500000		50.2 U	457 U	476 U	480 U	50.3 U
Nitrobenzene					50.2 U	457 U	476 U	480 U	50.3 U
n-Nitrosodi-n-propylamine					50.2 U	457 U	476 U	480 U	50.3 U
n-Nitrosodiphenylamine					50.2 U	457 U	476 U	480 U	50.3 U

Page 11 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-7	RSB-8	RSB-8	RSB-8	RSB-8
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/19/2014	2/19/2014	2/19/2014	2/19/2014	2/19/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	18.5	1.5	5	8.5	18.5
									_
Pentachlorophenol	800	800	6700		100 U	915 U	951 U	960 U	101 U
Phenanthrene	100000	1000000	500000		50.2 U	2940 D	4930 D	2880 D	50.3 U
Phenol	330	330	500000		50.2 U	457 U	476 U	480 U	50.3 U
Pyrene	100000	1000000	500000		50.2 U	4940 D	6710 D	3690 D	50.3 U

J - Estimated value

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 12 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-9	RSB-9	RSB-10	RSB-10	RSB-11
Parameter	Unrestricted	Protection of				2/19/2014	2/20/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	7.5	17.5	7.5
<u> </u>			(1 3' 3/						
1,1'-Biphenyl					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
1,2,4,5-Tetrachlorobenzene					198 UJV	103 U	97 U	99.6 U	95 U
2,2'-oxybis (1-chloropropane)					99.1 U	51.3 U	48.5 UJV	49.8 UJV	47.5 UJV
2,4,5-Trichlorophenol					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2,4,6-Trichlorophenol					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2,4-Dichlorophenol					198 U	103 U	97 U	99.6 U	95 U
2,4-Dimethylphenol					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2,4-Dinitrophenol					394 U	204 U	193 U	198 U	189 U
2,4-Dinitrotoluene					198 U	103 U	97 U	99.6 U	95 U
2,6-Dinitrotoluene					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2-Chloronaphthalene					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2-Chlorophenol					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2-Methylnaphthalene					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2-Methylphenol	330	330	500000		198 U	103 U	97 U	99.6 U	95 U
2-Nitroaniline					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
2-Nitrophenol					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
3&4-Methylphenol	330	330	500000		198 U	103 U	97 U	99.6 U	95 U
3,3'-Dichlorobenzidine					7860 U	204 U	193 UJV	198 UJV	189 UJV
3-Nitroaniline					198 U	103 U	97 U	99.6 U	95 U
4,6-Dinitro-2-methylphenol					198 U	103 U	97 U	99.6 U	95 U
4-Bromophenyl phenyl ether					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
4-Chloro-3-methylphenol					198 U	103 U	97 U	99.6 U	95 U
4-Chloroaniline					198 UJV	103 UJV	97 UJV	99.6 UJV	95 UJV
4-Chlorophenyl phenyl ether					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
4-Nitroaniline					198 U	103 U	97 U	99.6 U	95 U
4-Nitrophenol					RV	RV	97 U	99.6 U	95 U
Acenaphthene	20000	98000	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Acenaphthylene	100000	107000	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Acetophenone					99.1 U	51.3 U	48.5 UJV	49.8 UJV	47.5 UJV
Anthracene	100000	1000000	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Atrazine					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U

Page 13 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-9	RSB-9	RSB-10	RSB-10	RSB-11
Parameter	Unrestricted	Protection of		•		2/19/2014	2/20/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	7.5	17.5	7.5
((1-99)	ampro z span (v ans)					
Benzaldehyde					99.1 UJV	51.3 UJV	48.5 UJV	49.8 UJV	47.5 UJV
Benzo[a]anthracene	1000	1000	5600		3930 U	51.3 U	48.5 U	88.2 J	47.5 U
Benzo[a]pyrene	1000	22000	1000		3930 U	51.3 U	48.5 U	114 J	47.5 U
Benzo[b]fluoranthene	1000	1700	5600		3930 U	51.3 U	48.5 U	71.2 J	47.5 U
Benzo[g,h,i]perylene	100000	1000000	500000		3930 U	103 U	97 U	99.6 U	95 U
Benzo[k]fluoranthene	800	1700	56000		3930 U	51.3 U	48.5 U	88.5 J	47.5 U
Bis(2-chloroethoxy)methane					99.1 U	51.3 U	48.5 UJV	49.8 UJV	47.5 UJV
Bis(2-chloroethyl) ether					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Bis(2-ethylhexyl) phthalate					3930 U	51.3 U	48.5 UJV	49.8 UJV	81.5 JV
Butylbenzyl phthalate					3930 U	51.3 U	48.5 U	49.8 U	47.5 U
Caprolactam					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Carbazole					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Chrysene	1000	1000	56000		3930 U	51.3 U	48.5 U	92.1 J	47.5 U
Dibenzo[a,h]anthracene	330	1000000	560		3930 U	51.3 U	48.5 U	49.8 U	47.5 U
Dibenzofuran	7000	210000	350000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Diethyl phthalate					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Dimethyl phthalate					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Di-n-butyl phthalate					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Di-n-octyl phthalate					3930 U	51.3 U	48.5 U	49.8 U	47.5 U
Fluoranthene	100000	1000000	500000		99.1 U	51.3 U	48.5 U	183 J	47.5 U
Fluorene	30000	386000	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Hexachlorobenzene	330	3200	6000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Hexachlorobutadiene					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Hexachlorocyclopentadiene					198 UJV	103 UJV	97 UJV	99.6 UJV	95 UJV
Hexachloroethane					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		3930 U	51.3 U	48.5 U	68.8 J	47.5 U
Isophorone					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Naphthalene	12000	12000	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Nitrobenzene					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
n-Nitrosodi-n-propylamine					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
n-Nitrosodiphenylamine					99.1 U	51.3 U	48.5 U	49.8 U	47.5 U

Page 14 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-9	RSB-9	RSB-10	RSB-10	RSB-11
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/19/2014	2/19/2014	2/20/2014	2/20/2014	2/20/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	8.5	18.5	7.5	17.5	7.5
Pentachlorophenol	800	800	6700		198 U	103 U	97 U	99.6 U	95 U
Phenanthrene	100000	1000000	500000		255 JD	51.3 U	48.5 U	130 J	47.5 U
Phenol	330	330	500000		99.1 U	51.3 U	48.5 U	49.8 U	47.5 U
Pyrene	100000	1000000	500000		3930 U	51.3 U	48.5 U	166 J	47.5 U
-									

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 15 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

_	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-11	RSB-11	RSB-12	RSB-12	RSB-13
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/20/2014	2/20/2014	2/12/2014	2/12/2014	2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	7.5	17.5	9	18	9
1,1'-Biphenyl					47.9 U	49.1 U	47.6 U	48 U	50.8 U
1,2,4,5-Tetrachlorobenzene					95.7 U	98.2 U	95.3 U	96 U	102 U
2,2'-oxybis (1-chloropropane)					47.9 UJV	49.1 UJV	47.6 UJV	48 UJV	50.8 U
2,4,5-Trichlorophenol					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2,4,6-Trichlorophenol					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2,4-Dichlorophenol					95.7 U	98.2 U	95.3 U	96 U	102 U
2,4-Dimethylphenol					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2,4-Dinitrophenol					190 U	195 U	189 UJV	191 UJV	202 UJV
2,4-Dinitrotoluene					95.7 U	98.2 U	95.3 U	96 U	102 U
2,6-Dinitrotoluene					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2-Chloronaphthalene					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2-Chlorophenol					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2-Methylnaphthalene					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2-Methylphenol	330	330	500000		95.7 U	98.2 U	95.3 U	96 U	102 UJV
2-Nitroaniline					47.9 U	49.1 U	47.6 U	48 U	50.8 U
2-Nitrophenol					47.9 U	49.1 U	47.6 U	48 U	50.8 U
3&4-Methylphenol	330	330	500000		95.7 U	98.2 U	95.3 U	96 U	102 U
3,3'-Dichlorobenzidine					190 UJV	195 UJV	189 U	191 U	202 U
3-Nitroaniline					95.7 U	98.2 U	95.3 U	96 U	102 U
4,6-Dinitro-2-methylphenol					95.7 U	98.2 U	95.3 U	96 U	102 U
4-Bromophenyl phenyl ether					47.9 U	49.1 U	47.6 U	48 U	50.8 U
4-Chloro-3-methylphenol					95.7 U	98.2 U	95.3 U	96 U	102 U
4-Chloroaniline					95.7 UJV	98.2 UJV	95.3 U	96 U	102 U
4-Chlorophenyl phenyl ether					47.9 U	49.1 U	47.6 U	48 U	50.8 U
4-Nitroaniline					95.7 U	98.2 U	95.3 U	96 U	102 U
4-Nitrophenol					95.7 U	98.2 U	95.3 U	96 U	102 U
Acenaphthene	20000	98000	500000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Acenaphthylene	100000	107000	500000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Acetophenone					47.9 UJV	49.1 UJV	47.6 U	48 U	50.8 U
Anthracene	100000	1000000	500000		47.9 U	49.1 U	76.4 J	48 U	144 J
Atrazine					47.9 U	49.1 U	47.6 U	48 U	50.8 U

Page 16 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-11	RSB-11	RSB-12	RSB-12	RSB-13
Parameter	Unrestricted	Protection of				2/20/2014	2/12/2014		2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	7.5	17.5	9	18	9
13 3/			(1 5 5)	, , ,					
Benzaldehyde					47.9 UJV	49.1 UJV	47.6 UJV	48 UJV	50.8 U
Benzo[a]anthracene	1000	1000	5600		47.9 U	49.1 U	248	48 U	327
Benzo[a]pyrene	1000	22000	1000		47.9 U	49.1 U	214	48 U	268
Benzo[b]fluoranthene	1000	1700	5600		47.9 U	49.1 U	171 J	48 U	267
Benzo[g,h,i]perylene	100000	1000000	500000		95.7 U	98.2 U	95.3 UJV	96 UJV	113 J
Benzo[k]fluoranthene	800	1700	56000		47.9 U	49.1 U	214	48 U	219
Bis(2-chloroethoxy)methane					47.9 UJV	49.1 UJV	47.6 U	48 U	50.8 U
Bis(2-chloroethyl) ether					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Bis(2-ethylhexyl) phthalate					72.9 JV	49.1 UJV	47.6 UJV	48 UJV	50.8 UJV
Butylbenzyl phthalate					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Caprolactam					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Carbazole					47.9 U	49.1 U	47.6 U	48 U	55.7 J
Chrysene	1000	1000	56000		47.9 U	49.1 U	269	48 U	358
Dibenzo[a,h]anthracene	330	1000000	560		47.9 U	49.1 U	47.6 UJV	48 UJV	50.8 U
Dibenzofuran	7000	210000	350000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Diethyl phthalate					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Dimethyl phthalate					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Di-n-butyl phthalate					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Di-n-octyl phthalate					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Fluoranthene	100000	1000000	500000		47.9 U	49.1 U	606	48 U	742 JV
Fluorene	30000	386000	500000		47.9 U	49.1 U	47.6 U	48 U	98 J
Hexachlorobenzene	330	3200	6000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Hexachlorobutadiene					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Hexachlorocyclopentadiene					95.7 UJV	98.2 UJV	95.3 UJV	96 UJV	102 UJV
Hexachloroethane					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		47.9 U	49.1 U	50.3 JV	48 UJV	131 J
Isophorone					47.9 U	49.1 U	47.6 U	48 U	50.8 U
Naphthalene	12000	12000	500000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Nitrobenzene					47.9 U	49.1 U	47.6 U	48 U	50.8 U
n-Nitrosodi-n-propylamine					47.9 U	49.1 U	47.6 U	48 U	50.8 U
n-Nitrosodiphenylamine					47.9 U	49.1 U	47.6 U	48 U	50.8 U

Page 17 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC						
	Part 375	Part 375	Part 375	Sample Designation:	RSB-11	RSB-11	RSB-12	RSB-12	RSB-13
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/20/2014	2/20/2014	2/12/2014	2/12/2014	2/12/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	7.5	17.5	9	18	9
									_
Pentachlorophenol	800	800	6700		95.7 U	98.2 U	95.3 U	96 U	102 U
Phenanthrene	100000	1000000	500000		47.9 U	49.1 U	418	48 U	535
Phenol	330	330	500000		47.9 U	49.1 U	47.6 U	48 U	50.8 U
Pyrene	100000	1000000	500000		47.9 U	49.1 U	555	48 U	513
-									

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 18 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-13	RSB-13	RSB-14/4D	RSB-14/4D
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/12/2014	2/12/2014	2/10/2014	2/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	9	19	2.5	5
								_
1,1'-Biphenyl					51.1 U	50.5 U	428 U	437 U
1,2,4,5-Tetrachlorobenzene					102 U	101 U	857 U	874 U
2,2'-oxybis (1-chloropropane)					51.1 U	50.5 U	428 U	437 U
2,4,5-Trichlorophenol					51.1 U	50.5 U	428 U	437 U
2,4,6-Trichlorophenol					51.1 U	50.5 U	428 U	437 U
2,4-Dichlorophenol					102 U	101 U	857 U	874 U
2,4-Dimethylphenol					51.1 U	50.5 U	428 U	437 U
2,4-Dinitrophenol					203 UJV	201 UJV	RV	RV
2,4-Dinitrotoluene					102 U	101 U	857 U	874 U
2,6-Dinitrotoluene					51.1 U	50.5 U	428 U	437 U
2-Chloronaphthalene					51.1 U	50.5 U	428 U	437 U
2-Chlorophenol					51.1 U	50.5 U	428 U	437 U
2-Methylnaphthalene					51.1 U	50.5 U	428 U	437 U
2-Methylphenol	330	330	500000		102 UJV	101 UJV	857 U	874 U
2-Nitroaniline					51.1 U	50.5 U	428 U	437 U
2-Nitrophenol					51.1 U	50.5 U	428 U	437 U
3&4-Methylphenol	330	330	500000		102 U	101 U	857 U	874 U
3,3'-Dichlorobenzidine					203 U	201 U	1700 UJV	1740 UJV
3-Nitroaniline					102 U	101 U	857 U	874 U
4,6-Dinitro-2-methylphenol					102 U	101 U	RV	RV
4-Bromophenyl phenyl ether					51.1 U	50.5 U	428 U	437 U
4-Chloro-3-methylphenol					102 U	101 U	857 U	874 U
4-Chloroaniline					102 U	101 U	857 UJV	874 UJV
4-Chlorophenyl phenyl ether					51.1 U	50.5 U	428 U	437 U
4-Nitroaniline					102 U	101 U	857 U	874 U
4-Nitrophenol					102 U	101 U	857 U	874 U
Acenaphthene	20000	98000	500000		78.3 J	50.5 U	428 U	437 U
Acenaphthylene	100000	107000	500000		51.1 U	50.5 U	428 U	437 U
Acetophenone					51.1 U	50.5 U	428 U	437 U
Anthracene	100000	1000000	500000		252	50.5 U	503 JD	707 JD
Atrazine					51.1 U	50.5 U	428 U	437 U

Page 19 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-13	RSB-13	RSB-14/4D	RSB-14/4D
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/12/2014	2/12/2014	2/10/2014	2/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	9	19	2.5	5
Benzaldehyde					51.1 U	50.5 U	428 U	437 U
Benzo[a]anthracene	1000	1000	5600		527	50.5 U	1480 JD	1730 D
Benzo[a]pyrene	1000	22000	1000		440	50.5 U	1470 JD	1560 JD
Benzo[b]fluoranthene	1000	1700	5600		456	50.5 U	1990 D	1410 JD
Benzo[g,h,i]perylene	100000	1000000	500000		214	101 U	857 U	874 U
Benzo[k]fluoranthene	800	1700	56000		400	50.5 U	1660 JD	1780 D
Bis(2-chloroethoxy)methane					51.1 U	50.5 U	428 U	437 U
Bis(2-chloroethyl) ether					51.1 U	50.5 U	428 U	437 U
Bis(2-ethylhexyl) phthalate					51.1 UJV	50.5 UJV	428 UJV	437 UJV
Butylbenzyl phthalate					51.1 U	50.5 U	428 UJV	437 UJV
Caprolactam					51.1 U	50.5 U	428 U	437 U
Carbazole					105 J	50.5 U	428 U	437 U
Chrysene	1000	1000	56000		581	50.5 U	1610 JD	1900 D
Dibenzo[a,h]anthracene	330	1000000	560		51.1 U	50.5 U	428 U	437 U
Dibenzofuran	7000	210000	350000		51.1 U	50.5 U	428 U	437 U
Diethyl phthalate					51.1 U	50.5 U	428 U	437 U
Dimethyl phthalate					51.1 U	50.5 U	428 U	437 U
Di-n-butyl phthalate					51.1 U	50.5 U	428 U	437 U
Di-n-octyl phthalate					51.1 U	50.5 U	428 U	437 U
Fluoranthene	100000	1000000	500000		1230 JV	50.5 U	3450 D	4180 D
Fluorene	30000	386000	500000		138 J	50.5 U	428 U	437 U
Hexachlorobenzene	330	3200	6000		51.1 U	50.5 U	428 U	437 U
Hexachlorobutadiene					51.1 U	50.5 U	428 U	437 U
Hexachlorocyclopentadiene					102 UJV	101 UJV	RV	RV
Hexachloroethane					51.1 U	50.5 U	428 U	437 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		230	50.5 U	557 JD	489 JD
Isophorone					51.1 U	50.5 U	428 U	437 U
Naphthalene	12000	12000	500000		51.1 U	50.5 U	428 U	437 U
Nitrobenzene					51.1 U	50.5 U	428 U	437 U
n-Nitrosodi-n-propylamine					51.1 U	50.5 U	428 U	437 U
n-Nitrosodiphenylamine					51.1 U	50.5 U	428 U	437 U

Page 20 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Sample Designation:	RSB-13	RSB-13	RSB-14/4D	RSB-14/4D
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/12/2014	2/12/2014	2/10/2014	2/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	9	19	2.5	5
Pentachlorophenol	800	800	6700		102 U	101 U	857 U	874 U
Phenanthrene	100000	1000000	500000		820	50.5 U	2390 D	3110 D
Phenol	330	330	500000		51.1 U	50.5 U	428 U	437 U
Pyrene	100000	1000000	500000		783	50.5 U	2290 D	2770 D

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 21 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:				RSB/MW-14
Parameter	Unrestricted	Protection of		•		2/10/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	38	12	17
1,1'-Biphenyl					1210 U	50.3 U	46.9 U	47.7 U
1,2,4,5-Tetrachlorobenzene					2410 U	101 U	93.7 U	95.3 U
2,2'-oxybis (1-chloropropane)					1210 U	50.3 U	46.9 U	47.7 U
2,4,5-Trichlorophenol					1210 U	50.3 U	46.9 U	47.7 U
2,4,6-Trichlorophenol					1210 U	50.3 U	46.9 U	47.7 U
2,4-Dichlorophenol					2410 U	101 U	93.7 U	95.3 U
2,4-Dimethylphenol					1210 U	50.3 U	46.9 U	47.7 U
2,4-Dinitrophenol					RV	RV	186 U	189 U
2,4-Dinitrotoluene					2410 U	101 U	93.7 U	95.3 U
2,6-Dinitrotoluene					1210 U	50.3 U	46.9 U	47.7 U
2-Chloronaphthalene					1210 U	50.3 U	46.9 U	47.7 U
2-Chlorophenol					1930 JD	50.3 U	46.9 U	47.7 U
2-Methylnaphthalene					4540 JD	50.3 U	497	47.7 U
2-Methylphenol	330	330	500000		2410 U	101 U	93.7 U	95.3 U
2-Nitroaniline					1210 U	50.3 U	46.9 U	47.7 U
2-Nitrophenol					1210 U	50.3 U	46.9 U	47.7 U
3&4-Methylphenol	330	330	500000		2410 U	101 U	93.7 U	95.3 U
3,3'-Dichlorobenzidine					4800 U	200 UJV	186 UJV	189 U
3-Nitroaniline					2410 U	101 U	93.7 U	95.3 U
4,6-Dinitro-2-methylphenol					RV	RV	93.7 U	95.3 U
4-Bromophenyl phenyl ether					1210 U	50.3 U	46.9 U	47.7 U
4-Chloro-3-methylphenol					2410 U	101 U	93.7 U	95.3 U
4-Chloroaniline					2410 U	101 UJV	93.7 U	95.3 U
4-Chlorophenyl phenyl ether					1210 U	50.3 U	46.9 U	47.7 U
4-Nitroaniline					2410 U	101 U	93.7 U	95.3 U
4-Nitrophenol					2410 U	101 U	93.7 U	95.3 U
Acenaphthene	20000	98000	500000		1210 U	50.3 U	46.9 U	47.7 U
Acenaphthylene	100000	107000	500000		1210 U	50.3 U	46.9 U	47.7 U
Acetophenone					1210 U	50.3 U	46.9 U	47.7 U
Anthracene	100000	1000000	500000		1210 U	50.3 U	46.9 U	47.7 U
Atrazine					1210 U	50.3 U	46.9 U	47.7 U

Page 22 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-14/4D	RSB-14/4D	RSB/MW-14	RSB/MW-14
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	2/10/2014	2/10/2014	9/10/2014	9/10/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	38	12	17
Benzaldehyde					1210 U	50.3 U	46.9 U	47.7 U
Benzo[a]anthracene	1000	1000	5600		1210 U	50.3 U	46.9 UJV	47.7 U
Benzo[a]pyrene	1000	22000	1000		1210 U	50.3 U	40.9 03 v RV	47.7 U
Benzo[b]fluoranthene	1000	1700	5600		1210 U	50.3 U	RV	47.7 U
Benzo[g,h,i]perylene	10000	1000000	500000		2410 U	101 U	RV	95.3 U
Benzo[k]fluoranthene	800	1700	56000		1210 U	50.3 U	RV	95.3 U 47.7 U
		1700			1210 U	50.3 U	46.9 U	47.7 U 47.7 U
Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether					1210 U	50.3 U	46.9 U	47.7 U 47.7 U
Bis(2-ethylhexyl) phthalate					1210 UJV	50.3 UJV	46.9 U 260 JV	47.7 U 47.7 U
` , , ,					1210 U3V	50.3 UJV	48.7 JV	47.7 U 47.7 U
Butylbenzyl phthalate					1210 U 1210 U	50.3 UJV 50.3 U	46.7 JV 46.9 U	47.7 U 47.7 U
Caprolactam Carbazole					1210 U 1210 U	50.3 U 50.3 U	46.9 U 46.9 U	
	4000	4000						47.7 U
Chrysene	1000	1000	56000		1210 U	50.3 U	46.9 UJV	47.7 U
Dibenzo[a,h]anthracene	330	1000000	560		1210 U	50.3 U	RV	47.7 U
Dibenzofuran	7000	210000	350000		1210 U	50.3 U	46.9 U	47.7 U
Diethyl phthalate					1210 U	50.3 U	46.9 U	47.7 U
Dimethyl phthalate					1210 U	50.3 U	46.9 U	47.7 U
Di-n-butyl phthalate					1210 U	50.3 U	46.9 U	47.7 U
Di-n-octyl phthalate					1210 U	50.3 U	RV	47.7 U
Fluoranthene	100000	1000000	500000		1210 U	50.3 U	52.1 JV	47.7 U
Fluorene	30000	386000	500000		1210 U	50.3 U	46.9 U	47.7 U
Hexachlorobenzene	330	3200	6000		1210 U	50.3 U	46.9 U	47.7 U
Hexachlorobutadiene					1210 U	50.3 U	46.9 U	47.7 U
Hexachlorocyclopentadiene					RV	RV	93.7 U	95.3 U
Hexachloroethane					1210 U	50.3 U	46.9 U	47.7 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		1210 U	50.3 U	RV	47.7 U
Isophorone					1210 U	50.3 U	46.9 U	47.7 U
Naphthalene	12000	12000	500000		2630 JD	50.3 U	218	47.7 U
Nitrobenzene					1210 U	50.3 U	46.9 U	47.7 U
n-Nitrosodi-n-propylamine					1210 U	50.3 U	46.9 U	47.7 U
n-Nitrosodiphenylamine					1210 U	50.3 U	46.9 U	47.7 U

Page 23 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB-14/4D	RSB-14/4D	RSB/MW-14	RSB/MW-14
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	2/10/2014	2/10/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	10	38	12	17
Pentachlorophenol	800	800	6700		2410 U	101 U	93.7 U	95.3 U
Phenanthrene	100000	1000000	500000		1210 U	50.3 U	123 J	47.7 U
Phenol	330	330	500000		1210 U	50.3 U	46.9 U	47.7 U
Pyrene	100000	1000000	500000		1210 U	50.3 U	84.1 J	47.7 U
•								

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 24 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Sample Designation	DCD/M/M/ 4.4			RSB/MW-15
Dovomotov				Sample Designation:		RSB/MW-15	RSB/MW-15	
Parameter (Concentrations in uniform)	Unrestricted	Protection of		•	9/9/2014	9/10/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	1	4	4	10
1,1'-Biphenyl					457 U	465 U	224 U	224 U
1,2,4,5-Tetrachlorobenzene					914 U	929 U	448 U	449 U
2,2'-oxybis (1-chloropropane)					457 U	465 U	224 U	224 U
2,4,5-Trichlorophenol					457 U	465 U	224 U	224 U
2,4,6-Trichlorophenol					457 U	465 U	224 U	224 U
2,4-Dichlorophenol					914 U	929 U	448 U	449 U
2,4-Dimethylphenol					457 U	465 U	224 U	224 U
2,4-Dinitrophenol					1820 U	1850 U	890 U	892 U
2,4-Dinitrotoluene					914 U	929 U	448 U	449 U
2,6-Dinitrotoluene					457 U	465 U	224 U	224 U
2-Chloronaphthalene					457 U	465 U	224 U	224 U
2-Chlorophenol					457 U	465 U	224 U	224 U
2-Methylnaphthalene					457 U	465 U	224 U	1500 D
2-Methylphenol	330	330	500000		914 U	929 U	448 U	449 U
2-Nitroaniline					457 U	465 U	224 U	224 U
2-Nitrophenol					457 U	465 U	224 U	224 U
3&4-Methylphenol	330	330	500000		914 U	929 U	448 U	449 U
3,3'-Dichlorobenzidine					1820 U	1850 UJV	890 UJV	892 UJV
3-Nitroaniline					914 U	929 U	448 U	449 U
4,6-Dinitro-2-methylphenol					914 U	929 U	448 U	449 U
4-Bromophenyl phenyl ether					457 U	465 U	224 U	224 U
4-Chloro-3-methylphenol					914 U	929 U	448 U	449 U
4-Chloroaniline					914 U	929 U	448 U	449 U
4-Chlorophenyl phenyl ether					457 U	465 U	224 U	224 U
4-Nitroaniline					914 U	929 U	448 U	449 U
4-Nitrophenol					914 UJV	929 U	448 U	449 U
Acenaphthene	20000	98000	500000		457 U	465 U	224 U	224 U
Acenaphthylene	100000	107000	500000		457 U	465 U	224 U	224 U
Acetophenone					457 U	465 U	224 U	224 U
Anthracene	100000	1000000	500000		457 U	465 U	291 JD	224 U
Atrazine					457 U	465 U	224 U	224 U

Page 25 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Cample Decignedian	DCD/M/M/ 4.4	RSB/MW-15	RSB/MW-15	RSB/MW-15
Parameter		Protection of		Sample Designation: Sample Date:	9/9/2014	9/10/2014	9/10/2014	9/10/2014
	Unrestricted Use	Groundwater		ample Depth (ft bls):	9/9/2014	9/10/2014	9/10/2014	10
(Concentrations in μg/kg)	USE	Groundwater	(µg/kg)	ampie Deptii (it bis).	ı	4	4	10
Benzaldehyde					457 U	465 U	224 U	224 U
Benzo[a]anthracene	1000	1000	5600		457 U	752 JV	705 JV	224 UJV
Benzo[a]pyrene	1000	22000	1000		457 U	465 UJV	272 JV	RV
Benzo[b]fluoranthene	1000	1700	5600		457 UJV	465 UJV	266 JV	RV
Benzo[g,h,i]perylene	100000	1000000	500000		914 U	929 UJV	448 UJV	RV
Benzo[k]fluoranthene	800	1700	56000		457 U	465 UJV	334 JV	RV
Bis(2-chloroethoxy)methane					457 U	465 U	224 U	224 U
Bis(2-chloroethyl) ether					457 U	465 U	224 U	224 U
Bis(2-ethylhexyl) phthalate					457 U	465 UJV	224 UJV	224 UJV
Butylbenzyl phthalate					457 U	465 UJV	224 UJV	224 UJV
Caprolactam					457 U	465 U	224 U	224 U
Carbazole					457 U	465 U	224 U	224 U
Chrysene	1000	1000	56000		457 U	944 JV	787 JV	224 UJV
Dibenzo[a,h]anthracene	330	1000000	560		457 U	465 UJV	224 UJV	RV
Dibenzofuran	7000	210000	350000		457 U	465 U	224 U	224 U
Diethyl phthalate					457 U	465 U	224 U	224 U
Dimethyl phthalate					457 U	465 U	224 U	224 U
Di-n-butyl phthalate					457 U	465 U	224 U	224 U
Di-n-octyl phthalate					457 U	465 UJV	224 UJV	RV
Fluoranthene	100000	1000000	500000		457 U	2160 JV	1800 JV	224 UJV
Fluorene	30000	386000	500000		457 U	465 U	224 U	224 U
Hexachlorobenzene	330	3200	6000		457 U	465 U	224 U	224 U
Hexachlorobutadiene					457 U	465 U	224 U	224 U
Hexachlorocyclopentadiene					914 U	929 U	448 U	449 U
Hexachloroethane					457 U	465 U	224 U	224 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		457 U	465 UJV	224 UJV	RV
Isophorone					457 U	465 U	224 U	224 U
Naphthalene	12000	12000	500000		457 U	465 U	224 U	1040 D
Nitrobenzene					457 U	465 U	224 U	224 U
n-Nitrosodi-n-propylamine					457 U	465 U	224 U	224 U
n-Nitrosodiphenylamine					457 U	465 U	224 U	224 U

Page 26 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-14	RSB/MW-15	RSB/MW-15	RSB/MW-15
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	9/9/2014	9/10/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	1	4	4	10
								_
Pentachlorophenol	800	800	6700		914 U	929 U	448 U	449 U
Phenanthrene	100000	1000000	500000		457 U	1400 JD	1280 D	372 JD
Phenol	330	330	500000		457 U	465 U	224 U	224 U
Pyrene	100000	1000000	500000		457 U	1840 D	1510 D	224 U
•								

J - Estimated value

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 27 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Sample Designation	DCD/M/// 45	RSB/MW-16	RSB/MW-16	RSB/MW-16
Doromotor				Sample Designation:	9/10/2014		9/9/2014	
Parameter	Unrestricted	Protection of		•		9/9/2014 1		9/9/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	14	ı	11	17
1,1'-Biphenyl					49.6 U	234 U	1170 U	50.6 U
1,2,4,5-Tetrachlorobenzene					99.2 U	468 U	2340 U	101 U
2,2'-oxybis (1-chloropropane)					49.6 U	234 U	1170 UJV	50.6 U
2,4,5-Trichlorophenol					49.6 U	234 U	1170 U	50.6 U
2,4,6-Trichlorophenol					49.6 U	234 U	1170 U	50.6 U
2,4-Dichlorophenol					99.2 U	468 U	2340 U	101 U
2,4-Dimethylphenol					49.6 U	234 U	1170 U	50.6 U
2,4-Dinitrophenol					197 U	930 U	4640 U	201 U
2,4-Dinitrotoluene					99.2 UV	468 U	2340 U	101 U
2,6-Dinitrotoluene					49.6 U	234 U	1170 U	50.6 U
2-Chloronaphthalene					49.6 U	234 U	1170 U	50.6 U
2-Chlorophenol					49.6 U	234 U	1170 U	50.6 U
2-Methylnaphthalene					49.6 U	234 U	1170 U	50.6 U
2-Methylphenol	330	330	500000		99.2 U	468 U	2340 U	101 U
2-Nitroaniline					49.6 U	234 U	1170 U	50.6 U
2-Nitrophenol					49.6 U	234 U	1170 U	50.6 U
3&4-Methylphenol	330	330	500000		99.2 U	468 U	2340 U	101 U
3,3'-Dichlorobenzidine					197 U	930 U	4640 U	201 U
3-Nitroaniline					99.2 U	468 U	2340 U	101 U
4,6-Dinitro-2-methylphenol					99.2 U	468 U	2340 U	101 U
4-Bromophenyl phenyl ether					49.6 U	234 U	1170 U	50.6 U
4-Chloro-3-methylphenol					99.2 U	468 U	2340 U	101 U
4-Chloroaniline					99.2 U	468 U	2340 U	101 U
4-Chlorophenyl phenyl ether					49.6 U	234 U	1170 U	50.6 U
4-Nitroaniline					99.2 U	468 U	2340 U	101 U
4-Nitrophenol					99.2 U	468 UJV	2340 U	101 UJV
Acenaphthene	20000	98000	500000		49.6 U	234 U	1170 U	50.6 U
Acenaphthylene	100000	107000	500000		49.6 U	234 U	1170 U	50.6 U
Acetophenone					49.6 U	234 U	1170 U	50.6 U
Anthracene	100000	1000000	500000		49.6 U	234 U	1170 U	50.6 U
Atrazine					49.6 U	234 U	1170 U	50.6 U

Page 28 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC Part 375	NYSDEC Part 375	NYSDEC Part 375	Sample Decignation	DCD/M/M 45			DCD/M/M/ 40
Parameter		Protection of		Sample Designation:		RSB/MW-16	RSB/MW-16 9/9/2014	RSB/MW-16
	Unrestricted			•	9/10/2014	9/9/2014 1		9/9/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	14	ı	11	17
Benzaldehyde					49.6 U	234 U	1170 UJV	50.6 U
Benzo[a]anthracene	1000	1000	5600		49.6 U	462 JD	1170 U	50.6 U
Benzo[a]pyrene	1000	22000	1000		49.6 U	355 JD	1170 UJV	50.6 U
Benzo[b]fluoranthene	1000	1700	5600		49.6 U	271 JV	1170 UJV	50.6 UJV
Benzo[g,h,i]perylene	100000	1000000	500000		99.2 U	468 U	2340 UJV	101 U
Benzo[k]fluoranthene	800	1700	56000		49.6 U	360 JD	1170 UJV	50.6 U
Bis(2-chloroethoxy)methane					49.6 U	234 U	1170 U	50.6 U
Bis(2-chloroethyl) ether					49.6 U	234 U	1170 U	50.6 U
Bis(2-ethylhexyl) phthalate					49.6 U	234 U	1170 UJV	50.6 U
Butylbenzyl phthalate					49.6 U	234 U	1170 U	50.6 U
Caprolactam					49.6 U	234 U	1170 U	50.6 U
Carbazole					49.6 U	234 U	1170 U	50.6 U
Chrysene	1000	1000	56000		49.6 U	457 JD	1170 U	50.6 U
Dibenzo[a,h]anthracene	330	1000000	560		49.6 U	234 U	1170 UJV	50.6 U
Dibenzofuran	7000	210000	350000		49.6 U	234 U	1170 U	50.6 U
Diethyl phthalate					49.6 U	234 U	1170 U	50.6 U
Dimethyl phthalate					49.6 U	234 U	1170 U	50.6 U
Di-n-butyl phthalate					49.6 U	234 U	1170 U	50.6 U
Di-n-octyl phthalate					49.6 U	234 U	1170 UJV	50.6 U
Fluoranthene	100000	1000000	500000		49.6 U	830 JD	1170 U	50.6 U
Fluorene	30000	386000	500000		49.6 U	234 U	1170 U	50.6 U
Hexachlorobenzene	330	3200	6000		49.6 U	234 U	1170 U	50.6 U
Hexachlorobutadiene					49.6 U	234 U	1170 U	50.6 U
Hexachlorocyclopentadiene					99.2 U	468 U	2340 U	101 U
Hexachloroethane					49.6 U	234 U	1170 U	50.6 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		49.6 U	234 U	1170 UJV	50.6 U
Isophorone					49.6 U	234 U	1170 U	50.6 U
Naphthalene	12000	12000	500000		49.6 U	234 U	1170 U	50.6 U
Nitrobenzene					49.6 U	234 U	1170 U	50.6 U
n-Nitrosodi-n-propylamine					49.6 U	234 U	1170 U	50.6 U
n-Nitrosodiphenylamine					49.6 U	234 U	1170 U	50.6 U

Page 29 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC					
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-15	RSB/MW-16	RSB/MW-16	RSB/MW-16
Parameter	Unrestricted	Protection of	Commercia	Sample Date:	9/10/2014	9/9/2014	9/9/2014	9/9/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	14	1	11	17
								_
Pentachlorophenol	800	800	6700		99.2 U	468 U	2340 U	101 U
Phenanthrene	100000	1000000	500000		49.6 U	549 JD	1170 U	50.6 U
Phenol	330	330	500000		49.6 U	234 U	1170 U	50.6 U
Pyrene	100000	1000000	500000		49.6 U	759 JD	1170 U	50.6 U
-								

J - Estimated value

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 30 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC				
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-17	RSB/MW-17	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/10/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	1	13	17
							_
1,1'-Biphenyl					212 U	46.1 U	50.1 U
1,2,4,5-Tetrachlorobenzene					424 U	92.2 U	100 U
2,2'-oxybis (1-chloropropane)					212 U	46.1 U	50.1 U
2,4,5-Trichlorophenol					212 U	46.1 U	50.1 U
2,4,6-Trichlorophenol					212 U	46.1 U	50.1 U
2,4-Dichlorophenol					424 U	92.2 U	100 U
2,4-Dimethylphenol					212 U	46.1 U	50.1 U
2,4-Dinitrophenol					842 U	183 U	199 U
2,4-Dinitrotoluene					424 U	92.2 U	100 U
2,6-Dinitrotoluene					212 U	46.1 U	50.1 U
2-Chloronaphthalene					212 U	46.1 U	50.1 U
2-Chlorophenol					212 U	46.1 U	50.1 U
2-Methylnaphthalene					212 U	364	50.1 U
2-Methylphenol	330	330	500000		424 U	92.2 U	100 U
2-Nitroaniline					212 U	46.1 U	50.1 U
2-Nitrophenol					212 U	46.1 U	50.1 U
3&4-Methylphenol	330	330	500000		424 U	92.2 U	100 U
3,3'-Dichlorobenzidine					842 UJV	183 UJV	199 U
3-Nitroaniline					424 U	92.2 U	100 U
4,6-Dinitro-2-methylphenol					424 U	92.2 U	100 U
4-Bromophenyl phenyl ether					212 U	46.1 U	50.1 U
4-Chloro-3-methylphenol					424 U	92.2 U	100 U
4-Chloroaniline					424 U	92.2 U	100 U
4-Chlorophenyl phenyl ether					212 U	46.1 U	50.1 U
4-Nitroaniline					424 U	92.2 U	100 U
4-Nitrophenol					424 U	92.2 U	100 U
Acenaphthene	20000	98000	500000		212 U	46.1 U	50.1 U
Acenaphthylene	100000	107000	500000		212 U	46.1 U	50.1 U
Acetophenone					212 U	46.1 U	50.1 U
Anthracene	100000	1000000	500000		410 JD	46.1 U	50.1 U
Atrazine					212 U	46.1 U	50.1 U

Page 31 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	NYSDEC	NYSDEC				
	Part 375	Part 375	Part 375	Sample Designation:	RSB/MW-17	RSB/MW-17	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	•	9/10/2014	9/10/2014	9/10/2014
(Concentrations in μg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	1	13	17
Benzaldehyde					212 U	46.1 U	50.1 U
Benzo[a]anthracene	1000	1000	5600		900 JV	46.1 UJV	50.1 U
Benzo[a]pyrene	1000	22000	1000		353 JV	RV	50.1 U
Benzo[b]fluoranthene	1000	1700	5600		341 JV	RV	50.1 U
Benzo[g,h,i]perylene	100000	1000000	500000		424 UJV	RV	100 U
Benzo[k]fluoranthene	800	1700	56000		434 JV	RV	50.1 U
Bis(2-chloroethoxy)methane					212 U	46.1 U	50.1 U
Bis(2-chloroethyl) ether					212 U	46.1 U	50.1 U
Bis(2-ethylhexyl) phthalate					212 UJV	210 JV	50.1 U
Butylbenzyl phthalate					212 UJV	79.7 JV	50.1 U
Caprolactam					212 U	46.1 U	50.1 U
Carbazole					212 U	46.1 U	50.1 U
Chrysene	1000	1000	56000		1050 JV	46.1 UJV	50.1 U
Dibenzo[a,h]anthracene	330	1000000	560	'	212 UJV	RV	50.1 U
Dibenzofuran	7000	210000	350000		212 U	46.1 U	50.1 U
Diethyl phthalate					212 U	46.1 U	50.1 U
Dimethyl phthalate					212 U	46.1 U	50.1 U
Di-n-butyl phthalate					212 U	46.1 U	50.1 U
Di-n-octyl phthalate					212 UJV	RV	50.1 U
Fluoranthene	100000	1000000	500000		2380 JV	55.6 JV	50.1 U
Fluorene	30000	386000	500000		212 U	46.1 U	50.1 U
Hexachlorobenzene	330	3200	6000		212 U	46.1 U	50.1 U
Hexachlorobutadiene					212 U	46.1 U	50.1 U
Hexachlorocyclopentadiene					424 U	92.2 U	100 U
Hexachloroethane					212 U	46.1 U	50.1 U
Indeno[1,2,3-cd]pyrene	500	8200	5600		212 UJV	RV	50.1 U
Isophorone					212 U	46.1 U	50.1 U
Naphthalene	12000	12000	500000		212 U	183	50.1 U
Nitrobenzene					212 U	46.1 U	50.1 U
n-Nitrosodi-n-propylamine					212 U	46.1 U	50.1 U
n-Nitrosodiphenylamine					212 U	46.1 U	50.1 U

Page 32 of 33 2861.0001Y.102/T3

Table 3. Summary of Semivolatile Organic Compounds in Soil, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

_	NYSDEC Part 375	NYSDEC Part 375		Sample Designation:		RSB/MW-17	RSB/MW-17
Parameter	Unrestricted	Protection of	Commercial	Sample Date:	9/10/2014	9/10/2014	9/10/2014
(Concentrations in µg/kg)	Use	Groundwater	(µg/kg)	ample Depth (ft bls):	1	13	17
Pentachlorophenol	800	800	6700		424 U	92.2 U	100 U
Phenanthrene Phenol Pyrene	100000 330 100000	1000000 330 1000000	500000 500000 500000		1810 D 212 U 2040 D	137 J 46.1 U 77.9 J	50.1 U 50.1 U 50.1 U

J - Estimated value

D - A secondary analysis after dilution due to exceedance of the calibration range in the origina µg/kg - Micrograms per kilogram

ft bls - Feet below land surface

NYSDEC - New York State Department of Environmental Conservation

-- No Standards available

Bold data indicates that parameter was detected above the NYSDEC Part 375 Unrestricted Use Shaded data indicates that parameter was detected above the NYSDEC Part 375 Protection of Boxed data indicates that parameter was detected above the NYSDEC Part 375 Commercial S

- V Value altered or qualifier added during data validation
- R Sample results rejected by validator
- UJ Analyte was not detected. The associated reported quantitation limit is an estimate
- NJ Detection is tentative in identification and estimated in value

Page 33 of 33 2861.0001Y.102/T3

U - Indicates that the compound was analyzed for but not detected

B - The analyte was found in an associated blank as well as in the sample

NA - Compound was not analyzed by laboratory

Table 4. Summary of Volatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	DUP092614	MW-1	MW-2	MW-3	MW-3	MW-4D
Parameter	AWQSGVs	Sample Date:	9/26/2014	2/24/2014	2/24/2014	2/24/2014	9/26/2014	2/24/2014
(Concentrations in µg/L)	(µg/L)	<u> </u>						
1,1,1-Trichloroethane	5		0.2 U					
1,1,2,2-Tetrachloroethane	5		0.2 U					
1,1,2-Trichloroethane	1		0.2 U					
1,1-Dichloroethane	5		0.2 U					
1,1-Dichloroethene	5		0.2 U					
1,2,3-Trichlorobenzene	5		0.2 U					
1,2,4-Trichlorobenzene	5		0.2 U					
1,2-Dibromoethane			0.2 U					
1,2-Dichlorobenzene	3		0.2 U					
1,2-Dichloroethane	0.6		0.2 U					
1,2-Dichloropropane	1		0.2 U					
1,3-Dichlorobenzene	3		0.2 U					
1,4-Dichlorobenzene	3		0.2 U					
2-Butanone (MEK)	50		0.2 U	0.5 U				
2-Hexanone	50		0.2 U					
4-Methyl-2-pentanone (MIBK)			0.2 U					
Acetone	50		1 U	2.4 UJV	13 UJV	4.7 UJV	4.7 UJV	8.8 UJV
Benzene	1		0.2 U					
Bromochloromethane	5		0.2 U					
Bromodichloromethane	50		0.2 U					
Bromoform	50		0.2 U					
Bromomethane	5		0.2 U	0.2 UJV				
Carbon disulfide	60		0.2 U					
Carbon tetrachloride	5		0.2 U					
Chlorobenzene	5		0.2 U					
Chloroethane	5		0.2 U					
Chloroform	7		0.2 U					
Chloromethane			0.2 U					
cis-1,2-Dichloroethene	5		0.2 U	1.4	0.56	0.2 U	0.2 U	0.75
cis-1,3-Dichloropropene	5		0.2 U					
Cyclohexane			0.2 U	0.4 J				
Dibromochloromethane	50		0.2 U					
Dibromochloropropane			0.2 U					
Dichlorodifluoromethane	5		0.2 U					
Ethylbenzene	5		0.2 U					

Page 1 of 4 2861.0001Y.102/T4

Table 4. Summary of Volatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	DUP092614	MW-1	MW-2	MW-3	MW-3	MW-4D
Parameter	AWQSGVs	Sample Date:	9/26/2014	2/24/2014	2/24/2014	2/24/2014	9/26/2014	2/24/2014
(Concentrations in μg/L)	(µg/L)							
Freon 113			0.2 U					
Isopropylbenzene	5		0.2 U					
m+p-Xylene	5		0.5 U	1.4				
Methyl acetate			0.2 U					
Methylcyclohexane			0.2 U	0.36 J				
Methylene chloride	5		1.6 J	1 U	1 U	1 U	1 U	1 U
MTBE	10		0.2 U	0.27 J	0.2 U	0.2 U	0.2 U	0.23 J
o-Xylene	5		0.2 U	0.96				
Styrene	5		0.2 U					
Tetrachloroethene	5		0.2 U	0.27 J	0.2 U	0.2 U	0.2 U	0.2 U
Toluene	5		0.2 U	0.47 J				
trans-1,2-Dichloroethene	5		0.2 U					
trans-1,3-Dichloropropene			0.2 U					
Trichloroethene	5		0.2 U	0.22 J				
Trichlorofluoromethane	5		0.2 U					
Vinyl chloride	2		0.2 U	0.5 U				
Xylenes (total)	5		0.6 U	2.4				

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

μg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estimate

NJ - Detection is tentative in identification and estimated in value

Page 2 of 4 2861.0001Y.102/T4

Table 4. Summary of Volatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	MW-6	MW-7	MW-7 DUP	MW-9	MW-19	MW-20
Parameter	AWQSGVs	Sample Date:	2/24/2014	2/24/2014	2/24/2014	9/26/2014	10/27/2015	10/27/2015
(Concentrations in μg/L)	(µg/L)							
1,1,1-Trichloroethane	5		0.2 U	0.2 U				
1,1,2,2-Tetrachloroethane	5		0.2 U	0.2 U				
1,1,2-Trichloroethane	1		0.2 U	0.2 U				
1,1-Dichloroethane	5		0.2 U	0.2 U				
1,1-Dichloroethene	5		0.2 U	0.42 J				
1,2,3-Trichlorobenzene	5		0.2 U	0.2 U				
1,2,4-Trichlorobenzene	5		0.2 U	0.2 U				
1,2-Dibromoethane			0.2 U	0.2 U				
1,2-Dichlorobenzene	3		0.2 U	0.2 U				
1,2-Dichloroethane	0.6		0.2 U	0.2 U				
1,2-Dichloropropane	1		0.2 U	0.2 U				
1,3-Dichlorobenzene	3		0.2 U	0.2 U				
1,4-Dichlorobenzene	3		0.2 U	0.2 U				
2-Butanone (MEK)	50		5	0.97	0.5 U	0.2 U	0.2 U	0.2 U
2-Hexanone `	50		8.1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
4-Methyl-2-pentanone (MIBK)			3.2	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Acetone	50		28 UJV	3 UJV	6 UJV	1 U	1 U	1.2 J
Benzene	1		0.2 U	0.2 U	0.2 U	0.2 U	1.2	5.2
Bromochloromethane	5		0.2 U	0.2 U				
Bromodichloromethane	50		0.2 U	0.2 U				
Bromoform	50		0.2 U	0.2 U				
Bromomethane	5		0.2 UJV	0.2 UJV	0.2 UJV	0.2 U	0.2 U	0.2 U
Carbon disulfide	60		1	0.41 JV	0.2 U	0.2 U	0.2 U	0.2 U
Carbon tetrachloride	5		0.2 U	0.2 U				
Chlorobenzene	5		0.2 U	0.2 U				
Chloroethane	5		0.2 U	0.2 U	0.2 U	0.2 U	1.6	11
Chloroform	7		0.2 U	0.2 U				
Chloromethane			0.2 U	0.2 U				
cis-1,2-Dichloroethene	5		0.2 U	0.2 U	0.2 U	0.2 U	2.4	350 D
cis-1,3-Dichloropropene	5		0.2 U	0.2 U				
Cyclohexane			0.2 U	0.33 J				
Dibromochloromethane	50		0.2 U	0.2 U				
Dibromochloropropane			0.2 U	0.2 U				
Dichlorodifluoromethane	5		0.2 U	0.2 U				
Ethylbenzene	5		0.2 U	0.2 U				

Page 3 of 4 2861.0001Y.102/T4

Table 4. Summary of Volatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Parameter	NYSDEC AWQSGVs	Sample Designation: Sample Date:	MW-6 2/24/2014	MW-7 2/24/2014	MW-7 DUP 2/24/2014	MW-9 9/26/2014	MW-19 10/27/2015	MW-20 10/27/2015
(Concentrations in μg/L)	(µg/L)							
Freon 113			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Isopropylbenzene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.21 J
m+p-Xylene	5		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl acetate			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Methylcyclohexane			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.26 J
Methylene chloride	5		1 U	1 U	1 U	1.6 J	1 U	1 U
MTBE	10		0.2 U	0.2 U	0.2 U	0.2 U	22	100
o-Xylene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.82	0.2 U
Styrene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Tetrachloroethene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Toluene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
trans-1,2-Dichloroethene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	5
trans-1,3-Dichloropropene			0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Trichloroethene	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.52
Trichlorofluoromethane	5		0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Vinyl chloride	2		0.5 U	0.5 U	0.5 U	0.2 U	42	66
Xylenes (total)	5		0.6 U	0.6 U	0.6 U	0.6 U	0.82 J	0.6 U

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

µg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estimate

NJ - Detection is tentative in identification and estimated in value

Page 4 of 4 2861.0001Y.102/T4

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	MW-1	MW-2	MW-3	MW-3	MW-4D	MW-6	MW-7
Parameter	AWQSGVs	Sample Date:	2/24/2014	2/24/2014	2/24/2014	9/26/2014	2/24/2014	2/24/2014	2/24/2014
(Concentrations in µg/L)	(µg/L)								
1,1'-Biphenyl			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
1,2,4,5-Tetrachlorobenzene			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2,2'-oxybis (1-chloropropane	5		3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV
2,4,5-Trichlorophenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2,4,6-Trichlorophenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2,4-Dichlorophenol	5		3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2,4-Dimethylphenol	50		3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2,4-Dinitrophenol	10		3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2,4-Dinitrotoluene	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2,6-Dinitrotoluene	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2-Chloronaphthalene	10		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2-Chlorophenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2-Methylnaphthalene			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2-Methylphenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
2-Nitroaniline	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
2-Nitrophenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
3&4-Methylphenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
3,3'-Dichlorobenzidine	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
3-Nitroaniline	5		3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV
4,6-Dinitro-2-methylphenol			0.133 UJV	0.103 UJV	RV	RV	0.118 UJV	0.114 UJV	0.121 UJV
4-Bromophenyl phenyl ether	r		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
4-Chloro-3-methylphenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
4-Chloroaniline	5		3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV
4-Chlorophenyl phenyl ethe	r		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
4-Nitroaniline	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
4-Nitrophenol			3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
Acenaphthene	20		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.149	0.0727
Acenaphthylene	20		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Acetophenone			3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV
Anthracene	50		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.137	0.0606 U
Atrazine			0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Benzaldehyde			3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV

Page 1 of 6 2861.0001Y.102/T5

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	MW-1	MW-2	MW-3	MW-3	MW-4D	MW-6	MW-7
Parameter	AWQSGVs	Sample Date:	2/24/2014	2/24/2014	2/24/2014	9/26/2014	2/24/2014	2/24/2014	2/24/2014
(Concentrations in µg/L)	(µg/L)	•							
Benzo[a]anthracene	0.002		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0686	0.0606 U
Benzo[a]pyrene	0		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Benzo[b]fluoranthene	0.002		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Benzo[g,h,i]perylene			0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Benzo[k]fluoranthene	0.002		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Bis(2-chloroethoxy)methane	5		3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	3.03 UJV
Bis(2-chloroethyl) ether			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Bis(2-ethylhexyl) phthalate	5		0.0667 UJV	0.0513 UJV	0.0513 UJV	0.0513 UJV	0.0588 UJV	0.0571 UJV	39.6 JV
Butylbenzyl phthalate	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Caprolactam			RV	RV	RV	RV	RV	RV	RV
Carbazole			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Chrysene	0.002		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0686	0.0606 U
Dibenzo[a,h]anthracene			0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Dibenzofuran			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Diethyl phthalate	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Dimethyl phthalate	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Di-n-butyl phthalate	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Di-n-octyl phthalate			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Fluoranthene	50		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.106	0.263	0.097
Fluorene	50		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0706	0.206	0.0606 U
Hexachlorobenzene	0.04		0.0267 U	0.0205 U	0.0205 U	0.0205 U	0.0235 U	0.0229 U	0.0242 U
Hexachlorobutadiene	0.5		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Hexachlorocyclopentadiene	5		3.33 UJV	2.56 UJV	2.56 UJV	2.56 UJV	2.94 UJV	2.86 UJV	RV
Hexachloroethane	5		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Indeno[1,2,3-cd]pyrene	0.002		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.0588 U	0.0571 U	0.0606 U
Isophorone	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Naphthalene	10		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.353	0.171	0.097
Nitrobenzene	0.4		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
n-Nitrosodi-n-propylamine			3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
n-Nitrosodiphenylamine	50		3.33 U	2.56 U	2.56 U	2.56 U	2.94 U	2.86 U	3.03 U
Pentachlorophenol	1		0.0667 U	0.0513 U	RV	RV	0.0588 U	0.0571 U	0.0606 U
Phenanthrene	50		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.2	0.697	0.109

Page 2 of 6 2861.0001Y.102/T5

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Parameter (Concentrations in μg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:	MW-1 2/24/2014	MW-2 2/24/2014	MW-3 2/24/2014	MW-3 9/26/2014	MW-4D 2/24/2014	MW-6 2/24/2014	MW-7 2/24/2014
Phenol	1		3.33 U	2.56 U	RV	RV	2.94 U	2.86 U	3.03 U
Pyrene	50		0.0667 U	0.0513 U	0.0513 U	0.0513 U	0.106	0.194	0.0606 U

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

μg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estimate

NJ - Detection is tentative in identification and estimated in value

Page 3 of 6 2861.0001Y.102/T5

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:		MW-19	MW-20
Parameter	AWQSGVs	Sample Date:	2/24/2014	10/27/2015	10/27/2015
(Concentrations in µg/L)	(µg/L)				
1,1'-Biphenyl			2.94 U	2.7 U	2.56 U
1,2,4,5-Tetrachlorobenzene			2.94 U	2.7 U	2.56 U
2,2'-oxybis (1-chloropropane			2.94 UJV	2.7 U	2.56 U
2,4,5-Trichlorophenol			2.94 U	2.7 U	2.56 U
2,4,6-Trichlorophenol			2.94 U	2.7 U	2.56 U
2,4-Dichlorophenol	5		2.94 U	2.7 U	2.56 U
2,4-Dimethylphenol	50		2.94 U	2.7 U	2.56 U
2,4-Dinitrophenol	10		2.94 U	2.7 U	2.56 U
2,4-Dinitrotoluene	5		2.94 U	2.7 U	2.56 U
2,6-Dinitrotoluene	5		2.94 U	2.7 U	2.56 U
2-Chloronaphthalene	10		2.94 U	2.7 U	2.56 U
2-Chlorophenol			2.94 U	2.7 U	2.56 U
2-Methylnaphthalene			2.94 U	2.7 U	2.56 U
2-Methylphenol			2.94 U	2.7 U	2.56 U
2-Nitroaniline	5		2.94 U	2.7 U	2.56 U
2-Nitrophenol			2.94 U	2.7 U	2.56 U
3&4-Methylphenol			2.94 U	2.7 U	2.56 U
3,3'-Dichlorobenzidine	5		2.94 U	2.7 U	2.56 U
3-Nitroaniline	5		2.94 UJV	2.7 U	2.56 U
4,6-Dinitro-2-methylphenol			0.118 UJV	2.7 U	2.56 U
4-Bromophenyl phenyl ether	r		2.94 U	2.7 U	2.56 U
4-Chloro-3-methylphenol			2.94 U	2.7 U	2.56 U
4-Chloroaniline	5		2.94 UJV	2.7 U	2.56 U
4-Chlorophenyl phenyl ether	_		2.94 U	2.7 U	2.56 U
4-Nitroaniline	5		2.94 U	2.7 U	2.56 U
4-Nitrophenol			2.94 U	0.0541 U	0.0513
Acenaphthene	20		0.0824	0.0541 U	0.0513 U
Acenaphthylene	20		0.0588 U	2.7 U	2.56 U
Acetophenone			2.94 UJV	0.0541 U	0.226
Anthracene	50		0.0588 U	0.541 U	0.220 0.513 U
Atrazine			0.0588 U	2.7 U	2.56 U
Benzaldehyde			2.94 UJV	0.0541 U	0.164
Donzaldonydo			2.07 00 V	0.0071 0	0.104

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	10.05.50				1.014/ 0.0
D .	NYSDEC	Sample Designation:		MW-19	MW-20
Parameter	AWQSGVs	Sample Date:	2/24/2014	10/27/2015	10/27/2015
(Concentrations in µg/L)	(µg/L)				
Benzo[a]anthracene	0.002		0.0588 U	0.0541 U	0.144
Benzo[a]pyrene	0		0.0588 U	0.0541 U	0.144
Benzo[b]fluoranthene	0.002		0.0588 U	0.0541 U	0.0821
Benzo[g,h,i]perylene			0.0588 U	0.0541 U	0.123
Benzo[k]fluoranthene	0.002		0.0588 U	2.7 U	2.56 U
Bis(2-chloroethoxy)methane	e 5		2.94 UJV	2.7 U	2.56 U
Bis(2-chloroethyl) ether			2.94 U	2.7 U	2.56 U
Bis(2-ethylhexyl) phthalate	5		6.98 JV	0.541 U	0.513 U
Butylbenzyl phthalate	50		2.94 U	2.7 U	2.56 U
Caprolactam			RV	2.7 U	2.56 U
Carbazole			2.94 U	2.7 U	2.56 U
Chrysene	0.002		0.0588 U	0.0541 U	0.144
Dibenzo[a,h]anthracene			0.0588 U	0.0541 U	0.0513 U
Dibenzofuran			2.94 U	2.7 U	2.56 U
Diethyl phthalate	50		2.94 U	2.7 U	2.56 U
Dimethyl phthalate	50		2.94 U	2.7 U	2.56 U
Di-n-butyl phthalate	50		2.94 U	2.7 U	2.56 U
Di-n-octyl phthalate			2.94 U	2.7 U	2.56 U
Fluoranthene	50		0.0941	0.108	0.503
Fluorene	50		0.0588 U	0.0541 U	0.113
Hexachlorobenzene	0.04		0.0235 U	0.0216 U	0.0205 U
Hexachlorobutadiene	0.5		0.0588 U	0.541 U	0.513 U
Hexachlorocyclopentadiene	5		2.94 UJV	2.7 U	2.56 U
Hexachloroethane	5		2.94 U	0.541 U	0.513 U
Indeno[1,2,3-cd]pyrene	0.002		0.0588 U	0.0541 U	0.0718
Isophorone	50		2.94 U	2.7 U	2.56 U
Naphthalene	10		0.106	0.0541 U	0.0513 U
Nitrobenzene	0.4		2.94 U	0.27 U	0.256 U
n-Nitrosodi-n-propylamine			2.94 U	2.7 U	2.56 U
n-Nitrosodiphenylamine	50		2.94 U	2.7 U	2.56 U
Pentachlorophenol	1		0.0588 U	0.27 U	0.256 U
Phenanthrene	50		0.129	0.0649	0.636

Table 5. Summary of Semivolatile Organic Compounds in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Parameter (Concentrations in µg/L)	NYSDEC AWQSGVs (µg/L)	Sample Designation: Sample Date:		MW-19 10/27/2015	MW-20 10/27/2015
Phenol	1		2.94 U	2.7 U	2.56 U
Pyrene	50		0.0588 U	0.108	0.4

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

μg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estil

NJ - Detection is tentative in identification and estimated in value

Page 6 of 6 2861.0001Y.102/T5

Table 6. Summary of Metals in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	MW-1	MW-2	MW-3	MW-3	MW-4D	MW-6	MW-7
Parameter	AWQSGVs	Sample Date:	2/24/2014	2/24/2014	2/24/2014	9/26/2014	2/24/2014	2/24/2014	2/24/2014
(Concentrations in μg/L)	(µg/L)								
Aluminum			1210	10 U	130	130	299	1790	23 JV
Antimony	3		5 U	5 U	5 U	5 U	5 U	5 U	5 U
Arsenic	25		4 U	4 U	4 U	4 U	4 U	4 U	4 U
Barium	1000		224	86	38	38	44	48	81
Beryllium	3		1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cadmium	5		3 U	3 U	3 U	3 U	3 U	3 U	3 U
Calcium			54400	115000	53900	53900	38000	45300	38600
Chromium	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U
Cobalt			5 U	5 U	5 U	5 U	5 U	5 U	5 U
Copper	200		28 JV	3 U	3	3	3 U	7	3 U
Iron	300		33800	20 U	106	106	363	800	41
Lead	25		39	3 UJV	3 UJV	3 UJV	3 UJV	27	3 UJV
Magnesium			8810	10900	8930	8930	13000	1020	7050
Manganese	300		1080	15	830	830	2180	112	6050
Mercury	0.7		0.2 U						
Nickel	100		5 U	5 U	5 U	5 U	7	6	5 U
Potassium			7740	5050	6090	6090	2890	2500	3310
Selenium	10		10 U	15	10 U	10 U	10 U	10 U	10
Silver	50		5 U	5 U	5 U	5 U	5 U	5 U	5 U
Sodium	20000		69400	11400	39700	39700	92100	25100	52400
Thallium	0.5		5 U	5 U	5 U	5 U	5 U	5 U	5 U
Vanadium			10 U	31	10 U				
Zinc	2000		72	45	13	13	16	31	10

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

μg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estimate

NJ - Detection is tentative in identification and estimated in value

Page 1 of 2 2861.0001Y.102/T6

Table 6. Summary of Metals in Groundwater, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	NYSDEC	Sample Designation:	MW-7 DUP	MW-19	MW-20
Parameter	AWQSGVs	Sample Date:	2/24/2014	10/27/2015	10/27/2015
(Concentrations in µg/L)	(µg/L)				
Aluminum			15 JV	17500	6400
Antimony	3		5 U	6 U	6 U
Arsenic	25		4 U	5	7
Barium	1000		82	148	236
Beryllium	3		1 U	1 U	1 U
Cadmium	5		3 U	3 U	3 U
Calcium			39700	43700	73000
Chromium	50		5 U	42	17
Cobalt			5 U	11	6 U
Copper	200		3 U	20	12
Iron	300		37	14700	4530
Lead	25		3 UJV	55	63
Magnesium			7070	11600	15200
Manganese	300		6070	2030	7710
Mercury	0.7		0.2 U	0.2 U	0.2 U
Nickel	100		5	55	16
Potassium			3340	6680	7550
Selenium	10		10 U	11 U	11 U
Silver	50		5 U	6 U	6 U
Sodium	20000		52700	38200 B	47000 B
Thallium	0.5		5 U	6 U	11
Vanadium			10 U	29	14
Zinc	2000		12	90	131

AWQSGVs - Ambient Water-Quality Standards and Guidance Values

μg/L -Micrograms per liter

J - Estimated Value

U - Compound was analyzed for but not detected

DUP - Duplicate

- - No NYSDEC AWQSGV available

Bold data indicates that parameter was detected above the NYSDEC AWQSGVs

NA - Compound was not analyzed by laboratory

V - Value altered or qualifier added during data validation

R - Sample results rejected by validator

UJ - Analyte was not detected. The associated reported quantitation limit is an estimate

NJ - Detection is tentative in identification and estimated in value

Page 2 of 2 2861.0001Y.102/T6

Table 7. Summary of Volatile Organic Compounds in Vapor Samples, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	ple Designation:	IA-1	SV-1	SV-2	SV-3	SV-4	SV-5	Outdoor Ambient	SV-4	SV-5
Parameter	Sample Date:	2/24/2014	2/24/2014	2/28/2014	2/24/2014	2/24/2014	2/24/2014	2/24/2014	9/25/2014	9/25/2014
(Concentrations in µg/m³)										
1,1,1-Trichloroethane		0.55 U	11 U	12 U	11 U	12 U	9.6 U	0.55 U	14 U	13 U
1,1-Dichloroethane		0.41 U	8.5 U	9 U	8 U	8.8 U	7.2 U	0.41 U	10 U	9.5 U
Carbon tetrachloride		0.32 U	6.6 U	7 U	6.2 U	6.9 U	5.6 U	0.32 U	4.1 U	3.8 U
cis-1,2-Dichloroethene		0.48	8.3 U	8.8 U	7.8 U	8.6 U	7 U	0.4 U	10 U	9.5 U
Tetrachloroethene		0.69	14 U	15 U	13 U	1100 D	88 D	0.83	220 D	210 D
Trichloroethene		1.2	5.6 U	6 U	5.3 U	5.9 U	13 D	0.27 U	3.5 U	21 D
Vinyl chloride		0.26 U	5.3 U	5.7 U	5 U	5.6 U	4.5 U	0.26 U	1.7 U	1.5 U
1,1,2,2-Tetrachloroethane		0.7 U	14 U	15 U	14 U	15 U	12 U	0.7 U	18 U	16 U
1,1,2-Trichloroethane		0.55 U	11 U	12 U	11 U	12 U	9.6 U	0.55 U	14 U	13 U
1,1,2-Trichloroethane		NA	NA	NA						
1,1-Dichloroethane		NA	NA	NA						
1,1-Dichloroethene		0.4 U	8.3 U	8.8 U	7.8 U	8.6 U	7 U	0.4 U	10 U	9.7 U
1,2,4-Trichlorobenzene		0.75 U	16 U	17 U	15 U	16 U	13 U	0.75 U	19 U	18 U
1,2,4-Trimethylbenzene		0.5 U	10 U	11 U	9.7 U	11 U	8.7 U	1.2	13 D	18 D
1,2-Dibromoethane		0.78 U	16 U	17 U	15 U	17 U	14 U	0.78 U	20 U	18 U
1,2-Dichlorobenzene		0.61 U	13 U	13 U	12 U	13 U	11 U	0.61 U	16 U	14 U
1,2-Dichloroethane		0.58	8.5 U	9 U	8 U	8.8 U	7.2 U	0.41 U	10 U	9.7 U
1,2-Dichloropropane		0.47 U	9.7 U	10 U	9.1 U	10 U	8.2 U	0.47 U	12 U	11 U
1,3,5-Trimethylbenzene		0.5 U	10 U	11 U	9.7 U	11 U	8.7 U	0.5 U	13 U	12 U
1,3-BUTADIENE		0.44 U	9.1 U	9.7 U	8.5 U	9.5 U	7.7 U	0.44 U	11 U	10 U
1,3-Dichlorobenzene		0.61 U	13 U	13 U	12 U	13 U	11 U	0.61 U	16 U	14 U
1,3-Dichloropropane		NA	NA	NA						
1,4-Dichlorobenzene		0.61 U	13 U	13 U	12 U	13 U	11 U	0.61 U	16 U	14 U
1,4-Dioxane		0.37 U	7.5 U	8 U	7.1 U	7.9 U	6.4 U	0.37 U	9.3 U	8.6 U
2-Butanone (MEK)		0.9	6.2 U	6.6 U	5.8 U	6.4 U	5.2 U	1.6	27 D	18 D
2-Hexanone		0.83 U	17 U	18 U	16 U	18 U	14 U	0.83 U	21 U	20 U
4-Ethyltoluene		0.5 U	10 U	11 U	9.7 U	11 U	8.7 U	1.4	14 D	26 D
4-Methyl-2-pentanone (MIBK)		0.42 U	8.6 U	9.1 U	8.1 U	8.9 U	7.2 U	0.42 U	13 D	36 D
Acetone		1.7	5 U	5.3 U	13 D	34 D	13 D	8	160 D	220 D
Acrylonitrile		NA	NA	NA						
Allyl Chloride		NA	NA	NA						
Benzene		0.39	6.7 U	7.1 U	6.3 U	7 U	5.6 U	0.88	8.3 U	9.2 D
Benzyl chloride		0.53 U	11 U	12 U	10 U	11 U	9.2 U	0.53 U	13 U	12 U
Bromodichloromethane		0.63 U	13 U	14 U	12 U	14 U	11 U	0.63 U	16 U	15 U
Bromoethene		NA	NA	NA						
Bromoform		1.1 U	22 U	23 U	20 U	23 U	18 U	1.1 U	27 U	25 U
Bromomethane		0.39 U	8.1 U	8.7 U	7.7 U	8.5 U	6.9 U	0.39 U	10 U	9.3 U

Page 1 of 4 2861.0001Y.102/T7

Table 7. Summary of Volatile Organic Compounds in Vapor Samples, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Sample Design	nation: IA-1	SV-1	SV-2	SV-3	SV-4	SV-5	Outdoor Ambient	SV-4	SV-5
Parameter Sample	Date: 2/24/2014	2/24/2014	2/28/2014	2/24/2014	2/24/2014	2/24/2014	2/24/2014	9/25/2014	9/25/2014
(Concentrations in µg/m³)									
Carbon disulfide	0.32 U	6.5 U	6.9 U	6.1 U	6.8 U	5.5 U	0.32 U	8 U	11 D
Chlorobenzene	0.47	9.6 U	10 U	9.1 U	10 U	8.1 U	0.47 U	12 U	11 U
Chloroethane	0.27 U	5.5 U	5.9 U	5.2 U	5.8 U	4.7 U	0.27 U	6.8 U	6.3 U
Chloroform	0.5 U	10 U	11 U	9.6 U	11 U	8.6 U	0.5 U	13 U	12 U
Chloromethane	0.21 U	4.3 U	4.6 U	4.1 U	4.5 U	3.7 U	1.1	5.3 U	5 U
cis-1,3-Dichloropropene	0.46 U	9.5 U	10 U	8.9 U	9.9 U	8 U	0.46 U	12 U	11 U
Cyclohexane	0.35 U	7.2 U	7.7 U	6.8 U	7.5 U	6.1 U	0.35 U	8.9 U	8.3 U
Dibromochloromethane	0.82 U	17 U	18 U	16 U	18 U	14 U	0.82 U	21 U	19 U
Dichlorodifluoromethane	0.5 U	10 U	11 U	9.7 U	11 U	8.7 U	2.4	13 U	12 U
Ethyl Acetate	0.37 U	7.5 U	8 U	7.1 U	7.9 U	6.4 U	0.37 U	19 U	17 U
Ethylbenzene	0.44 U	9.1 U	9.7 U	8.6 U	9.5 U	7.7 U	0.88	17 D	30 D
Freon 113	0.78 U	16 U	17 U	15 U	17 U	14 U	0.78 U	20 U	18 U
Freon 114	0.71 U	15 U	16 U	14 U	15 U	12 U	0.71 U	18 U	17 U
Hexachlorobutadiene	1.1 U	22 U	24 U	21 U	23 U	19 U	1.1 U	28 U	26 U
ISOPROPANOL	0.5 U	10 U	11 U	9.7 U	11 U	8.7 U	0.5 U	38 D	78 D
m+p-Xylene	0.88 U	18 U	19 U	31 D	19 U	15 U	2.7	59 D	100 D
Methyl Methacrylate	0.42 U	8.6 U	9.1 U	8.1 U	8.9 U	7.2 U	0.42 U	11 U	9.8 U
Methylene chloride	1.1 B	11 BD	8.5 BD	7.5 BD	9.1 BD	16 BD	1.2 B	18 U	17 U
MTBÉ	0.37 U	7.5 U	8 U	7.1 U	7.9 U	6.4 U	0.37 U	9.3 U	8.6 U
N-HEPTANE	0.42 U	8.6 U	9.1 U	8.1 U	8.9 U	7.2 U	0.54	11 U	28 D
N-HEXANE	0.36 U	7.4 U	7.9 U	6.9 U	7.7 U	6.2 U	0.39	9.1 U	8.5 U
o-Xylene	0.44 U	9.1 U	9.7 U	8.6 D	9.5 U	7.7 U	0.84	21 D	40 D
Propene	0.18 U	3.6 U	3.8 U	3.4 U	3.8 U	3 U	0.18 U	4.4 U	4.1 U
Styrene	0.43 U	8.9 U	9.5 U	8.4 U	9.3 U	7.5 U	0.43 U	11 U	10 U
TÉTRAHYDROFURAN	0.66	6.2 U	6.6 U	5.8 U	6.4 U	5.2 U	0.3 U	7.6 U	7.1 U
Toluene	0.5	7.9 U	8.4 U	24 D	8.2 U	6.7 U	3.3	59 D	1100 D
trans-1,2-Dichloroethene	0.4 U	8.3 U	8.8 U	7.8 U	8.6 U	7 U	0.4 U	10 U	9.5 U
trans-1,3-Dichloropropene	0.46 U	9.5 U	10 U	8.9 U	9.9 U	8 U	0.46 U	12 U	11 U
Trichlorofluoromethane	0.57 U	12 U	13 U	11 U	12 U	9.9 U	1.2	15 U	13 U
Vinyl acetate	0.36 U	7.4 U	7.8 U	6.9 U	7.7 U	6.2 U	0.36 U	9.1 U	8.5 U

B - Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Data users should consider anything <10x the blank value as artifact.

Bold data indicates that parameter was detected

Page 2 of 4 2861.0001Y.102/T7

D - a secondary analysis after dilution due to exceedance of the calibration range in the original sample.

U - Indicates that the compound was analyzed for but not detected

μg/m³ - Micrograms per cubic meter

Table 7. Summary of Volatile Organic Compounds in Vapor Samples, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Sam	pple Designation: SV-6	IA092514	AMB031815	IA031815	SV-4	SV-5	SV-6
Parameter	Sample Date: 9/25/2014	9/25/2014	3/18/2015	3/18/2015	3/18/2015	3/18/2015	3/18/2015
(Concentrations in µg/m³)		0,20,20	0, 10, 20 10	0, 10, 20 10	3, 13, 2010	0, 10, 2010	0, 10, 2010
, , , , , , , , , , , , , , , , , , , ,							
I,1,1-Trichloroethane	31 U	0.55 U	0.55 U	0.68 U	0.61 U	1.3 U	0.7 U
1,1-Dichloroethane	23 U	0.4 U	0.4 U	0.51 U	0.45 U	0.95 U	0.52 U
Carbon tetrachloride	9 U	0.5	0.16 U	0.2 U	0.63 D	0.37 U	0.81 D
cis-1,2-Dichloroethene	23 U	0.4 U	0.4 U	0.5 U	0.44 U	0.93 U	0.51 U
Tetrachloroethene	43 D	0.47	0.17 U	2.1 D	100 D	70 D	5.8 D
Trichloroethene	7.7 U	0.13 U	0.13 U	0.17 U	1.1 D	6.9 D	0.17 U
/inyl chloride	3.7 U	0.064 U	0.064 U	0.08 U	0.072 U	0.15 U	0.082 U
,1,2,2-Tetrachloroethane	39 U	0.69 U	0.69 U	0.86 U	0.77 U	1.6 U	0.88 U
,1,2-Trichloroethane	31 U	0.55 U	0.55 U	0.68 U	0.61 U	1.3 U	0.7 U
,1,2-Trichloroethane	NA	NA	0.55 U	0.68 U	0.61 U	1.3 U	0.7 U
,1-Dichloroethane	NA	NA	0.4 U	0.51 U	0.45 U	0.95 U	0.52 U
,1-Dichloroethene	23 U	0.4 U	0.4 U	0.5 U	0.44 U	0.93 U	0.51 U
1,2,4-Trichlorobenzene	43 U	0.74 U	0.74 U	0.93 U	0.83 U	1.7 U	0.95 U
I,2,4-Trimethylbenzene	28 U	3.7	0.64	120 D	2.6 D	17 D	12 D
,2-Dibromoethane	44 U	0.77 U	0.77 U	0.96 U	0.86 U	1.8 U	0.98 U
,2-Dichlorobenzene	35 U	0.6 U	0.6 U	0.75 U	0.67 U	1.4 U	0.77 U
,2-Dichloroethane	23 U	0.4 U	0.4 U	0.51 U	0.45 U	0.95 U	0.52 U
,2-Dichloropropane	27 U	0.46 U	0.46 U	0.58 U	0.52 U	1.1 U	0.59 U
,3,5-Trimethylbenzene	28 U	1.2	0.49 U	34 D	2.2 D	5.4 D	3.6 D
,3-BUTADIENE	25 U	0.43 U	0.43 U	16 D	0.49 U	7.3 D	0.55 U
,3-Dichlorobenzene	35 U	0.6 U	0.6 U	0.75 U	0.67 U	1.4 U	0.77 U
,3-Dichloropropane	NA	NA	0.46 U	0.58 U	0.52 U	1.1 U	0.59 U
,4-Dichlorobenzene	35 U	0.6 U	0.6 U	8.9 D	1.8 D	1.4 U	1.2 D
,4-Dioxane	21 U	0.36 U	0.36 U	0.45 U	0.4 U	0.84 U	0.46 U
P-Butanone (MEK)	17 U	2.2	1.3	53 D	0.36 D	2.4 D	0.57 D
?-Hexanone`	47 U	0.82 U	0.82 U	1 U	0.92 U	1.9 U	1 U
-Ethyltoluene	28 U	3.2	0.54	120 D	3.4 D	16 D	12 D
-Methyl-2-pentanone (MIBK)	24 U	0.41 U	0.41 U	0.51 U	0.46 U	0.96 U	0.52 U
Acetone	81 D	1500 D	20	4700 D	8.3 D	20 D	5.6 D
crylonitrile	NA	NA	0.22 U	0.27 U	0.24 U	0.51 U	0.28 U
Allyl Chloride	NA	NA	0.31 U	0.39 U	0.35 U	0.73 U	0.4 U
Benzene	18 U	3.9	0.99	140 D	0.64 D	31 D	0.41 U
Benzyl chloride	30 U	0.52 U	0.52 U	0.65 U	0.58 U	1.2 U	0.66 U
Bromodichloromethane	36 U	0.62 U	0.62 U	0.78 U	0.7 U	1.5 U	0.79 U
Bromoethene	NA	NA	0.44 U	0.55 U	0.49 U	1 U	0.56 U
Bromoform	59 U	1 U	1 U	1.3 U	1.2 U	2.4 U	1.3 U
Bromomethane	22 U	0.39 U	0.39 U	0.49 U	0.43 U	0.91 U	0.5 U

Table 7. Summary of Volatile Organic Compounds in Vapor Samples, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

	esignation: SV-6	IA092514	AMB031815	IA031815	SV-4	SV-5	SV-6
Parameter Sa	mple Date: 9/25/2014	9/25/2014	3/18/2015	3/18/2015	3/18/2015	3/18/2015	3/18/2015
(Concentrations in μg/m³)							
Carbon disulfide	18 U	0.47	0.31 U	0.39 U	0.56 D	0.73 U	1.7 D
Chlorobenzene	26 U	0.46 U	0.46 U	0.58 U	0.52 U	1.1 U	0.59 U
Chloroethane	15 U	0.26 U	0.26 U	0.33 U	0.3 U	0.62 U	0.34 U
Chloroform	28 U	0.49 U	0.49 U	0.61 U	0.55 U	1.1 U	0.62 U
Chloromethane	12 U	2	1.6	1.2 D	0.23 U	0.48 U	0.26 U
is-1,3-Dichloropropene	26 U	0.45 U	0.45 U	0.57 U	0.51 U	1.1 U	0.58 U
Cyclohexane	20 U	3.6	0.34 U	130 D	0.58 D	32 D	0.66 D
Dibromochloromethane	46 U	0.8 U	0.8 U	1 U	0.9 U	1.9 U	1 U
Dichlorodifluoromethane	28 U	2.5	2.4	1.7 D	2.4 D	2.3 D	2.7 D
Ethyl Acetate	41 U	0.72 U	0.72 U	0.9 U	0.81 U	1.7 U	0.92 U
Ethylbenzene	25 U	30	1.1	200 D	5.1 D	36 D	21 D
Freon 113	44 U	0.77 U	0.77 U	0.96 U	0.86 U	1.8 U	0.98 U
Freon 114	40 U	0.7 U	0.7 U	0.87 U	0.78 U	1.6 U	0.89 U
lexachlorobutadiene	61 U	1.1 U	1.1 U	1.3 U	1.2 U	2.5 U	1.4 U
SOPROPANOL	31 D	180 D	6.1	15 D	1.6 D	1.2 U	0.88 D
n+p-Xylene	57 D	120	3.5	780 D	20 D	150 D	97 D
Methyl Methacrylate	23 U	0.41 U	0.41 U	0.51 U	0.46 U	0.96 U	0.52 U
Methylene chloride	40 U	120	32	3.7 D	17 D	3.1 D	0.89 U
MTBE	21 U	0.36 U	0.36 U	0.45 U	0.4 U	0.84 U	0.46 U
N-HEPTANE	24 U	42	0.41 U	270 D	1.2 D	54 D	11 D
N-HEXANE	20 U	110	8.3	350 D	7.1 D	110 D	14 D
-Xylene	25 U	29	1.1	240 D	17 D	47 D	28 D
Propene	9.9 U	0.17 U	0.17 U	0.22 U	0.19 U	0.4 U	0.22 U
Styrene	24 U	0.43 U	0.43 U	0.53 U	0.48 U	1 U	0.55 U
ETRAHYDROFURAN	17 U	0.29 U	0.29 U	0.37 U	0.33 U	0.69 U	0.38 U
oluene	220 D	410 D	5.7	1800 D	31 D	390 D	61 D
rans-1,2-Dichloroethene	23 U	0.4 U	0.4 U	0.5 U	0.44 U	0.93 U	0.51 U
rans-1,3-Dichloropropene	26 U	0.45 U	0.45 U	0.57 U	0.51 U	1.1 U	0.58 U
Trichlorofluoromethane	32 U	4.4	1.9	1.2 D	1.7 D	1.3 D	1.3 D
Vinyl acetate	20 U	0.35 U	0.35 U	0.44 U	0.39 U	0.83 U	0.45 U

B - Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Data users should consider anything <10x the blank value as artifact.

Bold data indicates that parameter was detected

2861.0001Y.102/T7

D - a secondary analysis after dilution due to exceedance of the calibration range in the original sample.

U - Indicates that the compound was analyzed for but not detected

μg/m³ - Micrograms per cubic meter

TABLE 8. TRACK 1 UNRESTRICTED CLEANUP COST ESTIMATE

FORMER KRISTAL AUTO MALL

5200 KINGS HIGHWAY, BROOKLYN, NY

ENVIRONMENTAL REMEDIATION COST ESTIMATE - MAY 2018

ГЕМ	Description	UNIT	QUANTITY	UN	NIT COST	TOTAL
	Demolition & Disposal					
1	1-Story Show Room and Offices	LS	1	\$	50,000	\$50,000
	1-Story Auto Repair Shop/Auto Storage/Auto Body Shop	LS	1	\$	500,000	\$500,000
_	1-Story Auto Repair Shop/Auto Storage/Auto Body Shop	LS	'	φ	300,000	\$550,000
	Soil Handling and Removal					
3	Excavation support system	LS	1	\$	2,000,000	\$2,000,000
4	Soil Excavation	CY	33,000	\$	40	\$1,320,000
5	Soil Transport & Disposal Cost assuming 65% of soil is Non Hazardous	Ton	32,175	\$	55	\$1,769,62
6	Soil Transport & Disposal Cost assuming 35% of soil is Petroleum Impacted	Ton	17,325	\$	75	\$1,299,37
	Soil Transport & Disposal Cost assuming 5% of soil is Hazardous	Ton	2,413		275	\$663,609
	Importation and Placement of Clean Backfill	CY	5,000	\$	45	\$225,000
	•					\$7,277,609
	Product Recovery, Dewatering and Treatment/Disposal					
9	Dewatering Water Container Rental, Treatment/Disposal	Month	5	\$	50,000	\$250,000
10	Product Recovery (Vacuum Truck, Sump Pumps, Absorbent Booms)	Month	4	\$	70,000	\$280,00
						\$530,00
	In-Situ Chemical Oxidation					
11	Application and Performance Sampling	LS	1	\$	100,000	\$100,000
	SSDS					\$100,000
1	Installation of Contingency SSDS	LS	1	\$	50,000	\$50,000
•	modulation of commigation code		•	Ψ	00,000	\$50,000
	Supplemental Remediation Costs					400,00
12	Mobilization/Demobilization	LS	1	\$	75,000	\$75,000
13	In-Situ Waste Characterization, Endpoint Sampling and Additional Soil				•	, ,
13	Sampling Delineation	LS	1	\$	240,000	\$240,00
14	Community Air Monitoring Plan (CAMP) Implementation (during excavation and				00.000	0.100.00
4-	soil handling)	Month	6	*	30,000	\$180,000
_	Vapor, Dust, and Odor Suppression	LS	1		60,000	\$60,00
16	Engineering support and disposal coordination	Month	6	\$	15,000	\$90,00
	Demolition, Soil handling, Product Recovery, Dewatering	- ISCO and	l Domodiation	Co	ot Cubtotal	\$645,00 \$9,152,60
	Demontion, Son handling, Froduct Recovery, Dewatering	y, ioco and			ontingency	\$9,152,60
		50	وون % وون fees, insura %			\$457,63
	DOD Decord Westing	3,	o ices, misurai		and bonds	ψ-101,000
4-	BCP Record Keeping Citizen Participation Public Macting Fact Sheet Distribution CDD development			•	00.000	005.55
	Citizen Participation: Public Meeting, Fact Sheet Distribution, CPP development			,	20,000	\$20,00
	BCP weekly and monthly reporting requirements	month		\$	4,000	\$32,00
19	Final Engineering Report	Lump Sum	1	\$	40,000	\$40,00
						\$92,000
			Total Rem	edia	ation Costs	\$11,532,762

Notes

- 1. Soil handling and removal costs subject to change pending actual remediation costs and excavation extents.
- 2. Soil handling and removal assumes excavation to the depths detailed in the RAWP.
- 3. CAMP implementation assumes one CAMP Technician and two CAMP monitoring stations operating 40 hours per week.
- 4. Excavation screening, end-point sampling, and disposal supervision assumes one part-time engineer/geologist onsite during excavation for field screening of excavated materials, end point soil sampling and waste disposal tracking.

TABLE 9. TRACK 2 RESTRICTED COMMERCIAL CLEANUP COST ESTIMATE

FORMER KRISTAL AUTO MALL 5200 KINGS HIGHWAY, BROOKLYN, NY ENVIRONMENTAL REMEDIATION COST ESTIMATE - MAY 2018

М	Description	UNIT	QUANTITY	UN	IIT COST	TOTAL
	- W					
	Demolition & Disposal			•	=	
	1-Story Show Room and Offices	LS	1	\$	50,000	\$50,00
2	1-Story Auto Repair Shop/Auto Storage/Auto Body Shop	LS	1	\$	500,000	\$500,00 \$550,00
	Soil Handling and Removal					Ψ000,00
3	Excavation support system	LS	1	\$	2,000,000	\$2,000,00
4	Soil Excavation	CY	30,000	\$	40	\$1,200,00
5	Soil Transport & Disposal Cost assuming 65% of soil is Non Hazardous	Ton	29,250	\$	55	\$1,608,75
6	Soil Transport & Disposal Cost assuming 35% of soil is Petroleum Impacted	Ton	15,750	\$	75	\$1,181,25
7	Soil Transport & Disposal Cost assuming 5% of soil is Hazardous	Ton	2,194	\$	275	\$603,28
8	Importation and Placement of Clean Backfill	CY	5,000	\$	45	\$225,00
			,			\$6,818,28
	Product Recovery, Dewatering and Treatment/Disposal					
	Dewatering Water Container Rental, Treatment/Disposal	Month	4	\$	50,000	\$200,00
10	Product Recovery (Vacuum Truck, Sump Pumps, Absorbent Booms)	Month	4	\$	70,000	\$280,00
	Le Oire Oire videol Ord Indian					\$480,00
	In-Situ Chemical Oxidation Application and Performance Sampling	10	1	Ф	100 000	\$100.00
11	Application and Performance Sampling	LS	1	\$	100,000	\$100,00 \$100,0 0
	SSDS					4 100,00
12	Installation of Contingency SSDS	LS	1	\$	50,000	\$50,00
	Ourseless and I Brown Raffers October					\$50,00
	<u>Supplemental Remediation Costs</u> Mobilization/Demobilization	1.0	4	Φ.	75.000	Ф7 Е О
	In-Situ Waste Characterization, Endpoint Sampling and Additional Soil Sampling	LS	1	\$	75,000	\$75,00
14	Delineation	LS	1	\$	240,000	\$240,00
	Community Air Monitoring Plan (CAMP) Implementation (during excavation and	20	•	Ψ	210,000	Ψ2 10,00
	soil handling)	Month	6	\$	30,000	\$180,00
16	Vapor, Dust, and Odor Suppression	LS	1	\$	60,000	\$60,00
17	Engineering support and disposal coordination	Month	6	\$	15,000	\$90,00
						\$645,00
	Demolition, Soil handling, Product Recovery, Dewatering	ng, ISCO and				
					ntingency	
		5%	fees, insurar	ıce	and bonds	\$432,16
	BCP Record Keeping					
18	Citizen Participation: Public Meeting, Fact Sheet Distribution, CPP Development	Lump Sum	1	\$	20,000	\$20,00
10	PCD weekly and monthly reporting requirements	•				\$32,00
	BCP weekly and monthly reporting requirements Final Engineering Report	Month Lump Sum	8	\$ \$	4,000 40,000	\$32,00 \$40,00
	Environmental Easement	Lump Sum	1 1	\$	35,000	\$40,0 \$35,0
	Site Management Plan	Lump Sum	1	\$	25,000	\$25,0
	Annual Engineer Certification for SMP	Year	1	\$	5,000	\$5,0
	Annual Brownfield Redevelopment Report	Year	1		10,000	\$10,00
44	Annual Prowilled Nedevelophietic Nepolit	ı caı		Ψ	10,000	φιυ,υ

Total Remediation Costs plus Engineering and Institutional Controls \$10,971,102

Notes

- 1. Soil handling and removal costs subject to change pending actual remediation costs and excavation extents.
- 2. Soil handling and removal assumes excavation to the depths detailed in the RAWP.
- 3. CAMP implementation assumes one CAMP Technician and two CAMP monitoring stations operating 40 hours per week.
- 4. Excavation screening, end-point sampling, and disposal supervision assumes one part-time engineer/geologist onsite during excavation for field screening of excavated materials, end point soil sampling and waste disposal tracking.
- 5. Environmental Easement and Site Management Plan Costs will be highly dependent upon legal review and editing.
- 6. Only one year of Annual cost items are shown in the table. Annual reports will be required for multiple years.

TABLE 10. TRACK 4 RESTRICTED COMMERCIAL CLEANUP COST ESTIMATE

FORMER KRISTAL AUTO MALL 5200 KINGS HIGHWAY, BROOKLYN, NY **ENVIRONMENTAL REMEDIATION COST ESTIMATE - MAY 2018**

M Description	UNIT	QUANTITY	UN	IIT COST	TOTAL
Demolition & Disposal			•	=	\$ =0.00
1 1-Story Show Room and Offices	LS	1	\$	50,000	\$50,000
2 1-Story Auto Repair Shop/Auto Storage/Auto Body Shop	LS	1	\$	500,000	\$500,000 \$550,000
Soil Handling and Removal					ψ550,00
3 Excavation support system	LS	1	\$	2,000,000	\$2,000,00
4 Soil Excavation	CY	27,000	\$	40	\$1,080,00
5 Soil Transport & Disposal Cost assuming 65% of soil is Non Hazard		26.325	\$	55	\$1,447,87
6 Soil Transport & Disposal Cost assuming 35% of soil is Petroleum I		14,175	\$	75	\$1,063,12
7 Soil Transport & Disposal Cost assuming 5% of soil is Hazardous	Ton	1,974	\$	275	\$542,95
8 Importation and Placement of Clean Backfill	CY	5,000	\$	45	\$225,00
This potation and historical of close. Business		0,000	Ψ_		\$6,358,95
Product Recovery, Dewatering and Treatment/Disposal					
9 Dewatering Water Container Rental, Treatment/Disposal	Month	4	\$	50,000	\$175,00
10 Product Recovery (Vacuum Truck, Sump Pumps, Absorbent Booms	s) Month	4	\$	70,000	\$280,00
					\$455,00
In-Situ Chemical Oxidation	1.0		•	400.000	# 400.00
11 Application and Performance Sampling	LS	1	\$	100,000	\$100,00 \$100,00
SSDS					ψ100,00
12 Installation of Contingency SSDS	LS	1	\$	50,000	\$50,00
					\$50,00
Supplemental Remediation Costs					
13 Mobilization/Demobilization	LS	1	\$	75,000	\$75,00
14 In-Situ Waste Characterization, Endpoint Sampling and Additional S	Soil Sampling		•	0.40.000	00.40.00
Delineation	LS LS	1	\$	240,000	\$240,00
15 Community Air Monitoring Plan (CAMP) Implementation (during exc soil handling)	avation and Month	6	\$	30,000	\$180,00
16 Vapor, Dust, and Odor Suppression	LS	1		60,000	\$60,00
17 Engineering support and disposal coordination	Month		\$	15,000	\$90,00
=g	Wichart	0	Ψ	10,000	\$645,00
Demolition, Soil handling, Product Recove	ery, Dewatering, ISCO ar	d Remediation	Со	st Subtotal	\$8,158,95
, •	· ·	20% cos	t co	ntingency	\$1,631,79
	5	% fees, insurar	ice	and bonds	\$407,94
BCP Record Keeping					
Citizen Participation: Public Meeting, Fact Sheet Distribution, CPP I					
	Lump Sur		-	20,000	\$20,00
19 BCP weekly and monthly reporting requirements	Month	8		4,000	\$32,00
20 Final Engineering Report	Lump Sur		-	40,000	\$40,00
21 Environmental Easement	Lump Sur			35,000	\$35,00
22 Site Management Plan	Lump Sur		-	25,000	\$25,00
23 Annual Engineer Certification for SMP	Year	1		5,000	\$5,00
24 Annual Brownfield Redevelopment Report	Year	1	\$	10,000	\$10,00
					\$167,0

Total Remediation Costs plus Engineering and Institutional Controls \$10,365,691

Notes

- 1. Soil handling and removal costs subject to change pending actual remediation costs and excavation extents.
- Soil handling and removal assumes excavation to the depths detailed in the RAWP.
 CAMP implementation assumes one CAMP Technician and two CAMP monitoring stations operating 40 hours per week.
- 4. Excavation screening, end-point sampling, and disposal supervision assumes one part-time engineer/geologist onsite during excavation for field screening of excavated materials, end point soil sampling and waste disposal tracking.
- 5. Environmental Easement and Site Management Plan Costs will be highly dependent upon legal review and editing.
- 6. Only one year of Annual cost items are shown in the table. Annual reports will be required for multiple years.

Table 11. List of Permits, Former Kristal Auto Mall Site, 5200 Kings Highway, Brooklyn, New York

Regulatory Agency	Permit
NYCDEP	Sewer Certification and Sewer Permit (for new building connection)
NYCDOB	New Building (NB) Permit
NYCDOB	Fence Permit
NYCDOB	Foundation/Earthwork Permit
NYCDOB	Builder's Paving Plan
NYCDOB	Underground Plumbing Permit
NYCBSA	Zoning Variance

<u>Note</u>: This list only accounts for permits required from the street level and below. Permits for aboveground portions of the building are not listed.

NYCDEP - New York City Department of Environmental Protection

NYCDOB - New York City Department of Buildings

NYCDOT - New York City Department of Transportation

NYCBSA - New York City Board of Standards and Appeals

TABLE 12

Project Management/Health and Safety Personnel

Title	Contact	Telephone/Cell
5200 Kings Highway	(Owner/General Contractor)	
Project Manager	Michael Berfield	(212) 750-1918
Roux Associates		
Project Principal	Craig Werle	(631) 232-2600
Principal Engineer	Charles McGuckin	(631) 232-2600
Field Manager/Site Safety Officer	Wendy Shen	(631) 232-2600
Corporate Health and Safety Manager	Joseph Gentile	(856) 423-8800
Office Health and Safety Manager	Brian Hobbs	(631) 232-2600

Emergency Phone Numbers

Emergency Medical Service	911
Police: New York City Police Department (NYPD)	911
Fire: New York City Fire Department (NYFD)	911
CityMD Occupational Health Center	718-280-5172
Hospital: University Hospital of Brooklyn	718-270-1000
National Response Center	800-424-8802
Poison Control Center	800-222-1222
CHEMTREC®	800-262-8200
Centers for Disease Control	800-311-3435
USEPA (Region II)	212-637-5000
NYSDEC Emergency Spill Response	800-457-7362
AllOne Health Care Management	800-350-4511
(For all medical services)	

Table 13. Soil Cleanup Objectives, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Parameters	NYSDEC Part 375 Unrestricted Use SCO	NYSDEC Part 375 Protection of Groundwater SCO	NYSDEC Part 375 Commercial SCO	
Volatile Organic Compounds (Concentrations in µg/kg)			
1,1,1-Trichloroethane	680	680	500000	
1,1-Dichloroethane	270	270	240000	
1,1-Dichloroethene	330	330	500000	
1,2,4-Trimethylbenzene	3600	3600	190000	
1,2-Dichlorobenzene	1100	1100	500000	
1,2-Dichloroethane	20	20	30000	
1,3,5-Trimethylbenzene	8400	8400	190000	
1,3-Dichlorobenzene	2400	2400	280000	
1.4-Dichlorobenzene	1800	1800	130000	
1,4-Dioxane	100	100	130000	
Acetone	50	50	500000	
Benzene	60	60	44000	
Carbon tetrachloride	760	760	22000	
Chlorobenzene	1100	1100	500000	
Chloroform	370	370	350000	
cis-1,2-Dichloroethene	250	250	500000	
·	1000	1000	390000	
Ethylbenzene 2-Butanone (MEK)	120	120	500000	
Methylene Chloride	50	50	500000	
·				
MTBE	930	930	500000	
n-Butylbenzene	12000	12000	500000	
n-Propylbenzene	3900	3900	500000	
sec-Butylbenzene	11000	11000	500000	
tert-Butylbenzene	5900	5900	500000	
Tetrachloroethene	1300	1300	150000	
Toluene	700	700	500000	
trans-1,2-Dichloroethene	190	190	500000	
Trichloroethene	470	470	200000	
Vinyl chloride	20	20	13000	
Xylenes (total)	260	1600	500000	
Semivolatile Organic Compour	<u> </u>	.		
Acenaphthene	20000	98000	500000	
Acenaphthylene	100000	107000	500000	
Anthracene	100000	1000000	500000	
Benzo[a]anthracene	1000	1000	5600	
Benzo[a]pyrene	1000	22000	1000	
Benzo[b]fluoranthene	1000	1700	5600	
Benzo[g,h,i]perylene	100000	1000000	500000	
Benzo[k]fluoranthene	800	1700	56000	
Chrysene	1000	1000	56000	
Dibenzo[a,h]anthracene	330	1000000	560	
Dibenzofuran	7000	210000	350000	
Fluoranthene	100000	1000000	500000	
Fluorene	30000	386000	500000	
Hexachlorobenzene	330	3200	6000	
Indeno[1,2,3-cd]pyrene	500	8200	5600	
Naphthalene	12000	12000	500000	
Semivolatile Organic Compou				
2-Methylphenol	330	330	500000	
	000	1 000		

Page 1 of 2 2861.0001Y.102/T13

Table 13. Soil Cleanup Objectives, Former Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

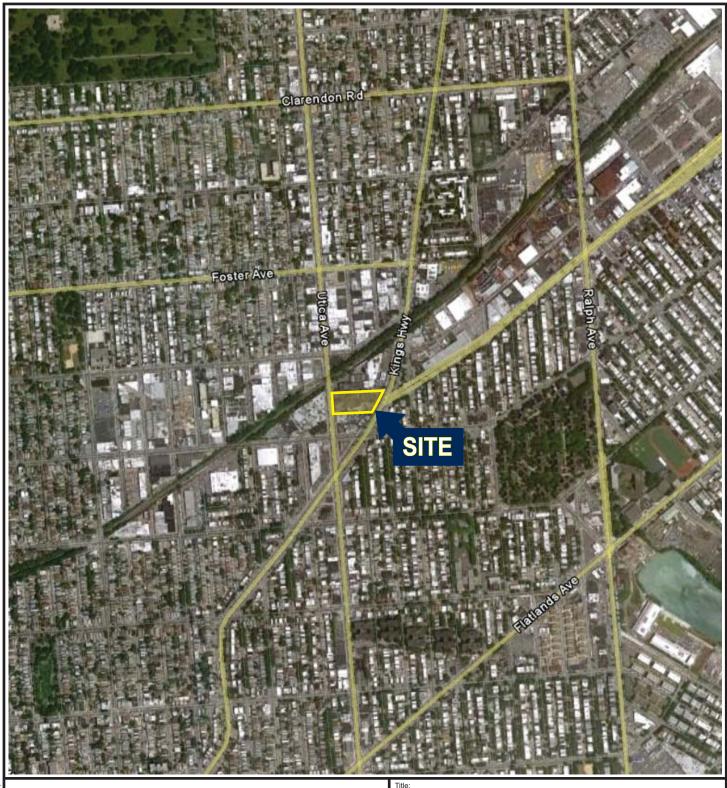
Parameters	NYSDEC Part 375 Unrestricted Use SCO	NYSDEC Part 375 Protection of Groundwater SCO	NYSDEC Part 375 Commercial SCO	
3-Methylphenol	330	330	500000	
4-Methylphenol	330	330	500000	
Pentachlorophenol	800	800	6700	
Phenanthrene	100000	1000000	500000	
Phenol	330	330	500000	
Pyrene	100000	1000000	500000	
Metals (Concentrations in mg/kg)				
Arsenic	13	16	16	
Barium	350	820	400	
Beryllium	7.2	47	590	
Cadmium	2.5	7.5	9.3	
Chromium	30		1500	
Chromium, Hexavalent	1	19	400	
Chromium, Trivalent	30		1500	
Copper	50	1720	270	
Cyanide	27	40	27	
Lead	63	450	1000	
Manganese	1600	2000	10000	
Mercury	0.18	0.73	2.8	
Nickel	30	130	310	
Selenium	3.9	4	1500	
Silver	2	8.3	1500	
Zinc	109	2480	10000	
Herbicides/Pesticides (Concentration	ns in µg/kg)			
2,4,5-TP	3800	3800	500000	
4,4'-DDD	3.3	14000	92000	
4,4'-DDE	3.3	17000	62000	
4,4'-DDT	3.3	136000	47000	
Aldrin	5	190	680	
alpha-BHC	20	20	3400	
alpha-Chlordane	94	2900	24000	
beta-BHC	36	90	3000	
delta-BHC	40	250	500000	
Dieldrin	5	100	1400	
Endosulfan I	2400	102000	200000	
Endosulfan II	2400	102000	200000	
Endosulfan sulfate	2400	1000000	200000	
Endrin	14	60	89000	
gamma-BHC (Lindane)	100	100	9200	
Heptachlor	42	380	15000	
Polychlorinated Biphenyls (Concen	trations in µg/kg)			
Polychlorinated biphenyls (PCBs) - total		3200	1000	

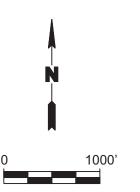
μg/kg - Micrograms per kilogram

mg/kg - Milligrams per kilogram

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objectives




Page 2 of 2 2861.0001Y.102/T13

FIGURES

- 1. Site Location Map
- 2. Site Map
- 3. Proposed Development Plans
- 4. Tax Map
- 5. Land Use and Surrounding Property Owners
- 6. Groundwater Contour Map
- 7. Extent of Free-Phase Hydrocarbon
- 8. Truck Transport Route
- 9. Proposed Schedule

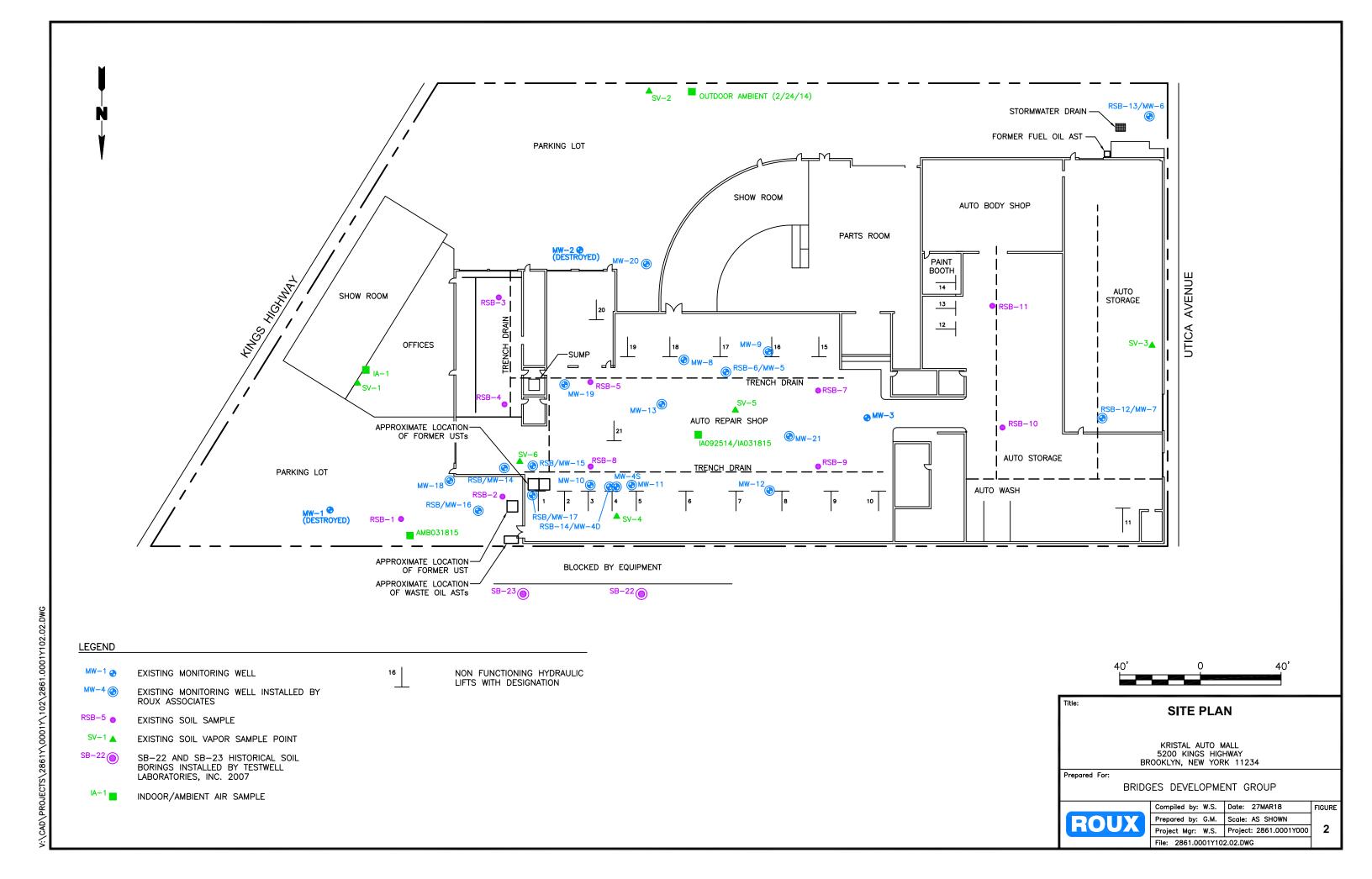
ROUX 2861.0001Y.102/CVRS

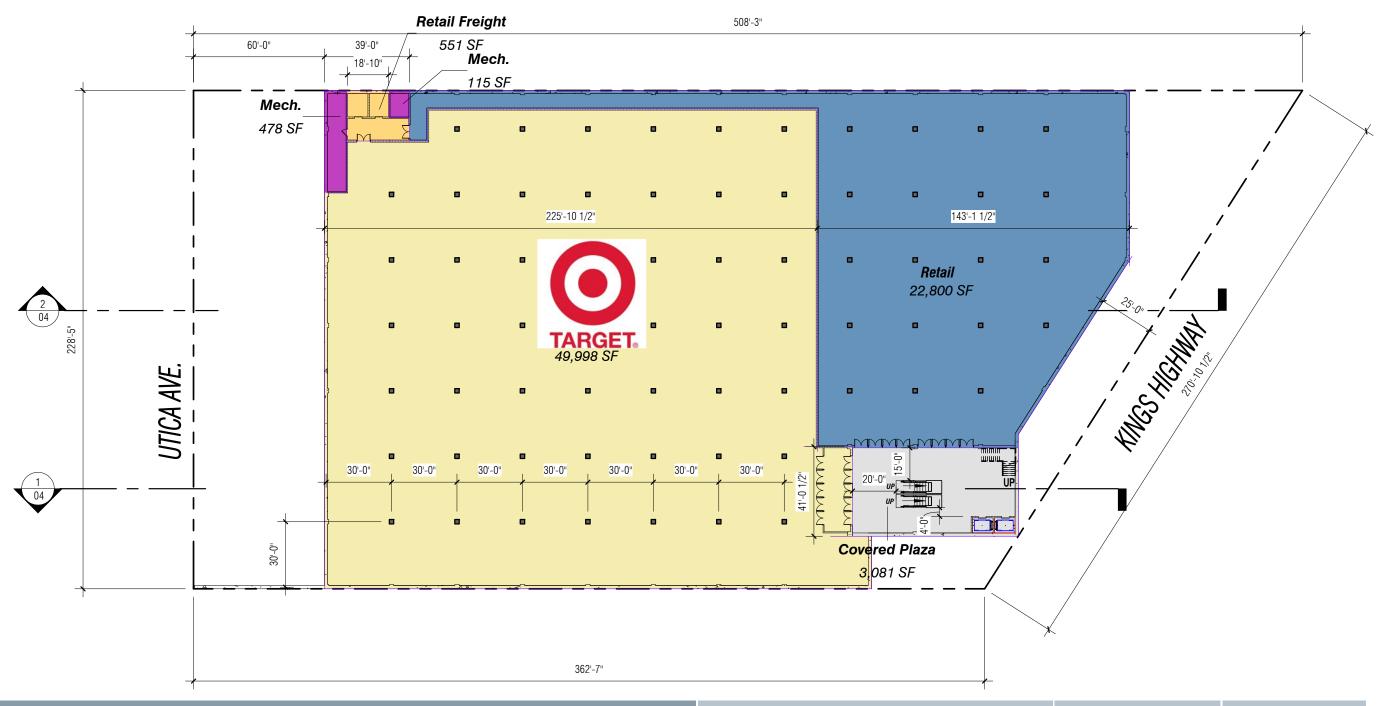
SITE LOCATION MAP

KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK 11234

Prepared for:

BRIDGES DEVELOPMENT GROUP


Compiled by: W.S.	Date: 27MAR18
repared by: G.M.	Scale: AS SHOWN
Project Mgr.: W.S.	Project No.: 2861.0001Y000
File: 2861.0001Y10	02.01.CDR

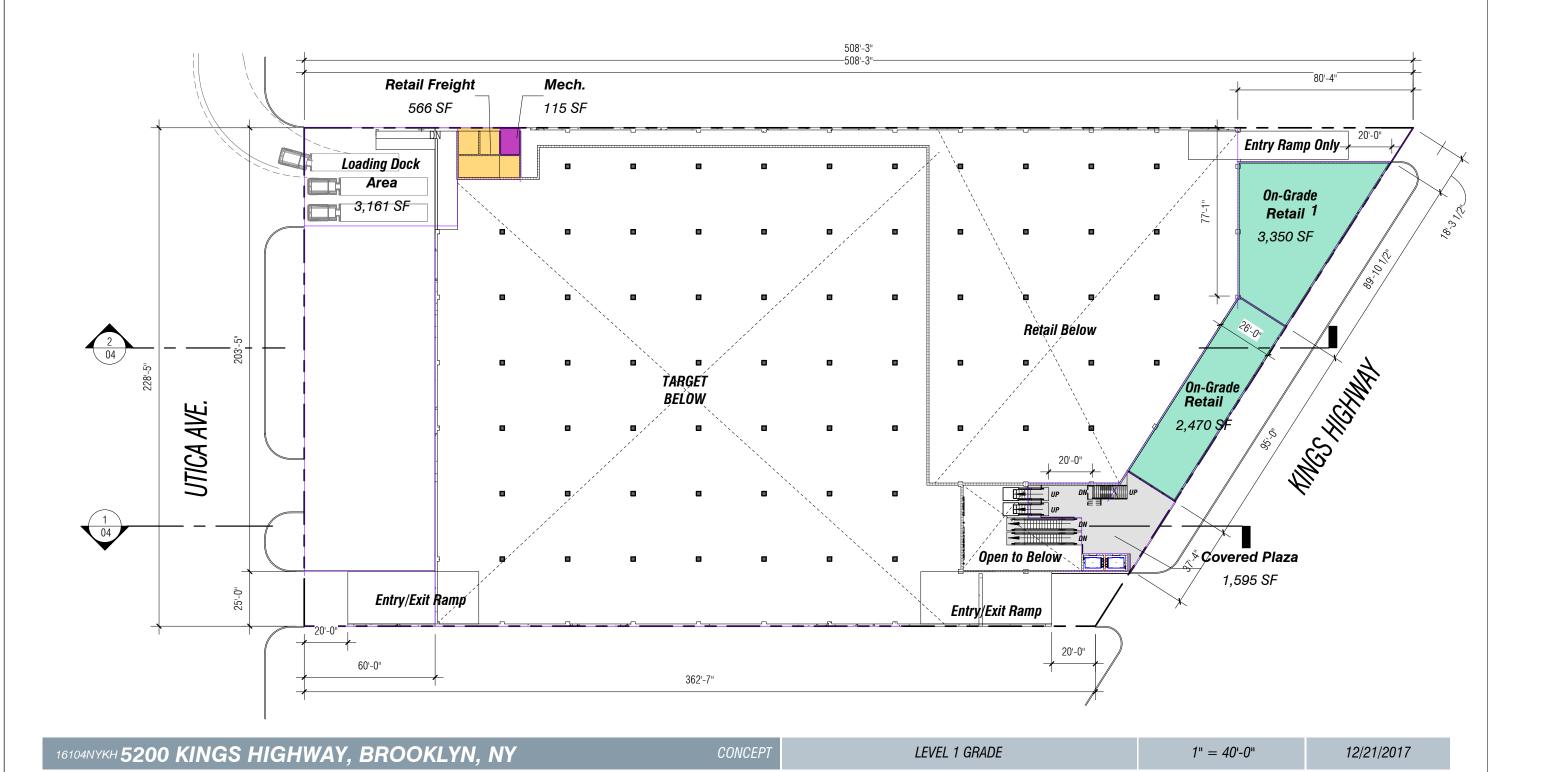

FIGURE

1

SOURCE: GOOGLE EARTH

IMAGERY DATE: 6/17/2010

16104NYKH 5200 KINGS HIGHWAY, BROOKLYN, NY


CONCEPT

CELLAR LEVEL PLAN

1" = 40'-0"

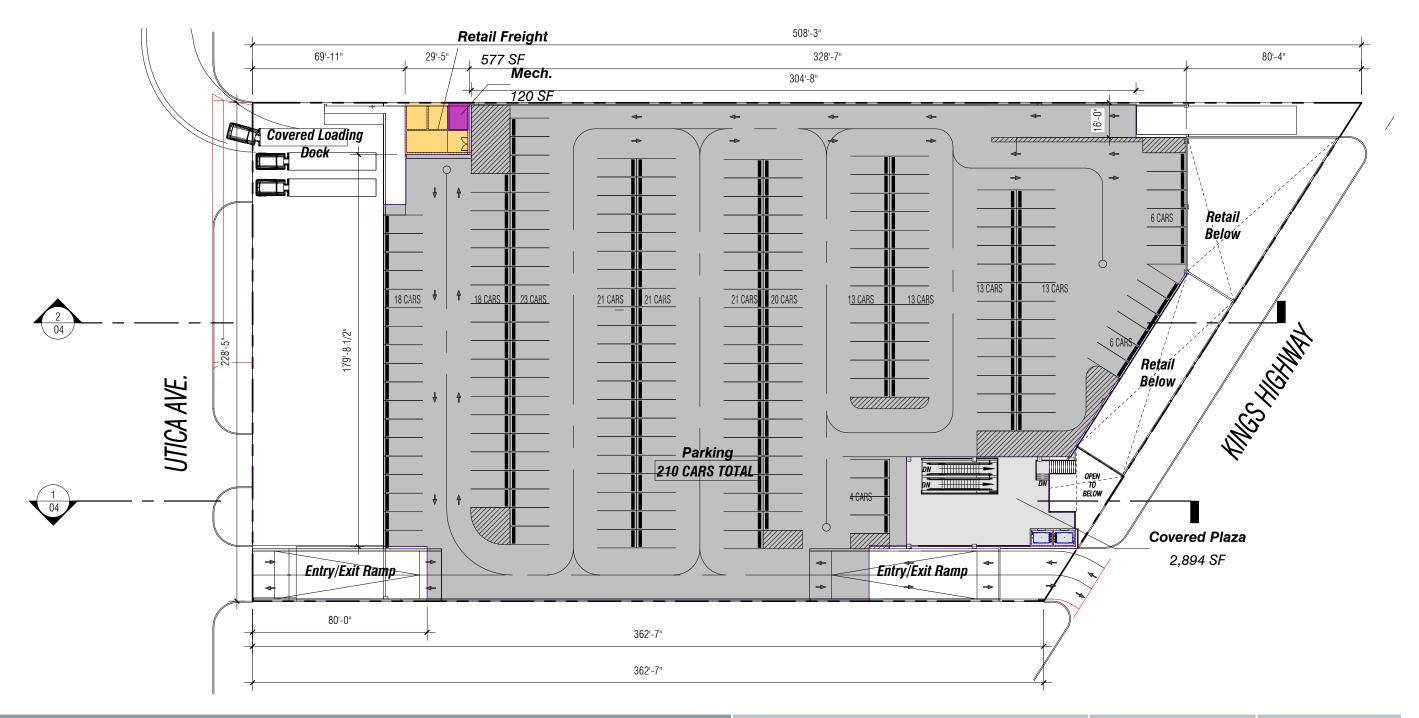
12/21/2017

ZYSCOVICH ARCHITECTS

ZYSCOVICH ARCHITECTS

270 Lafayette St . Suite 700 New York . NY 10012 t 212.343.0044 f 212.343.0046

e info@zyscovich.com


w www.zyscovich.com

02

No copies, transmissions, reproductions, or electronic revisions of any portions of these drawings in whole or in

part be made without the express written permission of Zyscovich Architects. All designs indicated in these

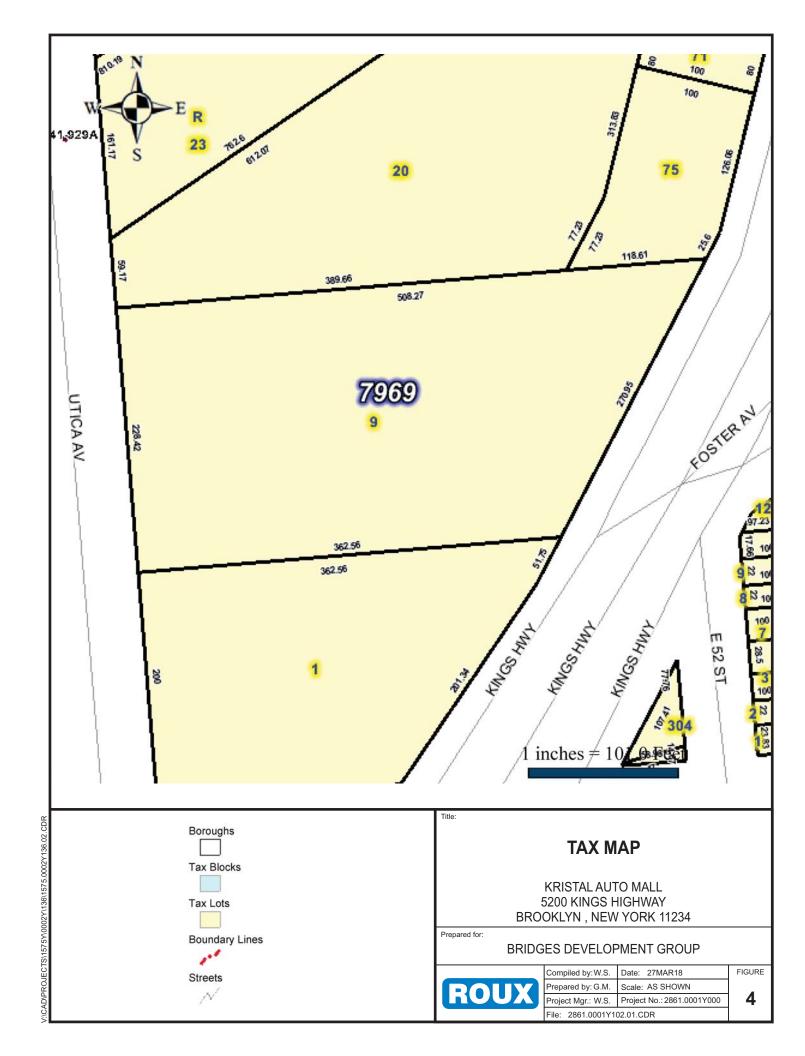
drawings are property of Zyscovich Architects. All copyrights reserved © 2017.

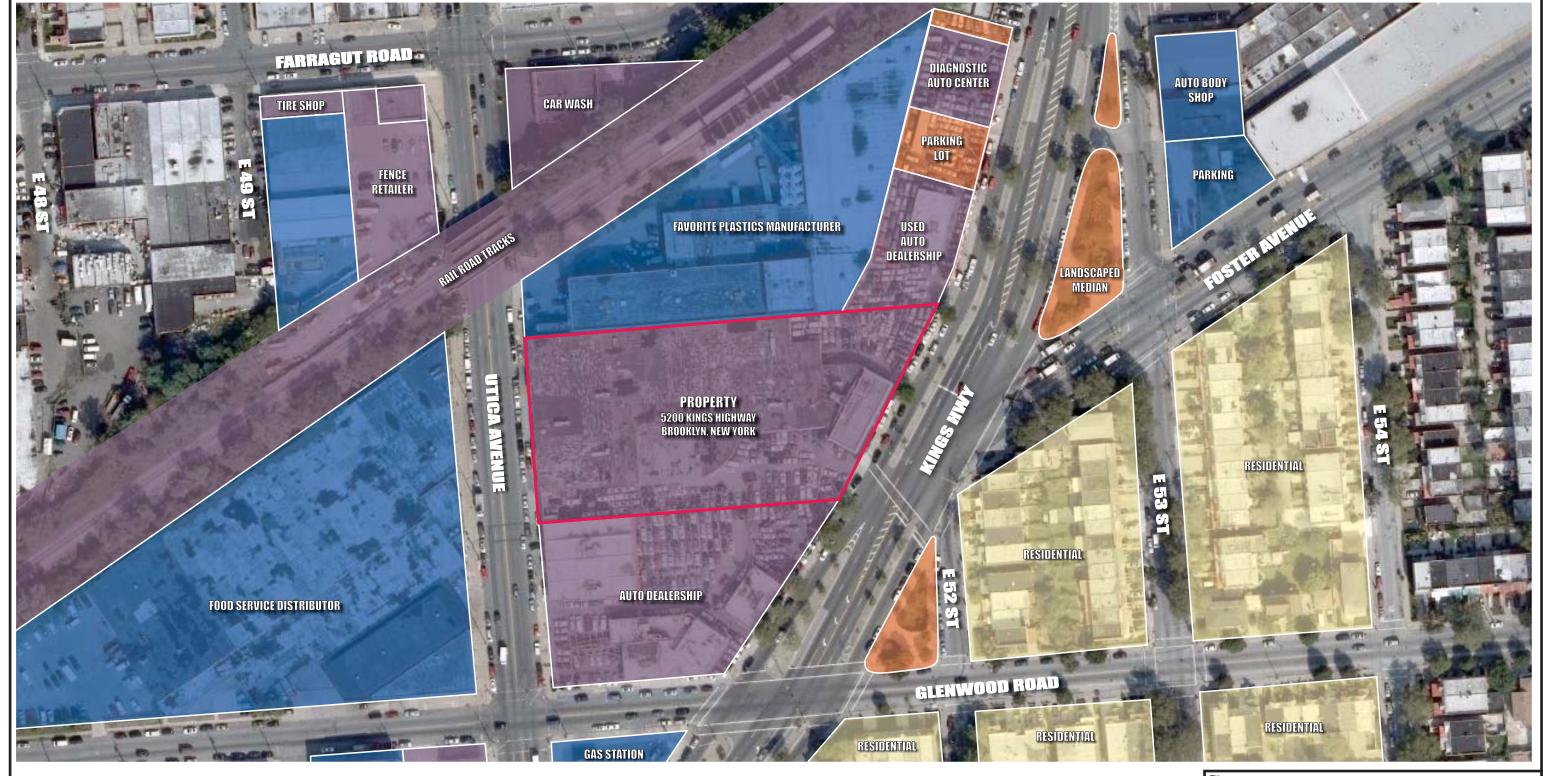
16104NYKH 5200 KINGS HIGHWAY, BROOKLYN, NY

No copies, transmissions, reproductions, or electronic revisions of any portions of these drawings in whole or in

part be made without the express written permission of Zyscovich Architects. All designs indicated in these

drawings are property of Zyscovich Architects. All copyrights reserved © 2017.


CONCEPT


LEVEL 2 DECK

1" = 40'-0"

12/21/2017

ZYSCOVICH ARCHITECTS

A N

LEGEND

COMMERCIAL

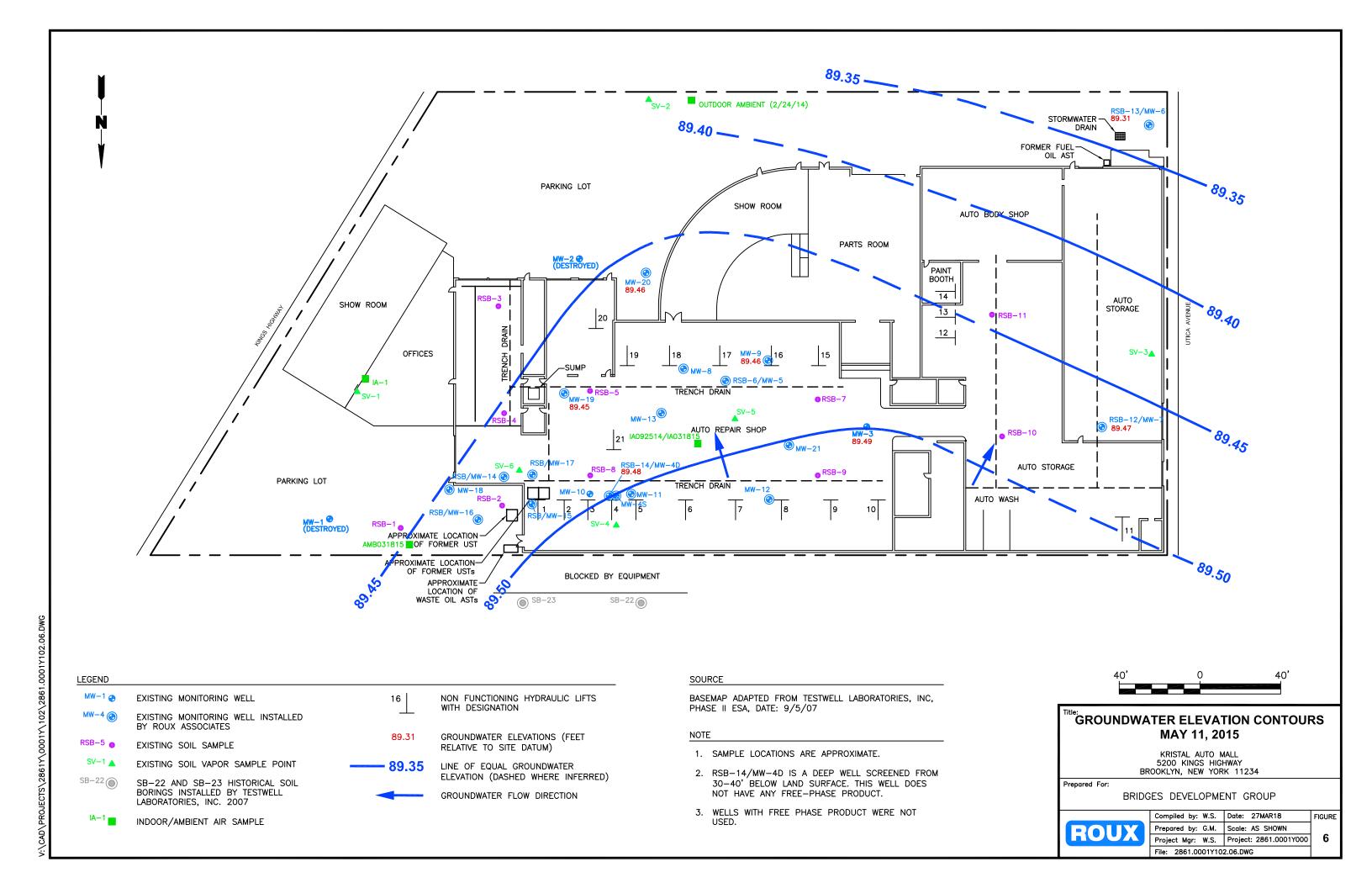
RESIDENTIAL

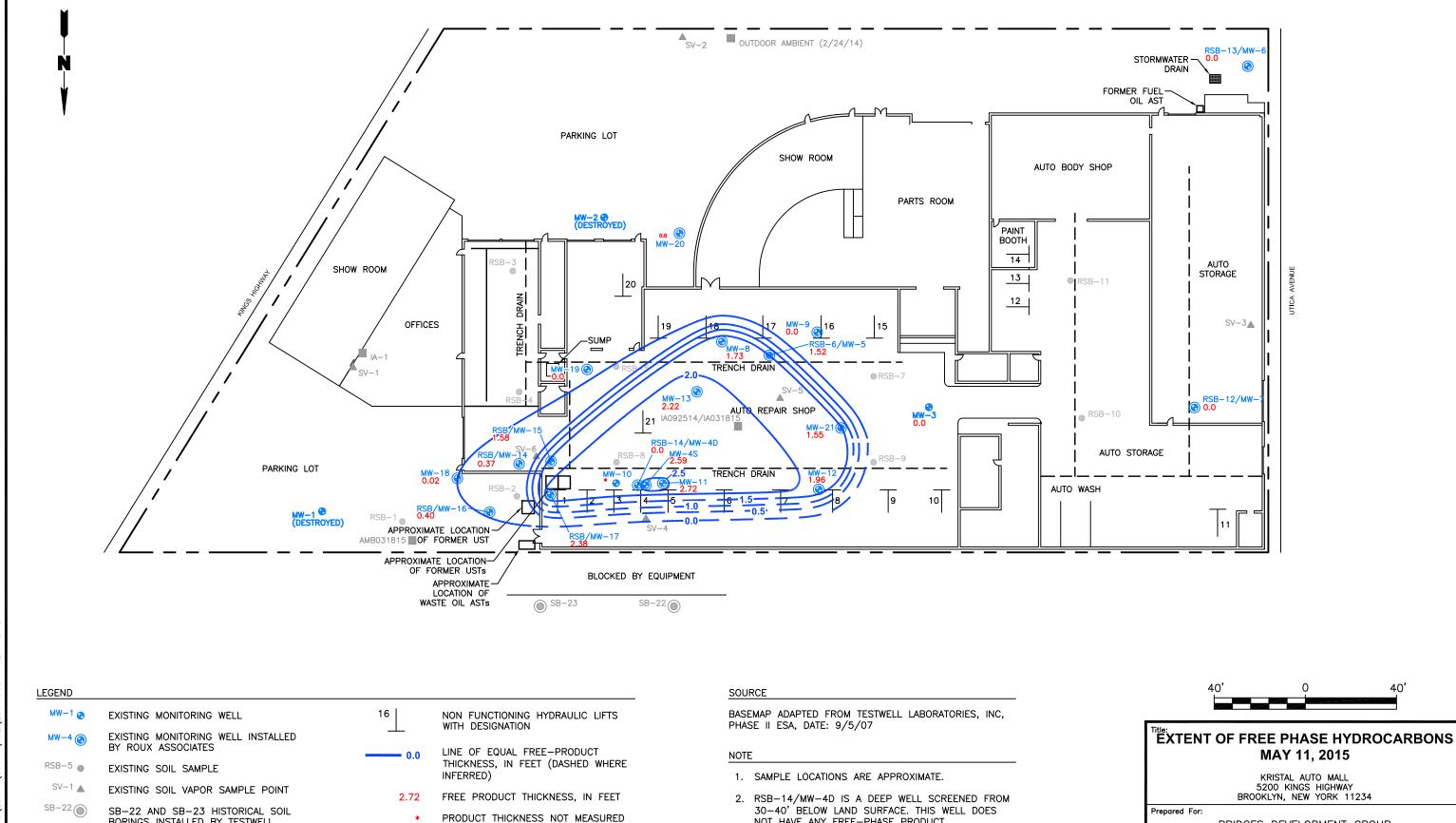
INDUSTRIAL

VACANT LOT

Title:

SURROUNDING LAND USAGE


KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK 11234


Prepared for:

BRIDGES DEVELOPMENT GROUP

Compiled by: W.S.	Date: 27MAR18	FIGURE
Prepared by: G.M.	Scale: AS SHOWN	_
Project Mgr.: W.S.	Project No.: 2861.0001Y000	5
File: 2861.0001Y1	02.03.CDR	

AT MW-10 DUE TO INTERFACE PROBE

MALFUNCTION

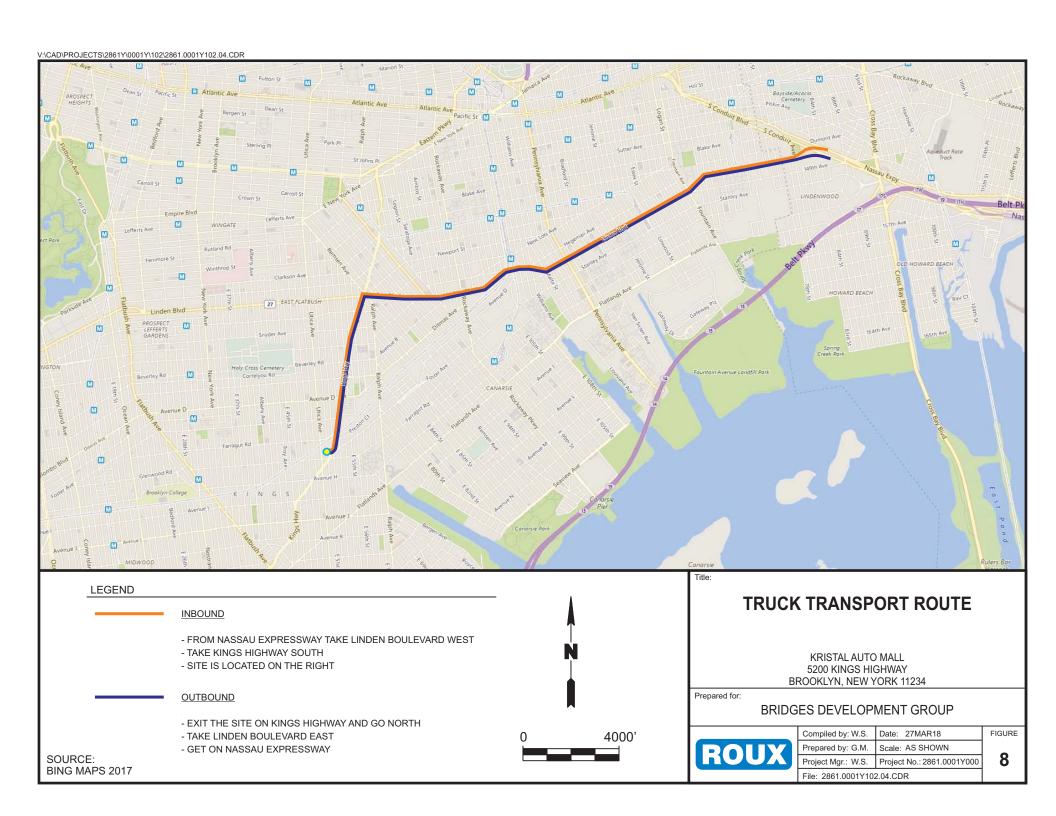
NOT HAVE ANY FREE-PHASE PRODUCT.

BRIDGES DEVELOPMENT GROUP

File: 2861.0001Y102.07.DWG

Compiled by: W.S. Date: 27MAR18

Prepared by: G.M. | Scale: AS SHOWN Project Mgr: W.S. Project: 2861.0001Y000


FIGURE

7

BORINGS INSTALLED BY TESTWELL

LABORATORIES, INC. 2007

INDOOR/AMBIENT AIR SAMPLE

FIGURE 9. PROPOSED REMEDIAL CONSTRUCTION SCHEDULE

Kristal Auto Mall, 5200 Kings Highway, Brooklyn, New York

Task Name	Start	Finish
Mobilization and Site Preparation	5/15/2018	6/15/2018
Existing Building Demolition	6/15/2018	7/15/2018
Excavation and Offsite Disposal of Grossly Contaminated Soil	8/1/2018	11/15/2018
Free Product Recovery	8/15/2018	11/15/2018
ISCO Application and Monitoring	11/15/2018	12/15/2018
Remedial Completion/Demobilization	12/15/2018	1/15/2019
Final Engineering Report	1/15/2019	2/15/2019

APPENDICES

- A. Tax Map, Metes and Bounds
- B. Soil Boring and Well Construction Logs
- C. Groundwater Sampling Forms
- D. Laboratory Reports
- E. Soil Vapor Sampling Forms
- F. Data Usability Summary Reports
- G. Sanborn Maps
- H. Health and Safety Plan and Community Air Monitoring Plan
- I. Quality Assurance Project Plan
- J. Citizen Participation Plan
- K. Resumes of Key Personnel
- L. BCP Site Sign Requirements
- M. Engineering Controls Product Sheets
- N. Proposed Support of Excavation

ROUX 2861.0001Y.102/CVRS

APPENDIX A

Tax Map, Metes and Bounds

ROUX 2861.0001Y.102/CVRS

Section 3, Block 7969, Lot 9

ALL that certain plot, piece or parcel of land situate, lying and being and the Borough of Manhattan, and County, City and State of New York bounded and described as follows:

BEGINNING at a point on the Easterly side of Utica Avenue distant 200 feet northerly from the corner formed by the intersection of the Easterly side of Utica Avenue and the northerly side of Glenwood Road;

RUNNING THENCE easterly along the southerly side of former Folger Place now closed 362.56 feet to the westerly side of Kings Highway 270.93 feet to the land formerly of Bertha Campbell;

RUNNING THENCE westerly along said land formerly of Bertha Campbell and parallel with the northerly side of former Folger Place 508.28 feet to the easterly side of Utica Avenue;

RUNNING THENCE southerly along the easterly side of Utica Avenue 228.42 feet to the point or place of BEGINNING.

Said premises being known as and by the street number 5200 Kings Highway, Brooklyn, New York.

