SECTION VII

1. ENVIRONMENTAL REPORTS

ATLANTIC ENVIRONMENTAL SOLUTIONS, INC.

January 12, 2009

Mr. Eric Yong Ho Kim Nara Bank 16 West 32nd St New York, NY 10001

Re: Summary Letter of Phase II Subsurface Investigation 1199-1221 Sutter Avenue, Brooklyn, New York

Dear Mr. Kim:

The following provides the results of the Phase II environmental investigation performed by Atlantic Environmental Solutions, Inc. (AESI) at the referenced property located in Brooklyn, New York ("subject property" or "site"). On January 6, 2009, AESI visited the property to conduct a Phase II subsurface investigation. The investigation consisted of a soil boring program for the collection of soil and groundwater samples to evaluate the impacts of historic dry cleaning operations at the site.

The following provides a brief summary of the results of the subsurface investigation, as well as AESI's recommendations. Refer to Figure 1 (attached) for a site location map.

Soil Sampling and Analysis Methodology

AESI advanced five (5) soil borings (S1, S2, S3, S4 and S5) to a depth of sixteen (16) feet in the parking lot on the north side of the subject property. Soils encountered at each boring were screened for volatile organic vapors using a Photo Ionization Detector (PID). A total of six (6) soil samples were collected during the investigation. One (1) soil sample was collected from each boring where PID readings indicated the highest concentrations of volatile organic compound (VOCs). An additional soil sample was collected below the groundwater table from soil boring S-3 to evaluate the possible impacts of chlorinated solvents at depth due to the historic dry cleaning operations.

Two (2) groundwater samples were collected from temporary well points in soil borings S2 and S3. Each sample was collected using disposable bailers at a depth of sixteen (16) feet below ground surface (bgs) in each borehole.

Soil and groundwater samples were submitted for laboratory analyses of VOCs and semi-volatile organic compounds (SVOCs). All samples were placed in an ice-filled cooler and delivered to Integrated Analytical Laboratories, LLC (IAL) of Randolph, New Jersey. IAL is a New York-certified analytical laboratory (#11402) whose QA/QC manual is currently on file with the State. Please see Attachment A for copies of the soil boring logs. See Figure 2 for sample locations.

Soil Sampling Analytical Results

A total of six (6) subsurface soil samples were collected from the subject property on January 6, 2009. Please see Table 1 for a summary of laboratory results and Figure 2 for soil sample locations. The laboratory analytical report is included as Attachment B.

Analyses of soil samples identified one (1) VOC, tetrachloroethene (PCE), above the New York State Department of Environmental Conservation (NYSDEC) soil clean up standards. PCE was identified at a concentration of 37.5 parts per million (ppm), compared with the NYSDEC soil cleanup standard of 1.4 ppm. This sample was collected at a depth of ten (10) feet below ground surface (bgs) from soil boring S3, which was completed directly adjacent to the former dry cleaning facility. PCE is a chlorinated solvent that is known to be typically associated with dry cleaning operations.

Several SVOCs, including benzo(a)anthracene, chrysene, benzo(k)flouranthene, benzo(p)pyrene and dibenz(a,h)anthracene were identified in soils slightly above the NYSDEC soil cleanup criteria standards in Soil Borings SB1 and SB4. There is currently no known source for these SVOCs at the subject property, and the low levels identified on-site may be an indication of background levels.

Groundwater Sampling Analytical Results

Two (2) in-situ groundwater samples were collected from temporary well points at the subject property on January 6, 2009. Samples were collected from borings S2 and S3 at a depth of sixteen (16) feet below ground surface (bgs) in each borehole. Please see Table 1 for a summary of laboratory results for these samples and Figure 2 for soil sample locations. The laboratory analytical report is included as Attachment B.

Analyses of groundwater samples identified several VOCs above the NYSDEC's groundwater standards at each soil boring location. VOCs above NYSDEC standards include acetone, methylene chloride, trichlorothene (TCE) and PCE. PCE and TCE are both chlorinated solvents which are typically associated with dry cleaning operations. The highest concentrations of PCE and TCE were identified in boring S-3, at 1,480 parts per billion (ppb) and 51.2 ppb respectively. PCE and TCE concentrations in boring S-2 were identified at 187 ppb and 1.5 ppb respectively. The NYSDEC groundwater standard for both PCE and TCE is 5 ppb.

One SVOC, chrysene, was found above the NYSDEC groundwater standard in soil boring SB3. Chrysene was identified at 0.219 ppb, compared with the NYSDEC standard which is 0.002 ppb.

Conclusions/Recommendations

During the January 6, 2009 subsurface investigation, AESI identified a release of the chlorinated solvents PCE and TCE in soil and groundwater at the site. These chlorinated compounds were identified in two (2) soil boring locations, SB2 and SB3, which were completed within close proximity to eastern portion of the subject property building, which is known to be the location of historic dry cleaning operations. Concentrations of PCE and TCE were identified in soil and groundwater above the NYSDEC criteria standards.

Since a release to the environment has been observed, New York State law requires that the release is reported to the NYSDEC. AESI recommends that the NYSDEC spill hotline (1-800-457-7362) is contacted to report the release.

Since concentrations of PCE and TCE were identified in soil and groundwater above their NYSDEC criteria standards, AESI recommends that soil and groundwater remediation is performed at the site.

Should you have any questions or concerns regarding this letter report, please do not hesitate to contact us at (201) 876-9400.

Very truly yours,

Atlantic Environmental Solutions, Inc.

Jeffrey W. Anderson, CHMM

Vice President

Michael Novak President

FIGURES

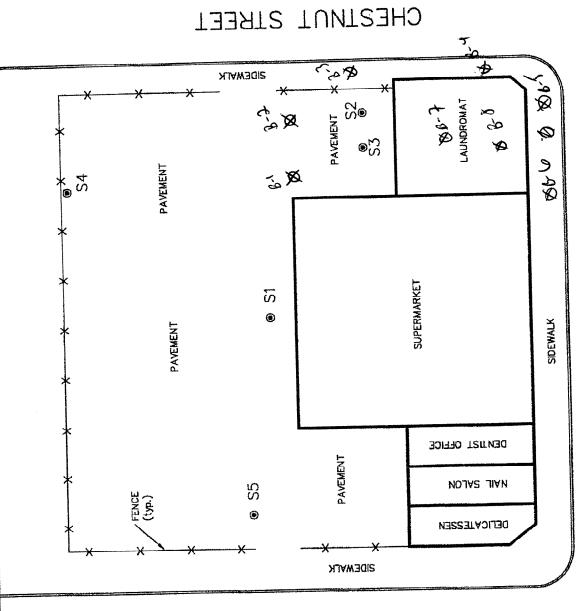


Figure 1: Site Location Map

1199-1221 Sutter Avenue Brooklyn, New York

Atlantic Environmental Solutions
5 Marine View Plaza, Suite 303
Hoboken, New Jersey

CRYSTAL STREET

SUTTER AVENUE

AVENUE BROOKLYN, N.Y. 1199 SUTTER

ATLANTIC ENVIRONMENTAL SOLUTIONS, INC. BORING LOCATION MAP 5 MARINE VIEW PLAZA-SUITE 303 HOROKEN NEW JERSEY 07030 FIGURE

• - SOIL BORING LOCATION

AESI2009-1

TABLES

TABLE 1

Soil Sampling Results: January 6, 2009

1199-1221 Sutter Avenue Brooklyn, New York

Colorative Col		Client ID: Sample Depth (Ft.):	NYSDEC Rec. Soli	S1 4/5	S2 14/15	S3 10 00107-003	S3D 14/15 00107-004	S4 6/7 04 00107-005	S5 14/15 00107-006
thene (Popm) thene thene (EDC.) (popm) thene (PDC.) (popm) (popm)		Lab ID: Date Sampled: Matrix:	Cleanup Objective (ppm)	04/06/2009 Soil	01/06/2009 Soll	01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil
thene thene thene thene thene to 0.2 ND	Volatiles (ppm)	American formation of the control of				<u>(</u>	2	S	O Z
thene thene to 0.2	Control of the Contro		0.2	2	2	2) i	2 2	2
isulfide e chorder oroethene or		en de la companya de	Ο,	2	Q	ON N	2	2 2	2 5
isulfide e chloride e chloride e chloride e chloride morethane corethane corethan	Chloroethane			2	S	2	ջ	2	2 !
Second S	1,1-Dichloroethene		. c	S	2	2	ON.	Ω Z	2
de cethene oethene ND oethene ND oethene ND oethene ND oethene ND	Acetone		7-1 -0	2	2	QN QN	2	S	2
thene thene had been been been been been been been bee	Carbon disulfide		ų.	2 5	S	2	Q.	Q N	S
thene th	Methylene chloride			2 2	S	9	9	Q N	2
ND	trans-1,2-Dichloroethene		3 6	2 2	S	2	오	Q.	2
one (MIBK) one (M	1,1-Dichloroethane		7 - C	2 5	Ê	2	QN	2	2
ordethane achloride achlor	2-Butanone (MEK)		o c 3 ¢	9 9	2	S	Q	9	Q.
EDC)	Chloroform		o 0	9 5	2	S	2	S	Q N
EDC) EDC) ND ND ND ND ND ND ND ND ND N	1,1,1-Trichloroethane		o (2 5	Ê	Q.	S	S	2
sthene ND ND ND 2-pentanone (MIBK) 0.06 ND ND 0.414 2-pentanone (MIBK) 0.07 ND ND ND ND 2-pentanone (MIBK) 0.07 ND ND ND ND ND roethene 0.05 ND ND ND ND ND shloromethane 0.05 ND ND ND ND roene 0.05 ND ND ND ND roene 0.05 ND ND ND ND	Carbon tetrachloride				S	QN	S	S	O Z
thene 2-pentanone (MIBK) 2-pentanone (MIBK) 2-pentanone (MIBK) ND ND ND ND ND ND ND ND ND N	1,2-Dichloroethane (EDC)		3 (S		S	S	2	Q	2
ON O	Benzene		<u>}</u> {	2	Q Z	0.414	2	2	S
ON O	Trichloroethene		÷ (2 2	Ş	S	9	2	S
oroethene soroethene s	4-Methyl-2-pentanone (MIBK)) (2 2	2 5	2	문	Q	Q.
ene Opane Op	Toluene		ρ:	2 5	S S	37.5	0.443		Q Q
opane opane opanethane opanethane e opanethane opanethane opanethane opanethane opanethane opanethane	Tetrachloroethene		4 (2 2	C Z	2	2	S	8
omethane ND	1,3-Dichloropropane		, (2 2	C Z	2	2	Q.	2
	Dibromochloromethane	Constitution of the consti	\$!	2 2	2	2	2	Q N	Q N
	Chlorobenzene			2 2	2 2	2	N	2	Q
	Ethylbenzene		n n	2 2	2 9	Q	ON.	ON	g

TABLE 1

Soil Sampling Results: January 6, 2009

1199-1221 Sutter Avenue Brooklyn, New York

Client ID: NYSDEC S1 S2 S3 S3D								
Sample Depth (Ft.): Rec. Soil 415 14115 10 14115 1		WATE	55	83	S3	S3D	84	S 5
### BIOLITIC Claim Conjective Conjective	Cited Stands Doubt (Ft.)		4/5	14/15	9	14/15	2/9	14/15
Pate Sample	Sample Deput (Tr.):	Cleanup		00107-002	00107-003	00107-004	00107-005	00107-006
BNA (ppm) - BNA (Date Sampled:	Objective		01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil
BNA (ppm)			11	S	QN	S	S	S
BNA (ppm) - BNA (ppm) - BNA (ppm) - BNA (ppm) - BNA (ppm) - BNA (ppm) - BNA (ppm)	1,1,2,2-1etrachioloethane	N C	2	S	2	ON	S	2
No	1,2,3-1fichiologiopalie	u Ye x	2	<u>Q</u>	ON.	O _N	Q.	윋
Indicethane	allagionolicina y	γ, υ ∝	2	2	QN	S	ON	2
BNA (ppm) - BNA (14-Unimorphisms): Ø): h	2	NON	ND	ON N	Q	2
BNA (ppm)	- Z-Judiudioelizene	7.5	2	2	Q	2	Q	2
illes - BNA (ppm) NA ND ND 37.9 0.443 illes - BNA (ppm) NA ND ND ND ND ND illes - BNA (ppm) Cop 30 ND ND ND ND ND illes - BNA (ppm) ND ND ND ND ND ND illes - BNA (ppm) ND ND ND ND ND ND illes - BNA (ppm) ND ND ND ND ND ND illes - BNA (ppm) ND ND ND ND ND ND illes - BNA (ppm) ND ND ND ND ND ND includence And ND ND ND ND ND	1,4,4-1101000000000000000000000000000000	ů,	2	2	QN.	QN N	Q.	2
siles - BNA (ppm) 0.00 ND ND <th>TOTAL VO's:</th> <td>¥.</td> <td>2</td> <td>QN</td> <td>37.9</td> <td>0.443</td> <td>ND</td> <td>2</td>	TOTAL VO's:	¥.	2	QN	37.9	0.443	ND	2
alene Denot	Semivolatiles - BNA (ppm)						!	į
alene O.11 ND ND ND ND ND ND ND ND ND		EG O	2	g	Q.	2	2	2
O		0.00	2	2	S	S	O N	2
alene A by the not of	AIIII 0	e i c	Q	2	딮	S	2	2
enol thylphenol)	£ S	9	2	2	2	2
enol thyphenol thyph	z-Metnyiphenoi	}	S	2	NO NO	9	2	오
henol note	4-Metnylphenol	0000	Z	2	S	2	Q	S
ND N	Nirobenzene		2	N	呈	9	S	ջ
On O	encondos	: & : & : C	O Z	2	S	2	2	2
henol One of the color of the		- C	2	2	2	Q.	ON.	Q.
nb	Denzoic acid	4	2	ON N	Q.	2	9	9
100 ND		, r	0.089	Q	ON ON	2	2	2
ON O	Vaphinalene	OCC O	S	Q	Q	2	2	Q
ON O	4-Choroanine	0.00	S	2	Q	9	잎	g
ON ON ON ON	4-Chioro-3-metrayipmental	38.7	S	2	QN	S	2	2
ON ON ON	Z-Metnyinaphinaiene	} {	2	S	QN N	9	Q.	ON
	2,4,5-1 renotobileno	6 7 7 8	Ş	Q	2	9	2	N Q
ON ON	2-Nitroaniine	200	É	2	2	2	Q	ON

TABLE 1

Soil Sampling Results: January 6, 2009

1199-1221 Sutter Avenue Brooklyn, New York

			Z	63	53	S3D	\$4	SS
	Client 10:		- ¥	14/15	\$ \$	14/15	2/9	14/15
	Sample Depth (Pt.):	Cleanup	00107-001	00107-002	00107-003	00107-004	00107-005	00107-006
	Date Sampled:	Objective	01/06/2009 0	01/06/2009 Soil	01/06/2009 Soil	01/06/2009 Soil	UT/UD/Z003 Soil	Soil
	Matrix			CN	Q	S	S	Q
2,6-Dinitrotoluene		, (250		9	S	Q	2
Acenaphthylene		4 6	50.5		2	S	S	S
3-Nitroaniline		3 r 0 s	0.150		2	Q	0.043	2
Acenaphthene			<u> </u>		S	Q.	QN	2
2,4-Dinitrophenol			S		Q	2	9	2
4-Nitropheno) (1) (2)	0.098		2	9	2	2
Dibenzofuran		V Y	2		<u>N</u>	9	O Z	2
Diethyl phthalate		S	5 5		2	Q	ΩŽ	2
Fluorene		3 6			2	9	2	2
Hexachlorobenzene		.	2 2		2	QN	Q	2
Pentachlorophenol		2 6	- E		QN	NO	0.471	S
Phenanthrene	Control Contro	7 6	0.407		QN	Q	0.098	2
Anthracene		3 -	<u> </u>		8	2	QN.	Ω
Di-n-butyl phthalate		_ C O û	27.2		9	S	0.773	S
Fluoranthene		ን	24.0		2	QN.	0.618	S
Pyrene) () ()			Q	QN	2	
Butyl benzyl phthalate			2 2		9	S	2	잎
3,3'-Dichlorobenzidine		1 0	£ £		2	QN.	0.357	O N
Benzo[a]anthracene		2,75	184		S	2	0.360	呈
Chrysene		3 (1.46	0.290	0.605	0.429
Bis(2-ethylhexyl) phthalate	And the second s	ے م	124.0		OZ.	2	<u>Q</u>	2
Di-n-octyl phthalate) }	2 2		2	2	0.213	2
Benzo[b]fluoranthene			- *		2	Q	0.366	2
Benzo[k]fluoranthene		i C	- 10		2	2	0.245	S
Benzo[a]pyrene		o (C75 U		S	2	읖	Q N
Indeno[1,2,3-cd]pyrene		2.00	0.125	2	Q	S	ON	ON.
Dibenz[a,h]anthracene			(1)					

TABLE 1

Soil Sampling Results: January 6, 2009

1199-1221 Sutter Avenue **Brooklyn, New York**

Date Sampled: Objective 01/06/. Matrix: (ppm)	4/5 10107-001 11/06/2009 Soil	14/15 00107-002 01/06/2009 Soil	S3 10 00107-003 01/06/2009 Soil	S3D 14/15 00107-004 01/06/2009 Soil	S4 6/7 00107-005 01/06/2009 Soil	14/15 00107-006 01/06/2009 Soil
	7760	CN	9	吕	Q	2
Benzo[g,h,i]perylene	1.641	0.860	146	0.290	4,15	0.429
TOTAL BNA'S:	10.4	200.0				

ND = Analyzed for but Not Detected at the MDL J = The concentration was detected at a value below the MDL

All qualifiers on individual Volatiles & Semivolatiles are carried down through summation. **BOLD**= Concentrations above NYSDEC Soil Cleanup Standards

TABLE 2

Groundwater Sampling Results: January 6, 2009

Brooklyn, New York 1199-1221 Sutter Avenue

Mark	
10	4-Chlora-3
### State Control Cont	4-Chloroar
Second S	Naphthalei
Control Cont	2,4-Dichlor
1001/06 1001	Benzoic ac
1000 100	S-Nitropher
1901 1901 1902 1903	Isophorone
Jointellene 19 19 19 19 19 19 19 1	Nitrobenze
100 100	4-Methylph
100 100	Z-Methylph
Desire D	Z-Chloroph
District	anilinA
100 100	Phenol
100 100	
100-01-16.16 100-	
Participation Participatio	OV JATOT
100 100	JdonT-S t r
100 100	
100 100	
Octobropsine Octo	•
100 100	
100 100	
Particle	
Particle	Total Xylene
District	Ετμλιρουχου
Dromethene So	Chlorobenze
September Sept	
Particle	2
Policide	Soroldos 19T
Divide	Toluene
Decide	
Delication Del	Trichloroethe
100 100	Benzene
replacide 2 ND ND roethane 2 ND ND inforcethene 5 ND ND inforcethene 5 ND ND inforcethene 6 ND ND inforcethene 6 ND ND inforcethene 6 ND ND inforcethene 6 ND ND	
Index	Carbon tetra
On On On On On On On On	
100 AD	Chloroform
abinoir On On G G abinoir On On G G abinoir On On G G abinoir and G G abinoir) anonstu8-S
abitolic and a spinolic and a spinol	eonoldoiG-f, f
E.t.a ON and the state of the s	
The second secon	Methylene ch
	Carbon disulf
£11 E.01 = 08	Acetone
an a	eonaldaiG-1,1
ON ON 09	Chloroethane
	Vinyl chloride
Andrew of the first of the firs	volatiles
suceupA suceupA (dqq) :xfrisM	
Date Sampled: Criteria 01/06/2009 01/06/2009	
500-80100 100-80100 sbisbnst2 :ClideJ	
Sample Depth: Groundwater 16	
Client ID: NYSDEC S2 AQ S3 AQ	
Fundamental Control Co	

S 3J8AT

Groundwater Sampling Results: January 6, 2009

Brooklyn, New York

ON ON ON ON ON S3.1	GN GN GN GN GSZ'0	200.0 200.0 200.0 6 AN	Benzo(k)fivoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Genz(a,h)anthracene Benzo(g,h,g)erylene
0N 0N 0N 0N	2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	200.0 200.0 200.0 200.0	Bnso(a)pyrene indeno(1,2,3,6)byrene Bneosidhafia,b]znədiQ
ир ИВ ИВ	0 N O N O N O N O N O N O N O N O N O N	0.002 0.002 0.002	Benso[a]pyrene Breny(q[bɔ-ɛ,2,t]onəbni
an an	DN DN BE	0.002 0.002	Benzo[a]pyrene
ON ON	an an	0.002	
ΟN	an a	The state of the s	20.0din===:iBf:!!
1	12		Benzo[b]fluoranthene
71		0.002	DI-n-octyl phthalate
ND	an j	205	Bis(2-ethylhexyl) phthalate
an	an [09	Chrysene Chrysene
an	ON	0,002	Benzo[a]anthracene
<u>0.219</u>	an	0.005	anibisnadorohioiQ-'8,8,
αN	an	(AV)	Butyl benzyl phthalate
OΝ	αN	09.	Pyrene
722.0	an	09	Fluoranthene
654.0	αN	OG	Di-n-butyl phthalate
284.0	196.0	09	Ataledida lyting a id
an	ΩN	- 15 O9 - 15 E	
031.0	0.246	OG	Phenanthrene
an	an l		Pentachlorophenol
ØΝ	ΩN	96.0	Hexachlorobenzene
αN	an		E)notene
αN	0.152	209	Diethyl phthalate
ΩN	ΩN	4 4	Dibenzofuran
ON	ПD	9	4-Nitrophenol
ON .	ND	2	IonariqonliniQ-4,S
ΩN	an	50	Acenaphihene
ON .	αN	9	anilineotii/I-8
ΩN	an	502	- analythytene
ON	an	and it is consisted in the construction of the	9-6-Dinitrotoluene
an	ØΝ	200	ətələrliriq iyrismiC
QN	αN	9	enilinsortiV-5
ΩN	an		lonahdoroht-6,4,5
SuceupA	SuosupA	(qdd)	:xinisM
04/06/2009	6002/90/10	Einaiho	:belgme2 ete0
200-80100	100-80100	lebrebneta	:Ol de.1
91	91	Groundwater	:htdeO elqms2
53 AQ	DA S2	NAZDEC	Client ID:

⁽IS) = Interim Specific Criteria based on the methodologies and risk assessment approach contained in the GWGS.