APPENDIX B

Soil Boring and Well Construction Logs

ROUX 2861.0001Y.102/CVRS

BORING/FEET 1575.0002Y.GPJ ROUX.GDT 5/28/15

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of 1 SOIL BORING LOG

WELL NO.	01 1	NORTHING	EASTING				
RS	SB-1	Not Measured	Not Measured				
PROJECT NO	D./NAME		LOCATION				
1575.0002	Y000 / Kristal		5200 Kings Highway				
APPROVED E	o i	LOGGED BY Joe Gavin	Brooklyn, NY				
DRILLING CO	NTRACTOR/DRIL		GEOGRAPHIC AREA				
Trinity / Jo	oe S.		North Side of the East				
	AMETER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METH	SAMPLING N 2" Macro-	METHOD Core	START-FINISH DATE	
2-in. / Driv	CE ELEVATION	2-inches DEPTH TO WATER	/ Geoprobe BACKFILL	2 Macro	0010	2/20/14-2/20/14	
Not Measu		Not Measured	J. 15.11 I.E.				
				Diam	DID		
Depth, feet	Graphic Log	Visu	ual Description	Blow Counts per 6"	PID Values (ppm)	REMARKS	
		ASPHALT.					
		Light Brown, Fine to Coarse	SAND, some Gravel (fill); dry.				
	HH				à		
	一种				1		
	HH						
	m						
5	F444					Hand-cleared to 5' bls.	_5
		Brown, Fine to Coarse SAN	D, little gravel (fill); dry.		0.0 ppm	3' Recovery.	
	HH						
	K44	Prouga Fine to Cooree SAN	D, some brick fragments (fill); dry.				
	m	blown, Fine to Coarse SAN	D, some blick fragments (fill), dry.				
	تثثث	Brown, Fine to Coarse SAN	D little gravel: wet at 10'		0.0		
		.			0.0 ppm	2' Recovery.	_10
		Brown, Time to obtained of the	D, come Cravol, wet.		0.0 ppm	Sample collected 10'-12' for	or
	, O					TCL VOCs and TCL SVO	Cs
	0 0						
	,00				0.0 ppm		
	。				0.0 ррп		
	5						
	0 C						
	0	3					
15	• ○ •						11
15_	000				0.0 ppm	2' Recovery.	_1:
	00	3			o.o ppm		
		<u> </u>					
	(0, (),						
	00						
	, O C						
	· 0 °	4					
	y						
	00	3					
20)					_20
	· () ·	il de la companya de			0.0 ppm	Sample collected 20'-22' fo	or
					o.o ppm	TCL VOCs and TCL SVO	
	σ 0 Ο C						
	000	<u> </u>			N		
	1	· 4			_	1	

Page 1 of 1

WELL NO. RSB-2		NORTHING Not Measured	Not Measured				
PROJECT NO./NAM		Auto Mall	LOCATION				
1575.0002Y000 APPROVED BY	/ Kristal /	Auto Maii Logged by	5200 Kings Highway				
		Joe Gavin	Brooklyn, NY				
DRILLING CONTRA	CTOR/DRILI		GEOGRAPHIC AREA	and days 1 of			
<u> Γrinity / Joe S.</u>			North Side of the Eastern P				_
DRILL BIT DIAMETE		BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING I	METHOD -Core	START-FINISH DATE	
2-in. / Drive Sa AND SURFACE EL		2-inches DEPTH TO WATER	/ Geoprobe BACKFILL	Z Wacio	-0016	2/21/14-2/21/14	
Not Measured	LVATION	Not Measured	BACKLIEE				
			,				
epth, feet	Graphic Log	Visua	al Description	Blow Counts per 6"	PID Values (ppm)	REMARKS	
		ASPHALT.					
	HH	Dark Brown, Fine to Coarse Sa	AND and GRAVEL, some Brick (fill); dry.		0.0 ppm		
	四世					Sample collected 1'-3' for T	ГС
	HH					VOCs and TCL SVOCs.	
	HH	Light Brown Fine to Coarse SA	AND, some Gravel (fill); dry.		0.4 ppm		
	HH	_	· · · ·		j 77		
	四件	Brown, Fine to Coarse SAND	some Gravel. Concrete at 3.5' (fill); dry.		0.5 ppm		
	HH	2.01, to occase of a 12,	come craven concrete at the (iii), any.		0.5 ppiii		
	FFF						
	HH					Hand alacted to El El-	
5	F444	Prove Giante Constant				Hand-cleared to 5' bls.	
	四世	Brown, Fine to Coarse SAND, fragments (fill); dry.	some Gravel, little brick and concrete		2.0 ppm	2' Recovery Sample collected 5'-7' for T	ΓC
	HH	,,,				VOCs and TCL SVOCs.	J
	ppp	1			T		
	HH	Brown, Fine to Coarse SAND,	some Silt, little Gravel (fill); dry.		I		
	四四				1		
	6.07.C	Grey, and Dark Brown Fine to	Coarse SAND, some Gravel, little silt; dry.		43.3 ppm		
	. 0 .	•			M		
	1 5 (1)						
	0 0	-					
40	, O C)					
10		Grev Fine to Coarse SAND s	ome Silt, little gravel; wet at 10'.			3' Pecovery	
		Grey, Fine to Coarse SAND, S	one ont, little graver, wet at 10.		386 ppm	3' Recovery.	
		-				0	
		_			T	Sample collected 11'-13' fo TCL VOCs and TCL SVOC	ir Ds
					V I	1.52 VOOS GIIG TOL SVOC	,3
	I SF				440 ppm		
		L			1		
	FEE	Grey, Fine to Coarse SAND, s	ome Gravel, little silt; wet.	1	138 ppm		
					A		
	1	1					
15							
<u>15 </u>		-			70	4' Recovery.	
					70 ppm		
					T		
					II		
		-			6.0 ppm		
	LLE.	<u> </u>					
	\circ \sim \sim	Light Brown, Fine to Coarse S.	AND, some Gravel; wet.		7.5 ppm	Sample collected 18'-20' fo TCL VOCs and TCL SVOC)r
	。 () °					I OL VOUS AND TOL SVOC	<i>ι</i> δ.
	D						
20	00						
	real distance	М				ı	_

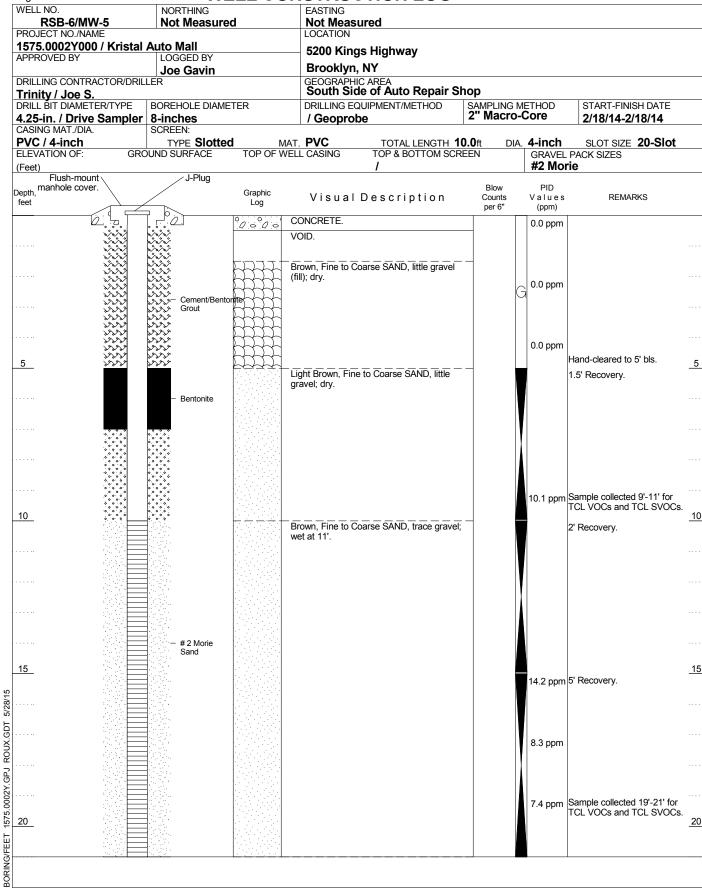
Environmental Consulting & Management 1 of 1

VELL NO.	•	NORTHING	EASTING				
RSB- PROJECT NO./N		Not Measured	Not Measured LOCATION				
575.0002Y0		Auto Mall	5200 Kings Highway				
PPROVED BY		LOGGED BY					
		Joe Gavin	Brooklyn, NY				
RILLING CONT Frinity / Joe		.ER	GEOGRAPHIC AREA Auto Storage Area Near Of	fices			
RILL BIT DIAME	TER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING I	METHOD	START-FINISH DATE	_
2-in. / Drive S	Sampler	2-inches	/ Geoprobe	2" Macro	-Core	2/20/14-2/20/14	
AND SURFACE		DEPTH TO WATER	BACKFILL				
Not Measure	d	Not Measured					
epth,	Graphic			Blow	PID		
eet	Log		ual Description	Counts per 6"	Values (ppm)	REMARKS	
	0000						
	HH	Brown, Fine to Coarse SAN	ID and GRAVEL, some Brick (fill); dry.		0.3 ppm		
	ppp						
	FFFF	}					
	HH				_		
	ppp				4		
**	HH	1					
	m						
* * **	HHH						
5	MAT					Hand-cleared to 5' bls.	
	FHH	1			0.0 ppm ²	2' Recovery.	
	ppp				pp		
	FFFF	}					
	HHH						
	ptp						
	HH	1					
	MM				0.0 ppm S	Sample collected from 8'-1 for TCL VOCs and TCL	0'
	FHH	1			f f	or TCL VOCs and TCL SVOCs.	
	PATA PATA					J. 200.	
10	ppp						
· <u>-</u>		Brown, Fine to Coarse SAN	ID, some Silt, little gravel; wet at 10'.		0.0 ppm 2	2' Recovery.	
					σ.σ ρριτι		
		1					
		1					
		+					
		-					
* * **		-					
		_					
* * **	000	Brown, Fine to Coarse SAN	ID, some Gravel; wet.		0.3 ppm		
15	· 0 ·				pp		
<u>15</u>					0.0.00	3' Recovery.	
	000				υ.υ μριτι	•	
	, O O						
	0 00						
) (1.2 ppm		
	000				ΙΙ ρριιί		
	, O O				0.0.000	Sample collected from 18'-	-21
	。 () °				l i f	or TCL VOCs and TCL	
	0 0					SVOCs.	
20							
20	10 V	4					_

Environmental Consulting & Management

Page **1** of **1**

RSB-4		Not Measured	Not Measured			
PROJECT NO./NA		A 4 - B# - II	LOCATION			
575.0002Y00 PPROVED BY	0 / Kristai .	Auto Maii Logged by	5200 Kings Highway			
WITHOULD BI		Joe Gavin	Brooklyn, NY			
RILLING CONTR			GEOGRAPHIC AREA			
rinity / Joe S			Auto Storage Area Near Off			
RILL BIT DIAMET Prive Sa		BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING 2" Macro	METHOD -Core	START-FINISH DATE
AND SURFACE E	ampier FLEVATION	2-inches DEPTH TO WATER	/ Geoprobe BACKFILL	2 1114010		2/21/14-2/21/14
Not Measured		Not Measured				
epth, eet	Graphic Log	Vis	ual Description	Blow Counts	PID Values	REMARKS
	-	CONCRETE	<u> </u>	per 6"	(ppm)	
	0000	CONCRETE.				
	0000	:				
	0000					
		VOID.				
					d	
					\triangleleft	
	L	L				
	HH	Brown, Fine to Coarse SAN	D, some Gravel, little silt (fill); dry.		1.2 ppm	
	M					
i	HH	1				Hand-cleared to 5' bls.
_	M				0.0 ppm	2.5' Recovery.
	FFFF					
	PAT					
	FFF					
	M	Brown, Fine to Coarse SAN	D, some Gravel, some Brick, little silt (fill); dry.		2.2 ppm	
	FAT.					
	PAT					Sample collected 8'-10' for
	 	Grey, Fine to Coarse SAND) and GRAVEL, wet at 10'.		2.5 ppm	TCL VOCs and TCL SVOC
	。 () °				pp	
n) O					
0	[Brown, Fine to Coarse SAN	ID, some Gravel; wet.	·	0.7	2.5' Recovery.
	· 0 ·		• •		8.7 ppm	
	00					
	00				T	
	° 0 C)			7 2	
	。	:			7.3 ppm	
	- Kalandari				A l	
	0 0					
	。O C					
	。 () °	:				
5_	b l					51.0
	00				1.9 ppm	5' Recovery.
	° 0 C	3				
	。					
	b)	4				
	000	.]			5.9 ppm	
	, O C					
	。 () °				3.4 ppm	Sample collected 18'-20' fo
	b					TCL VOCs and TCL SVOC
	000					
0	0	1				


Page 1 of 1 SOIL BORING LOG

PROJECT NO./		A 4 - BA - II	LOCATION				
	000 / Kristal <i>I</i>		5200 Kings Highway				
APPROVED BY		LOGGED BY	Brooklyn, NY				
DRILLING CON	TRACTOR/DRILL	Joe Gavin	GEOGRAPHIC AREA				_
<u> Frinity / Joe</u>			GEOGRAPHIC AREA South Side of Auto Repair S	hop			
DRILL BIT DIAM	METER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING N 2" Macro-	METHOD	START-FINISH DATE	_
2-in. / Drive	Sampler	2-inches	/ Geoprobe	2" Macro-	Core	2/18/14-2/18/14	
AND SURFAC	E ELEVATION	DEPTH TO WATER	BACKFILL				
Not Measur	ed	Not Measured					_
							-
epth,	Graphic	V: 1	Danasiakias	Blow	PID	DEMARKO	
eet	Log	visuai	Description	Counts per 6"	Values (ppm)	REMARKS	
	00000	CONCRETE.			(FF)		-
	.0.0.0.0	Void.		_			
		Void.					
	L,	L					
	HH	Brown, Fine to Medium SAND, lit	tle gravel (fill); dry.		3.7 ppm		
	ptt				1		
	HH						
	F-f-f-f						
	ppp						
	f++++	Brown, Fine to Coarse SAND, so	me Gravel (fill): dry		70	Hand cleared to El bla	
5	FRAT			_	_	Hand-cleared to 5' bls.	
		Grey and Brown, Fine to Medium sand; dry.	SAND and SILT, little gravel and coarse		4.2 ppm	2' Recovery.	
		-					
		Brown, Fine SAND, little gravel; of			5.1 ppm		
	<u> </u>		SAND and SILT, little gravel and coarse				
		sand; wet at 10.5'.	o, and one i, inthe graver and coarse		4.2 ppm		
]					
		1				Sample collected 8.5'-10.5' TCL VOCs and TCL SVOC	f
		-				TOL VOOS AIR TOL SVOC	×
10							
					4 0 nnm	2' Recovery.	
					T.O PPIII		
		1					
		-					
		1					
	<u> </u>	<u> </u>		_			
		Brown, Fine to Coarse SAND, litt	e gravel; wet.		5.0 ppm		
		:					
15							
<u>15</u>					=	4' Recovery.	
					4.7 ppm	i i coovery.	
						Sample collected 18.5'-20.5	5'
		Grey, Fine to Coarse SAND, little	gravel: wet		l I	for TOL VOCs and TOL	_
		. Croy, i mo to obdise oznab, iitte	giavoi, wot.		5.5 ppm	SVOCs.	
20							
	<u> </u>						

& Management

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of 1

WELL NO. RSB-		NORTHING Not Measured	EASTING Not Measured				
PROJECT NO./N/ 1575.0002Y00		Auto Mali	LOCATION				
APPROVED BY	o riaistal	LOGGED BY	5200 Kings Highway				
		Joe Gavin	Brooklyn, NY				
DRILLING CONTI		_ER	GEOGRAPHIC AREA South Side of Auto Repair	Shop			
Trinity / Joe S Drill bit Diame	TER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING I	METHOD	START-FINISH DATE	-
2-in. / Drive S		2-inches	/ Geoprobe	SAMPLING I 2" Macro	-Core	2/19/14-2/19/14	-
AND SURFACE	ELEVATION	DEPTH TO WATER	BACKFILL	I		2/10/14 2/10/14	
Not Measure	d	Not Measured					
epth, feet	Graphic Log		ual Description	Blow Counts per 6"	PID Values (ppm)	REMARKS	
	HH	Brown, Fine to Coarse SANI	D and GRAVEL, some Brick (fill); dry.		0.0 ppm		
	M						
	HHH	1					
	M						
	HHH						
	M				기		
	ffff						
	M						
	HH						
_	MM					Hand-cleared to 5' bls.	
5	ٳ؞۪ڮٳ؞ؗۄ۪ڋ	Brown Fine to Coarse SANI	D and GRAVEL; wet at 10.5'.			2' Recovery.	
		Drown, Time to Coarse SAIN	D and OIVAVEE, WEL AL TU.J.		2.5	recovery.	
	D	?}					
						Sample collected 8.5'-10.5	5' f
	000000000					TCL VOCs and TCL SVO	Cs
10							
<u> </u>				i	5.3 ppm 3	3.5' Recovery.	
		1			PP	•	
	000000	Brown, Fine to Coarse SANI	D, little silt and gravel: wet.	 	3.8		
			,		3.0		
		+					
		Prown Fine to Coorse CANII	D. somo Gravol: wot				
	0 0	Brown, Fine to Coarse SANI	D, SUITE GLAVEL, WEL.		3.1 ppm		
	$ \circ \bigcirc \circ $						
	000						
	0 0	- X					
15_	200) :					
	。 () °				4.9 ppm 4	1' Recovery.	
	000						
	000	- -					
)					
	∘						
	000						
	0 0						
	9:3:3:3:3				45	Sample collected 10 FL 20) F'
	。 () °	•]			f	Sample collected 18.5'-20 for TCL VOCs and TCL	J. O
)	9				SVOCs.	
20	000						
	, O C	3					
	1 44 724 5 44						

Page 1 of 1 SOIL BORING LOG

RSB PROJECT NO./I	NAME	Not Measured	Not Measured LOCATION			
1575.0002Y(APPROVED BY	000 / Kristal <i>I</i>	Auto Mall LOGGED BY	5200 Kings Highway			
ATTROVED BT		Joe Gavin	Brooklyn, NY			
	TRACTOR/DRILL		GEOGRAPHIC AREA North Side of Auto Repair	Shon		
Trinity / Joe Drill bit diam	S. IETER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE
2-in. / Drive	Sampler	2-inches	/ Geoprobe	2" Macro	-Core	2/19/14-2/19/14
LAND SURFACE	EELEVATION	DEPTH TO WATER	BACKFILL			
Not Measure	ea	Not Measured				
epth, feet	Graphic Log	Visu	ıal Description	Blow Counts per 6"	PID Values (ppm)	REMARKS
	0000	CONCRETE.				
		VOID.				
	L,	L				
	FFF	Brown, Fine to Coarse SAND	D, little gravel (fill); dry.		0.4 ppm	Sample collected 1.5'-3.5' TCL VOCs and TCL SVOCs
	PAT				G	TOL VOOS AND TOL SVOC
	ppp				\subseteq	
	HH				0.3 ppm	
	ppp					
	b b b b b b b b b b b b b b b b b b b					
5	HH	 				Hand-cleared to 5' bls.
	ppp	Brown, Fine to Coarse SAND	D and GRAVEL, little brick fragments (fill); dr	у.	0.5 ppm	2' Recovery. Sample collected 5'-7' TCL
	HH				T	VOCs and TCL SVOCs.
	四世				T	
	FFFF	<u> </u>			T	
	ppp	Brown, Fine to Coarse SAND	and GRAVEL with some Brick (fill); dry.		0.7 ppm	
	HH	1				
	ppp					O
	ppp					Sample collected 8.5'-10.5' TCL VOCs and TCL SVOCs
	HH					
10		Brown, Fine to Coarse SAND) and GRAVEL: wet at 10.5'			4' Pecovery
		1	o, some Silt, trace coarse sand; wet.		0.4 ppm	4' Recovery.
		. Orey, I me to ivieutum SAIND	, some siit, trace coarse sanu, wet.		5.5 ppm	
		Grey, Fine to Coarse SAND,	some Gravel: wet		11.0	
	Λ 0	Orey, The to Coarse SAIND,	Some Stavel, wet.		11.8 ppm	
	000					
	00				A l	
	 0-	Brown, Fine to Coarse SAND	D. some Gravel: wet.		1 E nn-	
	, (°	,	,		1.5 ppm	
15	0 0					
<u>15</u>	0 0				2 0	5' Recovery.
	, O O	5			3.2 ppm	
	. O °					
)					
	0 0				2.4 ppm	
	\circ					
	$[\circ \land \circ]$					
					2.0 ppm	Sample collected 18.5'-20.5
	, O O	y de la companya de l				TCL VOCS and TCL SVOC
20	0 0					
	[° O					
	12 - 3 - 2 3 3 '	d			_	I

BORING/FEET 1575.0002Y.GPJ ROUX.GDT 5/28/15

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of 1 SOIL BORING LOG

WELL NO.	R_9	NORTHING Not Measured	EASTING Not Measured				
PROJECT NO.	/NAME	·	LOCATION				
1575.0002Y APPROVED B	<u>′000 / Kristal</u> ⁄	Auto Mall LOGGED BY	5200 Kings Highway				
		Joe Gavin	Brooklyn, NY				
	NTRACTOR/DRIL	LER	GEOGRAPHIC AREA North Side of Auto Repair S	hon			
Trinity / Jo	<u>9 S.</u> METER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHOD		METHOD	START-FINISH DATE	
2-in. / Drive	Sampler	2-inches	/ Geoprobe	SAMPLING 2" Macro	-Core	2/19/14-2/19/14	
	E ELEVATION	DEPTH TO WATER	BACKFILL				
Not Measu	rea	Not Measured					
				Blow	PID		
Depth, feet	Graphic Log	Visu	ual Description	Counts per 6"	Values (ppm)	REMARKS	
		Fine to Coarse SAND and G	SRAVEL; dry.				
		j					
					G		
		\$					
_						Hand-cleared to 5' bls.	_
_5		Brown, Fine to Coarse SAN	D. some Gravel: drv.			2' Recovery.	_5
	. ()	,	_,, ,			2 recovery.	
	,	Brown, Fine SAND and SILT	Γ, some Coarse Sand, trace clay; dry.		3.2 ppm		
		· .			O.Z ppiii		
		.:					
		<u>:</u>					
		<u>.]</u>					
						Sample collected 8.5'-10.5	5'
	<u> </u>	<u> </u>				TCL VOCs and TCL SVO	Cs.
10		.					1
			and SILT, some Coarse Sand, trace clay. We	et	8.0 ppm	5' Recovery.	
		at 10.5'.					
		· · · · · · · · · · · · · · · · · · ·					
		· '			II.		
		Grey, Fine to Coarse SAND			4.8 ppm		
		Brown, Fine to Coarse SAN	D, little gravel; wet.		3.5 ppm		
15_	- (1-1	Drown and Cray Fire to Co	area CAND some Cravali wat			5l Danner	_1
	\sim \sim	Brown and Grey, Fine to Co	arse SAND, some Gravel; wet.		3.5 ppm	5' Recovery.	
	$ \circ \bigcirc \circ $						
	00						
	<u> </u> 0 €	Brown, Fine to Coarse SANI	D some Gravel: wet	_	11 222		
	0	Drown, Fine to Godise GAIN	2, 33.110 Glavoi, Wot.		4.1 ppm		
	0 0				3.5 nnm	Sample collected 18.5'-20	.5'
	, O C	3			a o.o ppili	TCL VOCs and TCL SVO	Cs.
20	。	S)					2
20_							_2
	1. <i>O.</i> 1	. 1				1	

Page **1** of **1**

RSB- PROJECT NO./I	NAME	Not Measured	Not Measured LOCATION				_
	000 / Kristal /	Auto Mall					
APPROVED BY	' I I I I I I I I I I I I I I I I I I I	LOGGED BY	5200 Kings Highway				
		Joe Gavin	Brooklyn, NY				
DRILLING CON	TRACTOR/DRILI		GEOGRAPHIC AREA				—
Trinity / Joe			GEOGRAPHIC AREA Auto Storage / Auto Wa	ash Area			
DRILL BIT DIAM	METER/TYPE	BOREHOLE DIAMETER	DRILLING EQUIPMENT/METHO		METHOD	START-FINISH DATE	_
		2-inches		SAMPLING 2" Macro	-Core		
<mark>2-in. / Drive</mark> LAND SURFACI	Sampler	Z-INCHES DEPTH TO WATER	/ Geoprobe BACKFILL	_ 1110010	30.0	2/20/14-2/20/14	
Not Measur		Not Measured	DAUNFILL				
NOL Weasur	eu	NOL Weasureu					_
							_
41-	0			Blow	PID		
epth, feet	Graphic Log	Vis	ual Description	Counts	Values	REMARKS	
icci	_		·	per 6"	(ppm)		
	0000	CONCRETE.					
	1.2.2.2.3	VOID.					
			ID and CDAVEL (fill); day				
	HHH	Brown, Fine to Coarse SAN	ID AIIU GRAVEL (TIII); OFY.		1.6 ppm		
	mm						
	MM	1			2.6 ppm		
	HHH	4			GI ^{2.0} ppiii		
	KHHH	1					
	part						
		1					
	} } } } 	Brown, Fine to Coarse SAN	ID some Gravel (fill): dry		0.4		
		Drown, I me to occarse OAN	, some orator (iii), ary.		0.4 ppm		
5	LL L					Hand-cleared to 5' bls.	
	PH I	Light Brown, Fine to Coars	e SAND, little gravel (fill); wet at 9.5'.			5' Recovery.	
	HHH	1					
	KHH	1					
	part						
]			I		
	HH	1			11		
	HHH	1				0	,
	KHH	1			11	Sample collected 7.5'-9.5' to TCL VOCs and TCL SVOC	01
	pat				A I	TOL VOUS and TOL SVOC	یر
]					
	HHH	1					
	f++++	1					
10	HHH						
		Brown, Fine to Coarse SAN	ID, little gravel; wet.		5 0 ppp	2.5' Recovery.	
			-		5.0 ppm	- ,	
					I		
					3 2		
					3.3 ppm		
					11		
		1			A I		
		:			2.5 ppm		
15							
		.]			40.00	5' Recovery.	
		.]			4.3 ppm		
		1			T I		
		1			II.		
					11		
					5.3 ppm	Sample collected 17.5'-19.	5'
					1	for TCL VOCs and TCL	
						SVOCs.	
20							
20	<u> </u>						_

Page 1 of 1 SOIL BORING LOG WELL NO. | NORTHING EASTING

WELL NO. RSB-	11	NORTHING Not Measured	EASTING Not Measured				
PROJECT NO./N	NAME		LOCATION				
<u>1575.0002YC</u> APPROVED BY	000 / Kristal .	LOGGED BY	5200 Kings Highway				
		Joe Gavin	Brooklyn, NY				
Trinity / Joe	TRACTOR/DRILI S.		GEOGRAPHIC AREA Outside Paint Booth Ar				
DRILL BIT DIAM		BOREHOLE DIAMETER 2-inches	DRILLING EQUIPMENT/METHO	DD SAMPLING 2" Macro	METHOD - Core	START-FINISH DATE 2/20/14	
2-in. / Drive : LAND SURFACE	E ELEVATION	DEPTH TO WATER	/ Geoprobe BACKFILL			2/20/14-2/20/14	_
Not Measure		Not Measured					
epth, feet	Graphic Log	Vis	sual Description	Blow Counts	PID Values	REMARKS	
	0.00		· · · · · · · · · · · · · · · · · · ·	per 6"	(ppm)		_
	.0.9.0.9	VOID.					
					9		
**	HH	Brown, Fine to Coarse SA	ND, some Gravel (fill); dry.				
	THE PART						
	bbb						
5	HH	Proum Fine to Course CA	ND little Crovel (511): wat at 0.51			Hand-cleared to 5' bls.	
	bbb bbb	Brown, Fine to Coarse SA	ND, little Gravel (fill); wet at 9.5'.		2.6 ppm	2' Recovery.	
	1						
	PATA PATA						
	bbb bbb						
	HH				25	Sample collected 7 5' 0 5' f	f۰
	ppp				∠.5 ppm	Sample collected 7.5'-9.5' for TCL VOCs and TCL SVOC)s
	bbb						
	HH						
10	PHH PHH						
10_	647	Brown, Fine to Coarse SA	ND, some Gravel; wet.		2.6 nnm	4' Recovery.	
	. 0 .				2.0 μμπ	-	
) · · · ·						
	0 V	Grey, Fine to Coarse SAN	ID, some Gravel; wet.		1.8 ppm		
	· O ·						
	D	9					
	0 0	.					
	0	7					
	(° () °						
15_	0,0		ID				
	$ \circ $	Grey, Fine to Coarse SAN	ID, some Gravel; wet.		1.8 ppm	4' Recovery.	
	$ \circ \circ $						
	000						
	, O C						
		Brown, Fine to Coarse SA	ND some Gravel: wet		20	Sample collected 17.5'-19.5	<u>ج</u> '
	0 0	Drown, I me to coarse on	, 301110 Gravor, wot.		A	for TCL VOCs and TCL	J
	, O					SVOCs.	
	00						
20	。O C	3					
		4					_

PROJECT NO	Y000 / Krista	al Auto Mal	D BY		1	gs Highway				
ORILLING CO	NTRACTOR/DF	Joe Ga	avin		Brooklyn GEOGRAPH	I, NY				
Trinity / Jo	oe S.					IC AREA le of Auto Storage	Area			
DRILL BIT DI. 1.25-in. / [AMETER/TYPE)rive Sample	BOREHOL 8-inches		TER	DRILLING E	QUIPMENT/METHOD be	SAMPLING 2" Macro	METHOD -Core	START-FINISH DATE 2/12/14-2/12/14	
CASING MAT PVC / 4-in		SCREEN:	Slotted	l M	IAT. PVC	TOTAL LENGTH 1	O Off DI	A. 4-inch	SLOT SIZE 20-SI	ot
LEVATION	OF: GI	ROUND SURF	ACE	TOP OF W	/ELL CASING	TOP & BOTTOM SCR	REEN	GRAVEL	PACK SIZES	
Feet)	-mount \	z I.I	Plug					#2 Mo	rie	
_{epth,} manhole		/ ()	lug	Graphic	Visual	Description	Blow Counts	PID Values	REMARKS	
feet 				Log			per 6"	(ppm)		
		. F. 2		0000	CONCRETE.	Coarse SAND and GRAVE				
		, , ,		ATT I	(fill); dry.	boarse only and or will	-			
				DDD						
				HHH				2.0 ppm		
			nent/Bentor	ite H				G 2.0 ppiii		
		SSSS Grou	ut	PHH I						
	32.22	222		四世						
1 88	3,5,5,3	\$\$\$\$\$ \$\$\$\$\$\$		HHH						
5_	??^}	\$\$\$\$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				, - ,	- 4		Hand-cleared to 5' bls.	
					Brown, Fine to N Coarse Sand, tr	Medium SAND, some race gravel; dry.		1.4 ppm	2' Recovery.	
		- Ben	tonite			· J - · · · · · · · · · · · · ·				
		o. o . o .			Brown Fine to C	Coarse SAND, some		16		
		• • • • • • • •		. ^ 0	Gravel; wet at 1	1'.		1.6 ppm		
				$\langle \circ \circ \rangle$						
		*		00						
	* * * * *			° 0 0				1.8 ppm	Sample collected 9'-11' T VOCs and TCL SVOCs.	ΓCL
10	* * * * *			. O .					VOCs and TCL SVOCs.	
				00				1.1 ppm	3.5' Recovery.	
				_0_0						
					Brown, Fine to C wet.	Coarse SAND, trace gravel	;	1.0 ppm		

					Brown and Grey trace gravel; wet	, Fine to Coarse SAND, t.		2.2 ppm		
					- '					
		- #21 San	Morie		Grey. Fine to Co	parse SAND, trace gravel;		2.6 ppm		
		San	u		wet.	,		2.0 ρριτι		
15										
				 		Coarse SAND, trace gravel	;	2.0 ppm	5' Recovery.	
					wet.			pp///		
								2.7 ppm		
									Sample collected 18'-20'	for
								2.6 ppm	TCL VOCs and TCL SVC	OCs
20										
		1							I	_

WELL NO.	3/MW-6	NORTHING Not Measur	ha	EASTING Not Measured					
PROJECT NO		INOLIVIEASUI	CU	LOCATION					_
1575.0002	Y000 / Krista			5200 Kings Highwa	v				
APPROVED E	BY	LOGGED BY		Brooklyn, NY	,				
ORILLING CO	NTRACTOR/DR	Joe Gavin		GEOGRAPHIC AREA					_
Γrinity / Jo	oe S.			GEOGRAPHIC AREA Southwest Corner	of South Park	ing Lot			
DRILL BIT DIA	AMETER/TYPE	BOREHOLE DIAM	IETER	DRILLING EQUIPMENT/M	ETHOD SAN	IPLING M	ETHOD	START-FINISH DATE	_
1.25-in. / D CASING MAT	Prive Sample	r 8-inches SCREEN:		/ Geoprobe	2	Macro-	core	2/12/14-2/12/14	
PVC / 4-ind		TYPE Slotte	ad Ma	T. PVC TOTAL	LENGTH 11.0 ft	DΙΔ	4-inch	SLOT SIZE 20-Slot	
LEVATION (ROUND SURFACE	TOP OF WE	LL CASING TOP & BO	OTTOM SCREEN	Di/ t.	GRAVEL	. PACK SIZES	_
Feet)				1			#2 Mo	rie	_
Flusn- manhole _{epth,}	-mount cover.	J-Plug	Cranhia			Blow	PID		
epin, feet			Graphic Log	Visual Descrip	otion	Counts per 6"	Values (ppm)	REMARKS	
				ASPHALT.		pci o	(ppiii)		_
	~	****							
	,,,,,	****		Dark Brown, Fine to Coarse So	AND and		0.0 ppm		
	,,,,,	,,,,,		Gravel (fill); dry.			0.0 ppiii		
			bbb						
			·	Dark Brown, Fine to Medium S	SAND some	G	100		
		Cement/Ber		Silt, little coarse sand (fill); dry.	1D, 30mG		0.0 ppm		
	\2\2\2 \2\2\2		FFF						
	\%\%\ \%\%\	2325 2325	PATTI I						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	222	PT-TH					Hand day of the 5000	
5	ێ؆ ۫ ڒ؆	ĬŶĬŶ				_		Hand-cleared to 5' bls.	
				Dark Brown, Fine to Medium S Silt, little coarse sand; dry.	SAND, some			2' Recovery.	
		Bentonite							
		Bontonic							
	, 0, 0, 0 , 0, 0, 0	, , , , , , , , , , , , , , , , , , ,							
							0.3		
		, , , ,					0.0 ppm	Sample collected 9'-11' TCL VOCs and TCL SVOCs.	L
10		`							
	: <u> </u>			Dark Brown, Fine to Coarse S	AND, some		0.5 nnm	3' Recovery.	
			。 () ·	Gravel; wet at 10.5'.			0.0 ppill		
			b						
			0 0						
				Grey, Fine to Medium SAND a	nd SILT,		0.9 ppm		
				race coarse sand/gravel; wet.					
		- # 2 Morie Sand	 	Brown and Grey, Fine to Coars	se SAND.		0.7 ppm		
4.5		Sand		some Gravel; wet.	, , , , ,		o.r ppin		
<u>15</u>			000				0.0	2.5' Recovery.	
			00				0.0 ppm	Groundwater sample	_
			.00					collected for TCL VOCs, TC SVOCs, and TAL Metals.	از
	\$9.5 <u> </u>		0 \ 0					o. ooo, and the Micials.	
			5 V						
			0 0						
			. 0 0						
	### <u></u>		· \ 0						
			A						
				Brown, Fine to Coarse SAND, Gravel; wet.	some		0.0 ppm	Sample collected 19'-21' for TCL VOCs and TCL SVOC	
20	* * * * * * * * * * * * * * * * * * * *		。 () ·	J. J. J., 1101.				TOL VOOS AIR TOL SVOOS	Э.
		∃ 7000	D				0.0 ppm		
	23 6 2	— 171 + 71.	00				0.0 -		

VELL NO. RSB/MW-14		NORTHING Not Measure	ed	Not Meas	ured				
ROJECT NO./NAME		110t measure	-	LOCATION	ui vu				
575.0002Y000 / I				5200 Kind	gs Highway				
PPROVED BY		LOGGED BY		1					
RILLING CONTRACT		Joe Gavin		Brooklyn GEOGRAPH					
rinity / Joe S.	OKIDKILLEI	`		Southeas	t Corner of Auto Re	epair Shop			
RILL BIT DIAMETER/	TYPE BO	OREHOLE DIAM	ETER		QUIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE	_
.25-in. / Drive Sa	mpler 8	-inches		/ Geoprol	be	2" Macro-0	Core	9/9/14-9/11/14	
ASING MAT./DIA.	S	CREEN:							
VC / 4-inch LEVATION OF:	CBOLIN	TYPE Slotte ID SURFACE		AT. PVC ELL CASING	TOTAL LENGTH 1 TOP & BOTTOM SCR	0.0 ft DIA.	4-inch	SLOT SIZE 20-Slot	<u>:</u>
Feet)	GROON	ID SURFACE	TOP OF W	ELL CASING	IOF & BOTTOWISCR	KEEN	#2 Mor	PACK SIZES	
Flush-mount \		/ J-Plug					<i>""</i> 11101		_
$_{ m epth,}$ manhole cover. ackslash	\		Graphic	Vieual	Description	Blow Counts	PID Values	REMARKS	
eet	$\rightarrow \angle$	7:	Log	visuai	Description	per 6"	(ppm)	KEWAKKS	
<u> </u>	<u> </u>		00000	CONCRETE.					_
ů,		.		Brown, Fine to C	oarse SAND, some		1.4 ppm		
		Compat/Dant		GRAVEL, trace s					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Cement/Bent					1.1 ppm	Comple college - 141 01 TO	
<u>S</u>		<u> </u>						Sample collected 1'-3' TCL VOCs and TCL SVOCs.	
			HHH						
		- Pontonita					1		
		 Bentonite 	HHH				2.1 ppm		
			HHH				'		
		· ·	mm						
_			HHH					Hand-cleared to 5' bls.	
5		• • • • • • • • • • • • • • • • • • •	F444+	Proven Firsts	oorgo CAND, com-		d		
		• • •	ptt	GRAVEL (fill); dr	oarse SAND, some		1.0 ppm	2' Recovery.	
		,	MATT	, ,.					
į.			HHH	Brown, Fine to C	oarse SAND, some SILT,				
<u>.</u>			FFFF	trace gravel (fill);	wet at 8°.				
· · · · · · · · · · · · · · · · · · ·			HHH				0.5 ppm		
			Kttt				J.5 ppiii		
(1			ppp						
		en de la companya de La companya de la co	HHH				0.5 ppm		
		į.	F444						
5		telle Hijo	6 V V	Brown and Grey, some GRAVEL;	Fine to Coarse SAND,		1.4 ppm		
0		40	。 () 。	SOITIE GRAVEL,	WG.				
		- # 2 Morie Sand	Ь				83 6 ppm	3' Recovery.	
·		ta Na Na	0 0				оо.о ррпп		
				Brown and Grev	Fine to Coarse SAND,		186.4 ppm		
Ţ.				some SILT, trace	e gravel; wet.		μου. 4 ρριτι		
		Š.		Drover	Fine to Comme CAND	. →		0	٠.
A			0	Brown and Grey, some GRAVEL,	Fine to Coarse SAND,		211 ppm	Sample collected 12'-14' To VOCs and TCL SVOCs.	JL
			· () ·	JOING OF WILL,	accoon, non			VOOS AND TOL SVOOS.	
			D						
43			0 0						
···			000				182 ppm		
_			· 0 °				. 5 <u>_</u> pp		
<u>5</u>			5					5' Pecovery	
4			0 0				156.6 ppm	5' Recovery.	
<u>2</u>									
			0 0						
			K 0						
			00				16.3 ppm	Sample collected 17'-18' for	r
								TCL VOCs and TCL SVOC	S.
				Brown Fine to Co	parse SAND, some Gravel	; -	2.2 ppm		
			~ /\ °	wet.	,	·	pριιι		
			$ \cdot \cdot $						
			00						
20									

WELL NO. RSB/MW-15	NORTHING Not Measure	ed	EASTING Not Measured			
PROJECT NO./NAME I 575.0002Y000 / Krista l	L Auto Mall		LOCATION			
APPROVED BY	LOGGED BY		5200 Kings Highway			
	Joe Gavin		Brooklyn, NY			
DRILLING CONTRACTOR/DRI Trinity / Joe S.	LLER		GEOGRAPHIC AREA Southeast Corner of Auto R	epair Shop		
DRILL BIT DIAMETER/TYPE	BOREHOLE DIAME	TER	DRILLING EQUIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE
4.25-in. / Drive Sample CASING MAT./DIA.	8-inches SCREEN:		/ Geoprobe	2" Macro-	Core	9/10/14-9/11/14
PVC / 4-inch	TYPE Slotte OUND SURFACE	TOP OF WE	T. PVC TOTAL LENGTH CELL CASING TOP & BOTTOM SCI	10.0 ft DIA. REEN	4-inch GRAVEL #2 Mor	SLOT SIZE 20-Slot PACK SIZES
Flush-mount \	J-Plug		·	Diam	•	
epth, manhole cover.		Graphic Log	Visual Description	Blow Counts	PID Values	REMARKS
		-	CONCRETE.	per 6"	(ppm)	
		.4 .9 .4 .9	VOID.			
			v O.D.			
	Cement/Bento	niile				
	××××					
		0.000	CONCRETE DEBRIS.	<u> </u>	à	
	 Bentonite 	0.7.0.7.	-			
		0000				
့် ႏ	0.0.0		Brown Fine to Coarse SAND, some Grave		1.3 ppm	Sample collected 4'-5' TCL
5		PPP	with concrete; dry.			VOCs and TCL SVOCs.
, , , , , , , , , , , , , , , , , , ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Brown, Fine to Coarse SAND, some		2 0 nnm	1.5' Recovery.
, o o o		四世	GRAVEL (fill); dry.		2.0 ppiii	
		HHH				
		西				
		FATT	Brown, Fine to Coarse SAND, some SILT, trace gravel (fill); wet at 8'.		1.8 ppm	
		斑斑	uace graver (IIII), wet at o.			
		四五			1.1 ppm	
		HHH				
			Brown Fine to Coarse SAND, trace gravel wet.	;	1.3 ppm	
<u>10</u>	- # 2 Morie	HHH				2.Fl Daggyara
	Sand	THAT I			427.2 ppm	2.5' Recovery. Sample collected 10'-11' TCl
		FRAT	Brown and Grey, Fine to Coarse SAND,			VOCs and TCL SVOCs.
			trace gravel; wet.		368.7 ppm	
					101 2 nnm	
					101.2 ppm	
···					7.8 ppm	Sample collected 14'-15' for
15_						TCL VOCs and TCL SVOCs
		F			14.1 ppm	3' Recovery.
					F	
			Brown Fine to Coarse SAND, trace gravel wet.	; 	9.4 ppm	
					200	
					3.6 ppm	
20						

/ELL NO. RSB/MW-16	NORTHING Not Measure	d	EASTING Not Meas	ured				
ROJECT NO./NAME			LOCATION					
575.0002Y000 / Kristal PPROVED BY	Auto Mall LOGGED BY		5200 King	gs Highway				
FFROVEDBI	Joe Gavin		Brooklyn	, NY				
RILLING CONTRACTOR/DRIL			GEOGRAPH	IC AREA	aulelmer I = 1			_
rinity / Joe S.	DODELIOLE DIAME	TED		e of the Eastern Pa		METHOD	OTABT FINIOUS BATE	
RILL BIT DIAMETER/TYPE . 25-in. / Drive Sampler	BOREHOLE DIAME	IER	/ Geoprol	QUIPMENT/METHOD	SAMPLING 2" Macro	o-Core	START-FINISH DATE 9/9/14-9/12/14	
ASING MAT./DIA.	SCREEN:		7 Ocopioi				0/0/14-0/12/14	
VC / 4-inch	TYPE Slotted		T. PVC	TOTAL LENGTH 1		A. 4-inch	SLOT SIZE 20-Slot	ţ
	OUND SURFACE	TOP OF WE	ELL CASING	TOP & BOTTOM SCF	REEN	GRAVEL #2 Mor	PACK SIZES	
Flush-mount \	/ J-Plug			1		#Z WIOI	ie	
pth, manhole cover.		Graphic	Wigual	Description	Blow Counts	PID Values	REMARKS	
eet		Log	visuai	Description	per 6"	(ppm)	REWARKS	
	Ţ.₽ <u>`</u>		ASPHALT.					_
				ledium SAND, some		1.5 ppm		
	Cement/Bento		Coarse SAND, tr	ace silt (fill); dry. ledium SAND, some SILT	- /	0.2 ppm		
	Grout		trace coarse san	d with gravel (fill); wet at	,		Sample collected 1'-3' TCL	
		HHH	8.5'.				VOCs and TCL SVOCs.	
		四四				G		
	Bentonite	1				0.0 ppm		
		MAH						
		PTT						
5	0000	HHH					Hand-cleared to 5' bls.	
		四世				0.0 ppm	4' Recovery.	
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	, , , , , , , , , , , , , , , , , , ,	HHH				0.0 ppiii	•	
	, , , , , , , , , , , , , , , , , , ,	四四						
		1						
	10.00	THE I				8.5 ppm		
***	10.00	PTTT						
		HHH						
		四世						
···		P-0-01	Brown and Grey,	Fine to Coarse SAND,		19.8 ppm		
o 💮	100	. O .	some GRAVEL,	trace silt; wet.				
· 사람들	10.00	b 2 9				146 2 nnm	2' Recovery.	
### #	- # 2 Morie Sand	0 0				170.2 ppiii		
		° 0 0					Sample collected 11'-13' TO	CL
		· 0 ·					VOCs and TCL SVOCs.	
···		b 2 4				201 ppm		
***	1030	00						
	∃ ####	$[\circ \bigcirc \circ]$						
···		00				170 ppm		
5		00						
5_						213.1 nnm	5' Recovery.	
	1000	(, (),				2.13.1 ppm	,	
		00				191.9 ppm		
<u>7.0,</u>	3*	。O O						
				oarse SAND, some		3.4 ppm	Sample collected 17'-18' for	r
		。 () °	GRAVEL; wet.				TCL VOCs and TCL SVOC	ÌS.
		5				0.6 ppm		
		0 0				113 66		
		° 0 0						
0		· 0 °						
<u> </u>								_

WELL NO. RSB/	MW-17	NORTHING Not Measure	d	EASTING Not Meas	ured				
PROJECT NO)./NAME			LOCATION					_
	Y000 / Kristal			5200 Kind	gs Highway				
APPROVED E	SY.	LOGGED BY Joe Gavin		Brooklyn					
ORILLING CO	NTRACTOR/DRIL								_
Trinity / Jo	oe S.				IC AREA st Corner of Auto R				
ORILL BIT DIA	AMETER/TYPE	BOREHOLE DIAME	TER		QUIPMENT/METHOD	SAMPLING M 2" Macro-	IETHOD	START-FINISH DATE	
4.25-in. / E Casing mat	Prive Sampler	8-inches SCREEN:		/ Geopro	be	2 Wacro-	Core	9/10/14-9/11/14	_
PVC / 4-in		TYPE Slotted	H M2	AT. PVC	TOTAL LENGTH 1	IO Off DIA	4-inch	SLOT SIZE 20-Slot	
LEVATION (OUND SURFACE	TOP OF WI	ELL CASING	TOP & BOTTOM SCF	REEN		PACK SIZES	-
Feet)					1		#2 Mo	rie	
manhola	-mount	J-Plug				Blow	PID		
epth, Thai in lole feet			Graphic Log	Visual	Description	Counts	Values	REMARKS	
		7 00	•	201100555		per 6"	(ppm)	T	_
	ا برا ط		.4.9.4.9	CONCRETE.					
		\`\`\ \		VOID.					
	, , , , , , , , , , , , , , , , , , ,	Cement/Bento		Brown, Fine to C GRAVEL (fill); dr	coarse SAND, some		0.2 ppm		
		ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠ	M	○. ♥ (V LL (IIII), UI	J ·			Sample collected 1'-3' TCL VOCs and TCL SVOCs.	
			FFFF					VOUS AND TOL SVOUS.	
		Bentonite	HHH				٦		
		Denionile	四四				0.3 ppm		
			HHH						
**	**************************************	, , , , , , , , , , , , , , , , , , ,	mm						
5			1444					Hand-cleared to 5' bls.	
		0 0 0 0 0 0 0 0 0	TITI I				0.3 ppm	2' Recovery.	
	, , , , ,	o. o. o. o. o. o. o. o. o.	444						
			FIFTH	Brown and Grey	, Fine to Coarse SAND,		0.6 ppm		
			ppp	some GRAVEL,	trace silt (fill); wet at 8'.				
			HHH						
			HHH				0.2 ppm		
			m						
			HHH						
10									
10		- # 2 Morie Sand					0.2 nnm	3' Recovery.	
			HHH				0.2 ppm		
				Brown and Grey	Fine to Coarse SAND,		333.1 ppm		
				some SILT, trace	e gravel; wet.		рос рр		
	##=								
	### ### ### ### ### ### ### ### #######		10-0-	Brown and Grev	Fine to Coarse SAND,		458 2 nnm	Sample collected 13'-15' TC	ا(
	### =			some GRAVEL;			DOIL PRI	VOCs and TCL SVOCs.	•
			5						
15	#13		0 0						
<u>15 </u>	## <u>=</u>		° 0 0				076 1	4' Recovery.	
			0 0				oro.1 ppm		
	20 Th AT	<u> </u>	b ~ <						
			0 0						
			F X-F}	Brown Fine to C	oarse SAND, some Grave	<u>,</u>	36.2 nnm	Sample collected 17'-18' for	
				wet.	,		ου. Σ ρριτι	TCL VOCs and TCL SVOCs	s
			J. O.				6.4 ppm		
			0 0				U ppill		
20			0 0						
20									-

WELL NO. RSB-14 PROJECT NO	4/MW-4D	NORTHING Not Measure	d	EASTING Not Measu	ıred				
	2Y000 / Kristal	Auto Mall			o Uighurov				
APPROVED I		LOGGED BY		1	s Highway				
DDII / 19 / 2 / 3	ONTD 4 OT 5 = ''	Joe Gavin		Brooklyn,	NY				
DRILLING CO Trinity / Jo	ONTRACTOR/DRI	LLER		North Side	C AREA e of Auto Repair S	hop			
DRILL BIT DI	IAMETER/TYPE	BOREHOLE DIAME	TFR		UIPMENT/METHOD	SAMPLING N	1FTHOD	START-FINISH DATE	_
	Drive Sampler			/ Geoprob		2" Macro-	Core	2/10/14-2/11/14	
CASING MAT	T./DIA.	SCREEN:							
PVC / 4-in		TYPE Slotted	d M	AT. PVC	TOTAL LENGTH 1	0.0ft DIA	4-inch	SLOT SIZE 20-Slo	t
ELEVATION (OF: GR	OUND SURFACE	TOP OF W	ELL CASING	TOP & BOTTOM SCF	KEEN	#2 Mo	PACK SIZES	
Feet) Flush	n-mount \	/ J-Plug					#Z IVIO	110	
epth, manhole			Graphic	Viousl	Doogrintion	Blow	PID	DEMARKS	
eet			Log	visuai	Description	Counts per 6"	Values (ppm)	REMARKS	
		7 - 2	00000	CONCRETE.			1		_
	****	****	.0.9.0.9	VOID.					
	****	****		-					
	Ĭ,		F	Brown Fine to Ma	edium SAND, some		20		
			mm	Coarse Sand (fill)	; dry.		2.0 ppm		
			PT-74					Comple collected 0.51.015	r
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	THE PART				3.0 ppm	Sample collected 2.5'-3' for TCL SVOCs and TCL	I
	ڒؚ؉ؚ۫؉ۜ	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H++++					SVOCs.	
	~~~ <u>~</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	THE I				2.0 ppm		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	FFFF				1		
5	<u> </u>	~~~~	HHH					Hand-cleared to 5'bls.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*****	HHH				6.0 ppm	1.5' Recovery. Sample collected 5'-7' for	τΩ
			PHH I				1	VOCs and TCL SVOCs.	ıÜ
	****		F-1-1-1						
		×××	HHH				11		
			HHH						
			HHH						
			FFFF						
			HHH						
			FFFF						
10	, , , , , , , , , , , , , , , , , , ,		HHH						
10			FAA	Brown. Fine to Me	edium SAND, some Silt		<b>-</b> -	2.5' Recovery.	
			HHH	(fill); wet at 12.5'.			7.0 ppm	Sample collected 10'-11' for	
	<b>```</b> ``		四位					TCL VOCs and TCL SVO	Cs.
	, , , , , , , , , , , , , , , , , , ,		HHH						
	%%% %%%%	ペペー Cement/Bento	nute						
	%%% %%%	%%% %%%	HHH						
	*,*,*,	%%% %%%%	ppp				1		
	***\ ***\	%%% %%%	HATT			_			
	Ţ,	***** *****	FFFF	Brown, Fine to Me Some Wood Frag	edium SAND, some Silt, ments (fill): wet.				
	, , , , , , , , , , , , , , , , , , ,	vivivi vivivi	HHH	505 11000 i iay					
<u>15</u>	<u>````</u>	***	FAT	=	=				
	<u>``````</u>			Grey and Brown, little Gravel, little I	Medium to Coarse SAND	),	16.4 ppm	4' Recovery.	
	<u>`````</u>			iille Giavel, IIIIle I	ine Sand, Wel.		1		
	Ĭ,Ĭ,Ĭ,								
	****						11		
	, , , , , , , , , , , , , , , , , , ,				Coarse SAND, little				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ĭ, Š, Š,		gravel and fine sa	ınd; wet.				
	, , ,	, , , ,					7.4 ppm		
		×××							
	\^\^\ \^\\\	****							
20	222	22.22 22.22							
20_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***** ****						3' Recovery	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					8.7 ppm	3' Recovery.	
	****	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					( )		
	<u>````</u>	~~~ <u>~</u>					N		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	***							



RSB-14/I PROJECT NO./	MW-4D NAME	NORTHING Not Measure	d	EASTING Not Measured LOCATION			
1575.0002Y	000 / Kristal	Auto Mall		5200 Kings Highway			
APPROVED BY		LOGGED BY  Joe Gavin		Brooklyn, NY			
epth, feet			Graphic Log	Visual Description (continued)	Blow Counts per 6"	PID Values (ppm)	REMARKS
	***** ***** ****	4444 4444 4444		Grey and Brown, Medium to Coarse SAND, little gravel and fine sand; wet.		4.6 ppm	
25_		<ul><li>Bentonite</li></ul>		Brown and Grey, Fine to Coarse SAND, little gravel; wet.		10.7 ppm	
	ò · oʻ o	6.0.0		Red and Brown, Fine to Coarse SAND,			
				little gravel; wet.		7.7 ppm	
						2.1 ppm	2' Recovery.
		— #2 Morie					
 85_		Sand					
						1.0 ppm	2.5' Recovery.
							Sample collected 38'-40' for TCL VOCs and TCL SVOCs.
40	\$ \$6\frac{1}{2}						



ROJECT NO 575.0002 PPROVED E	Y000 / Kristal	Auto Mall		LOCATION  5200 King	s Highway				
		Joe Gavin		Brooklyn,	NY				
	ONTRACTOR/DRII	LER		GEOGRAPHI	C AREA e of Auto Repair Sh				_
rinity / Jo	<b>DE S.</b> AMETER/TYPE	BOREHOLE DIAME	TED		UIPMENT/METHOD	SAMPLING M	ETHOD	START-FINISH DATE	
	Orive Sampler		ILK	/ Geoprob		2" Macro-0	Core	2/11/14-2/11/14	
ASING MAT	ī./DIA.	SCREEN:				1			
VC / 4-in		TYPE <b>Slotted</b> OUND SURFACE	TOP OF WE	T. PVC	TOTAL LENGTH 10 TOP & BOTTOM SCR	<b>).0</b> ft DIA.	4-inch	SLOT SIZE 20-Slot	t
LEVATION ( Feet)	OF: GR	JUND SURFACE	TOP OF WE	LL CASING	IOP & BOTTOM SCR	EEN	#2 Mori	PACK SIZES	
Flush	ı-mount \	/ J-Plug			<u>'</u>			<u></u>	_
epth, manhole	e cover.		Graphic	Visual	Description	Blow Counts	PID Values	REMARKS	
eet			Log	Visuai	Description	per 6"	(ppm)	TALIVI UTO	
	_`۴٬۶	Ţ. ŗ. 2)	00000	CONCRETE.					
	***	***		/OID.					
	ĸĸĸ				edium SAND, some	7			
	ĬŢŢ		FATH (	Coarse Sand (fill)				Lithology adapted from	
	ĬŢŢ	Cement/Bento						RSB-14/MW-4D.	
	, , , , , , , , , , , , , , , , , , ,	Grout	F774						
	<i>```</i> `````````````````````````````````		HHH						
	****	****	FFFF						
_	****	****	HHH						
5	<i>\$</i> 7 <i>\$</i> 7 <i>\$</i> 7	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	四世				<u> </u>	Hand-cleared to 5 ft. bls.	
			HHH				<b>j</b> '	ialiu-cleared to 5 it. bis.	
		<ul> <li>Bentonite</li> </ul>	MM						
			HHH						
			MAH						
	* * * *	o. o	HHH						
			MM						
	*	• • • • •	HHH						
	* <u>`</u> ***	6. 6. 6. 6. 6. 6.	四四				il l		
			HHH						
0		o	mm				1		
-			HHH!	Brown, Fine to Me	edium SAND, some Silt				
			四四(	fill); wet at 12.5'.					
			HHH						
			THE I						
			1						
			四年						
			1						
		- # 2 Morie Sand	四年1	Brown, Fine to M	edium SAND, some Silt,				
		Sanu	H++++1;	Some Wood Frag	gments (fill); wet.		4		
-			THE I						
5_			F	Grev and Brown	Medium to Coarse SAND,	.⊢ 🖥	i		
				ittle Gravel, little	Fine Sand; wet.		1		
				Brown Medium to	o Coarse SAND, little				
				Gravel and Fine					
	### <u></u>						ı		
	::						1		
	*35								
.0	<u> </u>								



WELL NO.  MW-8 PROJECT NO./NAME	NORTHING Not Measured		EASTING Not Meas LOCATION	ured				
1575.0002Y000 / Krista	al Auto Mall		5200 Kind	gs Highway				
APPROVED BY	LOGGED BY		1					
DRILLING CONTRACTOR/DF	Joe Gavin		Brooklyn	, IN I				
Frinity / Joe S.	VILLER		South Sig	C AREA le of Auto Repair \$	Shop			
DRILL BIT DIAMETER/TYPE	BOREHOLE DIAMET	ER		QUIPMENT/METHOD	SAMPLING N	IETHOD	START-FINISH DATE	_
I.25-in. / Drive Sample	er 8-inches		/ Geoprol				9/15/14-9/15/14	
CASING MAT./DIA.	SCREEN:		<del>-</del>					
PVC / 4-inch	TYPE Slotted	MAT.	PVC	TOTAL LENGTH	<b>10.0</b> ft DIA.	4-inch	SLOT SIZE 20-Slot	<u>t</u>
	ROUND SURFACE	TOP OF WEL	L CASING	TOP & BOTTOM SC	REEN	#2 Mori	PACK SIZES	
Feet) Flush-mount√	/ J-Plug			<u> </u>		#Z WOII	le .	_
epth, manhole cover.	/ 0ag	Graphic			Blow	PID		
eet		Log	Visual	Description	Counts per 6"	Values (ppm)	REMARKS	
——————————————————————————————————————					per o	(ррііі)		_
~								
*****								
	Cement/Bentoni	te						
	آبُرَّبُ مُکْبُ							
	- Bentonite						Hand-cleared to 5' bls.	
5							ianu-deareu (0 3 DIS.	
	o To To To							
	0 0 0							
	,							
0,000	o, o							
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$							
<u>lo</u>								
	- # 2 Morie Sand							
<u>5</u>								
	<b>=</b> {3300							
								-



WELL NO.	W O	NORTHING		EASTING	urad			
PROJECT NO	W-9 O./NAME	Not Measured	J	Not Meas	surea .			
1575.0002	Y000 / Kristal	Auto Mall			ge Highway			
APPROVED I	BY	LOGGED BY			gs Highway			
2011 / 11/2 6 6	ONTDACTOR (SE	Joe Gavin		Brooklyn	, NY			
	ONTRACTOR/DRII	LER		South Si	IC AREA	Shop		
<b>Trinity / Jo</b> DRILL BIT DI	<b>0e S.</b> IAMETER/TYPE	BOREHOLE DIAME	ΓER		QUIPMENT/METHOD	SAMPLING N	METHOD	START-FINISH DATE
4.25-in. / [	<b>Drive Sampler</b>	8-inches		/ Geopro				9/19/14-9/19/14
CASING MAT	Γ./DIA.	SCREEN:		<del>-</del>				
PVC / 4-in	ich	TYPE <b>Slotted</b> DUND SURFACE	MAT	PVC	TOTAL LENGTH TOP & BOTTOM SC	10.0ft DIA	4-inch	SLOT SIZE 20-Slot
ELEVATION ( Feet)	OF: GR	JUND SURFACE	TOP OF WEL	L CASING	IOP & BOTTOM SC	KEEN	#2 Mori	PACK SIZES
Flush	n-mount \	/ J-Plug					#2 1001	
epth, manhole	e cover.		Graphic	Viousl	Description	Blow	PID	REMARKS
feet			Log	visuai	Description	Counts per 6"	Values (ppm)	REIVIARNS
		7 / 2						
	*****	***** *****						
			ite					
		Cement/Bentor	iite					
	ĬŸ.Ÿ	٧٧٧						
		- Dontonito						
5		<ul> <li>Bentonite</li> </ul>						Hand-cleared to 5' bls.
		0000						
		°, °, °,						
		o . o . o . o . o . o . o . o . o . o .						
		0 0 0						
		<b>_</b>						
10								
	\$ \bar{E}_{\alpha}							
	::::::::::::::::::::::::::::::::::::::							
		<b>]</b>						
		- # 2 Morie Sand						
	<u> </u>							
4.5								
<u>15</u>								
	지하는							
		1 14.				1	-	



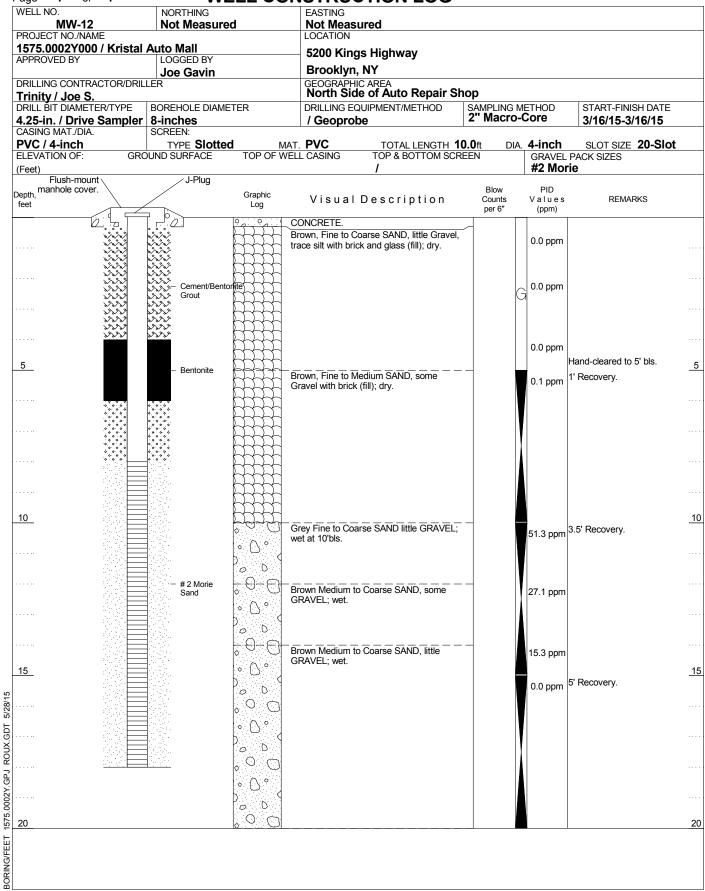
BORING/FEET 1575.0002Y.GPJ ROUX.GDT 5/28/15

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of 1 WELL NO.		LL CON		HON LOG				
MW-10	NORTHING Not Measured		Not Measu	red				
PROJECT NO./NAME			LOCATION	·				
1575.0002Y000 / Kristal / APPROVED BY	Auto Mall LOGGED BY		5200 Kings	Highway				
AFFROVED DI	Joe Gavin		Brooklyn, I	NY				
DRILLING CONTRACTOR/DRILL	LER		GEOGRAPHIC	AREA of Auto Repair S	hon			
Trinity / Joe S. DRILL BIT DIAMETER/TYPE	BOREHOLE DIAMET	ER		JIPMENT/METHOD	SAMPLING	METHOD	START-FINISH DATE	
4.25-in. / Drive Sampler	8-inches		/ Geoprobe		0, 1111 21110		9/18/14-9/18/14	
CASING MAT./DIA.	SCREEN:		DVC	TOTAL LENGTH	40.0a DI	. 4 inch	SLOT SIZE <b>20-Slot</b>	
PVC / 4-inch ELEVATION OF: GRO	TYPE <b>Slotted</b> DUND SURFACE	TOP OF WEL	L CASING	TOTAL LENGTH '	REEN	A. <b>4-inch</b>	PACK SIZES	
(Feet)				1		#2 Mori		
Flush-mount Depth, manhole cover.	J-Plug	Graphic			Blow	PID		
feet		Log	Visual [	Description	Counts per 6"	Values (ppm)	REMARKS	
	Cement/Bentoni	te						
	SAN GIOUI							
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\$\$\$							
5	<ul><li>Bentonite</li></ul>						Hand-cleared to 5' bls.	_
5								_5
	• • • • • • • • • • • • • • • • • • •							
	0 0 0							
	૽૾૾ૼૺ૰૾ૻૼ૰ૢ૿ <b>૰ૢ૾</b> ૰ૢ૾ૢ૽ૢૢ૽૽ૼૢ							
, , , , , , , , , , , , , , , , , , ,	o. o							
, ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
40								40
10_								10
**************************************								
	— # 2 Morie							
jiji	Sand							
15								15
<u>15</u>	11.50 11.50							<u>15</u>
### ### ### ### ### ### ### ### ### ##								



BORING/FEET 1575.0002Y.GPJ ROUX.GDT 5/28/15


209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of	1		LL CON		HON LOG					
WELL NO. MW-11		NORTHING Not Measured	1	Not Measu	red					
PROJECT NO./NAME				LOCATION	ica					
1575.0002Y000 / Kristal Auto Mall				5200 Kings Highway						
APPROVED BY LOGGED BY				Brooklyn, NY						
DRILLING CONTRA	ACTOR/DRIL	Joe Gavin		GEOGRAPHIC	CAREA S of Auto Repair S					
Trinity / Joe S.										
DRILL BIT DIAMETER/TYPE BOREHOLE DIAMETER 4.25-in. / Drive Sampler 8-inches			DRILLING EQUIPMENT/METHOD SAMPLING METHOD / Geoprobe				START-FINISH DATE 9/12/14-9/12/14			
CASING MAT./DIA.	Samplei	SCREEN:		/ Geoprob	<b>U</b>			9/12/14-9/12/14		
PVC / 4-inch		TYPE Slotted	MAT	PVC	TOTAL LENGTH	<b>10.0</b> ft DIA	A. 4-inch	SLOT SIZE 20-Slot		
ELEVATION OF:	GRO	OUND SURFACE	TOP OF WEL	L CASING	TOP & BOTTOM SC	REEN	#2 Mori	PACK SIZES		
(Feet) Flush-moun	ıt \	/ J-Plug					•	I <del>C</del>		
Depth, manhole cover	: \		Graphic	Visuall	Description	Blow Counts	PID Values	REMARKS		
feet			Log	Vioudii	300011711011	per 6"	(ppm)			
	2.5.									
		****								
		Cement/Bentor	iite							
	ĬŸ,Ÿ,Ÿ	\$\$\$\$								
		<ul><li>Bentonite</li></ul>								
								Hand-cleared to 5' bls.		
5		• ° • ° • °						natio-cleared to 5 bis.	_5	
		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°								
		, , , , , , , , , , , , , , , , , , ,								
10									10	
		– #2 Morie Sand								
		Sallu								
		T. 45.								
15_									<u>15</u>	
		11.5								
	- M. 1914	H = 12 =								



& Management

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898





BORING/FEET 1575.0002Y.GPJ ROUX.GDT 5/28/15

209 Shafter Street Islandia, NY 11749 Telephone: (631) 232-2600 Fax: (631) 232-9898

Page 1 of	1		LL CON	_	HON LOG					
WELL NO.  MW-13	3	NORTHING Not Measured	1	Not Measu	red					
PROJECT NO./NAME				LOCATION						
1575.0002Y000 / Kristal Auto Mall APPROVED BY LOGGED BY				5200 Kings Highway						
Joe Gavin				Brooklyn, NY						
DRILLING CONTR		LER		GEOGRAPHIC	AREA <b>Auto Repair Shop</b>					
Trinity / Joe S DRILL BIT DIAMET	ER/TYPE	BOREHOLE DIAME	ΓER		JIPMENT/METHOD	SAMPLING I	METHOD	START-FINISH DATE		
4.25-in. / Drive	Sampler	8-inches		/ Geoprob				9/15/14-9/15/14		
CASING MAT./DIA PVC / 4-inch	<b>L</b> .	SCREEN: TYPE <b>Slotted</b>	MAT	PVC	TOTAL LENGTH '	<b>10.0</b> # DV	4. 4-inch	SLOT SIZE 20-Slot		
ELEVATION OF:	GRO	DUND SURFACE	TOP OF WEL	L CASING	TOP & BOTTOM SC	REEN	GRAVEL I	PACK SIZES		
(Feet) Flush-mou	unt.	/ J-Plug			1		#2 Mori	е		
Depth, manhole cove	er.	J-Flug	Graphic			Blow	PID			
feet			Log	visuai	Description	Counts per 6"	Values (ppm)	REMARKS		
		, , , , , , , , , , , , , , , , , , ,								
		Cement/Bentor スペン Grout	iite							
	32,22									
		<ul> <li>Bentonite</li> </ul>								
5							F	Hand-cleared to 5' bls.	_5	
	, , , ,									
10									10	
		– #2 Morie Sand								
15									15	
		I								



	Y000 / Kristal	LOGGED BY		LOCATION  5200 King	gs Highway			
PPROVED E	זכ	Joe Gavin		Brooklyn	, NY			
	NTRACTOR/DRI			GEOGRAPH North Sid	, IC AREA <b>le of the Eastern Pa</b>	rking Lot		
rinity / Jo	<u>De S.</u> AMETER/TYPE	BOREHOLE DIAME	ETER		QUIPMENT/METHOD	SAMPLING N	/ETHOD	START-FINISH DATE
.25-in. / D	Prive Sampler	8-inches		/ Geoprol		SAMPLING N 2" Macro	-Core	3/17/15-3/17/15
ASING MAT		SCREEN:	la	- DVC	TOTAL   5110TH 4	0.00	4 imala	01 07 0175 20 Clot
VC / 4-in		TYPE <b>Slotte</b> OUND SURFACE	TOP OF WE	T. <b>PVC</b> ELL CASING	TOTAL LENGTH 1 TOP & BOTTOM SCR	U.Uπ DIA EEN	GRAVEL	SLOT SIZE <b>20-Slot</b> PACK SIZES
eet)					1		#2 Mor	
manhole	-mount cover.	J-Plug	0			Blow	PID	
epth, mannoic eet			Graphic Log	Visual	Description	Counts per 6"	Values (ppm)	REMARKS
		7 / 2		ASPHALT.		7	(PP)	
			四二,	Brown, Fine to C	oarse SAND with	/	0.0 ppm	
		Cement/Bento			It layer at ~6" (fill); dry coarse SAND, some	[']	0.0 pp	
	Ĭ,Ĭ,Ĭ	Grout		GRAVEL with Br	ick and Concrete (fill); dry.			
			<b>拉拉</b>				0.0 ppm	
		- Pontonito	出出				3	
		<ul> <li>Bentonite</li> </ul>	HHH					
			m					
5			HHH					Hand-cleared to 5' bls.
	ို လို လို လ ့ လို လို လ	ို မို မို ကို မို မို					0.0 ppm	3' Recovery.
	, , , , , , , , , , , , , , , , , , ,	``o.``o.` ``o.`o.`o.' 	mm .					
	``o``o``o 		HHH					
				Brick and Concre		-		
	* * * * * =		V ) ) )		coarse SAND, little Gravel;	-	0.0 ppm	
		글(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		wet at 9.5'.			0.0 ppm	
			Ь 4					
0			0 0					
			9				0.0 ppm	4' Recovery.
	333	— # 2 Morie	· 0 °					
		Sand	The state of the s	Brown and Grey, little Gravel; wet.	Fine to Coarse SAND,			
	사용		· 0 °	iittie Gravei, wet.				
			00					
			,00				<b>.</b>	
			[	Brown Fine to Co	parse SAND, some		74 ppm	
				GRAVEL; wet.	Jai 36 OMIND, SUITE			
E								
<u>5</u>							4.8 ppm	5' Recovery.
							T.O PPIII	•
**							0.0 ppm	
							0.0 ppm	
0			h					



MW-19 ROJECT NO./NAME	Not Measure	ed	Not Measu LOCATION					
575.0002Y000 / Krista PPROVED BY	I Auto Mall LOGGED BY		5200 King	s Highway				
INOVEDBI	Joe Gavin		Brooklyn,	NY				
RILLING CONTRACTOR/DR			GEOGRAPHIC	C AREA <b>e of Auto Repair S</b> l				
rinity / Joe S.	T = = = :				пор			
RILL BIT DIAMETER/TYPE	BOREHOLE DIAM	ETER		UIPMENT/METHOD	SAMPLING 2" Macro	METHOD - <b>Coro</b>	START-FINISH DATE	E
<b>25-in. / Drive Sample</b> ASING MAT./DIA.	SCREEN:		/ Geoprob	)e	Z Wacio	-0016	3/16/15-3/16/15	
VC / 4-inch	TYPE Slotte	e <b>d</b> MAT	г. <b>РVС</b>	TOTAL LENGTH 1	<b>0.0</b> ft DIA	. 4-inch	SLOT SIZE 20-SIG	ot
EVATION OF: GF	ROUND SURFACE	TOP OF WEI	LL CASING	TOP & BOTTOM SCR	EEN	GRAVEL	PACK SIZES	
eet)				1		#2 Mo	rie	
Flush-mount manhole cover.	J-Plug				Blow	PID		
oth, marificle cover.		Graphic Log	Visual	Description	Counts	Values	REMARKS	
	7 100	•	CONCRETE.		per 6"	(ppm)		
			ONCRETE.		4			
		FFFF B	Brown, Fine to Me	edium SAND, little Gravel,	7-	0.0 ppm		
Ĭ,	Ĭ, Ĭ, Ĭ,	mm 'ti	race silt (fill); dry.		<i>」</i>			
	<b>\`\`\</b>	F444-						
, , , , ,	Cement/Bent			edium SAND, little Gravel, k and concrete (fill); dry.		0.0 ppm		
	NA GIONI	mm "	ACC SIL WILLI DITC	it and concrete (IIII), ally.		4		
		HHH						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\^\^ \^\^	THE PARTY						
		HHH				0.0 ppm		
		THE PARTY					Hand-cleared to 5' bls.	
	<ul> <li>Bentonite</li> </ul>			parse SAND, some	1	0.0 ppm	1.5' Recovery.	
		HHH C	Gravel, trace silt v	with concrete (fill); dry.		o.o ppm		
	• • • •	mm						
,	6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6	HHH				<b>T</b>		
		四四				1		
		HHH						
		DDD						
		1444						
		THE PARTY						
		HHH						
<u> </u>					<b> </b>			
			Brown Fine to Co come Gravel; wet	arse SAND with SILT,		0.3 ppm	3.5' Recovery.	
# <u>#</u>			Jiavel, Wel					
	— # 2 Morie							
	- # 2 Morie Sand		Brown Fine to Co	arse SAND, some		0.0 ppm		
		, O . G	SRAVEL; wet.					
		<b>5</b>						
		000						
* * * * * * * * * * * * * * * * * * * *		. 0 0						
. SA		。						
			Brown Fine to Co	arse SAND, little	1	0.0 ====	5' Recovery.	
			GRAVEL; wet.	,		0.0 ppm		
						T		
						0.0.555		
						0.0 ppm		
	<u> </u>							
)								



SRILLING CONTRACTOR/DOBLLES  (FINITIVE / Jobs. )  ROTTO Side of South Parking Lot  North Side of South Parking Lot  North Side of South Parking Lot  North Side of South Parking Lot  SAMM-LING METHOD  SAMM-LING	<b>575.00</b> PPROVE	02Y000 / Kristal D BY	Auto Mall LOGGED BY Joe Gavin		Brooklyn,	gs Highway , NY				
DRILL BY DAMBTER TYPE   SOREHOLE DIAMETER   DRILLING EQUIPMENTMETHOD   2*Mactro-Core   DRIAMETOR   DRI					GEOGRAPHI North Sid	C AREA	Lot			
Ashira   A	<u>rinity /</u> RILL BIT	Joe S. DIAMETER/TYPE	BOREHOI E DIAME	=TFR				METHOD	START-FINISH DATE	
ASING MAT JOIA, VEY STORED.  TYPE STORED.  TYPE STORED.  GROUND SURFACE  TOP OF WELL CASING TOP & BOTTOM SCREEN TOP & BOTTOM S				LILIX			2" Macro	-Core		
Service   Serv	ASING M	IAT./DIA.	SCREEN:	_	-					
Flash-mount pulm markhole cover.  Flash-mount pulm pulm pulm pulm pulm pulm pulm pulm		inch NOE: GPO	TYPE <b>Slotte</b>			TOTAL LENGTH 1	0.0ft DIA			t
### ASPHALT.    ASPHALT.   Carase SAND with Grown   File to Coarse SAND   Fil		NOI. OIK	DOIND GOIN AGE	TOI OI WE	LL CASINO	<i>I</i>	NLLIN			
ASPHALT.  ASPHALT.  Brown. Fine to Coarse SAND with GRAVEL, COBBLE and Brick and Concrete (fill); dry.  Brown. Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown. Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown. Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown. Fine to Coarse SAND, some SILT, wet.  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.	Flu		/ J-Plug							
ASPHALT. Brown, Fine to Coarse SAND with GRAVEL with Brick and Concrete (fill); dry.  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  B	eptn,	ole cover.			Visual	Description			REMARKS	
Brown, Fine to Coarse SAND with Gravel. COBBLE and Brick and Concrete (fill); dry.  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Grey Sil.T and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some SILT; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.	eet			Log		2000				
GRAVEL COBRLE and Brick and Concrete (fill); dry.  Bentonite  Bentonite  Bentonite  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND, some Gravely.  Coarse SAND (fill); wet at 11' bis.  Grey SiLT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  Do ppm  F 2 Morie  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  Do ppm  F Recovery.  Do ppm  F Recovery.  Do ppm  F Recovery.  Do ppm  F Recovery.  Do ppm		ــــــــــــــــــــــــــــــــــــــ	ŢŖĸŢ	1) 1 1 1 1 \			$\overline{}$	0.0 nnm		
Concrete (fill); dry.  Bertonite  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND, on ppm  Brick and Concrete, little Brown, Fine to Coarse SAND, on ppm  Coarse SAND (fill); wet at 11' bis.  Brown and Grey, Fine to Coarse SAND, on ppm  Brown and Grey, Fine to Coarse SAND, on ppm  Some Sil.T, wet.  Brown Fine to Coarse SAND, on ppm  6' Recovery.  0.0 ppm		<u>```</u>						o.o ppin		
Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  Grey SiLT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some GRAVEL, wet.  Brown Fine to Coarse SAND, some GRAVEL, wet.  Brown Fine to Coarse SAND, some GRAVEL, wet.  Brown Fine to Coarse SAND, some GRAVEL, wet.										
Bentonite  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11" bis.  D.0 ppm  3" Recovery.  0.0 ppm  4" Recovery.  0.0 ppm  5 Recovery.  0.0 ppm  5 Recovery.  0.0 ppm		, i i i i i i i i i i i i i i i i i i i		mm .	,,	-				
Bentonite  Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  0.0 ppm  4' Recovery.  0.0 ppm  5 Prown and Grey, Fine to Coarse SAND, some GRAVEL, wet.  5 Brown Fine to Coarse SAND, some GRAVEL, wet.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.		~~~	~ ~ ~ ~	HHH				0.0 nnm		
Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11" bls.  0  0.0 ppm  4" Recovery.  0.0 ppm  4" Recovery.  5  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  5  0.0 ppm  5 Recovery.  0.0 ppm  6 Recovery.  0.0 ppm  7 Recovery.  0.0 ppm  6 Recovery.  0.0 ppm  7 Recovery.  0.0 ppm  9 Recovery.				THE PARTY				G  ***		
Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bls.  D.0 ppm  3' Recovery.  0.0 ppm  4' Recovery.  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  D.0 ppm  5' Recovery.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  6' Recovery.			<ul> <li>Bentonite</li> </ul>	HHH						
Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete (fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bls.  D.0 ppm  3' Recovery.  0.0 ppm  4' Recovery.  Brown and Grey, Fine to Coarse SAND, some GRAVEL; wet.  D.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  6' Recovery.				四四						
Brown, Fine to Coarse SAND, some GRAVEL with Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  #2 Morie Sand  Grey SiLT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, Some SiLT; wet.  #2 Morie Brown and Grey, Fine to Coarse SAND, Some SiLT; wet.  Brown Fine to Coarse SAND,  #3 Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  6' Recovery.  0.0 ppm  1' Recovery.		٥٠٥	• • • •	HHH						
Brown. Fine to Coarse SAND, some GRAVEL with Brick and Concrete, fill); dry.  Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11" bis.  0.0 ppm  4" Recovery.  0.0 ppm  4" Recovery.  5.  Brown and Grey, Fine to Coarse SAND, some Sil.T; wet.  0.0 ppm  5" Recovery.  0.0 ppm  6" Recovery.  0.0 ppm  0.0 ppm  6" Recovery.										
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm	<u> </u>	, , , , , , , , , , , , , , , , , , ,		F###.	Drough Fire to C	earna CAND				
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bls.  0.0 ppm  4' Recovery.  0.0 ppm  5 Recovery.  0.0 ppm  5 Recovery.  0.0 ppm  5 Recovery.  0.0 ppm				pag :	Brown, Fine to C BRAVEL with Bri	oarse SAND, some ick and Concrete (fill): dry		0.0 ppm	3' Recovery.	
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bls.  0.0 ppm  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  6 ppm  7		0000	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	HHH,		(m), di y.				
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  6' Recovery.  0.0 ppm  0.0 ppm  0.0 ppm  0.0 ppm  0.0 ppm  0.0 ppm		, , , , , j		PTTH						
Brick and Concrete. little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  6' Recovery.  0.0 ppm  7' Recovery.			ૺૢૼૼૼૼૺ૾ૼૺૺૺ૾ૼૺ૾ૼૺૺૺૺૺ૾ૼૺૺ૾ૼૺૺૺૺ૾ૼૺૺ૾ૼૺૺ	HHH						
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm				FFFF						
Brick and Concrete, little Brown, Fine to Coarse SAND (fill); wet at 11' bis.  0.0 ppm  4' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm  5' Recovery.  0.0 ppm				TTTT I						
Coarse SAND (fill); wet at 11' bis.  0.0 ppm 4' Recovery.  0.0 ppm 4' Recovery.  0.0 ppm 5' Recovery.  5		* * * *			Brick and Concre	ete, little Brown, Fine to	-	0.0 ppm		
O.0 ppm 4' Recovery.  O.0 ppm 4' Recovery.  Brown and Grey, Fine to Coarse SAND, some SILT; wet.  O.0 ppm 5' Recovery.  Brown Fine to Coarse SAND, some GRAVEL; wet.				PATH,	Joarse SAND (fil	ii); wet at 11' bls.				
Grey SILT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some SILT; wet.  0.0 ppm  0.0 ppm  0.0 ppm  5' Recovery.  Brown Fine to Coarse SAND, some GRAVEL; wet.				HHH						
Grey SILT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some SILT; wet.  0.0 ppm  0.0 ppm  0.0 ppm  5' Recovery.  Brown Fine to Coarse SAND, some GRAVEL; wet.	n			ppp						
Grey SILT and CLAY; wet.    3.0 ppm	<u>u</u>			HHH				00	4' Recovery.	
# 2 Morie Sand  Grey SiLT and CLAY; wet.  Brown and Grey, Fine to Coarse SAND, some SiLT; wet.  0.0 ppm  0.0 ppm  0.0 ppm  5' Recovery.  GRAVEL; wet.				ppp				0.0 ppm		
Brown and Grey, Fine to Coarse SAND, some SILT; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.  Brown Fine to Coarse SAND, some GRAVEL; wet.				HHH						
Brown and Grey, Fine to Coarse SAND, some SILT; wet.  5  Brown Fine to Coarse SAND, some GRAVEL; wet.  0.0 ppm  5' Recovery.					Grev SII T and C			00000		
Brown and Grey, Fine to Coarse SAND, some SILT; wet.  5  Brown Fine to Coarse SAND, some GRAVEL; wet.  0.0 ppm  0.0 ppm  0.0 ppm			Sand		o, oil and o	,		o.o ppm		
Brown and Grey, Fine to Coarse SAND, some SILT; wet.  5  Brown Fine to Coarse SAND, some GRAVEL; wet.  0.0 ppm  5' Recovery.										
5 Some SILT; wet.  5 Brown Fine to Coarse SAND, some GRAVEL; wet.										
5 Some SILT; wet.  5 Brown Fine to Coarse SAND, some GRAVEL; wet.					Brown and Cray	Fine to Coarea SAND				
5' Recovery.  5' Recovery.  0.0 ppm  6' Recovery.  0.0 ppm						THE TO COURSE SAIND,		U.U ppm		
Brown Fine to Coarse SAND, some GRAVEL; wet.										
Brown Fine to Coarse SAND, some GRAVEL; wet.	5_								ELD.	
Brown Fine to Coarse SAND, some GRAVEL; wet.								0.0 ppm	5' Recovery.	
Brown Fine to Coarse SAND, some GRAVEL; wet.										
Brown Fine to Coarse SAND, some GRAVEL; wet.										
GRAVEL; wet.				0.0000						
						parse SAND, some		0.0 ppm		
					, , , , , , , , , , , , , ,					
				Pirin						
	**									
0	0									



ROJECT N 575.0002 PPROVED	Y000 / Krista	LOGGED BY Joe Gavin		5200 King Brooklyn	gs Highway , NY				
	ONTRACTOR/DRI			GEOGRAPHI	C AREA				
	<u>oe S.</u>  AMETER/TYPE   <b>Drive Sample</b> :	BOREHOLE DIAME	ETER		Auto Repair Shop QUIPMENT/METHOD De	SAMPLING M 2" Macro-	ETHOD Core	START-FINISH DATE 3/13/15-3/13/15	
CASING MAT PVC / 4-ir	T./DIA. I <b>ch</b>	SCREEN: TYPE Slotte	d MA	т. <b>РVС</b>	TOTAL LENGTH 1 TOP & BOTTOM SCF	10.0ft DIA	4-inch	SLOT SIZE 20-Slot	t
LEVATION Feet)		OUND SURFACE	TOP OF WE	ELL CASING	/ BOTTOM SCI	KEEN	#2 Moi	PACK SIZES rie	
	n-mount e cover.	J-Plug	Graphic Log	Visual	Description	Blow Counts	PID Values	REMARKS	
				CONCRETE.	·	per 6"	(ppm)		_
		Cement/Bento	onite I	VOID Brown, Fine to C	oarse SAND, some  DBBLE with Brick and		1.9 ppm		
		Glout		Concrete (fill); dr					
		- Bentonite					1.8 ppm		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Brown, Fine to C	oarse SAND, some  DBBLE with Brick,		1.5 ppm		
5_					and Plactic (fill); dry.		0.8 ppm	Hand-cleared to 5' bls. 2' Recovery.	
					DBBLE with Brick and Brown, Fine to Coarse		0.7 ppm		
				SAND (IIII), diy.					
0							0.7 ppm		
		- # 2 Morie		Brown and Grey, with SILT, trace oble.	Fine to Medium SAND coarse sand; wet at 11'		22 ppm	3.5' Recovery.	
		Sand		Brown and Grey,	Fine to Coarse SAND,		64.3ppm		
				some GRAVEL;	oarse SAND, some		2.3 ppm		
			000	or wee, wot			1.5 ppm		
<u>5</u>			. O O				8.0 ppm	5' Recovery.	
							3.4 ppm		
		# 10.000 # 10.000 # 10.000	$\langle \cdot \rangle$				0.8 ppm		
			。 0 0				1.0 ppm		
0			$\circ \circ \circ$						

# **APPENDIX C**

**Groundwater Sampling Forms** 

**ROUX** 2861.0001Y.102/CVRS

Irma C. Pollack			Project Numb	<b>ber:</b> 1575.0002y				
5200 Kings Highway, B	rooklyn							
MW-1		Weather: mic	d 20s to low 30s	sF, partly cloudy, windy				
2/24/2014	Purge Water	Disposal: Dru	ummed					
JG	Well Diame	ter / Type:						
18.40		Water C	olumn (ft):	8.62				
9.78	Volume of Water in Well (gal)			1.407				
N/A	Volumeo	f Water to Rer	nove (gal):	n/a				
1 in	2 in	4 in	6 in	8 in				
0.04	0.16	0.65	1.47	2.61				
1410		F	Purge Rate: 250	) mL/min				
1505	Volume	of Water Rem	oved (gal): <u>3 g</u> a	allon				
low-flow		Method of	Sampling: low	-flow				
Initial purge cloudy then solids; no odor or sheen		nple: cloudy, b	rown in color, I	no visible suspendid				
TCL VOCs + TIC (3-40	IC (3-40mL vials with HCI); TCL SVOCs + TIC (2-1L ambers); TAL							
Metals (1-250 mL plasti	c with HNO3)							
1505		L	aboratory: Yor	k Ananlytical				
	5200 Kings Highway, B  MW-1  2/24/2014  JG  18.40  9.78  N/A  1 in  0.04  1410  1505  low-flow  Initial purge cloudy ther solids; no odor or sheen TCL VOCs+TIC (3-40) Metals (1-250 mL plasti	5200 Kings Highway, Brooklyn           MW-1         Purge Water           JG         Well Diame           18.40         9.78         Volume           N/A         Volume of the color         0.04         0.16           1410         1505         Volume         Volume           Initial purge cloudy then cleared up. San solids; no odor or sheen         TCL VOCs + TIC (3-40mL vials with H Metals (1-250 mL plastic with HNO3)	5200 Kings Highway, Brooklyn           MW-1         Weather: mid           2/24/2014         Purge Water Disposal: Drug           JG         Well Diameter / Type:	5200 Kings Highway, Brooklyn           MW-1         Weather: mid 20s to low 30s 2/24/2014         Purge Water Disposal: Drummed           JG         Well Diameter / Type: 2 in PVC           18.40         Water Column (ft): 9.78           Volume of Water in Well (gal)           N/A         Volume of Water to Remove (gal): 0.04           1 in 2 in 4 in 6 in 0.04         6 in 0.65 1.47           1410         Purge Rate: 250 1.47           1505         Volume of Water Removed (gal): 3 gas 1.47           Initial purge cloudy then cleared up. Sample: cloudy, brown in color, 1.47           Initial purge cloudy then cleared up. Sample: cloudy, brown in color, 1.47           Metals (1-250 mL plastic with HNO3)				

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	Conductivity mS/m - S/m	<b>Turbidity</b> NTU	<b>pH</b> SU	Temperature C° - F°	Dissolved O ₂ mg/L
		1	(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1414	9.98	250	71	0.655	62.6	8.61	9	18.65
1417	9.98	250	105	0.790	52.8	7.46	9.75	2.45
1420	9.98	250	114	0.796	70.2	7.29	10.02	1.21
1425	9.98	250	125	0.795	54.6	7.06	10.60	0.00
1430	9.98	250	115	0.799	56.2	6.81	11.02	0.00
1435	9.98	250	86	0.806	55.6	6.65	11.24	0.00
1440	9.98	250	64	0.806	44.3	6.54	11.44	0.00
1445	9.98	250	55	0.810	43.8	6.49	11.61	0.00
1450	9.98	250	42	0.807	34.8	6.46	11.8	0.00
1455	9.98	250	37	0.808	41.5	6.42	11.99	0.00
1500	9.98	250	34	0.806	36.5	6.4	12.11	0.00

Client:	Irma C. Pollack		_	Project Num	<b>ber:</b> 1575.0002y	
Site Location:	5200 Kings Highway, B	rooklyn				
Well No:	MW-2	V	/eather: mic	d 20s to low 30	sF, partly cloudy, windy	
Date:	2/24/2014	Purge Water D	sposal: Dru	ummed		
Sampled By:	ВК	Well Diameter	/ Type:	2 in PVC		
Depth of Well (ft):	16.38		Water C	olumn (ft):	6.18	
Depth to Water(ft):	10.2	Volume	of Water in	Well (gal)	1.009	
Depth to Product (ft):	N/A	Volume of V	Vater to Ren	move (gal):	n/a	
well diameter:	1 in	2 in	4 in	6 in	8 in	
gallons per foot:	0.04	0.16	0.65	1.47	2.61	
Start Purging:	1340		F	Purge Rate: 250	) mL/min	
End Purging:	1440	Volume of	Water Rem	oved (gal): <u>4 g</u>	allon	
Method of Purge:	low-flow		Method of	Sampling: low	r-flow	
Physical Appearance/ Comments:	Clear, little sediment; no	odor or sheen				
Samples Collected:	TCL VOCs + TIC (3-40	mL vials with HCl)	; TCL SVO	Cs+TIC (2-1L	_ ambers); TAL	
(analyses / no. bottles)	Metals (1-250 mL plastic	c with HNO3)				
Time:	1440		L	aboratory: Yo	rk Ananlytical	
			_			

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	Conductivity mS/m - S/m	<b>Turbidity</b> NTU	<b>pH</b> SU	Temperature C° - F°	Dissolved O ₂ mg/L
	1	T	(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1345	10.21	250	64	0.000	158.0	3.36	19.14	11.33
1350	10.21	250	74	0.706	52.0	7.26	18.45	2.82
1359	10.21	250	113	0.761	8.2	7.17	14.45	2.05
1404	10.21	250	131	0.760	1.5	7.03	14.33	1.66
1409	10.21	250	141	0.765	0.0	7.04	14.05	1.28
1414	10.21	250	152	0.768	0.1	6.97	13.9	0.92
1419	10.21	250	161	0.770	0.0	6.96	13.69	0.67
1425	10.21	250	169	0.775	0.0	6.96	13.5	0.81
1430	10.21	250	171	0.788	0	6.99	13.38	0.18
1435	10.21	250	172	0.78	0	7	13.31	0.11

Client:	Irma C. Pollack		_	Project Num	<b>ber:</b> 1575.0002y			
Site Location:	5200 Kings Highway, B	rooklyn						
Well No:	MW-3	V	/eather: mid	d 20s to low 30	sF, partly cloudy, windy			
Date:	2/24/2014	Purge Water D	isposal: <u>Dr</u> u	ummed				
Sampled By:	BK	Well Diameter	/ Type:	2 in PVC				
Depth of Well (ft):	18.87		Water C	olumn (ft):	8.28			
Depth to Water(ft):	10.59	Volume	of Water in	1.351				
Depth to Product (ft):	N/A	Volume of V	Vater to Rer	move (gal):	n/a			
well diameter:	1 in	2 in	4 in	6 in	8 in			
gallons per foot:	0.04	0.16	0.65	1.47	2.61			
Start Purging:	1550		F	Purge Rate: 250	O mL/min			
End Purging:	1630	Volume of	Water Rem	oved (gal): <u>3 g</u>	allon			
Method of Purge:	low-flow		Method of	Sampling: low	v-flow			
Physical Appearance/ Comments:	Clear, little sediment; no	odor or sheen						
Samples Collected:	TCL VOCs + TIC (3-40	s+TIC (3-40mL vials with HCl); TCL SVOCs+TIC (2-1L ambers); TAL						
(analyses / no. bottles)	Metals (1-250 mL plastic	c with HNO3)						
Time:	1640		L	aboratory: Yo	rk Ananlytical			

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	Conductivity mS/m - S/m	<b>Turbidity</b> NTU	<b>pH</b> SU	Temperature C° - F°	Dissolved O ₂ mg/L
			(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1555	10.59	250	148	0.648	11.5	6.80	14.94	0.10
1600	10.6	250	142	0.621	12.6	6.79	16.54	0.06
1605	10.6	250	141	0.615	7.7	6.79	17.09	0.04
1610	10.59	250	143	0.611	5.7	6.78	17.22	0.04
1615	10.6	250	146	0.608	2.8	6.78	17.33	0.03
1620	10.6	250	149	0.606	1.3	6.77	17.41	0.03
1625	10.6	250	151	0.606	0.2	6.77	17.52	0.02
1630	10.6	250	154	0.604	0.0	6.76	17.61	0.02

Client:	Irma C. Pollack			Project Num	<b>ber:</b> 1575.0002y	
Site Location:	5200 Kings Highway, B	rooklyn		-		
Well No:	MW-3		Weather: 60	s to 70s, clear		
Date:	9/26/2014	Purge Water	Disposal: Dr	ummed		
Sampled By:	JG	Well Diame	ter / Type:	2 in PVC		
Depth of Well (ft):	18.87		Water C	Column (ft):	8.07	
Depth to Water(ft):	10.8	Volur	me of Water in	n Well (gal)	1.3171	
Depth to Product (ft):	N/A	Volumeo	f Water to Re	move (gal):	n/a	
well diameter:	1 in	2 in	4 in	6 in	8 in	
gallons per foot:	0.04	0.16	0.65	1.47	2.611	
Start Purging:	1210			Purge Rate: 200	) mL/min	
End Purging:	1250	Volume	of Water Rem	noved (gal): 3 g	allons	
Method of Purge:	low-flow		Method of	f Sampling: low	v-flow	
Physical Appearance/ Comments:	Clear, no visible suspend	did solids; no od	or / sheen			
Samples Collected: (analyses / no. bottles)	TCL VOCs (3-40mL via	als with HCl)				

#### Field Measurements:

Time:

1250

Time	DTW	Flow Rate	ORP	Conductivity	Turbidity	pН	Temperature	Dissolved O
	ft	ml/min	mV	<b>mS/m</b> - S/m	NTU	SU	C° - F°	mg/L
			(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1215	10.83	200	185	56.200	1.0	6.67	20.69	3.41
1220	10.83	200	186	50.600	7.0	6.52	20.58	2.20
1225	10.83	200	186	49.500	2.0	6.45	20.67	1.52
1230	10.83	200	185	49.200	4.0	6.43	20.74	1.42
1235	10.83	200	183	49.000	5.0	6.42	20.83	1.36
1240	10.83	200	182	48.900	4.0	6.42	20.92	1.37
1245	10.83	200	181	51.100	4.0	6.41	21	1.43

Laboratory: York Ananlytical

Client:	Irma C. Pollack		<u>—</u>	Project Num	<b>ber:</b> 1575.0002y	
Site Location:	5200 Kings Highway, B	rooklyn				
Well No:	MW-4D		Weather: mid	d 20s to low 30	9sF, partly cloudy, windy	
Date:	2/24/2014	Purge Water	Disposal: Dru	ummed		
Sampled By:	JG	Well Diamet				
Depth of Well (ft):	39.85		Water C	olumn (ft):	29.5	
Depth to Water(ft):	10.36	Volun	ne of Water in	Well (gal)	4.813	
Depth to Product (ft):	N/A	Volume of	f Water to Ren	move (gal):	n/a	
well diameter:	1 in	2 in	4 in	6 in	8 in	
gallons per foot:	0.04	0.16	0.65	1.47	2.611	
Start Purging:	1050		F	Purge Rate: 200	0 mL/min	
End Purging:	1120	Volume	of Water Rem	oved (gal): <u>3 g</u>	allon	
Method of Purge:	low-flow		Method of	Sampling: lov	v-flow	
Physical Appearance/	Clear, little sediment					
Comments:	No visible suspendid so	olids, clear, no od	or or sheen			
Samples Collected:	TCL VOCs + TIC (3-40	mL vials with H0	CI); TCL SVO	Cs + TIC (2-1	L ambers); TAL	
(analyses / no. bottles)	Metals (1-250 mL plasti	c with HNO3)				
Time:	1120		L	aboratory: Yo	rk Ananlytical	

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	Conductivity mS/m - S/m	<b>Turbidity</b> NTU	pH SU	Temperature C° - F°	Dissolved O ₂ mg/L
	1	1	(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1053	10.37	200	50	1.020	22.2	7.56	10.5	17.87
1056	10.37	200	84	0.977	21.4	6.79	12.16	2.44
1059	10.37	200	96	0.900	58.0	6.64	15.49	0.43
1104	10.37	200	103	0.891	51.9	6.60	15.98	0.00
1109	10.37	200	108	0.888	50.7	6.58	16.14	0.00
1114	10.37	200	116	0.891	32.1	6.55	16.32	0.00
1119	10.37	200	118	0.885	31.1	6.54	16.43	0.00

Client:	Irma C. Pollack	Project Number: 1575.0002y								
Site Location:	5200 Kings Highway, B	rooklyn								
Well No:	MW-6		Weather: mic	d 20s to low 30s	F, partly cloudy, windy					
Date:	2/24/2014	Purge Water	Disposal: Dru	ummed						
Sampled By:	JG	Well Diame								
Depth of Well (ft):	20.00		11.79							
Depth to Water(ft):	8.21	Volur	me of Water in	Well (gal)	1.924					
Depth to Product (ft):	N/A	Volumeo	of Water to Ren	nove (gal):	n/a					
well diameter:	1 in	2 in	4 in	6 in	8 in					
gallons per foot:	0.04	0.16	0.65	1.47	2.611					
Start Purging:	1217		F	Purge Rate: <u>250</u>	mL/min					
End Purging:	1305	Volume	of Water Remo	oved (gal): <u>3 g</u> a	llon					
Method of Purge:	low-flow		Method of	Sampling: low-	-flow					
Physical Appearance/ Comments:	Clear, no visible suspend	did solids; no od	or / sheen							
Samples Collected:	TCL VOCs + TIC (3-40	mL vials with H	CI); TCL SVO	Cs+TIC (2-1L	ambers); TAL					
(analyses / no. bottles)	Metals (1-250 mL plastic	with HNO3)								
Time:	1305		L:	aboratory: Yor	k Ananlytical					

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	Conductivity mS/m - S/m	<b>Turbidity</b> NTU	<b>pH</b> SU	Temperature C° - F°	Dissolved O ₂ mg/L
	T	T	(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1221	8.23	250	59	0.538	29.3	9.40	12.63	14.11
1224	8.23	250	38	0.428	24.2	9.81	11.88	10.55
1227	8.23	250	23	0.405	40.5	9.88	11.7	9.28
1232	8.23	250	9	0.401 80.1		9.97	11.63	7.92
1237	8.23	250	-8	0.394	84.2	10.07	11.73	5.83
1242	8.23	250	-10	0.394	81.7	10.07	11.71	5.68
1247	8.23	250	-15	0.390	75.9	10.07	11.68	4.26
1252	8.23	250	-17	0.387	67.1	10.04	11.64	3.99
1257	8.23	250	-18	0.385	60.2	10	11.59	3.74
1302	8.23	250	-19	0.385	50.2	9.97	11.59	3.71

Client:	Irma C. Pollack	Project Number: 1575.0002y							
Site Location:	5200 Kings Highway, B	rooklyn							
Well No:	MW-7		Weather: mic	d 20s to low 30sF	, partly cloudy, windy				
Date:	2/24/2014	Purge Water	Disposal: Dru	ummed					
Sampled By:	JG	Well Diame	ter / Type:2						
Depth of Well (ft):	19.84		Water Co	10.96					
Depth to Water(ft):	8.88	Volur	me of Water in	Well (gal)	1.7888				
Depth to Product (ft):	N/A	Volumeo	f Water to Ren	move (gal):	n/a				
well diameter:	1 in	2 in	4 in	6 in	8 in				
gallons per foot:	0.04	0.16	0.65	1.47	2.611				
Start Purging:	1554		F	Purge Rate: 250	mL/min				
End Purging:	1635	Volume	of Water Remo	oved (gal): 3 gall	on				
Method of Purge:	low-flow		Method of	Sampling: low-fl	ow				
Physical Appearance/ Comments:	Clear, no visible suspend	did solids; no od	or / sheen						
Samples Collected:	TCL VOCs + TIC (3-40	mL vials with H	CI); TCL SVO	Cs + TIC (2-1L a	mbers); TAL				
(analyses / no. bottles)	Metals (1-250 mL plasti	c with HNO3)							
	1640-DUP022414 colle	cted, 1645-MS02	22414 collected	d, 1650-MSD022	414 collected.				
Time:	1635		L	aboratory: York	Ananlytical				
				· <del></del>					

Time	<b>DTW</b> ft	Flow Rate ml/min	<b>ORP</b> mV	•		<b>pH</b> SU	Temperature C° - F°	Dissolved O ₂ mg/L
		1	(+/- 10 mV)	(w/in 3%)	(w/in %10)	(+/- 0.1)	(w/in 3%)	(w/in 10%)
1557	8.9	250	118	0.597	277.0	6.90	12.39	10.28
1600	8.9	250	118	5.800	27.0	6.77	13.63	3.53
1603	8.9	250	112	0.572	2.6	6.74	14.12	0.95
1608	8.9	250	99	0.563	5.0	6.74	14.59	0.00
1613	8.9	250	88	0.560	0.0	6.73	14.75	0.00
1618	8.9	250	72	0.559	0.0	6.73	14.9	0.00
1623	8.9	250	58	0.559	0.0	6.72	15.04	0.00
1628	8.9	250	49	0.560	0.0	6.71	15.15	0.00
1633	8.9	250	48	0.55	0.0	6.71	15.2	0.00

Client:	Irma C. Pollack		Project Num	Project Number: 1575.0002y				
Site Location:	5200 Kings Highway, B	rooklyn	_					
Well No:	MW-9		Weather: 60:	s to 70s, clear				
Date:	9/26/2014	Purge Water	Disposal: Dr	ummed				
Sampled By:	JG	Well Diamet	er / Type:	2 in PVC				
Depth of Well (ft):	18.91		Water C	column (ft):	8.26			
Depth to Water(ft):	10.65	Volum	e of Water in	well (gal)	1.3481			
Depth to Product (ft):	N/A	Volume of	n/a					
well diameter:	1 in	2 in	4 in	6 in	8 in			
gallons per foot:	0.04	0.16	0.65	1.47	2.611			
Start Purging:	1047		ſ	Purge Rate: 150	) mL/min			
End Purging:	1125	Volume	of Water Rem	noved (gal): 2 g	allon			
Method of Purge:	low-flow		Method of	Sampling: low	r-flow			
Physical Appearance/	Clear, no visible suspend	did solids; no odd	or / sheen					
Comments:	· · · · · · · · · · · · · · · · · · ·							
Samples Collected: (analyses / no. bottles)	TCL VOCs (3-40mL via	als with HCl)						

# Field Measurements:

Time:

1125

Time	DTW	Flow Rate	ORP	Conductivity	Turbidity	рН	Temperature	Dissolved O ₂
	ft	ml/min	mV (+/- 10 mV)	mS/m - S/m (w/in 3%)	NTU (w/in %10)	SU (+/- 0.1)	C° - F° (w/in 3%)	mg/L (w/in 10%)
1050	10.63	150	187	80.000	29.0	6.13	21.27	3.12
1055	10.63	150	179	79.500	17.0	6.20	21.06	1.76
1100	10.63	150	175	79.300	19.0	6.22	21.1	1.63
1105	10.63	150	172	79.100	21.0	6.23	21.16	1.45
1110	10.63	150	171	79.100	18.0	6.24	21.21	1.36
1115	10.63	150	169	80.000	12.0	6.25	21.24	1.39
1120	10.63	150	168	80.100	11.0	6.27	21.26	1.41

Laboratory: York Ananlytical

# **APPENDIX D**

**Laboratory Reports** 

**ROUX** 2861.0001Y.102/CVRS



# **Technical Report**

prepared for:

# **Roux Associates**

209 Shafter St Islandia NY, 11749

**Attention: Wendy Monterosso** 

Report Date: 02/28/2014

Client Project ID: 1575.00024

York Project (SDG) No.: 14B0560

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 89

Report Date: 02/28/2014 Client Project ID: 1575.00024 York Project (SDG) No.: 14B0560

# **Roux Associates**

209 Shafter St Islandia NY, 11749

Attention: Wendy Monterosso

# **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on February 21, 2014 and listed below. The project was identified as your project: **1575.00024**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
14B0560-01	RSB-10/7.5-9.5	Soil	02/20/2014	02/21/2014
14B0560-02	RSB-10/17.5-19.5	Soil	02/20/2014	02/21/2014
14B0560-03	RSB-11/7.5-9.5	Soil	02/20/2014	02/21/2014
14B0560-04	RSB-11/17.5-19.5	Soil	02/20/2014	02/21/2014
14B0560-05	RSB-1/10-12	Soil	02/20/2014	02/21/2014
14B0560-06	RSB-1/20-22	Soil	02/20/2014	02/21/2014
14B0560-07	<b>DUP022014</b>	Soil	02/20/2014	02/21/2014
14B0560-08	FB022014	Water	02/20/2014	02/21/2014
14B0560-09	RSB-3/8-10	Soil	02/20/2014	02/21/2014
14B0560-10	RSB-3/18-20	Soil	02/20/2014	02/21/2014
14B0560-11	TripBlank	Water	02/20/2014	02/21/2014
14B0560-12	MW-4S	Oil	02/20/2014	02/21/2014
14B0560-13	Lift-1	Oil	02/20/2014	02/21/2014

# **General Notes** for York Project (SDG) No.: 14B0560

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

**Date:** 02/28/2014

Benjamin Gulizia Laboratory Director





<u>Client Sample ID:</u> RSB-10/7.5-9.5 <u>York Sample ID:</u> 14B0560-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 20149:40 am02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	14		ug/kg dry	2.0	8.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
71-43-2	Benzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-25-2	Bromoform	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
67-66-3	Chloroform	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	41	82	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



<u>Client Sample ID:</u> RSB-10/7.5-9.5 <u>York Sample ID:</u> 14B0560-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014
 9:40 am
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-09-2	Methylene chloride	3.5	J, B	ug/kg dry	2.0	8.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
100-42-5	Styrene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
108-88-3	Toluene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	1 <u>2</u> ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.0	4.1	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.1	8.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	6.1	12	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:22	SS
	Surrogate Recoveries	Result		Acce	eptance Ra	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	110 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			72-137						
2037-26-5	Surrogate: Toluene-d8	98.5 %			85-118						

Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Prepared Date/Time Analyzed CAS No. Parameter Result Flag Units MDL Dilution Reference Method Analyst EPA 8260C 02/24/2014 13:18 02/25/2014 01:22 ug/kg dry SS Tentatively Identified Compounds 0.0

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 5 of 89



<u>Client Sample ID:</u> RSB-10/7.5-9.5 <u>York Sample ID:</u> 14B0560-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 9:40 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by M	Method: EPA 3550C								Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
98-86-2	Acetophenone	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
120-12-7	Anthracene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
1912-24-9	Atrazine	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
105-60-2	Caprolactam	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
36-74-8	Carbazole	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
06-47-8	4-Chloroaniline	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
218-01-9	Chrysene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
34-74-2	Di-n-butyl phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
01-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	193	385	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
20-83-2	2,4-Dichlorophenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 6 of 89



<u>Client Sample ID:</u> RSB-10/7.5-9.5 <u>York Sample ID:</u> 14B0560-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 9:40 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
84-66-2	Diethyl phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	193	385	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
206-44-0	Fluoranthene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
86-73-7	Fluorene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
78-59-1	Isophorone	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
91-20-3	Naphthalene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
85-01-8	Phenanthrene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



RSB-10/7.5-9.5 **Client Sample ID:** York Sample ID: 14B0560-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14B0560 1575.00024 Soil February 20, 2014 9:40 am 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-95-2	Phenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
129-00-0	Pyrene	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	97.0	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	48.5	193	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:22	SR
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
367-12-4	Surrogate: 2-Fluorophenol	51.6 %			10-109						
4165-62-2	Surrogate: Phenol-d5	54.0 %			10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	54.6 %			10-148						

Surrogate: Terphenyl-d14Semi-Volatiles, Tentatively Identified Cmpds.

Surrogate: 2-Fluorobiphenyl

Surrogate: 2,4,6-Tribromophenol

Octadcenamide isomer

**Log-in Notes:** 

**Sample Notes:** 

02/24/2014 17:00

EPA 8270D

Date/Time Date/Time CAS No. Flag Units MDL Dilution Reference Method Analyzed Parameter Result Prepared Analyst SR 154 02/25/2014 12:22

ug/kg dry

10-111

10-142

10-147

**Log-in Notes: Sample Notes: Total Solids** 

59.6 %

89.2 %

82.4~%

Sample Prepared by Method: % Solids Prep

Sample Prepared by Method: EPA 3550C

321-60-8

5175-83-7

1718-51-0

NA

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	86.6		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

**Sample Information** 

RSB-10/17.5-19.5 **Client Sample ID: York Sample ID:** 14B0560-02

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 1575.00024 02/21/2014 14B0560 Soil February 20, 2014 9:50 am

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	25		ug/kg dry	2.6	10	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
71-43-2	Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 8 of 89



<u>Client Sample ID:</u> RSB-10/17.5-19.5 <u>York Sample ID:</u> 14B0560-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 9:50 am
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-ın Note	<u>s:</u>	Samp	le	No	tes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	52	100	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



Client Sample ID: RSB-10/17.5-19.5

York Sample ID:

14B0560-02

York Project (SDG) No. 14B0560

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> February 20, 2014 9:50 am Date Received 02/21/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-09-2	Methylene chloride	3.7	B, J	ug/kg dry	2.6	10	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
100-42-5	Styrene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
108-88-3	Toluene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.6	5.2	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.2	10	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.8	16	1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS
	Surrogate Recoveries	Result		Acce	ptance Ra	inge					
460-00-4	Surrogate: p-Bromofluorobenzene	104 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.1 %			72-137						
2037-26-5	Surrogate: Toluene-d8	96.3 %			85-118						

Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	02/24/2014 13:18	02/25/2014 01:56	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 10 of 89



<u>Client Sample ID:</u> RSB-10/17.5-19.5 <u>York Sample ID:</u> 14B0560-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 9:50 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilut	tion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
98-86-2	Acetophenone	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
120-12-7	Anthracene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
1912-24-9	Atrazine	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
56-55-3	Benzo(a)anthracene	88.2	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
50-32-8	Benzo(a)pyrene	114	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
205-99-2	Benzo(b)fluoranthene	71.2	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
207-08-9	Benzo(k)fluoranthene	88.5	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
105-60-2	Caprolactam	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
86-74-8	Carbazole	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
218-01-9	Chrysene	92.1	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	198	395	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 11 of 89



<u>Client Sample ID:</u> RSB-10/17.5-19.5 <u>York Sample ID:</u> 14B0560-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 9:50 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<b>Log-in Notes:</b>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	198	395	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
206-44-0	Fluoranthene	183	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
86-73-7	Fluorene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
193-39-5	Indeno(1,2,3-cd)pyrene	68.8	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
78-59-1	Isophorone	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
91-20-3	Naphthalene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
85-01-8	Phenanthrene	130	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
108-95-2	Phenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR
129-00-0	Pyrene	166	J	ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



Client Sample ID: RSB-10/17.5-19.5

York Sample ID:

14B0560-02

York Project (SDG) No. 14B0560 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> February 20, 2014 9:50 am <u>Date Received</u> 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	99.6	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR	
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR	
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.8	198	1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR	
	Surrogate Recoveries	Result		Acce	ptance Ra	ange						
367-12-4	Surrogate: 2-Fluorophenol	47.1 %			10-109							
4165-62-2	Surrogate: Phenol-d5	49.2 %			10-124							
4165-60-0	Surrogate: Nitrobenzene-d5	49.8 %			10-148							
321-60-8	Surrogate: 2-Fluorobiphenyl	59.4 %			10-111							
5175-83-7	Surrogate: 2,4,6-Tribromophenol	90.1 %			10-142							
1718-51-0	Surrogate: Terphenyl-d14	78.9 %			10-147							

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	methyl pentanmide isomer	474	J	ug/kg dry			1	EPA 8270D	02/24/2014 17:00	02/25/2014 12:56	SR

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	84.3		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

**Sample Information** 

<u>Client Sample ID:</u> RSB-11/7.5-9.5 <u>York Sample ID:</u> 14B0560-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 10:40 am
 02/21/2014

# Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	40		ug/kg dry	2.3	9.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
71-43-2	Benzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 13 of 89



**Client Sample ID:** RSB-11/7.5-9.5 **York Sample ID:** 14B0560-03

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14B0560 1575.00024 Soil February 20, 2014 10:40 am 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

108-87-2

Methylcyclohexane

3.9

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
78-93-3	2-Butanone	13		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
23-91-1	1,4-Dioxane	ND		ug/kg dry	46	93	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
91-78-6	2-Hexanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
9-20-9	Methyl acetate	3.2	J	ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS

ug/kg dry 2.3 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

4.6

EPA 8260C

Page 14 of 89

02/25/2014 02:30

02/24/2014 13:18

SS



<u>Client Sample ID:</u> RSB-11/7.5-9.5 <u>York Sample ID:</u> 14B0560-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 10:40 am
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	3.7	B, J	ug/kg dry	2.3	9.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
100-42-5	Styrene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
108-88-3	Toluene	10		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	1 ² ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.6	9.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.0	14	1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS
	Surrogate Recoveries	Result		Acce	ptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	111 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.2 %			72-137						
2037-26-5	Surrogate: Toluene-d8	101 %			85-118						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	02/24/2014 13:18	02/25/2014 02:30	SS

**Log-in Notes:** 

**Log-in Notes:** 

**Sample Notes:** 

**Sample Notes:** 

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
98-86-2	Acetophenone	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 15 of 89



<u>Client Sample ID:</u> RSB-11/7.5-9.5 <u>York Sample ID:</u> 14B0560-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 10:40 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

# <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
1912-24-9	Atrazine	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
105-60-2	Caprolactam	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
86-74-8	Carbazole	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
218-01-9	Chrysene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	190	380	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 16 of 89



<u>Client Sample ID:</u> RSB-11/7.5-9.5 <u>York Sample ID:</u> 14B0560-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 10:40 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u> <u>Sar</u>	nple Notes:
---------------------------------	-------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	190	380	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
117-81-7	Bis(2-ethylhexyl)phthalate	72.9	J	ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
206-44-0	Fluoranthene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
86-73-7	Fluorene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
78-59-1	Isophorone	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
91-20-3	Naphthalene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
85-01-8	Phenanthrene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
108-95-2	Phenol	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
129-00-0	Pyrene	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	95.7	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	47.9	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 17 of 89



**Client Sample ID:** RSB-11/7.5-9.5 **York Sample ID:** 

14B0560-03

York Project (SDG) No. 14B0560

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time February 20, 2014 10:40 am Date Received 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	47.9	190	1	EPA	8270D	02/24/2014 17:00	02/25/2014 13:31	SR
	Surrogate Recoveries	Result		Acce	ptance Ra	ange						
367-12-4	Surrogate: 2-Fluorophenol	58.1 %			10-109							
4165-62-2	Surrogate: Phenol-d5	60.6 %			10-124							
4165-60-0	Surrogate: Nitrobenzene-d5	63.7 %			10-148							
321-60-8	Surrogate: 2-Fluorobiphenyl	70.1 %			10-111							
5175-83-7	Surrogate: 2,4,6-Tribromophenol	102 %			10-142							
1718-51-0	Surrogate: Terphenyl-d14	86.1 %			10-147							

#### Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	Octadecenamide isomer	190	J	ug/kg dry			1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR
NA	nonylphenol isomer	190	J	ug/kg dry			1	EPA 8270D	02/24/2014 17:00	02/25/2014 13:31	SR

**Log-in Notes: Total Solids Sample Notes:** 

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Date/11me Analyzed	Analyst
solids	% Solids	87.7		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

#### **Sample Information**

RSB-11/17.5-19.5 **Client Sample ID:** York Sample ID: 14B0560-04

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14B0560 1575.00024 Soil February 20, 2014 11:00 am 02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	94		ug/kg dry	3.5	14	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
71-43-2	Benzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-25-2	Bromoform	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 18 of 89



<u>Client Sample ID:</u> RSB-11/17.5-19.5 <u>York Sample ID:</u> 14B0560-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 11:00 am02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

8260 - TCL/SOM Log-in Notes:

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilut	ion Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
74-83-9	Bromomethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
78-93-3	2-Butanone	15		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-00-3	Chloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
67-66-3	Chloroform	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
74-87-3	Chloromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
110-82-7	Cyclohexane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	70	140	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
591-78-6	2-Hexanone	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
79-20-9	Methyl acetate	17		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-09-2	Methylene chloride	5.0	B, J	ug/kg dry	3.5	14	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 19 of 89



Client Sample ID: RSB-11/17.5-19.5

<u>York Sample ID:</u> 14B0560-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 11:00 am02/21/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Samp	le Pr	epared	by	Method:	EPA	5035A

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
100-42-5	Styrene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
108-88-3	Toluene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
95-47-6	o-Xylene	ND		ug/kg dry	3.5	7.0	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	7.0	14	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	10	21	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS
	Surrogate Recoveries	Result		Acce	ptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	99.7 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	104 %			72-137						
2037-26-5	Surrogate: Toluene-d8	95.9 %			85-118						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:04	SS

# Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
98-86-2	Acetophenone	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
120-12-7	Anthracene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 20 of 89



<u>Client Sample ID:</u> RSB-11/17.5-19.5 <u>York Sample ID:</u> 14B0560-04

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 11:00 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1912-24-9	Atrazine	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
105-60-2	Caprolactam	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
86-74-8	Carbazole	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
218-01-9	Chrysene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	195	389	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
23.32.											

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 21 of 89



<u>Client Sample ID:</u> RSB-11/17.5-19.5 <u>York Sample ID:</u> 14B0560-04

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 11:00 am
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
206-44-0	Fluoranthene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
86-73-7	Fluorene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
78-59-1	Isophorone	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
91-20-3	Naphthalene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
85-01-8	Phenanthrene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
108-95-2	Phenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
129-00-0	Pyrene	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	98.2	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.1	195	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:04	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



**Client Sample ID:** RSB-11/17.5-19.5 **York Sample ID:** 14B0560-04

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 14B0560 1575.00024 Soil February 20, 2014 11:00 am 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Surrogate Recoveries	Result		Acco	eptance Ra	inge					
367-12-4	Surrogate: 2-Fluorophenol	48.7 %			10-109						
4165-62-2	Surrogate: Phenol-d5	50.2 %			10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	48.5 %			10-148						
321-60-8	Surrogate: 2-Fluorobiphenyl	54.9 %			10-111						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	86.9 %			10-142						
1718-51-0	Surrogate: Terphenyl-d14	82.2 %			10-147						

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Date/Time Reference Method CAS No. Parameter Flag Units Dilution Prepared 02/25/2014 14:04 SR 662 EPA 8270D 02/24/2014 17:00 NA Octadecenamide isomer ug/kg dry

**Log-in Notes: Sample Notes: Total Solids** 

Sample Prepared by Method: % Solids Prep

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	85.5		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

**Sample Information** 

RSB-1/10-12 **Client Sample ID: York Sample ID:** 14B0560-05

York Project (SDG) No. Client Project ID Collection Date/Time Matrix Date Received 14B0560 1575.00024 Soil February 20, 2014 1:40 pm 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	10	J	ug/kg dry	2.6	11	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
71-43-2	Benzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-25-2	Bromoform	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 23 of 89



Client Sample ID: York Sample ID: 14B0560-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:40 pm
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Diluti	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-15-0	Carbon disulfide	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
67-66-3	Chloroform	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	53	110	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-09-2	Methylene chloride	3.6	J, B	ug/kg dry	2.6	11	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 24 of 89



<u>Client Sample ID:</u> RSB-1/10-12 <u>York Sample ID:</u> 14B0560-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 1:40 pm02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-42-5	Styrene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
108-88-3	Toluene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
37-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.6	5.3	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.3	11	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.9	16	1	EPA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
160-00-4	Surrogate: p-Bromofluorobenzene	105 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	98.2 %			72-137						
2037-26-5	Surrogate: Toluene-d8	97.4 %			85-118						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Prepared	Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1 E	PA 8260C	02/24/2014 13:18	02/25/2014 03:38	SS

## Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
98-86-2	Acetophenone	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
120-12-7	Anthracene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
1912-24-9	Atrazine	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR



Client Sample ID: York Sample ID: 14B0560-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:40 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes: S	ample I	Notes:
-----------------	---------	--------

100-52-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 85-68-7 92-52-4	Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	ND 48.4 58.6 ND ND ND ND ND ND ND ND	1 1 1	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	48.0 48.0 48.0 48.0 96.0	190 190 190 190 190	1 1 1 1	EPA 8270D EPA 8270D EPA 8270D EPA 8270D EPA 8270D	02/24/2014 17:00 02/24/2014 17:00 02/24/2014 17:00 02/24/2014 17:00 02/24/2014 17:00	02/25/2014 14:39 02/25/2014 14:39 02/25/2014 14:39 02/25/2014 14:39 02/25/2014 14:39	SR SR SR SR
50-32-8 205-99-2 191-24-2 207-08-9 85-68-7 92-52-4	Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	58.6 ND ND 49.9 ND	J	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	48.0 48.0 96.0 48.0	190 190 190	1 1 1	EPA 8270D EPA 8270D	02/24/2014 17:00 02/24/2014 17:00	02/25/2014 14:39 02/25/2014 14:39	SR SR
205-99-2 191-24-2 207-08-9 85-68-7 92-52-4	Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	ND ND 49.9 ND ND	•	ug/kg dry ug/kg dry ug/kg dry	48.0 96.0 48.0	190 190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
191-24-2 207-08-9 85-68-7 92-52-4	Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	ND 49.9 ND ND	J	ug/kg dry ug/kg dry	96.0 48.0	190	1				
207-08-9 85-68-7 92-52-4	Benzo(k)fluoranthene Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	<b>49.9</b> ND ND	J	ug/kg dry	48.0			EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
85-68-7 92-52-4	Benzyl butyl phthalate 1,1'-Biphenyl 4-Bromophenyl phenyl ether	ND ND	J			190					JIX
92-52-4	1,1'-Biphenyl 4-Bromophenyl phenyl ether	ND		ug/kg dry			1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
	4-Bromophenyl phenyl ether				48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
101-55-3		ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
		ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
105-60-2	Caprolactam	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
86-74-8	Carbazole	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
218-01-9	Chrysene	52.2	J	ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	191	380	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	191	381	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry		190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR



<u>Client Sample ID:</u> RSB-1/10-12 <u>York Sample ID:</u> 14B0560-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:40 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<b>Log-in Notes:</b>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
206-44-0	Fluoranthene	104	J	ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
86-73-7	Fluorene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
78-59-1	Isophorone	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
91-20-3	Naphthalene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
85-01-8	Phenanthrene	59.0	J	ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
108-95-2	Phenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
129-00-0	Pyrene	93.3	J	ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	96.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	48.0	190	1	EPA 8270D	02/24/2014 17:00	02/25/2014 14:39	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	53.4 %			10-109						



RSB-1/10-12 **Client Sample ID:** York Sample ID: 14B0560-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 1575.00024 Soil February 20, 2014 1:40 pm 02/21/2014 14B0560

MDL

10-148

10-111

10-142

10-147

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

Dilution

**Sample Notes:** 

Date/Time Date/Time Reference Method Prepared Analyzed Analyst

Surrogate: Terphenyl-d14 Semi-Volatiles, Tentatively Identified Cmpds.

Surrogate: Nitrobenzene-d5

Surrogate: 2-Fluorobiphenyl

Surrogate: 2,4,6-Tribromophenol

Parameter

Sample Prepared by Method: EPA 3550C

CAS No.

4165-60-0

321-60-8 5175-83-7

1718-51-0

**Log-in Notes:** 

**Sample Notes:** 

**Sample Notes:** 

EPA 8260C

EPA 8260C

EPA 8260C

Date/Time Date/Time

CAS No. Units MDL Dilution Reference Method Analyzed Analyst Parameter Result Flag Prepared 381 EPA 8270D 02/24/2014 17:00 02/25/2014 14:39 methyl Butanamide isomer ug/kg dry NA

**Total Solids Log-in Notes: Sample Notes:** 

Flag

Units

Result

60.6 %

68.9 %

75.7 %

83.4 %

ND

ND

ND

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	87.5		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

**Sample Information** 

**Client Sample ID:** RSB-1/20-22 **York Sample ID:** 14B0560-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 1575.00024 02/21/2014 14B0560 Soil February 20, 2014 1:50 pm

**Log-in Notes:** 

5.7

5.7

5.7

1

Volatile Organics, 8260 - TCL/SOM

2-Butanone

Carbon disulfide

Carbon tetrachloride

Sample Prepared by Method: EPA 5035A

78-93-3

75-15-0

56-23-5

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Prepared	Analyzed	Analyst
67-64-1	Acetone	7.3	J	ug/kg dry	2.8	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
71-43-2	Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

ug/kg dry 2.8

2.8

ug/kg dry

ug/kg dry

Page 28 of 89

SS

SS

SS

Doto/Time

02/24/2014 15:05

02/24/2014 15:05

02/24/2014 15:05

Data/Time

02/24/2014 08:23

02/24/2014 08:23

02/24/2014 08:23



<u>Client Sample ID:</u> RSB-1/20-22 <u>York Sample ID:</u> 14B0560-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:50 pm
 02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Not
--------------------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	57	110	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-09-2	Methylene chloride	3.1	J, B	ug/kg dry	2.8	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
100-42-5	Styrene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS



Client Sample ID: RSB-1/20-22 York Sample ID: 14B0560-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 1:50 pm02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### **Log-in Notes:**

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
108-88-3	Toluene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.7	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.7	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:05	SS
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	102 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			72-137						
2037-26-5	Surrogate: Toluene-d8	98.2 %			85-118						

#### Volatile Organics, Tentatively Identified Cmpds.

Benzaldehyde

Benzo(a)anthracene

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Log-in Notes:** 

197

197

**Sample Notes:** 

**Sample Notes:** 

EPA 8270D

EPA 8270D

Date/Time

02/24/2014 18:00

02/24/2014 18:00

	CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
_		Tentatively Identified Compounds	0.0		ug/kg dry			1	EPA 8260C	02/24/2014 08:58	02/24/2014 15:05	SS

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

100-52-7

56-55-3

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
98-86-2	Acetophenone	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
120-12-7	Anthracene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
1912-24-9	Atrazine	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

ug/kg dry 49.6

ug/kg dry 49.6

ND

ND

(203) 33<u>7-0100</u>

Page 30 of 89

SR

SR

Date/Time

02/25/2014 15:13

02/25/2014 15:13



<u>Client Sample ID:</u> RSB-1/20-22 <u>York Sample ID:</u> 14B0560-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:50 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes: Sample Not
--------------------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
105-60-2	Caprolactam	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
86-74-8	Carbazole	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
218-01-9	Chrysene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	197	394	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	197	394	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR



<u>Client Sample ID:</u> RSB-1/20-22 <u>York Sample ID:</u> 14B0560-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 1:50 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
206-44-0	Fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
86-73-7	Fluorene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
78-59-1	Isophorone	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
91-20-3	Naphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
85-01-8	Phenanthrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
108-95-2	Phenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
129-00-0	Pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	99.3	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 15:13	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	61.9 %			10-109						
4165-62-2	Surrogate: Phenol-d5	63.7 %			10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	63.0 %			10-148						



RSB-1/20-22 **Client Sample ID:** York Sample ID: 14B0560-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 1575.00024 Soil February 20, 2014 1:50 pm 02/21/2014 14B0560

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

321-60-8

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Date/Time CAS No. Parameter Result Flag Units MDL Dilution Reference Method Prepared Analyzed Analyst 10-111

94.5 % 10-142 Surrogate: 2,4,6-Tribromophenol 5175-83-7 1718-51-0 Surrogate: Terphenyl-d14 81.9 % 10-147

68.1 %

Semi-Volatiles, Tentatively Identified Cmpds.

Surrogate: 2-Fluorobiphenyl

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

Date/Time Date/Time CAS No. Parameter Result Flag Units MDL RI Dilution Reference Method Analyzed Analyst Prepared 749 EPA 8270D 02/24/2014 18:00 02/25/2014 15:13 SR NA Octadcenamide isomer ug/kg dry

**Log-in Notes:** Sample Notes: **Total Solids** 

Sample Prepared by Method: % Solids Prep

Date/Time Date/Time CAS No. Result Flag Units MDL RL Dilution Reference Method Analyzed Analyst Parameter Prepared 02/25/2014 11:47 % 0.100 SM 2540G 02/26/2014 11:07 KK 0.100 solids % Solids 84.6

**Sample Information** 

Client Sample ID: **DUP022014 York Sample ID:** 14B0560-07

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14B0560 1575.00024 Soil February 20, 2014 12:00 pm 02/21/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Me	thod: EPA 5035A										
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	35		ug/kg dry	2.8	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
71-43-2	Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-25-2	Bromoform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
78-93-3	2-Butanone	9.2		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 33 of 89



Client Sample ID: DUP022014 York Sample ID: 14B0560-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 12:00 pm
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-in Notes: Sample Not
--------------------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-00-3	Chloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
67-66-3	Chloroform	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	56	110	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-09-2	Methylene chloride	6.5	B, J	ug/kg dry	2.8	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
100-42-5	Styrene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
127-18-4		ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 34 of 89



Client Sample ID: DUP022014 York Sample ID: 14B0560-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 12:00 pm02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### Log-in Notes:

#### **Sample Notes:**

**Sample Notes:** 

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freor	113ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.8	5.6	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.6	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.5	17	1	EPA 8260C	02/24/2014 08:23	02/24/2014 15:40	SS
	Surrogate Recoveries	Result		Acce	ptance Ra	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	110 %			72-138						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	94.7 %			72-137						
2037-26-5	Surrogate: Toluene-d8	99.8 %			85-118						

## Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1 E	PA 8260C	02/24/2014 08:58	02/24/2014 15:40	SS

**Log-in Notes:** 

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

#### **Log-in Notes:** Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
98-86-2	Acetophenone	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
120-12-7	Anthracene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
1912-24-9	Atrazine	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR



Client Sample ID: DUP022014 York Sample ID: 14B0560-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 12:00 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes
Log-in Notes:	Sample Note

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
105-60-2	Caprolactam	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
86-74-8	Carbazole	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
218-01-9	Chrysene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	189	377	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	189	377	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
117-81-7	Bis(2-ethylhexyl)phthalate	81.5	J	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 36 of 89



Client Sample ID: DUP022014 York Sample ID: 14B0560-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 12:00 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<b>Log-in Notes:</b>	Sample Notes:
----------------------	---------------

206-44-0 86-73-7 118-74-1 87-68-3 77-47-4 67-72-1 193-39-5 78-59-1	Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	47.5 47.5 47.5 47.5	189 189 189	1	EPA 8270D EPA 8270D	02/24/2014 18:00 02/24/2014 18:00	02/25/2014 16:22 02/25/2014 16:22	SR SR
118-74-1 87-68-3 77-47-4 67-72-1 193-39-5	Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane	ND ND ND	ug/kg dry ug/kg dry	47.5			EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
87-68-3 77-47-4 67-72-1 193-39-5	Hexachlorobutadiene  Hexachlorocyclopentadiene  Hexachloroethane	ND ND	ug/kg dry		189					
77-47-4 67-72-1 193-39-5	Hexachlorocyclopentadiene Hexachloroethane	ND		47.5		1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
67-72-1 193-39-5	Hexachloroethane		ng/kg dev		189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
193-39-5		ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
	Indeno(1,2,3-cd)pyrene		ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
78-59-1	***	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
	Isophorone	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
91-57-6	2-Methylnaphthalene	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
95-48-7	2-Methylphenol	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
65794-96-9	3- & 4-Methylphenols	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
91-20-3	Naphthalene	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
100-01-6	4-Nitroaniline	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
88-74-4		ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
	2-Nitroaniline	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
99-09-2	3-Nitroaniline				189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
98-95-3	Nitrobenzene	ND	ug/kg dry	47.5						
88-75-5	2-Nitrophenol	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
100-02-7	4-Nitrophenol	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
621-64-7	N-nitroso-di-n-propylamine	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
86-30-6	N-Nitrosodiphenylamine	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
87-86-5	Pentachlorophenol	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
85-01-8	Phenanthrene	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
108-95-2	Phenol	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
129-00-0	Pyrene	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	ug/kg dry	95.0	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
88-06-2	2,4,6-Trichlorophenol	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
95-95-4	2,4,5-Trichlorophenol	ND	ug/kg dry	47.5	189	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:22	SR
	Surrogate Recoveries	Result	Acce	ptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	60.6 %		10-109	-					
	Surrogate: Phenol-d5	63.9 %		10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	65.5 %		10-148						
321-60-8	Surrogate: 2-Fluorobiphenyl	71.5 %		10-111						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	105 %		10-142						



**Client Sample ID: DUP022014** York Sample ID: 14B0560-07

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received

14B0560 1575.00024 Soil February 20, 2014 12:00 pm 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes: Sample Notes:** 

Date/Time Date/Time Reference Method CAS No. Parameter Result Flag Units MDL Dilution Prepared Analyzed Analyst

10-147 1718-51-0 Surrogate: Terphenyl-d14 89.0 %

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes: Sample Notes:** 

Sample Prepared by Method: EPA 3550C

Date/Time Date/Time CAS No. Flag Units Dilution Analyzed Parameter Result MDL RL Reference Method Prepared Analyst SR 151 ug/kg dry EPA 8270D 02/24/2014 18:00 02/25/2014 16:22 NA nonyl phenol isomer EPA 8270D 02/24/2014 18:00 02/25/2014 16:22 SR 415 ug/kg dry NA Octadecenamide isomer

**Log-in Notes: Sample Notes: Total Solids** 

Sample Prepared by Method: % Solids Prep

	CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
s	olids	% Solids	88.4		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

**Sample Information** 

**Client Sample ID:** FB022014 **York Sample ID:** 14B0560-08

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 1575.00024 February 20, 2014 1:00 pm 02/21/2014 14B0560 Water

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes: Sample Notes:** 

ed by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	8.8	J	ug/L	2.5	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
78-93-3	2-Butanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-15-0	Carbon disulfide	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 38 of 89



Client Sample ID: FB022014 York Sample ID: 14B0560-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Water
 February 20, 2014 1:00 pm
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
110-82-7	Cyclohexane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
123-91-1	1,4-Dioxane	ND		ug/L	50	100	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
591-78-6	2-Hexanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
98-82-8	Isopropylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
79-20-9	Methyl acetate	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
108-87-2	Methylcyclohexane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-09-2	Methylene chloride	4.2	CCV-E, J, B	ug/L	2.5	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 39 of 89



Client Sample ID: FB022014 York Sample ID: 14B0560-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024WaterFebruary 20, 2014 1:00 pm02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	5.0	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
1330-20-7	Xylenes, Total	ND		ug/L	7.5	15	1	EPA 8260C	02/25/2014 11:49	02/25/2014 20:56	SS
	Surrogate Recoveries	Result		Acceptance Range		ange					
460-00-4	Surrogate: p-Bromofluorobenzene	94.6 %			87-112						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	110 %			78-122						

Volatile Organics, Tentatively Identified Cmpds.

Surrogate: Toluene-d8

102 %

Sample Prepared by Method: EPA 5030B

2037-26-5

#### **Sample Notes:**

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/L			1	EPA 8260C	02/25/2014 11:51	02/25/2014 20:56	SS

91-110

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3510C

#### <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Me	ethod: EPA 3510C										
CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
208-96-8	Acenaphthylene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
98-86-2	Acetophenone	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
120-12-7	Anthracene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
1912-24-9	Atrazine	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
100-52-7	Benzaldehyde	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
56-55-3	Benzo(a)anthracene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
50-32-8	Benzo(a)pyrene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 40 of 89



Client Sample ID: FB022014 York Sample ID: 14B0560-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Water
 February 20, 2014 1:00 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

191-24-2 207-08-9 85-68-7	Benzo(g,h,i)perylene	ND				Dilution	Reference Method			Analyst
		ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
05 60 7	Benzo(k)fluoranthene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
03-00-7	Benzyl butyl phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
92-52-4	1,1'-Biphenyl	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
101-55-3	4-Bromophenyl phenyl ether	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
105-60-2	Caprolactam	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
86-74-8	Carbazole	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
59-50-7	4-Chloro-3-methylphenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
106-47-8	4-Chloroaniline	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
111-91-1	Bis(2-chloroethoxy)methane	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
111-44-4	Bis(2-chloroethyl)ether	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
91-58-7	2-Chloronaphthalene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
95-57-8	2-Chlorophenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
218-01-9	Chrysene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
132-64-9	Dibenzofuran	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
84-74-2	Di-n-butyl phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
91-94-1	3,3'-Dichlorobenzidine	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
120-83-2	2,4-Dichlorophenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
84-66-2	Diethyl phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
105-67-9	2,4-Dimethylphenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
131-11-3	Dimethyl phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
51-28-5	2,4-Dinitrophenol	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
121-14-2	2,4-Dinitrotoluene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
606-20-2	2,6-Dinitrotoluene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
117-84-0	Di-n-octyl phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
206-44-0	Fluoranthene	ND	ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 41 of 89



Client Sample ID: FB022014 York Sample ID: 14B0560-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Water
 February 20, 2014 1:00 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
118-74-1	Hexachlorobenzene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
87-68-3	Hexachlorobutadiene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
67-72-1	Hexachloroethane	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
78-59-1	Isophorone	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
91-57-6	2-Methylnaphthalene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
95-48-7	2-Methylphenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
91-20-3	Naphthalene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
	•	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
99-09-2	3-Nitroaniline	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
100-01-6	4-Nitroaniline							EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
88-74-4	2-Nitroaniline	ND		ug/L	3.57	7.14	1				
98-95-3	Nitrobenzene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
100-02-7	4-Nitrophenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
88-75-5	2-Nitrophenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
87-86-5	Pentachlorophenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
85-01-8	Phenanthrene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
108-95-2	Phenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
129-00-0	Pyrene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/L	3.57	7.14	1	EPA 8270D	02/26/2014 10:00	02/27/2014 15:48	SR
	Surrogate Recoveries	Result		Acc	eptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	26.0 %			10-52	Ü					
4165-62-2	Surrogate: Phenol-d5	15.8 %			10-117						
4165-60-0	Surrogate: Nitrobenzene-d5	58.7 %			12-112						
321-60-8	Surrogate: 2-Fluorobiphenyl	60.8 %			14-101						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	87.1 %			17-127						
1718-51-0	Surrogate: Terphenyl-d14	84.0 %			10-151						



Client Sample ID: FB022014 York Sample ID: 14B0560-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024WaterFebruary 20, 2014 1:00 pm02/21/2014

Semi-Volatiles, Tentatively Identified Cmpds.

Log-in Notes:

**Sample Notes:** 

Sample Prepared by Method: EPA 3510C

Date/Time Analyzed Date/Time CAS No. Parameter Result Flag Units MDL RL Dilution Reference Method Prepared Analyst ND ug/L EPA 8270D 02/26/2014 10:00 02/27/2014 15:48 Tentatively Identified Compounds

**Sample Information** 

<u>Client Sample ID:</u> RSB-3/8-10 <u>York Sample ID:</u> 14B0560-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 3:40 pm02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	42		ug/kg dry	2.7	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
71-43-2	Benzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-25-2	Bromoform	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
78-93-3	2-Butanone	7.0		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
67-66-3	Chloroform	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 43 of 89



 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 3:40 pm
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Log-in Notes:	Sample Notes
Log-in Notes:	Sample Note

CAS N	o. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	53	110	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-09-2	Methylene chloride	3.1	B, J	ug/kg dry	2.7	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
100-42-5	Styrene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
108-88-3	Toluene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.7	5.3	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS
		ND		ug/kg dry		11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:14	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 44 of 89



**Client Sample ID:** RSB-3/8-10 **York Sample ID:** 14B0560-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 1575.00024 14B0560 Soil February 20, 2014 3:40 pm 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilut	tion	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.0	16	1	EPA	8260C	02/24/2014 08:23	02/24/2014 16:14	SS
	Surrogate Recoveries	Result	Acceptance Range									
460-00-4	Surrogate: p-Bromofluorobenzene	119 %			72-138							
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	101 %			72-137							
2037-26-5	Surrogate: Toluene-d8	111 %			85-118							

Volatile Organics, Tentatively Identified Cmpds.

Parameter

Tentatively Identified Compounds

Result

Flag Units

ug/kg dry

Sample Prepared by Method: EPA 5035A

CAS No.

**Log-in Notes:** 

MDL RL

**Sample Notes:** 

Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

EPA 8260C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
98-86-2	Acetophenone	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
120-12-7	Anthracene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
1912-24-9	Atrazine	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
105-60-2	Caprolactam	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
86-74-8	Carbazole	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 45 of 89



 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Soil
 February 20, 2014 3:40 pm
 02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
218-01-9	Chrysene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	198	395	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	198	395	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
206-44-0	Fluoranthene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
86-73-7	Fluorene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
78-59-1	Isophorone	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR



Client Sample ID: RSB-3/8-10 York Sample ID: 14B0560-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 3:40 pm02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-20-3	Naphthalene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
	•	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
100-02-7	4-Nitrophenol										
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
85-01-8	Phenanthrene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
108-95-2	Phenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
129-00-0	Pyrene	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	99.5	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.8	197	1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	61.9 %			10-109						
4165-62-2	Surrogate: Phenol-d5	64.0 %			10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	67.2 %			10-148						
321-60-8	Surrogate: 2-Fluorobiphenyl	71.8 %			10-111						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	98.7 %			10-142						
1718-51-0	Surrogate: Terphenyl-d14	87.4 %			10-147						

#### Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	Octadecenamide isomer	908	J	ug/kg dry			1	EPA 8270D	02/24/2014 18:00	02/25/2014 16:57	SR

**Log-in Notes:** 

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	84.4		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK



<u>Client Sample ID:</u> RSB-3/18-20 <u>York Sample ID:</u> 14B0560-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 4:00 pm02/21/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

Sample Notes:

Sample Prepared by Method: EPA 5035A	L
	_

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	16		ug/kg dry	2.7	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
71-43-2	Benzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-25-2	Bromoform	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
67-66-3	Chloroform	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	54	110	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 48 of 89



<u>Client Sample ID:</u> RSB-3/18-20 <u>York Sample ID:</u> 14B0560-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 4:00 pm02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### **Log-in Notes:**

#### **Sample Notes:**

CAS No	. Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-09-2	Methylene chloride	5.0	J, B	ug/kg dry	2.7	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
100-42-5	Styrene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
108-88-3	Toluene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon	113ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.7	5.4	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.4	11	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	8.1	16	1	EPA 8260C	02/24/2014 08:23	02/24/2014 16:49	SS
	Surrogate Recoveries	Result		Acce	eptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	103 %			72-138	Ü					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			72-137						
2037-26-5	Surrogate: Toluene-d8	97.4 %			85-118						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/kg dry			1 I	EPA 8260C	02/24/2014 08:58	02/24/2014 16:49	SS



<u>Client Sample ID:</u> RSB-3/18-20 <u>York Sample ID:</u> 14B0560-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 4:00 pm02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** Sample Notes:

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
98-86-2	Acetophenone	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
120-12-7	Anthracene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
1912-24-9	Atrazine	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
56-55-3	Benzo(a)anthracene	232	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
50-32-8	Benzo(a)pyrene	270	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
205-99-2	Benzo(b)fluoranthene	233	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
207-08-9	Benzo(k)fluoranthene	254	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
105-60-2	Caprolactam	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
86-74-8	Carbazole	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
218-01-9	Chrysene	247	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	396	789	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
	, - p										

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 50 of 89



<u>Client Sample ID:</u> RSB-3/18-20 <u>York Sample ID:</u> 14B0560-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 4:00 pm02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes: Sample Not
--------------------------

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	396	790	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
206-44-0	Fluoranthene	500		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
86-73-7	Fluorene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
193-39-5	Indeno(1,2,3-cd)pyrene	101	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
78-59-1	Isophorone	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
91-20-3	Naphthalene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
85-01-8	Phenanthrene	350	J	ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
108-95-2	Phenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
129-00-0	Pyrene	422		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR



<u>Client Sample ID:</u> RSB-3/18-20 <u>York Sample ID:</u> 14B0560-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024SoilFebruary 20, 2014 4:00 pm02/21/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Date/Time

Date/Time

Sample Prepared by Method: F	EPA 3550C
CAS No	Danama

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Prepared	Analyzed	Analyst
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	199	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	99.6	395	2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR
	Surrogate Recoveries	Result		Acce	ptance R	ange					
367-12-4	Surrogate: 2-Fluorophenol	40.0 %			10-109						
4165-62-2	Surrogate: Phenol-d5	51.3 %			10-124						
4165-60-0	Surrogate: Nitrobenzene-d5	51.9 %			10-148						
321-60-8	Surrogate: 2-Fluorobiphenyl	63.7 %			10-111						
5175-83-7	Surrogate: 2,4,6-Tribromophenol	40.4 %			10-142						
1718-51-0	Surrogate: Terphenyl-d14	83.7 %			10-147						

#### Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

Log-in Notes:

**Sample Notes:** 

_	CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	Λ	Octecenamide isomer	0.00	J	ug/kg dry			2	EPA 8270D	02/24/2014 18:00	02/25/2014 17:31	SR

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids	% Solids	84.4		%	0.100	0.100	1	SM 2540G	02/25/2014 11:47	02/26/2014 11:07	KK

#### **Sample Information**

Client Sample ID: TripBlank York Sample ID: 14B0560-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024WaterFebruary 20, 2014 12:00 am02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5030B

<u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	on Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	4.8	J	ug/L	2.5	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
71-43-2	Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
74-97-5	Bromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-27-4	Bromodichloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 52 of 89



Client Sample ID: TripBlank York Sample ID: 14B0560-11

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14B0560
 1575.00024
 Water
 February 20, 2014 12:00 am
 02/21/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5030B

Log-in Notes:	Sample Notes
Log-in Notes:	Sample Note

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-25-2	Bromoform	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
74-83-9	Bromomethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
78-93-3	2-Butanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-15-0	Carbon disulfide	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
56-23-5	Carbon tetrachloride	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
108-90-7	Chlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-00-3	Chloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
67-66-3	Chloroform	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
74-87-3	Chloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
110-82-7	Cyclohexane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
124-48-1	Dibromochloromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
123-91-1	1,4-Dioxane	ND		ug/L	50	100	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
100-41-4	Ethyl Benzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
591-78-6	2-Hexanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
98-82-8	Isopropylbenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
79-20-9	Methyl acetate	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 53 of 89



**Client Sample ID:** TripBlank **York Sample ID:** 14B0560-11

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14B0560 1575.00024 Water February 20, 2014 12:00 am 02/21/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5030B

#### **Log-in Notes: Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-87-2	Methylcyclohexane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-09-2	Methylene chloride	4.0	CCV-E, J, B	ug/L	2.5	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
100-42-5	Styrene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
127-18-4	Tetrachloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
108-88-3	Toluene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
79-01-6	Trichloroethylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
76-13-1	,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1	13ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
75-01-4	Vinyl Chloride	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
95-47-6	o-Xylene	ND		ug/L	2.5	5.0	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	5.0	10	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
1330-20-7	Xylenes, Total	ND		ug/L	7.5	15	1	EPA 8260C	02/25/2014 11:49	02/25/2014 21:31	SS
	Surrogate Recoveries	Result		Acc	eptance R	ange					
460-00-4	Surrogate: p-Bromofluorobenzene	94.6 %			87-112						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	109 %			78-122						
2037-26-5	Surrogate: Toluene-d8	96.4 %			91-110						

## Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	MDL	RL	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0		ug/L	·		1	EPA 8260C	02/25/2014 11:51	02/25/2014 21:31	SS

**Log-in Notes:** 

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

FAX (203) 35<u>7-0166</u>

**Sample Notes:** 



Client Sample ID: MW-4S York Sample ID: 14B0560-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024OilFebruary 20, 2014 3:15 pm02/21/2014

Petroleum Identification

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: Oil Preparation for GC

Date/Time Date/Time CAS No. Parameter Result Units Reference Method Prepared Analyzed ID only EPA 8015D 02/26/2014 12:56 02/27/2014 09:52 JW Pattern is Petroleum Identification similar to Motor Oil

**Sample Information** 

Client Sample ID: Lift-1 York Sample ID: 14B0560-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14B05601575.00024OilFebruary 20, 2014 3:10 pm02/21/2014

**Petroleum Identification** 

Sample Prepared by Method: Oil Preparation for GC

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Date/Time Parameter Result Units Dilution Reference Method Prepared Analyzed Analyst EPA 8015D 02/26/2014 12:56 02/27/2014 09:52 JW ID only Petroleum Identification Pattern is similar to

Motor Oil

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 55 of 89



# **Analytical Batch Summary**

<b>Batch ID:</b> BB40873	Preparation Method:	EPA 5035A	Prepared By:	BGS
YORK Sample ID	Client Sample ID	Preparation Date		
14B0560-06	RSB-1/20-22	02/24/14		
14B0560-07	DUP022014	02/24/14		
14B0560-09	RSB-3/8-10	02/24/14		
14B0560-10	RSB-3/18-20	02/24/14		
BB40873-BLK1	Blank	02/24/14		
BB40873-BS1	LCS	02/24/14		
BB40873-BSD1	LCS Dup	02/24/14		
Batch ID: BB40881	Preparation Method:	EPA 3550C	Prepared By:	SA
YORK Sample ID	Client Sample ID	Preparation Date		
14B0560-01	RSB-10/7.5-9.5	02/24/14		
14B0560-02	RSB-10/17.5-19.5	02/24/14		
14B0560-03	RSB-11/7.5-9.5	02/24/14		
14B0560-04	RSB-11/17.5-19.5	02/24/14		
14B0560-05	RSB-1/10-12	02/24/14		
14B0560-06	RSB-1/20-22	02/24/14		
14B0560-07	DUP022014	02/24/14		
14B0560-09	RSB-3/8-10	02/24/14		
14B0560-10	RSB-3/18-20	02/24/14		
BB40881-BLK1	Blank	02/24/14		
BB40881-BS1	LCS	02/24/14		
BB40881-MS1	Matrix Spike	02/24/14		
BB40881-MSD1	Matrix Spike Dup	02/24/14		
Batch ID: BB40891	Preparation Method:	EPA 5035A	Prepared By:	BK
YORK Sample ID	Client Sample ID	Preparation Date		
14B0560-01	RSB-10/7.5-9.5	02/24/14		
14B0560-02	RSB-10/17.5-19.5	02/24/14		
14B0560-03	RSB-11/7.5-9.5	02/24/14		
14B0560-04	RSB-11/17.5-19.5	02/24/14		
14B0560-05	RSB-1/10-12	02/24/14		
BB40891-BLK1	Blank	02/24/14		
BB40891-BS1	LCS	02/24/14		
BB40891-BSD1	LCS Dup	02/24/14		
BB40891-MS1	Matrix Spike	02/24/14		
BB40891-MSD1	Matrix Spike Dup	02/24/14		
<b>Batch ID:</b> BB40892	Preparation Method:	EPA 5035A	Prepared By:	ВК
YORK Sample ID	Client Sample ID	Preparation Date		
14B0560-01	RSB-10/7.5-9.5	02/24/14		
14B0560-02	RSB-10/17.5-19.5	02/24/14		
120 RESEARCH DRIVE STRATEORD CT 0661		(203) 325-1371	EAY (2	03) 357-0166

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 56 of 89



 14B0560-03
 RSB-11/7.5-9.5
 02/24/14

 14B0560-04
 RSB-11/17.5-19.5
 02/24/14

 14B0560-05
 RSB-1/10-12
 02/24/14

14B0560-05		RSB-1/10-12	02/24/14		
Batch ID: Bl	D: BB40912 Preparation Method:		EPA 5035A	Prepared By:	BGS
YORK Sample ID		Client Sample ID	Preparation Date		
14B0560-06		RSB-1/20-22	02/24/14		
14B0560-07		DUP022014	02/24/14		
14B0560-09		RSB-3/8-10	02/24/14		
14B0560-10		RSB-3/18-20	02/24/14		
Batch ID: Bl	B40928	Preparation Method:	% Solids Prep	Prepared By:	KK
YORK Sample I	ID	Client Sample ID	Preparation Date		
14B0560-01		RSB-10/7.5-9.5	02/25/14		
14B0560-02		RSB-10/17.5-19.5	02/25/14		
14B0560-03		RSB-11/7.5-9.5	02/25/14		
14B0560-04		RSB-11/17.5-19.5	02/25/14		
14B0560-05		RSB-1/10-12	02/25/14		
14B0560-06		RSB-1/20-22	02/25/14		
14B0560-07		DUP022014	02/25/14		
14B0560-09		RSB-3/8-10	02/25/14		
14B0560-10		RSB-3/18-20	02/25/14		
Batch ID: Bl	B40946	Preparation Method:	EPA 5030B	Prepared By:	BGS
YORK Sample 1	ID	Client Sample ID	Preparation Date		
14B0560-08		FB022014	02/25/14		
14B0560-11		TripBlank	02/25/14		
BB40946-BLK1	1	Blank	02/25/14		
BB40946-BS1		LCS	02/25/14		
BB40946-BSD1	l	LCS Dup	02/25/14		
BB40946-DUP1	1	Duplicate	02/25/14		
BB40946-MS1		Matrix Spike	02/25/14		
Batch ID: Bl	B40947	Preparation Method:	EPA 5030B	Prepared By:	BGS
YORK Sample I	ID	Client Sample ID	Preparation Date		
14B0560-08		FB022014	02/25/14		
14B0560-11		TripBlank	02/25/14		
Batch ID: Bl	B40969	Preparation Method:	EPA 3510C	Prepared By:	KAT
YORK Sample I	ID	Client Sample ID	Preparation Date		
14B0560-08		FB022014	02/26/14		
DD 40070 DT 171			00/06/14		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

02/26/14

02/26/14

BB40969-BLK1

BB40969-BLK2

Blank

Blank



BB40969-BS1 LCS 02/26/14

Batch ID:	BB40998	Preparation Method:	Oil Preparation for GC	Prepared By:	JW	
YORK Sam	ınle ID	Client Sample ID	Preparation Date			

14B0560-12 MW-4S 02/26/14 14B0560-13 Lift-1 02/26/14

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 58 of 89



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40873 - EPA 5035A											
Blank (BB40873-BLK1)							Prep	ared & Analy	zed: 02/24/	2014	
Acetone	ND	10	ug/kg wet								
Benzene	ND	5.0	"								
Bromochloromethane	ND	5.0	"								
Bromodichloromethane	ND	5.0	"								
Bromoform	ND	5.0	"								
Bromomethane	ND	5.0	"								
2-Butanone	ND	5.0	"								
Carbon disulfide	ND	5.0	"								
Carbon tetrachloride	ND	5.0	"								
Chlorobenzene	ND	5.0	"								
Chloroethane	ND	5.0	"								
Chloroform	ND	5.0	"								
Chloromethane	ND	5.0	"								
Cyclohexane	ND	5.0	"								
1,2-Dibromo-3-chloropropane	ND	5.0	"								
Dibromochloromethane	ND	5.0	"								
1,2-Dibromoethane	ND	5.0	"								
1,2-Dichlorobenzene	ND	5.0	"								
1,3-Dichlorobenzene	ND	5.0	"								
1,4-Dichlorobenzene	ND	5.0	"								
Dichlorodifluoromethane	ND	5.0	"								
1,1-Dichloroethane	ND	5.0	"								
1,2-Dichloroethane	ND	5.0	"								
1,1-Dichloroethylene	ND	5.0	"								
trans-1,2-Dichloroethylene	ND	5.0	"								
cis-1,2-Dichloroethylene	ND	5.0	"								
1,2-Dichloropropane	ND	5.0	"								
trans-1,3-Dichloropropylene	ND	5.0	"								
cis-1,3-Dichloropropylene	ND	5.0	"								
1,4-Dioxane	ND	100	"								
Ethyl Benzene	ND	5.0	"								
2-Hexanone	ND	5.0	"								
Isopropylbenzene	ND	5.0	"								
Methyl acetate	ND	5.0	"								
Methyl tert-butyl ether (MTBE)	ND	5.0	"								
Methylcyclohexane	ND	5.0	"								
Methylene chloride	2.9	10	"								
4-Methyl-2-pentanone	ND	5.0	"								
Styrene	ND	5.0	"								
1,1,2,2-Tetrachloroethane	ND	5.0	"								
Tetrachloroethylene	ND	5.0	"								
Toluene	ND	5.0	"								
1,2,4-Trichlorobenzene	ND	5.0	"								
1,2,3-Trichlorobenzene	ND	5.0	"								
1,1,1-Trichloroethane	ND	5.0	"								
1,1,2-Trichloroethane	ND	5.0	"								
Trichloroethylene	ND	5.0	"								
Trichlorofluoromethane	ND	5.0	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"								
Vinyl Chloride	ND	5.0	"								
o-Xylene	ND	5.0	"								



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40873 - EPA 5035A											
Blank (BB40873-BLK1)							Prep	pared & Analy	zed: 02/24/	2014	
p- & m- Xylenes	ND	10	ug/kg wet								
Xylenes, Total	ND	15	"								
Surrogate: p-Bromofluorobenzene	53.6		ug/L	50.0		107	72-138				
Surrogate: 1,2-Dichloroethane-d4	51.1		ug/L "	50.0		102	72-137				
Surrogate: Toluene-d8	49.1		"	50.0		98.2	85-118				
LCS (BB40873-BS1)								pared & Analy	zed: 02/24/	2014	
Acetone	55		ug/L	50.0		111	26-119	-			
Benzene	49		ug/L	50.0		98.3	81-117				
Bromochloromethane	49		"	50.0		97.5	79-118				
Bromodichloromethane	52		"	50.0		104	88-123				
Bromoform	56		"	50.0		112	85-122				
Bromomethane	46		"	50.0		92.0	43-137				
2-Butanone	50		"	50.0		99.3	60-129				
Carbon disulfide	48		"	100		48.1	18-145				
Carbon tetrachloride	50		"	50.0		100	79-135				
Chlorobenzene	48		"	50.0		96.9	87-112				
Chloroethane	49		"	50.0		98.3	60-132				
Chloroform	49		"	50.0		97.5	80-126				
Chloromethane	48		"	50.0		96.5	36-133				
Cyclohexane	54		"	50.0		108	70-130				
1,2-Dibromo-3-chloropropane	56		"	50.0		112	72-131				
Dibromochloromethane	43		"	50.0		85.7	86-128	Low Bias			
1,2-Dibromoethane	51		"	50.0		101	86-114				
1,2-Dichlorobenzene	49		"	50.0		97.9	85-114				
1,3-Dichlorobenzene	51		"	50.0		102	84-114				
1,4-Dichlorobenzene	51		"	50.0		101	82-116				
Dichlorodifluoromethane	48		"	50.0		95.8	10-156				
1,1-Dichloroethane	50		"	50.0		99.3	80-119				
1,2-Dichloroethane	49		"	50.0		97.5	72-136				
1,1-Dichloroethylene	48		"	50.0		95.8	58-139				
trans-1,2-Dichloroethylene	49		"	50.0		98.7	68-131				
cis-1,2-Dichloroethylene	49		"	50.0		98.9	80-119				
1,2-Dichloropropane	51		"	50.0		101	79-119				
trans-1,3-Dichloropropylene	53		"	50.0		107	81-127				
cis-1,3-Dichloropropylene	52		"	50.0		104	87-125				
1,4-Dioxane	530		"	1000		53.0	10-208				
Ethyl Benzene	51		"	50.0		102	88-117				
2-Hexanone	54		"	50.0		108	58-129				
Isopropylbenzene Methyl acetate	51		"	50.0		102	84-116				
Methyl tert-butyl ether (MTBE)	45		"	50.0		90.4	75-184				
	49		"	50.0		98.1	58-137				
Methylcyclohexane Methylene chloride	52		"	50.0		104	70-130				
4-Methyl-2-pentanone	45 38		,,	50.0 50.0		90.4 76.6	47-140 46-121				
Styrene	50		"	50.0		76.6 99.4	46-121 85-119				
1,1,2,2-Tetrachloroethane	50 54		"	50.0			85-119 82-119				
Tetrachloroethylene	54 47		"	50.0		107 94.9	74-127				
Toluene	50		"	50.0		101	83-114				
1,2,4-Trichlorobenzene	54		"	50.0		107	69-135				
1,2,3-Trichlorobenzene	53		"	50.0		107	72-133				
1,1,1-Trichloroethane	50		"	50.0		99.6	76-135				
-,-,	50			50.0		77.0	70-133				



#### York Analytical Laboratories, Inc.

Spike

Source*

Reporting

A 1.		eporting	Spike	Source*	0/DEC	%REC	Elea	DDD	Limit	Elea
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40873 - EPA 5035A										
LCS (BB40873-BS1)						Prep	ared & Analy	zed: 02/24/2	2014	
1,1,2-Trichloroethane	51	ug/L	50.0		103	82-114				
Trichloroethylene	50	"	50.0		99.1	84-118				
Trichlorofluoromethane	48	"	50.0		96.2	59-148				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	50	"	50.0		101	68-144				
Vinyl Chloride	50	"	50.0		100	46-133				
o-Xylene	50	"	50.0		100	88-111				
p- & m- Xylenes	100	"	100		103	86-117				
Surrogate: p-Bromofluorobenzene	52.0	"	50.0		104	72-138				
Surrogate: 1,2-Dichloroethane-d4	50.4	"	50.0		101	72-137				
Surrogate: Toluene-d8	49.8	"	50.0		99.7	85-118				
LCS Dup (BB40873-BSD1)						Prep	ared & Analy	zed: 02/24/2	2014	
Acetone	42	ug/L	50.0		83.4	26-119		28.1	30	
Benzene	50	"	50.0		100	81-117		2.09	30	
Bromochloromethane	49	"	50.0		97.0	79-118		0.494	30	
Bromodichloromethane	52	"	50.0		103	88-123		0.503	30	
Bromoform	54	"	50.0		108	85-122		4.14	30	
Bromomethane	47	"	50.0		93.2	43-137		1.30	30	
2-Butanone	45	"	50.0		89.5	60-129		10.3	30	
Carbon disulfide	48	"	100		48.4	18-145		0.601	30	
Carbon tetrachloride	51	"	50.0		102	79-135		1.87	30	
Chlorobenzene	51	"	50.0		101	87-112		4.48	30	
Chloroethane	50	"	50.0		100	60-132		1.72	30	
Chloroform	49	"	50.0		97.1	80-126		0.391	30	
Chloromethane	49	"	50.0		98.6	36-133		2.19	30	
Cyclohexane	54	"	50.0		108	70-130		0.648	30	
1,2-Dibromo-3-chloropropane	52	"	50.0		105	72-131		6.57	30	
Dibromochloromethane	22	"	50.0		43.5	86-128	Low Bias	65.4	30	Non-dir.
1,2-Dibromoethane	50	"	50.0		101	86-114		0.575	30	
1,2-Dichlorobenzene	52	"	50.0		103	85-114		5.21	30	
1,3-Dichlorobenzene	50	"	50.0		101	84-114		1.52	30	
1,4-Dichlorobenzene	53	"	50.0		105	82-116		3.74	30	
Dichlorodifluoromethane	47	"	50.0		94.8	10-156		1.11	30	
1,1-Dichloroethane	49	"	50.0		98.7	80-119		0.626	30	
1,2-Dichloroethane	51	"	50.0		101	72-136		3.70	30	
1,1-Dichloroethylene	48	"	50.0		95.4	58-139		0.439	30	
trans-1,2-Dichloroethylene	49	"	50.0		98.4	68-131		0.223	30	
cis-1,2-Dichloroethylene	50	"	50.0		99.0	80-119		0.0808	30	
1,2-Dichloropropane	49	"	50.0		97.7	79-119		3.32	30	
trans-1,3-Dichloropropylene	53	"	50.0		107	81-127		0.0937	30	
cis-1,3-Dichloropropylene	51	"	50.0		103	87-125		1.57	30	
1,4-Dioxane	500	"	1000		50.2	10-208		5.53	30	
Ethyl Benzene	50	"	50.0		99.7	88-117		1.95	30	
2-Hexanone	51	"	50.0		103	58-129		4.45	30	
Isopropylbenzene	52	"	50.0		104	84-116		2.08	30	
Methyl acetate	47	"	50.0		94.7	75-184		4.69	30	
Methyl tert-butyl ether (MTBE)	49	"	50.0		97.2	58-137		0.860	30	
Methylcyclohexane	52	"	50.0		104	70-130		0.865	30	
Methylene chloride	47	"	50.0		94.0	47-140		3.88	30	
4-Methyl-2-pentanone	37	"	50.0		73.4	46-121		4.21	30	
Styrene	50	"	50.0		100	85-119		1.10	30	
1,1,2,2-Tetrachloroethane	52	"	50.0		104	82-119		3.35	30	
120 RESEARCH DRIVE	STRATFORD, CT (	06615		(203) 325-13	 R71		FAX (203)	357-0166		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 61 of 89

RPD

%REC



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40873 - EPA 5035A											
LCS Dup (BB40873-BSD1)							Prep	ared & Anal	yzed: 02/24/	2014	
Tetrachloroethylene	46		ug/L	50.0		92.5	74-127		2.52	30	
Toluene	51		"	50.0		101	83-114		0.396	30	
1,2,4-Trichlorobenzene	54		"	50.0		108	69-135		0.964	30	
1,2,3-Trichlorobenzene	57		"	50.0		113	72-133		5.73	30	
1,1,1-Trichloroethane	50		"	50.0		101	76-135		0.919	30	
1,1,2-Trichloroethane	50		"	50.0		100	82-114		2.47	30	
Trichloroethylene	49		"	50.0		97.5	84-118		1.63	30	
Trichlorofluoromethane	50		"	50.0		99.6	59-148		3.45	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	51		"	50.0		103	68-144		1.73	30	
Vinyl Chloride	49		"	50.0		98.4	46-133		1.75	30	
o-Xylene	50		"	50.0		100	88-111		0.00	30	
p- & m- Xylenes	100		"	100		102	86-117		1.58	30	
Surrogate: p-Bromofluorobenzene	51.7		"	50.0		103	72-138				
Surrogate: 1,2-Dichloroethane-d4	51.7		"	50.0		103	72-136 72-137				
_	49.8		"	50.0		99.5	85-118				
Surrogate: Toluene-d8	49.0			30.0		99.3	03-110				
Batch BB40891 - EPA 5035A											
Blank (BB40891-BLK1)							Prep	ared: 02/24/	2014 Analyz	red: 02/25/2	2014
Acetone	ND	10	ug/kg wet								
Benzene	ND	5.0	"								
Bromochloromethane	ND	5.0	"								
Bromodichloromethane	ND	5.0	"								
Bromoform	ND	5.0	"								
Bromomethane	ND	5.0	"								
2-Butanone	ND	5.0	"								
Carbon disulfide	ND	5.0	"								
Carbon tetrachloride	ND	5.0	"								
Chlorobenzene	ND	5.0	"								
Chloroethane	ND	5.0	"								
Chloroform	ND	5.0	"								
Chloromethane	ND	5.0	"								
Cyclohexane	ND	5.0	"								
1,2-Dibromo-3-chloropropane	ND	5.0	"								
Dibromochloromethane	ND	5.0	"								
1,2-Dibromoethane	ND	5.0	"								
1,2-Dichlorobenzene	ND	5.0	"								
1,3-Dichlorobenzene	ND	5.0	"								
1,4-Dichlorobenzene	ND	5.0	"								
Dichlorodifluoromethane	ND	5.0	"								
1,1-Dichloroethane	ND	5.0	"								
1,2-Dichloroethane	ND	5.0	"								
1,1-Dichloroethylene	ND	5.0	"								
trans-1,2-Dichloroethylene	ND ND	5.0	"								
cis-1,2-Dichloroethylene	ND ND	5.0	,,								
1,2-Dichloropropane	ND ND	5.0	,,								
1,2 Diemoropropane	ND	3.0									

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

5.0

5.0

100

5.0

5.0

5.0

ND

ND

ND

ND

ND

ND

trans-1,3-Dichloropropylene

cis-1,3-Dichloropropylene

1,4-Dioxane

2-Hexanone

Ethyl Benzene

Isopropylbenzene



#### York Analytical Laboratories, Inc.

Spike

Source*

%REC

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40891 - EPA 5035A											
Blank (BB40891-BLK1)							Prep	ared: 02/24/2	2014 Analyz	zed: 02/25/2	014
Methyl acetate	ND	5.0	ug/kg wet								
Methyl tert-butyl ether (MTBE)	ND	5.0	"								
Methylcyclohexane	ND	5.0	"								
Methylene chloride	2.7	10	"								
4-Methyl-2-pentanone	ND	5.0	"								
Styrene	ND	5.0	"								
1,1,2,2-Tetrachloroethane	ND	5.0	"								
Tetrachloroethylene	ND	5.0	"								
Toluene	ND	5.0	"								
1,2,4-Trichlorobenzene	ND	5.0	"								
1,2,3-Trichlorobenzene	ND	5.0	"								
1,1,1-Trichloroethane	ND	5.0	"								
1,1,2-Trichloroethane	ND	5.0	"								
Γrichloroethylene	ND	5.0	"								
Trichlorofluoromethane	ND	5.0	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"								
Vinyl Chloride	ND	5.0	"								
o-Xylene	ND	5.0	"								
p- & m- Xylenes	ND	10	"								
Xylenes, Total	ND	15	"								
Surrogate: p-Bromofluorobenzene	49.9		ug/L	50.0		99.9	72-138				
Surrogate: 1,2-Dichloroethane-d4	52.4		"	50.0		105	72-137				
Surrogate: Toluene-d8	50.5		"	50.0		101	85-118				
LCS (BB40891-BS1)							Prep	ared & Analy	yzed: 02/24/	/2014	
Acetone	48		ug/L	50.0		96.4	26-119				
Benzene	53		"	50.0		107	81-117				
Bromochloromethane	54		"	50.0		108	79-118				
Bromodichloromethane	53		"	50.0		106	88-123				
Bromoform	54		"	50.0		107	85-122				
Bromomethane	48		"	50.0		95.6	43-137				
2-Butanone	50		"	50.0		101	60-129				
Carbon disulfide	51		"	100		50.7	18-145				
Carbon tetrachloride	53		"	50.0		106	79-135				
Chlorobenzene	52		"	50.0		103	87-112				
Chloroethane	50		"	50.0		100	60-132				
Chloroform	51		"	50.0		103	80-126				

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

96.8

109

114

73.5

106

102

103

105

89.3

104

105

101

104

103

104

36-133

70-130

72-131

86-128

86-114

85-114

84-114

82-116

10-156

80-119

72-136

58-139

68-131

80-119

79-119

Low Bias

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

48

55

57

37

53

51

51

53

45

52

53

50

52

52

52

Chloromethane

1,2-Dibromo-3-chloropropane

Dibromochloromethane

1,2-Dibromoethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

trans-1,2-Dichloroethylene

cis-1,2-Dichloroethylene

Dichlorodifluoromethane

Cyclohexane

RPD



# $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

	DD 40004		
Ratch	RR40891	_ Б'РА	5035 A

LCS (BB40891-BS1)					Prepared & Analyzed: 02/24/2014
trans-1,3-Dichloropropylene	52	ug/L	50.0	105	81-127
cis-1,3-Dichloropropylene	52	"	50.0	104	87-125
1,4-Dioxane	660	"	1000	66.5	10-208
Ethyl Benzene	52	"	50.0	105	88-117
2-Hexanone	55	"	50.0	110	58-129
Isopropylbenzene	51	"	50.0	103	84-116
Methyl acetate	52	"	50.0	104	75-184
Methyl tert-butyl ether (MTBE)	54	"	50.0	107	58-137
Methylcyclohexane	53	"	50.0	107	70-130
Methylene chloride	49	"	50.0	98.9	47-140
4-Methyl-2-pentanone	53	"	50.0	106	46-121
Styrene	51	"	50.0	103	85-119
1,1,2,2-Tetrachloroethane	53	"	50.0	106	82-119
Tetrachloroethylene	50	"	50.0	100	74-127
Toluene	52	"	50.0	103	83-114
1,2,4-Trichlorobenzene	55	"	50.0	111	69-135
1,2,3-Trichlorobenzene	56	"	50.0	113	72-133
1,1,1-Trichloroethane	54	"	50.0	108	76-135
1,1,2-Trichloroethane	52	"	50.0	104	82-114
Trichloroethylene	51	"	50.0	101	84-118
Trichlorofluoromethane	52	"	50.0	104	59-148
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	53	"	50.0	106	68-144
Vinyl Chloride	51	"	50.0	101	46-133
o-Xylene	51	"	50.0	103	88-111
p- & m- Xylenes	110	"	100	106	86-117
Surrogate: p-Bromofluorobenzene	51.0	"	50.0	102	72-138
Surrogate: 1,2-Dichloroethane-d4	49.7	"	50.0	99.4	72-137
Surrogate: Toluene-d8	49.4	"	50.0	98.9	85-118



# $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Un	its Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40891 - EPA 5035A										
LCS Dup (BB40891-BSD1)						Pre	pared & Analy	zed: 02/24/	2014	
Acetone	45	ug	/L 50.0		90.1	26-119		6.80	30	
Benzene	53	1			106	81-117		0.319	30	
Bromochloromethane	53	,			106	79-118		2.51	30	
Bromodichloromethane	53	,			107	88-123		1.17	30	
Bromoform	57	,			114	85-122		6.05	30	
Bromomethane	47	,			93.9	43-137		1.86	30	
2-Butanone	49	,			97.0	60-129		3.80	30	
Carbon disulfide	51	,			51.1	18-145		0.767	30	
Carbon tetrachloride	54	,			107	79-135		1.67	30	
Chlorobenzene	52	,			104	87-112		0.212	30	
Chloroethane	52	,			103	60-132		3.13	30	
Chloroform	52	,			104	80-126		1.31	30	
Chloromethane	48	,			95.6	36-133		1.25	30	
Cyclohexane	55	,			109	70-130		0.201	30	
1,2-Dibromo-3-chloropropane	62	,			123	72-131		7.61	30	
Dibromochloromethane	64	,			129	86-128	High Bias	54.8	30	Non-dir.
1,2-Dibromoethane	52	,			104	86-114	111811 21110	1.66	30	rton un.
1,2-Dichlorobenzene	53	,			105	85-114		3.05	30	
1,3-Dichlorobenzene	53	,			107	84-114		4.09	30	
1,4-Dichlorobenzene	55	,			107	82-116		3.84	30	
Dichlorodifluoromethane	44	,			88.6	10-156		0.765	30	
1.1-Dichloroethane	53	,			105	80-119		1.26	30	
1,2-Dichloroethane	53	,			106	72-136		0.928	30	
1,1-Dichloroethylene	52	,			104	58-139		3.36	30	
trans-1,2-Dichloroethylene	53	,			104	68-131		1.12	30	
cis-1,2-Dichloroethylene	53	,			106	80-119		2.01	30	
1,2-Dichloropropane	52	,			103	79-119		0.386	30	
trans-1,3-Dichloropropylene	52	,			105	81-127		0.0381	30	
cis-1,3-Dichloropropylene	52	,			105	87-125		0.479	30	
1,4-Dioxane	610	,			61.1	10-208		8.47	30	
Ethyl Benzene	52	,			104	88-117		0.903	30	
2-Hexanone	53	,			107	58-129		2.86	30	
Isopropylbenzene	53	,			106	84-116		3.37	30	
Methyl acetate	52	,			105	75-184		0.287	30	
Methyl tert-butyl ether (MTBE)	52	,			105	58-137		2.59	30	
Methylcyclohexane	55	,			110	70-130		2.80	30	
Methylene chloride	49	,			97.4	47-140		1.47	30	
4-Methyl-2-pentanone	54	,	50.0		108	46-121		1.71	30	
Styrene	52	,			104	85-119		0.910	30	
1,1,2,2-Tetrachloroethane	52	,			105	82-119		1.00	30	
Tetrachloroethylene	52	,			104	74-127		3.14	30	
Toluene	52	,			105	83-114		1.42	30	
1,2,4-Trichlorobenzene	56	,			111	69-135		0.288	30	
1,2,3-Trichlorobenzene	59	,			118	72-133		4.22	30	
1,1,1-Trichloroethane	54	,	30.0		107	76-135		0.650	30	
1,1,2-Trichloroethane	52	,			107	82-114		0.845	30	
Trichloroethylene	52 52	,			103	84-118		1.70	30	
Trichlorofluoromethane	53	,			103	59-148		1.66	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	54	,	30.0		100	68-144		2.40	30	
Vinyl Chloride	50	,	30.0		109			0.794	30	
o-Xylene	53	,	30.0		106	46-133		2.99	30	
O ASSIGNE	33		30.0		100	88-111		4.77	50	



Reporting	Snike	Source*	%RFC

		Reporting	Spike	Source*		%REC			KI D	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40891 - EPA 5035A							<u> </u>			
LCS Dup (BB40891-BSD1)						Prep	ared & Analy	yzed: 02/24/	2014	
p- & m- Xylenes	100	ug/L	100		104	86-117		1.50	30	
Surrogate: p-Bromofluorobenzene	52.8	"	50.0		106	72-138				
Surrogate: 1,2-Dichloroethane-d4	50.6	"	50.0		101	72-137				
Surrogate: Toluene-d8	48.4	"	50.0		96.9	85-118				
Matrix Spike (BB40891-MS1)	*Source sample: 1	4B0560-04 (RSB-11/17.:	5-19.5)			Prep	ared: 02/24/2	2014 Analyz	red: 02/25/2	2014
Acetone	100	ug/L	50.0	99	4.32	17-123	Low Bias			
Benzene	53	"	50.0	ND	106	57-128				
Bromochloromethane	52	"	50.0	ND	104	68-120				
Bromodichloromethane	50	"	50.0	ND	99.0	54-144				
Bromoform	48	"	50.0	ND	95.8	36-143				
Bromomethane	48	"	50.0	ND	95.5	23-127				
2-Butanone	63	"	50.0	15	94.6	37-133				
Carbon disulfide	49	"	100	ND	49.0	10-135				
Carbon tetrachloride	55	"	50.0	ND	109	42-146				
Chlorobenzene	47	"	50.0	ND	94.6	39-127				
Chloroethane	51	"	50.0	ND	101	52-132				
Chloroform	54	"	50.0	ND	107	61-135				
Chloromethane	50	"	50.0	ND	99.6	32-135				
Cyclohexane	53	"	50.0	ND	107	70-130				
1,2-Dibromo-3-chloropropane	44	"	50.0	ND	88.6	10-166				
Dibromochloromethane	34	"	50.0	ND	68.6	44-145				
1,2-Dibromoethane	48	"	50.0	ND	95.7	58-124				
1,2-Dichlorobenzene	44	"	50.0	ND	87.1	20-126				
1,3-Dichlorobenzene	43	"	50.0	ND	85.8	24-120				
1,4-Dichlorobenzene	42	"	50.0	ND	84.0	14-124				
Dichlorodifluoromethane	43	"	50.0	ND	85.1	10-131				
1,1-Dichloroethane	53	"	50.0	ND	105	54-140				
1,2-Dichloroethane	51	"	50.0	ND	101	58-139				
1,1-Dichloroethylene	51	"	50.0	ND	102	32-149				
trans-1,2-Dichloroethylene	51	"	50.0	ND	101	42-133				
cis-1,2-Dichloroethylene	53	"	50.0	ND	107	60-126				
1,2-Dichloropropane	50	"	50.0	ND	101	50-142				
trans-1,3-Dichloropropylene	46	"	50.0	ND	92.4	37-135				
cis-1,3-Dichloropropylene	47	"	50.0	ND	94.1	48-132				
1,4-Dioxane	610	"	1000	ND	61.2	33-178				
Ethyl Benzene	49	"	50.0	ND	98.1	37-133				
2-Hexanone	46	"	50.0	ND	91.1	22-132				
Isopropylbenzene	49	"	50.0	ND	98.3	34-133				
Methyl acetate	57	"	50.0	18	78.4	10-218				
Methyl tert-butyl ether (MTBE)	48	"	50.0	ND	96.2	50-146				
Methylcyclohexane	50	"	50.0	ND	100	70-130				
Methylene chloride	51	"	50.0	5.3	90.5	21-163				
4-Methyl-2-pentanone	44	"	50.0	1.3	84.8	38-110				
Styrene	46	"	50.0	ND	92.3	20-138				
1,1,2,2-Tetrachloroethane	44		50.0	ND	87.9	17-159				
Tetrachloroethylene	62	"	50.0	ND	124	27-163				
Toluene	50		50.0	1.8	97.0	46-129				
1,2,4-Trichlorobenzene	37	"	50.0	ND	74.3	10-121				
1,2,3-Trichlorobenzene	41	"	50.0	ND	82.1	10-126				
1,1,1-Trichloroethane	55		50.0	ND	109	49-148				
1,1,2-Trichloroethane	49	"	50.0	ND	98.7	50-139				

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

RPD



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Aatrix Spike (BB40891-MS1)	*Source sample: 14B056	60-04 (RSB-11/17 5-	Prepared: 02/24/2014 Analyzed: 02/25/2014						
richloroethylene	50	ug/L	50.0	ND	101	55-135			
richlorofluoromethane	53	"	50.0	ND	105	40-142			
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	52	"	50.0	ND	103	32-139			
inyl Chloride	52	"	50.0	ND	103	30-137			
-Xylene	49	"	50.0	ND	98.1	37-131			
- & m- Xylenes	98	"	100	ND	98.0	34-131			
urrogate: p-Bromofluorobenzene	51.4	"	50.0		103	72-138			
urrogate: 1,2-Dichloroethane-d4	49.3	"	50.0		98.7	72-137			
urrogate: Toluene-d8	49.0	"	50.0		98.0	85-118			
Matrix Spike Dup (BB40891-MSD1)	*Source sample: 14B056	50-04 (RSR-11/17 5-	.19 5)			Prep	ared: 02/24/20	014 Analyze	d: 02/25/201
cetone	78	ug/L	50.0	95	NR	17-123	Low Bias	25.5	150
enzene	53	ug/L	50.0	ND	106	57-128		0.0567	64
romochloromethane	50	"	50.0	ND	99.5	68-120		4.07	30
romodichloromethane	52	"	50.0	ND	104	54-144		5.14	37
romoform	51	"	50.0	ND	104	36-143		6.19	51
romomethane	48	"	50.0	ND	96.8	23-127		1.39	42
Butanone	48	"	50.0	15	67.2	37-133		25.6	67
arbon disulfide	49	"	100	ND	48.6	10-135		0.798	36
arbon tetrachloride	52	,,	50.0	ND	103	42-146		5.55	31
nlorobenzene	49	,,	50.0	ND	97.8	39-127		3.31	32
nloroethane	52	,,	50.0	ND	104	52-132		2.36	40
loroform	52 52	,,	50.0	ND ND	104	61-135		2.34	29
loromethane	47	,,	50.0	ND	94.9	32-135		4.92	31
clohexane	51	,,	50.0	ND ND		70-130		4.49	30
2-Dibromo-3-chloropropane		,,			102	10-166		15.2	54
bromochloromethane	52	"	50.0	ND	103			29.3	41
2-Dibromoethane	46 50	"	50.0	ND ND	92.1	44-145 58-124		4.05	39
2-Dichlorobenzene	47	,,	50.0	ND	99.7			7.88	52
3-Dichlorobenzene		,,	50.0	ND	94.2	20-126		4.49	51
4-Dichlorobenzene	45	,,	50.0	ND	89.8	24-120		6.27	52
chlorodifluoromethane	45	"	50.0	ND	89.4	14-124			34
	38		50.0	ND	76.9	10-131		10.1	
1-Dichloroethane	51	"	50.0	ND	102	54-140		3.30	36
2-Dichloroethane	51	"	50.0	ND	103	58-139		1.82	32
1-Dichloroethylene	50	"	50.0	ND	99.9	32-149		1.67	31 34
ans-1,2-Dichloroethylene	51		50.0	ND	102	42-133		0.963	
s-1,2-Dichloroethylene	53	"	50.0	ND	105	60-126		1.42	30 37
2-Dichloropropane	50	"	50.0	ND	100	50-142		0.418	39
ans-1,3-Dichloropropylene	47	"	50.0	ND	94.1	37-135		1.80	39 39
s-1,3-Dichloropropylene	49	"	50.0	ND	97.1	48-132		3.20	
4-Dioxane	590	"	1000	ND	58.6	33-178		4.33	196
hyl Benzene	50	"	50.0	ND	100	37-133		2.16	42
Hexanone	46		50.0	ND	93.0	22-132		2.06	60
propylbenzene	49	"	50.0	ND	98.3	34-133		0.0610	57
ethyl acetate	50	"	50.0	17	64.8	10-218		13.9	64
ethyl tert-butyl ether (MTBE)	51	"	50.0	ND	102	50-146		6.34	47
ethylcyclohexane	49	"	50.0	ND	98.0	70-130		2.18	30
ethylene chloride	48	"	50.0	5.1	85.7	21-163		5.34	49
Methyl-2-pentanone	48	"	50.0	1.3	93.9	38-110		9.79	47
yrene	47	"	50.0	ND	94.2	20-138		1.97	39
1,2,2-Tetrachloroethane	50	"	50.0	ND	99.4	17-159		12.3	56



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

#### Batch BB40891 - EPA 5035A

Matrix Spike Dup (BB40891-MSD1)	*Source sample: 14B0560	0-04 (RSB-11/17.5-	19.5)			Prepared: 0	2/24/2014 Analyz	ed: 02/25/2014
Toluene	56	ug/L	50.0	1.8	109	46-129	11.3	50
1,2,4-Trichlorobenzene	42	"	50.0	ND	85.0	10-121	13.4	52
1,2,3-Trichlorobenzene	48	"	50.0	ND	96.2	10-126	15.8	47
1,1,1-Trichloroethane	54	"	50.0	ND	107	49-148	1.62	30
1,1,2-Trichloroethane	50	"	50.0	ND	101	50-139	2.01	40
Trichloroethylene	50	"	50.0	ND	99.4	55-135	1.44	33
Trichlorofluoromethane	48	"	50.0	ND	96.1	40-142	8.89	32
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	46	"	50.0	ND	92.8	32-139	10.9	31
Vinyl Chloride	50	"	50.0	ND	100	30-137	3.08	35
o-Xylene	51	"	50.0	ND	102	37-131	3.78	51
p- & m- Xylenes	100	"	100	ND	100	34-131	2.08	47
Surrogate: p-Bromofluorobenzene	51.2	"	50.0		102	72-138		
Surrogate: 1,2-Dichloroethane-d4	47.7	"	50.0		95.3	72-137		
Surrogate: Toluene-d8	49.5	"	50.0		99.0	85-118		

#### Batch BB40946 - EPA 5030B

Blank (BB40946-BLK1)			Prepared & Analyzed: 02/25/2014
Acatona	ND	10 110/I	

Benzene	ND	5.0 "
Bromochloromethane	ND	5.0 "
Bromodichloromethane	ND	5.0 "
Bromoform	ND	5.0 "
Bromomethane	ND	5.0 "
2-Butanone	ND	5.0 "
Carbon disulfide	ND	5.0 "
Carbon tetrachloride	ND	5.0 "
Chlorobenzene	ND	5.0 "
Chloroethane	ND	5.0 "
Chloroform	ND	5.0 "
Chloromethane	ND	5.0 "
Cyclohexane	ND	5.0 "
1,2-Dibromo-3-chloropropane	ND	5.0 "
Dibromochloromethane	ND	5.0 "
1,2-Dibromoethane	ND	5.0 "
1,4-Dichlorobenzene	ND	5.0 "
1,2-Dichlorobenzene	ND	5.0 "
1,3-Dichlorobenzene	ND	5.0 "
Dichlorodifluoromethane	ND	5.0 "
1,2-Dichloroethane	ND	5.0 "
1,1-Dichloroethane	ND	5.0 "
cis-1,2-Dichloroethylene	ND	5.0 "
trans-1,2-Dichloroethylene	ND	5.0 "
1,1-Dichloroethylene	ND	5.0 "
1,2-Dichloropropane	ND	5.0 "
cis-1,3-Dichloropropylene	ND	5.0 "
trans-1,3-Dichloropropylene	ND	5.0 "
1,4-Dioxane	ND	100 "
Ethyl Benzene	ND	5.0 "
2-Hexanone	ND	5.0 "
Isopropylbenzene	ND	5.0 "
Methyl acetate	ND	5.0 "

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

FAX (203) 35<u>7-0166</u>



#### York Analytical Laboratories, Inc.

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Amelida	D14	Reporting	11	Spike	Source*	0/DEC	%REC	Floo	DDD	RPD Limit	Elea

lank (BB40946-BLK1)						Prepared & Analyzed: 02/25/2014
ethyl tert-butyl ether (MTBE)	ND	5.0	ug/L			
ethylcyclohexane	ND	5.0	"			
ethylene chloride	4.0	10	"			
Methyl-2-pentanone	ND	5.0	"			
rene	ND	5.0	"			
,2,2-Tetrachloroethane	ND	5.0	"			
achloroethylene	ND	5.0	"			
uene	ND	5.0	"			
4-Trichlorobenzene	ND	5.0	"			
,3-Trichlorobenzene	ND	5.0	"			
,2-Trichloroethane	ND	5.0	"			
,1-Trichloroethane	ND	5.0	"			
chloroethylene	ND	5.0	"			
chlorofluoromethane	ND	5.0	"			
2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"			
yl Chloride	ND	5.0	"			
Kylene	ND	5.0	"			
k m- Xylenes	ND	10	"			
lenes, Total	ND	15	"			
rrogate: p-Bromofluorobenzene	47.6		"	50.0	95.2	87-112
rogate: 1,2-Dichloroethane-d4	54.5		"	50.0	109	78-122
rogate: Toluene-d8	50.5		"	50.0	101	91-110
CS (BB40946-BS1)						Prepared & Analyzed: 02/25/2014
etone	45		/7	50.0	00.6	
	45		ug/L	50.0	89.6	30-112
zene	52			50.0	105	88-113
mochloromethane	51		"	50.0	102	80-120
modichloromethane	57			50.0	113	87-122
omoform	55		"	50.0	111	83-127
momethane	47		"	50.0	93.9	36-135
ntanone	56		"	50.0	112	59-127
oon disulfide	43		"	100	43.1	35-126
oon tetrachloride	52		"	50.0	104	82-128
probenzene	51		"	50.0	102	90-111
proethane	48		"	50.0	96.3	60-132
proform	53		"	50.0	106	89-116
promethane	57		"	50.0	114	39-131
lohexane	55		"	50.0	110	70-130
-Dibromo-3-chloropropane	66		"	50.0	132	69-134
romochloromethane	52		"	50.0	105	82-132
Dibromoethane	55		"	50.0	110	85-118
Dichlorobenzene	52		"	50.0	105	84-116
Dichlorobenzene	53		"	50.0	106	87-116
Dichlorobenzene	54		"	50.0	108	85-116
hlorodifluoromethane	57		"	50.0	115	10-143
Dichloroethane	52		"	50.0	105	79-125
Dichloroethane	55		"	50.0	111	82-121
,2-Dichloroethylene	48		"	50.0	96.0	90-112
s-1,2-Dichloroethylene	53		"	50.0	106	73-123
Dichloroethylene	46		"	50.0	92.7	59-135
Dichloropropane	57		"	50.0	115	82-119
1,3-Dichloropropylene	55		"	50.0	110	89-124



# $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RR40946.	- FPA	5030R

LCS (BB40946-BS1)					Pre	pared & Analyzed: 02/25/2014
trans-1,3-Dichloropropylene	57	ug/L	50.0	114	85-123	
1,4-Dioxane	950	"	1000	94.9	10-210	
Ethyl Benzene	53	"	50.0	107	91-117	
2-Hexanone	60	"	50.0	121	59-127	
Isopropylbenzene	56	"	50.0	112	82-122	
Methyl acetate	44	"	50.0	88.0	64-185	
Methyl tert-butyl ether (MTBE)	55	"	50.0	109	59-135	
Methylcyclohexane	53	"	50.0	105	70-130	
Methylene chloride	61	"	50.0	121	51-136	
4-Methyl-2-pentanone	64	"	50.0	128	50-119	High Bias
Styrene	48	"	50.0	96.7	88-121	
1,1,2,2-Tetrachloroethane	62	"	50.0	124	84-122	High Bias
Tetrachloroethylene	49	"	50.0	97.3	67-138	
Toluene	52	"	50.0	104	88-113	
1,2,4-Trichlorobenzene	60	"	50.0	119	72-133	
1,2,3-Trichlorobenzene	56	"	50.0	113	74-132	
1,1,2-Trichloroethane	56	"	50.0	112	83-116	
1,1,1-Trichloroethane	52	"	50.0	103	83-125	
Trichloroethylene	52	"	50.0	104	83-120	
Trichlorofluoromethane	55	"	50.0	109	62-138	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	45	"	50.0	89.9	66-141	
Vinyl Chloride	51	"	50.0	102	49-127	
o-Xylene	54	"	50.0	107	91-110	
p- & m- Xylenes	110	"	100	108	86-118	
Surrogate: p-Bromofluorobenzene	51.5	"	50.0	103	87-112	
Surrogate: 1,2-Dichloroethane-d4	51.3	"	50.0	103	78-122	
Surrogate: Toluene-d8	48.8	"	50.0	97.7	91-110	



# $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

3								
Batch BB40946 - EPA 5030B								
LCS Dup (BB40946-BSD1)					Pre	pared & Analy	zed: 02/25/2	:014
Acetone	56	ug/L	50.0	112	30-112		22.0	30
Benzene	52	"	50.0	104	88-113		0.535	30
Bromochloromethane	52	"	50.0	103	80-120		0.819	30
Bromodichloromethane	58	"	50.0	116	87-122		2.39	30
Bromoform	56	"	50.0	113	83-127		1.88	30
Bromomethane	48	"	50.0	96.9	36-135		3.17	30
2-Butanone	60	"	50.0	120	59-127		6.98	30
Carbon disulfide	46	"	100	46.2	35-126		6.94	30
Carbon tetrachloride	50	"	50.0	100	82-128		4.27	30
Chlorobenzene	52	"	50.0	105	90-111		2.49	30
Chloroethane	52	"	50.0	103	60-132		6.84	30
Chloroform	53	"	50.0	107	89-116		1.15	30
Chloromethane	60	"	50.0	119	39-131		4.36	30
Cyclohexane	54	"	50.0	109	70-130		0.862	30
1,2-Dibromo-3-chloropropane	73	"	50.0	146	69-134	High Bias	9.69	30
Dibromochloromethane	56	"	50.0	113	82-132	_	7.23	30
1,2-Dibromoethane	59	"	50.0	118	85-118		7.32	30
1,4-Dichlorobenzene	52	"	50.0	105	84-116		0.0763	30
1,2-Dichlorobenzene	51	"	50.0	101	87-116		5.20	30
1,3-Dichlorobenzene	52	"	50.0	103	85-116		4.19	30
Dichlorodifluoromethane	57	"	50.0	114	10-143		0.524	30
1,2-Dichloroethane	56	"	50.0	113	79-125		7.55	30
1,1-Dichloroethane	56	"	50.0	111	82-121		0.541	30
cis-1,2-Dichloroethylene	49	"	50.0	97.8	90-112		1.78	30
trans-1,2-Dichloroethylene	53	"	50.0	106	73-123		0.378	30
1,1-Dichloroethylene	49	"	50.0	98.0	59-135		5.50	30
1,2-Dichloropropane	60	"	50.0	120	82-119	High Bias	4.50	30
cis-1,3-Dichloropropylene	57	"	50.0	113	89-124	8	2.97	30
trans-1,3-Dichloropropylene	60	"	50.0	120	85-123		5.33	30
1,4-Dioxane	1100	"	1000	107	10-210		12.3	30
Ethyl Benzene	56	"	50.0	111	91-117		3.84	30
2-Hexanone	68	"	50.0	136	59-127	High Bias	11.9	30
Isopropylbenzene	53	"	50.0	106	82-122	riigii Dias	5.10	30
Methyl acetate	54	"	50.0	108	64-185		20.7	30
Methyl tert-butyl ether (MTBE)	57	"	50.0	113	59-135		3.45	30
Methylcyclohexane	55	"	50.0	110	70-130		4.36	30
Methylene chloride	61	"	50.0	123	51-136		1.00	30
4-Methyl-2-pentanone	69	"	50.0	139	50-119	High Bias	8.27	30
Styrene		"				High Dias	7.16	30
1,1,2,2-Tetrachloroethane	52	"	50.0	104	88-121	High Dies		30
	63	"	50.0	125	84-122	High Bias	0.833	30
Tetrachloroethylene	50	"	50.0	99.6	67-138		2.40	
Toluene	53		50.0	105	88-113		0.784	30
1,2,4-Trichlorobenzene	57	"	50.0	113	72-133		4.89	30
1,2,3-Trichlorobenzene	56	"	50.0	112	74-132	II. 1 D.	0.693	30
1,1,2-Trichloroethane	59	"	50.0	118	83-116	High Bias	5.27	30
1,1,1-Trichloroethane	52	"	50.0	103	83-125		0.213	30
Trichloroethylene	54	"	50.0	107	83-120		2.78	30
Trichlorofluoromethane	54	"	50.0	108	62-138		1.27	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	47	"	50.0	93.4	66-141		3.80	30
Vinyl Chloride	55	"	50.0	110	49-127		6.78	30
o-Xylene	56	"	50.0	112	91-110	High Bias	4.48	30



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40946 - EPA 5030B											
LCS Dup (BB40946-BSD1)							Prep	ared & Anal	yzed: 02/25/	2014	
p- & m- Xylenes	110		ug/L	100		109	86-118		0.940	30	
Surrogate: p-Bromofluorobenzene	50.7		"	50.0		101	87-112				
Surrogate: 1,2-Dichloroethane-d4	53.2		"	50.0		106	78-122				
Surrogate: Toluene-d8	51.2		"	50.0		102	91-110				
Duplicate (BB40946-DUP1)	*Source sample: 1	4B0560-11 (Tr	ipBlank)				Prep	ared & Anal	yzed: 02/25/	2014	
Acetone	3.0	10	ug/L		4.8				45.8	200	
Benzene	ND	5.0	"		ND					200	
Bromochloromethane	ND	5.0	"		ND					200	
Bromodichloromethane	ND	5.0	"		ND					200	
Bromoform	ND	5.0	"		ND					200	
Bromomethane	ND	5.0	"		ND					200	
2-Butanone	ND	5.0	"		ND					200	
Carbon disulfide	ND	5.0	"		ND					200	
Carbon tetrachloride	ND	5.0	"		ND					200	
Chlorobenzene	ND	5.0	"		ND					200	
Chloroethane	ND	5.0	"		ND					200	
Chloroform	ND	5.0	"		ND					200	
Chloromethane	ND	5.0	"		ND					200	
Cyclohexane	ND	5.0	"		ND					200	
1,2-Dibromo-3-chloropropane	ND	5.0	"		ND					200	
Dibromochloromethane	ND	5.0	"		ND					200	
1,2-Dibromoethane	ND	5.0	"		ND					200	
1,4-Dichlorobenzene	ND	5.0	"		ND					200	
1,2-Dichlorobenzene	ND	5.0	"		ND					200	
1,3-Dichlorobenzene	ND	5.0	"		ND					200	
Dichlorodifluoromethane	ND	5.0			ND					200	
1,2-Dichloroethane	ND	5.0	"		ND					200	
1,1-Dichloroethane	ND	5.0			ND					200	
cis-1,2-Dichloroethylene	ND	5.0	,,		ND					200	
trans-1,2-Dichloroethylene	ND	5.0	,,		ND					200	
1,1-Dichloroethylene	ND	5.0	,,		ND					200	
1,2-Dichloropropane	ND	5.0	,,		ND					200	
cis-1,3-Dichloropropylene	ND	5.0	"		ND					200	
trans-1,3-Dichloropropylene	ND ND	5.0	,,		ND					200	
1,4-Dioxane			,,								
Ethyl Benzene	ND ND	100 5.0	,,		ND ND					200 200	
2-Hexanone	ND ND	5.0	,,		ND ND					200	
Isopropylbenzene			,,		ND ND					200	
Methyl acetate	ND	5.0	,,							200	
Methyl tert-butyl ether (MTBE)	ND	5.0	,,		ND					200	
	ND	5.0	,,		ND						
Methylcyclohexane	ND	5.0	,,		ND				2.25	200	
Methylene chloride	4.0	10	,,		4.0				2.25	200	
4-Methyl-2-pentanone	ND	5.0	"		ND					200	
Styrene	ND	5.0			ND					200	
1,1,2,2-Tetrachloroethane	ND	5.0	"		ND					200	
Tetrachloroethylene	ND	5.0	"		ND					200	
Toluene	ND	5.0	"		ND					200	
1,2,4-Trichlorobenzene	ND	5.0	"		ND					200	
1,2,3-Trichlorobenzene	ND	5.0	"		ND					200	
1,1,2-Trichloroethane	ND	5.0	"		ND					200	
1,1,1-Trichloroethane	ND	5.0	"		ND					200	

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371

Page 72 of 89



#### York Analytical Laboratories, Inc.

				Source*						
Analyte Result Lin	it Un	nits L	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40946 - EPA 5030B											
Duplicate (BB40946-DUP1)	*Source sample: 14I	30560-11 (Tr	ipBlank)				Prep	ared & Anal	yzed: 02/25/	2014	
Trichloroethylene	ND	5.0	ug/L		ND					200	
Trichlorofluoromethane	ND	5.0	"		ND					200	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"		ND					200	
Vinyl Chloride	ND	5.0	"		ND					200	
o-Xylene	ND	5.0	"		ND					200	
p- & m- Xylenes	ND	10	"		ND					200	
Xylenes, Total	ND	15	"		ND					200	
Surrogate: p-Bromofluorobenzene	47.2		"	50.0		94.4	87-112				
Surrogate: 1,2-Dichloroethane-d4	53.4		"	50.0		107	78-122				
Surrogate: Toluene-d8	50.4		"	50.0		101	91-110				
Matrix Spike (BB40946-MS1)	*Source sample: 14I	30560-11 (Tr	inBlank)				Prep	ared & Anal	yzed: 02/25/	2014	
Acetone	43	30300 11 (11	ug/L	50.0	4.8	76.1	15-115				
Benzene	51		ug/L	50.0	ND	102	84-119				
Bromochloromethane	56		"	50.0	ND	112	84-120				
Bromodichloromethane	54		"	50.0	ND	109	86-124				
Bromoform	53		"	50.0	ND	106	79-124				
Bromomethane	44		"	50.0	ND	88.8	25-132				
2-Butanone	54		"	50.0	ND	108	41-143				
Carbon disulfide	43		"	100	ND	42.9	40-123				
Carbon tetrachloride	51		"	50.0	ND	103	79-131				
Chlorobenzene	50		"	50.0	ND	100	88-112				
Chloroethane	48		"	50.0	ND	95.3	66-128				
Chloroform	52		"	50.0	ND	103	84-123				
Chloromethane	52		"	50.0	ND	103	46-117				
Cyclohexane	53		"	50.0	ND	106	70-130				
1,2-Dibromo-3-chloropropane	62		"	50.0	ND	125	72-125				
Dibromochloromethane	52		"	50.0	ND	104	91-121				
1,2-Dibromoethane	54		"	50.0	ND	108	89-114				
1,4-Dichlorobenzene	51		"	50.0	ND	102	71-120				
1,2-Dichlorobenzene	51		"	50.0	ND	101	80-117				
1,3-Dichlorobenzene	50		"	50.0	ND	100	72-121				
Dichlorodifluoromethane	44		"	50.0	ND	87.7	10-139				
1,2-Dichloroethane	54		"	50.0	ND	108	76-132				
1,1-Dichloroethane	54		"	50.0	ND	108	76-129				
cis-1,2-Dichloroethylene	48		"	50.0	ND	95.8	85-119				
trans-1,2-Dichloroethylene	52		"	50.0	ND	104	73-125				
1,1-Dichloroethylene	49		"	50.0	ND	98.9	56-138				
1,2-Dichloropropane	56		"	50.0	ND	112	84-120				
cis-1,3-Dichloropropylene	53		"	50.0	ND	106	83-123				
trans-1,3-Dichloropropylene	54		"	50.0	ND	109	76-121				
1,4-Dioxane	940		"	1000	ND	93.6	10-224				
Ethyl Benzene	51		"	50.0	ND	102	89-117				
2-Hexanone	60		"	50.0	ND	120	62-117	High Bias			
Isopropylbenzene	52		"	50.0	ND	105	76-122				
Methyl acetate	44		"	50.0	ND	88.1	50-166				
Methyl tert-butyl ether (MTBE)	55		"	50.0	ND	110	52-138				
Methylcyclohexane	51		"	50.0	ND	103	70-130				
Methylene chloride	60		"	50.0	4.0	111	44-141				
4-Methyl-2-pentanone	60		"	50.0	ND	121	58-111	High Bias			
Styrene	49		"	50.0	ND	98.2	83-121				
1 1 2 2 T-t	<b>5</b> 0			50.0	NID	116	01.104				

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

50.0

ND

116

81-124

58

1,1,2,2-Tetrachloroethane



# $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BB40946	- EPA	5030B

Matrix Spike (BB40946-MS1)	*Source sample: 14B0560	-11 (TripBlank)				Prepared & Analyzed: 02/25/2014
Tetrachloroethylene	47	ug/L	50.0	ND	93.6	69-113
Toluene	51	"	50.0	ND	102	84-116
1,2,4-Trichlorobenzene	54	"	50.0	ND	109	54-134
1,2,3-Trichlorobenzene	54	"	50.0	ND	109	60-134
1,1,2-Trichloroethane	56	"	50.0	ND	111	85-114
1,1,1-Trichloroethane	52	"	50.0	ND	104	80-129
Trichloroethylene	51	"	50.0	ND	102	81-122
Trichlorofluoromethane	51	"	50.0	ND	103	63-137
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	46	"	50.0	ND	91.7	65-141
Vinyl Chloride	49	"	50.0	ND	97.7	54-119
o-Xylene	53	"	50.0	ND	105	88-111
p- & m- Xylenes	100	"	100	ND	105	83-118
Surrogate: p-Bromofluorobenzene	47.6	"	50.0		95.1	87-112
Surrogate: 1,2-Dichloroethane-d4	51.4	"	50.0		103	78-122
Surrogate: Toluene-d8	48.6	"	50.0		97.2	91-110



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40881 - EPA 3550C											
Blank (BB40881-BLK1)							Prep	ared: 02/24/2	2014 Analyz	ed: 02/25/2	2014
Acenaphthene	ND	167	ug/kg wet								
Acenaphthylene	ND	167	"								
Acetophenone	ND	167	"								
Anthracene	ND	167	"								
Atrazine	ND	167	"								
Benzaldehyde	ND	167	"								
Benzo(a)anthracene	ND	167	"								
Benzo(a)pyrene	ND	167	"								
Benzo(b)fluoranthene	ND	167	"								
Benzo(g,h,i)perylene	ND	167	"								
Benzo(k)fluoranthene	ND	167	"								
Benzyl butyl phthalate	ND	167	"								
1,1'-Biphenyl	ND	167	"								
4-Bromophenyl phenyl ether	ND	167	"								
Caprolactam	ND	167	"								
Carbazole	ND	167	"								
4-Chloro-3-methylphenol	ND	167	"								
4-Chloroaniline	ND	167	"								
Bis(2-chloroethoxy)methane	ND	167	"								
Bis(2-chloroethyl)ether	ND	167	"								
Bis(2-chloroisopropyl)ether	ND	167	"								
2-Chloronaphthalene	ND	167	"								
2-Chlorophenol	ND	167	"								
4-Chlorophenyl phenyl ether	ND	167	"								
Chrysene	ND	167	"								
Dibenzo(a,h)anthracene	ND	167	"								
Dibenzofuran	ND	167	"								
Di-n-butyl phthalate	ND	167	"								
3,3'-Dichlorobenzidine	ND	333	"								
2,4-Dichlorophenol	ND	167	"								
Diethyl phthalate	ND	167	"								
2,4-Dimethylphenol	ND	167	"								
Dimethyl phthalate	ND	167	"								
4,6-Dinitro-2-methylphenol	ND	167	"								
2,4-Dinitrophenol	ND	333	"								
2,4-Dinitrotoluene	ND	167	"								
2,6-Dinitrotoluene	ND	167	"								
Di-n-octyl phthalate	ND	167	"								
Bis(2-ethylhexyl)phthalate	ND	167	"								
Fluoranthene	ND	167	"								
Fluorene	ND	167	"								
Hexachlorobenzene	ND	167	"								
Hexachlorobutadiene	ND	167	"								
Hexachlorocyclopentadiene	ND	167	"								
Hexachloroethane	ND	167	"								
Indeno(1,2,3-cd)pyrene	ND	167	"								
Isophorone	ND	167	"								
2-Methylnaphthalene	ND	167	"								
2-Methylphenol	ND	167	"								
3- & 4-Methylphenols	ND	167	"								
Naphthalene	ND	167	"								



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BB40881 - EPA 3550C						
Blank (BB40881-BLK1)						Prepared: 02/24/2014 Analyzed: 02/25/201
-Nitroaniline	ND	167	ug/kg wet			
-Nitroaniline	ND	167	"			
Nitroaniline	ND	167	"			
itrobenzene	ND	167	"			
Nitrophenol	ND	167	"			
Nitrophenol	ND	167	"			
-nitroso-di-n-propylamine	ND	167	"			
Nitrosodiphenylamine	ND	167	"			
entachlorophenol	ND	167	"			
nenanthrene	ND	167	"			
nenol	ND	167	"			
rene	ND	167	"			
2,4,5-Tetrachlorobenzene	ND	167	"			
4,6-Trichlorophenol	ND	167	"			
4,5-Trichlorophenol	ND	167	"			
arrogate: 2-Fluorophenol	1800		"	2520	71.5	10-109
urrogate: Phenol-d5	1810		"	2520	71.9	10-124
urrogate: Nitrobenzene-d5	1300		"	1700	76.3	10-148
rrogate: 2-Fluorobiphenyl	1400		"	1690	82.6	10-111
rrogate: 2,4,6-Tribromophenol	2740		"	2480	111	10-142
rrogate: Terphenyl-d14	1670		"	1690	99.1	10-147
	10/0			1000	77.1	
CS (BB40881-BS1)						Prepared: 02/24/2014 Analyzed: 02/25/201
cenaphthene	1330	167	ug/kg wet	1670	79.6	35-127
enaphthylene	1260	167	"	1670	75.7	37-121
etophenone	1070	167	"	1670	63.9	40-140
nthracene	1360	167	"	1670	81.8	38-131
razine	1330	167	"	1670	79.9	40-140
enzaldehyde	920	167	"	1670	55.2	40-140
enzo(a)anthracene	1450	167	"	1670	87.1	37-137
enzo(a)pyrene	2100	167	"	1670	126	33-162
enzo(b)fluoranthene	1340	167	"	1670	80.4	26-160
enzo(g,h,i)perylene	2290	167	"	1670	138	10-154
enzo(k)fluoranthene	1530	167	"	1670	91.7	34-143
enzyl butyl phthalate	1360	167	"	1670	81.5	30-143
l'-Biphenyl	1070	167	"	1670	64.1	40-140
Bromophenyl phenyl ether	1590	167	"	1670	95.5	35-135
prolactam	1030	167	"	1670	62.1	40-140
arbazole	1410	167	"	1670	84.7	10-241
Chloro-3-methylphenol	1390	167	"	1670	83.6	34-133
Chloroaniline	845	167	"	1670	50.7	17-175
s(2-chloroethoxy)methane	1180	167	"	1670	70.7	31-119
s(2-chloroethyl)ether	1110	167	"	1670	66.7	18-124
s(2-chloroisopropyl)ether	927	167	"	1670	55.6	10-141
Chloronaphthalene	1310	167	"	1670	78.8	34-117
Chlorophenol	1240	167	"	1670	74.7	32-123
Chlorophenyl phenyl ether	1270	167	"	1670	76.1	25-142
nrysene	1230	167	"	1670	73.9	38-132
benzo(a,h)anthracene	2100	167	"	1670	126	14-153
ibenzofuran	1400	167	"	1670	83.8	39-123
i-n-butyl phthalate	1260	167	"	1670	75.3	35-132



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BB40881 - EPA 3550C						
LCS (BB40881-BS1)						Prepared: 02/24/2014 Analyzed: 02/25/2014
3,3'-Dichlorobenzidine	1250	333	ug/kg wet	1670	74.9	16-177
2,4-Dichlorophenol	1530	167	"	1670	91.7	30-134
Diethyl phthalate	1390	167	"	1670	83.4	41-125
2,4-Dimethylphenol	1290	167	"	1670	77.6	33-120
Dimethyl phthalate	1450	167	"	1670	86.7	39-125
4,6-Dinitro-2-methylphenol	1260	167	"	1670	75.5	10-165
2,4-Dinitrophenol	1460	333	"	1670	87.6	53-209
2,4-Dinitrotoluene	1540	167	"	1670	92.6	41-129
2,6-Dinitrotoluene	1470	167	"	1670	88.2	42-130
Di-n-octyl phthalate	1310	167	"	1670	78.4	19-162
Bis(2-ethylhexyl)phthalate	1070	167	"	1670	64.3	35-137
Fluoranthene	1470	167	"	1670	88.3	35-136
Fluorene	1230	167	"	1670	73.9	33-134
Hexachlorobenzene	1220	167	"	1670	73.2	31-139
Hexachlorobutadiene	1670	167	"	1670	100	19-137
Hexachlorocyclopentadiene	1050	167	"	1670	63.2	10-145
Hexachloroethane	1100	167	"	1670	65.9	12-125
Indeno(1,2,3-cd)pyrene	2070	167	"	1670	124	11-155
Isophorone	1220	167	"	1670	73.4	30-125
2-Methylnaphthalene	1270	167	"	1670	76.4	30-125
2-Methylphenol	1200	167	"	1670	72.3	30-128
3- & 4-Methylphenols	1120	167	"	1670	67.2	30-120
Naphthalene	1220	167	"	1670	73.4	28-121
4-Nitroaniline	1240	167	"	1670	74.7	10-208
2-Nitroaniline	1370	167	"	1670	82.0	38-130
3-Nitroaniline	1360	167	"	1670	81.7	10-234
Nitrobenzene	1260	167	"	1670	75.7	28-118
2-Nitrophenol	1360	167	"	1670	81.6	23-129
4-Nitrophenol	1380	167	"	1670	82.9	10-185
N-nitroso-di-n-propylamine	1100	167	"	1670	66.2	21-136
N-Nitrosodiphenylamine	1500	167	"	1670	90.0	36-163
Pentachlorophenol	1560	167	"	1670	93.4	15-182
Phenanthrene	1350	167	"	1670	81.2	37-132
Phenol	1060	167	"	1670	63.8	28-124
Pyrene	1530	167	"	1670	92.0	30-147
1,2,4,5-Tetrachlorobenzene	1350	167	"	1670	80.9	40-140
2,4,6-Trichlorophenol	1570	167	"	1670	94.4	36-130
2,4,5-Trichlorophenol	1600	167	"	1670	95.8	34-126
Surrogate: 2-Fluorophenol	1930		"	2520	76.6	10-109
Surrogate: Phenol-d5	1790		"	2520	71.2	10-124
Surrogate: Nitrobenzene-d5	1330		"	1700	78.0	10-148
Surrogate: 2-Fluorobiphenyl	1340		"	1690	79.3	10-111
Surrogate: 2,4,6-Tribromophenol	2900		"	2480	117	10-142
Surrogate: Terphenyl-d14	1710		"	1690	101	10-147



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Datab	RR40881	EDA	25500
Katch	KK4UXXI	_ КРА	インフロし

Matrix Spike (BB40881-MS1)	*Source sample: 14B	0560-04 (R	SB-11/17.5-1	19.5)			Prepared: 02/24/2014 Analyzed: 02/25/201
Acenaphthene	1100	195	ug/kg dry	1950	ND	56.7	10-143
cenaphthylene	1040	195	"	1950	ND	53.5	10-137
cetophenone	841	195	"	1950	ND	43.2	40-140
nthracene	1250	195	"	1950	ND	64.1	18-140
razine	1210	195	"	1950	ND	61.9	40-140
enzaldehyde	794	195	"	1950	ND	40.7	40-140
enzo(a)anthracene	1380	195	"	1950	ND	71.1	10-154
enzo(a)pyrene	1940	195	"	1950	ND	99.3	12-172
enzo(b)fluoranthene	1420	195	"	1950	ND	72.7	18-163
enzo(g,h,i)perylene	2270	195	"	1950	ND	117	10-158
nzo(k)fluoranthene	1480	195	"	1950	ND	75.7	14-157
enzyl butyl phthalate	1230	195	"	1950	ND	63.2	10-152
'-Biphenyl	908	195	"	1950	ND	46.6	40-140
Bromophenyl phenyl ether	1380	195	"	1950	ND	71.0	11-146
prolactam	973	195	"	1950	ND	49.9	40-140
rbazole	1240	195	"	1950	ND	63.4	10-233
Chloro-3-methylphenol	1150	195	"	1950	ND	59.1	10-156
Chloroaniline	1080	195	"	1950	ND ND	55.5	10-168
s(2-chloroethoxy)methane	918	195	"	1950	ND ND	47.1	10-135
s(2-chloroethyl)ether		195	"	1950			
s(2-chloroisopropyl)ether	882 762	195	"		ND	45.3	10-127
Chloronaphthalene			"	1950	ND	39.1	10-142
•	1100	195	"	1950	ND	56.3	12-129
Chlorophenol	977	195		1950	ND	50.1	10-133
Chlorophenyl phenyl ether	1180	195	"	1950	ND	60.5	13-138
rysene	1210	195	"	1950	ND	62.0	22-140
penzo(a,h)anthracene	1890	195	"	1950	ND	96.8	10-146
penzofuran	1210	195	"	1950	ND	61.9	15-136
-n-butyl phthalate	1180	195	"	1950	ND	60.3	20-138
'-Dichlorobenzidine	1340	389	"	1950	ND	69.0	10-154
-Dichlorophenol	1190	195	"	1950	ND	61.2	10-140
ethyl phthalate	1270	195	"	1950	ND	65.3	20-132
-Dimethylphenol	1020	195	"	1950	ND	52.4	10-130
methyl phthalate	1270	195	"	1950	ND	65.2	22-128
-Dinitro-2-methylphenol	1340	195	"	1950	ND	68.7	10-145
l-Dinitrophenol	1430	390	"	1950	ND	73.5	10-175
-Dinitrotoluene	1430	195	"	1950	ND	73.2	10-145
-Dinitrotoluene	1290	195	"	1950	ND	66.3	18-135
n-octyl phthalate	1220	195	"	1950	ND	62.8	10-177
s(2-ethylhexyl)phthalate	1050	195	"	1950	ND	53.8	22-144
uoranthene	1360	195	"	1950	ND	70.0	10-155
orene	1130	195	"	1950	ND	57.9	18-139
xachlorobenzene	1100	195	"	1950	ND	56.5	16-150
xachlorobutadiene	1250	195	"	1950	ND	64.1	10-135
xachlorocyclopentadiene	717	195	"	1950	ND	36.8	10-120
xachloroethane	785	195	"	1950	ND	40.3	10-115
leno(1,2,3-cd)pyrene	2060	195	"	1950	ND	106	10-158
phorone	946	195	"	1950	ND	48.6	10-136
Methylnaphthalene	1130	195	"	1950	ND	58.0	10-143
Methylphenol	997	195	"	1950	ND	51.2	10-160
& 4-Methylphenols	929	195	"	1950	ND ND	47.7	10-130
phthalene	929 992	195	"	1950	ND ND	50.9	10-130



		UIK Allai								DDD	
		Reporting		Spike	Source*		%REC	El	DDD	RPD	E1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40881 - EPA 3550C											
Matrix Spike (BB40881-MS1)	*Source sample: 14	B0560-04 (F	RSB-11/17.5-	19.5)			Prep	ared: 02/24/2	2014 Analyz	ed: 02/25/2	2014
4-Nitroaniline	1280	195	ug/kg dry	1950	ND	65.7	10-189				
2-Nitroaniline	1220	195	"	1950	ND	62.7	19-137				
3-Nitroaniline	1340	195	"	1950	ND	68.9	10-196				
Nitrobenzene	978	195	"	1950	ND	50.2	10-146				
2-Nitrophenol	1090	195	"	1950	ND	55.7	10-148				
4-Nitrophenol	1150	195	"	1950	ND	59.0	10-180				
N-nitroso-di-n-propylamine	920	195	"	1950	ND	47.2	10-150				