(ISM) = An Interim Specific Criteria (see above), but expressly indicated to ensure consistency with Safe Drinking Water Act Maximum Contaminant Level(MCL); may differ from specific criteria in the GWQS.

Act Maximum Contaminant Level(MCL); may differ from specific criteria in the GWQS.

(IGC) = Interim Genetic Criteria for synthetic organic chemicals (SOC) with evidence of carcinogenicity; 5 ppb

(IGNC) = Interim Genetic Criteria for SOCs tacking evidence of carcinogenicity; 100 ppb

eldslisvA abrabnat2 oV = (AV)

ND = Analyzed for but Not Detected at the MDL

BOLD= Concentrations above NYSDEC Groundwater Standards

ZOIT BOBING FOGSWhendix A

Phone: (201) 876 9400 Fax:
Sutter Avenue Use: Soil sampling Type: Grab
Use: Soil sampling Type: Grab
Tyne: Grab
Purge Method: N/A Screen Typ
Sample Method: N/A
Sample Parameters: VOC and SVOC Sand Pack: NA
Depth (ft.) Sample ID and Depth OVM (Meter Units) Blows/12.0" Recovery (feet) Soil Type Depth (
(0.4" Asphall
2 3
3 4 5-1 9ppm 4"-4'- black fill material 5
5 4'-6'-Dark brown sandy soil
7
00
9
10
11
12'-Groundwater encountered
13
14
100

17 January 197	7030		
5 Marine View Plaza, Sule 303, robusien, New 2003, Phone: (201) 876 9400 Fax: (201) 876 9563		G.W. Encountered: 12'	Static Water:
Permit #: N/A Location:	arking Lot Berii	Boring - Depth: 16'	Diameter: 2"
Site Name: 1199-1221 Sutter Avenue	Case #:	Casing - Length: N/A	Diameter:
Owner: Anthony Bileddo	t Cac. Co. S	Screen - Length: N/A	Diameter:
Boring Drill Date: 1/6/09	Durge Method: Disp. Bailer	Screen Type:N/A	
Boring Driller: Acorn Drilling	Sample Method: N/A	Bentonite: N/A	
Boring Rig: Geoprobe	Sample Parameters: VOC and SVOC		
Driller/Helper: Brett Amsbacher		Depth to PVC Rim: N/A	
Sampling Method: Grab	Calibrer of ron	R.)	
Depth (fl.) Sample ID and Depth OVM Meter Units) Blows/12.0" Recovery (feet) Soil Type	Soil/Geologic Description	Depth (f	Boring Diagram
	0.4" Asphall		
	A Company of the Comp	3	
2	4".2"- black soil malerial		
3			
4			
S)			
O	2'-6'-Dark brown sandy soil		
7			
		æ	
000		9	
	6'-10'Dark brown sand	10	
10			
		12	
	10'-12'-Black brown coarse sand		
	12.5'-Groundwater encountered	13	
ō	1,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	14	
14 S-2 0ppm	12-14-Light brownighty saliv	15	
	The second secon		

Atlantic Environmental solutions,	John John Janes	er sammen er stelle	Boring for Location:	: S3
Marine View Plaza Sulle 303 Hoboken, New Je	rsey 07030			
Phone: (201) 876 9400 Fax: (201) 876 9563		- 1	G.W. Encountered: 12'	Static Water:
Permit #: N/A Lo	Location: Parking Lot Bellillu Lauliu Villas	ICH CHIER.	Boring - Depth: 16'	Diameter: 2"
Site Name: 1199-1221 Sutter Avenue	Case #:	lina	Casing - Length: N/A	Diameter:
Owner: Anthony Biledgo			Screen - Length: N/A	Diameter:
Boring Drill Date: 1/6/09	Diamo Mathod	· N/A	Screen Type:N/A	
Boring Driller: Acorn Drilling	Turge weerlook	1 11/0	Bentonite: N/A	
Boring Rig: Geoprobe	Salityle medica.		Sand Pack: N/A	
Driller/Helper: Brett Amsbacher	Sample Farameters: VOC	in the second se	Death to BVC Rim: N/A	and the second s
Sampling Method: Grab	Sampler: S. Kelly	elly	١.	
very et)		Soll/Geologic Description	oth (ft.)	Boring
Depth Sampl and Dr Ovt (Meter t Blows/ Reco (fee			Der	Diagram
	0-4" Asphall			
-3		process responsible for the contract of the co		
2	4"-2' -Dark brown sandy soil		2	
			(42)	
٠			4	
			55	
5.			The state of the s	
6				
7	Management of the control of the con	e industri, e quistri statisfate prime de come a dell'estrato de de desper e seficiente e e empresant communicativo de producto e en estrato e e en estrato e en		
00			8	
	o'_o'. I inht hrown sandy soil	Andrews (1917) were the second of the second	9	
C				
10	9'-10'-Coarse black sand	TOTAL CONTRACT OF THE ACT OF THE	The state of the s	
S-3 15ppm				
	ter den en e		3	
12	10'-12'-Light brown sand	ente entre de la composition de la comp		
2			13	
Į.		of the part of the control of the co	14	
14		TO THE RESIDENCE OF THE PARTY O		
S-3d 0	CONTRACTOR OF THE PROPERTY OF		15	
S	Virginia de Caractería de Cara			

Atlantic Environmental Solutions,		INC.	Boring for Location:	S4
Acces View Plaza, Suite 303, Hoboken, New Jersey 07030	Jersey 07030			The second secon
9400 Fax: (201) 876 9563	I ocation: Parking Lot		G.W. Encountered: 12'	Static Water:
Permit #: IV/A	D	Case #:	Boring - Depth: 16	Diameter: 2
Site Name: 199-1221 Conc.		Use: Soil sampling	Casing - Length: N/A	Diameter:
Owner: Aminory Circums		Type: Grab	Screen - Length: N/A	
Boring Drill Date: 170700		Purge Method: N/A	Screen Type:NIA	
BOTING LINES.	State of the state	Sample Method: N/A	Bentonite: N/A	
Boring Rig: Geoplare		Sample Parameters: VOC and SVOC		
Driller/Heiper: Blett All Spacing		Sampler: S. Kelly	Depth to PVC Rim: N/A	
Sampling Method: Grap			t.)	
Depth (ft.) Sample ID and Depth OVM (Meter Units) Blows/12.0" Recovery (feet)	Sail Type	Soil/Geologic Description	Depth (f	Boring Diagram
	0-4"	Asphall		
			3	
2			4	
C			4	
4	A CONTRACTOR OF THE CONTRACTOR		55	
5	4"-5' Construction	Construction debris/Hil Material/Dark blowit sailuy son		
6	5'-6'-Dark brown sandy soil	sandy soil	0	
S-4 35ppm	and the second s	Colored Colore	7	
7				
8	6'-8'-Light brown sand	sand	A manufactural man	
Q			9	
	A THE PROPERTY OF THE PROPERTY		10	
10				
The state of the s				
A D			12	
			13	
13			14	
14				
15	15'-Groundwater	r Encountered		
			The state of the s	-

Atlantic Environmental Solutions,		Boring for Location:	S5
5 Marine View Plaza, Sulle 303, Hoboken, New Jersey 07/030 Bhone: (30) R76 9400 Fax. (201) 876 9563	7 07030		Yatir Whater
	Location: Parking Lot By Crystal Street	72	Diameter Of
199-1221 Sutter Avenu	Case #:		Diameter, A
Owner Anthony Bileddo	Use: Soil sampling	sing - Length: N/A	Diameter:
Carlier Drill Date: 1/6/09	Type: Grab	N/A	Dameter:
Deling Crim Secon Drilling	Purge Method: N/A	Screen Type:N/A	manda popularia de la calcia que en estada en el como e
Bornig Dillier, Concrebe	Sample Method: N/A	Bentonite: N/A	the street states of the state
Borlig Ng. Occeptors	Sample Parameters: VOC and SVOC		and the state of t
Driller/Helper: Biell Allispacific		Depth to PVC Rim: N/A	
Sampling Method: Grab	Sampler: 5. Nelly)	
epth (ft.) ample ID nd Depth OVM Meter Units) lows/12.0" Recovery (feet) Soil Type	Sail/Geologic Description	Depth (ft.	Boring Diagram
++	n.a" Asphalt		
3	A CONTRACTOR OF THE PROPERTY O		
2		•	
. Le		u	
4		4	
A contract of the contract of		5	
33	4"-6'-Construction debris/Fill Material/Dark brown sandy soil	6	
		7	
		22	
8			
		8	
		10	
10			
111			
	6-12'-Dark brown medium sand	12	
12		13	
		14	
14	14'-Groundwater Encountered		
	entre de la constitución de la c	15	

LABORATORY ANALYTICAL SUMMARY REPORT

SUMMARY REPORT

Client: Atlantic Environmental Solutions, Inc.

Lab Case No.: E09-00108	
Project: 1199 SUTTER AVE.	

007 027 027 021 001	D 0°.		0.230	an	4-Chloroaniline
0L1 0D	O			C12 C	
04	-	IN	LET'0	MD	Naphthalene
09			0/1/0	MD	2,4-Dichlorophenol
	. •	IN	091'0	ND	Benzoic acid
1 001	-	IN	00E.0	ND	lonardouriv-S
0.7		IN	0.120	ND	Isophorone
20		IN	0.200	ND	Илторендене
00		NE	071.0	ND	4-Methylphenol
06		IN	0600	ND	2-Methylphenol
		IND	001.0	ND	S-Chlorophenol
		ND	080.0	ŒΝ	ərilinA
3	• .	MD	071'0	ND	Phenol
UV	110 (qdd-7/8n		(qdd-		Semivolatiles - BNA (Units)
-		0011		66 I	TOTAL VO's:
		ND	027.0	ND	ansitaorouflin-2,2,1-oroldoinT-2,1,1
	•	UN	0.340	ND	1,2,4-Trichlorobenzene
		IND	0.230	ND	5.2-Dichlorobenzene
	-	OIN	0.250	MD	4-Dichlorobenzene
	0.2	MD	0.230	UD	1,3-Dichlorobenzene
3	12.C	MD	091.0	ΩN	1,2,3-Trichloropropane
1	3.2E	CIN	OLTO	ND	9.1,1,2,2,-Tetrachlorofdsone
1	3.4	MD	061.0	ND	Total Xylenes
i	3.2.I	MD	072.0	ND	Ethylbenzene
1)p,2	MD	0.200	ND	Chlorobenzene
1)0.p	ND	091.0	CIN	Dibromorhloromethane
Ŀ	3.20	MD	071.0	ND	1,3-Dichloropropane
1	00.0 D4.E	1480	0.330	L81	Tetrachloroethene
i	09'9	ND	0.230	ND	Toluene
	09.p	MD	0.230	UN	4-Methyl-2-pentanone (MIBK)
	09.p	2.12	061.0	05.1	Trichloroethene
ŧ	3.80	ND	071.0	CIN	Benzene
	04.E	ND	061.0	(IN	1,2-Dichloroethane (EDC)
	08.£	ND	00£.0	ND	Carbon tetrachloride
	02.7 00.8	ND	095.0	ND	J, J, Trichloroethane
Į.	2.80	CIN	0,140	ND	Съдотоботя
	02.4	UD	0.210	ND	2-Butanone (MEK)
Ì	4.20	ND	1	ND], l -Dichloroethane
	00.2	ND	4	ND	trans-1,2-Dichloroethene
, market	9.Q£	E.I.S		ND	Methylene chloride
1	02.2	ND	1	ND	Carbon disulfide
1	12.0	£11		£.01	Acetone
-	9'01	ND	1	ND	J. l -Dichloroethene
-	12.8	ND	1	ΠD	Chloroethane
	6.20	ND	1	ND	Sproldo lyniV
	(qdd-7			dd-7/8n)	Volatiles (Units)
1	O MDF		NDF C	D amo	
100	60/9			\$0/9/1	otaa bolgma?
	snoar		SI	109nb¥	:Matrix:
3	91			91	Depth:
	QΑ		4	OV 7S	:Client ID:
	700-8		10	0-80100	Lab Case No.: E

Continued on Next Page ND = Analyzed for but Not Detected at the MDL

Client: Atlantic Environmental Solutions, Inc. SUMMARY REPORT

Project: 1199 SUTTER AVE. Lab Case No.: E09-00108

			ICD (- 4)	
			65L'0	TOTAL BUA'S:
	1.52		dN dN	Benzo[g,h,i]perylene
0.265	ND	597.0	ND	Dibenz[a,h]anthracene
0.240	ND	0,240	ND	hdeno[],2,5-cd]pyrene
0.25.0	(IN	0.250	CIN	Benzo[a]pyrene
0.290	ND	0.290	MD	Benzo[k]Ilnoranthene
0.400	ND	001/0	UN UD	Benzo[b]fluoranthene
046.0	ΟN	0,340	ND	Di-n-octyl phthalate
0.270	ND	072.0	ND N	Bis(2-ethylhexyl) phthalate
065.0	ИD	06£.0	ND	Сргузепе
Z9£'0	an	798.0	MD	Benzo[a]anthracene
0.170	612.0	071.0	ND	3,3'-Dichlorobenzidine
0.410	ND	0.410	MD	Butyl benzyl phthalate
0.370	ИD	0.370	UN.	Pyrene
551.0	722.0	551.0	MD	Fluoranthene
051.0	6£4.0	051.0	196.0	Di-n-butyl phthalate
0110	0.482	0110	CIN	Anthracene
211.0	ND	0.112	94S.0	Phenanthrene
501.0	0510	501.0	UD ND	Pentachlorophenol
001.0	MD	001.0	MD	Hexachlorobenzene
0.240	ND	0.240	ND	Fluorene
911.0	αN	9110	751.0	Diethyl phthalate
0.120	ND	0.120	ND	Dibenzofuan
0.070	ND	070.0	MD	4-Nipophenol
061.0	ND	061.0	MD	2,4-Dinitrophenol
0.370	ND	671.0	ND	Anathriques
671.0	(IN	0.250	ND	3-NitroaniN-£
0.250	(IN	501.0	ND	Aceriaphthylene
501.0	ND ND	0.230	ND	2,6-Dinitrotonimid-2,5
0.230	MD	061.0	ND	Dunethyl phthalate
061.0	CIN	0,340	ND	2-Vitroaniline
0,340			MD	lonahqoroldairT-2,4,5
091.0	ND ND	1	ND	2-Methylnaphthalene
0.204	(4-7/8n)		tđ-7/811)	(etinU) ANA - essitatovimos
WDF	Q onot		Conc Q	PARAMETER(Units)
	0/9/I		i0/9/T	Sampled Date
	oanpA		109upA	:xirtaM
	91		91	Depth:
7)V εs		DV ZS	Client D:
i i	0-80100	10	0-80100	: CII da. Lab
			80100-603	Lab Case No.: I

SUMMARY REPORT Client: Atlante Environmental Bolutions, Inc. Project: 1199 SUTTER AVE. Lat Case No.: E69-00107

		50000000	ũ		52		S		930		20 20		35		
	Cilentilli:	Rac. Soil	415		14/15		\$	•	14/15	4	00107-005	98	0-101-0	1	
	Leb ID:	Cleanup	00107-001	501	00107-002	70.2	01/06/2009	2 8	01/06/2009		01/05/2009	8	61/06/2009	5	
	Date Sampled:	Objective	91,06720 So8	£00	HON HON		50¢		Soil		"	100	O Such	JON	
	Mairx:	(bind)	Conc	1	Conc	'ION	Conc Q	겉	0 360 2	MOL) (2) (2)	0.053	9	0.050	
Volatiles (ppim)		0.2	ð	0,080	뎦	0.059	<u> </u>		§ 5	0.062	Ç	0.053	묫	0.059	
Vary chiords		en T	2	0,060	2 9	0.053 0.053	5 5		9	0.062	õ	0.053	2 !	0.039	
1 1-Dictionelliene		4.	2 5	0900	2 <u>2</u>	0,344	9		9	0.158	9 !	0.133 50.00	2 5	0.050	
Accione		7 1	2 2	0000	Ş	0.056	9	0.320	9	0.062	2 9	E 50 0	2	0.059	
Curban disulfide		7 2	2	0.050	S	0.058	9	0.328	9!	250.0	<u> </u>	0.053	2	0.059	
Attethylona chlorida		ŝ	2	0.060	Q.	0.058	S	0.328	2 9	2000	2 2	0.053	2	650.0	
trans-1,2-Dicisloroalhana		1 2	2	0.080	Ş	0.058	Q.	0,328	2 2	0.002	9 9	0.053	Ž.	0.059	
1,1-Dichloroethane		13	2	0 040	D.	0.050	9	0.320	2 2	0.002	2	0.053	2	0.059	
2-Bulanone (MEH)		3	R	090'0	2	0.056	9 9	825.0	2 5	0.062	2	0.053	2	0.059	
Chlarologn		870	ă	0600	2	0.058	<u> </u>	0,128	9	0.062	Š	0.053	皇	0.053	
1,1,1-1 deniorognione		90	NO.	0.050	Ş	0.056	9 5	825.0	2	0.062	Q	0.053	Q.	6500	
Cost per		0.3	o Z	0.060	2	860.0	9 9	0.164	2	0.031	Q	0.027	2	0.029	
1 % Chenicide Insura (march		90'0	ğ	0.630	2 !	0.029	2 2	0.128	문	0.062	õ	0.053	<u> </u>	7000	
		0.7	ş	0.060	2 !	0000	£ 12%	128	2	0.062	Q	0.053	9	9CD:0	
1 periodoperative (MICA)		1.0	2	0.650	2 !	0 E 0 C	Ş	0.328	2	0.062	2	0.053	9 !	8000	
4-Osting-C-posterior production		<u>\$</u>	2	0.050	2 5	8000	3.75	0.328	0 443	0.062	2	0.053	2 !	900	
Townshipson		4.4	2	0.090	2 5	2000	e C	0.328	NO	0.062	9	0.053	2 5	0.000	
		t.	2	060.0	2 2	850.0	2	0.326	2	2900	Ö	0.053	2 5	690	
Common March Company		(NA)	2	0.090	2 9	9.00	Ş	326	2	0.062	Ď	0.053	2 5	9000	
Chicabanagana		1.7	S	0000	9 5	8500	Ş	0,326	5	2900	2	50.0	žź	5000	
Fithylbenzera		wa i	2 5	0.000	2 2	0.058	Q	0.326	2	0.082	2	5000	9 9	650'0	
Tetal Aylones		2 :	2 5	0.080	2	0.058	ð	0.320	Š	750.0	2 <u>2</u>	0.050	Q Z	0.059	
1,12,2-Tetrachioreelhane		o e	2 5	0.060	2	0,058	유	0,326	2	2000	2 <u>2</u>	183	2	0.059	
1,2,3.The Manaproparie		ŧ #	9 5	0.060	2	0.053	Ġ	0.328	2 !	2007	2 5	0.053	Š	0.059	
1,3-Dichlorabenzons			9	0.000	2	0.053	Ö	0.328	2 :	0.062	2	0.053	Ş	6,059	
1,4-Dichlorabenzano		, er	2	0.960	2	0.058	C .	0.328	2 2	0.067	2	0.053	문	0.059	
1,2-Dichlorabenzono		: 3	2	0.060	2	0.053	Z :	0.22	5 E	0.062	2	0.053	2	0.059	
1,2,4.Tricilorabanzene		0.9	9	0,060	<u>Q</u>	0,055	9 5	0.320	54.0		2		ΩŽ		
1,1,2.Tuchloto-1,4,2-inutoloomens		NA	QN		Q.		877							•	
TOTAL VUS								2000	Ş	0.062	2	0.059	웃	5/0:0	
Bemivolatiles - BNA (ppm)		9.03	Š	0.078	Z	0.076	9 9	2,000	2 5	0.082	무	0.069	2	0.075	
Phenoi		0.1	2	0.078	2	0.076	2 5	200	2	0.082	2	0.059	2	6,0,0	
Anthre		4,0	ž	0.078	2 5	0,000	2 5	0.005	2	0.082	2	0.069	9 !	U.U.C	
Section of the sectio		0,100	2	GD78	§ §	870.0	2	0.035	Q	500.0	2	6900	2 2	2730	
A. Marinderheit		6 .	9 9	27.0	3 5	0.075	2	5,085	2	9.082	2	6900	2 5	2000	
Niraben 2 6ft		0.200	2 9	1000	9 5	0.076	Š	0.095	õ	0.082	문 !	e gallo	2 5	0.075	
actionate		F .	2 9	8200	9	0.076	2	0.085	딮	0.062	<u>a</u> (9000	2	0.075	
2.Mituphand		000	9 9	0.078	S	0.076	Ö.	0.085	ð	290'0	2 9	5000	9	0.075	
Benzoic acid		7 6	<u> </u>	0.078	22	0.070	2	0.085	9 9	200.0	9 5	0.069	2	0,075	
2.4-Dichlorophenol		Š	6830	0.078	Q	0.076	Š	0.085	2 !	0.002	2 5	696.0	S	0.075	
Naphthaiene		0.220	2	0.076	9	0.070	2	0.085	2 5	0.082	2	0,069	õ	0.075	
4. Chlorounifino		0.240	g	0.076	묫	0.076	2 !	2000	5 5	0.082	2	0.069	9	0,075	
4-Chlore-3-melhyphenal		16.4	2	0.078	足 :	0.076	⊋ 9	0.045	9	0.082	ę	0.069	2 !	0.075	
Z-Molitylnaphittanona			윷	0.070	2	0,0,0	2 5	SEC C	2	0,082	ð	0.069	2	670.0	
2,4,5-1 renioropilettal		0.430	2	0.078	Z !	9700	2 5	0.085	Ş	0.082	ç	0.048	2	0075	
Z-MRGB(MBS)		2.0	£	0.078	2 9	8200	2	0.085	2	230.0	£	0.069	2 :	2000	
Desired Street		1,0	2	0.078	2 2	0.00	2	590.0	9	0,082	문	0.069	2 5	200	
2.0. Sandardang		65	D.074	0.070 etro-o	2 5	0.078	2	0.005	Ö	0.002	Ž ;	6000	5 5	0.075	
1-Nationaline		0.500	2 5	ato c	9 5	0.075	2	0.005	Š	0.082	0.043	6000	2 5	0.075	
Acenachibena		50.3		B70.0	2	0.076	Q	0.085	Ç.	0.082	5 ;	0.003	2	0.075	
2,4-Dinkrophensi		0.200	Ş Ş	0.078	2	0.076	az	0.085	Ş	0.082	2 9	900	2	0.075	
4-Nitrophenal		0,100	96	0.078	Ž	0.078	묫	0.085	2 9	0.082	9 5	0.069	9	2760	
Dibenzohran		7 -	2	0.070	2	0.076	9	0.085	2	200.0	Ì				
Diethyl phthalate		į	!												

INTEGRATED ANALYTICAL LABORATORIES, LLC.

0.076 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0.065 0.068 0.068 0.068 0.068 0.068 0.069 0.069 0.069 0.069 0.069 0.069 0.069
ND N
0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085 0,085
9
0.076 0.076 0.076 0.076 0.076 0.076 0.076 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0.076 0.070 0.070 0.076 0.076 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070
0.180 NO NO NO NO 0.407 NO 2.47 2.47 2.47 2.47 2.47 2.47 2.47 2.47
50.0 10.41 1.0 50.0 50.0 50.0 50.0 50.0 1.224 0.224 0.224 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.
08 9 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Fluctero Hozochisobenzane Pontachisobenzane Pontachisobenzane Pontachisophisobe Elevanthisob Dis-Dury phihalato Pyrana Bayl Verzy phihalato Pyrana Bayl Verzy phihalato Pyrana Bayl Verzy phihalato Baylinosophisobenzine Baylinosophisobenzine Barzolphisobenzine Elevane Ele
Fluorena Honzobio: oben Zuna Honzobio: oben Zuna Flueranthieren Antinacene Di-t-buyl phibalado Flueranthieren Pytena Byt berzyp puhalala 3.3-Deibooben zünä Borzo (ajankhrazene Eistz-dehylmayf, phit Di-t-ocyf puhalala Eistz-dehylmayf, phit Di-t-ocyf phi

Assigned for has his Donastes as the MIL.
 The communitation was after het in a soluce below the ASU.
 Assignations on institute of Vulcation A Synthesial terms correct above through summablen.

Main Office 25 Central Avenue Hauppauge, NY 11788 [631] 234-4280 Fax: 234-4297 Eastern Suffolk P.O. Box 695 Shoreham, NY 11786 [631] 744-8900 Fax: 744-6025

PHASE II SUBSURFACE INVESTIGATION

1199-1221 SUTTER AVENUE BROOKLYN, NEW YORK

Prepared For: AAA Sutter Realty, LLC 153-157 7th Street Garden City, NY 11530

Report Date: May 19, 2009

Prepared By:

Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, New York 11788

TABLE OF CONTENTS

1.0	INTI	<u>RODUCTION</u>	
	1.1	Previous Environmental Assessments	4
	1.2	Scope of Work	4
2.0	SITE	E DESCRIPTION	
	$\frac{-}{2.1}$	Site Location	5
	2.2	Site Improvements	5
	2.3	Hydrogeologic Setting	5
3.0		SE II SUBSURFACE INVESTIGATION ACTIVITIES	,
	3.1	Soil Characterization.	6
	3.2	Groundwater Characterization	9
4.0	CON	NCLUSIONS AND RECOMMENDATIONS	
	4.1	Conclusions	13
	42	Recommendations	14

FIGURES

Site Location Map	Figure 1.0
Site Diagram	Figure 2.0
APPENDICES	
Geological Boring Logs	Appendix A
Laboratory Analytical Report and Chain of Custody	Appendix B
Photodocumentation	Appendix C

1.0 INTRODUCTION

Associated Environmental Services, Ltd. (AES) is pleased to submit this Phase II Subsurface Investigation Report. The field activities were conducted at the subject site on April 1, 2009. The following report summarizes the findings of the Phase II Subsurface Investigation activities.

1.1 Previous Environmental Assessments

A Phase II Environmental Site Assessment (ESA) report was prepared for the subject site by Atlantic Environmental Solutions, Inc. Based upon the findings of the Phase I ESA there was a Recognized Environmental Condition (REC), which required further assessment. The REC is summarized as follows.

The findings of the report indicated a history of dry cleaning operations at the subject site. It was recommended that a Phase II Subsurface Investigation be conducted at the site to determine if there has been any impact to the soil and/or groundwater resulting from the dry cleaning operations.

The results of the Phase II ESA conducted by Atlantic Environmental Solutions, Inc. indicated that the soil and groundwater has been impacted in the borings located in the rear of the former dry cleaners.

1.2 Scope of Work

The scope of work entailed the installation of eight (8) soil and groundwater borings. The scope of work was developed in order to address the REC as noted in the Phase I ESA report. The methodology and equipment employed during the investigative activities are described in depth in Section 3.0.

2.0 <u>SITE DESCRIPTION</u>

2.1 Site Location

The subject property is known as 1199-1221 Sutter Avenue, Brooklyn, New York. The site is located on the North side of Sutter Avenue. The site is located in a residential/commercial area of Brooklyn. The subject site is shown on Figure 1.0 – Site Location Map.

2.2 Site Improvements

The subject property contains one (1) one (1) story building divided into five (5) separate units utilized for commercial/office purposes. The building is constructed with a concrete slab floor and exterior brick/concrete block walls. The subject site and the relevant features are depicted on Figure 2.0 - Site Diagram. The subject site was noted to be in good condition.

2.3 Hydrogeologic Setting

During the investigation, representative soil samples were collected from a depth of zero (0) to fifteen (15) feet below ground surface in the sidewalk and parking areas surrounding the laundromat unit. In addition, representative soil samples were also collected from a depth of zero (0) to five (5) feet from beneath the basement floor of the laundromat. The subsurface lithology consisted of brown to dark brown medium to fine grained sand. The subsurface lithology is summarized in Appendix A – Geological Boring Logs.

Groundwater was encountered at a depth of approximately fourteen (14) feet below grade during the investigation. Groundwater beneath the site is characterized as Class "GA" groundwater. The best usage for Class "GA" groundwater is as a source of potable (drinking) water. Groundwater is not utilized as a source of potable water at the subject site.

3.0 PHASE II SUBSURFACE INVESTIGATION ACTIVITIES

The Phase II Subsurface Investigation activities were conducted at the subject site on April 1, 2009. The following sections summarize the field activities, the field data collected, laboratory analytical data, as well as any other pertinent information obtained.

3.1 Soil Characterization

A Geoprobe® 6610DT series drill rig and Geoprobe® hand equipment were utilized to install eight (8) borings (designated as B-1 through B-8). Borings B-1 through B-6 were performed in the sidewalk and parking areas surrounding the laundromat unit (former Dry Cleaners). Borings B-7 and B-8 were conducted beneath the basement floor of the laundromat. The boring locations are depicted on Figure 2.0 – Site Diagram. Representative soil samples were collected from a depth of zero (0) to fifteen (15) feet below surface grade. Groundwater was encountered at approximately fourteen (14) feet below surface grade during the investigation. The collected soil samples were inspected for visual and/or olfactory evidence of contamination. There was a dark layer encountered in several of the boring locations. In addition, the soil samples were field screened with a photo-ionization detector (PID) for the presence of volatile organic compounds (VOCs). PID readings ranged from above background concentrations of 0.0 parts per million (ppm) to 420 ppm. The lithology encountered and the field data are summarized in Appendix A – Geological Boring Logs.

The layer of dark soil was also encountered in the basement at the groundwater interface. Therefore, in order to characterize the nature of the subsurface soil at the site, it was determined that the soil samples collected from zero (0) to five (5) feet below the basement floor in borings B-7 and B-8 would be submitted for laboratory analysis. The soil samples were immediately stored in laboratory-approved glassware and packed on ice. The soil samples were submitted to a New York State Department of Health (NYSDOH) certified laboratory for analysis. The laboratory chosen for this investigation was American Analytical Laboratories, LLC., which is located in Farmingdale, New York. The NYSDOH Environmental Laboratory Approval Program (ELAP) certification number for the laboratory is 11418.

The soil samples were submitted for analysis of volatile organic compounds (VOCs) utilizing EPA Method 8260. The analytical results for the soil samples were compared to the Recommended Soil Cleanup Objectives (RSCOs) listed in the New York State Department of Environmental Conservation (NYSDEC) <u>Division Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046</u>: <u>Determination of Soil Cleanup Objectives and Cleanup Levels</u>.

The analytical results for the soil samples obtained from borings B-7 and B-8 indicated that there were elevated levels of Tetrachloroethene (VOC) above the NYSDEC Recommended Soil Cleanup Objectives (RSCOs). Boring B-7 contained 5100ppb of Tetrachloroethene, over the RSCO of 1400ppb for the contaminant. Boring B-8 contained 1200ppb of Tetrachloroethene, which is slightly below the RSCO. The analytical results are summarized in Table 1. Complete analytical reports and chain of custody are included with this report as Appendix B.

TABLE 1 Volatile Organic Compounds (VOCs) EPA Method 8260

ANALYTICAL PARAMETERS	NYSDEC RSCOs	B-1	B-2
1,1,1,2-Tetrachloroethane	NL	U	Ü
1,1,1-Trichloroethane	800	U	U
1,1,2,2-Tetrachloroethane	600	U	U
1,1,2-Trichloro-1,2,2-trifluoroethane	6000	U	U
1,1,2-Trichloroethane	NL	U	U
1,1-Dichloroethane	200	U	Ŭ
1,1-Dichloroethene	400	U	U
1,1-Dichloropropene	NL	U	U
1,2,3-Trichlorobenzene	NL	U	U
1,2,3-Trichloropropane	400	Ü	Ü
1,2,4,5-Tetramethylbenzene	NL	Ü	U
1,2,4-Trichlorobenzene	3400	U	U
1,2,4-Trimethylbenzene	NL	U	U
1,2-Dibromo-3-chloropropane	NL	Ū	U
1,2-Dibromoethane	NL	U	U
1,2-Dichlorobenzene	7900	Ü	U
1,2-Dichloroethane	100	Ü	Ŭ
	NL NL	บ	Ü
1,2-Dichloropropane 1,3,5-Trimethylbenzene	NL NL	บ	Ü
1,3-Dichlorobenzene	1600	Ü	Ü
	300	Ü	Ü
1,3-Dichloropropane	8500	U	U
1,4-Dichlorobenzene	NL 8300	U	Ū
1,4-Dioxane		U	U
2,2-Dichloropropane	NL		U
2-Butanone	300	U	<u>U</u>
2-Chloroethyl vinyl ether	NL	U	
2-Chlorotoluene	NL	U	U
2-Hexanone	NL	U	U
2-Propanol	NL	U	U
4-Chlorotoluene	NL	U	U
4-Isopropyltoluene	NL	U	U
4-Methyl-2-pentanone	1000	U	U
Acetone	200	U	U
Acrolein	NL	U	Ü
Acrylonitrile	NL	U	Ü
Benzene	60	U	U
Bromobenzene	NL	U	U
Bromochloromethane	NL	U	U
Bromodichloromethane	NL	U	U
Bromoform	NL	U	U
Bromomethane	NL	U	U
Carbon disulfide	2700	Ŭ	U
Carbon tetrachloride	600	U	Ŭ
Chlorobenzene	1700	Ŭ	U
Chlorodifluoromethane	NL	Ū	Ü
Chloroethane	1900	U	U

TABLE 1 Volatile Organic Compounds (VOCs) EPA Method 8260

Chloroform 300 U	U U U U U U U U U U U U U U U U U U U
Chloroteth NL U cis-1,2-Dichloroethene NL 43 cis-1,3-Dichloropropene NL U Dibromochloromethane NL U Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U U U U U U
Chloromethane NL U cis-1,2-Dichloroethene NL 43 cis-1,3-Dichloropropene NL U Dibromochloromethane NL U Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U U U U U
cis-1,3-Dichloropropene NL U Dibromochloromethane NL U Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U U U U
cis-1,3-Dichloropropene NL U Dibromoehloromethane NL U Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U U U
Dibromochloromethane NL U Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U U
Dibromomethane NL U Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U U
Dichlorodifluoromethane NL U Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	U
Diisoproply ether NL U Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	
Ethanol NL U Ethyl acetate NL U Ethylbenzene 5500 U	
Ethyl acetate NL U Ethylbenzene 5500 U	U
Ethylbenzene 5500 U	U
	Ü
	U
Hexachlorobutadiene NL U	U
Isopropyl acetate NL U	U
Isopropylhenzene NL U	U
m,p-Xylene NL U	Ŭ
Methyl tert-butyl ether (MTBE) NL U	U
Methylene chloride 100 14	16
n-Amyl acetate NL U	U
Naphthalene NL U	U
n-Butyl acetate NL U	U
n-Butyl acetate n-Butylbenzene NL U	U
II-Butyloetizche	Ū
n-Propyl acetate NL U n-Propylbenzene NL U	U
n-Frobytocizene	U
0-Aylene	U
p-Diethylbenzene NL U p-Ethyltoluene NL U	Ū
sec-Butylbenzene NL U	U
sec-Butylochizene	U
Styrene	U
I-Butyl alcohol	U
tert-Butytoetizetie	1200
Tettacinoloctacine 1500	U
Tolucite	Ü
trails-1,2-Dicinoroculiene	Ü
trails-1,5-Dictroroproperie	10
Themorovano.	Ü
Themoroidonenaie	
Vinyl acetate NL U Vinyl chloride 200 U	U

Notes:

- 1. Results are in ug/Kg (parts per billion ppb).
- The Recommended Soil Cleanup Objectives (RSCOs) are listed in the New York State Department of Environmental Conservation (NYSDEC) <u>Division Technical and Administrative Guidance Memorandum</u> (TAGM) HWR-94-4046: <u>Determination of Soil Cleanup Objectives and Cleanup Levels</u>.
- 3. Total VOCs not to exceed 10,000 ppb.
- 4. NL = No Cleanup Objective listed.

Associated Environmental Services, Ltd.

3.2 Groundwater Characterization

The depth to groundwater at the site was determined to be approximately fourteen (14) feet below ground surface. Representative groundwater samples were collected from borings B-1 through B-8. The groundwater samples were collected utilizing the Geoprobe® Screen Point 15 system. The Geoprobe® screen point system utilizes disposable single-use tubing so as to preserve sample integrity and reduces the risk of cross contamination.

The groundwater samples were immediately stored in laboratory-approved glassware and packed on ice. The sample selection was based upon the regional groundwater flow direction. The samples were submitted to a New York State Department of Health (NYSDOH) certified laboratory for analysis. The laboratory chosen for this investigation was American Analytical Laboratories, LLC., which is located in Farmingdale, New York. The NYSDOH Environmental Laboratory Approval Program (ELAP) certification number for the laboratory is 11418.

The groundwater samples were submitted for analysis of volatile organic compounds (VOCs) utilizing EPA Method 8260. The analytical results for the groundwater samples were compared to the Guidance Values / Standards listed in the New York State Department of Environmental Conservation (NYS DEC) "Technical and Operational Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998".

The analytical results for the groundwater samples collected from the subject site borings indicated the presence of several volatile organic compounds (VOCs) in excess of the maximum allowable concentrations set forth by the NYS DEC. Elevated levels of Tetrachloroethene (PCE) were found in borings B-4 through B-8. In addition Methylene Chloride was present in all eight (8) groundwater borings and is considered a typical laboratory contaminate, elevated levels of Trichloroethene were detected in borings B-6 through B-8, and borings B-5 and B-7 indicated elevated levels of cis-1,2-Dichloroethene above the NYSDEC Groundwater standards. The analytical results are summarized in Table 2. A copy of the laboratory analytical report and chain of custody are included with this report as Appendix B.

TABLE 2 Groundwater Analytical Data EPA Method 8260 - Volatile Organic Compounds (VOCs)

ANALYTICAL PARAMETERS	NYSDEC Guidance Values	B-1	В-2	В-3	B-4	B-5	B-6	B-7	B-8
Dichlorodifluoromethane	5	U	U	U	U	U	U	U	U
Chloromethane	5	U	U	U	U	U	U	U	
Vinyl Chloride	NL	U	U	U	U	U	U	U	U
Bromomethane	5	υ	U	U	U	U	U	U	U
Chloroethane	5	υ	ט	U	U	U	U	U	U
Trichlorofluoromethane	5	U	U	υ	U	U	U	U	U
1,1-Dichloroethene	4	U	U	υ	U	U	U	U	U
Methylene Chloride	10	12	11	9.6	12	16	24	11	11
Trans-1,2-dichloroethene	5	U	U	U	υ	υ	U	υ	U
1,1-Dichloroethane	5	U	U	U	U	U	U	U	U
2,2-Dichloropropane	5	U	U	U	U	U	U	U	U
Cis-1,2-dichlorethene	5	U	U	U	U	6.8	4.6	81	υ
Bromochloromethane	5	U	U	U	U	U	U	U	U
Chloroform	7	U	U	U	U	U	U	υ	U
1,1,1-trichloroethane	5	U	U	U	U	U	U	U	U
Carbon Tetrachloride	5	υ	U	U	U	U	Ü	U	U
1,1-Dichloropropene	5	U	U	U	U	U	ប	U	U
Benzene	1	U	U	υ	υ	U	U	U	U
1,2-dichloroethane	0.6	U	U	U	U	U	U	U	U
Trichloroethene	5	U	U	U	1.6	2.7	14	42	11
1,2-Dichloropropane	1	U	U	U	U	U	U	U	U
Dibromomethane	5	U	U	U	Ū	U	U	U	U
Bromodichloromethane	50	U	U	U	U	U	υ	U	υ
Cis-1,3-dichloropropene	0.4	U	U	U	υ	υ	U	υ	U

TABLE 2 Groundwater Analytical Data EPA Method 8260 - Volatile Organic Compounds (VOCs)

	NYSDEC	T	· · · · · · · · · · · · · · · · · · ·	T			<u> </u>		T
ANALYTICAL PARAMETERS	Guidance Values	B -1	B-2	B-3	B-4	B-5	B-6	B-7	B-8
Toluene	5	U	U	U	υ	U	U	U	U
Trans-1,3-dichloropropene	0.4	U	U	U	U	U	U	U	U
1,1,2-trichloroethane	1	U	U	U	U	U	U	U	U
Tetrachloroethylene	5	U	U	2.2	38	93	380	610	510
1,3-dichloropropane	5	U	U	U	U	U	U	U	U
Dibromochloromethane	5	U	U	U	U	U	U	Ū	U
1,2-dibromoethane	NL	U	U	υ	U	U	U	U	U
Chlorobenzene	5	U	U	U	Ü	U	U	U	U
1,1,1,2-tetrachloroethane	5	U	U	U	U	U	U	U	U
Ethylbenzene	5	U	U	U	U	U	U	U	U
Styrene	5	U	Ū	U	U	U	U	U	U
Bromoform	50	U	U	U	U	U	U	U	U
Isopropylbenzene	5	U	U	U	U	U	U	U	U
Bromobenzene	5	U	U	υ	U	U	U	U	U
1,1,2,2-tetrachloroethane	5	U	U	U	U	U	U	U	U
1,2,3-trichloropropane	0.04	U	U	U	U	U	U	U	U
n-propylbenzene	5	U	U	U	U	U	U	U	υ
2-chlorotoluene	5	U	U	U	U	U	U	U	U
4-chlorotoluene	5	U	U	U	U	U	U	U	U
1,3,5-trimethylbenzene	5	Ū	U	U	บ	U	υ	U	U
Tert-butylbenzene	5	U	U	U	U	U	υ	U	U
1,2,4-trimethylbenzene	5	U	U	U	U	U	U	U	U
Sec-butylbenzene	5	U	U	U	U	U	U	U	U
1,3,-dichlorobenzene	3	U	U	U	U	U	U	U	U

TABLE 2 Groundwater Analytical Data EPA Method 8260 - Volatile Organic Compounds (VOCs)

ANALYTICAL PARAMETERS	NYSDEC Guidance Values	B-1	B-2	В-3	B-4	B-5	B-6	B-7	B-8
p-isopropyltoluene	NL	U	U	U	U	U	U	U	U
1,4,-dichlorobenzene	3	U	U	U	U	U	U	U	U
1,2,-dichlorobenzene	3	U	U	U	U	U	U	U	U
n-butylbenzene	5	υ	U	U	υ	U	U	U	U
1,2,-dibromo-3-chloropropane	5	U	U	U	U	U	U	U	U
1,2,4-trichlorobenzene	5	U	U	U	υ	U	U	U	U
Hexachlorobutadiene	0.5	U	U	U	U	U	U _	U	U
Naphthalene	10	U	U	U	U	U	U	U	U
1,2,3-trichlorobenzene	5	U	U	U	U	υ	U	U	U
2-chloroethylvinyl ether	NL	U	U	U	U	U	υ	U	U
Acetone	50	U	U	υ	U	υ	U	U	U
Methyl ethyl ketone	50	U	U	U	U	U	υ	U	บ_
Methyl isobutyl ketone	NL	U	U	U	U	U	U	U	U
p & m -Xylenes	5	U	U	U	U	U	U	U	U
o-Xylenes	5	U	U	U	U	U	U	U	U
Carbon disulfide	NL	U	U	U	U	U	U	U	U
МТВЕ	10	U	U	U	U	U	U	U	U
Vinyl acetate	NL	U	U	U	U	U	U	U	U
2-hexanone	NL	U	U	υ	U	U	U	U	U

- Notes: 1. All results are in parts per billion (ppb) ug/L.
 - 2. The Groundwater Standards and Guidance Values are listed in the New York State Department of Environmental Conservation (NYS DEC) TOGS 1.1.1.
 - 3. NL = No guidance value listed.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

Geoprobe® 6610DT series drill rig and hand equipment was utilized to install eight (8) total borings designated as B-1 through B-8. Representative soil samples were collected from a depth of zero (0) to fifteen (15) feet below grade. Groundwater was encountered at approximately fourteen (14) feet below grade during the investigation.