N-Nitrosodiphenylamine	1390	195	"	1950	ND	71.1	13-166				
Pentachlorophenol	1490	195	"	1950	ND	76.4	10-189				
Phenanthrene	1240	195	"	1950	ND	63.8	12-151				
Phenol	883	195	"	1950	ND	45.3	10-134				
Pyrene	1420	195	"	1950	ND	72.7	10-156				
1,2,4,5-Tetrachlorobenzene	1070	195	"	1950	ND	54.7	40-140				
2,4,6-Trichlorophenol	1270	195	"	1950	ND	65.3	10-144				
2,4,5-Trichlorophenol	1320	195	"	1950	ND	68.0	17-131				
Surrogate: 2-Fluorophenol	1490		"	2950		50.4	10-109				
Surrogate: Phenol-d5	1490		"	2940		50.6	10-124				
Surrogate: Nitrobenzene-d5	1050		"	1990		52.7	10-148				
Surrogate: 2-Fluorobiphenyl	1150		"	1980		57.9	10-111				
Surrogate: 2,4,6-Tribromophenol	2690		"	2900		92.6	10-142				
Surrogate: Terphenyl-d14	1600		"	1980		80.8	10-147				
Matrix Spike Dup (BB40881-MSD1)		D0560 04 (E	OCD 11/17.5					ared: 02/24/2	2014 Analyz	ed: 02/25/2	2014
Acenaphthene	*Source sample: 141	195 195	ug/kg dry	19.5)	ND	65.3	10-143		14.1	30	
Acenaphthylene	1220	195	ug/kg ury	1950	ND	62.6	10-143		15.7	30	
Acetophenone	993	195	,,	1950	ND	51.0	40-140		16.5	30	
Anthracene	1330	195	"	1950	ND	68.5	18-140		6.61	30	
Atrazine	1320	195	"	1950	ND	67.5	40-140		8.65	30	
Benzaldehyde	868	195	"	1950	ND	44.5	40-140		8.91	30	
Benzo(a)anthracene	1470	195	"	1950	ND	75.2	10-154		5.69	30	
Benzo(a)pyrene	2080	195	"	1950	ND	107	12-172		7.28	30	
Benzo(b)fluoranthene	1700	195	"	1950	ND	87.1	18-163		18.0	30	
Benzo(g,h,i)perylene	2440	195	"	1950	ND	125	10-158		7.08	30	
Benzo(k)fluoranthene	1480	195	"	1950	ND	75.8	14-157		0.106	30	
Benzyl butyl phthalate	1340	195	"	1950	ND	68.7	10-152		8.33	30	
1,1'-Biphenyl	1040	195	"	1950	ND	53.6	40-140		13.9	30	
4-Bromophenyl phenyl ether	1540	195	"	1950	ND	79.0	11-146		10.7	30	
Caprolactam	1160	195	"	1950	ND	59.5	40-140		17.5	30	
Carbazole	1360	195	"	1950	ND	69.8	10-233		9.55	30	
4-Chloro-3-methylphenol	1380	195	"	1950	ND	71.0	10-156		18.4	30	
4-Chloroaniline	1320	195	"	1950	ND	67.6	10-156		19.7	30	
Bis(2-chloroethoxy)methane	1070	195	"	1950	ND	55.1	10-108		15.6	30	
Bis(2-chloroethyl)ether	976	195	"	1950	ND	50.1	10-133		10.2	30	
Bis(2-chloroisopropyl)ether	833	195	"	1950	ND ND	42.7	10-127		8.84	30	
2-Chloronaphthalene	1240	195	"	1950	ND	63.8	12-129		12.4	30	
2-Chlorophenol	1100	195	"	1950	ND	56.2	10-133		11.4	30	
4-Chlorophenyl phenyl ether	1320	195	"	1950	ND ND	67.6	13-138		11.1	30	
Chrysene	1290	195	"	1950	ND ND	66.1	22-140		6.41	30	
Dibenzo(a,h)anthracene	2020	195	"	1950	ND ND	104	10-146		7.00	30	
Dibenzofuran	1390	195	,,	1950		71.1			13.8	30	
Diomizorani	1390	193		1930	ND	/1.1	15-136		13.0	50	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

1950

ND

195

1250

Di-n-butyl phthalate

30

6.39

20-138

64.3



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Matrix Spike Dup (BB40881-MSD1)	*Source sample: 14E	0560-04 (R	SB-11/17.5-1	19.5)			Prepared: 0	02/24/2014 Analyze	ed: 02/25/201
3,3'-Dichlorobenzidine	1380	389	ug/kg dry	1950	ND	71.1	10-154	3.00	30
,4-Dichlorophenol	1420	195	"	1950	ND	72.9	10-140	17.4	30
Diethyl phthalate	1380	195	"	1950	ND	70.6	20-132	7.89	30
,4-Dimethylphenol	1200	195	"	1950	ND	61.4	10-130	15.7	30
imethyl phthalate	1420	195	"	1950	ND	72.8	22-128	10.9	30
,6-Dinitro-2-methylphenol	1380	195	"	1950	ND	70.9	10-145	3.12	30
4-Dinitrophenol	1570	390	"	1950	ND	80.3	10-175	8.95	30
4-Dinitrotoluene	1550	195	"	1950	ND	79.4	10-145	8.18	30
6-Dinitrotoluene	1470	195	"	1950	ND	75.2	18-135	12.6	30
i-n-octyl phthalate	1310	195	"	1950	ND	67.4	10-177	7.13	30
is(2-ethylhexyl)phthalate	1130	195	"	1950	ND	57.9	22-144	7.23	30
luoranthene	1480	195	"	1950	ND	75.8	10-155	7.98	30
luorene	1240	195	"	1950	ND	63.8	18-139	9.73	30
Iexachlorobenzene	1210	195	"	1950	ND	62.1	16-150	9.48	30
Iexachlorobutadiene	1430	195	"	1950	ND	73.3	10-135	13.4	30
lexachlorocyclopentadiene	855	195	"	1950	ND	43.9	10-120	17.6	30
Iexachloroethane	893	195	"	1950	ND	45.8	10-115	12.8	30
ndeno(1,2,3-cd)pyrene	2210	195	"	1950	ND	114	10-158	7.15	30
ophorone	1120	195	"	1950	ND	57.7	10-136	17.1	30
-Methylnaphthalene	1290	195	"	1950	ND	66.0	10-143	12.8	30
-Methylphenol	1130	195	"	1950	ND	57.9	10-160	12.4	30
- & 4-Methylphenols	1050	195	"	1950	ND	53.9	10-130	12.2	30
aphthalene	1110	195	"	1950	ND	57.1	10-143	11.4	30
-Nitroaniline	1390	195	"	1950	ND	71.3	10-189	8.24	30
-Nitroaniline	1390	195	"	1950	ND	71.5	19-137	13.1	30
-Nitroaniline	1500	195	"	1950	ND	77.1	10-196	11.3	30
litrobenzene	1140	195	"	1950	ND	58.4	10-146	15.0	30
-Nitrophenol	1250	195	"	1950	ND	64.0	10-148	13.8	30
-Nitrophenol	1270	195	"	1950	ND	65.0	10-180	9.68	30
I-nitroso-di-n-propylamine	1020	195	"	1950	ND	52.4	10-150	10.4	30
I-Nitrosodiphenylamine	1510	195	"	1950	ND	77.5	13-166	8.59	30
entachlorophenol	1600	195	"	1950	ND	82.3	10-189	7.38	30
henanthrene	1330	195	"	1950	ND	68.1	12-151	6.49	30
henol	974	195	"	1950	ND	50.0	10-134	9.78	30
yrene	1520	195	"	1950	ND	78.2	10-156	7.18	30
,2,4,5-Tetrachlorobenzene	1240	195	"	1950	ND	63.5	40-140	14.8	30
,4,6-Trichlorophenol	1490	195	"	1950	ND	76.7	10-144	16.0	30
4,5-Trichlorophenol	1590	195	"	1950	ND	81.7	17-131	18.3	30
urrogate: 2-Fluorophenol	1640		"	2950		55.6	10-109		
urrogate: Phenol-d5	1610		"	2940		54.8	10-124		
urrogate: Nitrobenzene-d5	1170		"	1990		59.1	10-148		
urrogate: 2-Fluorobiphenyl	1270		"	1980		64.4	10-111		
urrogate: 2,4,6-Tribromophenol	2920		"	2900		101	10-142		
urrogate: Terphenyl-d14	1710		"	1980		86.5	10-147		

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371



# $Semivolatile\ Organic\ Compounds\ by\ GC/MS\ -\ Quality\ Control\ Data$

#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40969 - EPA 3510C											
Blank (BB40969-BLK1)							Prep	ared: 02/26/2	2014 Analyz	ed: 02/27/2	2014
Acenaphthene	ND	5.00	ug/L								
Acenaphthylene	ND	5.00	"								
Acetophenone	ND	5.00	"								
Anthracene	ND	5.00	"								
Atrazine	ND	5.00	"								
Benzaldehyde	ND	5.00	"								
Benzo(a)anthracene	ND	5.00	"								
Benzo(a)pyrene	ND	5.00	"								
Benzo(b)fluoranthene	ND	5.00	"								
Benzo(g,h,i)perylene	ND	5.00	"								
Benzo(k)fluoranthene	ND	5.00	"								
Benzyl butyl phthalate	ND	5.00	"								
1,1'-Biphenyl	ND	5.00	"								
4-Bromophenyl phenyl ether	ND	5.00	"								
Caprolactam	ND	5.00	"								
Carbazole	ND	5.00	"								
4-Chloro-3-methylphenol	ND	5.00	"								
4-Chloroaniline	ND	5.00	"								
Bis(2-chloroethoxy)methane	ND	5.00	"								
Bis(2-chloroethyl)ether	ND	5.00	"								
Bis(2-chloroisopropyl)ether	ND	5.00	"								
2-Chloronaphthalene	ND	5.00	"								
2-Chlorophenol	ND	5.00	"								
4-Chlorophenyl phenyl ether	ND	5.00	"								
Chrysene	ND	5.00	"								
Dibenzo(a,h)anthracene	ND	5.00	"								
Dibenzofuran	ND	5.00	"								
Di-n-butyl phthalate	ND	5.00	"								
3,3'-Dichlorobenzidine	ND	5.00	"								
2,4-Dichlorophenol	ND	5.00	"								
Diethyl phthalate	ND	5.00	"								
2,4-Dimethylphenol	ND	5.00	"								
Dimethyl phthalate	ND	5.00	"								
4,6-Dinitro-2-methylphenol	ND	5.00	"								
2,4-Dinitrophenol	ND	5.00	"								
2,4-Dinitrotoluene	ND	5.00	"								
2,6-Dinitrotoluene	ND	5.00	"								
Di-n-octyl phthalate	ND	5.00	"								
Bis(2-ethylhexyl)phthalate	ND	5.00	"								
Fluoranthene	ND	5.00	"								
Fluorene	ND	5.00	"								
Hexachlorobenzene	ND	5.00	"								
Hexachlorobutadiene	ND	5.00	"								
Hexachlorocyclopentadiene	ND	5.00	"								
Hexachloroethane	ND	5.00	"								
Indeno(1,2,3-cd)pyrene	ND	5.00	"								
Isophorone	ND	5.00	"								
2-Methylnaphthalene	ND	5.00	"								
2-Methylphenol	ND	5.00	"								
3- & 4-Methylphenols	ND	5.00	"								
Naphthalene	ND	5.00	"								



#### York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BB40969 - EPA 3510C											
Blank (BB40969-BLK1)							Prepa	ared: 02/26/2	2014 Analyz	ed: 02/27/2	2014
3-Nitroaniline	ND	5.00	ug/L								
4-Nitroaniline	ND	5.00	"								
2-Nitroaniline	ND	5.00	"								
Nitrobenzene	ND	5.00	"								
4-Nitrophenol	ND	5.00	"								
2-Nitrophenol	ND	5.00	"								
N-nitroso-di-n-propylamine	ND	5.00	"								
N-Nitrosodiphenylamine	ND	5.00	"								
Pentachlorophenol	ND	5.00	"								
Phenanthrene	ND	5.00	"								
Phenol	ND	5.00	"								
Pyrene	ND	5.00	"								
1,2,4,5-Tetrachlorobenzene	ND	5.00	"								
2,4,6-Trichlorophenol	ND	5.00	"								
2,4,5-Trichlorophenol	ND	5.00	"								
Surrogate: 2-Fluorophenol	16.3	5.00		75.6		21.6	10-52				
Surrogate: 2-Ptuorophenoi Surrogate: Phenol-d5	8.92		"	75.5		11.8	10-32 10-117				
_			,,								
Surrogate: Nitrobenzene-d5	29.9		,,	51.0		58.5	12-112				
Surrogate: 2-Fluorobiphenyl	31.2			50.8		61.4	14-101				
Surrogate: 2,4,6-Tribromophenol	68.6		"	74.4		92.2	17-127				
Surrogate: Terphenyl-d14	47.5		"	50.7		93.8	10-151				
Blank (BB40969-BLK2)							Prepa	ared: 02/26/2	2014 Analyz	ed: 02/27/2	2014
Acenaphthene	ND	10.0	ug/L								
Acenaphthylene	ND	10.0	"								
Acetophenone	ND	10.0	"								
Anthracene	ND	10.0	"								
Atrazine	ND	10.0	"								
Benzaldehyde	ND	10.0	"								
Benzo(a)anthracene	ND	10.0	"								
Benzo(a)pyrene	ND	10.0	"								
Benzo(b)fluoranthene	ND	10.0	"								
Benzo(g,h,i)perylene	ND	10.0	"								
Benzo(k)fluoranthene	ND	10.0	"								
Benzyl butyl phthalate	ND	10.0	"								
1,1'-Biphenyl	ND	10.0	"								
4-Bromophenyl phenyl ether	ND	10.0	"								
Caprolactam	ND	10.0	"								
Carbazole	ND	10.0	"								
4-Chloro-3-methylphenol	ND	10.0	"								
4-Chloroaniline	ND	10.0	"								
Bis(2-chloroethoxy)methane	ND	10.0	"								
Bis(2-chloroethyl)ether	ND ND	10.0	"								
Bis(2-chloroisopropyl)ether	ND ND	10.0	"								
2-Chloronaphthalene	ND ND	10.0	,,								
2-Chlorophenol	ND ND		"								
		10.0	"								
4-Chlorophenyl phenyl ether	ND	10.0	"								
Chrysene	ND	10.0	"								
Dibenzo(a,h)anthracene Dibenzofuran	ND	10.0									
Libenzoturan	ND	10.0	"								
Di-n-butyl phthalate	ND	10.0	"								

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

RPD

%REC



York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BB40969-BLK2)						Prepared: 02/26/2014 Analyzed: 02/27/201
3,3'-Dichlorobenzidine	ND	10.0	ug/L			
2,4-Dichlorophenol	ND	10.0	"			
Diethyl phthalate	ND	10.0	"			
,4-Dimethylphenol	ND	10.0	"			
pimethyl phthalate	ND	10.0	"			
,6-Dinitro-2-methylphenol	ND	10.0	"			
,4-Dinitrophenol	ND	10.0	"			
,4-Dinitrotoluene	ND	10.0	"			
,6-Dinitrotoluene	ND	10.0	"			
Di-n-octyl phthalate	ND	10.0	"			
sis(2-ethylhexyl)phthalate	ND	10.0	"			
luoranthene	ND	10.0	"			
luorene	ND	10.0	"			
Iexachlorobenzene	ND	10.0	"			
Iexachlorobutadiene	ND	10.0	"			
Iexachlorocyclopentadiene	ND	10.0	"			
Iexachloroethane	ND	10.0	"			
ndeno(1,2,3-cd)pyrene	ND	10.0	"			
sophorone	ND	10.0	"			
-Methylnaphthalene	ND	10.0	"			
-Methylphenol	ND	10.0	"			
- & 4-Methylphenols	ND	10.0	"			
aphthalene	ND	10.0	"			
-Nitroaniline	ND	10.0	"			
-Nitroaniline	ND	10.0	"			
-Nitroaniline	ND	10.0	"			
litrobenzene	ND	10.0	"			
-Nitrophenol	ND	10.0	"			
-Nitrophenol	ND	10.0	"			
J-nitroso-di-n-propylamine	ND	10.0	"			
I-Nitrosodiphenylamine	ND	10.0	"			
entachlorophenol	ND	10.0	"			
henanthrene	ND	10.0				
henol	ND	10.0	"			
yrene	ND ND	10.0	"			
,2,4,5-Tetrachlorobenzene	ND ND	10.0	"			
,4,6-Trichlorophenol	ND	10.0	"			
,4,5-Trichlorophenol	ND	10.0	"			
urrogate: 2-Fluorophenol	54.6		"	151	36.1	10-52
urrogate: Phenol-d5	36.5		"	151	24.1	10-117
urrogate: Nitrobenzene-d5	64.9		"	102	63.6	12-112
urrogate: 2-Fluorobiphenyl	62.1		"	102	61.1	14-101
urrogate: 2,4,6-Tribromophenol	152		"	149	102	17-127
urrogate: Terphenyl-d14	94.5		"	101	93.2	10-151



		Reporting	Spike	Source*	Source* %				RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Aceangalthushen	2/26/2014 Analyzed: 02/27/20
Acenaphtlydne	
Inflancene	
razzine	
mzalchyde   20,9   5,00   "   50,0   41,8   40,140   mzo(a)mthracene   34,6   5,00   "   50,0   86,0   24,131   mzo(a)mthracene   45,2   5,00   "   50,0   86,0   24,131   mzo(b)mthracene   45,2   5,00   "   50,0   90,5   11,145   mzo(b)mthracene   45,2   5,00   "   50,0   96,5   11,145   mzo(b)mthracene   47,4   5,00   "   50,0   94,8   10,161   mzo(b)mthracene   47,4   5,00   "   50,0   51,8   40,140   mzo(b)mthracene   33,7   5,00   "   50,0   51,8   40,140   mzo(b)mthracene   36,7   5,00   "   50,0   67,3   14,134   mzo(b)mthracene   34,4   5,00   "   50,0   67,8   40,140   mzo(b)mthracene   34,4   5,00   "   50,0   67,8   40,140   mzo(b)mthracene   34,4   5,00   "   50,0   68,9   10,207   mzo(b)mthracene   34,4   5,00   "   50,0   68,9   10,207   mzo(b)mthracene   36,7   5,00   "   50,0   7,4   28,109   mzo(b)mthracene   36,7   5,00   "   50,0   7,68   40,140   mzo(b)mthracene   36,7   5,00   "   50,0   7,68   40,140   mzo(b)mthracene   34,4   5,00   "   50,0   56,4   23,100   mzo(b)mthracene   36,7   5,00   "   50,0   7,68   40,140   mzo(b)mthracene   36,7   5,00   "   50,0   47,5   41,116   mzo(b)mthracene   36,7   5,00   "   50,0   47,5   41,116   mzo(b)mthracene   30,8   5,00   "   50,0   41,5   11,116   mzo(b)mthracene   31,1   5,00   "   50,0   67,3   34,14   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116   41,116	
mzo(a)mliracene	
Marcolapyrene   43.0   5.00   "   50.0   86.0   24.131   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.145   1.1	
Part	
Marcolly fluthalate	
Part   Duryl phthalate   33,7   5,00   " 50,0   67,3   14-134   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149   14-149	
Paiphenyl	
Seromophenyl phenyl ether   36,7   5,00   " 50,0   73,4   28-109   Profestation   3,84   5,00   " 50,0   76,8   40,140   Low Be profestation   3,84   5,00   " 50,0   76,8   40,140   Low Be profestation   3,84   5,00   " 50,0   76,8   40,140   Low Be profestation   3,84   5,00   " 50,0   77,4   17-168   42,2100   10,1000   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   10,140   1	
prolactam	
Stazole   34.4   5.00   " 50.0   68.9   10.207   10.207   10.1070.3-methylphenol   28.2   5.00   " 50.0   56.4   23-100   10.1070.3-methylphenol   28.2   5.00   " 50.0   77.4   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.1	Bias
Chloro-3-methylphenol   28.2   5.00   " 50.0   56.4   23-100   Chloroaniline   38.7   5.00   " 50.0   77.4   17-168   72-168   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169   72-169	
Chloroaniline   38.7   5.00   " 50.0   77.4   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168   17.168	
Sechloroethoxy)methane   26,7   5,00   "   50,0   53,5   23-106   Sechloroethy)pether   23.8   5,00   "   50,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   47,5   14-116   56,0   56,0   50,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0   56,0	
Sechlorosphyl)ether   23.8   5.00   "   50.0   47.5   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   14-116   1	
Second   S	
Chloronaphthalene         30.8         5.00         "         50.0         61.7         32.94           Chlorophenol         21.2         5.00         "         50.0         42.5         16.99           Chlorophenyl phenyl ether         32.3         5.00         "         50.0         64.6         26-113           rysene         30.1         5.00         "         50.0         60.2         26-112           benzofuran         33.9         5.00         "         50.0         67.8         36-96           -n-butyl phthalate         29.8         5.00         "         50.0         59.6         20-119           -Dichlorophenol         30.6         5.00         "         50.0         59.6         20-119           -Dichlorophenol         30.6         5.00         "         50.0         67.8         35-154           -Dichlorophenol         30.6         5.00         "         50.0         61.3         28-97           ethyl phthalate         31.6         5.00         "         50.0         66.2         33-104           -Dinitro-methylphenol         8.85         5.00         "         50.0         68.2         33-104           -Dinitrobl	
Chlorophenol 21.2 5.00 " 50.0 42.5 16.99 Chlorophenyl phenyl ether 32.3 5.00 " 50.0 64.6 26-113 rysene 30.1 5.00 " 50.0 60.2 26-112 rysene 30.1 5.00 " 50.0 39.3 " 12-104 rysene 19.6 5.00 " 50.0 50.0 50.6 20-119 rysene 19.6 5.00 " 50.0 50.0 50.0 50.6 20-119 rysene 19.6 5.00 " 50.0 50.0 50.0 50.6 20-119 rysene 19.6 5.00 " 50.0 50.0 50.0 50.0 50.0 50.0 50	
Chlorophenyl phenyl ether   32.3   5.00   "   50.0   64.6   26-113   13.5   26-113   13.5   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113   26-113	
rysene 30.1 5.00 " 50.0 60.2 26-112 remode, hanthracene 19.6 5.00 " 50.0 39.3 12-104 remode, hanthracene 19.6 5.00 " 50.0 39.3 12-104 remode, hanthracene 19.6 5.00 " 50.0 67.8 36-96 remoduran 33.9 5.00 " 50.0 67.8 36-96 remoduran 33.9 5.00 " 50.0 59.6 20-119 remoduratione 39.4 5.00 " 50.0 61.3 28-97 remoduratione 30.6 5.00 " 50.0 61.3 28-97 remoduratione 33.6 5.00 " 50.0 61.3 28-97 remoduratione 33.9 5.00 " 50.0 68.2 33-104 remoduratione 34.1 5.00 " 50.0 68.2 33-104 remoduratione 34.8 5.00 " 50.0 17.7 10-133 remoduratione 35.9 5.00 " 50.0 17.7 10-133 remoduratione 35.9 5.00 " 50.0 18.2 10-145 remoduratione 34.8 5.00 " 50.0 69.6 34-105 remoduratione 34.8 5.00 " 50.0 69.6 34-105 remoduratione 33.8 5.00 " 50.0 69.6 34-105 remoduratione 33.8 5.00 " 50.0 67.5 27-110 remoduratione 31.1 5.00 " 50.0 62.2 22-95 remoduratione 31.1 5.00 " 50.0 50.0 55.4 16-127 remoduratione 31.1 5.00 " 50.0 50.0 50.0 55.4 16-127 remoduratione 31.1 5.00 " 50.0 50.0 50.0 55.4 16-127 remoduratione 31.1 5.00 " 50.0	
benzo(a,h)anthracene	
Semilar   Semi	
Section   Sect	
P-Dichlorobenzidine 39.4 5.00 " 50.0 78.8 25-154 P-Dichlorophenol 30.6 5.00 " 50.0 61.3 28-97 P-Dichlorophenol 30.6 5.00 " 50.0 61.3 28-97 P-Dichlorophenol 30.6 5.00 " 50.0 67.3 34-104 P-Dimethyl phthalate 33.6 5.00 " 50.0 50.1 23-94 P-Dimethyl phthalate 34.1 5.00 " 50.0 68.2 33-104 P-Dimitro-2-methyl phthalate 34.1 5.00 " 50.0 68.2 33-104 P-Dimitro-2-methyl phthalate 35.0 " 50.0 17.7 10-133 P-Dimitrophenol 9.08 5.00 " 50.0 18.2 10-145 P-Dimitro-2-methyl phthalate 35.9 5.00 " 50.0 18.2 10-145 P-Dimitrophenol 9.08 5.00 " 50.0 18.2 10-145 P-Dimitrotoluene 34.8 5.00 " 50.0 69.6 34-105 P-DIMITROTOLUENE 34.1 5.00 " 50.0 69.6 34-105 P-DIMITROTOLUENE 34.8 5.00 P-DIM	
Pichichlorophenol 30.6 5.00 " 50.0 61.3 28-97 ethyl phthalate 33.6 5.00 " 50.0 67.3 34-104 ethyl phthalate 33.6 5.00 " 50.0 50.0 50.1 23-94 methyl phthalate 34.1 5.00 " 50.0 68.2 33-104 ethyl phthalate 34.1 5.00 " 50.0 68.2 33-104 ethyl phthalate 34.1 5.00 " 50.0 17.7 10-133 ethyl phthalate 34.1 5.00 " 50.0 18.2 10-145 ethyl phthalate 35.9 5.00 " 50.0 18.2 10-145 ethyl phthalate 35.9 5.00 " 50.0 18.2 10-145 ethyl phthalate 34.8 5.00 " 50.0 69.6 34-105 ethyl phthalate 52.0 5.00 " 50.0 69.6 34-105 ethyl phthalate 52.0 5.00 " 50.0 104 10-144 ethyl phthalate 33.8 5.00 " 50.0 50.0 67.5 27-110 ethyl phthalate 33.8 5.00 " 50.0 67.5 27-110 ethyl phthalate 33.8 5.00 " 50.0 67.5 27-110 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 50.0 55.4 16-127 ethyl phthalate 31.1 5.00 " 50.0 50.0 50.0 50.0 50.0 50.0 50	
tethyl phthalate	
E-Dimethylphenol 25.0 5.00 " 50.0 50.1 23-94 methyl phthalate 34.1 5.00 " 50.0 68.2 33-104 50-Dinitro-2-methylphenol 8.85 5.00 " 50.0 17.7 10-133 50-Dinitro-2-methylphenol 9.08 5.00 " 50.0 18.2 10-145 50-Dinitrotoluene 35.9 5.00 " 50.0 71.7 32-104 50-Dinitrotoluene 34.8 5.00 " 50.0 69.6 34-105 50-Dinitrotoluene 52.0 5.00 " 50.0 67.5 27-110 50-Dinitrotoluene 52.0 50.0 " 50.0 67.5 27-110 50-Dinitrotoluene 52.0 50.0 " 50.0 67.5 27-110 50-Dinitrotoluene 52.0 " 50.0 50.0 50.0 50.0 50.0 50.0 50.0	
methyl phthalate 34.1 5.00 " 50.0 68.2 33-104 p-Dinitro-2-methylphenol 8.85 5.00 " 50.0 17.7 10-133 p-Dinitrophenol 9.08 5.00 " 50.0 18.2 10-145 p-Dinitrophenol 9.08 5.00 " 50.0 18.2 10-145 p-Dinitrotoluene 35.9 5.00 " 50.0 71.7 32-104 p-Dinitrotoluene 34.8 5.00 " 50.0 69.6 34-105 p-n-octyl phthalate 52.0 5.00 " 50.0 104 10-144 p-Dinitrotoluene 33.8 5.00 " 50.0 59.2 10-171 p-n-octyl phthalate 33.8 5.00 " 50.0 67.5 27-110 p-n-octyl phthalate 33.8 5.00 " 50.0 67.5 27-110 p-n-octyl phthalate 30.8 5.00 " 50.0 61.6 32-107 p-n-octyl phthalate 31.1 5.00 " 50.0 62.2 22-95 p-n-octyl phthalate 31.1 5.00 " 50.0 55.4 16-127 p-n-octyl phthalate 31.3 5.00 " 50.0 55.4 19-119 p-n-octyl phthalate 31.3 5.00 " 50.0 62.6 27-97	
-Dinitro-2-methylphenol 8.85 5.00 " 50.0 17.7 10-133 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-145 10-14	
-Dinitrophenol 9.08 5.00 " 50.0 18.2 10-145 -Dinitrotoluene 35.9 5.00 " 50.0 71.7 32-104 -Dinitrotoluene 34.8 5.00 " 50.0 69.6 34-105 -n-octyl phthalate 52.0 5.00 " 50.0 104 10-144 -G(2-ethylhexyl)phthalate 29.6 5.00 " 50.0 59.2 10-171 -toranthene 33.8 5.00 " 50.0 67.5 27-110 -torene 30.8 5.00 " 50.0 61.6 32-107	
A-Dinitrotoluene 35.9 5.00 " 50.0 71.7 32-104 50-Dinitrotoluene 34.8 5.00 " 50.0 69.6 34-105 50-Dinitrotoluene 52.0 5.00 " 50.0 104 10-144 50-Dinitrotoluene 52.0 5.00 " 50.0 104 10-144 50-Dinitrotoluene 52.0 5.00 " 50.0 59.2 10-171 50-Dinitrotoluene 52.0 5.00 " 50.0 59.2 10-171 50-Dinitrotoluene 52.0 5.00 " 50.0 67.5 27-110 50-Dinitrotoluene 33.8 5.00 " 50.0 67.5 27-110 50-Dinitrotoluene 52.0 5.00 " 50.0 61.6 32-107 50-Dinitrotoluene 52.0 5.00 " 50.0 61.6 32-107 50-Dinitrotoluene 52.0 5.00 " 50.0 55.4 16-127 50-Dinitrotoluene 52.0 " 50.0 55.4 16-127 50-Dinitrotoluene 52.0 " 50.0 " 50.0 62.2 22-95 50-Dinitrotoluene 52.0 " 50.0 " 50.0 36.6 10-99 50-Dinitrotoluene 52.0 " 50.0 " 50.0 39.8 10-107 50-Dinitrotoluene 52.0 " 50.0 " 50.0 55.4 19-119 50-Dinitrotoluene 52.0 " 50.0 " 50.0 " 50.0 55.4 19-119 50-Dinitrotoluene 52.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0 " 50.0	
5-Dinitrotoluene 34.8 5.00 " 50.0 69.6 34-105 5-n-octyl phthalate 52.0 5.00 " 50.0 104 10-144 5-n-octyl phthalate 52.0 5.00 " 50.0 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 50 59.2 10-171 50 50 59.2 10-171 50 50 50 50 59.2 10-171 50 50 50 50 50 50 50 50 50 59.2 10-171 50 50 50 50 50 50 50 50 50 50 50 50 50	
-n-octyl phthalate 52.0 5.00 " 50.0 104 10-144 sc(2-ethylhexyl)phthalate 29.6 5.00 " 50.0 59.2 10-171 toranthene 33.8 5.00 " 50.0 67.5 27-110 torene 30.8 5.00 " 50.0 61.6 32-107 exachlorobenzene 27.7 5.00 " 50.0 55.4 16-127 exachlorobutadiene 31.1 5.00 " 50.0 62.2 22-95 exachlorocyclopentadiene ND 5.00 " 50.0 10-101 Low Between 18.3 5.00 " 50.0 36.6 10-99 teno(1,2,3-cd)pyrene 19.9 5.00 " 50.0 55.4 19-119 exachloropene 27.7 5.00 " 50.0 50.0 55.4 19-119 exachloropene 27.7 5.00 " 50.0 50.0 50.0 55.4 19-119 exachloropene 27.7 5.00 " 50.0 50.0 50.0 50.0 50.0 50.0 50	
s(2-ethylhexyl)phthalate       29.6       5.00       "       50.0       59.2       10-171         toranthene       33.8       5.00       "       50.0       67.5       27-110         torene       30.8       5.00       "       50.0       61.6       32-107         xachlorobenzene       27.7       5.00       "       50.0       55.4       16-127         xachlorobutadiene       31.1       5.00       "       50.0       62.2       22-95         xachlorocyclopentadiene       ND       5.00       "       50.0       10-101       Low B         xachlorochane       18.3       5.00       "       50.0       36.6       10-99         eleno(1,2,3-cd)pyrene       19.9       5.00       "       50.0       39.8       10-107         phorone       27.7       5.00       "       50.0       55.4       19-119         Methylnaphthalene       31.3       5.00       "       50.0       62.6       27-97	
33.8   5.00   "   50.0   67.5   27-110	
storene         30.8         5.00         "         50.0         61.6         32-107           exachlorobenzene         27.7         5.00         "         50.0         55.4         16-127           exachlorobutadiene         31.1         5.00         "         50.0         62.2         22-95           exachlorocyclopentadiene         ND         5.00         "         50.0         10-101         Low B           exachlorocyclopentadiene         18.3         5.00         "         50.0         36.6         10-99           eleno(1,2,3-cd)pyrene         19.9         5.00         "         50.0         39.8         10-107           phorone         27.7         5.00         "         50.0         55.4         19-119           Methylnaphthalene         31.3         5.00         "         50.0         62.6         27-97	
exachlorobenzene         27.7         5.00         "         50.0         55.4         16-127           exachlorobutadiene         31.1         5.00         "         50.0         62.2         22-95           exachlorocyclopentadiene         ND         5.00         "         50.0         10-101         Low B           exachlorochtane         18.3         5.00         "         50.0         36.6         10-99           deno(1,2,3-cd)pyrene         19.9         5.00         "         50.0         39.8         10-107           sphorone         27.7         5.00         "         50.0         55.4         19-119           Methylnaphthalene         31.3         5.00         "         50.0         62.6         27-97	
exachlorobutadiene         31.1         5.00         "         50.0         62.2         22-95           exachlorocyclopentadiene         ND         5.00         "         50.0         10-101         Low B           exachlorochtane         18.3         5.00         "         50.0         36.6         10-99           deno(1,2,3-cd)pyrene         19.9         5.00         "         50.0         39.8         10-107           sphorone         27.7         5.00         "         50.0         55.4         19-119           Methylnaphthalene         31.3         5.00         "         50.0         62.6         27-97	
xachlorocyclopentadiene         ND         5.00         "         50.0         10-101         Low B           xachlorocthane         18.3         5.00         "         50.0         36.6         10-99           leno(1,2,3-cd)pyrene         19.9         5.00         "         50.0         39.8         10-107           phorone         27.7         5.00         "         50.0         55.4         19-119           Methylnaphthalene         31.3         5.00         "         50.0         62.6         27-97	
xachloroethane       18.3       5.00       " 50.0       36.6       10-99         leno(1,2,3-cd)pyrene       19.9       5.00       " 50.0       39.8       10-107         phorone       27.7       5.00       " 50.0       55.4       19-119         Methylnaphthalene       31.3       5.00       " 50.0       62.6       27-97	··
leno(1,2,3-cd)pyrene 19.9 5.00 " 50.0 39.8 10-107 phorone 27.7 5.00 " 50.0 55.4 19-119 Methylnaphthalene 31.3 5.00 " 50.0 62.6 27-97	nas
phorone 27.7 5.00 " 50.0 55.4 19-119 Methylnaphthalene 31.3 5.00 " 50.0 62.6 27-97	
Methylnaphthalene 31.3 5.00 " 50.0 62.6 27-97	
Methylphenol 15.0 5.00 " 50.0 30.0 10-88	
& 4-Methylphenols     14.1     5.00     " 50.0     28.3     10-71       aphthalene     26.7     5.00     " 50.0     53.4     27-95	



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BB40969 - EPA 3510C											
LCS (BB40969-BS1)							Pre	pared: 02/26/2	014 Analyz	ed: 02/27/2	2014
3-Nitroaniline	33.8	5.00	ug/L	50.0		67.7	10-221				
4-Nitroaniline	36.5	5.00	"	50.0		73.0	10-139				
2-Nitroaniline	32.4	5.00	"	50.0		64.9	33-106				
Nitrobenzene	27.0	5.00	"	50.0		53.9	16-114				
4-Nitrophenol	32.2	5.00	"	50.0		64.5	10-55	High Bias			
2-Nitrophenol	28.2	5.00	"	50.0		56.5	24-101				
N-nitroso-di-n-propylamine	25.9	5.00	"	50.0		51.8	14-133				
N-Nitrosodiphenylamine	37.2	5.00	"	50.0		74.4	39-123				
Pentachlorophenol	33.7	5.00	"	50.0		67.4	15-150				
Phenanthrene	31.2	5.00	"	50.0		62.4	26-109				
Phenol	6.24	5.00	"	50.0		12.5	10-57				
Pyrene	37.4	5.00	"	50.0		74.8	23-126				
1,2,4,5-Tetrachlorobenzene	30.5	5.00	"	50.0		61.0	40-140				
2,4,6-Trichlorophenol	35.2	5.00	"	50.0		70.4	34-100				
2,4,5-Trichlorophenol	35.5	5.00	"	50.0		71.1	30-102				
Surrogate: 2-Fluorophenol	14.6		"	75.6		19.3	10-52				

75.5

51.0

50.8

74.4

50.7

13.5

60.2

65.2

97.7

88.3

10-117

12-112

14-101

17-127

10-151

10.2

30.7

33.1

72.7

44.8

Surrogate: Phenol-d5

Surrogate: Nitrobenzene-d5

Surrogate: 2-Fluorobiphenyl

Surrogate: Terphenyl-d14

Surrogate: 2,4,6-Tribromophenol



#### **Volatile Analysis Sample Containers**

Lab ID	Client Sample ID	Volatile Sample Container
14B0560-01	RSB-10/7.5-9.5	40mL 01_Clear Vial Cool to 4° C
14B0560-01	RSB-10/7.5-9.5	40mL Vial with Stir Bar-Cool 4° C
14B0560-02	RSB-10/17.5-19.5	40mL Vial with Stir Bar-Cool 4° C
14B0560-03	RSB-11/7.5-9.5	40mL Vial with Stir Bar-Cool 4° C
14B0560-04	RSB-11/17.5-19.5	40mL 01_Clear Vial Cool to 4° C
14B0560-04	RSB-11/17.5-19.5	40mL Vial with Stir Bar-Cool 4° C
14B0560-05	RSB-1/10-12	40mL 01_Clear Vial Cool to 4° C
14B0560-05	RSB-1/10-12	40mL Vial with Stir Bar-Cool 4° C
14B0560-06	RSB-1/20-22	40mL Vial with Stir Bar-Cool 4° C
14B0560-06	RSB-1/20-22	40mL Vial with Stir Bar-Cool 4° C
14B0560-07	DUP022014	40mL Vial with Stir Bar-Cool 4° C
14B0560-07	DUP022014	40mL Vial with Stir Bar-Cool 4° C
14B0560-08	FB022014	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
14B0560-08	FB022014	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
14B0560-09	RSB-3/8-10	40mL Vial with Stir Bar-Cool 4° C
14B0560-09	RSB-3/8-10	40mL Vial with Stir Bar-Cool 4° C
14B0560-10	RSB-3/18-20	40mL Vial with Stir Bar-Cool 4° C
14B0560-10	RSB-3/18-20	40mL Vial with Stir Bar-Cool 4° C
14B0560-11	TripBlank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

#### **Notes and Definitions**

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
GC-20	Pattern is similar to Motor Oil
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for averge Rf or >20% Drift for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
ND	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
ND RL	
	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.
RL	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.  REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.  METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is
RL MDL	Analyte NOT DETECTED at the stated Reporting Limit (RL) or above.  REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.  METHOD DETECTION LIMIT - the minimum concentration that can be measured and reported with a 99% confidence that the concentration is greater than zero. If requested or required, a value reported below the RL and above the MDL is considered estimated and is noted with a "J" flag.



Low Bias

Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the MDL, with values between the MDL and the RL being "J" flagged as estimated results.

YORK MALTING. INC.

YORK ANALYTICAL LABORATORIES 120 RESEARCH DR.

120 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

# Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

Page 1 of Z

VOITE Information	Panod		Signature office you to roth 8 Ster. Terms & Colluttions.	Volid Daviot ID	j.	
TOOK IIIIOIIIIatioii	vepolt 10:		Invoice 10:	TOOK Project ID	Intri-Around Time	Report Type
Company: Koux	Company:	Company:	and a	1575.00024	RUSH - Same Day	Summary Report
Address 209 Shulte	Address:	Address:	5		RUSH - Next Day	Summary W/ QA Summary
1standa				Purchase Order No.	RUSH - Two Day	CTRCP DQA/DUE Pkg
Phone No. 6 31-232-2600 Phone No.	hone No.	Phone No.			RUSH - Three Day	NY ASP A Package
Contact Person: Contact Person:	Attention:	Attention:			RUSH - Four Day	NY ASP B Package NIDEP Red. Deliv.
	E-Mail Address:	E-Mail Address:		\ AN	Standard(5-7 Days)	Electronic Data Deliverables (EDD)
Print Clearly and Legibly. All Information must be complete	Information my	st he complete	Volatiles	0.0	rg. Full Lists Misc.	Simple Excel
Committee will MOT to located	I im and the ter	or or compress.	8260 full (TCS)	8082PCB RCRA8	Pri.Poll.	NYSDEC EQuIS
Sumples was 1101 be togged in and the turn-dround time	ווו חווח חווה וחו	n-around ume	CTADE liet Maggin Co	BN Only 0151115-1 TAY OTT TITEL	TCL Ognis	EQuIS (std)
clock will not begin until any questions by York are resolved.	questions by Yor	k are resolved.	Suffolk Co.	v CTRCP CT15 list	H IAL MetCN Igniability  13 Full TCTP Flash Point	EZ-EDD (EQuiS)
	•	Matrix Codes	Ketones	App. IX TAGM list	Full App. IX	GIS/KFY (std)
m		S - soil	Oxygenates	Site Spec. NJDEP list	Part360-Routine	Other
Samples Collected/Authorized By (Signature)	v (Signature)	WW - wastewater	CTRCP list 5242	CLI RCP LIST SPIPOTICIP Total Air TOIS	1	York Regulatory Comparison
A CA C	1		502.2	ist TCLP Herb SPIPGTCLP	Part 360-Franks Aquatic Tox.	Excel Spreadsheet Compare to the following Regs. (please fill in):
Name (printed)	90000	Air-A - ambient air	v NJDEP list		NYCDEPSconta TOC NYSDECSconta Asbestos	
		Au-Sy - Sou Vapor	8021B list SPL	SPLP or TCLP 608 PCB Helium	TAGM Silica	
Sample Identification Da	Date/Time Sampled	Sample Matrix	Choose Analyses	Choose Analyses Needed from the Menu Above and Enter Below	oove and Enter Below	Container Description(s)
RSB-10/1.59,52	2/20/14-940	^	TC 100 + TIE	The such	+ 716	
RSB-10/17.5-19.5	1 950	S	11	1.	1,	
25B-11 P15-95	(10/0)	2	11	7,		
12593-11/175-19.5	001) /	\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\script{\sinte\sint\sint{\sinte\sint\sint\sint\sint\sint\sint\sint\sint	1)	11		
RSR-111012	1340	S	3,	11		
25-1120-27	1350	8	11	. )		
JUPORLONY	1200	5		1,		
FB022014	1300	>	11	11		
12513-3/8-10	- 1540	∨	1)	11		
-885	-1600	S	71.1	10 11 11 11		
mments,		Preservation Check those Applicable	4°C Frozen F	HCI MeOH HNO,	H ₂ SO ₊ NaOH	
10220 02 W 1 88		Special	Douxe L.	2 12 120	18.00	on Receipt
018 of 8	on		Samples Relinquished By	Date/Time	Samples Received By Da	Time
825A-11/17.5-19.	٧				12	14-1620 2060
			Samples Relinquished By	Date/Time	Samples Received in LAB by Da	Ďate/Time

YORK ANALYTICAL LABORATORIES 120 RESEARCH DR.

STRATFORD, CT 06615 FAX (203) 357-0166 (203) 325-1371

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your

York Project No. 148058

Page Zof Z

Report Type	Summary Report Summary w/ QA Summary CT RCP Package CTRCP DQA/DUE Pkg NY ASP A Package NY ASP B Package NY ASP B Package	Electronic Data Deliverables (EDD) Simple Excel NYSDEC EQuIS EQuIS (std) EZ-EDD (EQUIS)	GIS/KEY (std) Other York Regulatory Comparison Excel Spreadsheet Compare to the following Rega: (please fill in):	Container Description(s)			Temperature on Receipt on Receipt $\frac{me}{16.20}$
Turn-Around Time	RUSH - Same Day         Summ           RUSH - Next Day         CT R           RUSH - Two Day         CTR           RUSH - Three Day         NY A           RUSH - Four Day         NY A	Full Lists   Misc.   Pri.Poll.   Corrosivity   TCL Ograins   Reactivity   TAL MetCN   Ignitability   Full TCI.P   Flash Point   Pash Point   Pri.Poll.   Pash Point   Pri.Poll.   Pri.Po	Hall App. IX Sieve Anal.  Pari 360 Routine Heterotrophs Pari 360 Besseline TOX Pari 360 Besseline BTU/lb. Pari 360 Besselines NYCOAPS-server TOC NYSOACS-server TOC NYSOACS-server Asbestos TAGM Silica	bove and Enter Below			Other All I' ( Ap) Date/Time Samples Received By Date/Time Samples Received in LAB by Date/Time
YOUR Project ID	1575,0002y Purchase Order No.	Semples from: CT         NY         NJ           Semi-Vols, PestPcButch         Metals         Misc. Org           8270 α 625         8082PCB         RCRA8         TPH GRO           STARS list         8081Pest         PP13 list         TPH DRO           BN Only         8151Herb         TAL         CT ETPH           Acids Only         CT R CP         CT 15 list         NV 310-13	App. IX TAGM list Site Spec. NJDEP list SPPORTCIP Total TCLP Pest Dissolved TCLP Herb SPPORTCIP Chlordane Indix.Menk 608 Pest LIST Below	Choose Analyses Needed from the Menu Above and Enter Below	vor ttle		Ascorbic Acid  Ascorbic Acid  21/14 ( 20x) Date/Time
Invoice To: YOUR PI	Company: See Address: Phone No.	Volatiles 8260 full TICs 624 Site Spec. STARS list Nassau Co. RTEX Suffish Co.	MTBE Ketones TCL.list Oxygenales TACM list TCLP list CT.RCP list 524.2 Arom. only 502.2 Halog.only NIDEP list App.IX list SPLPorTCLP 8021B list	20	tcc 100	*	Rozen HCI Sandles Relinquished By Samples Relinquished By Samples Relinquished By
Report To:		n must be comple te turn-around tin	Matrix Codes S - soil Other - specify(oil, etc.) WW - wastewater GW - groundwater DW - drinking water Air-A - ambient air	pled Sample Matrix	110 513	\$10 011	Preservation Check those Applicabl Special Instructions Field Filtered
	Company: Company: Address:	ly. All Informatio logged in and this if any questions b	orized By (Signature)	Date/Time Sampled	2/20/14-105 2/20/14-1515	2/20/14 250	gente.
YOUR Information	Company: Low Address: 209 flutter  Thome No. 631-232-2600	E-Mail Address: Samples will NOT be logged in and the turn-around time clock will not begin until any questions by York are resolved.	Samples Collected Authorized	Sample Identification	TRIPBIANK MW-45	T-++17	Page 89 of 89



# **Technical Report**

prepared for:

#### **Roux Associates**

209 Shafter St Islandia NY, 11749

**Attention: Wendy Monterosso** 

Report Date: 09/18/2014

**Client Project ID: 1575.00024** 

York Project (SDG) No.: 14I0505

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 89

Report Date: 09/18/2014 Client Project ID: 1575.00024 York Project (SDG) No.: 14I0505

#### **Roux Associates**

209 Shafter St Islandia NY, 11749

Attention: Wendy Monterosso

#### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 11, 2014 and listed below. The project was identified as your project: **1575.00024**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
14I0505-01	RSB/MW-15/4-5	Soil	09/10/2014	09/11/2014
14I0505-02	RSB/MW-15/10-11	Soil	09/10/2014	09/11/2014
14I0505-03	RSB/MW-15/14-15	Soil	09/10/2014	09/11/2014
14I0505-04	RSB/MW-14/12-14	Soil	09/10/2014	09/11/2014
14I0505-05	RSB/MW-14/17-18	Soil	09/10/2014	09/11/2014
14I0505-06	FB091014	Water	09/10/2014	09/11/2014
14I0505-07	TB091014	Water	09/10/2014	09/11/2014
1410505-08	DUP091014	Soil	09/10/2014	09/11/2014
14I0505-09	RSB/MW-17/1-3	Soil	09/10/2014	09/11/2014
14I0505-10	RSB/MW-17/13-15	Soil	09/10/2014	09/11/2014
14I0505-11	RSB/MW-17/17-18	Soil	09/10/2014	09/11/2014
14I0505-12	MW-5	Oil	09/10/2014	09/11/2014

#### **General Notes** for York Project (SDG) No.: 14I0505

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director **Date:** 09/18/2014



#### **Sample Information**

Client Sample ID: RSB/MW-15/4-5

York Sample ID:

14I0505-01

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:20 am <u>Date Received</u> 09/11/2014

#### Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

Sample Notes:

Sample P	repared by	Method:	EPA	5035A
----------	------------	---------	-----	-------

CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	44	Cal-E, CCV-E, B	ug/kg dry	2.3	9.2	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
71-43-2	Benzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	46	92	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 4 of 89



#### **Sample Information**

**Client Sample ID:** RSB/MW-15/4-5 York Sample ID: 14I0505-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14I0505 1575.00024 Soil September 10, 2014 8:20 am 09/11/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### **Log-in Notes:**

#### **Sample Notes:**

**Sample Notes:** 

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
79-20-9	Methyl acetate	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.3	9.2	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
100-42-5	Styrene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
108-88-3	Toluene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.6	9.2	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	6.9	14	1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
460-00-4	Surrogate: p-Bromofluorobenzene	98.7 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	102 %			67-130						
2037-26-5	Surrogate: Toluene-d8	94.4 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: FPA 5035A

Sample Frepared by Method. EFA 3033A										
CAS No	o. Parameter	Result	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentatively Identified Compounds	0.0	ug/kg	dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 03:14	SS

**Log-in Notes:** 

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 5 of 89



<u>Client Sample ID:</u> RSB/MW-15/4-5 <u>York Sample ID:</u> 14I0505-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 8:20 am
 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

Sample Notes:

Sample Prepared by Method: EPA 3550C

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
98-86-2	Acetophenone	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
120-12-7	Anthracene	291	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
1912-24-9	Atrazine	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
56-55-3	Benzo(a)anthracene	705	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
50-32-8	Benzo(a)pyrene	272	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
205-99-2	Benzo(b)fluoranthene	266	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
191-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
207-08-9	Benzo(k)fluoranthene	334	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
105-60-2	Caprolactam	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
86-74-8	Carbazole	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
218-01-9	Chrysene	787	J	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	890	1770	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 6 of 89



<u>Client Sample ID:</u> RSB/MW-15/4-5 <u>York Sample ID:</u> 14I0505-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 8:20 am
 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<b>Log-in Notes:</b>	<b>Sample Notes:</b>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	890	1780	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
206-44-0	Fluoranthene	1800		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
86-73-7	Fluorene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
78-59-1	Isophorone	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
91-20-3	Naphthalene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
85-01-8	Phenanthrene	1280		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
108-95-2	Phenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
129-00-0	Pyrene	1510		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	448	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	224	888	5	EPA 8270D	09/16/2014 07:49	09/16/2014 22:50	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	78.7 %			10-105						
4165-62-2	Surrogate: Phenol-d5	92.5 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	80.9 %			10-140						

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 7 of 89



**Client Sample ID:** RSB/MW-15/4-5

York Sample ID:

14I0505-01

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 8:20 am Date Received 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Log-in Notes:** 

**Log-in Notes:** 

LOO

Reported to

0.100

**Sample Notes:** 

Date/Time

Date/Time Analyzed Analyst

CAS No. Parameter 321-60-8 Surrogate: 2-Fluorobiphenyl

90.9 % 66.4 %

Result

Result

Result

93.8

LOD/MDL 10-126 10-150

Reported to

Dilution

Reference Method

Prepared

118-79-6 1718-51-0

Surrogate: 2,4,6-Tribromophenol Surrogate: Terphenyl-d14

87.5 %

Units

Flag

10-137

**Sample Notes:** 

Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

Parameter

Reported to Flag Units LOD/MDL

ug/kg dry

Units

%

Dilution Reference Method Date/Time

Date/Time

Analyzed Analyst

Tentatively Identified Compounds

0.00

Dilution

EPA 8270D

Prepared 09/16/2014 07:49

Prepared

09/18/2014 09:01

09/16/2014 22:50

**Total Solids** 

solids

CAS No.

nple Prepared by	/ Method: %	Solids Prep	

_	_	_	_	_

0.100

**Sample Information** 

LOD/MDL

**Sample Notes:** 

Reference Method

SM 2540G

Date/Time Date/Time

09/18/2014 17:31

Analyzed Analyst

PAM

CAS No. Parameter

* % Solids

RSB/MW-15/10-11 **Client Sample ID:** 

Flag

Matrix

York Sample ID:

14I0505-02

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Soil

Collection Date/Time September 10, 2014 8:32 am Date Received 09/11/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/kg dry	240	960	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
71-43-2	Benzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-25-2	Bromoform	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
74-83-9	Bromomethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
78-93-3	2-Butanone	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-00-3	Chloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 8 of 89



<u>Client Sample ID:</u> RSB/MW-15/10-11 <u>York Sample ID:</u> 14I0505-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 8:32 am
 09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-66-3	Chloroform	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
74-87-3	Chloromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
110-82-7	Cyclohexane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
156-59-2	cis-1,2-Dichloroethylene	2300		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	4800	9600	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
100-41-4	Ethyl Benzene	5700		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
591-78-6	2-Hexanone	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
98-82-8	Isopropylbenzene	450	J	ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
79-20-9	Methyl acetate	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
108-87-2	Methylcyclohexane	1000		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-09-2	Methylene chloride	ND		ug/kg dry	240	960	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
100-42-5	Styrene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
108-88-3	Toluene	100000		ug/kg dry	1200	2400	500	EPA 8260C	09/17/2014 16:30	09/18/2014 16:28	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 9 of 89



Client Sample ID: RSB/MW-15/10-11

**York Sample ID:** 14I0505-02

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:32 am <u>Date Received</u> 09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

Sample Prepared by Method: EPA 5035A

Log-in	Notes:	

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
95-47-6	o-Xylene	6400		ug/kg dry	240	480	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
179601-23-1	p- & m- Xylenes	21000		ug/kg dry	480	960	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
1330-20-7	Xylenes, Total	28000		ug/kg dry	720	1400	100	EPA 8260C	09/17/2014 16:30	09/18/2014 03:43	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
460-00-4	Surrogate: p-Bromofluorobenzene	98.0 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	86.3 %			67-130						
2037-26-5	Surrogate: Toluene-d8	103 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

#### **Sample Notes:**

Date/Time Date/Time Reported to CAS No. Result Flag Units Reference Method Parameter Dilution Prepared Analyst LOD/MDL LOQ dihydro methyl indene isomers 09/18/2014 03:43 NA 3100 ug/kg dry EPA 8260C 09/17/2014 16:30 SS NA Ethyl Dimethyl Benzene isomer 1900 ug/kg dry EPA 8260C 09/17/2014 16:30 09/18/2014 03:43 SS ethyl methyl Benzene isomers 09/18/2014 03:43 NA 7200 ug/kg dry EPA 8260C 09/17/2014 16:30 SS NA methyl (methylethyl) benzene 2200 ug/kg dry EPA 8260C 09/17/2014 16:30 09/18/2014 03:43 SS isomers NA propenyl benzene isomer 3200 ug/kg dry 100 EPA 8260C 09/17/2014 16:30 09/18/2014 03:43 SS Tetramethyl Benzene isomer EPA 8260C 09/17/2014 16:30 09/18/2014 03:43 SS NA 1800 ug/kg dry 100

#### trimethyl Hexane isomer 09/17/2014 16:30 09/18/2014 03:43 ug/kg dry EPA 8260C NA 4300 100 SS NA Trimethyl pentane isomers 5500 ug/kg dry EPA 8260C 09/17/2014 16:30 09/18/2014 03:43 SS 100 trimethylbenzene isomer 09/17/2014 16:30 09/18/2014 03:43 1900 EPA 8260C NA ug/kg dry SS

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

#### **Log-in Notes:**

#### Sample Notes:

CAS No	o. Parameter	Result	Flag Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
208-96-8	Acenaphthylene	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
98-86-2	Acetophenone	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
120-12-7	Anthracene	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
1912-24-9	Atrazine	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
100-52-7	Benzaldehyde	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
56-55-3	Benzo(a)anthracene	ND	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
50-32-8	Benzo(a)pyrene	ND	ISTD-L ug/kg dry O	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR



Client Sample ID: RSB/MW-15/10-11

York Sample ID:

 York Project (SDG) No.
 Client Project ID

 14I0505
 1575.00024

Matrix Co.
Soil Septem

<u>Collection Date/Time</u> September 10, 2014 8:32 am <u>Date Received</u> 09/11/2014

14I0505-02

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
205-99-2	Benzo(b)fluoranthene	ND	ISTD-L O	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
191-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
207-08-9	Benzo(k)fluoranthene	ND	ISTD-L O	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
105-60-2	Caprolactam	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
86-74-8	Carbazole	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
218-01-9	Chrysene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	892	1780	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	892	1780	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
117-84-0	Di-n-octyl phthalate	ND	ISTD-L O	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
206-44-0	Fluoranthene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
86-73-7	Fluorene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 11 of 89



Client Sample ID: RSB/MW-15/10-11

York Sample ID:

14I0505-02

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:32 am <u>Date Received</u> 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes:	
---------------	--

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
118-74-1	Hexachlorobenzene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
78-59-1	Isophorone	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
91-57-6	2-Methylnaphthalene	1500		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
91-20-3	Naphthalene	1040		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
85-01-8	Phenanthrene	372	J	ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
108-95-2	Phenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
129-00-0	Pyrene	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	449	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	224	890	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:20	SR
	Surrogate Recoveries	Result		Accep	otance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	35.4 %			10-105						
4165-62-2	Surrogate: Phenol-d5	47.9 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	48.7 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	57.5 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	46.8 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	36.9 %			10-137						

### Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst



Client Sample ID: RSB/MW-15/10-11

York Sample ID: 14

14I0505-02

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:32 am <u>Date Received</u> 09/11/2014

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

7/11/20

venni v olucites, i entactively i aentifica

Sample Prepared by Method: EPA 3550C

CAS No.	Parameter

Flag Units

Reported to LOD/MDL I

Dilution

Reference Method

Date/Time Prepared Date/Time Analyzed A

Analyst

Tentatively Identified Compounds

0.00 ug/kg dry

Result

5 EPA 8270D

09/16/2014 07:49

09/16/2014 23:20

SR

**Total Solids** 

Sample Prepared by Method: % Solids Prep

**Log-in Notes:** 

Reported to LOQ

0.100

**Sample Notes:** 

Sample Prepared by

solids

CAS No. Parameter

* % Solids

Result Flag Units
93.6 %

0.100

Dilution Reference Method

1 SM 2540G

Date/Time Prepared 09/18/2014 09:01 Date/Time Analyzed

09/18/2014 17:31

Analyst PAM

Sample Information

Client Sample ID: RSB/MW-15/14-15

Client Project ID

Matrix

Collection Date/Time

York Sample ID:

14I0505-03

Date Received

York Project (SDG) No. 14I0505

1575.00024

Soil

September 10, 2014 8:35 am

09/11/2014

Volatile Organics, 8260 - TCL/SOM

120 RESEARCH DRIVE

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	. Parameter	Result	Flag	Units	Reported to	LOO	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	12	Cal-E, CCV-E, B	ug/kg dry	2.3	9.4	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
71-43-2	Benzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS

STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 13 of 89



Client Sample ID: RSB/MW-15/14-15

**York Sample ID:** 14I0505-03

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:35 am Date Received 09/11/2014

Volatile Organics, 8260 - TCL/SOM Sample Prepared by Method: EPA 5035A				Log-in	Notes:		Sample Note	<u>es:</u>			
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	47	94	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
591-78-6	2-Hexanone	2.4	CCV-E,	ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.3	9.4	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
100-42-5	Styrene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
108-88-3	Toluene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.3	4.7	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 14 of 89



Client Sample ID: RSB/MW-15/14-15

**York Sample ID:** 14I0505-03

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:35 am <u>Date Received</u> 09/11/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.7	9.4	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.0	14	1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
	Surrogate Recoveries	Result		Accep	otance Rango	e					
460-00-4	Surrogate: p-Bromofluorobenzene	93.9 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	99.3 %			67-130						
2037-26-5	Surrogate: Toluene-d8	98.8 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	dimethyl Naphthalene isomer	6.2	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS
NA	Unknown c14 hydrocarbon	22	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 04:12	SS

### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

|--|

#### **Sample Notes:**

Sample Prepare	ed by Method: EPA 3550C				Reported to				Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
98-86-2	Acetophenone	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
120-12-7	Anthracene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
1912-24-9	Atrazine	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
105-60-2	Caprolactam	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
86-74-8	Carbazole	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR



Client Sample ID: RSB/MW-15/14-15

**York Sample ID:** 14I0505-03

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:35 am Date Received 09/11/2014

### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
218-01-9	Chrysene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	197	393	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	197	394	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
121-14-2	2,4-Dinitrotoluene	440		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
206-44-0	Fluoranthene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
86-73-7	Fluorene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
78-59-1	Isophorone	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
91-20-3	Naphthalene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 16 of 89



Client Sample ID: RSB/MW-15/14-15

York Sample ID:

14I0505-03

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 8:35 am <u>Date Received</u> 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-	·ın	N	01	tes:

#### **Sample Notes:**

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-02-7	4-Nitrophenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
85-01-8	Phenanthrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
108-95-2	Phenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
129-00-0	Pyrene	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	99.2	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	49.6	197	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	77.8 %			10-105						
4165-62-2	Surrogate: Phenol-d5	82.7 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	67.0 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	70.9 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	79.1 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	83.4 %			10-137						

#### Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

_	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
_	Tentativ	ely Identified Compounds	0.00		ug/kg dry		1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:16	SR

### Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS N	No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
olids	* % Solids		84.7		%	0.100	0.100	1	SM 2540G	09/18/2014 09:01	09/18/2014 17:31	PAM

# **Sample Information**

<u>Client Sample ID:</u> RSB/MW-14/12-14 <u>York Sample ID:</u> 14I0505-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024SoilSeptember 10, 2014 9:25 am09/11/2014

Volatile Organics, 8260 - TCL/SOM Log-in Notes: Sample Notes:

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 17 of 89



Client Sample ID: RSB/MW-14/12-14 York Sample ID: 14I0505-04

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 9:25 am Date Received 09/11/2014

Sample Prepare	red by Method: EPA 5035A								D-4-/Ti	D-4-/T:	
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	4400	B, Cal-E, CCV-E	ug/kg dry	220	870	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
71-43-2	Benzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
74-97-5	Bromochloromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-27-4	Bromodichloromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-25-2	Bromoform	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
74-83-9	Bromomethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
78-93-3	2-Butanone	450	В	ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-15-0	Carbon disulfide	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
56-23-5	Carbon tetrachloride	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
108-90-7	Chlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-00-3	Chloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
67-66-3	Chloroform	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
74-87-3	Chloromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
110-82-7	Cyclohexane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
124-48-1	Dibromochloromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
123-91-1	1,4-Dioxane	ND		ug/kg dry	4300	8700	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
100-41-4	Ethyl Benzene	1200		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
591-78-6	2-Hexanone	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
98-82-8	Isopropylbenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
79-20-9	Methyl acetate	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK

STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE (203) 325-1371

Page 18 of 89



Client Sample ID: RSB/MW-14/12-14

York Sample ID:

14I0505-04

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:25 am <u>Date Received</u> 09/11/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-87-2	Methylcyclohexane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-09-2	Methylene chloride	ND		ug/kg dry	220	870	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
100-42-5	Styrene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
127-18-4	Tetrachloroethylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
108-88-3	Toluene	930		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
79-01-6	Trichloroethylene	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
75-01-4	Vinyl Chloride	ND		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
95-47-6	o-Xylene	1200		ug/kg dry	220	430	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
179601-23-1	p- & m- Xylenes	4700		ug/kg dry	430	870	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
1330-20-7	Xylenes, Total	5800		ug/kg dry	650	1300	100	EPA 8260C	09/18/2014 08:25	09/18/2014 11:25	BK
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
460-00-4	Surrogate: p-Bromofluorobenzene	101 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	112 %			67-130						
2037-26-5	Surrogate: Toluene-d8	98.0 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
527-53-7	1,2,4,5-Tetramethylbenzene	3300	JN	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
95-63-6	1,2,4-Trimethylbenzene	11000	JN	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
108-67-8	1,3,5-Trimethylbenzene	3200	JN	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Diethyl Benzene isomer	7700	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	dihydro methyl indene isomer	2600	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	ethenyl ethyl benzene isomer	2200	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Ethyl Dimethyl Benzene isomers	5500	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	ethyl methyl Benzene isomers	15000	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Methyl (methylethyl) benzene isomer	5400	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	methyl (propenyl) benzene isomer	5300	J	ug/kg dry		200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 19 of 89



Client Sample ID: RSB/MW-14/12-14

**York Sample ID:** 14I0505-04

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:25 am <u>Date Received</u> 09/11/2014

**Volatile Organics, Tentatively Identified Cmpds.** 

Sample Prepared by Method: EPA 5035A

Log-in	N	ot	es	

#### **Sample Notes:**

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	methyl propyl benzene isomer	6900	J	ug/kg dry			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
91-20-3	Naphthalene	5500	JN	ug/kg dry			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
103-65-1	n-Propylbenzene	1300	JN	ug/kg dry			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Tetramethyl Benzene isomer	4200	J	ug/kg dry			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Trimethyl Benzene isomer	4400	J	ug/kg dry			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS
NA	Trimethyl nentane isomers	6900	ī	no/ko drv			200	EPA 8260C	09/18/2014 04:41	09/18/2014 04:41	SS

### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

#### **Log-in Notes:**

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
33-32-9	Acenaphthene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
98-86-2	Acetophenone	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
20-12-7	Anthracene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
912-24-9	Atrazine	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
00-52-7	Benzaldehyde	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
66-55-3	Benzo(a)anthracene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
50-32-8	Benzo(a)pyrene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
205-99-2	Benzo(b)fluoranthene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
91-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
207-08-9	Benzo(k)fluoranthene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
5-68-7	Benzyl butyl phthalate	48.7	J	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
22-52-4	1,1'-Biphenyl	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
01-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
05-60-2	Caprolactam	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
86-74-8	Carbazole	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
9-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
06-47-8	4-Chloroaniline	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
11-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
11-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
08-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
01-58-7	2-Chloronaphthalene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 20 of 89



Client Sample ID: RSB/MW-14/12-14

**York Sample ID:** 14I0505-04

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:25 am <u>Date Received</u> 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
218-01-9	Chrysene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	186	372	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	186	372	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
117-84-0	Di-n-octyl phthalate	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
117-81-7	Bis(2-ethylhexyl)phthalate	260		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
206-44-0	Fluoranthene	52.1	J	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
86-73-7	Fluorene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
78-59-1	Isophorone	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
91-57-6	2-Methylnaphthalene	497		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
91-20-3	Naphthalene	218		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 21 of 89



Client Sample ID: RSB/MW-14/12-14

York Sample ID:

14I0505-04

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:25 am <u>Date Received</u> 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log	g-in	No	tes:

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
85-01-8	Phenanthrene	123	J	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
108-95-2	Phenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
129-00-0	Pyrene	84.1	J	ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	93.7	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	46.9	186	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	64.9 %			10-105						
4165-62-2	Surrogate: Phenol-d5	69.7 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	63.6 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	70.5 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	71.6 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	41.6 %			10-137						

### Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3550C

	Log	-in	No	<u>tes:</u>
--	-----	-----	----	-------------

#### **Sample Notes:**

_	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentative	ly Identified Compounds	0.00		ug/kg dry			1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:17	SR

Total Solids <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported t	O Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
solids * % Solid	ds	89.6		%	0.100	0.100	1	SM 2540G	09/18/2014 09:01	09/18/2014 17:31	PAM

### **Sample Information**

<u>Client Sample ID:</u> RSB/MW-14/17-18 <u>York Sample ID:</u> 14I0505-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024SoilSeptember 10, 2014 9:35 am09/11/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 



Client Sample ID: RSB/MW-14/17-18

**York Sample ID:** 14I0505-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 9:35 am
 09/11/2014

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	ND		ug/kg dry	2.1	8.5	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
71-43-2	Benzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-25-2	Bromoform	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
67-66-3	Chloroform	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
156-59-2	cis-1,2-Dichloroethylene	3.7	J	ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	43	85	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
100-41-4	Ethyl Benzene	24		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
98-82-8	Isopropylbenzene	2.9	J	ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
79-20-9	Methyl acetate	4.9		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
108-87-2	Methylcyclohexane	5.6		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.1	8.5	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS



**Client Sample ID:** RSB/MW-14/17-18

**York Sample ID:** 

14I0505-05

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 9:35 am

**Sample Notes:** 

Date Received 09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
100-42-5	Styrene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
108-88-3	Toluene	23		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
95-47-6	o-Xylene	27		ug/kg dry	2.1	4.3	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
179601-23-1	p- & m- Xylenes	89		ug/kg dry	4.3	8.5	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
1330-20-7	Xylenes, Total	120		ug/kg dry	6.4	13	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS

**Log-in Notes:** 

**Surrogate Recoveries** Result Acceptance Range 460-00-4 75-127

103 % Surrogate: p-Bromofluorobenzene 17060-07-0 Surrogate: 1,2-Dichloroethane-d4 87.8 % 2037-26-5 Surrogate: Toluene-d8 95.4 %

Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

67-130

90-112

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
527-53-7	1,2,4,5-Tetramethylbenzene	12	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
95-63-6	1,2,4-Trimethylbenzene	79	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
108-67-8	1,3,5-Trimethylbenzene	25	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	dihydro methyl indene isomer	14	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	dimethyl Heptane isomer	10	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	Dimethyl Pentane isomer	13	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	Ethyl Dimethyl Benzene isomer	15	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	Ethyl Methyl Benzene isomer	60	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	ethyl methyl Benzene isomers	0.0	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
91-20-3	Naphthalene	28	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
103-65-1	n-Propylbenzene	12	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	propenyl benzene isomer	24	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	Tetramethyl Benzene isomer	13	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 24 of 89



Client Sample ID: RSB/MW-14/17-18

**York Sample ID:** 14I0505-05

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:35 am <u>Date Received</u> 09/11/2014

Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	Trimethyl Benzene isomer	18	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	trimethyl Hexane isomer	10	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS
NA	Trimethyl pentane isomers	66	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:09	SS

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
98-86-2	Acetophenone	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
120-12-7	Anthracene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
1912-24-9	Atrazine	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
105-60-2	Caprolactam	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
86-74-8	Carbazole	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
218-01-9	Chrysene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 25 of 89



Client Sample ID: RSB/MW-14/17-18

**York Sample ID:** 14I0505-05

 York Project (SDG) No.
 Client Project ID
 Matrix

 14I0505
 1575.00024
 Soil

<u>Collection Date/Time</u> September 10, 2014 9:35 am <u>Date Received</u> 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepare	ed by Method: EPA 3550C										
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	189	378	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	189	378	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
206-44-0	Fluoranthene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
86-73-7	Fluorene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
78-59-1	Isophorone	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
91-20-3	Naphthalene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
85-01-8	Phenanthrene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
108-95-2	Phenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
129-00-0	Pyrene	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	95.3	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 26 of 89



Client Sample ID: RSB/MW-14/17-18

York Sample ID:

14I0505-05

York Project (SDG) No. 14I0505 Client Project ID
1575.00024

Matrix Soil <u>Collection Date/Time</u> September 10, 2014 9:35 am <u>Date Received</u> 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	47.7	189	1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	75.0 %			10-105						
4165-62-2	Surrogate: Phenol-d5	78.4 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	71.7 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	73.5 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	74.0 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	75.7 %			10-137						

### Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Ī	Tentativ	vely Identified Compounds	0.00		ug/kg dry			1	EPA 8270D	09/16/2014 07:49	09/16/2014 20:47	SR

<u>Total Solids</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: % Solids Prep

Sample Prepared by Method: EPA 5030B

				Reported to						Date/Time	Date/Time	
C	AS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
solids	* % Solids		88.1		%	0.100	0.100	1	SM 2540G	09/18/2014 09:02	09/18/2014 17:39	PAM

#### **Sample Information**

<u>Client Sample ID:</u> FB091014 <u>York Sample ID:</u> 14I0505-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024WaterSeptember 10, 2014 12:00 pm09/11/2014

### Volatile Organics, 8260 - TCL/SOM (low level)

**Log-in Notes:** 

#### **Sample Notes:**

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 27 of 89



<u>Client Sample ID:</u> FB091014 <u>York Sample ID:</u> 14I0505-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Water
 September 10, 2014 12:00 pm
 09/11/2014

Volatile Organics, 8260 - TCL/SOM (low level)

level) <u>Log-in Notes:</u>

**Sample Notes:** 

Sample Prepare	d by Method: EPA 5030B										
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
78-93-3	2-Butanone	ND		ug/L	0.50	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
591-78-6	2-Hexanone	2.7	CCV-E, B, J	ug/L	0.20	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
67-64-1	Acetone	1.8	Cal-E, CCV-E, J, B	ug/L	1.0	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
110-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 28 of 89



<u>Client Sample ID:</u> FB091014 <u>York Sample ID:</u> 14I0505-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024WaterSeptember 10, 2014 12:00 pm09/11/2014

#### Volatile Organics, 8260 - TCL/SOM (low level)

Sample Prepared by Method: EPA 5030B

#### <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-09-2	Methylene chloride	2.4	B, J	ug/L	1.0	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
108-88-3	Toluene	1.0	J	ug/L	0.20	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.50	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	93.8 %			81-123						
2037-26-5	Surrogate: Toluene-d8	97.5 %			88-114						
460-00-4	Surrogate: p-Bromofluorobenzene	94.3 %			70-128						

### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5030B

**Log-in Notes:** Sample Notes:

				Reported to					Date/Time			
	CAS No.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
N	JA cvclotetra	siloxane isomer	62	ī	ug/L			1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:34	SS

#### Semi-Volatiles, 8270 - TCL/SOM - Low Level

Sample Prepared by Method: EPA 3510C

Log-in Notes:	Sample Notes:
Log-III Motes.	Sample Notes.

Sumpre Frepuis	ed by Method. El 11 3310C										
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
208-96-8	Acenaphthylene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
98-86-2	Acetophenone	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
120-12-7	Anthracene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
1912-24-9	Atrazine	ND		ug/L	0.606	0.606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
100-52-7	Benzaldehyde	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
56-55-3	Benzo(a)anthracene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
50-32-8	Benzo(a)pyrene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
205-99-2	Benzo(b)fluoranthene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
191-24-2	Benzo(g,h,i)perylene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH



**Client Sample ID:** FB091014 York Sample ID: 14I0505-06

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 14I0505 1575.00024 Water September 10, 2014 12:00 pm 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM - Low Level

	ntiles, 8270 - TCL/SOM - Lov	w Level			Log-in	Notes:		Sample Note	es:		
CAS No	ed by Method: EPA 3510C  Dear Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
207-08-9	Benzo(k)fluoranthene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	КН
85-68-7	Benzyl butyl phthalate	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
92-52-4	1,1'-Biphenyl	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
101-55-3	4-Bromophenyl phenyl ether	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
105-60-2	Caprolactam	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
86-74-8	Carbazole	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
59-50-7	4-Chloro-3-methylphenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
106-47-8	4-Chloroaniline	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
111-44-4	Bis(2-chloroethyl)ether	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
91-58-7	2-Chloronaphthalene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
95-57-8	2-Chlorophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
218-01-9	Chrysene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
53-70-3	Dibenzo(a,h)anthracene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
132-64-9	Dibenzofuran	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
84-74-2	Di-n-butyl phthalate	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
91-94-1	3,3'-Dichlorobenzidine	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
120-83-2	2,4-Dichlorophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
84-66-2	Diethyl phthalate	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
105-67-9	2,4-Dimethylphenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
131-11-3	Dimethyl phthalate	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
51-28-5	2,4-Dinitrophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
121-14-2	2,4-Dinitrotoluene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
606-20-2	2,6-Dinitrotoluene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
117-84-0	Di-n-octyl phthalate	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
117-81-7	Bis(2-ethylhexyl)phthalate	69.6		ug/L	3.03	3.03	5	EPA 8270D	09/16/2014 08:13	09/17/2014 16:57	KH
206-44-0	Fluoranthene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
86-73-7	Fluorene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
118-74-1	Hexachlorobenzene	ND		ug/L	0.0242	0.0242	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
87-68-3	Hexachlorobutadiene	ND		ug/L	0.606	0.606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
77-47-4	Hexachlorocyclopentadiene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
67-72-1	Hexachloroethane	ND		ug/L	0.606	0.606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH

STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE (203) 325-1371

Page 30 of 89



<u>Client Sample ID:</u> FB091014 <u>York Sample ID:</u> 14I0505-06

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024WaterSeptember 10, 2014 12:00 pm09/11/2014

### Semi-Volatiles, 8270 - TCL/SOM - Low Level

Sample Prepared by Method: EPA 3510C

#### Log-in Notes:

#### **Sample Notes:**

91-57-6 2-Methylnaphthalene ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-48-7 2-Methylphenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-48-7 2-Methylphenols ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 91-20-3 Naphthalene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 91-20-3 Naphthalene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 91-20-3 Naphthalene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-02-7 100-0	AS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-48-7 2-Methylphenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 65794-96-9 3-& 4-Methylphenols ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 91-20-3 Naphthalene ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 91-20-3 Naphthalene ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-7 4-Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-7 4-Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-7 4-Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-7 4-Nitrosodiphenylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8 100-01-8	Iso	ophorone	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	КН
Separation   Sep	2-N	Methylnaphthalene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
91-20-3 Naphthalene ND ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 199-09-2 3-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 188-74 2-Nitroaniline ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 198-53 Nitrobenzene ND ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 100-02-7 10-Nitroso-di-n-propylamine ND Ug/L 3.03 6.06 1 E	2-N	Methylphenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
99-09-2 3-Nitroaniline ND ug/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-01-6 4-Nitroaniline ND ug/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 88-74-4 2-Nitroaniline ND WD ug/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 88-74-4 2-Nitroaniline ND WD ug/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 6.06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-propylamine ND Wg/L 3.03 1.00-06 1 PA 8270D 09/16/2014 08:13 100-02-7 1-Nitroso-di-n-p	6-9 3-	& 4-Methylphenols	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
100-01-6 4-Nitroaniline ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-74-4 2-Nitroaniline ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 98-95-3 Nitrobenzene ND ug/L 3.03 0.303 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-75-5 2-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 621-64-7 N-nitroso-di-n-propylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 86-30-6 N-Nitrosodiphenylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-63-0 Pentachlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-01-8 Phenanthrene ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 108-95-2 Phenol ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 1,2,4,5-Tetrachlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,6-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2,4,5-Trichlorophenol ND Ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 109-95-4 2014 08:13 109-95-4 2014 08:13 109-95-4 2014 08:13 109-95-4 2014 08:13 109-95	Naj	aphthalene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
88-74-4         2-Nitroaniline         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           98-95-3         Nitrobenzene         ND         ug/L         0.303         0.303         1         EPA 8270D         09/16/2014 08:13           100-02-7         4-Nitrophenol         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           88-75-5         2-Nitrophenol         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           621-64-7         N-nitroso-di-n-propylamine         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           86-30-6         N-Nitrosodiphenylamine         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           87-86-5         Pentachlorophenol         ND         ug/L         0.303         0.303         1         EPA 8270D         09/16/2014 08:13           88-06-1         Phenanthrene         ND         ug/L         3.03         6.06         1         EPA 8270D         09/16/2014 08:13           129-00-0         Pyrene         ND	3-N	Nitroaniline	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
98-95-3 Nitrobenzene ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 100-02-7 4-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-75-5 2-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 621-64-7 N-nitroso-di-n-propylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 86-30-6 N-Nitrosodiphenylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 87-86-5 Pentachlorophenol ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 88-501-8 Phenanthrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 108-95-2 Phenol ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 95-94-3 1,2,4,5-Tetrachlorobenzene ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-66-2 2,4,6-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13	6 4-N	Nitroaniline	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
100-02-7 4-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-75-5 2-Nitrophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 621-64-7 N-nitroso-di-n-propylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 86-30-6 N-Nitrosodiphenylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 87-86-5 Pentachlorophenol ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 85-01-8 Phenanthrene ND ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 108-95-2 Phenol ND ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.6066 0.6066 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND Ug/L 0.6066 0.606 1 EPA 8270D 09/16/2014 08:13 129-00-00	2-N	Nitroaniline	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
88-75-5       2-Nitrophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         621-64-7       N-nitroso-di-n-propylamine       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         86-30-6       N-Nitrosodiphenylamine       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         87-86-5       Pentachlorophenol       ND       ug/L       0.303       0.303       1       EPA 8270D       09/16/2014 08:13         85-01-8       Phenanthrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         108-95-2       Phenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         129-00-0       Pyrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,5-Tetrachlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         95-95-4       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13<	Nit	itrobenzene	ND		ug/L	0.303	0.303	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
621-64-7 N-nitroso-di-n-propylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 86-30-6 N-Nitrosodiphenylamine ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 87-86-5 Pentachlorophenol ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 85-01-8 Phenanthrene ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 108-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 95-94-3 1,2,4,5-Tetrachlorobenzene ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 88-06-2 2,4,6-Trichlorophenol ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13	7 4-N	Nitrophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
86-30-6       N-Nitrosodiphenylamine       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         87-86-5       Pentachlorophenol       ND       ug/L       0.303       0.303       1       EPA 8270D       09/16/2014 08:13         85-01-8       Phenanthrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         108-95-2       Phenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         129-00-0       Pyrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,6-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         95-95-4       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13<	2-N	Nitrophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
87-86-5 Pentachlorophenol ND ug/L 0.303 0.303 1 EPA 8270D 09/16/2014 08:13 85-01-8 Phenanthrene ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 108-95-2 Phenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 129-00-0 Pyrene ND ug/L 0.0606 0.0606 1 EPA 8270D 09/16/2014 08:13 95-94-3 1,2,4,5-Tetrachlorobenzene ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-06-2 2,4,6-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13	7 N-1	-nitroso-di-n-propylamine	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
85-01-8       Phenanthrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         108-95-2       Phenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         129-00-0       Pyrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         95-94-3       1,2,4,5-Tetrachlorobenzene       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,6-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         95-95-4       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         Surrogate Recoveries       Result       Acceptance Range	N-1	-Nitrosodiphenylamine	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
108-95-2   Phenol   ND   ug/L   3.03   6.06   1   EPA 8270D   09/16/2014 08:13     129-00-0   Pyrene   ND   ug/L   0.0606   0.0606   1   EPA 8270D   09/16/2014 08:13     95-94-3   1,2,4,5-Tetrachlorobenzene   ND   ug/L   3.03   6.06   1   EPA 8270D   09/16/2014 08:13     88-06-2   2,4,6-Trichlorophenol   ND   ug/L   3.03   6.06   1   EPA 8270D   09/16/2014 08:13     95-95-4   2,4,5-Trichlorophenol   ND   ug/L   3.03   6.06   1   EPA 8270D   09/16/2014 08:13     95-95-4   2,4,5-Trichlorophenol   ND   ug/L   3.03   6.06   1   EPA 8270D   09/16/2014 08:13     Surrogate Recoveries   Result   Acceptance Range	Per	entachlorophenol	ND		ug/L	0.303	0.303	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
129-00-0       Pyrene       ND       ug/L       0.0606       0.0606       1       EPA 8270D       09/16/2014 08:13         95-94-3       1,2,4,5-Tetrachlorobenzene       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         88-06-2       2,4,6-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         95-95-4       2,4,5-Trichlorophenol       ND       ug/L       3.03       6.06       1       EPA 8270D       09/16/2014 08:13         Surrogate Recoveries       Result       Acceptance Range	Phe	nenanthrene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
95-94-3 1,2,4,5-Tetrachlorobenzene ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 88-06-2 2,4,6-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13  Surrogate Recoveries Result Acceptance Range	2 Pho	nenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
88-06-2 2,4,6-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13 95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13  Surrogate Recoveries Result Acceptance Range	) Pyr	yrene	ND		ug/L	0.0606	0.0606	1	EPA 8270D	09/16/2014 08:13	09/16/2014 22:28	KH
95-95-4 2,4,5-Trichlorophenol ND ug/L 3.03 6.06 1 EPA 8270D 09/16/2014 08:13  Surrogate Recoveries Result Acceptance Range	1,2	2,4,5-Tetrachlorobenzene	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
Surrogate Recoveries Result Acceptance Range	2,4	4,6-Trichlorophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
	2,4	4,5-Trichlorophenol	ND		ug/L	3.03	6.06	1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH
367-12-4 Surrogate: 2-Fluorophenol 28.2 % 10-53		Surrogate Recoveries	Result		Acce	eptance Rang	e					
· · · · · · · · · · · · · · · · · · ·	Sui	ırrogate: 2-Fluorophenol	28.2 %			10-53						
4165-62-2 Surrogate: Phenol-d5 18.3 % 10-39	-2 Sui	urrogate: Phenol-d5	18.3 %			10-39						
4165-60-0 Surrogate: Nitrobenzene-d5 79.1 % 10-120	-0 Sui	urrogate: Nitrobenzene-d5	79.1 %			10-120						
321-60-8 Surrogate: 2-Fluorobiphenyl 64.2 % 10-108	Sui	ırrogate: 2-Fluorobiphenyl	64.2 %			10-108						
118-79-6 Surrogate: 2,4,6-Tribromophenol 66.4 % 10-150	Sui	urrogate: 2,4,6-Tribromophenol	66.4 %			10-150						
1718-51-0 Surrogate: Terphenyl-d14 74.6 % 10-143	-0 Sui	urrogate: Terphenyl-d14	74.6 %			10-143						

### Semi-Volatiles, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 3510C

<u>Log-in Notes:</u> <u>Sample Notes:</u>

_	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
	Tentative	ely Identified Compounds	0.00		ug/L		1	EPA 8270D	09/16/2014 08:13	09/17/2014 00:28	KH

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 31 of 89



<u>Client Sample ID:</u> TB091014 <u>York Sample ID:</u> 14I0505-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Water
 September 10, 2014 12:00 am
 09/11/2014

#### Volatile Organics, 8260 - TCL/SOM (low level)

**Log-in Notes:** 

Sample Notes:

Sample Prepared by N	Aethod: EPA	5030E
----------------------	-------------	-------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
78-93-3	2-Butanone	ND		ug/L	0.50	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
591-78-6	2-Hexanone	2.1	CCV-E, J, B	ug/L	0.20	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
67-64-1	Acetone	2.4	Cal-E, CCV-E, J, B	ug/L	1.0	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
67-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
110-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 32 of 89



Client Sample ID: TB091014 York Sample ID: 14I0505-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024WaterSeptember 10, 2014 12:00 am09/11/2014

Volatile Organics, 8260 - TCL/SOM (low level)

**Log-in Notes:** 

**Sample Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
124-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
100-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
98-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
79-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
108-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-09-2	Methylene chloride	1.7	B, J	ug/L	1.0	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
95-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
179601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
100-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
127-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
108-88-3	Toluene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
79-01-6	Trichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.50	0.50	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	96.8 %			81-123						
2037-26-5	Surrogate: Toluene-d8	98.8 %			88-114						
460-00-4	Surrogate: p-Bromofluorobenzene	94.2 %			70-128						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5030B

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported t	o Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentativ	ely Identified Compounds	0.0		ησ/Ι.			1	EPA 8260C	09/17/2014 16:30	09/18/2014 08:02	SS

**Log-in Notes:** 

## **Sample Information**

<u>Client Sample ID:</u> <u>DUP091014</u> <u>York Sample ID:</u> 14I0505-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024SoilSeptember 10, 2014 12:00 pm09/11/2014

<u>Volatile Organics, 8260 - TCL/SOM</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 33 of 89



Client Sample ID: DUP091014 York Sample ID: 14I0505-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 12:00 pm
 09/11/2014

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	43	Cal-E, CCV-E, B	ug/kg dry	2.4	9.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
71-43-2	Benzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-25-2	Bromoform	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
78-93-3	2-Butanone	3.6	J	ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
67-66-3	Chloroform	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	48	96	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS



Client Sample ID: DUP091014 York Sample ID: 14I0505-08

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024SoilSeptember 10, 2014 12:00 pm09/11/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

#### **Log-in Notes:**

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-09-2	Methylene chloride	ND	·	ug/kg dry	2.4	9.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
100-42-5	Styrene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
127-18-4	Tetrachloroethylene	3.3	CCV-E,	ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
108-88-3	Toluene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.4	4.8	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	4.8	9.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.2	14	1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS
	Surrogate Recoveries	Result		Acce	ptance Range	e					
160-00-4	Surrogate: p-Bromofluorobenzene	122 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	99.3 %			67-130						
2037-26-5	Surrogate: Toluene-d8	106 %			90-112						

### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

#### **Sample Notes:**

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
NA	dimethyl naphthalene isomers	0.0		ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 05:38	SS

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample	Notes

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
98-86-2	Acetophenone	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
120-12-7	Anthracene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
1912-24-9	Atrazine	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR



Client Sample ID: DUP091014 York Sample ID: 14I0505-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 12:00 pm
 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

### <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-52-7	Benzaldehyde	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
56-55-3	Benzo(a)anthracene	752	J	ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
191-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
105-60-2	Caprolactam	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
86-74-8	Carbazole	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
218-01-9	Chrysene	944	J	ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	1850	3680	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	1850	3690	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
206-44-0	Fluoranthene	2160		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 36 of 89



**Client Sample ID: DUP091014** York Sample ID: 14I0505-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14I0505 1575.00024 September 10, 2014 12:00 pm 09/11/2014 Soil

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

#### **Log-in Notes: Sample Notes:**

CAS N	Vo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
86-73-7	Fluorene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
78-59-1	Isophorone	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
91-20-3	Naphthalene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
85-01-8	Phenanthrene	1400	J	ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
108-95-2	Phenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
129-00-0	Pyrene	1840		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	929	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	465	1840	10	EPA 8270D	09/16/2014 07:49	09/17/2014 00:22	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	56.2 %			10-105						
4165-62-2	Surrogate: Phenol-d5	76.2 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	68.3 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	80.0 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	32.6 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	74.9 %			10-137						

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 



**Client Sample ID: DUP091014 York Sample ID:** 14I0505-08

Client Project ID Date Received York Project (SDG) No. Matrix Collection Date/Time 14I0505 1575.00024 09/11/2014

Soil September 10, 2014 12:00 pm

Sample Prepared by Method: EPA 3550C

Date/Time Date/Time Reported to CAS No. Parameter Result Flag Units Reference Method Prepared Analyst Dilution LOD/MDL LOQ Tentatively Identified Compounds 0.00 EPA 8270D 09/16/2014 07:49 09/17/2014 00:22 ug/kg dry

**Log-in Notes: Sample Notes: Total Solids** 

Sample Prepared by Method: % Solids Prep

Date/Time Date/Time Reported to LOQ CAS No. Parameter Result Flag Units Dilution Reference Method Prepared Analyzed Analyst LOD/MDL * % Solids 09/18/2014 09:02 09/18/2014 17:39 % 0.100 SM 2540G solids 90.4 0.100 PAM

**Sample Information** 

**Client Sample ID:** York Sample ID: RSB/MW-17/1-3 14I0505-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 09/11/2014 14I0505 1575.00024 Soil September 10, 2014 12:15 pm

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes: Sample Notes:** 

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	10	Cal-E, CCV-E, B	ug/kg dry	2.3	9.1	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
71-43-2	Benzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-25-2	Bromoform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
67-66-3	Chloroform	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 38 of 89



<u>Client Sample ID:</u> RSB/MW-17/1-3 <u>York Sample ID:</u> 14I0505-09

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 12:15 pm
 09/11/2014

### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

<u>Log-in Notes:</u> <u>Sar</u>	nple Notes:
---------------------------------	-------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
156-59-2	cis-1,2-Dichloroethylene	8.2		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	46	91	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
100-41-4	Ethyl Benzene	11		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
79-20-9	Methyl acetate	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.3	9.1	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
108-10-1	4-Methyl-2-pentanone	2.3	J	ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
100-42-5	Styrene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
108-88-3	Toluene	85		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
95-47-6	o-Xylene	17		ug/kg dry	2.3	4.6	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
179601-23-1	p- & m- Xylenes	39		ug/kg dry	4.6	9.1	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
1330-20-7	Xylenes, Total	56		ug/kg dry	6.9	14	1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 39 of 89



Client Sample ID: RSB/MW-17/1-3

York Sample ID:

14I0505-09

York Project (SDG) No. 14I0505 Client Project ID 1575.00024

Flag

Units

Matrix Soil

Dilution

<u>Collection Date/Time</u> September 10, 2014 12:15 pm <u>Date Received</u> 09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

CAS No.

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Date/Time

460-00-4 Surrogate: p-Bromofluorobenzene

103 % 96.7 %

Result

75-127 67-130

Reported to

LOD/MDL

Reference Method

Prepared Analyzed

nalyzed Analyst

17060-07-0 Surrogate: 1,2-Dichloroethane-d4 2037-26-5 Surrogate: Toluene-d8 96.7 % 101 %

90-112

Volatile Organics, Tentatively Identified Cmpds.

Parameter

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-63-6	1,2,4-Trimethylbenzene	28	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
108-67-8	1,3,5-Trimethylbenzene	7.5	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
NA	ethylmethylbenzene isomer	19	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
NA	methylbenzene isomer	10	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
NA	methylethenyl benzene isomer	11	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
NA	methylmethylene benzene isomer	11	J	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS
91-20-3	Naphthalene	6.6	JN	ug/kg dry		1	EPA 8260C	09/17/2014 16:30	09/18/2014 06:07	SS

### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
98-86-2	Acetophenone	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
120-12-7	Anthracene	410	J	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
1912-24-9	Atrazine	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
56-55-3	Benzo(a)anthracene	900		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
50-32-8	Benzo(a)pyrene	353	J	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
205-99-2	Benzo(b)fluoranthene	341	J	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
191-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
207-08-9	Benzo(k)fluoranthene	434	J	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
105-60-2	Caprolactam	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
86-74-8	Carbazole	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 40 of 89



<u>Client Sample ID:</u> RSB/MW-17/1-3 <u>York Sample ID:</u> 14I0505-09

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 12:15 pm
 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

<u>Log-in Notes:</u>	Sample Notes:
----------------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
218-01-9	Chrysene	1050		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	842	1680	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	842	1680	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
206-44-0	Fluoranthene	2380		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
86-73-7	Fluorene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
78-59-1	Isophorone	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
91-20-3	Naphthalene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR



Client Sample ID: RSB/MW-17/1-3 York Sample ID: 14I0505-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14I0505 1575.00024 September 10, 2014 12:15 pm 09/11/2014 Soil

Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepa	ared by Method: EPA 3550C										
CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-09-2	3-Nitroaniline	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
85-01-8	Phenanthrene	1810		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
108-95-2	Phenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
129-00-0	Pyrene	2040		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	424	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	212	841	5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	119 %	S-08		10-105						
4165-62-2	Surrogate: Phenol-d5	133 %	S-08		10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	116 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	116 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	89.2 %			10-150						

#### Semi-Volatiles, Tentatively Identified Cmpds.

Surrogate: Terphenyl-d14

Sample Prepared by Method: EPA 3550C

1718-51-0

**Log-in Notes:** 

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
Tentativ	ely Identified Compounds	0.00		ug/kg dry		5	EPA 8270D	09/16/2014 07:49	09/16/2014 23:51	SR

10-137

**Log-in Notes: Sample Notes: Total Solids** 

112 %

Sample Prepared by Method: % Solids Prep

							Reported to				Date/Time	
CAS	No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
solids	* % Solids		99.1		%	0.100	0.100	1	SM 2540G	09/18/2014 09:02	09/18/2014 17:39	PAM

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 42 of 89



Client Sample ID: RSB/MW-17/13-15

**York Sample ID:** 14I0505-10

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I05051575.00024SoilSeptember 10, 2014 12:40 pm09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	340	Cal-E, CCV-E, J, B	ug/kg dry	220	890	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
71-43-2	Benzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-25-2	Bromoform	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
74-83-9	Bromomethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
78-93-3	2-Butanone	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-00-3	Chloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
67-66-3	Chloroform	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
74-87-3	Chloromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
110-82-7	Cyclohexane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
156-59-2	cis-1,2-Dichloroethylene	330	J	ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	4500	8900	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
100-41-4	Ethyl Benzene	2900		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
591-78-6	2-Hexanone	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
98-82-8	Isopropylbenzene	330	J	ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
79-20-9	Methyl acetate	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 43 of 89



**Client Sample ID:** RSB/MW-17/13-15 York Sample ID: 14I0505-10

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 14I0505 1575.00024 Soil September 10, 2014 12:40 pm 09/11/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

voiauic	Olg	ames,	0200 -	_1	CLIS	UN

Sample Prepared by Method: EPA 5035A

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
108-87-2	Methylcyclohexane	410	J	ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-09-2	Methylene chloride	ND		ug/kg dry	220	890	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
100-42-5	Styrene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
108-88-3	Toluene	27000		ug/kg dry	560	1100	250	EPA 8260C	09/17/2014 16:30	09/18/2014 11:58	BK
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
95-47-6	o-Xylene	3700		ug/kg dry	220	450	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
179601-23-1	p- & m- Xylenes	10000		ug/kg dry	450	890	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
1330-20-7	Xylenes, Total	14000		ug/kg dry	670	1300	100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
460-00-4	Surrogate: p-Bromofluorobenzene	99.4 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	92.5 %			67-130						
2037-26-5	Surrogate: Toluene-d8	104 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** 

**Sample Notes:** 

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
95-94-3	1,2,4,5-Tetrachlorobenzene	2000	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
95-63-6	1,2,4-Trimethylbenzene	9800	JN	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
108-67-8	1,3,5-Trimethylbenzene	2700	JN	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	dihydromethylindene isomer	2300	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	dimethyl hexane isomer	500	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	Dimethylheptane isomer	760	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	ethylmethylbenzene isomer	1900	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	methylmethylene benzene isomer	2200	J	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
91-20-3	Naphthalene	2900	JN	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
104-51-8	n-Butylbenzene	1000	JN	ug/kg dry			100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS

FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371

Page 44 of 89



Client Sample ID: RSB/MW-17/13-15

**York Sample ID:** 14I0505-10

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 14I0505 <u>1575.00024</u>

Soil September 10, 2014 12:40 pm

Collection Date/Time

Matrix

<u>Date Received</u> 09/11/2014

Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

CAS N	No. Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
103-65-1	n-Propylbenzene	1400	JN	ug/kg dry		100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	propenyl benzene isomer	1000	J	ug/kg dry		100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	Trimethyl Benzene isomer	1000	J	ug/kg dry		100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS
NA	trimethyl Pentane isomer	1200	J	ug/kg dry		100	EPA 8260C	09/17/2014 16:30	09/18/2014 06:36	SS

#### Semi-Volatiles, 8270 - TCL/SOM

**Log-in Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
98-86-2	Acetophenone	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
120-12-7	Anthracene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
1912-24-9	Atrazine	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
50-32-8	Benzo(a)pyrene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
205-99-2	Benzo(b)fluoranthene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
191-24-2	Benzo(g,h,i)perylene	ND	ISTD-L O	ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
207-08-9	Benzo(k)fluoranthene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
85-68-7	Benzyl butyl phthalate	79.7	J	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
105-60-2	Caprolactam	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
86-74-8	Carbazole	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
218-01-9	Chrysene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 45 of 89



**Client Sample ID:** RSB/MW-17/13-15 York Sample ID: 14I0505-10

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 12:40 pm Date Received 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

	atiles, 8270 - TCL/SOM red by Method: EPA 3550C				Log-in	Notes:		Sample Note	es:		
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
53-70-3	Dibenzo(a,h)anthracene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	183	365	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	183	366	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
117-84-0	Di-n-octyl phthalate	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
117-81-7	Bis(2-ethylhexyl)phthalate	210		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
206-44-0	Fluoranthene	55.6	J	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
86-73-7	Fluorene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND	ISTD-L O	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
78-59-1	Isophorone	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
91-57-6	2-Methylnaphthalene	364		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
91-20-3	Naphthalene	183		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR

STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> 120 RESEARCH DRIVE (203) 325-1371

Page 46 of 89



RSB/MW-17/13-15 **Client Sample ID:** 

York Sample ID:

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 12:40 pm Date Received 09/11/2014

14I0505-10

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

**Log-in Notes:** 

**Sample Notes:** 

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
87-86-5	Pentachlorophenol	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
85-01-8	Phenanthrene	137	J	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
108-95-2	Phenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
129-00-0	Pyrene	77.9	J	ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	92.2	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	46.1	183	1	EPA 8270D	09/16/2014 07:49	09/16/2014 22:19	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	75.1 %			10-105						
4165-62-2	Surrogate: Phenol-d5	80.3 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	73.1 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	87.0 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	88.0 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	45.8 %			10-137						

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

LOQ

Reported to

**Sample Notes:** 

Reference Method

Date/Time Analyzed Analyst

Sample Prepared by Method: EPA 3550C

CAS NO.	rarameter	Resuit	riag	Units	LOD/M
Tentative	ely Identified Compounds	0.00		ug/kg dry	

EPA 8270D

Dilution

Date/Time Prepared 09/16/2014 07:49

09/16/2014 22:19

SR

**Log-in Notes: Sample Notes: Total Solids** 

Sample Prepared by Method: % Solids Prep

						Reported t	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
solids * % So	lids	91.1		%	0 100	0.100	1	SM 2540G	09/18/2014 09:02	09/18/2014 17:39	PAM

**Sample Information** 

RSB/MW-17/17-18 **Client Sample ID:** 

York Sample ID:

14I0505-11

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Matrix Soil

Collection Date/Time September 10, 2014 1:00 pm Date Received 09/11/2014

Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

**Log-in Notes:** Sample Notes:

Date/Time Date/Time Reported to CAS No. Parameter Result Flag Units LOD/MDL Dilution Reference Method Prepared Analyzed Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 47 of 89



Client Sample ID: RSB/MW-17/17-18

**York Sample ID:** 14I0505-11

York Project (SDG) No. 14I0505

Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 1:00 pm <u>Date Received</u> 09/11/2014

Volatile Organics, 8260 - TCL/SOM

**Log-in Notes:** 

Sample Notes:

Sample P	repared by	Method:	EPA	5035A
----------	------------	---------	-----	-------

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-64-1	Acetone	9.5	CCV-E, Cal-E, J, B	ug/kg dry	2.5	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
71-43-2	Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
74-97-5	Bromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-27-4	Bromodichloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-25-2	Bromoform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
74-83-9	Bromomethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
78-93-3	2-Butanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-15-0	Carbon disulfide	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
56-23-5	Carbon tetrachloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
108-90-7	Chlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-00-3	Chloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
67-66-3	Chloroform	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
74-87-3	Chloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
110-82-7	Cyclohexane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
124-48-1	Dibromochloromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
106-93-4	1,2-Dibromoethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-71-8	Dichlorodifluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-34-3	1,1-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
107-06-2	1,2-Dichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-35-4	1,1-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
78-87-5	1,2-Dichloropropane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
123-91-1	1,4-Dioxane	ND		ug/kg dry	50	100	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
100-41-4	Ethyl Benzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
591-78-6	2-Hexanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
98-82-8	Isopropylbenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
79-20-9	Methyl acetate	7.6		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 48 of 89



Client Sample ID: RSB/MW-17/17-18

<u>York Sample ID:</u> 14I0505-11

York Project (SDG) No. 14I0505 Client Project ID 1575.00024 Matrix Soil <u>Collection Date/Time</u> September 10, 2014 1:00 pm <u>Date Received</u> 09/11/2014

#### Volatile Organics, 8260 - TCL/SOM

Sample Prepared by Method: EPA 5035A

<b>Log-in Notes:</b>	Sample Notes:
----------------------	---------------

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
108-87-2	Methylcyclohexane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-09-2	Methylene chloride	ND		ug/kg dry	2.5	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
100-42-5	Styrene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
127-18-4	Tetrachloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
108-88-3	Toluene	10		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
79-01-6	Trichloroethylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-69-4	Trichlorofluoromethane	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
75-01-4	Vinyl Chloride	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
95-47-6	o-Xylene	ND		ug/kg dry	2.5	5.0	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
179601-23-1	p- & m- Xylenes	ND		ug/kg dry	5.0	10	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
1330-20-7	Xylenes, Total	ND		ug/kg dry	7.5	15	1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
460-00-4	Surrogate: p-Bromofluorobenzene	93.8 %			75-127						
17060-07-0	Surrogate: 1,2-Dichloroethane-d4	95.5 %			67-130						
2037-26-5	Surrogate: Toluene-d8	99.4 %			90-112						

#### Volatile Organics, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Log-in Notes:** 

**Sample Notes:** 

**Sample Notes:** 

Sample Prepared by Method: EPA 5035A

	CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
1	NA Dimethy	Inaphthalene isomer	26	J	ug/kg dry			1	EPA 8260C	09/17/2014 16:30	09/18/2014 07:05	SS

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
83-32-9	Acenaphthene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
208-96-8	Acenaphthylene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
98-86-2	Acetophenone	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 49 of 89



<u>Client Sample ID:</u> RSB/MW-17/17-18 <u>York Sample ID:</u> 14I0505-11

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0505
 1575.00024
 Soil
 September 10, 2014 1:00 pm
 09/11/2014

Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

#### <u>Log-in Notes:</u> <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
120-12-7	Anthracene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
1912-24-9	Atrazine	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
100-52-7	Benzaldehyde	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
56-55-3	Benzo(a)anthracene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
50-32-8	Benzo(a)pyrene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
205-99-2	Benzo(b)fluoranthene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
191-24-2	Benzo(g,h,i)perylene	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
207-08-9	Benzo(k)fluoranthene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
85-68-7	Benzyl butyl phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
92-52-4	1,1'-Biphenyl	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
101-55-3	4-Bromophenyl phenyl ether	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
105-60-2	Caprolactam	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
86-74-8	Carbazole	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
59-50-7	4-Chloro-3-methylphenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
106-47-8	4-Chloroaniline	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
111-91-1	Bis(2-chloroethoxy)methane	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
111-44-4	Bis(2-chloroethyl)ether	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
108-60-1	Bis(2-chloroisopropyl)ether	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
91-58-7	2-Chloronaphthalene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
95-57-8	2-Chlorophenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
7005-72-3	4-Chlorophenyl phenyl ether	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
218-01-9	Chrysene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
53-70-3	Dibenzo(a,h)anthracene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
132-64-9	Dibenzofuran	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
84-74-2	Di-n-butyl phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
91-94-1	3,3'-Dichlorobenzidine	ND		ug/kg dry	199	397	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
120-83-2	2,4-Dichlorophenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
84-66-2	Diethyl phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
105-67-9	2,4-Dimethylphenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
131-11-3	Dimethyl phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
534-52-1	4,6-Dinitro-2-methylphenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
51-28-5	2,4-Dinitrophenol	ND		ug/kg dry	199	397	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
121-14-2	2,4-Dinitrotoluene	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
606-20-2	2,6-Dinitrotoluene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
117-84-0	Di-n-octyl phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
117-81-7	Bis(2-ethylhexyl)phthalate	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 50 of 89



Client Sample ID: RSB/MW-17/17-18

**York Sample ID:** 14I0505-11

 York Project (SDG) No.
 Client Project ID

 14I0505
 1575.00024

MatrixCollection Date/TimeSoilSeptember 10, 2014 1:00 pm

<u>Date Received</u> 09/11/2014

#### Semi-Volatiles, 8270 - TCL/SOM

Sample Prepared by Method: EPA 3550C

Log-in Notes:	Sample Notes:
---------------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
206-44-0	Fluoranthene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
86-73-7	Fluorene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
118-74-1	Hexachlorobenzene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
87-68-3	Hexachlorobutadiene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
77-47-4	Hexachlorocyclopentadiene	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
67-72-1	Hexachloroethane	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
193-39-5	Indeno(1,2,3-cd)pyrene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
78-59-1	Isophorone	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
91-57-6	2-Methylnaphthalene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
95-48-7	2-Methylphenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
65794-96-9	3- & 4-Methylphenols	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
91-20-3	Naphthalene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
100-01-6	4-Nitroaniline	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
88-74-4	2-Nitroaniline	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
99-09-2	3-Nitroaniline	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
98-95-3	Nitrobenzene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
88-75-5	2-Nitrophenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
100-02-7	4-Nitrophenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
621-64-7	N-nitroso-di-n-propylamine	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
86-30-6	N-Nitrosodiphenylamine	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
87-86-5	Pentachlorophenol	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
85-01-8	Phenanthrene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
108-95-2	Phenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
129-00-0	Pyrene	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
95-94-3	1,2,4,5-Tetrachlorobenzene	ND		ug/kg dry	100	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
88-06-2	2,4,6-Trichlorophenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
95-95-4	2,4,5-Trichlorophenol	ND		ug/kg dry	50.1	199	1	EPA 8270D	09/16/2014 07:49	09/16/2014 21:48	SR
	Surrogate Recoveries	Result		Acce	ptance Rang	e					
367-12-4	Surrogate: 2-Fluorophenol	87.4 %			10-105						
4165-62-2	Surrogate: Phenol-d5	94.7 %			10-118						
4165-60-0	Surrogate: Nitrobenzene-d5	77.9 %			10-140						
321-60-8	Surrogate: 2-Fluorobiphenyl	85.0 %			10-126						
118-79-6	Surrogate: 2,4,6-Tribromophenol	92.8 %			10-150						
1718-51-0	Surrogate: Terphenyl-d14	96.1 %			10-137						

Semi-Volatiles, Tentatively Identified Cmpds.

**Log-in Notes:** 

**Sample Notes:** 



**Client Sample ID:** RSB/MW-17/17-18 York Sample ID:

14I0505-11

York Project (SDG) No. 14I0505

Client Project ID 1575.00024

Flag

Matrix Soil

Collection Date/Time September 10, 2014 1:00 pm Date Received 09/11/2014

Sample Prepared by Method: EPA 3550C

CAS No. Parameter Result

Result

83.9

Units

Reported to LOD/MDL LOQ

Reference Method Dilution

Date/Time Prepared

09/18/2014 09:02

York Sample ID:

Date/Time Analyzed

Analyst

Tentatively Identified Compounds

Parameter

0.00

ug/kg dry

EPA 8270D

09/16/2014 07:49

09/16/2014 21:48

09/18/2014 17:39

**Total Solids** 

CAS No.

solids

Sample Prepared by Method: % Solids Prep

* % Solids

Flag Units

%

Reported to LOQ LOD/MDL

0.100

**Log-in Notes:** 

Dilution

SM 2540G

Date/Time Reference Method Prepared

**Sample Notes:** 

Date/Time Analyzed

Analyst PAM

**Sample Information** 

0.100

**Client Sample ID:** MW-5

Client Project ID

Matrix

Collection Date/Time

14I0505-12 Date Received

York Project (SDG) No. 14I0505

1575.00024

Oil

September 10, 2014 11:40 am

09/11/2014

**Petroleum Identification** 

Sample Prepared by Method: Oil Preparation for GC

Result

**Log-in Notes:** 

**Sample Notes:** 

Date/Time

Date/Time

Reported to CAS No. Parameter Flag Units Dilution Reference Method Prepared Analyzed Analyst LOD/MDL LOQ ID only EPA 8015D 09/18/2014 08:42 09/18/2014 16:05 * Petroleum Identification Pattern is similar to Motor Oil

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 52 of 89



# **Analytical Batch Summary**

Batch ID: BI40724	Preparation Method:	EPA 3550C	Prepared By:	TB
YORK Sample ID	Client Sample ID	Preparation Date		
14I0505-01	RSB/MW-15/4-5	09/16/14		
14I0505-02	RSB/MW-15/10-11	09/16/14		
14I0505-03	RSB/MW-15/14-15	09/16/14		
14I0505-04	RSB/MW-14/12-14	09/16/14		
14I0505-05	RSB/MW-14/17-18	09/16/14		
14I0505-08	DUP091014	09/16/14		
14I0505-09	RSB/MW-17/1-3	09/16/14		
14I0505-10	RSB/MW-17/13-15	09/16/14		
14I0505-11	RSB/MW-17/17-18	09/16/14		
BI40724-BLK1	Blank	09/16/14		
BI40724-BS1	LCS	09/16/14		
BI40724-MS1	Matrix Spike	09/16/14		
BI40724-MSD1	Matrix Spike Dup	09/16/14		
Batch ID: BI40731	Preparation Method:	EPA 3510C	Prepared By:	KAT
YORK Sample ID	Client Sample ID	Preparation Date		
14I0505-06	FB091014	09/16/14		
BI40731-BLK1	Blank	09/16/14		
BI40731-BS1	LCS	09/16/14		
BI40731-BS2	LCS	09/16/14		
BI40731-BSD1	LCS Dup	09/16/14		
<b>Batch ID:</b> BI40885	Preparation Method:	EPA 5035A	Prepared By:	BGS
YORK Sample ID	Client Sample ID	Preparation Date		
14I0505-01	RSB/MW-15/4-5	09/17/14		
14I0505-02	RSB/MW-15/10-11	09/17/14		
14I0505-03	RSB/MW-15/14-15	09/17/14		
14I0505-05	RSB/MW-14/17-18	09/17/14		
14I0505-08	DUP091014	09/17/14		
14I0505-09	RSB/MW-17/1-3	09/17/14		
14I0505-10	RSB/MW-17/13-15	09/17/14		
14I0505-11	RSB/MW-17/17-18	09/17/14		
BI40885-BLK1	Blank	09/17/14		
BI40885-BS1	LCS	09/17/14		
BI40885-BSD1	LCS Dup	09/17/14		
BI40885-MS1	Matrix Spike	09/17/14		
BI40885-MSD1	Matrix Spike Dup	09/17/14		
Batch ID: BI40886	Preparation Method:	EPA 5030B	Prepared By:	BGS
YORK Sample ID	Client Sample ID	Preparation Date		
14I0505-06	FB091014	09/17/14		
	STRATFORD, CT 06615			

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 53 of 89



 14I0505-07
 TB091014
 09/17/14

 BI40886-BLK1
 Blank
 09/17/14

 BI40886-BS1
 LCS
 09/17/14

 BI40886-BSD1
 LCS Dup
 09/17/14

Batch ID: BI40896 Preparation Method: Oil Preparation for GC Prepared By: JW

YORK Sample ID Client Sample ID Preparation Date

14I0505-12 MW-5 09/18/14

Batch ID: BI40903 Preparation Method: % Solids Prep Prepared By: KK

YORK Sample ID Client Sample ID Preparation Date 14I0505-01 09/18/14 RSB/MW-15/4-5 14I0505-02 RSB/MW-15/10-11 09/18/14 09/18/14 14I0505-03 RSB/MW-15/14-15 09/18/14 14I0505-04 RSB/MW-14/12-14 BI40903-DUP1 09/18/14 Duplicate

**Batch ID:** BI40904 **Preparation Method:** % Solids Prep **Prepared By:** KK

YORK Sample ID Client Sample ID Preparation Date 14I0505-05 09/18/14 RSB/MW-14/17-18 09/18/14 14I0505-08 DUP091014 14I0505-09 09/18/14 RSB/MW-17/1-3 09/18/14 14I0505-10 RSB/MW-17/13-15 09/18/14 14I0505-11 RSB/MW-17/17-18

Batch ID: BI40920 Preparation Method: EPA 5035A Prepared By: BK

YORK Sample ID Client Sample ID Preparation Date 09/18/14 14I0505-04 RSB/MW-14/12-14 14I0505-04 09/18/14 RSB/MW-14/12-14 14I0505-10RE1 RSB/MW-17/13-15 09/18/14 BI40920-BLK1 Blank 09/18/14 09/18/14 BI40920-BS1 LCS BI40920-BSD1 09/18/14 LCS Dup

**Batch ID:** BI40923 **Preparation Method:** EPA 5035A **Prepared By:** BGS

 YORK Sample ID
 Client Sample ID
 Preparation Date

 14I0505-02RE1
 RSB/MW-15/10-11
 09/18/14

 BI40923-BLK1
 Blank
 09/18/14

 BI40923-BS1
 LCS
 09/18/14

 BI40923-BSD1
 LCS Dup
 09/18/14

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 54 of 89



#### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40885 - EPA 5035A				
Blank (BI40885-BLK1)				Prepared: 09/17/2014 Analyzed: 09/18/2014
Acetone	11	10	ug/kg wet	
Tentatively Identified Compounds	0.0		"	
Benzene	ND	5.0	II .	
Bromochloromethane	ND	5.0	II .	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	n .	
2-Butanone	ND	5.0	"	
Carbon disulfide	ND	5.0	n .	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	n .	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	II .	
Chloromethane	ND ND	5.0	II .	
Cyclohexane	ND ND	5.0	11	
,2-Dibromo-3-chloropropane	ND ND	5.0	"	
Dibromochloromethane	ND ND	5.0	"	
,2-Dibromoethane			"	
	ND	5.0	"	
,2-Dichlorobenzene	ND	5.0	"	
,3-Dichlorobenzene	ND	5.0	"	
,4-Dichlorobenzene	ND	5.0		
Dichlorodifluoromethane	ND	5.0	"	
,1-Dichloroethane	ND	5.0	"	
,2-Dichloroethane	ND	5.0	"	
,1-Dichloroethylene	ND	5.0	"	
rans-1,2-Dichloroethylene	ND	5.0	"	
is-1,2-Dichloroethylene	ND	5.0	"	
,2-Dichloropropane	ND	5.0	"	
rans-1,3-Dichloropropylene	ND	5.0	"	
is-1,3-Dichloropropylene	ND	5.0	"	
,4-Dioxane	ND	100	"	
Ethyl Benzene	ND	5.0	"	
-Hexanone	ND	5.0	"	
sopropylbenzene	ND	5.0	"	
Methyl acetate	ND	5.0	II .	
Methyl tert-butyl ether (MTBE)	ND	5.0	"	
Methylcyclohexane	ND	5.0	"	
Methylene chloride	ND	10	"	
-Methyl-2-pentanone	ND	5.0	"	
styrene	ND	5.0	"	
,1,2,2-Tetrachloroethane	ND	5.0	"	
etrachloroethylene	ND	5.0	"	
oluene	ND	5.0	"	
,2,4-Trichlorobenzene	ND	5.0	"	
,2,3-Trichlorobenzene	ND	5.0	"	
,1,1-Trichloroethane	ND	5.0	"	
,1,2-Trichloroethane	ND	5.0	II .	
Frichloroethylene	ND	5.0	u .	
Frichlorofluoromethane	ND	5.0	u .	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	u .	
Vinyl Chloride	ND	5.0	"	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 55 of 89



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40885 - EPA 5035A											
Blank (BI40885-BLK1)							Prep	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
o-Xylene	ND	5.0	ug/kg wet								
p- & m- Xylenes	ND	10	"								
Xylenes, Total	ND	15	"								
Surrogate: p-Bromofluorobenzene	47.8		ug/L	50.0		95.7	75-127				
Surrogate: 1,2-Dichloroethane-d4	43.9		"	50.0		87.8	67-130				
Surrogate: Toluene-d8	51.3		"	50.0		103	90-112				
LCS (BI40885-BS1)							Prep	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
Acetone	40		ug/L	50.0		80.6	32-173				
Benzene	50		"	50.0		101	83-126				
Bromochloromethane	49		"	50.0		98.9	73-128				
Bromodichloromethane	50		"	50.0		100	74-126				
Bromoform	53		"	50.0		105	63-137				
Bromomethane	59		"	50.0		118	24-144				
2-Butanone	44		"	50.0		88.0	58-159				
Carbon disulfide	49		"	50.0		97.8	29-64	High Bias			
Carbon tetrachloride	49		"	50.0		97.9	68-132				
Chlorobenzene	51		"	50.0		103	87-115				
Chloroethane	57		"	50.0		114	39-146				
Chloroform	50		"	50.0		101	84-120				
Chloromethane	49		"	50.0		97.0	35-153				
Cyclohexane	49		"	50.0		97.9	70-130				
1,2-Dibromo-3-chloropropane	49		"	50.0		98.4	48-152				
Dibromochloromethane	50		"	50.0		101	41-149				
1,2-Dibromoethane	53		"	50.0		105	81-123				
1,2-Dichlorobenzene	51		"	50.0		102	81-117				
1,3-Dichlorobenzene	51		"	50.0		101	84-117				
1,4-Dichlorobenzene	50		"	50.0		101	85-118				
Dichlorodifluoromethane	50		"	50.0		99.3	52-143				
1,1-Dichloroethane	51		"	50.0		102	80-125				
1,2-Dichloroethane	49		"	50.0		98.8	67-129				
1,1-Dichloroethylene	47		"	50.0		93.8	62-136				
trans-1,2-Dichloroethylene	50		"	50.0		99.1	66-136				
cis-1,2-Dichloroethylene	53		"	50.0		106	86-121				
1,2-Dichloropropane	50		"	50.0		100	74-127				
trans-1,3-Dichloropropylene	49		"	50.0		98.5	71-128				
cis-1,3-Dichloropropylene	48		"	50.0		96.3	78-122				
1,4-Dioxane	1400		"	1000		139	31-190				
Ethyl Benzene	49		"	50.0		98.5	81-118				
2-Hexanone	52		"	50.0		103	50-154				
Isopropylbenzene	50		"	50.0		99.6	78-122				
Methyl acetate	50		"	50.0		99.0	41-143				
Methyl tert-butyl ether (MTBE)	51		"	50.0		102	62-140				
Methylcyclohexane	51		"	50.0		101	70-130				
Methylene chloride	48		"	50.0		95.0	48-143				
4-Methyl-2-pentanone	47		"	50.0		94.2	53-149				
Styrene	52		"	50.0		103	85-115				
1,1,2,2-Tetrachloroethane	50		"	50.0		101	72-133				
Tetrachloroethylene	56		"	50.0		111	76-129				
Toluene	50		"	50.0		99.1	85-116				
1,2,4-Trichlorobenzene	52		"	50.0		103	61-158				
1,2,3-Trichlorobenzene	52		"	50.0		104	63-154				



### York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit U	Jnits	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40885 - EPA 5035A											
LCS (BI40885-BS1)							Prep	pared: 09/17/20	)14 Analyze	ed: 09/18/2	2014
1,1,1-Trichloroethane	49	u	ıg/L	50.0		97.9	74-126				
1,1,2-Trichloroethane	50		"	50.0		100	81-124				
Trichloroethylene	51		"	50.0		101	83-118				
Trichlorofluoromethane	48		"	50.0		95.0	54-141				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48		"	50.0		96.5	47-160				
Vinyl Chloride	50		"	50.0		101	38-147				
o-Xylene	50		"	50.0		101	81-118				
p- & m- Xylenes	110		"	100		105	80-120				
Surrogate: p-Bromofluorobenzene	50.4		"	50.0		101	75-127				
Surrogate: 1,2-Dichloroethane-d4	47.9		"	50.0		95.8	67-130				
Surrogate: Toluene-d8	49.2		"	50.0		98.3	90-112				
LCS Dup (BI40885-BSD1)							Prep	pared: 09/17/20	)14 Analyze	d: 09/18/2	2014
Acetone	38	u	ıg/L	50.0		75.0	32-173		7.14	30	
Benzene	52		"	50.0		104	83-126		2.82	30	
Bromochloromethane	52		"	50.0		103	73-128		4.47	30	
Bromodichloromethane	52		"	50.0		103	74-126		2.90	30	
Bromoform	54		"	50.0		108	63-137		2.75	30	
Bromomethane	59		"	50.0		119	24-144		0.186	30	
2-Butanone	46		"	50.0		91.7	58-159		4.10	30	
Carbon disulfide	51		"	50.0		102	29-64	High Bias	4.21	30	
Carbon tetrachloride	50		"	50.0		99.1	68-132		1.18	30	
Chlorobenzene	53		"	50.0		107	87-115		3.63	30	
Chloroethane	56		"	50.0		112	39-146		1.59	30	
Chloroform	53		"	50.0		107	84-120		5.59	30	
Chloromethane	46		"	50.0		92.7	35-153		4.53	30	
Cyclohexane	48		"	50.0		95.5	70-130		2.54	30	
1,2-Dibromo-3-chloropropane	52		"	50.0		103	48-152		4.78	30	
Dibromochloromethane	55		"	50.0		110	41-149		8.28	30	
1,2-Dibromoethane	55		"	50.0		110	81-123		4.73	30	
1,2-Dichlorobenzene	53		"	50.0		107	81-117		4.69	30	
1,3-Dichlorobenzene	53		"	50.0		107	84-117		5.30	30	
1,4-Dichlorobenzene	53		"	50.0		106	85-118		4.78	30	
Dichlorodifluoromethane	52		"	50.0		103	52-143		3.66	30	
1,1-Dichloroethane	50		"	50.0		99.3	80-125		2.53	30	
1,2-Dichloroethane	52		"	50.0		104	67-129		5.03	30	
1,1-Dichloroethylene	47		"	50.0		94.7	62-136		0.934	30	
trans-1,2-Dichloroethylene	49		"	50.0		97.7	66-136		1.38	30	
cis-1,2-Dichloroethylene	54		"	50.0		107	86-121		1.14	30	
1,2-Dichloropropane	51		"	50.0		103	74-127		2.46	30	
trans-1,3-Dichloropropylene	50		"	50.0		100	71-128		1.99	30	
cis-1,3-Dichloropropylene	51		"	50.0		102	78-122		6.14	30	
1,4-Dioxane	1400		"	1000		144	31-190		3.50	30	
Ethyl Benzene	51		"	50.0		103	81-118		4.23	30	
2-Hexanone	59		"	50.0		118	50-154		13.4	30	
Isopropylbenzene	52		"	50.0		105	78-122		4.99	30	
Methyl acetate	50		"	50.0		99.7	41-143		0.704	30	
Methyl tert-butyl ether (MTBE)	51		"	50.0		102	62-140		0.432	30	
Methylcyclohexane	51		"	50.0		102	70-130		0.845	30	
Methylene chloride	51		"	50.0		101	48-143		6.34	30	
4-Methyl-2-pentanone	53		"	50.0		106	53-149		11.5	30	
Styrene	54		"	50.0		107	85-115		3.90	30	
420 DECEADOU DDIVE	CTDATEODD OT				000) 005 4			EAV (202)			

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 57 of 89

RPD

%REC



## $\label{lem:compounds} \textbf{Volatile Organic Compounds by GC/MS-Quality Control Data}$

### York Analytical Laboratories, Inc.

Reporting

Spike

Source*

%REC

Analyte	Result	Limit Uni	ts Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40885 - EPA 5035A										
LCS Dup (BI40885-BSD1)						Prep	oared: 09/17/2	014 Analyz	ed: 09/18/	2014
1,1,2,2-Tetrachloroethane	54	ug/	L 50.0		108	72-133		6.84	30	
Tetrachloroethylene	58	"	50.0		116	76-129		4.32	30	
Toluene	53	"	50.0		106	85-116		6.27	30	
1,2,4-Trichlorobenzene	54	"	50.0		107	61-158		3.82	30	
1,2,3-Trichlorobenzene	57	"	50.0		114	63-154		8.83	30	
1,1,1-Trichloroethane	50	"	50.0		99.9	74-126		1.98	30	
1,1,2-Trichloroethane	53	"	50.0		106	81-124		5.80	30	
Trichloroethylene	53	"	50.0		106	83-118		3.92	30	
Trichlorofluoromethane	49	"	50.0		97.1	54-141		2.17	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48	"	50.0		96.5	47-160		0.0207	30	
Vinyl Chloride	48	"	50.0		96.6	38-147		4.39	30	
o-Xylene	53	"	50.0		105	81-118		3.92	30	
p- & m- Xylenes	110	"	100		108	80-120		3.17	30	
Surrogate: p-Bromofluorobenzene	51.5	"	50.0		103	75-127				
Surrogate: 1,2-Dichloroethane-d4	47.9	"	50.0		95.9	67-130				
Surrogate: Toluene-d8	51.0	"	50.0		102	90-112				
Matrix Spike (BI40885-MS1)	*Source sample: 14	10505 02 (DCD/M)	1 15/14 15)			Prer	oared: 09/17/2	014 Analyz	ed: 09/18/	2014
Acetone	89	`		14	150	10-200				
Benzene		ug/								
Bromochloromethane	53	"	50.0	ND	106	32-136				
Bromodichloromethane	52		50.0	ND	104	52-120				
Bromoform	51		50.0	ND	103	42-132				
	54		50.0	ND	107	35-135	High Dies			
Bromomethane	70		50.0	ND	139	10-123	High Bias			
2-Butanone	68		50.0	ND	135	23-181	Historia			
Carbon disulfide	52		50.0	ND	104	10-67	High Bias			
Carbon tetrachloride	50	"	50.0	ND	99.7	19-138				
Chlorobenzene Chloroethane	53		50.0	ND	106	24-130				
Chloroform	62		50.0	ND	123	22-129				
	53		50.0	ND	106	41-133				
Chloromethane	53		50.0	ND	106	10-147				
Cyclohexane	50		50.0	ND	99.4	70-130				
1,2-Dibromo-3-chloropropane Dibromochloromethane	46	,,	50.0	ND	92.7	17-146				
1,2-Dibromoethane	52		50.0	ND	103	38-131				
1,2-Diblomoeniane	52		50.0	ND	104	53-123				
1,3-Dichlorobenzene	53		50.0	ND	107	10-128				
1,4-Dichlorobenzene	52		50.0	ND	104	10-127				
Dichlorodifluoromethane	53	"	50.0	ND	106	10-125				
1,1-Dichloroethane	51	"	50.0	ND	102	10-144				
	52		50.0	ND	105	23-145				
1,2-Dichloroethane 1,1-Dichloroethylene	51		50.0	ND	101	54-119				
· ·	51		50.0	ND	101	10-161				
trans-1,2-Dichloroethylene	53		50.0	ND	105	20-146				
cis-1,2-Dichloroethylene 1,2-Dichloropropane	56		50.0	ND	112	43-130				
trans-1,3-Dichloropropylene	51	"	50.0	ND	103	38-142				
cis-1,3-Dichloropropylene	51	"	50.0	ND	103	36-123				
· · · · · · · · · · · · · · · · · · ·	52	"	50.0	ND ND	104	35-125				
1,4-Dioxane	1300	"	1000	ND	128	33-179				
Ethyl Benzene	51	"	50.0	ND	103	10-136				
2-Hexanone	63		50.0	2.7	121	10-171				
Isopropylbenzene Marked a settle	50	"	50.0	ND	101	10-147				
Methyl acetate	50	"	50.0	ND	99.2	10-149				

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

RPD



### York Analytical Laboratories, Inc.

		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40885 - EPA 5035A										
Matrix Spike (BI40885-MS1)	*Source sample: 1	4I0505-03 (RSB/MW-15	(14-15)			Prej	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
Methyl tert-butyl ether (MTBE)	53	ug/L	50.0	ND	106	54-133				
Methylcyclohexane	48	"	50.0	ND	95.3	70-130				
Methylene chloride	52	"	50.0	1.5	100	10-147				
4-Methyl-2-pentanone	51	"	50.0	ND	101	27-150				
Styrene	52	"	50.0	ND	104	13-129				
1,1,2,2-Tetrachloroethane	54	ıı .	50.0	ND	108	25-149				
Tetrachloroethylene	55	"	50.0	ND	110	10-166				
Toluene	52	"	50.0	2.2	99.4	34-128				
1,2,4-Trichlorobenzene	49	"	50.0	ND	98.8	10-135				
1,2,3-Trichlorobenzene	50	"	50.0	ND	99.3	10-131				
1,1,1-Trichloroethane	51	"	50.0	ND	102	11-147				
1,1,2-Trichloroethane	52	"	50.0	ND	104	45-135				
Trichloroethylene	53	"	50.0	ND	106	36-134				
Trichlorofluoromethane	53	"	50.0	ND	106	21-128				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	51	"	50.0	ND	101	10-170				
Vinyl Chloride	52	"	50.0	ND	105	10-138				
o-Xylene	51	"	50.0	ND	102	21-132				
p- & m- Xylenes	110	"	100	ND	109	13-132				
<u> </u>				110						
Surrogate: p-Bromofluorobenzene	50.2	"	50.0		100	70-130				
Surrogate: 1,2-Dichloroethane-d4	49.4	"	50.0		98.7	67-130				
Surrogate: Toluene-d8	49.3	"	50.0		98.5	90-112				
Matrix Spike Dup (BI40885-MSD1)	*Source sample: 1	4I0505-03 (RSB/MW-15/	(14-15)			Pre	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
Acetone	84	ug/L	50.0	13	143	10-200		5.19	150	
Benzene	54	"	50.0	ND	107	32-136		0.712	64	
Bromochloromethane	51	"	50.0	ND	102	52-120		2.12	30	
Bromodichloromethane	50	"	50.0	ND	100	42-132		2.60	37	
Bromoform	54	"	50.0	ND	108	35-135		0.926	51	
Bromomethane	68	"	50.0	ND	135	10-123	High Bias	3.06	42	
2-Butanone	62	"	50.0	ND	124	23-181		8.92	67	
Carbon disulfide	51	"	50.0	ND	101	10-67	High Bias	2.34	36	
Carbon tetrachloride	51	"	50.0	ND	102	19-138		2.77	31	
Chlorobenzene	54	"	50.0	ND	107	24-130		1.35	32	
Chloroethane	60	"	50.0	ND	121	22-129		2.04	40	
Chloroform	53	"	50.0	ND	106	41-133		0.378	29	
Chloromethane	50	"	50.0	ND	99.9	10-147		6.04	31	
Cyclohexane	53	"	50.0	ND	105	70-130		5.65	30	
1,2-Dibromo-3-chloropropane	47	"	50.0	ND	94.1	17-146		1.50	54	
Dibromochloromethane	51	"	50.0	ND	103	38-131		0.0777	41	
1,2-Dibromoethane	54	"	50.0	ND	108	53-123		4.35	39	
1,2-Dichlorobenzene	55	"	50.0	ND	110	10-128		3.50	52	
1,3-Dichlorobenzene	54	"	50.0	ND	108	10-127		4.21	51	
1,4-Dichlorobenzene	55	"	50.0	ND	110	10-125		4.25	52	
Dichlorodifluoromethane	51	"	50.0	ND	102	10-144		0.0984	34	
1,1-Dichloroethane	52	"	50.0	ND	104	23-145		0.614	36	
1,2-Dichloroethane	50	"	50.0	ND	101	54-119		0.713	32	
1,1-Dichloroethylene	50	n n	50.0	ND	99.2	10-161		2.04	31	
trans-1,2-Dichloroethylene	51	"	50.0	ND	103	20-146		2.15	30	
cis-1,2-Dichloroethylene	56	n n	50.0	ND	112	43-130		0.0892	30	
1,2-Dichloropropane	53	n n	50.0	ND	105	38-142		2.48	37	
trans-1,3-Dichloropropylene										
, r r, -	51	"	50.0	ND	103	36-123		0.117	30	
cis-1,3-Dichloropropylene	51 53	"	50.0 50.0	ND ND	103 106	36-123 35-125		0.117 2.15	30 39	

Page 59 of 89



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BI40885	- FPA	50354
ритен	D14U00.3	- r, r A	.7U.7.7A

Matrix Spike Dup (BI40885-MSD1)	*Source sample: 14I0505	-03 (RSB/MW-15/	14-15)		Prepared: 09/17/2014 Analyzed: 09/18/2					
1,4-Dioxane	1300	ug/L	1000	ND	133	33-179	3.30	196		
Ethyl Benzene	53	"	50.0	ND	106	10-136	2.94	42		
2-Hexanone	61	"	50.0	2.6	117	10-171	3.87	60		
Isopropylbenzene	52	"	50.0	ND	105	10-147	3.91	57		
Methyl acetate	48	"	50.0	ND	95.2	10-149	4.09	64		
Methyl tert-butyl ether (MTBE)	51	"	50.0	ND	101	54-133	4.94	47		
Methylcyclohexane	52	"	50.0	ND	103	70-130	7.80	30		
Methylene chloride	50	"	50.0	1.4	96.9	10-147	3.45	49		
4-Methyl-2-pentanone	48	"	50.0	ND	96.0	27-150	5.24	47		
Styrene	53	"	50.0	ND	106	13-129	1.56	39		
1,1,2,2-Tetrachloroethane	53	"	50.0	ND	106	25-149	1.88	56		
Tetrachloroethylene	54	"	50.0	ND	108	10-166	1.54	33		
Toluene	57	"	50.0	2.1	110	34-128	9.68	50		
1,2,4-Trichlorobenzene	50	"	50.0	ND	100	10-135	1.63	52		
1,2,3-Trichlorobenzene	51	"	50.0	ND	102	10-131	2.53	47		
1,1,1-Trichloroethane	51	"	50.0	ND	103	11-147	0.351	30		
1,1,2-Trichloroethane	51	"	50.0	ND	102	45-135	1.96	40		
Trichloroethylene	53	"	50.0	ND	106	36-134	0.189	30		
Trichlorofluoromethane	51	"	50.0	ND	102	21-128	4.77	30		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	49	"	50.0	ND	98.0	10-170	3.09	31		
Vinyl Chloride	50	"	50.0	ND	101	10-138	3.88	35		
o-Xylene	52	"	50.0	ND	105	21-132	3.08	51		
p- & m- Xylenes	110	"	100	ND	109	13-132	0.110	47		
Surrogate: p-Bromofluorobenzene	49.7	"	50.0		99.4	70-130				
Surrogate: 1,2-Dichloroethane-d4	46.7	"	50.0		93.4	67-130				
Surrogate: Toluene-d8	48.6	"	50.0		97.1	90-112				



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40886 - EPA 5030B				
Blank (BI40886-BLK1)				Prepared: 09/17/2014 Analyzed: 09/18/20
,1,1-Trichloroethane	ND	0.50	ug/L	
,1,2,2-Tetrachloroethane	ND	0.50	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	"	
,1,2-Trichloroethane	ND	0.50	"	
,1-Dichloroethane	ND	0.50	"	
1-Dichloroethylene	ND	0.50	"	
2,3-Trichlorobenzene	1.9	0.50	"	
2,4-Trichlorobenzene	1.1	0.50	"	
2-Dibromo-3-chloropropane	ND	0.50	"	
2-Dibromoethane	ND	0.50	"	
2-Dichlorobenzene	ND	0.50	"	
2-Dichloroethane	ND	0.50	"	
2-Dichloropropane	ND	0.50	"	
3-Dichlorobenzene	ND	0.50	"	
l-Dichlorobenzene	ND	0.50	"	
Butanone	ND	0.50	"	
Hexanone	2.2	0.50	"	
Methyl-2-pentanone	ND	0.50	"	
eetone	11	2.0	"	
nzene	ND	0.50	"	
omochloromethane	ND	0.50	"	
omodichloromethane	ND	0.50	"	
omoform	ND	0.50	"	
omomethane	ND	0.50	"	
rbon disulfide	ND	0.50	"	
bon tetrachloride	ND	0.50	"	
lorobenzene	ND	0.50	"	
loroethane	ND	0.50	"	
loroform	ND	0.50	"	
loromethane	ND	0.50	"	
-1,2-Dichloroethylene	ND	0.50	"	
-1,3-Dichloropropylene	ND	0.50	"	
clohexane	ND	0.50	"	
promochloromethane	ND	0.50	"	
chlorodifluoromethane	ND	0.50	"	
nyl Benzene	ND	0.50	"	
propylbenzene	ND	0.50	"	
ethyl acetate	ND	0.50		
ethyl tert-butyl ether (MTBE)	ND	0.50		
ethylcyclohexane	ND ND	0.50	"	
ethylene chloride	1.4	2.0	"	
Xylene	ND	0.50	"	
& m- Xylenes	ND ND	1.0	"	
/rene	ND ND	0.50	"	
trachloroethylene	ND ND	0.50	"	
luene	ND ND	0.50	"	
ns-1,2-Dichloroethylene	ND ND	0.50	"	
ns-1,2-Dictiloropropylene	ND ND		"	
ichloroethylene		0.50		
chlorofluoromethane	ND	0.50	"	
nyl Chloride	ND ND	0.50 0.50		



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Dlank (DI40006 DI I/1)					Prepared: 09/17/2014 Analyzed: 09/18/2014
Blank (BI40886-BLK1)	ND.	1.5 //			11cparca. 09/11/2014 Anaryzea. 09/10/201-
Kylenes, Total	ND	1.5 ug/L			
Surrogate: 1,2-Dichloroethane-d4	43.9	"	50.0	87.8	81-123
Surrogate: Toluene-d8	51.3	"	50.0	103	88-114
urrogate: p-Bromofluorobenzene	47.8	"	50.0	95.7	70-128
.CS (BI40886-BS1)					Prepared: 09/17/2014 Analyzed: 09/18/2014
,1,1-Trichloroethane	49	ug/L	50.0	97.9	74-128
,1,2,2-Tetrachloroethane	50	"	50.0	101	71-130
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48	"	50.0	96.5	51-157
1,2-Trichloroethane	50	"	50.0	100	80-122
1-Dichloroethane	51	"	50.0	102	70-131
1-Dichloroethylene	47	"	50.0	93.8	60-143
2,3-Trichlorobenzene	52	"	50.0	104	68-140
2,4-Trichlorobenzene	52	"	50.0	103	65-143
2-Dibromo-3-chloropropane	49	"	50.0	98.4	60-146
2-Dibromoethane	53	"	50.0	105	82-122
,2-Dichlorobenzene	51	"	50.0	102	85-115
2-Dichloroethane	49	"	50.0	98.8	72-126
2-Dichloropropane	50	"	50.0	100	78-119
3-Dichlorobenzene	51	"	50.0	101	83-117
4-Dichlorobenzene	50	"	50.0	101	83-118
Butanone	44	m .	50.0	88.0	48-156
Hexanone	52	··	50.0	103	50-151
Methyl-2-pentanone	47	··	50.0	94.2	55-147
cetone	40	"	50.0	80.6	21-172
enzene	50	"	50.0	101	82-120
romochloromethane	49	"	50.0	98.9	69-125
romodichloromethane	50	"	50.0	100	84-117
romoform	53	"	50.0	105	77-130
romomethane	59	"	50.0	118	16-162
arbon disulfide	49	"	50.0	97.8	21-78 High Bias
arbon tetrachloride	49	"	50.0	97.9	72-132
hlorobenzene	51	"	50.0	103	88-112
hloroethane	57	"	50.0	114	29-172
hloroform	50	"	50.0	101	77-124
hloromethane	50 49	"	50.0	97.0	77-124 37-131
is-1,2-Dichloroethylene		"			
s-1,3-Dichloropropylene	53 48		50.0 50.0	106 96.3	77-124 81-117
		"			
yclohexane ibromochloromethane	49	"	50.0	97.9	70-130 72-131
	50	"	50.0	101	72-131
ichlorodifluoromethane	50	"	50.0	99.3	47-152
thyl Benzene	49	"	50.0	98.5	86-114
opropylbenzene	50	"	50.0	99.6	84-118
lethyl acetate	50	"	50.0	99.0	20-177
lethyl tert-butyl ether (MTBE)	51	"	50.0	102	49-156
ethylcyclohexane	51		50.0	101	70-130
ethylene chloride	48	"	50.0	95.0	51-145
Xylene	50	"	50.0	101	85-114
& m- Xylenes	110	"	100	105	84-117
tyrene	52	"	50.0	103	77-126
etrachloroethylene oluene	56 50	"	50.0	111	75-129



### York Analytical Laboratories, Inc.

Spike

Source*

Reporting

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40886 - EPA 5030B										
LCS (BI40886-BS1)						Prep	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
trans-1,2-Dichloroethylene	50	ug/L	50.0		99.1	55-148				
trans-1,3-Dichloropropylene	49	"	50.0		98.5	77-120				
Trichloroethylene	51	"	50.0		101	85-115				
Trichlorofluoromethane	48	"	50.0		95.0	69-131				
Vinyl Chloride	50	"	50.0		101	44-152				
Surrogate: 1,2-Dichloroethane-d4	47.9	"	50.0		95.8	81-123				
Surrogate: Toluene-d8	49.2	"	50.0		98.3	88-114				
Surrogate: p-Bromofluorobenzene	50.4	"	50.0		101	70-128				
LCS Dup (BI40886-BSD1)						Prep	pared: 09/17/2	014 Analyz	ed: 09/18/2	2014
1,1,1-Trichloroethane	50	ug/L	50.0		99.9	74-128		1.98	30	
1,1,2,2-Tetrachloroethane	54	"	50.0		108	71-130		6.84	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	48	"	50.0		96.5	51-157		0.0207	30	
1,1,2-Trichloroethane	53	"	50.0		106	80-122		5.80	30	
1,1-Dichloroethane	50	"	50.0		99.3	70-131		2.53	30	
1,1-Dichloroethylene	47	"	50.0		94.7	60-143		0.934	30	
1,2,3-Trichlorobenzene	57	"	50.0		114	68-140		8.83	30	
1,2,4-Trichlorobenzene	54	"	50.0		107	65-143		3.82	30	
1,2-Dibromo-3-chloropropane	52	"	50.0		103	60-146		4.78	30	
1,2-Dibromoethane	55	"	50.0		110	82-122		4.73	30	
1,2-Dichlorobenzene	53	"	50.0		107	85-115		4.69	30	
1,2-Dichloroethane	52	"	50.0		107	72-126		5.03	30	
1,2-Dichloropropane	51	"	50.0		104	72-126 78-119		2.46	30	
1,3-Dichlorobenzene	53	"	50.0		103	83-117		5.30	30	
1,4-Dichlorobenzene	53	"	50.0		106	83-117		4.78	30	
2-Butanone	46	,,	50.0		91.7	48-156		4.10	30	
2-Hexanone	59	"	50.0			50-151		13.4	30	
4-Methyl-2-pentanone	53	"	50.0		118 106	55-147		11.5	30	
Acetone	38	"	50.0		75.0	21-172		7.14	30	
Benzene	52	"	50.0					2.82	30	
Bromochloromethane		,,			104	82-120		4.47	30	
Bromodichloromethane	52 52	,,	50.0 50.0		103	69-125		2.90	30	
Bromoform	52 54	"	50.0		103	84-117 77-130		2.75	30	
Bromomethane	59	,,	50.0		108	16-162		0.186	30	
Carbon disulfide		"			119		High Bias	4.21	30	
Carbon tetrachloride	51	,,	50.0 50.0		102 99.1	21-78	High Dias	1.18	30	
Chlorobenzene	50 53	,,	50.0		107	72-132 88-112		3.63	30	
Chloroethane		"						1.59	30	
Chloroform	56	"	50.0 50.0		112	29-172		5.59	30	
Chloromethane	53	"			107	77-124		4.53	30	
cis-1,2-Dichloroethylene	46	"	50.0		92.7	37-131		1.14	30	
cis-1,3-Dichloropropylene	54	"	50.0		107	77-124		6.14	30	
	51	"	50.0		102	81-117		2.54	30	
Cyclohexane	48	"	50.0		95.5	70-130				
Dibromochloromethane Dichlorodifluoromethane	55	"	50.0		110	72-131		8.28	30	
Ethyl Benzene	52		50.0		103	47-152		3.66 4.23	30 30	
Isopropylbenzene	51	"	50.0		103	86-114		4.23	30	
	52	"	50.0		105	84-118				
Methyl acetate  Methyl test buttl other (MTDE)	50	"	50.0		99.7	20-177		0.704	30	
Methyl tert-butyl ether (MTBE)	51	"	50.0		102	49-156		0.432	30	
Methylcyclohexane Methylcyclohexane	51		50.0		102	70-130		0.845	30	
Methylene chloride	51	"	50.0		101	51-145		6.34	30	
o-Xylene	53	"	50.0		105	85-114		3.92	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 63 of 89

RPD

%REC



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40886 - EPA 5030B											
LCS Dup (BI40886-BSD1)							Prep	ared: 09/17/2	2014 Analyz	ed: 09/18/2	2014
p- & m- Xylenes	110		ug/L	100		108	84-117		3.17	30	
Styrene	54		"	50.0		107	77-126		3.90	30	
Tetrachloroethylene	58		"	50.0		116	75-129		4.32	30	
Toluene	53		"	50.0		106	86-113		6.27	30	
trans-1,2-Dichloroethylene	49		"	50.0		97.7	55-148		1.38	30	
trans-1,3-Dichloropropylene	50		"	50.0		100	77-120		1.99	30	
Trichloroethylene	53		"	50.0		106	85-115		3.92	30	
Trichlorofluoromethane	49		"	50.0		97.1	69-131		2.17	30	
Vinyl Chloride	48		"	50.0		96.6	44-152		4.39	30	
Surrogate: 1,2-Dichloroethane-d4	47.9		"	50.0		95.9	81-123				
Surrogate: Toluene-d8	51.0		"	50.0		102	88-114				
Surrogate: p-Bromofluorobenzene	51.5		"	50.0		103	70-128				
Batch BI40920 - EPA 5035A											
Blank (BI40920-BLK1)							Prep	ared & Anal	yzed: 09/18/	2014	
Acetone	51	10	ug/kg wet								
Benzene	ND	5.0	"								
Bromochloromethane	ND	5.0	"								
Bromodichloromethane	ND	5.0	"								
Bromoform	ND	5.0	"								
Bromomethane	ND	5.0	"								
2-Butanone	2.8	5.0	"								
Carbon disulfide	ND	5.0	"								
Carbon tetrachloride	ND	5.0	"								
Chlorobenzene	ND	5.0	"								
Chloroethane	ND	5.0	"								
Chloroform	ND	5.0	"								
Chloromethane	ND	5.0	"								
Cyclohexane	ND	5.0	"								
1,2-Dibromo-3-chloropropane	ND	5.0	"								
Dibromochloromethane	ND	5.0	"								
1,2-Dibromoethane	ND	5.0	"								
1,2-Dichlorobenzene	ND	5.0	"								
1,3-Dichlorobenzene	ND	5.0	"								
1,4-Dichlorobenzene	ND	5.0	"								
Dichlorodifluoromethane	ND	5.0	"								
1,1-Dichloroethane	ND	5.0	"								
1,2-Dichloroethane	ND	5.0	"								
1,1-Dichloroethylene	ND	5.0	"								
trans-1,2-Dichloroethylene	ND	5.0	"								
cis-1,2-Dichloroethylene	ND	5.0	"								
1,2-Dichloropropane	ND	5.0	"								
trans-1,3-Dichloropropylene	ND	5.0	"								
cis-1,3-Dichloropropylene 1,4-Dioxane	ND	5.0	"								
Ethyl Benzene	ND ND	100	"								
2-Hexanone	ND	5.0	"								
Isopropylbenzene	ND ND	5.0 5.0	"								
Methyl acetate	ND ND	5.0	"								
Methyl tert-butyl ether (MTBE)	ND ND	5.0	"								
Methylcyclohexane	ND ND	5.0	"								
ricuryicyclonicanic	ND	5.0									



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

						-	10 4 1 1 00/10/2011
Blank (BI40920-BLK1)						Pre	pared & Analyzed: 09/18/2014
Methylene chloride	ND	10	ug/kg wet				
4-Methyl-2-pentanone	ND	5.0	"				
Styrene	ND	5.0	"				
,1,2,2-Tetrachloroethane	ND	5.0	"				
Γetrachloroethylene	ND	5.0	"				
Toluene	ND	5.0	"				
,2,4-Trichlorobenzene	ND	5.0	"				
,2,3-Trichlorobenzene	ND	5.0	"				
,1,1-Trichloroethane	ND	5.0	"				
,1,2-Trichloroethane	ND	5.0	"				
richloroethylene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"				
Vinyl Chloride	ND	5.0	"				
p-Xylene	ND	5.0	"				
p- & m- Xylenes	ND	10	"				
Xylenes, Total	ND	15	"				
Surrogate: p-Bromofluorobenzene	55.2		ug/L	50.0	110	75-127	
Surrogate: 1,2-Dichloroethane-d4	51.7		ug/L "	50.0	103	67-130	
Surrogate: Toluene-d8	50.2		"	50.0	100	90-112	
_	30.2			30.0	100		
LCS (BI40920-BS1)						Pre	pared & Analyzed: 09/18/2014
Acetone	80		ug/L	50.0	159	32-173	
Benzene	50		"	50.0	99.4	83-126	
Bromochloromethane	53		"	50.0	106	73-128	
Bromodichloromethane	60		"	50.0	119	74-126	
Bromoform	63		"	50.0	126	63-137	
Bromomethane	49		"	50.0	97.6	24-144	
2-Butanone	59		"	50.0	118	58-159	
Carbon disulfide	55		"	50.0	109	29-64	High Bias
Carbon tetrachloride	61		"	50.0	122	68-132	
Chlorobenzene	54		"	50.0	109	87-115	
Chloroethane	52		"	50.0	104	39-146	
Chloroform	56		"	50.0	112	84-120	
Chloromethane	41		"	50.0	82.3	35-153	
Cyclohexane	48		"	50.0	96.1	70-130	
,2-Dibromo-3-chloropropane	68		"	50.0	135	48-152	
Dibromochloromethane	63		"	50.0	125	41-149	
,2-Dibromoethane	56		"	50.0	113	81-123	
,2-Dichlorobenzene	56		"	50.0	112	81-117	
,3-Dichlorobenzene	56		"	50.0	113	84-117	
,4-Dichlorobenzene	58		"	50.0	116	85-118	
Dichlorodifluoromethane	47		"	50.0	93.2	52-143	
,1-Dichloroethane	51		"	50.0	102	80-125	
,2-Dichloroethane	60		"	50.0	121	67-129	
,1-Dichloroethylene	58		"	50.0	116	62-136	
rans-1,2-Dichloroethylene	52		,,	50.0	104	66-136	
is-1,2-Dichloroethylene	52 52		,,	50.0	104	86-121	
,2-Dichloropropane	50		,,	50.0	99.9	74-127	
rans-1,3-Dichloropropylene	58		,,	50.0		71-128	
rans-1,3-Dichloropropylene			,,		117		
,4-Dioxane	54 1300		,,	50.0 1000	108 134	78-122 31-190	



### York Analytical Laboratories, Inc.

		Reporting	Spike	Source*		%REC			RPD	
Analyte	Result	Limit Un	-	Result 9	%REC	Limits	Flag	RPD	Limit	Fla
Batch BI40920 - EPA 5035A										
LCS (BI40920-BS1)						Prep	pared & Analy	zed: 09/18/	2014	
Ethyl Benzene	54	ug	/L 50.0		109	81-118				
2-Hexanone	56	,			113	50-154				
sopropylbenzene	54	,	50.0		109	78-122				
Methyl acetate	55	"	50.0		110	41-143				
Methyl tert-butyl ether (MTBE)	56		50.0		112	62-140				
Methylcyclohexane	51	"	50.0		103	70-130				
Methylene chloride	46	"	50.0		91.2	48-143				
-Methyl-2-pentanone	53	"	50.0		106	53-149				
tyrene	56	"			111	85-115				
,1,2,2-Tetrachloroethane	53				107	72-133				
etrachloroethylene	54				109	76-129				
oluene	53				106	85-116				
,2,4-Trichlorobenzene	59				118	61-158				
,2,3-Trichlorobenzene	61	,			122	63-154				
,1,1-Trichloroethane	59				119	74-126				
,1,2-Trichloroethane	54				108	81-124				
richloroethylene	55	"			111	83-118				
richlorofluoromethane	59				119	54-141				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	58	,			116	47-160				
Vinyl Chloride	49	,			98.6	38-147				
-Xylene	56		30.0		112	81-118				
- & m- Xylenes	110		30.0		113	80-120				
<u> </u>			100							
urrogate: p-Bromofluorobenzene	51.3	,	50.0		103	75-127				
furrogate: 1,2-Dichloroethane-d4	54.5	,	50.0		109	67-130				
urrogate: Toluene-d8	50.1	,	50.0		100	90-112				
.CS Dup (BI40920-BSD1)							pared & Analy			
acetone	97	ug			193	32-173	High Bias	19.1	30	
Benzene	52	"	30.0		104	83-126		4.83	30	
Bromochloromethane	54	"	30.0		108	73-128		2.29	30	
romodichloromethane	61	"	30.0		122	74-126		2.42	30	
romoform	63	"	30.0		126	63-137		0.0951	30	
romomethane	50	"	50.0		99.7	24-144		2.09	30	
-Butanone	54	"	50.0		107	58-159		9.37	30	
Carbon disulfide	57	"	50.0		114	29-64	High Bias	4.66	30	
Carbon tetrachloride	64	"	50.0		128	68-132		4.49	30	
Chlorobenzene	55	"	50.0		110	87-115		1.11	30	
Chloroethane	54	"	50.0		108	39-146		4.10	30	
Chloroform	59	"	50.0		118	84-120		5.33	30	
Chloromethane	44	"	50.0		87.9	35-153		6.61	30	
Cyclohexane	52	"	50.0		103	70-130		7.28	30	
,2-Dibromo-3-chloropropane	66	"	50.0		132	48-152		2.76	30	
Dibromochloromethane	62	"	50.0		125	41-149		0.432	30	
,2-Dibromoethane	57	"	50.0		114	81-123		1.41	30	
,2-Dichlorobenzene	56	"	50.0		112	81-117		0.107	30	
,3-Dichlorobenzene	57	,	50.0		114	84-117		0.917	30	
,4-Dichlorobenzene	57	,	50.0		113	85-118		1.87	30	
Dichlorodifluoromethane	48	,			96.9	52-143		3.93	30	
,1-Dichloroethane	54	"			108	80-125		6.05	30	
,2-Dichloroethane	62	"			125	67-129		3.31	30	
,1-Dichloroethylene	60				119	62-136		3.17	30	
rans-1,2-Dichloroethylene	54	"			109	66-136		4.07	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 66 of 89



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40920 - EPA 5035A

Toluene

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Toluene-d8

LCS Dup (BI40920-BSD1)					Prepared &	k Analyzed: 09/18/2	2014
cis-1,2-Dichloroethylene	54	ug/L	50.0	108	86-121	2.95	30
1,2-Dichloropropane	51	"	50.0	101	74-127	1.25	30
trans-1,3-Dichloropropylene	59	"	50.0	118	71-128	0.939	30
cis-1,3-Dichloropropylene	56	"	50.0	112	78-122	3.43	30
1,4-Dioxane	1200	"	1000	118	31-190	13.0	30
Ethyl Benzene	55	"	50.0	110	81-118	1.11	30
2-Hexanone	54	"	50.0	109	50-154	3.52	30
Isopropylbenzene	55	"	50.0	111	78-122	1.75	30
Methyl acetate	50	"	50.0	99.8	41-143	9.67	30
Methyl tert-butyl ether (MTBE)	57	"	50.0	114	62-140	1.64	30
Methylcyclohexane	52	"	50.0	104	70-130	1.72	30
Methylene chloride	46	"	50.0	92.6	48-143	1.52	30
4-Methyl-2-pentanone	53	"	50.0	106	53-149	0.433	30
Styrene	56	"	50.0	112	85-115	0.914	30
1,1,2,2-Tetrachloroethane	55	"	50.0	110	72-133	3.19	30
Tetrachloroethylene	57	"	50.0	113	76-129	4.25	30

Surrogate: p-Bromofluorobenzene	50.6	"	50.0	101	75-127		
p- & m- Xylenes	110	"	100	114	80-120	0.741	30
o-Xylene	57	"	50.0	115	81-118	2.36	30
Vinyl Chloride	51	"	50.0	103	38-147	3.97	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	61	"	50.0	122	47-160	4.43	30
Trichlorofluoromethane	62	"	50.0	124	54-141	4.51	30
Trichloroethylene	56	"	50.0	112	83-118	0.862	30
1,1,2-Trichloroethane	54	"	50.0	108	81-124	0.241	30
1,1,1-Trichloroethane	62	"	50.0	125	74-126	4.93	30
1,2,3-Trichlorobenzene	60	"	50.0	120	63-154	1.20	30
1,2,4-Trichlorobenzene	58	"	50.0	116	61-158	1.81	30

50.0

50.0

50.0

108

113

100

85-116

67-130

90-112

30

54

56.5

50.1



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RI40923 - EPA 50354	Ratch	RI40923.	FPA	5035A
---------------------------	-------	----------	-----	-------

Blank (BI40923-BLK1)				Prepared & Analyzed: 09/18/2014
Acetone	11	10	ug/kg wet	
Benzene	ND	5.0	ug/kg wet	
Bromochloromethane	ND	5.0	"	
Bromodichloromethane	ND	5.0	"	
Bromoform	ND	5.0	"	
Bromomethane	ND	5.0	"	
-Butanone	ND	5.0	"	
Carbon disulfide	ND	5.0	"	
Carbon tetrachloride	ND	5.0	"	
Chlorobenzene	ND	5.0	"	
Chloroethane	ND	5.0	"	
Chloroform	ND	5.0	"	
Chloromethane	ND	5.0	"	
Cyclohexane	ND	5.0	"	
,2-Dibromo-3-chloropropane	ND	5.0	"	
Dibromochloromethane	ND	5.0	II .	
,2-Dibromoethane	ND	5.0	II .	
,2-Dichlorobenzene	ND	5.0	II .	
,3-Dichlorobenzene	ND	5.0	"	
,4-Dichlorobenzene	ND	5.0	"	
pichlorodifluoromethane	ND	5.0	n .	
,1-Dichloroethane	ND	5.0	"	
,2-Dichloroethane	ND	5.0	n .	
,1-Dichloroethylene	ND	5.0	"	
ans-1,2-Dichloroethylene	ND	5.0	n .	
is-1,2-Dichloroethylene	ND	5.0	"	
,2-Dichloropropane	ND	5.0	"	
ans-1,3-Dichloropropylene	ND	5.0	"	
is-1,3-Dichloropropylene	ND	5.0	"	
,4-Dioxane	ND	100	"	
thyl Benzene	ND	5.0	"	
-Hexanone	ND	5.0	"	
sopropylbenzene	ND	5.0	"	
1ethyl acetate	ND	5.0	"	
Methyl tert-butyl ether (MTBE)	ND	5.0	"	
fethylcyclohexane	ND	5.0	"	
Methylene chloride	ND	10	"	
-Methyl-2-pentanone	ND	5.0	"	
tyrene	ND	5.0	"	
,1,2,2-Tetrachloroethane	ND	5.0	"	
etrachloroethylene	ND	5.0	"	
oluene	ND	5.0	"	
2,4-Trichlorobenzene	ND	5.0	"	
2,3-Trichlorobenzene	ND	5.0	"	
1,1-Trichloroethane	ND	5.0	"	
1,2-Trichloroethane	ND	5.0	"	
richloroethylene	ND	5.0	"	
richlorofluoromethane	ND	5.0	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	"	
7inyl Chloride	ND	5.0	"	
-Xylene	ND	5.0	"	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 68 of 89



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

lank (BI40923-BLK1)					Pren	ared & Analyzed: 09/18/2014
	ND	10 /			1109	area ce rinaryzea. 05/10/2011
- & m- Xylenes ylenes, Total	ND	10 ug/kg wet 15 "				
	ND	13				
urrogate: p-Bromofluorobenzene	48.5	ug/L	50.0	96.9	75-127	
urrogate: 1,2-Dichloroethane-d4	48.2	"	50.0	96.3	67-130	
urrogate: Toluene-d8	50.9	"	50.0	102	90-112	
CS (BI40923-BS1)					Prep	ared & Analyzed: 09/18/2014
cetone	66	ug/L	50.0	132	32-173	
enzene	50	"	50.0	99.5	83-126	
romochloromethane	50	"	50.0	101	73-128	
romodichloromethane	49	"	50.0	97.2	74-126	
omoform	54	"	50.0	107	63-137	
omomethane	51	"	50.0	101	24-144	
Butanone	53	"	50.0	106	58-159	
rbon disulfide	47	"	50.0	93.7	29-64	High Bias
rbon tetrachloride	47	"	50.0	93.9	68-132	
llorobenzene	51	"	50.0	102	87-115	
oroethane	55	"	50.0	109	39-146	
loroform	50	"	50.0	100	84-120	
loromethane	50	n .	50.0	99.4	35-153	
clohexane	47	m m	50.0	93.9	70-130	
-Dibromo-3-chloropropane	53	"	50.0	106	48-152	
romochloromethane	51	"	50.0	101	41-149	
-Dibromoethane	52	"	50.0	104	81-123	
Dichlorobenzene	53	"	50.0	106	81-117	
Dichlorobenzene	51	"	50.0	102	84-117	
Dichlorobenzene	51	"	50.0	101	85-118	
hlorodifluoromethane	46	"	50.0	91.1	52-143	
-Dichloroethane	49	"	50.0	97.7	80-125	
-Dichloroethane	51	"	50.0	101	67-129	
Dichloroethylene	46	"	50.0	92.2	62-136	
s-1,2-Dichloroethylene	48	"	50.0	95.0	66-136	
1,2-Dichloroethylene	51	"	50.0	103	86-121	
-Dichloropropane		"				
ns-1,3-Dichloropropylene	48 49	"	50.0	96.6	74-127 71-128	
-1,3-Dichloropropylene		"	50.0	98.8		
-Dioxane	50	"	50.0	99.1	78-122	
yl Benzene	1500 49		1000 50.0	146	31-190	
exanone		"		98.1	81-118	
propylbenzene	56	"	50.0	112	50-154	
thyl acetate	48	"	50.0	95.8	78-122	
•	51	"	50.0	103	41-143	
thyl tert-butyl ether (MTBE)	51	"	50.0	103	62-140	
nylcyclohexane	46		50.0	91.6	70-130	
thylene chloride	48	"	50.0	96.3	48-143	
lethyl-2-pentanone	51	"	50.0	101	53-149	
rene	50	"	50.0	101	85-115	
,2,2-Tetrachloroethane	51	"	50.0	103	72-133	
rachloroethylene	51	"	50.0	102	76-129	
luene	47	"	50.0	95.0	85-116	
4-Trichlorobenzene	51	"	50.0	103	61-158	
,3-Trichlorobenzene ,1-Trichloroethane	54 47	"	50.0	108	63-154	



### York Analytical Laboratories, Inc.

Spike

Source*

Reporting

		Reporting		Spike	Source*		%REC			KI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40923 - EPA 5035A											
LCS (BI40923-BS1)							Prep	oared & Analy	zed: 09/18/	2014	
1,1,2-Trichloroethane	51		ug/L	50.0		102	81-124				
Trichloroethylene	47		"	50.0		93.3	83-118				
Trichlorofluoromethane	46		"	50.0		92.4	54-141				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	46		"	50.0		91.6	47-160				
Vinyl Chloride	47		"	50.0		94.8	38-147				
p-Xylene	49		"	50.0		97.4	81-118				
o- & m- Xylenes	98		"	100		98.3	80-120				
Surrogate: p-Bromofluorobenzene	49.7		"	50.0		99.3	75-127				
Surrogate: 1,2-Dichloroethane-d4	47.5		"	50.0		95.0	67-130				
Surrogate: Toluene-d8	47.8		"	50.0		95.7	90-112				
LCS Dup (BI40923-BSD1)							Prep	oared & Analy	zed: 09/18/	2014	
Acetone	67		ug/L	50.0		133	32-173		1.10	30	
Benzene	49		"	50.0		97.5	83-126		2.09	30	
Bromochloromethane	49		"	50.0		97.4	73-128		3.53	30	
Bromodichloromethane	50		"	50.0		100	74-126		3.00	30	
Bromoform	54		"	50.0		107	63-137		0.0747	30	
Bromomethane	48		"	50.0		95.5	24-144		6.05	30	
2-Butanone	51		"	50.0		103	58-159		2.67	30	
Carbon disulfide	47		"	50.0		93.3	29-64	High Bias	0.513	30	
Carbon tetrachloride	47		"	50.0		93.9	68-132		0.0426	30	
Chlorobenzene	52		"	50.0		104	87-115		2.70	30	
Chloroethane	52		"	50.0		104	39-146		4.38	30	
Chloroform	50		"	50.0		99.1	84-120		1.26	30	
Chloromethane	49		"	50.0		97.2	35-153		2.24	30	
Cyclohexane	48		"	50.0		95.2	70-130		1.38	30	
,2-Dibromo-3-chloropropane	54		"	50.0		108	48-152		1.08	30	
Dibromochloromethane	52		"	50.0		103	41-149		1.96	30	
,2-Dibromoethane	53		"	50.0		106	81-123		1.89	30	
1,2-Dichlorobenzene	54		"	50.0		107	81-117		1.22	30	
,3-Dichlorobenzene	52		"	50.0		104	84-117		1.99	30	
,4-Dichlorobenzene	52		"	50.0		103	85-118		1.66	30	
Dichlorodifluoromethane	44		"	50.0		88.6	52-143		2.76	30	
,1-Dichloroethane	50		"	50.0		99.9	80-125		2.23	30	
,2-Dichloroethane	51		"	50.0		103	67-129		1.14	30	
,1-Dichloroethylene	46		"	50.0		91.6	62-136		0.588	30	
rans-1,2-Dichloroethylene	48		"	50.0		95.3	66-136		0.315	30	
is-1,2-Dichloroethylene	50		"	50.0		99.9	86-121		3.00	30	
,2-Dichloropropane	50		"	50.0		100	74-127		3.98	30	
rans-1,3-Dichloropropylene	50		"	50.0		101	71-128		2.16	30	
ris-1,3-Dichloropropylene	50		"	50.0		99.8	78-122		0.664	30	
,4-Dioxane	1500		"	1000		150	31-190		2.93	30	
Ethyl Benzene	50		"	50.0		100	81-118		2.18	30	
2-Hexanone	58			50.0		116	50-154		3.57	30	
sopropylbenzene	49			50.0		98.6	78-122		2.88	30	
Methyl acetate	51			50.0		102	41-143		0.684	30	
Methyl tert-butyl ether (MTBE)	51		"	50.0		102	62-140		1.16	30	
Methylcyclohexane	48			50.0		96.7	70-130		5.40	30	
Methylene chloride	46		"	50.0		92.9	48-143		3.59	30	
4-Methyl-2-pentanone	53		"	50.0		105	53-149		4.07	30	
Styrene	51			50.0		102	85-115		1.07	30	
1,1,2,2-Tetrachloroethane	55		"	50.0		111	72-133		7.21	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 70 of 89

RPD

%REC



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BI40923	- EPA	5035A
-------	---------	-------	-------

LCS Dup (BI40923-BSD1)	S Dup (BI40923-BSD1)									
Tetrachloroethylene	52	ug/L	50.0	104	76-129	1.65	30			
Toluene	49	"	50.0	98.1	85-116	3.19	30			
1,2,4-Trichlorobenzene	52	"	50.0	104	61-158	1.07	30			
1,2,3-Trichlorobenzene	56	"	50.0	111	63-154	3.05	30			
1,1,1-Trichloroethane	48	"	50.0	95.6	74-126	1.75	30			
1,1,2-Trichloroethane	52	"	50.0	104	81-124	1.54	30			
Trichloroethylene	49	"	50.0	98.2	83-118	5.14	30			
Trichlorofluoromethane	46	"	50.0	91.7	54-141	0.782	30			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	46	"	50.0	91.2	47-160	0.437	30			
Vinyl Chloride	46	"	50.0	92.3	38-147	2.67	30			
o-Xylene	49	"	50.0	98.4	81-118	1.00	30			
p- & m- Xylenes	100	"	100	102	80-120	3.84	30			
Surrogate: p-Bromofluorobenzene	50.2	"	50.0	100	75-127					
Surrogate: 1,2-Dichloroethane-d4	46.4	"	50.0	92.9	67-130					
Surrogate: Toluene-d8	48.3	"	50.0	96.6	90-112					



### York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch	BI4072	4 - EPA	3550C
-------	--------	---------	-------

Blank (BI40724-BLK1)				Prepared & Analyzed: 09/16/2014
Acenaphthene	ND	167	ug/kg wet	
Acenaphthylene	ND	167	"	
Acetophenone	ND	167	II .	
Anthracene	ND	167	II .	
Atrazine	ND	167	"	
Benzaldehyde	ND	167	"	
Benzo(a)anthracene	ND	167	"	
Benzo(a)pyrene	ND	167	"	
Benzo(b)fluoranthene	ND	167	"	
Benzo(g,h,i)perylene	ND	167	"	
Benzo(k)fluoranthene	ND	167	"	
Benzyl butyl phthalate	ND	167	"	
,1'-Biphenyl	ND	167	II .	
-Bromophenyl phenyl ether	ND	167	II .	
Caprolactam	ND	167	II .	
Carbazole	ND	167	II .	
-Chloro-3-methylphenol	ND	167	"	
-Chloroaniline	ND	167	"	
Bis(2-chloroethoxy)methane	ND	167	"	
Bis(2-chloroethyl)ether	ND	167	"	
Bis(2-chloroisopropyl)ether	ND	167	"	
-Chloronaphthalene	ND	167	"	
-Chlorophenol	ND	167	"	
-Chlorophenyl phenyl ether	ND	167	"	
Chrysene	ND	167	"	
Dibenzo(a,h)anthracene	ND	167	"	
Dibenzofuran	ND	167	II .	
pi-n-butyl phthalate	ND	167	II .	
,3'-Dichlorobenzidine	ND	333	"	
,4-Dichlorophenol	ND	167	"	
Diethyl phthalate	ND ND	167	"	
,4-Dimethylphenol	ND	167	"	
Dimethyl phthalate	ND	167	"	
,6-Dinitro-2-methylphenol	ND	167	"	
,4-Dinitrophenol	ND ND	333	11	
,4-Dinitrotoluene	ND ND	167	"	
,6-Dinitrotoluene	ND ND	167	"	
vi-n-octyl phthalate	ND ND	167	"	
sis(2-ethylhexyl)phthalate			"	
luoranthene	ND	167	"	
luorene	ND	167	"	
lexachlorobenzene	ND ND	167	"	
lexachlorobutadiene		167	"	
	ND	167	"	
[exachlorocyclopentadiene	ND	167	"	
Iexachloroethane	ND	167	"	
ndeno(1,2,3-cd)pyrene	ND	167	"	
sophorone	ND	167	"	
-Methylnaphthalene	ND	167		
2-Methylphenol	ND	167	"	
- & 4-Methylphenols	ND	167	"	
Naphthalene	ND	167	"	



		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Blank (BI40724-BLK1)						Prepared & Analyzed: 09/16/2014
-Nitroaniline	ND	167	ug/kg wet			
-Nitroaniline	ND	167	"			
-Nitroaniline	ND	167	"			
litrobenzene	ND	167	"			
-Nitrophenol	ND	167	"			
Nitrophenol	ND	167	"			
-nitroso-di-n-propylamine	ND	167	"			
-Nitrosodiphenylamine	ND	167	"			
entachlorophenol	ND	167	"			
nenanthrene	ND	167	"			
henol	ND	167	"			
yrene	ND	167	"			
2,4,5-Tetrachlorobenzene	ND ND	167	"			
,4,6-Trichlorophenol			,,			
,4,5-Trichlorophenol	ND ND	167	"			
•		167				
urrogate: 2-Fluorophenol	2480		"	2510	98.9	10-105
urrogate: Phenol-d5	2480		"	2510	98.7	10-118
urrogate: Nitrobenzene-d5	1520		"	1670	90.6	10-140
urrogate: 2-Fluorobiphenyl	1600		"	1670	96.0	10-126
urrogate: 2,4,6-Tribromophenol	2360		"	2500	94.2	10-150
rrogate: Terphenyl-d14	1760		"	1670	105	10-137
CS (BI40724-BS1)						Prepared & Analyzed: 09/16/2014
cenaphthene	1550	167	ug/kg wet	1670	92.7	17-124
cenaphthylene	1500	167	ug/kg wet	1670	90.2	16-124
etophenone	1120	167	,,	1670	67.0	28-105
nthracene	1570		"			24-124
trazine	1220	167 167	"	1670 1670	94.4 73.2	22-120
enzaldehyde	1380	167	"			21-100
enzo(a)anthracene			"	1670	82.6	
	1490	167	"	1670	89.7	25-134
denzo(a)pyrene denzo(b)fluoranthene	1620	167	"	1670	97.4	29-144
	1570	167		1670	94.5	20-151
denzo(g,h,i)perylene	1830	167	"	1670	110	10-153
enzo(k)fluoranthene	1530	167	"	1670	92.1	10-148
denzyl butyl phthalate	1510	167		1670	90.7	10-132
1'-Biphenyl	1220	167	"	1670	73.2	22-103
Bromophenyl phenyl ether	1490	167	"	1670	89.3	30-138
aprolactam	1090	167	"	1670	65.4	10-123
arbazole	1510	167	"	1670	90.6	31-120
-Chloro-3-methylphenol	1450	167	"	1670	86.7	16-138
Chloroaniline	1380	167	"	1670	82.6	10-117
is(2-chloroethoxy)methane	1530	167	"	1670	91.5	10-129
is(2-chloroethyl)ether	1350	167	"	1670	80.8	14-125
is(2-chloroisopropyl)ether	1580	167	"	1670	94.8	14-122
-Chloronaphthalene	1560	167	"	1670	93.8	22-115
-Chlorophenol	1330	167	"	1670	79.8	25-121
-Chlorophenyl phenyl ether	1530	167	"	1670	91.8	18-132
hrysene	1550	167	"	1670	93.1	24-116
bibenzo(a,h)anthracene	1680	167	"	1670	101	17-147
ibenzofuran	1510	167	"	1670	90.7	23-123
i-n-butyl phthalate	1530	167	"	1670	91.9	19-123



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

,						
Batch BI40724 - EPA 3550C						
LCS (BI40724-BS1)					Prepared	& Analyzed: 09/16/2014
3,3'-Dichlorobenzidine	1730	333	ug/kg wet	1670	104 10-147	
2,4-Dichlorophenol	1410	167	"	1670	84.8 23-133	
Diethyl phthalate	1540	167	"	1670	92.4 23-122	
2,4-Dimethylphenol	1350	167	"	1670	80.9 15-131	
Dimethyl phthalate	1640	167	"	1670	98.5 28-127	
4,6-Dinitro-2-methylphenol	1550	167	"	1670	92.7 10-149	
2,4-Dinitrophenol	1570	333	"	1670	94.4 10-149	
2,4-Dinitrotoluene	1710	167	"	1670	102 30-123	
2,6-Dinitrotoluene	1560	167	"	1670	93.7 30-125	
Di-n-octyl phthalate	1520	167	"	1670	91.5 10-132	
Bis(2-ethylhexyl)phthalate	1750	167	"	1670	105 10-141	
Fluoranthene	1550	167	"	1670	93.2 36-125	
Fluorene	1570	167	"	1670	94.0 16-130	
Hexachlorobenzene	1460	167	"	1670	87.7 10-129	
Hexachlorobutadiene	1410	167	"	1670	84.5 22-153	
Hexachlorocyclopentadiene	1440	167	"	1670	86.5 10-134	
Hexachloroethane	1400	167	"	1670	84.1 20-112	
Indeno(1,2,3-cd)pyrene	1680	167	"	1670	101 10-155	
Isophorone	1410	167	"	1670	84.7 14-131	
2-Methylnaphthalene	1480	167	"	1670	88.7 16-127	
2-Methylphenol	1280	167	"	1670	76.6 10-146	
3- & 4-Methylphenols	1230	167	"	1670	74.1 20-109	
Naphthalene	1560	167	"	1670	93.4 20-121	
4-Nitroaniline	1560	167	"	1670	93.4 14-125	
2-Nitroaniline	1580	167	"	1670	95.0 24-126	
3-Nitroaniline	1510	167	"	1670	90.9 23-123	
Nitrobenzene	1360	167	"	1670	81.4 20-121	
2-Nitrophenol	1370	167	"	1670	82.0 17-129	
4-Nitrophenol	1300	167	"	1670	77.9 10-136	
N-nitroso-di-n-propylamine	1400	167	"	1670	83.8 21-119	
N-Nitrosodiphenylamine	1680	167	"	1670	101 10-163	
Pentachlorophenol	1320	167	"	1670	79.0 10-143	
Phenanthrene	1630	167	"	1670	98.0 24-123	
Phenol	1250	167	"	1670	74.8 15-123	
Pyrene	1540	167	"	1670	92.4 24-132	
1,2,4,5-Tetrachlorobenzene	1320	167	"	1670	79.0 10-144	
2,4,6-Trichlorophenol	1380	167	"	1670	83.0 27-122	
2,4,5-Trichlorophenol	1380	167	"	1670	83.0 14-138	
Surrogate: 2-Fluorophenol	2170		"	2510	86.4 10-105	
Surrogate: Phenol-d5	2160		"	2510	86.3 10-118	
Surrogate: Nitrobenzene-d5	1340		"	1670	79.8 10-140	
Surrogate: 2-Fluorobiphenyl	1440		"	1670	86.3 10-126	
Surrogate: 2,4,6-Tribromophenol	2090		"	2500	83.4 30-130	
Surrogate: Terphenyl-d14	1380		"	1670	82.3 10-137	

120 RESEARCH DRIVE STRATFORD, CT 06615 FAX (203) 35<u>7-0166</u> (203) 325-1371



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

n	-4-1-	DT 40	77.4	EDA	3550C
к	atch	KI41	1774.	_ H P A	455111

Iatrix Spike (BI40724-MS1)	*Source sample: 14I0	0505-03 (RS		Prepared & Analyzed: 09/16/2014			
cenaphthene	1900	197	ug/kg dry	1970	ND	96.6	13-133
cenaphthylene	1810	197	"	1970	ND	92.1	25-125
cetophenone	1150	197	"	1970	ND	58.4	25-105
nthracene	1920	197	"	1970	ND	97.5	27-128
trazine	1330	197	"	1970	ND	67.6	10-139
nzaldehyde	1460	197	"	1970	ND	74.2	24-96
nzo(a)anthracene	1820	197	"	1970	ND	92.6	20-147
nzo(a)pyrene	1990	197	"	1970	ND	101	18-153
nzo(b)fluoranthene	1490	197	"	1970	ND	75.5	10-163
nzo(g,h,i)perylene	2090	197	"	1970	ND	106	10-157
nzo(k)fluoranthene	1860	197	"	1970	ND	94.8	10-157
nzyl butyl phthalate	1830	197	"	1970	ND	93.2	10-129
-Biphenyl	1350	197	"	1970	ND	68.4	24-112
Bromophenyl phenyl ether	1830	197	"	1970	ND	92.9	32-148
orolactam	1280	197	"	1970	ND	65.1	10-100
bazole	1860	197	"	1970	ND	94.4	24-139
Phloro-3-methylphenol	1800	197	"	1970	ND	91.5	14-138
Phloroaniline	1740	197	"	1970	ND	88.3	10-124
(2-chloroethoxy)methane	1840	197	"	1970	ND ND	93.3	12-128
(2-chloroethyl)ether	1650	197	"	1970	ND	83.7	18-113
(2-chloroisopropyl)ether	1730	197	"	1970	ND ND	87.7	10-130
hloronaphthalene	1890	197	,,	1970	ND ND	95.9	31-116
hlorophenol			"				
•	1600	197	"	1970	ND	81.1	28-114
hlorophenyl phenyl ether	1900	197	,,	1970	ND	96.7	10-153
ysene enzo(a,h)anthracene	1910	197	,,	1970	ND	96.9	18-133
enzo(a,n)anunacene enzofuran	2040	197	,,	1970	ND	104	10-146
	1830	197		1970	ND	93.1	26-134
n-butyl phthalate	1860	197	"	1970	ND	94.5	20-128
Dichlorobenzidine	2080	393	"	1970	ND	106	10-134
Dichlorophenol	1730	197	"	1970	ND	88.1	16-144
thyl phthalate	1870	197	"	1970	ND	95.0	30-119
Dimethylphenol	1660	197	"	1970	ND	84.5	11-133
ethyl phthalate	2010	197	"	1970	ND	102	34-120
Dinitro-2-methylphenol	2000	197	"	1970	ND	102	10-149
Dinitrophenol	2150	394	"	1970	ND	109	10-132
Dinitrotoluene	2110	197	"	1970	440	84.8	42-113
Dinitrotoluene	1950	197	"	1970	ND	99.3	36-124
n-octyl phthalate	1860	197	"	1970	ND	94.6	10-133
2-ethylhexyl)phthalate	2130	197	"	1970	ND	108	10-138
oranthene	1900	197	"	1970	ND	96.5	10-155
orene	1910	197	"	1970	ND	97.3	12-150
achlorobenzene	1860	197	"	1970	ND	94.4	16-142
achlorobutadiene	1630	197	"	1970	ND	82.7	11-150
achlorocyclopentadiene	1710	197	"	1970	ND	86.8	10-115
achloroethane	1470	197	"	1970	ND	74.7	14-106
eno(1,2,3-cd)pyrene	2000	197	"	1970	ND	101	10-155
phorone	1730	197	"	1970	ND	88.1	14-127
1ethylnaphthalene	1780	197	"	1970	ND	90.2	10-143
1ethylphenol	1510	197	"	1970	ND	76.5	10-160
& 4-Methylphenols	1440	197	"	1970	ND	73.2	16-115
phthalene	1840	197	"	1970	ND	93.3	15-132



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI40724 - EPA 3550C											
Matrix Spike (BI40724-MS1)	*Source sample: 14	I0505-03 (RS	SB/MW-15/1	4-15)			Prepa	ared & Anal	yzed: 09/16/	2014	
4-Nitroaniline	1990	197	ug/kg dry	1970	ND	101	10-151				
2-Nitroaniline	2000	197	"	1970	ND	102	33-122				
3-Nitroaniline	1890	197	"	1970	ND	96.1	24-128				
Nitrobenzene	1560	197	"	1970	ND	79.3	18-125				
2-Nitrophenol	1670	197	"	1970	ND	84.6	12-127				
4-Nitrophenol	1760	197	"	1970	ND	89.6	10-141				
N-nitroso-di-n-propylamine	1580	197	"	1970	ND	80.2	23-115				
N-Nitrosodiphenylamine	2030	197	"	1970	ND	103	16-166				
Pentachlorophenol	1710	197	"	1970	ND	86.7	10-160				
Phenanthrene	2000	197	"	1970	ND	101	10-151				
Phenol	1520	197	"	1970	ND	77.0	11-124				
Pyrene	1890	197	"	1970	ND	96.3	13-148				
1,2,4,5-Tetrachlorobenzene	1610	197	"	1970	ND	81.6	18-152				
2,4,6-Trichlorophenol	1730	197	"	1970	ND	88.1	12-138				
2,4,5-Trichlorophenol	1720	197	"	1970	ND	87.5	10-148				
Surrogate: 2-Fluorophenol	2710		"	2960		91.7	10-105				
Surrogate: Phenol-d5	2700		"	2960		91.3	10-118				
Surrogate: Nitrobenzene-d5	1560		"	1980		79.2	10-110				
Surrogate: 2-Fluorobiphenyl	1770		"	1970		89.9	10-140				
Surrogate: 2,4,6-Tribromophenol	2730		"	2960		92.5	30-130				
Surrogate: 2,4,0-111010mophenoi Surrogate: Terphenyl-d14	1750		"	1980		92.3 88.8	10-137				
						00.0		1 O- A1	d. 00/1 <i>C</i>	/2014	
Matrix Spike Dup (BI40724-MSD1)	*Source sample: 14	,			NID	02.2		ared & Anal	-		
Acceptation	1820	197	ug/kg dry "	1970	ND	92.3	13-133		4.55	30	
Acceptable	1740	197	"	1970	ND	88.3	25-125		4.28	30	
Acetophenone	1040	197	"	1970	ND	53.1	25-105		9.58	30	
Anthracene	1860	197	"	1970	ND	94.3	27-128		3.38	30	
Atrazine	1160	197	"	1970	ND	59.1	10-139		13.4	30	
Benzaldehyde	1300	197		1970	ND	66.0	24-96		11.8	30	
Benzo(a)anthracene	1760	197	"	1970	ND	89.4	20-147		3.50	30	
Benzo(a)pyrene	1890	197	"	1970	ND	96.3	18-153		5.06	30	
Benzo(b)fluoranthene	1660	197	"	1970	ND	84.3	10-163		11.1	30	
Benzo(g,h,i)perylene	1910	197	"	1970	ND	96.9	10-157		9.25	30	
Benzo(k)fluoranthene	2040	197	"	1970	ND	104	10-157		8.97	30	
Benzyl butyl phthalate	1770	197		1970	ND	89.9	10-129		3.56	30	
1,1'-Biphenyl	1180	197	"	1970	ND	60.1	24-112		12.9	30	
4-Bromophenyl phenyl ether	1760	197	"	1970	ND	89.4	32-148		3.77	30	
Caprolactam	1080	197	"	1970	ND	54.8	10-100		17.2	30	
Carbazole	1790	197	"	1970	ND	90.7	24-139		3.98	30	
4-Chloro-3-methylphenol	1720	197	"	1970	ND	87.3	14-138		4.76	30	
4-Chloroaniline	1710	197	"	1970	ND	86.9	10-124		1.64	30	
Bis(2-chloroethoxy)methane	1820	197	"	1970	ND	92.7	12-128		0.581	30	
Bis(2-chloroethyl)ether	1560	197	"	1970	ND	79.5	18-113		5.20	30	
Bis(2-chloroisopropyl)ether	1750	197	"	1970	ND	88.8	10-130		1.25	30	
2-Chloronaphthalene	1810	197	"	1970	ND	92.1	31-116		4.09	30	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

1970

1970

1970

1970

1970

1970

ND

ND

ND

ND

ND

ND

76.1

91.7

92.2

96.1

89.4

91.1

28-114

10-153

18-133

10-146

26-134

20-128

197

197

197

197

197

197

1500

1810

1810

1890

1760

1790

2-Chlorophenol

Chrysene

Dibenzofuran

4-Chlorophenyl phenyl ether

Dibenzo(a,h)anthracene

Di-n-butyl phthalate

30

30

30

30

30

30

6.29

5.24

4.99

7.76

4.01

3.64



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40724 - EPA 3550C

Matrix Spike Dup (BI40724-MSD1)	*Source sample: 14I0	0505-03 (RS	SB/MW-15/1	4-15)			Prepared &	& Analyzed: 09/16/2	2014
3,3'-Dichlorobenzidine	2030	393	ug/kg dry	1970	ND	103	10-134	2.37	30
2,4-Dichlorophenol	1730	197	"	1970	ND	87.9	16-144	0.159	30
Diethyl phthalate	1790	197	"	1970	ND	90.9	30-119	4.35	30
2,4-Dimethylphenol	1690	197	"	1970	ND	86.0	11-133	1.74	30
Dimethyl phthalate	1900	197	"	1970	ND	96.8	34-120	5.33	30
4,6-Dinitro-2-methylphenol	1940	197	"	1970	ND	98.7	10-149	2.97	30
2,4-Dinitrophenol	2100	394	"	1970	ND	107	10-132	2.32	30
2,4-Dinitrotoluene	2020	197	"	1970	440	80.1	42-113	4.45	30
2,6-Dinitrotoluene	1860	197	"	1970	ND	94.6	36-124	4.89	30
Di-n-octyl phthalate	1770	197	"	1970	ND	89.8	10-133	5.18	30
Bis(2-ethylhexyl)phthalate	2040	197	"	1970	ND	104	10-138	4.33	30
Fluoranthene	1820	197	"	1970	ND	92.4	10-155	4.40	30
Fluorene	1830	197	"	1970	ND	93.2	12-150	4.26	30
Hexachlorobenzene	1780	197	"	1970	ND	90.7	16-142	4.02	30
Hexachlorobutadiene	1570	197	"	1970	ND	79.7	11-150	3.64	30
Hexachlorocyclopentadiene	1570	197	"	1970	ND	79.9	10-115	8.23	30
Hexachloroethane	1480	197	"	1970	ND	75.2	14-106	0.668	30
ndeno(1,2,3-cd)pyrene	1840	197	"	1970	ND	93.5	10-155	8.12	30
sophorone	1740	197	"	1970	ND	88.3	14-127	0.181	30
-Methylnaphthalene	1700	197	"	1970	ND	86.4	10-143	4.32	30
-Methylphenol	1450	197	"	1970	ND	73.7	10-160	3.73	30
- & 4-Methylphenols	1440	197	"	1970	ND	73.0	16-115	0.356	30
Vaphthalene	1760	197	"	1970	ND	89.5	15-132	4.14	30
-Nitroaniline	1920	197	"	1970	ND	97.6	10-151	3.34	30
-Nitroaniline	1900	197	"	1970	ND	96.5	33-122	5.25	30
3-Nitroaniline	1810	197	"	1970	ND	92.1	24-128	4.29	30
Nitrobenzene	1560	197	"	1970	ND	79.2	18-125	0.151	30
2-Nitrophenol	1660	197	"	1970	ND	84.6	12-127	0.0709	30
l-Nitrophenol	1650	197	"	1970	ND	83.9	10-141	6.50	30
N-nitroso-di-n-propylamine	1590	197	"	1970	ND	80.7	23-115	0.596	30
N-Nitrosodiphenylamine	1960	197	"	1970	ND	99.7	16-166	3.56	30
Pentachlorophenol	1640	197	"	1970	ND	83.3	10-160	3.95	30
Phenanthrene	1910	197	"	1970	ND	97.0	10-151	4.48	30
Phenol	1420	197	"	1970	ND	72.0	11-124	6.68	30
Pyrene	1830	197	"	1970	ND	92.8	13-148	3.62	30
1,2,4,5-Tetrachlorobenzene	1510	197	"	1970	ND	76.8	18-152	6.01	30
2,4,6-Trichlorophenol	1660	197	"	1970	ND	84.1	12-138	4.64	30
2,4,5-Trichlorophenol	1660	197	"	1970	ND	84.2	10-148	3.77	30
urrogate: 2-Fluorophenol	2630		"	2960		88.8	10-105		
Surrogate: Phenol-d5	2640		"	2960		89.1	10-118		
Surrogate: Nitrobenzene-d5	1610		"	1980		81.6	10-140		
Surrogate: 2-Fluorobiphenyl	1740		"	1970		88.5	10-126		
Surrogate: 2,4,6-Tribromophenol	2730		"	2960		92.2	30-130		
Surrogate: Terphenyl-d14	1750		"	1980		88.4	10-137		



### Semivolatile Organic Compounds by GC/MS - Quality Control Data

## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40731 - EPA 3510C	
Blank (BI40731-BLK1)	Prepared & Analyzed: 09/16/2014

Blank (BI40731-BLK1)				Prepared & Analyzed: 09/16/2014
Acenaphthene	ND	0.0500	ug/L	
Acenaphthylene	ND	0.0500	"	
Acetophenone	ND	5.00	"	
Anthracene	ND	0.0500	"	
Atrazine	ND	0.500	"	
Benzaldehyde	ND	5.00	"	
Benzo(a)anthracene	ND	0.0500	"	
Benzo(a)pyrene	ND	0.0500	"	
Benzo(b)fluoranthene	ND	0.0500	"	
Benzo(g,h,i)perylene	ND	0.0500	"	
Benzo(k)fluoranthene	ND	0.0500	"	
Benzyl butyl phthalate	ND	5.00	"	
1,1'-Biphenyl	ND	5.00	"	
4-Bromophenyl phenyl ether	ND	5.00	"	
Caprolactam	ND	5.00	"	
Carbazole	ND	5.00	"	
4-Chloro-3-methylphenol	ND	5.00	"	
4-Chloroaniline	ND	5.00	"	
Bis(2-chloroethoxy)methane	ND	5.00	"	
Bis(2-chloroethyl)ether	ND	5.00	"	
Bis(2-chloroisopropyl)ether	ND	5.00		
2-Chloronaphthalene	ND	5.00	"	
2-Chlorophenol	ND	5.00	"	
4-Chlorophenyl phenyl ether	ND	5.00	"	
Chrysene	ND	0.0500	"	
Dibenzo(a,h)anthracene	ND	0.0500	"	
Dibenzofuran	ND	5.00	,,	
Di-n-butyl phthalate	ND	5.00	,,	
3,3'-Dichlorobenzidine	ND	5.00	,,	
2,4-Dichlorophenol	ND	5.00	"	
Diethyl phthalate	ND	5.00	"	
2,4-Dimethylphenol	ND	5.00	,,	
Dimethyl phthalate	ND	5.00	,,	
4,6-Dinitro-2-methylphenol	ND	5.00	,,	
2,4-Dinitrophenol	ND	5.00	,,	
2,4-Dinitrotoluene	ND	5.00	"	
2,6-Dinitrotoluene	ND	5.00	"	
Di-n-octyl phthalate			"	
Bis(2-ethylhexyl)phthalate	ND ND	5.00		
Fluoranthene	ND ND	0.500		
Fluorene	ND ND	0.0500		
Hexachlorobenzene	ND ND	0.0500		
Hexachlorobutadiene	ND ND	0.0200		
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	ND	0.500		
* *	ND	5.00	"	
Hexachloroethane	ND	0.500	"	
Indeno(1,2,3-cd)pyrene	ND	0.0500		
Isophorone	ND	5.00	"	
2-Methylnaphthalene	ND	5.00	"	
2-Methylphenol	ND	5.00	"	
3- & 4-Methylphenols	ND	5.00	"	
Naphthalene	ND	0.0500	"	



		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

lank (BI40731-BLK1)						Pre	pared & Analyzed: 09/16/2014
Nitroaniline	ND	5.00	ug/L				, , , , , , , , , , , , , , , , , , ,
Nitroaniline	ND	5.00	ug/L				
Nitroaniline	ND	5.00	"				
itrobenzene	ND	0.250	"				
Nitrophenol	ND	5.00	"				
Nitrophenol	ND	5.00	"				
nitroso-di-n-propylamine	ND	5.00	"				
Nitrosodiphenylamine	ND	5.00	"				
ntachlorophenol	ND ND	0.250	"				
enanthrene	ND ND	0.250	"				
enol	ND ND	5.00	"				
rene	ND ND	0.0500	"				
,4,5-Tetrachlorobenzene	ND ND	5.00	"				
1,6-Trichlorophenol	ND ND	5.00	"				
4,5-Trichlorophenol	ND ND		"				
<u>*                                      </u>		5.00					
rrogate: 2-Fluorophenol	67.7		"	75.2	90.0	10-53	
rrogate: Phenol-d5	66.5		"	75.2	88.5	10-39	
rogate: Nitrobenzene-d5	47.5		"	50.2	94.6	10-120	
rogate: 2-Fluorobiphenyl	40.7		"	50.0	81.4	10-108	
rogate: 2,4,6-Tribromophenol	54.6		"	75.1	72.7	10-150	
rogate: Terphenyl-d14	42.2		"	50.2	84.0	10-143	
CS (BI40731-BS1)						Pre	pared & Analyzed: 09/16/2014
enaphthene	53.8	0.0500	ug/L	50.0	108	24-114	
naphthylene	51.3	0.0500	"	50.0	103	26-112	
tophenone	35.1	5.00	"	50.0	70.1	47-92	
hracene	53.0	0.0500	"	50.0	106	35-114	
azine	41.0	0.500	"	50.0	82.1	43-101	
zaldehyde	33.5	5.00	"	50.0	66.9	17-117	
nzo(a)anthracene	47.7	0.0500	"	50.0	95.4	38-127	
izo(a)pyrene	47.8	0.0500	"	50.0	95.5	30-146	
nzo(b)fluoranthene	52.2	0.0500	"	50.0	104	36-145	
izo(g,h,i)perylene	45.5	0.0500	"	50.0	90.9	10-163	
nzo(k)fluoranthene	50.2	0.0500	"	50.0	100	16-149	
nzyl butyl phthalate	48.6	5.00	"	50.0	97.2	28-129	
-Biphenyl	38.4	5.00	"	50.0	76.7	21-102	
Bromophenyl phenyl ether	49.0	5.00	"	50.0	98.0	38-116	
orolactam	40.8	5.00	"	50.0	81.7	10-29	High Bias
bazole	49.5	5.00	"	50.0	98.9	49-116	3
Thloro-3-methylphenol	52.2	5.00	"	50.0	104	28-101	High Bias
Phloroaniline	38.9	5.00	"	50.0	77.9	10-154	3
(2-chloroethoxy)methane	55.8	5.00	"	50.0	112	27-112	
(2-chloroethyl)ether	47.8	5.00	"	50.0	95.5	24-114	
2-chloroisopropyl)ether	65.2	5.00	"	50.0	130	21-124	High Bias
Chloronaphthalene	50.1	5.00	"	50.0	100	40-96	High Bias
hlorophenol	41.6	5.00	"	50.0	83.1	35-84	
Phlorophenyl phenyl ether			,,				
	53.2	5.00	,,	50.0	106	34-112	
ysene enzo(a,h)anthracene	51.3 46.6	0.0500	"	50.0	103	33-120	
	46.6	0.0500		50.0	93.1	10-149	
penzofuran	49.8	5.00	"	50.0	99.7	42-105	



		Reporting		Spike	Source*		%REC			RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag	

Batch BI40731 - EPA 3510C							
LCS (BI40731-BS1)						Pre	pared & Analyzed: 09/16/2014
3,3'-Dichlorobenzidine	53.8	5.00	ug/L	50.0	108	25-155	
2,4-Dichlorophenol	50.2	5.00	"	50.0	100	43-92	High Bias
Diethyl phthalate	51.6	5.00	"	50.0	103	38-112	
2,4-Dimethylphenol	49.8	5.00	"	50.0	99.6	25-92	High Bias
Dimethyl phthalate	49.2	5.00	"	50.0	98.3	49-106	
4,6-Dinitro-2-methylphenol	53.7	5.00	"	50.0	107	10-135	
2,4-Dinitrophenol	57.5	5.00	"	50.0	115	10-149	
2,4-Dinitrotoluene	53.0	5.00	"	50.0	106	41-114	
2,6-Dinitrotoluene	52.5	5.00	"	50.0	105	49-106	
Di-n-octyl phthalate	50.4	5.00	"	50.0	101	12-149	
Bis(2-ethylhexyl)phthalate	52.2	0.500	"	50.0	104	10-171	
Fluoranthene	50.5	0.0500	"	50.0	101	33-126	
Fluorene	56.8	0.0500	"	50.0	114	28-117	
Hexachlorobenzene	49.1	0.0200	"	50.0	98.2	27-120	
Hexachlorobutadiene	52.5	0.500	"	50.0	105	25-106	
Hexachlorocyclopentadiene	46.6	5.00	"	50.0	93.2	10-99	
Hexachloroethane	46.2	0.500	"	50.0	92.5	33-84	High Bias
Indeno(1,2,3-cd)pyrene	45.0	0.0500	"	50.0	90.0	10-150	
Isophorone	51.9	5.00	"	50.0	104	29-115	
2-Methylnaphthalene	57.4	5.00	"	50.0	115	33-101	High Bias
2-Methylphenol	45.4	5.00	"	50.0	90.8	10-90	High Bias
3- & 4-Methylphenols	41.0	5.00	"	50.0	82.0	10-101	
Naphthalene	55.5	0.0500	"	50.0	111	30-99	High Bias
3-Nitroaniline	45.2	5.00	"	50.0	90.5	29-128	5
4-Nitroaniline	45.7	5.00	"	50.0	91.3	15-143	
2-Nitroaniline	45.9	5.00	"	50.0	91.8	31-122	
Nitrobenzene	54.9	0.250	"	50.0	110	32-113	
4-Nitrophenol	49.2	5.00	"	50.0	98.5	10-112	
2-Nitrophenol	47.4	5.00	"	50.0	94.7	37-97	
N-nitroso-di-n-propylamine	48.5	5.00	"	50.0	97.0	36-118	
N-Nitrosodiphenylamine	61.2	5.00	"	50.0	122	27-145	
Pentachlorophenol	56.2	0.250	"	50.0	112	19-127	
Phenanthrene	55.3	0.0500	"	50.0	111	31-112	
Phenol	50.5	5.00	"	50.0	101	10-37	High Bias
Pyrene	51.0	0.0500	"	50.0	102	42-125	
1,2,4,5-Tetrachlorobenzene	38.6	5.00	"	50.0	77.1	28-105	
2,4,6-Trichlorophenol	44.0	5.00	"	50.0	88.0	41-107	
2,4,5-Trichlorophenol	43.7	5.00	"	50.0	87.4	36-112	
Surrogate: 2-Fluorophenol	73.9	5.50	"	75.2	98.3	10-53	
Surrogate: Phenol-d5	81.6		"	75.2	109	10-33	
Surrogate: Nitrobenzene-d5	51.9		"	50.2	103	10-39	
Surrogate: 2-Fluorobiphenyl	48.5		"	50.2	97.0	10-120	
Surrogate: 2,4,6-Tribromophenol	71.2		"	75.1	94.9	10-100	
•	45.6		,,	50.2	94.9 90.7	10-130	
Surrogate: Terphenyl-d14	43.6			30.2	90./	10-143	



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	Flag	RPD	Limit	Flag
Batch BI40731 - EPA 3510C											
LCS (BI40731-BS2)							Prep	ared & Analy	zed: 09/16/	2014	
Acenaphthene	0.800	0.0500	ug/L	1.00		80.0	24-114				
Acenaphthylene	0.880	0.0500	"	1.00		88.0	26-112				
Acetophenone	ND	5.00	"				47-92				
Anthracene	0.660	0.0500	"	1.00		66.0	35-114				
Atrazine	ND	0.500	"				43-101				
Benzaldehyde	ND	5.00	"				17-117				
Benzo(a)anthracene	0.870	0.0500	"	1.00		87.0	38-127				
Benzo(a)pyrene	0.870	0.0500	"	1.00		87.0	30-146				
Benzo(b)fluoranthene	1.16	0.0500	"	1.00		116	36-145				
Benzo(g,h,i)perylene	1.03	0.0500	"	1.00		103	10-163				
Benzo(k)fluoranthene	0.720	0.0500	"	1.00		72.0	16-149				
Benzyl butyl phthalate	ND	5.00	"				28-129				
1,1'-Biphenyl	ND	5.00	"				21-102				
4-Bromophenyl phenyl ether	ND	5.00	"				38-116				
Caprolactam	ND	5.00	"				10-29				
Carbazole	ND	5.00	"				49-116				
4-Chloro-3-methylphenol	ND	5.00	"				28-101				
4-Chloroaniline	ND	5.00	"				10-154				
Bis(2-chloroethoxy)methane	ND	5.00	"				27-112				
Bis(2-chloroethyl)ether	ND	5.00	"				24-114				
Bis(2-chloroisopropyl)ether	ND	5.00	"				21-124				
2-Chloronaphthalene	ND	5.00	"				40-96				
2-Chlorophenol	ND	5.00	,,				35-84				
4-Chlorophenyl phenyl ether	ND	5.00	,,				34-112				
Chrysene	0.780		"	1.00		79.0	33-120				
Dibenzo(a,h)anthracene	1.07	0.0500 0.0500	"	1.00		78.0 107	10-149				
Dibenzofuran			"	1.00		107					
Di-n-butyl phthalate	ND ND	5.00	,,				42-105				
3,3'-Dichlorobenzidine		5.00	"				36-110				
	ND	5.00	"				25-155				
2,4-Dichlorophenol	ND	5.00	"				43-92				
Diethyl phthalate	ND	5.00	"				38-112				
2,4-Dimethylphenol	ND	5.00	"				25-92				
Dimethyl phthalate	ND	5.00					49-106				
4,6-Dinitro-2-methylphenol	ND	5.00	"				10-135				
2,4-Dinitrophenol	ND	5.00	"				10-149				
2,4-Dinitrotoluene	ND	5.00	"				41-114				
2,6-Dinitrotoluene	ND	5.00	"				49-106				
Di-n-octyl phthalate	ND	5.00	"				12-149				
Bis(2-ethylhexyl)phthalate	ND	0.500	"				10-171				
Fluoranthene	1.01	0.0500	"	1.00		101	33-126				
Fluorene	0.920	0.0500	"	1.00		92.0	28-117				
Hexachlorobenzene	ND	0.0200	"				27-120				
Hexachlorobutadiene	ND	0.500	"				25-106				
Hexachlorocyclopentadiene	ND	5.00	"				10-99				
Hexachloroethane	ND	0.500	"				33-84				
Indeno(1,2,3-cd)pyrene	1.07	0.0500	"	1.00		107	10-150				
Isophorone	ND	5.00	"				29-115				
2-Methylnaphthalene	ND	5.00	"				33-101				
2-Methylphenol	ND	5.00	"				10-90				
3- & 4-Methylphenols	ND	5.00	"				10-101				
Naphthalene	1.01	0.0500	"	1.00		101	30-99	High Bias			



Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag				
Batch BI40731 - EPA 3510C															
LCS (BI40731-BS2)							Prepared & Analyzed: 09/16/2014								
2.31% 31			-												

LCS (BI40731-BS2)						Prep	pared & Analyz	zed: 09/16/2	014
3-Nitroaniline	ND	5.00	ug/L			29-128			
4-Nitroaniline	ND	5.00	"			15-143			
2-Nitroaniline	ND	5.00	"			31-122			
Nitrobenzene	ND	0.250	"			32-113			
4-Nitrophenol	ND	5.00	"			10-112			
2-Nitrophenol	ND	5.00	"			37-97			
N-nitroso-di-n-propylamine	ND	5.00	"			36-118			
N-Nitrosodiphenylamine	ND	5.00	"			27-145			
Pentachlorophenol	ND	0.250	"			19-127			
Phenanthrene	0.800	0.0500	"	1.00	80.0	31-112			
Phenol	ND	5.00	"			10-37			
Pyrene	0.760	0.0500	"	1.00	76.0	42-125			
1,2,4,5-Tetrachlorobenzene	ND	5.00	"			28-105			
2,4,6-Trichlorophenol	ND	5.00	"			41-107			
2,4,5-Trichlorophenol	ND	5.00	"			36-112			
LCG D (DLASTAL DCDA)							pared & Analyz	zed: 00/16/2	014
LCS Dup (BI40731-BSD1)							Jaica & Anaryz		
Acenaphthene	48.2	0.0500	ug/L	50.0	96.4	24-114		11.1	20
Acenaphthylene	46.0	0.0500	"	50.0	92.1	26-112		10.8	20
Acetophenone	32.8	5.00	"	50.0	65.6	47-92		6.72	20
Anthracene	48.7	0.0500	"	50.0	97.5	35-114		8.43	20
Atrazine	38.3	0.500	"	50.0	76.7	43-101		6.83	20
Benzaldehyde	32.0	5.00	"	50.0	63.9	17-117		4.55	20
Benzo(a)anthracene	44.3	0.0500	"	50.0	88.5	38-127		7.50	20
Benzo(a)pyrene	44.0	0.0500	"	50.0	88.0	30-146		8.20	20
Benzo(b)fluoranthene	48.0	0.0500	"	50.0	96.1	36-145		8.24	20
Benzo(g,h,i)perylene	42.4	0.0500	"	50.0	84.9	10-163		6.85	20
Benzo(k)fluoranthene	49.4	0.0500	"	50.0	98.9	16-149		1.51	20
Benzyl butyl phthalate	44.8	5.00	"	50.0	89.7	28-129		8.01	20
1,1'-Biphenyl	35.8	5.00	"	50.0	71.6	21-102		6.99	20
4-Bromophenyl phenyl ether	45.8	5.00	"	50.0	91.5	38-116		6.88	20
Caprolactam	37.3	5.00	"	50.0	74.6	10-29	High Bias	9.06	20
Carbazole	45.8	5.00	"	50.0	91.6	49-116		7.75	20
4-Chloro-3-methylphenol	45.6	5.00	"	50.0	91.2	28-101		13.6	20
4-Chloroaniline	35.5	5.00	"	50.0	71.0	10-154		9.24	20
Bis(2-chloroethoxy)methane	48.6	5.00	"	50.0	97.3	27-112		13.7	20
Bis(2-chloroethyl)ether	46.7	5.00	"	50.0	93.4	24-114		2.29	20
Bis(2-chloroisopropyl)ether	57.8	5.00	"	50.0	116	21-124		12.0	20
2-Chloronaphthalene	45.1	5.00	"	50.0	90.2	40-96		10.5	20
2-Chlorophenol	37.2	5.00	"	50.0	74.5	35-84		10.9	20
4-Chlorophenyl phenyl ether	47.5	5.00	"	50.0	95.0	34-112		11.3	20
Chrysene	46.5	0.0500	"	50.0	93.0	33-120		9.79	20
Dibenzo(a,h)anthracene	43.4	0.0500	"	50.0	86.7	10-149		7.12	20
Dibenzofuran	45.0	5.00	"	50.0	89.9	42-105		10.3	20
Di-n-butyl phthalate	44.9	5.00	"	50.0	89.7	36-110		8.58	20
3,3'-Dichlorobenzidine	50.0	5.00	"	50.0	100	25-155		7.15	20
2,4-Dichlorophenol	45.5	5.00	"	50.0	91.0	43-92		9.85	20
Diethyl phthalate	46.4	5.00	"	50.0	92.7	38-112		10.6	20
2,4-Dimethylphenol	44.0	5.00	"	50.0	88.1	25-92		12.3	20
Dimethyl phthalate	44.1	5.00	"	50.0	88.2	49-106		10.8	20
4,6-Dinitro-2-methylphenol	50.3	5.00	"	50.0	101	10-135		6.52	20
2,4-Dinitrophenol	53.4	5.00	"	50.0	107	10-149		7.40	20

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 82 of 89



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

. mary to	resur	2	Omto	20.01	ressure	, orthe	Limito	0			0
Batch BI40731 - EPA 3510C											
LCS Dup (BI40731-BSD1)							Pre	pared & Analy	zed: 09/16/	2014	
2,4-Dinitrotoluene	48.5	5.00	ug/L	50.0		97.1	41-114		8.75	20	
2,6-Dinitrotoluene	47.4	5.00	"	50.0		94.9	49-106		10.2	20	
Di-n-octyl phthalate	46.4	5.00	"	50.0		92.7	12-149		8.35	20	
Bis(2-ethylhexyl)phthalate	47.5	0.500	"	50.0		94.9	10-171		9.51	20	
Fluoranthene	46.2	0.0500	"	50.0		92.4	33-126		8.88	20	
Fluorene	50.9	0.0500	"	50.0		102	28-117		11.1	20	
Hexachlorobenzene	43.8	0.0200	"	50.0		87.6	27-120		11.5	20	
Hexachlorobutadiene	47.2	0.500	"	50.0		94.4	25-106		10.7	20	
Hexachlorocyclopentadiene	41.8	5.00	"	50.0		83.5	10-99		10.9	20	
Hexachloroethane	42.0	0.500	"	50.0		84.1	33-84	High Bias	9.54	20	
Indeno(1,2,3-cd)pyrene	42.2	0.0500	"	50.0		84.4	10-150		6.47	20	
Isophorone	46.4	5.00	"	50.0		92.8	29-115		11.2	20	
2-Methylnaphthalene	50.5	5.00	"	50.0		101	33-101		12.9	20	
2-Methylphenol	40.7	5.00	"	50.0		81.4	10-90		10.9	20	
3- & 4-Methylphenols	37.2	5.00	"	50.0		74.3	10-101		9.88	20	
Naphthalene	49.9	0.0500	"	50.0		99.8	30-99	High Bias	10.6	20	
3-Nitroaniline	40.5	5.00	"	50.0		80.9	29-128		11.2	20	
4-Nitroaniline	39.6	5.00	"	50.0		79.2	15-143		14.2	20	
2-Nitroaniline	42.4	5.00	"	50.0		84.7	31-122		8.00	20	
Nitrobenzene	48.6	0.250	"	50.0		97.2	32-113		12.3	20	
4-Nitrophenol	43.2	5.00	"	50.0		86.5	10-112		13.0	20	
2-Nitrophenol	42.5	5.00	"	50.0		85.0	37-97		10.7	20	
N-nitroso-di-n-propylamine	43.5	5.00	"	50.0		86.9	36-118		11.0	20	
N-Nitrosodiphenylamine	56.2	5.00	"	50.0		112	27-145		8.50	20	
Pentachlorophenol	51.7	0.250	"	50.0		103	19-127		8.31	20	
Phenanthrene	50.8	0.0500	"	50.0		102	31-112		8.41	20	
Phenol	44.8	5.00	"	50.0		89.7	10-37	High Bias	11.8	20	
Pyrene	46.9	0.0500	"	50.0		93.9	42-125		8.23	20	
1,2,4,5-Tetrachlorobenzene	34.2	5.00	"	50.0		68.5	28-105		11.9	20	
2,4,6-Trichlorophenol	40.6	5.00	"	50.0		81.1	41-107		8.18	20	
2,4,5-Trichlorophenol	40.4	5.00	"	50.0		80.7	36-112		7.99	20	
Surrogate: 2-Fluorophenol	68.2		"	75.2		90.8	10-53				
Surrogate: Phenol-d5	75.6		"	75.2		101	10-39				
Surrogate: Nitrobenzene-d5	46.5		"	50.2		92.6	10-120				
Surrogate: 2-Fluorobiphenyl	43.6		"	50.0		87.2	10-108				
Surrogate: 2,4,6-Tribromophenol	66.1		"	75.1		88.1	10-150				
Surrogate: Terphenyl-d14	42.9		"	50.2		85.4	10-143				



# **Miscellaneous Physical Parameters - Quality Control Data**

## York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI40903 - % Solids Prep

Duplicate (BI40903-DUP1)	*Source sample: 14I0	505-03 (RSE	3/MW-15/14-1:	5)	Prepared & Analyzed: 09/18/2	014
% Solids	84.8	0.100	%	84.7	0.149	20

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 84 of 89



## **Volatile Analysis Sample Containers**

Lab ID	Client Sample ID	Volatile Sample Container
14I0505-01	RSB/MW-15/4-5	40mL Vial with Stir Bar-Cool 4° C
14I0505-02	RSB/MW-15/10-11	40mL Vial with Stir Bar-Cool 4° C
14I0505-03	RSB/MW-15/14-15	40mL Vial with Stir Bar-Cool 4° C
14I0505-04	RSB/MW-14/12-14	40mL Vial with Stir Bar-Cool 4° C
14I0505-05	RSB/MW-14/17-18	40mL Vial with Stir Bar-Cool 4° C
14I0505-06	FB091014	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
14I0505-07	TB091014	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
14I0505-08	DUP091014	40mL Vial with Stir Bar-Cool 4° C
14I0505-09	RSB/MW-17/1-3	40mL Vial with Stir Bar-Cool 4° C
14I0505-10	RSB/MW-17/13-15	40mL Vial with Stir Bar-Cool 4° C
14I0505-11	RSB/MW-17/17-18	40mL Vial with Stir Bar-Cool 4° C



### **Notes and Definitions**

S-08	The recovery of this surrogate was outside of QC limits.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
JN	The Tentatively Identified Compound reported indicates the presence of an possible analyte or class of analyte that has been 'tentatively identified' and the associated numerical value represents its estimated concentration.
J	Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
ISTD-LO	The internal std associated with this target compound did not meet acceptance criteria (area <50% CCV) at the stated dilution due to matrix effects. Sample was rerun to confirm matrix effects.
GC-20	Pattern is similar to Motor Oil
CCV-E	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification ( $>20\%$ Difference for average Rf or $>20\%$ Drift for quadratic fit).
Cal-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20% AND correlation coefficient <0.990 for quadratic fit).
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants. Data users should consider anything <10x the blank value as artifact.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.



Non-Dir.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

YORK AMALTICAL LABORATION INC.

YORK ANALYTICAL LABORATORIES
120 RESEARCH DR.
5TRATFORD, CT 06615
(203) 325-1371
FAX (203) 357-0166 This

# Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

Page of 7

VOITE Information		org.	intuic onide you to total a stat.	VOID D.		
100N IIIIOIIIIatioii	кероп 10:	:0	Invoice 10:	TOUR Project ID	Turn-Around Time	Report Type
Company: KOUX	Sac	Company:	"Sone	1575,000,7	RUSH - Same Day	Summary Report
Address: CO Shark	Address:	Address:		kan - / -	RUSH - Next Day	CT RCP Package
Phone No. 621-22-24 Appene No.	Phone No.	ON another		Purchase Order No.	RUSH - Two Day	CTRCP DQA/DUE Pkg
1 9	Affention:	Attention			RUSH - Four Day	NY ASP B Package
- min	E-Mail Address:	E-Mail Address:	ddress:	Samples from: CT NY	Standard(5-7 Days)	NJDEP Red. Deliv.  Electronic Data Deliverables (FDD)
Print Clearly and Logithy All Information must be complete	Il Information my	est he committee	Volatiles	Semi-Vols, PestPCBHert Metals Misc. Org.	rg. Full Lists Misc.	Simple Excel
C	in tripormination me	est pe comptete.	*8260 full TICs	8082PCB RCRA8	1	NYSDEC EQuIS
Samples will NOI be logged in and the turn-around time	d in and the tun	"n-around time	624 Site Spec.	st 8081Pest PP13 list	TCL Organics	EQuIS (std)
clock will not begin until any questions by York are resolved.	y questions by You	rk are resolved.	BTEX Suffolk Co.	BN Only 8151Herb TAL CTETPH Acids Only CT RCP CT15 list NV 310-13	TAL MetCN Ignitability 3 Eull TCT D Elect Boins	EZ-EDD (EQuIS)
,	,	Ma	Ketones	App. IX TAGM list	Full App. IX	GIS/KEY (std)
the state of the s	<	S - soil Other - snecify(cil.etc.)	TCL list Oxygenates	NJDEP list		Other
Samples Collected/Authorized By (Signature)	By (Signature)	WW - wastewater	CT RCP list 524.2	Let list SPLP of ICLP Total Air TOTS list TCLP Pest Dissolved Air STARS	Part 360-Baseline TOX	York Regulatory Comparison
1) ORA	- ;	GW - groundwater	Arom. only 502.2	list TCLP Herb SPLP or TCLP	M_0001	Excel Spreadsheet Compare to the following Regs. (please fill in):
Name (printed)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Marian	Halog.only NJDEP list App.IX list SPLPorTCLP 8021B list	App. IX Chlordane Indix.Metak Air TICs TCLP BNA 608 Pest LIST Below Methane SON DOCTOTAL AGOS DOCTOT	PSewer CSewer	
Sample Identification D	Date/Time Sampled	Sample Matrix	Choose Analyses	om the Me	ove and Enter Below	Container
858/MM 15/4-5	028 - HO1/6	V	3 097 B	00128		
25B/MW-15/10-119	1110hy- 832	ıν	9 260 C	00226		
RSB1MW-15/14-159	Holy-	N	9260	0028		.00
25/2/mw.15/14-15ms	048-M01/2	<b>V</b>	26626	9520		NOSO REGIONATIS
25/2/mw/15/4-15 mx0 9	9/10/W-845	5	3 692 8	82700		M500 RS13/mm-15
25B/mw/4/12-14 9)	110/14-925	n	82600	92700		Cak)
25Bhnw-14/17-118 9	11014-935	Ŋ	0928	00128		
FR891019 9	110/1	water	9.2600	00228 1		
TRIP BIANK	Lab	Wa 401	0926	J		
14 pogory	9/10/N-1200	S	82600	82700		
omments		Preservation Check those Applicable	4°C Frozen H	ICI MeOH HNO3	H ₂ SO, NaOH	
88 (		Special Instructions	J. J.		10.11	U ///-do on Receipt
of 89		Field Filtered	Samples Relinquished By	Date/Time Sample	Sectived By (1)	
			Samples Relinquished By	Date/Time	Samples Received in LAB by Da	i

YORK AMATTICAL ASSOCIATION INC.

YORK ANALYTICAL LABORATORIES
120 RESEARCH DR.
STRATFORD, CT 06615
(203) 325-1371
FAX (203) 357-0166

# Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

Page 2 of 2

V	)
V	3
5	2
Ž	1
	0
	ct N
	oje.
	P
	ork
	>

Danott	Summary w/ QA Summary CT RCP Package	CTRCP DQA/DUE Pkg	NY ASP A Package NY ASP B Package	NJDEP Red. Deliv.	Simple Excel	NYSDEC EQuIS X	EQuIS (std)	NJDEP SRP HazSite EDD	GIS/KEY (std)Other	York Regulatory Comparison	Compare to the following Regis (please fill in):	Container					E	20)				Temperatur	Date/Time	Date/Time	
	RUSH - Same Day RUSH - Next Day	RUSH - Two Day	RUSH - Three Day	KUSH - Foul Day	- L	Pri.Poll.		Full TCLP		IS Part 360 Boseline 1 U.X. RS Part 360 Example BTU/Ib.	)	bove and Enter Below					1	um 10			H.SO. NaOH	100	Received By	Samples Received in LAB by	,
YOUR Project ID	1515.0007	Purchase Order No.		3	<b>✓</b>	Semi-Vols, PestPCB/Herb Metals Misc. Org.	8081Pest PP13 list		App. IX TAGM list Site Spec. NJDEP list	CT RCP list SPLP or TCLP Total Air TO15	rb SPLPorTCLP e Indiv.Metak LIST Below	TB list SPIPCATOP 608 PCB Helium TAGM Shies Chaose Analyses Needed from the Menu Above and Enter Below		1 82700	9270	10720	1110	Hydr. (rttollum			ONH HOW HAND	Ascorbic Acid	ed By Date/Time Sample	Date/Time	
Invoice To:	w. Same		чо.	n:	E-Mail Address:	Volatiles	624 Site Spec.	STARS list Nassau Co. BTEX Suffolk Co.	Ketones	TAGM list TCLP list	CT RCP list Arom, only Halog.only App.IX list	802		30926	2001	04.00	0000	Deto 7				4°C Frozen	Samples Relinquished By	Samples Relinquished By	The state of the s
Report To:		Address: Address:	Phone No.	Attention: Attention:	ress:	Il Information must be complete	Print Clearly and Legibly. Att information mass court	y questions by York are resolved.	Matrix Codes S - soil		1	Air-SV-s	Date/Time Sampled Sample Matrix	9/10/10 -12x			J 1/2/1 200	9 hory-indo other oil				Preservation Check those Applicable	Special Instructions Field Eileard	Lab to Filter	
VOLIR Information	Company: Coux	Address: 209 5 Mg 24	Phone No. 631-232-2600	Man Division		E-Mail Address:	Print Clearly and Legioly. A	slack will not begin until any questions by York are	100		Samples Collected Authorized By (Signature)	inted)	Sample Identification	1, 7	1	11373	R912/101-17/1762	NW-5				Comments			



# **Technical Report**

prepared for:

# **Roux Associates**

209 Shafter St Islandia NY, 11749

**Attention: Wendy Monterosso** 

Report Date: 09/23/2014

Client Project ID: 1575.00024

York Project (SDG) No.: 14I0669

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 7

Report Date: 09/23/2014 Client Project ID: 1575.00024 York Project (SDG) No.: 14I0669

### **Roux Associates**

209 Shafter St Islandia NY, 11749

Attention: Wendy Monterosso

### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 16, 2014 and listed below. The project was identified as your project: **1575.00024**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	Date Received
1410669-01	MW-15	Oil	09/15/2014	09/16/2014
14I0669-02	MW-17	Oil	09/15/2014	09/16/2014

### General Notes for York Project (SDG) No.: 14I0669

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
   All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director



09/23/2014

Date:



### **Sample Information**

Client Sample ID: MW-15 York Sample ID: 14I0669-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 14I0669
 1575.00024
 Oil
 September 15, 2014 11:45 am
 09/16/2014

Petroleum Hydrocarbon Identification

**Log-in Notes:** Sample Notes:

Sample Prepared by Method: Oil Preparation for GC

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	o Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Petro	leum Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/22/2014 16:37	09/23/2014 12:08	JW
		Motor Oil									

### **Sample Information**

Client Sample ID: MW-17 York Sample ID: 14I0669-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I06691575.00024OilSeptember 15, 2014 12:00 pm09/16/2014

### Petroleum Hydrocarbon Identification

**Log-in Notes:** Sample Notes:

Sample Prepared by Method: Oil Preparation for GC

						Reported to	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
* Petrole	um Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/22/2014 16:37	09/23/2014 12:08	JW

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 3 of 7



# **Analytical Batch Summary**

YORK Sample ID	Client Sample ID	Preparation Date
14I0669-01	MW-15	09/22/14
14I0669-02	MW-17	09/22/14



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag



### **Notes and Definitions**

GC-20	Pattern is similar to Motor Oil
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot b	846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet e separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two.

and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two.

For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

**YORK** 

YORK ANALYTICAL LABORATORIES
120 RESEARCH DR.
STRATFORD, GT 06615
(203) 325-1371
FAX (203) 357-0166 This d

# Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

Page of V

Report Type	Summary Report Summary W/ QA Summary CT RCP Package	CTRCP DQA/DUE Pkg  NY ASP A Package	NY ASP B Package NIDEP Red. Deliv.	Electronic Data Deliverables (EDD)	Simple Excel	NYSDEC EQuIS EOuIS (std)	EZ-EDD (EQuIS)	GIS/KEY (std)	Other  York Regulatory Comparison	Excel Spreadsheet Compare to the following Regs. (please fill in):		Container Description(s)	1 405	\ <u>\</u>					Temperature	14 120	1815 W 3.2°C	Date/Time
Turn-Around Time	RUSH - Same Day RUSH - Next Day	RUSH - Two Day RUSH - Three Day	RUSH - Four Day	Standard(5-7 Days)	g. Full Lists	O Pri.Poll. Corrosivity O TCL Organics Reactivity	TAL MetCN	Full App. IX		Part 360-Economic Part 360-Economic Part 360-Economic Part 150-Economic Part 150-Eco	NYSDECSewer Asbestos TAGM Silica	ove and Enter Below	70	10)					H ₂ SO ₄ NaOH	I	frace 9-16-14	
YOUR Project ID	1575.000.27	Purchase Order No.		Samples from: CT NY NJ	S. Pest/PCB/Herth Metals	x 625 8082PCB RCRA8 TPH GRO S list 8081Pest PP13 list TPH DRO	8151Herb	App. IX TAGM list	list SPIPGTCIP	TCLP Herb SPLPGTCIP Chlordane Indiv.Metak	ICLP BNA 608 Pest LIST Below Methane SPLP or TCLP 608 PCB Heitum	Choose Analyses Needed from the Menu Above and Enter Below	W. (Petroloum	$\sim$	*	er to			HCI MeOH HNO3	9/16/14 12/2		Date/Time
Invoice To:	any: John &	.No.	ion:	E-Mail Address:	Volatiles	<i>time</i> 624 / Site Spec. STARS list	STARS list	Ketones	TAGM list TCLP list	Arom. only ter Halog.only	App.IX list SPIPorTCLP TCLP BNA 8021B list SPIPorTCIP		PATCO. Mydr.	reta Hua		34 III	17.		4°C Frozen ZnA	Sakalas Relinquished By		Samples Relinquished By
<u>.</u> ;	Company:	Phone No.	Attention:	E-Ma	net he comple	urn-around tin	ork are resolve	Matrix Codes	er /	GW - groundwater DW - drinking water	Air-A - ambient air Air-SV - soil vapor	Sample Matrix	0,1	011					Preservation Check those Applicable	Special Instructions	Lab to Filter	
Report To:	ASJOI COMPANY: Sor	O Phone No.	Attention:	E-Mail Address:	All Information n	gged in and the t	any questions by Y	<	And Ry (Signature)	of Garin	(pe	Date/Time Sampled	Shil - 1/51/6	945/14-1200								
YOUR Information	Company: Row + ASJO Address: 239 Sheft	Flore No. 631-232-26	Contact Person: Week of	E-Mail Address:	Print Clearly and Legibly All Information must be complete	Samples will NOT be logged in and the turn-around	clock will not begin until any questions by York are resolved.		Samples Collected/Authorized By (Signature)	Ja 6	Name (printed)	Sample Identification	NW.15	Li min					Comments			



# **Technical Report**

prepared for:

# **Roux Associates**

209 Shafter St Islandia NY, 11749

**Attention: Wendy Monterosso** 

Report Date: 09/29/2014

Client Project ID: 1575.0002Y

York Project (SDG) No.: 14I0899

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 9

Report Date: 09/29/2014 Client Project ID: 1575.0002Y York Project (SDG) No.: 14I0899

### **Roux Associates**

209 Shafter St Islandia NY, 11749

Attention: Wendy Monterosso

### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 22, 2014 and listed below. The project was identified as your project: **1575.0002Y**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	<b>Date Received</b>
14I0899-01	MW-13	Oil	09/19/2014	09/22/2014
1410899-02	MW-8	Oil	09/19/2014	09/22/2014
1410899-03	MW-10	Oil	09/19/2014	09/22/2014
14I0899-04	MW-14	Oil	09/19/2014	09/22/2014
14I0899-05	MW-16	Oil	09/19/2014	09/22/2014

### **General Notes for York Project (SDG) No.: 14I0899**

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia

Laboratory Director

**Date:** 09/29/2014

YORK YORK



### **Sample Information**

Client Sample ID: MW-13	York Sample ID:	1410899-01
-------------------------	-----------------	------------

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I08991575.0002YOilSeptember 19, 2014 8:40 am09/22/2014

Petroleum Hydrocarbon Identification

Sample Prepared by Method: Oil Preparation for GC

Log-in Notes:

**Sample Notes:** 

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported t	O Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Petrole	um Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/26/2014 09:58	09/29/2014 09:39	JW

**Sample Information** 

Motor Oil

Client Sample ID: MW-8 York Sample ID: 14I0899-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I08991575.0002YOilSeptember 19, 2014 9:10 am09/22/2014

Petroleum Hydrocarbon Identification

Sample Prepared by Method: Oil Preparation for GC

**Log-in Notes:** 

**Sample Notes:** 

Date/Time Date/Time

						Reported to	0		Date/11me	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
* Petrole	eum Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/26/2014 09:58	09/29/2014 09:39	JW
		Motor Oil									

### **Sample Information**

Client Sample ID: MW-10 York Sample ID: 14I0899-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I08991575.0002YOilSeptember 19, 2014 10:20 am09/22/2014

Petroleum Hydrocarbon Identification

<u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: Oil Preparation for GC

					I	Reported to	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
* Petrole	eum Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/26/2014 09:58	09/29/2014 09:39	JW
		Motor Oil									

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 4 of 9



### **Sample Information**

Client Sample ID: MW-14 York Sample ID: 14I0899-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I08991575.0002YOilSeptember 19, 2014 12:40 pm09/22/2014

**Petroleum Hydrocarbon Identification** 

<u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: Oil Preparation for GC

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	O Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Petro	leum Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/26/2014 09:58	09/29/2014 09:39	JW
		Motor Oil									

### **Sample Information**

Client Sample ID: MW-16 York Sample ID: 14I0899-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received14I08991575.0002YOilSeptember 19, 2014 12:50 pm09/22/2014

### Petroleum Hydrocarbon Identification

<u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: Oil Preparation for GC

						1	Reported to	0		Date/Time	Date/Time	
_	CAS No.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
_	* Petrol	eum Identification	Pattern is similar to		ID only			1	NYSDOH 310-14	09/26/2014 09:58	09/29/2014 09:39	JW
			Motor Oil									

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 5 of 9



# **Analytical Batch Summary**

Ratch ID:	BI41356	Preparation Method:	Oil Preparation for GC	Prenared By:	IW

YORK Sample ID	Client Sample ID	Preparation Date
14I0899-01	MW-13	09/26/14
14I0899-02	MW-8	09/26/14
14I0899-03	MW-10	09/26/14
14I0899-04	MW-14	09/26/14
14I0899-05	MW-16	09/26/14



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag



### **Notes and Definitions**

GC-20	Pattern is similar to Motor Oil
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot b	246 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlead cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

YORK

YORK ANALYTICAL LABORATORIES 120 RESEARCH DR. STRATFORD, CT 06615

FAX (203) 357-0166

(203) 325-1371

Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document. This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

York Project No. 14 I 0899

Report Type	A Summary	DUE Pkg	kage	kage	Electronic Data Deliverables (EDD)		SI	S)	azSite EDD		y Comparison	ng Regs. (please fill in);	Container Description(s)	7								Temperature	on Receipt	3,7,2
	Summary Report Summary w/ QA Summary CT RCP Package	CTRCP DOA/DUE Pkg	NY ASP A Package	NY ASP B Package NJDEP Red. Deliv.	Electronic Data	Simple Excel	NYSDEC EQuIS EQuIS (std)	EZ-EDD (EQuIS)	NJDEP SRP HazSite EDD GIS/KFY (std)	Other	York Regulatory Comparison Excel Spreadsheet	Compare to the following Rogs. (please fill in)		4 40			_	->					14 1285 late/Time	Date/Time
Turn-Around Time	RUSH - Same Day RUSH - Next Day	RUSH - Two Day	RUSH - Three Day	RUSH - Four Day	Standard(5-7 Days)	rg. Full Lists Misc.	O Pri.Poll. Corrosivity O TCL Oganis Reactivity	TAL MetCN	13 Full TCLP Flash Point 4 Full App. IX Sieve Anal.	Part 360-Routine	2.55	Part 3604-spended Aquatitic Tox. NYCLEPSenner TOC NYSDECSenner Asbestos TAACSAR	ove and Enter Below		5)	(0)	(a)	(0.				H,SO ₊ NaOH	Becgined By	Samples Received in LAB by D
YOUR Project ID	1575,00024	Purchase Order No			NY X	Semi-Vols. Pest/PCB/Herb Metals Misc. Org.	8270 or 625 8082PCB RCRA8 TPH GRO STARS list 8081Pest PP13 list TPH DRO	8151Herb TAL	PAH list App. IX TAGM list TPH 1664	NJDEP list	TCLP Pest Dissolved	NJDEF IIST ICLP Herb SPLPGTICLP Air VPH App. IX Chlordane Indix.Metals Air TICs TCLP BNA 608 Pest LISTBelow Methane SON PORTITY AND FORD	om the Me	(Product ID	di (Produst II	dr. (Produst I	d. (Produst I	(Produit I				HCI MeOH HNO3	By Date/Time Samples	Date/Time
Invoice To:	v. Same		10.	n:	E-Mail Address:	Volatiles	TICs Site Spec.	STARS list Nassau Co.	MTBE Ketones	TCL list Oxygenates	CT RCP list 524.2	Arom. only 502.2 Halog.only NJDEP list App.IX list SPLPorTCLP	Choose Analyses	Posto. Hyo		Petro Ity	Petro My	Petro His				4°C Frozen FnAc	Samples Relinquished By	Samples Relinquished By
	Company:		Phone No.	Attention:	E-Mail	ust he countlete	rn-around tim	rk are resolvea	Matrix Codes	S - soil	WW - wastewater		Sample Matrix	1:0	6.1	0,1	100	0,1		THE STREET		Preservation Check those Applicable	Special Instructions Field Filtered	Lab to Filter
Report To:	Company: Address:		Phone No.	Attention:	E-Mail Address:	411 Information m	red in and the tu	ny questions by Yo		1	d By (Signature)	. }	Date/Time Sampled	9119114 -640	9/19/11 -910	91,984 -1020	9/1944 - 1240	9/19/4-1250						
YOUR Information	Company: Rena Price Company Address: 209 Studie St Address:	I sinder My	Phone No. 631-237-2600	Contact Person: Wench W.	E-Mail Address:	Print Clearly and Logibly All Information must be complete	Samples will NOT be logged in and the turn-around time	clock will not begin until any questions by York are resolved.		C	Samples Collected/Authorized By (Signature)	Name (printed)	Sample Identification	mw 13	mw-8	Mw 10	mw 14	9				Page Page	9 of 9	



# **Technical Report**

prepared for:

# **Roux Associates**

209 Shafter St Islandia NY, 11749

**Attention: Wendy Monterosso** 

Report Date: 05/19/2015

Client Project ID: 1575.0024000 York Project (SDG) No.: 15E0415

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 7

Report Date: 05/19/2015 Client Project ID: 1575.0024000 York Project (SDG) No.: 15E0415

### **Roux Associates**

209 Shafter St Islandia NY, 11749

Attention: Wendy Monterosso

### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 12, 2015 and listed below. The project was identified as your project: **1575.0024000**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	Date Received
15E0415-01	MW-12	Oil	05/11/2015	05/12/2015
15E0415-02	MW-21	Oil	05/11/2015	05/12/2015
15E0415-03	MW-18	Oil	05/11/2015	05/12/2015

### General Notes for York Project (SDG) No.: 15E0415

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
   All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

**Approved By:** 

Date: 05/19/2015

Benjamin Gulizia Laboratory Director





### **Sample Information**

Chefit Sample ID; MVV-12	Client Sample ID:	MW-12	York Sample ID:	15E0415-01
--------------------------	-------------------	-------	-----------------	------------

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 15E0415
 1575.0024000
 Oil
 May 11, 2015
 8:35 am
 05/12/2015

Petroleum Identification Log-in Notes:

Sample Prepared by Method: Oil Preparation for GC

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Petrol	leum Identification	Pattern is similar to Motor Oil		ID only			1	EPA 8015D Certifications:	05/18/2015 08:41	05/19/2015 14:01	JW

**Sample Notes:** 

### **Sample Information**

Client Sample ID: MW-21 York Sample ID: 15E0415-02

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 15E0415
 1575.0024000
 Oil
 May 11, 2015
 8:45 am
 05/12/2015

Petroleum Identification <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: Oil Preparation for GC

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
* Petrole	um Identification	Pattern is similar to Motor Oil		ID only			1	EPA 8015D Certifications:	05/18/2015 08:41	05/19/2015 14:01	JW

### **Sample Information**

Client Sample ID: MW-18 York Sample ID: 15E0415-03

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 15E0415
 1575.0024000
 Oil
 May 11, 2015 10:10 am
 05/12/2015

<u>Petroleum Identification</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: Oil Preparation for GC

CACN					]	Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
* Petroleum Identification		Not		ID only			1	EPA 8015D	05/18/2015 08:41	05/19/2015 14:01	JW
		Detected or,						Certifications:			
		conc. too									
		low for ID									

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 3 of 7



# **Analytical Batch Summary**

Ratch ID:	BE50880	Propagation Mathad:	Oil Preparation for GC	Prepared Ry	1137

YORK Sample ID	Client Sample ID	Preparation Date
15E0415-01	MW-12	05/18/15
15E0415-02	MW-21	05/18/15
15E0415-03	MW-18	05/18/15



		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
											•



### **Notes and Definitions**

GC-26	Not Detected or, conc. too low for ID
GC-20	Pattern is similar to Motor Oil
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.
and cannot b	46 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet e separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. on, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as

Diphenylamine. If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166



YORK ANALYTICAL LABORATORIES 120 RESEARCH DR. STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

# Field Chain-of-Custody Record

NOTE: York's Std. Terms & Conditions are listed on the back side of this document.

This document serves as your written authorization to York to proceed with the analyses requested and your signature binds you to York's Std. Terms & Conditions.

Page ____ of ____
York Project No. __15E0415

YOUR Information Report To:		Invoice To:		YOUR Project ID			Turn-Aro	นnd Time	Report Type	
Company: Roux Associates Company: 5 am	Company	Soul		بررحوا	2210 10 200000		RUSH - Sai	ne Day	Summary 1	
Address: 209 Shafter Staddress:	Address:		9	1575.	6024	000	RUSH - Ne	xt Day	Summary CT RCP Pa	w/ QA Summary
Islandia NY 11749	Address.			Purchase			RUSH - Tw			QA/DUE Pkg
Phone No. 631-232-2600 Phone No. Phone No.		No		i dichase order ito.			RUSH - Three Day		NY ASP A	
incender							RUSH - Fo	ur Day	NY ASP B	
Common Terson.		:		Samulas from C	r NVV	NII	Standard(5	-7 Days)	NJDEP Re	
E-Mail Address: E-Mail Address: E-Mail Address:				Samples from: CTNYNJSemi-Vols, Pest/PCB/Herti Metals Misc. Or					Electronic Data Deliverables (EDD) Simple Excel	
Print Clearly and Legibly. All Information must be complete.		Volatiles 8260 full TICs		or 625 8082PCB	RCRA8	TPH GRO		Corrosivity	NYSDEC	
Samples will NOT be logged in and the turn-around time			STAR		PP13 list	TPH DRO		Reactivity	EQuIS (sto	i)
clock will not begin until any questions by York are resolved.		STARS list Nassau Co.	BN O		TAL	СТ ЕТРН	TAL Met/CN	Ignitability	EZ-EDD (	
Matrix Codes		BTEX Suffolk Co. MTBE Ketones						RP HazSite EDD		
0	S - soil	TCL list Oxygenates	TAGN		NJDEP list	Air TO14	2573	Heterotrophs	GIS/KEY Other	(std)
	Other - specify(oil, etc.)	TAGM list TCLP list	1.700-22-22	CP list SPLP or TCLE	C. SWEET WOOD CONTRACTOR	Air TO15	Part 360-Baseline			latory Comparison
Samples Collected Authorized By (Signature)	WW - wastewater	CT RCP list 524.2	TCL	Annual Constitution of the	Dissolved	Air STARS	No Dienins/Furnis		Excel Spre	adsheet
Joe Garin	GW - groundwater DW - drinking water	Arom. only 502.2 Halog.only NJDEP list	App.		SPLP or TCLP  Indiv. Metals	Air VPH Air TICs	Part 360-Expends Full List NYCDEP Sewer	Aquatic Tox. TOC	Compare to the	following Regs. (please fill in):
Name (printed)	Air-A - ambient air	App.IX list SPLP or TCLP		BNA 608 Pest	LIST Below	Methane	NYSDECsewer	A CONTRACTOR OF THE PROPERTY O		
Name (printed)	Air-SV - soil vapor	8021B list		TCLP 608 PCB		Helium	TAGM	Silica		
Sample Identification Date/Time Sampled	Sample Matrix	Choose Analy	yses	Needed from	n the Me	nu Ab	ove and E	nter Below	ı I	Container Description(s)
MW-12 5/11/15-835	other-oil	Produ	a CH	ID	- 9	etr	OH	ydr.	11	Amber.
MW-21 3/11/15-845	other-oil	Produ			- P	etro	o. H	ydr.	11	Amber
MW-18 5/11/15-1010	other-oil	Produ	aet	- エク	- F	PHR	o. H	ide.	21	Amber
			Ĭ					200		
			- 1							
				-						
						HDIO	H CO	NoOH		
P comments	Preservation Check those Applicable	4°C Frozen		HCl Me		HNO ₃	H ₂ SO ₄	NaOH_		Temperature
Page 7	Preservation Check those Applicable Special	The state of the s	ZnAc	Ascorbic	Acid	HNO3_Other		_ , _	12 00	Temperature on Receipt
7	Check those Applicable Special Instructions	My	ZnAc	Ascorbic	- Jon	Other	Back	slizis	i2pn	on Receipt
Page 7 of 7	Check those Applicable Special	AM	ZnAc shed	Ascorbic	- Jon	Other		slizis	12-pn Date/Time 1854	on Receipt

# **APPENDIX E**

Soil Vapor Sampling Forms

**ROUX** 2861.0001Y.102/CVRS

Irma C. Pollack	
Kristal Auto Mall - 5200 Kings Highway, Brooklyn	n
D-1 0/04/0044	
	Time: 0938
Weather: 20-30's F, Partly cloudy Temperature:	Humidity:
Wind Magnitude:	
Barometric Pressure:	Precipitation:
Datomonio i 15552.5.	1 Teolphanon.
Sampling Team: Joe Gavin	
Sampling Location: SV-1	
Site Condition (i.e. any adjacent questionable fac	cilities, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto st	storage
	e the brass cap from the end of the sample tubing and fit a new brass hose fitting onto the sample tubing.
Calibra	rate the Helium detection meter
Utility Clearance Completed: Yes	
Othity Oleanande Completed.	
Committee Donaths out clok	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sampling Depth: sub-slab Sealed with bentonite: Yes	
Sealed with bentonite: Yes  Apparent Moisture Content: n	
Purge Rate: 200 mL	
Purge Time: 60 se	
Helium Rate at enclosure: 20,000	
Helium Rate from sample tubing: 0.0 pp	<u> </u>
. 5	<u>,                                     </u>
If the Helium readings have a greater ratio than 10	0% the seals should be rechecked and the tracer gas should be reapplied.
	npleted and no short-circuiting is determined to be present at the location the lab certified clean summa canister at a rate less than 0.2 L/min.
' '	
	essure should be within 0.5 - 4 " of Hg
	Č
Finishing pres	he proper holding time ? Yes
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting	he proper holding time ? Yes  essure: in. of Hg g Time: 0940
Finishing pres Is the Summa Canister Certified Clean and within the	he proper holding time ? Yes  essure: in. of Hg g Time:
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting	he proper holding time ? Yes  essure: in. of Hg  g Time:
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting Ending Ending Pres	he proper holding time?  Yes  essure:  -30.0  g Time:  0940  g Time:  1345  essure:  -8  in. of Hg
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting Ending Ending Pres Summa Canister Identificat	he proper holding time ? Yes  essure:
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting Ending Ending Pres Summa Canister Identificate Flow Regulator	he proper holding time? Yes  pessure:30.0 in. of Hg  g Time:0940 g Time:1345 pessure:8 in. of Hg  ation #:27  tor ID #FC444
Finishing pres Is the Summa Canister Certified Clean and within the Starting Pres Starting Ending Ending Pres Summa Canister Identificat Flow Regulato Sample	he proper holding time ? Yes  pessure:
Finishing press Is the Summa Canister Certified Clean and within the Starting Press Starting Ending Ending Press Summa Canister Identificat Flow Regulato Sampl	he proper holding time ? Yes  essure:
Finishing press Is the Summa Canister Certified Clean and within the Starting Press Starting Ending Ending Press Summa Canister Identificate Flow Regulate Sampl Time	he proper holding time?  Yes  essure:
Finishing press Is the Summa Canister Certified Clean and within the Starting Press Starting Ending Ending Press Summa Canister Identificate Flow Regulate Sampl Time	he proper holding time ? Yes  essure:
Finishing press Is the Summa Canister Certified Clean and within the Starting Press Starting Ending Ending Press Summa Canister Identificate Flow Regulate Sampl Time	he proper holding time?  Yes  essure:
Finishing press Is the Summa Canister Certified Clean and within the Starting Press Starting Ending Ending Press Summa Canister Identificat Flow Regulator Sampl Time An Labo	he proper holding time?  Yes  essure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting  Ending  Ending Pres  Summa Canister Identificat  Flow Regulato  Sampl  Time  An  Labo  Comments:	he proper holding time? Yes  pessure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting Ending Ending Pres  Summa Canister Identificat Flow Regulato Sampl Time An Labo  Comments: Located in the office located on the east side of Site	he proper holding time? Yes  pessure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting  Ending  Ending Pres  Summa Canister Identificat  Flow Regulato  Sampl  Time  An  Labo  Comments:	he proper holding time? Yes  pessure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting Ending Ending Pres  Summa Canister Identificat Flow Regulato Sampl Time An Labo  Comments: Located in the office located on the east side of Site	he proper holding time? Yes  pessure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting Ending Ending Pres  Summa Canister Identificat Flow Regulato Sampl Time An Labo  Comments: Located in the office located on the east side of Site	he proper holding time? Yes  pessure:
Finishing pres  Is the Summa Canister Certified Clean and within the  Starting Pres  Starting Ending Ending Pres  Summa Canister Identificat Flow Regulato Sampl Time An Labo  Comments: Located in the office located on the east side of Site	he proper holding time? Yes  pessure:

Soil Vapor Sampling Form	
Irma C. Pollack	•
Kristal Auto Mall - 5200 Kings Highway, Brooklyn	
Date: 2/24/2014 Time	ne: 0940
Weather: 20-30's F, Partly cloudy	
	Humidity:
Temperature: Wind Magnitude:	Wind Direction:
Barometric Pressure:	Precipitation:
	<del></del>
Sampling Team: <u>Joe Gavin</u>	
Sampling Location: SV-2	
Site Condition (i.e. any adjacent questionable facilities Active car dealership, auto repair, auto wash, auto storage	ies, vent pipes, tanks, etc. and what type of basements are present)
Active cal dealership, auto repair, auto wash, auto sicrage	<u>ge</u>
	e brass cap from the end of the sample tubing and fit a new brass hose g onto the sample tubing.
Calibrate the	the Helium detection meter
Utility Clearance Completed: Yes	
· ——	24 Ettabara
Sampling Depth: sub-slab - 8"	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above land surface)
Sealed with bentonite: Yes	iana sunaccy
Apparent Moisture Content:n	_
Purge Rate: 200 mL/min	Must be less than 0.2 L/min
Purge Time: 60 sec	_
Helium Rate at enclosure: 20,000 ppm	
Helium Rate from sample tubing: 0.0 ppm	Is this rate <10% of the rate at the enclosure Yes / No
15 the United readings have a greater ratio than 10% the	the state should be respected and the tracer are should be reapplied
If the Hellum readings have a greater ratio than 1070 the	the seals should be rechecked and the tracer gas should be reapplied.
O and the traces are completed	the discrete singuistics in determined to be precent at the location the
	ed and no short-circuiting is determined to be present at the location the certified clean summa canister at a rate less than 0.2 L/min.
sull vapul salliple dali de dellectes ili a las se	Jettilleu Clean Summa Camster at a rate 1055 than 6.2 Emin.
Finishing pressure	re should be within 0.5 - 4 " of Hg
	·
Is the Summa Canister Certified Clean and within the prop	roper holding time? Yes
Starting Pressure	re: -29.0 in. of Hg
Starting Pressure Starting Time	
Starting Time Ending Time	
Ending Pressure	
	<u> </u>
Summa Canister Identification #	#:502
Flow Regulator ID	
Sample ID	
Time	1045
Analysi	sis TO-15
Laboratory	
Comments:	
Located along southern property boundary line, near Outd	
Sample will be collected at a later date; the gauge read '0	'0' after one hour.

Soil Vapor Sampling Form		
Irma C. Pollack	. =	
Kristal Auto Mall - 5200 Kings Highway, Broo	oklyn	
<b>Date</b> : 2/28/2014	Time:	: 0940
Weather: 20s F, Partly cloudy		
Temperature:		Humidity:
Wind Magnitude:		Humidity: Wind Direction:
Barometric Pressure:		Precipitation:
		<del></del>
Sampling Team: Joe Gavin		
Sampling Location: SV-2		<del>-</del>
		, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, a	uto storage	
		rass cap from the end of the sample tubing and fit a new brass hose onto the sample tubing.
	alibrate the	Helium detection meter
Utility Clearance Completed:		Helium detection meter
Othicy Clearance Completed.	169	-
Compline Double and		feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sampling Depth: sub		_land surface)
Sealed with bentonite:		-
Apparent Moisture Content:		 Must be less than 0.2 L/min
	60 sec	_Must be less than 0.2 L/min
Helium Rate at enclosure:	00 200	-
Helium Rate from sample tubing:		Is this rate <10% of the rate at the enclosure  Yes / No
Tionam Nato Hom campio tabilig.		_ is this fate < 1070 of the fate at the chains and
If the Helium readings have a greater ratio that	an 1 <u>0% the</u>	seals should be rechecked and the tracer gas should be reapplied.
		and no short-circuiting is determined to be present at the location the rtified clean summa canister at a rate less than 0.2 L/min.
Finiship	~ proceuro (	abouted ha within O.E. A " of Ua
Еплотині	) pressure a	should be within 0.5 - 4 " of Hg
Is the Summa Canister Certified Clean and with	hin the prop	per holding time? Yes
	Pressure:	
		: 0820
	ding Time:	
Ending	g Pressure:	:in. of Hg
l		
Summa Canister Ident		
_	gulator ID #	
9	Sample ID #	
	Time	<u>1520</u>
	Analysis	
	Laboratory	r Alpha
Comments: Located along southern property boundary line,	near Outdo	oor Ambient cample
Located along Southern property boundary into,	fiedi Outuc	Jor Ambient Sample

rma C. Pollack	
Kristal Auto Mall - 5200 Kings Highway, Brookly	yn
<b>Date:</b> 2/24/2014	Time: 0920
Weather: 20-30's F, Partly cloudy	Hine
Temperature:	
Wind Magnitude:	Wind Direction:
Barometric Pressure:	Precipitation:
Sampling Team: Joe Gavin	
Sampling Location: SV-3	
Site Condition (i.e. any adjacent questionable fa	facilities, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto	storage
	ove the brass cap from the end of the sample tubing and fit a new brass hose b fitting onto the sample tubing.
Calit	brate the Helium detection meter
	'es
	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sampling Depth: sub-sla	lab - 8" and surface) lab - 8".
Sealed with bentonite: Ye	'es
	<u>n</u>
	mL/min Must be less than 0.2 L/min
	Sec Of som
	ppm Is this rate <10% of the rate at the enclosure Yes / No
Tellulli Kate II olli saliipie tubilig	ppm is this rate < 10% of the rate at the enclosure 1657 No
If the Helium readings have a greater ratio than	10% the seals should be rechecked and the tracer gas should be reapplied.
	impleted and no short-circuiting is determined to be present at the location the a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing p	pressure should be within 0.5 - 4 " of Hg
Comister Contilled Clean and within	Was Van
Is the Summa Canister Certified Clean and within	the proper holding time? Yes
Starting Pr	ressure: -30.0 in. of Hg
Startin	ng Time: 0922
Endin	ng Time: 1325
Ending Pr	ressure: -12.8 in. of Hg
2 Coming to Information	
Summa Canister Identific	
Flow Regula	
	nple ID # SV-3 1325
	Analysis TO-15 boratory Alpha
	отатоту дірпа
_	
Comments:	
Located on west side of Site Building, near Utica A	venue
starting pressure beyond -30" Hg	
1	
1	
1	
1	
1	

Irma C. Pollack	
Kristal Auto Mall - 5200 Kings Highway, Brookl	lyn
5-1 0/04/0044	
Date: 2/24/2014 Weather: 30.30's F. Porthy eloudy	Time: 0930
Weather : 20-30's F, Partly cloudy	Humidity
Temperature: Wind Magnitude:	
Barometric Pressure:	Precipitation:
Daromono i 1000ars.	F160pilation.
Sampling Team: Joe Gavin	
Sampling Location: SV-4	
Site Condition (i.e. any adjacent questionable f	facilities, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto	storage
	ove the brass cap from the end of the sample tubing and fit a new brass hose ob fitting onto the sample tubing.
Calit	brate the Helium detection meter
	res
othity oldarande completed.	<u> </u>
Sampling Donth: sub-sl	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
	<u>·lab - 8"</u> land surface) ′es
	n
	nL/min Must be less than 0.2 L/min
· · · · · · · · · · · · · · · · · · ·	Sec
	00 ppm
	ppm Is this rate <10% of the rate at the enclosure Yes / No
	·····
If the Helium readings have a greater ratio than	10% the seals should be rechecked and the tracer gas should be reapplied.
	impleted and no short-circuiting is determined to be present at the location the a lab certified clean summa canister at a rate less than 0.2 L/min.
soil vapor sample can be collected in	
soil vapor sample can be collected in	a lab certified clean summa canister at a rate less than 0.2 L/min.
soil vapor sample can be collected in	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time ? Yes
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Starting Processing Processin	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  pressure:
soil vapor sample can be collected in Finishing polls the Summa Canister Certified Clean and within  Starting Pr Startin Endin	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  bressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Starting Processing Processin	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  bressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Starting Ending Processing Pr	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  pressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Starting Ending Ending Processing Proces	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  pressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Starting Ending Ending Processing Summa Canister Identification Flow Regular	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  bressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  tressure: -10 in. of Hg  cation #: 0005  ator ID # FC414
soil vapor sample can be collected in a Finishing property of the Summa Canister Certified Clean and within Starting Property Starting Ending Property Summa Canister Identification Flow Regular Sam	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  ressure: -10 in. of Hg  cation #: 0005 in. of Hg  ator ID # FC414 in. of ID # SV-4
soil vapor sample can be collected in a Finishing processing of the Summa Canister Certified Clean and within Starting Processing Pr	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  pressure:
soil vapor sample can be collected in a Finishing process of the Summa Canister Certified Clean and within Starting Process of Starting Ending Ending Process of Summa Canister Identification Flow Regular Same Tile Process of Summa Canister Identification Summa Canister Identificati	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  ressure: -10 in. of Hg  cation #: 0005  ator ID # FC414 in.  nple ID # SV-4 ime 1345  Analysis TO-15
soil vapor sample can be collected in a Finishing process of the Summa Canister Certified Clean and within Starting Process of Starting Ending Ending Process of Summa Canister Identification Flow Regular Same Tile Process of Summa Canister Identification Summa Canister Identificati	a lab certified clean summa canister at a rate less than 0.2 L/min.  pressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  pressure:
soil vapor sample can be collected in a Finishing process of the Summa Canister Certified Clean and within Starting Process of Starting Ending Ending Process of Summa Canister Identification Flow Regular Same Tile Process of Summa Canister Identification Summa Canister Identificati	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  ressure: -10 in. of Hg  cation #: 0005  ator ID # FC414 in.  nple ID # SV-4 ime 1345  Analysis TO-15
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Starting Ending Ending Processing Ending Ending Ending Processing Summa Canister Identification	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Finishing Processing Processi	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Processing Finishing Processing Process	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within Starting Processing Finishing Processing Processi	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure:
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Processing Finishing Processing Process	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  ressure: -10 in. of Hg  cation #: 0005  ator ID # FC414 in.  nple ID # SV-4 ime 1345  Analysis TO-15
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Processing Finishing Processing Process	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure: -30.0 in. of Hg  ng Time: 0933 in. of Hg  ressure: -10 in. of Hg  cation #: 0005  ator ID # FC414 in.  nple ID # SV-4 ime 1345  Analysis TO-15
soil vapor sample can be collected in Finishing processing the Summa Canister Certified Clean and within  Starting Processing Processing Finishing Processing Process	a lab certified clean summa canister at a rate less than 0.2 L/min.  bressure should be within 0.5 - 4 " of Hg  the proper holding time? Yes  ressure:

Soil Vapor Sampling Form Irma C. Pollack	
Kristal Auto Mall - 5200 Kings Highway, Brookly	yn
Date: 2/24/2014	Time: 0925
Weather : 20-30's F, Partly cloudy	Literacidis a
Temperature: Wind Magnitude:	
Barometric Pressure:	Precipitation:
	1 160lpticulori
Sampling Team: Joe Gavin	
Sampling Location: SV-5	
	facilities, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto	storage
	ove the brass cap from the end of the sample tubing and fit a new brass hose b fitting onto the sample tubing.
Calib	brate the Helium detection meter
	es
Sampling Depth: sub-sla	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above lab - 8" land surface)
	(es
	n
	nL/min Must be less than 0.2 L/min
	Sec
	00 ppm
	ppm Is this rate <10% of the rate at the enclosure Yes / No
The second secon	The second of th
If the Helium readings have a greater ratio than a	10% the seals should be rechecked and the tracer gas should be reapplied.
	mpleted and no short-circuiting is determined to be present at the location the a lab certified clean summa canister at a rate less than 0.2 L/min.
Finishing n	ressure should be within 0.5 - 4 " of Hg
, illiolinid 5.	Tessure should be within 0.0 - 4 - or rig
Is the Summa Canister Certified Clean and within to	
Starting Pr	
	ng Time: 0927
	ng Time: 1340
Ending Pr	ressure:in. of Hg
Summa Canister Identific	cation #: 467
Summa Canister identific Flow Regula	
S .	ator ID # FC417  nple ID # SV-5
	me 1340
	Analysis TO-15 boratory Alpha
	зогатогу <u>мірпа</u>
Comments:	
Located in the center of the Auto Repair Shop	
4	

<b>Date</b> : 2/24/2014	Time:	0938
Weather: 20-30's F, Partly of		
Temperature:_		Humidity:
Wind Magnitude:		
Barometric Pressure: _		Precipitation:
Sampling Team: Joe Gavin		
Sampling Location: IA-1		<u>-</u>
ite Condition (i.e. any adjacent questio .ctive car dealership, auto repair, auto was		, vent pipes, tanks, etc. and what type of basements are present)
ctive car dealership, adio repair, adio was	ii, auto storage	
Prior to commencing the sampling activity	v. remove the br	ass cap from the end of the sample tubing and fit a new brass hose
,		onto the sample tubing.
	Calibrate the	Helium detection meter
<b>Utility Clearance Completed:</b>	N/A	
· -		- fact helevulend gurfene (K. 1917)
Sampling Depth:	4 ft als	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft abov land surface)
Sealed with bentonite:	NA	
Apparent Moisture Content:	N/A	<del>-</del>
Purge Rate:	NA	Must be less than 0.2 L/min
Purge Time:	NA	<del>-</del>
Helium Rate at enclosure:	NA	-
Helium Rate from sample tubing:	NA	Is this rate <10% of the rate at the enclosure Yes / No
ii tile Heliuili readiligs have a greater fat	io than 10% the	seals should be rechecked and the tracer gas should be reapplied.
il the Helium readings have a greater fat	io than 10% the	seals should be rechecked and the tracer gas should be reapplied.
Once the tracer gas screening procedures	are completed	and no short-circuiting is determined to be present at the location the
Once the tracer gas screening procedures	are completed	-
Once the tracer gas screening procedures soil vapor sample can be colle	are completed acted in a lab cer	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.
Once the tracer gas screening procedures soil vapor sample can be colle	are completed acted in a lab cer	and no short-circuiting is determined to be present at the location the
Once the tracer gas screening procedures soil vapor sample can be colle	are completed cted in a lab cer shing pressure s	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.
Once the tracer gas screening procedures soil vapor sample can be colle Finites the Summa Canister Certified Clean and	are completed coted in a lab cer shing pressure so	and no short-circuiting is determined to be present at the location the rified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time?  Yes
Once the tracer gas screening procedures soil vapor sample can be colle Finites the Summa Canister Certified Clean and	are completed acted in a lab cer shing pressure s d within the prop	and no short-circuiting is determined to be present at the location the riffied clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time?  Yes  -30.0  in. of Hg
Once the tracer gas screening procedures soil vapor sample can be colle Finites the Summa Canister Certified Clean and	are completed acted in a lab cer shing pressure so within the properting Pressure:	and no short-circuiting is determined to be present at the location the riffied clean summa canister at a rate less than 0.2 L/min.  Should be within 0.5 - 4 " of Hg  er holding time?  Yes  -30.0  in. of Hg  0938
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time:	and no short-circuiting is determined to be present at the location the rtified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg 0938 1630
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and	are completed acted in a lab cer shing pressure so within the properting Pressure:	and no short-circuiting is determined to be present at the location the rtified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg 0938 1630
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time: ding Pressure:	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg 0938 1630 -8 in. of Hg
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time: ding Pressure:	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg  0938 1630 -8 in. of Hg  473
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time: ding Pressure:	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg  0938 1630 -8 in. of Hg  473 FC7362
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time: ding Pressure: dentification #: Regulator ID # Sample ID #	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg  0938 1630 -8 in. of Hg  473 FC7362 IA-1
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the proporting Pressure: Starting Time: Ending Time: ding Pressure: dentification #: Regulator ID # Sample ID #	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg  0938 1630 -8 in. of Hg  473 FC7362 IA-1 1630
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the properting Pressure: Starting Time: Ending Time: ding Pressure: dentification #: Regulator ID # Sample ID # Time Analysis	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg 0938 1630 -8 in. of Hg  473 FC7362 IA-1 1630 TO-15
Once the tracer gas screening procedures soil vapor sample can be colle Finist the Summa Canister Certified Clean and Star	are completed acted in a lab cer shing pressure sid within the proporting Pressure: Starting Time: Ending Time: ding Pressure: dentification #: Regulator ID # Sample ID #	and no short-circuiting is determined to be present at the location the tified clean summa canister at a rate less than 0.2 L/min.  should be within 0.5 - 4 " of Hg  er holding time? Yes  -30.0 in. of Hg 0938 1630 -8 in. of Hg  473 FC7362 IA-1 1630 TO-15

0 111/ 0

Soil Vapor Sampling Form	-	
Irma C. Pollack		
Kristal Auto Mall - 5200 Kings Highway, E	3rooklyn	
Date: 2/24/2014	Time:	0945
Weather: 20-30's F, Partly cl		
Temperature: Wind Magnitude: _		Humidity:
Barometric Pressure:		Precipitation:
Committee Towns Inc. Coulin / Drien I		
Sampling Team: Joe Gavin / Brian H	Klaus	
Sampling Location: Outdoor Ambient Site Condition (i.e. any adjacent question	nable facilities	vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto was		vent pipes, tanks, etc. and what type or basements are present,
Site is located on Kings Highway, a heavily	trafficked 4-6 lar	ne thoroughfare, sample collected toward the center of the Site,
approximately 130 feet from the curb line of		
Prior to commencing the sampling activity		ass cap from the end of the sample tubing and fit a new brass hose nto the sample tubing.
	O-liberato tha i	CC P Caractan marin
Hillian Classes on Complete de		Helium detection meter
Utility Clearance Completed:	Yes	
		feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sampling Depth: _		land surface)
Sealed with bentonite:	NA	
Apparent Moisture Content:		
Purge Rate:	NA	Must be less than 0.2 L/min
Purge Time:	NA	
Helium Rate at enclosure:	NA	
Helium Rate from sample tubing: _	NA	Is this rate <10% of the rate at the enclosure Yes / No
	1 400/ 16-	the state of the s
If the Helium readings have a greater ratio	o than 10% the s	seals should be rechecked and the tracer gas should be reapplied.
		and no short-circuiting is determined to be present at the location the
soil vapor sample can be collec	ted in a lab cert	tified clean summa canister at a rate less than 0.2 L/min.
Finic	shina proceure e	should be within 0.5 - 4 " of Hg
1 11113	ining pressure si	nould be within 0.5 - 4 or ng
Is the Summa Canister Certified Clean and	within the prope	er holding time? Yes
		, notang and
Star	ting Pressure:	30.0 in. of Hg
	Starting Time:	0945
	Ending Time:	1630
Enc	ding Pressure:	-6 in. of Hg
	-	
Summa Canister Id	lentification #:	41127
Flow	Regulator ID #	FC425
	Sample ID #	Outdoor Ambient
	Time	1630
	Analysis	TO-15
	Laboratory	
		- Tuping
Comments:		
Located along southern property boundary I	line, near SV-2	
	-,	

Soil Vapor Sampling Form			
Irma C. Pollack			
Kristal Auto Mall - 5200 Kings Highway, Brooklyn			
Date: 9/25/2014 Time	e: 0743		
Weather: 70's and raining	0.10	•	
Temperature:	Humidity:	<del></del>	
Wind Magnitude:	Wind Direction:		
Barometric Pressure:	Precipitation:		
	_		
Sampling Team: Joe Gavin			
Sampling Location: SV-4	_		
Site Condition (i.e. any adjacent questionable facilities		s, etc. and what type of basem	ents are present)
Active car dealership, auto repair, auto wash, auto storage	9		
Driver to common sing the committee activity, years up the hard	an an from the on	d of the commist which and fit or	anu bana bana barb
Prior to commencing the sampling activity, remove the bra	ass cap from the en	of the sample tubing and fit a r	new drass nose dard
Utility Clearance Completed: Yes Sampling Depth: sub-slab - 8"	foot bolow land a	urface (If ambient air sample, elevate	and to oppose 2 ft . Eft above
Sealed with bentonite: Yes	ieet below land s	urrace (ii ambient air sampie, eievate	can to approx. 3 it - 5 it above
Apparent Moisture Content:	_		
Purge Rate: 200 mL/min	Must be less that	n 0.2 L/min	
Purge Time: 60 sec		. 0.2 2,11111	
Helium Rate at enclosure: 20,000 ppm	_		
Helium Rate from sample tubing: 0.0 ppm	Is this rate <10%	of the rate at the enclosure	Yes / No
. • • • • • • • • • • • • • • • • • • •	_		
If the Helium readings have a greater ratio than 10% th	e seals should be r	echecked and the tracer gas sho	ould be reapplied.
Once the tracer gas screening procedures are completed	d and no short-circu	iting is determined to be presen	t at the location the
Is the Summa Canister Certified Clean and within the pro	per holding time?	Yes	
Ctarting Process	20.0	in of Ua	
Starting Pressure Starting Time		in. of Hg	
Ending Time		•	
Ending Pressure		in. of Hg	
Ending 1 1033div	0.0	in. or rig	
Summa Canister Identification	#: 15608		
Flow Regulator ID		•	
Sample ID		•	
Time	1507	•	
Analys	is TO-15	•	
Laborator	ry Alpha		
Comments:			
Located on the north side of the Site Building			

Soil Vapor Sampling Form					
Irma C. Pollack					
Kristal Auto Mall - 5200 Kings Highway, Brooklyn					
<b>Date:</b> 9/25/2014	Time:	0741			
Weather: 70's and raining		07-71	•		
Temperature:		Humidity:			
Wind Magnitude:	N	Vind Direction:			
Barometric Pressure:		Precipitation:			
Sampling Team: Joe Gavin					
Sampling Location: SV-5 Site Condition (i.e. any adjacent questionable fac	ilitias var	nt ninge tanks	e atc and what twn	e of hasemen	te are present)
Active car dealership, auto repair, auto wash, auto ste		it pipes, tariks	s, etc. and what typ	e or basement	is are present)
riouro dal adaloromp, adio ropam, adio madri, adio di	orago				
Prior to commencing the sampling activity, remove the		ap from the end	d of the sample tubir	ng and fit a new	v brass hose barb
Utility Clearance Completed: Yes					
		et below land s	ufface (If ambient air sa	ample, elevate can	to approx. 3 ft - 5 ft above
Sealed with bentonite: Yes Apparent Moisture Content: n	<u>s</u>				
Purge Rate: 200 mL	/min Mı	ust be less thar	0.21/min		
Purge Time: 60 se		201 20 1000 11101	. 0.2 2,		
Helium Rate at enclosure: 20,000					
Helium Rate from sample tubing: 0.0 pp	om Is	this rate <10%	of the rate at the en	closure	Yes / No
	00/ 4				
If the Helium readings have a greater ratio than 10	J% the sea	als should be re	echecked and the tra	acer gas should	be reapplied.
Once the tracer gas screening procedures are comp	nleted and	no short-circu	iting is determined to	n he present at	the location the
Once the tracer gas corcorning procedures are comp	piotoa aria	THO SHOTE GIROG	iting to determined t	s be present at	the location the
Is the Summa Canister Certified Clean and within th	ie proper h	olding time?	Yes		
Starting Pre		-30.0	in. of Hg		
Starting		0741			
Ending Ending Pro		1502 -7.0	in of ∐a		
Ending Pre	ssure:	-7.0	in. of Hg		
Summa Canister Identifica	tion #:	16956			
Flow Regulate		7673	•		
Samp	le ID#	SV-5	•		
Time		1502			
	nalysis TC	-			_
Labo	oratory Alp	oha			-
Comments:					
Located in the center of the Auto Repair Shop					

Soil Vapor Sampling Form Irma C. Pollack		
Kristal Auto Mall - 5200 Kings Highway, Broo	oklyn	
<b>Date:</b> 9/25/2014	Time:	: 0739
Weather: 70's and raining	1111101	
Temperature:		Humidity:
Wind Magnitude:		Wind Direction:
Barometric Pressure:		Precipitation:
Sampling Team: Joe Gavin		
Sampling Location: SV-6		
	e facilities, v	vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, au	uto storage	
Prior to commencing the sampling activity, remo	ove the brass	ss cap from the end of the sample tubing and fit a new brass hose barb
Utility Clearance Completed:	Yes	o cap nom the cita of the campio taxing and it a non-zeros roce zaiz
	b-slab - 8"	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sealed with bentonite:	Yes	- -
Apparent Moisture Content:	n No. and America	Must be less than 0.01 /min
Purge Rate: 20 Purge Time:	00 mL/min 60 sec	_Must be less than 0.2 L/min
	00 sec 0,000 ppm	-
		Is this rate <10% of the rate at the enclosure Yes / No
. •		_
If the Helium readings have a greater ratio th	an 10% the	seals should be rechecked and the tracer gas should be reapplied.
Once the tracer are correcting procedures are	completed s	and no short-circuiting is determined to be present at the location the
Office the tracer gas screening procedures are	completed a	and no short-circularity is determined to be present at the location the
Is the Summa Canister Certified Clean and wit	hin the prope	er holding time? Yes
	g Pressure:	
	rting Time:	
	nding Time: g Pressure:	
Ending	, i i coodiic.	III. 0111g
Summa Canister Iden	tification #:	: 41
Flow Reg	gulator ID #	
\$	Sample ID #	
	Time	1509 TO 45
	Analysis Laboratory	
	Laboratory	Арпа
Comments:		
Located in entrance of auto body repair shop		
Stopped at -25 in. Hg - sample collected for 7	'.5 hours	

L

Soil Vapor Sampling Form Irma C. Pollack		
Kristal Auto Mall - 5200 Kings Highway, Bro	oklyn	
Date: 9/25/2014	Time:	0744
Weather: 70's and raining		
Temperature:		Humidity:
Wind Magnitude:		Wind Direction:
Barometric Pressure:		Precipitation:
Sampling Team: Joe Gavin		
Sampling Location: IA092514		-
Site Condition (i.e. any adjacent questionab	le facilities,	vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, a	uto storage	
		_
Prior to commencing the sampling activity, rem	ove the brass	s cap from the end of the sample tubing and fit a new brass hose barb
Utility Clearance Completed:	N/A	3
Sampling Depth:	4 ft als	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sealed with bentonite:	NA	<u>.</u>
Apparent Moisture Content:	N/A	
Purge Rate:	NA	_Must be less than 0.2 L/min
Purge Time: Helium Rate at enclosure:	NA NA	-
Helium Rate from sample tubing:	NA	Is this rate <10% of the rate at the enclosure  Yes / No
If the Helium readings have a greater ratio the	han 10% the	seals should be rechecked and the tracer gas should be reapplied.
Once the tracer gas screening procedures are	e completed a	and no short-circuiting is determined to be present at the location the
Is the Summe Canister Cartified Clean and wi	thin the prope	er holding time ? Yes
Is the Summa Canister Certified Clean and wi	umi ule prope	er notating time ? Tes
Startin	g Pressure:	-12.0 in. of Hg
	arting Time:	
	nding Time:	
Endin	g Pressure:	in. of Hg
Summa Canister Ider	stification #.	16975
	egulator ID #	
	Sample ID #	
	Time	1230
	Analysis	
	Laboratory	Alpha
Comments:		
Located near SV-5 in Auto Repair Shop		
Started at -12 in. Hg, sample was collected for	7.5 hours	
<u> </u>		

L

Soil Vapor Sampling Form Irma C. Pollack					
Kristal Auto Mall - 5200 Kings Highway, Bro	oklyn				
Date: 3/18/2015 Weather: 30-40's F, overcast	Time: _	0800	<del>_</del>		
Temperature:		Humidit	<i>I</i> :		
Wind Magnitude:		Wind Direction			
Barometric Pressure:		Precipitation	n:		
Compline Tooms Joe Covin					
Sampling Team: <u>Joe Gavin</u> Sampling Location: SV-4					
Site Condition (i.e. any adjacent questionab	le facilities, v	ent pipes, tan	ks, etc. and what type	of basemen	ts are present)
Active car dealership, auto repair, auto wash, a	uto storage				
Prior to commencing the sampling activity, rem	ove the brass	cap from the e	nd of the sample tubing	and fit a nev	v brass hose barb
Utility Clearance Completed:	Yes	·			
		feet below land	surface (If ambient air sam	ple, elevate car	to approx. 3 ft - 5 ft above
Sealed with bentonite:	Yes				
Apparent Moisture Content: Purge Rate:2	No 00 mL/min I	Must be less th	an 0.21/min		
	0 seconds		an 0.2 2,11111		
	0,000 PPM				
Helium Rate from sample tubing:	0.0 PPM I	Is this rate <10	% of the rate at the encl	osure	Yes / No
If the Helium readings have a greater ratio the	han 10% the s	eals should be	rechecked and the trac	er das shoul	d he reannlied
ii tile Heliaiii Teadinge have a greater ratio t	1070 110 0	odio oriodia bo	reciredict and the trac	or gas sriour	а во гоаррноа.
Once the tracer gas screening procedures are	e completed a	nd no short-cird	cuiting is determined to l	oe present a	t the location the
le the Common Consistent Contified Classes and wi	41-1 41		Vac		
Is the Summa Canister Certified Clean and wi	tnin the prope	r nolaing time	Yes		
Startin	g Pressure:	-27.0	in. of Hg		
Sta	arting Time:	0800	_		
	nding Time:	1445	<del>_</del> . ,		
Endin	g Pressure: _	-5.0	_in. of Hg		
Summa Canister Ider	ntification #:	471			
	gulator ID #	7361	<del>_</del>		
	Sample ID #	SV-4	<del>-</del>		
	Time	1445	<u> </u>		
	Analysis Laboratory /				_
	Laboratory 7	Прпа			-
0					
Comments: Located on the north side of the Site Building					
Located on the north side of the Site Building					

Soil Vapor Sampling Form Irma C. Pollack				
Kristal Auto Mall - 5200 Kings Highway, Bro	oklyn			
<b>Date:</b> 3/18/2015 <b>Weather:</b> 30-40's F, overcast	Time: _	0802		
Temperature:		Humidity:		
Wind Magnitude:		Wind Direction:		
Barometric Pressure:		Precipitation:		
Sampling Team: Joe Gavin				
Sampling Location: SV-5				
Site Condition (i.e. any adjacent questionab		ent pipes, tanks, e	etc. and what type of basem	ents are present)
Active car dealership, auto repair, auto wash, a	uto storage			
				_
Prior to commencing the sampling activity, rem		cap from the end c	of the sample tubing and fit a	new brass hose barb
Utility Clearance Completed: Sampling Depth: su	Yes	oot holow land surf	face (If ambient air sample, elevate	con to approx 2 ft E ft above
Sealed with bentonite:	Yes	eet below land sun	race (ii ambient air sample, elevate	can to approx. 5 it - 5 it above
Apparent Moisture Content:	n			
		Must be less than 0	0.2 L/min	
Purge Time: Helium Rate at enclosure:	60 sec			
	0,000 ppm 0.0 ppm I	s this rate <10% of	the rate at the enclosure	Yes / No
Tienum Rate from Sample tubing.	0.0 ррпт т	3 1113 1410 < 1070 01	the rate at the enclosure	100 / 110
If the Helium readings have a greater ratio the	nan 10% the s	eals should be recl	hecked and the tracer gas sh	ould be reapplied.
		1 2 2		
Once the tracer gas screening procedures are	ecompleted ar	na no snort-circuitir	ng is determined to be preser	t at the location the
Is the Summa Canister Certified Clean and with	thin the proper	r holding time ?	Yes	
		_		
	g Pressure: _		. of Hg	
	arting Time: _ nding Time:	0802 1535		
	g Pressure:		. of Hg	
	_			
Summa Canister Iden		21		
	gulator ID # _ Sample ID #	441 SV-5		
•	Time	1535		
	Analysis 7			
	Laboratory /	Alpha		_
Comments:				
Located in the center of the Auto Repair Shop				

L

Soil Vapor Sampling Form rma C. Pollack Kristal Auto Mall - 5200 Kings Highway, Brooklyn	
(ristal Auto Mall - 5200 Kings Highway, Brooklyn	·
,,,,,,	
<b>Date:</b> 3/18/2015 <b>Time:</b>	e: <u>0756</u>
Weather: 30-40's F, overcast	
Temperature:	Humidity:
Wind Magnitude:	Wind Direction:
Barometric Pressure:	Precipitation:
Sampling Team: Joe Gavin	_
Sampling Location: IA-1	_
	vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto storage	_
	_
	ss cap from the end of the sample tubing and fit a new brass hose barb
Utility Clearance Completed: N/A	_
	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sealed with bentonite: NA	_
Apparent Moisture Content: N/A	_
Purge Rate: NA	Must be less than 0.2 L/min
Purge Time: NA	_
Helium Rate at enclosure: NA	_
Helium Rate from sample tubing: NA	Is this rate <10% of the rate at the enclosure Yes / No
If the Helium readings have a greater ratio than 10% the	e seals should be rechecked and the tracer gas should be reapplied.
Once the tracer gas screening procedures are completed a	and no short-circuiting is determined to be present at the location the
Is the Summa Canister Certified Clean and within the prope	per holding time? Yes
Otantia u Danasausa	00.0
Starting Pressure:	
Starting Time:	
Ending Time:	
Ending Pressure:	e:in. of Hg
O was Conjeten Identification #	400
Summa Canister Identification #:	
Flow Regulator ID #	
Sample ID #	
Time	1540 TO 45
Alidiysis	\$ 10-15
Laboratory	y Alpha
S	
comments:	
Analysis Laboratory	s TO-15 y Alpha

Soil Vapor Sampling Form	
Irma C. Pollack	
Kristal Auto Mall - 5200 Kings Highway, Brooklyn	
<b>Date:</b> 3/18/2015 <b>Time</b>	e: 0805
Weather: 30-40's F, overcast	
Temperature:	Humidity:
Wind Magnitude:	Wind Direction:
Barometric Pressure:	Precipitation:
Sampling Team: Joe Gavin / Brian Klaus	
Sampling Location: Outdoor Ambient	
	s, vent pipes, tanks, etc. and what type of basements are present)
Active car dealership, auto repair, auto wash, auto storage	
	ane thoroughfare, sample collected toward the center of the Site,
approximately 130 feet from the curb line of Kings Highway	
, , ,	
Prior to commencing the sampling activity, remove the bras	ass cap from the end of the sample tubing and fit a new brass hose barb
Utility Clearance Completed: Yes	
Sampling Depth: 4 ft als	feet below land surface (If ambient air sample, elevate can to approx. 3 ft - 5 ft above
Sealed with bentonite: NA	
Apparent Moisture Content: N/A	
Purge Rate: NA	Must be less than 0.2 L/min
Purge Time: NA	
Helium Rate at enclosure: NA	
Helium Rate from sample tubing: NA	Is this rate <10% of the rate at the enclosure Yes / No
If the Helium readings have a greater ratio than 10% the	e seals should be rechecked and the tracer gas should be reapplied.
g	3
Once the tracer gas screening procedures are completed	d and no short-circuiting is determined to be present at the location the
	· ·
Is the Summa Canister Certified Clean and within the prop	per holding time ? Yes
<b>-</b>	20.0
Starting Pressure	
Starting Time	
Ending Time Ending Pressure	
Lituting Fressure	
Summa Canister Identification #	<b>#:</b> 27
Flow Regulator ID	
	# Outdoor Ambient
Time	1330
Analysis	is TO-15
Laborator	ry Alpha
Comments:	

Soil Vapor Sampling Form				
Irma C. Pollack				
Kristal Auto Mall - 5200 Kings Highway, Bro	oklyn			
<b>Date:</b> 3/18/2015	Time:	0755		
Weather: 30-40's F, overcast	i iiiie.	0733		
Temperature:		Humidity:		
Wind Magnitude:		Wind Direction:		
Barometric Pressure:		Precipitation:		
			<del></del>	
Sampling Team: Joe Gavin				
Sampling Location: SV-6 Site Condition (i.e. any adjacent questionab	la facilities :	ant nines, tanks	ata and what type of bacer	manta ara pracant\
Active car dealership, auto repair, auto wash, a		vent pipes, tanks	, etc. and what type of baser	nents are present)
rtotive dai dedicionip, dato repair, date wasii, d	idio otorage			
Prior to commencing the sampling activity, rem	ove the brass	cap from the end	of the sample tubing and fit a	new brass hose barb
Utility Clearance Completed:	Yes			
		feet below land s	urface (If ambient air sample, elevate	e can to approx. 3 ft - 5 ft above
Sealed with bentonite: Apparent Moisture Content:	Yes No			
• •		Must be less than	0.2 L/min	
	0 seconds	Made bo loco illai	0.2 2,,,,,,	
<u> </u>	0,000 PPM			
Helium Rate from sample tubing:	0.0 PPM	Is this rate <10%	of the rate at the enclosure	Yes / No
If the Helium readings have a greater ratio the	han 10% the s	seals should be re	echecked and the tracer gas sr	nould be reapplied.
Once the tracer gas screening procedures are	e completed a	and no short-circui	ting is determined to be prese	nt at the location the
Office the tracer gas screening procedures are	e completed a	and no snort-circui	ting is determined to be presen	int at the location the
Is the Summa Canister Certified Clean and wi	thin the prope	er holding time?	Yes	
	g Pressure:		in. of Hg	
	arting Time:	0755		
	nding Time:	1530 -10.0	in of Ua	
Endin	g Pressure:	-10.0	in. of Hg	
Summa Canister Ider	ntification #:	476		
	gulator ID #	7426		
	Sample ID #	SV-6		
	Time	1530		
	Analysis			
	Laboratory	Alpha		
Comments:				
Located in entrance of auto body repair shop				

## **APPENDIX F**

Data Usability Summary Reports

**ROUX** 2861.0001Y.102/CVRS

# **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

May 28, 2015

Wendy Monterosso Roux Associates 209 Shafter St. Islandia, NY 11747

RE: Data Usability Summary Report (DUSR) for the Kristal Auto Mall Project York Analytical SDGs 14B0262, 14B0311, 14B0376, 14B0508, 14B0515, 14B0560, 14B0571, 14B0649, 14B0660, 14C0014, 14I0443, 14I0505, 14I1112, 14J0015, and 15C0645

Dear Ms. Monterosso:

Review has been completed for the analytical data package noted above, generated by York Analytical, that pertains to samples collected between 02/10/14 and 03/18/15 for the Kristal Auto Mall project. Forty six soil samples, three soil field duplicates, and an aqueous field duplicate were processed for TCL volatile and TCL semivolatile analytes. Tentatively Identified Compounds (TICs) were requested and reported for most of the samples. The support documentation for TICs was not included in the data package and not validated. Sixteen 6L canister samples were analyzed for volatile analytes by USEPA method TO-15. Sample matrix spikes, field blanks, and trip blanks were also processed. The analytical methods utilized for the soil and aqueous samples are those of the USEPA SW846 6010C/7470A/8260B.

The data packages submitted contain full deliverables for validation, but this DUSR is generated from review of the summary form information, with full validation review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, using guidance from the USEPA Region 2 validation SOPs, the USEPA National Functional Guidelines for Data Review, the specific laboratory methodologies, and professional judgment. The following items were reviewed:

- Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicate Correlations
- * Preparation/Calibration/Trip/Field Blanks
- * Laboratory Control Samples (LCSs)
- * Instrumental Tunes
- * Calibration/Low Level Standards

- * ICP Serial Dilution
- * Instrument IDLs
- * Sample Result Verification

The data review includes evaluation of the specific items noted in The NYS DER-10 Appendix B section 2.0 (c). The items listed above that show deficiencies are discussed within the text of this narrative. The laboratory QC forms illustrating the excursions can be found within the laboratory data packages.

In summary, with the following exceptions, target analyte results are usable either as reported or with qualification/edit:

- the results for IA092514 and SV-6 are rejected and not usable.
- results for one volatile analyte in each of six samples are rejected due to processing
- results for one volatile analyte in all samples due to inherent poor performance of the compound
- between one and three semivolatile compounds in varying numbers of samples are rejected due to processing
- phenolic semivolatile compounds in one aqueous sample are rejected
- thirteen semivolatile analytes in one soil sample are reported with elevated reporting limits due to matrix effect
- one semivolatile analyte result in one sample is rejected due to matrix

Although there are rejected data, as noted above, the overall data completeness is acceptable. The laboratory reported data with outlying associated QC values, which affects accuracy. Additionally, they utilize very broad acceptance ranges, such as a low limit of 10% for all six of the semivolatile surrogate recovery ranges. This is not allowed by the analytical protocol and does not provide a proper evaluation of matrix effect. However, in reviewing the recoveries and correlations for the project samples, the matrices of the samples do not seem to have a significant effect on analyte accuracy and precision.

Copies of the sample identification summaries are attached to this text. Also included with the report are validation qualifier definitions and client results tables that are manually annotated to reflect the qualifications recommended within this report.

The following text discusses quality issues of concern.

#### **Chains-of-Custody**

The custody forms are not complete with final relinquish entries. Final laboratory receipt entries are present.

The time was not present on the initial relinquish entry.

The custody forms do not include a field to indicate preservation. The volatile samples were processed within the holding time for unpreserved samples. There is no laboratory documentation to show pH of the metals fraction of the samples. The laboratory indicated that they would maintain records in the future.

The custody forms for the air canister samples do not include fields for the times of collection.

#### **Blind Duplicate Evaluations**

The blind field duplicate was collected at locations RSB-13/9-11, RSB-11/7.5-9.5, RSB/MW-15/4-5, MW-3, and MW-7. Correlations are within validation guidelines, with the exceptions of those for fluoranthene (±2XCRDL) in RSB-13/9-11 and bis(2-ethylhexyl)phthalate (140%RPD) in MW-7. Results for those analytes are qualified as estimated in the indicated parent samples and their duplicates.

#### TCL Volatile Analyses by EPA 8260B

Surrogate and internal standard responses were suppressed by matrix interferences in the initial analyses of RSB-9/8.5-10.5 and RSB-8/5-7. All results for RSB-9/8.5-10.5, and detected results and results for the specific target analytes associated with the affected internal standard in RSB-8/5-7, have been qualified as estimated in value. Medium level reanalyses of these samples were acceptable, and values derived from them are not qualified.

Results for dibromochloromethane in the following samples are rejected due to lack of recovery in one of the associated LCSs: RSB-8/1.5-3.5, RSB-8/18.5-20.5, RSB-9/8.5-10.5, RSB-8/8.5-20.5, RSB-7/8.5-10.5, and RSB-7/18.5-20.5. The results for that compound in the other samples and trip blank reported in SDGs 14B0508, in the soils reported in 14B0560, and in RSB-2/18-20 are qualified as estimated due to low recoveries in associated LCSs.

The following analyte results are qualified as estimated due to low recoveries in the associated LCS:

- 4-methyl-2-pentanone (40% and 41%) in MW-3 and MW-9
- cyclohexane (33% and 34%) in FB091014 and TB091014

Results for analytes reported with the laboratory "E" flag have been derived from the dilution analyses of the samples. The exception is that for tetrachloroethene in RSB-9/8.5-10.5, which was not detected in the dilution. The original result is used, but qualified as estimated.

The detection of 2-butanone in RSB-2/11-13 has been edited to non-detection due to very poor mass spectral quality.

Due to pervasive presence in the associated field, trip, and method blanks, the detections of acetone and methylene chloride in the project samples are considered external contamination are edited to reflect non-detection. The following detections are also edited to non-detection due to presence in associated blanks:

- 1,2,4-trichlorobenzene in RSB-2/18-20
- toluene in RSB/MW-17/1-3 and RSB/MW-17/17-18
- 2-hexanone in RSB/MW-15/14-15

The exceptions are the results for acetone in RSB-8/8.5-10.5 and RSB/MW-14/12-14, which are above the levels for consideration as contamination.

Sample matrix spikes were performed on RSB-12/18-20, TB-2/021214, RSB-11/17.5-19.5, RSB/MW-14/14-15, RSB/MW-15/14-15, MW-7, TB-021814, and Trip Blank. Recoveries and correlations are acceptable, with the exception of that for carbon disulfide (39% and 40%) in MW-7. The result for that compound in the parent sample has been qualified as estimated in value.

Dibromochloromethane is qualified as estimated in FB021014 due to low recovery (37%) in the matrix spike of that blank.

The results for 1,4-dioxane in the project samples are rejected and not usable due to very low instrument responses (RRFs), inherent with the methodology. Other calibration standards showed acceptable responses, with the following exceptions, results for which are to be qualified as estimated in the indicated samples:

- acetone (21%D) in samples FB021014 and TB021014
- bromomethane (26%D)in samples RSB-13/9-11, RSB-13/19-21, and DUP021214
- acetone (24%D) in sample FB021214
- dichlorodifluoromethane and bromomethane (22%D to 23%D) in sample TB-2/021214
- dichlorodifluoromethane and chloromethane 32%D to 50%D) in samples RSB/MW-16 11-13, RSB/MW-16 1-3, RSB/MW-16 17-18, RSB/MW-14 1-3,FB021914, FB021814, TB021814, and TB021914
- dibromochloromethane (33%D to 49%) in samples RSB-8/1.5-3.5, RSB-8/18.5-20.5, RSB-9/8.5-10.5, RSB-9/18.5-20.5, RSB-7/8.5-10.5, RSB-7/18.5-20.5, RSB-8/5-7, RSB-8/8.5-10.5, RSB-1/20-22, DUP022014, RSB-3/8-10, RSB-3/18-20, RSB-2/1-3, RSB-2/5-7, RSB-2/11-13, RSB-4/8/10, RSB-4/18/20, and RSB-2/18-20
- bromomethane and acetone (22%D to 33%D) in samples reported in SDG 14B0649
- methylene chloride, and 2-butanone (23%D to 65%D) in samples TB090914, and FB091014

The raw data mass spectra for the dilution analysis of RSB-MW-17/13-15 show very poor graphics. The spectra from the undiluted analysis were used for identification confirmation.

#### TCL Semivolatiles by EPA 8270C

Several samples exhibited very large matrix interferences, some resulting in strong suppression of internal standard (IS) responses in the affected samples. For each case, the specific analytes associated with outlying ISs have been qualified as estimated, replaced by results of the more acceptable dilution analyses, when available, or rejected (when IS recoveries are below 25%) and no dilution analyses were performed. When dilution analysis results are used, the reporting limits for the associated analytes are elevated proportionally to the dilution factor. The following samples are affected:

- RSB-9/8.5-10.5—initial internal standard recoveries were below 10%, and results for thirteen analytes are derived from twentyfold dilution without additional qualification, but with elevated reporting limits, for those compounds.
- RSB/MW-14/12-14, RSB/MW-17/13-15, and RSAB/MW-15/10-11---results for thirteen compounds are qualified as estimated
- RSB/MW-16 11-13, RSB/MW-15/4-5, RSB/MW-17/1-3, and DUP091014—results for six compounds are qualified as estimated

The results for the phenolic compounds are rejected in MW-3 due to recovery below 10% of surrogate standard d5-phenol in that sample. Even though the chromatogram did not show a matrix effect, the sample was not re-extracted.

The detection of 2,4-dinitrotoluene in RSB-15/14-15 has been edited to non-detection due to incorrect identification. The response is actually that of an internal standard.

The detection of 4,6-dinitro-2-methylphenol in MW-1 has been edited to non-detection as that reported detection is a transcription error, and was not determined by the instrument software or analyst.

Many of the extraction batches produced LCSs with one or more analyte failing to recover. The laboratory should have reextracted the batches to produce compliant recoveries. In these cases, the results for those analytes are rejected in the associated samples. They are the following:

- 4,6-Dinitro-2-methylphenol, 2,4-dinitrophenol, and hexachlorocyclopentadiene in the soils reported in SDG 14B0262
- caprolactum in the aqueous samples reported in 14B0649, FB021014, FB021214, FB021914, FB021814, and FB022414
- 4-nitrophenol in the soils reported in 14B0508 and 14B0515, and in FB091014 (SDG 14I0443)
- caprolactum and hexachlorocyclopentadiene in FB022014 and FB022414

Due to low recoveries in the associated LCSs, the following results are qualified as estimated in the indicated samples:

- 2,4-dinitrophenol and bis(2-ethylhexyl)phthalate (39% and 32%) in soils reported in 14B0311
- 4-nitrophenol (64%) in FB22014 and FB022414
- caprolactum and phenol (44% to 62%) in FB091014 (SDG 14I0443)
- caprolactum (82% and 75%) in FB091014 (SDG 14I0505)

The laboratory did not evaluate all target analytes in the LCSs or matrix spikes associated with samples reported in SDG 14B0311. No qualification is made for this non-compliance.

It is noted that the laboratory utilizes laboratory generated acceptance ranges for the surrogate recoveries that are not in compliance with the protocol. The lower limit of 10% is utilized for all six surrogates. This generous range is prohibited by the protocol; a higher low limit should have been assigned if the laboratory variance was that extreme.

The matrix spikes of RSB-12/18-20, RSB-5/18.5-20.5, RSB-11/17.5-19.5, and MW-7 show acceptable recoveries and correlations, with the exception of those for benzaldehyde (35% and 38%), caprolactum (<10%), and hexachlorocyclopentadiene (0%) in MW-78. Results for the former compound are qualified as estimated in the parent sample, and results for the latter two are rejected in that sample. The matrix spikes of RSB-14/4D(5-7) and RSB-2/11-13 were processed at twentyfold and one hundred fold dilutions, respectively, due to sample constituency, and therefore cannot be properly evaluated.

Calibration standards showed acceptable responses, with the following exceptions, results for which are to be qualified as estimated in the indicated samples:

- 2,4-dinitrophenol (42%RSD in samples reported in 14B0376
- 4-chloroaniline, hexachlorocyclopentadiene, benzyl butyl phthalate, bis (2-
- ethylhexyl)phthalate, and 3,3'-dichlorobenzidine (24%D to 60%D) in samples RSB-14/4D(2.5-3), RSB-14/4D(5-7), RSB-14/4D(38-40), and FB021014
- hexachlorocyclopentadiene and bis (2-ethylhexyl)phthalate (24%D to 46%D) in sample RSB-14/4D(10-11)
- 2-methylphenol, hexachlorocyclopentadiene, and bis (2-ethylhexyl)phthalate (24%D-46%D) in samples reported in SDG 14B0311
- benzaldehyde, bis(2-chloroisopropyl)ether, hexachlorocyclopentadiene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perlylene, and bis(2-ethylhexyl)phthalate (22%D to 63%D) in in samples reported in SDG 14B0376
- 4-chloroaniline, hexachlorocyclopentadiene, and benzaldehyde (21%D to 60%D) in samples RSB-8/1.5-3.5, RSB-8/5-7, RSB-8/8.5-10.5, RSB-8/18.5-20.5, RSB-9/8.5-10.5, RSB-9/18.5-20.5, RSB-7/8.5-10.5, and RSB-7/18.5-20.5
- benzaldehyde, bis (2-chloroisopropyl)ether, acetophenone, and hexachlorocyclopentadiene (22%D to 36%D) in sample FB021914
- benzaldehyde, 4-chloroaniline, and hexachlorocyclopentadiene (21%D to 60%D) in samples RSB-6/9-11, RSB-6/19-21, RSB-5/8.5-10.5, and RSB-5/18.5-20.5
- benzaldehyde, bis(2-chloroisopropyl)ether, acetophenone, and hexachlorocyclopentadiene (22%D to 36%D) in sample FB021814
- 3,3'-dichlorobenzidine, bis(2-ethylhexyl)phthalate, benzaldehyde, bis(2-chloroisopropyl)ether, bis(2-chloroethoxy)methane, 4-chloroaniline, acetophenone, and hexachlorocyclopentadiene (21%D to 59%D)in samples RSB-10/7.5-9.5, RSB-10/17.5-19.5, RSB-11/7.5-9.5, RSB-11/17.5-19.5, RSB-1/10-12, RSB-1/20-22, DUP022014, RSB-3/8-10, and RSB-3/18-20
- benzaldehyde, bis(2-chloroisopropyl)ether, bis (2-chloroethoxy)methane, acetophenone,3-nitroaniline, and 4-chloroaniline (21%D to 56%D) in sample FB022014
- benzaldehyde, bis(2-chloroisopropyl)ether, bis(2-chloroethoxy)methane, 4-chloroaniline, acetophenone, hexachlorocyclopentadiene, bis(2-ethylhexyl)phthalate, and 3,3'-dichlorobenzidine (21%D to 59%D)in samples RSB-2/18-20, RSB-4/8/10, and RSB-4/18/20
- benzaldehyde, bis(2-chloroisopropyl)ether, bis(2-chloroethoxy)methane, 4-chloroaniline, acetophenone, and 3-nitroaniline (21%D to 56%D) in samples RSB-2/1-3, RSB-2/5-7, RSB-2/11-13, and FB022114
- benzaldehyde, bis(2-chloroisopropyl)ether, bis(2-chloroethpxy)methane, 4-chloroaniline, acetophenone, caprolactam, hexachlorocyclopentadiene, 3-nitroaniline, 4,6-dinitro-2-methylphenol,and bis(2-ethylhexyl)phthalate (21%D to 68%D) in in samples reported in SDG 14B0649
- 2-nitrophenol, 2,4-dimethylphenol, bis(2-chlorethoxy)methane, 2,4-dichlorophenol, 4-chloroaniline, caprolactam, 2-nitroaniline, and 4-nitroaniline (27%D to 55%D) in FB091014
- 4-nitrophenol, and benzo(b)fluoranthene (22%D to 95%D) in samples RSB/MW-16 1-3, RSB/MW-16 17-18, and RSB/MW-14 1-3
- naphthalene (41%D) in sample FB091014
- benzaldehyde, bis(2-chloroisopropyl)ether, and bis(2-ethylhexyl)phthalate (22%D to 23%D) in sample RSB/MW-16 11-13

Selected Ion Monitoring (SIM) was used to provide greater sensitivity for selected analytes in the aqueous samples. The raw data mass spectra and ion plots for detections determined by this method were not provided in the data package and therefore were not validated. Retention times and fit values are used to support identifications; the spectra can be provided by the laboratory if full validation of those items is required.

It is noted that the area integration responses for the many of the compounds processed in the lowest SIM initial calibration standard are manually integrated. This is only appropriate if the laboratory manually reviews each sample for those responses. The laboratory should have included ion plots illustrating their manual determination in those standards.

The raw data for the aqueous blank processed by SIM was provided on request.

The date of 04/28/14 was entered on the Form 5as the DFTPP tune file acquisition for the SIM analysis, instead of 02/28/14.

#### TAL Metals Analyses by EPA 6010B and 7470/7471

Matrix spikes were performed on MW-7, with acceptable accuracy and precision. However, although all analytes should have been spiked, that accuracy evaluation was not performed on aluminum, calcium, magnesium, potassium, and sodium.

The ICP serial dilution evaluation for MW-7 shows acceptable correlations, with the exception of that for copper (21%D). The result for that element in the parent sample has been qualified as estimated, with a possible high bias.

The results for lead in MW-2, MW-3, MWS-D, MW-7, and DUP022414 are qualified as estimated, with a possible low bias, due to low recovery (50%) in the associated low level concentration calibration standard.

The results for aluminum in MW-7 and DUP022414 are qualified as estimated, with a possible high bias, due to elevated recovery (147%) in the associated low level concentration calibration standard.

The QC form that summarizes blank results does not include the "U" flag to represent the reporting limit concentration, and neither MDL nor RL values are provided. It is therefore not readily apparent whether the blanks contain valid concentrations of the target elements.

#### **Volatile Analyses by EPA TO-15**

The results for IA092514 and SV-6 (from 09/25/14) are rejected and not usable, due to improper vacuum issues. The pressure of the canister for IA092514 had already lost significant vacuum (up to -12"Hg) prior to sample collection, and therefore external contamination cannot be ruled out. SV-6 (from 09/25/14) (retained a vacuum (-25"Hg) at 7.5 hours after sample collection, indicating a failed system. The SV-6 location was successfully evaluated with March 2015 data

Due to poor mass spectral quality, the detections of methylene chloride and 1,3-butadiene in SV-5 (03/18/15) and methylene chloride in IA031815 have been edited to reflect non-detection.

The detection of methylene chloride in the samples reported in SDGs 14B0660 and 14C0014 are considered external contamination due to presence in the associated method blanks, and have been edited to non-detection.

Vinyl acetate results in SV-4 (09/25/14) and SV-5 (09/25/14) are qualified as estimated due to low recovery (60%) of that compound in the associated LCS.

The duplicate analysis of SV-5 shows good correlations.

Calibration standard linearity and percent difference values fall within validation guidelines, with the following exceptions, results for which are qualified as estimated in the indicated samples:

- benzyl chloride, 2-hexanone, and 1,2,4-trichlorobenzene (39%D to 68%D) in samples reported in SDG 14B0660
- benzyl chloride and 2-hexanone (36%RSD and 31%RSD) in SV-4 (09/25/14) and SV-5 (09/25/14)
- benzyl chloride, acrylonitrile, and 1,2,4-trichlorobenzene (35%RSD to 40%RSD) in samples reported in SDG 15C0645

It is noted that the area integration responses for the four compounds processed in the lowest initial calibration standard are manually integrated. This is only appropriate if the laboratory manually reviews each sample for those responses. The laboratory should have included ion plots illustrating their manual determination in those standards.

Holding times and instrument tunes meet requirements. The clean canister certifications were requested and reviewed during validation.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

### **VALIDATION DATA QUALIFIER DEFINITIONS**

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

  The quantitative value represents the Estimated Maximum Possible

  Concentration of the analyte in the sample.

# **CLIENT and LABORATORY SAMPLE IDs**

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0262		
Client:	Roux Associates	Project:	1575.00024		
	Client Sample Id:	Lab S	ample Id:		
RSB-14/4D(2.5-3)		<u>14B0262-01</u>			
	RSB-14/4D(5-7)	14B0262-02			
	RSB-14/4D(10-11)	<u>14B</u>	<u>0262-03</u>		
	RSB-14/4D(10-11)	<u>14B02</u>	62-03RE1		
RSB-14/4D(38-40)		<u>14B0262-04</u>			
FB021014		<u>14B0262-05</u>			
<u>TB021014</u>		<u>14B0262-06</u>			
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.  Benjamin Gulizia					
Signature:	4/2/2014	Name:	Laboratory Director		
Date:		Title:			

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0311		
Client:	Roux Associates	Project:	1575.00024		
	Client Sample Id:	Lab S	ample Id:		
RSB-13/9-11		<u>14B0311-01</u>			
	RSB-13/19-21	<u>14B</u> (	0311-02		
	DUP021214	<u>14B</u> 6	0311-03		
	TB021214	<u>14B0311-04</u>			
	FB021214	14B0	<u>0311-05</u>		
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.					
Signature:	Bolf	Name: E	tenjamin Gulizia		
Date:	4/3/2014	Title:	Laboratory Director		

Laboratory	York Analytical Laboratories, Inc.	SDG:	14B0376
Client	: Roux Associates	Project:	1575.00024
	Client Sample Id:	Lab S	ample Id:
	RSB-12/9-11	<u>14B0376-01</u>	
	RSB-12/18-20	<u>14B</u>	<u>0376-02</u>
	TB-2/021214	<u>14B</u>	<u>0376-03</u>
other than the con-	lata package is in compliance with the terms and co ditions detailed above. Release of the data contains ette has been autorized by the Laboratory Manager	ed in this hardcopy data packaş or the Manager's designee, as	ge and in computer-readable data verified by the following signatures.
Signature:	Dentif	Name:	Benjamin Gulizia
Date:	4/8/2014	_ Title: _	Laboratory Director

Laboratory:	York Analytical Laboratories, Inc.	SDG: 14E	B0508
Client:	Roux Associates	Project: 157	75.00024
	Client Sample Id:	Lab Sampl	le Id:
	RSB-8/1.5-3.5	14B0508-	<u>-01</u>
	RSB-8/5-7	14B0508-	<u>-02</u>
	RSB-8/5-7	<u>14B0508-02</u>	2RE1
	RSB-8/8.5-10.5	<u>14B0508</u> -	<u>-03</u>
	RSB-8/18.5-20.5	14B0508-	<u>-04</u>
	RSB-9/8.5-10.5	14B0508-	<u>-05</u>
	RSB-9/8.5-10.5	14B0508-05	<u>5RE1</u>
	RSB-9/18.5-20.5	14B0508-	<u>-06</u>
	RSB-7/8.5-10.5	<u>14B0508</u> -	<u>-07</u>
	RSB-7/18.5-20.5	14B0508	3 <u>-08</u>
	FB021914	<u>14B0508</u>	3-09
	TB021914(trip blank)	<u>14B0508</u>	<u>-10</u>

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.

Signature:	Bell	Name:	Benjamin Gulizia	
Date:	4/8/2014	Title:	Laboratory Director	

# DATA PACKAGE COVER PAGE

### EPA 8260C

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0515		
Client:	Roux Associates	Project:	1575.00024		
	Client Sample Id:	Lab S	ample Id:		
	RSB-6/9-11 14B0515-01				
	RSB-6/19-21	<u>14B0515-02</u>			
	RSB-5/8.5-10.5	<u>14B</u>	<u>0515-03</u>		
	RSB-5/18.5-20.5	<u>14B</u>	<u>0515-04</u>		
	FB021814	<u>14B</u>	<u>0515-05</u>		
TB021814(Trip Blank)		<u>14B0515-06</u>			
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.  Benjamin Gulizia					
Signature:	4/10/2014	Name:	Laboratory Director		
Date:		Title:			

# DATA PACKAGE COVER PAGE

#### **EPA 8260C**

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0560	
Client:	Roux Associates	Project:	1575.00024	
	Client Sample Id:	Lab S	Sample Id:	
	RSB-10/7.5-9.5	<u>14B</u>	30560-01	
	RSB-10/17.5-19.5	<u>14B</u>	30560-02	
	RSB-11/7.5-9.5	<u>14B</u>	30560-03	
RSB-11/17.5-19.5		<u>14B0560-04</u>		
RSB-1/10-12		<u>14B0560-05</u>		
	RSB-1/20-22	<u>14E</u>	<u>30560-06</u>	
	<u>DUP022014</u>	<u>14E</u>	30560-07	
	FB022014	<u>14E</u>	<u>80560-08</u>	
	RSB-3/8-10	<u>14E</u>	30560-09	
	RSB-3/18-20	<u>14</u> E	<u>30560-10</u>	
	<u>TripBlank</u>	<u>14F</u>	<u>30560-11</u>	

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.

Signature:	Ball	Name:	Benjamin Gulizia
Date:	4/11/2014	Title:	Laboratory Director

### DATA PACKAGE COVER PAGE

#### **EPA 8260C**

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0571		
Client:	Roux Associates	Ртојесt:	1575.00024		
	Client Sample Id:	Lab S	ample Id:		
	RSB-2/1-3	<u>14B</u> 0	0571-01		
RSB-2/5-7		<u>14B0571-02</u>			
	RSB-2/11-13	<u>14B</u> 6	<u>14B0571-03</u>		
	RSB-2/11-13	<u>14B05</u>	14B0571-03RE1		
	RSB-2/18-20	<u>14B</u> 0	14B0571-04		
	RSB-4/8/10	<u>14B</u> 0	<u>14B0571-05</u>		
	RSB-4/18/20	<u>14B</u> 0	<u>14B0571-06</u>		
	FB022114	<u>14B</u> 0	0571-07		
	Trip Blank	<u>14B</u> 6	0571-08		
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.					
Signature:	Ball	Name:	Benjamin Gulizia		
Date:	4/14/2014	Title:	Laboratory Director		

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0649			
Client:	Roux Associates	Project:	1575.00024			
	Client Sample Id:	Lab S	ample Id:			
	<u>MW-1</u>	<u>14B</u>	0649-01			
	<u>MW-2</u>	<u>14B</u>	<u>14B0649-02</u>			
	<u>MW-3</u>	<u>14B</u>	<u>14B0649-03</u>			
	<u>MW-4D</u>	<u>14B</u>	<u>14B0649-04</u>			
	<u>MW-6</u>	<u>14B</u>	14B0649-05			
	<u>MW-7</u>	<u>14B</u>	<u>14B0649-06</u>			
	<u>DUP022414</u>	<u>14B0649-07</u>				
	<u>TripBlank</u>	<u>14B</u>	<u>14B0649-08</u>			
	FB022414	<u>14B</u>	<u>14B0649-09</u>			
I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in computer-readable data submitted on diskette has been autorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures.						
Signature:	4/14/2014	Name: .	Benjamin Gulizia  Laboratory Director			
Date:		Title:				

### DATA PACKAGE COVER PAGE EPA TO-15

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14B0660
Client:	Roux Associates	Project:	1575.00024
	Client Sample Id:	Lab Sa	ample Id:
	<u>SV-1</u>	<u>14B0</u>	<u>0660-01</u>
	<u>SV-3</u>	<u>14B0</u>	0660-02
	<u>SV-4</u>	<u>14B0</u>	0660-03
	<u>SV-5</u>	<u>14B(</u>	0660-04
	Outdoor Ambient	<u>14B0</u>	<u>0660-05</u>
	<u>IA-1</u>	<u>14B0</u>	0660-06
other than the condit	a package is in compliance with the terms and conditions of ions detailed in the project narrative. Release of the data co ata submitted on diskette has been autorized by the Laborato	ntained in this hard	copy data package and in
Signature:	Bold	Name:	Benjamin Gulizia

Title:

Laboratory Director

3/3/2014

Date:

### DATA PACKAGE COVER PAGE EPA TO-15

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14C0014
Client:	Roux Associates	Project:	1575.00024
	Client Sample Id:	Lab S	ample Id:
	<u>SV-2</u>	<u>14C</u>	0014-01
other than the condi	ta package is in compliance with the terms and itions detailed in the project narrative. Release data submitted on diskette has been autorized by	of the data contained in this hard	copy data package and in

Title:

Laboratory Director

3/5/2014

Date:

### DATA PACKAGE COVER PAGE **EPA 8260C**

Laboratory:	York Analytical Laboratories, Inc.	SE	DG: 1410443
Client:	Roux Associates	Proje	ect: Kristal (Brooklyn) - 1575.00024
	Client Sample Id:	La	ab Sample Id:
	RSB/MW-16 11-13		<u>14I0443-01</u>
	RSB/MW-16 11-13	<u>14</u>	410443-01RE1
	RSB/MW-16 1-3		<u>14I0443-02</u>
	RSB/MW-16 17-18		1410443-03
	RSB/MW-14 1-3	,	<u>14I0443-04</u>
	<u>TB090914</u>		1410443-05
	FB091014		1410443-06
other than the condi	ta package is in compliance with the terms and condition tions detailed above. Release of the data contained in the terms been autorized by the Laboratory Manager or the	nis hardcopy data pad	ckage and in computer-readable data
Signature:	Bell	Name:	Benjamin Gulizia
	10/27/2014		Laboratory Director

Title:

Date:

Laboratory Director

# DATA PACKAGE COVER PAGE EPA 8260C

Laboratory:	York Analytical Laboratories, Inc.	SDG	: 1410505	
Client:	Roux Associates	Project	: 1575.00024	
	Client Sample Id:	Lab	Sample Id:	
	RSB/MW-15/4-5	<u>14</u>	<u>10505-01</u>	
	RSB/MW-15/10-11	<u>14</u>	<u>10505-02</u>	
	RSB/MW-15/10-11	14I0505-02RE1		
	RSB/MW-15/14-15	<u>14</u>	<u>10505-03</u>	
	RSB/MW-14/12-14	14	10505-04	
	RSB/MW-14/17-18	14	<u>[0505-05</u>	
	FB091014	<u>14</u> !	<u>10505-06</u>	
	<u>TB091014</u>	<u>14</u>	<u>10505-07</u>	
	<u>DUP091014</u>	14	0505-08	
	RSB/MW-17/1-3	14]	0505-09	
	RSB/MW-17/13-15	<u>14</u> ]	0505-10	
RSB/MW-17/13-15 RSB/MW-17/17-18		<u>14I0505-10RE1</u> <u>14I0505-11</u>		
onici man me condit	a package is in compliance with the terms and conditions ions detailed above. Release of the data contained in this e has been autorized by the Laboratory Manager or the M	S hardcony data nacka	ge and in computer readable data	
Signature:	Ball	Name:	Benjamin Gulizia	
Date:	10/26/2014	Title:	Laboratory Director	

### DATA PACKAGE COVER PAGE EPA TO-15

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14I1112
Client:	Roux Associates	Project:	1575.00034
	Client Sample Id:	Lab S	ample Id:
	<u>SV-4</u>	<u>14I</u> 1	1112-01
	<u>SV-5</u>	<u>141</u> 1	1112-02
	<u>SV-6</u>	<u>141</u> 1	1112-03
	<u>IA092514</u>	<u>14I</u> 1	1112-04
	<u>IA092514</u>	<u>14I111</u>	12-04RE1
other than the condi-	a package is in compliance with the terms and conditions of tions detailed in the project narrative. Release of the data colata submitted on diskette has been autorized by the Labora	ontained in this hard	copy data package and in
Date: _	11/6/2014	Title: _	Laboratory Director

## DATA PACKAGE COVER PAGE EPA 8260C

Laboratory:	York Analytical Laboratories, Inc.	SDG:	14J0015
Client:	Roux Associates	Project:	1575.00034
	Client Sample Id:	Lab S	ample Id:
	<u>MW-9</u>	14J0	0015-01
	<u>MW-3</u>	<u>14J0</u>	0015-02
	FB092614	1430	0015-03
	<u>DUP092614</u>	<u>14J</u> (	0015-04
	TRIP BLANK	<u>14J0</u>	0015-05
other than the condi-	ra package is in compliance with the terms and conditions detailed above. Release of the data contained in the has been autorized by the Laboratory Manager or	n this hardcopy data packaş the Manager's designee, as	ge and in computer-readable data
	10/16/2014		Laboratory Director

Title:

Date:

## DATA PACKAGE COVER PAGE EPA TO-15

Laboratory:	York Analytical Laboratories, Inc.	SDG: 15C0645	
Client:	Roux Associates	Project: 1575.00024	
	Client Sample Id:	Lab Sample Id:	
	<u>SV-4</u>	<u>15C0645-01</u>	
	<u>SV-5</u>	<u>15C0645-02</u>	
	<u>SV-6</u>	<u>15C0645-03</u>	
	AMB031815	<u>15C0645-04</u>	
	<u>IA031815</u>	<u>15C0645-05</u>	
	<u>IA031815</u>	<u>15C0645-05RE1</u>	
other than the condi	tions detailed in the project narrative. Release of th	litions of the contract, both technically and for completeness, for e data contained in this hardcopy data package and in Laboratory Manager or the Manager's designee, as verified by the	
Signature:	Boll	Name: <u>Benjamin Gulizia</u>	

Title:

Laboratory Director

4/13/2015

Date:

# **APPENDIX G**

Sanborn Maps

**ROUX** 2861.0001Y.102/CVRS

### **Kristal Auto Mall**

5200 Kings Highway Brooklyn, NY 11234

Inquiry Number: 3187295.3

October 14, 2011

# **Certified Sanborn® Map Report**



### **Certified Sanborn® Map Report**

10/14/11

Site Name: Client Name:

Kristal Auto Mall
S200 Kings Highway
Brooklyn, NY 11234
Roux Associates
209 Shafter Street
Islandia, NY 11749

EDR Inquiry # 3187295.3 Contact: Wendy Monterosso



The complete Sanborn Library collection has been searched by EDR, and fire insurance maps covering the target property location provided by Roux Associates were identified for the years listed below. The certified Sanborn Library search results in this report can be authenticated by visiting www.edrnet.com/sanborn and entering the certification number. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by Sanborn Library LLC, the copyright holder for the collection.

#### Certified Sanborn Results:

Site Name: Kristal Auto Mall
Address: 5200 Kings Highway
City, State, Zip: Brooklyn, NY 11234

**Cross Street:** 

P.O. # CWerle - 1575.0002Y
Project: Kristal Auto Mall
Certification # 634C-437B-870F

#### Maps Provided:

2007	2001	1989	1979	1907
2006	1996	1988	1977	
2005	1995	1987	1969	
2004	1993	1983	1968	
2003	1992	1981	1950	
2002	1990	1980	1930	



Sanborn® Library search results Certification # 634C-437B-870F

The Sanborn Library includes more than 1.2 million Sanborn fire insurance maps, which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

✓ Library of Congress

✓ University Publications of America

▼ EDR Private Collection

The Sanborn Library LLC Since 1866™

#### **Limited Permission To Make Copies**

Roux Associates (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

#### **Disclaimer - Copyright and Trademark notice**

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2011 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

#### Sanborn Sheet Thumbnails

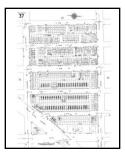
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.



#### 2007 Source Sheets



Volume 15, Sheet 37


Volume 15, Sheet 36

Volume 15, Sheet 43

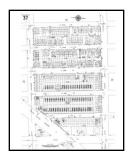
#### 2006 Source Sheets



Volume 15, Sheet 36



Volume 15, Sheet 37




Volume 15, Sheet 43

#### 2005 Source Sheets



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 43





Volume 15, Sheet 36

Volume 15, Sheet 37

#### 2002 Source Sheets







Volume 15, Sheet 36

Volume 15, Sheet 37

Volume 15, Sheet 43

#### 2001 Source Sheets







Volume 15, Sheet 36

Volume 15, Sheet 37

Volume 15, Sheet 43





Volume 15, Sheet 37

Volume 15, Sheet 36





Volume 15, Sheet 36

Volume 15, Sheet 37

#### 1993 Source Sheets







Volume 15, Sheet 36

Volume 15, Sheet 37

Volume 15, Sheet 43

#### 1992 Source Sheets







Volume 15, Sheet 36

Volume 15, Sheet 37

Volume 15, Sheet 43





Volume 15, Sheet 36

Volume 15, Sheet 37



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 43

#### 1988 Source Sheets



Volume 15, Sheet 36



Volume 15, Sheet 37

#### 1987 Source Sheets



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 43



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 36

Volume 15, Sheet 37

#### 1980 Source Sheets







Volume 15, Sheet 36

Volume 15, Sheet 37

Volume 15, Sheet 43

#### 1979 Source Sheets





Volume 15, Sheet 36

Volume 15, Sheet 37





Volume 15, Sheet 36

Volume 15, Sheet 37



Volume 15, Sheet 36



Volume 15, Sheet 37



Volume 15, Sheet 43

#### 1968 Source Sheets



Volume 15, Sheet 36



Volume 15, Sheet 37

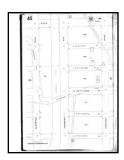
#### 1950 Source Sheets



Volume 15, Sheet 36



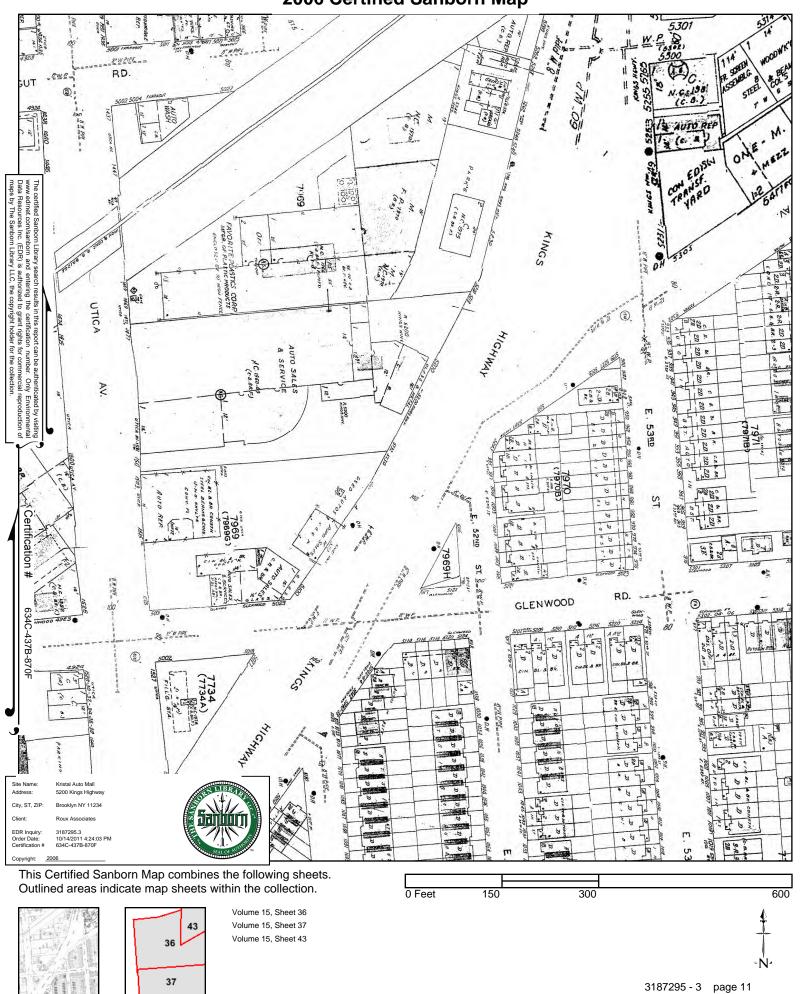
Volume 15, Sheet 37

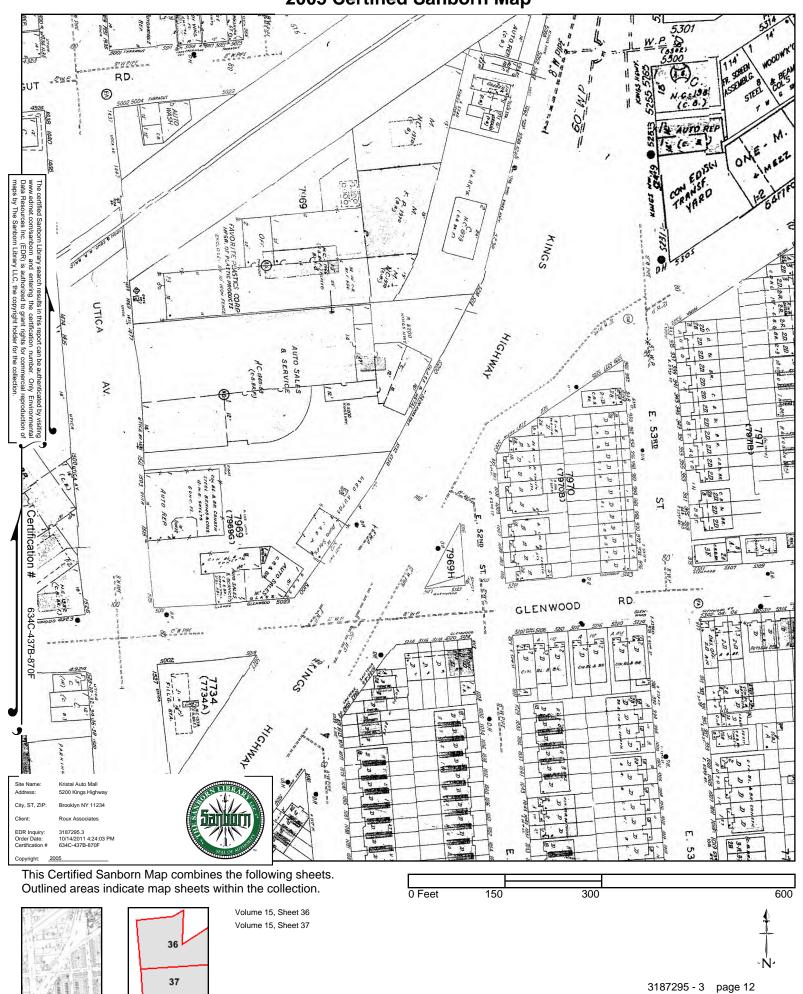


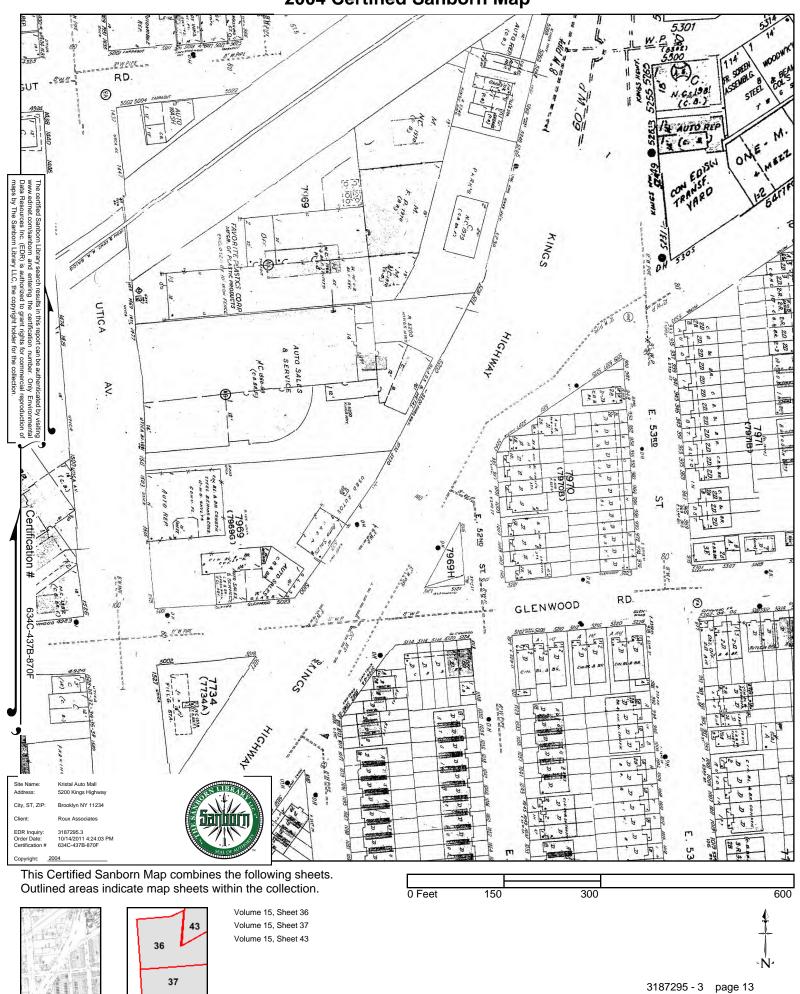

Volume 15, Sheet 36

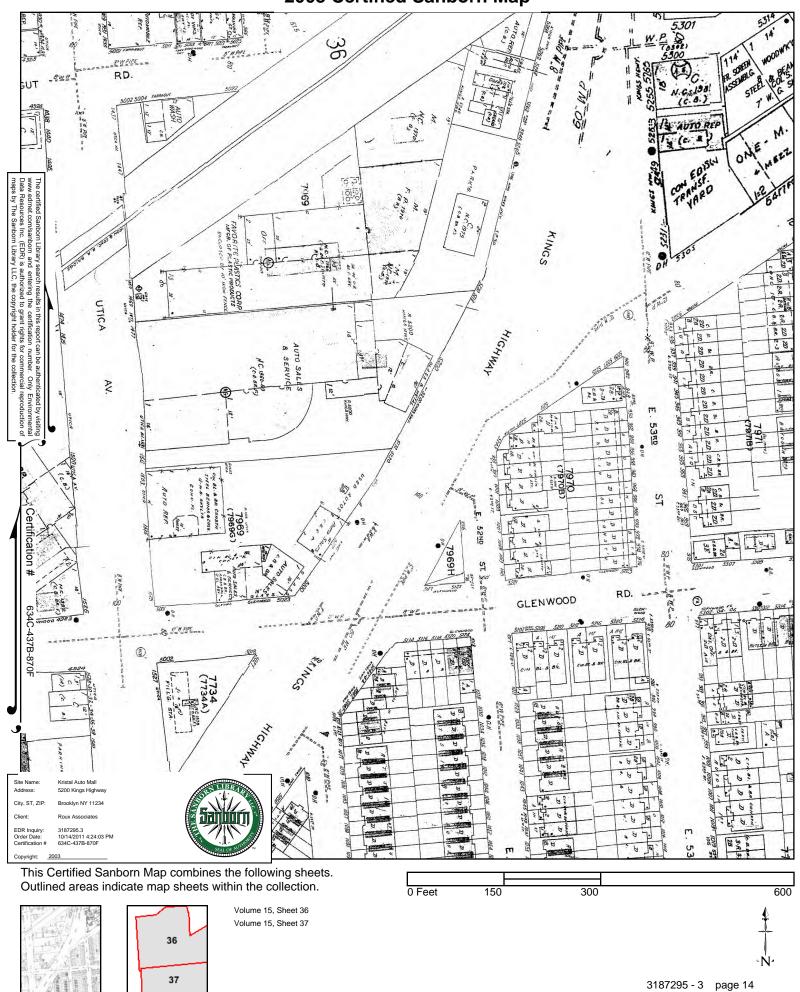


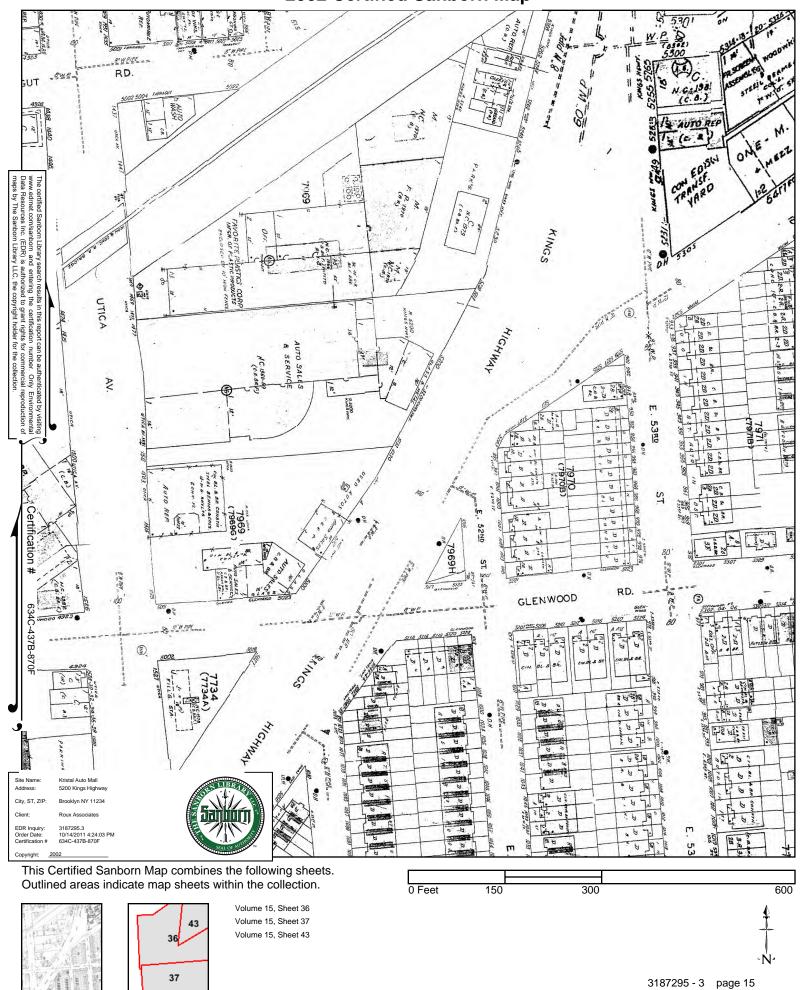
Volume 15, Sheet 37



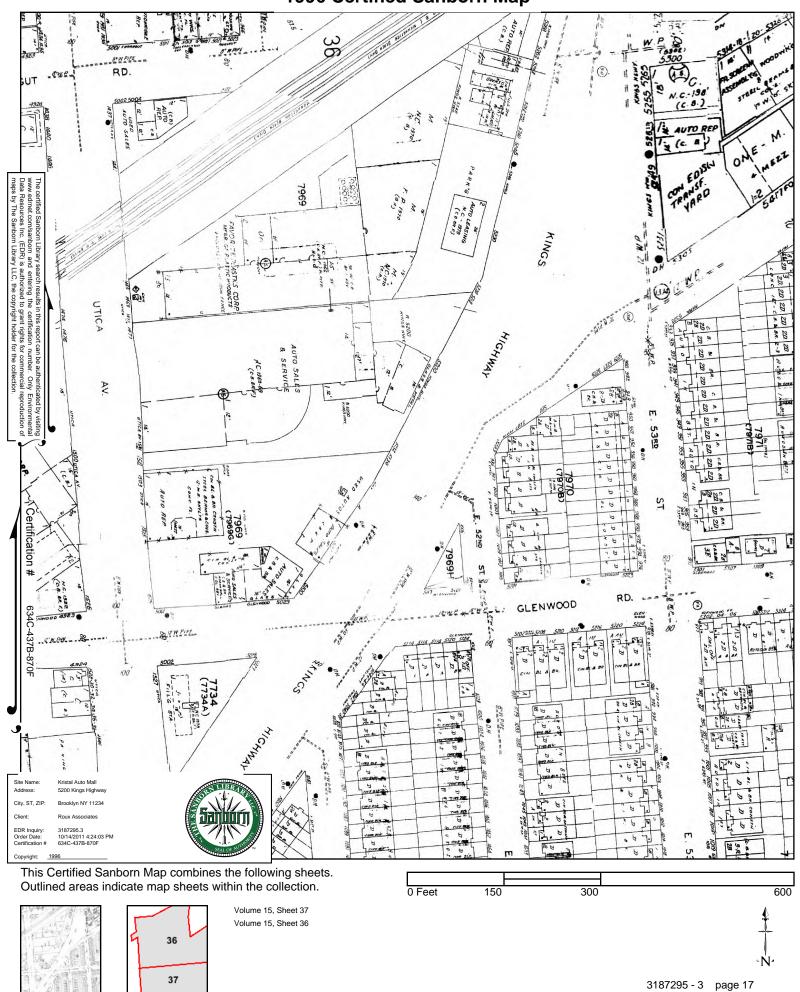



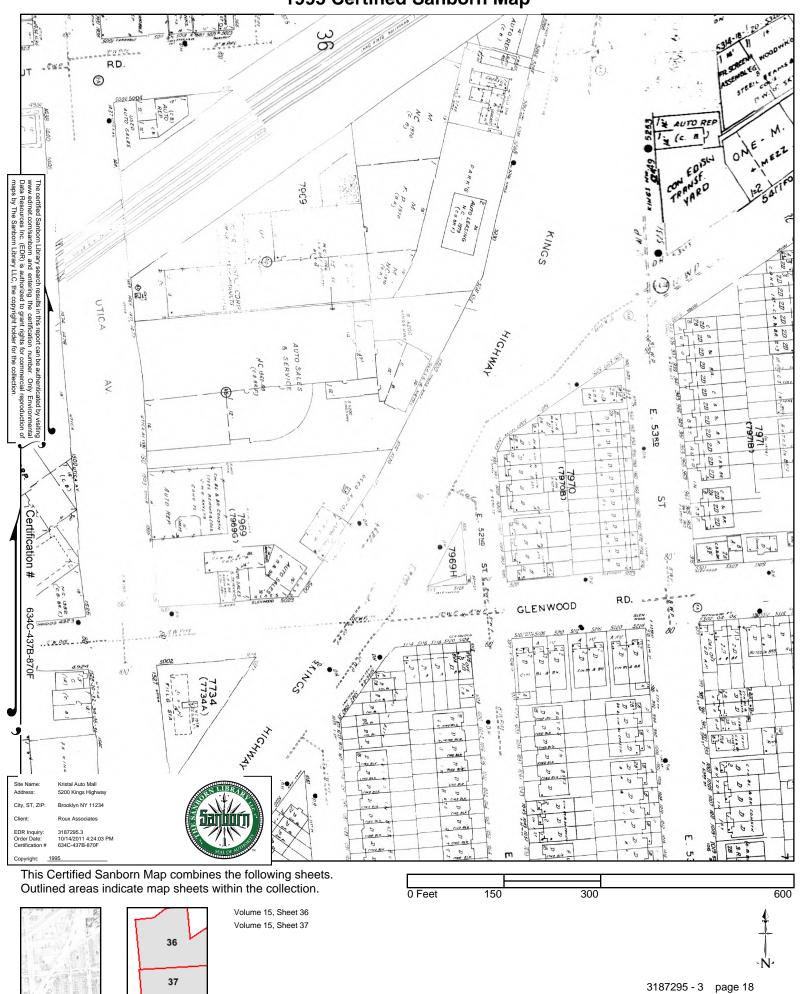


Volume 15, Sheet 44

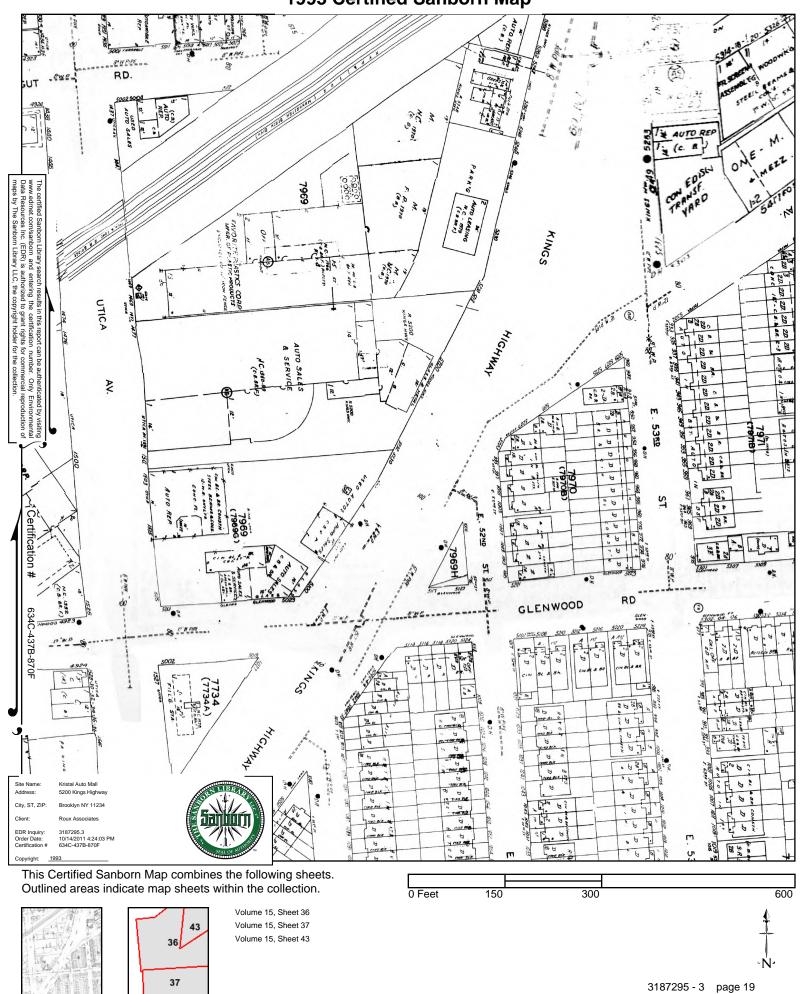

Volume 15, Sheet 45



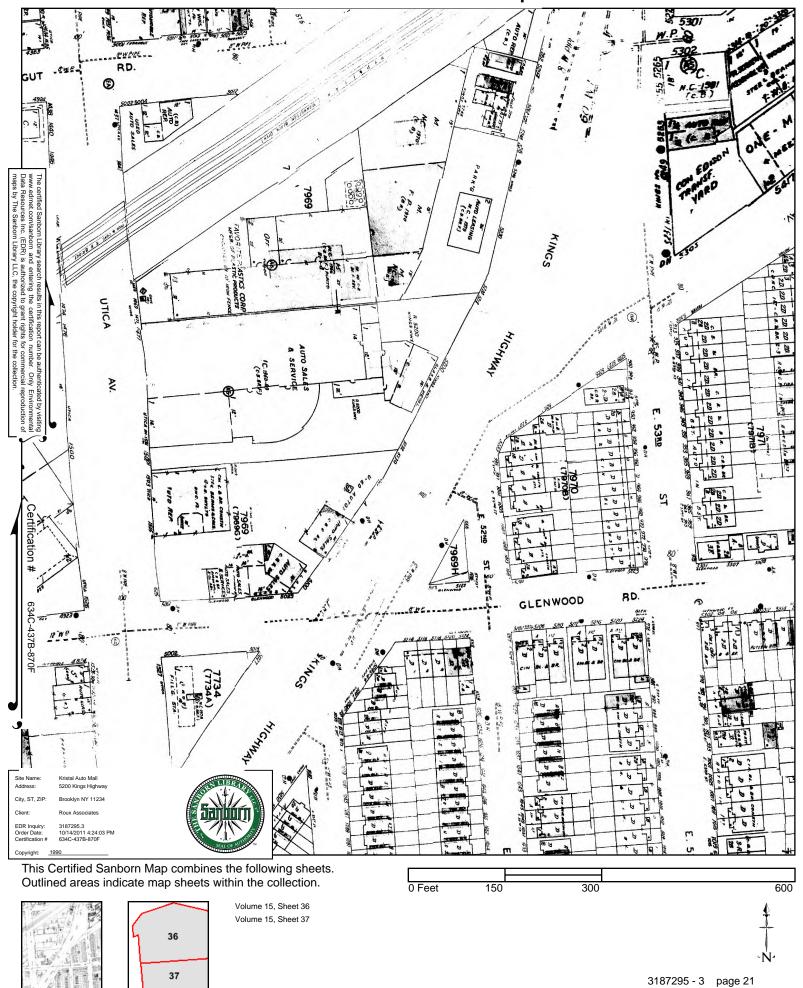


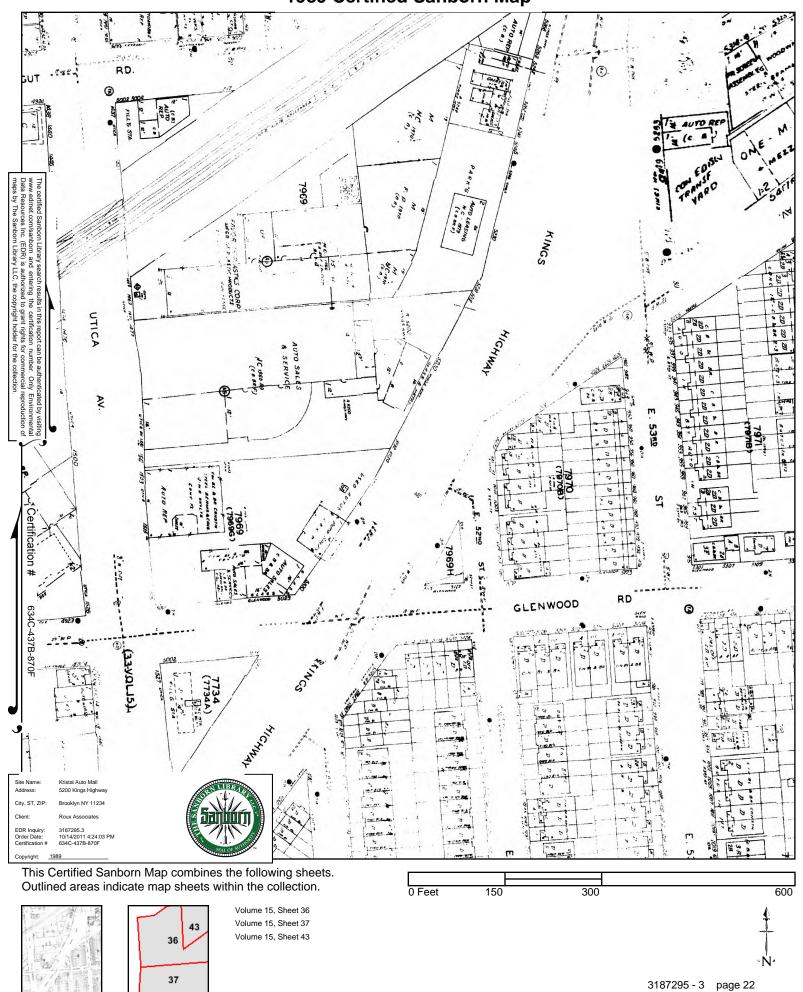



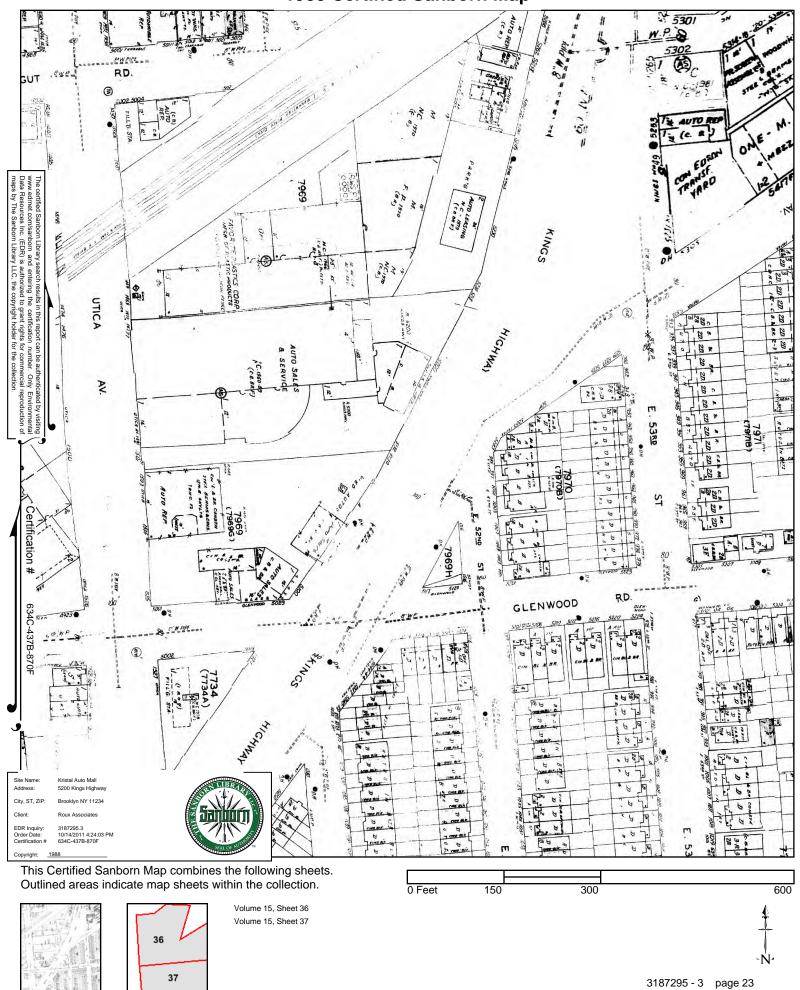



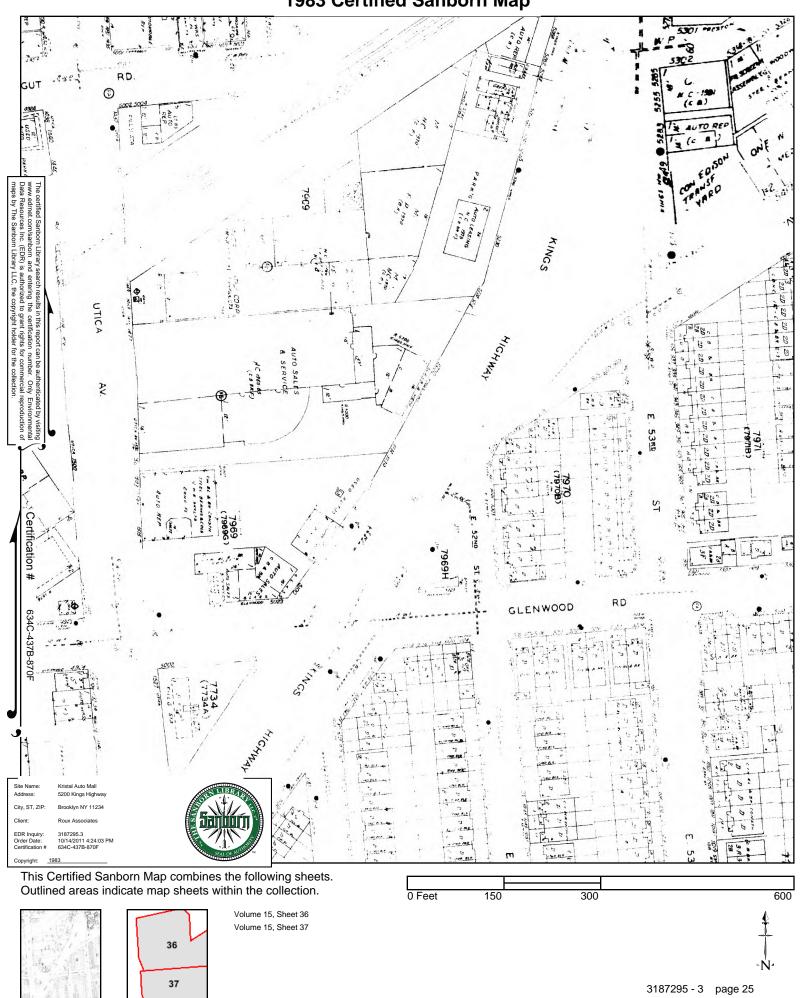


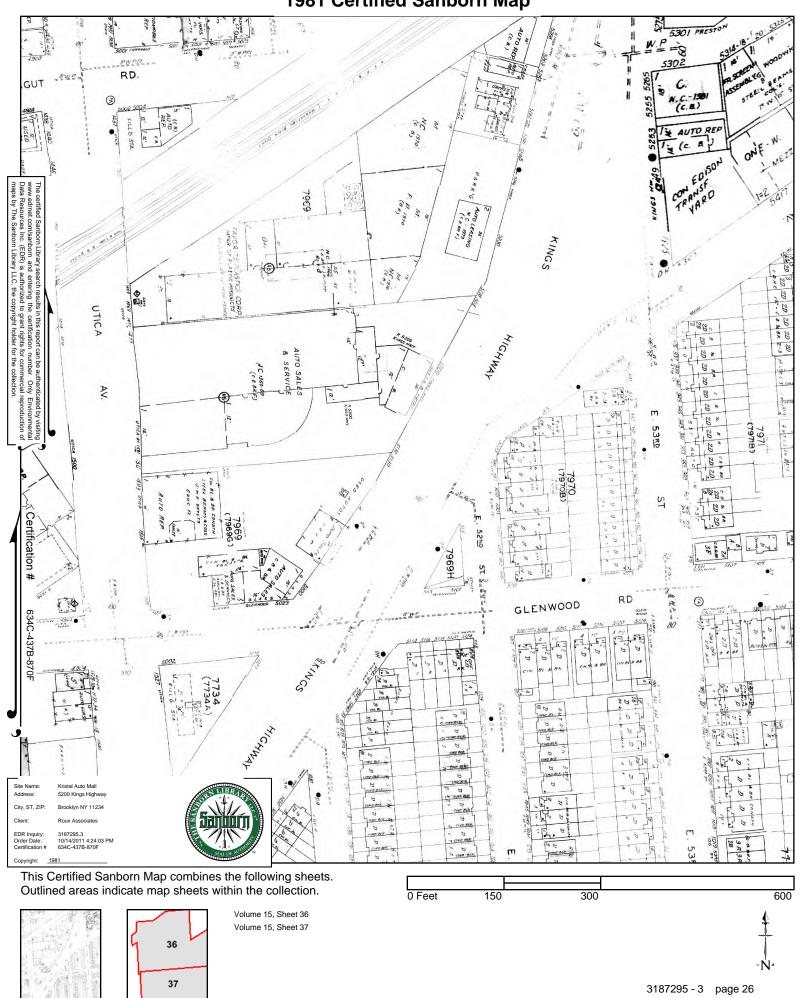



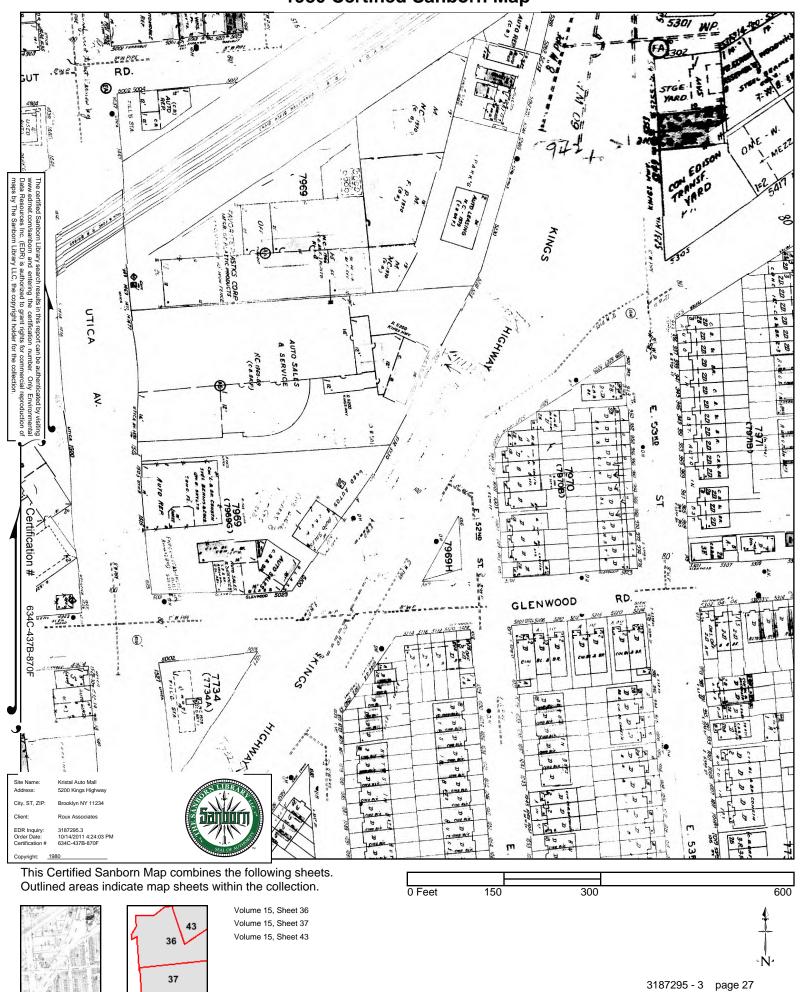



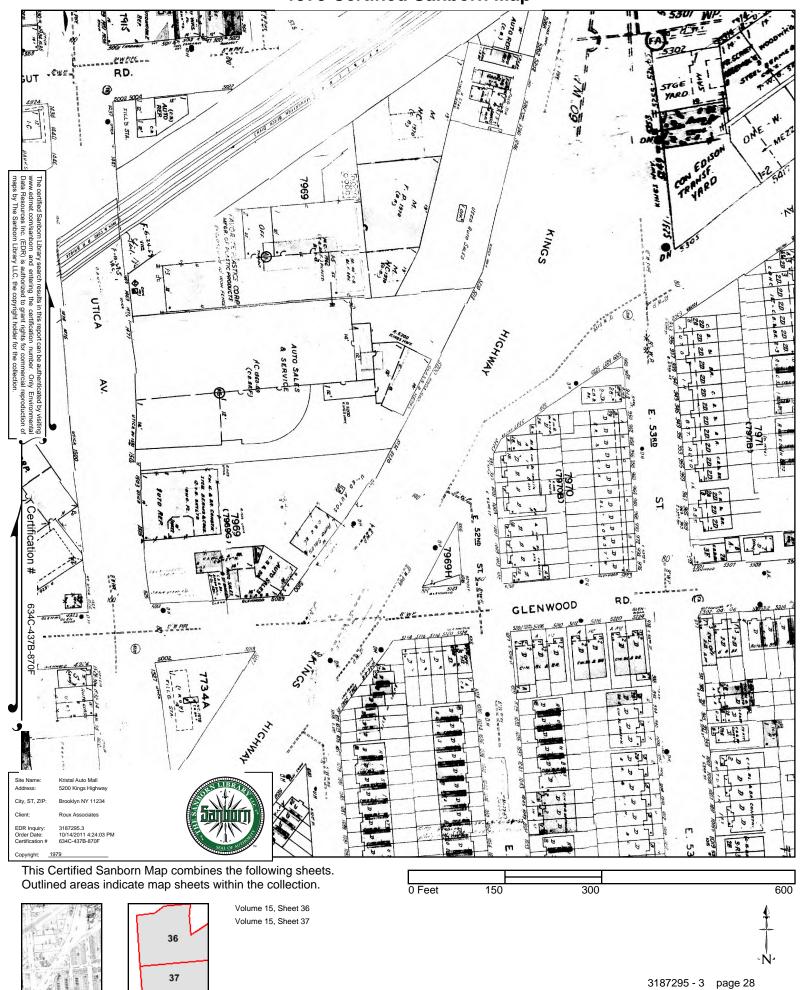



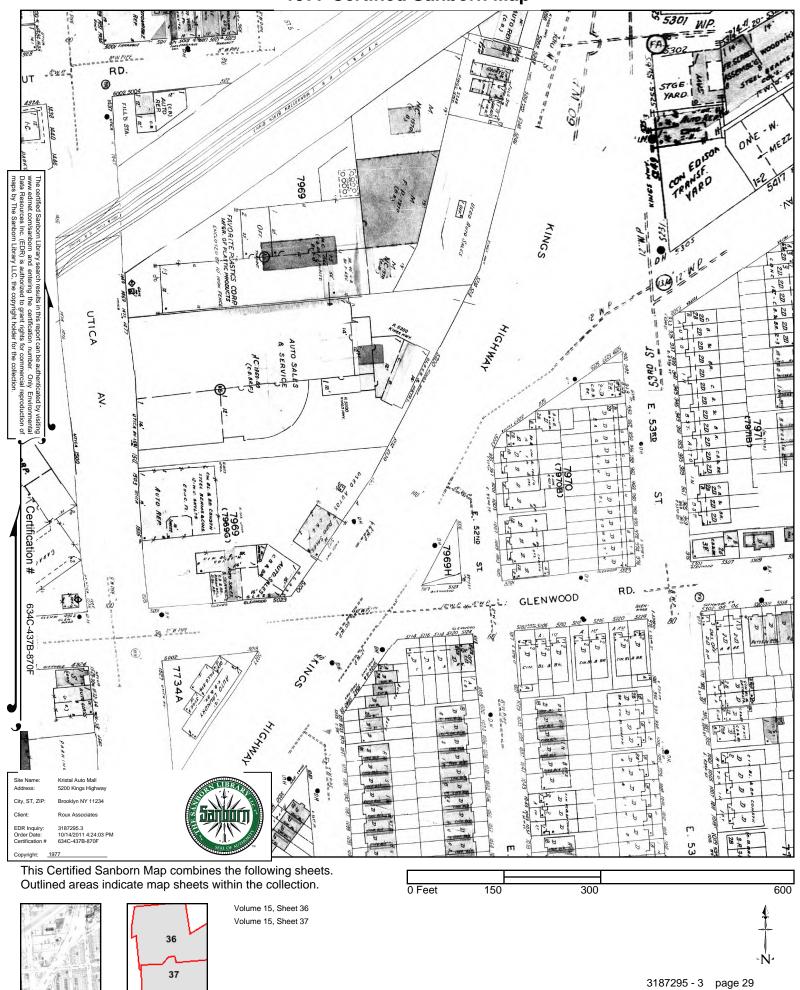


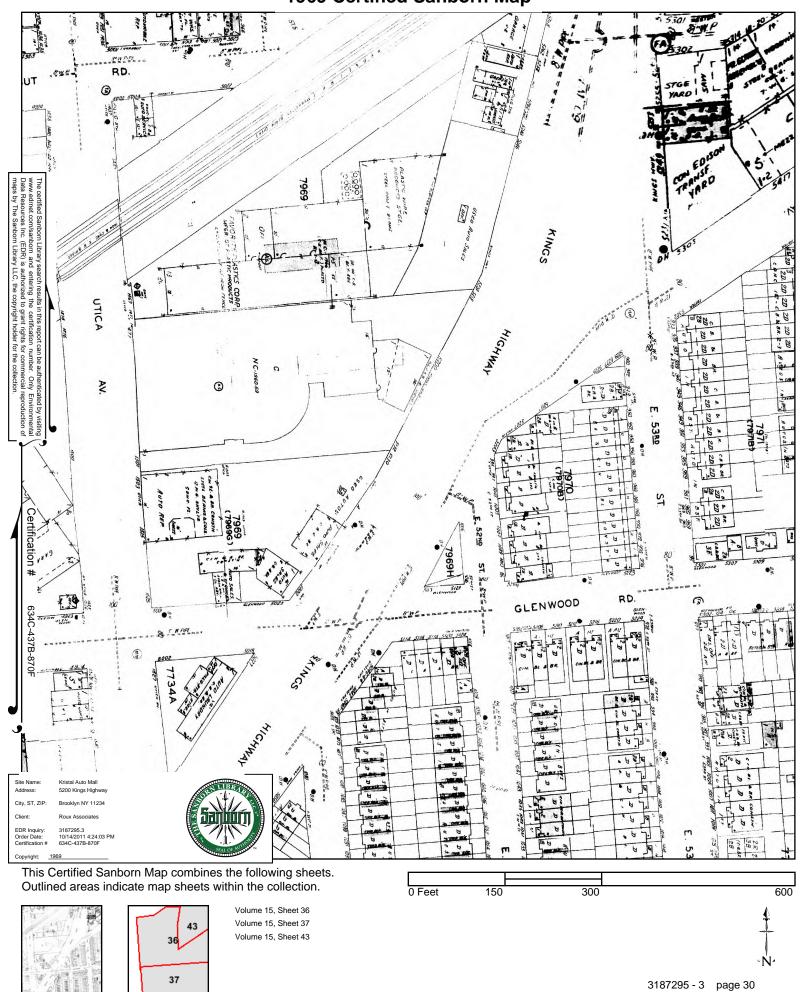



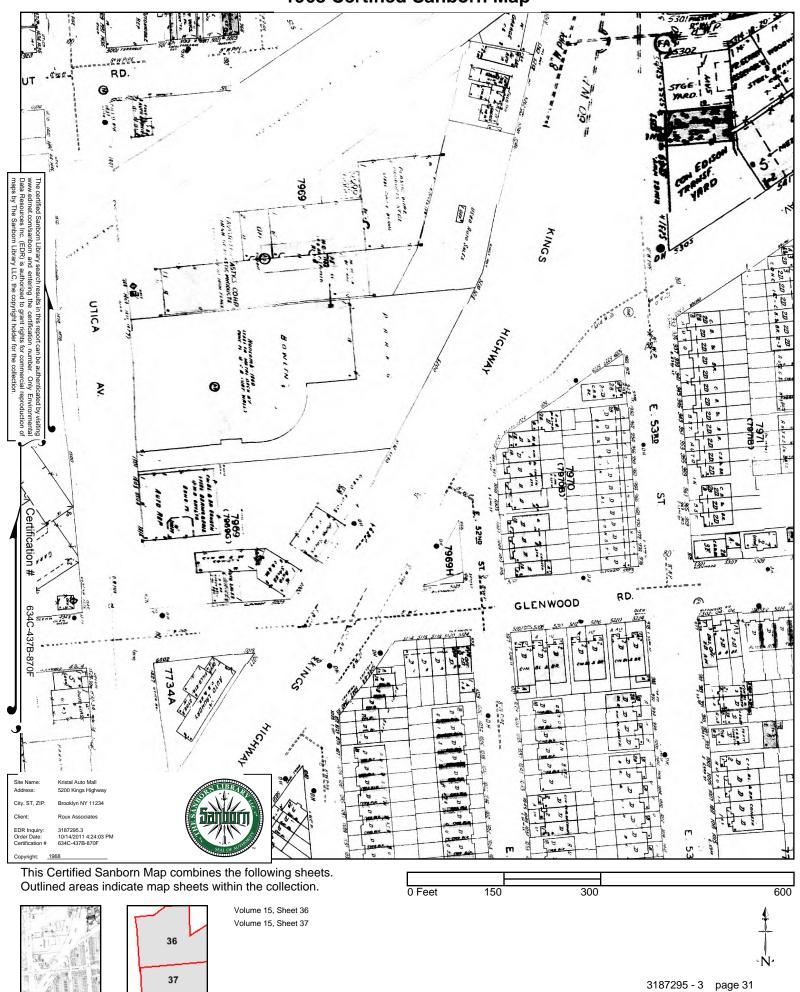



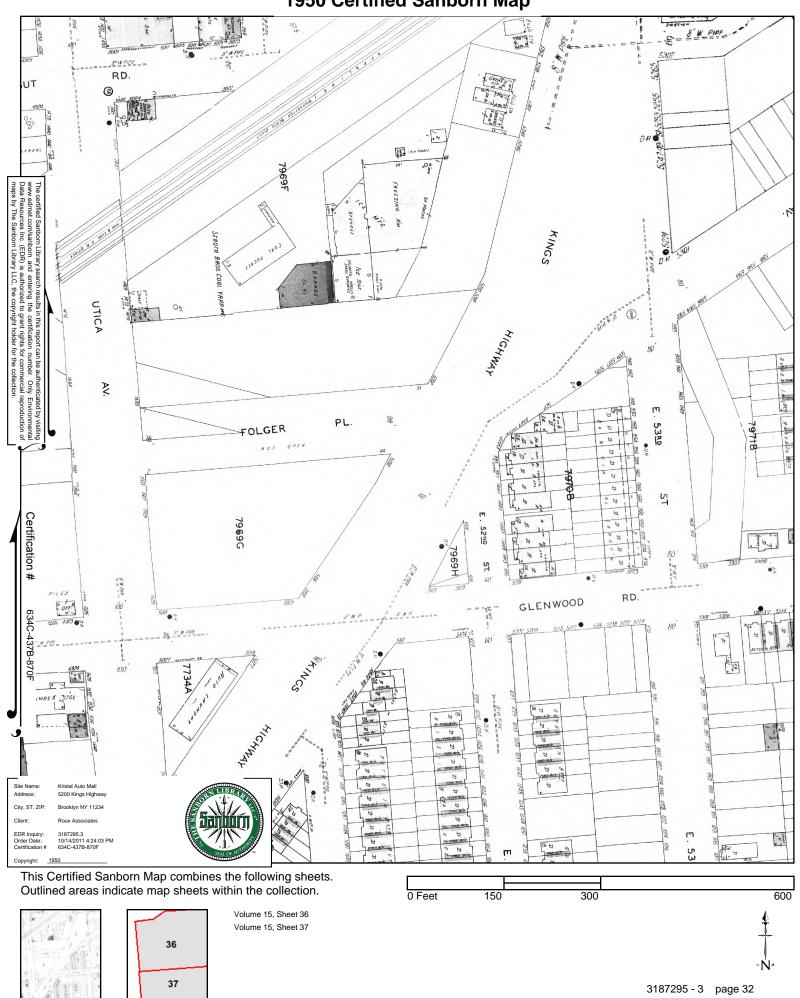



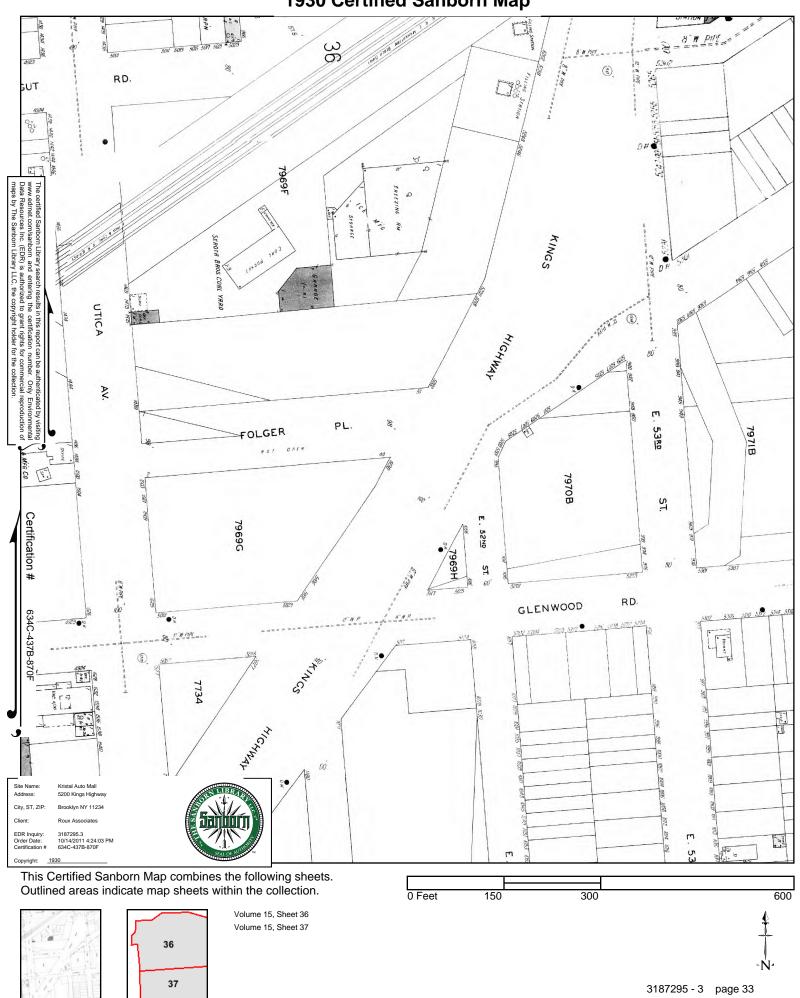



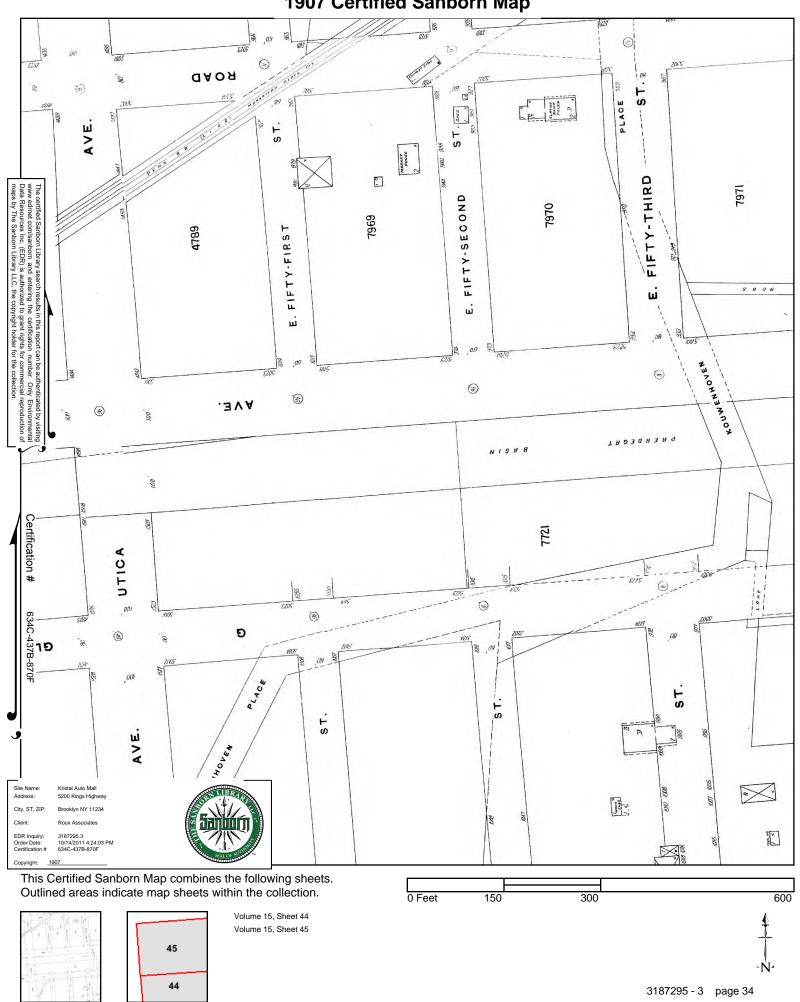














### **APPENDIX H**

Health and Safety Plan and Community Air Monitoring Plan

**ROUX** 2861.0001Y.102/CVRS



# Site-Specific Health and Safety Plan

Former Kristal Auto Mall 5200 Kings Highway Brooklyn, New York 10021

May 8, 2018

### Prepared for:

PTMA 5200 Kings Highway LLC (c/o Bridges Development Group)
150 East 58th Street, 15th Floor
New York, New York 10155

### Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 209 Shafter Street Islandia, New York 11749

### **Table of Contents**

Aþ	provais	1
1.	Introduction	2
	1.1 Scope of Work	2
	1.2 Emergency Numbers	
	1.2.1 Emergency Phone Numbers	
	1.2.2 Project Management/Health and Safety Personnel	
	1.2.3 Other Important Phone Numbers	
	1.2.4 Directions to University Hospital of Brooklyn	
	1.2.5 Directions to Urgent Care Center (CityMD)	
_		
2.	Health and Safety Staff	
	2.1 Project Principal (PP) – Craig Werle – Roux	
	2.2 Corporate Health and Safety Manager (CHSM) – Joe Gentile – Roux	
	2.3 Site Safety and Health Officer (SSO) – Rachel Henke – Roux	
	2.4 Field Personnel and Subcontractors	6
3.	Site Location, Description, and History	7
	3.1 Property Location and Description	
4	Masta Decembring (Observatorination	0
4.	Waste Description/Characterization	
	4.1 General	_
	4.2 Chemical Data Sheets	
	4.2.1 Contaminants of Concern	8
5.	Hazard Assessment	9
	5.1 Chemical Hazards	9
	5.1.1 Exposure Pathways	9
	5.1.2 Operational Action Levels	9
	5.1.3 Additional Precautions	10
	5.2 Physical Hazards	10
	5.2.1 Noise	10
	5.2.2 Heavy Equipment Exclusion Zone Policy	10
	5.2.3 Heat Stress	11
	5.2.4 Cold Stress	12
	5.2.5 Asbestos	12
	5.2.6 Structural Integrity	13
	5.2.7 Lockout/Tagout	
	5.3 Biological Hazards	
	5.3.1 Insect Stings	
	5.3.2 Animals and Animal Wastes	
	5.3.3 Mold	
	5.3.4 Bloodborne Pathogens	
	5.4 Hazard Assessment	
^		
Ь.	Training	
	6.1 General Health and Safety Training	16

### **Table of Contents (Continued)**

	6.2 Annual Eight-Hour Refresher Training	
	6.3 Site-Specific Training	
	6.4 Onsite Safety Meetings	
	6.5 Additional Training	
	6.6 Subcontractor Training	17
7.	Medical Surveillance Procedures	
	7.1 General	18
8.	Site Control, Personal Protective Equipment, and Communications	19
	8.1 Site Control	
	8.1.1 Support Zone	19
	8.1.2 Contamination Reduction Zone	19
	8.1.3 Exclusion Zone	19
	8.2 Personal Protective Equipment	
	8.2.1 General	
	8.2.2 Personal Protective Equipment Specifications	
	8.2.3 Initial Levels of Protection	
	8.3 Communications	22
9.	Monitoring Procedures	23
	9.1 General	
	9.2 Exclusion Zone Monitoring	
	9.2.1 Instrumentation	
	9.2.2 Action Levels	
	9.2.3 Monitoring During Field Activities	23
10.	. Safety Considerations	24
	10.1 General	
	10.2 Traffic Control	
	10.3 Sample Handling	25
11.	Decontamination and Disposal Procedures	26
	11.1 Contamination Prevention	26
	11.2 Personnel Decontamination	26
	11.3 Equipment Decontamination	26
	11.4 Decontamination during Medical Emergencies	
	11.5 Disposal Procedures	27
12.	. Emergency Plan	28
	12.1 Evacuation	
	12.2 Personnel Injury	28
	12.3 Accident/Incident Reporting	29
	12.4 Personnel Exposure	
	12.5 Adverse Weather Conditions	30
13.	Logs, Reports and Record Keeping	31
	13.1 Medical and Training Records	
	13.2 Onsite Log	

### Table of Contents (Continued)

	13.3 Exposure Records	31
	13.4 Accident/Incident Reports	31
	13.5 OSHA Form 300	31
	13.6 Daily Safety Logs	31
	13.7 Close-Out Safety Report	31
14	Field Team Review	32

### **Tables**

- 1. Toxicological, Physical and Chemical Properties of Compounds Potentially Present at the Site
- 2. Action Levels for Worker Breathing Zone

### **Figures**

- 1. Site Location Map
- 2. Site Plan
- 3. Hospital Route Map

### **Appendices**

- A. Job Safety Analysis
- B. Heavy Equipment Exclusion Zone Policy
- C. Heat and Cold Stress Guidelines
- D. Generic Community Air Monitoring Plan
- E. Health and Safety Briefing/Tailgate Meeting Form
- F. Accident Report and Investigation Form and Incident Response Flow Chart
- G. Acord Form
- H. OSHA 300
- I. Job Safety and Health Protection Poster (2015)

### **Approvals**

By their signature, the undersigned certify that this Health and Safety Plan (HASP) is approved and will be utilized at the project site located at 5200 Kings Highway, Brooklyn, New York.

Joseph W. Onthe	May 8, 2018
Joseph Gentile Corporate Health and Safety Manager Roux	Date
Tolly Codyo	May 8, 2018
Tally Sodre Office Health and Safety Manager Roux	Date
	May 8, 2018
Rachel Henke Site Health and Safety Officer Roux	Date
Cinq Ce Werle	May 8, 2018
Craig Werle Project Principal	Date

Roux

### 1. Introduction

This Site specific and Safety Plan (HASP) has been prepared in accordance with 29 CFR 1910.120 Occupational Safety and Health Administration (OSHA) Hazardous Waste Operations and Emergency Response (HAZWOPER) and Roux Environmental Engineering and Geology, D.P.C (Roux) Standard Operating Procedures (SOPs). It addresses all activities to be performed during the implementation of Remedial Investigation (RI) activities, Interim Remedial Measures (IRM), and Remedial Actions (RA) at 5200 Kings Highway, Brooklyn, New York (Site) (Figure 1). The HASP will be implemented by the designated Site Health and Safety Officer (SSO) during work at the Site. The HASP attempts to identify all potential hazards at the Site; however, Site conditions are dynamic and new hazards may appear constantly. Personnel must remain alert to existing and potential hazards as Site conditions change and protect themselves accordingly.

Compliance with this HASP is required of all persons and subcontractors who perform fieldwork or enter the Site. The contents of this HASP may change or undergo revision based upon additional information made available to health and safety personnel, monitoring results, or changes in the technical scope of work. Any changes proposed must be reviewed and approved by HASP.

Upon entering the Site, all visitors are required to sign in. All visitors entering the Contamination Reduction Zone (CRZ) (defined in Section 8.1.2), the Contamination Reduction Corridor (CRC) (defined in Section 8.1.2), or the Exclusion Zone (EZ) (defined in Section 8.1.3) will be required to read and comply with the provisions of this HASP. Visitors will be required to comply with applicable OSHA requirements such as training, medical monitoring, and respiratory protection.

In the event that a visitor does not adhere to the provisions of this HASP, he or she will be required to leave the Site. Mobilization activities not requiring intrusive activities (e.g., survey, equipment staging, etc.) or exposure to potentially impacted areas may only be performed if supervised by a competent Roux employee.

#### 1.1 Scope of Work

The Scope of Work activities will include the implementation of RI activities.

The Scope of Work activities are as follows:

- 1. Obtain necessary permits and approvals.
- 2. Preparation and implementation of an approved Health and Safety Plan (HASP).
- Implementation of RI, IRM and RA activities, consisting of site inspection/reconnaissance, geophysical survey, drilling, soil boring and sampling, groundwater sampling, soil vapor sampling, oversight and CAMP monitoring.
- 4. Implementation of the approved Field Sampling Plan (FSP).
- Mobilization and demobilization.
- 6. Maintain good site housekeeping procedures at all times.
- 7. Identification, protection, and/or relocation of any utilities within the work area.
- 8. Construct a decontamination pad with proper containment and collection system, if necessary.

#### 1.2 Emergency Numbers

#### 1.2.1 Emergency Phone Numbers

Emergency Medical Service	. 911
Police: New York City Police Department (NYPD)	. 911
<u>Fire</u> :	. 911
Hospital: University Hospital of Brooklyn	. 718-270-1000
National Response Center	. 800-424-8802
Poison Control Center	. 800-222-1222
Chemtrec	. 800-262-8200
Center for Disease Control	. 800-311-3435
USEPA (Region II)	. 212-637-5000
NYSDEC Emergency Spill Response	. 800-457-7362

#### 1.2.2 Project Management/Health and Safety Personnel

Title	Contact	Telephone/Cell
Roux		
Project Director	Craig Werle	631-232-2600 Cell – 631-793-1535
Site Health and Safety Officer	Rachel Henke	631-232-2600
Corporate Health and Safety Manager	Joseph Gentile	856-423-8800 Cell – 610-844-6911

#### 1.2.3 Other Important Phone Numbers

#### 1.2.4 Directions to University Hospital of Brooklyn

470 Clarkson Avenue Brooklyn, New York 11203

#### See Figure 3 for street map.

- Start at 5200 Kings Highway, Brooklyn, New York, take a right onto Kings Highway
- Turn Right onto Glenwood Road
- Turn Right onto Utica Avenue