The soil samples collected from zero (0) to five (5) feet below the basement floor in borings B-7 and B-8 were submitted for laboratory analysis. The soil samples were submitted for analysis of volatile organic compounds (VOCs) using EPA Method 8260. The analytical results for the soil samples were compared to the RSCOs listed in the NYSDEC <u>TAGM HWR-94-4046</u>: Determination of Soil Cleanup Objectives and Cleanup Levels.

Boring B-7 contained 5100ppb of Tetrachloroethene, over the RSCO of 1400ppb for the contaminant. Boring B-8 contained 1200ppb of Tetrachloroethene, which is slightly below the RSCO.

Representative groundwater samples were collected from all eight (8) borings and are designated on the analytical report as B-1 through B-8. The groundwater samples were submitted for analysis of volatile organic compounds (VOCs) utilizing EPA Method 8260. The analytical results for the groundwater samples were compared to the Guidance Values / Standards listed in the NYSDEC "Technical and Operational Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998".

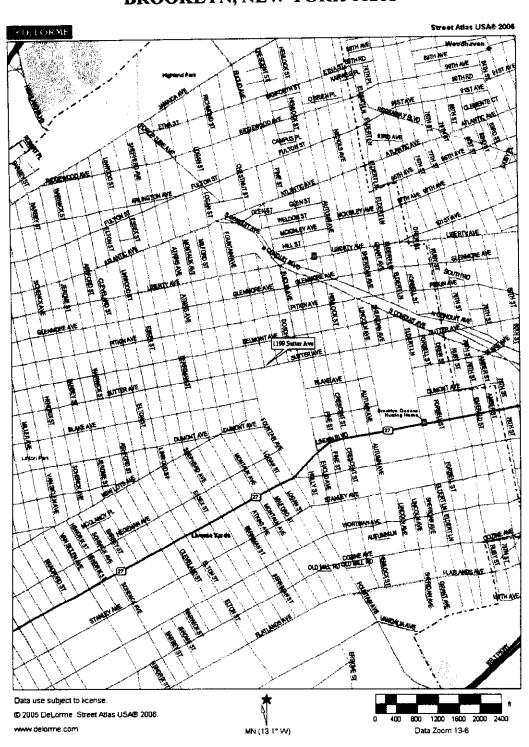
The analytical results for the groundwater samples collected from the subject site borings indicated the presence of several volatile organic compounds (VOCs) in excess of the maximum allowable concentrations set forth by the NYS DEC. Elevated levels of Tetrachloroethene (PCE) were found in borings B-4 through B-8. In addition Methylene Chloride was present in all eight (8) groundwater borings and is considered a typical laboratory contaminate, elevated levels of Trichloroethene were detected in borings B-6 through B-8, and borings B-5 and B-7 indicated elevated levels of cis-1,2-Dichloroethene above the NYSDEC Groundwater standards. The analytical results are summarized in Table 2.

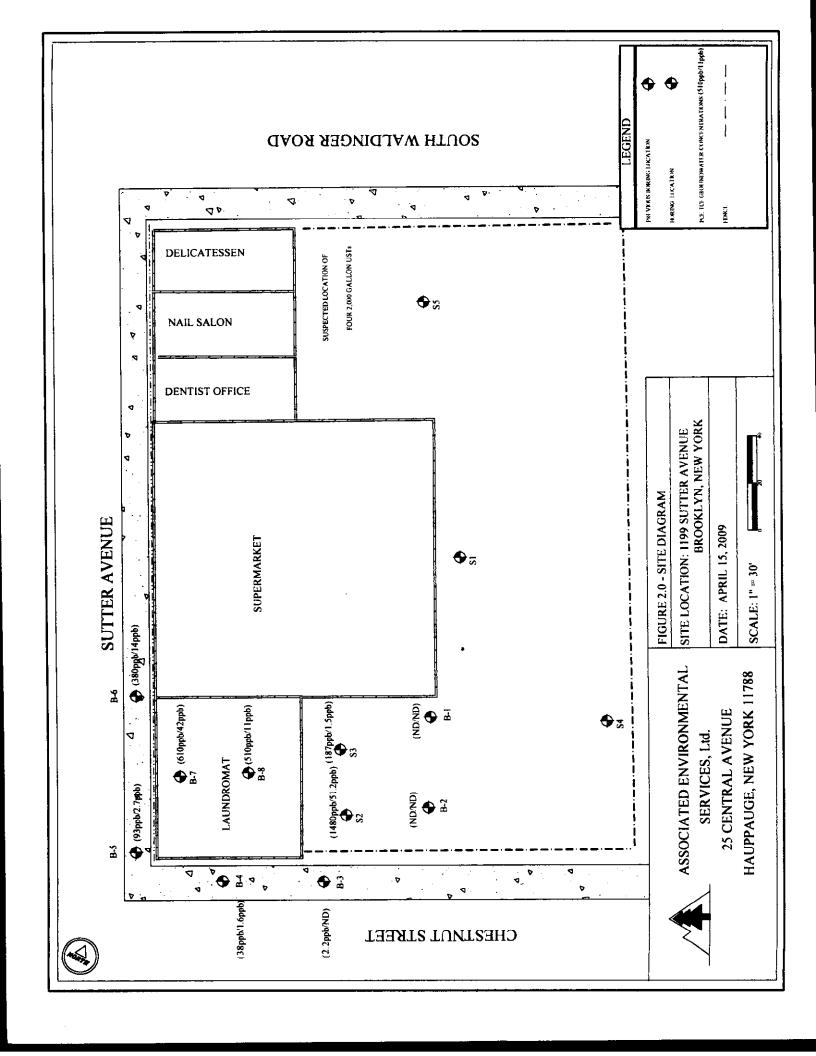
4.2 Recommendations

Based on the findings of the Phase II Subsurface Investigation, it is recommended that an injection program utilizing Potassium Permanganate through a network of injection points should be implemented immediately. In addition shallow and deep monitoring wells should be installed in several strategic locations to monitor the effectiveness of the remedial injection event.

One the work plan is completed and prior to remedial filed activities, the NYSDEC should be notified and involved in the remediation process for closure.

Prepared By:


Ryan Jensen Environmental Technician Associated Environmental Services, Ltd.


John Schretzmayer
Project Manager / Hydrogeologist
Associated Environmental Services, Ltd.

SITE LOCATION MAP

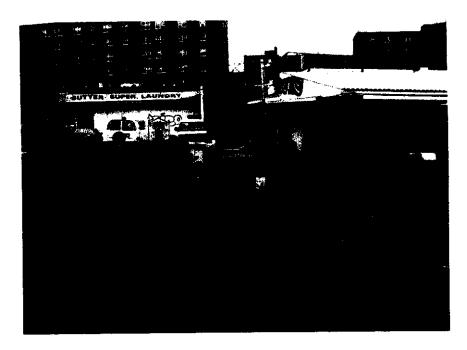
1199 SUTTER AVENUE BROOKLYN, NEW YORK 11208

				E	-1 Boring Log			Ola Flaussian Behum
						Depth to	Water	Site Elevation Datum
						(ft. from	grade.)	Ground Elevation
Na Nama:		Δ	ddress:			Date	DTW	OLONIN CIEARIOLI
Site Name:	dev	1	199 Sutter	Ave. Bro	ooklyn NY 11208	4/1/2009	13	
Sutter Super Laune Drilling Company	<u>u. y </u>		ethod:					Measuring Point Elevation
Associated Env	•	G	eoprobe 6	610DT				Measuring On a Break
ate Started:			ate Comp	eted:		1		
4/1/2009			4/1/200			-	1	
Completion Dept	h:		ES Geolo			İ	!	
15.0 ft			ndrew Silv	er				
	DEPTH		SAMPLES	T 0.5		so	IL DESCRIP	TION
,	(ft below	Reco-	Blow	PID				
(NTS)	grade)	very	per 6 <u>in.</u>	ppm				
LEGEND: Natural Ba End Boring Cement	ckfill	80%		0	Brown medium Groundwater a	ning noted. Indium to fine In grained san	grained sand d. No odor of now grade.*	pebbles. d. No odor or staining noted. or staining noted. analysis (EPA Method 8260).
			-					
Silica	1	- 1		1				
Screen Frid Cap								Associated Environmen Services, L

					3-2 Boring Log		. 100-0	Die Sieurie - Detum
					ļ	Depth t	o Water	Site Elevation Datum
							grade.)	
Site Name:			Address:			Date	DTW	Ground Elevation
Sutter Super Laun	drv		1199 Sutter	Ave. B	ooklyn NY 11208	4/1/2009	13	
Drilling Company	<u>':</u>		Method:					
Associated Env			Geoprobe 6					Measuring Point Elevation
Date Started:	<u> </u>		Date Comp					
4/1/2009			4/1/200				1	
Completion Dept	h:		AES Geolo	gist:				•
15.0 ft			Andrew Silv	er				<u> </u>
	DEPTH		SAMPLES				. 5500010	FION
	(ft below	Reco-	Blow	PID	1	SOI	L DESCRIPT	ION
(NTS)	grade)	very	per	ppm				
			6 in.					
	5	50% 50%		0	Brown medium of No odor or stain. Brown medium of No odor or stain. Brown medium of No odor or stain. Groundwater at.	ing noted. grained sand ing noted. grained sand ing noted. 13 feet below	with some p with some p w grade.*	ebbles.
	F =	7		1				
	† -	1						
]	1					
LEGEND:				i				
Natural Back	iji Sili							
End Boring								
Cement								
Silica								
Screen								Associated Environmental
End Cap				<u> </u>				Services, Ltd.

ļ					B-3 Boring Log	·		Alle State of the
						Depth to		Site Elevation Datum
						(ft. from	grade.)	- · - · -
Site Name:			Address:			Date	DTW	Ground Elevation
Sutter Super Laun	dry			<u>Ave</u> . Br	rooklyn NY 11208	4/1/2009	14	1
Drilling Company	14		Method:				ı l	- M
Associated Env			Geoprobe 66	<u> 510D</u> T			į L	Measuring Point Elevation
Date Started:			Date Compl	leted:		Ì	į l	1
4/1/2009			4/1/200	9		·	, 1	1
Completion Depti	h:		AES Geolog			` <u> </u>	ı l	
15.0 ft			Andrew Silve	er				
	DEPTH		SAMPLES	ت				TON
Į	(ft below	Reco-	Blow	PID	ı	SOL	IL DESCRIPT	ION
(NTS)	grade)	very	рег	ppm	1			
			6 in.					
	10	100% 60% 70%		0	3 inch layer of bl No odor or staini Groundwater at	o fine graineding noted. rown medium lack soil at 14 ing noted.	n to fine grain 4 feet below (w grade.*	ned sand with a trace of silt. grade. nalysis (EPA Method 8260).
]	1	1	1			
LEGEND:	1	1		1	1			
Natural Back	ŲK 							
End Boring								
Cement					1			
Silica								
Screen								Associated Environmental
End Cap	<u></u>							Services, Ltd.

1					B-4 Boring Log	<u></u>		
						Oepth to (ft. from		Site Elevation Datum
Site Name:			Address:			Date	DTW	Ground Elevation
Site Name: Sutter Super Laun	dry			Ave Rr	rookiyn NY 11208	4/1/2009	14	1
Orilling Company	<u>,</u>		Method:	ا ت .ب				
Associated Env	, -		Geoprobe 6	610DT		!	1	Measuring Point Elevation
Date Started:			Date Comp			1	,	
4/1/2009			4/1/200			1 1	1	
Completion Dept	h:		AES Geolo	gist:		1 1	ļ l	
15.0 ft		_	Andrew Silv	er				
	DEPTH		SAMPLES					
1	(ft below	Reco-	Blow	PID	1	SOI	L DESCRIPT	TION
(NTS)	grade)	very	рег	ppm	1			
			6 in.		T		-	
	10	100% 50% 80%		0	Brown medium to No odor or staining Brown medium to No odor or staining Brown to black in 3 inch layer of black odor or staining Groundwater at * Groundwater staining Brown to black in 3 inch layer of black in 3 inch laye	ing noted. To fine grained ing noted. The dium to fine lack soil at 14 ing noted.	d sand. se grained sa 4 feet below (v grade.*	ınd.
1	t -	1	[I			
LEGENO	<u> </u>	1	-	-	}			
LEGEND:				1				
Natural Backt	ភាព 				}			
End Boring								
Cement		}						
Silica								
Screen								Associated Environmental
End Cap		1170 11	<u></u>	1				Services, Ltd.


					B-5 Boring Log	1		
					<u>-</u>	Depth t	o Water grade.)	Site Elevation Datum
Site Name:			Address:	Aug P	rooklyn NY 11208	Date 4/1/2009	DTW 14	Ground Elevation
Sutter Super Laure Drilling Company	ary "		Method:	AVE. D	IOOKIYN NT 11200	4/1/2003	. 17	
Associated Env	,		Geoprobe 6					Measuring Point Elevation
Associated Env_ Date Started:			Date Comp		- 1-1			
4/1/2009			4/1/200					
Completion Dept 15.0 ft	h:		AES Geold Andrew Silv					
13.0 11	DEPTH		SAMPLES	<u> </u>				
	(ft below	Reco-	Blow	PID		SOI	L DESCRIPT	TION .
(NTS)	grade)	very	per 6 in.	ppm				
	10 15 1	100% 50% 0%		0 26 65	Brown medium to No odor or stain. Brown medium to No odor or stain. No recovery due. Groundwater at	o fine graine ing noted. to groundwa 14 feet belov	d sand and d ater. v grade.*	
	F =	1	[
LEGEND:	 	1			i			
Natural Back	 Fili							
End Boring		ļ						
Cement								
Silica								
Screen								Associated Environmental
End Cap	<u> </u>			<u> </u>				Services, Ltd.

				I	3-6 Boring Log	1		
						Depth to		Site Elevation Datum
						(ft. from		O and Floridian
Site Name: Sutter Super Laur Drilling Compan			Address: 1199 Sutter Method:	Ave. Br	ooklyn NY 11208	Date 4/1/2009	13	Ground Elevation
Associated Env	,,		Geoprobe 6	610DT		:		Measuring Point Elevation
Date Started:			Date Comp					
4/1/2009			4/1/200					
Completion Dept	th:		AES Geolo					1
15.0 ft	Lamazu		Andrew Silv	er 7				L
	DEPTH (ft below	Reco-	SAMPLES Blow	PID		SOI	L DESCRIP	TION
(NTS)	grade)	very	per 6 in.	ppm				
LEGEND:	10	100% 30%		0 55 120	Brown medium to No odor or stain. Brown fine to me No odor or stain. Brown fine to me No odor or stain. Groundwater at.	edium graineding noted. edium grainedium graineding noted. 13 feet below	d sand with a	some pebbles.
Natural Back	 cfitl							
End Boring								
Cement								
Silica								
Screen End Cap								Associated Environmental Services, Ltd.


ı				[3-7 Boring Log	<u></u>		
						Depth to	o Water grade.)	Site Elevation Datum
Site Name:	 -		Address:			Date	DTW	Ground Elevation
	do			Ave D.	ooklyn NY 11208	4/1/2009	14	1
Sutter Super Laun Drilling Company	<u>vi y</u>		Method:	o. DI				
Associated Env			Hand Equips	nent		'		Measuring Point Elevation
Date Started:			Date Compl	eted:		!		
4/1/2009			4/1/200	9		!		
Completion Dept	h:		AES Geolo	gist:		!	ļ	1
5.0 ft			Andrew Silve				L	L.
	DEPTH		SAMPLES					FION
1	(ft below	Reco-	Blow	PID		SOI	L DESCRIPT	
(NTS)	grade)	very	per 6 in	ppm				
			6 in.					
	0 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100%		450	No odor or staini Groundwater at	ing noted. 5 feet below	basement flo	ed sand with a trace of silt. oor.* d for lab analysis (EPA 8260).
		† † † †						
	<u> </u>]		1	1			
LEGEND:		1			1			
Natural Back	 :តិដ 							
End Boring								
Cement								
Silica								
Screen								Associated Environmental
End Cap			<u></u>			····	·	Services, Ltd.

					B-8 Boring Log			
						Depth to (ft. from	grade.)	Site Elevation Datum
Site Name: Sutter Super Laun	dry			Ave. Br	rooklyn NY 11208	Date 4/1/2009	DTW 14	Ground Elevation
Drilling Company Associated Env	<u> </u>		Method: Hand Equipm Date Comple	ment			1	Measuring Point Elevation
Date Started: 4/1/2009			4/1/200	09			1	
Completion Depti 5.0 ft			AES Geolog Andrew Silve	gist: er				
	DEPTH (ft below	Reco-	SAMPLES Blow	PID		SOIL	L DESCRIPT	TION
(NTS)	grade)	very	per 6 in.	ppm				
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100%		322	No odor or stainir Groundwater at 5	ing noted. 5 feet below b	basement flo	ed sand with a trace of silt. por.* I for lab analysis (EPA 8260).
LEGEND:	-	7		i				
LEGEND: Natural Backt	 កុរា							
End Boring				1				
Cement								
Silica				1				
Screen			, i	'				Associated Environmental
End Cap	<u></u> ,							Environmental Services, Ltd.

PHOTO DOCUMENTATION 1199 SUTTER AVENUE, BROOKLYN, NY

1. Location of B-1 'eastern parking lot'

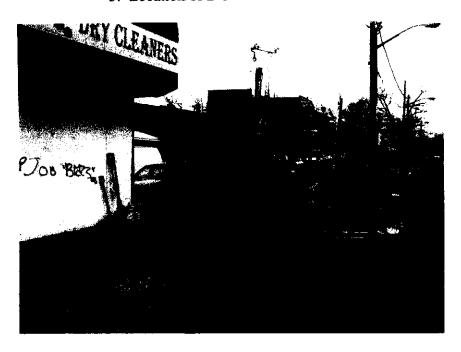

2. Location of B-2 'eastern parking lot'

PHOTO DOCUMENTATION 1199 SUTTER AVENUE, BROOKLYN, NY

3. Location of B-3 'eastern sidewalk'

4. Location of B-3 'eastern sidewalk'

PHOTO DOCUMENTATION 1199 SUTTER AVENUE, BROOKLYN, NY

5. Location of B-4 'eastern sidewalk'

11418 NY050 PH-0205 68-00573

Monday, April 06, 2009

John Schretzmayer Associated Environmental Svcs., LTD. 25 Central Avenue Hauppauge, NY 11788 TEL: (631) 744-8900

FAX (631) 744-6025

RE: Sutter Avenue, Brooklyn, NY

Dear John Schretzmayer:

Order No.: 0904030

American Analytical Laboratories, LLC, received 10 sample(s) on 4/1/2009 for the analyses presented in the following report.

Samples were analyzed in accordance with the test procedures documented on the chain of custody and detailed throughout the text of this report.

The results reported herein relate only to the items tested or to the samples as received by the laboratory. This report may not be reproduced, except in full, without the approval of American Analytical Laboratories, LLC and is not considered complete without a cover page and chain of custody documentation. The limits (LOC) provided in the data package are analytical reporting limits and not Federal or Local mandated values to which the sample results should be

There were no problems with the analyses and all data for associated QC met laboratory specifications. If there are any exceptions a Case Narrative is provided in the report or the data is qualified. This package has been reviewed by American Analytical Laboratories' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal. This report consists of _______ neges.

If you have any questions regarding these tests results, please do not hesitate to call (631) 454-6100 or email me directly at lbeyer@american-analytical.com.