- Turn Left onto Clarkson Avenue
- Arrive at University Hospital of Brooklyn on your left

#### 1.2.5 Directions to Urgent Care Center (CityMD)

2175 Ralph Avenue Brooklyn, New York 11234

- Head Southwest on Kings Highway and keep left to stay on Kings Highway
- Turn Left at the 1st cross street onto Glendwood Road
- At in Memory of Police Officer James Carragher, continue onto Farragut Road
- Turn right on Ralph Avenue

### 2. Health and Safety Staff

This section briefly describes all site personnel and their health and safety responsibilities for the RI work to be implemented at the Site. All personnel are responsible for ensuring compliance with the HASP.

#### 2.1 Project Principal (PP) - Craig Werle - Roux

- Has the overall responsibility for the health and safety of Site personnel.
- Ensures that adequate resources are provided to the field health and safety staff to carry out their responsibilities as outlined below.

#### 2.2 Corporate Health and Safety Manager (CHSM) - Joe Gentile - Roux

- Implements the HASP.
- Performs or oversees site specific training and approves revised or new safety protocols or field operations.
- Coordinates revisions of this HASP with Project Principal.
- Responsible for the development of new task safety protocols and procedures and resolution of any
  outstanding safety issues which may arise during the conduction of site work.
- Review and approve all health and safety training and medical surveillance records for personnel and subcontractors.

#### 2.3 Site Safety and Health Officer (SSO) - Rachel Henke - Roux

- Directs and coordinates health and safety monitoring activities.
- Ensures that field teams utilize proper personal protective equipment.
- Conducts initial onsite specific training prior to personnel and/or subcontractors commencing work.
- Conducts and documents periodic safety briefings.
- Ensures that field team members comply with this HASP.
- Completes and maintains Accident Report and Investigation Forms.
- Notifies PP and CHSM of all accident/incidents.
- Notifies PP of daily field operations and work progress, who will then communicate at the end of the day to the designated representative the following:
  - 1. End of day tasks completed
  - Next day's planned activities
  - 3. Third party issues
  - 4. Change of Plans approvals
- Change in level of personal protective equipment (PPE).
- Maintains contact with Contractors.
- Determines upgrade or downgrade of personal protective equipment (PPE) based on Site conditions and/or real-time monitoring results.
- Ensures that monitoring instruments are calibrated daily or as manufacturers suggested instructions determine.

 Submits and maintains health and safety field log books, daily safety logs, training logs, air monitoring result reports, weekly safety report.

#### 2.4 Field Personnel and Subcontractors

- Report any unsafe or potentially hazardous conditions to the SSO.
- Maintain knowledge of the information, instructions, and emergency response actions contained in the HASP.
- Comply with rules, regulations, and procedures as set forth in this HASP and any revisions, which
  are instituted.
- Prevent admittance to work Site by unauthorized personnel.

### 3. Site Location, Description, and History

Descriptions of the Site and surrounding property usage are included in the following sections. The location of the Site is presented in Figure 1.

#### 3.1 Property Location and Description

The property is located at 5200 Kings Highway (site) in the East Flatbush section of Brooklyn, Kings County, New York, zip code 11234 (see Figure 1). The site is trapezoidal in shape and consists of a single tax lot: Block 7969, Lot 9. The site is approximately 2.28 acres in size. The site is bordered to the east and southeast by Kings Highway and to the west by Utica Avenue. The site is bordered to the south by the Premier Ford auto dealership. To the north the site is bordered by the Favorite Plastics Corporation. The site is bordered to the northeast at 5226 Kings Highway by the Kristal Auto Mall Used Cars. This site occupies a different tax lot, has a different owner from 5200 Kings Highway and is not part of the BCP application.

The site consists of a former retail auto dealership known as the Kristal Auto Mall. Approximately 75% of the site is occupied by the dealership building that includes an auto showroom, administrative offices, service area, parts storeroom, auto body shop, auto storage, auto washing, and a staff locker room. Interior finishes in the showroom and office spaces consist primarily of carpeted and vinyl tiled floors, and gypsum wallboard interior partitions. Interior finishes in the auto repair/vehicle storage space include concrete floors and painted walls. The remaining 25% of the site consists of paved parking lots on the northeast and south sides of the site. The outdoor space is used for vehicle storage.

The Site is currently owned by Bridges Development Group. The building has been vacated.

### 4. Waste Description/Characterization

#### 4.1 General

The following information is presented in order to identify the types of materials that may be encountered at the Site. The detailed information on these materials was obtained from:

- SAX's Dangerous Properties of Industrial Materials Lewis Eight Edition
- Chemical Hazards of the Workplace Proctor/Hughes
- Condensed Chemical Dictionary Hawley
- Rapid Guide to Hazardous Chemical in the Workplace Lewis 1990
- NIOSH Pocket Guide to Chemical Hazards 2005
- ACGIH TLV Values and Biological Exposure Indices
- OSHA 29 CFR 1910.1000

#### 4.2 Chemical Data Sheets

Several chemicals that may potentially be present in soils and groundwater at the Site, based on previous soil, soil vapor and groundwater sampling results and historic operations conducted at the Site that have been identified. The Summary of Toxicological Data is found in Table 1 and is provided for review of chemicals that may be encountered. The Summary of Toxicological Data Sheets provides information such as the chemicals characteristics, health hazards, protection, and exposure limits.

#### 4.2.1 Contaminants of Concern

Soil and groundwater contaminants that may be encountered during drilling and sampling activities include both organic and inorganic compounds. Prior investigations at the site have indicated detection of Volatile Organic Compounds (VOCs), and Semi-volatile Organic Compounds (SVOCs).

The toxicological, physical, and chemical properties of potential contaminants are presented in Table 1.

#### 5. Hazard Assessment

The potential to encounter chemical hazards is dependent upon the work activity performed (intrusive versus non-intrusive), and the duration and location of the work activity. Such hazards could include inhalation and/or skin contact with chemicals/gases that could cause: dermatitis, skin burns, being overcome by vapors or asphyxiation.

Physical hazards that may be encountered during Site work include; heat and cold stress, exposure to excessive noise, loss of limbs, being crushed, head injuries, punctures, cuts, falls, electrocution, and bruises, asbestos and lead paint exposure, and other physical hazards due to motor vehicle operation, heavy equipment and power tools.

Biological hazards may exist during Site activities. These hazards include exposure to insect bites/stings, animals and animal wastes, mold and bloodborne pathogens.

Prior to the beginning of each new phase of work, an activity hazard analysis will be prepared by the SSO with assistance from the CHSM. The analysis will address the hazards for each activity performed in the phase and will present the procedures and safeguards necessary to eliminate the hazards or reduce the risk. The Job Safety Analysis Sheets are located in Appendix A.

#### 5.1 Chemical Hazards

The potential for personnel and subcontractors to come in contact with chemical hazards may occur during the following tasks:

- Drilling Activities
- In situ Chemical Application Activities
- Decontamination Activities

For chronic and acute toxicity data, refer to Summary of Toxicological Data Sheets in Table 1 for further details on compound characteristics.

#### 5.1.1 Exposure Pathways

Exposure to these compounds during ongoing activities may occur through inhalation of contaminated dust particles, inhalation of VOCs and SVOCs, dermal absorption, and accidental ingestion of the contaminant by either direct or indirect cross-contamination activities.

Inhalation of contaminated dust particles (VOCs, SVOCs, and inorganics) can occur during adverse weather conditions (high or changing wind directions) or during operations that may generate airborne dust such as excavation and loading of contaminated soils. Dust control measures such as applying water to roadways and excavations will be implemented where visible dust is generated. Where dust control measures are not feasible or effective, respiratory protection will be used when necessary (see Section 9.2.2 for monitoring procedures and action levels).

#### 5.1.2 Operational Action Levels

A decision-making protocol for an upgrade in levels of protection and/or withdrawal of personnel from an area based on atmospheric hazards is outlined in Table 2.

#### 5.1.3 Additional Precautions

Dermal absorption or skin contact with chemical compounds is possible during intrusive activities or *in situ* chemical injections at the Site. The use of PPE in accordance with Section 8.2 and strict adherence to proper decontamination procedures should significantly reduce the risk of skin contact.

The potential for accidental ingestion of potentially hazardous chemicals is expected to be remote, when good hygiene practices are used.

#### **5.2 Physical Hazards**

A variety of physical hazards may be present during Site activities. These hazards include typical construction activities: operation of motor vehicles and heavy equipment operation, the use of power and hand tools, roping and rigging of steel sheeting, walking on objects, tripping over objects, working on surfaces which have the potential to promote falling, skin burns, crushing of fingers, toes, limbs, head injuries caused by falling objects, temporary loss of one's hearing and/or eyesight. The referenced hazards are not unique and are generally familiar to most hazardous waste site workers at construction sites. Task specific safety requirements for each phase will be covered during safety briefings. Job Safety Analysis anticipated to be used on this project is contained in Appendix A.

#### **5.2.1 Noise**

Noise is a potential hazard associated with operation of heavy equipment, power tools, pumps, and generators. High noise equipment operators will be evaluated at the discretion of the SSO. Employees with an 8-hour time weighted average exposure exceeding 85 dBA will be included in the hearing conservation program in accordance with 29 CFR 1910.95 and 1926.52.

It is mandated that employees working around heavy equipment or using power tools that produce noise levels exceeding 90 dBA are to wear hearing protection that shall consist of earplugs or protective earmuffs.

#### 5.2.2 Heavy Equipment Exclusion Zone Policy

Operation of heavy equipment poses several potential risks including, but not limited to, serious injury or death due to contact hazards to workers in the area and/or bystanders, and/or property damage. To alleviate these hazards Roux developed a heavy equipment exclusion zone policy for delineating work areas (Appendix B).

The purpose of the Exclusion Zone Policy is to establish the minimum clearance distance that must be maintained between workers and heavy equipment while equipment is in operation (i.e., engaged or moving). The intent is to have no personnel or other equipment entering the Exclusion Zone while the equipment is in operation/moving to ensure that Roux and Subcontractor employees are not unnecessarily exposed to the hazards of the equipment.

The Exclusion Zone must meet the following minimum requirements:

- A minimum distance of 10 feet from all heavy equipment and loads being moved by the equipment;
- Greater than the swing/reach radius of any moving part on the heavy equipment (i.e., for large equipment this may mean an exclusion zone distance larger than 20 feet); and
- Greater than the tip-over distance of the heavy equipment.

In addition to the above distances, there are requirements for spotters, the use of hand signals, exclusion zone delineation and posting of signs on the heavy equipment to alert workers of the distance.

It is recognized that certain heavy equipment activities may require personnel to work within the limits of the Exclusion Zone as specified in this policy. Any such activity must be pre-planned with emphasis on limiting the amount and potential exposure of any activity required within the zone. The critical safety steps to mitigate the hazards associated with working within the Exclusion Zone must be defined in the JSA and potentially other project specific plans (i.e., critical lift plans, etc.), and approved by the Roux Project Principal and client representative, if required, prior to implementation.

#### 5.2.3 Heat Stress

Heat stress is a significant potential hazard, associated with the use of protective equipment in a hot weather environment. The human body is designed to function at a certain internal temperature. When metabolism or external sources (fire or hot summer day) cause the body temperature to rise, the body seeks to protect itself by triggering cooling mechanisms. The SSO will monitor the air temperature (as described later in this section) to determine potential adverse effects the weather can cause onsite personnel. Excess heat is dissipated by two means:

- Changes in blood flow to dissipate heat by convection, which can be seen as "flushing" or reddening
  of the skin in extreme cases.
- Perspiration is the release of water through skin and sweat glands. While working in hot environments, evaporation of perspiration is the primary cooling mechanism.

Protective clothing worn to guard against chemical contact effectively stops the evaporation of perspiration. Thus, the use of protective clothing increases heat stress problems.

The major disorders due to heat stress are heat cramps, heat exhaustion, and heat stroke. Heat cramps are painful spasms, which occur in the skeletal muscles of workers who sweat profusely in the heat and drink large quantities of water, but fail to replace the bodies lost salts or electrolytes. Drinking water while continuing to lose salt tends to dilute the body's extracellular fluids. Soon water seeps by osmosis into active muscles and causes pain. Muscles fatigued from work are usually most susceptible to cramps.

Extreme weakness or fatigue, dizziness, nausea, and headache characterize heat exhaustion. In serious cases, a person may vomit or lose consciousness. The skin is clammy and moist, complexion pale or flushed, and body temperature normal or slightly higher than normal. Treatment is rest in a cool place and replacement of body water lost by perspiration. Mild cases may recover spontaneously with this treatment; severe cases may require care for several days. There are no permanent effects.

Heat stroke is a very serious condition caused by the breakdown of the body's regulating mechanisms. The skin is very dry and hot with red mottled or bluish appearance. Unconsciousness, mental confusion, or convulsions may occur. Without quick and adequate treatment, the result can be death or permanent brain damage. As first aid treatment, the person should be moved to a cool place. Body heat should be reduced artificially, but not too rapidly, by soaking the person's clothes in water and fanning them.

Steps that can be taken to reduce heat stress are:

- Acclimate the body. Allow a period of adjustment to make further heat exposure endurable.
- Drink more liquids to replace the body water lost during sweating.

- Rest is necessary and should be conducted under the direction of the SSO.
- Wear personal cooling devices. These are two basic designs; units with pockets for holding frozen
  packets and units that circulate fluid from a reservoir through tubes to different parts of the body.
  Both designs can be in the form of a vest, jacket, or coverall. Some circulating units also have a cap
  for cooling the head.
- Wear long cotton underwear under chemical protective clothing. The cotton will absorb perspiration
  and will hold it close to the skin. This will provide the body with the maximum cooling available from
  the limited evaporation that takes place beneath chemical resistant clothing. It also allows for rapid
  cooling of the body when the protective clothing is removed.

Heat stress is a significant hazard associated with using protective equipment in hot weather environments. Local weather conditions may produce conditions, which will require restricted work schedules in order to protect employees.

Appendix C contains procedures for heat stress; these will be used as a guideline and to provide additional information.

#### 5.2.4 Cold Stress

Cold temperatures are a significant potential hazard. Examples of cold temperature hazards are frostbite and hypothermia.

Frostbite is the most common injury resulting from exposure to cold. The extremities of the body are most often affected. The signs of frostbite are:

- The skin turns white or grayish-yellow.
- Pain is sometimes felt early but subsides later. Often there is no pain.
- The affected parts feel intensely cold and numb.

Hypothermia is characterized by shivering, numbness, drowsiness, muscular weakness, and a low internal body temperature when the body feels extremely warm. This can lead to unconsciousness and death. With both frostbite and hypothermia, the affected areas need to be warmed quickly. Immersion in warm water is an effective means of warming the affected areas quickly. In such cases, medical assistance will be sought.

To prevent these effects from occurring, persons working in the cold should wear adequate clothing and reduce the time spent in the cold area. The field SSO is responsible for determining appropriate time personnel should spend in adverse weather conditions and will monitor this.

Appendix C, which contains the Heat and Cold Stress Guidelines, provides additional information.

#### 5.2.5 Asbestos

Asbestos is a widely used, mineral-based material that is resistant to heat and corrosive chemicals. Depending on the chemical composition, fibers may range from course to silky. The properties that make asbestos fibers valuable to industry are its high-tensile strength, flexibility, heat and chemical resistance, and good frictional properties. Asbestos is a common naturally occurring group of fibrous minerals. Asbestos fibers have been used in a variety of building materials; generally, most asbestos is found in pipe insulation, doors, textures paints and plasters, structural fireproofing, and floor tiles. Friable asbestos (that is, material that contains more than 0.1% asbestos by weight and can be crumbled by hand) is a potential hazard

because it can release fibers into the air if damaged. Roux's personnel will not disturb any suspected asbestos material.

#### 5.2.6 Structural Integrity

The structural integrity of a building and the safety of the individuals inside depend on meeting and maintaining national and local building codes. Structural integrity can range from minor defects such as loose floorboards and roof leaks to major defects such as floors and walls sagging and collapsed roofs. Numerous other structural defects can exist with or without consequence to the occupants. If Roux's personnel detect a problem, they should notify their supervisor, who in turn, should seek the opinion of a qualified structural engineer to offer and opinion regarding the integrity of the building. If in the opinion of the qualified engineer it is unsafe, no work can proceed until a solution to rectify the situation has been performed.

The building is currently vacant but some trash and damaged wall and ceilings exist. As such, personnel will take this into consideration during the initial site visits and communicate this potential hazard during the safety tailgate meetings to all workers entering the site.

#### 5.2.7 Lockout/Tagout

Roux's and all Site contractors will develop a lockout/tagout plan in the event of the repair of electrical, pneumatic, hydraulic, mechanical systems, per OSHA requirements under 29 CFR 1910.147.

#### 5.3 Biological Hazards

The biological hazards, which have the potential to cause adverse health effects, are from exposure to domestic flies, mosquitoes, insects, animals and animal wastes, mold and bloodborne pathogens. The Job Safety Analysis (Appendix A) suggests controls for various hazards to be potentially encountered onsite.

#### 5.3.1 Insect Stings

Stings from insects are often painful, cause swelling and can be fatal if a severe allergic reaction such as anaphylactic shock occurs. If a sting occurs, the stinger should be scraped out of the skin, opposite of the sting direction. The area should be washed with soap and water followed by application of an ice pack.

If the victim has a history of allergic reaction, he/she should be taken to the nearest medical facility. If the victim has medication to reverse the effects of the sting, it should be taken immediately.

If the victim experiences a severe reaction, a constricting band should be placed between the sting and the heart. The bitten area should be kept below the heart if possible. A physician should be contacted immediately for further instructions.

#### **5.3.2 Animals and Animal Wastes**

Due to the urban location of the Site, there lies the potential for various wildlife to reside within or around the structures, including, but not limited to, pigeons, bats, mice, rats, squirrels, raccoons, and feral cats. Additionally, residences nearby may have dogs or dogs may be walked on the sidewalks surrounding the Site. Certain animals can represent significant sources (vectors) of disease transmission. Precautions to avoid or minimize potential contact with (biting) animals (such as some of the above listed) or animal waste and/or deceased animals should be considered prior to all field activities. Dogs, Rats, squirrels, raccoons,

feral cats, and other wild animals can inflict painful bites which can also cause disease (as in the case of rabid animals). Site personnel should avoid contact with any of the above.

If contact occurs, be sure to clean the area thoroughly with soap and water as soon as possible. If a bite occurs, the area should be cleaned thoroughly immediately with soap and water and medical attention should be sought.

#### 5.3.3 Mold

The disrepair in selected areas of the onsite structures may have led to leaking roofs and the collection of water which may have led to the growth of mold within sections of the building.

Although mold affects individuals differently and to different degrees, the following are some of the most common adverse health effects:

- Respiratory problems wheezing, difficulty breathing;
- Nasal and sinus congestion;
- Eyes burning, watery, reddened, blurry vision, light sensitivity;
- Dry, hacking cough;
- Sore throat;
- Nose and throat irritation;
- Shortness of breath and lung disease;
- Chronic fatigue;
- Skin irritation;
- Central nervous system (headaches, loss of memory, and mood changes);
- Aches and pains;
- Fever;
- Headaches;
- · Diarrhea; and
- Immune suppression.

Decisions about removing individuals from an affected area must be based on the results of a medical evaluation, and be made on a case-by-case basis.

Workers that discover the visible presence of mold in excess of 10 sq. feet need to notify the SSO for consultation. If a worker smells mold and feels that he/she is experiencing symptoms of exposure, he/she should retreat and report the symptoms to the SSO.

#### 5.3.4 Bloodborne Pathogens

The majority of the occupational tasks onsite will not involve a significant risk of exposure to blood, blood components, or body fluids. The highest risk of acquiring any bloodborne pathogen for employees onsite will be following an injury. When administering first aid care, there are potential hazards associated with bloodborne pathogens that cause diseases such as Human Immunodeficiency Virus (HIV), Hepatitis B

(HBV), Hepatitis A (HAV), Hepatitis C (HCV), or the Herpes Simplex Virus (HSV). An employee who has not received the appropriate certification should never execute first aid and/or CPR.

In order to minimize any potential pathogen exposure, all employees should use the hand washing facilities on a regular basis. Additionally, the following universal precautions should be followed to prevent further potential risk:

- Direct skin or mucous membrane contact with blood should be avoided.
- Open skin cuts or sores should be covered to prevent contamination from infectious agents.
- Body parts should be washed immediately after contact with blood or body fluids that might contain blood, even when gloves or other barriers have been used.
- Gloves and disposable materials used to clean spilled blood shall be properly disposed of in an approved hazardous waste container.
- First aid responders shall wear latex or thin mil nitrile gloves when performing any procedure risking contact with blood or body substances.
- Safety glasses will be worn to protect the eyes from splashing or aerosolization of body fluids.
- A CPR mask will be worn when performing CPR to avoid mouth-to-mouth contact.
- Work gloves will be worn to minimize the risk of injury to the hands and fingers when working on all
  equipment with sharp or rough edges.
- Never pick up broken glass or possible contaminated material with your unprotected hands.
- Never handle wildlife (living or deceased) encountered onsite.

#### 5.4 Hazard Assessment

Task	Hazards	Risk of Exposure
Decontamination	Inhalation/Skin Contact	Moderate
	Heat Stress/Cold Stress	Moderate
	Physical Injury	Moderate
	Noise	Low
In situ Application	Inhalation/ Skin Contact	Moderate
	Heat Stress/Cold Stress	Moderate
	Physical Injury	Moderate
	Noise	Low
Drilling/Sampling	Inhalation/ Skin Contact	Moderate
	Heat Stress/Cold Stress	Moderate
	Noise	Moderate/High
	Physical Injury	Moderate

### 6. Training

#### 6.1 General Health and Safety Training

In accordance with Roux's corporate policies, and pursuant to 29 CFR 1910.120, hazardous waste site workers shall, at the time of the job assignment, have received a minimum of 40 hours of initial health and safety training for hazardous waste site operations. As a minimum, the training shall have consisted of instruction in the topics outlined in the above reference. Personnel who have not met the requirements for initial training will not be allowed to work in any Site activities in which they may be exposed to hazards (chemical or physical).

Completion of a 40-hour Health and Safety Training Course for Hazardous Waste Operations or an approved equivalent will fulfill the requirements of this section.

In addition to the required initial training, each employee shall have received 3 days of directly supervised on-the-job training. This training will address the duties the employees are expected to perform.

Roux's SSO has the responsibility of ensuring that personnel assigned to this project comply with these requirements.

#### 6.2 Annual Eight-Hour Refresher Training

Annual 8-hour refresher training will be required of all hazardous waste site field personnel in order to maintain their qualifications for fieldwork. The following topics will be reviewed; toxicology, respiratory protection, including air purifying devices and self-contained breathing apparatus (SCBA), medical surveillance, decontamination procedures, and personal protective clothing. In addition, topics deemed necessary by Roux's Health and Safety Director may be added to the above list.

#### 6.3 Site-Specific Training

Site personnel will receive training that will specifically address the activities, procedures, monitoring, and equipment for Site operations. It will include Site and facility layout, hazards, first aid equipment locations and emergency services at the Site, and will highlight all provisions contained within this HASP. This training will also allow field workers to clarify anything they do not understand and to reinforce their responsibilities regarding safety and operations for their particular activity.

#### **6.4 Onsite Safety Meetings**

Daily safety meetings will be presented each morning to discuss potential safety concerns for the upcoming activities.

The briefings will also provide a forum to facilitate conformance with safety requirements and to identify performance deficiencies related to safety during daily activities or as a result of safety audits by Roux or other involved parties.

#### 6.5 Additional Training

The CHSM may require additional or specialized training throughout the project. Such training shall be in the safe operation of heavy or power tool equipment or hazard communication training or other topic deemed Site appropriate.

#### 6.6 Subcontractor Training

All subcontractor personnel working on the Site shall have completed the 40-hour training requirement and meet the medical surveillance requirements found in Section 7.1. Subcontractor training shall be performed in accordance with 29 CFR 1910.120 and HASP specifications. In certain unique situations (e.g., mechanical failure of equipment), the non-trained individual performing emergency repairs may be allowed, at the discretion of the SSO, to perform repairs when no intrusive activities are being performed, and provisions have been made to mitigate potential exposure.

### 7. Medical Surveillance Procedures

#### 7.1 General

Roux and subcontractor personnel performing field work at the Site are required to have passed a complete medical surveillance examination in accordance with 29 CFR 1910.120(f). A physician's medical release for work will be confirmed by the SSO before an employee can begin Site activities. Such examinations shall include a statement as to the worker's present health status, the ability to work in a hazardous environment (including any required PPE, which may be used during temperature extremes), and the worker's ability to wear respiratory protection.

## 8. Site Control, Personal Protective Equipment, and Communications

A modified Site control approach may be utilized since activities will be limited to site inspection/geophysical survey, drilling and sampling only during this phase of work. If remedial work is necessary, the following four-zone approach will be used.

#### 8.1 Site Control

Based on the Site history and operations, a potential for the presence of hazardous material does exist. During drilling and sampling, work areas will be delineated with high visibility cones and/or caution tape. A dedicated decontamination area will be established to decontaminate all equipment used for sampling.

If remedial activities are necessary, a four-zone approach will be employed in order to prevent the spread of contamination from the disturbed areas onsite. The four zones include: the Exclusion Zone (EZ), the Contamination Reduction Zone (CRZ), Contamination Reduction Corridor (CRC) and the Support Zone (SZ). A stepped remedial approach will be managed, and the zones modified as the work progresses. Each of the areas will be defined through the use of control barricades and/or construction/hazard fencing. A clearly marked delineation between the SZ and the remaining three zones, the CRZ and CRC and the EZ will be maintained. The preferred method will utilize high visibility orange fencing and hand driven metal posts, or orange cones. Signage will be posted to further identify and delineate these areas.

#### 8.1.1 Support Zone

The Support Zone (SZ) is an uncontaminated area that will be the field support area for the Site operations. The SZ will contain the temporary project trailers and provides for field team communications and staging for emergency response. Appropriate sanitary facilities and safety equipment will be located in this zone. Potentially contaminated personnel or materials are not allowed in this zone. The only exception will be appropriately packaged/decontaminated and labeled samples. Meteorological conditions will be observed and noted from this zone, as well as those factors pertinent to heat and cold stress.

#### 8.1.2 Contamination Reduction Zone

A Contamination Reduction Zone (CRZ) is established between the exclusion zone and the support zone. The CRZ contains the Contamination Reduction Corridor (CRC) and provides an area for decontamination of personnel and equipment. The CRZ will be used for general Site entry and egress in addition to access for heavy equipment and emergency support services. Personnel are not allowed in the CRZ without:

- A buddy (co-worker);
- Appropriate PPE;
- Medical authorization;
- Training certification; and
- A need to be in the zone.

#### 8.1.3 Exclusion Zone

The area where contamination exists is considered to be the Exclusion Zone (EZ). All areas where excavation and handling of contaminated materials take place are considered the EZ. This zone will be

clearly delineated by orange high visibility fencing. Safety tape may be used as a secondary delineation within the EZ. The zone delineation markings may be opened in areas for varying lengths of time to accommodate equipment operation or specific construction activities. The SSO may establish more than one EZ where different levels of protection may be employed or where different hazards exist. Personnel are not allowed in the EZ without:

- A buddy (co-worker);
- Appropriate PPE;
- Medical authorization;
- · Training certification; and
- A need to be in the zone.

#### **8.2 Personal Protective Equipment**

#### 8.2.1 General

The level of protection worn by field personnel will be enforced by the SSO. Levels of protection for general operations are provided below and are defined in this section. Levels of protection may be upgraded at the discretion of the SSO. All decisions on the level of protection will be based upon a conservative interpretation by the SSO of the information provided by air monitoring results, environmental results and other appropriate information. Any changes in the level of protection shall be recorded in the health and safety field logbook.

#### **8.2.2 Personal Protective Equipment Specifications**

The initial level of personal protective equipment is Level D. It is not anticipated that either Level B or Level C protection will be necessary.

Although not anticipated, any tasks requiring Level B personal protective equipment (PPE) will utilize the following equipment:

- Positive pressure, full face piece, self-contained breathing apparatus (SCBA) or positive pressure, supplied air respirator with escape SCBA (NIOSH approved)
- Disposable coveralls (Tyvek, Poly-coated Tyvek, or Saranex)
- · Gloves, inner: latex or nitrile
- Gloves, outer: nitrile or neoprene
- Chemical resistant boots over the work boots
- Steel toe work boots
- Hard hat
- Hearing protection (as needed)
- Boot cover (as needed)

For tasks requiring Level C PPE, the following equipment may be used in any combination:

- Full-face, air purifying, canister-equipped respirators (NIOSH approved) utilizing Organic Vapor/Acid Gas and P-100 filters (half-face if approved by SSO)
- Disposable coveralls (Tyvek, Poly-coated Tyvek, or Saranex) as required
- Gloves, inner: latex or nitrile as required

- Gloves, outer: nitrile or neoprene as required
- Chemical resistant boots over the work boots as required
- Steel toe work boots
- Hard hat
- Hearing protection (as needed)
- Safety glasses (if half-mask is utilized)
- Boot covers (as needed)

The Minimum level of PPE for entry onto the Site is Level D PPE. The following equipment shall be used:

- Work uniform (long pants, sleeved shirt)
- Hard hat
- Steel toe work boots
- Safety glasses
- Boot covers (as needed)
- Hearing protection (as needed)
- Reflective safety vest

Modified Level D PPE consists of the following:

- Regular Tyvek coveralls (Poly-coated Tyvek as required)
- Outer gloves: leather, cotton, neoprene or nitrile (as required)
- Inner gloves: latex or nitrile (doubled) as required
- Chemical resistant boots over work boots (as required)
- Steel toe work boots
- Hard hat
- Safety glasses
- Hearing protection as needed
- Reflective safety vest

#### 8.2.3 Initial Levels of Protection

Levels of protection for the proposed scope of work may be upgraded or downgraded depending on directreading instruments or personnel monitoring. The following are the initial levels of protection that shall be used for each planned field activity:

Initial level of PPE
D
D
D
D
D
D

#### 8.3 Communications

If working in level C/B respiratory protection is required, personnel may find that communication becomes a more difficult task and process to accomplish. Distance and space further complicate this. In order to address this problem, electronic instruments, mechanical devices, or hand signals will be used as follows:

<u>Telephones</u> – Mobile telephones will be carried by designated personnel for communication with emergency support services/facilities.

<u>Radios</u> – Two-way radios will be utilized onsite for communications between field personnel in areas where visual contact cannot be maintained and where hand signals cannot be employed.

<u>Air Horn</u> – Available as posted in the Site trailer or support zone to alert field personnel to an emergency situation. The emergency signal will be the sharp blasts of the air horn.

<u>Hand Signals</u> – This communication method will be employed by members of the field team along with use of the buddy system. Signals become especially important when in the vicinity of heavy moving equipment and when using Level B respiratory equipment. The signals shall become familiar to the entire field team before Site operations commence, and will be reinforced and reviewed during site specific training.

<u>Signal</u>	<u>Meaning</u>
Hand gripping throat	Out of air; can't breathe
Grip partner's wrist	Leave area immediately; no debate
Hands on top of head	Need assistance
Thumbs up	OK; I'm all right; I understand
Thumbs down	No; Unable to understand you, I'm not all right

### 9. Monitoring Procedures

#### 9.1 General

A Community Air Monitoring Plan ("CAMP") will be implemented onsite, in which VOCs will be monitored in the work area during ground intrusive activities. The New York State Department of Health (NYSDOH) Generic CAMP as provided in DER-10, Appendix 1A, is included in Appendix E of this HASP. VOCs will be monitored as a precautionary measure. The design of the CAMP is intended to provide a measure of protection for the onsite workers not directly involved with the subject work activities from potential airborne contaminant releases as a direct result of remedial work activities. Monitoring will be performed to verify the adequacy of the Level D respiratory protection, to aid in Site layout, and to document monitoring results. If air monitoring in the work areas indicates the presence of potentially hazardous materials, control measures will be implemented. All monitoring instruments shall be operated by qualified personnel only and will be calibrated prior to use daily or more often, as necessary. The SSO is responsible for ensuring that appropriate monitoring, levels of protection, and safety procedures are followed.

#### 9.2 Exclusion Zone Monitoring

#### 9.2.1 Instrumentation

The following monitoring instruments will be available for use during field operations as necessary:

<u>Photoionization Detector</u> (PID) with 10.6 EV probe or Flame Ionization Detector (FID) or equivalent.

A PID organic vapor meter shall be used to monitor VOCs in active work areas during the soil intrusive activities.

Calibration records shall be documented and recorded daily and included in the daily Health and Safety Briefing Form (Appendix F) or Site designated field notebook.

#### 9.2.2 Action Levels

Action levels for the upgrading of PPE requirements in the HASP will apply to all Site work during investigation and remediation activities at the Site. Action levels are for known contaminants using direct reading instruments in the Breathing Zone (BZ) for VOCs and particulates, and at the source for combustible gases. The BZ will be determined by the SSO, but is typically 4 to 5 feet above the work area surface or elevation. The action levels to be utilized for the Site are found in Table 2.

#### 9.2.3 Monitoring During Field Activities

<u>Intrusive Operations</u> – Continuous Personnel Breathing Zone Air Monitoring will be performed by the SSO during drilling activities. Real-time monitoring for all onsite activities will be accomplished as follows:

Monitoring of VOCs in the work zones.

The frequency of monitoring may be modified by the SSO, after consultation with the Project Manager. The rationale for any modification must be documented in the HASP.

### 10. Safety Considerations

#### 10.1 General

In addition to the specific requirements of this HASP, common sense should be used at all times. The following general safety rules and practices will be in effect at the site.

- All open holes, trenches, and obstacles will be properly barricaded in accordance with local Site
  needs and requirements. Proximity to traffic ways, both pedestrian and vehicular, and location of
  the open hole, trench, or obstacle will determine these needs.
- All excavation and other Site work will be planned and performed with consideration for underground lines.
- Smoking and ignition sources in the vicinity of potentially flammable or contaminated material are strictly prohibited.
- Drilling, boring, and use of cranes and drilling rigs, erection of towers, movement of vehicles and
  equipment, and other activities will be planned and performed with consideration for the location,
  height, and relative position of aboveground utilities and fixtures, including signs; lights; canopies;
  buildings and other structures and construction; and natural features such as trees, boulders, bodies
  of water, and terrain.
- When working in areas where flammable vapors may be present, particular care shall be exercised
  with tools and equipment that may be sources of ignition. All tools and equipment provided must be
  properly bonded and/or grounded.
- Approved and appropriate safety equipment (as specified in this HASP), such as eye protection, hard
  hats, hand protection (nitrile, leather and/or cut resistant gloves as necessary), foot protection, and
  respirators, must be worn in areas where required. In addition, eye protection must be worn when
  sampling soil or water that may be contaminated.
- All site personnel may be called upon to use respirator protection in some situations. Fit testing will
  be necessary for all persons using respirators. The criteria for facial hair will be determined by the
  SSO. In general, the guideline is that facial hair cannot impede the fit of the respirator.
- No smoking, eating, chewing tobacco, gum chewing or drinking will be allowed outside the SZ.
- Contaminated tools and hands must be kept away from the face.
- Personnel must use personal hygiene safe guards (washing up) at the end of the shift.
- Each sample must be treated and handled as though it were contaminated.
- Persons with long hair and/or loose-fitting clothing that could become entangled in power equipment must take adequate precautions.
- Horseplay is prohibited in the work area.
- Work while under the influence of intoxicants, narcotics, or controlled substances is strictly prohibited.

#### 10.2 Traffic Control

Traffic control methods and barricades will be used as needed when working in areas of vehicular traffic. Since the site is fenced off, outside vehicular and pedestrian traffic is not considered to be an issue. Any work that may take place outside the fenced area of the property (i.e., public sidewalk areas) will utilize cones and caution tape to delineate the work area and restrict the public from entering the work zone.

#### 10.3 Sample Handling

Personnel responsible for handling of samples will wear the prescribed level of protection. Samples are to be identified as to their hazard and packaged as to prevent spillage or breakage. Any unusual sample conditions shall be noted. Laboratory personnel and all field personnel shall be advised of sample hazard levels and the potential contaminants present. This can be accomplished by a phone call to the lab coordinator and/or including a written statement with the samples reviewing lab safety procedures in handling in order to assure that the practices are appropriate for the suspected contaminants in the sample.

## 11. Decontamination and Disposal Procedures

#### 11.1 Contamination Prevention

Contamination prevention should minimize worker exposure and help ensure valid sample results by precluding cross-contamination. Procedures for contamination avoidance include:

#### Personnel

- Do not walk through areas of obvious or known contamination.
- Do not directly handle or touch contaminated materials.
- Make sure that there are no cuts or tears on PPE.
- Do not eat or drink in contaminated areas.
- Fasten all closures in suits; cover with tape, if necessary.
- Particular care should be taken to protect any skin injuries.
- Stay upwind of airborne contaminants.
- Do not carry cigarettes, cosmetics, gum, etc., into contaminated areas.

#### Sampling/Monitoring

- When required by the SSO, cover instruments with clear plastic, leaving openings for sampling ports.
- Bag sample containers prior to emplacement of sample material.

#### **Heavy Equipment**

- Care should be taken to limit the amount of contamination that comes in contact with heavy equipment (tires, contaminated augers).
- If contaminated tools are to be placed on non-contaminated equipment for transport to a decontamination area, plastic should be used to keep the equipment clean.
- Dust control measures including water misting will be used on roads inside the Site boundaries.

#### 11.2 Personnel Decontamination

A field wash for equipment and PPE shall be set up and maintained for all persons exiting the EZ. The system will include a gross wash and rinse for all disposable clothing and boots worn in the EZ. As necessary, equipment and facilities will be available for personnel to wash their hands, arms, neck, and face.

#### 11.3 Equipment Decontamination

All potentially contaminated equipment used at the Site will be decontaminated to prevent contaminants from leaving the Site. The decontamination area will provide for the containment of all wastewater from the decontamination process. Respirators and any other PPE that comes in contact with contaminated materials shall pass through a field wash in the decontamination area, and a thorough decontamination at the end of the day. All decontamination rinse water will be collected and managed in accordance with all applicable regulations.

#### 11.4 Decontamination during Medical Emergencies

If emergency life-saving first aid and/or medical treatment are required, normal decontamination procedures may need to be abbreviated or omitted. The Site SSO or designee will accompany contaminated victims to the medical facility to advise on matters involving decontamination, when necessary. The outer garments can be removed if they do not cause delays, interfere with treatment, or aggravate the problem. Respiratory equipment must always be removed. Protective clothing can be cut away. If the outer contaminated garments cannot be safely removed, a plastic barrier between the individual and clean surfaces should be used to help prevent contaminating the inside of ambulances and/or medical personnel. Outer garments are then removed at the medical facility. No attempt will be made to wash or rinse the victim, unless it is known that the individual has been contaminated with an extremely toxic or corrosive material, which could also cause severe injury or loss of life to emergency response personnel. For minor medical problems (ambulatory) or injuries, the normal decontamination procedures will be followed. Note that heat stroke requires prompt treatment to prevent irreversible damage or death. Protective clothing must be promptly removed. Less serious forms of heat stress also require prompt attention and removal of protective clothing immediately. Unless the victim is obviously contaminated, decontamination should be omitted or minimized, and treatment begun immediately.

#### 11.5 Disposal Procedures

A system of segregating all waste will be developed by the SSO.

All discarded materials, waste materials, or other objects shall be handled in such a way as to preclude the potential for spreading contamination, creating a sanitary hazard, or causing litter to be left onsite. All potentially contaminated materials (e.g., clothing, gloves, etc.,) will be bagged or drummed as necessary, labeled and segregated for disposal. All non-contaminated materials shall be collected and bagged for appropriate disposal as domestic waste.

## 12. Emergency Plan

Should an emergency situation occur, the emergency plan, outlined in this section, shall be known by Roux and all Subcontractors prior to the start of work. The emergency plan will be available for use at all times during Site work. The plan provides the phone numbers for the fire, police, ambulance, hospital, urgent care, poison control centers, and directions to the hospital from the Site. This information is to be found in Section 1.2 of the HASP.

Various individual Site characteristics will determine preliminary actions taken to assure that this emergency plan is successfully implemented in the event of a Site emergency. Careful consideration must be given to the proximity of neighborhood housing or places of employment, and to the relative possibility of Site release of vapors, which could affect the surrounding community.

The emergency coordinator shall implement the contingency plan whenever conditions at the Site warrant such action. The coordinator will be responsible for coordination of the evacuation, emergency treatment, and transport of Site personnel as necessary, and notification of emergency response units and the appropriate management staff.

In cases where the project manager is not available, the SSO shall serve as the alternate emergency coordinator.

The SSO during an emergency will perform air monitoring as needed, as well as lend assistance and provide health and safety information to responding emergency personnel.

Site Personnel will endeavor to keep non-essential personnel away from the incident until the appropriate emergency resources arrive. At that time, the responders will take control of the Site. Site personnel may be asked to lend assistance to emergency personnel such as during evacuations, help with the injured, etc.

#### 12.1 Evacuation

Evacuation procedures will be discussed prior to the start of work and periodically during safety meetings. In the event of an emergency situation, such as fire, or explosion, an air horn, automobile horn, or other appropriate device will be sounded for three (3) sharp blasts indicating the initiation of evacuation procedures. The emergency evacuation route shall be known by all site workers. Under no circumstances will incoming personnel or visitors be allowed to proceed into the area once the emergency signal has been given. The SSO or project manager must ensure that access for emergency equipment is provided and that all combustion apparatuses have been shut down once the alarm has been sounded. All Site personnel will assemble in the designated nearest safe location. Once the safety of all personnel is established, the fire department and other emergency response groups will be notified by telephone of the emergency.

#### 12.2 Personnel Injury

Emergency first aid shall be applied onsite as appropriate. If necessary, the individual shall be decontaminated and transported to the nearest hospital. The SSO will supply medical data sheets to medical personnel and complete the accident/incident reports in accordance with Section 13.4 of the HASP.

The ambulance/rescue squad shall be contacted for transport as necessary in an emergency. However, since some situations may require transport of an injured party by other means, the injured person shall be escorted to the hospital. A map to this facility is shown in Figure 2.

#### 12.3 Accident/Incident Reporting

As soon as first aid and/or emergency response needs have been met, the following parties are to be contacted by telephone: (Direct contact, no phone messages).

			Office:	<u>Cell</u> :
1.	Project Director:	Craig Werle	631-232-2600	631-793-1535
2.	Site Health and Safety Officer:	Rachel Henke	631-232-2600	919-619-1503
3.	Office Health and Safety Manager:	Tally Sodre	631-232-2600	631-620-2409
3.	Corporate Health and Safety Mgr:	Joseph Gentile	856-423-8800	610-844-6911

^{5.} The employer of any injured worker, if not a Roux employee.

The Health & Safety Near/Loss – Loss (Incident) Notification Flow Chart (SOP 1.8) is included in Appendix G. Written confirmation of verbal reports is to be submitted within 24 hours. The report form entitled "Accident Report and Investigation Form" (Appendix G) is to be used for this purpose. All representatives contacted by telephone are to receive a copy of this report. If the employee involved is not a Roux employee, his employer shall receive a copy of the report. In addition to filling out the Accident Report and Investigation Form, if a Roux employee is involved in a vehicle accident, the employee must also complete the Acord form (Appendix H).

For reporting purposes, the term accident refers to fatalities, lost time injuries, spill or exposure to hazardous materials (radioactive materials, toxic materials, explosive or flammable materials), fire, explosion, property damage, or potential occurrence (i.e., near miss) of the above.

Any information released from the health care provider, which is not deemed confidential patient information, is to be attached to the appropriate form. Any medical information, which is released by patient consent, is to be filed in the individual's medical record and treated as confidential.

#### 12.4 Personnel Exposure

Skin Contact:	Use copious amounts of soap and water. Wash/rinse affected area thoroughly, then provide appropriate medical attention. Eyes should be rinsed for 15 minutes upon chemical contamination.
<u>Inhalation</u> :	Move to fresh air and/or, if necessary, decontaminate/transport to hospital.
Ingestion:	Decontamination and transport to emergency medical facility.
Puncture Wound or Laceration:	Decontamination and transport to emergency medical facility.

#### 12.5 Adverse Weather Conditions

In the event of adverse weather conditions, the SSO or project manager will determine if work can continue without sacrificing the health and safety of all field workers. Some of the items to be considered prior to determining if work should continue are:

- · Potential for heat stress and heat-related injuries;
- · Potential for cold stress and cold-related injuries;
- · Treacherous weather-related conditions;
- · Limited visibility; and
- Electrical storm potential.

Site activities will be limited to daylight hours and acceptable weather conditions. Inclement working conditions include heavy rain, fog, high winds, and lightning. Observe daily weather reports and evacuate if necessary in case of inclement weather conditions.

## 13. Logs, Reports and Record Keeping

The following is a summary of required health and safety logs, reports, and record keeping for this project.

### 13.1 Medical and Training Records

The employer keeps medical and training records. The subcontractor employer must provide verification of training and medical qualifications to the SSO. The SSO will keep a log of personnel meeting appropriate training and medical qualifications for Site work. The log will be kept in the project file. Roux will maintain medical records in accordance with 29 CFR 1910.20.

#### 13.2 Onsite Log

The SSO or project manager will keep a log of onsite personnel daily in the designated field book.

#### 13.3 Exposure Records

Any personal monitoring results, laboratory reports, calculations, and air sampling data sheets are part of an employee exposure record. These records will be kept by Roux in accordance with 29 CFR 1910.20.

#### 13.4 Accident/Incident Reports

An accident/incident report must be completed following procedures given in Appendix G. The originals will be sent to Roux for maintenance. Copies will be distributed as stated. A copy of the forms will be kept in the project file.

#### 13.5 OSHA Form 300

An OSHA Form 300 (Log of Occupational Injuries and Illnesses) (Appendix I) will be kept at the Site. All reportable injuries or illnesses will be recorded on this form. At the end of the project, the original will be sent to Roux for maintenance. Subcontractor employers must also meet the requirements of maintaining an OSHA 300 form. The US Department of Labor OSHA Job Safety and Health Protection notice is included in Appendix J.

#### 13.6 Daily Safety Logs

The Health and Safety Briefing/Tailgate Meeting form in Appendix F will be completed daily by the SSO and submitted to the project manager.

#### 13.7 Close-Out Safety Report

At the completion of the work, if requested, Roux will submit a closeout Safety Report that will include all logs and reports generated during the project. The report will be signed and dated by the SSO and submitted to the Safety Manager and/or Owner's representative.

## 14. Field Team Review

Each Roux employee or subcontractor shall sign this section after site specific training is completed and before being permitted to work at the Site.

I have read and reviewed the Site Health and Safety Plan prepared for this Site. I understand and will comply with the provisions contained therein.

Site/Project: Former Kristal Auto Mall

5200 Kings Highway Brooklyn, New York 11234

Date	Name	Signature	Company

### SSO CERTIFICATION OF HOSPITAL DIRECTIONS

Name of Roux SSO: Rachel Henke	
Date:	
	, I personally drove the route to University Hospital g and Directions were/were not as listed in the plan. Listed ections.
Roux Site Health and Safety Officer	

## Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

### **TABLES**

- 1. Toxicological, Physical and Chemical Properties of Compounds Potentially Present at the Site
- 2. Action Levels for Worker Breathing Zone

2861.0001Y.103/CVRS ROUX

Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
1,1,1-Trichloroethane	71-55-6	TWA 350 ppm STEL 440 ppm C 440 ppm	C 350 ppm (1900 mg/m ³ ) [15- minute]	. TWA 350 ppm (1900 mg/m³)	700 ppm	inhalation, ingestion, skin	Irritation eyes, skin; headache, lassitude (weakness, exhaustion), central nervous system depression, poor equilibrium; dermatitis; cardiac		Colorless liquid with a mild, chloroform-like odor. BP: 165°F UEL: 12.5% LEL: 7.5%
1,1,2-Trichloroethane	79-00-5	TWA 10 ppm	Ca TWA 10 ppm (45 mg/m³) [skin]	TWA 10 ppm (45 mg/m³) [skin]	Ca [100 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, nose; central nervous system depression; liver, kidney damage; dermatitis; [potential occupational carcinogen]	Eyes, respiratory system, central nervous system, liver, kidneys	Colorless liquid with a sweet, chloroform-like odor. BP: 237°F UEL: 15.5% LEL: 6%
1,1-Dichloroethane	75-34-3	TWA 100 ppm	TWA 100 ppm (400 mg/m ³ )	TWA 100 ppm (400 mg/m ³ )	3000 ppm	inhalation, ingestion, skin and/or eye contact	Irritation skin; central nervous system depression; liver, kidney, lung damage	Skin, liver, kidneys, lungs central nervous system	, Colorless, oily liquid with a chloroform-like odor. BP: 135°F FI.P: 2°F UEL: 11.4% LEL: 5.4%
1,1-Dichloroethene	75-35-4	TWA 5 ppm	Ca (lowest feasible concentra	tiTWA 1ppm	Ca [N.D.]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, throat; dizziness, headache, nausea, dyspnea (breathing difficulty); liver, kidney disturbance; pneumonitis; [potential occupational carcinogen]	Eyes, skin, respiratory system, central nervous system, liver, kidneys	Colorless liquid or gas (above 89°F) with a mild, sweet, chloroform-like odor. BP: 89°F FI.P: -2°F UEL: 15.5% LEL: 6.5% Class IA Flammable Liquid
1,2,4-Trimethylbenzene	95-63-6	None established	TWA 25 ppm (125mg/m ³ )	None established	N.D.	Inhalation; ingestion; skin and/or eye contact	Eye, skin, nose, and throat, resp syst irritation; bronchitis; hypochromic anemia; headache, drowsiness, weakness, dizziness, nausea, incoordination, vomit,	Eyes, skin, resp sys, CNS, blood	Clear, colorless liquid with a distinctive, aromatic odor BP: 337°F FL.P: 112°F UEL: 6.4% LEL: 0.9% Class II Flammable liquid
1,2,4-Trimethylbenzene	95-63-6	TWA 25 ppm (125	л TWA 25 ppm (125 mg/m³)	None established	N.D.	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, fatigue, dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eyes, skin, respiratory system, central nervous system, blood	Clear, colorless liquid with a distinctive, aromatic odor. BP: 337°F FI.P: 112°F UEL: 6.4% LEL: 0.9% Class II Flammable Liquid
1,2-Dichlorobenzene	95-50-1	TWA 25 ppm STEL 50 ppm	C 50 ppm (300 mg/m³)	C 50 ppm (300 mg/m³)	200 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, nose; liver, kidney damage; skin blisters	Eyes, skin, respiratory system, liver, kidneys	Colorless to pale-yellow liquid with a pleasant, aromatic odor. [herbicide] BP: 357°F FI.P: 151°F UEL: 9.2% LEL: 2.2% Class IIIA Combustible Liquid



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
1,2-Dichloroethane	107-06-2	TWA 10 ppm	Ca TWA 1 ppm (4 mg/m³) STEL 2 ppm (8 mg/m³)	TWA 50 ppm C 100 ppm 200 ppm [5-minute maximum peak in any 3 hours]	Ca [50 ppm]	inhalation, ingestion, skin absorption, skin and/or eye contact	Irritation eyes, corneal opacity; central nervous system depression; nausea, vomiting; dermatitis; liver, kidney, cardiovascular system damage; [potential occupational carcinogen]	Eyes, skin, kidneys, liver, central nervous system, cardiovascular system	Colorless liquid with a pleasant, chloroform-like odor. [Note: Decomposes slowly, becomes acidic & darkens in color.] BP: 182°F FI.P: 56°F UEL: 16% LEL: 6.2% Class IB Flammable Liquid
1,2-Dichloroethene (total)	540-59-0	TWA 200 ppm (790	TWA 200 ppm (790 mg/m ³ )	TWA 200 ppm (790 mg/m³)	1000 ppm	inhalation, ingestion, skin and/or eye contact	Irritation eyes, respiratory system; central nervous system depression	Eyes, respiratory system, central nervous system	Colorless liquid (usually a mixture of the cis & trans isomers) with a slightly acrid, chloroform-like odor BP: 118-140°F FI.P: 36-39°F UEL: 12.8% LEL: 5.6% Class IB Flammable Liquid
1,3,5-Trimethylbenzene	108-67-8	None established	TWA 25 ppm (125mg/m³)	None established	N.D.	Inhalation; ingestion; skin and/or eye contact	Eye, skin, nose, and throat, resp syst irritation; bronchitis; hypochromic anemia; headache, drowsiness, weakness, dizziness, nausea, incoordination, vomit, confusion; chemical pneumonitis	Eyes, skin, resp sys, CNS, blood	Clear, colorless liquid with a distinctive, aromatic odor BP: 329°F FL.P: 122°F Class II Flammable liquid
1,3,5-Trimethylbenzene	108-67-8	TWA 25 ppm (125	n TWA 25 ppm (125 mg/m³)	None established	N.D	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat, respiratory system; bronchitis; hypochromic anemia; headache, drowsiness, lassitude (weakness, exhaustion), dizziness, nausea, incoordination; vomiting, confusion; chemical pneumonitis (aspiration liquid)	Eyes, skin, respiratory system, central nervous system, blood	Clear, colorless liquid with a distinctive, aromatic odor. BP: 329°F FI.P: 122°F Class II Flammable Liquid
1,4-Dichlorobenzene	106-46-7	TWA 10 ppm	Ca	TWA 75 ppm (450 mg/m³)	Ca [150 ppm]	absorption, ingestion, skin	Eye irritation, swelling periorbital (situated around the eye); profuse rhinitis; headache, anorexia, nausea, vomiting; weight loss, jaundice, cirrhosis; in animals: liver, kidney injury; [potential occupational carcinogen]		Colorless or white crystalline solid with a mothball-like odor. [insecticide] BP: 345°F FI.P: 150°F LEL: 2.5% Combustible Solid
2,4-Dimethylphenol	105-67-9	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, respiratory system, mouth, throat, stomach; dizziness, weakness, fatigue, nausea, headache; systemic damage; moderate to severe eye injury.		Clear, colorless liquid with a faint ether or chloroform-like odor BP: 178°F



2 of 12

Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
2-Butanone (MEK)	78-93-3		TWA 200 ppm (590 mg/m³) STEL 300 ppm (885 mg/m³)	TWA 200 ppm (590 mg/m ³		inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose; headache; dizziness; vomiting;	Eyes, skin, respiratory	Colorless liquid with a moderately sharp, fragrant, mint or acetone-like odor. BP: 175°F I.P: 16°F UEL(200°F): 11.4% LEL(200°F): 1.4% Class IB Flammable Liquid
Acenaphthene	83-32-9	None established	None established	None established	None established	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, respiratory system	Eyes, skin, respiratory system	Brown solid
Acetone	67-64-1	TWA 200 ppm STEL 500 ppm	TWA 250 ppm (590 mg/m ³ )	TWA 1000 ppm (2400 mg/m³)	2500 ppm [10%LEL]	inhalation, ingestion, skin and/or eye contact	Irritation eyes, nose, throat; headache, dizziness, central nervous system depression; dermatitis	Eyes, skin, respiratory system, central nervous system	Colorless liquid with a fragrant, mint-like odor BP: 133°F FI.P: 0°F UEL: 12.8% LEL: 2.5% Class IB Flammable Liquid
Anthracene	65996-93-2	TWA 0.2 mg/m ³	Ca TWA 0.1 mg/m ³ (cyclohexane-extractable fraction)	TWA 0.2 mg/m ³ (benzene-soluble fraction)	Ca [80 mg/m ³ ]	inhalation, skin and/or eye contact	Dermatitis, bronchitis, [potential occupational carcinogen]	respiratory system, skin, bladder, kidneys	Black or dark-brown amorphous residue. Combustible Solids
Antimony	7440-36-0	TWA 0.5 mg/m ³	TWA 0.5 mg/m ³	TWA 0.5 mg/m ³	50 mg/m ³ (as	sinhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat, mouth; cough; dizziness; headache; nausea, vomiting, diarrhea; stomach cramps; insomnia; anorexia; unable to smell properly	Eyes, skin, respiratory system, cardiovascular system	Silver-white, lustrous, hard, brittle solid; scale-like crystals; or a dark-gray, lustrous powder. BP: 2975°F
Arsenic (inorganic)	7440-38-2 (metal)	TWA 0.01 mg/m3	Ca C 0.002 mg/m3 [15-min]	TWA 0.010 mg/m3	Ca [5 mg/m3 (as As)]	Inhalation; ingestion; skin absorption; skin and/or eye contact	Ulceration of nasal septum, dermatitis, GI disturbances, peripheral neuropathy, resp irritation, hyperpigmentation of skin, [potential occupational carcinogen]	Liver, kidneys, skin, lungs, lymphatic sys	Metal: sliver-gray or tin-white, brittle, odorless solid BP: sublimes
Asbestos	1332-21-4	TWA 0.1 f/cc	Ca 100,000 fibers/m3	TWA 0.1 fiber/cm3	Ca [IDLH value has not been determined]	Inhalation; ingestion; skin and/or eye contact	Asbestosis (chronic exposure), dyspnea, interstitial fibrosis, restricted pulmonary function, finger clubbing, irritation eyes, [potential occupational carcinogen]	Respiratory system, eyes	, White or greenish (chrysotile), blue (crocidolite), or gray-green (amosite), fibrous, odorless solids. BP: decomposes
Asphalt fumes	8052-42-4	TWA 0.5 mg/m³(fumes)	Ca C 5 mg/m3 [15 min]	None established	Ca [IDLH value has not been determined]	Skin absorption; inhalation; skin and/or eye contact	Irritation eyes, resp sys	Eyes, respiratory system	Black or dark brown cement-like substance Combustible solid
Barium	7440-39-3	TWA 0.5 mg/m3	None established	TWA 0.5 mg/m3	None established	Inhalation, ingestion, skin contact	Irritation skin, respiratory system	Skin, eyes, respiratory system	Yellow white powder BP: 1640 C
Benzene	71-43-2	TWA 0.5 ppm STEL 2.5 ppm	Ca TWA 0.1 ppm STEL 1 ppm	TWA 1 ppm STEL 5 ppm	Ca [500 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, respiratory system; dizziness; headache, nausea, staggered gait; anorexia, lassitude (weakness, exhaustion); dermatitis; bone marrow depression; [potential occupational carcinogen]	Eyes, skin, respiratory system, blood, central nervous system, bone marrow	Colorless to light yellow liquid with an aromatic odor [Note: Solid below 42 °F] BP: 176°F FI.Pt = 12°F LEL: 1.2% UEL: 7.8% Class B Flammable liquid



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	C46 #	ACCILI TI V	NIOCH DEL	OCHA DEI	IDI U	Routes of	Tavia Branastica	Townst Owns	Physical/Chamical Process
Compound Benzo[a]anthracene	<b>CAS #</b> 56-55-3	ACGIH TLV  None established	NIOSH REL None established	None established	None established	Inhalation; ingestion; skin absorption; skin and/or eye contact	Toxic Properties Irritation eyes, skin, respiratory system, CNS	Target Organs Skin	Physical/Chemical Properties Pale Yellow crystal, solid BP: 438 C
Benzo[a]pyrene	50-32-8	None established	TWA 0.1 mg/m3	TWA 0.2 mg/m3	None established	Inhalation; ingestion; skin absorption; skin and/or eye contact	POISON. This material is an experimental carcinogen, mutagen, tumorigen, neoplastigen and teratogen. It is a probable carcinogen in humans and a known human mutagen. IARC Group 2A carcinogen. It is believed to cause bladder, skin and lung cancer. Exposure to it may damage the developing foetus. May cause reproductive damage. Skin, respiratory and eye irritant or burns.		Yellow crystals or powder [found in cigarette smoke, coal tar, fuel exhaust gas and in many other sources] BP: 495 C
Benzo[b]fluoranthene	205-99-2	None established	TWA 0.1 mg/m3	TWA 0.2 mg/m3	None established	Inhalation; ingestion; skin and/or eye contact	No data were identified on the toxicity of benzo[b]fluoranthene to humans. Based on results of studies in animals, IARC concluded that benzo[b]fluoranthene is possibly carcinogenic to humans	e bladder, kidneys	Off-white to tan powder
Benzo[k]fluoranthene	207-08-9	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, respiratory tract, gastrointestinal; fatal if swallowed, inhaled, absorbed through the skin; vomiting, nausea, diarrhea	Lungs, respiratory system	Yellow crystals BP: 480 C
Beryllium	7440-41-7 (metal)	TWA 0.002 mg/m ³	Ca C 0.0005 mg/m ³	TWA 0.002 mg/m³ C 0.005 mg/m³ (30 minutes) with a maximum peak of 0.025 mg/m³	Ca [4 mg/m³ (as Be)]	inhalation, skin and/or eye contact	Berylliosis (chronic exposure): anorexia, weight loss, lassitude (weakness, exhaustion), chest pain, cough clubbing of fingers, cyanosis, pulmonary insufficiency; irritation eyes; dermatitis; [potential occupational carcinogen]	system	Metal: A hard, brittle, gray-white solid. BP: 4532°F
Bis(2-ethylhexyl) phthalate	117-81-7	TWA 5 mg/m ³	TWA 5 mg/m ³ STEL 10 mg/m ³ (do not exceed during andy 15- minute work period)	TWA 5 mg/m ³	None established	inhalation, skin and/or eye contact	Irritation eyes, skin, nose,	Eyes, skin, nose, respiratory system, nervous system, reproductive system, liver	Colorless to light colored, thick liquid with slight odor
Butane	106-97-8	TWA 1000 ppm	TWA 800 ppm (1900 mg/m ³ )	None established	None established	inhalation, skin and/or eye contact (liquid)	Drowsiness, narcosis, asphyxia; liquid: frostbite	central nervous system	Colorless gas with a gasoline- like or natural gas odor. BP: 31°F UEL: 8.4% LEL: 1.6% Flammable Gas



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Cadmium	7440-43-9 (metal)	TWA 0.01 mg/m ³	Ca	TWA 0.005 mg/m ³	Ca [9 mg/m³ (as Cd)]	inhalation, ingestion	Pulmonary edema, dyspnea (breathing difficulty), cough, chest tightness, substernal (occurring beneath the sternum) pain; headache; chills, muscle aches; nausea, vomiting, diarrhea; anosmia (loss of the sense of smell), emphysema, proteinuria, mild anemia; [potential occupational carcinogen]	respiratory system, kidneys, prostate, blood	Metal: Silver-white, blue-tinged lustrous, odorless solid. BP: 1409°F
Carbon Disulfide	75-15-0	TWA 1 ppm	TWA 1 ppm (3 mg/m³) STEL 10 ppm (30 mg/m³) [skin]	TWA 20 ppm C 30 ppm 100 ppm (30-minute maximum peak)	500 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Dizziness, headache, poor sleep, lassitude (weakness, exhaustion), anxiety, anorexia,	central nervous system, peripheral nervous system, cardiovascular system, eyes, kidneys, liver, skin, reproductive system	Colorless to faint-yellow liquid with a sweet ether-like odor. BP: 116°F FI.P: -22°F UEL: 50.0% LEL: 1.3% Class IB Flammable Liquid
Chlorobenzene	108-90-7	TWA 10 ppm	None established	TWA 75 ppm (350 mg/m ³ )	1000 ppm	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose; drowsiness, incoordination; central nervous system depression; in animals: liver, lung, kidney injury	Eyes, skin, respiratory system, central nervous system, liver	Colorless liquid with an almond- like odor BP: 270°F FI.P: 82°F UEL: 9.6% LEL: 1.3%
Chloroethane	75-00-3	TWA 100ppm	Handle with caution in the workplace	TWA 1000 ppm (2600 mg/m ³ )	3800 ppm [10%LEL]	inhalation, skin absorption (liquid), ingestion (liquid), skin and/or eye contact	Incoordination, inebriation; abdominal cramps; cardiac arrhythmias, cardiac arrest; liver, kidney damage	Liver, kidneys, respiratory system, cardiovascular system, central nervous system	Colorless gas or liquid (below 54°F) with a pungent, ether-like odor. BP: 54°F FI.P: NA (Gas) -58°F (Liquid) UEL: 15.4% LEL: 3.8%
Chloroform	67-66-3	TWA 10 ppm	Ca STEL 2 ppm (9.78 mg/m³) [60-minute]	C 50 ppm (240 mg/m ³ )	Ca [500 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; dizziness, mental dullness, nausea, confusion; headache, lassitude (weakness, exhaustion); anesthesia; enlarged liver; [potential occupational carcinogen]	Liver, kidneys, heart, eyes, skin, central nervous system	Colorless liquid with a pleasant odor BP: 143°F
Chromium	7440-47-3	TWA 0.5 mg/m³ (metal and Cr III compounds) TWA 0.05 mg/m³ (water-soluble Cr IV compounds) TWA 0.01 mg/m³ (insoluble Cr IV compounds)	TWA 0.5 mg/m ³	TWA 1 mg/m ³	250 mg/m³ (as Cr)	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin; lung fibrosis (histologic)	Eyes, skin, respiratory system	Blue-white to steel-gray, lustrous, brittle, hard, odorless solid. BP: 4788°F
Chrysene; Phenanthrene; Pyrene; Coal tar pitch volatiles	65996-93-2	TWA 0.2 mg/m3	Ca TWA 0.1 mg/m³ (cyclohexane extractable fraction)	TWA 0.2 mg/m ³ (benzene- -soluble fraction)	Ca [80 mg/m ³ ]	Inhalation, skin and/or eye contact	Dermatitis, bronchitis, [potential occupational carcinogen]	Respiratory system, skin, bladder, kidneys	Black or dark-brown amorphous residue. Combustible Solids



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

						Routes of			
Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Exposure	Toxic Properties	Target Organs	Physical/Chemical Propertie
cis-1,2-Dichloroethene	158-59-2	TWA 200 ppm	TWA 200 ppm	TWA 200 ppm	None established	inhalation, skin absorption, ingestion	Harmful if swallowed, inhaled, or absorbed through skin. Irritant. Narcotic. Suspected carcinogen	Skin	Colorless liquid BP: 60 C FI.P: 4 C UEL: 12.8% LEL: 9.7 %
Copper	7440-50-8	TWA 0.2mg/m ³ (fume) 1 mg/m ³ (dusts and mists)	TWA 1 mg/m ³	TWA 1 mg/m ³	100 mg/m³ (as Cu)	ingestion, skin	Irritation eyes, respiratory system; cough, dyspnea (breathing difficulty), wheezing	Eyes, skin, respiratory system, liver, kidneys (increase(d) risk with Wilson's disease)	Noncombustible Solid in bulk form, but powdered form may ignite. BP: 4703°F
Dibenzo[a,h]anthracene	53-70-3	None established	None established	None established	None established	Inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin	Eyes, skin; skin photosensitization.	Colorless crystalline powder BP: 524°C
Diesel Fuel #2	68476-34-6	None established	None established	Designated as an OSHA Select Carcinogen	None established	ingestion, skin and/or eye contact	Kidney damage; potential lung damage; suspected carcinogen; irritation of eyes, skin, respiratory tract; dizziness, headache, nausea; chemical pneumonitis (from aspiration of liquid); dry, red skin; irritant contact dermatitis; eye redness, pain.		Clear yellow brown combustible liquid; floats on water; distinct diesel petroleum hydrocarbon odor. BP: 356-716°F FI.P: 154.4-165.2°F LEL: 0.6% UEL: 7.0%
Ethylbenzene	100-41-4	TWA 100 ppm STEL 125 ppm	TWA 100 ppm (435 mg/m³) STEL 125 ppm (545 mg/m³)	TWA 100 ppm (435 mg/m³)	800 ppm [10%LEL]	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, mucous membrane; headache; dermatitis; narcosis, coma	Eyes, skin, respiratory system, central nervous system	Colorless liquid with an aromatic odor. BP: 277°F FI.P: 55°F UEL: 6.7% LEL: 0.8% Class IB Flammable Liquid
Fluoranthene	206-44-0	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; possible burns; heart and liver injury, pulmonary edema, respiratory arrest, gastrointestinal disturbances.	Heart, liver, lungs.	Yellow needles.
Fluorene	86-73-7	None established	None established	None established	None established	inhalation, ingestion, skin and/or eye contact	Irritation skin, digestive tract	Skin	White crystals BP: 563°F
Fuel Oil #2	68476-30-2	TWA 100mg/m ³ (aerosol and vapor, as total hydrocarbons)	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; CNS effects; nausea, vomiting, headache, cramping, dizziness, weakness, loss of coordination,, drowsiness; kidney, liver damage	Eyes, skin, CNS	Clear or yellow to red oily liquid kerosene-like odor BP: 347 - 689 °F UEL: 5-6% LEL: 0.7-1.0%
Gasoline	8006-61-9	TWA 300 ppm STEL 500 ppm	Carcinogen	None established	Ca [IDLH value has not been determined]	Skin absorption; inhalation; ingestion; skin and/or eye contact	Eyes and skin irritation, mucous membrane; dermatitis; headache; listlessness,	Eyes, skin, respiratory system, CNS, Liver, Kidneys	Clear liquid with a characteristic odor, aromatic FI.Pt = -45°F LEL = 1.4% UEL = 7.6% Classs 1B Flammable Liquid



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Hexachlorobutadiene	87-68-3	TWA 0.02 ppm	Ca TWA 0.02 ppm (0.24 mg/m³) [skin]	None established	Ca [N.D.]	inhalation, skin absorption, ingestion, skin	In animals: irritation eyes, skin, respiratory system; kidney damage; [potential occupational carcinogen]		Clear, colorless liquid with a mild, turpentine-like odor. BP: 419°F
Hydrogen Sulfide	7783-06-4	TWA (10 ppm) STEL (15 ppm) (adopted values for which changes are proposed in the NIC)	C 10 ppm (15 mg/m³) [10-minute]	C 20 ppm 50 ppm [10-minute maximum peak]	100 ppm	inhalation, skin and/or eye contact	Irritation eyes, respiratory system; apnea, coma, convulsions; conjunctivitis, eye pain, lacrimation (discharge of tears), photophobia (abnormal visual intolerance to light), corneal vesiculation; dizziness, headache, lassitude (weakness, exhaustion), irritability, insomnia; gastrointestinal disturbance; liquid: frostbite	Eyes, respiratory system, central nervous system	Colorless gas with a strong odor of rotten eggs. BP: -77°F UEL: 44.0% LEL: 4.0% Flammable Gas
Indeno[1,2,3-cd]pyrene	193-39-5	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; possible human carcinogen (skin); weakness; affect liver, lung tissue, renal tissue; impariment of blood forming tissue	Skin	Fluorescent green-yellow crystalline solid BP: 536 C
Indeno[1,2,3-cd]pyrene	193-39-5	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; possible human carcinogen (skin); weakness; affect liver, lung tissue, renal tissue; impariment of blood forming tissue	Skin	Yellowish crystal solid BP: 536 C
Isopropylbenzene	98-82-8	TWA 50 ppm	TWA 50 ppm (245 mg/m ³ ) [skin]	TWA 50 ppm (245 mg/m³) [skin]	900 ppm [10%LEL]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, mucous membrane; dermatitis; headache, narcosis, coma	Eyes, skin, respiratory system, central nervous system	Colorless liquid with a sharp, penetrating, aromatic odor. BP: 306°F FI.P: 96°F UEL: 6.5% LEL: 0.9%
Kerosene	8008-20-6	TWA 200 mg/m ³	TWA 100 mg/m ³	None established	IDLH value has not been determined	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat; burning sensation in chest; headache, nausea, lassitude (weakness, exhaustion), restlessness, incoordination, confusion, drowsiness; vomiting, diarrhea; dermatitis; chemical pneumonitis (aspiration liquid)	Eyes, skin, respiratory system, central nervous system	Colorless to yellowish, oily liquid with a strong, characteristic odor. BP: 347-617°F FI.P: 100-162°F UEL: 5% LEL: 0.7% Class II Combustible Liquid
Lead	7439-92-1	TWA 0.05 mg/m ³	TWA (8-hour) 0.050 mg/m ³	TWA 0.050 mg/m ³	100 mg/m ³ (as Pb)	inhalation, ingestion, skin and/or eye contact	Lassitude (weakness, exhaustion), insomnia; facial pallor; anorexia, weight loss, malnutrition; constipation, abdominal pain, colic; anemia; gingival lead line; tremor; paralysis wrist, ankles; encephalopathy; kidney disease; irritation eyes; hypertension	Eyes, gastrointestinal tract, central nervous system, kidneys, blood, gingival tissue	A heavy, ductile, soft, gray solid. BP: 3164°F Noncombustible Solid in bulk form



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

0	040 "	400ULTIV	NICOLI DEI	00114 PEI	15111	Routes of	Tools Books and to	T	Planta WOL and a Decreation
Manganese	7439-96-5 (metal)	TWA 0.2 mg/m ³	TWA 1 mg/m ³ STEL 3 mg/m ³	C 5 mg/m ³	IDLH 500 mg/m³ (as Mn)	Exposure inhalation, ingestion	Toxic Properties  Manganism; asthenia, insomnia, mental confusion; metal fume fever: dry throat, cough, chest tightness, dyspnea (breathing difficulty), rales, flu-like fever; low-back pain; vomiting; malaise (vague feeling of discomfort); lassitude (weakness, exhaustion); kidney damage		Physical/Chemical Properties A lustrous, brittle, silvery solid. BP: 3564°F
Mercury (organo) alkyl compounds (as Hg)	7439-97-6	TWA 0.01 mg/m ³ STEL 0.03 mg/m ³ [skin]	TWA 0.01 mg/m ³ STEL 0.03 mg/m ³ [skin]	TWA 0.01 mg/m ³ C 0.04 mg/m ³	2 mg/m³ (as Hg)	inhalation, skin absorption, ingestion, skin and/or eye contact	Paresthesia; ataxia, dysarthria; vision, hearing disturbance; spasticity, jerking limbs; dizziness; salivation; lacrimation (discharge of tears); nausea, vomiting, diarrhea, constipation; skin burns; emotional disturbance; kidney injury; possible teratogenic effects	; Eyes, skin, central nervous system, peripheral nervous system, kidneys	Appearance and odor vary depending upon the specific (organo) alkyl mercury compound
Mercury compounds [except (organo) alkyls] (as Hg) Mercury	t 7439-97-6	TWA 0.025 mg/m ³ (elemental and inorganic forms)	Hg Vapor: TWA 0.05 mg/m ³ [skin] Other: C 0.1 mg/m3 [skin]	TWA 0.1 mg/m ³	10 mg/m³ (as Hg)	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria	system, kidneys	Metal: Silver-white, heavy, odorless liquid. [Note: "Other" Hg compounds include all inorganic & aryl Hg compounds except (organo) alkyls.] BP: 674°F
Methyl tert-butyl ether (MTBE)	1634-04-4	TWA 50 ppm	No established REL	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, mucous membrane, respiratory; dizziness, nausea, headache,	Eyes, skin, mucous membrane, respiratory system, central nervous system	Colorless liquid BP: 55.2 C
Methylene Chloride	75-09-2	TWA 50 ppm, A3 - suspected human carcinogen	Ca	TWA 25 ppm STEL 125 ppm	Ca [2300 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; lassitude (weakness, exhaustion), drowsiness, dizziness; numbness, tingle limbs; nausea; [potential occupationa carcinogen]	Eyes, skin, cardiovascular system, central nervous system	Colorless liquid with a chloroform-like odor BP: 104°F UEL: 23% LEL: 13%
Metals Remediation Compound (MRC): Glycerol Tripolylactate Sorbitol Cysteinate Lactic Acid Glycerol	201167-72-8 444618-64-8 50-21-5 56-81-5	None established	None established	None established	None established	inhalation, ingestion, skin absorption, skin and/or eye contact	Irritation eyes, skin, respiratory tract	Behavioral (headache), gastrointestinal tract, reproductive system	Viscous amber gel/liquid; strong amine/sulfur odor
Naphtha (coal tar)	8030-30-6	None established	TWA 100 ppm (400 mg/m ³ )	TWA 100 ppm (400 mg/m³)	1000 ppm [10%LEL]	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose; dizziness, drowsiness; dermatitis; in animals: liver, kidney damage	Eyes, skin, respiratory system, central nervous system, liver, kidneys	Reddish-brown, mobile liquid with an aromatic odor BP: 320-428°F FI.P: 100-109°F Class II Combustible Liquid



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Naphthalene	91-20-3	TWA 2 ppm STEL 15 ppm	TWA 10 ppm (50 mg/m ³ ) STEL 15 ppm (75 mg/m ³ )	TWA 10 ppm (50 mg/m³)	250 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes; headache, confusion, excitement, malaise (vague feeling of discomfort); nausea, vomiting, abdominal pain; irritation bladder; profuse sweating; jaundice; hematuria (blood in the urine), renal shutdown; dermatitis, optical neuritis, corneal damage	system	Colorless to brown solid with an odor of mothballs. BP: 424°F FI.P: 174°F UEL: 5.9% LEL: 0.9%
n-Butylbenzene	104-51-8	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; CNS depression, lung damage; nausea, vomiting, headache, dizziness, weakness, loss of coordination, blured vision, drowsiness, confusion, disorientation	Eyes, skin,repiratory system, central nervous system	Colorless liquid with a sweet odor BP: 183 C FI.P: 59 C UEL: 5.8% LEL: 0.8%
Nickel	7440-02-0 (Metal)	TWA 1.5 mg/m³ (elemental) TWA 0.1 mg/m³ (soluble inorganic compounds) TWA 0.2 mg/m³ (insoluble inorganic compounds) TWA 0.1 mg/m³ (Nickle subsulfide)	Ca TWA 0.015 mg/m ³	TWA 1 mg/m ³	Ca [10 mg/m ³ (as Ni)]	inhalation, ingestion, skin and/or eye contact	Sensitization dermatitis, allergic asthma, pneumonitis; [potential occupational carcinogen]	Nasal cavities, lungs, skin	Metal: Lustrous, silvery, odorless solid. BP: 5139°F
Nitrobenzene	98-95-3	TWA 1 ppm	TWA 1 ppm (5 mg/m³) [skin]	TWA 1 ppm (5 mg/m³) [skin]	200 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; anoxia; dermatitis; anemia; methemoglobinemia; in animals: liver, kidney damage; testicular effects	Eyes, skin, blood, liver, kidneys, cardiovascular system, reproductive system	Yellow, oily liquid with a pungent odor like paste shoe polish.  BP: 411°F FI.P: 190°F LEL(200°F): 1.8%
n-Propylbenzene	103-65-1	None established	None established	None established	None established	inhalation, ingestion, skin and/or eye contact	Harmful if swallowed, Irritation eyes, skin, digestive tract, respiratory tract, central nervous system	Eyes, skin, central nervous system, respiratory system	colorless or light yellow liquid BP: 159 C FI.P: 47 C UEL: 6% LEL: 0.8%
Petroleum hydrocarbons(Petroleum distillates)	8002-05-9	None established	TWA 350 mg/m ³ C 1800 mg/m ³ [15 min]	TWA 500 ppm (2000 mg/m ³ )	1,100 [10% LEL]	Inhalation; ingestion; skin and/or eye contact	Irritation eyes, skin, nose, throat; dizziness, drowsiness, headache, nausea; dried/cracked skin; chemical pneumonitis	CNS, eyes, respiratory system, skin	Colorless liquid with a gasoline or kerosene-like odor BP: 86-460°F FI. Pt = -40 to -86°F UEL: 5.9% LEL: 1.1% Flammable liquid



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Phenol	108-95-2	TWA 5 ppm	TWA 5 ppm (19 mg/m ³ ) C 15.6 ppm (60 mg/m ³ ) [15- minute] [skin]	TWA 5 ppm (19 mg/m ³ ) [skin]	250 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, nose, throat; anorexia, weight loss; lassitude (weakness, exhaustion), muscle ache, pain; dark urine; cyanosis; liver, kidney damage; skin burns; dermatitis; ochronosis; tremor, convulsions, twitching	Eyes, skin, respiratory system, liver, kidneys	Colorless to light-pink, crystalline solid with a sweet, acrid odor. BP: 359°F UEL: 8.6% LEL: 1.8%
p-Isopropyltoluene	99-87-6	None established	None established	None established	None established	inhalation, skin absorption, eye contact	Irritation skin	CNS, skin	Colorless, clear liquid, sweetish aromatic odor BP: 350.8°F Class III Flammable liquid
Regenox Part A: Sodium Percarbonate Sodium Carbonate Monohydrate Silicia Acid Silica Gel	15630-89-4 5968-11-6 7699-11-6 63231-67-4	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation respiratory tract, mucous membranes, nose, throat, eyes, skin; gastrointestinal disturbance	Respiratory system, eyes, skin	Odorless, white, powder [Note: Self-accelerating decomposition with oxygen release starts at 50° C]
Regenox Part B: Silicic Acid, Sodium Salt, Sodium Silicate; Silica Gel; Ferrous Sulfate; Water	1344-09-8 63231-67-4 7720-78-7 7732-18-5	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation respiratory tract, mucous membranes, nose, throat, eyes, skin, mouth, esophagus and stomach		Odorless, Blue/Green, liquid [Note: Oxides of carbon and silicon may be formed when heated to decomposition]
sec-Butylbenzene	135-98-8	None established	None established	None established	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, upper airway; central nervous system, headache, dizziness; gastrointestinal disturbance	Respiratory system, central nervous system, eyes, skin;	Colorless liquid BP: 344°F FI.P: 126°F UEL: 6.9% LEL: 0.8% Combustible liquid
Selenium	7782-49-2	TWA 0.2 mg/m ³	TWA 0.2 mg/m ³	TWA 0.2 mg/m ³	1 mg/m³ (as Se)	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat; visual disturbance; headache; chills, fever; dyspnea (breathing difficulty), bronchitis; metallic taste, garlic breath, gastrointestinal disturbance; dermatitis; eye, skin burns; in animals: anemia; liver necrosis, cirrhosis; kidney, spleen damage		Amorphous or crystalline, red to gray solid. [Note: Occurs as an impurity in most sulfide ores.] BP: 1265°F
Silver	7440-22-4 (metal)	TWA 0.1 mg/m ³ (metal, dust, fumes; TWA 0.01 mg/m ³ (Soluble compounds, as Ag)		TWA 0.01 mg/m ³	10 mg/m ³ (as Ag)	inhalation, ingestion, skin and/or eye contact	Blue-gray eyes, nasal septum, throat, skin; irritation, ulceration skin; gastrointestinal disturbance	• • • •	Metal: White, lustrous solid BP: 3632°F
Slop Oil	69029-75-0	None established	None established	None established	None established	Inhalation; ingestion	Irritation eyes, skin, gastrointestinal tract	Eyes, skin, gastrointestinal tract	Clear light to dark amber liquid, with mild hydrocarbon odor. BP: >500°F FI.P: 250°F



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Sulfuric Acid	7664-93-9	TWA 0.2 mg/m ³	TWA 1 mg/m ³	TWA 1 mg/m ³	15 mg/m ³	inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat; pulmonary edema, bronchitis; emphysema; conjunctivitis; stomatis; dental erosion; eye, skin burns; dermatitis	Eyes, skin, respiratory system, teeth	Colorless to dark-brown, oily, odorless liquid. BP: 554°F Noncombustible Liquid
tert-Butylbenzene	98-06-6	None established	None established	None established	None established	inhalation, skin absorption, ingestion,	Eye and respiratory irritant; CNS depression; liver or kidney damage	Respiratory system, central nervous system, eyes, liver, kidney	Colorless liquid with an aromatic odor BP: 168 - 169 C FI.P: 34 C UEL:5.6 % LEL: 0.8 %
Tetrachloroethene	127-18-4	TWA 25 ppm STEL 100 ppm (STEL) listed as A3, animal carcinogen	Ca Minimize workplace exposure concentrations	TWA 100 ppm C 200 ppm (for 5 minutes in any 3-hour period), with a maximum peak of 300 ppm	Ca [150 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen]	Eyes, skin, respiratory system, liver, kidneys, central nervous system	Colorless liquid with a mild, chloroform-like odor. BP: 250°F Noncombustible Liquid
Toluene	108-88-3	TWA 20 ppm	TWA 100 ppm (375 mg/m³) STEL 150 ppm (560 mg/m³)	TWA 200 ppm C 300 ppm 500 ppm (10- minute maximum peak)	500 ppm	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, nose; lassitude (weakness, exhaustion), confusion, euphoria, dizziness, headache; dilated pupils, lacrimation (discharge of tears); anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver, kidney damage	system, central nervous system, liver, kidneys	Colorless liquid with a sweet, pungent, benzene-like odor. BP: 232°F FI.P: 40°F UEL: 7.1% LEL: 1.1% Class IB Flammable Liquid
trans-1,2-Dichloroethene	156-60-5	TWA 200 ppm	None established	TWA 200 ppm STEL 250 ppm (skin)	None established	inhalation, skin absorption, ingestion, skin and/or eye contact	Narcotic. Irritation eyes, skin, respiratory tract, mucous membrane; CNS depression.	Respiratory tract, mucous membrane, eyes, skin, CNS	Colorless liquid with a fruity pleasant odor BP: 48°C FI.P 6C UEL: 12.8% LEL: 9.7%
Trichloroethene	79-01-6	TWA 10 ppm STEL 25 ppm	Ca	TWA 100 ppm C 200 ppm 300 ppm (5- minute maximum peak in any 2 hours)	Ca [1000 ppm]	inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]	system, heart, liver, kidneys, central nervous	Colorless liquid (unless dyed blue) with a chloroform-like odor. BP: 189°F UEL(77°F): 10.5% LEL(77°F): 8%
Vinyl Chloride	75-01-4	TWA 1 ppm	Carcinogen	TWA 1 ppm C 5 ppm [15-minute]	Ca [IDLH value has not been determined]	inhalation, skin, and/or eye contact (liquid)	Lassitude (weakness, exhaustion); abdominal pain, gastrointestinal bleeding; enlarged liver; pallor or cyanosis of extremities; liquid: frostbite; [potential occupational carcinogen]	Liver, central nervous system, blood, respiratory system, lymphatic system	Colorless gas or liquid (below 7°F) with a pleasant odor at high concentrations. BP: 7°F UEL: 33.0% LEL: 3.6% Flammable Gas



Table 1. Toxicological, Physical, and Chemical Properties of Compounds Potentially Present at 5200 Kings Highway, Brooklyn, New York

Compound	CAS#	ACGIH TLV	NIOSH REL	OSHA PEL	IDLH	Routes of Exposure	Toxic Properties	Target Organs	Physical/Chemical Properties
Xylene (m, o & p isomers)	108-38-3, 95-47-6, 106-42-3	TWA 100 ppm (435 mg/m³) STEL 150 ppm	TWA 100 ppm (435 mg/m ³ )	TWA 100 ppm (435 mg/m ³ )	900 ppm	Skin absorption, inhalation, ingestion, skin, and/or eye contact	Irritation eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; anorexia, nausea, vomiting, abdominal pain; dermatitis	Eyes, skin, respiratory system, central nervous system, gastrointestinal tract, blood, liver, kidneys	Colorless liquid with an aromatic odor BP: 282°F, 292°F, 281°F FI. Pt. 82°F, 90°F, 81°F LEL: 1.1%, 0.9%, 1.1% UEL: 7.0%, 6.7%, 7.0% Classs C Flammable Liquid
Zinc	7440-66-6	TWA 10 mg/m3 (Inhalable fraction)	None established	TWA 10 mg/m3 (for zinc oxide fume)	None established	skin and/or eye contact, inhalation, ingestion	Irritation eyes, skin, respiratory tract; gastrointestinal disturbances	Eyes, skin, respiratory system	Bluish gray solid BP: 1664.6°F Flammable



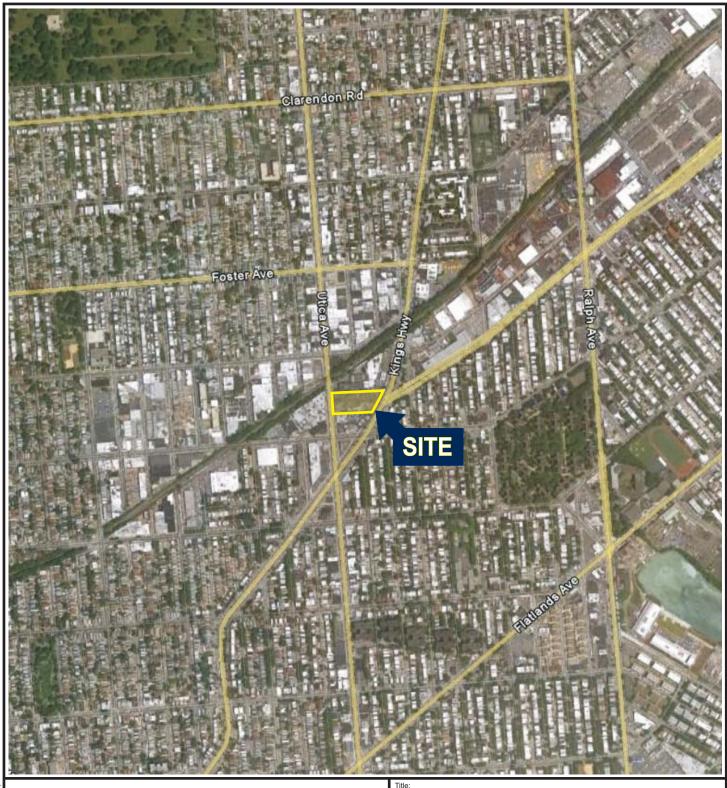
## TABLE 2 ACTION LEVELS FOR WORKER BREATHING ZONE

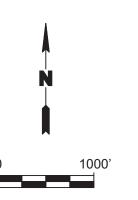
Instrument	Action Level *	Level of Respiratory Protection/Action
PID	0 to <5 ppm (one minute sustained)	Level D *
PID	>5 to <50 ppm (one minute sustained)	Utilize APR (Level C)
PID	>50 to <100 ppm (one minute sustained)	Level B
PID	>100ppm	Stop work** (ventilate, apply foam)
CGI/H ₂ S Meter	<5%	Level D
CGI/H ₂ S Meter	>5% to <25%	Level B
CGI/H ₂ S Meter	>25%	Stop work**
CGI/CO Meter	>25%	Level B
CGI/CO Meter	>50%	Stop work** (ventilate area)
CGI/O ₂ Meter	<10% LEL, in excavation	Level D
	19.5% oxygen – 23.5%	Level D
CGI/O ₂ Meter	>10% LEL, in excavation	Allow to vent, apply foam**
	>23.5% oxygen	Stop work, Oxygen Enriched ATM**
Dust Monitor	0 – 1.0 mg/m ³ , 5-minutes average	Level D
Dust Monitor	>1.0 to 5.0 mg/m ³ , 5-minutes average	Level D – Institute dust suppression measures
Dust Monitor	5.0 to >50 mg/m ³ , 5-minute average	Level C – Institute dust suppression measures

Note: Action levels are based on above background levels.



^{*} Instrument readings will be taken in the breathing zone (BZ) of the workers, unless otherwise indicated.


^{**} Suspend work in immediate area. Conduct air monitoring periodically to determine when work can continue. Implement mitigative measures.


## Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

## **FIGURES**

- 1. Site Location Map
- 2. Site Plan
- 3. Hospital Route Map

2861.0001Y.103/CVRS ROUX



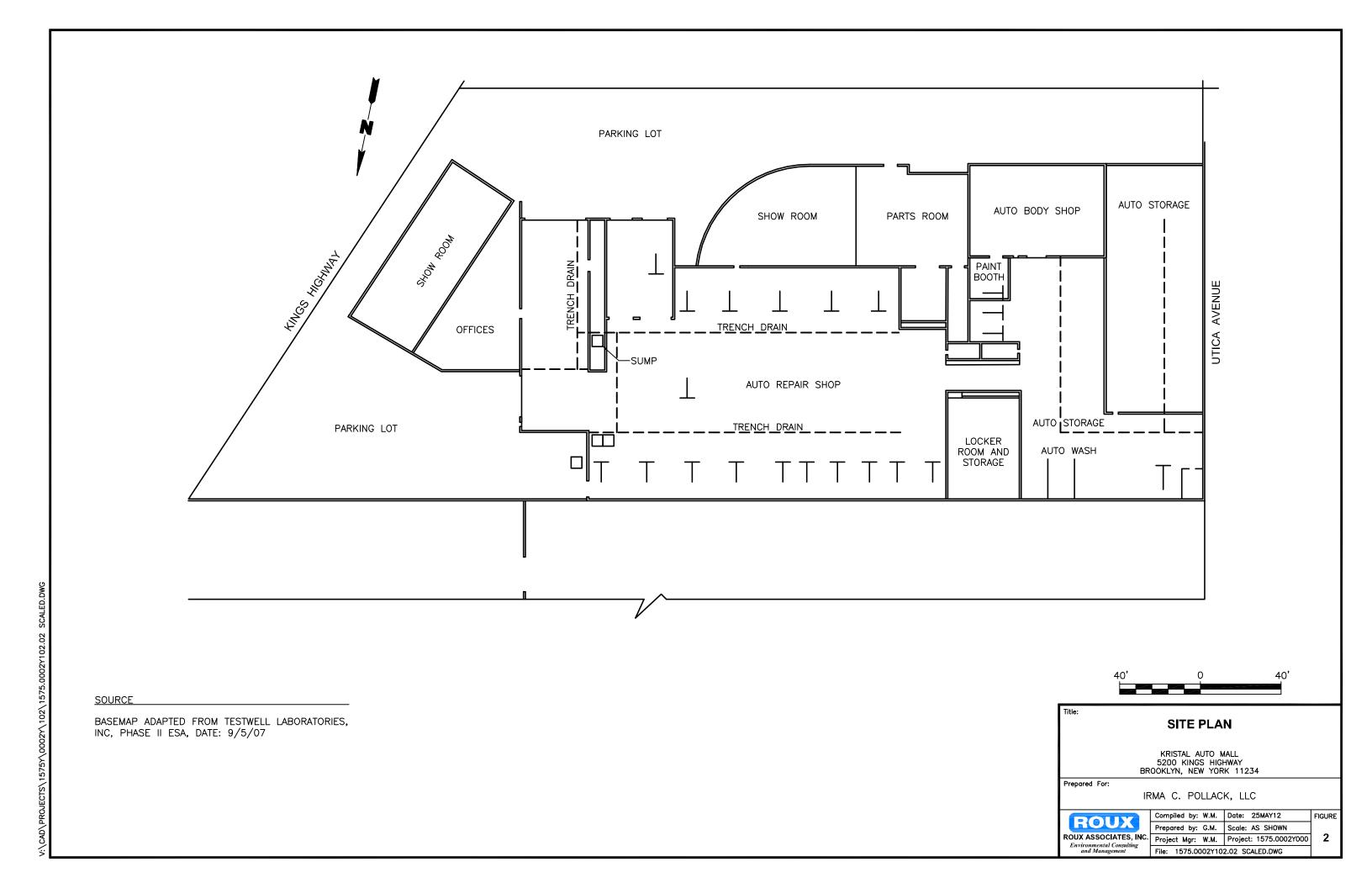


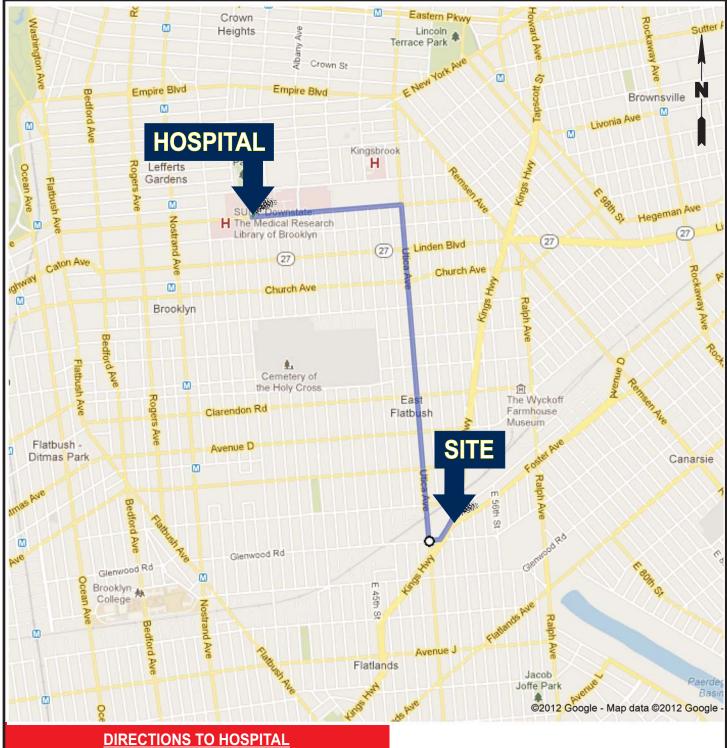
## **SITE LOCATION MAP**

KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK 11234

Prepared for:

IRMA C. POLLACK, LLC





compiled by: W.M.	Date: 25MAY12
repared by: G.M.	Scale: AS SHOWN
roject Mgr.: W.M.	Project No.: 1575.0002Y000
ile: 1575.0002Y10	02.01.CDR

FIGURE

1

SOURCE: GOOGLE EARTH IMAGERY DATE: 6/17/2010





- 1. Kings Highway south to Glenwood Avenue, turn right.
- 2. From Glenwood, turn right onto Utica Avenue.
- 3. Utica Avenue north to Clarkson Avenue, turn left.
- 4. SUNY Downstate Medical Research Center is on right.

#### **HOSPITAL ROUTE MAP**

KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK 11234

Prepared for:

IRMA C. POLLACK, LLC



Compiled by: W.M.	Date: 25MAY12
Prepared by: G.M.	Scale: AS SHOWN
Project Mgr.: W.M.	Project No.: 1575.0002Y000
File: 1575.0002Y10	02.01.CDR

3

FIGURE

## Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

### **APPENDICES**

- A. Job Safety Analysis
- B. Heavy Equipment Exclusion Zone Policy
- C. Heat and Cold Stress Guidelines
- D. Generic Community Air Monitoring Plan
- E. Health and Safety Briefing/Tailgate Meeting Form
- F. Accident Report and Investigation Form and Incident Response Flow Chart
- G. Acord Form
- H. OSHA 300
- I. Job Safety and Health Protection Poster (2015)

2861.0001Y.103/CVRS ROUX

# Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

## **APPENDIX A**

Job Safety Analysis

2861.0001Y.103/CVRS ROUX

					-	
JOB SAFETY ANALYSIS	Cntrl. No. GEN-011	DATE: 1/	18/201	□NEW □ □ NEVISED		PAGE 1 of 2
JSA TYPE CATEGORY  GENERIC	WORK TYPE Site Recon	•	WOI	RK ACTIVITY (Description)  e Walk and Inspection	n	
DEVELOPMENT TEAM	POSITION / TITI	LE	0.0	REVIEWED BY:		POSITION / TITLE
Anthony Giannetti	Staff Geologist		Dan	iel Abberton	SH	ISM
, , , , , , , , , , , , , , , , , , ,	3			Ritorto	Pro	oject Hydrogeologist
				Gentile		ISM
	REQUIRED AND / OR RE	COMMENDED PER	SONA	L PROTECTIVE EQUIPMENT		
☐ LIFE VEST ☑ HARD HAT ☐ LIFELINE / BODY HARNESS ☑ SAFETY GLASSES	□ GOGGLES □ FACE SHIELD □ HEARING PROTECTION: ear plugs as necessary □ SAFETY SHOES: Steel or composite toed  REQUIRED AND / OR RECOMMEN			AIR PURIFYING RESPIRATOR SUPPLIED RESPIRATOR PPE CLOTHING: <u>High-visibility vest or high-vis</u> outerwear, sleeved shirt		GLOVES: <u>Leather/cut-resistant/chemical</u> <u>resistant</u> OTHER: tyvek and rubber boots as necessary, dust mask as necessary
Required Equipment: Site map and				or walkie-talkie if Site allows.		
Commitment to LPS – All personnel of	onsite will actively participa	ate in SPSA perfo	orman	ce by verbalizing SPSAs throug	hout	the day.
EXCLUSION ZONE (EZ): A minimur	n 10' exclusion zone will	be maintained	aroun	d equipment.		
Assess	Analyze			Act		
¹ JOB STEPS	² POTENTIAL HAZ	APDS		³CRITICAL AC	CTIC	NIC
1. Check in with Site manager.	1a. CONTACT/EXPO		10	Inform Site personnel of work		
1. Check in with Site manager.	Lack of communication of			Inquire about hazards and other		
	H&S incident.			Site. Discuss emergency evacuation with Site manager	-	•
2. Traversing the Site and setting up at work locations.	2a. CONTACT: Property damage a injury caused by obstructions/vehicl unauthorized personant Sites.  2b. FALL: Uneven terrain and	les or onnel at remote	2a. 2a. 2a. 2a. 2a.	Maintain speed limit of 5 mph on-site.  All equipment must be stowed and secured prior to moving.  Use wheel chocks on all construction vehicles when not in motion.  Drive on established roadways.  Yield to all pedestrians.  Do not back up vehicle without spotter where visibility is limited use pull-through spots or back into parking spots; use an audible signal (horn/back-up alarm) when backing up vehicles. Wear high visibility clothing/safety vest. If working at remote Site, add orange accessories during hunting season.  Inspect walking path for uneven terrain, weather-related hazards (i.e., ice, puddles, snow, etc.), and obstructions prior to		
	conditions. Overgrown shrubs Equipment in the v	vork zone.	2b.	mobilizing equipment. Use established pathways and Communicate traversing hazar	rds w	vith others
		Muscle strain while carrying		When carrying equipment to/fre techniques; keep back straight body, never reach with a load. to reduce the potential for mus assistance or make multiple tri. Two people or a mechanical lifting objects over 50 lbs or whe difficult to lift.	t, lift the Ensice science in Ensice science in Ensite science in	with legs, keep load close to sure that loads are balanced strain. Use mechanical o carry equipment. device are required when he shape makes the object
	2d. EXPOSURE: Biological hazards bees/wasps, poiso etc. (Ticks are mos time the temperatu freezing, typically f November.)	n ivy, insects, st active any ire is above	2d. 2d. 2d.	at least two hours before u  Apply DEET to exposed sk and reapply after two hours  Check for ticks during and Bees: Use bee spray to remove with insect repellent.  Poison lvy:  Identify areas of poison ivy Tyvek and rubber boots wh  If skin comes in contact with thoroughly with soap and when the second	ng pare use (se). (sin be s. (after e nes (and nile tr th po water	ants, shirts, socks, boots e with Permethrin (allowing efore travelling to the Site work.  sts. Protect exposed skin spray with weed killer. Don raversing poison ivy areas. pison ivy, wash skin fr.
	ZE. EAFUSUKE:		ı ∠e.	Wear sunscreen with SPF 15	oi a	neater on exposed skill

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift." Avoid general statements such as, "be careful."

PL-2204			
	Heat Stress & Cold Stress. Personal injury from working in inclement weather conditions.	2e. 2e. 2e. 2e. 2e.	whenever 30 minutes or more of sun exposure is expected. Watch for heat stress symptoms (muscle cramping, exhaustion, dizziness, rapid and shallow breathing). Take breaks as needed.  Watch for cold stress symptoms (severe shivering, slowing of body movement, weakness, stumbling or inability to walk, collapse). Take breaks as needed.  Wear appropriate rain gear as needed.  Take frequent breaks if tired, wet, or cold/hot. Drink water. If lightning is observed, wait 30 minutes after last thunder boom/lightning bolt in a sheltered location (car acceptable) before starting work again.
3. Define and secure the work area.	3a. CONTACT: Personal injury or property damage from other vehicles on-site.	3a. 3a. 3a. 3a.	Face traffic, maintain eye contact with oncoming vehicles, and establish a safe exit route.  Look both ways in high traffic areas.  Position vehicle to protect against oncoming traffic.  Use 42" traffic cone and caution tape to delineate work area.  Use a spotter in high traffic areas.  Wear high visibility clothing/safety vest.
4. Walking near heavy equipment and machinery.	4a. CONTACT: Personal injury from Site and roadway traffic. Personal injury from flying debris.	4a. 4a. 4a. 4a.	See 3a.  Place traffic cones to re-direct traffic flow around work area and to alert others as to activity taking place. Evaluate possible need for police detail and request as needed.  Maintain a minimum exclusion zone of 10 feet from all equipment. Task specific JSAs should be referenced to determine the actual exclusion zone for the piece of equipment being used.  Keep body parts out of the line of fire of pinch points.  Routinely inspect work area and be aware of location of all Site personnel. Make eye contact with spotter, if provided, or operator prior to entering the work area.  Wear safety glasses at all times.
	4b. OVEREXERTION: Personal injury from lifting/moving/rotating equipment.	4b.	See 2c.
	4c. EXPOSURE: Hearing damage from excavation activities. Inhalation/exposure to hazardous vapors and or dust.	4c. 4c. 4c.	Monitor air quality with multi-gas meter and dust meter, if necessary. Use water to suppress dust, if necessary. Wear dust mask, if necessary.  Wear hearing protection if >85 dBA.  Always wear leather gloves when handling any tools or equipment. Wear cut-resistant gloves (Kevlar or similar) when handling sharp objects, glassware or cutting tools.
	4d. EXPOSURE: Working in a remote area.	4d. 4d.	Use the "buddy system" whenever possible. If working alone, contact PM upon arrival/departure, as well as during work activities prior to commencing work.  Always carry a communication (i.e., cell phone, walkie-talkie) or directional (i.e., map, compass, etc.) device when traversing remote areas.
5. Working in adverse weather conditions.	5a. EXPOSURE: Heat Stress & Cold Stress. Personal injury from working in inclement weather conditions.	5a. 5a. 5a. 5a. 5a.	Watch for heat stress symptoms (muscle cramping, exhaustion, dizziness, rapid and shallow breathing). Take breaks as needed. Watch for cold stress symptoms (severe shivering, slowing of body movement, weakness, stumbling or inability to walk, collapse). Take breaks as needed. Wear appropriate rain gear as needed. Take frequent breaks if tired, wet, or cold/hot. Drink water. If lightning is observed, wait 30 minutes after last thunder boom/lightning bolt in a sheltered location (car acceptable) before starting work again.
6. Departing Site.	<b>6a. EXPOSURE:</b> Exposure to unnecessary hazards should personnel believe Roux is on-Site during an emergency and conduct a search.	6a.	Sign out or notify Site personnel of your departure.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

		1			
JOB SAFETY ANALYSIS	Cntrl. No. GEN-010	DATE: 1/15	5/2014	□NEW ⊠REVISED	PAGE 1 of 2
JSA TYPE CATEGORY	WORK TYPE	D/(12. 1/10		TY (Description)	17.02 10.2
GENERIC	Site Recon		Mobilizat	ion/Demobiliza	tion
DEVELOPMENT TEAM	POSITION / TITLE			EWED BY:	POSITION / TITLE
Jared Lefkowitz	Staff Assistant Scientist		Daniel Abber	ton	SHSM
John Williams	OHSM		Mike Ritorto Joe Gentile		Project Hydrogeologist CHSM
F	I REQUIRED AND / OR RECOMMENI	DED PERSOI		/E EQUIPMENT	CHOW
☐ LIFE VEST ☑ HARD HAT ☐ LIFELINE / BODY HARNESS ☑ SAFETY GLASSES	GOGGLES FACE SHIELD HEARING PROTECTION (ineeded) SAFETY SHOES: Steel Toucomposite toe	e or	RESPIR SUPPLI PPE CL Fluoresc of high-v sleeved	ED RESPIRATOR OTHING: cent reflective vest risibility clothing; shirt; long pants	GLOVES: Leather, nitrile, and cut resistant (as needed)  OTHER
Required Equipment: None				•	
Commitment to LPS – All person	nnel onsite will actively partic	ipate in SF	PSA performa	nce by verbalizing S	SPSAs throughout the day.
EXCLUSION ZONE: A minimum exc	clusion zone of 10' will be mai	ntained arc	ound moving e	equipment (if heavy e	quipment is utilized)
Assess 1JOB STEPS	Analyze  2POTENTIAL HAZARD			Act ³ CRITICAL AC	
1. Mobilize/demobilize and establish work area	1a. FALL: Slip/trips/falls from obstructions, uneven terra weather conditions, heavy and/or poor housekeeping and/or poor housekeeping property damage caused struck by Site traffic or equivalent in Site activities.	n ain, y loads, g. ury and/or by being uipment	and exiti  1a. Inspect of obstruction obstruction and pude pathway  1a. Do not content of practice neatly in  1a. Wear bours of land observed observ	oints-of-contact/ensureing vehicle. walking path for uneverons, and/or weather-redles) prior to mobilizing. Walk on stable/secutimb over stored mater good housekeeping; cone area. ots with adequate treate unsafe areas with 42 and maintain the post st arriving onsite, park and/or out of the way located and tire chocks on word with Site Manager/Suer Site activities and to hat short-service emplotential traffic sources of Eincluding high visibility outer while moving wowhenever possible. The work area with 42" contential traffic sources of the equipment of spotter while moving wowhenever if there is tight sides of the equipment er work area with 42" contential traffic potential overhead and establish a safe potential overhead and rere with moving equipmior initiating mobilizations.	n terrain, steep hills, elated hazards (i.e., ice, snow, grequipment. Use established are ground. In terrain, steep hills, elated hazards (i.e., ice, snow, grequipment. Use established are ground. In the state of
	1c. CAUGHT: Personal injury pinch points and being in li of vehicle and/or equipmer	ne-of-fire	chocks is parked 1c. Wear lea Wear cu sharp ob 1c. Keep bo 1c. Always of Ensure s	in a position to prevent d in front/down gradien ather gloves when han t-resistant gloves (Kev bjects/cutting tools/glas dy parts away from line carry tools by the hand sharp-edged tools are	dling any tools or equipment. lar or similar) when handling ss. e-of-fire of equipment. les and/or designated carrier.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift." Avoid general statements such as, "be careful."

		ensure loose clothing is secure.  1c. Secure all items on the equipment, tighten up any items or features that have potential to shift or break during mobilization.
1d.	<b>OVEREXERTION:</b> Muscle strains while lifting/carrying equipment.	<ul> <li>1d. Use body positioning and lifting techniques that avoid muscle strain; keep back straight, lift with legs, keep load close to body, and never reach with a load.</li> <li>1d. Ensure that loads are balanced. Use assistance (mechanical or additional person) to carry equipment that is either unwieldy or over 50 lbs.</li> </ul>
1e.	<b>EXPOSURE:</b> Personal injury from exposure to biological and environmental hazards.	<ul> <li>1e. Inspect area to avoid contact with biological hazards (i.e. poisonous plants, stinging insects, ticks, etc.).</li> <li>1e. Wear long sleeved clothes treated with Permethrin, apply insect repellant containing DEET to exposed skin, and inspect clothes and skin for ticks during and after work.</li> <li>1e. Apply sunscreen (SPF 15+) if exposure to sun for 30 minutes or more is expected.</li> </ul>
1f.	<b>EXPOSURE:</b> Heat and cold related injuries.	<ul> <li>1f. Watch for heat stress symptoms (muscle cramping, exhaustion, dizziness, rapid and shallow breathing). Take breaks as needed.</li> <li>1f. Watch for cold stress symptoms (severe shivering, slowing of body movement, weakness, stumbling or inability to walk, collapse). Take breaks as needed.</li> <li>1f. Wear clothing appropriate for weather and temperature conditions (e.g., rain jackets, snow pants, multiple layers).</li> <li>1f. If lightning is observed, wait 30 minutes in a sheltered location (car is acceptable) before resuming work.</li> </ul>
1g.	<b>EXPOSURE:</b> Personal injury from noise hazards.	<ol> <li>Wear hearing protection if sound levels exceed 85 dBA (if you must raise your voice for normal conversation).</li> </ol>

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY					☐ NEW		
ANALYSIS	Cntrl. No. GEN-009	DATE: 2/11/2	2015		☑ REVISED	PAGE 1 of 2	
JSA TYPE CATEGORY	WORK TYPE		WOR	K ACTIVITY (			
GENERIC	Hand Tools		Pre	-Clearin	g activities, i	ncluding Air	
			Kni		Soil Vacuun	ning	
DEVELOPMENT TEAM	POSITION / TITLE			REVIEWE	D BY:	POSITION / TITLE	
Alyssa Lau	Staff Engineer			el Abberton		SHSM Senior Undraggelegist	
				Ritorto a Jensen		Senior Hydrogeologist Staff Hydrogeologist	
	REQUIRED AND / OR RECOM!				E EQUIPMENT	Otali i iyalogcologist	
LIFE VEST	GOGGLES			AIR PURIFY	'ING		<u>t</u>
<ul><li>☐ HARD HAT</li><li>☐ LIFELINE / BODY</li></ul>	<ul><li>✓ FACE SHIELD (while air k</li><li>✓ HEARING PROTECTION</li></ul>			RESPIRATO	OR RESPIRATOR	<u>resistant</u>	
HARNESS	needed)	`	☒	PPE CLOTH	IING:	OTHER: Dust mask (as	<u>s</u>
☑ SAFETY GLASSES	SAFETY SHOES: Steel of composite toed	<u>or</u>		Fluorescent or high visib	reflective vest	<u>needed)</u>	
	REQUIRED AND	OR RECOMME	ENDE				
Required Equipment: Air Kni Multi-Gas Meter, Traffic Cones,	fe, Vactor Truck (Vac Truck), ( Rigid Barrier, Caution Tape, 20						,
Commitment to LPS - All person	onnel onsite will actively partici	pate in SPSA	perfo	rmance by v	erbalizing SPSAs	hroughout the day.	
EXCLUSION ZONE: A 10 foot		tained around	l air I	nife and/or		rations.	
Assess 1JOB STEPS	Analyze ² POTENTIAL HAZARI	os			Act 3CRITICAL AC	CTIONS	
Verify pre-clearance	1a. <b>CONTACT</b> :		1a.	Confirm that		nies were contacted prior to	)
protocol.	Underground utility dam	age;		drilling.			
	property damage; perso	nal injury.				markings and review maps A for critical actions).	3
	See Site Walk Inspection JS/	A for				orm and sub-surface cleara	nce
	potential hazards.			form. Pre-c	learing protocol ind	icates that clearance must	
						ertical feet below ground	
				surrace or 8 zone using l		ground surface in the critic	aı
2. Mobilize/demobilize and	2a. See Mobilization / Dem	nobilization				ation JSA for critical actio	ns.
establish work area.	JSA for potential haza						
<ol> <li>Pre-clear with air knife, water lance, and soil vacuum, and/or clearance with hand tools</li> </ol>	3a. CONTACT: Flying debris striking fac	ce or body	3a. 3a.	operator and zone while a including (at with side sh Wear a face using air knife fire hazards	d designated helpe air knife/vac truck is a minimum), cut re ields, and long slee shield to protect fa fe. e tip away from self	ace from flying debris when and others, so to avoid line	ion PE, ses
	3b. EXPOSURE/ENERGY Solution Inhalation/exposure to have vapors; inhalation/exposure to have electrocution.	SOURCE: nazardous sure to dust;	3b. 3b. 3b. 3b. 3b.	Monitor breameter. If va personnel mpersonnel to inform the R Project Man Wear dust n Ensure no owork area. No open flar Ensure vac	athing zone with a opors sustain levels bust temporarily cero step away from the coux Project Managager will then reconasks as needed pen flames/heat somes/heat sources.	calibrated PID and multi-gas > 5 ppm, the Roux field ase work, instruct all Site e area of elevated readings for of the condition. The Rommend additional precaution purces are present within the bounded prior to use. iberglass or equivalent.	s and oux ons.
	3c. CONTACT: Damage to unknown/kno utility with air knife.  3d. ERGONOMICS Poor body positioning with a second se	ben	3c. 3c. 3c.	air stream a tool. Keep the air pressure on increase the Continually may have a	and using the air known in the air known and using the archital utility. It is a clistance between the architage and a clistance between the architage and a clistance between a clistance and a clistance architage.	, -	
	Poor body positioning whandling equipment ar materials.			minimizes m		nd lifting techniques that back straight, lift with legs, leach with a load.	keep

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift." Avoid general statements such as, "be careful."

Assess 1JOB STEPS	Analyze ² POTENTIAL HAZARDS	Act 3CRITICAL ACTIONS
Pre-clearing with air knife and soil vacuum, and/or clearance with hand tools (continued)	3d. <b>ERGONOMICS</b> : (continued) Poor body positioning when handling equipment and materials.	<ul> <li>3d. Ensure that loads are balanced to reduce the potential for muscle strain.</li> <li>3d. Two people or a mechanical lifting aid are required when lifting objects over 50 lb. or when the shape makes the object difficult to lift.</li> </ul>
	3e. FALL: Tripping/falling due to uneven terrain, weather conditions, and materials/equipment stored at the Site.	<ul> <li>3e. Inspect walking path for uneven terrain, weather-related hazards (e.g., ice, puddles, snow, etc.), and obstructions prior to mobilizing equipment.</li> <li>3e. Walk around any stored materials/equipment; do not climb over. Practice good housekeeping.</li> <li>3e. Use established pathways and walk on stable, secure ground.</li> <li>3e. Equipment and tools will be stored at the lowest point of potential energy and out of the walkway and immediate work area (i.e., tools should not be propped against walls or nearby equipment or vehicles).</li> <li>3e. Equipment and tools that are not anticipated to be used will be</li> </ul>
		returned to a storage area that is out of the immediate work area.  3e. Ensure power cords/hoses are grouped when used within the work area. Mark out cords/hoses that cross pathways with traffic cones.  3e. Ensure all Site personnel and equipment stay a minimum of 2 feet from an open hole. Mark out open holes with traffic cones/caution tape, etc.  3e. Pre-cleared location will be finished flush to grade as to prevent a slip/trip hazard.
	3f. CAUGHT: Pinch points or amputation points associated with the equipment and vacuum hose.	<ul> <li>3f. Always wear cut-resistant gloves when making connections and using hand tools.</li> <li>3f. Inspect the equipment prior to use for potential pinch points.</li> <li>3f. Test all emergency shutdown devices prior to using equipment.</li> <li>3f. Ensure all jewelry is removed, loose clothing is secured, and PPE is secured close to the body.</li> <li>3f. All non-essential personnel shall maintain a 10 foot exclusion zone; position body out of the line-of-fire.</li> <li>3f. Drillers and helpers will understand and use the "Show Me Your Hands Policy".</li> </ul>
	3g. EXPOSURE: Noise from vac truck and/or air compressor.	<ol> <li>Wear hearing protection when vac truck and air compressor are in operation. Otherwise, if sound levels exceed 85 dB, don hearing protection.</li> </ol>
Move drum to staging area using drum cart.	4a. EXPOSURE/CONTACT: Contamination (e.g., Separate Phase Hydrocarbons (SPH), contaminated groundwater, soil).	<ul> <li>4a. Wear chemically resistant gloves (i.e., Nitrile; worn in addition to cut resistant gloves).</li> <li>4a. Do not overfill drums. Ensure that the drum lids are attached securely.</li> <li>4a. Stage all drums in the designated storage area (per Roux Project Manager) and ensure they are labeled.</li> </ul>
	4b. <b>ERGONOMICS</b> :  Muscle strain while maneuvering drums with drum cart/lift gate.	4b. See 3d. Do not overfill drums. Use lift gate on back of truck to load and unload drums or drum cart to transport drums.
	4c. CAUGHT: Pinch points or amputation points associated with handling drum lid.	4c. Ensure that fingers are not placed under the lid of the drum. Wear cut-resistant gloves. Use 15/16" ratchet while sealing drum lid.
Decontaminate equipment and tools.	5a. EXPOSURE/CONTACT: To contamination (e.g., Separate Phase Hydrocarbons (SPH), contaminated groundwater, vapors).	<ul> <li>5a. See 4a.</li> <li>5a. Contain decontamination water (closed lid) so that it does not spill.</li> <li>5a. Use an absorbent pad to clean spills, if necessary.</li> <li>5a. Store all impacted materials/PPE in a designated storage container (per Roux Project Manager) and ensure the container is labeled.</li> </ul>
	5b. <b>EXPOSURE</b> : To chemicals in cleaning solution.	5b. See 4a.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY				☐ NEW		
ANALYSIS		ATE 1/8/2		□ REVISED	PAGE 1 of 2	
JSA TYPE CATEGORY:	WORK TYPE:		WORK ACTIVITY (Description):			
Generic	Drilling				Well Installation	
DEVELOPMENT TEAM	POSITION / TITLE		REVIEWED BY:		POSITION / TITLE	
Jeffrey Wills	Project Hydrogeologist		Laura Jensen		Staff Hydrogeologist	
			Dan Abberton		Health and Safety Officer	
			Michael Ritorto		Senior Hydrogeologist	
REQUIRED AND / OR RECOMMENDED PERSONAL PROTECTIVE EQUIPMENT						
☐ LIFE VEST ☑ HARD HAT	☐ GOGGLES ☐ FACE SHIELD		☐ AIR PURIFYI☐ SUPPLIED R	NG RESPIRATOR	GLOVES: <u>Leather, Nitrile and cut</u> resistant	
<ul><li>☐ HARD HAT</li><li>☐ LIFELINE / BODY HARNESS</li></ul>	□ HEARING PROTECTION:		□ PPE CLOTHI     □ PPE CLOTHI	ING: Fluorescent		
	(as needed)		reflective ves	t or high visibility	sunscreen (as needed)	
	SAFETY SHOES: Composteel toe boots	site-toe or	clothing, Slee	eved Snirt		
	REQUIRED AND /	OR RECO	MMENDED EQUI	PMENT		
Geoprobe or Truck-Mounted Direc					uivalent), Macrocore liners, Liner	
Opening Tool, 20 lb. Fire Extinguis						
COMMITMENT TO LPS - All person	onnel onsite will actively parti-	cipate in SF	PSA performance	by verbalizing SPSA	As throughout the day.	
Exclusion Zone Policy - All non-	essential personnel will maint	tain a distar	nce of 10 feet from	n drilling equipment	while moving/engaged.	
	"SHO	OW ME YO	OUR HANDS"			
Driller an	d helper should show th			controls and mo	oving parts	
Assess	Analyze	rat marras	are crear mem	Act	ormig parts	
¹JOB STEPS	² POTENTIAL HAZARD	S		3CRITICAL A	CTIONS	
Mobilization of drilling rig	1a. CONTACT:		<ul> <li>a. The drill rig's t</li> </ul>	tower/derrick will be	lowered and secured prior to	
(ensure the Subsurface	Equipment/property		mobilization.			
Clearance Protocol and Drill	damage.	1			moving the drill rig. If personnel	
Rig Checklist are completed)					the drill rig will be stopped until the for all required backing operations.	
		1			equipment in a manner that	
		'			r backing of support trucks and	
			trailers.		. saciming of support mucho and	
		1	a. When backing	g up truck rig with ar	attached trailer use a second	
					imultaneously on multiple sides of	
		١.	the equipment	t or if turning angles	limit driver visibility.	
					n terrain. Level or avoid if needed.	
		1			xclusion zone of 10 feet for non- liper, geologist) when the rig is	
			moving/ in ope		iper, geologist) when the rig is	
		١.	• •			
	1b. <b>FALL</b> :	1			errain, weather-related hazards (i.e.,	
	Slip/trip/fall hazards.		equipment.	snow, etc.), and obs	tructions prior to mobilizing	
		1		over stored materials	s/equipment; walk around. Practice	
			good houseke	eping.		
		1	<ul> <li>b. Üse establishe</li> </ul>	ed pathways and wa	alk on stable, secure ground.	
Raising tower/derrick of drill	2a. CONTACT:	2			the area above the drilling rig will be	
rig	Overhead hazards.				oing, or other structures, that could	
		2			er and/or drilling rods or tools. om overhead structures.	
		4	a. Mamama Sai	ie distance or 10 mg	ili overneau structures.	
	2b. CONTACT:				and avoid pinch/amputation points.	
	Pinch Points/Amputat	tion 2		gers on rig to ensure	stability prior to raising rig	
	Points when raising the	:	tower/derrick.	a ta ha mauntad ha	aura to use three points of contact	
	and instability of rig	2	b. If the rig need	s to be mounted, be	sure to use three points of contact.	
Advancement of drilling	3a. CONTACT:	3	a. Be aware of a	nd avoid potential li	nes of fire and wear required PPE	
equipment and well	Flying debris	١		ear, and hand protect		
installation			•	•		

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

Assess	Analyze	Act
3. Advancement of drilling equipment and well installation (Continued)	2POTENTIAL HAZARDS  3b. EXPOSURE:  Noise and dust.	3b. Wet borehole area with sprayer to minimize dust. 3b. Stand upwind and keep body away from rig. 3b. Dust mask should be worn if conditions warrant. 3b. Wear hearing protection when the drill rig is in operation.
	3c. CAUGHT: Limb/extremity pinching; abrasion/crushing.	<ul> <li>3c. Always wear leather gloves when making connections and using hand tools; wear cut-resistant (i.e., Kevlar) gloves when handling cutting tools.</li> <li>3c. Inspect the equipment prior to use for potential pinch/amputation points. Keep hands away from being between pinch/amputation points and use of tools is preferable compared to fingers and hands.</li> <li>3c. Inspect drill head for worn surface or missing teeth; replace if damaged or blunt.</li> <li>3c. Ensure all jewelry is removed, loose clothing is secured, and PPE is secured close to the body.</li> <li>3c. All non-essential personnel should stay away from the immediate work area; position body out of the line-of-fire of equipment.</li> <li>3c. Drillers and helpers will understand and use the "Show Me Your Hands" Policy.</li> <li>3c. Spinning rods/casing have an exclusion zone of 10 feet while in operation.</li> </ul>
	3d. CONTACT: Equipment imbalance during advancement of drill equipment.	<ul> <li>3d. Drillers will advance the borehole with caution to avoid causing the rig to become imbalanced and/or tip.</li> <li>3d. The blocking and leveling devices used to secure the rig will be inspected by drillers and Roux personnel regularly to see if shifting has occurred.</li> <li>3d. In addition, personnel and equipment that are non-essential to the advancement of the borehole will be positioned away from the rig at a distance that is at least as far as the boom is high (minimum exclusion zone of 10 feet).</li> </ul>
	3e. <b>EXPOSURE</b> : Inhalation of contamination/vapors.	3e. Air monitoring using a calibrated photoionization detector (PID) will be used to periodically to monitor the breathing zone of the work area.  3e. If a reading of >5ppm is recorded, the Roux field personnel must temporarily cease work, instruct all Site personnel to step away from the area of elevated readings and inform the Roux PM of the condition. The Roux PM will then recommend additional precautions in accordance with the site specific health and safety plan.
	3f. <b>FALL</b> : Slip/trip/fall hazards.	3f. Contain drill cuttings and drilling water to prevent fall hazards from developing in work area.  3f. See 1b.
	3g. <b>EXERTION</b> : Potential for muscle strain/injury while lifting and installing well casings, lifting sand bags, and/or lifting rods.	<ul> <li>3g. Keep back straight and bend at the knees.</li> <li>3g. Utilize team lifting for objects over 50lbs.</li> <li>3g. Use mechanical lifting device for odd shaped objects.</li> </ul>
Decontaminate equipment.	4a. EXPOSURE/CONTACT: To contamination (e.g., Separate Phase Hydrocarbons (SPH), contaminated groundwater, vapors).	<ul> <li>4a. Wear chemical-resistant disposable gloves and safety glasses.</li> <li>4a. Contain decontamination water so that it does not spill.</li> <li>4a. Use an absorbent pad to clean spills, if necessary.</li> <li>4a. See 3b.</li> </ul>
	4b. <b>EXPOSURE:</b> To chemicals in cleaning solution including ammonia.	4b. See 4a. Review SDS to ensure appropriate precautions are taken and understood.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY ANALYSIS	Ctrl. No.	DATE	1/23/2015	☐ NEW REVISED	PAGE 1 of 2	
JSA TYPE CATEGORY: WORK TYPE:		WORK ACTIVITY (Description):				
Generic	Drilling				gs /Well Installation	
DEVELOPMENT TEAM	POSITION / TITLE		REVIEWED B	Y:	POSITION / TITLE	
Gina Vanderlin	Project Scientist		Joseph Gentile		CSHM	
PEO	UIRED AND / OR RECOMM	IENDED D	EDSONAL DEOTECTIV	E EQUIDMENT		
☐ LIFE VEST	GOGGLES	IENDED F	☐ AIR PURIFYING I		☐ GLOVES: Leather, Nitrile	
	FACE SHIELD		SUPPLIED RESP		and cut resistant	
☐ LIFELINE / BODY HARNESS		TON:	PPE CLOTHING: flu		OTHER: Insect Repellant,	
	(as needed)  ☐ SAFETY SHOES stee	ol or	shirt or sleeved shirt safety vest.	and reflective	sunscreen (as needed)	
	composite toe	ei Oi	<u> </u>			
		OR RECO	MMENDED EQUIPMEN	IT		
Truck-Mounted Drilling Rig or Track		ionization	Detector, Multi-Gas Mete	er (or equivalent)	, Interface Probe, 20 lb. Fire	
Extinguisher, 42" Cones & Flags, "W						
	Il personnel onsite will active	• • •	•	•		
EXCLUSION ZONE PO	OLICY - All non-essential pe			clusion zone whi	le drill rig is engaged	
Duilleman			OUR HANDS"	rolo ond movin		
	d helper should show th	at nands	are clear from conti	rois and movir Act	ig parts	
Assess 1JOB STEPS	² POTENTIAL HAZARD	s		3CRITICAL ACT	TIONS	
Mobilization of drilling rig	1a. CONTACT: Equipmen		1a. The drill rig's towe		owered and secured prior to	
	property damage.		mobilization.	en 1 1 1 1		
			•		noving or backing the drill rig. If e drilling rig, the drilling rig, the drilling rig will be	
			stopped until the p			
			1a. Set-up the work a	rea / position equ	ipment in a manner that	
					backing of trucks and trailers.	
					attached trailer use a second multaneously on multiple sides of	
					imit driver visibility.	
					terrain. Level or avoid if needed.	
			1h Inchest walking no	oth for unoven to	rrain, weather-related hazards	
	1b. FALL: Slip/trip/fall haz	ards.			obstructions prior to mobilizing	
			equipment.		, , , , , , , , , , , , , , , , , , , ,	
			1b. Do not climb over good housekeepir		equipment; walk around. Practice	
					k on stable, secure ground.	
			1b. Use three points of	of contact when n	nounting or dismounting the rig.	
S	2a. <b>CONTACT</b> : Overhead	hazards.			rea above the drilling rig will be	
drilling rig					ires, tree limbs, piping, or other by the rig's tower or drilling rods.	
					ed beneath overhead power lines	
			unless approved b	y both the Exxor	nMobil and Roux PMs.	
			<ul><li>2a. Maintain at a mini</li><li>2a. Do not move the r</li></ul>			
			Za. Do not move the f	ig willie the towe	racifick is faisca.	
	2b. CONTACT: Pinch poin	nts when		nent prior to use	and avoid placing hands near	
	raising the rig; crushing with stability of rig durin		pinch points.  2b. Lower out riggers	on ria to ensure s	stability prior to raising rig tower	
	,	.9	derrick.	•		
				location for une	ven terrain. Level or avoid area if	
			needed.			
3. Advancement of augers for	3a. CONTACT: Flying / sp	raying	3a. Wear minimum le			
soil borings and well material installation.	debris.		3a. Be aware of and a	void potential line	es of fire.	
ii iStaliatiOH.	3b. <b>EXPOSURE</b> : Noise an	nd dust.	3b. Wet borehole area	a with spraver to	minimize dust. Stand upwind and	
			keep body position	ned away from rig	g.	
			3b. Wear hearing levels exceed 85dBA.	g protection while	e drill rig is operating/or the noise	
			ieveis exceeu obuda.			

- ¹ Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.
- A hazard is a potential danger. Break hazards into six types: Contact victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.
- ³ Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done such as "use two persons to lift". Avoid general statements such as, "be careful"

Assess	Analyze	Act
4. Advancement of augers for soil borings, and well material installation (Continued).  Output  Description:	4c. CAUGHT: Limb/extremity pinching, abrasion, and crushing.	4c. Always wear leather gloves when making connections and using hand tools; wear cut-resistant (i.e., Kevlar) gloves when handling cutting tools.  4c. Test all emergency shutdown devices prior to drilling.  4c. Inspect drill head for worn surface or missing teeth; replace if damaged or blunt.  4c. Inspect augers; do not use if auger flight if damaged or bent.  4c. Ensure all jewelry is removed, loose clothing is secured, and PPE is secured close to the body.  4c. All non-essential personnel should stay away from the immediate work area; position body out of the line-of-fire of equipment particularly when installing auger flights.  4c. Drillers and helpers will understand and use the "Show Me Your Hands" Policy.  4c. Spinning augers should have an exclusion zone of 20 feet when in operation.
	4d. <b>CONTACT</b> : Equipment imbalance during advancement of drill equipment.	<ul> <li>4d. Drillers will advance the borehole with caution to avoid causing the rig to become imbalanced and/or tip.</li> <li>4d. The blocking and leveling devices used to secure the rig will be inspected by drillers and Roux personnel regularly to see if shifting has occurred.</li> </ul>
	4e. EXPOSURE: Inhalation of contamination/vapors.	<ul> <li>4e. Air monitoring using a calibrated photoionization detector (PID) will be used to periodically monitor the breathing zone of the work area.</li> <li>4e. The Action Level for breathing zone air is five parts per million (sustained) as detected by the PID.</li> <li>4e. If a reading of &gt;5ppm is recorded, the Roux field personnel must temporarily cease work, instruct all Site personnel to step away from the area of elevated readings and inform the Roux PM of the condition. The Roux PM will then recommend additional appropriate precautions in accordance with the site specific health and safety plan.</li> </ul>
	4f. FALL: Slip/trip/fall hazards.  4g. EXERTION: Installing well casings and lifting augers.	<ul> <li>4f. See 1b.</li> <li>4f. Remove soil cuttings to avoid a tripping hazard from developing near augers.</li> <li>4g. Keep back straight and bend at the knees.</li> <li>4g. Utilize team lifting for objects over 50lbs.</li> </ul>
	4h. <b>CONTACT</b> : Using hand tools to install well casings and materials	<ul> <li>4g. Use mechanical lifting device for odd shaped objects.</li> <li>4h. Wear cut resistant and leather gloves.</li> <li>4h, Secure materials on a level surface before cutting</li> <li>4h. Place hands out of the line of fire</li> <li>4h. Inspect all tools prior to use and remove damaged tools from service</li> </ul>
5. Cleaning the auger flights	5a. <b>CONTACT:</b> Cuts/scrapes or puncture wound from contacting rotating auger.	<ul> <li>5a. Follow "No Hands" Procedure and make sure auger is out of gear before contacting auger with hands or tool.</li> <li>5b. When using a cleaning tool, pull across your body with handle away from body; do not push toward the auger.</li> <li>5b. Do not clean more than ¾ turn around the auger at a time.</li> <li>5b. Wear cut resistant and leather gloves.</li> <li>5b. Always use two hands when operating cleaning tool.</li> <li>5b. Inspect any tool before use and remove from service if handle or metal are cracked/fatigued.</li> <li>5b. Stand out of the line of fire.</li> </ul>
6. Decontaminate equipment.	EXPOSURE/CONTACT:     To contamination (e.g.,     contaminated groundwater, vapors).      EXPOSURE:     To chemicals in cleaning     solution (including ammonia)	<ul> <li>6a. Wear chemical-resistant disposable gloves and safety glasses.</li> <li>6a. Contain decontamination water so that it does not spill.</li> <li>6a. Use an absorbent pad to clean spills, if necessary.</li> <li>6b. See 5a.</li> </ul>

¹ Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into six types: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

³ Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful"

JOB SAFETY ANALYSIS	Cntrl. No. GEN-012	DATE: 2/3/2015 □ NEW □ REVISE	D PAGE 1 of 2				
JSA TYPE CATEGORY:	WORK TYPE:	WORK ACTIVITY (Description):					
GENERIC	Gauging & Sampling	Soil Sampling	Soil Sampling				
DEVELOPMENT TEAM	POSITION / TITLE	REVIEWED BY:	POSITION / TITLE				
Michael Hodess	Staff Environmental Scientist	Mike Ritorto	Senior Hydrogeologist				
		Leo Kurylo	IL-OHSM				
		ENDED PERSONAL PROTECTIVE EQUIP					
☐ LIFE VEST ☐ HARD HAT ☐ LIFELINE / BODY HARNESS ☐ SAFETY GLASSES ☐ FLAME RESISTANT CLOTHING (as needed)	GOGGLES FACE SHIELD: HEARING PROTECTION: needed) SAFETY SHOES: Composi or steel toe boots	reflective vest or high visibility	<ul> <li>☑ GLOVES: <u>Leather, Nitrile and cut resistant</u></li> <li>☑ OTHER: <u>Insect repellant, sunscreen (as needed)</u></li> </ul>				
Recommended Equipment: 42" t							
	, , ,	participate in SPSA performance by ver	balizing SPSAs throughout the day.				
<b>EXCLUSION ZONE:</b> A minir	mum 10' exclusion zone will I	be maintained around moving equipmer	at, if present.				
Assess	Analyze		Act				
¹JOB STEPS	² POTENTIAL HAZARDS		L ACTIONS				
Secure location	1a. CONTACT: Personnel and vehicula traffic may enter the warea.	ar 42" traffic cones and/or caution and inform others of work act 1a. Wear reflective vest and/or his	gh visibility clothing. icular traffic. Position vehicle to protect				
	1b. <b>FALL:</b> Tripping/falling due to uneven terrain or entry from excavations.	1b. Inspect pathways and work a hazards (i.e., ice, puddles, sn 1b. Use established pathways an 1b. Stage equipment and tools in orderlymanner. Store equipm 1b. Roux employees should stay and trenches. Should entry to	rea for uneven terrain, weather-related ow, etc.), and obstructions. d walk on stable, secure ground. a convenient, stable, and ent at lowest potential energy. 5 feet from in-progress excavations on excavation be appropriate (when ders must be employed for steep				
	1c. EXPOSURE: Exposure to sun and excessive heat, possib causing sunburn, heat exhaustion or heat strough temperatures possibly causing cold stress.  Skin burn as a result or if applicable. Exposure explosive vapors due to tank farm operations, Biological hazards - tick bees/wasps, poison iventy thorns, insects, etc.	more of exposure is expected when warm temperatures are Be aware of the location of al 1c. Watch for heat stress sympto dizziness, rapid and shallow later fire, at the stress of the location of al 1c. Watch for cold stress sympto movement, weakness, stumb 1c. Take breaks for rest and water well shaded or a climate cont 1c. No open flames/heat sources. 1c. Flame resistant clothing must be 1c. Cell phones should be disable 1c. Pre-treat field clothing with Poticks and insects. 1c. Wear long sleeved shirts and boots to prevent ticks from re 1c. Spray insect repellant contain working in overgrown areas of 1c. Inspect area to avoid contact 1c. Wear cut-resistant gloves where we will be shaded to the working pat 1c. Personnel shall examine ther for ticks periodically when on 1c. If skin comes in contact with proposed to the source of the shaded or a climate contain well shaded or a climate contain the shaded or a climate contain well shaded or a climate contain well shaded or a climate contain the shaded or a climate contain well shaded or a climate shaded or a c	area from direct sunlight particularly expected.  I Site personnel.  In site policy.  In site policy.  In site policy.  In site policy.  In site personnel.  In site policy.  In site personnel.  In sit				

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

Assess 1JOB STEPS	Analyze  2POTENTIAL HAZARDS	Act 3CRITICAL ACTIONS
2. Collect Soil Sample	2a. CONTACT:  Personal injury from pinch points, cuts, and abrasions from sampling equipment tools, and material within soil sample.  Personal injury from contact with moving equipment while sampling.	<ul> <li>2a. Wear cut-resistant (i.e., Kevlar) gloves under chemical-resistant disposable gloves when handling soil samples and sampling jars.</li> <li>2a. Where possible, use trowel or equivalent tool to avoid contact with soil.</li> <li>2a. If sampling from bucket of heavy equipment, ensure all equipment is off and operator utilizes the "show me your hands" policy.</li> <li>2a. See 1a.</li> </ul>
	2b. EXPOSURE: Exposure to contamination (impacted soil) and/or lab preservatives.	Wear chemical-resistant disposable gloves over cut resistant gloves to protect hands when handling samples; use containment material or plastic sheeting to protect surrounding areas.      When collecting soil sample from hand auger, put large zip lock bag over entire auger to prevent spillage of soil on to the ground.      Open sample jars slowly and fill carefully to avoid contact with preservatives.
3. Decontaminate equipment	3a. EXPOSURE/CONTACT: Contamination (e.g., Separate Phase Hydrocarbons (SPH), contaminated vapors and/or soil).	<ul> <li>3a. Wear chemical-resistant disposable gloves and safety glasses.</li> <li>3a. Use an absorbent pad to clean spills.</li> <li>3a. Properly dispose of used materials/PPE in provided drums in designated drum storage area.</li> <li>3a. Remain upwind of sample and avoid breathing contaminant vapors, if they are present.</li> </ul>
	3b. <b>EXPOSURE:</b> Chemicals in cleaning solution including ammonia.	3b. Wear chemical-resistant disposable gloves and safety glasses. 3b. Work on the upwind side of decon. area. 3b. Use an absorbent pad to clean spills. 3b. Properly dispose of used materials/PPE in provided drums in designated drum storage area.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOE	B SAFETY ANALYSIS	Ctrl.	No. GEN 007	DATE: 2/3/2015		□ NEW ⊠ REVISED		PAGE 1 of 1
	TYPE CATEGORY		K TYPE	27.1.2. 2,0,20.0	WORK ACTIVITY (Description)			
Ger	neric	0&1	И		Movement of 55-Gallon Drums/Drum Handling			s/Drum Handling
					with Mobile Carrier			
N 4: -	DEVELOPMENT TEAM	Carai	POSITION / TITL	E	Day	REVIEWED BY:	CI	POSITION / TITLE
IVIIC	hael Smith	Seni	or Technician			niel Abberton		HSM
	R	FOLIIR	ED AND / OR RECOM	MENDED PERSOI		/ Greenidge ROTECTIVE EQUIPMENT	PI	oject Engineer
	LIFE VEST		GOGGLES	III LIKOU		AIR PURIFYING RESPIRATOR		GLOVES: Cut-resistant
	HARD HAT LIFELINE / BODY HARNESS		FACE SHIELD HEARING PROTECTI	ION		SUPPLIED RESPIRATOR PPE CLOTHING: Fluorescent		gloves OTHER:
×	SAFETY GLASSES		SAFETY SHOES: Ste			sleeved shirt or sleeved shirt and		OTTER.
			toe	OR RECOMMEN	DED 1	reflective safety vest.		
Moh	ile Drum Carrier, safety cones, and	d cauti		/ OR RECOMMEN	ו טבט	EQUIPMENT		
	nmitment to LPS – All personnel of			te in SPSA perfo	rman	ce by verbalizing SPSAs through	ghou	t the day.
	LUSION ZONE: A 10' exclusion							·
	Assess		Analyze			Act	O-1.0	
	1JOB STEPS	4 -	² POTENTIAL HAZA	ARDS	4 -	³CRITICAL A		
1.	Secure Work Area, Inspect 55- gal drums for proper condition, labeling, check drum ring and	1a.	FALL: Tripping/falling due surface terrain	to uneven	1а.	Inspect walking path for unever hazards (i.e. debris, puddles, prior to accessing work area.		
	bolts for tightness, inspect		odridoo torrairi		1a	Use established pathways and	d wa	lk on stable, secure ground
	mobile drum carrier.					Secure work area and coordin		<u> </u>
					ıu.	planned work activities with ot area.		
					1a. Delineate work area with 42" safety cones.			y cones.
		1b.	CONTACT/EXPOS	URE:	1b. Prior to inspecting drums don cut-resistant gloves. If drum is			
			Drums could potent			not properly labeled, do not or	oen a	and cease all drum transport
			damaged and conta material. Mobil drur	n carrier could		activities. Immediately contact him/her of drum situation.	t pro	ject manager and inform
			potentially not be in condition causing muring operation.		Do not continue drum transport activities until further actions are determined by the project manager.			
			during operation.	If the drum is properly labeled, but leaking, improperly sealed or in poor condition, place drum in an over-pack drum.				
					1b.	Inspect mobile drum carrier to carrier. Look for rust marks or		
						drum carrier could malfunction that they easily turn and nothin	i. Ins	spect the wheels to ensure
		1c.	EXERTION/CAUGI		1c.	Keep back straight and knees		
			Potential pinching/e hazards while secu			ring/tightening bolt. Wear cut-	resis	stant gloves.
			tightening bolts	illig illig/				
2.	Position drum clamp in	2.	CAUGHT:		2.	Attach drum clamp with chain	and	tighten until snug. Do not
	between drum ribs, securing		Pinching fingers be			place hands between drum cla		
	drum clamp to drum with chain		clamp and handle/c			tightened; wear cut resistant g		
3.	Disengage safety latches on handle, pull handle down until	3a.	EXERTION/ CONT. Potential muscle str		За.	Ascertain whether the drum is people are needed to lower ha		
	drum is lifted off ground and		associated with lifting			clamp so that safety latches c		
	safety latches are reengaged;		drum/handle. Drum	n could		of the line of fire of the handle	(do	not position head above
	slightly suspending drum off of		shift/slip downward	and crush		handle) as it is being pushed of		
	the ground		toes.			be positioned under the drum steel/composite toe boots.	ลร แ	is being litted, wear
		3b.	CAUGHT:		3b.	Wear cut-resistant gloves while	e dis	sengaging/reengaging safety
		00.	Fingers could be pi	nched while	00.	latches.	- G	ongaging, congaging carety
			engaging/disengag	ing safety				
4	Transport drume to decignate d	10	latches on handle		10	Enguro tropoport noth is free	of no	tontial abatruations that man
4.	Transport drums to designated location and disengage drum	4a.	FALL: Tripping/ falling due	e to	4a.	Ensure transport path is free cause the drum/carrier to become		
	clamp (repeat Step 3 in reverse		obstructions and un			clamp between the ribs on the		
	order)		Potential for drum to			slipping.		. ,
		l	transport.					

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into six types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift." Avoid general statements such as, "be careful."

JOB SAFETY ANALYSIS	0	DATE 4/	07/45	□NEW		D1054 (0		
JSA TYPE CATEGORY:	Cntrl#: GEN-015 WORK TYPE:	DATE 1/	27/15			PAGE 1 of 2		
GENERIC	Drilling		Monitoring and Recovery Well Development					
DEVELOPMENT TEAM	POSITION / TITLE		,			POSITION / TITLE		
Amy Hoffman	Staff Geologist		Mike Ritorto			r Hydrogeologist		
					Seriio	Hydrogeologist		
Ron Lombino	Staff Geologist		Daniel Abberton	/E EQUIDMEN	ıT			
☐ LIFE VEST	EQUIRED AND / OR RECOMN GOGGLES	IENDED P	AIR PURIFYING RE			LOVES: Leather, Nitrile and		
☐ HARD HAT	FACE SHIELD		☐ SUPPLIED RESPIR			t resistant		
☐ LIFELINE / BODY HARNESS	☑ HEARING PROTECTION (	as				THER: Insect repellant,		
SAFETY GLASSES	needed)  SAFETY SHOES: Compos	ito	reflective vest or hig	h visibility	su	nscreen (as needed)		
	toe or steel toe boots	ile-	clothing					
		OR RECC	MMENDED EQUIPMEN	NT				
Required Equipment as needed: Truck Rig or support truck, Trailer, 42 inch Safety cones and flags, Caution Tape, Interface Probe, Power Source, Submercible Pump, Surge Block/Plunger, 20 lb. Fire Extinguisher, Holding Tanks and/or Buckets, Tools as needed: Socket and Pipe Wrench, Screw Driver, Pry Bar, Ratchet, Vault Key.								
COMMITMENT TO LPS - All pers		pate in SP	SA performance by verb	alizing SPSAs	through	out the day.		
	Maintain a 20 Foot Exc							
	"SHO	OW ME Y	OUR HANDS"					
Driller an	d helper should show tha	t hands a	are clear from contro	ols and mov	ing par	ts		
Assess	Analyze			Act	_			
¹ JOB STEPS	² POTENTIAL HAZARD	S		3CRITICAL				
<ol> <li>Mobilization /</li> </ol>	1a. <b>CONTACT</b> :		0	ver/derrick will	be lowe	red and secured prior to		
Demobilization	Equipment/property dan	nage.	mobilization.	,				
(Review Mobilization and			1a. Set-up the work a					
Demobilization JSA)						ng of trucks and trailers.  tain an exclusion zone of		
			20 feet.		aid illalli	tain an exclusion zone of		
			1a. Beep horn twice b	efore backing	up.			
			1a. When backing up	with an attach	ed traile	r use a spotter if there is tight		
						les of the equipment or if		
						away from the line-of-fire.		
			1a. Inspect the driving	g path for unev	en terra	n. Level or avoid if needed.		
	1b. FALL:		1b Inspect walking pa	ath for uneven	terrain,	weather-related hazards		
	Slip/trip/fall hazards.			snow, etc.), a	nd obstr	uctions prior to mobilizing		
			equipment.					
						ment; walk around. Store		
			equipment at lowe	est potential er	iergy.			
<ol><li>Open/close well.</li></ol>	2a. OVEREXERTION:	U. b				ad close to body, and never		
	Muscle strain (some we large vault covers).	is nave				balanced to reduce the tree required when lifting		
	large vaun covers).					nakes the object difficult to		
			lift.	o or when the	onapo m	iakes the object aimount to		
	2b. CAUGHT:							
	Pinch points associated					well vault/cover and hand		
	removing/replacing man		tools. Do not put f 2b. Use ratchet and p					
	and working with hand to	ools.	2b. Ose fatoriet and p	Ty bar for well	cover ar	id inspect before use.		
	o EVDOUIDE							
	2c. EXPOSURE:		2c. No open flames/h					
	Potentially hazardous va	apors.				fore starting development		
						s. Air monitoring must be		
			performed prior to Work on upwind s	•	iiing the	well development activities.		
			•					
	2d. CONTACT:					ity clothing or reflective vest.		
	Traffic.					es and/or other barriers.		
			Position vehicle to 2d. Face traffic, maint					
			establish a safe e		01	.ccig voilloloo, and		

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - Electricity, Pression, tension, torque.
Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

	Assess	Analyze	Act
	¹JOB STEPS	² POTENTIAL HAZARDS	³ CRITICAL ACTIONS
3.	Develop well (mechanical surging).	3a. CAUGHT: Cut hazards and finger pinch points.	<ul> <li>3a See 2b.</li> <li>3a. Use required PPE including leather/cut-resistant gloves when handling development equipment. Identify finger/hand pinch points. Keep hands away from active surge equipment.</li> <li>3a. All non-essential personnel should maintain an exclusion zone of 20 feet.</li> </ul>
		3b. CONTACT/EXPOSURE: Contamination (e.g., SPH, contaminated groundwater, vapors).	<ul> <li>3b. See 2c.</li> <li>3b. Wear Nitrile gloves and safety glasses. Insert and remove surge block/plunger and line/cable slowly to avoid splashing at the surface.</li> <li>3b. Use an absorbent pad to clean any spills.</li> </ul>
		3c. OVEREXERTION:  Muscle strain from lifting equipment.	<ul><li>3c. See 2a.</li><li>3c. Use mechanical device to insert and remove surge block/plunger if greater than 50lb.</li></ul>
		3d. CONTACT: Injury while handling wench line/cable, or with active surging equipment	<ul> <li>3d. If using a drill rig, inspect all wench lines/cables for any kinks or if frayed prior to use. Replace any damaged lines/cables. Review Drill Rig checklist prior to development activities.</li> <li>3d. See 3a.</li> </ul>
4.	Purging well (pumping water to holding tanks/drums/buckets).	4a. CAUGHT:  Pinch points associated with connecting hose to tank.  Pinch points associated with handling pump and hoses.	<ul> <li>4a. See 3a.</li> <li>4a. Ensure that fingers are not placed near coupling when attaching and securing hose(s). Do not place fingers under pump/hoses. Wear leather or cut-resistant gloves when handling pump/hose(s).</li> <li>4a. Keep hands clear from any line of fire.</li> </ul>
		4b. FALL: Using side mounted ladder when attaching hose to tank. Slip, trip, fall from lines/hoses	<ul> <li>4b. Inspect ladder steps to make sure steps are not bent/damaged and free of debris/fluid.</li> <li>4b. Use three points of contact at all times when using ladder.</li> <li>4b. Utilize anti-whip cords on all compressed hoses. Keep hoses and lines coiled and organized out of designated walking paths around the work zone.</li> </ul>
		4c. <b>CONTACT:</b> Contamination (e.g., SPH, contaminated groundwater).	<ul> <li>4c. Secure water hose.</li> <li>4c. Do not overfill tanks, and purge/transfer liquids in such a manner that they do not splash. (See 3b).</li> <li>4c. Dispose of used materials/PPE in the designated impacted PPE container.</li> </ul>
		4d. <b>EXERTION:</b> Muscle strain from lifting/carrying equipment.	4d. See 2a.
		4e. <b>FALL:</b> Spilled purge water.	4e. Clean up any spills using absorbent pads or spill kits.
5.	Decontaminate equipment	5a. CONTACT/EXPOSURE: Contamination (e.g., SPH, contaminated groundwater, vapors).	5a. See 3b.
		5b. EXPOSURE/CONTACT: Chemicals in cleaning solution	5b. Decontaminate equipment in well-ventilated area. Wear nitrile gloves to avoid skin contact with cleaning solutions.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - Electricity, Pression, tension, torque.
Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY ANALYSIS	Ctr	No GFN-005	DATE :	2/4/20	15		NEW REVISED		PAGE 1 of 2
JSA TYPE CATEGORY		RK TYPE:	DAIL A		WORK ACTIVITY (Description):				TAGE TOTZ
Generic		uging and Sampling		Gauging and Sampling					
DEVELOPMENT TEAM	- u	POSITION / TITLE			REVIEWE				POSITION / TITLE
Gina Masciello	Pro	ject Scientist		Joe	Gentile			Corp	H&S Mgr
Louis Goldstein		ff Engineer			hael Ritorto				ct Hydrogeologist
		<u> </u>		-	is Goldstein	(as pa	art of		Engineer
					ual review)	( )-			3
		JIRED AND / OR RECOMN	MENDED PE	RSON					
□ LIFE VEST     □ HARD HAT		GOGGLES FACE SHIELD			AIR PURIFYING SUPPLIED RES				GLOVES: <u>Leather, Nitrile and cut</u> resistant
☐ HARD HAT ☐ LIFELINE / BODY HARNESS		HEARING PROTECTION			PPE CLOTHING				OTHER: Knee pads, Insect
SAFETY GLASSES	$\boxtimes$	SAFETY SHOES: Composite	e-toe or steel		reflective vest of				Repellant, sunscreen (as needed)
		toe boots  REQUIRED AND /	OR RECO	MEN	clothing DED FOLLIPM	IENT			
42-inch Safety Cones, Caution T	ape. I						Extinguisher	. Bucke	ets. Tools as needed: Socket
Wrench, Screw Driver, Crow Bar				,	, .,,,			, = 5.5.1.	
Commitment to LPS – All po	erson		articipate ir	SPS	A performan	nce b		_	As throughout the day.
Assess ¹JOB STEPS		Analyze  POTENTIAL HAZARDS	6				Act 3CRITICAL A	ACTION	_
Mobilization to monitoring	1a.	, , , ,		1a.				ost suit	table designated pathway
well(s).		slip/trip/fall due to uneven and/or obstructions.	terrain	10	prior to mobil			k and/a	r drive on stable, secure
		and/or obstructions.		ıa.	ground and a				
				1a.					guarded edge, wear life vest.
	1h	CONTACT: With traffic/th	nird	1h	Identify noter	ntial tr	affic sources	and de	elineate work area with 42-
	10.	parties.	iiiu	10.					cle to protect against
		F			oncoming tra	affic. I	Jse caution t	ape to p	provide a more visible
					delineation of				
				1b.	Wear approp vest.	riate	PPE including	g high \	visibility clothing or reflective
				1h		maint	ain eve conta	ct with	oncoming vehicles, and
				10.	establish a sa			iot mini	ondonning vornoide, and
				1c.	Inspect work	area	for bees and	insects	S.
	1c.	EXPOSURE:		1c.	Use insect/tid				
Open/close well.	2a.	To biological hazards.  ERGNOMICS: Muscle st	rain	2a.	l lse proper li	iftina t	echniques: k	een ha	ck straight, lift with legs and
Z. Opon/ologe well.	20.	ERGROMICO. Muscie st	iaii.	24.	bend knees v				
	2b.	CAUGHT: Pinch/crush po		2b.	Wear leather	glove	es or cut resis	stant glo	oves when working with well
		associated with removing manholes and working with			cover and ha				
		tools.	urrianu	2b.		ools (ı	ratchet and p	ry bar f	or well cover) and inspect
				2b.	before use. Do not put fir	naers	under well co	over.	
					20	.90.0			
	2c.	CAUGHT: Pinch points a	ssociated	2c.	See 2b.				
		with placing J-plug back of		2c.	Keep fingers	out o	f line-of-fire v	vhen se	ecuring cap
		pipe.							
	2d.	EXPOSURE: To potentia	al	2d.					
		hazardous vapors.		2d.	and before sa				well to vent after opening it
				2d.					pors.
3. Gauge well.	3a.	CONTACT: With contar	mination	3a.	Wear chemic	cal-res	sistant dispos	able gl	oves (over cut-resistant
-		(e.g. contaminated ground	dwater).		gloves) and s	safety	glasses whe	n gaug	ing well.
					Insert and re				ıd splashing.
	3h	CONTACT:		3a.	Use an absor	nent	pau to clean	probe.	
	OD.	With traffic.		3b.	See 1b.				

Assess ¹JOB STEPS

Analyze ²POTENTIAL HAZARDS Act
3CRITICAL ACTIONS

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;

Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

4.	Purge and sample well.	4a.	EXPOSURE/CONTACT: To	4a. Open and fill sample jars slowly to avoid splashing and contact with
٦.	r dige and sample well.	ча.	contaminated groundwater, vapors)	preservatives.  4a. Wear cut-resistant gloves and chemical-resistant disposable gloves
			and/or sample preservatives.	when sampling.
				<ol> <li>Fill sample containers over purge container to avoid spilling water onto the ground.</li> </ol>
				4a. Use an absorbent pad to clean spills.
				<ol> <li>When using a bailer to purge a well, pull the bailer slowly from the well to avoid splash hazards.</li> </ol>
				<ul><li>4a. When sampling or purging the water using a bailer, pour out water slowly to reduce the potential for splash hazards with groundwater.</li><li>4a. When using a tubing valve always remove the valve slowly after</li></ul>
				sample collection to release any pressure and avoid pressurized splash hazards
				When collecting a groundwater sample always point sampling apparatus (tubing, bailer, etc.) away from face and body.
4.	Purge and sample well	4b.	CONTACT: Personal injury from	4b. To avoid spills or breakage, place sample ware on even surface.
	(Continued).		cuts, abrasions, or punctures by glassware or sharp objects.	<ul><li>4b. Do not over tighten caps on glass sample ware.</li><li>4b. Wear chemical-resistant nitrile disposable gloves over cut-resistant</li></ul>
			glassware of sharp objects.	(i.e. Kevlar) gloves when sampling and handling glassware (i.e., VOA vials) or when using cutting tools.
		4c.	ERGONOMICS: Muscle strain while carrying equipment.	4c. Use proper lifting techniques when handling/moving equipment; bend knees and keep back straight.
			while carrying equipment.	4c. Use mechanical assistance or team lifting techniques when
				equipment is 50 lbs. or heavier. 4c. Make multiple trips to carry equipment.
		4d.	CONTACT: With traffic.	4d. See 1b.
		4e.	CONTACT: Pinch points with groundwater	<ul><li>4e. Wear leather gloves when working with groundwater pumps</li><li>4e. Never place hands on or near pinch points such as the wheel,</li></ul>
			pump components (i.e. wheel, line, clamps)	clamps or other moving parts during pump operations  4e. Use correct the correct mechanisms, such as a pump reel, to lower
			ciamps)	pump into well
				<ol> <li>Never attempt to manually stop any moving part of equipment including hose reels and/or tubing.</li> </ol>
		4f.	ERGONOMICS: Muscle strain from	4f. See 4c.
			repetitive motion of bailing and sampling a well	4f. Include a stretch break when repetitive motions are part of the task.
5.	Management of purge water.	5a.	<b>EXPOSURE/CONTACT:</b> To contamination (e.g., SPH,	<ol> <li>Do not overfill container and pour liquids slowly so that they do not splash.</li> </ol>
	water.		contaminated groundwater, vapors).	<ul><li>5a. Properly dispose of used materials/PPE in appropriate container in designated storage area.</li></ul>
		5b.	ERGONOMICS:	5b. Use proper lifting techniques when lifting / carrying or moving
			Muscle strain from lifting/carrying and moving containers.	container(s) (see 4c.). 5b. Do not overfill container(s).
				· · ·
6.	Decontaminate equipment.	6a.	EXPOSURE/CONTACT: To	6a. Work on the upwind side, where possible, of decon area.
			contamination (e.g., SPH, contaminated groundwater, vapors).	<ul><li>6a. Wear chemical-resistant disposable gloves and safety glasses.</li><li>6a. Use an absorbent pad to clean spills.</li></ul>
		6b.	CAUGHT: Pinch points associated	6b. See 2b.
		_~.	with handling hand tools	6b. Inspect hand tools for sharp edges before decontaminating

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension..

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY ANALYSIS	Ctrl. No. GEN-013	DATE: 01/1	6/2015	☐ NEW ☐ REVISED	PAGE 1 of 2	
JSA TYPE CATEGORY:	WORK TYPE		WORK ACTIVITY (Description)			
GENERIC	Gauging and Samplin	g	Soil Vapor Sampling (Permanent Monitoring Points)			
DEVELOPMENT TEAM	POSITION / TITLE		REVIEWED	BY:	POSITION / TITLE	
Jeff Wills	Project Hydrogeologist		Daniel Abberton		SHSM	
			Mike Ritorto		Senior Hydrogeologist	
			Julie Moriarity		Staff Scientist	
	REQUIRED AND / OR RECOM	MENDED PER	SONAL PROTECTIVE	EQUIPMENT		
☐ LIFE VEST ☑ HARD HAT ☐ LIFELINE / BODY HARNESS ☑ SAFETY GLASSES	☐ GOGGLES ☐ FACE SHIELD ☐ HEARING PROTECTION ☑ SAFETY SHOES: Steel-toe	e boots	☐ SUPPLIED RE ☑ PPE CLOTHIN	G RESPIRATOR SPIRATOR IG: <u>Fluorescent</u> or high visibility	□ GLOVES: <u>Cut-resistant &amp; Nitriles</u> □ OTHER: <u>Bug Spray, Sun Screen, Knee Pads or kneeling pad</u>	
	REQUIRED AND	O / OR RECOMM	MENDED EQUIPMENT			

9/16" Socket and Wrench, Non-Toxic Clay, Teflon-Lined Tubing, Masterflex Tubing, 3-Way Stopcock, Air Pump with Low Flow, Dry Cal, Enclosure (Bucket with 2 holes), Helium Gas Canister, Summa Canisters and Flow Controllers, MultiRae Gas Meters, CO2/O2 Meters, Helium Detector, Tubing Cutter, 42-inch Safety Cones, Caution Tape or Retractable Cone Bars

COMMITMENT TO LPS - All personnel onsite will actively participate in SPSA performance by verbalizing SPSAs throughout the day.

**Exclusion Zone: Maintain a 5-Foot Exclusion Zone for Non-Essential Personnel** 

	ACCESS 1JOB STEPS	ANALYZE ² POTENTIAL HAZARDS	ACT 3CRITICAL ACTIONS
1.	Define and secure work area.	1a. FALL: Potential tripping hazards.	<ul> <li>1a. Ensure work area is secure and inform others (third party) of work activity.</li> <li>1a. Remove tripping hazards and inspect walking path for uneven terrain, weather-related hazards (i.e., ice, puddles, snow, etc.), and obstructions prior to mobilizing equipment.</li> </ul>
		CONTACT:     Potential contact with moving vehicles or pedestrians.	<ul> <li>1b. If working alongside roads, look both ways before entering roadways, face traffic, and utilize work vehicle to protect employees.</li> <li>1b. Delineate work area (including vehicles) with traffic safety cones and caution tape or retractable cone bars.</li> <li>1b. Maintain a 5 foot exclusion zone.</li> <li>1b. Wear high visibility clothing or reflective safety vest.</li> </ul>
		OVEREXERTION:     Muscle strain while lifting and carrying equipment.	When carrying equipment to/from work area, keep back straight, lift with legs, keep load close to body, never reach with a load. Ensure that loads are balanced. Use mechanical assistance/make multiple trips to carry equipment.
2.	Remove well cover / close well cover.	2a. CONTACT/CAUGHT: Pinch points and scrapes associated with hand tools and well covers.	<ul> <li>2a. Keep hands away from pinch points.</li> <li>2a. Use hand tools with extensions to remove and replace well covers.</li> <li>2a. Wear cut-resistant gloves.</li> <li>2a. Use knee pads or kneeling mat when repetitive kneeling on rough ground is anticipated.</li> </ul>
		Potential tripping hazards     associated with installing bolts.	Place security bolts in secure location so not to create tripping hazards. Replace security bolts so that they fit flush with monitoring well covers.
		2c. <b>OVEREXERTION:</b> Physical exertion to remove bolts that were over torque or stripped.	<ul> <li>2c. Replace any security bolts that show signs of stripping. Do not over tighten.</li> <li>2c. Use body positioning and bending techniques that minimize muscle strain; keep back straight, bend at the knees.</li> <li>2c. See 2a.</li> </ul>
3.	Remove / replace brass caps at the end of the sample tubing.	3a. CONTACT: Pinch points associated with hand tools and brass caps.	<ul><li>3a. Use wrench to remove and replace brass caps.</li><li>3a. Wear cut-resistant gloves to protect against pinch points and scrapes.</li></ul>
		3b. <b>EXPOSURE:</b> Potential pathway for vapors to migrate to land surface.	<ul><li>3b. Replace brass caps immediately upon completion to avoid soil vapors migrating to the surface through sample tubing.</li><li>3b. Stand up wind of sample point location.</li></ul>

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object; Caught - victim is caught in or caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - Electricity, pressure, tension/compression, torque.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs

to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

	ACCESS 1JOB STEPS	ANALYZE ² POTENTIAL HAZARDS	ACT  3CRITICAL ACTIONS
4.	Set up soil vapor sampling equipment and calibration of meters.	4a. FALL: Potential tripping hazards associated with equipment and tubing.	<ul> <li>4a. Place equipment in one area close to the sampling location.</li> <li>4a. Keep tubing slack to a minimum and locate the summa canister as close to the sampling location as possible.</li> <li>4a. Avoid stepping over equipment and tubing.</li> </ul>
		4b. <b>CONTACT:</b> Pinch points associated with handling equipment.	<ul> <li>4b. Do not place fingers/hands under sampling equipment.</li> <li>4b. Make multiple trips when unloading equipment in work area.</li> <li>4b. Wear cut-resistant gloves to protect against pinch points while handling sampling equipment.</li> </ul>
		4c. <b>EXPOSURE:</b> Inhalation of calibration gas and helium.	<ul> <li>4c. Review SDS for each type of calibration gas used before calibrating.</li> <li>4c. Calibrate meters in a well vented area and keep air flow regulator away from face.</li> <li>4c. Close valve on canisters after use to avoid inhalation of excess helium or calibration gas.</li> <li>4c. Stand up wind of bucket during helium tracer gas test.</li> </ul>
5.	Screen sample tubing with multiple gas and CO ₂ /O ₂ meters.	5a. <b>FALL:</b> Potential tripping hazards associated with equipment.	<ul> <li>5a. See 4a</li> <li>5a. Identify area where equipment is to be stored within the work area (away from main walking path).</li> <li>5a. Don't leave equipment on the ground. Return equipment to storage area between uses.</li> </ul>
		5b. <b>EXPOSURE:</b> Inhalation of soil vapor	<ul> <li>5b. See 3b.</li> <li>5b. Use master flex to connect tubing to meter.</li> <li>5b. Stand on opposite side of meter vent and upwind of soil vapor point during screening activities.</li> </ul>
6.	Cleaning Work Area.	6a. FALL: Potential tripping hazards associated with equipment and tubing.	6a. See 4a. 6a. See 5a.
		6b. CONTACT: Storing and transport of equipment in car.	<ul> <li>6b. Ensure that equipment is placed securely in the vehicle. Do not stack equipment on top of each other. Secure equipment so that it will not slide while being transported.</li> <li>6b. Wear cut-resistant gloves while handling/loading equipment.</li> </ul>

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object;
Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - Electricity, pressure, tension/compression, torque.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

JOB SAFETY ANALYSIS	Ctrl. No. GEN-006	DATE 2/24/	2017	PAGE 1 of 2									
JSA TYPE CATEGORY	WORK TYPE	DITTE ZIZ-II				17/02 10/2							
Generic	Surveying		Elev	ation Surveying									
DEVELOPMENT TEAM	POSITION / TITLE			REVIEWED BY:		POSITION / TITLE							
Mark M Emmons	Project Engineer		Dan	el Abberton	Н	ealth and Safety Officer							
Bjorn Wespestad	Senior Engineer			ael Ritorto		oject Hydrogeologist							
						-,							
	REQUIRED AND / OR RECOM	IMENDED PER	SONAL	PROTECTIVE EQUIPMENT									
☐ LIFE VEST	GOGGLES			AIR PURIFYING RESPIRATOR		GLOVES: Cut-resistant or leather							
☐ HARD HAT☐ LIFELINE / BODY HARNESS	FACE SHIELD			SUPPLIED RESPIRATOR	$\boxtimes$	OTHER: Long sleeve Shirt							
<ul><li>☐ LIFELINE / BODY HARNESS</li><li>☒ SAFETY GLASSES</li></ul>	<ul><li>☐ HEARING PROTECTION</li><li>☒ SAFETY SHOES: Steel-to</li></ul>	no hooto	PPE CLOTHING: <u>Fluorescent</u> reflective vest or high visibility										
△ SAFETT GLASSES	SAFETT SHOES. Steel-to	De boots		clothing									
	REQUIRED AND	/ OR RECOMM											
Surveying equipment (i.e., leveling	rod/measuring ruler, tripod and	d scope).											
COMMITMENT TO LPS - All perso	onnel onsite will actively par	ticipate in SF	SA pe	erformance by verbalizing SI	PSA	s throughout the day.							
Access	Analyze			Ac	4								
Assess 1JOB STEPS	² POTENTIAL HAZAR	ns		³CRITICAL		TIONS							
Check in with Site manager/	1a. CONTACT/EXPOSURE		10 le	nform Site personnel of work s									
property owner.	Lack of communication coul			nguire about other activities tak									
property owner.	H&S incident.	a result iii		applicable, obtain General Wo									
	Tide molden.		10.11	••		<u> </u>							
<ol><li>Locate surveying position for</li></ol>	2a. <b>FALL:</b>		2a.			veather-related hazards (i.e., ice,							
instrument and rod and set-up	Slip/trip hazards.			puddles, snow, etc.), and obs	struc	tions prior to setting up at the							
work area						ged with walking surface while							
			0-	in movement. Remember " W									
			2a.	<ol> <li>Conduct housekeeping and maintain clear paths to walk in and remove debris as required.</li> </ol>									
				remove debris as required.									
	2b. CONTACT:		2b. Be aware of oncoming traffic. Utilize a flagman / spotter for										
	Traffic (surveying loca		locations in streets or high-traffic areas.  2b. Place 42 inch cones around the work area, and delineate work										
	potentially be located	in parking	2b.										
	areas and sidewalks).		01			cing or safety bars, if necessary.							
			2b.		ıng I	ong sleeve high visibility clothing							
			<ul><li>and or reflective safety vest.</li><li>2b. Face traffic, maintain eye contact with oncoming vehicles, and</li></ul>										
			∠0.	establish a safe exit route.	itaci	with oncoming venicles, and							
				establish a sale exit foute.									
	2c. OVEREXERTION:	1.6.	2c.	Use proper body positioning									
	Hazard due to carrying		straight, lift with legs, keep load close to body, and never reach										
	bending while transpo equipment.	rting		with a load.									
	equipment.		2c.	Avoid carrying too much equipment that is more than									
				equipment that is more than :	או טכ	).							
	2d. CAUGHT/CONTACT:	:	2d. Wear cut resistant gloves when handling the tripod and keep										
	Pinch Points / sharp e	dges				cated near moving parts of the							
	associated with setting	g up the		tripod. Don't carry tripod by t	he p	ointed ends.							
	tripod.												
3. Open / close manhole cover	3a. OVEREXERTION:		3a.			ng to open well. Use manhole							
to well that is being surveyed	Muscle strain			lifting hook or pry bar to avoid	d bei	nding.							
(if necessary).	3b. CAUGHT:		3b.	Wear leather gloves or cut res	ista	nt gloves when working with well							
	Pinch points associate	ed with		cover and hand tools.									
	removing / replacing n	nanholes and	3b.	Use proper tools (ratchet and	crov	vbar or pry bar for well cover)							
	working with hand tools.												
			<ul><li>and inspect before use.</li><li>3b. Do not put fingers under well cover.</li></ul>										
	o. EVPOOURE		3c.	No open flames/heat sources.									
	3c. EXPOSURE:	ula vanora				llow well to vent after opening it							
	To potentially hazardo	ous vapuis.		and before survey activities b									
	To biological hazards.		3c.	Work on the upwind side of m	nanh	ole/well.							
			3.c		e caution while opening up lids to inspect work area for b								
				and insects inside of covers.	3.								
			3c.	Use insect/tick repellent as ne	sary.								
	3d. CONTACT:		3d.	See 2b.									
	With traffic.												

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

	Assess 1JOB STEPS		Analyze ² POTENTIAL HAZARDS		Act  3CRITICAL ACTIONS
4.	Perform survey.	4a.	FALL: Slip/trip hazards	4a.	See 2a.
		4b.	CONTACT: Traffic (surveying locations could be potentially located in parking areas and sidewalks)	4b. 4b.	See 2b. Personnel using the scope will be devoting most of their attention to the surveying activity and shall be aware of vehicular and pedestrian traffic. Personnel holding the measuring stick should be extra vigilant of survey personnel and communicate any potential hazards to the instrument person via handheld radio or similar means. Ensure reflective safety vest is worn.
5.	Break down work area.	5a.	CONTACT: Traffic (surveying locations can potentially be located in parking areas and sidewalks).	5a.	See 2b.
		5b.	EXERTION: Hazard due to carrying, lifting, and bending while transporting equipment	5b.	See 2c.

Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.

A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

	B SAFETY ANALYSIS			DATE 2	2/9/201	7	REVISED		PAGE 1 of 2						
	TYPE CATEGORY	_	RK TYPE:		WORK ACTIVITY (Description):										
	neric	Sar	npling		Pro	duct Sampl REVIEWED			DOCITION / TITLE						
	EVELOPMENT TEAM ley Persaud	Staf	POSITION / TITLE  f Assistant Geologist		Kaila	ni Acosta	BT:	POSITION / TITLE Staff Assistant Scientist							
ASII	ley i ersaud	Stai	1 Assistant Geologist		Nalia	III Acosta		Stail	Assistant Scientist						
				IENDED PE	PERSONAL PROTECTIVE EQUIPMENT										
$\square$	LIFE VEST HARD HAT		GOGGLES FACE SHIELD			AIR PURIFYING SUPPLIED RESI			GLOVES: <u>Leather, Nitrile and cut</u> esistant						
	LIFELINE / BODY HARNESS		HEARING PROTECTION		⊠ I	PPE CLOTHING	: Fluorescent		OTHER: Knee pads, Insect						
$\boxtimes$	SAFETY GLASSES	$\boxtimes$	SAFETY SHOES: Composite toe boots	-toe or steel	l reflective vest or high visibility Repellent, sunscreen (as needed) clothing										
				OR RECOM	DMMENDED EQUIPMENT										
	nch Safety Cones, Caution Taket Wrench or Impact Gun, S								Bailer. Tools as needed:						
Cor	nmitment to LPS – All pe	erson	nel onsite will actively pa	articipate in	SPS	A performand	e by verbalizing	g SPS	As throughout the day.						
	Assess		Analyze				Act		10						
1.	¹JOB STEPS  Mobilization to monitoring	10	2POTENTIAL HAZARDS		10 1	nepoet pothwo	3CRITICAL A		le designated pathway prior to						
1.	well(s).	1a.	<b>FALL:</b> Personal injury from slip/trip/fall due to uneven to			mobilization.	·		0 1 71						
			and/or obstructions.				pathways, walk a hills or uneven to		rive on stable, secure, ground						
		1b.	CONTACT: With traffic/thir	d parties.		traffic safety co	nes. Position vehi	icle to p	eate work area with 42 inch rotect against oncoming traffic. le delineation of the work area if						
					1b.	necessary. Wear appropria	te PPE including I	nigh visi	ibility clothing or reflective vest.						
					<ul> <li>If working on public streets, wear level II high visibility shirt/vest as required by the DOT.</li> <li>1b. Face traffic, maintain eye contact with oncoming vehicles, and establish a safe exit route. Use spotter if possible.</li> </ul>										
			EXPOSURE:		1c. Inspect work area for bees and insects.										
2.	Open/close well.		To biological hazards.  OVEREXERTION: Muscle	atrain					straight, lift with legs and bend						
۷.	Open/close well.	Za.	OVEREXECTION: Muscle	Strain.					Use knee pad as needed.						
		2b.	<b>CAUGHT:</b> Crush points as with removing/replacing ma			Wear leather gl cover and hand		ant glove	es when working with well						
			and working with hand tools		<ul><li>2b. Use proper tools (ratchet and pry bar for well cover) and inspect before</li></ul>										
					use.										
					2b. Do not put fingers under well cover.										
		2c.	<b>CAUGHT:</b> Pinch points ass with placing J-plug back on pipe.			See 2b. Keep fingers ou	it of line-of-fire wh	en secu	iring cap.						
		0.1			24	No open flames	/hoot courses								
		2d.	<b>EXPOSURE:</b> To potential I vapors.	nazardous				allow w	ell to vent after opening it and						
			•				g activities begin. f possible, to avoid	d vanor							
3.	Gauge well.	3a.	CONTACT: With contami	nation			•		es and safety glasses when						
0.	Caago won.	ou.	(e.g. contaminated groundy			gauging well.	·	Ü	, 5						
							ve probe slowly to nt pad to clean pro		splashing.						
		3b.	CONTACT: With traffic.			see 1b.	nt pad to clean pro	JDE.							
		3c.	CONTACT: Knees with ground surface		3c. l	Jse knee pad to	alleviate pressure	e to kne	es.						
4.	Sample well.	4a.	EXPOSURE/CONTACT: T	O				avoid s	splashing and contact with						
			contamination (e.g., SPH, contaminated groundwater,	vanore)	preservatives, if present.  4a. Wear cut-resistant gloves and chemical-resistant disposable gloves										
			and/or sample preservative		when sampling.										
							ainers over purge e a funnel if samp		er to avoid spilling product onto						
							e a lunner it samp nt pad to clean sp		ווווסע וא אווווסע.						
					4a. l	Pull the bailer sl	owly from the well	to avoi							
						our out produc groundwater.	a slowly to reduce	ine pot	ential for splash hazards with						
1 Ea	ach Job or Operation consists	s of a	set of tasks / steps. Be sur	re to list all th			erform iob.								

- A hazard is a potential danger. Break hazards into five types: Contact victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension.
- 3 Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done such as "use two persons to lift". Avoid general statements such as, "be careful".

			4a. When collecting a product sample, always point sampling apparatus (tubing, bailer, etc.) away from face and body.
	Assess 1JOB STEPS	Analyze  2POTENTIAL HAZARDS	Act ³CRITICAL ACTIONS
4.	Purge and sample well (Continued).	CONTACT: Personal injury from cuts, abrasions, or punctures by glassware or sharp objects.	<ul> <li>4b. To avoid spills or breakage, place sampleware on even surface.</li> <li>4b. Do not over tighten caps on glass sampleware.</li> <li>4b. Wear chemical-resistant nitrile disposable gloves over cut-resistant (i.e. Kevlar) gloves when sampling and handling glassware or when using cutting tools.</li> </ul>
		EXERTION: Muscle strain while carrying equipment.	<ul> <li>4c. Use proper lifting techniques when handling/moving equipment; bend knees and keep back straight.</li> <li>4c. Use mechanical assistance or team lifting techniques when equipment is 50lbs or heavier.</li> <li>4c. Make multiple trips to carry equipment.</li> </ul>
		4d. CONTACT: With traffic.	4d. See 1b.
		4e. <b>EXERTION</b> : Muscle strain from repetitive motion of bailing and sampling a well	4e. See 4c.  4e. Include a stretch break when repetitive motions are part of the task.
5.	Management of purge water.	5a. <b>EXPOSURE/CONTACT:</b> To contamination (e.g., SPH, contaminated groundwater, vapors).	<ul> <li>5a. Do not overfill container and pour liquids in such a manner that they do not splash.</li> <li>5a. Properly dispose of used materials/PPE in appropriate container in designated storage area.</li> </ul>
		5b. <b>EXERTION:</b> Muscle strain from lifting/carrying and moving containers.	<ul> <li>5b. Use proper lifting techniques when lifting / carrying or moving container(s) (see 4c.).</li> <li>5b. Do not overfill container(s). Split loads between containers to prevent overburdening.</li> </ul>
6.	Decontaminate equipment.	6a. <b>EXPOSURE/CONTACT:</b> To contamination (e.g., SPH, contaminated groundwater, vapors).	<ul><li>6a. Work on the upwind side, where possible, of decon area.</li><li>6a. Wear chemical-resistant disposable gloves and safety glasses.</li><li>6a. Use an absorbent pad to clean spills.</li></ul>
		6b. CAUGHT/CONTACT: Pinch points and cut hazards associated with handling tools	6b. See 2b. 6b. Inspect hand tools for sharp edges before decontaminating.

 Each Job or Operation consists of a set of tasks / steps. Be sure to list all the steps needed to perform job.
 A hazard is a potential danger. Break hazards into five types: Contact - victim is struck by or strikes an object; Caught - victim is caught on, caught in or caught between objects; Fall - victim falls to ground or lower level (includes slips and trips); Exertion - excessive strain or stress / ergonomics / lifting techniques; Exposure - inhalation/skin hazards; Energy Source - electricity, pressure, compression/tension..

Using the first two columns as a guide, decide what actions or procedures are necessary to eliminate or minimize the risk. List the recommended safe operating procedures. Say exactly what needs to be done - such as "use two persons to lift". Avoid general statements such as, "be careful".

# **APPENDIX B**

Heavy Equipment Exclusion Zone Policy

# **FINAL**

# STANDARD OPERATING PROCEDURE 1.13 HEAVY EQUIPMENT EXCLUSION ZONE POLICY

Joseph W. Gentile CORPORATE HEALTH AND SAFETY MANAGER

EFFECTIVE DATE February 2014

**REVISION NUMBER** 1

# **Objective**

The purpose of the Exclusion Zone Policy is to establish the minimum clearance distance that must be maintained between workers and heavy equipment while equipment is in operation (i.e., engaged or moving). The intent is to have no personnel or other equipment entering the Exclusion Zone while the equipment is in operation/moving to ensure that Roux and Subcontractor employees are not unnecessarily exposed to the hazards of the equipment.

# A. Definition

For the purpose of this policy, heavy equipment includes, but is not necessarily limited to: excavation equipment, drill rigs, vacuum trucks, forklifts, lull telehandlers, man lifts, bobcats, delivery trucks, etc.

# **B.** Requirements

- 1. Exclusion Zones must be established and maintained during activities involving the movement/operation of heavy equipment. The Exclusion Zone requirements apply to all personnel on the site but are primarily focused on those personnel who are required to be working in the vicinity of the equipment. The exclusion zone is in effect when heavy equipment is moving or engaged (ex. movement of an arm or bucket of an excavator, rotation of an auger, lifting of a load with a forklift, raising/lowering of a man lift, etc.).
- 2. The Exclusion Zone must meet the following minimum requirements:
  - A minimum distance of 10 feet from all heavy equipment and loads being moved by the equipment; and
  - Greater than the swing/reach radius of any moving part on the heavy equipment (i.e., for large equipment this may mean an exclusion zone distance larger than 20 feet);
  - Greater than the tip-over distance of the heavy equipment; and
  - Greater than the radius of blind spots.
- 3. The size of the Exclusion Zone will need to be determined on a task-specific basis considering the size of the heavy equipment in use and the task being performed. Prior to all heavy equipment operations, the Exclusion Zone(s) distance must be specifically identified in the Job Safety Analysis (JSA).
- 4. The spotter (or another individual) should be assigned responsibility for enforcing the Exclusion Zone. This spotter should be positioned immediately outside of the Exclusion Zone within a clear line of sight of the equipment operator. The spotter must signal the operator to stop work if anyone or anything has the potential to enter or compromise the Exclusion Zone. The operator should stop work if the spotter is not within his/her line of sight. If multiple pieces of equipment are being used, each piece of equipment must have its own Exclusion Zone and spotter. For large excavation and demolition projects the spotter should be in constant radio contact (not cell phone) with the machine driver.
- 5. If an individual must enter the Exclusion Zone, the designated Spotter must signal the Equipment Operator to stop the equipment. Once the equipment is no longer moving (ex. movement of an arm of an excavator is STOPPED, lifting of a load with a forklift STOPPED, raising/lowering of a man lift is STOPPED, etc.), the operator must **DISENGAGE THE CONTROLS and STOP and SIGNAL BY "SHOWING HIS HANDS"**. This signal will indicate that it is safe for the personnel to enter the limits of the Exclusion Zone to perform the required activity. The

equipment must remain completely stopped/disengaged until all personnel have exited the limits of the Exclusion Zone and the designated Spotter has signaled by "SHOWING HIS HANDS" to the Equipment Operator that it is safe to resume.

- 6. When entering the limits of the Exclusion Zone, personnel must at a minimum:
  - Establish eye contact with the operator and approach the heavy equipment in a manner that is in direct line of sight to the Equipment Operator;
  - Never walk under any suspended loads or raised booms/arms of the heavy equipment; and
  - Identify a travel path that is free of Slip/Trip/Fall hazards.
- 7. The Exclusion Zone should be delineated using cones with orange snow fence or solid poles between the cones, barrels, tape or other measures. For work in rights-of-way rigid barriers, such as Jersey barriers or temporary chain link fence should be used. For certain types of wide-spread or moving/mobile equipment operations, such delineation may not be practicable around pieces of equipment or individual work areas. In such instances it is expected that the entire operation will be within a larger secure work area or that additional means will be utilized to ensure security of the work zone.

# C. Exceptions

It is recognized that certain heavy equipment activities may require personnel to work within the limits of the Exclusion Zone as specified in this policy. Such activities may include certain excavation clearance tasks, drill crew activities or construction tasks. However, any such activity must be pre-planned with emphasis on limiting the amount and potential exposure of any activity required within the zone. The critical safety steps to mitigate the hazards associated with working within the Exclusion Zone must be defined in the JSA and potentially other project-specific plans (i.e., critical lift plans, etc.), and approved by the Roux Project Principal and client representative, if required, prior to implementation.

# D. Responsibilities

1. Corporate Health and Safety Manager

Overall responsibility for administration, implementation and auditing of this policy.

2. Office Managers

Responsible for communicating this policy to all of their employees who perform or may perform field work involving heavy equipment.

3. Office Health and Safety Managers

Providing training to office field staff in this policy.

- 4. Project Principals
  - a. Responsible for ensuring their projects address heavy equipment exclusion zones.
  - b. Approving exceptions to this policy.
- 5. Project Managers

- a. Responsible for incorporating this policy into their project HASPs and applicable procedures to include JSAs.
- b. Communicating to and enforcing the policy requirements for subcontractors who work on their projects.

### 6. Field Workers

- a. Attending training in the policy.
- b. Following the requirements of the policy.

# E. Project and Site-Specific Orientation and Training

Many Roux projects have different requirements that are client-specific or site-specific in nature. It is the responsibility of the Project Principal (or Project Manager if delegated this responsibility by the Project Principal) to ensure that the workers assigned to his/her projects are provided orientation and training with respect to these client and/or site-specific requirements.

### F. Subcontractors

All subcontractors who provide heavy equipment operations to field projects must implement a policy that meets or exceeds the expectations described above as well as any additional requirements that may be required on a client or site-specific basis.

# **APPENDIX C**

Heat and Cold Stress Guidelines

#### **Heat Stress**

Heat stress is a significant potential hazard and can be associated with heavy physical activity and/or the use of personal protective equipment (PPE) in hot weather environments.

Heat cramps are brought on by prolonged exposure to heat. As an individual sweats, water and salts are lost by the body resulting in painful muscle cramps. The signs and symptoms of heat cramps are as follows:

- severe muscle cramps, usually in the legs and abdomen;
- exhaustion, often to the point of collapse; and
- dizziness or periods of faintness.

First aid treatment includes moving to a shaded area, rest, and fluid intake. Normally, the individual should recover within one-half hour. If the individual has not recovered within 30 minutes and the temperature has not decreased, the individual should be transported to a hospital for medical attention.

Heat exhaustion may occur in a healthy individual who has been exposed to excessive heat. The circulatory system of the individual fails as blood collects near the skin in an effort to rid the body of excess heat. The signs and symptoms of heat exhaustion are as follows:

- rapid and shallow breathing;
- weak pulse:
- cold and clammy skin with heavy perspiration;
- skin appears pale;
- fatigue and weakness;
- dizziness; and
- elevated body temperature.

First aid treatment includes cooling the victim, elevating the feet, and replacing fluids and electrolytes. If the individual has not recovered within 30 minutes and the temperature has not decreased, the individual should be transported to the hospital for medical attention.

Heat stroke occurs when an individual is exposed to excessive heat and stops sweating. This condition is classified as a MEDICAL EMERGENCY, requiring immediate cooling of the victim and transport to a medical facility. The signs and symptoms of heat stroke are as follows:

- dry, hot, red skin;
- body temperature approaching or above 105°F;
- large (dilated) pupils; and
- loss of consciousness the individual may go into a coma.

First aid treatment requires immediate cooling and transportation to a medical facility.



Heat stress (heat cramps, heat exhaustion, and heat stroke) is a significant hazard if any type of protective equipment (semi-permeable or impermeable) which prevents evaporative cooling is worn in hot weather environments. Local weather conditions may require restricted work schedules in order to adequately protect personnel. The use of work/rest cycles (including working in the cooler periods of the day or evening) and training on the signs and symptoms of heat stress should help prevent heat-related illnesses from occurring. Work/rest cycles will depend on the work load required to perform each task, type of protective equipment, temperature, and humidity. In general, when the temperature exceeds 88°F, a 15 minute rest cycle will be initiated once every two hours. In addition, potable water and fluids containing electrolytes (e.g., Gatorade) will be available to replace lost body fluids.

#### **Cold Stress**

Cold stress is a danger at low temperatures and when the wind-chill factor is low. Prevention of cold-related illnesses is a function of whole-body protection. Adequate insulating clothing must be used when the air temperature is below 40°F. In addition, reduced work periods followed by rest in a warm area may be necessary in extreme conditions. Training on the signs and symptoms of cold stress should prevent cold-related illnesses from occurring. The signs and symptoms of cold stress include the following:

- severe shivering;
- abnormal behavior;
- slowing of body movement;
- confusion;
- weakness;
- stumbling or repeated falling;
- inability to walk;
- · collapse; and/or
- unconsciousness.

First aid requires removing the victim from the cold environment and seeking medical attention immediately. Also, prevent further body heat loss by covering the victim lightly with blankets. <u>Do not cover the victim's face</u>. If the victim is still conscious, administer hot drinks, and encourage activity, such as walking wrapped in a blanket.



# **APPENDIX D**

Generic Community Air Monitoring Plan

### APPENDIX D

# New York State Department of Health Generic Community Air Monitoring Plan

#### Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical-specific monitoring with appropriately sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

# **Community Air Monitoring Plan**

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

**Continuous monitoring** will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

**Periodic monitoring** for VOCs will be required during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

#### **VOC Monitoring, Response Levels, and Actions**

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate



-1 – 2861.0001Y.103/APD

surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area
  or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average,
  work activities must be temporarily halted and monitoring continued. If the total organic vapor level
  readily decreases (per instantaneous readings) below 5 ppm over background, work activities can
  resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

# Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.



# **APPENDIX E**

Health and Safety Briefing/Tailgate Meeting Form

# HEALTH & SAFETY BRIEFING / TAILGATE MEETING FORM

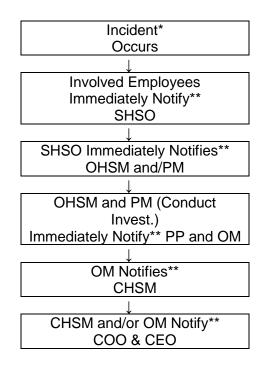
Site Name / Location:		
Date:	Weather Forecast:	
Names of Personnel Attending Briefing:		
Planned Work:		
<u>Instrument Calibration</u> : Instrument/Time/Cal.	Gas/Cal. Concentration/Actual C	oncentration
<u>Items Discussed /</u> <u>JSAs Discussed:</u>		
Work Permit Type and Applicable Restrictions:		
Signatures of Attending Personnel:		
· .	<u> </u>	



# **APPENDIX F**

Accident Report and Investigation Form and Incident Response Flow Chart

# ACCIDENT REPORT


Joe Gentile, Corporate Health and Safety Manager
Cell: (610) 844-6911; Office: (856) 423-8800; Office FAX: (856) 423-3220; Home: (484) 373-0953

		PΔR	Т 1 - Д	ADMINISTRATI	VE INFO	RMAT	ION								
Project #: 1575.0002	v	I AII	11. /	Immediate Verb											
Project Name: Krista		/all		To:	ai itotiiioa			REPORT	STATUS	(time o	due):				
Project Location (stre								☐ Initial (	24 hr)	ПЕ	Final (5-10 days)				
5200 Kings Highway,	Brooklyr	ı, New York													
										Date 					
Client Corporate Nam	ne / Cont	act / Address / Phone	#:	Corporate Health	-			Accident	•						
				Office Health & S	Safety	□Yes	□No	Corporate	Health & S	Safety	□Yes	□No			
-				Office Manager		□Yes	□No	Office Hea	lth & Safet	y	□Yes	□No			
				Project Principal		□Yes	□No	Office Man	ager	-	□Yes	□No			
				Project Manager		_ □Yes		Project Prir	·		_ □Yes				
				Client Contact					•						
				REPORT TYPE:	□ Los	Yes		Project Ma r Loss	Estimated						
OSHA CASE # Assign	ad by Ca	orporate Health & Safe	tı, if							1 0031					
Applicable:		·		Corporate Health & Safety Confirmed Final Accident Report											
DATE OF INCIDENT:	TIM	ME INCIDENT OCCURI		INCIDENT LOCA	TION — City	, State, a	and Country	(If outside U	.S.A.)						
INCIDENT TYPES: (S	Select mo	st appropriate if Loss o	ccurred	.)											
From lists below, pleas	se select	the option that best cat	egories	the incident. When	selecting a	n injury	or illness,	also indica	te the sev	erity le	vel.				
□INJURY		LLNESS		OTHER INCIDENT	TYPES										
	ority I o	vel	_	☐Spill / Release			□Mis	directed Wa	aste CC	nseni	t Order □N	JOV			
	-		_	Material involved:			□Pro	perty Dama							
☐Fatality		st Aid		Quantity (U.S. Gallo	ns):		☐Mot	or Vehicle			enalty				
Restricted Work  ACTIVITY TYPE (Check		st Time Treatment		INJURY TYPE (Che				DADT AEG			all applicable.	١			
Decommissioning G	most app	Sampling		Abrasion	Occupati				□Shouldei		all applicable. □Face	.)			
	otor Vehic			Amputation	Puncture		.ss ⊟Nes	k	□Sriodidei □Arm		Leg				
	perations/			□Burn	Rash		Che		Wrist		□Knee				
	aintenanc			☐Cold/Heat Stress	☐Repetitive☐Sprain/St				☐Hand/Fir	gers	□Ankle				
	ump/Pilot			☐Inflammation	□Groi		□Eye		☐Foot/Toe	es					
	gging/Lifti			Laceration	Other_		□Bac								
I. PERSON(S) DIRECT							ecessary/a	applicable.)							
Name/Phone # of Each Person Directly/Indirectly	Designate	e: nedial Employee	As applic	cable, Occupation;	As applicabl Employer Na						olicable, visor Name; ar	ad			
Involved in Incident:		nedial Subcontractor		urrent Occupation;	Address; an					Phone		iu			
and the state of t	Client Em			Position; and	Phone #:	_									
	Client Cor		Yrs in Cu	urrent Position:											
	Third Part	у													
1)															
2)															
II. PERSONS INJURED	IN INCID	ENT (Attach additional i	nformati	on as necessary/app	licable.)										
Name/Phone # of Each	Designate		As appli		As applicabl	e.		As apr	olicable,	Г	Description of I	Iniurv:			
Person Injured in Incident:	Roux/Rei	medial Employee		Occupation;	Employer Na				visor Name;		, , , , , , , , , , , , , , , , , , ,	, , .			
		medial Subcontractor		urrent Occupation;	Address; an	d		Phone	#:						
Client Employee Client Contractor				Position; and	Phone #:										
	Third Par		TISTIL	urrent Position:											
		<u>.y</u>													
1)															
,															
2)															
			L												
III. PROPERTY DAMAG	ED IN IN	,	nal inforr			- 11-	10.			I-	······				
Property Damaged:		Property Location:		Owner Name, Addre	ess & Phone	e #:	Descrip	tion of Dam	age:	Est	timated Cost	<u>[:</u>			
1)										\$					
İ		İ								1					

# Accident Report - Page 2

2)							\$						
IV. WITNESSES TO INC Witness Name:	IDENT (A	ttach add	ditional inf		ssary/applicable.)		1	Phone #:					
				Au	uiess.		i note #.						
1)													
2)													
			PART	2: WHAT H	APPENED AND INCID	ENT [	DETAILS						
PROVIDE FACTUAL D	ESCRIPT	ION OF	INCIDEN	T (e.g., describe I	oss/near loss, injury, respons	e / treati	ment).						
	ERNMEN	TAL AG	ENCIES I	NOTIFIED (Attach	n additional information as neo	cessary/	applicable.)						
Authority/Agency Notified:		Name Notifie		ax # of Person	Address of Person Notified:	Dat	te & Time of Notificati	on: Exact Inform Reported/Pr					
II. PUBLIC RESPONS	ES TO INC	IDENT	(if applie	ahla)									
Response/Inquiry By			Name:	able)	Name/Phone # of Respondent	/ Add	dress of Entity/Persor	n: Date & Time	e of Response/Inquiry:				
(check one)  Newspaper Television Community Group Neighbors Other					Inquirer:								
Describe Response/Inquiry	:	ı			-			<b>,</b>					
Roux/Remedial Response:													
(Check all that apply.) (A							—————————————————————————————————————	- II	dh				
Name(s) of person(s)		Pr ared Init		Sketches Title(s):	☐Vehicle Acord F	orm	Police Rep		ther				
Final Report:			DAD	T O. INIVEC	TIO ATION TE ANA	ANIA	1 //010						
					STIGATION TEAM								
(Root Causes: Lack of know	ledge or skill rocedures or	l, Doing th acceptable	ne task acco e practices	rding to procedures o	CAUSAL FACTORS All racceptable practices takes more ticident, Lack of or inadequate proce	me or effo	ort, Short-cuts or not for	ollowing acceptable p	ractices is reinforced				
ROOT C	CAUSE	(S) AN	ND SO	LUTION(S):	<b>HOW TO PREVEN</b>	T INC	IDENT FRO	M RECURR	ING				
CAUSAL FACTOR	ROOT CAUSE		[	Must Match	TION(S) Root Cause(s)] olution(s)		PERSON SPONSIBLE	AGREED DUE DATE	ACTUAL COMPLETION DATE				
			"										
			1										
			2										
			3										
INVESTIGATION TE					IOD DOCITION	DATE							
PRINI	NAME				JOB POSITION		DATE	SIGNATURE					

Health & Safety Near/Loss – Loss (Incident)*
Notification Flow Chart



^{*} Incident – any work or site-related occurrence that resulted in, or could potentially have resulted in, the need for medical care or in property damage (i.e., all injuries or illnesses, exposure to toxic materials or any other significant occurrence resulting in property damage or in a "near loss")

# ** Verbal Notification

Initial Incident Report (written) to SHSO, OHSM, OM and CHSM within 24 hours Follow-up Report within one week.

(Reference: Corporate H&S Standard Operating Procedure, Incident Investigation and Reporting, SOP #1.8, dated March 2000)

# **APPENDIX G**

Acord Form

ACORI	<b>)</b> ®		AU	ITOM	ЮB	ILE L	os	S NC	TI	CE			DATE (	MM/DD/	YYYY)
AGENCY PH	ONE ;, No, Ext):				COMPA	ANY	NAIC CO	DE:			MISCELLANEOU	JS INFO (Sit	e & locatio	on code)	)
FAX (A/C, No):					POLICY	NUMBER		POLICY TY	PE.		REFERENCE NU	JMBER	CAT		CAT#
(A/C, NO): E-MAIL ADDRESS: CODE:		SUB CODE			EFF	ECTIVE DATE	E E)	(PIRATION E	ATE	DATE OF	ACCIDENT AND	TIME	AM	PREVIO REPO	OUSLY RTED
AGENCY CUSTOMER ID:							CONTA	CT		CONTA	CT INSURED		PM	YES	NO
NAME AND ADDRES	s	soc s	EC # OR FEIN:					D ADDRESS	10/1	HEN TO CONT					
		3333								ILN 10 CONT	A01.		WHEF	RE TO CO	ONTACT
RESIDENCE PHONE								CE PHONE (A							
BUSINESS PHONE (	A/C, No, Ext):						BUSINESS	S PHONE (A/	C, No, E	Ext):					
CELL PHONE (A/C,	lo):							ONE (A/C, No	):						
E-MAIL ADDRESS:							E-MAIL A	DDRESS:							
LOSS LOCATION OF								AUTHORI	ITY			VIOI ATI	ONS/CITA	TIONS	
ACCIDENT (Include city & state								REPORT	TED:			-			
POLICY INFOI BODILY INJURY	BODIL	Y IŅJURY	PROPERTY D	DAMAGE	SINGL	E LIMIT	MEDICAI	L PAYMENT		TC DEDUCTIE	BLE OTHER C	OVERAGE 8	k DEDUCT	IBLES	
(Per Person)	(Per /	Accident)	_									ault, towing,			
LOSS PAYEE										COLLISION DE	ED				
	MBRELLA	EXCESS	CARRIER:				LIMITS:			AGGR		PER CLAIM/O	CC		SIR/ DED
INSURED VEH	ICLE					BODY									
VEH# YEAR	MAKE:					TYPE:						PLA1	TE NUMBE	R	STATE
	MODEL:					V.I.N.:				PESIDE	ENCE PHONE (A/C	· No)·			
OWNER'S NAME & ADDRESS											ESS PHONE (A/C,				
DRIVER'S NAME & ADDRESS	,										ENCE PHONE (A/C				
RELATION TO INSU (Employee, family, e	RED	DATE OF E	BIRTH DRIV	ER'S LICENS	E NUMBE	R			STATE	PURPOSE OF USE			USE PER	D WITH MISSION	
DESCRIBE DAMAGI	:									J. 30L				YES	NO NO
STIMATE AMOUNT WHERE CAN VEHICLE BE SEEN?						AN VEH BE S	EEN?	OTHER IN	SURAN	CE ON VEHICI	LE				

PROPERTY DAMAGED	VEHICLE?	•	YES		NO	YR:		IAKE		МС	DEI	EL: PLATE #:							
DESCRIBE PROPERTY (Other Than Vehicle)							$\vdash$		ROP INS?	AGENCY NAME	:								
							YES	S	NO	POLICY #:		RESI	DENC	E PHONE	(A/C, No)	):			
OWNER'S NAME &																			
ADDRESS												BUSINESS PHONE (A/C, No, Ext):							
OTHER DRIVER'S NAME & ADDRESS												RESI	DENC	E PHONE	(A/C, No)	):			
											þ	BUSI	NESS	PHONE (	A/C, No, E	Ext):			
(Check if same as owner)  DESCRIBE DAMAGE																			
ESTIMATE AMOUNT		WHED	E CAN	DAMA	CE DE	SEEN?													
ESTIMATE AMOUNT		WIILKI	LOAN	DAIVIA	IGL BL	SLLIN:													
INJURED																			
	NAME & ADDRE	ESS							PHONE (A	/C, No)	PED	INS VEH	OTH VEH	AGE		EXTE	NT OF INJURY		
					_														
WITNESSES OR PASSEN	IGERS																		
		PHONE (A/C, No) INS OTH VEH VEH OTHER (Spec							ecify)										
												П							
REPORTED BY							·	RE	PORTED T	ТО									
SIGNATURE OF INSURED					DATE	E (MM/DI	2WVVV	SIC	NATURE	OF PRODUCER							DATE (MM/DD/		
SIGNATURE OF INSURED					DAII	E (IVIIVI/DI	)/1111)	Sid	SNATURE	OF PRODUCER							DATE (MINI/DD/	1111)	
REMARKS (Include Adjus	ster Assigne	d)																	
İ																			

# Applicable in Arizona

For your protection, Arizona law requires the following statement to appear on this form. Any person who knowingly presents a false or fraudulent claim for payment of a loss is subject to criminal and civil penalties.

# Applicable in Arkansas, Delaware, District of Columbia, Kentucky, Louisiana, Maine, Michigan, New Jersey, New Mexico, North Dakota, Pennsylvania, South Dakota, Tennessee, Texas, Virginia, Washington and West Virginia

Any person who knowingly and with intent to defraud any insurance company or another person, files a statement of claim containing any materially false information, or conceals for the purpose of misleading, information concerning any fact, material thereto, commits a fraudulent insurance act, which is a crime, subject to criminal prosecution and civil penalties. In DC, LA, ME, TN, VA and WA, insurance benefits may also be denied.

# Applicable in California

For your protection, California law requires the following to appear on this form: Any person who knowingly presents a false or fraudulent claim for payment of a loss is guilty of a crime and may be subject to fines and confinement in state prison.

# Applicable in Colorado

It is unlawful to knowingly provide false, incomplete, or misleading facts or information to an insurance company for the purpose of defrauding or attempting to defraud the company. Penalties may include imprisonment, fines, denial of insurance, and civil damages. Any insurance company or agent of an insurance company who knowingly provides false, incomplete, or misleading facts or information to a policy holder or claimant for the purpose of defrauding or attempting to defraud the policy holder or claimant with regard to a settlement or award payable from insurance proceeds shall be reported to the Colorado Division of Insurance within the Department of Regulatory Agencies.

# Applicable in Florida and Idaho

Any person who knowingly and with the intent to injure, defraud, or deceive any insurance company files a statement of claim containing any false, incomplete or misleading information is guilty of a felony.*

* In Florida - Third Degree Felony

#### Applicable in Hawaii

For your protection, Hawaii law requires you to be informed that presenting a fraudulent claim for payment of a loss or benefit is a crime punishable by fines or imprisonment, or both.

#### Applicable in Indiana

A person who knowingly and with intent to defraud an insurer files a statement of claim containing any false, incomplete, or misleading information commits a felony.

# **Applicable in Minnesota**

A person who files a claim with intent to defraud or helps commit a fraud against an insurer is guilty of a crime.

#### Applicable in Nevada

Pursuant to NRS 686A.291, any person who knowingly and willfully files a statement of claim that contains any false, incomplete or misleading information concerning a material fact is guilty of a felony.

### **Applicable in New Hampshire**

Any person who, with purpose to injure, defraud or deceive any insurance company, files a statement of claim containing any false, incomplete or misleading information is subject to prosecution and punishment for insurance fraud, as provided in RSA 638:20.

# Applicable in New York

Any person who knowingly and with intent to defraud any insurance company or other person files an application for commercial insurance or a statement of claim for any commercial or personal insurance benefits containing any materially false information, or conceals for the purpose of misleading, information concerning any fact material thereto, and any person who in connection with such application or claim knowingly makes or knowingly assists, abets, solicits or conspires with another to make a false report of the theft, destruction, damage or conversion of any motor vehicle to a law enforcement agency, the Department of Motor Vehicles or an insurance company, commits a fraudulent insurance act, which is a crime, and shall also be subject to a civil penalty not to exceed five thousand dollars and the value of the subject motor vehicle or stated claim for each violation.

#### Applicable in Ohio

Any person who, with intent to defraud or knowing that he/she is facilitating a fraud against an insurer, submits an application or files a claim containing a false or deceptive statement is guilty of insurance fraud.

### Applicable in Oklahoma

WARNING: Any person who knowingly and with intent to injure, defraud or deceive any insurer, makes any claim for the proceeds of an insurance policy containing any false, incomplete or misleading information is guilty of a felony.

## Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

## **APPENDIX H**

**OSHA 300** 

2861.0001Y.103/CVRS ROUX

#### OSHA's Form 300 (Rev. 01/2004)

## Log of Work-Related Injuries and Illnesses

injury and illness incident report (OSHA Form 301) or equivalent form for each injury or illness recorded on this form. If you're not sure whether a case is recordable, call your local OSHA

Attention: This form contains information relating to employee health and must be used in a manner that protects the confidentiality of employees to the extent possible while the information is being used for occupational safety and health purposes.

Year_	
U.S. Dep	artment of Labor
Occupational Sa	fety and Health Administration

Is.

You must record information about every work-related injury or illness that involves loss of consciousness, restricted work activity or job transfer, days away from work, or medical treatment beyond first aid. You must also record significant work-related injuries and illnesses that are diagnosed by a physician or licensed health care professional. You must also record work-related injuries and illnesses that meet any of the specific recording criteria listed in 29 CFR 1904.8 through 1904.12. Feel free to use two lines for a single case if you need to. You must complete an

office for help. State City Identify the person Describe the case Classify the case Enter the number of (A) (D) (E) (F) CHECK ONLY ONE box for each case based on days the injured or ill Check the "injury" column or choose one type of Job Title (e.g., Where the event occurred (e.g. Case Employee's Name Date of Describe injury or illness, parts of body affected, the most serious outcome for that case: worker was: illness: No. Welder) injury or Loading dock north end) and object/substance that directly injured or made person ill (e.g. Second degree burns on right onset of On job forearm from acetylene torch) illness Days away Away Death Remained at work transfer of (mo./day) from work From restriction Work Job transfer Other record-(days) able cases (days) or restriction (2) (3) (G) (K) (H) (L) Page totals 0 0 0 0 Be sure to transfer these totals to the Summary page (Form 300A) before you post it. Skin Disorder Public reporting burden for this collection of information is estimated to average 14 minutes per response, including time to review the instruction, search and gather the data needed, and complete and review the collection of information. Persons are not required to respond to the collection of information unless it displays a currently valid OMB control number. If you have any comments about these estimates or any aspects of this data collection, contact: US Department of Labor, OSHA Office of Statistics, Room N-3644, 200 Constitution Ave, NW, Washington, DC 20210. Do Page 1 of 1 (2) (3) (4) (5) not send the completed forms to this office.

## OSHA's Form 300A (Rev. 01/2004) Summary of Work-Related Injuries and Illnesses

Year____

U.S. Department of Labor
Occupational Safety and Health Administration

Form approved OMB no. 1218-0176

All establishments covered by Part 1904 must complete this Summary page, even if no injuries or illnesses occurred during the year. Remember to review the Log to verify that the entries are complete

Using the Log, count the individual entries you made for each category. Then write the totals below, making sure you've added the entries from every page of the log. If you had no cases write "0."

Employees former employees, and their representatives have the right to review the OSHA Form 300 in its entirety. They also have limited access to the OSHA Form 301 or its equivalent. See 29 CFR 1904.35, in OSHA's Recordkeeping rule, for further details on the access provisions for these forms.

Number of Cases			
Total number of deaths	Total number of cases with days away from work 0	Total number of cases with job transfer or restriction 0	Total number of other recordable cases
(G)	(H)	(1)	(J)
Number of Days			
Total number of days away from work		Total number of days of job transfer or restriction	
0 (K)	_	0 (L)	-
Injury and Illness T	ypes		
Total number of			
(1) Injury ´	0	(4) Poisoning	0
<ul><li>(2) Skin Disorder</li><li>(3) Respiratory</li></ul>	0	(5) Hearing Loss	0
Condition	0	(6) All Other Illnesses	0

#### Post this Summary page from February 1 to April 30 of the year following the year covered by the form

Public reporting burden for this collection of information is estimated to average 50 minutes per response, including time to review the instruction, search and gather the data needed, and complete and review the collection of information. Persons are not required to respond to the collection of information unless it displays a currently valid OMB control number. If you have any comments about these estimates or any aspects of this data collection, contact: US Department of Labor. OSHA Office of Statistics. Room N-3644. 200 Constitution Ave. NW. Washington. DC 20210. Do not send the completed forms to this office.

Establishment informa	tion	
Your establishment nar	ne	
Street		
City	State	Zip
Industry description (e.	g., Manufacture of motor truck trailers)	
Standard Industrial Cla	esification (SIC), if known (e.g., SIC 3715)	
OR North American Industr	al Classification (NAICS), if known (e.g., 336212)	
Employment information		
Annual average numbe	r of employees	
Total hours worked by a year	all employees last	
ign here		
Knowingly falsifying t	nis document may result in a fine.	
I certify that I have examplete.	nined this document and that to the best of my knowled	dge the entries are true, accurate, and
Compa	ny executive	Title
	Phone	Date

## OSHA's Form 301 Injuries and Illnesses Incident Report

Information about the employee

Attention: This form contains information relating to employee health and must be used in a manner that protects the confidentiality of employees to the extent possible while the information is being used for occupational safety and health purposes.

Information about the case



Occupational Safety and Health Administration

Form approved OMB no. 1218-0176

This Injury and Illness Incident Report is one of the first forms you must fill out when a recordable work-related injury or illness has occurred. Together with the Log of Work-Related injuries and Illnesses and the accompanying Summary, these forms help the employer and OSHA develop a picture of the extent and severity of work-related incidents.

Within 7 calendar days after you receive information that a recordable work-related injury or illness has occurred, you must fill out this form or an equivalent. Some state workers' compensation, insurance, or other reports may be acceptable substitutes. To be considered an equivalent form, any substitute must contain all the information asked for on this form.

According to Public Law 91-596 and 29 CFR 1904, OSHA's recordkeeping rule, you must keep this form on file for 5 years following the year to which it pertains

If you need additional copies of this form, you may photocopy and use as many as you need.

Completed by

1) Full Name	10)	Case number from the Log (Transfer the case number from the Log after you record the case.)
2) Street	11)	Date of injury or illness
CityStateZip	12)	Time employee began work AM/PM
3) Date of birth	13)	Time of event AM/PMCheck if time cannot be determined
4) Date hired	14)	What was the employee doing just before the incident occurred? Describe the activity, as well
5) Male Female		as the tools, equipment or material the employee was using. Be specific. Examples: "climbing a ladder while carrying roofing materials"; "spraying chlorine from hand sprayer"; "daily computer keyentry."
Information about the physician or other health care professional		
Name of physician or other health care professional	15)	What happened? Tell us how the injury occurred. Examples: "When ladder slipped on wet floor, worker fell 20 feet"; "Worker was sprayed with chlorine when gasket broke during replacement"; "Worker developed soreness in wrist over time."
7) If treatment was given away from the worksite, where was it given?	=	
Facility	16)	What was the injury or illness? Tell us the part of the body that was affected and how it was
Street	-	affected; be more specific than "hurt", "pain", or "sore." Examples: "strained back"; "chemical burn, hand"; "carpal tunnel syndrome."
CityStateZip	_	
8) Was employee treated in an emergency room?  Yes  No	17)	What object or substance directly harmed the employee? Examples: "concrete floor"; "chlorine"; "radial arm saw." If this question does not apply to the incident, leave it blank.
9) Was employee hospitalized overnight as an in-patient?		
No	18)	If the employee died, when did death occur? Date of death

Public reporting burden for this collection of information is estimated to average 22 minutes per response, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Persons are not required to respond to the collection of information unless it displays a current valid OMB control number. If you have any comments about this estimate or any other aspects of this data collection, including suggestions for reducing this burden, contact: US Department of Labor, OSHA Office of Statistics, Room N-3644, 200 Constitution Ave, NW, Washington, DC 20210. Do not send the completed forms to this office.

## Site-Specific Health and Safety Plan 5200 Kings Highway, Brooklyn, New York

## **APPENDIX I**

Job Safety and Health Protection Poster (2015)

2861.0001Y.103/CVRS ROUX



# Job Safety and Health IT'S THE LAW!

#### All workers have the right to:

- A safe workplace.
- Raise a safety or health concern with your employer or OSHA, or report a workrelated injury or illness, without being retaliated against.
- Receive information and training on job hazards, including all hazardous substances in your workplace.
- Request an OSHA inspection of your workplace if you believe there are unsafe or unhealthy conditions. OSHA will keep your name confidential. You have the right to have a representative contact OSHA on your behalf.
- Participate (or have your representative participate) in an OSHA inspection and speak in private to the inspector.
- File a complaint with OSHA within 30 days (by phone, online or by mail) if you have been retaliated against for using your rights.
- See any OSHA citations issued to your employer.
- Request copies of your medical records, tests that measure hazards in the workplace, and the workplace injury and illness log.

This poster is available free from OSHA.

#### **Employers must:**

- Provide employees a workplace free from recognized hazards. It is illegal to retaliate against an employee for using any of their rights under the law, including raising a health and safety concern with you or with OSHA, or reporting a work-related injury or illness.
- Comply with all applicable OSHA standards.
- Report to OSHA all work-related fatalities within 8 hours, and all inpatient hospitalizations, amputations and losses of an eye within 24 hours.
- Provide required training to all workers in a language and vocabulary they can understand.
- Prominently display this poster in the workplace.
- Post OSHA citations at or near the place of the alleged violations.

FREE ASSISTANCE to identify and correct hazards is available to small and medium-sized employers, without citation or penalty, through OSHA-supported consultation programs in every state.



Contact OSHA. We can help.

## **APPENDIX I**

Quality Assurance Project Plan

**ROUX** 2861.0001Y.102/CVRS



# **Quality Assurance Project Plan**

KRISTAL AUTO MALL 5200 KINGS HIGHWAY Brooklyn, New York

May 11, 2018

## Prepared for:

PTMA 5200 Kings Highway LLC (c/o Bridges Development Group) 150 East 58th Street, 15th Floor New York, NY 10155

## Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 209 Shafter Street Islandia, New York 11749

## **Table of Contents**

1.	Introduction	1
	Background, Objectives, and Scope	2
	2.1 Soil	
	2.2 Groundwater	
	2.3 Soil Vapor and Sub Slab Samples	. 2
3.	Project Organization	. 3
4.	Sampling Procedures	. 4
5.	Quality Assurance/Quality Control	5

## **Tables**

- 1. Field and Laboratory QC Summary
- 2. Laboratory Reporting Limits for Soil, Water and Air Samples

## **Appendices**

A. Project Personnel Qualifications

## 1. Introduction

This Quality Assurance Project Plan (QAPP) has been prepared to describe the measures that will be taken to ensure that the data generated during performance of the Remedial Investigation (RI) at 5200 Kings Highway, Brooklyn, New York (Site) are of quality sufficient to meet project-specific data quality objectives (DQOs). The QAPP was prepared in accordance with the guidance provided in New York State Department of Environmental Conservation (NYSDEC) Technical Guidance DER-10 (Technical Guidance for Site Investigation and Remediation), the Brownfield Cleanup Program Guide and the United States Environmental Protection Agency's (USEPA's) Guidance for the Data Quality Objectives Process (EPA QA/G-4).

## 2. Background, Objectives, and Scope

In order to achieve project objectives, Roux Environmental Engineering & Geology, D.P.C. (Roux) has developed a scope of work that includes sampling of soil, groundwater, and soil vapor. A brief overview of each element of the RI scope of work is provided below. RI sampling locations are shown in Figure 3 of the RI Work Plan.

#### 2.1 Soil

Samples of soil will be collected and analyzed at a minimum of 15 locations for the following analytes, TCL +30 which includes:

- TCL volatile organic compounds (VOCs) via SW846 8260B/5035A; and
- TCL semivolatile organic compounds (SVOCs) via SW846 8270C; and,
- Up to 30 non-targeted organic compounds as described in DER-10.

#### 2.2 Groundwater

Groundwater samples will be collected from three (3) existing monitoring wells installed around the perimeter of the Site and four (4) new monitoring wells installed by Roux during the investigation. After gauging for potential separate-phase petroleum product, each well will be sampled for TCL +30, and TAL Metals. Field parameters, including temperature, pH, conductivity, redox potential, dissolved oxygen, and turbidity will also be measured. In addition, groundwater samples will be collected from groundwater profile borings (grab samples) as needed based on field observations during soil sampling.

#### 2.3 Soil Vapor and Sub Slab Samples

Soil vapor samples will be collected from locations around the subject buildings and locations in the interior of the subject buildings to evaluate the potential for soil vapor intrusion. Sampling depths and analytical methods will be selected in consultation with the NYSDEC and NYSDOH protocols. In addition, one indoor air sample and one outdoor ambient air sample will be collected.

## 3. Project Organization

The overall management structure and a general summary of the responsibilities of project team members are presented below and Roux project team members' qualifications are provided in Appendix A.

#### **Project Manager**

Craig Werle of Roux will serve as Project Manager. The Project Manager is responsible for defining project objectives and bears ultimate responsibility for the successful completion of the investigation. This individual will provide overall management for the implementation of the scope of work and will coordinate all field activities. The Project Manager is also responsible for data review/interpretation and report preparation. Activities of the Project Manager are supported by the Project Quality Assurance Coordinator.

#### Field Team Leader

Wendy Monterosso of Roux will serve as the Field Team Leader. The Field Team Leader bears the responsibility for the successful execution of the field program, as scoped in the RI Work Plan and the Field Sampling Plan (FSP). The Field Team Leader will direct the activities of all technical staff in the field as well all subcontractors. The Field Team Leader will also assist in the interpretation of data and in report preparation. The Field Team Leader reports to the Project Manager.

#### **Laboratory Project Manager**

TestAmerica Laboratories, Inc. (TestAmerica) of Shelton, Connecticut, has been selected to analyze the field samples for this project and will be responsible for sample container preparation, sample custody in the laboratory, and completion of the required analysis through oversight of the laboratory staff. The Laboratory Project Manager will ensure that quality assurance procedures are followed and that an acceptable laboratory report is prepared and submitted. The Laboratory Project Manager reports to the Field Team Leader.

#### **Quality Assurance Officer**

Wai Kwan, PhD., of Roux will serve as the Quality Assurance Officer (QAO) for this project. The QAO is responsible for conducting reviews, inspections, and audits to ensure that the data collection is conducted in accordance with the FSP and QAPP. The QAO's responsibilities range from ensuring effective field equipment decontamination procedures and proper sample collection to the review of all laboratory analytical data for completeness and usefulness. The QAO reports to the Project Manager and makes independent recommendations to the Field Team Leader.

## 4. Sampling Procedures

Detailed discussions of sampling, decontamination, and sample handling procedures are provided in the FSP (Appendix F of the RI Work Plan).

## 5. Quality Assurance/Quality Control

The primary intended use for the RI data is to characterize Site conditions and determine the nature and extent of remediation that needs to be undertaken at the Site. The primary DQO of the soil, groundwater, and soil vapor sampling programs, therefore, is that data be accurate and precise, and hence representative of the actual Site conditions. Accuracy refers to the ability of the laboratory to obtain a true value (i.e., compared to a standard) and is assessed through the use of laboratory quality control (QC) samples, including laboratory control samples and matrix spike samples, as well as through the use of surrogates, which are compounds not typically found in the environment that are injected into the samples prior to analysis. Precision refers to the ability to replicate a value, and is assessed through both field and laboratory duplicate samples.

Sensitivity is also a critical issue in generating representative data. Laboratory equipment must be of sufficient sensitivity to detect target compounds and analytes at levels below NYSDEC standards and guidelines whenever possible. Equipment sensitivity can be decreased by field or laboratory contamination of samples, and by sample matrix effects. Assessment of instrument sensitivity is performed through the analysis of reagent blanks, near-detection-limit standards, and response factors. Potential field and/or laboratory contamination is assessed through use of trip blanks, method blanks, and equipment rinse blanks (also called "field blanks").

Table 1 lists the field and laboratory QC samples that will be analyzed to assess data accuracy and precision, as well as to determine if equipment sensitivity has been compromised. Table 2 shows the reporting limits and minimum detection limits achievable by the laboratory.

All RI "assessment" analyses (i.e., TCL VOCs, SVOCs, TAL Metals) will be performed in accordance with the NYSDEC Analytical Services Protocol (ASP), using USEPA SW-846 methods. The laboratory selected to analyze the field samples collected during the RI shall maintain a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) Contract Laboratory Protocol (CLP) certification. All laboratory data are to be reported in NYSDEC ASP Category B deliverables and will be delivered to NYSDEC in electronic data deliverable (EDD) format as described on NYSDEC's website (http://www.dec.ny.gov/chemical/62440.html). A Data Usability Report will be prepared by an independent party meeting the requirements in Section 2.2(a)1.ii and Appendix 2B of DER-10 for all data packages generated for the RI.

## Quality Assurance Project Plan 5200 Kings Highway, Brooklyn, NY

### **TABLES**

- 1. Field and Laboratory QC Summary
- 2. Laboratory Reporting Limits for Soil, Water and Air Samples

2861.0001Y.102/CVRS ROUX

Table 1. Field and Laboratory QC Summary

QC Check Type	Minimum Frequency	Use
Field QC		
Duplicate	1 per matrix per SDG*	Precision
Trip Blank	1 per VOC cooler	Sensitivity
Equipment Rinse Blank	1 per day	Sensitivity
Laboratory QC		
Laboratory Control Sample	1 per matrix per SDG	Accuracy
Matrix Spike/Matrix Spike Duplicate/Matrix Duplicate**	1 per matrix per SDG	Accuracy/Precision
Surrogate Spike	All organics samples	Accuracy
Laboratory Duplicate	1 per matrix per SDG	Precision
Method Blank	1 per matrix per SDG	Sensitivity

#### Notes:



Page 1 of 1 2861.0001Y.102/WKB

^{*} SDG - Sample Delivery Group - Assumes a single extraction or preparation
** Provided to lab by field sampling personnel

### Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analysis Group Description	Method Description	Method Code
Soil Analysis	Volatile Organic Compounds (GC/MS)	8260B

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
Dichlorodifluoromethane	75-71-8	5	0.35	ug/Kg
Chloromethane	74-87-3	5	0.78	ug/Kg
Vinyl chloride	75-01-4	5	0.23	ug/Kg
Bromomethane	74-83-9	5	2.08	ug/Kg
Chloroethane	75-00-3	5	0.98	ug/Kg
Trichlorofluoromethane	75-69-4	5	0.15	ug/Kg
1,1-Dichloroethene	75-35-4	5	0.58	ug/Kg
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5	0.79	ug/Kg
Acetone	67-64-1	20	2.24	ug/Kg
Carbon disulfide	75-15-0	5	0.41	ug/Kg
Methyl acetate	79-20-9	5	0.44	ug/Kg
Methylene Chloride	75-09-2	20	1.09	ug/Kg
trans-1,2-Dichloroethene	156-60-5	5	0.39	ug/Kg
Methyl tert-butyl ether	1634-04-4	5	0.21	ug/Kg
1,1-Dichloroethane	75-34-3	5	0.3	ug/Kg
cis-1,2-Dichloroethene	156-59-2	5	0.37	ug/Kg
Methyl Ethyl Ketone	78-93-3	10	1.59	ug/Kg
Chloroform	67-66-3	5	0.34	ug/Kg
1,1,1-Trichloroethane	71-55-6	5	0.53	ug/Kg
Cyclohexane	110-82-7	5	0.69	ug/Kg
Carbon tetrachloride	56-23-5	5	0.95	ug/Kg
Benzene	71-43-2	5	0.57	ug/Kg
1,2-Dichloroethane	107-06-2	5	0.58	ug/Kg
Trichloroethene	79-01-6	5	0.81	ug/Kg
Methylcyclohexane	108-87-2	5	0.33	ug/Kg
1,2-Dichloropropane	78-87-5	5	0.67	ug/Kg
Bromodichloromethane	75-27-4	5	0.3	ug/Kg
cis-1,3-Dichloropropene	10061-01-5	5	0.56	ug/Kg
methyl isobutyl ketone	108-10-1	5	0.55	ug/Kg
Toluene	108-88-3	5	0.074	ug/Kg
trans-1,3-Dichloropropene	10061-02-6	5	0.27	ug/Kg
1,1,2-Trichloroethane	79-00-5	5	0.37	ug/Kg
Tetrachloroethene	127-18-4	5	0.81	ug/Kg
2-Hexanone	591-78-6	10	1.2	ug/Kg
Dibromochloromethane	124-48-1	5	0.35	ug/Kg
1,2-Dibromoethane	106-93-4	5	0.76	ug/Kg



Page 1 of 6 2861.0001Y.102/WKB

Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
Chlorobenzene	108-90-7	5	0.59	ug/Kg
Ethylbenzene	100-41-4	5	0.7	ug/Kg
n&p-Xylene	179601-23-1	5	0.35	ug/Kg
-Xylene	95-47-6	5	0.19	ug/Kg
Kylenes, Total	1330-20-7	5	0.486	ug/Kg
Styrene	100-42-5	5	0.15	ug/Kg
Bromoform	75-25-2	5	0.61	ug/Kg
sopropylbenzene	98-82-8	5	0.19	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	5	0.52	ug/Kg
,3-Dichlorobenzene	541-73-1	5	0.21	ug/Kg
,4-Dichlorobenzene	106-46-7	5	0.67	ug/Kg
,2-Dichlorobenzene	95-50-1	5	0.24	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	10	4.53	ug/Kg
,2,4-Trichlorobenzene	120-82-1	5	0.75	ug/Kg
,2-Dichloroethane-d4 (Surr)	17060-07-0			ug/Kg
1-Bromofluorobenzene	460-00-4			ug/Kg
Dibromofluoromethane	1868-53-7	5		ug/Kg
Toluene-d8 (Surr)	2037-26-5			ug/Kg
Tentatively Identified Compound	STL00231			ug/Kg

Soil Analysis	Purge and Trap	5035A
Soil Analysis	Semivolatile Compounds by Gas Chromatography/Mass Spectror	8270C

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
1,1'-Biphenyl	92-52-4	270	17.5	ug/Kg
2,4,5-Trichlorophenol	95-95-4	1700	13.6	ug/Kg
2,4,6-Trichlorophenol	88-06-2	270	7.4	ug/Kg
2,4-Dichlorophenol	120-83-2	270	14.4	ug/Kg
2,4-Dimethylphenol	105-67-9	270	13.1	ug/Kg
2,4-Dinitrotoluene	121-14-2	270	21.5	ug/Kg
2,4-Dinitrophenol	51-28-5	1700	81	ug/Kg
2,6-Dinitrotoluene	606-20-2	270	7.9	ug/Kg
2-Chloronaphthalene	91-58-7	270	11.5	ug/Kg
2-Chlorophenol	95-57-8	270	15.7	ug/Kg
2-Methylnaphthalene	91-57-6	270	7.7	ug/Kg
2-Methylphenol	95-48-7	270	16.2	ug/Kg
2-Nitroaniline	88-74-4	670	16.4	ug/Kg
2-Nitrophenol	88-75-5	270	17	ug/Kg
3,3'-Dichlorobenzidine	91-94-1	330	55.5	ug/Kg
3-Nitroaniline	99-09-2	670	8.6	ug/Kg



Page 2 of 6 2861.0001Y.102/WKB

Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
4,6-Dinitro-2-methylphenol	534-52-1	1700	116	ug/Kg
4-Bromophenyl phenyl ether	101-55-3	270	17.4	ug/Kg
4-Chloro-3-methylphenol	59-50-7	270	11.1	ug/Kg
4-Chloroaniline	106-47-8	270	43.9	ug/Kg
4-Chlorophenyl phenyl ether	7005-72-3	270	19.9	ug/Kg
Methylphenol, 3 & 4	106-44-5	270	17.7	ug/Kg
4-Nitroaniline	100-01-6	270	20.7	ug/Kg
4-Nitrophenol	100-02-7	1700	20.4	ug/Kg
Acenaphthene	83-32-9	270	16	ug/Kg
Acenaphthylene	208-96-8	270	13.2	ug/Kg
Acetophenone	98-86-2	270	14	ug/Kg
Anthracene	120-12-7	270	10.5	ug/Kg
Atrazine	1912-24-9	330	17.1	ug/Kg
Benzaldehyde	100-52-7	270	45	ug/Kg
Benzo[a]anthracene	56-55-3	270	9.6	ug/Kg
Benzo[a]pyrene	50-32-8	270	7.3	ug/Kg
Benzo[b]fluoranthene	205-99-2	270	7.2	ug/Kg
Benzo[g,h,i]perylene	191-24-2	270	17.6	ug/Kg
Benzo[k]fluoranthene	207-08-9	270	24.2	ug/Kg
Bis(2-chloroethoxy)methane	111-91-1	270	12.5	ug/Kg
Bis(2-chloroethyl)ether	111-44-4	270	14	ug/Kg
Bis(2-ethylhexyl) phthalate	117-81-7	270	26.1	ug/Kg
Butyl benzyl phthalate	85-68-7	270	15.1	ug/Kg
Caprolactam	105-60-2	270	21.2	ug/Kg
Carbazole	86-74-8	270	15	ug/Kg
Chrysene	218-01-9	270	19.9	ug/Kg
Di-n-butyl phthalate	84-74-2	270	39.2	ug/Kg
Di-n-octyl phthalate	117-84-0	270	15.3	ug/Kg
Dibenz(a,h)anthracene	53-70-3	270	21.2	ug/Kg
Dibenzofuran	132-64-9	270	19	ug/Kg
Diethyl phthalate	84-66-2	270	27.2	ug/Kg
Dimethyl phthalate	131-11-3	270	15.5	ug/Kg
Fluoranthene	206-44-0	270	13.4	ug/Kg
Fluorene	86-73-7	270	16.2	ug/Kg
Hexachlorobenzene	118-74-1	270	18.7	ug/Kg
Hexachlorobutadiene	87-68-3	270	20.8	ug/Kg
Hexachlorocyclopentadiene	77-47-4	670	127	ug/Kg
Hexachloroethane	67-72-1	270	15.4	ug/Kg
Indeno[1,2,3-cd]pyrene	193-39-5	270	17.5	ug/Kg



Page 3 of 6 2861.0001Y.102/WKB

Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
sophorone	78-59-1	270	14.9	ug/Kg
I-Nitrosodi-n-propylamine	621-64-7	270	18.2	ug/Kg
I-Nitrosodiphenylamine	86-30-6	270	15.2	ug/Kg
aphthalene	91-20-3	270	14	ug/Kg
itrobenzene	98-95-3	270	17.2	ug/Kg
entachlorophenol	87-86-5	670	164	ug/Kg
henanthrene	85-01-8	270	13.3	ug/Kg
henol	108-95-2	270	17.9	ug/Kg
yrene	129-00-0	270	12.7	ug/Kg
,2'-oxybis[1-chloropropane]	108-60-1	270	14	ug/Kg
,2-Dichlorobenzene-d4	2199-69-1			ug/Kg
4,6-Tribromophenol	118-79-6	270		ug/Kg
-Chlorophenol-d4	93951-73-6			ug/Kg
-Fluorobiphenyl	321-60-8	270		ug/Kg
-Fluorophenol	367-12-4	330		ug/Kg
litrobenzene-d5	4165-60-0	270		ug/Kg
henol-d5	4165-62-2	330		ug/Kg
erphenyl-d14	1718-51-0	270		ug/Kg
entatively Identified Compound	STL00231	330		ug/Kg

Soil Analysis	Diesel Range Organics (DRO) (GC)	8015B_DRO			
	Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
	Diesel Range Organics [C10-C28]	STL00143	17000	IVIDE - EIIIII	Offits
	o-Terphenyl	84-15-1			
Oct Accelerate		Joseph			1
Soil Analysis	Ultrasonic Extraction	3550B			
Soil Analysis	Gasoline Range Organics - (GC)	8015B_GRO			
	Gasoline Range Organics (C6-C9)	STL00215	25		
	a,a,a-Trifluorotoluene	98-08-8			
Soil Analysis	Closed System Purge and Trap	5035A_FP			
Soil Analysis	Percent Moisture	Moisture			
	Percent Moisture	STL00177	0.1		
	Percent Solids	STL00234	0.1		
	L		I		
	Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
	Gasoline Range Organics (C6-C9)	STL00215	1250		



Page 4 of 6 2861.0001Y.102/WKB

### Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
a,a,a-Trifluorotoluene	98-08-8			

Soil Analysis	Closed System Purge and Trap	5035A
Water Analysis	Volatile Organic Compounds (GC/MS)	8260B

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
Dichlorodifluoromethane	75-71-8	5	1.01	ug/L
Chloromethane	74-87-3	5	1.09	ug/L
Vinyl chloride	75-01-4	5	0.99	ug/L
Bromomethane	74-83-9	5	2.12	ug/L
Chloroethane	75-00-3	5	1.06	ug/L
Trichlorofluoromethane	75-69-4	5	1.11	ug/L
1,1-Dichloroethene	75-35-4	5	0.83	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	5	0.97	ug/L
Acetone	67-64-1	10	1.03	ug/L
Carbon disulfide	75-15-0	5	0.9	ug/L
Methyl acetate	79-20-9	5	0.48	ug/L
Methylene Chloride	75-09-2	5	0.78	ug/L
trans-1,2-Dichloroethene	156-60-5	5	0.76	ug/L
Methyl tert-butyl ether	1634-04-4	5	0.17	ug/L
1,1-Dichloroethane	75-34-3	5	1.03	ug/L
cis-1,2-Dichloroethene	156-59-2	5	0.99	ug/L
Methyl Ethyl Ketone	78-93-3	10	1.09	ug/L
Chloroform	67-66-3	5	0.67	ug/L
1,1,1-Trichloroethane	71-55-6	5	0.69	ug/L
Cyclohexane	110-82-7	5	0.7	ug/L
Carbon tetrachloride	56-23-5	5	1.07	ug/L
Benzene	71-43-2	5	0.74	ug/L
1,2-Dichloroethane	107-06-2	5	0.72	ug/L
Trichloroethene	79-01-6	5	0.62	ug/L
Methylcyclohexane	108-87-2	5	0.98	ug/L
1,2-Dichloropropane	78-87-5	5	0.71	ug/L
Bromodichloromethane	75-27-4	5	0.48	ug/L
cis-1,3-Dichloropropene	10061-01-5	5	0.28	ug/L
methyl isobutyl ketone	108-10-1	10	0.38	ug/L
Toluene	108-88-3	5	0.72	ug/L
trans-1,3-Dichloropropene	10061-02-6	5	0.57	ug/L
1,1,2-Trichloroethane	79-00-5	5	0.65	ug/L
Tetrachloroethene	127-18-4	5	0.81	ug/L
2-Hexanone	591-78-6	10	1.09	ug/L



Page 5 of 6 2861.0001Y.102/WKB

Table 2. Laboratory Reporting Limits for Soil, Water, and Air Samples

Analyte Description	CAS Number	RL - Limit	MDL - Limit	Units
Dibromochloromethane	124-48-1	5	0.55	ug/L
1,2-Dibromoethane	106-93-4	5	0.52	ug/L
Chlorobenzene	108-90-7	5	0.72	ug/L
thylbenzene	100-41-4	5	0.87	ug/L
n&p-Xylene	179601-23-1	5	1.66	ug/L
-Xylene	95-47-6	5	0.66	ug/L
(ylenes, Total	1330-20-7	5	2.27	ug/L
Styrene	100-42-5	5	0.64	ug/L
Bromoform	75-25-2	5	0.46	ug/L
sopropylbenzene	98-82-8	5	0.85	ug/L
,1,2,2-Tetrachloroethane	79-34-5	5	0.81	ug/L
,3-Dichlorobenzene	541-73-1	5	0.14	ug/L
,4-Dichlorobenzene	106-46-7	5	0.59	ug/L
,2-Dichlorobenzene	95-50-1	5	0.22	ug/L
,2-Dibromo-3-Chloropropane	96-12-8	5	1.16	ug/L
,2,4-Trichlorobenzene	120-82-1	5	0.72	ug/L
,2-Dichloroethane-d4 (Surr)	17060-07-0			ug/L
-Bromofluorobenzene	460-00-4	5		ug/L
bibromofluoromethane	1868-53-7	5		ug/L
oluene-d8 (Surr)	2037-26-5	5		ug/L
Fentatively Identified Compound	STL00231			ug/L



Page 6 of 6 2861.0001Y.102/WKB

## Quality Assurance Project Plan 5200 Kings Highway, Brooklyn, NY

## **APPENDIX**

A. Project Personnel Qualifications

2861.0001Y.102/CVRS ROUX



## Principal Hydrogeologist/National Client Manager

#### **TECHNICAL SPECIALTIES**

Soil and groundwater investigations, delineation of groundwater flow systems, design and implementation of remedial systems, development of regulatory strategy and regulatory negotiations, environmental due diligence, environmental compliance audits.

#### **EXPERIENCE SUMMARY**

Twenty-nine years of experience: Principal Hydrogeologist at Roux; Principal at ERM Northeast; Staff Hydrogeologist at Suffolk County, New York Department of Environmental Control.

#### **CREDENTIALS**

B.A. Geography, Clark University, 1974 MA. Geology, SUNY Binghamton, 1978

#### REGISTRATIONS

Licensed Professional Geologist in New York - No. 000469

#### **KEY PROJECTS**

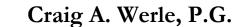
#### Brownfields/Real Estate Redevelopment

- Principal-in-Charge for taking the 22-acre Former Avis Headquarters site in Westbury, New York through the NYSDEC Brownfield Cleanup Program (BCP) for Equity One Inc. The project was constructed on an expedited basis to meet the deadlines associated with opening a major new shopping center. The project required very close coordination with all members of the construction team to ensure environmental issues didn't delay the demolition of existing buildings or construction of a 312,000 sq. ft. new retail space. The project included submission of the BCP Application, RI Work Plan, implementation of the RI including soil, groundwater and soil vapor sampling. An IRM was implemented that included the excavation of 40,000 tons of soil in support of a Track 1 cleanup. The NYSDECapproved Remedial Action Work Plan (RAWP) was implemented including an in-situ chemical oxidation (ISCO) remedy for groundwater and soil vapor monitoring. All remedial work was completed on schedule and the Final Engineering Report (FER) was submitted and a Track 1 Certificate of Completion (COC) was issued before the first tenants took possession of their space.
- Principal-in-Charge of all environmental services for Vornado Realty Trust Rego Mall Expansion. Project included Phase II investigation, preparation of Remedial Action Plan for NYCDEP approval. Preparation of three-dimensional sample grid for in-situ waste characterization, conduct 495 sample in-situ characterization plan, provide environmental support to project team evaluation of disposal strategy for 400,000 tons of soil/urban fill. Provide full time oversight of 9month excavation/waste shipment process. Prepare

- Remedial Action Summary Report and Groundwater Monitoring Report.
- Principal-In-Charge of NYSDEC BCP project in Brooklyn New York. The site is auto dealership with petroleum and chlorinated solvent contamination in soil and groundwater. The site has been accepted in the NYSDEC BCP and the RIWP submitted. Implementation of the RI is expected late in 2012 followed by a track 4 RAWP in 2013.
- Principal-in-Charge for Equity One development of a site in Bronx NY into an urban mall. Project includes entry in the New York City Office of Environmental Remediation (NYCOER) Voluntary Cleanup Program (VCP), implementation of an RI, submittal of an RI Report and RAWP recommending a soil excavation remedy. Remedial activity is expected to begin in late 2012.

#### **Industry Experience**

- Principal-in-Charge/Project Manager ECRA/ISRA project at a major aerospace facility in New Jersey for Fortune 100 client. Project included development of regulatory strategy, onsite delineation of multiple areas of soil contamination including large scale disposal pits, identification of radiological contamination, delineation of free phase oil body containing PCBs, delineation of multi-constituent contaminant plume containing TCE, UST removal, and RCRA storage pad closure. Designed and implemented comprehensive remedial pilot study to evaluate groundwater treatment technologies, feasibility and treatment of SVE/AS system, oil collection Aquifer test conducted in technologies. conjunction with pilot test. Excavation and off-site disposal of 5,000 tons of contaminated soil from waste pits. Investigation of off-site impact of TCE plume migration including health risk assessment.
- Principal/Project Manager for hydrogeologic investigation of largest private landfill in Connecticut. Including installation of multi-aquifer monitoring network, delineation of flow system and leachate plume.
- Site investigation and design of a multi-aquifer groundwater recovery system at a Connecticut NPL site. Extensive off-site contaminant plume contained TCE, PCE, methylene chloride and assorted chlorinated and aromatic hydrocarbons. Design reviewed and approved by USEPA Region
- Project Manager for investigation of landfill leachate impacts in groundwater/surface water at private landfill in Colchester, Connecticut.






### Principal Hydrogeologist/National Client Manager

- Conducted soil and groundwater testing in support of landfill expansion permit.
- Investigation of organic chemical impacts to groundwater associated with industrial landfill at major chemical plant in Naugatuck, Connecticut. Included evaluation of hydraulic and geochemical relationship of aquifer system and Naugatuck River.
- Principal-in-Charge/Project Manager for a soil and groundwater investigation at a tool and die manufacturer in Greenfield, Massachusetts. Project included delineation of TCE contamination in soils surrounding a closed dry well. Soils remediation completed through excavation and off-site disposal. Mapped TCE plume on-site and 4,000 feet off-site. Development of regulatory strategy/regulatory negotiation.
- Principal-in-Charge for a soil investigation/removal action and groundwater investigation at a Hicksville, New York State-lead CERCLA site. Project included delineation of TCE/PCE plume in the Upper Glacial Aquifer. Key issues included differentiation of on-site solvent sources from upgradient and downgradient plumes of similar contaminants.
- Project Manager for a soil and groundwater investigation at a solvent recovery facility in Linden, New Jersey. Project included delineation of significant on-site soil contamination from a wide variety of chlorinated and nonchlorinated solvents.
- Project manager for installation of groundwater monitoring network at Acabonac Road Landfill, East Hampton, New York.
- Project Manager for an expedited investigation of a TCE plume migrating through fractured bedrock toward the only on-site source of potable water at a major industrial facility in western New Jersey.
- Principal-in-Charge/Project Manager for the investigation of TCE contamination in groundwater at a Farmingdale, New York manufacturing facility. Project included development and negotiation of a work plan with NYSDEC. Groundwater modeling of potential off-site plume migration was responsible for delisting of the facility.
- Principal/Project Manager for a soil and groundwater investigation at a chemical distribution facility in Norwalk, Connecticut. Project included removal of buried drums and soil containing solvents and waste oils, identification of on-site source areas, delineation of solvent plume in glacial sediments and shoreline deposits adjacent

- to Long Island Sound. Negotiation of project scope and approach with CTDEP.
- Principal-in-Charge for investigation of a million gallon gasoline spill in a complex glacial environment. Delineation of free phase gasoline plume and multiple dissolved phase plumes, including the installation of 250 monitoring wells. Design/installation/operation of a remedial pumping system responsible for the recovery of over 460,000 gallons of gasoline. Primary technical representative for regulatory, community and media interaction. Installation and routine sampling of vapor well monitoring network to evaluate residential vapor impacts.
- Principal-in-Charge for detailed baseline assessments of six oil terminals in the northeastern United States prior to divestiture by a major U.S. oil company. Assessments included evaluation of compliance issues and implementation of soil and groundwater sampling plans and development of quantitative remedial cost estimates.
- Principal-in-Charge of detailed pre-acquisition environmental assessments of the Come-by-Chance Refinery in Newfoundland and the BORCO Refinery in Grand Bahama Island. Projects included evaluation of compliance and remedial issues based on both local and U.S. regulations and the development of remedial cost estimates.
- Principal-in-Charge of the remediation and divestiture of 28 service stations in New York for an independent petroleum company. This multi-year project included the design/installation/operation of remedial systems including free product recovery; dissolved phase recovery/treatment; and soil vapor extraction/air sparging. Use of risk-based corrective action (RBCA) and intrinsic bioremediation strategies resulted in No Further Action closures of many stations.
- Principal for the design and construction of a 7-acre impermeable cap over an inactive pharmaceutical waste landfill. Through construction of the cap, the landfill was closed in accordance with CTDEP Solid Waste Management regulations. The cap consisted of a 6-inch gas venting/bedding layer; 40-mil HDPE impermeable layer; 18-inch sand drainage layer and 9-inch vegetative layer. Stormwater runoff was collected in a series of riprap drainage swales and a culvert, discharging to a retention basin. The cap construction was completed within the allotted timeframe and budget.





### Principal Hydrogeologist/National Client Manager

- Principal-in-Charge for the investigation and remediation of a large gasoline leak at a terminal overlying Long Island's sole source aquifer. Project included the delineation of the 11-acre free phase product plume and the 3,000 foot long dissolved phase plume. Design/construction/operation of a 10 well, 800 gpm recovery system. Over 150,000 gallons of free phase product recovered. Remediation of the dissolved product plume was successfully completed and approved by NYSDEC dismantled. the system was Design/implementation of a 90-day SVE/AS pilot Development of regulatory strategy, regulatory negotiations. Technical representation the community, media, surrounding landowners and political officials.
- Development and implementation of an underground storage tank management plan for major chemical facilities in West Virginia and New Jersey.
- Principal-in-Charge of a site investigation and remediation project in southern New Jersey conducted under the NJDEP voluntary cleanup program.
- Principal-in-Charge for a groundwater investigation at a major petroleum transshipment terminal on Bonaire. Project included installation of 22 monitoring wells, evaluation of geologic and hydrogeologic setting, determination of groundwater quality and distribution of petroleum in the subsurface.
- Principal-in-Charge for the development of a quantitative environmental baseline assessment at a portion of the former Exxon Lago Refinery in Aruba. Project included installation of monitoring wells, collection and analysis of priority pollutant soil and groundwater samples. Evaluation of contaminant distribution within all environmental media was the basis of establishing remedial responsibility with the Aruban government for new site ownership.
- Principal in Charge of RI/IRM at former dry cleaning facility in Glen Cove, New York.
   Including negotiation of work plan with NYSDEC and New York State Attorney General's office, delineation of residual DNAPL, PCE plume in groundwater and PCE in soil
- Management of an ISRA project at a plastic injection molding facility in Randolph, New Jersey. Issues include TCE contamination in soil and groundwater and hydrocarbon contamination from an UST release.

 ISRA project at a former fabric dyeing facility in Haledon, New Jersey Including delineation of chlorinated solvents and petroleum in soils and groundwater. Remediation includes soil removal and engineering controls and deed notice.

#### Litigation Support/Expert Witness

- Expert witness for Wiley Rein & Fielding and Melito & Adolfsen, PC for Glidden Company v. Aetna Casualty & Surety Company, et al. Included preparation of expert report for three Glidden facilities and deposition testimony. Report and testimony related to timing and nature of contaminant releases and reasonability of past
- Claim evaluation for Mendes & Mount and London Market Insurers for Harsco Corporation facility in Fayetteville, New York. Evaluation related to insured's contribution to contamination at a site with sequential ownership. Also, evaluation of timing of releases, and relative importance of various source areas.
- Expert witness for Cuyler Burk, LLP in Selective Insurance Co. v. Parsippany-Troy Hills (Sharkey Landfill site). Included preparation of expert report related to the timing of contamination and the insured's understanding of environmental conditions.
- Claim evaluation for Mendes & Mount, LLP and London Market Insurers for five sites owned by Federal Pacific Electric Corp. and Cornell Dubilier Electric Company. The report evaluated sources of contamination, reasonability of past costs and potential future costs.
- Claim evaluation for Hardin, Kundla, McKeon, Polletto & Polifroni and the Royal Insurance Company for two Mark IV Industries, Inc. (former Rexon Technology Corp.) facilities in New Jersey. The primary issues evaluated were sources of contamination relative to owned property concerns, critical review of past costs and a projection of future costs.
- Claim evaluation for Jackson& Campbell and AIG for two RSR Corporation sites including a battery recycling/secondary lead smelting facility in West Dallas, Texas and a multiparty site on Harbor Island in Seattle, Washington. Both sites are on the National Priority List. The evaluation examined contaminant sources, owned property issues and past and future costs.
- Expert witness for Hardin, Kundla, McKeon, Polletto & Polifroni and CNA on a residential petroleum spill in Saddle Brook, New Jersey. The

## Craig A. Werle, P.G.

## Principal Hydrogeologist/National Client Manager

- expert report evaluated timing of the release, remedial costs and selection of remedial technologies.
- Expert witness in a tax certiorari case at a service station site in Farmingdale, New York. Provided expert testimony related to petroleum release, groundwater impact and remediation costs.
- Fact witness and Principal-in-Charge for an oil company client being sued by a developer related to diminished property value resulting from dissolved phase migration. Provided court testimony related to the nature of the release, migration of free/dissolved phase contaminants, hydrogeologic setting and remedial strategy and efficacy of remedial system operation.
- Fact witness and Principal-in-Charge for an Insured seeking recovery of costs from insurance company at a site in Bay Shore, New York. Provided deposition testimony related to on-site and off-site hydrogeologic investigation, remedial strategy, and off-site recovery system design.
- Fact witness and Principal-in-Charge for a property owner suing a major oil company relative to unremediated environmental impacts from significant gasoline releases at a long term service station lease site.
- Expert witness for The Hartford and Melito & Adolfsen in Gould Electronics, Inc. v. Aetna. Included preparation of expert report and deposition testimony. Expert opinion offered on trichloroethylene contamination of soils and groundwater, DNAPL mechanics and volume

- trichloroethylene disposal procedures and state of knowledge concerning TCE toxicity
- Expert witness for Leodori and Napierkowski in Leisure Time Tours v. Continental Insurance Co., et al. Included preparation of expert report related to investigation and remediation of free phase hydrocarbons.
- Expert witness for Rogers Towers Bailey Jones & Gray in Petroleum Products Corp. v. Insurance Company of North America. Included preparation of expert report and deposition testimony related to investigation and remediation of hydrocarbon and PCB contamination
- Principal in Charge of claim evaluation services for Kodak Insurance Defense Group. Includes review and evaluation of environmental reports and invoices related to \$298 million claim.
- Claim evaluation for Garrity Graham Favetta & Flinn and Utica Insurance Co. related to North Burlington Regional School District claim. Critical evaluation of documentation for the investigation and remediation of a hydrocarbon release from multiple sources.

 Expert witness for London Market and Mendes & Mount in TRW Corp. v. London Market Insurers. Included preparation of expert report and deposition testimony. Expert opinion offered on

4 of 4



Principal Engineer

#### **TECHNICAL SPECIALTIES:**

Environmental chemistry, engineered natural systems, PCBs, chlorinated solvents, design of remediation systems utilizing traditional and innovative techniques.

#### **EXPERIENCE SUMMARY:**

Over 14 years of experience as a Principal, Senior, and Project Engineer with Roux Associates, Inc.

#### **CREDENTIALS:**

Ph.D., Environmental Engineering, Massachusetts Institute of Technology, 2003

M.S., Environmental Engineering, Massachusetts Institute of Technology, 1999

B.S., Chemistry, California Institute of Technology, 1997B.S., Engineering & Applied Science, California Institute of Technology, 1997

Professional Engineer - New York, California

#### **PUBLICATIONS/PRESENTATIONS/ABSTRACTS:**

Proactive Evaluation of PRP Status at Hazardous Waste Disposal Sites. Sullivan, D., Kwan, W. P., Gerbig, C. A., and Moore, C., Environmental Claims Journal, 27(2), 2015.

Extricating Membership as a PRP at Hazardous Waste Disposal Sites. Ram, N. M., Kwan, W. P., Gerbig, C. A., and Moore, C., Remediation Journal. Spring 2014.

Long-Term Performance of a Phytoremediation Cap. Kwan, W. P., USEPA Engineering Forum, August 2012.

Long-Term Performance of an Integrated CTW/Phyto Cap System. Kwan, W. P., and W. Eifert, 8th International Phytotechnology Society Conference, 2011.

Large-Scale Enhanced Reductive Dechlorination for the Remediation of Chlorinated Volatile Organic Compounds. Kwan, W. P., Senh, S., and Netuschil, G., Proceedings of The Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Paper F-036, 2010.

Predicting Oxidation Rates of Dissolved Contaminants During In Situ Remediation Using Fenton's Reaction. Kwan, W. P., and B. M. Voelker, Abstracts of Papers of the American Chemical Society, 228(352 ENVR), 2004.

Influence of Electrostatics on the Oxidation Rates of Organic Compounds in Heterogeneous Fenton Systems. Kwan, W. P. and B. M. Voelker, Environmental Science & Technology, 38(12), 2004.

Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton Like Systems. Kwan, W. P. and B. M. Voelker, Environmental Science & Technology, 37(6), 2003. Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite. Kwan, W. P. and B. M. Voelker, Environmental Science & Technology, 36(7), 2002.

Heterogeneous Fenton-Like Chain Reactions Initiated by Iron Oxides. Kwan, W. P. and B. M. Voelker, Abstracts of Papers of the American Chemical Society, 200(283 ENVR), 2000.

#### **PROFESSIONAL AFFILIATIONS:**

American Chemical Society American Society of Civil Engineers

#### KEY PROJECTS: IN SITU REMEDIATION

- · Designed and oversaw construction of a full-scale in situ enhanced bioremediation treatment system for groundwater impacted with chlorinated volatile organic compounds (CVOCs) at an 18 acre former electronics manufacturing facility in Taiwan. Evaluated the effectiveness of different substrates for in situ treatment from the results of two concurrent 6 month pilot studies, resulting in selection of enhanced The full-scale treatment system bioremediation. consists of over 9,000 feet of piping and 189 molasses The technology decreased injection wells. tetrachloroethene (PCE) concentrations by 99 percent, trichloroethene (TCE) concentrations by 98 percent, and total CVOC concentrations by 96 percent.
- Project Manager for the injection of 10,280 gallons of Fenton's reagent to address groundwater contaminated with PCE and its breakdown products associated with a former PCE reclamation facility in Brooklyn, New York. The design focused on the source area and two downgradient hot spots that exhibited concentrations of dissolved CVOCs in parts per million and used a proprietary method to activate the Fenton's reagent.
- Project Manager for the remediation and closure of a former dry cleaner site in Brooklyn, New York, under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program. Managed field staff and provided engineering support during excavation and removal of 55 cubic yards of soil and concrete impacted by PCE and its breakdown products from a basement. Provided design and management of injection of 1,700 pounds of potassium permanganate solution to treat CVOCs in groundwater. Prepared Remedial Action Work Plan, permit application, daily construction reports, Final Engineering Report (FER) and Site Management Plan (SMP). Interacted with client, contractor, and regulatory agency project manager.
- Field Engineer for the remediation of a NYSDEC Brownfield Site in Staten Island, New York. Supervised the removal of soil and groundwater



Principal Engineer

contaminated with hazardous levels of PCE and TCE released from a defunct dry cleaner. Evaluated the performance of molasses injections to enhance in situ bioremediation of impacted groundwater. Prepared the Final Engineering Report to document the remedial action.

- Prepared reports that evaluated bench scale and field scale results of using surfactant-enhanced subsurface remediation technology to enhance free-product recovery at an active railroad yard in Sunnyside, Queens, New York. Coordinated lab and field activities with a surfactant vendor, performed literature review, designed a multi-month field scale treatability study, and evaluated the findings for potential application during full scale remediation.
- Prepared a treatability study work plan to evaluate the feasibility of using surfactant-enhanced subsurface remediation technology to enhance free-product recovery at a former petroleum refinery and distribution terminal in Greenpoint, Brooklyn, New York. Corresponded with surfactant vendors, performing literature review, designed a bench scale treatability study, and assessed the feasibility of implementing enhanced recovery of residual freeproduct in the regional aquifer that is exhibiting decreases in recovery rates via dual-pump liquid extraction.

#### **LANDFILLS**

- Project Manager for the remediation of a former petroleum refinery terminal in Buffalo, New York, under the NYSDEC Brownfield Cleanup Program. Prepared conceptual and final designs for stabilization of 1,400 linear feet of river embankment using tiered slopes, rip rap, and reinforced bioengineering as part of a landfill closure remedial action. The stabilized shoreline uses a variety of flora and land features to create multiple habitats for aquatic and terrestrial lifeforms, while also serving as a component of the vegetated landfill cover. Prepared Alternatives Analysis Report to document analysis of engineering options and remedy recommendation. Prepared permit application, Remedial Design and Bid Document for Reviewed contractor implementation of remedy. Provided oversight and engineering support during remedy construction. Prepared FER and SMP.
- Project Manager for the performance of a Corrective Measures Study (CMS) at a 30-acre land parcel undergoing RCRA Corrective Action in Williamsburg, Virginia. The site is a former fibers manufacturing facility, and a RCRA regulated landfill is located within the parcel. The CMS was conducted to identify, evaluate, and recommend a final remedy to address zinc-impacted groundwater discharging to a tributary.

Managed multi-person field crew who installed multiple monitoring wells, gauged and sampled groundwater, and conducted slug tests. Analyzed the CMS data to show more than 96 percent of the zinc loading is attributed to groundwater discharge along approximately 20 percent of the shoreline. Proposed a final remedy consisting of a 6.5 acre phytotechnology cover and 960 linear feet of compost reactive barrier, at a significantly lower cost compared to conventional treatment approaches.

#### **REGULATED SITES**

- Engineer for the remediation of soil and soil vapor impacted by the release of approximately 1,500 gallons of fuel at an operating gas station in San Bernardino County, California. Designed and involved in the operation of a soil vapor extraction (SVE) system consisting of five extraction wells focused on addressing the source area spanning 55 vertical feet.
- Engineer for the remediation of soil and soil vapor impacted by the release of PCE from a former dry cleaner in Compton, California. Prepared a pilot study to evaluate the feasibility of expanding the current SVE system to treat impacted soil and soil vapor at shallow and deep intervals underneath an existing supermarket.
- Operations Deputy for rapid mobilization and coordination of over 75 people to screen and sample for lead and other heavy metals in soil across 500 residences within 1.7 miles of the source in 10 days in the County of Los Angeles, California. Soil screening involved use of handheld x-ray fluorescence analyzer. Provided laboratory coordination, logistics and technical support, and QA/QC check of data.
- Engineer for the conceptual design of a two-acre engineered phyto cap for a site in Los Angeles County, California. The site is approximately seven acres and contains a waste dump and two abandoned oil production wells. The engineered phyto cap is designed to mitigate the potential for exposure of future residents to trash materials and is incorporated into the private, community-use park.
- Project Manager for a SVE and air sparge (AS) system to treat groundwater contaminated with VOCs and CVOCs at a 0.8-acre NYSDEC Voluntary Cleanup Site in Brooklyn, New York. Designed and performed two SVE/AS pilot studies. Designed the full-scale SVE/AS system. Provided oversight during installation of the full-scale SVE/AS system. Prepared the FER and SMP. Managed daily operations of the SVE/AS system and groundwater gauging and sampling personnel. Responsible for communications with the NYSDEC and reviewing progress reports.
- Project Manager for the performance of multiple soil, groundwater, and soil vapor investigations at a



Principal Engineer

NYSDEC Voluntary Cleanup Site in Brooklyn, New York. Prepared reports, work plans and directed field staff in the collection of discrete soil, groundwater, and soil vapor samples to delineate the extent of CVOC contamination in groundwater, soil, and soil vapor. Used membrane interface probe (MIP) technology as a screening tool to focus subsequent sample collection efforts and to reduce overall investigation costs.

- Senior and Project Engineer for the evaluation of methods to treat petroleum impacted soils at a former petroleum refinery terminal in Buffalo, New York. Evaluated bench scale studies using organoclay, nitrate, RegenOx, cement/slag, and lime kiln dust. Designed, supervised, and evaluated the performance of favorable treatment agents based on results generated from pilot scale field tests. Also critiqued scanning electron microscopy photographs and energy dispersive x-ray spectroscopy absorption spectra that were used to identify and support the conclusion that multiple, unrelated lead species are present within one operable unit.
- Project Manager for the remedial investigation of a shopping center in Enfield, Connecticut. Designed a focused investigation using MIP technology to focus subsequent collection of groundwater and soil samples using a standard size and portable Geoprobe for interior locations, and installation of soil vapor pins for the collection of sub-slab samples. Managed field staff during the implementation of the remedial investigation, and interacted with store proprietors to coordinate the work with minimal business interruptions.
- Field Engineer for the remediation of two 6.25-million gallon process lagoons adjacent to the Hudson River at a former dye manufacturing facility in Rensselaer, New York. Supervised the excavation, staging, screening, and transport of riprap and soil contaminated with hazardous concentrations of arsenic. Interacted daily with the client and regulatory agency representatives during implementation of the remedial action.
- Project Engineer for a multi-element remedial design of a USEPA Superfund Site in Nassau, New York. Prepared response letters, technical drawings, and 95 percent and 100 percent remedial design documents in accordance with the Record of Decision and Consent Judgment.
- Evaluated laboratory data packages of post-excavation soil samples generated during the interim remediation of a former storage and loading area of a pharmaceutical company in Brooklyn, New York. Initial site investigations concluded site contamination was limited to petroleum-related compounds. Supplemental site investigations conducted a few years

after the conclusion of the interim remediation showed a dissolved CVOC plume was present site-wide. Reviewed chromatograms and concluded that CVOCs were detected – but not reported since the reporting scope was limited to petroleum-related compounds – in many of the post-excavation soil samples, which would have provided earlier indications of the presence of the CVOC plume.

#### STORMWATER MANAGEMENT

- Project Manager and Engineer for the design of a fullscale natural media filtration (NMF) system consisting of two stormwater storage basins (0.4 MM and 1.8 MM gallons) and four NMF cells (two 114,000-gallon aboveground cells and 0.15- and 0.25-acre in-ground cells) at a 172-acre active aluminum manufacturing facility in Lafayette, Indiana. The NMF cells treat up to 1,500 GPM of stormwater runoff and process water impacted by polychlorinated biphenyls (PCBs), dissolved and particulate aluminum, and suspended solids. Researched the fate and transport of PCBs, and assessed the treatability of PCBs in wetlands. Evaluated a compost treatability bench-scale experiment. Designed and coordinated groundwater Used HydroCAD to model percolation tests. treatment capacity for multiple storm events.
- Project Engineer for the design of a passive stormwater management system for a 3,500-acre aluminum manufacturing facility in Point Comfort, Texas. The passive stormwater management system uses sedimentation trenches and swales to manage and convey bauxite-laden runoff. Stormwater runoff is managed by a constructed treatment wetland (CTW) and is consumptively used by a phytotechnology tree plot. Completed a hydrologic analysis using USACE HEC-HMS modeling software. Prepared bid specifications and provided bid support.
- Project Manager for the design of a NMF system to reduce PCBs to non-detect levels in stormwater at an aluminum extrusion facility in Cressona, Pennsylvania. The NMF system treats the first flush volume of 240,000 gallons containing residual PCBs. Conducted a detailed analysis of the site's constituents and runoff volumes during dry weather and wet weather to properly size the pump station and the NMF cell. Prepared bid document and provided bid support.
- Project Engineer for the design of a CTW to manage stormwater runoff generated from a scrap metal recycling facility in Sayreville, New Jersey. The CTW was designed to handle and treat runoff with elevated levels of suspended solids prior to discharge to adjacent coastal and freshwater jurisdictional wetlands.
- Evaluated the feasibility of using CTW to treat 110 GPM of groundwater containing elevated levels of



Principal Engineer

cyanide at an aluminum manufacturing facility in Hannibal, Ohio. The CTW was designed to address the site's constituents and winter environment, and was modularized to facilitate the expansion and incorporation of the pilot-scale CTW into the full-scale CTW.

 Project Manager for a feasibility study to mitigate land subsidence at a golf course adjacent to Long Island Sound in Northport, New York. Completed a data review of existing reports from USGS and local municipality, previous soil investigation, and current stormwater drainage design. Directed a field investigation to obtain data in support of the conceptual model for land movement. Concluded that existing stormwater management measures accelerated the rate of land movement. Evaluated potential engineering remedies.

#### **COMPLIANCE**

- Project Engineer for the evaluation of air emissions data from a steel mill melt shop in Sayreville, New Jersey. Prepared annual emissions statement in accordance with permit requirements using RADIUS software and emissions factors from AP-42 and CEMS data. Evaluated and summarized trends and anomalies observed in over one year's worth of air monitoring data on particulates and metals from monitors set up in the surrounding community.
- Project Engineer for the preparation of Title V
  emissions statement for two major hospitals in Nassau
  County, New York. Responsibilities included
  reviewing annual fuel usage data, calculating air
  emissions using emissions factors from AP-42, and
  preparing the emissions statement.
- Project Manager for the coordination, preparation, and submission of PCB TMDL reporting requirements for multiple sites in Virginia. Responsibilities included managing subcontractors, preparing submission forms in accordance with state guidelines, and preparing the first Pollutant Minimization Plan (PMP) in the state for PCBs.

#### **LITIGATION SUPPORT**

- Principal Engineer for the preparation of an expert report on the operation, closure, and pollution caused by a sanitary landfill adjacent to a creek in Indiana. The effort included reviewing historical site photographs; past regulations and practices for siting, operating, and closing of a sanitary landfill; and cost estimate to properly close the landfill.
- Senior Engineer for the analysis of expert reports and preparation of rebuttal for three superfund sites in New York and Massachusetts. The case involved assigning the percentage of PCBs released over time during the operation of the facilities at the three sites for the

- purpose of remedial costs allocation to various insurance carriers. Reviewed information submitted by opposing experts, conducted independent research to verify methodologies, and provided technical calculations indicating flaws in positions advocated by the opposing experts.
- Senior Engineer and Project Manager for the analysis of the sources and fate and transport of dioxins and PCBs into Newark Bay in New Jersey. Reviewed sediment and water column data from existing investigations, performed independent review of third party publications, and worked with geochemical expert on principal component analysis to identify dioxin contributions from several nearby sources.
- Senior Engineer for the preparation of an expert report for a fuel oil release in Rochelle Park, New Jersey. The release was from a residential underground storage tank (UST). The expert report opined on the age of the release, the reliability of the estimation method used by the opposing expert, and the accuracy of the age dating of the perforations in the UST.
- Project Engineer for the preparation of an affidavit regarding a cesspool explosion on Long Island, New York. The affidavit was prepared for the defendant's counsel providing technical calculations and opining on the improbability that the defendant's use of a drain cleaner contributed to a flash fire that injured the plaintiff. Also prepared an expert rebuttal affidavit to demonstrate the fallacies in the plaintiff's expert's arguments. The judge dismissed the case after reviewing all admitted information.
- Senior Engineer for the evaluation of expected remedial costs for waste disposal sites as part of a large bankruptcy litigation. Reviewed over 70 site records to identify potential liabilities and appropriate statute of limitations. Developed present value of remedial investigation and action costs and apportionment ranging from \$160,000 to \$1,200,000.
- Senior Engineer for the evaluation of gas chromatograms from multiple retail gasoline stations in Puerto Rico as part of a class action lawsuit. Responsibilities included reviewing for indicators of methyl tert-butyl ether (MTBE) and determining MTBE concentrations from historic laboratory data packages.





#### TECHNICAL SPECIALTIES

Management of construction and remediation projects, including Brownfield redevelopment, building construction, excavation and disposal of impacted soil, engineering services for the investigation, design, construction, and operation and maintenance of remedial systems for the treatment of contaminated soil and groundwater.

#### EXPERIENCE SUMMARY

Seventeen years of experience: Senior Engineer, Project Engineer, Staff Engineer, and Staff Assistant Engineer with Roux.

#### **CREDENTIALS**

M.S. in Environmental Engineering, Polytechnic University, Brooklyn, New York, 2001

B.S. in Chemical Engineering, Universidade Federal do Rio Grande do Sul, Brazil, 1997

OSHA 40 Hour Health and Safety Course, 2000 OSHA 8 Hour Refresher Courses

#### **KEY PROJECTS**

- Senior Engineer responsible for the management of investigation and remediation various Brownfields redevelopment sites containing hazardous and nonhazardous soils in New York City and surrounding. These projects included the implementation of in situ waste characterization sampling program and a Remedial Action Work Plan, which included excavation of soils below grade and management of soils including transportation and disposal and coordination with various disposal facilities. Most of these sites were accepted into the New York City Office of Environmental Remediation (NYC OER) Brownfield Cleanup Program (BCP) or the New York State BCP.
- Senior Engineer responsible for scheduling at a large petroleum remediation project in Brooklyn, New York. Responsibilities included management of all present and future tasks to be completed including operations and maintenance, remedial investigation, design and construction, facility upgrades, special operations, permitting and compliance tracking, health and safety, audits/assessments, sampling and regulatory reporting.
- Project Engineer for the remediation of soil and groundwater at 100+ facilities owned and/or operated by various city agencies in New York City. Activities included preparation of administrative/contractual requirements, work plans, and monitoring reports, cost estimates, proposals, engineering support, and construction oversight.
- Project Engineer for the design of an air sparge and soil vapor extraction system in Andover, Massachusetts.
- Project Engineer for the remediation of soil and groundwater at a former chemical manufacturing

- company in Rensselaer, New York. Activities included construction oversight, preparation of reports including Feasibility Study, Interim Remedial Measures, Community Air Monitoring Plans, Sampling Plans, Bid Review, Invoice Review, and various field investigations.
- Project Engineer for an investigation and remediation at a former petroleum refinery in Buffalo, New York. Responsible for assisting in the preparation of multiple work plans and reports of results for field investigations including soil borings and sampling, well installation, and groundwater sampling. Also responsible for reviewing and assisting in the preparation of activities related to the operation of the remediation systems at the Site, including maps, evaluation summaries, plans and compliance monitoring reports.
- Project Engineer for the closure of an underground storage tank (UST) at a shipping facility in Queens, New York. Activities included preparation of cost estimate, work plans, and field management.
- Project and Resident Engineer for the soil remediation of the Captain's Cove Condominiums Site, a federal NPL site, located in Glen Cove, New York. Activities include: supervision of Contractor's activities, regulatory interaction, compile daily field reports, manage laboratory database for excavated and reclaimed soil, shop drawing review, change order preparation, and Health and Safety compliance. Site remediation was completed in 2001 September to accommodate redevelopment as a commercial waterfront and operating seaport area. Currently managing OM&M groundwater monitoring program at the Site.
- Staff Engineer for a 450-gpm, dual-phase, product recovery system in Greenpoint, Brooklyn, New York. Tasks include: operation and maintenance of groundwater recovery and treatment system and free product recovery system. Also assisted in reviewing drawings and specs related to installation of aboveground storage tanks.
- Staff Engineer for the remediation of soil and groundwater at a former chemical company facility in Brooklyn, New York using a Soil Vapor Extraction and Air Sparging System. Tasks include: review of performance data for air sparge system, operation and maintenance for the SVE/AS System, progress report preparation, and monthly groundwater sampling.
- Staff Engineer for a divestment assessment at a service station in Stratford, Connecticut. Tasks include: oversight, soil sampling, FOIA investigation, coordination with subcontractor and



## Wendy Shen Senior Engineer

	regulatory agencies, and preparation of letters and reports.  Resident Engineer for the soil remediation at a former chemical company facility in Dayton, New Jersey. Activities include: construction oversight, Health and Safety compliance, field sampling, and completion report preparation.  Responsible for assisting in preparing cost estimates, proposals, feasibility studies, interim remedial measures, remedial action plans, health and safety plans, and technical specifications for a variety of soil and groundwater remedial objectives.	<ul> <li>Student/Research Assistant at Laboratory of Polymers, Universidade Federal do Rio Grande do Sul, POA, Brazil. Performed experiments on the metalization of plastics using polyaniline.</li> <li>Intern/Researcher at Laboratory of Research and Development at a petrochemical company, Ipiranga Petroquimica, Brazil. Conducted laboratory tests involving additives used in polymers and responsible for quality control/assurance of products.</li> </ul>
•		

## **APPENDIX J**

Citizen Participation Plan

**ROUX** 2861.0001Y.102/CVRS



## **Brownfield Cleanup Program**

# Citizen Participation Plan for Kristal Auto Mall

5200 Kings Highway East Flatbush Brooklyn, New York 11234

### TABLE OF CONTENTS

1.0 WHAT IS NEW YORK'S BROWNFIELD CLEANUP PROGRAM?	1
2.0 CITIZEN PARTICIPATION ACTIVITIES	2
3.0 MAJOR ISSUES OF PUBLIC CONCERN	4
4.0 SITE INFORMATION	5
5.0 INVESTIGATION AND CLEANUP PROCESS	7
APPENDIX A – PROJECT CONTACTS AND LOCATIONS OF REPORTS AND INFORMATION	11
APPENDIX B – SITE CONTACT LIST	12
APPENDIX C – SITE LOCATION MAP	13
APPENDIX D – BROWNFIELD CLEANUP PROGRAM PROCESS	14

**Note:** The information presented in this Citizen Participation Plan was current as of the date of its approval by the New York State Department of Environmental Conservation. Portions of this Citizen Participation Plan may be revised during the Site's investigation and cleanup process.

## TABLE OF CONTENTS

(Continued)

Applicant: Irma C. Pollack, LLC ("Applicant")

Site Name: Kristal Auto Mall ("Site")

Site Address: 5200 Kings Highway

Site County: Kings County

Site Number: C224140

1.0 WHAT IS NEW YORK'S BROWNFIELD CLEANUP PROGRAM?

New York's Brownfield Cleanup Program (BCP) works with private developers to encourage the

voluntary cleanup of contaminated properties known as "brownfields" so that they can be reused

and developed. These uses include recreation, housing, and business.

A brownfield is any real property that is difficult to re-use or redevelop because of the presence or

potential presence of contamination. A brownfield typically is a former industrial or commercial

property where operations may have resulted in environmental contamination. A brownfield can

pose environmental, legal, and financial burdens on a community. If a brownfield is not

addressed, it can reduce property values in the area and affect economic development of nearby

properties.

The BCP is administered by the New York State Department of Environmental Conservation

(NYSDEC) which oversees Applicants that conduct brownfield Site investigation and cleanup

activities. An Applicant is a person who has requested to participate in the BCP and has been

accepted by NYSDEC. The BCP contains investigation and cleanup requirements, ensuring that

cleanups protect public health and the environment. When NYSDEC certifies that these

requirements have been met, the property can be reused or redeveloped for the intended use.

For more information about the BCP, go online at: http://www.dec.ny.gov/chemical/8450.html.

#### 2.0 CITIZEN PARTICIPATION ACTIVITIES

## Why NYSDEC Involves the Public and Why It Is Important

NYSDEC involves the public to improve the process of investigating and cleaning up contaminated Sites, and to enable citizens to participate more fully in decisions that affect their health, environment, and social wellbeing. NYSDEC provides opportunities for citizen involvement and encourages early two-way communication with citizens before decision makers form or adopt final positions.

Involving citizens affected and interest in site investigation and cleanup programs is important for many reasons. These include:

- Promoting the development of timely, effective site investigation, and cleanup programs that protect public health and the environment;
- Improving public access to, and understanding of, issues and information related to a particular site and that site's investigation and cleanup process;
- Providing citizens with early and continuing opportunities to participate in NYSDEC's site investigation and cleanup process;
- Ensuring that NYSDEC makes site investigation and cleanup decisions that benefit from input that reflects the interests and perspectives found within the affected community; and
- Encouraging dialogue to promote the exchange of information among the affected/ interested public, State agencies, and other interested parties that strengthens trust among the parties, increases understanding of site and community issues and concerns, and improves decision making.

This Citizen Participation (CP) Plan provides information about how NYSDEC will inform and involve the public during the investigation and cleanup of the Site identified above. The public information and involvement program will be carried out with assistance, as appropriate, from the Applicant.

### **Project Contacts**

Appendix A identifies NYSDEC project contact(s) to whom the public should address questions or request information about the site's investigation and cleanup program. The public's suggestions about this CP Plan and the CP program for the Site are always welcome. Interested people are encouraged to share their ideas and suggestions with the project contacts at any time.

### Locations of Reports and Information

The locations of the reports and information related to the site's investigation and cleanup program also are identified in Appendix A. These locations provide convenient access to important project documents for public review and comment. Some documents may be placed on the NYSDEC web site. If this occurs, NYSDEC will inform the public in fact sheets distributed about the Site and by other means, as appropriate.

#### Site Contact List

Appendix B contains the site contact list. This list has been developed to keep the community informed about, and involved in, the site's investigation and cleanup process. The site contact list will be used periodically to distribute fact sheets that provide updates about the status of the project. These will include notifications of upcoming activities at the Site (such as fieldwork), as well as availability of project documents and announcements about public comment periods.

The site contact list includes, at a minimum:

- Chief executive officer and planning board chairperson of each county, city, town and village in which the Site is located;
- Residents, owners, and occupants of the Site and properties adjacent to the Site;
- The public water supplier which services the area in which the Site is located;
- Any person who has requested to be placed on the site contact list;
- The administrator of any school or day care facility located on or near the Site for purposes of posting and/or dissemination of information at the facility; and
- Location(s) of reports and information.

The site contact list will be reviewed periodically and updated as appropriate. Individuals and organizations will be added to the site contact list upon request. Such requests should be submitted to the NYSDEC project contact(s) identified in Appendix A. Other additions to the site contact list may be made at the discretion of the NYSDEC project manager, in consultation with other NYSDEC staff as appropriate.

CP Activities

The table at the end of this section identifies the CP activities, at a minimum, that have been and

will be conducted during the site's investigation and cleanup program. The flowchart in

Appendix D shows how these CP activities integrate with the site investigation and cleanup

process. The public is informed about these CP activities through fact sheets and notices

distributed at significant points during the program. Elements of the investigation and cleanup

process that match up with the CP activities are explained briefly in Section 5.

• Notices and Fact Sheets help the interested and affected public to understand

contamination issues related to a site, and the nature and progress of efforts to investigate

and clean up a site.

• Public forums, comment periods, and contact with project managers provide

opportunities for the public to contribute information, opinions and perspectives that have

potential to influence decisions about a site's investigation and cleanup.

• Document repositories have been established at the following locations:

Brooklyn Public Library

Rugby Branch

1000 Utica Avenue

Brooklyn, New York 11203-4310

Telephone: (718) 566-0054

**Brooklyn Community Board 18** 

1097 Bergen Avenue

Brooklyn, New York 11234-4841

Telephone: (718) 241-0422

Fax: (718) 531-3199

Email: bkbrd18@optonline.net

Chair: Saul Needle

District Manager: Dorothy Turano

The public is encouraged to contact project staff at any time during the site's investigation and

cleanup process with questions, comments, or requests for information.

This CP Plan may be revised due to changes in major issues of public concern identified in

Section 3 or in the nature and scope of investigation and cleanup activities. Modifications may

include additions to the site contact list and changes in planned citizen participation activities.

**Technical Assistance Grant** 

NYSDEC must determine if the Site poses a significant threat to public health or the environment.

This determination generally is made using information developed during the investigation of the

Site, as described in Section 5.

If the Site is determined to be a significant threat, a qualifying community group may apply for a Technical Assistance Grant (TAG). The purpose of a TAG is to provide funds to the qualifying group to obtain independent technical assistance. This assistance helps the TAG recipient to interpret and understand existing environmental information about the nature and extent of contamination related to the site and the development/implementation of a remedy.

An eligible community group must certify that its membership represents the interests of the community affected by the site, and that its members' health, economic well-being or enjoyment of the environment may be affected by a release or threatened release of contamination at the Site.

For more information about TAGs, go online at http://www.dec.ny.gov/regulations/2590.html.

Note: The table identifying the citizen participation activities related to the site's investigation and cleanup program follows on the next page:

Citizen Participation Requirements (Activities)	Timing of CP Activity(ies)								
Application Process:									
<ul><li> Prepare site contact list</li><li> Establish document repositories</li></ul>	At time of preparation of application to participate in the BCP.								
<ul> <li>Publish notice in Environmental Notice Bulletin (ENB) announcing receipt of application and 30-day public comment period</li> <li>Publish above ENB content in local newspaper</li> <li>Mail above ENB content to site contact list</li> <li>Conduct 30-day public comment period</li> </ul>	When NYSDEC determines that BCP application is complete. The 30-day public comment period begins on date of publication of notice in ENB. End date of public comment period is as stated in ENB notice. Therefore, ENB notice, newspaper notice, and notice to the site contact list should be provided to the public at the same time.								
After Execution of Brownfi	eld Site Cleanup Agreement:								
Prepare Citizen Participation (CP) Plan	Before start of Remedial Investigation								
Before NYSDEC Approves Reme	dial Investigation (RI) Work Plan:								
<ul> <li>Distribute fact sheet to site contact list about proposed RI activities and announcing 30-day public comment period about draft RI Work Plan</li> <li>Conduct 30-day public comment period</li> </ul>	Before NYSDEC approves RI Work Plan. If RI Work Plan is submitted with application, public comment periods will be combined and public notice will include fact sheet. Thirty-day public comment period begins/ends as per dates identified in fact sheet.								

Citizen Participation Requirements (Activities)	Timing of CP Activity(ies)				
After Applicant Complete	etes Remedial Investigation:				
Distribute fact sheet to site contact list that describes RI results	Before NYSDEC approves RI Report				
Before NYSDEC Approves	Remedial Work Plan (RWP):				
<ul> <li>Distribute fact sheet to site contact list about proposed RWP and announcing 45-day public comment period</li> <li>Public meeting by NYSDEC about proposed RWP (if requested by affected community or at discretion of NYSDEC project manager)</li> </ul>	Before NYSDEC approves RWP. Forty-five day public comment period begins/ends as per dates identified in fact sheet. Public meeting would be held within the 45-day public comment period.				
Conduct 45-day public comment period					
Before Applicant Sta	arts Cleanup Action:				
Distribute fact sheet to site contact list that describes upcoming cleanup action	Before the start of cleanup action.				
After Applicant Comp	letes Cleanup Action:				
Distribute fact sheet to site contact list that announces that cleanup action has been completed and that summarizes the Final Engineering Report	At the time NYSDEC approves Final Engineering Report. These two fact sheets are combined if possible if there is not a delay in issuing the COC.				
Distribute fact sheet to site contact list announcing issuance of Certificate of Completion (COC)					

#### 3.0 MAJOR ISSUES OF PUBLIC CONCERN

This section of the CP Plan identifies major issues of public concern that relate to the Site. Additional major issues of public concern may be identified during the course of the site's investigation and cleanup process.

No major issues of public concern have been identified yet that relate to the Site. A Scoping Sheet for Major Issues of Public Concern will be prepared. This document will help the Applicant identify any issues. Based on the demographics of the local community board, there is a large African-American population in the area. Therefore, this Site is located within an environmental justice area. In addition, truck traffic coming on and off the Site as well as noise may be a concern to the community.

Furthermore, the Site will include procedures for protection of public health and safety during investigation and remediation activities. During investigation and remediation (if necessary), worker and community health and safety activities will be conducted, including:

- Securing the work perimeter with an eight foot chain link fence;
- On-site air monitoring for worker protection, if warranted;
- Perimeter air monitoring for community protection, if warranted; and
- Using odor, vapor, and dust controls such as water or foam sprays, as required during air monitoring, if needed.

Details on the Site Health and Safety Plan (HASP) and the Community Air Monitoring Plan (CAMP) will be included in the documents generated in support of the remediation.

#### 4.0 SITE INFORMATION

Appendix C contains a map identifying the location of the site.

## Site Description

The property is located at 5200 Kings Highway (Site) in the East Flatbush section of Brooklyn, New York, zip code 11234. The Site is trapezoidal in shape and consists of a single tax lot: Block 7969, Lot 9. The Site is approximately 2.28 acres in size. The Site is bordered to the east and southeast by Kings Highway and to the west by Utica Avenue. The Site is bordered to the south by the Premier Ford auto dealership. To the north the Site is bordered by the Favorite Plastics Corporation. The Site is bordered to the northeast at 5226 Kings Highway by the Kristal Auto Mall Used Cars. This Site occupies a different tax lot, has a different owner from 5200 Kings Highway and is not part of the BCP application.

The Site consists of a retail auto dealership known as the Kristal Auto Mall. Approximately 75% of the Site is occupied by the dealership building that includes an auto showroom, administrative offices, service area, parts storeroom, auto body shop, auto storage, auto washing and a staff locker room. The remaining 25% of the Site consists of paved parking lots on the northeast and south sides of the Site. The outdoor space is used for vehicle storage.

The Site is located in an area that is industrial to the northeast, north, northwest, west, and southwest. A warehouse owned by H. Schrier, Inc., a food wholesaler occupies the entire block to the west across Utica Avenue. Farther to the west and north of the Site is continued industrial and commercial land use. To the east and southeast, across Kings Highway, is a residential community consisting of attached one and two family homes. Approximately one-quarter mile (1,250 feet) southeast of the Site is the Parkway Preschool. Paerdegat Basin, a tidal inlet is located approximately 0.6 miles (3,150 feet) southeast of the Site.

## History of Site Use, Investigation, and Cleanup

The Site is active and has been in use since 1959. From 1959 to 1968, the Site was occupied by a bowling alley. In 1968, new occupants expanded the existing building and began operation of a retail automobile dealership including sales and auto service. The Site continues to be operated as an auto dealership.

Previous investigations (soil and groundwater sampling) performed at the Site in 2007 and 2008 identified petroleum compounds and chlorinated parts cleaning solvents in soil and groundwater beneath the Site. Based on the analytical data from the initial investigation in 2007, a spill was reported to NYSDEC and spill number 0701186 was assigned to the Site. In 2011, three underground storage tanks that were used to store hydraulic fluid, motor oil and waste oil were cleaned and closed in place as requested by NYSDEC.

#### 5.0 INVESTIGATION AND CLEANUP PROCESS

## Application

The Applicant has applied for and been accepted into New York's Brownfield Cleanup Program as a Participant. This means that the Applicant was the owner of the Site at the time of the disposal or discharge of contaminants or was otherwise liable for the disposal or discharge of the contaminants. The Participant must fully characterize the nature and extent of contamination onsite, as well as the nature and extent of contamination that has migrated from the Site. The Participant also must conduct a "qualitative exposure assessment," a process that characterizes the actual or potential exposures of people, fish and wildlife to contaminants on the Site and to contamination that has migrated from the Site.

The Applicant in its Application proposes that the Site will be used for restricted purposes.

To achieve this goal, the Applicant will conduct investigation and cleanup activities at the Site with oversight provided by NYSDEC. The Brownfield Cleanup Agreement executed by NYSDEC and the Applicant sets forth the responsibilities of each party in conducting these activities at the Site.

### Investigation

The Applicant will conduct an investigation of the Site officially called a "remedial investigation" (RI). This investigation will be performed with NYSDEC oversight. The Applicant must develop a remedial investigation work plan, which is subject to public comment.

The site investigation has several goals:

- 1) Define the nature and extent of contamination in soil, surface water, groundwater and any other parts of the environment that may be affected;
- 2) Identify the source(s) of the contamination;
- 3) Assess the impact of the contamination on public health and the environment; and
- 4) Provide information to support the development of a proposed remedy to address the contamination or the determination that cleanup is not necessary.

When the investigation is complete, the Applicant will prepare and submit a report that summarizes the results. This report also will recommend whether cleanup action is needed to address site-related contamination. The investigation report is subject to review and approval by NYSDEC.

NYSDEC will use the information in the investigation report to determine if the Site poses a significant threat to public health or the environment. If the Site is a "significant threat," it must be cleaned up using a remedy selected by NYSDEC from an analysis of alternatives prepared by the Applicant and approved by NYSDEC. If the Site does not pose a significant threat, the Applicant may select the remedy from the approved analysis of alternatives.

### Remedy Selection

When the investigation of the site has been determined to be complete, the project likely would proceed in one of two directions:

1. The Applicant may recommend in its investigation report that no action is necessary at the Site. In this case, NYSDEC would make the investigation report available for public comment for 45 days. NYSDEC then would complete its review, make any necessary revisions, and, if appropriate, approve the investigation report. NYSDEC would then issue a "Certificate of Completion" (described below) to the Applicant.

or

2. The Applicant may recommend in its investigation report that action needs to be taken to address site contamination. After NYSDEC approves the investigation report, the Applicant may then develop a cleanup plan, officially called a "Remedial Work Plan". The Remedial Work Plan describes the Applicant's proposed remedy for addressing contamination related to the Site.

When the Applicant submits a proposed Remedial Work Plan for approval, NYSDEC would announce the availability of the proposed plan for public review during a 45-day public comment period.

### Cleanup Action

NYSDEC will consider public comments, and revise the draft cleanup plan if necessary, before approving the proposed remedy. The New York State Department of Health (NYSDOH) must

concur with the proposed remedy. After approval, the proposed remedy becomes the selected remedy.

The Applicant may then design and perform the cleanup action to address the site contamination. NYSDEC and NYSDOH oversee the activities. When the Applicant completes cleanup activities, it will prepare a final engineering report that certifies that cleanup requirements have been achieved or will be achieved within a specific time frame. NYSDEC will review the report to be certain that the cleanup is protective of public health and the environment for the intended use of the Site.

### Certificate of Completion

When NYSDEC is satisfied that cleanup requirements have been achieved or will be achieved for the Site, it will approve the final engineering report. NYSDEC then will issue a Certificate of Completion (COC) to the Applicant. The COC states that cleanup goals have been achieved, and relieves the Applicant from future liability for site-related contamination, subject to certain conditions. The Applicant would be eligible to redevelop the site after it receives a COC.

## Site Management

Site management is the last phase of the site cleanup program. This phase begins when the COC is issued. Site management may be conducted by the Applicant under NYSDEC oversight, if contamination will remain in place. Site management incorporates any institutional and engineering controls required to ensure that the remedy implemented for the Site remains protective of public health and the environment. All significant activities are detailed in a Site Management Plan.

An institutional control is a non-physical restriction on use of the Site, such as a deed restriction that would prevent or restrict certain uses of the property. An institutional control may be used when the cleanup action leaves some contamination that makes the Site suitable for some, but not all uses.

An engineering control is a physical barrier or method to manage contamination. Examples include: caps, covers, barriers, fences, and treatment of water supplies.

Site management also may include the operation and maintenance of a component of the remedy, such as a system that is pumping and treating groundwater. Site management continues until NYSDEC determines that it is no longer needed.

# APPENDIX A – PROJECT CONTACTS AND LOCATIONS OF REPORTS AND INFORMATION

## **Project Contacts**

For information about the site's investigation and cleanup program, the public may contact any of the following project staff:

## New York State Department of Environmental Conservation (NYSDEC):

Hasan Ahmed Thomas Panzone

Project Manager Citizen Participation Specialist

NYSDEC Region 2 NYSDEC Region 2
Division of Environmental Remediation 47-40 21st Street

47-40 21st Street Long Island City, New York 11101

Long Island City, New York 11101 Telephone: (718) 482-4953

Telephone: (718) 482-6405 Email: tvpanzon@gw.dec.state.ny.us

Email: hrahmed@gw.dec.state.ny.us

## **New York State Department of Health (NYSDOH):**

Bridget Callaghan

Public Health Specialist II - Project Manager

NYSDOH

Bureau of Environmental Exposure Investigation Empire State Plaza

Corning Tower, Room 1787, Albany, New York 12237

Telephone: (518) 402-7860 Email: beei@health.state.ny.us

### **Locations of Reports and Information:**

The facilities identified below are being used to provide the public with convenient access to important project documents:

Brooklyn Public Library Brooklyn Community Board 18

Rugby Branch 1097 Bergen Avenue

1000 Utica Avenue Brooklyn, New York 11234-4841

Brooklyn, New York 11203-4310 Telephone: (718) 241-0422

Telephone: (718) 566-0054 Fax: (718) 531-3199

Email: <u>bkbrd18@optonline.net</u>

Hours: Chair: Saul Needle

Monday, Wednesday, Thursday, District Manager: Dorothy Turano Friday: 10:00 AM — 6:00 PM

Tuesday: 1:00 PM — 8:00 PM Saturday-Sunday: Closed NYSDEC Region 2 47-40 21st Street

Long Island City, New York 11101

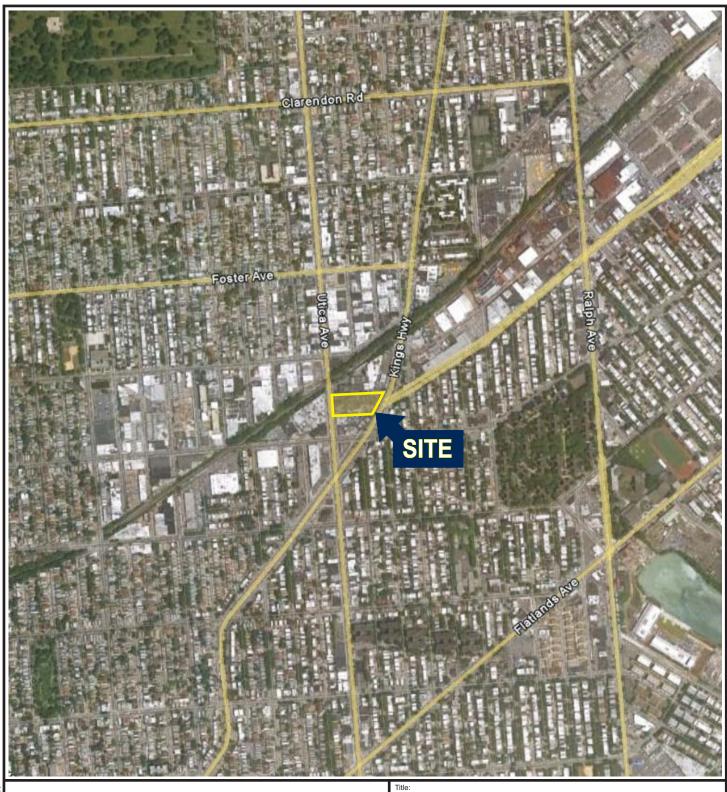
2018 1010110 0105, 110 11 10111 11101

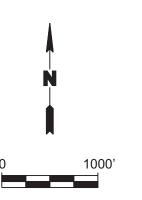
Attention: Hasan Ahmed

Telephone: (718) 482-6405 Hours: (call for appointment)

## APPENDIX B – SITE CONTACT LIST

А	В	С	D	E	E	G	Н	1 1	1 1
1	b b	<u> </u>	J J	-	•	J	- ''	'	,
1									
2 Site Contact List									
3 Site #: C224140									
4 Site Name: Kristal	Auto Mall		List Last Updated: 5-31-12						
5 Current Occupant		Address 1	Address 2	Address 3	Street Address	City	State	Zip	Site Name (County)
6	Honorable Michael R. Bloomberg	Mayor			City Hall	New York		10007	Kristal Auto Mall (Kings)
7	Honorable Bill DeBlasio	Public Advocate			One Centre Street, 15th Floor	New York	NY	10007	Kristal Auto Mall (Kings)
8	Honorable John Liu	New York City Comptroller			One Centre Street, Room 530	New York	NY	10007	Kristal Auto Mall (Kings)
9	New York Daily News				450 West 33rd Street	New York	NY	10001	Kristal Auto Mall (Kings)
10	Newsday				235 Pinelawn Road	Melville	NY	11747	Kristal Auto Mall (Kings)
11	Amanda M. Burden, Commissioner	NYC Dept. City Planning			22 Reade Street	New York	NY	10007	Kristal Auto Mall (Kings)
12	Dr. Robert Kulikowski	NYC Office of Environmental Coordination	on		253 Broadway - 14th Floor	New York	NY	10007	Kristal Auto Mall (Kings)
13	New York 1 News				75 Ninth Avenue	New York	NY	10011	Kristal Auto Mall (Kings)
14	Honorable Kirsten Gillibrand	United States Senate			780 Third Avenue, Suite 260		NY	10017	Kristal Auto Mall (Kings)
15	Honorable Charles E. Schumer	United States Senate			757 Third Avenue, Room 17-		NY	10017	Kristal Auto Mall (Kings)
16	Hon. Carter Strickland, Commissioner	NYC Department of Environmental Protect			59-17 Junction Boulevard	Flushing	NY	11373	Kristal Auto Mall (Kings)
17	John Wuthenow, Office of Environmental As		tion		96-05 Horace Harding Expre		NY	11373	Kristal Auto Mall (Kings)
18	Nancy T. Sunshine, Kings County Clerk	Kings County Clerk's Office			360 Adams Street, Room 189	•	NY	11201	Kristal Auto Mall (Kings)
19	Brooklyn Chamber of Commerce	Carl Hum, President & CEO			25 Elm Place, Suite 200 2 nd F		NY	11201	Kristal Auto Mall (Kings)
20	New York Post				1211 Avenue of the America		NY	10036	Kristal Auto Mall (Kings)
21	Courier-Life Publications					Brooklyn	NY	11201	Kristal Auto Mall (Kings)
22	Brooklyn Daily Eagle				30 Henry Street	Brooklyn	NY	11201	Kristal Auto Mall (Kings)
23	The Brooklyn Papers				, , , , , , , , , , , , , , , , , , , ,	Brooklyn	NY	11201	Kristal Auto Mall (Kings)
24	News 12 Brooklyn				164 20th Street 4th Floor	Brooklyn	NY	11232	Kristal Auto Mall (Kings)
25	Canarsie Courier				1142 East 92nd Street	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
26	El Diario				1 Metrotech Center, 18th Flo			11201	Kristal Auto Mall (Kings)
27	Jane O'Connell	Regional Cuperfund and Brownfield Progr			47-40 21st Street	Long Island City		11101	Kristal Auto Mall (Kings)
28	Thomas V. Panzone	Regional Citizen Participation Specialist	NYSDEC		47-40 21st Street	Long Island City		11101	Kristal Auto Mall (Kings)
29	Larry Ennist	D 11 D 1D 11	NYSDEC		625 Broadway	Albany	NY	12233	Kristal Auto Mall (Kings)
30	Hon. Marty Markowitz	Brooklyn Borough President			209 Joralemon Street	Brooklyn	NY	11201	Kristal Auto Mall (Kings)
32	Brooklyn Community Board 18 Brooklyn Community Board 18	Saul Needle, Chair  Dorothy Turano, District Manager			1097 Bergen Avenue 1097 Bergen Avenue	Brooklyn Brooklyn	NY NY	11234 11234	Kristal Auto Mall (Kings) Kristal Auto Mall (Kings)
33	Hon. Jumane D. Williams	NYC Councilmember			4517 Avenue D	Brooklyn		11203	Kristal Auto Mall (Kings)
34	Hon. Kevin S. Parkers	NYS Senator			1300 Flatbush Avenue	Brooklyn		11203	Kristal Auto Mall (Kings)  Kristal Auto Mall (Kings)
35	Hon. Helene E. Weinstein	NYS Assemblymember			3520 Nostrand Ave	Brooklyn		11210	Kristal Auto Mall (Kings)
36	Hon. Edolphus Towns	U.S. House of Representatives			104-08 Flatlands Avenue	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
37	Creative Learning Center (Day Care)	Director			886 East 54th Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
38	Parkway Pre-School	Principal			888 East 56th Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
39	Glenwood Senior Center	Director			5701 Avenue H	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
40	Decatur Senior Action Center	Director			1588 Schenectady Avenue	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
41	Hasan Ahmed	Project Manager	NYSDEC		47-40 21st Street	Long Island City		11101	Kristal Auto Mall (Kings)
42	Bridget Callaghan	Bureau of Environmental Exposure Investi			Flanigan Square, 547 River S	,		12180	Kristal Auto Mall (Kings)
43	Peter Pollack	Irma C. Pollack LLC			205 East 69th Street	New York		10021	Kristal Auto Mall (Kings)
44	Craig A. Werle	Principal Hydrogeologist	Roux Associates, Inc.		209 Shafter Street	Islandia		11749	Kristal Auto Mall (Kings)
45	Jon Schuyler Brooks, Esq.	Phillips Nizer LLP			666 Fifth Avenue	New York		10103	Kristal Auto Mall (Kings)
46	NADIA Development				1589 East 54th Street	Brooklyn		11234	Kristal Auto Mall (Kings)
47	2478 Coney Island Avenue, LLC	C/O Renaissance Realty Group			•	Brooklyn		11223	Kristal Auto Mall (Kings)
48	5268 Realty LLC	Diagnostic Auto Center			5268 Kings Highway	Brooklyn		11234	Kristal Auto Mall (Kings)
49	Utica Realty, LLC	Favorite Plastic Corp			1465 Utica Avenue	Brooklyn		11234	Kristal Auto Mall (Kings)
50	MTA Long Island Railroad	Attn: Helena E. Williams, President			Jamaica Station	Jamaica		11435	Kristal Auto Mall (Kings)
51	J. Zeluck, Inc.				5300 Kings Highway	Brooklyn		11234	Kristal Auto Mall (Kings)
52	5249 Highway Inc.				1097 West 52nd Street	Brooklyn		11234	Kristal Auto Mall (Kings)
53	Consolidated Edison Company				4 Irving Place	New York	NY	10003	Kristal Auto Mall (Kings)


А	В	С	D	E	F	G	Н	<u> </u>	l j
5 Current Occupant	Name, Title	Address 1	Address 2	Address 3	Street Address	City	State	Zip	Site Name (County)
	Rosamond Walker-Vivao				48 East 53rd Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
55	Arlene Cummings				207 Kings Highway	Brooklyn		11234	Kristal Auto Mall (Kings)
	Michelle Morancie				207 Kings Highway	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
	Nathan and Esther Harewood				95 East 52nd Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
58	Lenora Bullock				97 East 52nd Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
59	Leyson A. Hudson				001 East 52nd Street	Brooklyn		11234	Kristal Auto Mall (Kings)
60	Cedric Allison				003 East 52nd Street	Brooklyn		11234	Kristal Auto Mall (Kings)
61	Terence and Pearl Noel				007 East 52nd Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
	Benjamin and Jessie Woods				009 East 52nd Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
63	Angus Stephens				013 East 52nd Street	Brooklyn		11234	Kristal Auto Mall (Kings)
	Esther Watson				015 East 52nd Street	Brooklyn		11234	Kristal Auto Mall (Kings)
65	Gloria A. Medas				114 Glenwood Road	Brooklyn		11234	Kristal Auto Mall (Kings)
66	Kildare Clark			5	116 Glenwood Road	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
	Judith Gibbs				118 Glenwood Road	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
68	Ronald Anderson				120 Glenwood Road	Brooklyn		11234	Kristal Auto Mall (Kings)
69	Ethlyn St. Paul			51	124 Glenwood Road	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
70	Sol Linchytz			4:	1 Old Westbury Road	Old Westbury	NY	11568	Kristal Auto Mall (Kings)
71	Premier Ford / Lincoln			50	001 Glenwood Road	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
	GSI Realty Co.			49	901 Glenwood Road	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
73	New York City Department of Environmental	Bureau of Water and Sewer Operations		59	9-17 Junction Boulevard,	17 Flushing	NY	11373	Kristal Auto Mall (Kings)
74	NYC Department of Education	New York City District #18		1	106 East 95 Street	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
75	P.S. 109	Attn: Dwight Chase, Principal		10	001 East 45th Street	Brooklyn	NY	11203	Kristal Auto Mall (Kings)
76	P.S. 251 Paedergat School	Attn: Steven Boyer		10	037 East 54th Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
77	NYC Department of Education	New York City District #22		50	619 Flatlands Avenue	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
78	P.S. 326	Attn: Colleen M. Ducey		18	800 Utica Avenue	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
79	South Shore High School	Attn: Principal		6:	565 Flatlands Avenue	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
80	Flatlands Civic Association			50	013 Avenue H	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
81	Sholem of Flatbush (Reform)			20	075 E.68th Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
82	Temple Hillel of Flatlands (Orthodox)			2	164 Ralph Avenue	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
83	Holy Family (Catholic)			9	719 Flatlands Avenue	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
84	Our Lady of Miracles (Catholic)			7:	57 E. 86th Street	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