56 TOLEDO STREET • FARMINGDALE. NEW YORK 11735 (631) 454-6100 • FAX: (631) 454-8027

AMERICAN MAT		56 TOLE (831) 45	56 TOLEDO STREET • FARMIR (631) 454-6100 • FAX (631) 45. www.american-analytical.com	EET • FA FAX (831 nalytical.	66 TOLEDO STREET • FARMINGDALE, NEW YORK 11736 (831) 454-8100 • FAX (831) 454-802? www.americar-analytical.com	W YORK 1	1735			NYSOOH CITOOH NUDEP PADEP	11418 PH-020 NYB50 88-573
	훙	ONT	Ę	STOL	CHAIN OF CUSTODY / REQUEST FOR ANALYSIS DOCUMENT	EST F	OR AN	ALYSI	S DOCL	JMENT	
CLIENT NAME/ADDRESS	a			COMPACE			Barphile Street	2. \		OSTAPS MATLEMENTS	YES NO
Associated	f,	SA MILE	J Succ.	4	Associated Environmental Sec. John Schoots mayin			Murchan Murchan		COMMECT	YES / NO
PROJECT LOCATION:						-				11111	
Sutter Avenic	ENTC	Sec.	Rooklyn WY	<u>~</u>		3/4	Sec.				
LAMPRICENT TO	AF.	TOTAL DE	SANT TAKE	# # # # # # # # # # # # # # # # # # #	PRESENT OF THE PROPERTY OF THE	Γ	22				
O704070-01	3	2	46.14	2:40	(M9) 1-8	*				un Aressandal	SENCO
-064	3	2	44/47	300	(n9) 2-8	¥		-		ν.	
180	3	2	46 61 92	26	8-3 (PM)	×					
*	3	7	4 1665	(1800	(ng) F-8	×				=	
S¥.P	3	2	4	4.1	(MH) 5-8	*				=	
Ž	3	2	¥	150	(nt)) 7-8	×		_			
Acr	3	7	41.64	,,,	(m9) L-8	2					
187	S	-	4/1/1	~	8-7 (0'-5')	×					
160	3	2	41.109	7	8-8 (6W)	×					
\m'\	S	-	41/69	/20	8-1 (1-5")	*		-			
COMMENTS / METRECTIONS	CTORS										
MATRIX S-504; W-WATER, 81-81.000E; A-AR, N-MSCELLANEOUS	#-WATE	P; 81 ×31 UK	DOE: A=AK	N HAMISO	ELANEOUS	DOBANGO	CHIPPAROUND RECURRED		E-MAN.AD	E-MAN, ADDRESS FOR PENILTS:	
TYPE G-GRAB; C-COMPOSITE	C-CO4	POSITE				NOMBER, B	C ACC	Ì			
RELANCINGHED BY (SIGNATURE)	SIGNAT		DATE 1/6 PRINTED NAME	PRINTED	NAME	RECEIVED	HECENIO BY LAB (SIGNATURE)		DATE HAS	PRINTED NAME	, 0
ma			TIME 174	10	- Land	M	7		62, Marie	Mich	1.43
RELINGWISHED BY (SIGNATURE)	(SIGNA	-	DAGE	PRINTEDNAME	NAME	RECENED	RECENÇED BY LAS (SIGNATURE)	ATURE	DATE	PRINTED NAME	
		Ē	TIME						TIME		
			WHITE-OF	FX0E / C	WHITE-DEFICE / CANARY-LAB / PRIK-SAMPLE CUSTODIAN / GOLDENHOD-CLIENT	SAMPLEC	USTODIAN / (30LDENPO	D-CLIENT		

American Analytical Laboratories, LLC.

Date: 06-Apr-09

CLIENT: Project: Lab Order:	Associated Environmental Svcs., LTD. Sutter Avenue, Brooklyn, NY 0904030		der Sample Summary
Lab Sample ID	Citent Sample ID	Date Collected	Date Received
0904030-01A	B-1 (GW)	4/1/2009 \$:40:00 AM	4/1/2009
0904030-02A	B-2 (GW)	4/1/2009 9:00:00 AM	4/1/2009
0904030-03A	B-3 (GW)	4/1/2009 9:30:00 AM	4/1/2009
090403D-04A	B-4 (GW)	4/1/2009 10:00:00 AM	4/1/2009
0904030-05A	B-5 (GW)	4/1/2009 11:15:00 AM	4/1/2009
0904030-06A	B-6 (GW)	4/1/2009 12:00:00 PM	4/1/2009
0904038-87A	B-7 (GW)	4/1/2009 1:10:00 PM	4/1/2009
0904030-08A	B-7 (0-5')	4/1/2009 1:00:00 PM	4/1/2009
0904030-09A	B-R (GW)	4/1/2009 1:30:00 PM	4/1/2009
090403D-10A	B-8 (0-5')	4/1/2009 1.20:00 PM	4/1/2009

American Assiytical Laboratoriae, LLC., 56 Yoledo Street, Fermingdale, NY, Zip - 11735 Tel - 6314548100 Fax - 6314649027 www.American-Anslytical.com

American Analytical Laboratories, LLC.			
Sample	Receipt Chec	klist	
Client Name ASSQC, ENV.		Date and Time Rec	alve 4/1/2009 2:39:39 PM
Work Order Number 0904030 , RoptNo: 1	,	Received by NM	
Checklet completed by Cooper 4/1/6	? 9	Reviewed by	Palik Hi
Mairix: Carrier name	Couries		
Shipping contained coder in good condition?	Yes 3 5	No! Nat	Preser:
Custody easis intact on shippping container/coder?	Yes id	No · Not	Presen 🗸
Custody seeks letect on earnple bottles?	Yes I	No No.	Presen 🗸
Chain of custody present?	Yes 🛩	No! :	
Chain of custody signed when relinquished and received?	Yes Mi	No ·	
Chain of qualony agrees with sample labels?	Yes M	No	
Samples in proper container/bottle?	Yes 🎺	No .	
Sample containers intact?	Yas 🗸	Na ·	
Sufficient sample volume for indicated lest?	YBS IN	Na	
All samples received within holding time?	Yes M	No	
Container/Temp Blank temperature in compliance?	Yes	No ⊀I	
Water - VOA visis have zero headspecs? No VOA visis sub		Yes 🛫	No
Water - pH seceptable upon receip??	Yes iv	No NA	
Adjuster?		echec h	
Any No and/or NA (not applicable) response must be delated in the	comments sector	1 <u>50</u>	==========
Client contected: Date contected:		Penjan co	Macied
Contacted by: Regarding:			
Comments: Cooler: Yes; Ion: No; T = 13.0 C.			
Corrective Action			

ELAP ID : 11418

Associated Environmental Sves., LTD. CLIENT:

Lab Order: 0904030 Sutter Avenue, Brooklyn, NY Project:

Client Sample ID: B-1 (GW)
Callection Date: 4/1/2009 \$:40:00 AM Matrix: LIQUID

lab ID: 0904030-01 A

Certificate of Results

Azelysu	Sample Result	LOD	LOQ	Qual	Units	DF	Dete/Time Analyzed
VOLATILE SW-846 METHOD 6	260		RWS	268E	_		Analyst: LA
1,1,1,2-Tejrechioroethene	LI LI	0.4	1.0		µg∕L	1	4/2/2009 2:21:00 PM
1,1,1-Trichloroelhene	it	0.3	1.0		uo/L	1	4/2/2009 2:21:00 PM
1,1,2,7-Yelmchiprosthute	Ü	0.3	1.0		MO/L	1	4/2/2009 2:21:00 PM
1,1,2-Triphloro-1,2,2-trifluoroether		0.9	1.0		µg/L	1	4/2/2009 2:21:00 PM
1.1.2-Trichtoroethene		04	1.0		ug/L		4/2/2009 2:21:00 PM
1,1-Dichioroellutos	ŭ	0.3	1.6		µg/L	1	4/2/2009 2:21:00 PM
1,1-Dichiproethess	ŭ	0.3	1.0		uge.	1	4/2/2009 2:21:00 PM
1.1-Dichloropropens	ū	0.3	1.0		ug/l.	1	4/2/2009 2:21:00 PM
1,1-Catantroproperat	ŭ	0.3	1.0		pg/L	1	4/2/2009 2:21:00 PM
1,2,3-Trichlorgeropene	ŭ	0.4	1.0		194	,	4/2/3009 2:21:00 PM
1,2,4,5-Tetrametry@erzone	ū	0.3	1.0		рдЛ.		4/2/2009 2:21:00 PM
1,2,4-Trichlorobenzene	ŭ	0.3	1.0		MO/L		4/2/2009 2:21:00 PM
1,2,4-Trimptin/benzene	ŭ	0.3	1.0		µg/L	i	4/2/2009 2:21:00 PM
1,2,4-1 renocrysourcens 1,2-Dibromo-3-chiorocrosens	ű	0.4	1.0		µg/L	4	4/2/2009 2:21:00 PM
1.2-Disromoethene	ű	0.3	1.0		PD.	1	4/2/2009 2:21:00 PM
1,2-Dictionstante	ű	0.3	1.0		µg/L	1	4/2/2009 2:21:00 PM
1,2-Okthoroethane	ŭ	0.3	1.0		port.	1	4/2/2009 2:21:00 PM
1,2-Dichlorograpane	ŭ	0.3	10		μ φ/ L	i	4/2/2009 2:21:00 PM
1,3,5-Trimethylbenzene	ŭ	0.3	1.0		µo/L	1	4/2/2009 2:21:00 PM
1 3-Dichlorobenzene	ŭ	0.3	1.0		μgit	1	4/2/2009 2:21:00 PM
1.3-dichloropropere	ŭ	0.3	1.0		up/L		4/2/2009 2:21:00 PM
1.4-Okthorobenzene	ű	0.3	1.0		ugA.	,	4/2/2009 2:21:00 PM
1.4-Dissane	ŭ	0.4	1.0		ug/L	•	4/2/2009 2:21:00 PM
2.2-Dichioropropans	บ	0.3	1.0		ug/L	1	4/2/2000 2:21:00 PM
2,2+picasoroproparei 2-Butanone	ŭ	0.3	3.0		uol.	1	4/2/2009 2:21:00 PM
2-Chloroethyl vinyt ether	ŭ	0.3	1.0		ua/L	1	4/2/2009 2:21:00 PM
2-Chlosophyana	ū	0.3	1.0		µg/L	1	4/2/2009 2:21:03 PM
2-19usenne	ũ	0.3	20		uo/L		4/2/2009 2:21:00 PM
2-Procenci	ŭ	0.3	1.0		HOVE.	•	4/2/2009 2:21:00 PM
2-Propanol 4-Chiominiana	ü	0.3	1.0		uan.	1	4/2/2009 2:21:00 PM
4-Chargoniene 4-laaprovitokene	ű	0.3	1.0		uori.	- 1	4/2/2009 2:21:00 PM
4-Metryl-2-pontenone	ŭ	0.3	2.0		μο/L	ì	4/2/2009 2:21:00 PM
4-metryl-2-pentamone Acetone		0.3	2.0		uo/L	i	A/2/2000 2:21:00 PM

American Analysical Laboratorius, LLC, 56 Yorko Street, Farmingdele, NY, Zip - 11735
Tal. 4314449100 Fax: 6314546077 www./Anerican-Analyticat.com

Quelifilars:

Yake accessed Macinem Consuminat Level B. A.
E. Value above questionion reage H. H. H.
J. Analyse descrete deberg equationion insis:
LOQ Limic Operationion NO No
S. Spike Roovery-outside cooperat recovery limits
C. Calibration 4682074D accessed for sea-CCC analyses

- B Analyse descrind in the nanoclased Meditod
 Holdding times for preparation or analysis o
 LOO Limit of Detection
 No Not Detected at the Reporting Limit
 U indicates the component was analyzed but

American Analytical Laboratories, LLC.

Data: 06-Apr-09

ELAP ID : 11418 CLIENT: Associated Environmental Svcs., LTD. Client Saraple ID: B-1 (GW) Lab Order: 0904020 Collection Bases: 41/2009 8:40:50 A Product: Suiter Averue, Brooking NY Matrix: LIQUID						
CLIENT:	Associated Environmental Svcs., LTD.	Client Sample ID:	B-1 (GW)			
Lab Order:	0904030	Collection Date:	4/1/2009 \$:40:00 A			
Project:	Sutter Avenue, Brooklyn, NY	Matrix:	LIQUID			
Lab ID:	0904030-01A					

Certificate of Results										
Analyses	Sample Result	LOD	TOO Gary	Units	DF	Data/Time Analyzed				
VOLATILE SW-848 METHOD	8260		8W\$280B			Analyst: LA				
n-Butyt scutate	v	0.3	2.0	pg/L	1	4/2/2008 2:21:00 PM				
n-Sulviburzone	U	0.3	1.0	µo/L	1	4/2/2008 2:21:00 PM				
n-Propel acutete	U	0.4	1.0	pg/L	1	4/2/2009 2:21:00 PM				
n-Propyllanaunė	u	0.3	1.0	µg/L	1	4/2/2008 2:21:00 PM				
p-Xylene	υ	0.3	1.0	μg/L.	1	4/2/2008 2:21:00 PM				
p-Diethyberzere	IJ	0.3	1.0	µg/L	1	4/2/2008 2:21:00 PM				
p-Elhytokuene	Ú	0.3	1.0	µg/L	1	4/2/2009 2:21:00 PM				
sec-Bulylannzene	U	0.3	1,0	µg/i∟	1	4/2/2009 2:21:00 PM				
Styrene	U	0.3	1.0	µg/L	1	4/2/2009 2:21:00 PM				
t-Butvi sicohol	U	0.4	1.0	μg/L	1	4/2/2009 2:21:00 PM				
teri-Butylbenzone	Ü	0.3	1.0	yg/L	1	4/2/2008 2:21:00 PM				
Tetracistorosthere	U	0.3	1.0	sig/L	1	4/2/2008 2:21:00 PM				
Tokens	U	0.3	1.0	yg/L	,	4/2/2009 3:21:00 PM				
Irana-1 2-Dichlomathana	u	0.3	1.0	JOA.	1	4/2/2008 2:21:00 PM				
trans-1,3-Dichloropropene	U	0.3	1.0	µg/L	1	4/2/2008 2:21:00 PM				
Trickiomethese	U	0.3	1.0	µg/L	1	4/2/2009 2:21:00 PM				
Trichioralisoramethene	u	0.3	1.0	μg/L	1	4/2/2009 2:21:00 PM				
Vinyl accists	Ū	0.3	1.6	μg/L	1	4/2/2008 2:21:00 PM				
Vinyi chloride	U	0.3	1.0	part.	1	4/2/2009 2:21:00 PM				
Sur: 4-Bromofivorobenzena	102		60-130	MREC	1	4/2/2009 2:21:00 PM				
Surr: Dibeomoliuororaethene	104	ā	63-127	WREC	1	4/2/2009 2:21:00 PM				

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 6314545100 Fax - 6314548027 www.American-Analytical.com

- Value recorded Machiner Commitment Lavel
 Value goods Machiner Commitment Lavel
 Value doors quantitation mag:
 Value doors quantitation limits
 Value doors quantitation limits
 Value doors quantitation
 Value of Constitution
 Value of Constitution
- **Nebb**
- B Analyse desected in the associated Method Blank
 H Holding times for propassion or analysis accorded
 LOD Limit of Detection
- LOD Limit of Detection

 NO: Not Described in the Reporting Limit

 U indicates the compound not analyze

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID: 11418

Lab Order:

CLIENT: Associated Environmental Sves., LTD. 0904030

Client Sample ID: B-1 (GW) Collection Date: 4/1/2009 8:40:00 AM

Matrix: LIQUID

Project: Suner Avenue, Brooklyn, NY 0904030-01A Lab ID:

Certificate of Results

		Certif	ICRIO OI	Kem	T.DP		
Analyses	Secupic Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-848 METHOD	D 8200		5W8	2408			Analyst: LA
Acrolein	U	6.4	1.0	C	pol	t	4/2/2008 2:21.00 PM
Actylonitrile	U	0.3	1.0		µg/L	1	4/2/2000 2:21:00 PM
Benzene	u u	0.3	1,0		μg/L	1	4/2/2008 2:21:00 FM
Brumobenzone	Ú	0,3	1.0		uga.	1	4/2/2009 2:21:00 PM
Bromochisvomelhane	U	0.3	1.0		PQA.	1	4/2/2008 2:21:00 PM
Bromodichloromethene	Ú	0.3	1.D		VQ/L	1	4/2/2009 2:21:00 PM
Bramaferm	Ų	6.0	1.0		paget.	1	4/2/2009 2:21:00 PM
Bromorustitene	U	0.3	1.0		μg/L	1	4/2/2009 2:21:00 PM
Carbon disulfida	U	6.3	1.0		μg/L	1	4/2/2008 2:21:00 PM
Cerbon Intrachiprida	U	0.4	1.0		µg/L	1	4/2/2009 2:21:00 PM
Chiprobeszene	U	0.3	1.0		µg/L	1	4/2/2009 2:21:00 PM
Chiorodificatomethene	U	0.3	1.0		μg/L	1	4/2/2009 2:21:00 PM
Chiorogihane	Ü	0.3	1.0		ug/L	1	4/2/2009 3:21:00 PM
Chloroform	U	0.3	16		ug/L	1	4/2/2009 2:21:00 PM
Chioromethane	υ	0.3	1.D		yg/L	1	4/2/2009 2:21:00 PM
cis-1,2-Dickloroethene	U	0.3	1.0		µg/L	1	4/2/2009 2:21:00 PM
sis-1.3-Dichloropropene	ü	0.3	1.0		MO/L	1	4/2/2009 2:21:00 PM
Ditromuchioremethene	Ū	0.5	1,0		µg/L	1	4/2/2009 2:21:00 PM
Discomamethene	Ú	0.4	1.0		μgA.	1	4/2/2009 2:21:00 PM
Dicitorodifluoromethane	U	0.4	1.0		µg∕t.	1	4/2/2009 2:21:00 PM
Olisopropyl ether	υ	0.3	1.0		ивл.	1	4/2/2009 2:21:00 PM
Ethanol	บ	0.3	1.0		ygA.	1	4/2/2009 2:21:00 PM
Elimi acolete	U	0.3	1.0		yg/L	7	4/2/2000 2:21:00 PM
Effylbenzene	u	0.3	1.0		po/L	1	4/2/2008 2:21:00 PM
Fragn-114	ū	0.4	1.0		pg/L	1	4/2/2008 2:21:00 PM
Herachiorobutadiana	Ū	0.4	1.9		pgr.	1	4/2/2009 2:21:00 PM
teapropyl scalate	U	0.4	1.0		µg/t.	1	4/2/2009 2:21:00 PM
Isopropythenzene	Ú	0.3	1.0		ug/L	1	4/2/2008 2:21:00 PM
m.p-Xylene	Ū	0.3	2.0		ug/L	1	4/2/2009 2:21:00 PM
Mathyl lart-butyl other	ū	0.3	1.0		1967.	•	4/2/2009 2:21:00 PM
Multiviene chloride	12	0.3	1.0	BC	JUGIL.	1	4/2/2009 2:21:00 PM
n-Acord acetais	Ü	0.3	1.0		µg/L	1	4/2/2009 2:21:00 PM
Nenhikalene	Ū	0.3	1.0		us/L	1	4/2/2009 2:21:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735

Tel: - 8314548100 Fex: - 6314548027 www.American-Analytical.com

- Yales oposité Missayum Contabilisant Level
 2 Value above questifaites ange
 3 Value above questifaites ange
 4 Value que que de la contabilisant de la contabilisant
 LOQ Larki of Quantitation
 5 Spide Roccerty entitée accepted reservery limits
 C Califestion MERDYND exceede for son-CCC ambject
- Analyse determed in the associated breshod Dhank
 H Indiffrig times for propertains or samlysis exceeded
 Loot Limit of Detection
 Phys. Proceeds at the Reporting Limit
 Indicates the compound was analysed but not detect

ńelate

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

Associated Environmental Sves., LTD. CLIENT

Client Sample ID: B-2 (GW)
Collection Date: 4/1/2009 9:00:00 AM Matrix; LIQUID

Lab Order: 0904030 Project

Sutter Avenue, Brooklyn, NY 0904030-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual (Units	DF	Date/Time Analyze
VOLATILE BW-846 METHOD B	260		SWI	2148			Analyst LA
1,1,1,2-Tetrachioroethane	U	0.4	1.0		ag/L	ŧ	4/2/2009 2:51:00 PM
1, f, 1-Trichloroethane	tr	0.3	1.0		ADA.	1	4/2/2008 2:51:00 PM
1,1,2,2-Tehnchiospethare	u	0.3	1,8	1	ag/L	1	4/2/2009 2:51:00 PM
1,1,2-Trichtoro-1,2,2-Influoroethers	, u	0.3	1.0	1	ug/L	1	4/2/2009 2:51:00 PM
1,1,2-Trichtoroethane	U	9.4	1.0		µg/L	1	4/2/2009 2:51:00 PM
1,1-Dichloroethene	U	0.3	1,0		µgA.	1	4/2/2009 2:51:00 PM
1,1-Dichloraethene	U	D,3	1.0	1	µg/L	1	4/2/2009 2:\$1:00 PM
1,1-Dichtoropropena	บ	0.3	1.0	- 1	ug/L	1	4/2/2009 2:51:00 PM
1.2.3-Trichlorobenzene	u	D.3	1.0		μg/L	t	4/2/2009 2:51:00 PM
1.2.3-Tricklomoropane	IJ	0.4	1.0		ug/L	1	4/2/2009 2:51:00 PM
1.2.4.5-Teirameihyberzene	Ü	0.3	1.0	i	ug/L	1	4/2/2009 2:51:00 PM
1.2.4.Trichlorobenzene	Ú	0.3	1.0	4	PDA.	1	4/2/2009 2:51:00 PM
1.2.4-Trimelin/benzene	Ü	0.3	1.0		MO/L	1	4/2/2009 2:51:00 PM
1 2-Dibroma-3-chipromonoane	Ü	0.4	1.0		uart.	1	4/2/2009 2:51:00 PM
1.2-Dibromosthere	ű	6.3	1.0		uo/L	1	4/2/2009 2:51:00 PM
1 2-Dichlombergens	ū	0.3	1.0	i	uo/L	1	4/2/2009 2:61:00 PM
1.2-Dichloroeltane	U	0.3	1.0		µo/L	1	4/2/2009 2:51:00 PM
1,3 Dichlaropropens	Ū	0.3	10	i	ug/L	1	4/2/2009 2:51:00 PM
1.3.5-Trimutty/benzone	u	0.3	1.0		υσΛ.	1	4/2/2009 2:51:00 PM
1.3-Dichloroberyzane	ū	0.3	1.0		ual.	1	4/2/2008 2:51:00 PM
1.3-dichioropropena	Ĭř.	0.3	10		uo/L	1	4/2/2008 2:51:00 PM
1.4-Dichlorobenzene	ŭ	0.3	1.0		μg/L	1	4/2/2008 2:51:00 PM
1.4-Olocene	Ū	0.4	1.0		ug/L	1	4/2/2008 2:51:00 PM
2.2-Oichloropropana	Ū	0.3	1.0		uat.	1	4/2/2009 2:51:00 PM
2-Rutsnene	Ū	0.3	3.0		ua/L	1	4/2/2009 2:51:00 PM
2-Chiprostiwi vinyi siliwi	ū	0.3	1.0		yg/L	1	4/2/2009 2:61:00 PM
2-Chiomioluène	Ü	0.3	1.0		µg/L	1	4/2/2009 2:51:00 PM
2-Hazarona	ū	0.3	2.0		ug/L	1	4/2/2009 2:51:00 PM
2-Propendi	ũ	0.3	1.0		µg/L	1	4/2/2009 2:51:00 PM
4-Chloralpluene	U	0.3	1.0		pp/L	1	4/2/2009 2.51:00 PM
4-isopropylioluene	u	0.3	1,0		µg/L	1	4/2/2008 2:51:00 PM
4 Methyl-2-pentanons	Ū	0.3	2.0		µg/L	1	4/2/2009 2:51:00 PM
Acetone	Ü	0.3	2.0		uat	1	4/2/2009 2:51:00 PM