85	Mary Queen of Heaven (Catholic)			13	395 E. 56th Street	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
	Brooklyn Public Library - Rugby Branch			10	000 Utica Avenue	Brooklyn	NY	11203	Kristal Auto Mall (Kings)
87	Glenwood Houses (NYCHA)	Management Development Office			660 Ralph Avenue	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
	Glenwood Houses (NYCHA)	President, Resident's Association		10	660 Ralph Avenue	Brooklyn	NY	11236	Kristal Auto Mall (Kings)
	Mamre Seventh Day Adventist Church	Pastor		10	623-27 Utica Avenue	Brooklyn	NY	11234	Kristal Auto Mall (Kings)
90	Beulah Church of God Seventh Day Adventis	t			405 Utica Avenue	Brooklyn	NY	11203	Kristal Auto Mall (Kings)
91	Great Oaks Elementary School			47	718 Farragut Road	Brooklyn		11203	Kristal Auto Mall (Kings)
92	Celestial Church of Christ			93	37 East 51st Street	Brooklyn	NY	11203	Kristal Auto Mall (Kings)
93	RESIDENT OR BUSINESS OWNER				424 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			14	434 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				909 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			49	901 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
97	RESIDENT OR BUSINESS OWNER				017 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				013 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				431 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				421 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				702 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				706 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				718 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			99	98 EAST 48 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER				006 EAST 48 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
106	RESIDENT OR BUSINESS OWNER			14	487 SCHENECTADY AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)


MISSION OF RESIDENCY PART ASSESSMENT   MOCRATY   WY 1,202   Chinad Auto Mall (Cings)	А	В	С	D	E F	G	Н	ı	J
MISSION OF RESIDENCE CONTROL	5 Current Occupant	Name, Title	Address 1	Address 2	Address 3 Street Address	City	State	Zip	Site Name (County)
MISSION OF RESIDENCY PART ASSESSMENT   MOCRATY   WY 1,202   Chinad Auto Mall (Cings)	107	RESIDENT OR BUSINESS OWNER			1469 SCHENECTADY AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	108	RESIDENT OR BUSINESS OWNER			1461 SCHENECTADY AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
PROPRIET OR SUSPESS COMPRE	109	RESIDENT OR BUSINESS OWNER			997 EAST 48 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	110	RESIDENT OR BUSINESS OWNER			4816 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	111	RESIDENT OR BUSINESS OWNER			988 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
March   RESPORT OR BUSINESS OWNER	112	RESIDENT OR BUSINESS OWNER			994 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	113	RESIDENT OR BUSINESS OWNER			998 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	114	RESIDENT OR BUSINESS OWNER			1004 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
13   RESIDENT OR REJORNS COWER	115	RESIDENT OR BUSINESS OWNER			1008 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
SESSION FOR SESSIONES OWNER	116	RESIDENT OR BUSINESS OWNER			4806 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
19	117	RESIDENT OR BUSINESS OWNER			4812 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
SERRET OR BURNESS OWNER	118	RESIDENT OR BUSINESS OWNER			995 EAST 49 STREET	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
SEGENT OR BURNESS OWNER	119	RESIDENT OR BUSINESS OWNER			4902 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
22   RESIDENT OR RUSINESS OWNER     ABIT CLEAPWOOD ROAD   ROOKLIN, IN   1224   Kristal Auto Mall (Kings)	120	RESIDENT OR BUSINESS OWNER			1440 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	121	RESIDENT OR BUSINESS OWNER			1476 UTICA AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BURNESS OWNER	122	RESIDENT OR BUSINESS OWNER			4801 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
17.5   RESIDENT OR BUSINESS OWNER     1.752   UTCAL AVENUE   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1.900   1	123	RESIDENT OR BUSINESS OWNER			4811 EAST 49 STREET	BROOKLYN	NY	11230	Kristal Auto Mall (Kings)
RESIDENT OR RESPRESS OWNER     491 SINKS SIGNATURE   800,00C,VIN   N°   1224   Kristal Auto Mail (Kings)	124	RESIDENT OR BUSINESS OWNER			4900 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
127   RESIDENT OR BUSINESS OWNER   1224   Kristal Auto Mall (Kings)	125	RESIDENT OR BUSINESS OWNER			1528 UTICA AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	126	RESIDENT OR BUSINESS OWNER			4919 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
125	127	RESIDENT OR BUSINESS OWNER			1527 UTICA AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
SEDIENT OR BUSINESS OWNER	128	RESIDENT OR BUSINESS OWNER			5030 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
131   RESIDENT OR BUSINESS OWNER   1077 EAST 51 STREET   8800KLYN   NY   1224   Kristal Auto Mall (Kings)	129	RESIDENT OR BUSINESS OWNER			1085 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
131   RESIDENT OR BUSINESS OWNER   1077 EAST 51 STREET   8800KLYN   NY   1224   Kristal Auto Mall (Kings)	130	RESIDENT OR BUSINESS OWNER			1081 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
133   RESIDENT OR BUSINESS OWNER   1075 EAST 51 STREET   BROOKLYN NY 1224   Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER			1079 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
133   RESIDENT OR BUSINESS OWNER   1075 EAST 51 STREET   BROOKLYN NY 1224   Kristal Auto Mall (Kings)	132	RESIDENT OR BUSINESS OWNER			1077 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
SEDENT OR BUSINESS OWNER   SO38 KINGS HIGHWAY   BROOKLYN NY 11234   Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER			1075 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	134	RESIDENT OR BUSINESS OWNER			1073 EAST 51 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
SOUZ KINGS HIGHWAY   BROOKLYN NY   11234   Kristal Auto Mall (Kings)	135	RESIDENT OR BUSINESS OWNER			5038 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
188	136	RESIDENT OR BUSINESS OWNER			5040 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	137	RESIDENT OR BUSINESS OWNER			5042 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
140	138	RESIDENT OR BUSINESS OWNER			5044 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	139	RESIDENT OR BUSINESS OWNER			5114 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	140	RESIDENT OR BUSINESS OWNER			5116 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER	141	RESIDENT OR BUSINESS OWNER			5118 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
144   RESIDENT OR BUSINESS OWNER   1030 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     145   RESIDENT OR BUSINESS OWNER   1034 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     146   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     147   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     148   RESIDENT OR BUSINESS OWNER   1042 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     149   RESIDENT OR BUSINESS OWNER   1044 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     149   RESIDENT OR BUSINESS OWNER   1044 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     150   RESIDENT OR BUSINESS OWNER   1037 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     151   RESIDENT OR BUSINESS OWNER   1037 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     152   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     153   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     154   RESIDENT OR BUSINESS OWNER   1039 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     155   RESIDENT OR BUSINESS OWNER   1039 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     156   RESIDENT OR BUSINESS OWNER   1029 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     157   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     159   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mall (Kings)     159   RESIDENT OR BUSINESS OWNER   1234   Kristal Auto Mal	142	RESIDENT OR BUSINESS OWNER			5120 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
145   RESIDENT OR BUSINESS OWNER   1034 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     146   RESIDENT OR BUSINESS OWNER   1036 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     147   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     148   RESIDENT OR BUSINESS OWNER   1042 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     149   RESIDENT OR BUSINESS OWNER   1044 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     150   RESIDENT OR BUSINESS OWNER   1041 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     151   RESIDENT OR BUSINESS OWNER   1037 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     152   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     153   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     154   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     155   RESIDENT OR BUSINESS OWNER   1029 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     156   RESIDENT OR BUSINESS OWNER   1029 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     157   RESIDENT OR BUSINESS OWNER   5200 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5210 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)	143	RESIDENT OR BUSINESS OWNER			5124 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
146   RESIDENT OR BUSINESS OWNER   1036 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     147   RESIDENT OR BUSINESS OWNER   1038 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     148   RESIDENT OR BUSINESS OWNER   1042 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     149   RESIDENT OR BUSINESS OWNER   1044 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     150   RESIDENT OR BUSINESS OWNER   1041 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     151   RESIDENT OR BUSINESS OWNER   1037 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     152   RESIDENT OR BUSINESS OWNER   1035 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     153   RESIDENT OR BUSINESS OWNER   1035 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     154   RESIDENT OR BUSINESS OWNER   1039 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     155   RESIDENT OR BUSINESS OWNER   1039 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     155   RESIDENT OR BUSINESS OWNER   1039 EAST 52 STREET   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     156   RESIDENT OR BUSINESS OWNER   5200 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     157   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)     158   RESIDENT OR BUSINESS OWNER   5212 GLENWOOD ROAD   BROOKLYN   NY   11234   Kristal Auto Mall (Kings)	144	RESIDENT OR BUSINESS OWNER			1030 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
147 RESIDENT OR BUSINESS OWNER 1038 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 148 RESIDENT OR BUSINESS OWNER 1042 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 149 RESIDENT OR BUSINESS OWNER 1044 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 BROOKLYN NY 11234 Kristal Auto Mall (Kings) 159 RESIDENT OR BUSINESS OWNER 1029 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 155 RESIDENT OR BUSINESS OWNER 1029 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158		RESIDENT OR BUSINESS OWNER			1034 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
148 RESIDENT OR BUSINESS OWNER 149 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 152 RESIDENT OR BUSINESS OWNER 153 RESIDENT OR BUSINESS OWNER 154 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 RESIDENT OR BUSINESS OWNER 150 RESIDENT OR BUSINESS OWNER 151 RESIDENT OR BUSINESS OWNER 155 RESIDENT OR BUSINESS OWNER		RESIDENT OR BUSINESS OWNER			1036 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
149 RESIDENT OR BUSINESS OWNER 1004 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 150 RESIDENT OR BUSINESS OWNER 1014 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 151 RESIDENT OR BUSINESS OWNER 1037 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 152 RESIDENT OR BUSINESS OWNER 1038 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 153 RESIDENT OR BUSINESS OWNER 1039 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 154 RESIDENT OR BUSINESS OWNER 1029 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 155 RESIDENT OR BUSINESS OWNER 1029 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings) 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 S210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings) 159 RESIDENT OR BUSINESS OWNER 150 S210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings) 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 S210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings) 159 RESIDENT OR BUSINESS OWNER 150 S212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER			1038 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  1014 EAST 52 STREET 1037 EAST 52 STREET 1037 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1038 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREET 1039 EAST 52 STREE	148	RESIDENT OR BUSINESS OWNER			1042 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  1037 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings)  152 RESIDENT OR BUSINESS OWNER 1035 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings)  153 RESIDENT OR BUSINESS OWNER 1038 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings)  154 RESIDENT OR BUSINESS OWNER 1029 EAST 52 STREET BROOKLYN NY 11234 Kristal Auto Mall (Kings)  155 RESIDENT OR BUSINESS OWNER 156 RESIDENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 SESSIBENT OR BUSINESS OWNER 150 SESSIBENT OR BUSINESS OWNER 151 SESSIBENT OR BUSINESS OWNER 15212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  155 KRESIDENT OR BUSINESS OWNER 156 SESSIBENT OR BUSINESS OWNER 157 RESIDENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 SESSIBENT OR BUSINESS OWNER 150 SESSIBENT OR BUSINESS OWNER 151 SESSIBENT OR BUSINESS OWNER 15212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings) SESSIBENT OR BUSINESS OWNER 158 RESIDENT OR BUSINESS OWNER 159 SESSIBENT OR BUSINESS OWNER 150 SESSIBENT OR BUSINESS OWNER 151 SESSIBENT OR BUSINESS OWNER 1522 GLENWOOD ROAD SESSIBENT OR BUSINESS OWNER 153 SESSIBENT OR BUSINESS OWNER 154 SESSIBENT OR BUSINESS OWNER 155 SESSIBENT OR BUSINESS OWNER 156 SESSIBENT OR BUSINESS OWNER 157 SESSIBENT OR BUSINESS OWNER 158 SESSIBENT OR BUSINESS OWNER 159 SESSIBENT OR BUSINESS OWNER 150 SESSIBENT OR BUSINESS OWNER 150 SESSIBENT OR BUSINESS OWNER 151 SESSIBENT OR BUSINESS OWNER 155 SESSIBENT OR BUSINESS OWNER 156 SESSIBENT OR BUSINESS OWNER 157 SESSIBENT OR BUSINESS OWNER 158 SESSIBENT OR BUSINESS OWNER 159 SESSIBENT OR BUSINESS OWNER 11234 SKRISTAL AUTO MAIL (KINGS) SESSIBENT OR BUSINESS OWNER 11234 SKRISTAL AUTO MAIL (KINGS) SESSIBENT OR BUSINESS OWNER 11234 SKRISTAL AUTO MAIL (KINGS) SESSIBENT OR BUSINESS OWNER 11234 SKRISTAL AUTO MAIL (KINGS) SKRISTAL AUTO MAIL (KINGS) SKRISTAL AUTO MAIL (KINGS) SKRISTAL AUTO MAIL (KINGS) SKRISTAL AUTO MAIL (KINGS) SKRING OWNER SKRING OWNER SKRING OWNER SKRING OWNER SKRING OWNER SKRING OWNER SKRING OWN	149	RESIDENT OR BUSINESS OWNER			1044 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  1035 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1036 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1037 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STRE	150	RESIDENT OR BUSINESS OWNER			1041 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  1035 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1036 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1037 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  1039 EAST 52 STRE		RESIDENT OR BUSINESS OWNER			1037 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  1033 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  154  RESIDENT OR BUSINESS OWNER  1029 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  155  RESIDENT OR BUSINESS OWNER  156  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  150 GLENWOOD ROAD  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  150 GLENWOOD ROAD  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  151  RESIDENT OR BUSINESS OWNER  15210 GLENWOOD ROAD  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  158  RESIDENT OR BUSINESS OWNER  15212 GLENWOOD ROAD  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  158  RESIDENT OR BUSINESS OWNER		RESIDENT OR BUSINESS OWNER				BROOKLYN	NY	11234	
RESIDENT OR BUSINESS OWNER  1029 EAST 52 STREET  BROOKLYN  NY  11234  Kristal Auto Mall (Kings)  155  RESIDENT OR BUSINESS OWNER  156  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  15210 GLENWOOD ROAD  RESIDENT OR BUSINESS OWNER  153  RESIDENT OR BUSINESS OWNER  154  RESIDENT OR BUSINESS OWNER  155  RESIDENT OR BUSINESS OWNER  156  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  152  RESIDENT OR BUSINESS OWNER  153  RESIDENT OR BUSINESS OWNER  154  RESIDENT OR BUSINESS OWNER  155  RESIDENT OR BUSINESS OWNER  156  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  155  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  152  RESIDENT OR BUSINESS OWNER  153  RESIDENT OR BUSINESS OWNER  154  RESIDENT OR BUSINESS OWNER  155  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  155  RESIDENT OR BUSINESS OWNER  157  RESIDENT OR BUSINESS OWNER  158  RESIDENT OR BUSINESS OWNER  159  RESIDENT OR BUSINESS OWNER  150  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  151  RESIDENT OR BUSINESS OWNER  152  RESIDENT OR BU	153	RESIDENT OR BUSINESS OWNER			1033 EAST 52 STREET		NY	11234	
RESIDENT OR BUSINESS OWNER  5202 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  FRESIDENT OR BUSINESS OWNER  5206 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  FRESIDENT OR BUSINESS OWNER  5210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  FRESIDENT OR BUSINESS OWNER  5212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER			1029 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
RESIDENT OR BUSINESS OWNER  5206 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  FRESIDENT OR BUSINESS OWNER  5210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)  FRESIDENT OR BUSINESS OWNER  5212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER					NY	11234	
157 RESIDENT OR BUSINESS OWNER 5210 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings) 158 RESIDENT OR BUSINESS OWNER 5212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)		RESIDENT OR BUSINESS OWNER				BROOKLYN	NY	11234	
158 RESIDENT OR BUSINESS OWNER 5212 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)							+		
159 RESIDENT OR BUSINESS OWNER 5216 GLENWOOD ROAD BROOKLYN NY 11234 Kristal Auto Mall (Kings)	158						+		
		RESIDENT OR BUSINESS OWNER			5216 GLENWOOD ROAD	BROOKLYN			Kristal Auto Mall (Kings)

A	В	С	D	E F	G	Н	ı	J
5 Current Occupant	Name, Title	Address 1	Address 2	Address 3 Street Address	City	State	Zip	Site Name (County)
160	RESIDENT OR BUSINESS OWNER			5220 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
161	RESIDENT OR BUSINESS OWNER			5224 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
162	RESIDENT OR BUSINESS OWNER			992 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
163	RESIDENT OR BUSINESS OWNER			994 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
164	RESIDENT OR BUSINESS OWNER			996 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
165	RESIDENT OR BUSINESS OWNER			5115 FARRAGUT ROAD	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
166	RESIDENT OR BUSINESS OWNER			961 FARRAGUT ROAD	BROOKLYN	NY	11210	Kristal Auto Mall (Kings)
167	RESIDENT OR BUSINESS OWNER			5249 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
168	RESIDENT OR BUSINESS OWNER			5255 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
169	RESIDENT OR BUSINESS OWNER			5283 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
170	RESIDENT OR BUSINESS OWNER			720 EAST 56 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
171	RESIDENT OR BUSINESS OWNER			5433 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
172	RESIDENT OR BUSINESS OWNER			31 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
173	RESIDENT OR BUSINESS OWNER			29 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
174	RESIDENT OR BUSINESS OWNER			27 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
175	RESIDENT OR BUSINESS OWNER			25 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
176	RESIDENT OR BUSINESS OWNER			23 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
177	RESIDENT OR BUSINESS OWNER			21 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
178	RESIDENT OR BUSINESS OWNER			19 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
179	RESIDENT OR BUSINESS OWNER			17 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			15 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
181	RESIDENT OR BUSINESS OWNER			13 RESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
182	RESIDENT OR BUSINESS OWNER			32 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
183	RESIDENT OR BUSINESS OWNER			30 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			28 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			26 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			24 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			20 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
188	RESIDENT OR BUSINESS OWNER			18 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
189	RESIDENT OR BUSINESS OWNER			16 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
190	RESIDENT OR BUSINESS OWNER			14 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			8 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
192	RESIDENT OR BUSINESS OWNER			2 PRESTON COURT	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
193	RESIDENT OR BUSINESS OWNER			5501 FOSTER AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
194	RESIDENT OR BUSINESS OWNER			5417 FOSTER AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
195	RESIDENT OR BUSINESS OWNER			5407 FOSTER AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1503 UTICA AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5200 UTICA AVENUE	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1467 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1437 UTICA AVENUE	BROOKLYN	NY	11203	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5268 KINGS HIGHWAY	BROOKLYN	NY		Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5264 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5262 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5230 KINGS HIGHWAY	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1015 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1013 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1009 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1007 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1003 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			1001 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			997 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			995 EAST 52 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
	RESIDENT OR BUSINESS OWNER			5203 FOSTER AVENUE	BROOKLYN	_		Kristal Auto Mall (Kings)
[]				3203 I OSTER AVEROL	SHOOKEIN	1		11110 11111 (111150)

	Α	В	С	D	Е	F	G	Н	I	J
5	Current Occupant	Name, Title	Address 1	Address 2	Address 3	Street Address	City	State	Zip	Site Name (County)
213		RESIDENT OR BUSINESS OWNER				7970 FOSTER AVENUE	BROOKLYN	NY	11236	Kristal Auto Mall (Kings)
214		RESIDENT OR BUSINESS OWNER				948 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
215		RESIDENT OR BUSINESS OWNER				950 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
216		RESIDENT OR BUSINESS OWNER				952 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
217		RESIDENT OR BUSINESS OWNER				954 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
218		RESIDENT OR BUSINESS OWNER				956 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
219		RESIDENT OR BUSINESS OWNER				958 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
220		RESIDENT OR BUSINESS OWNER				960 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
221		RESIDENT OR BUSINESS OWNER				964 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
222		RESIDENT OR BUSINESS OWNER				966 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
223		RESIDENT OR BUSINESS OWNER				968 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
224		RESIDENT OR BUSINESS OWNER				970 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
225		RESIDENT OR BUSINESS OWNER				972 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
226		RESIDENT OR BUSINESS OWNER				974 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
227		RESIDENT OR BUSINESS OWNER				976 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
228		RESIDENT OR BUSINESS OWNER				965 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
229		RESIDENT OR BUSINESS OWNER				963 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
230		RESIDENT OR BUSINESS OWNER				961 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
231		RESIDENT OR BUSINESS OWNER				959 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
232		RESIDENT OR BUSINESS OWNER				955 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
233		RESIDENT OR BUSINESS OWNER				953 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
234		RESIDENT OR BUSINESS OWNER				951 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
235		RESIDENT OR BUSINESS OWNER				949 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
236		RESIDENT OR BUSINESS OWNER				945 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
237		RESIDENT OR BUSINESS OWNER				943 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
238		RESIDENT OR BUSINESS OWNER				941 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
239		RESIDENT OR BUSINESS OWNER				939 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
240		RESIDENT OR BUSINESS OWNER				937 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
241		RESIDENT OR BUSINESS OWNER				935 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
242		RESIDENT OR BUSINESS OWNER				933 EAST 53 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
243		RESIDENT OR BUSINESS OWNER				878 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
244		RESIDENT OR BUSINESS OWNER				882 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
245		RESIDENT OR BUSINESS OWNER				884 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
246		RESIDENT OR BUSINESS OWNER				886 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
247		RESIDENT OR BUSINESS OWNER				888 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
248		RESIDENT OR BUSINESS OWNER				890 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
249		RESIDENT OR BUSINESS OWNER				894 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
250		RESIDENT OR BUSINESS OWNER				896 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
251		RESIDENT OR BUSINESS OWNER				900 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
252		RESIDENT OR BUSINESS OWNER				902 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
253		RESIDENT OR BUSINESS OWNER				904 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
254		RESIDENT OR BUSINESS OWNER				908 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
255		RESIDENT OR BUSINESS OWNER				910 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
256		RESIDENT OR BUSINESS OWNER				912 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
257		RESIDENT OR BUSINESS OWNER				916 EAST 54 STREET	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)
258		RESIDENT OR BUSINESS OWNER				5301 GLENWOOD ROAD	BROOKLYN	NY	11234	Kristal Auto Mall (Kings)

## APPENDIX C – SITE LOCATION MAP





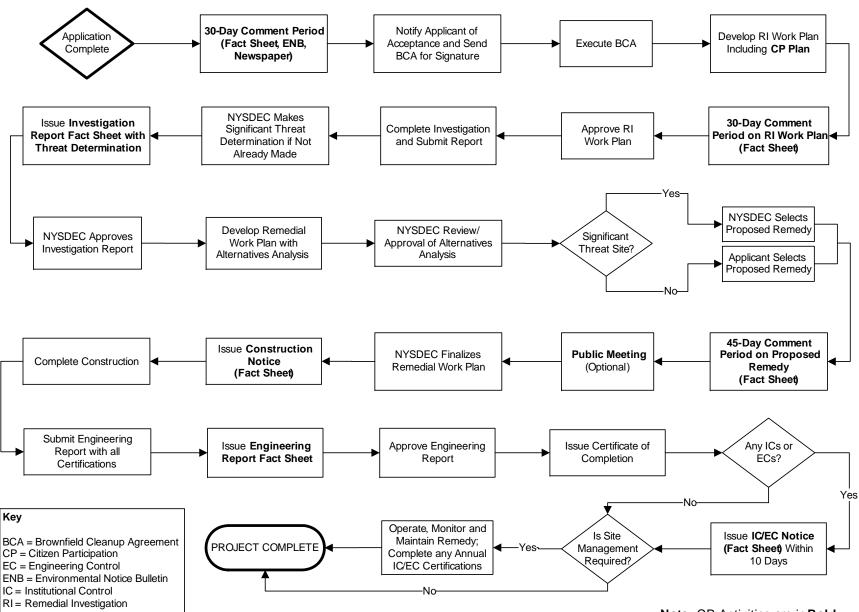
## **SITE LOCATION MAP**

KRISTAL AUTO MALL 5200 KINGS HIGHWAY BROOKLYN, NEW YORK 11234

Prepared for:

IRMA C. POLLACK, LLC




ompiled by: W.M.	Date: 15MAY12
repared by: J.A.D.	Scale: AS SHOWN
roject Mgr.: W.M.	Project No.: 1575.0002Y000
le: 1575.0002Y10	05.01.CDR

FIGURE

1

SOURCE: GOOGLE EARTH IMAGERY DATE: 6/17/2010

### APPENDIX D – BROWNFIELD CLEANUP PROGRAM PROCESS



Note: CP Activities are in Bold

## **APPENDIX K**

Resumes of Key Personnel

**ROUX** 2861.0001Y.102/CVRS



## Principal Hydrogeologist/National Client Manager

#### **TECHNICAL SPECIALTIES**

Soil and groundwater investigations, delineation of groundwater flow systems, design and implementation of remedial systems, development of regulatory strategy and regulatory negotiations, environmental due diligence, environmental compliance audits.

#### **EXPERIENCE SUMMARY**

Twenty-nine years of experience: Principal Hydrogeologist at Roux; Principal at ERM Northeast; Staff Hydrogeologist at Suffolk County, New York Department of Environmental Control.

#### **CREDENTIALS**

B.A. Geography, Clark University, 1974 MA. Geology, SUNY Binghamton, 1978

#### REGISTRATIONS

Licensed Professional Geologist in New York - No. 000469

#### **KEY PROJECTS**

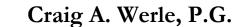
#### Brownfields/Real Estate Redevelopment

- Principal-in-Charge for taking the 22-acre Former Avis Headquarters site in Westbury, New York through the NYSDEC Brownfield Cleanup Program (BCP) for Equity One Inc. The project was constructed on an expedited basis to meet the deadlines associated with opening a major new shopping center. The project required very close coordination with all members of the construction team to ensure environmental issues didn't delay the demolition of existing buildings or construction of a 312,000 sq. ft. new retail space. The project included submission of the BCP Application, RI Work Plan, implementation of the RI including soil, groundwater and soil vapor sampling. An IRM was implemented that included the excavation of 40,000 tons of soil in support of a Track 1 cleanup. The NYSDECapproved Remedial Action Work Plan (RAWP) was implemented including an in-situ chemical oxidation (ISCO) remedy for groundwater and soil vapor monitoring. All remedial work was completed on schedule and the Final Engineering Report (FER) was submitted and a Track 1 Certificate of Completion (COC) was issued before the first tenants took possession of their space.
- Principal-in-Charge of all environmental services for Vornado Realty Trust Rego Mall Expansion. Project included Phase II investigation, preparation of Remedial Action Plan for NYCDEP approval. Preparation of three-dimensional sample grid for in-situ waste characterization, conduct 495 sample in-situ characterization plan, provide environmental support to project team evaluation of disposal strategy for 400,000 tons of soil/urban fill. Provide full time oversight of 9month excavation/waste shipment process. Prepare

- Remedial Action Summary Report and Groundwater Monitoring Report.
- Principal-In-Charge of NYSDEC BCP project in Brooklyn New York. The site is auto dealership with petroleum and chlorinated solvent contamination in soil and groundwater. The site has been accepted in the NYSDEC BCP and the RIWP submitted. Implementation of the RI is expected late in 2012 followed by a track 4 RAWP in 2013.
- Principal-in-Charge for Equity One development of a site in Bronx NY into an urban mall. Project includes entry in the New York City Office of Environmental Remediation (NYCOER) Voluntary Cleanup Program (VCP), implementation of an RI, submittal of an RI Report and RAWP recommending a soil excavation remedy. Remedial activity is expected to begin in late 2012.

#### **Industry Experience**

- Principal-in-Charge/Project Manager ECRA/ISRA project at a major aerospace facility in New Jersey for Fortune 100 client. Project included development of regulatory strategy, onsite delineation of multiple areas of soil contamination including large scale disposal pits, identification of radiological contamination, delineation of free phase oil body containing PCBs, delineation of multi-constituent contaminant plume containing TCE, UST removal, and RCRA storage pad closure. Designed and implemented comprehensive remedial pilot study to evaluate groundwater treatment technologies, feasibility and treatment of SVE/AS system, oil collection Aquifer test conducted in technologies. conjunction with pilot test. Excavation and off-site disposal of 5,000 tons of contaminated soil from waste pits. Investigation of off-site impact of TCE plume migration including health risk assessment.
- Principal/Project Manager for hydrogeologic investigation of largest private landfill in Connecticut. Including installation of multi-aquifer monitoring network, delineation of flow system and leachate plume.
- Site investigation and design of a multi-aquifer groundwater recovery system at a Connecticut NPL site. Extensive off-site contaminant plume contained TCE, PCE, methylene chloride and assorted chlorinated and aromatic hydrocarbons. Design reviewed and approved by USEPA Region
- Project Manager for investigation of landfill leachate impacts in groundwater/surface water at private landfill in Colchester, Connecticut.






## Principal Hydrogeologist/National Client Manager

- Conducted soil and groundwater testing in support of landfill expansion permit.
- Investigation of organic chemical impacts to groundwater associated with industrial landfill at major chemical plant in Naugatuck, Connecticut. Included evaluation of hydraulic and geochemical relationship of aquifer system and Naugatuck River.
- Principal-in-Charge/Project Manager for a soil and groundwater investigation at a tool and die manufacturer in Greenfield, Massachusetts. Project included delineation of TCE contamination in soils surrounding a closed dry well. Soils remediation completed through excavation and off-site disposal. Mapped TCE plume on-site and 4,000 feet off-site. Development of regulatory strategy/regulatory negotiation.
- Principal-in-Charge for a soil investigation/removal action and groundwater investigation at a Hicksville, New York State-lead CERCLA site. Project included delineation of TCE/PCE plume in the Upper Glacial Aquifer. Key issues included differentiation of on-site solvent sources from upgradient and downgradient plumes of similar contaminants.
- Project Manager for a soil and groundwater investigation at a solvent recovery facility in Linden, New Jersey. Project included delineation of significant on-site soil contamination from a wide variety of chlorinated and nonchlorinated solvents.
- Project manager for installation of groundwater monitoring network at Acabonac Road Landfill, East Hampton, New York.
- Project Manager for an expedited investigation of a TCE plume migrating through fractured bedrock toward the only on-site source of potable water at a major industrial facility in western New Jersey.
- Principal-in-Charge/Project Manager for the investigation of TCE contamination in groundwater at a Farmingdale, New York manufacturing facility. Project included development and negotiation of a work plan with NYSDEC. Groundwater modeling of potential off-site plume migration was responsible for delisting of the facility.
- Principal/Project Manager for a soil and groundwater investigation at a chemical distribution facility in Norwalk, Connecticut. Project included removal of buried drums and soil containing solvents and waste oils, identification of on-site source areas, delineation of solvent plume in glacial sediments and shoreline deposits adjacent

- to Long Island Sound. Negotiation of project scope and approach with CTDEP.
- Principal-in-Charge for investigation of a million gallon gasoline spill in a complex glacial environment. Delineation of free phase gasoline plume and multiple dissolved phase plumes, including the installation of 250 monitoring wells. Design/installation/operation of a remedial pumping system responsible for the recovery of over 460,000 gallons of gasoline. Primary technical representative for regulatory, community and media interaction. Installation and routine sampling of vapor well monitoring network to evaluate residential vapor impacts.
- Principal-in-Charge for detailed baseline assessments of six oil terminals in the northeastern United States prior to divestiture by a major U.S. oil company. Assessments included evaluation of compliance issues and implementation of soil and groundwater sampling plans and development of quantitative remedial cost estimates.
- Principal-in-Charge of detailed pre-acquisition environmental assessments of the Come-by-Chance Refinery in Newfoundland and the BORCO Refinery in Grand Bahama Island. Projects included evaluation of compliance and remedial issues based on both local and U.S. regulations and the development of remedial cost estimates.
- Principal-in-Charge of the remediation and divestiture of 28 service stations in New York for an independent petroleum company. This multi-year project included the design/installation/operation of remedial systems including free product recovery; dissolved phase recovery/treatment; and soil vapor extraction/air sparging. Use of risk-based corrective action (RBCA) and intrinsic bioremediation strategies resulted in No Further Action closures of many stations.
- Principal for the design and construction of a 7-acre impermeable cap over an inactive pharmaceutical waste landfill. Through construction of the cap, the landfill was closed in accordance with CTDEP Solid Waste Management regulations. The cap consisted of a 6-inch gas venting/bedding layer; 40-mil HDPE impermeable layer; 18-inch sand drainage layer and 9-inch vegetative layer. Stormwater runoff was collected in a series of riprap drainage swales and a culvert, discharging to a retention basin. The cap construction was completed within the allotted timeframe and budget.





## Principal Hydrogeologist/National Client Manager

- Principal-in-Charge for the investigation and remediation of a large gasoline leak at a terminal overlying Long Island's sole source aquifer. Project included the delineation of the 11-acre free phase product plume and the 3,000 foot long dissolved phase plume. Design/construction/operation of a 10 well, 800 gpm recovery system. Over 150,000 gallons of free phase product recovered. Remediation of the dissolved product plume was successfully completed and approved by NYSDEC dismantled. the system was Design/implementation of a 90-day SVE/AS pilot Development of regulatory strategy, regulatory negotiations. Technical representation the community, media, surrounding landowners and political officials.
- Development and implementation of an underground storage tank management plan for major chemical facilities in West Virginia and New Jersey.
- Principal-in-Charge of a site investigation and remediation project in southern New Jersey conducted under the NJDEP voluntary cleanup program.
- Principal-in-Charge for a groundwater investigation at a major petroleum transshipment terminal on Bonaire. Project included installation of 22 monitoring wells, evaluation of geologic and hydrogeologic setting, determination of groundwater quality and distribution of petroleum in the subsurface.
- Principal-in-Charge for the development of a quantitative environmental baseline assessment at a portion of the former Exxon Lago Refinery in Aruba. Project included installation of monitoring wells, collection and analysis of priority pollutant soil and groundwater samples. Evaluation of contaminant distribution within all environmental media was the basis of establishing remedial responsibility with the Aruban government for new site ownership.
- Principal in Charge of RI/IRM at former dry cleaning facility in Glen Cove, New York.
   Including negotiation of work plan with NYSDEC and New York State Attorney General's office, delineation of residual DNAPL, PCE plume in groundwater and PCE in soil
- Management of an ISRA project at a plastic injection molding facility in Randolph, New Jersey. Issues include TCE contamination in soil and groundwater and hydrocarbon contamination from an UST release.

 ISRA project at a former fabric dyeing facility in Haledon, New Jersey Including delineation of chlorinated solvents and petroleum in soils and groundwater. Remediation includes soil removal and engineering controls and deed notice.

### Litigation Support/Expert Witness

- Expert witness for Wiley Rein & Fielding and Melito & Adolfsen, PC for Glidden Company v. Aetna Casualty & Surety Company, et al. Included preparation of expert report for three Glidden facilities and deposition testimony. Report and testimony related to timing and nature of contaminant releases and reasonability of past
- Claim evaluation for Mendes & Mount and London Market Insurers for Harsco Corporation facility in Fayetteville, New York. Evaluation related to insured's contribution to contamination at a site with sequential ownership. Also, evaluation of timing of releases, and relative importance of various source areas.
- Expert witness for Cuyler Burk, LLP in Selective Insurance Co. v. Parsippany-Troy Hills (Sharkey Landfill site). Included preparation of expert report related to the timing of contamination and the insured's understanding of environmental conditions.
- Claim evaluation for Mendes & Mount, LLP and London Market Insurers for five sites owned by Federal Pacific Electric Corp. and Cornell Dubilier Electric Company. The report evaluated sources of contamination, reasonability of past costs and potential future costs.
- Claim evaluation for Hardin, Kundla, McKeon, Polletto & Polifroni and the Royal Insurance Company for two Mark IV Industries, Inc. (former Rexon Technology Corp.) facilities in New Jersey. The primary issues evaluated were sources of contamination relative to owned property concerns, critical review of past costs and a projection of future costs.
- Claim evaluation for Jackson& Campbell and AIG for two RSR Corporation sites including a battery recycling/secondary lead smelting facility in West Dallas, Texas and a multiparty site on Harbor Island in Seattle, Washington. Both sites are on the National Priority List. The evaluation examined contaminant sources, owned property issues and past and future costs.
- Expert witness for Hardin, Kundla, McKeon, Polletto & Polifroni and CNA on a residential petroleum spill in Saddle Brook, New Jersey. The

## Craig A. Werle, P.G.

## Principal Hydrogeologist/National Client Manager

- expert report evaluated timing of the release, remedial costs and selection of remedial technologies.
- Expert witness in a tax certiorari case at a service station site in Farmingdale, New York. Provided expert testimony related to petroleum release, groundwater impact and remediation costs.
- Fact witness and Principal-in-Charge for an oil company client being sued by a developer related to diminished property value resulting from dissolved phase migration. Provided court testimony related to the nature of the release, migration of free/dissolved phase contaminants, hydrogeologic setting and remedial strategy and efficacy of remedial system operation.
- Fact witness and Principal-in-Charge for an Insured seeking recovery of costs from insurance company at a site in Bay Shore, New York. Provided deposition testimony related to on-site and off-site hydrogeologic investigation, remedial strategy, and off-site recovery system design.
- Fact witness and Principal-in-Charge for a property owner suing a major oil company relative to unremediated environmental impacts from significant gasoline releases at a long term service station lease site.
- Expert witness for The Hartford and Melito & Adolfsen in Gould Electronics, Inc. v. Aetna. Included preparation of expert report and deposition testimony. Expert opinion offered on trichloroethylene contamination of soils and groundwater, DNAPL mechanics and volume

- trichloroethylene disposal procedures and state of knowledge concerning TCE toxicity
- Expert witness for Leodori and Napierkowski in Leisure Time Tours v. Continental Insurance Co., et al. Included preparation of expert report related to investigation and remediation of free phase hydrocarbons.
- Expert witness for Rogers Towers Bailey Jones & Gray in Petroleum Products Corp. v. Insurance Company of North America. Included preparation of expert report and deposition testimony related to investigation and remediation of hydrocarbon and PCB contamination
- Principal in Charge of claim evaluation services for Kodak Insurance Defense Group. Includes review and evaluation of environmental reports and invoices related to \$298 million claim.
- Claim evaluation for Garrity Graham Favetta & Flinn and Utica Insurance Co. related to North Burlington Regional School District claim. Critical evaluation of documentation for the investigation and remediation of a hydrocarbon release from multiple sources.

 Expert witness for London Market and Mendes & Mount in TRW Corp. v. London Market Insurers. Included preparation of expert report and deposition testimony. Expert opinion offered on

4 of 4





#### TECHNICAL SPECIALTIES

Management of construction and remediation projects, including Brownfield redevelopment, building construction, excavation and disposal of impacted soil, engineering services for the investigation, design, construction, and operation and maintenance of remedial systems for the treatment of contaminated soil and groundwater.

#### EXPERIENCE SUMMARY

Seventeen years of experience: Senior Engineer, Project Engineer, Staff Engineer, and Staff Assistant Engineer with Roux.

#### **CREDENTIALS**

M.S. in Environmental Engineering, Polytechnic University, Brooklyn, New York, 2001

B.S. in Chemical Engineering, Universidade Federal do Rio Grande do Sul, Brazil, 1997

OSHA 40 Hour Health and Safety Course, 2000 OSHA 8 Hour Refresher Courses

#### **KEY PROJECTS**

- Senior Engineer responsible for the management of investigation and remediation various Brownfields redevelopment sites containing hazardous and nonhazardous soils in New York City and surrounding. These projects included the implementation of in situ waste characterization sampling program and a Remedial Action Work Plan, which included excavation of soils below grade and management of soils including transportation and disposal and coordination with various disposal facilities. Most of these sites were accepted into the New York City Office of Environmental Remediation (NYC OER) Brownfield Cleanup Program (BCP) or the New York State BCP.
- Senior Engineer responsible for scheduling at a large petroleum remediation project in Brooklyn, New York. Responsibilities included management of all present and future tasks to be completed including operations and maintenance, remedial investigation, design and construction, facility upgrades, special operations, permitting and compliance tracking, health and safety, audits/assessments, sampling and regulatory reporting.
- Project Engineer for the remediation of soil and groundwater at 100+ facilities owned and/or operated by various city agencies in New York City. Activities included preparation of administrative/contractual requirements, work plans, and monitoring reports, cost estimates, proposals, engineering support, and construction oversight.
- Project Engineer for the design of an air sparge and soil vapor extraction system in Andover, Massachusetts.
- Project Engineer for the remediation of soil and groundwater at a former chemical manufacturing

- company in Rensselaer, New York. Activities included construction oversight, preparation of reports including Feasibility Study, Interim Remedial Measures, Community Air Monitoring Plans, Sampling Plans, Bid Review, Invoice Review, and various field investigations.
- Project Engineer for an investigation and remediation at a former petroleum refinery in Buffalo, New York. Responsible for assisting in the preparation of multiple work plans and reports of results for field investigations including soil borings and sampling, well installation, and groundwater sampling. Also responsible for reviewing and assisting in the preparation of activities related to the operation of the remediation systems at the Site, including maps, evaluation summaries, plans and compliance monitoring reports.
- Project Engineer for the closure of an underground storage tank (UST) at a shipping facility in Queens, New York. Activities included preparation of cost estimate, work plans, and field management.
- Project and Resident Engineer for the soil remediation of the Captain's Cove Condominiums Site, a federal NPL site, located in Glen Cove, New York. Activities include: supervision of Contractor's activities, regulatory interaction, compile daily field reports, manage laboratory database for excavated and reclaimed soil, shop drawing review, change order preparation, and Health and Safety compliance. Site remediation was completed in 2001 September to accommodate redevelopment as a commercial waterfront and operating seaport area. Currently managing OM&M groundwater monitoring program at the Site.
- Staff Engineer for a 450-gpm, dual-phase, product recovery system in Greenpoint, Brooklyn, New York. Tasks include: operation and maintenance of groundwater recovery and treatment system and free product recovery system. Also assisted in reviewing drawings and specs related to installation of aboveground storage tanks.
- Staff Engineer for the remediation of soil and groundwater at a former chemical company facility in Brooklyn, New York using a Soil Vapor Extraction and Air Sparging System. Tasks include: review of performance data for air sparge system, operation and maintenance for the SVE/AS System, progress report preparation, and monthly groundwater sampling.
- Staff Engineer for a divestment assessment at a service station in Stratford, Connecticut. Tasks include: oversight, soil sampling, FOIA investigation, coordination with subcontractor and



# Wendy Shen Senior Engineer

	regulatory agencies, and preparation of letters and reports.	Student/Research Assistant at Laboratory of Polymers, Universidade Federal do Rio Grande do
•	Resident Engineer for the soil remediation at a former chemical company facility in Dayton, New Jersey. Activities include: construction oversight, Health and Safety compliance, field sampling, and completion report preparation.	<ul> <li>Sul, POA, Brazil. Performed experiments on the metalization of plastics using polyaniline.</li> <li>Intern/Researcher at Laboratory of Research and Development at a petrochemical company, Ipiranga Petroquimica, Brazil. Conducted laboratory tests</li> </ul>
•	Responsible for assisting in preparing cost estimates, proposals, feasibility studies, interim remedial measures, remedial action plans, health and safety plans, and technical specifications for a variety of soil and groundwater remedial objectives.	involving additives used in polymers and responsible for quality control/assurance of products.
	,	
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

05/2018

## **APPENDIX L**

BCP Site Sign Requirements

**ROUX** 2861.0001Y.102/CVRS



## **BROWNFIELD CLEANUP PROGRAM**

# KRISTAL AUTO MALL 5200 KINGS HIGHWAY, BROOKLYN, NY SITE NUMBER C224140

Governor: Andrew M. Cuomo NYSDEC Commissioner: Basil Seggos New York City Mayor: Bill de Blasio

Transform the Past.....Build for the Future

#### SITE SIGNS FOR REMEDIAL PROGRAMS

#### **Instructions**

Signs are required at sites where remedial actions are being performed under one of the following remedial programs: State Superfund, Voluntary Cleanup Program (VCP), Brownfield Cleanup Program (BCP), and Environmental Restoration Program (ERP). They will not be required during the investigation and design phases. The cost of the sign will be borne by the parties performing the remedial action based on the legal document the activities are being performed under (i.e. volunteers/participants would pay 100% of the cost under the BCP; municipalities would pay 100% and then would be reimbursed for the cost under the ERP).

### **Sign Requirements**

Size: Horizontal format - 96" wide by 48" high

Construction Materials: Aluminum or wood blank sign boards with vinyl sheeting.

Inserts: "Site Name", "Site Number", "Name of Party Performing Remedial Activities"

and "Municipal Executive".

Indicate position, size and topography for specific inserts.

Color Scheme: Copy surrounding DEC logo - "NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION" - PMS 355

DEC logo: PMS 301 Blue

PMS 355 Green

Text:

Program (choose one): PMS 301

Brownfield Cleanup Program Voluntary Cleanup Program State Superfund Program

1996 Clean Water/Clean Air Bond Act - Environmental Restoration Program

Site Name, Site Number, Party Performing Remedial Activities
Names of Governor, Commissioner, Municipal Executive
PMS 355
Transform the Past......Build for the Future
PMS 355

Type Specifications: All type is Caslon 540, with the exception of the logotype.

Format is: center each line of copy with small caps and

initial caps.

Production Notes: 96" wide x 48" high aluminum blanks will be covered with vinyl sheeting to

achieve background color. Copy and logo will be silk screened on this

surface.

See attached format

# **APPENDIX M**

**Engineering Controls Product Sheets** 

**ROUX** 2861.0001Y.102/CVRS

## PREPRUFE® 300R Plus & 160R Plus

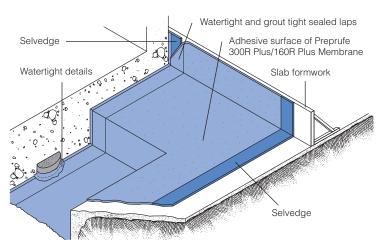
Pre-applied waterproofing membranes that bond integrally to poured concrete for use below slabs or behind basement walls on confined sites

### **Description**

Preprufe* 300R Plus & 160R Plus membranes are unique composite sheets comprising, a thick HDPE film, an aggressive pressure sensitive adhesive a weather resistant protective coating and an adhesive to adhesive seam overlap.

Unlike conventional non-adhering membranes, which are vulnerable to water ingress tracking between the unbonded membrane and structure, the unique Preprufe bond to concrete prevents ingress or migration of water around the structure.

The Preprufe R Plus System includes:


- Preprufe 300R Plus—heavy-duty grade for use below slabs and on rafts (i.e. mud slabs). Designed to accept the placing of heavy reinforcement using conventional concrete spacers.
- **Preprufe 160R Plus**—thinner grade for blindside, zero property line applications against soil retention systems.
- **Preprufe Tape LT**—for covering cut edges, roll ends, penetrations and detailing (temperatures between 25°F (-4°C) and 86°F (+30°C)).
- **Preprufe Tape HC**—as above for use in Hot Climates (minimum 50°F (10°C)).
- Bituthene[®] Liquid Membrane—for sealing around penetrations, etc.
- Adcor™ ES—waterstop for joints in concrete walls and floors
- Preprufe Tieback Covers—preformed cover for soil retention wall tieback heads
- Preprufe Preformed Corners—preformed inside and outside corners

Preprufe 300R Plus & 160R Plus membranes are applied either horizontally to smooth prepared concrete, carton forms or well rolled and compacted earth or crushed stone substrate; or vertically to permanent formwork or adjoining structures. Concrete is then cast directly against the adhesive side of the membranes. The specially developed Preprufe adhesive layers work together to form a continuous and integral seal to the structure.

Preprufe can be turned up the inside face of slab formwork but is not recommended for conventional twin-sided formwork on walls, etc. Use Bituthene® self-adhesive membrane or Procor® fluid applied membrane to walls after removal of formwork for a fully bonded system to all structural surfaces.

### **Advantages**

- Forms a unique continuous adhesive bond to concrete poured against it—prevents water migration and makes it unaffected by ground settlement beneath slabs
- Fully-adhered adhesive to adhesive watertight laps and detailing
- Provides a barrier to water, moisture and gas physically isolates the structure from the surrounding ground
- Easy roll/kick out installation—reduces installation time and cost
- Release Liner free—expedites installation and reduces construction site waste
- Solar reflective—reduced temperature gain
- Simple and quick to install—requiring no priming or fillets
- Can be applied to permanent formwork—allows maximum use of confined sites
- Self protecting—can be trafficked immediately after application and ready for immediate placing of reinforcement
- Unaffected by wet conditions—cannot activate prematurely
- · Inherently waterproof, non-reactive system:
  - · not reliant on confining pressures or hydration
  - · unaffected by freeze/thaw, wet/dry cycling
- Chemical resistant—effective in most types of soils and waters, protects structure from salt or sulphate attack



### Installation

The most current application instructions, detail drawings and technical letters can be viewed at graceconstruction.com. For other technical information contact your local Grace representative.

Preprufe Plus has colored zip strips at the top and bottom of the seam area on the edge of the roll. Both zip strips cover an aggressive adhesive. Once the yellow zip strip on the top of the membrane and the blue zip strip on the bottom of the membrane are removed, a strong adhesive to adhesive bond is achieved in the overlap area.

### **Substrate Preparation**

All surfaces—It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability (see Figure 1).

Horizontal—The substrate must be free of loose aggregate and sharp protrusions. Avoid curved or rounded substrates. When installing over earth or crushed stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic or concrete pour. The surface does not need to be dry, but standing water must be removed.

**Vertical**—Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

### **Membrane Installation**

Preprufe can be applied at temperatures of 25°F (-4°C) or above. When installing Preprufe in cold or marginal weather conditions <40°F (<4°C) the use of Preprufe Tape LT is recommended at all laps and detailing. Preprufe Tape LT should be applied to clean, dry surfaces and the release liner must be removed immediately after application. Alternatively, Preprufe Plus Low Temperature (LT) is available for low temperature condition applications. Refer to Preprufe Plus LT data sheet for more information.

Horizontal substrates—Kick out or roll out the membrane HDPE film side to the substrate with the yellow zip strip facing towards the concrete pour. End laps should be staggered to avoid a build up of layers. Leave yellow and blue zip strips on the membrane until overlap procedure is completed.

Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge with the blue zip strip on top of the yellow zip strip. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap. Peel back and remove both the yellow and blue zip strips in the overlap area to achieve an adhesive to adhesive bond at the overlap. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller.

Refer to Grace Tech Letter 15 for information on suitable rebar chairs for Preprufe.

Vertical substrates—Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the yellow zip strip facing towards the concrete pour. The membrane may be installed in any convenient length. Fastening can be made through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge with the blue zip strip on top of the yellow zip strip. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap. Peel back and remove both the yellow and

blue zip strips in the overlap area to achieve an adhesive to adhesive bond at the overlap. Roll firmly to ensure a watertight seal.

Roll ends and cut edges—Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly (see Figure 2). Immediately remove tinted plastic release liner from the tape.

#### **Details**

Refer to Preprufe Field Application Manual, Section V Application Instructions or visit graceconstruction.com. This manual gives comprehensive guidance and standard details.

### Membrane Repair

Inspect the membrane before installation of reinforcement steel, formwork and final placement of concrete. The membrane can be easily cleaned by power washing if required. Repair damage by wiping the area with a damp cloth to ensure the area is clean and free from dust, and allow to dry. Repair small punctures (0.5 in. (12 mm) or less) and slices by applying Preprufe Tape centered over the damaged area and roll firmly. Remove the release liner from the tape. Repair holes and large punctures by applying a patch of Preprufe membrane, which extends 6 in. (150 mm) beyond the damaged area. Seal all edges of the patch with Preprufe Tape, remove the release liner from the tape and roll firmly. Any areas of damaged adhesive should be covered with Preprufe Tape. Remove tinted plastic release liner from tape. Where exposed selvedge has lost adhesion or laps have not been sealed, ensure the area is clean and dry and cover with fresh Preprufe Tape, rolling firmly. Alternatively, use a hot air gun or similar to activate adhesive and firmly roll lap to achieve continuity.

### **Pouring of Concrete**

Ensure the plastic release liner is removed from all areas of Preprufe Tape.

It is recommended that concrete be poured within 56 days (42 days in hot climates) of application of the membrane. Following proper ACI guidelines, concrete must be placed carefully and consolidated properly to avoid damage to the membrane. Never use a sharp object to consolidate the concrete. Provide temporary protection from concrete over splash for areas of the Preprufe membrane that are adjacent to a concrete pour.

### Removal of Formwork

Preprufe membranes can be applied to removable formwork, such as slab perimeters, elevator and lift pits, etc. Once the concrete is poured the formwork must remain in place until the concrete has gained sufficient compressive strength to develop the surface bond. Preprufe membranes are not recommended for conventional twin-sided wall forming systems.

A minimum concrete compressive strength of 1500 psi (10 N/mm²) is recommended prior to stripping formwork supporting Preprufe membranes. Premature stripping may result in displacement of the membrane and/or spalling of the concrete.

Refer to Grace Tech Letter 17 for information on removal of formwork for Preprufe.

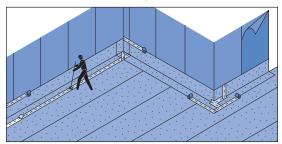
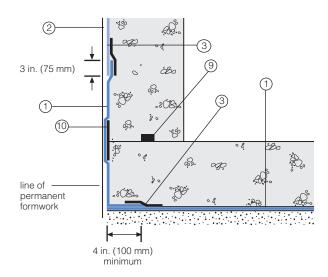
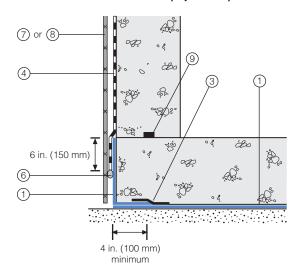



Figure 1

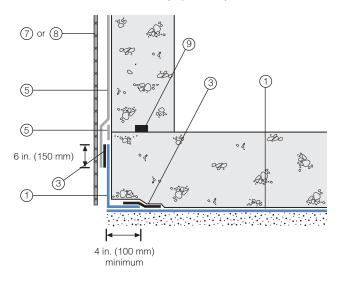



Figure 2

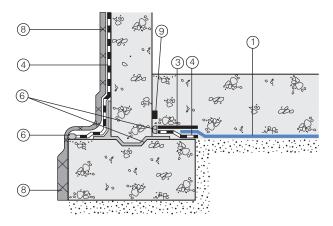



### **Detail Drawings**

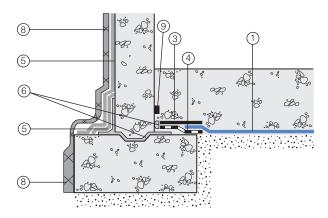
Details shown are typical illustrations and not working details. For a list of the most current details, visit us at graceconstruction.com. For technical assistance with detailing and problem solving please call toll free at 866-333-3SBM (3726).


### Wall base detail against permanent shutter




### Bituthene wall base detail (Option 1)




### Procor wall base detail (Option 1)



### Bituthene wall base detail (Option 2)



### Procor wall base detail (Option 2)



- 1 Preprufe 300R Plus
- 2 Preprufe 160R Plus
- 3 Preprufe Tape
- 4 Bituthene®

- 5 Procor
- 6 Bituthene Liquid Membrane
- 7 Protection

- 8 Hydroduct®
- 9 Adcor ES
- 10 Preprufe CJ Tape

### Supply

Dimensions (Nominal)	Preprufe 300R Plus Membrane	Preprufe 160R Plus Membrane	Preprufe Tape (LT or HC*)
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)	
Roll size	3 ft. 10 in. x 102 ft. (1.17m x 31.15m)	3 ft. 10 in. x 120 ft. (1.17m x 36.6m)	4 in. x 49 ft (100 mm x 15 m)
Roll area	392 ft ² (36 m ² )	460 ft ² (42 m ² )	
Roll weight	108 lbs (50 kg)	92 lbs (42 kg)	4.3 lbs (2 kg)
Minimum side/end laps	3 in. (75 mm)	3 in. (75 mm)	3 in. (75 mm)
* LT denotes Low Temperature (between 25°F (-4°C) and 86°F (+30°C))			
HC denotes Hot Climate (50°F (>+10°C))			
Ancillary Products			

### **Physical Properties**

Property	Typical Value 300R Plus	Typical Value 160R Plus	Test Method
Color	white	white	
Thickness	0.046 in. (1.2 mm)	0.032 in. (0.8 mm)	ASTM D3767
Lateral Water Migration	Pass at 231 ft (71 m) of	Pass at 231 ft (71 m) of	ASTM D5385, modified ¹
Resistance	hydrostatic head pressure	hydrostatic head pressure	
Low temperature flexibility	Unaffected at -20°F (-29°C)	Unaffected at -20°F (-29°C)	ASTM D1970
Resistance to hydrostatic	231 ft (71 m)	231 ft (71 m)	ASTM D5385,
head			modified ²
Elongation	500%	500%	ASTM D412, modified ³
Tensile strength, film	4000 psi (27.6 MPa)	4000 psi (27.6 MPa)	ASTM D412
Crack cycling at -9.4°F	Unaffected, Pass	Unaffected, Pass	ASTM C836 ⁴
(-23°C), 100 cycles			
Puncture resistance	221 lbs (990 N)	100 lbs (445 N)	ASTM E154
Peel adhesion to concrete	5 lbs/in. (880 N/m)	5 lbs/in. (880 N/m)	ASTM D903, modified ⁵
Lap peel adhesion at 72°F (22°C)	8 lbs/in. (1408 N/m)	8 lbs/in. (1408 N/m)	ASTM D1876, modified ⁶
Lap peel adhesion at 40°F (4°C)	8 lbs/in. (1408 N/m)	8 lbs/in. (1408 N/m)	ASTM D1876, modified ⁶
Permeance to water	0.01 perms	0.01 perms	ASTM E96, method B
vapor transmission	(0.6 ng/(Pa x s x m²))	(0.6 ng/(Pa x s x m²))	

#### Footnotes:

- 1. Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the membrane.
- Hydrostatic head tests of Preprufe Membranes are performed by casting concrete against the membrane with a lap. Before the concrete cures, a 0.125 in.
   (3 mm) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to the head indicated.
- 3. Elongation of membrane is run at a rate of 2 in. (50 mm) per minute.
- 4. Concrete is cast against the Preprufe membrane and allowed to cure (7 days minimum)

Bituthene Liquid Membrane—1.5 US gal (5.7 liter) or 4 US gal (15.1 liter)

- 5. Concrete is cast against the protective coating surface of the membrane and allowed to properly dry (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 2 in. (50 mm) per minute at room temperature.
- 6. The test is conducted 15 minutes after the lap is formed (per Grace published recommendations) and run at a rate of 2 in. (50 mm) per minute at 72°F (22°C).

### **Specification Clauses**

Preprufe 300R Plus or 160R Plus shall be applied with its adhesive face presented to receive fresh concrete to which it will integrally bond. Only Grace Construction Products approved membranes shall be bonded to Preprufe. All Preprufe system materials shall be supplied by Grace Construction Products, and applied strictly in accordance with their instructions. Specimen performance and formatted clauses are also available. NOTE: Use Preprufe Tape to tie-in Procor with Preprufe.

### **Health and Safety**

Refer to relevant Material Safety data sheet. Complete rolls should be lifted and carried by a minimum of two persons.

### www.graceconstruction.com

### For technical assistance call toll free at 866-333-3SBM (3726)

Adcor is a trademark and Preprufe, Bituthene and Hydroduct are registered trademarks of W. R. Grace & Co.–Conn. Procor is a U.S. registered trademark of W. R. Grace & Co.–Conn., and is used in Canada under license from PROCOR I IMITED

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.—Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.





071300_10000447_01_SD_19989 11/09/06 PTC

**Grace Construction Products** 



### 1. Product Name

Preprufe® 300R and 160R Waterproofing Systems

### 2. Manufacturer

Grace Construction Products 62 Whittemore Avenue Cambridge, MA 02140 (866) 333-3SBM (3726) Fax: (617) 498-4311

www.graceconstruction.com

### 3. Product Description

### **BASIC USE**

Preprufe® 300R and Preprufe 160R membranes are used in blind side waterproofing applications where positive side waterproofing is desired but the positive side of the structure is not accessible once the concrete is poured.

Preprufe 300R Membrane is used primarily in under slab and below-grade split slab applications. Preprufe 300R Membrane is applied over properly prepared earth, stone or concrete. Concrete is cast against the adhesive side of the membrane. Preprufe 300R Membrane incorporates an exceptionally tough HDPE film and is designed to allow foot traffic directly on the membrane during construction.

Preprufe 160R Membrane is used in vertical applications. It is applied to properly prepared soil retention systems and concrete is cast against the membrane.

### **COMPOSITION & MATERIALS**

Preprufe 300R and Preprufe 160R membranes are multilayered composite sheets consisting of an exceptionally tough HDPE film, a specially formulated synthetic pressure sensitive adhesive and a protective coating.

### ACCESSORY COMPONENTS

- Preprufe Tape
- Preprufe Tieback Cover
- Bituthene® Liquid Membrane
- Preprufe CJ Tape

### 4. Technical Data

### APPLICABLE STANDARDS

ASTM International

- ASTM C836 Standard Specification for High Solids Content, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
- ASTM D412 Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension
- ASTM D570 Standard Test Method for Water Absorption of Plastics
- ASTM D882 Standard Test Method for Tensile Properties of Thin Plastic Sheeting
- ASTM D903 Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
- ASTM D1876 Standard Test Method for Peel Resistance of Adhesives (T-Peel Test)
- ASTM D1970 Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection
- ASTM D3767 Standard Practice for Rubber-Measurement of Dimensions
- ASTM D5385 Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes
- ASTM E96 Standard Test Methods for Water Vapor Transmission of Materials
- ASTM E154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover

### PHYSICAL PROPERTIES

For detailed information on the physical properties of Preprufe 300R and Preprufe 160R Membranes, see Table 1.

### 5. Installation

Apply membranes when ambient temperatures are 25 degrees F (-4 degrees C) or above. Substrates must be smooth and sound with no gaps or voids in excess of 1/2" (13 mm).

### FORMING SYSTEMS

It is very important to specify a forming system that is compatible with the Preprufe system. One-sided wall forming systems are clearly the best choice since there are no form ties used in this system. Therefore, there are no penetrations to the waterproofing layer. Other compatible systems include gang forms with load gathering form ties. These systems minimize the number of penetrations.

Hand set forming systems or, more specifically, use of form ties with ultimate load capabilities of less than 10,000 lb (44,500 N) per tie are not recommended. These systems have many form ties that penetrate the waterproofing.

#### Formwork

On vertical applications, use one-sided wall forming systems to minimize punctures in the membrane after the membrane is installed. Review Technical Letter "Forming Systems for use with Preprufe 160R Membrane."

### **APPLICATION**

### Vertical Applications

Apply the membrane with the thick white HDPE film side facing the prepared substrate and the protective coating side facing the concrete to be poured. The membrane may be installed in any convenient length vertically. For lengths of membrane greater than 8' (2.4 m), mechanically fasten the membrane at 2' (0.6 m) intervals centered in the self-adhesive selvedge prior to making the side lap, using small head nails or staples.

Using the lap line as a guide, apply subsequent sheets overlapping the in-place sheet 3" (75 mm) along the self-adhesive selvedge of the membrane. Avoid overlapping membrane beyond the guideline to prevent fishmouths. Should they occur, apply Preprufe Tape centered over the fishmouth, roll firmly to form a tight seal and remove release liner.

It is important that all nail heads be covered with the overlapping sheets of membrane. Side laps must be immediately rolled firmly to ensure a tight seal. A metal seam roller is recommended. To maximize adhesion in colder temperatures or in damp conditions, apply gentle heat to the lap area using a hot air gun (see Technical Letters). Overlap the ends of the membrane a minimum of 3" (75 mm). Remove and discard the release liner from both sheets. Apply Preprufe Tape centered over the end lap and edges of membrane not sealed by selvedge. Roll firmly to form a tight seal. Remove release liner from tape and discard.

For additional protection, Hydroduct® Tape may be applied between the sheets in the end lap area prior to application of the Preprufe Tape. Secure the top termination of the membrane with a termination bar and fasteners.

If the top termination is to be covered by the concrete pour, a strip of Preprufe CJ Tape must be placed over the termination bar and fasteners. Place the termination bar 2" (50 mm)







below the top edge of the membrane. If the membrane will tie into subsequent sheets of Preprufe, Bituthene Membrane or other water-proofing, leave an additional 12" (300 mm) length of Preprufe 160R membrane. Protect this length from damage and do not remove the release liner. This length of clean membrane will be used to complete the appropriate water-proofing details after the concrete or lift is poured.

### Horizontal Applications

Roll out the membrane with the thick white HDPE film side facing the prepared substrate and the protective coating side facing the concrete to be poured. Remove the clear release liner at the time of installation. Using the lap line as a guide, align and roll out subsequent sheets overlapping the in-place sheet 3" (75 mm) along the self-adhesive selvedge of the membrane. Side laps must be immediately rolled firmly to ensure a tight seal. A heavy metal seam roller is recommended.

Avoid overlapping membrane beyond the guideline to prevent fishmouths. Should this occur, apply Preprufe Tape centered over the fishmouth, roll firmly to form a tight seal and remove release liner. To maximize adhesion in

cooler temperatures or in damp conditions, apply gentle heat to the lap area using a hot air gun (see Technical Letters section of website). The membrane may be installed in any convenient length. Overlap the ends of the membrane 3" (75 mm) and remove and discard the release liner from both sheets. Apply Preprufe Tape centered over the end lap and edges of membrane not sealed by selvedge. Roll firmly to form a tight seal. Remove release liner from tape and discard.

For additional protection, Hydroduct Tape may be applied between the sheets in the end lap area prior to application of the Preprufe Tape.

### Internal & External Corners

Install the Preprufe Membrane according to standard application instructions detailed for vertical and horizontal applications above. Internal and external corners should be formed as shown in the Detail Drawings returning the membrane a minimum of 4" (100 mm).

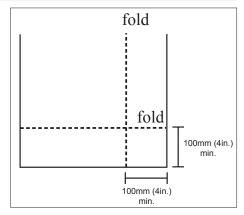



Figure 1

#### Internal Corners

Fold the membrane as indicated in Figure 1. Crease the fold with nominal hand pressure to ensure a close fit to the substrate profile and avoid hollows. With the white coating facing toward the concrete, ensure that the apex of the corner is covered and sealed with Preprufe Tape. Remove release liner and roll firmly.

#### **External Corners**

Fold the membrane as indicated in Figure 1. Crease the fold with nominal hand pressure to

### TABLE 1 PHYSICAL PROPERTIES OF PREPRUFE 160R AND PREPRUFE 300R MEMBRANES

	Typical values	
Property & test method	Preprufe 160R Membrane	Preprufe 300R Membrane
Color	White	White
Thickness, ASTM D3767, Method A	0.032" (0.8 mm) nominal	0.046" (1.2 mm) nominal
Low temperature flexibility, ASTM D1970	Unaffected at -10°F (-23°C)	Unaffected at -10°F (-23°C)
Resistance to hydrostatic head, minimum, ASTM D5385, Modified $\ensuremath{^{\mathrm{1}}}$	231' (70 m)	231" (70 m)
Bongation, minimum, ASTM D412, Modified ²	300%	300%
Tensile strength, film, minimum, ASTM D882	4000 psi (27.6 MPa)	4000 psi (27.6 MPa)
Crack cycling, at -10°F (-23°C), 100 cycles, ASTM C836	Unaffected	Unaffected
Puncture resistance, minimum, ASTM E154	100 lb (445 N)	221 lb (990 N)
Peel adhesion to concrete, minimum, ASTM D903, Modified _3	5.0 lb/in width (880 N/m)	5.0 lb/in width (880 N/m)
Lap peel adhesion, ASTM D1876, Modified ⁴	2.5 lb/in width (440 N/m)	2.5 lb/in width (440 N/m)
Permeance to water vapor transmission, maximum, ASTM D96, Method B	0.01 perms (0.6 ng/(Pa $\times$ s $\times$ m ² ))	0.01 perms (0.6 ng/(Pa $\times$ s $\times$ m ² ))
Water absorption, maximum, ASTM D570	0.5%	0.5%

¹ Hydrostatic head tests of Preprufe Membranes are performed by casting concrete against the membrane with a lap. Before the concrete cures, a 0.125" (3 mm) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to the head indicated.

⁴ The test is conducted 15 minutes after the lap is formed (per Grace published recommendations) and run at a rate of 2" (51 mm) per minute at 25°F (-4°C).





² Elongation of membrane is run at a rate of 2" (51 mm) per minute.

³ Concrete is cast against the protective coating surface of the membrane and allowed to properly dry (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 2" (51 mm) per minute at room temperature.

ensure a close fit to the substrate profile and avoid hollows. Cut the Preprufe membrane in order to wrap around corner. With the white coating facing toward the concrete, ensure that the apex of the corner is covered and sealed with Preprufe Tape. Remove release liner and roll firmly.

### Round Penetrations

For Service Pipes, Lighting Conduit, Piles, etc. -Follow these steps to seal around penetrations:

- All penetrations must be firmly secured and stable. Grout around all penetrations that are not stable. Clean loose dust or dirt from the penetration surface using a clean, dry cloth or brush. Remove rust, if applicable, with a wire brush and wipe clean.
- 2. Cut the field membrane tight to the penetration and remove release liner. If membrane is not within 1/2" (12 mm) of penetration and not more than 2" (50 mm) from penetration, apply Preprufe Tape to cover the gap. Roll firmly into place and remove release liner. If the membrane is greater than 2" (51 mm) from penetration, install more Preprufe Membrane to cover the gap, repeating these instructions until Preprufe

- Membrane/Tape is within 1/2" (12 mm).
- 3. Mix and apply Bituthene Liquid Membrane around the penetration. Liquid Membrane should be placed to form a minimum 1" (25.4 mm) continuous fillet between the Preprufe Membrane/Tape and the base of the penetration.
- 4. Cut a patch of Preprufe Membrane that is a minimum of 12" (300 mm) larger than the diameter or width of the penetration so that the patch extends 6" (150 mm) beyond the penetration in all directions. Remove the release liner and center the patch over penetration and trace/draw the penetration profile onto the patch. Using sheers or a utility knife, make relief cuts through the membrane. Triangles formed by making a

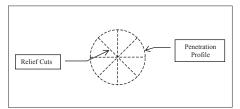



Figure 2

- relief cut are not to exceed 2" (50 mm) in height when placed over penetration. In other words, penetration diameters greater than 4" (100 mm) need to be trimmed. Remove and discard release liner.
- 5. Slide the patch over penetration and press into the partially cured Liquid Membrane. Ensure that the patch is pressed firmly into the Liquid Membrane and is positioned directly onto the Preprufe Field Membrane/Tape below. Using a trowel, smooth out any Liquid Membrane that has flowed out of the relief cut.
- Apply Preprufe Tape centered over the edges of the patch and roll firmly to form a tight seal. Remove release liner from tape and discard.
- 7. Wrap the penetration with Preprufe Tape, positioning the tape at the base of the patch. Remove enough release liner to overlap Tape onto itself and roll/press firmly into place. Remove remaining release liner and discard.

### Straight Edge Penetrations

For square piles, steel columns, walers, rakers, etc. - Follow these steps to seal around

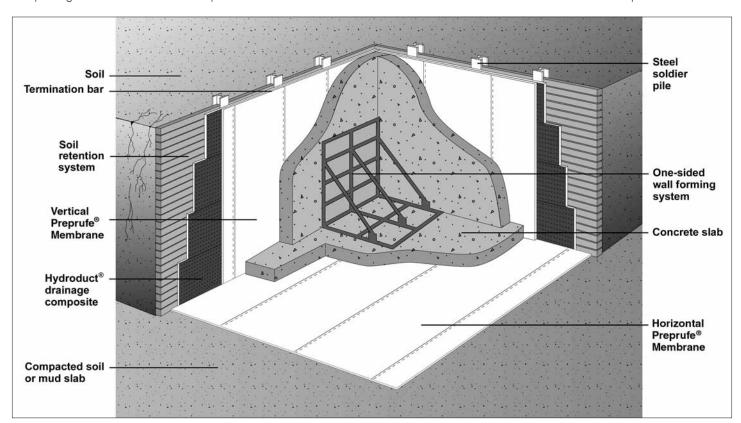



Figure 3 Preprufe® Waterproofing Systems







### penetrations:

- All penetrations must be firmly secured and stable. Grout around all penetrations that are not stable. Clean loose dust or dirt from the penetration surface using a clean, dry cloth or brush. Remove rust, if applicable, with a wire brush and wipe clean.
- 2. Cut the field membrane tight to the penetration and remove release liner. If membrane is not within 1/2" (12 mm) of penetration and not more than 2" (51 mm) from penetration, apply Preprufe Tape to cover the gap. Roll firmly into place and remove release liner. If the membrane is greater than 2" (51 mm) from penetration, install more Preprufe Membrane to cover the gap repeating these instructions until Preprufe Membrane/Tape is within 1/2" (12 mm).
- 3. Mix and apply Bituthene Liquid Membrane around the penetration. Liquid Membrane should be placed to form a minimum 1" (25.4 mm) continuous fillet between the Preprufe Membrane/Tape and the base of the penetration. Apply a 90 mil (2.2 mm) continuous coating overlapping a minimum of 3" (75 mm) onto the surface of the Preprufe Membrane and the penetration.
- 4. Install a minimum 12" (300 mm) strip of Bituthene Membrane centered over the Preprufe Membrane and the penetration intersection.
- 5. Install Preprufe Tape to cover the strip of Bituthene Membrane by overlapping a minimum of 1" (25.4 mm) until a minimum of 2" (51 mm) overlap onto the Preprufe Membrane is achieved.
- Terminate the top edge of the strip of Bituthene Membrane and Preprufe Tape along the penetration with a bead of Bituthene Liquid Membrane.

### Wall Penetrations

For Rebar, All-Thread, Metal Dowels, etc. - Follow these steps to seal around penetrations:

- Clean loose dust or dirt from the penetration and the surrounding substrate surface using a clean, dry cloth or brush. Remove rust, if applicable, with a wire brush and wipe clean.
- 2. Mix and apply Bituthene Liquid Membrane around the penetration. Liquid Membrane should be placed to form a minimum 1" (25.4 mm) continuous fillet between the substrate and the base of the penetration.
- 3. Cut the field membrane tight to the penetration and remove release liner. If membrane is not within 1/2" (12 mm) of penetration and not more than 2" (51 mm) from

- penetration, apply Preprufe Tape to cover the gap. Roll firmly into place and remove release. If the membrane is greater than 2" (51 mm) from penetration, install more Preprufe Membrane to cover the gap repeating these instructions until Preprufe Membrane/Tape is within 1/2" (12 mm).
- 4. Position the field membrane snug to the penetration so that it is a maximum of 1/2" (12 mm) from the base of the penetration and press firmly into the partially cured Liquid Membrane.
- 5. Apply Liquid Membrane to form a minimum 1" (25.4 mm) continuous fillet between the Preprufe Membrane and the base of the penetration. Extend a 90 mil (2.2 mm) continuous coating of Liquid Membrane overlapping a minimum of 3" (75 mm) onto the surface of the Preprufe Membrane and 6" (150 mm) onto the penetration.
- 6. Wrap the penetration with Preprufe Tape, positioning the tape at the base of the penetration. Remove enough release liner to overlap tape onto itself and roll/press firmly into place. Remove remaining release liner and discard.

### Tiebacks

The Preprufe Tieback Cover is a specially designed, two-part cover used to maintain waterproofing integrity at soil retention tieback heads. The Preprufe Tieback Cover consists of a rigid ABS plastic base and prefabricated Preprufe membrane cover.

- Install Preprufe Membrane within 2" of tieback as per standard installation instructions.
- Center the base over tieback head and secure base to soil retention system using appropriate fasteners. Fasteners should have a low profile head.
- Apply Preprufe Tape centered over the edge of the base flange and roll firmly to form a tight seal. Remove release liner and discard.
- 4. Position the membrane cover over the base taking care to ensure the cover flange sits flat onto the Preprufe Membrane.
- 5. Apply Preprufe Tape centered over the edge of the cover flange and roll firmly to form a tight seal. Remove release liner and discard.
- Note: All Preprufe Tape should overlap onto surfaces of tape, membrane, base, cover, etc., a minimum of 50 mm (2").

#### Columns

There are 2 common methods to create a waterproof seal under columns.

- Column Option 1 Preprufe Membrane is placed over the column footing and directly under the column. Tie-in penetrations such as rebar and threaded rod that penetrate the membrane should be sealed with Bituthene Liquid Membrane. Cut the membrane tight to the penetration. If membrane is not within 1/2" (12 mm) of penetration, apply Preprufe Tape to cover the gap. Mix and apply Bituthene Liquid Membrane around the penetration. Bituthene Liquid Membrane should be placed to form a minimum 1" (25.4 mm) continuous fillet around the penetration at the point of penetration, Bituthene Liquid Membrane should be applied as a 90 mil (2.2 mm) continuous coating overlapping a minimum of 3" (75 mm) onto the surface of the Preprufe membrane.
- Column Option 2 Preprufe Membrane is placed below the column footing before it is poured. The membrane is installed following the vertical and horizontal application instructions described earlier in this section. When placing the membrane, it is important to leave sufficient length of Preprufe 300R beyond the footing to allow for tie-in to the Preprufe Membrane that will be laid to waterproof the general slab area. The release liner must not be removed from this extra length, and it should be protected from damage until the tie-in details are completed.

### Grade Beam Pile Caps

The preferred methods to waterproof pile caps are to either "tank" or "cover" the pile cap.

- Pile Cap Option 1 (Tanking Option) Install Preprufe Membrane over the prepared substrate as instructed in horizontal applications above. Preprufe Membrane is placed in the area formed for the pile cap before the concrete is poured. When placing the membrane, it is important to leave sufficient length of Preprufe beyond the pile cap area to allow for tie-in to the Preprufe Membrane that will be laid to waterproof the general slab area. Cut membrane tight to each pile as instructed earlier in this section for a Penetration Detail.
- Pile Cap Option 2 (Covering Option) For mud slabs, clean loose dust or dirt from the







pile cap and mud slab surface using a clean, dry cloth or brush. Apply a continuous 90 mil (2.2 mm) coating of Bituthene Liquid Membrane or Procor over the top of the pile cap. Place a 1" (25.4 mm) bead of Liquid Membrane or Procor around all penetrations at the point of penetration through the pile cap. Prime along the edge of the mud slab a minimum of 6" (150 mm) from the edge of pile cap with a Bituthene Primer and allow to dry. Align a 9" (225 mm) strip of Bituthene Membrane centered over the edge of the pile cap. Remove release liner and roll firmly onto the Liquid Membrane and primed mud slab. Install Preprufe Membrane over the prepared substrate and terminate it 2" (51 mm) onto the pile cap. Apply Preprufe Tape centered over the Preprufe Membrane termination. Remove the release liner and roll firmly. Seal Bituthene Membrane and Preprufe Tape edge with a termination bead of Liquid Membrane.

Pile Cap Option 2 for Compacted Earth

Apply a continuous 90 mil (2.2 mm) coating of Bituthene Liquid Membrane or Procor over the top of the pile cap. Place a 1" (25.4 mm) bead of Liquid Membrane or Procor around all penetrations at the point of penetration through the pile cap. Remove compacted earth away from the sides of pile cap. Clean loose dust or dirt from the pile cap surface using a clean, dry cloth or brush.

Prime the sides of the pile cap a minimum of 6" (150 mm) from the top of pile cap with a Bituthene Primer and allow to dry. Align a 9" (225 mm) strip of Bituthene Membrane centered over the outside edge (outside corner) of the pile cap. Remove release liner and roll firmly onto the Liquid Membrane and primed sides of pile cap. Align a 12" (300 mm) strip of Bituthene Membrane centered over the outside edge (outside corner) of the pile cap. Remove half of release liner by scoring release liner along the center of the strip.

Roll firmly onto the sides of pile cap with the 9" (225 mm) strip of Bituthene Membrane and the remaining primed pile cap. Leave the other half of the 12" (300 mm) strip with the release liner still intact in order to receive the Preprufe Membrane. Replace earth/fill and compact per standard back-filling instructions being careful not to damage the Bituthene strip including the non-bonded portion. Invert the Bituthene strip, and remove the remaining release liner to expose the adhesive portion

of the Bituthene.

Install Preprufe Membrane over the prepared substrate and terminate it 2" (51 mm) onto the pile cap. Roll firmly onto the inverted Bituthene strip. Apply Preprufe Tape centered over the Preprufe Membrane termination. Remove the release liner and roll firmly. Seal Bituthene Membrane and Preprufe Tape edge with a termination bead of Liquid Membrane.

Pile Cap Option 2 for Non-Continuous Covering If the Structural Engineer or the design does not allow for the waterproofing to "cover" the pile cap, there must be a minimum 6" (150 mm) continuous shoulder along the perimeter of the pile cap to allow for a proper termination. Apply a continuous 90 mil (2.2 mm) coating of Bituthene Liquid Membrane or Procor onto the top of the pile cap along the outside edge.

Apply a 6" (150 mm) strip of Bituthene Membrane onto the Bituthene Liquid Membrane or Procor along the edge of the pile cap. Install Preprufe Membrane over the prepared substrate and terminate it 2" (51 mm) onto the pile cap. Apply Preprufe Tape centered over the Preprufe Membrane termination. Remove the release liner and roll firmly. Seal Bituthene Membrane and Preprufe Tape edge with a termination bead of Liquid Membrane.

### Construction Joints

Install the Preprufe membrane according to standard horizontal and vertical application instructions detailed above. Preprufe CJ Tape should be applied to the surface of the Preprufe membrane and centered along the line of all concrete joints. Remove release liner and roll firmly.

### Tie-Ins

Preprufe 160R to Preprufe 300R Sub Slab Waterproofing - Install Preprufe 300R Membrane over the prepared substrate as detailed in horizontal and vertical applications above. Continue onto the vertical surface of the prepared soil retention system a minimum of 18" (450 mm) above the finished elevation of the structural floor slab.

Secure the top of the membrane to temporarily hold it in place on the vertical substrate. Care should be taken to prevent damage to this exposed membrane from concrete back-splash as well as slag from rebar welding in wall forms. The exposed membrane on the vertical surface can be protected with

protection board, plywood or other materials.

Following the vertical application instructions detailed above, install Preprufe 160R Membrane over the prepared vertical soil retention system. Unfasten the vertical length of the Preprufe 300R Membrane and tuck the Preprufe 160R behind the 18" (450 mm) length of Preprufe 300R, ensuring a minimum 3" (75 mm) lap. Complete the detail by installing Preprufe Tape centered over the lap being careful to seal any holes from fasteners. Roll firmly and remove the release liner.

Preprufe 300R to Post-Applied Wall Waterproofing - There are 2 options available to tie Preprufe 300R Membrane into wall waterproofing. In Option 1, the Preprufe 300R Membrane is installed under the concrete slab and the footing. Option 2 is intended for applications where the Preprufe 300R Membrane and wall waterproofing are connected through the wall and footing junction.

- Option 1 Install Preprufe 300R Membrane over the prepared horizontal substrate and extend it up the vertical surface of the slab formwork. Terminate the membrane 6" (150 mm) above the top elevation of the structural floor slab or wall footing. Once the slab or footing is poured and cured for 7 days, remove the forms and trim the excess membrane above the slab (see Technical Letters). Install the wall membrane according to standard application procedures of the post-applied waterproofing manufacturer. Ensure that the wall membrane overlaps onto the surface of the Preprufe 300R by a minimum of 6" (150 mm).
- Option 2 Prior to the pouring of the wall, apply a 90 mil (2.2 mm) coating of Bituthene Liquid Membrane on top of the footing area using standard application procedures. Extend the Bituthene Liquid Membrane 3" (75 mm) beyond the proposed wall width in each direction. Install the wall membrane according to standard application procedures of the postapplied waterproofing manufacturer. Ensure that the wall membrane overlaps onto the surface of the Preprufe 300R by a minimum of 6" (150 mm). On the inside of the wall, install a minimum 9" (225 mm) strip of Bituthene sheet membrane over the Bituthene Liquid Membrane that extends beyond the footing area. Install Bituthene Membrane by removing the release liner and firmly rolling the product in place. Install Preprufe 300R Membrane over the prepared substrate and terminate it at the center of the Bituthene sheet membrane strip. Apply Preprufe CJ Tape centered over the Preprufe







300R Membrane termination. Remove the release liner and roll firmly.

Preprufe 160R to Plaza Deck Waterproofing -Install Preprufe 160R over the prepared vertical surface following the standard vertical application instructions above. Terminate the Preprufe 160R Membrane 6" (150 mm) above the proposed height of the finished wall. Once the wall is poured and properly cured, remove temporary forming and trim the excess Preprufe 160R remaining above the wall. Install the plaza deck waterproofing according to the manufacturer's standard installation procedures. Ensure that the plaza deck waterproofing overlaps the 160R membrane a minimum of 9" (225 mm) and terminate it onto the Preprufe 160R using a bead of Bituthene Liquid Membrane.

Preprufe 160R to Post-Applied Wall Waterproofing - Install Preprufe 160R over the prepared vertical surface following the standard vertical application instructions above. Extend the Preprufe 160R Membrane 12" (300 mm) beyond the end of the blind-side wall. As the foundation wall formwork is installed, fold the 12" (300 mm) piece of Preprufe 160R Membrane to form a sharp corner. Secure it to the inside face of the exterior form panel. Once the wall is poured and cured for seven days, remove the formwork and install the post-applied waterproofing according to the manufacturer's standard installation procedures

Preprufe 300R Membrane Wall Termination

• Option 1 (Liquid Membrane Detail) - Install Preprufe 300R Membrane over a mud slab as detailed in horizontal applications above. For compacted earth, contact a local Grace representative. Install Preprufe 300R Membrane tight to all vertical and horizontal intersections. At the termination of the membrane, place a 1" (25.4 mm) fillet of Bituthene liquid membrane and trowel a 90 mil (2.2 mm) coating a minimum of 3" (75 mm) onto vertical and horizontal surfaces. Remove the release liner and install a minimum 12" (300 mm) strip of Bituthene Membrane centered over the horizontal termination. Install Preprufe Tape to cover the strip of Bituthene Membrane by overlapping a minimum of 1" (25.4 mm) until a minimum of 2" (51 mm) overlap onto the Preprufe Membrane is achieved. Terminate the top edge of the strip of Bituthene Membrane and Preprufe Tape along the wall with a

bead of Bituthene Liquid Membrane.

• Option 2 (Sheet Membrane Detail) - Install Preprufe 300R Membrane over the prepared substrate as detailed in horizontal applications above. Install Preprufe 300R Membrane tight to all vertical and horizontal intersections. Install a minimum 6" (150 mm) strip of Bituthene Membrane on the vertical surface along the joint. Mix and apply Bituthene Liquid Membrane to form a minimum 1" (25.4 mm) continuous fillet between the Preprufe Membrane and the wall. Install Preprufe CJ Tape 6" (150 mm) from the edge of the wall onto the Preprufe Membrane and terminate 2" (51 mm) onto the strip of Bituthene Membrane. Install Preprufe CJ Tape onto the strip of Bituthene Membrane and overlap onto the previous Preprufe CJ Tape a minimum of 2" (51 mm). Terminate the top edge of the strip of Bituthene Membrane and Preprufe Tape along the wall with a bead of Bituthene Liquid Membrane.

### Membrane Repair

Inspect the membrane for damage before placement of reinforcing steel, formwork and concrete. Repair small punctures 1/2" (12 mm), or less, and slices by applying Preprufe Tape centered over the damaged area and roll firmly. Remove the release liner from the tape. Repair holes and large punctures by applying a patch of Preprufe membrane, which extends 6" (150 mm) beyond the damaged area. Seal all edges of the patch with Preprufe Tape, remove the release liner from the tape and roll firmly.

### CONCRETE PLACEMENT

Lightly soiled membrane should be cleaned with air blower and heavily soiled membrane should be cleaned with a power-washer. Cast concrete within 56 days (42 days in hot climates) of application of the membrane. Concrete must be placed carefully to avoid damage to the membrane. Never use a sharp object to consolidate concrete.

### REMOVAL OF FORMWORK

Preprufe Membranes can be applied to removable formwork, such as slab perimeters, elevator and lift pits, etc. Once the concrete is poured, the formwork must remain in place until the concrete has gained sufficient compressive strength to develop the surface bond. Preprufe Membranes are not recommended for conventional twin-sided wall forming systems.

A minimum concrete compressive strength

of 1500 psi (10 N/mm²) is recommended prior to stripping formwork supporting Preprufe Membranes. Premature stripping may result in displacement of the membrane and/or spalling of the concrete.

As a guide, to reach the minimum compressive strength stated above, a structural concrete mix with an ultimate strength of 6000 psi (40 N/mm²) will typically require a cure time of approximately 6 days at an average ambient temperature of 25 degrees F (-4 degrees C) or 2 days at 70 degrees F (21 degrees C).

### 6. Availability & Cost

#### **AVAILABILITY**

A network of distributors carries Preprufe and Bituthene products for prompt delivery to project sites.

### **COST**

For specific information, contact a local distributor or a Grace Construction Products representative.

#### 7. Warranty

A 5 year material warranty for Preprufe and Bituthene membrane products is available from the manufacturer upon request.

### 8. Maintenance

Preprufe 300R and Preprufe 160R membranes will not require maintenance when installed in accordance with Grace's recommendations.

### 9. Technical Services

Support is provided by full-time, technically trained Grace field sales representatives and technical service personnel, backed by a central research and development staff.

### 10. Filing Systems

- Reed First Source
- Additional product information is available from the manufacturer.

W. R. Grace & Co. -Conn. hopes the information here will be helpful. It is based upon data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations and suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co. -Conna, 62 Whittemore Avenue, Cambridge, MA 02/140. In Canada, W. R. Grace & Co. Canada, Ltd., 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

Preprufe, Bituthene and Hydroduct are registered trademarks of W.R. Grace & Co. -Conn. Copyright 2005 W.R. Grace & Co. -Conn.

This product may be covered by patents or patents pending.

PF-118C Printed in U.S.A. 11/06 AFS/LI/3M





# Section 071326 Pre-Applied Sheet Membrane Waterproofing

### PART 1 — GENERAL

### 1.01 SUMMARY

- A. The Work of this Section includes, but is not limited to, pre-applied sheet membrane waterproofing that forms an integral bond to poured concrete for the following applications:
  - 1. Vertical Applications: Membrane applied against soil retention system prior to placement of concrete foundation walls;
  - Horizontal Applications: Membrane applied on prepared subbase prior to placement of concrete slabs.
- B. Related sections include, but are not limited to, the following:
  - 1. Section 031000 Concrete Forming
  - 2. Section 312000 Earth Moving
  - 3. Section 031500 Concrete Accessories
  - 4. Section 031500 Hydrophilic Waterstop
  - 5. Section 316200 Driven Piles
  - 6. Section 316400 Caissons
  - 1. Section 032000 Concrete Reinforcing
  - 2. Section 033000 Cast-In-Place Concrete

NOTE TO SPECIFIER: For vertical applications, coordinate with concrete formwork section to require one-sided wall forming system to minimize punctures to the sheet membrane waterproofing during formwork installation.

### 1.02 SUBMITTALS

A. Submit manufacturer's product data, installation instructions and membrane samples for approval.

### 1.03 REFERENCE STANDARDS

- A. The following standards and publications are applicable to the extent referenced in the text.
- B. American Society for Testing and Materials (ASTM):
  - C 836 Standard Specification for High Solids, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
  - D 412 Standard Test Methods for Rubber Properties in Tension
  - D 903 Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
  - D 1876 Standard Test Method for Peel Release of Adhesives (T-Peel)
  - D 1970 Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection
  - D 3767 Standard Practice for Rubber Measurements of Dimensions

- D 5385 Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes
- E 96 Standard Test Methods for Water Vapor Transmission of Materials
- E 154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover

### 1.04 QUALITY ASSURANCE

- A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.
- B. Installer: A firm which has at least 3 years experience in work of the type required by this section.
- C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.
- D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.
- E. Schedule Coordination: Schedule work such that membrane will not be left exposed to weather for longer than that recommended by the manufacturer.

### 1.05 DELIVERY, STORAGE AND HANDLING

A. Deliver materials in labeled packages. Store and handle in strict compliance with manufacturer's instructions. Protect from damage from weather, excessive temperature and construction operations. Remove and dispose of damaged material in accordance with applicable regulations.

### 1.06 PROJECT CONDITIONS

A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials used. Proceed with installation only when the substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

### 1.07 WARRANTY

A. Sheet Membrane Waterproofing: Provide written five year material warranty issued by the membrane manufacturer upon completion of work.

### PART 2 — PRODUCTS

### 2.01 MATERIALS

A. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe® 300R Plus Membrane [or Preprufe 300LT Plus Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.2mm (0.046 in) nominal thickness composite sheet membrane comprising 0.8 mm (0.030 in.) of high density polyethylene film, layers of specially formulated synthetic adhesive layers, release liner free with an adhesive to adhesive bond at the side laps. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 300R Plus and Preprufe 300LT can both be installed at temperatures  $25^{\circ}F$  (-4°C) and above. For temperatures  $25^{\circ}F$  (-4°C) to  $40^{\circ}F$  (4°C) the use of Preprufe LT Tape is recommended at all side laps when using Preprufe 300R Plus. Alternatively, contractors may elect the use of Preprufe 300LT Plus, which does not require the use of Preprufe LT Tape at side laps in temperature ranges  $25^{\circ}F$  (-4°C) to  $40^{\circ}F$  (4°C). For this reason, Grace suggests that both products be incorporated into the specification.

### PHYSICAL PROPERTIES FOR PREPRUFE 300R Plus (or 300LT Plus) MEMBRANE:

Property	Test Method	Typical Value
Color		White with Yellow and Blue Zip
		Strips in the Side Lap Area
Thickness	ASTM D 3767 Method A	0.046 in. (1.2 mm) nominal
Lateral Water Migration Resistance	ASTM D 5385 Modified ¹	Pass at 231 ft (71m) of
		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -20°F (-29°C)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ²	231 ft (71m)
Elongation	ASTM D 412 Modified ³	500%
Tensile Strength, film	ASTM D 412	4,000 psi (27.6 MPa)
Crack Cycling at -9.4°F (-23°C),	ASTM C 836	Unaffected, Pass
100 Cycles		
Puncture Resistance	ASTM E 154	221 lbs (990 N)
Peel Adhesion to Concrete	ASTM D 903 Modified ⁴	5.0 lbs/in. (880 N/m)
Lap Peel Adhesion at 72°F (22°C)	ASTM D 1876 Modified ⁵	8.0 lbs/in. (1408 N/m)
Lap Peel Adhesion at 40°F (4°C)	ASTM D 1876 Modified ⁵	8.0 lbs/in. (1408 N/m)
Permeance to water vapor	ASTM E 96 Method B	0.01 perms (0.6 ng/Pa x s x m ² )
transmission		_

#### Footnotes.

- Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to
  hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the
  blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.
- 2. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.
- 3. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.
- 4. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.
- 5. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute at 72°F (22°C).

B. Pre-applied Integrally Bonded Sheet Waterproofing Membrane: Preprufe® 160R Plus Membrane [or Preprufe 160LT Plus Membrane for application temperatures between 25°F (-4°C) and 60°F (+16°C)] by Grace Construction Products, a 1.0mm (0.032 in) nominal thickness composite sheet membrane comprising 0.4 mm (0.016 in.) of high density polyethylene film, layers of specially formulated synthetic adhesive layers, release liner free with an adhesive to adhesive bond at the side laps.. The membrane shall form an integral and permanent bond to poured concrete to prevent water migration at the interface of the membrane and structural concrete. Provide membrane with the following physical properties:

NOTE TO SPECIFIER: Preprufe 160R Plus and Preprufe 160LT Plus can both be installed at temperatures  $25^{\circ}F$  (-4°C) and above. For temperatures  $25^{\circ}F$  (-4°C) to  $40^{\circ}F$  (4°C) the use of Preprufe LT Tape is recommended at all side laps when using Preprufe 160R Plus. Alternatively, contractors may elect the use of Preprufe 160LT Plus, which does not require the use of Preprufe LT Tape at side laps in temperature ranges  $25^{\circ}F$  (-4°C) to  $40^{\circ}F$  (4°C). For this reason, Grace suggests that both products be incorporated into the specification.

### PHYSICAL PROPERTIES FOR PREPRUFE 160R (or 160LT) MEMBRANE:

Property	Test Method	Typical Value
Color		White with Yellow and Blue Zip
		Strips in the Side Lap Area
Thickness	ASTM D 3767 Method A	0.032 in. (0.8 mm) nominal
Lateral Water Migration Resistance	ASTM D 5385 Modified ¹	Pass at 231 ft (71m) of
		hydrostatic head pressure
Low Temperature Flexibility	ASTM D 1970	Unaffected at -20°F (-29°C)
Resistance to Hydrostatic Head	ASTM D 5385 Modified ²	231 ft (71m)
Elongation	ASTM D 412 Modified ³	500%
Tensile Strength, film	ASTM D 412	4,000 psi (27.6 MPa)
Crack Cycling at -9.4°F (-23°C),	ASTM C 836	Unaffected, Pass
100 Cycles		
Puncture Resistance	ASTM E 154	100 lbs (445 N)
Peel Adhesion to Concrete	ASTM D 903 Modified ⁴	5.0 lbs/in. (880 N/m)
Lap Peel Adhesion at 72°F (22°C)	ASTM D 1876 Modified ⁵	8.0 lbs/in. (1408 N/m)
Lap Peel Adhesion at 40°F (4°C)	ASTM D 1876 Modified ⁵	8.0 lbs/in. (1408 N/m)
Permeance to water vapor	ASTM E 96 Method B	$0.01 \text{ perms } (0.6 \text{ ng/Pa} \times \text{s} \times \text{m}^2)$
transmission		

### Footnotes:

- 1. Lateral water migration resistance is tested by casting concrete against membrane with a hole and subjecting the membrane to hydrostatic head pressure with water. The test measures the resistance of lateral water migration between the concrete and the blind side waterproofing membrane. A hydrostatic head pressure of 71 m (231 ft) of water is the limit of the apparatus.
- 2. Hydrostatic head tests are performed by casting concrete against the membrane with a lap. Before the concrete sets a 3 mm (0.125 in.) spacer is inserted perpendicular to the membrane to create a gap. The cured block is placed in a chamber where water is introduced to the membrane surface up to a head of 71 m (231 ft) of water which is the limit of the apparatus.
- 3. Elongation of membrane is run at a rate of 50 mm (2 in.) per minute.
- 4. Concrete is cast against the protective coating surface of the membrane and allowed to cure (7 days minimum). Peel adhesion of membrane to concrete is measured at a rate of 50 mm (2 in.) per minute at room temperature.
- 5. The test is conducted 15 minutes after the lap is formed as per manufacturer's instructions and run at a rate of 50 mm (2 in.) per minute at 72°F (22°C).

C. Waterstop: AdcorTM ES hydrophilic non-bentonite waterstop by Grace Construction Products for non-moving concrete construction joints.

### PHYSICAL PROPERTIES FOR GRACE ADCORTM ES HYDROPHYLIC WATERSTOP:

Typical Value
Green
1.0 in. x ½ in. x 16 ft. rolls
(25.4 mm x 12.7 mm x 4.9 m)
70 m (231 ft)
No Effect
Excellent

- D. Preformed Soil Retention Wall Tieback Cover: Preprufe Tieback Cover by Grace Construction Products as a prefabricated detail for soil retention wall tiebacks.
- E. Preformed Inside and Outside Corners: Preprufe Preformed Corners by Grace Construction Products as prefabricated inside and outside corners.
- F. Tape for covering cut edges, roll ends, penetrations and detailing: Preprufe Tape LT (for temperatures between 25°F (-4°C) and 86°F (30°C)) and Preprufe Tape HC (for use in Hot Climates, minimum 50°F (10°C))
- G. Miscellaneous Materials: accessories specified or acceptable to manufacturer of pre-applied waterproofing membrane.

### PART 3 — EXECUTION

### 3.01 EXECUTION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the Contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

### 3.02 SUBSTRATE PREPARATION

- A. It is essential to create a sound and solid substrate to eliminate movement during the concrete pour. Substrates must be regular and smooth with no gaps or voids greater than 0.5 in. (12 mm). Grout around all penetrations such as utility conduits, etc. for stability.
  - Horizontal Surfaces The substrate must be free of loose aggregate and sharp
    protrusions. Avoid curved or rounded substrates. When installing over earth or crushed
    stone, ensure substrate is well compacted to avoid displacement of substrate due to traffic
    or concrete pour. The surface does not need to be dry, but standing water must be
    removed.
  - 2. Vertical Surfaces Use concrete, plywood, insulation or other approved facing to sheet piling to provide support to the membrane. Board systems such as timber lagging must be close butted to provide support and not more than 0.5 in. (12 mm) out of alignment.

### 3.03 INSTALLATION, HORIZONTAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
  - 1. Place the membrane HDPE film side to the substrate with the yellow zip strip facing towards the concrete pour. End laps should be staggered to avoid a build-up of layers.
  - 2. Leave the yellow and blue zip strips in position until overlap procedure is completed.
  - 3. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. The blue zip strip on the underside of the membrane shall be positioned on top of the yellow zip strip on the top of the succeeding sheet. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
  - 4. Peel back and remove both the yellow and blue zip strips in the overlap area to achieve and adhesive to adhesive bond at the overlap.
  - 5. Ensure a continuous bond is achieved without creases and roll firmly with a heavy roller.

### 3.04 INSTALLATION, VERTICAL APPLICATIONS

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
  - 1. Mechanically fasten the membrane vertically using fasteners appropriate to the substrate with the yellow zip strip facing towards the concrete pour. The membrane may be installed in any convenient length.
  - 2. Fasten through the selvedge using a small and low profile head fastener so that the membrane lays flat and allows firmly rolled overlaps.
  - 3. Leave the yellow and blue zip strips in position until overlap procedure is completed.
  - 4. Accurately position succeeding sheets to overlap the previous sheet 3 in. (75 mm) along the marked selvedge. The blue zip strip on the underside of the membrane shall be positioned on top of the yellow zip strip on the top of the succeeding sheet. Ensure the underside of the succeeding sheet is clean, dry and free from contamination before attempting to overlap.
  - 5. Peel back and remove both the yellow and blue zip strips in the overlap area to achieve and adhesive to adhesive bond at the overlap.
  - 6. Roll firmly to ensure a watertight seal.

### 3.05 INSTALATION, ROLL ENDS AND CUT EDGES

- 1. Overlap all roll ends and cut edges by a minimum 3 in. (75 mm) and ensure the area is clean and free from contamination, wiping with a damp cloth if necessary.
- 2. Allow to dry and apply Preprufe Tape LT (or HC in hot climates) centered over the lap edges and roll firmly.
- 3. Immediately remove printed plastic release liner from the Preprufe Tape.

### 3.06 WATERSTOP INSTALLATION

- A. Strictly comply with installation instructions in manufacturer's published literature, including but not limited to, the following:
  - 1. Secure Ador ES using masonry nails 1½ in. 2 in. (40 mm 50 mm) long with a washer 34 in. (20 mm) in diameter. Hilti EM6-20-12 FP8 shot fired fixings with ¼ in. (6 mm) nuts

- and 34 in. (20 mm) diameter washers may also be used. Fixings should be spaced at a maximum of 12 in. (300 mm) centers with a minimum spacing that ensures proper contact to substrate.
- 2. On irregular concrete faces, or on vertical surfaces, apply a ½ in. (12 mm) bead of Adcor ES Adhesive as bedding for Adcor ES.
- 3. Adcor ES joints should overlap a minimum of 4 in. (100 mm), ensuring full contact between jointed pieces.

### 3.07 PROTECTION

A. Protect membrane in accordance with manufacturer's recommendations until placement of concrete. Inspect for damage just prior to placement of concrete and make repairs in accordance with manufacturer's recommendations.

END OF SECTION

W.R. Grace & Co.-Conn. 62 Whittemore Avenue
Preprufe and Hydroduct are registered trademarks of W.R. Grace & Co.-Conn.

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.-Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, W. R. Grace & Co. Canada, Ltd. 294 Clements Road, West, Ajax, Ontario, Canada LlS 3C6.

Cambridge, MA 02140

This product may be covered by patents or patents pending.

Copyright 2013. W.R. Grace & Co.-Conn.

Document Code: GSWP-010A

Updated: 2/2013

### **Grace Below Grade Waterproofing**

### BITUTHENE SYSTEM 4000

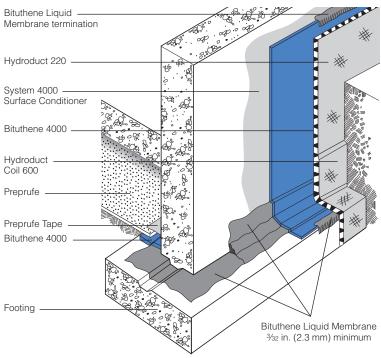
Self-adhesive HDPE waterproofing membrane with super tacky compound for use with patented, water-based System 4000 Surface Conditioner

### **Description**

Bituthene® System 4000 is a 1.5 mm (1/16 in.) flexible, pre-formed waterproof membrane which combines a high performance, cross laminated, HDPE carrier film with a unique, super tacky, self-adhesive rubberized asphalt compound.

System 4000 Surface Conditioner is a unique, water-based, latex surface treatment which imparts an aggressive, high tack finish to the treated substrate. It is specifically formulated to bind site dust and concrete efflorescence, thereby providing a suitable surface for the Bituthene System 4000 Waterproofing Membrane.

Conveniently packaged in each roll of membrane, System 4000 Surface Conditioner promotes good initial adhesion and, more importantly, excellent permanent adhesion of the Bituthene System 4000 Waterproofing Membrane. The VOC (Volatile Organic Compound) content of this product is 100 g/L.


### **Product Advantages**

- Excellent adhesion
- Cold applied
- Reduced inventory and handling costs
- Wide application temperature range
- Overlap security
- Cross laminated, high density polyethylene carrier film
- Flexible
- Ripcord

Architectural and Industrial Maintenance Regulations limit the VOC content in products classified as Architectural Coatings. Refer to Technical Letters at graceconstruction.com for most current list of allowable limits.

### **Advantages**

- Excellent adhesion—special adhesive compound engineered to work with high tack System 4000 Surface Conditioner
- **Cold applied**—simple application to substrates, especially at low temperatures
- Reduced inventory and handling costs— System 4000 Surface Conditioner is included with each roll of membrane
- Wide application temperature range—excellent bond to self and substrate from 25°F (-4°C) and above



Drawings are for illustration purposes only.

Please refer to graceconstruction.com for specific application details.

- Overlap security—minimizes margin for error under site conditions
- Cross laminated, high density polyethylene carrier film—provides high tear strength, puncture and impact resistance
- Flexible—accommodates minor structural movements and will bridge shrinkage cracks
- **Ripcord***—this split release on demand feature allows the splitting of the release paper into two (2) pieces for ease of installation in detailed areas

### Use

Bituthene is ideal for waterproofing concrete, masonry and wood surfaces where in-service temperatures will not exceed 135°F (57°C). It can be applied to foundation walls, tunnels, earth sheltered structures and split slab construction, both above and below grade. (For above grade applications, see *Above Grade Waterproofing Bituthene System 4000*.)

Bituthene is ½6 in. (1.5 mm) thick, 3 ft (0.9 m) wide and 66.7 ft (20 m) long and is supplied in rolls. It is unrolled sticky side down onto concrete slabs or applied onto vertical concrete faces primed with System 4000 Surface Conditioner. Continuity is achieved by overlapping a minimum 2 in. (50 mm) and firmly rolling the joint.

Bituthene is extremely flexible. It is capable of bridging shrinkage cracks in the concrete and will accommodate minor differential movement throughout the service life of the structure.

### **Application Procedures**

## Safety, Storage and Handling Information

Bituthene products must be handled properly. Vapors from solvent-based primers and mastic are harmful and flammable. For these products, the best available information on safe handling, storage, personal protection, health and environmental considerations has been gathered. Material Safety Data Sheets (MSDS) are available at graceconstruction.com and users should acquaint themselves with this information. Carefully read detailed precaution statements on product labels and the MSDS before use.

### **Surface Preparation**

Surfaces should be structurally sound and free of voids, spalled areas, loose aggregate and sharp protrusions. Remove contaminants such as grease, oil and wax from exposed surfaces. Remove dust, dirt, loose stone and debris. Concrete must be properly dried (minimum 7 days for normal structural concrete and 14 days for lightweight structural concrete).

If time is critical, Bituthene Primer B2 or Bituthene Primer B2 LVC may be used to allow priming and installation of membrane on damp surfaces or green concrete. Priming may begin in this case as soon as the concrete will maintain structural integrity. Use form release agents which will not transfer to the concrete. Remove forms as soon as possible from below horizontal slabs to prevent entrapment of excess moisture. Excess moisture may lead to blistering of the membrane. Cure concrete with clear, resin-based curing compounds which do not contain oil, wax or pigment. Except with Bituthene Primer B2 or Bituthene Primer B2 LVC, allow concrete to thoroughly dry following rain. Do not apply any products to frozen concrete.

Repair defects such as spalled or poorly consolidated areas. Remove sharp protrusions and form match lines. On masonry surfaces, apply a parge coat to rough concrete block and brick walls or trowel cut mortar joints flush to the face of the concrete blocks.

### **Temperature**

- Apply Bituthene System 4000 Membrane and Conditioner only in dry weather and when air and surface temperatures are 25°F (-4°C) or above.
- Apply Bituthene Primer B2 or Bituthene Primer B2 LVC in dry weather above 25°F (-4°C). (See separate product information sheet.)

### Conditioning

Bituthene System 4000 Surface Conditioner is ready to use and can be applied by spray or roller. For best results, use a pump-type air sprayer with fan tip nozzle, like the Bituthene System 4000 Surface Conditioner Sprayer, to apply the surface conditioner.

Apply Bituthene System 4000 Surface Conditioner to clean, dry, frost-free surfaces at a coverage rate of 300 ft²/gal (7.4 m²/L). Coverage should be uniform. Surface conditioner should not be applied so heavily that it puddles or runs. **Do not apply conditioner to Bituthene membrane.** 

Allow Bituthene System 4000 Surface Conditioner to dry one hour or until substrate returns to its original color. At low temperatures or in high humidity conditions, dry time may be longer.

Bituthene System 4000 Surface Conditioner is clear when dry and may be slightly tacky. In general, conditioning should be limited to what can be covered within 24 hours. In situations where long dry times may prevail, substrates may be conditioned in advance. Substrates should be reconditioned if significant dirt or dust accumulates.

Before surface conditioner dries, tools should be cleaned with water. After surface conditioner dries, tools should be cleaned with mineral spirits. Mineral spirits is a combustible liquid which should be used only in accordance with manufacturer's recommendations. **Do not use solvents to clean** hands or skin.

### **Corner Details**

The treatment of corners varies depending on the location of the corner. For detailed information on Bituthene Liquid Membrane, see separate product information sheet.

• At wall to footing inside corners—
Option 1: Apply membrane to within 1 in.
(25 mm) of base of wall. Treat the inside corner by installing a ¾ in. (20 mm) fillet of Bituthene Liquid Membrane. Extend Bituthene Liquid Membrane at least 2½ in. (65 mm) onto footing, and 2½ in. (65 mm) onto wall membrane.

**Option 2:** Treat the inside corner by installing a ³/₄ in. (20 mm) fillet of Bituthene Liquid Membrane. Apply 12 in. (300 mm) wide strip of sheet membrane centered over fillet. Apply wall membrane over inside corner and extend 6 in. (150 mm) onto footing. Apply 1 in. (25 mm) wide troweling of Bituthene Liquid Membrane over all terminations and seams within 12 in. (300 mm) of corner.

• At footings where the elevation of the floor slab is 6 in. (150 mm) or more above the footing, treat the inside corner either by the above two methods or terminate the membrane at the base of the wall. Seal the termination with Bituthene Liquid Membrane.

### **Joints**

Properly seal all joints with waterstop, joint filler and sealant as required. Bituthene membranes are not intended to function as the primary joint seal. Allow sealants to fully cure. Pre-strip all slab and wall cracks over 1/16 in. (1.5 mm) wide and all construction and control joints with 9 in. (230 mm) wide sheet membrane strip.

### **Application on Horizontal Surfaces**

(Note: Preprufe® pre-applied membranes are strongly recommended for below slab or for any application where the membrane is applied before concreting. See Preprufe product information sheets.)

Apply membrane from the low point to the high point so that laps shed water. Overlap all seams at least 2 in. (50 mm). Stagger all end laps. Roll the entire membrane firmly and completely as soon as possible. Use a linoleum roller or standard water-filled garden roller less than 30 in. (760 mm) wide, weighing a minimum of 75 lbs (34 kg) when filled. Cover the face of the roller with a resilient material such as a ½ in. (13 mm) plastic foam or two wraps of indoor-outdoor carpet to allow the membrane to fully contact the primed substrate. Seal all T-joints and membrane terminations with Bituthene Liquid Membrane at the end of the day.

#### **Protrusions and Drains**

Apply membrane to within 1 in. (25 mm) of the base of the protrusion. Apply Bituthene Liquid Membrane 0.1 in. (2.5 mm) thick around protrusion. Bituthene Liquid Membrane should extend over the membrane a minimum of  $2\frac{1}{2}$  in. (65 mm) and up the penetration to just below the finished height of the wearing course.

### **Vertical Surfaces**

Apply membrane in lengths up to 8 ft (2.5 m). Overlap all seams at least 2 in. (50 mm). On higher walls apply membrane in two or more sections with the upper overlapping the lower by at least 2 in. (50 mm). Roll all membrane with a hand roller.

Terminate the membrane at grade level. Press the membrane firmly to the wall with the butt end of a hardwood tool such as a hammer handle or secure into a reglet. Failure to use heavy pressure at terminations can result in a poor seal. A termination bar may be used to ensure a tight seal. Terminate the membrane at the base of the wall if the bottom of the interior floor slab is at least 6 in. (150 mm) above the footing. Otherwise, use appropriate inside corner detail where the wall and footing meet.

### **Membrane Repairs**

Patch tears and inadequately lapped seams with membrane. Clean membrane with a damp cloth and dry. Slit fishmouths and repair with a patch extending 6 in. (150 mm) in all directions from the slit and seal edges of the patch with Bituthene Liquid Membrane. Inspect the membrane thoroughly before covering and make any repairs.

### **Drainage**

Hydroduct® drainage composites are recommended for both active drainage and protection of the membrane. See Hydroduct product information sheets.

### **Protection of Membrane**

Protect Bituthene membranes to avoid damage from other trades, construction materials or backfill. Place protection immediately in temperatures above 77°F (25°C) to avoid potential for blisters.

• On vertical applications, use Hydroduct 220 Drainage Composite. Adhere Hydroduct 220 Drainage Composite to membrane with Preprufe Detail Tape. Alternative methods of protection are to use 1 in. (25 mm) expanded polystyrene or ½ in. (6 mm) extruded polystyrene that has a minimum compressive strength of 8 lbs/in.² (55 kN/m²). Such alternatives do not provide

# System 4000 Surface Conditioner Sprayer

The Bituthene System 4000 Surface Conditioner Sprayer is a professional grade, polyethylene, pump-type, compressed air sprayer with a brass fan tip nozzle. It has a 2 gal (7.6 L) capacity. The nozzle orifice and spray pattern have been specifically engineered for the optimum application of Bituthene System 4000 Surface Conditioner.

Hold nozzle 18 in. (450 mm) from substrate and squeeze handle to spray. Spray in a sweeping motion until substrate is uniformly covered.

Sprayer should be repressurized by pumping as needed. For best results, sprayer should be maintained at high pressure during spraying.

To release pressure, invert the sprayer and spray until all compressed air is released.



### **Maintenance**

The Bituthene System 4000 Surface Conditioner Sprayer should perform without trouble for an extended period if maintained properly.

Sprayer should not be used to store Bituthene System 4000 Surface Conditioner. The sprayer should be flushed with clean water immediately after spraying. For breaks in the spray operation of one hour or less, invert the sprayer and squeeze the spray handle until only air comes from the nozzle. This will avoid clogging.

Should the sprayer need repairs or parts, call the maintenance telephone number on the sprayer tank (800-323-0620).

positive drainage to the system. If ½ in. (6 mm) extruded polystyrene protection board is used, backfill should not contain sharp rock or aggregate over 2 in. (50 mm) in diameter. Adhere polystyrene protection board with Preprufe Detail Tape.

• In mud slab waterproofing, or other applications where positive drainage is not desired and where reinforced concrete slabs are placed over the membrane, the use of ½ in. (6 mm) hardboard or 2 layers of ½ in. (3 mm) hardboard is recommended.

### Insulation

Always apply Bituthene membrane directly to primed or conditioned structural substrates. Insulation, if used, must be applied over the membrane. Do not apply Bituthene membranes over lightweight insulating concrete.

### **Backfill**

Place backfill as soon as possible. Use care during backfill operation to avoid damage to the waterproofing system. Follow generally accepted practices for backfilling and compaction. Backfill should be added and compacted in 6 in. (150 mm) to 12 in. (300 mm) lifts.

For areas which cannot be fully compacted, a termination bar is recommended across the top termination of the membrane.

### **Placing Steel**

When placing steel over properly protected membrane, use concrete bar supports (dobies) or chairs with plastic tips or rolled feet to prevent damage from sharp edges. Use special care when using wire mesh, especially if the mesh is curled.

### **Approvals**

- City of Los Angeles Research Report RR 24386
- Miami-Dade County Code Report NOA 04-0114.03
- U.S. Department of Housing and Urban Development (HUD) HUD Materials Release 628E
- Bituthene 4000 Membranes carry a Underwriters' Laboratory Class A Fire Rating
  (Building Materials Directory, File #R7910)
  when used in either of the following
  constructions:
  - —Limited to noncombustible decks at inclines not exceeding ½ in. (6 mm) to the horizontal 1 ft (0.3 m). One layer of Bituthene waterproofing membrane, followed by one layer of ½ in. (3 mm) protection board, encased in 2 in. (50 mm) minimum concrete monolithic pour.
  - —Limited to noncombustible decks at inclines not exceeding ½ in. (6 mm) to the horizontal 1 ft (0.3 m). One layer of Bituthene waterproofing membrane, followed by one layer of DOW Styrofoam PD Insulation Board [2 in. (50 mm) thick]. This is covered with one layer of 2 ft x 2 ft x 2 in. (0.6 m x 0.6 m x 50 mm) of concrete paver topping.

### Warranty

Five year material warranties covering Bituthene and Hydroduct products are available upon request. Contact your Grace sales representative for details.

### **Technical Services**

Support is provided by full time, technically trained Grace representatives and technical service personnel, backed by a central research and development staff.

### Supply

Bituthene System 4000	3 ft x 66.7 ft roll (200 ft²) [0.9 m x 20 m (18.6 m²)]
Roll weight	83 lbs (38 kg) gross
Palletization	25 rolls per pallet
Storage	Store upright in dry conditions below 95°F (+35°C).
System 4000 Surface Conditioner	1 x 0.625 gal (2.3 L) bottle in each roll of System 4000 Membrane
Ancillary Products	
Surface Conditioner Sprayer	2 gal (7.6 L) capacity professional grade sprayer with specially engineered nozzle
Bituthene Liquid Membrane	1.5 gal (5.7 L) pail/125 pails per pallet or 4 gal (15.1 L) pail/48 pails per pallet
Preprufe Detail Tape	2 in. x 50 ft (50 mm x 15 m) roll/16 rolls per carton
Bituthene Mastic	Twelve 30 oz (0.9 L) tubes/carton or 5 gal (18.9 L) pail/36 pails per pallet
Complementary Material	
Hydroduct	See separate data sheets

Equipment by others:

Soft broom, utility knife, brush or roller for priming

### **Physical Properties for Bituthene 4000 Membrane**

Property	Typical Value	Test Method
Color	Dark gray-black	
Thickness	1/ ₁₆ in. (1.5 mm) nominal	ASTM D3767—method A
Flexibility, 180° bend over 1 in.	Unaffected	ASTM D1970
(25 mm) mandrel at -25°F (-32°C)		
Tensile strength, membrane, die C	325 lbs/in.2 (2240 kPa) minimum	ASTM D412 modified ¹
Tensile strength, film	5,000 lbs/in.2 (34.5 MPa) minimum	ASTM D882 modified ¹
Elongation, ultimate failure	300% minimum	ASTM D412 modified ¹
of rubberized asphalt		
Crack cycling at -25°F (-32°C),	Unaffected	ASTM C836
100 cycles		
Lap adhesion at minimum	5 lbs/in. (880 N/m)	ASTM D1876 modified ²
application temperature		
Peel strength	9 lbs/in. (1576 N/m)	ASTM D903 modified ³
Puncture resistance, membrane	50 lbs (222 N) minimum	ASTM E154
Resistance to hydrostatic head	210 ft (70 m) of water	ASTM D5385
Permeance	0.05 perms (2.9 ng/m²sPa) maximum	ASTM E96, section 12—water method
Water absorption	0.1% maximum	ASTM D570

### Footnotes:

- 1. The test is run at a rate of 2 in. (50 mm) per minute.
- 2. The test is conducted 15 minutes after the lap is formed and run at a rate of 2 in. (50 mm) per minute at 40°F (5°C). 3. The 180° peel strength is run at a rate of 12 in. (300 mm) per minute.

### **Physical Properties for System 4000 Surface Conditioner**

Property	Typical Value
Solvent type	Water
Flash point	>140°F (>60°C)
VOC* content	91 g/L
Application temperature	25°F (-4°C) and above
Freeze thaw stability	5 cycles (minimum)
Freezing point (as packaged)	14°F (-10°C)
Dry time (hours)	1 hour**

^{*} Volatile Organic Compound

### www.graceconstruction.com

### For technical assistance call toll free at 866-333-3SBM (3726)

Bituthene, Preprufe, Hydroduct and Ripcord are registered trademarks of W. R. Grace & Co.-Conn.

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.—Conn., 62 Whittemore Avenue, Cambridge, MA 02140. In Canada, Grace Canada, Inc., 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.



^{**} Dry time will vary with weather conditions

### **SECTION 071326**

### SELF-ADHERING SHEET WATERPROOFING

Grace Bituthene® System 4000 and Hydroduct® Drainage Composites

#### PART 1 — GENERAL

### 1.01 RELATED DOCUMENTS

A. All of the Contract Documents, including General and Supplementary Conditions and Division 1 General Requirements, apply to the work of this section.

### 1.02 SUMMARY

- A. The work of this section includes, but is not limited to, the following:
  - 1. Rubberized asphalt sheet membrane waterproofing system
  - 2. Prefabricated drainage composite
  - 3. Protection board
- B. Related Sections: Other specification sections which directly relate to the work of this section include, but are not limited to, the following:
  - 1. Section 033000 Cast-In-Place Concrete
  - 2. Section 042000 Unit Masonry
  - 3. Section 071100 Dampproofing
  - 4. Section 076000 Flashing and Sheet Metal
  - 5. Section 079200 Joint Sealants
  - 6. Section 079500 Expansion Control
  - 7. Section 334600 Subdrainage

### 1.03 REFERENCE STANDARDS

- A. The following standards and publications are applicable to the extent referenced in the text.
- B. American Society for Testing and Materials (ASTM)
  - C 836 Standard Specification for High Solids, Cold Liquid-Applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
  - D 412 Standard Test Methods for Rubber Properties in Tension
  - D 570 Standard Test Method for Water Absorption of Plastics
  - D 882 Standard Test Methods for Tensile Properties of Thin Plastic Sheeting
  - D 903 Standard Test Method for Peel or Stripping Strength of Adhesive Bonds
  - D 1876 Standard Test Method for Peel Release of Adhesives (T-Peel)
  - D 1970 Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection
  - D 3767 Standard Practice for Rubber Measurements of Dimensions
  - D 5385 Standard Test Method for Hydrostatic Pressure Resistance of Waterproofing Membranes

- E 96 Standard Test Methods for Water Vapor Transmission of Materials
- E 154 Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover

### 1.04 SUBMITTALS

- A. Product Data: Submit manufacturer's product data, installation instructions, use limitations and recommendations. Include certification of data indicating VOC (Volatile Organic Compound) content of all components of waterproofing system.
- B. Samples: Submit representative samples of the following for approval:
  - 1. Sheet membrane
  - 2. Protection board
  - 3. Prefabricated drainage composite

#### 1.05 QUALITY ASSURANCE

- A. Manufacturer: Sheet membrane waterproofing system shall be manufactured and marketed by a firm with a minimum of 20 years experience in the production and sales of self-adhesive sheet membrane waterproofing. Manufacturers proposed for use but not named in these specifications shall submit evidence of ability to meet all requirements specified, and include a list of projects of similar design and complexity completed within the past 5 years.
- B. Installer: A firm which has at least 3 years experience in work of the type required by this section.
- C. Materials: For each type of material required for the work of this section, provide primary materials which are the products of one manufacturer.
- D. Pre-Installation Conference: A pre-installation conference shall be held prior to commencement of field operations to establish procedures to maintain optimum working conditions and to coordinate this work with related and adjacent work. Agenda for meeting shall include review of special details and flashing.

### 1.06 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials and products in labeled packages. Store and handle in strict compliance with manufacturer's instructions, recommendations and material safety data sheets. Protect from damage from sunlight, weather, excessive temperatures and construction operations. Remove damaged material from the site and dispose of in accordance with applicable regulations.
  - Do not double-stack pallets of membrane on the job site. Provide cover on top and all sides, allowing for adequate ventilation.
  - 2. Protect mastic and adhesive from moisture and potential sources of ignition.
  - 3. Store drainage composite or protection board flat and off the ground. Provide cover on top and all sides.
  - 4. Protect surface conditioner from freezing.
- B. Sequence deliveries to avoid delays, but minimize on-site storage.

### 1.07 PROJECT CONDITIONS

- A. Perform work only when existing and forecasted weather conditions are within the limits established by the manufacturer of the materials and products used.
- B. Proceed with installation only when substrate construction and preparation work is complete and in condition to receive sheet membrane waterproofing.

### 1.08 WARRANTY

A. Sheet Membrane Waterproofing: Provide written 5 year material warranty issued by the membrane manufacturer upon completion of the work.

### PART 2 — PRODUCTS

### 2.01 MATERIALS

- A. Sheet Membrane Waterproofing System: Bituthene® System 4000 Membrane by Grace Construction Products; a self-adhesive, cold-applied composite sheet consisting of a thickness of 1.4 mm (0.056 in.) of rubberized asphalt and 0.1 mm (0.004 in.) of cross-laminated, high density polyethylene film specially formulated for use with water-based surface conditioner. Provide rubberized asphalt membrane covered with a release sheet which is removed during installation. No special adhesive or heat shall be required to form laps.
- B. Sheet Membrane Waterproofing

### PHYSICAL PROPERTIES FOR BITUTHENE SYSTEM 4000 MEMBRANE:

Property	Test Method	Typical Value
Color		Dark gray-black
Thickness	ASTM D 3767 Method A	1.5 mm (0.060 in.) nominal
Flexibility, 180° bend over	ASTM D 1970	Unaffected
25 mm (1 in.) mandrel at		
-43°C (-45°F)		
Tensile Strength, Membrane	ASTM D 412 Modified	2240 kPa (325 lbs/in.²)
Die C		minimum
Tensile Strength, Film	ASTM D 882 Modified ¹	34.5 MPa (5,000 lbs/in.²)
		minimum
Elongation, Ultimate Failure of	ASTM D 412 Modified ¹	300% minimum
Rubberized Asphalt		
Crack Cycling at -32°C (-	ASTM C 836	Unaffected
25°F), 100 Cycles	3	
Lap Adhesion at Minimum	ASTM D 1876 Modified ²	880 N/m (5 lbs/in.)
Application Temperature	3	
Peel Strength	ASTM D 903 Modified ³	1576 N/m (9 lbs/in.)
Puncture Resistance,	ASTM E 154	222 N (50 lbs) minimum
Membrane		
Resistance to Hydrostatic	ASTM D 5385	70 m (231 ft) of water
Head		,
Permeance	ASTM E 96,	2.9 ng/m²sPa
	Section 12 – Water Method	(0.05 perms) maximum
Water Absorption	ASTM D 570	0.1% maximum

### Footnotes:

- 1. The test is run at a rate of 50 mm (2 in.) per minute.
- 2. The test is conducted 15 minutes after the lap is formed and run at a rate of 50 mm (2 in.) per minute at -4°C (25°F).
- 3. The 180° peel strength is run at a rate of 300 mm (12 in.) per minute.
  - C. Prefabricated Drainage Composite: (Hydroduct[®] 220) (Hydroduct[®] 660) Drainage Composite by Grace Construction Products. Drainage Composite shall be designed to promote positive drainage while serving as a protection course.

NOTE TO SPECIFIER: The following are product selection guidelines for Hydroduct Drainage Composites. Consult the "Product Summary" and "System Components" section of the Waterproofing Systems Manual North American Edition for complete information. Hydroduct 220: All vertical applications. Hydroduct 660: All horizontal applications. THE APPROPRIATE HYDRODUCT DRAINAGE COMPOSITE MAY ALSO SERVE AS PROTECTION FOR ALL BITUTHENE MEMBRANES.

#### D. Protection Board:

1. Expanded Polystyrene Protection Board: 25 mm (1 in.) thick for vertical applications with the following characteristics. Adhere to waterproofing membrane with Bituthene Protection Board Adhesive.

Normal Density: 16 kg/m³ (1.0 lb/ft³)

Thermal Conductivity, K factor: 0.24 at 5°C (40°F), 0.26 at 24°C (75°F)

Thermal Resistance, R-Value: 4 per 25 mm (1 in.) of thickness.

- 2. Asphalt Hardboard: A premolded semi-rigid protection board consisting of bitumen, mineral core and reinforcement. Provide 3 mm (0.125 in.) thick hardboard on horizontal surfaces not receiving steel reinforced slab. Where steel reinforcing bars are to be used, apply two layers of 3 mm (0.125 in.) thick hardboard or one layer of 6 mm (0.25 in.) thick hardboard.
- E. Waterstop: Adcor[™] ES hydrophilic non-bentonite waterstop by Grace Construction Products for non-moving concrete construction joints.
- F. Miscellaneous Materials: Surface conditioner, mastic, liquid membrane, tape and accessories specified or acceptable to manufacturer of sheet membrane waterproofing.

### PART 3 — EXECUTION

### 3.01 EXAMINATION

A. The installer shall examine conditions of substrates and other conditions under which this work is to be performed and notify the contractor, in writing, of circumstances detrimental to the proper completion of the work. Do not proceed with work until unsatisfactory conditions are corrected.

### 3.02 PREPARATION OF SUBSTRATES

A. Refer to manufacturer's literature for requirements for preparation of substrates. Surfaces shall be structurally sound and free of voids, spalled areas, loose aggregate and sharp protrusions. Remove contaminants such as grease, oil and wax from exposed surfaces. Remove dust, dirt, loose stone and debris. Use repair materials

and methods which are acceptable to manufacturer of sheet membrane waterproofing.

### B. Cast-In-Place Concrete Substrates:

 Do not proceed with installation until concrete has properly cured and dried (minimum 7 days for normal structural concrete and minimum 14 days for lightweight structural concrete).

NOTE TO SPECIFIER: If time is critical Bituthene® Primer B2 may be used to allow priming and installation of membrane sooner than 7 days. Priming may begin in this case as soon as the concrete will maintain structural integrity.

- 2. Fill form tie rod holes with concrete and finish flush with surrounding surface.
- 3. Repair bugholes over 13 mm (0.5 in.) in length and 6 mm (0.25 in.) deep and finish flush with surrounding surface.
- 4. Remove scaling to sound, unaffected concrete and repair exposed area.
- 5. Grind irregular construction joints to suitable flush surface.
- C. Masonry Substrates: Apply waterproofing over concrete block and brick with smooth trowel-cut mortar joints or parge coat.
- D. Wood Substrates: Apply waterproofing membrane over securely fastened sound surface. All joints and fasteners shall be flush to create a smooth surface.
- E. Related Materials: Treat joints and install flashing as recommended by waterproofing manufacturer.

### 3.03 INSTALLATION

- A. Refer to manufacturer's literature for recommendations on installation, including but not limited to, the following:
  - Apply surface conditioner at rate recommended by manufacturer. Recoat areas not waterproofed if contaminated by dust. Mask and protect adjoining exposed finish surfaces to protect those surfaces from excessive application of surface conditioner.
  - 2. Delay application of membrane until surface conditioner is completely dry. Dry time will vary with weather conditions.
  - 3. Seal daily terminations with troweled bead of mastic.
  - 4. Apply protection board and related materials in accordance with manufacturer's recommendations.

### 3.04 CLEANING AND PROTECTION

- A. Remove any masking materials after installation. Clean any stains on materials which would be exposed in the completed work.
- B. Protect completed membrane waterproofing from subsequent construction activities as recommended by manufacturer.

### W.R. Grace & Co.-Conn.

62 Whittemore Avenue Cambridge, MA 02140

Bituthene, Hydroduct and Preprufe are registered trademarks of W.R. Grace & Co.-Conn.

We hope the information here will be helpful. It is based on data and knowledge considered to be true and accurate and is offered for the users' consideration, investigation and verification, but we do not warrant the results to be obtained. Please read all statements, recommendations or suggestions in conjunction with our conditions of sale, which apply to all goods supplied by us. No statement, recommendation or suggestion is intended for any use which would infringe any patent or copyright. W. R. Grace & Co.-Conn.,

62 Whittemore Avenue, Cambridge, MA 02140. In Canada, W. R. Grace & Co. Canada, Ltd. 294 Clements Road, West, Ajax, Ontario, Canada L1S 3C6.

This product may be covered by patents or patents pending. Copyright 2012. W.R. Grace & Co.-Conn.

Document Code: GSWP-004A Updated: 4/2012

"Providing Innovative In Situ Soil and Groundwater Treatment"

### Oxygen BioChem (OBC)®

Recent applications of in situ chemical oxidation (ISCO) have shown that ISCO can be a cost-effective remedial strategy for organic contaminants in groundwater and soil. The application of ISCO to contaminated source areas usually results in an immediate benefit to groundwater in the area. In addition, further contaminant flux can be reduced or eliminated mitigating further contaminant plume issues. Redox Tech has recently formulated a mixture of sodium persulfate and calcium peroxide that can be employed for ISCO applications using FMC's patent-pending KlozurTM activation chemistry.

The mixture in Oxygen BioChem™ supports a two-fold mechanism for destroying the contaminant of concern, delivering one of the strongest chemical oxidants for short term ISCO, as well as delivering electron acceptors (oxygen and sulfate) for longer-term biological oxidation.

Sodium persulfate has emerged recently as an important oxidant for in situ remediation of volatile and semi-volatile organic compounds. Persulfate is the strongest oxidant within the peroxygen family, with an electromotive force of 2.12 volts. As illustrated below, the direct oxidation half-cell reaction for persulfate involves a two-electron transfer:

$$2 S_2 O_8^{2-} + 2 H^{+2} + 2e^- \rightarrow 2HSO_4^-$$

However in most cases, rapid destruction of the contaminant of concern requires that the persulfate be activated in order to generate sulfate radicals. Sulfate radicals are powerful oxidizing agents, with an electromotive force of 2.6 volts. There are several methods available to activate persulfate including the addition of alkalinity, chelated iron, heat, or hydrogen peroxide.

$$S_2O_8^{2-}$$
 + activator  $\rightarrow 2SO4^{\bullet}$ 

Activated persulfate can remain available in the subsurface for months providing an unrivaled combination of power and stability.

The addition of calcium peroxide provides several benefits. First, it imparts the alkalinity needed to activate the persulfate using FMC's KlozurTM activation chemistry. Second, when mixed with water it provides a long-term slow release source of hydrogen peroxide and calcium hydroxide.

$$CaO_2 + 2 H_2O \rightarrow Ca(OH)_2 + H_2O_2$$

The hydrogen peroxide that is slowly formed decomposes to oxygen and water, providing an extended oxygen source for subsequent bioremediation of petroleum hydrocarbons.

"Providing Innovative In Situ Soil and Groundwater Treatment"

The resultant calcium hydroxide (hydrated lime) that is produced serves several purposes. First of all, it increases the total dissolved ion concentration, which makes the solution less likely to leach metals from the soil into the groundwater. Secondly, the calcium from the hydrated lime will precipitate the sulfate that is produced during the consumption of the persulfate. The calcium sulfate (gypsum) precipitation helps to reduce sulfate groundwater concentrations, which may impact the secondary drinking water standard of 250 ppm.

The mixture in OBC® provides chemical oxidation as well as electron acceptors (oxygen and sulfate) for longer term biological oxidation. The predominant short-term reaction is chemical oxidation, while the longer-term remediation process is biological oxidation. OBC® has the advantages over more traditional oxygen compounds used for bioremediation in that is works on a broader range of contaminants.

Table 1. Contaminants Treated by Oxygen BioChem (OBC)®

CONTAMINANTS TREATED		
BTEX	1,4-dioxane	
MTBE	PCBs	
PAHs	Pentachlorophenol	
Chlorinated Alkenes	Chlorinated Alkanes	

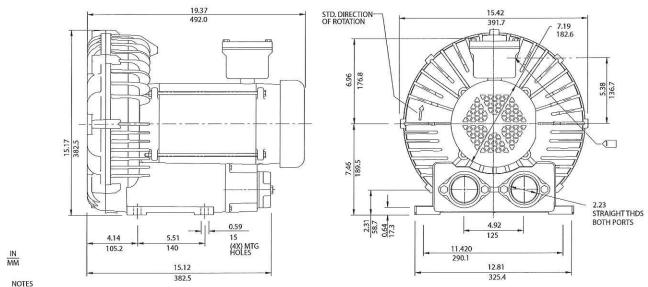
Table 2 summarizes the advantages of OBC® over other oxygenating compounds. OBC® works on a wider range of contaminants than other oxygenates because provides chemical oxidation and electron acceptors for bioremediation. The amount of oxygen in OBC® assumes that all of the oxygen in the sulfate is consumed through sulfate reduction processes.

Table 2. Advantages of Oxygen BioChem (OBC)®

OBC®	COMPETITORS
Greater oxygen – as much as 43 wt %	Typically 10 to 20 wt %
Both chemical oxidation and bioremediation	Predominantly bioremediation
Greater solubility – typically 40 wt %	Typically less than 5% soluble
Better value - \$2.75 per pound	Typically \$4 to \$10 per pound

### CONTACT:

John Haselow, PhD, PE Redox Tech, LLC 200 Quade Drive Cary, NC 27513 Phone: 919-678-0140


Phone: 919-678-0140 www.redox-tech.com

### **Environmental / Chemical Processing Blowers**

## ROTRON®

### EN 656 & CP 656

3.0 HP Sealed Regenerative w/Explosion-Proof Motor



- 1) TERMINAL BOX CONNECTOR HOLE 3/4" NPT.
- 2 DRAWING NOT TO SCALE, CONTACT FACTORY FOR SCALE CAD DRAWING,
  3 CONTACT FACTORY FOR BLOWER MODEL LENGTHS NOT SHOWN.

		Part/Model Number			
Specification	Units	EN656M5XL 080060	EN656M72XL 080059	EN656M86XL 080058	CP656FU72XLR 080142
Horsepower	-	Explosion-proof-CS	Explosion-proof-CS	Explosion-proof-CS	Chem XP-SS
Phase - Frequency	-	Single-60 hz	Three-60 hz	Three-60 hz	Three-60 hz
Voltage	AC	208-230	208-230/460	575	208-230/460
Motor Nameplate Amps	Amps (A)	15.5-14.5	7.4/3.7	3.0	7.4/3.7
Max. Blower Amps	Amps (A)	17	10/5	4.1	10/5
Inrush Amps	Amps (A)	95-86	54/27	21.6	54/27
Service Factor	- '-	1	0/0	0	0/0
Starter Size		1.0	1.0	1.0	1.0
Thermal Protection	-	Class B - Pilot Duty	Class B - Pilot Duty	Class B - Pilot Duty	Class B - Pilot Duty
XP Motor Class - Group	-	I-D, II-F&G	I-D, II-F&G	I-D, II-F&G	I-D, II-F&G
Shipping Weight	Lbs	142	117	117	117
	Kg	64.4	53,1	53.1	53.1

Voltage - ROTRON motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 190-208/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

Operating Temperatures - Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

Maximum Blower Amps - Corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

XP Motor Class - Group - See Explosive Atmosphere Classification Chart in Section I

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.



### EN 656 & CP 656

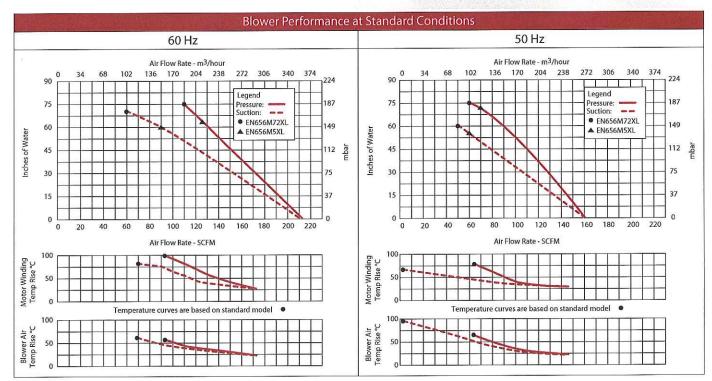
3.0 HP Sealed Regenerative w/Explosion-Proof Motor

#### **FEATURES**

- · Manufactured in the USA ISO 9001 and NAFTA compliant
- Maximum flow: 212 SCFM
- · Maximum pressure: 75 IWG
- Maximum vacuum: 73 IWG
- · Standard motor: 3.0 HP, explosion-proof
- Cast aluminum blower housing, impeller, cover & manifold; cast iron flanges (threaded); teflon[®] lip seal
- UL & CSA approved motor with permanently sealed ball bearings for explosive gas atmospheres Class I Group D minimum
- Sealed blower assembly
- · Quiet operation within OSHA standards

### MOTOR OPTIONS

- International voltage & frequency (Hz)
- · Chemical duty, high efficiency, inverter duty or industry-specific designs
- · Various horsepowers for application-specific needs


### **BLOWER OPTIONS**

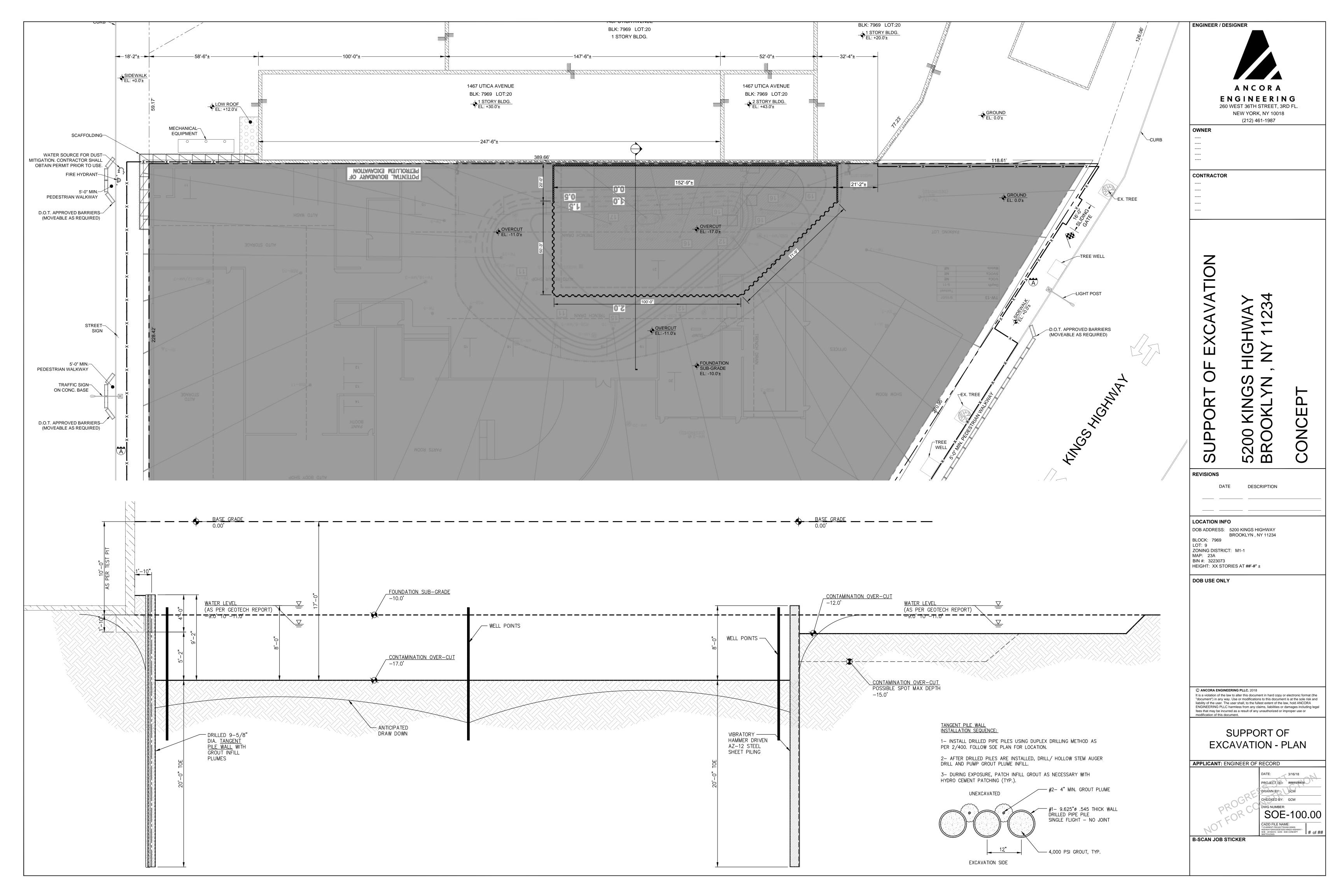
- Corrosion resistant surface treatments & sealing options
- · Remote drive (motorless) models
- · Slip-on or face flanges for application-specific needs

### **ACCESSORIES**

- · Flowmeters reading in SCFM
- Filters & moisture separators
- Pressure gauges, vacuum gauges, & relief valves
- · Switches air flow, pressure, vacuum, or temperature
- · External mufflers for additional silencing
- · Air knives (used on blow-off applications)
- · Variable frequency drive package



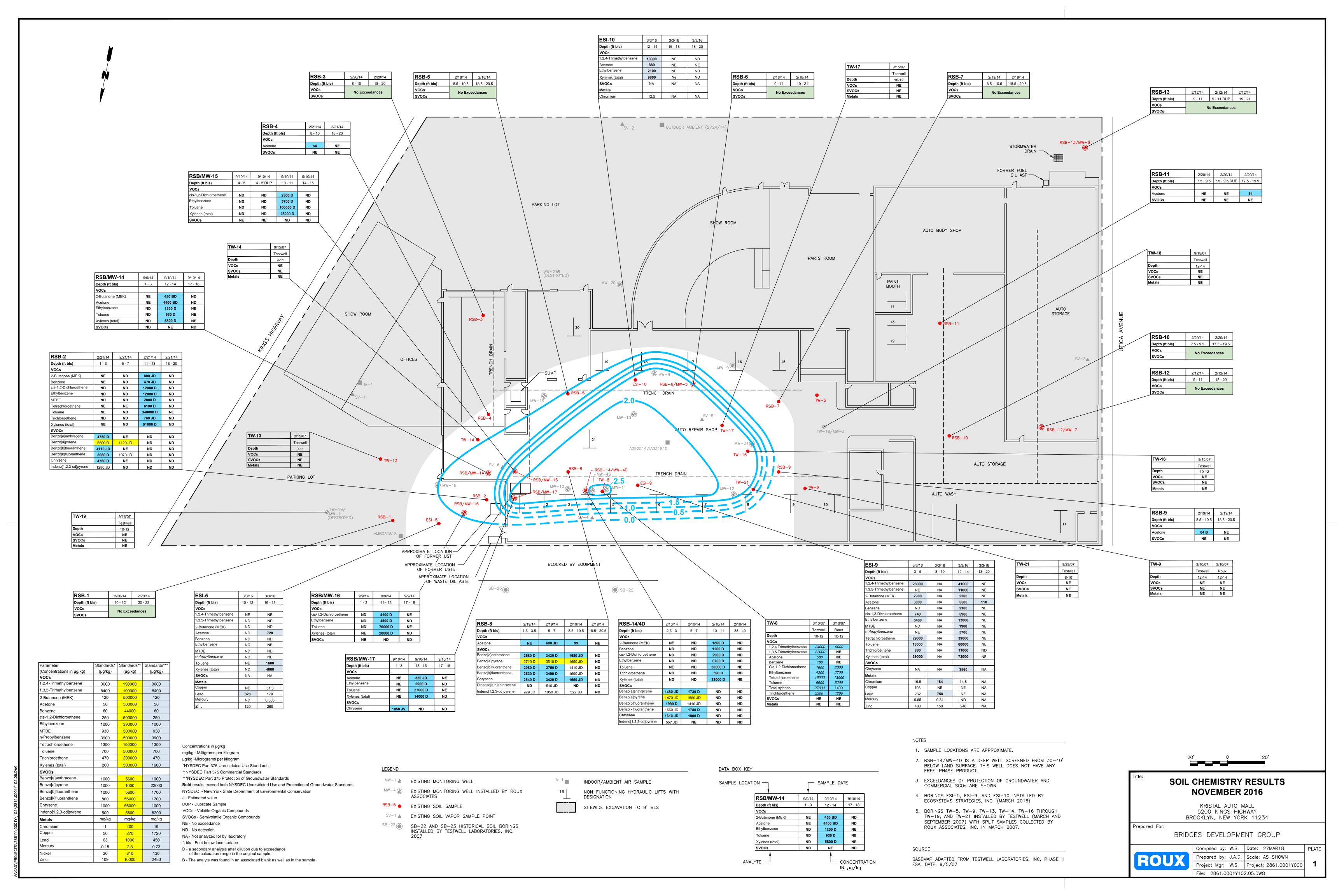


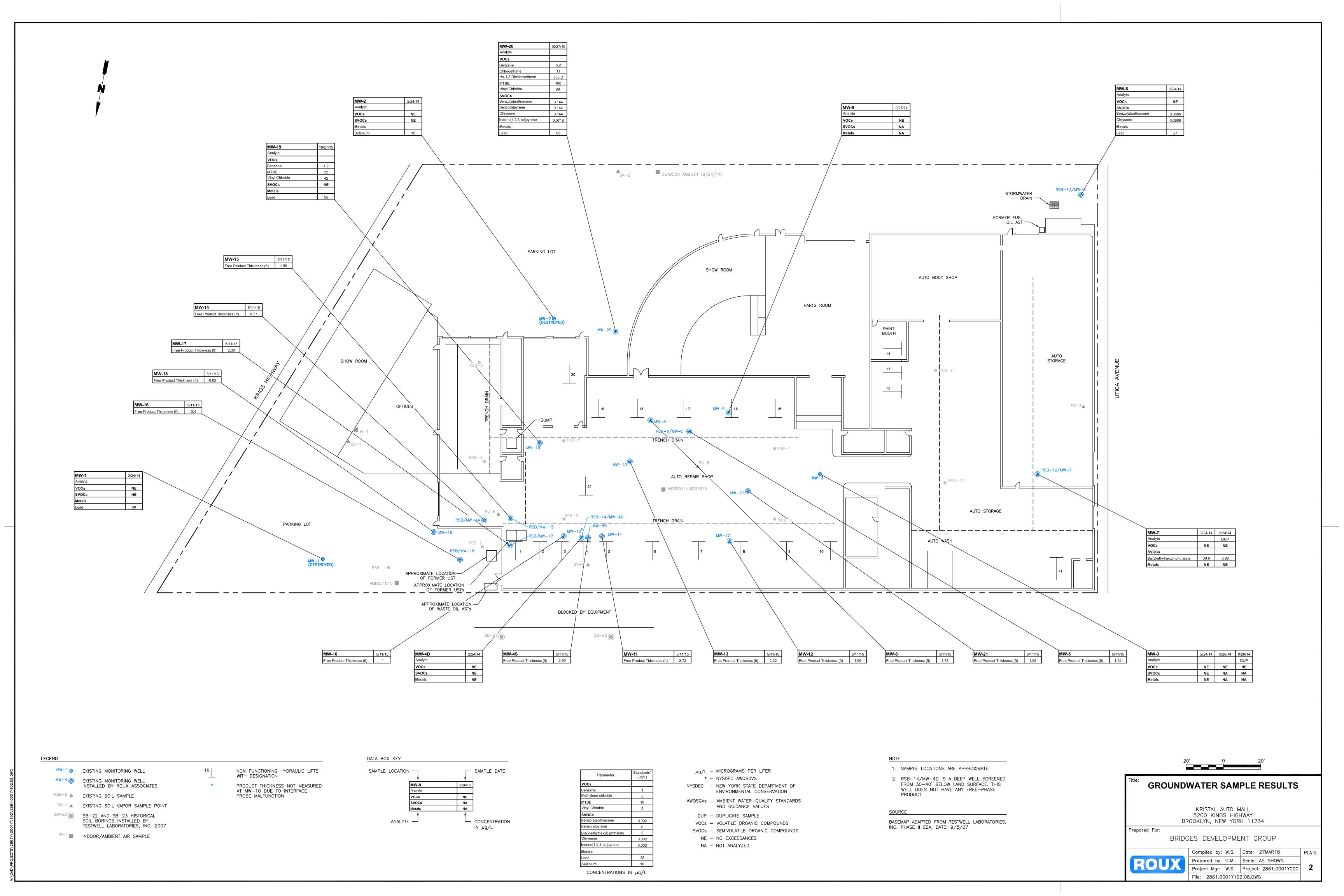

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. APETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

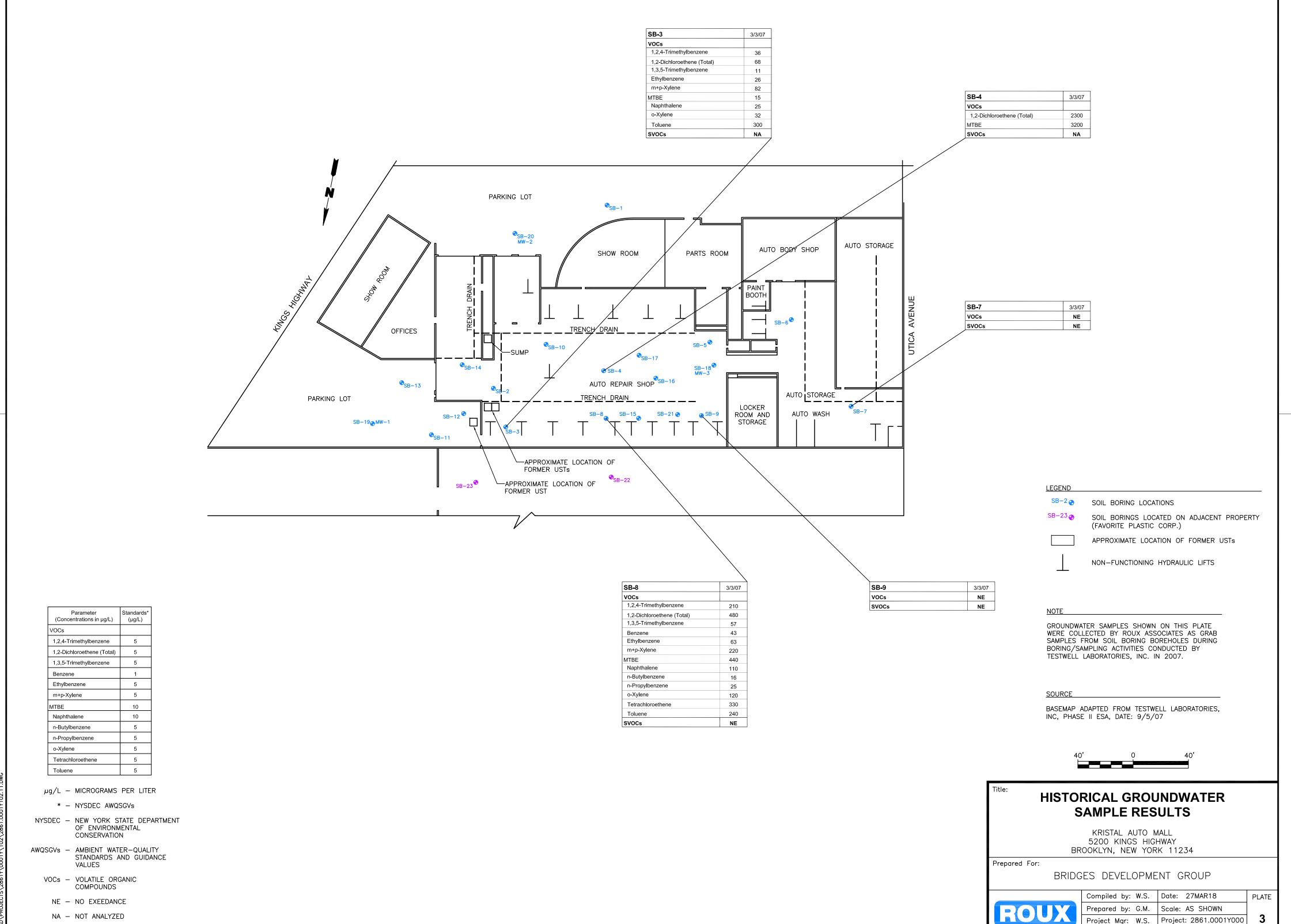


### **APPENDIX N**

Proposed Support of Excavation


**ROUX** 2861.0001Y.102/CVRS

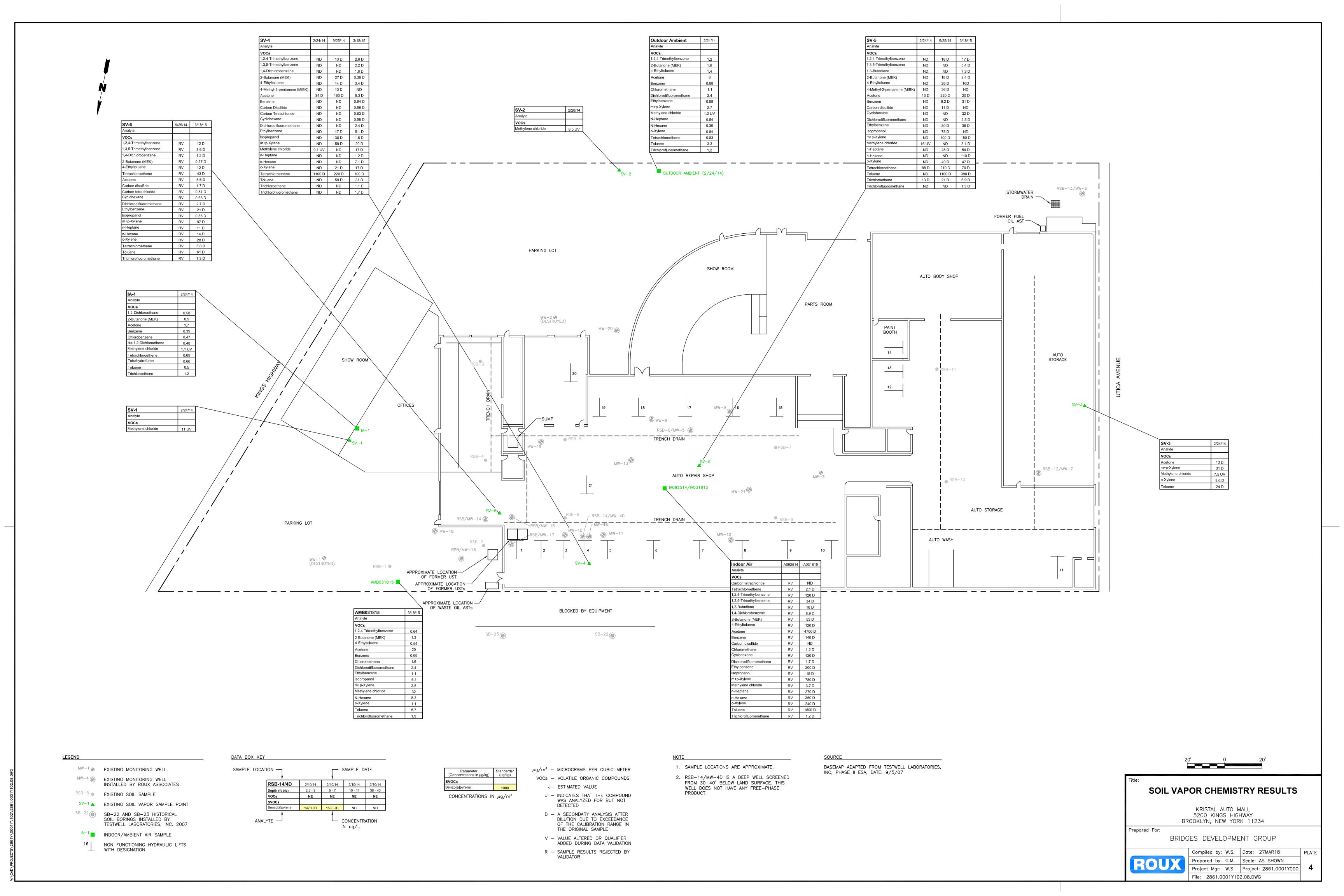


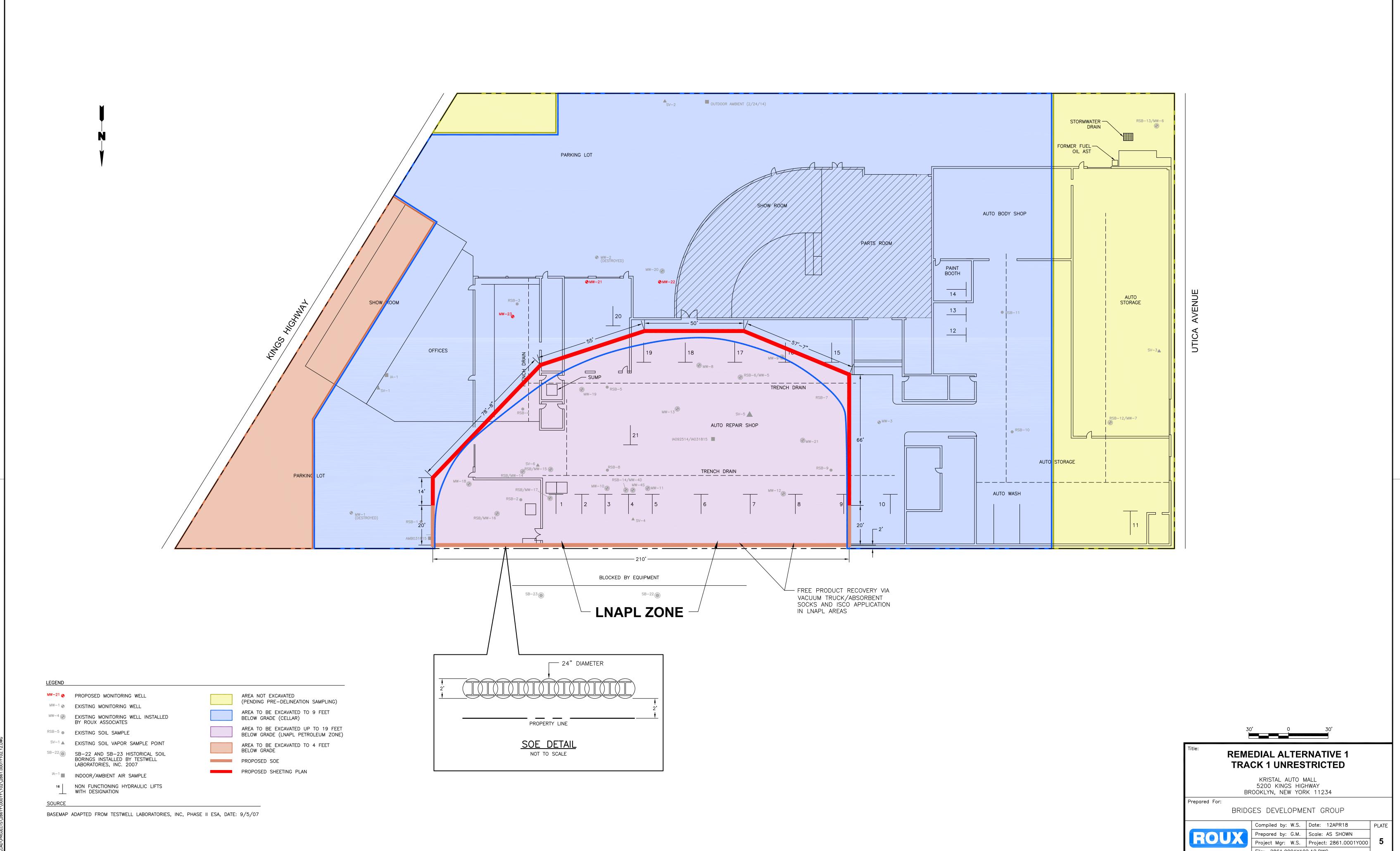


### **PLATES**

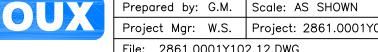
- 1. Soil Chemistry Results
- 2. Groundwater Chemistry Results
- 3. Historical Groundwater Sample Results
- 4. Soil Vapor Chemistry Results
- 5. Remedial Alternative 1 Track 1 Unrestricted
- 6. SSDS Piping Contingency

ROUX 2861.0001Y.102/CVRS

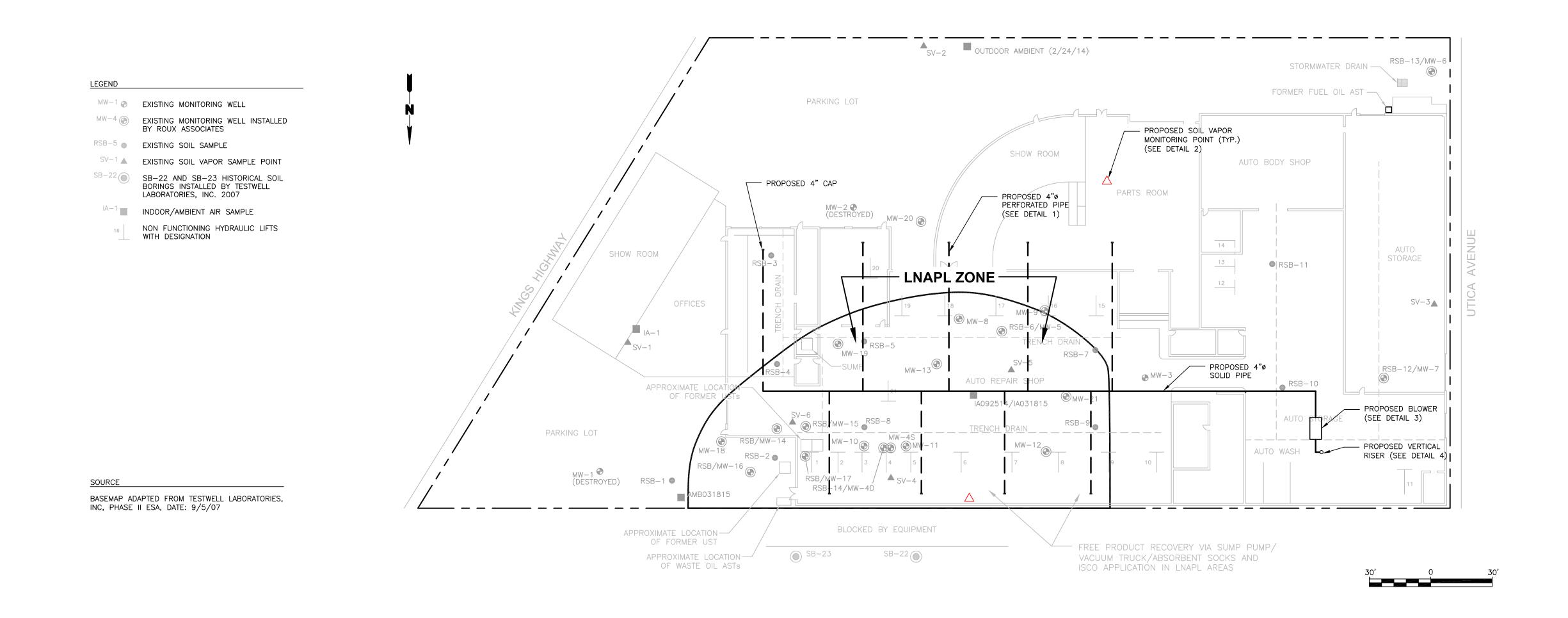


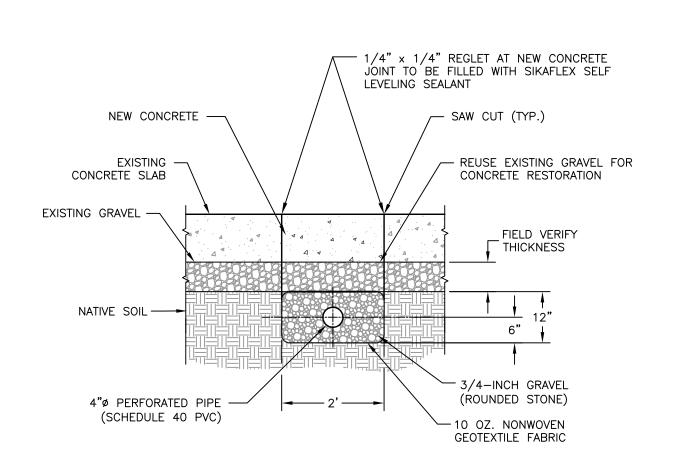




Project Mgr: W.S. Project: 2861.0001Y000

File: 2861.0001Y102.11.DWG

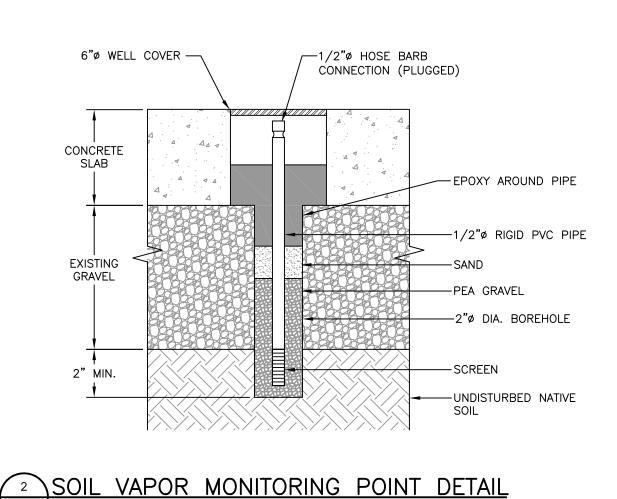

NA — NOT ANALYZED

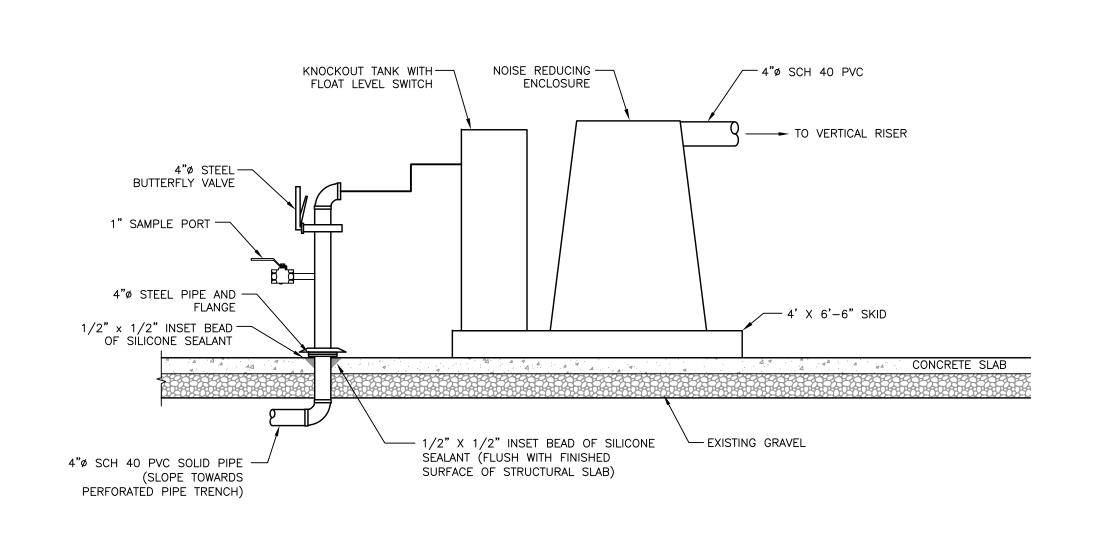


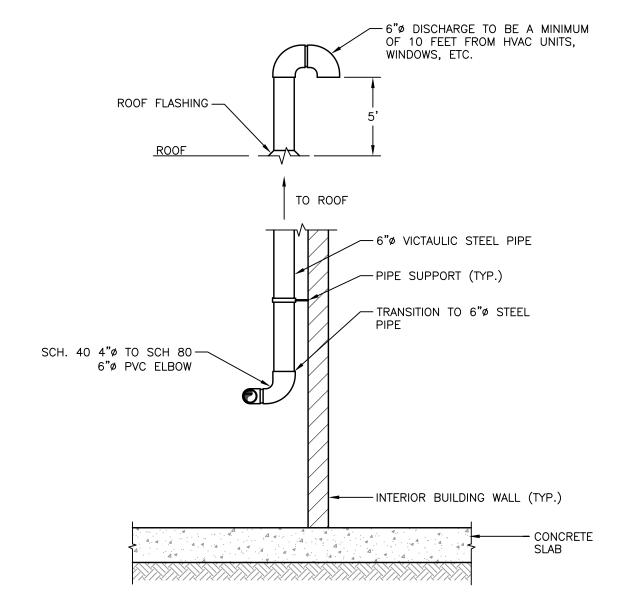





File: 2861.0001Y102.12.DWG





SUB-SLAB DEPRESSURIZATION SYSTEM

— PIPE DETAIL

SCALE: NOT TO SCALE



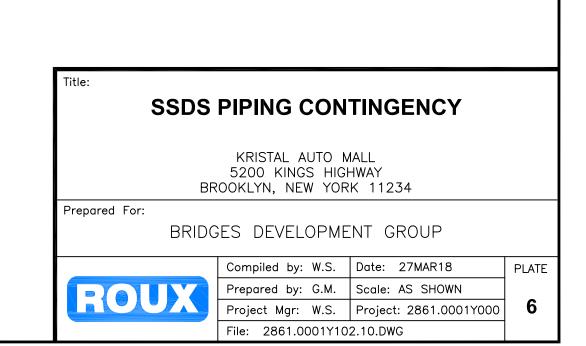




VERTICAL RISER TO ROOF DETAIL

NOT TO SCALE




BLOWER NOTES

1. PROVIDE ELECTRICAL/CONTROL CONDUIT TO BLOWER. COORDINATE WITH ELECTRICAL CONTRACTOR.

<u> BLOWER SKID DETAIL</u>

SCALE: NOT TO SCALE

- 2. ELECTRICAL CONDUIT SHALL BE SIZED FOR 230/460 VOLT, THREE PHASE, 20 AMPS 60 HZ, FOR BLOWER MOTOR.
- 3. THE BLOWER SHALL BE A 3 HP, AMETEK ROTRON MODEL OR APPROVED EQUAL.
- 4. THE BLOWER SHALL BE PROVIDED WITH A NOISE REDUCING ENCLOSURE MODEL SAE30W72F WITH 1/3 Hp VENTILATION FAN OR APPROVED EQUAL.
- 5. THE BLOWER SKID SHALL INCLUDE THE NOISE REDUCING ENCLOSURE, CONTROL PANEL, AMETEK ROTRON MODEL MS300DS KNOCKOUT TANK (WITH HIGH LEVEL ALARM), LOW VACUUM SWITCH (O TO 5 INCHES OF WATER), VACUUM RELIEF VALVE, MANUAL DILUTION VALVE WITH INLET FILTER, INLINE FILTER GAUGES, AND INTERCONNECTING PIPING/FITTINGS.
- 6. THE CONTROL PANEL SHALL HAVE GREEN (OPERATION) AND RED (ALARM) INDICATOR LIGHTS, E-STOP, AND MANUAL RESET BUTTON.
- 7. THE SYSTEM ALARMS TO BE TRIGGERED BY LACK OF ELECTRICAL POWER, LOW VACUUM AND HIGH LEVEL IN KNOCKOUT TANK.
- 8. PROVIDE ALARM LIGHT INDICATING SYSTEM SHUT DOWN. SPECIFIC LOCATION TO BE COORDINATED AND CONFIRMED WITH ROUX ASSOCIATES.