American Analytical Laboratories, LLC., 98 Toledo Street, Farmingsiste, NY, Zip - 11735 Tal - 6314546100 Fax - 8314548027 www.American-Analytical.com

0 100 Fax - 0314540027 www.American-Analytical.com

Volume recruit Meatiness Constantinum Larvel

Volume of Constantinum Constantinum Larvel

Volume of Constantinum

J Analytic detected before quinethialon (invise

LOQ Limit of Constantinum

C California ARSIOTAD exceeded for non-CCC analytics

C California WRSIOTAD exceeded for non-CCC analytics

- nelac B Analyse detected in the associated Method Blank H Holding times for propagation or studyels extended LOD Limit of Detection
- cied or the Reporting Limit

3

ELAP ID: 11418

Associated Environmental Sves., LTD. CLIENT: Lab Order: 0904030

Client Sample ID: B-2 (OW) Collection Date: 4/1/2009 9:00:00 AM

Project:

Matrix: LIOUID

Lab ID: 090403D-02A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzas
VIX ATILE SW-848 METHO	£) 1/260		894	2608		<u> </u>	Anelyst: LA
Acrolleto	U	0.4	1.0	c	руА.	1	4/2/2009 2:81:00 PM
Acerionitrile	ū	0.3	10		und.	1	4/2/2000 2:51:00 PM
Renzere	ū	0.3	1.0		ug/L	1	4/2/2008 2:51:00 PM
Boonsbergens	ū	0.5	1.0		µg/L	1	4/2/2009 2:51:00 PM
Bromachineomathana	ū	0.3	1.0		µg/L	1	4/2/2009 2:51:00 PM
Bronodichinomethens	ū	0.3	10		uo/L	1	4/2/2008 2:51:00 PM
Gramology,	ū	0.4	1.0		μg/L	+	4/2/2009 2:51:00 PM
Gramomethene	ŭ	0.3	1.0		µg/L	1	4/2/2009 2:51:00 PM
Carton daufide	ū	6.3	1.0		us/L	1	4/2/2009 2:51:00 PM
Carbon letrachiorida	ŭ	0.4	10		us/L	1	4/2/2009 2:51:00 PM
Chlombonzene	υ	0.3	1.0		PO/L	1	4/2/2009 2:51:00 PM
Chiorodifupromethane	Ü	0.3	1.0		HO/L	1	4/2/2009 2:51:00 PM
Chioroethene	ū	6.3	1.0		µg/L	1	4/2/2009 2:51:00 PM
Chloroform	ū	9.3	1.0		pgA.		4/2/2008 2:51:00 PM
Chloromeliume	ū	0.3	1.0		pgA.		4/2/2008 2:51:00 PM
cia-1.2-Diohioroethene	ű	0.5	1.0		ug/L	1	4/2/2009 2:51:00 PM
cis-1.3-Dichloroprocess	υ	0.3	1.0		991 .	1	4/2/2009 2:51:00 PM
Oleromochloromelherm	Ū	0.3	1.0		ug/L	1	4/2/2009 2:51:00 PM
Dibromomethane	U	0.4	1.0		µg/L	1	4/2/2009 2:51:00 PM
Dichloredi@uoromethane	Ü	0.4	1.0		Jugit	1	4/2/2006 2:51:00 PM
Dispersori ether	ŭ	0.3	1.0		ua/L	1	4/2/2009 2:51:00 PM
Pthenol	ŭ	0.3	1.0		UDA.	1	4/2/2001 2:51:00 PM
Rihv) scelets	ū	0.3	1.0		ue/L	1	4/2/2009 2:51:00 PM
Ethylograpise	i i	0.3	1.0		DO/L	1	4/2/2009 2:51:00 PM
Freori-114	ű	0.4	1.0		uer.	1	4/2/2008 2:51:00 PM
Heverhinesbutacions	ā	0.4	1.0		pa/L		4/2/2000 2:51:00 PM
Isopropyl acatala	ū	0.4	1.0		pg/L	•	4/2/2009 2:51:00 PM
leopropylonnzane	u u	0.3	1.0		µg/L	í	4/2/2009 2:51:00 PM
m.p-Xylane	ŭ	0.7	2.0		ua/L	4	4/2/2009 2:51:00 PM
Mathyl tert-butyl eiher	u u	0.3	1.0		ye/L	•	4/2/2009 2:61:00 PM
Methylene chloride	11	0.3	1.0	BC	ug/L	1	4/2/2009 2:51:00 PM
n-Amy) acretate	ü	0.3	1.0		NO/L	,	4/2/2009 2:51:00 PM
Nachthalane	ŭ	0.3	16		uar.	1	4/2/2009 2:51:00 PM

American Analytical Laboratories, LLC., 56 Toledo Street, Permingdelle, NY, Zip - 11735

Tel - 8314548100 Fex - 8314548027 www.American-Analytical.com

Value records Meximum Constrainant Lord
E Value sherr quantitation range
I Anabys descend below quantitation Wratis
LOQ Links of Quantitation
S Spike Recovery entains accepted recovery limits
C Collimation MASSPMU accepted recovery limits

Febra B Assiye decessed in the assectmed bit
H Holding sinces for preparation or anal

NO Not Detected at the Reporting Limit

U indicates the commound was analyzed but not de

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID: 11418

Associated Environmental Svcs., LTD. CLIENT: 0904030 Lab Order:

ople ID: B-3 (GW) Collection Date: 4/1/2009 9:30:00 AM Matrix: LIOUID

Project: Lab ID:

Sutter Avenue, Br 0904030-03A

	CH MINERO OF Vestions											
Analyses	Sample Result	LOD	1.0Q	Qual	Units	DF	Date/Time Analyzed					
VOLATILE SW-848 METHOD S	1260		SWE	2005			Analysi: LA					
1,1,1,2-Tatrachlorpethene	U	9,4	1.0		µg/L	1	4/2/2009 3:22:00 PM					
1.1.1-Trichlorpethane	u	0.3	1.0		μg/L	1	4/2/2009 3:22:00 PM					
1.1.2.2-Tetrachloroethane	U	0.3	1.0		pg/L	1	4/2/2000 3:22:00 PM					
1,1,2-Trickloro-1,2,2-bifluoroethau	, U	0.3	1.D		µgA.	1	4/2/2009 3:22:00 PM					
1.1.2-Trichloroethene	u	0.4	1.0		μg/L	1	4/2/2009 3:22:00 PM					
1.1-Dichipmethere	tf	0.3	1.0		µg/L	1	4/2/2009 3:22:00 PM					
1.1-Olchiprosthene	υ	0.3	1,0		ug/L	1	4/2/2009 3:22:00 PM					
1,1-Dichigropropene	υ	0.3	1.0		pp/L	•	4/2/2009 3:22:00 PM					
1,2,3-Trichturobenzana	Ū	0.3	1.0		µg/L	1	4/2/2009 3:22:00 PM					
1,2,3-Trichtoropropens	ū	0.4	1.0		POR.	1	4/2/2008 3:22:00 PM					
1.2.4.5-Tetramelin/benzarie	U	0.3	1.0		POL	1	4/2/2008 3:22:00 PM					
1.2.4-Trichlorobensone	Ū	0.3	1.0		pg/L	1	4/2/2008 3:22:00 PM					
1/2/4 - Littlett nom make	_											

Certificate of Results

472/2008 3:22:00 PM
4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PM 4/2/2008 \$:22:00 PM 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PW 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PM 4/2/2009 3:22:00 PN

Amarican Analytical Laboratories, LLC, 58 Tolado Street, Parmingdaia,
Tai - 6314646100 Faz - 6314546027 www.Amarican-Analytical.com

Qualifiary: Value caccels Mostriaus Commission Lovel
E. Value shows quantifacion mage
I. Acalyte detected before quantifacion limbs
LOQ Loted of Quantilation
3 Spike Recorney calcels excepted recovery hinds
C. Calification MRST/MAD excepted for non-CCC analytes ngdele, NY, Zlp - 11735

∩elae

Ambyto descred to the associated Natural Blank
 Holding lines for preparation or swiyals recented
 Holding lines for preparation or swiyals recented
 Direct of Description
 Indicates the careposed was analyzed but not deter

4/2/2009 3:22:00 PM

ŧ.i.

American Analytical Laboratories, LLC.

E1.AP ID : 11418 CLIENT:

Associated Environmental Svcs., LTD. 0904030

Client Sample ID: B-2 (GW) etion Date: 4/1/2009 9:00:00 AM

Matrix: LIQUID

Sutter Avenue, Brooklyn, NY 0904030-02A Lab ID:

Lab Order:

Certificate of Results

CH III. III O ALIANIA											
Amalyses	Sample Result	LOD	LOQ Q	est Units	DF	Date/Time Analyze					
VOLATILE SW-846 METHOD	1260		SW820	0B		Analyst: LA					
n-Bulyi scalate	u	0.3	2.0	µg/L	1	4/2/2009 2:51:00 PM					
n-Bub/benzene	u	0.3	1.0	Jeu	1	4/2/2009 2:51:00 PM					
e-Propyl acelate	Ū	0.4	1.0	µg/L	1	4/2/2009 2:51:00 PM					
n-Procythenzene	Ū	0.3	1,0	µg/L	1	4/2/2009 2:51:00 PM					
a-Xytens	ū	0.3	1.0	pot.	1	4/2/2009 2:51:00 PM					
p-Digitwibenzene	ŭ	0.3	1.0	.vor∟	1	4/2/2009 2:51:00 PM					
p-Ethylloluene	ű	0.3	1.0	pg/L	1	4/2/2009 2:51:00 PM					
sec-ButyBenzene	ū	0.3	1.0	µg/1.	1	4/2/2009 2:51:00 PM					
Styrene	Ū	0.3	1.0	pg/L	1	4/2/2000 2:51:00 PM					
1-Butvi alcohol	Ū	0.4	1.0	pg/L	1	4/2/2009 2:51:00 PM					
teri-Bulytonzena	u	0.3	1.0	µg-L	1	4/2/2009 2:51:00 PM					
Tetrachiorosthene	ū	0.3	1,0	MOL.	1	4/2/2009 2:51:00 PM					
Tokume	ū	0.3	1.0	pot.	1	4/2/2009 2:81:00 PM					
trans-1,2-Dichloroethene	ū	0.3	1.0	pg/L	1	4/2/2009 2:51:00 PM					
trans-1,3-Dichioropropens	Ū	0.3	1.0	μg/L	1	4/2/2000 2.51:00 PM					
Trichioroethene	Ü	0.3	1.0	μ α /L	1	4/2/2009 2:51:00 PM					
Tricklore@uccomethece	u	0.3	1.0	μgΛ.	1	4/2/2008 2:51:00 PM					
Vind scalate	u	0.3	1.0	Pg/L	1	4/2/2009 2:51:00 PM					
Virgi chiorida	U	0.3	1.0	μg/L	1	4/7/2009 2:51:00 PM					
Surr. 4-Bromofluorobenzane	103	0	60-130	%REC	1	4/2/2009 2:51:00 PM					
Sur: Disromofluoramethane	102	ō	63-127	WREC	1	4/2/2009 2:51:00 PM					
Sur: Toluene-d8	104	ō	61-128	%REC	1	4/2/2009 2:51:00 PM					

helate

Analyte decected in the nanocreated Mental Bands
 Holding kines for preparation or analysis exceeded
 LOD Limit of Detection
 ND Hot Detection st the Reporting Limit
 Indicates the compound was intellyant but not deter-

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

CLIENT: Associated Environmental Svcs., LTD. Lab Order

Client Sample ID: B-3 (GW) Collection Date: 4/1/2009 9:30:00 AM 0004030 Matrix: LIQUID

Sutter Avenue, Brooklyn, NY Project: Lab ID:

0904030-03A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzes
VOLATILE SW-846 METH	DC 8260		8W6	2608			Analyst: LA
Acrolein	U	9.4	1.0	C	μ g/L	1	4/2/2009 3:22:00 PM
Acrylonicite	U	D.3	1.0		µo/L	1	4/2/2009 3:22:00 PM
Benzenn	υ	0.3	1.0		µg/L	1	4/2/2008 3:22:00 PM
Bromobanzana	U	0.3	1.0		μg/L	1	4/2/2008 3:22:00 PM
Bromochioromethane	U	0.3	1.0		µg/L	1	4/2/2008 3:22:00 PM
Bromodichioromethane	U	0.3	1.0		port.	1	4/2/2009 3:22:00 PM
Bromoferm	U	0,4	1.0		pg-L	1	4/2/2009 3:22:00 PM
Eromomethare	U	0.3	1.0		µg/L	1	4/2/2009 3:22:00 PM
Carbon disulfide	U	0.3	1.0		µQ/L	1	4/2/2009 3:22:00 PM
Cartern tetrachiorida	Ú	0.4	1.0		ue4.	1	4/2/2008 3:72:00 PM
Chlorobenzene	Ū	0,3	1.0		μ e /L	1	4/2/2009 3:22:00 PM
Chlorodityoromethene	Ù	0,3	1.0		pp/L	1	4/2/2009 3:22:00 PM
Chloroethana	Ū	0.3	1.0		un/L	1	4/2/2009 3:22:00 PM
Chiorniam	Ū	0.3	1.0		uo/L	1	4/2/2008 3:22:00 PM
Chloromethane	υ	0.3	1.0		ug/L	1	4/2/2009 3:22:00 PM
cls-1 2-Olchiomethene	Ü	0.3	1.0		40/	+	4/2/2008 3:22:00 PM
cla-1.3-Dichloropropene	U	0.3	1.0		VOK.	+	4/2/2008 3:22:00 PM
Ofmoreochturermiteren	Ū	0.3	1.0		pg/L	+	4/2/2009 3:22:00 PM
Disromemethene	U	0.4	1.0		ug/L	1	4/2/2008 3:22:00 PM
Dichlerodiflueromethers	Ü	0.4	1.0		MOV.	1	4/2/2008 3:22:00 PM
Discorpovi ether	Ü	6.3	1.0		μg/L	1	4/2/2000 3:22:00 PM
Elbanol	Ū	0.3	1.0		MOPL.	1	4/2/2006 3.22.00 PM
Ethyt acelate	U	6.3	1.0		POIL.	1	4/2/2009 3:22:00 PM
Eth/benzene	Ū	0.3	1.0		ug/L	1	4/2/2008 3:22:00 PM
Fmondt4	ย	0.4	1.0		pg/L	1	4/2/2009 3:22:00 PM
Hexachlorobutediana	Ü	0.4	1.0		po/L	1	4/2/2009 3:22:00 PM
isopropyl acetate	υ	0.4	1.0		µg/L	1	4/2/2009 3:22:00 PM
hobiopolpenzeve	Ū	0.3	1.0		ug/L	1	4/2/2009 3:22:00 PM
m.p-Kylene	Ū	0.3	2.0		pg/L	1	4/2/2009 3:22:00 PM
Molty/ leri-butyl either	Ū	0.3	1.0		NO.	1	4/2/2008 3:22:00 PM
Methylane chloride	9.6	0.3	1.0	вс	pg/L	•	4/2/2008 3:22:00 PM
n-Armi acelale	Ü	0.3	1.0		MB/L	1	4/2/2008 3:22:00 PM
Nankhalene	ū	0.3	1.0		ug/L	1	4/2/2008 3:22:00 PM

Americas Analytical Leboratories, LLC, 56 Tolledo Street, Fernángdiele, NY, Zip - 11735 Tel - 6314646100 Fex - 6314546027 www.American-Analytical.com

ńelie

B Analyse desocted to the numericand Method E
H Holding Linear for preparation or easilysis es
LOO Limit of Dosestias
ND Not Detected at the Reporting Limit
U Indicates the compressed was analysed tou or

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

Lab ID:

Client Sample ID: B-3 (GW) CLIENT: Associated Environmental Sycs., LTD. Lab Order 0904030

Sutter Avenue, Brooklyn, NY 0904030-03A

Collection Date: 4/1/2009 9:30:00 AM

Matrix: LIQUID

Certificate of Results											
Analyses	Sample Result	LOD	LOQ Qua	Veite	DF	Date/Time Analyzzo					
VOLATILE SW-846 METHOD I	260		6W8260B			Analyst: LA					
n-Sulyi acetate	L	0.3	2.0	µg4∟	•	4/2/2009 3:22:00 PM					
n-Butylbenzene	U	0.3	1.0	µg/L	1	4/2/2009 3:22:00 PM					
n-Propyl acutals	U	0.4	1.0	μg/L	+	4/2/2009 3:22:00 PM					
n-Propythanzana	u	0.3	1.0	µg/L	1	4/2/2009 3:22:00 PM					
u-Xylene	Ü	0.3	1.0	Juga.	t	4/2/2009 3:22:00 PM					
p-Diethylbanzene	U	0.3	1.0) Spil	1	4/2/2009 3:22:00 PM					
p-Ethyliokene	u	0,3	1,0	μ g/ L	1	4/2/2009 3:22:00 PM					
sec-Butylbenzene	Ų	0.3	1.0	PD/L	1	4/2/2009 3:22:00 PM					
Styrene	U	0.3	1.0	ug/L	1	4/2/2000 3:22:00 PM					
I-Butyl alcohol	u	0.4	1.0	pg4.		4/2/2009 3:22:00 PM					
lert-Bulylbenzane	U	D.3	1.0	µg/L	1	4/2/2009 3:22:00 PM					
Tetrachioroethene	2.2	0.3	1.0	μgA.	1	4/2/2009 3:22:00 PM					
Toluene	u	0.3	1.0	µg∕L	1	4/2/2008 3:22:00 PM					
rans-1.2-Oichiprosthene	U	6.3	1.0	PQ4	1	4/2/2009 3:22:00 PM					
trans-1,3-Oichipropropens	U	0.3	1.0	μ g/L	1	4/2/2009 3:22:00 PM					
Trichkroethene	υ	0.3	1.0	µg/L	1	4/2/2008 3:22:00 PM					
Trichlorofluoromethene	U	0.3	1.0	μgΛ.	1	4/2/2009 5:22:00 PM					
Virgi stateje	U	0.3	1.0	µg/L	1	4/3/2009 3:22:00 PM					
Vinyl chloride	ť	0.3	1.0	µg/L	1	4/2/2009 3:22:00 PM					
Eur: 4-Bromofluorobenzane	105	0	60-130	%REC	1	4/2/2009 3:27:00 PM					
Sur: Dibromofluoromethens	111	•	63-127	WREC	1	4/2/2009 3:22:00 PM					
Surr: Toluene dil	90.0		61-128	MREC		4/2/2009 3:22:00 PM					

American Arabytical Laboratorias, LLC., 56 Toledo Street, Farmingdale, RY, Zip - 11735 Tel - 6314546100 Faix - 6314546027 www.American-Analytical.com

Value concrete Mexicanes Commentaria Level
 Value concrete Mexicanes Commentaria Level
 Value cheve quentitation range
 Januty referend below quentitation limits
LOQ Limit of Quentitation
 Spain Morrange and concrete develops from CCC canalytee
C Callenia MASDPAD exceeded for mor-CCC manipton

Avalyie detected in the nanocinted Medical Black
H Holding times for proparation or analysis exceeded
LOD Limit of Detection

NO Not Detected at the Superting Limit
U Indicates the compound was analyzed too set detected.

13

felae

American Analytical Laboratories, LLC.

Date: 06-Apr-09

Matrix: LICRUD

ELAP ID : 11418 CLIENT:

Associated Environmental Sycs., LTD. Lab Order: 0904030 Sutter Avenue, Brooklyn, NY

Client Sample ID: B-4 (GW) Collection Date: 4/1/2009 10:00:00 AM

Project Lab ID:

0904030-04A

Certificate of Results Analyses Sample Result LOD LOQ Qual Units DF Date/Time Analyzed VÖLATILE SW-848 METHÓD 8260 Acrolein Analyst: LA 4/3/2009 11:47:00 AM POLATILE SW-946 ME
Anzhein Azureine
Bronzene
Bro AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO 11-07-00 AM
AGRICOSO

7.Q American Araşirlosi Laborstories, LLC., 86 Toudo Streer, Farmingdale, NY, Zip - 11735 Tal - 6316346100 Fax - 6316548227 enter American-Analytical com Qualificem Valvo coccole Manimus Contendent Lord 8 A

Value exceeds Manipung Contembrant Lev
E Value above quantitation range
J Analyte descried below quantitation limits
LOQ Limit of Quantitation

- Spite Recovery outside secepted recovery limits
 C Calibration %RSDMO exceeded for non-CCC everytes.
- helde

4/3/2009 11:47:00 AM 4/3/2009 11:47:00 AM 4/3/2009 11:47:00 AM 4/3/2009 11:47:00 AM

4/3/2009 11:47:00 AM

- Analysis distorted in the secondard Method Blank
 Historian for preparation or enalysis exceeded
 LOO Limit of Desertion
 NO Not Detected at the Exporting Limit
 Understand the compound was analyzed but not detect

American Analytical Laboratories, LLC.

ELAP ID: 11418

- ---------CLIENT: Associated Environmental Svcs., LTD. Lab Order NOME OF THE PROPERTY OF

Client Sample ID: B-4 (GW) Collection Date: 4/1/2009 10:00:00 AM

.....

Matrix: LIQUID

Sutter Avenue, Brooklyn, NY Project: Lab ID: 0904030-04A

Analyses	Sample Result	LOD	LOQ	Qual	Units	DF	Dute/Time Analyzed
VOLATILE SW-846 METHOD 8	200		6W8	260B			Analyst: LA
1,1,1,2-Tetrachloroethane	U	0.4	1.0		µg∕L	1	4/3/2009 11:47:00 AM
1,1,1-Trichloroethere	U	0.3	1.6		ug/L	1	4/3/2009 11:47:00 AM
1,1,2,2-Telrechlorostyans	U	0.3	1,0		μg/L	1	4/3/2009 11:47:00 AM
1,1,2-Trichloro-1,2,2-irtiluoroethan	· · ·	0.3	1,0	¢	μg/L	1	4/3/2009 11:47:00 AM
1,1,2-Trichloroethene	υ	0.4	1.0		μ ο L	1	4/3/2009 11:47:00 AM
1,1-Oichtoreetherre	U	0.3	1,0		ugit.	1	4/3/2009 11:47:00 AM
1,1-Dichlorsethene	บ	0.3	1.0		ug/L	1	4/3/2009 11:47:00 AM
1,1-Dichtoropropene	U	0.3	1.0		אפע	1	4/3/2009 11:47:00 AM
1,2,3-Tricklorobensene	υ	0.3	1.0		up/L	1	4/3/2009 11:47:00 AM
1,2,3-Trichleropropane	Ù	0.4	1.0		ual	1	4/3/2009 11:47:00 AM
1,2,4,6-Tetramethylbenzene	υ	0.3	1.0		JON.	1	4/3/2009 11:47:00 AM
1,2,4-Trichlorobenzena	U	0.3	1.0		Juga.	1	4/3/2009 17:47:00 AM
1,2,4-Trimethylbermena	U	0.3	1.0		µg/L	1	4/3/2009 11:47:00 AM
1.2-Dibramo-3-chioraprapara	£	0.4	1.0		un/L	1	4/3/2009 11:47:00 AM
1,2-Dibromositians	u	0.3	1.0		MD/L	1	4/3/2009 11:47:00 AM
1,2-Dichlorobenzene	Li	0.3	1.0		PD/L	1	4/3/2009 11:47:00 AM
1,2-Dichiorosthans	U	0.3	1.0		µg∕t.	1	4/3/2009 11:47:00 AM
1,2-Dichioropropane	U	0.3	1.0		μg/L	1	4/3/2009 11:47:00 AM
1,3,5-Trimethylbenzene	Lt.	0.3	1.0		vot.	1	4/3/2009 11:47:00 AM
1,3-Dichlorobenzone	u	0.3	1.0		ug/L	1	4/3/2009 11:47:00 AM
1,3-dichloropropane	u	0.3	1.0		ug/L	1	4/3/2009 11:47:00 AM
1,4-Diobisrobensene	U	0.3	1.0		μg/L	4	4/3/2009 11:47:00 AM
1,4-Dioxana	u	0.4	1.0	C	ug/L	1	4/3/2008 11:47:00 AM
2,2-Dichloropropane	u	0.3	1.0		NOT	1	4/3/2009 11:47:00 AM
2-Butenone	9.0	6.5	3.0		µ o ∕L	1	4/3/2000 11:47:00 AM
2-Chloroettyl vinyl ether	U	0.3	1,0		PP4	1	4/3/2009 11:47:00 AM
2-Chlorotolyene	U	0.3	1.0		µg/L	1	4/3/2009 11:47:00 AM
2-Hexanoru	U	0.3	2.0		ual.	1	4/3/2009 11:47:00 AM
2-Propanol	Ũ	0.3	1.0		uol	1	4/3/2009 11:47:00 AM
4-Chlorotokrane	Ū	0.3	1.0		ual.	i	4/3/2009 11:47:00 AM
4-isopropyllotuene	Ū	0.3	1.0		uat.	1	4/3/2009 11:47:00 AM
4-Methyl-2-pertanone	Ū	0.3	2.0		ugit.	i	4/3/2009 11:47:00 AM
Acelone	ū	0.3	2.0		uot.	•	4/3/2009 11:47:00 AM

American Analytical Laboratories, LLC., 56 Toledo Street, Farmingdale, NY, Zip - 11735 Tel - 8314548100 Fax - 8314548027 www.American-Analytical.com

Value exceeds Maximum Commisses Level

- Yaloc creech Maximum Committaes Lavud
 E Value above quantitation range

 Analyse document behave quantitation treats

 LOQ Linit of Quantitation

 Spike Recovery sensities accupsed encovery limits

 C Califeration WASDYNO encoded for non-CCC analyses.
- B Analyse desected in the associated Stateber Steen
 H Holding states for preparation or analysis exceeded
 LOO Lians of Desection

ńelate

mar 2./25<u>22---</u>-

ńelac

14

- ND Not Detected at the Reporting Limit

 1) Indicates the command was analyze

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID: 11418

CLENT: Associated Environmental Sycs., LTD.

0904030 Lab Order:

Client Sample ID: B-4 (GW) Collection Date: 4/1/2009 10:00:00 AM Matrix: LIQUID

Lab ID:

Sutter Avenue, Brooklyn, NY 090403D-04A

		Certificate of Results												
Analyses	Sample Result	LOD	rođ	Quai	Units	DF	Date/Time Analyzed							
VOLATILE SW-846 METHOD	6250		2W8	260B			Analyst: LA							
n-Butyl acetale	Ų	0.3	2.0		pg/L	1	4/3/2009 11:47:00 AM							
n-Butytoenzene	U	0.3	1.0		ug/L	1	4/3/2009 11:47:00 AM							
n-Propyl acetate	U	0.4	1.0		µg/L	1	4/3/2009 11:47:00 AM							
n-Propyibenzena	U	0.5	1.0		µg/L	1	4/3/2000 11:47:00 AM							
o-Xylene	U	0.3	1.0		JAGN.	1	4/3/2009 11:47:00 AM							
p-Diethythenzene	u	0.3	1.0		µg/L	1	4/3/2009 11;47:00 AM							
p-Ethy@okese	U	0.3	1.0		pgA.	1	4/3/2009 11:47:00 AM							
sus-Bulyibarzone	U	0.3	1.0		HQA.	1	4/3/2009 11:47:00 AM							
Styrene	U	0.3	1.0		Mark.	1	4/3/2009 11:47:00 AM							
(-Butyl elechol	Lt-	0.4	1.0		HOR.	1	4/3/2009 t1:47:00 AM							
tert-Buly/benzene	U	0.3	1.0		PRA.	1	4/3/2009 11:47:00 AM							
Tetrachioroethene	35	0.3	1.0		VOA.	1	4/3/2009 11:47:00 AM							
Tokene	U	0.3	1.0		µg/L	1	4/3/2009 11:47:00 AM							
(rene-1,2-Dishleroethene	ψ	0.3	1.0	c	μg/L	1	4/3/2009 11:47:00 AM							
trans-1,3-Dichloropropens	U	0.3	1.0		μg/L	1	4/3/2009 11:47:00 AM							
Trichloroethene	1.6	0.3	1.0		µg/L	1	4/3/2028 11:47:90 AM							
Trichtorofluoromethane	U	0.3	1.0	C	μ ο/L	1	4/3/2009 11:47:00 AM							
Viryi majata	U	0.3	1.0		µg/L	1	4/3/2008 11:47:00 AM							
Vinyt chloride	U	0.3	1.0		μ g/ L	1	4/3/2008 11:47:00 AM							
Sur: 4-Bromoflucrabenzene	92.4	0	60-130		*REC	1	4/3/2009 11:47:00 AM							
Surr: Dibromofluoromethene	96.0	Ð	63-127		WREC	1	4/3/2008 11:47:00 AM							
Surr: Toluene-d8	BB.5	a	61-126		SIREC	1	4/3/2009 11:47:00 AM							

American Analytical Laboratories, LLC., 55 Toledo Street, Farmingdeis, NY, Zlp - 11735 Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

Yukan enzonen Nectrumper Cumbanniana Lazed
R Valan ensonen Nectrumper Cumbanniana Lazed
R Valan ensonen Service Service Service
LOQ Lines of Quantitation
S Spitz Re-werey outside accepted resource CC analysis.
C California

B Austyre desected in the associated Meteroe Blank
H Holding times for proparation or analysis exceeded
LOG Limit of Desection
U Holding times for proparation or analysis exceeded
LOG Limit of Desection
U Indicates the compound was enalyzed but not detected.

ELAP ID: 11418

CLIENT:

Environmental Sves., LTD.

Lab Order D904030 Project:

Client Sample ID: R-5 (GW) Collection Date: 4/1/2009 11:15:00 AM

Sutter Avenue, Brooklyn, NY Matrix: LICUID

0904030-05A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Qu	i Valt	DF	Date/Time Analyzed
VOLATILE SW-846 METHOD S	280		8WE2001	3		Analyst: LA
1.1.1.2-Tetrachlorselkane	ш	0.4	1,0	ug/L	1	4/2/2009 4:23:00 PM
1.1.1-Trichloroethane	ũ	0.3	1.0	µg/L	1	4/2/2009 4:23:00 PM
1.† 2.2-Tetrachiorosikana	Ū	0.3	1.0	ug/L	1	4/2/2009 4:23:00 PM
1.1.2-Trichlero-1.2.2-Iriflucroether	. ŭ	0.3	1.0	pg/L	1	4/2/2008 4:23:00 PM
1.1.2-Trightoroethane	U	0.4	1.0	µg/L	•	4/2/2009 4:23:00 PM
1.1-Dickioroalhane	Ū	6.3	L.O	pg/L	1	4/7/2008 4:23:00 PM
1.1-Dichlerosthene	U	0.3	1,0	ugit.	1	4/2/2008 4:23:00 PM
1.1-Dichleropropens	U	0.3	1,0	μgA.	1	4/2/2009 4:23:00 PM
1.2.3-Trichlombenzene	ū	0.3	1.0	µg/L	1	4/2/2008 4:73:00 PM
1.2.3-Trichlororopera	ū	0.4	1.0	pg/L	1	4/2/2008 4:23:00 PM
1.2.4.5-Tetramethylbenzone	ū	0.3	1.0	µg/L	1	4/2/2009 4:23:00 PM
1 2.4-Tricklombenzene	Ū	0.3	1.6	ug/L	1	4/2/2009 4:23:00 PM
1,2,4-Trime(hythercone	ū	0.3	1.0	µg/s.	1	4/2/2008 4:23:00 PM
1.2.Dibramo-3-chipropropage	ű	0.4	1.0	pg/L		4/2/2009 4:23:00 PM
1.2-Oitromosthana	ū	0.3	1,D	µg/L	1	4/2/2009 4:23:00 PM
1.2-Dicisiorphorizene	Ü	0.3	1.0	μ ο Λ.	1	4/2/2009 4:23:00 PM
1.2-Oktooresthene	ū	0.3	1.0	Port.	1	4/2/2009 4:23:00 PM
1.2-Dichieropropane	ű	0.3	1.0	µg/L	1	4/2/2008 4:23:00 PM
1.3.5-Trimethylpersons	u	0.3	1.0	µg/L	1	4/2/2009 4:23:00 PM
1.3-Dichlorobenzues	ū	0.3	1.0	pg/L	1	4/2/2009 4:23:00 PM
1,3-Cappiex (constraine 1,3-diphioraers pane	ŭ	0.3	1.0	pg/L	1	4/2/2009 4:23:00 PM
1,3-dichiorobenzene	Ü	0.3	1.0	uol.	1	4/2/2009 4:23:00 PM
1,4-Occasionalizative	ŭ	0.4	1.0	µg/L	1	4/2/2008 4:23:00 PM
	ű	0.3	1.0	μg/L	1	4/2/2009 4:23:00 PM
2,2-Oichloropropane	u	0.3	3.0	es/L		4/2/2009 4:23:00 PM
2-But prame	u u	0.3	1.0	ue/L		4/2/2009 4:23:00 PM
2-Chlorosthyl vinyl ether	Ü	0.3	1.0	µg/L		4/2/2009 4:23:00 PM
2-Chiorototuene	-	0.3	2.0	ug/L		4/2/2009 4:23:00 PM
2-Hexanone	U	0.3	2.U	μg/L		4/2/2008 4:23:00 PM
2-Propanol	u	0.3	1.0	μαΛ.		4/2/2009 4:23:00 PM
4-Chlorololuene	U			ygri.	,	4/2/7009 4:23:00 PM
4-leopropy Rokenna	U	0.3	1.0	μg/L.		4/2/2008 4:23:00 PM
4-Methyl-2-penianone	u	0.3	2.D		- 1	4/2/2008 4:23:00 PM
Acatone	U	0.3	2.0	MO.	•	MACROON TAXABLE FIRE

American Analytical Laboratorias, LLC., 36 Totado Street, Farmiegidale, NY, 2ip - 11735 Tal - 6314546100 Fax - 6314546027 sere-American-Analytical com

- Value accomb Mexicinum Contentional Level
 Value above quantization range
 Jane Advanced above quantization trimbs
 Local Lates of Commission
 Spiles Recovery mestide accepted reservely limits
 California VARDPHD accorded for non-CCC enalytes.
- **Neat**

17

- Analyse desected is the associated Method Blash
 Holdship times for properties or analysis crossed
 LDD Limit of Desection
 D bio Desection of a the Report
 U boliciates to

American Analytical Laboratories, LLC.

Date: 06-42r-09

ELAP ID : 11418

CLIENT: Associated Environmental Sycs., LTD. 0904030 Lab Order:

Client Sample ID: B-5 (GW) Collection Date: 4/1/2009 11:15:00 AM Matrix: LIOUID

Project: Lab ID:

Sutter Avenue, Brooklyn, NY 0904030-05A

Analyses	Sample Result	LOD	LOQ	Quui	Units	DF	Dete/Time Analyses
VOLATILE SW-848 METHOD S	1240		SW6	289B			Analyst: LA
n-Butyl aculate	U	0.3	2.0		µge.	1	4/2/2009 4:23:00 PM
n-ButyBenzene	u	0.3	1.0		µgl.	1	4/2/2009 4:23:00 PM
n-Proovi scatale	Ū	0.4	1.0		µg4.	1	4/2/2009 4:23:00 PM
n-Propyibenzene	u	0.3	1.0		war.	+	4/2/2008 4:23:00 PM
g-Xylana	ū	0.3	1,0		μgΛ.	1	4/2/2009 4:23:00 PM
p-Clethybearene	U	0.3	1.0		pol.	1	4/2/2009 4:23:00 PM
p-Ethyllokume	U	0.3	1.0		μ ο L	1	4/2/2009 4:23:00 PM
ser:-Bulybenzene	υ	0.3	1,0		µg/L	1	4/2/2008 4:23:00 PM
Styrene	υ	0.3	1.0		NOL	1	4/2/2009 4:23:00 PM
I Butyl alcohol	Ü	0.4	1.0		pg/L	1	4/2/2009 4:23:00 PM
test-Butvibenzane	U	0.3	1.0		up/L	1	4/2/2009 4:23:00 FM
Tetrachtoroethene	93	0.3	1.0		POAL.	1	4/2/2008 4:23:00 PM
Tokunce	0.62	0.3	1.0		PBL	1	4/2/2009 4:23:00 PM
Iram-1.2-Dichlorsetheng	U	0.3	1.0		HDA.	1	J/2/2000 4:23:00 PM
trams-1,3-Dichioropropene	บ	0.3	1.0		PD4	f	4/2/2009 4:23:00 PM
Trichloroethene	2.7	0.3	1.0		pg/L	1	4/2/2009 4:23:00 PM
Trichtorofluoromethene	U	0.3	1.0		MON.	1	4/2/2009 4:23:00 PM
Virgi sociale	Ú	0.3	1,0		µg/L	1	4/2/2009 4:25:00 PM
Virgi chlodda	υ	0.3	1.0		µg/L	1	4/2/2009 4:23:00 PM
Sur: 4-Bromo@vorobenzene	99.7	٥	60-130		%REC	1	4/2/2009 4:23:00 PM
Sur Divernelluorematicasa	111	ō	63-127		KREC	1	4/2/2009 4:23:00 PM
Surr. Tolunna-dil	105	ō	81-128		MREC	1	4/2/2009 4:23:00 PM

Certificate of Results

- Austyro detacted in the sapociated Medium! Think
 Hobking times for programation or analysis encoded
 LOD Liquis of Detaction
 No Thomas of the Reporting Limit
 Indicated at the Reporting Limit

nelae

American Analytical Laboratories, LLC.

Date: 06-Apr-09

<u>ELAP</u> ID : 11418

Associated Environmental Svcs., LTD. Client Sample ID: B-5 (GW)
Collection Date: 4/1/2009 11:15:00 AM CLIENT: Lab Order 0904030 Matrix: LIOUID

Sutter Avenue, Brooklyn, NY Project: Lab ID: 0904030-05A

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual	Velte	DF	Date/Time Analyze
VOLATILE SW-846 METHO	YO 8280		5/46	260Û			Analyst: LA
Acmiein	U	0.4	1,0	C	MB/L	1	4/2/2009 4:23:00 PM
Acrylanitrie	u	0.3	1.0		µg/L	1	4/2/2009 4:23:00 PM
Benzane	บ	9.3	1.0		Her.	1	4/2/2009 4:23:00 PM
Bronsbenzene	U	0.3	1.0		pg/L	1	4/2/2009 4:23:00 PM
Bromochioromethane	Ü	0.3	1.0		POPL.	1	4/3/2009 4:23:00 PM
Bromodichioremethana	U	0.3	1.0		μgΛ.	1	4/2/2009 4:23:00 PM
Bromoform	U	0.4	1.0		paget.	1	4/2/2000 4.23.00 PM
Removelhere	U	0.3	1,0		μ g/ L	1	4/2/2009 4:23:00 PM
Carbon disutfide	U	0.3	1.0		µg/L	1	4/2/2009 4:23:00 PM
Carbon istracklorida	IJ	0.4	1.0		μg/L	1	4/2/2008 4:23:00 PM
Chiorobenzane	Ľ	0.3	1.0		ug-L	1	4/2/2009 4:23:00 PM
Chlorodifluoromathans	บ	0.3	1.0		μg/L	1	4/2/2008 4:23:00 PM
Chloroethane	u	0.3	1.0		μg/L	1	4/2/2008 4:23:00 PM
Chioroform	υ	0.3	1.0		pgs.	1	4/2/2009 4:23:00 PM
Chioromethese	U	0.3	\$.D		PDA.	1	4/2/2009 4:23:00 PM
cis-1,2-Dichloroethens	5.8	0.3	1.0		µg/L	1	4/2/2009 4:Z3:00 PM
de-1.3-Dichlorupmpene	U	0.3	1.0		μ α/L	1	4/2/2008 4:23:00 PM
Dibramachiorarsethane	U	0.3	1.0		PDL	1	4/2/2009 4:23:00 PM
Dibromomethers	U	0.4	1.0		µg∕L	1	4/2/2009 4:23:00 PM
Dichlorodiftuorome thene	u	0.4	1.0		POA.	1	4/2/2009 4:23:00 PM
Discorpeyl ether	U	6.3	1.0		PBA.	1	4/2/2009 4:23:00 PM
Ethanel	Ü	6.3	10		µg/L	1	4/2/2009 4:23:00 PM
Ethyl acetate	U	0.5	1.0		µg/1.	1	4/2/2009 4:23:00 PM
Ethylacters	U	0.3	1.0		ug/L	1	4/2/2009 4:23:00 PM
Face-114	ū	0.4	1.0		MOL.	1	4/2/2009 (:23:00 PM
rimachiprobulacione	ū	0.4	1.0		pg/L	1	4/2/2009 4:23:00 PM
isopropyl scalals	υ	0.4	1.0		pg/L	1	4/2/2006 4:23:00 PM
lacorocythenzane	Ū	0.3	1.0		ug/L	1	4/2/2009 4:23:00 PM
rs.o-XVene	Ū	0.3	2.0		µg/L	1	4/2/2009 4:23:00 PM
Methyl Lesi-butyl alber	ŭ	D.3	1.D		µg/l.	3	4/2/2009 4:23:00 PM
Methylene chloride	15	0.3	1.0	8C	μαΛ.	1	4/2/2009 4:23:00 PM
n-Armyl acetain	Ü	0.3	1.0		pg/L	1	4/2/2009 4:23:00 PM
Naphihulene	ŭ	0.3	1.0		µg/L	1	4/2/2009 4:23:00 PM

American Analytical Laboratories, LLC., 95 Toledo Street, Farmingdale, NY, Zip - 11735
Tel - 8314546100 Fax - 8314546027 www.American-Analytical.com

Welse secured Mississes Commisses Level
 Velse secured Mississes Commisses Level
 Velse secured Mississes Commisses Level
 Velse secured secured secured visits
 Analysis described level specification (imits
 LOQ Link of Commission
 space Nacovery ownible secured recovery Nation
 Childrenia MISSOPAD cocceded for son-CCC analysis

- helate Analysis detected in the sasettisted Medical Planck
 H Holding draws the proposalest or analysis exceeded
 LOD Limbs of Detection
 D Not Detection the Reporting Limis
 U Indicates the screening was analysed but and detect

18

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

Project:

Associated Environmental Syss., LTD. CLIENT: 0904030 Lab Order:

Clinet Sample ID: B-6 (GW)
Collection Date: 4/1/2009 | 2:00:00 PM Matrix: LiQUID Sutter Avenue, Brooklyn, NY

0904030-06A Lab ID:

Certificate of Results

Analyses	Sample Result	LOD	LOQ	Qual Units	DF	Date/Time Analyzed
VOLATILE SW-846 METHOD &	NEO		5W12	108		Analysi: LA
1,1,1,2-Tetrachioropitums		6.4	1.0	µ ≱ t∟	1	4/2/2009 4:53:00 PM
1,1,1-Trichloroethene	υ	0.3	1,0	ug/ L	1	4/2/2008 4:53:00 PM
1,1,2,2-Teirschlorsethens	U	0.3	1.0	μg/L	1	4/2/2008 4:53:00 PM
1,1,2-Trichloro-1,2,2-Milyoroethan	· U	0.3	1.0	μ gr L	1	4/2/2008 4:53:00 PM
1.1.2-Trichkwoothane	u	0.4	1.0	μg/L	1	4/2/2009 4:53:00 PM
1.1-Dichloroethers	υ	0.3	1.0	µg/L	1	4/2/2009 4:53:00 PM
1,1-Dishlorosthene	U	0.3	1.0	MOV.	1	4/2/2009 4:53:00 PM
1.1-Dichloropropene	U	0.3	1.0	μ ο Λ.	1	4/2/2008 4:53:00 PM
1,2,3-Trichimobersane	U	0.3	1.0	ug/L	1	4/2/2009 4:53:00 PM
1.2.3-Trichipropropage	U	0.4	1.0	µg/L	1	4/2/2000 4:53:00 PM
1.2.4.5-Tutramethylbenzens	Ų	0.3	1.0	μ ο ¢.	1	4/2/2009 4:53:00 PM
1.2.4-Trichloroberosses	U	0.3	1.0	ugiL	1	4/2/2009 4:53:00 PM
1,2,4-Trimethylbenzens	U	0.3	1.0	ν ο Λ.	1	4/2/2009 4:53:00 PM
1.2-Obrano-3-chioroccoses	บ	0.4	1.0	µg/L	1	4/2/2009 4:53:00 PM
1,2-Oibromoethene	U	0.3	1.0	µg√L	1	4/2/2009 4:53:90 PM
1.2-Dighloroberusens	U	0.3	1.0	μ ρ ι.	1	4/2/2008 4:53:00 PM
1.2-Dichloroelhans	u	0.3	1.0	NO.	1	4/2/2009 4:53:00 PM
1.2-Dichloroarcoane	Ų	6.3	1.0	pol.	1	4/2/2009 4:53:00 PM
1,3,5-Trimethy@enzees	U	0.3	1.0	μ <u>α</u> /L	,	4/2/2008 4:53:00 PM
1.3-Dichlorobenzene	υ	0.3	1.0	μ g /∟	1	4/2/2008 4:53:00 PM
1.3-dichterocropene	Ü	0.3	1.0	MB/L	1	4/2/2009 4:53:00 PM
1.4-Cishiorobersete	ū	0.3	1.0	HØ*	1	4/2/2000 A:53:00 PM
1.4-Ciconna	ū	0.4	1.D	ug/L	1	4/2/2006 4:53:00 PM
2 2-Dichioropropere	ū	0.3	1.0	uat.	1	4/2/2009 4:53:00 PM
2-Butanone	ū	0.3	3.0	µg/L	1	4/2/2009 4:53:00 PM
2-Chlorostyl viryl after	ŭ	0.3	1.0	pg/L	,	4/2/2000 4:53:00 PM
2-Chlorolokane	Ü	0.3	1.9	pot.	1	4/2/2009 4:63:00 PM
2-Unicrototomie 2-Hexanona	ū	0.3	2.0	Juga.	1	4/2/2009 4:53:00 PM
	ŭ	0.3	10	ue/L	i i	4/2/2009 4:53:00 PM
2-Propenol 4-Chlorotokuene	ŭ	0.3	1.0	Juga.	1	4/2/2009 4:53:00 PM
4-Linorocoluene 4-leopropylioluene	ü	63	1.0	upl	1	472/2009 4:53:00 PM
4-recompysowers 4-Methyl-2-pontamone	ŭ	0.3	2.5	ug/L	1	4/2/2009 4:53:00 PM
4-Methys-2-permanune Acadone	ŭ	0.3	20	MDV.	,	4/2/2009 4:53:00 PM

Acadiona Analyticos Laboratorias, LLC., 55 Taledo Sizvas, Fernángdala, NY, Zip - 11735
Tal - 8514646100 Fax - 8514648027 sweet Analyticas Loron

Questioner: Valve accordo Missilicam Conteminant Lervil B A Analytic describes below quastication insign LOD Le Laboratoria Conteminant Loron

J Analytic describes below quastication times LOD Le Loron

S Spick Recovery castala tecepana yearway times

C Californion WRSD/WD encoded for son-CCC analytes

- ńeläte

- B. Ambjoe detected in the numerical Method Blunk
 H. Holding times for projectelon or analysis cascoded
 LOD Limit of Detection
 N. Not Detected in the Reporting Limit
 U. Indicates for companion was analysed but not detected

137

ELAP ID : 11418

Associated Environmental Svcs., LTD. Client Sample ID: B-6 (GW) CLIENT: Lab Order: Collection Date: 4/1/2009 12:00:00 PM Matrix: LIQUID

Project: Sutter Avenue, Brooklyn, NY 0904030-06A Lab ID:

	Certificate of Results												
Luslyses	Sample Result	LOĐ	1.0Q	Qual	Units	DF	Date/Time Analyza						
/OLATILE SW-848 METHO	X) 8260		swi	260B			Analyst: LA						
Acrolein	u	0.4	1.0	c	µg/L	1	4/2/2009 4:63:06 PM						
Acrelonitrille	ย	0.3	1.6		μ ο/L	1	4/2/2009 4:53:00 PM						
Benzene	ย	0.3	1.0		µg/L	1	4/2/2009 4:53:90 PM						
Sromobenzene	U	0.3	1.0		µg/L	1	4/2/2009 4:53:00 PM						
Bromochloromethane	U	0.3	1.0		μg/L	1	4/2/2009 4:53:00 PM						
Bromodichloromethere	U	0.3	1.0		μg/L	1	4/2/2009 4:53:00 PM						
Bromoform	u	0.4	1.0		µg€.	,	4/2/2009 4:53:00 PM						
Bromometherre	U	0.3	5.D		µgA.	1	4/2/2009 4:53:00 PM						
Carbon stauffde	U	0.3	1.0		MB/L	1	4/2/2008 4:53:00 PM						
Carbon intrechtoride	υ	0.4	1.0		µg/L	1	4/2/2009 6:53:00 PM						
Chiorobenzene	U	0.3	1.0		pg/L	1	4/2/2009 4:53:00 PM						
Chlorodificoromethene	U	0.3	1.0		µg∕L	1	4/2/2009 4:53:00 PM						
Chlorosthana	U	0.3	1.0		ug/L	1	4/2/2009 4:53:00 PM						
Chincology	Ü	0.3	1.0		pe/L	1	4/2/2009 4:53:00 PM						
Chloromethane	U	0.3	1.6		µg/L	1	4/2/2009 4:53:00 PM						
cis-1,2-Dichigrophene	4,8	D.3	1.0		pg/L	1	4/2/2009 4:53:00 PM						
cis-1.3-Clichloropropene	U	0.3	1.0		pg/L	1	4/2/2009 4:53:00 PM						
Obromochloromathans	U	0.3	10		Mari.	1	4/2/2009 4:53:00 PM						
Obtonomethem	U	0.4	1.0		µg/L	1	4/2/2009 4:53:00 PM						
Dichlorodifuoromethane	u	0.4	1.0		µg/L		4/2/2009 4:53:00 PM						
Oitsopropyl either	U	0.3	1.0		µg/L	1	4/2/2009 4:53:00 PM						
Ethanol	U	0.3	1.0		µg/L		4/2/2008 4:53:00 PM						
Ethyl scetste	U	0.3	1.0		µg/L	1	4/3/2008 4:53:00 PM						
Ethylberstene	υ	0.3	1.0		µg/L	1	4/2/2009 4:53:00 PM						
Frago-114	υ	0.4	1.0		µg/L	1	4/2/2009 4:53:00 PM						
Hexaciarobusadane	Ū	0.4	1.0		yg/L	1	4/2/2000 4:53:00 PM						
Isopropyt sostala	U	0.4	1.0		µg/l.	1	4/2/2009 4:53:00 PM						
teopropyibenzene	U	0.3	1.0		pg/L	1	4/2/2008 4:53:00 PM						
m.p.XVene	ū	0.3	2.0		ue/L	1	4/2/2009 4:53:00 PM						
Matiwi teri-butyi ether	Ū	0.3	1.0		שטר	1	4/2/2008 4:53:00 PM						
Methylene chloride	24	0.3	1.0	вс	part.	1	4/2/2009 4:53:00 PM						
n-Army4 scalain	ü	0.3	1.0		po/L	1	4/2/2009 4:53:00 PM						
Naonthalane	v	0.3	1.0		µg/L	1	4/2/2008 4:53:00 PM						

Tel - 6314546100 Fax - 6314548027 www.American-Analytical.com

- S Spike Recurry sesside accepted recevery limits
 C Cultivation %RSD/MD exceeded for non-CCC malytes
- Value exceeds Manifement Conteminant Service
 E Value above quantitation range
 J Amilyse descript lation quantitation limits
 LOQ Limit of Quantitation
- II Amblyte described in the procedural M-Holdring times for preparation or anal-LOD Limit of Describes
 ND Not Detected at the Reporting Limit
 U indicates the companyed was analyzed

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID: 11418

Associated Environmental Svcs., LTD. 0904030 CLIENT: Lab Order

Client Sample ID: B-7 (GW) Collection Date: 4/1/2009 1:10:00 PM Sutter Avenue, Brooklyn, NY Matrix: LIQUID

Lab ID: 0004030-024

Certificate of Results

Analyses	Sample Rasult	LOD	rođ	Qual L	hilts	DF	Date/Time Analyze
VOLATILE SW-846 METHOD 8	260		SWE	2608			Analyst: LA
1,1,1,2-Tetrschloroethene	U	0.4	1.0	μ	g/L	1	4/2/2009 5:23:00 PM
1, 1,1-Trichloroethane	U	0.3	1.0	μ	Q/L	1	4/2/2009 S:23:00 PM
1,1,2,2-Tetrachiorosthene	U	0.3	1,0	¥	g/L	1	4/2/2009 8:22;00 PM
1,1,2-Trichloro-1,2,2-Influoroethan	U	0.3	1.0	ų	g/L	1	4/2/2009 5:23:00 PM
1,1,2-Trichtoroethere	U	0.4	1.0	μ	øl.	1	4/2/2009 5:25:00 PM
1,1-Dichioroethane	u	0,3	1.0	μ	g/L	1	4/2/2009 5:23:00 PM
1,1-Dicniproethene	u	0.3	1.0		g/L		4/2/2005 5:23:00 PM
1,1-Dichtoropropene	บ	0.3	1.0	ų	g/L	1	4/2/2009 5:23:00 PM
1,2,3-Trichtorobenzene	u	0.3	1.0		g/L	1	4/2/2009 5:23:00 PM
1.2.3-Trichlorograpane	u	0.4	1.0		g/L	1	4/2/2008 5:23:00 PM
1,2,4,5-Tetramelhybonzene	B	0.3	1.0	Ü	بان	1	4/2/2008 5:23:00 PM
1.2.4-Trichkrobenzene	υ	0.3	1.0	1	g/L	1	4/2/2009 5:23:00 PM
1.2.4-Trimethylpenzene	υ	0.3	1.0		o/L	1	4/2/2009 5:23:00 PM
1.2-Oitmoree-3-chiorographe	ū	0.4	1.0		g/L	•	4/2/2009 5:23:00 PM
1.2-Distornosthans	U	D.3	2.0		g/L	1	4/2/2009 5:23:00 PM
1.2-Cichlorobenzene	U	0.3	1.0	į.	φL.	1	4/2/2008 5:23:00 PM
1.2-Olchioronthene	U	0.3	1.0	u.	es/L	1	4/2/2008 5:23:00 PM
1.2-Dichleropropene	Ū	0.3	1.0	Ú	m/L	1	4/2/2008 5:23:00 PM
1,3,5-Trimethylberszone	Ū	0.3	1.0	Ų	ol.	1	4/2/2009 5:23:00 PM
1.3-Dichlorobenzene	U	0.3	1.0	u	gΛ.	1	4/2/2008 5:23:00 PM
1,3-dichloropropane	u	0.3	1.0	, i	o/L	1	4/2/2006 5:25:00 PM
1.4-Dichlorobensana	Ü	0.3	10	į.	_ _J	1	4/2/2006 E:23:00 PM
1.4-Diceana	u	0.4	1.0		ω/L	1	4/2/2000 6:23:00 PM
2.2-Dichloropopene	ū	0.3	1.0	·	igΛ.	1	4/2/2009 5:23:00 PM
2-Butanone	ū	0.3	3.0		m/L	1	4/2/2009 5:23:00 PM
2-Chiorpelly/ viry/ effer	Ū	D.3	1.0		ar.	1	4/2/2000 5:23:00 PM
2-Chloratoluene	U	0.3	1.0	į.	ok.	1	4/2/2009 5:23:00 PM
2-Hexanone	Ū	0.3	2.0		al.	1	4/2/2009 5:23:00 PM
2-Propersoi	ū	0.3	1.0		g/L	1	4/2/2009 5:23:00 PM
4-Chicrolohumu	Ü	0.3	1.0		g/L	1	4/2/2000 5:28:00 PM
4-isoprocytichene	Ū	0.3	1.0		gΛ.	1	4/2/2009 5:23:00 PM
4-Melhyt-2-peniasons	Ū	0.3	2.0		of.	1	4/2/2009 8:23:00 PM
Acetone	Ū	0.3	2.0		g/L	1	4/2/2009 5:23:00 PM

American Analytical Laboratoriae, LLC., 58 Toledo Sireel, Ferniagdele, NY, Zip - 11735 Tel - 6314548100 Fax - 6314548027 www.American-Analytical.com

- Value exceeds Maximum Continuinmet Level
 Value above quantitation range
 Austrie detected before quantitation limits
- Asserte electric below question service
 LOQ Limited of Quantitation
 Spike Recovery national secretari recovery limits
 Cultivation %RSDPMD exceeded for non-CCC analysis
- near B Analyse detected in the special of Halland Blank
 H Holding times for preparation or smalysis exceeded
 LOD Limit of Desection

- ND Not Describe at the Reporting Limit
 U Indicates the companed was namivated

American Analytical Laboratories, LLC.

ELAP ID : 11418 Associated Environmental Svcs., LTD.

Client Sample ID: B-6 (GW)
Collection Date: 4/1/2009 12:00:00 PM CLIENT: 090403D Matrix: LIQUID

Project: Satter Avenue, Brooklyn, NY 0904030-06A Lab ID:

Certificate of Results

walvage Sample Rossit LOD LOQ Qual Units DF Data/Time Analyza											
Алађин	Sample Result	LOD	LOQ Qual	Oad is	DF	Date VeriAn					
OLATILE SW-446 METHOC	3260		SW1260B			Analysi: LA					
n-Butyl scotate	u	0.3	2.0	ug/L	1	4/2/2008 4:53:00 PM					
n-Butybenzene	ū	0.3	1.0	µg/L	1	4/2/2009 4:53:00 PM					
n-Propri acetale	ū	0.4	1.0	µg/L	1	4/2/2009 4:53:00 PM					
n-Propybenzene	U	0.3	1.0	μgΛ.	1	4/2/2009 4:53:00 PM					
a-Xylene	ū	0.3	1.0	pg/L	1	4/2/2009 4:53:00 PM					
p-CindryDeratene	ū	0.3	1.0	µg/L	1	4/2/2009 4:53:00 PM					
p-Elfwildume	ū	0.3	1.0	pg/L	1	4/2/2008 4:53:00 PM					
sec-Butybenzene	u	D.3	1.0	ug/L	1	4/2/2000 4:53:00 PM					
Styrene	Ū	0.3	1.0	µg/L	1	4/2/2009 4:53:00 PM					
(-Ruty) micerhali	Ū	0.4	1.0	µg/L	1	4/2/2009 4:53:00 PM					
ten-Bulyibanzana	ū.	9.3	1.0	pg/L	1	4/2/2009 4:53:00 PM					
Tetrachioroethene	360	3	10	µg/L	10	4/3/2009 12:20:00 PW					
Toluene	U	D.3	1.0	µg/L	1	4/2/2009 4:53:00 PM					
Impe-1 3-Dichiorosthana	Ū	0.3	1,0	µg/L	1	4/2/2009 4:53:00 PM					
trens-1.3-Oichtoropropene	Ū	0.3	1.0	µg/L	1	4/2/2009 4:53:00 PM					
Trichlomelbene	14	0.3	1.0	ug/L	1	4/2/2008 4:53:00 PM					
Trichkrefluoromethene	U	0.3	1.0	μg/L	1	4/2/2009 4:53:00 PM					
Vinyl socials	υ	6.3	1.0	ug/L	1	4/2/2009 4:53:00 PM					
Vinvi chloride	υ	0.3	1.6	pg/L	1	4/2/2009 4:53:00 PM					
Sur: 4-Bremefuerobenzene	90.0	0	60-130	WREC	10	4/3/2000 12:20:00 PM					
Burr: 4-Bromofivorebanzani	94.1	0	60-130	WREC	1	4/2/2009 4:83:00 PM					
Sur: Disromoliveremethans	162	0	83-127	%REC	10	4/3/2009 12:20:00 PM					
Sur: Dipromoliuocomethani	114	0	63-127	MREC	1	4/2/2009 4:53:00 PM					
Surr. Toluese-d8	97.7	0	61-128	%REC	10	4/3/2009 12:20:00 PM					
Surr. Tokene-d8	96.3	۰	81-128	WREC	1	4/2/2009 4:13:00 PM					

American Asstytical Laboratories, LLC., 58 Toledo Street, Farmingrisia, NY, Zip - 11735 Tel - 8314546190 Fax - 8314548027 www.American-Analytical.com

Aumyre distorted in the associated Medicol Black
 Hobbling times for preparation or analysis exceeded
 LOD Limit of Description
 Not Description of Medicol Black
 Most Description
 Indianases the compound was analysis due took not distort

Volue accords Manimum Contentions Love
R Value above quantitudes samp
J Analyse descrind below questission limits
LOQ Limit of Quantitation

5 Spite Race-ety serside accepted recovery limits
C Californion MRSDMD exemited for non-CCC mulytes

helate

12

Date: 06-Apr-09

American Analytical Laboratorica, LLC. ELAP ID : 11418

Project:

Associated Environmental Sves., LTD. CLIENT: Lab Order 0904030 Sutter Avenue, Brucklyn, NY

Client Sample ID: B-7 (GW)
Collection Date: 4/1/2009 1:10:00 PM Matrix: LIQUID

0904030-07A

		Certificate of Results								
Analyses	Sample Result	LOD	1.0Q	Qual	Units	DF	Deta/Time Analyzed			
VOLATILE SW-146 METHO	O 11250		EWE	260B			Analyst LA			
Acrolnin	υ	0.4	1.0	C	ppl.	1	4/2/2008 5:23:00 PM			
Acrylonitrile	υ	0.3	1.0		up/L	1	4/2/2008 5:23:00 PM			
Bermene	υ	0.3	1.0		µgA.	1	4/2/2006 5:23:00 PM			
Bromobenzene	U	0.3	1.0		pg/L	1	4/2/2008 5:23:00 PM			
Bromochioromethane	U	D.3	1.0		MB/L	1	4/2/2008 5:23:00 PM			
Broradichloromethana	U	0.3	1.0		pgr.	1	4/2/2009 5:25:00 PM			
Brownelown	u	0.4	1.0		µg/L	1	4/2/2009 \$:23:00 PM			
Влужетийлин	U	0.3	1.0		PQ/L	1	4/2/2000 5:23:00 PM			
Carbon disulfide	U	0.3	6,7		pg/L	1	4/2/2009 5:23:00 PM			
Carbos intrachlorida	u	0.4	1.0		µgA.	1	4/2/2009 5:23:00 PM			
Chlorobenzene	U	0.3	1,0		pg/L	1	4/2/2006 5:23:00 PM			
Chlorodifuoromethane	u	0.3	1.0		uo/L	1	4/2/2009 5:23:00 PM			
Chlorosthans	u	0.3	1.0		vg/L	1	4/2/2008 5:23:00 PM			
Chloroform	ū	0.3	1.0		µg/L	1	4/2/2000 5:23:00 PM			
Chioromethane	ŭ	0.3	1.0		work.	1	4/2/2009 5:23:00 PM			
cis-1.2-Dichlomethene	A 1	0.3	1.0		ug/L	1	4/2/2009 5:23:00 PM			
cit-1.3-Okhioropropene	ü	0.5	1.0		ug/L	1	4/2/2000 5:29:00 PM			
Dibromochloromethese	Ū	63	1.0		ug/L	1	4/2/2000 8:23:00 PM			
Obramemakana	ŭ	0.4	1.0		uo/L	1	4/2/2009 5:23:00 PM			
Dichlorodificoromethere	Ü	0.4	1.0		uo/L	1	4/2/2009 5:23:00 PM			
Discorpovi ether	Ď	0.3	10		uo/L	1	4/2/2000 5:23:00 PM			
Ethanol	ŭ	03	1.0		ual	i	4/2/2009 5:23:00 PM			
Ethyl acetale	ŭ	0.3	1.0		pp.	•	4/2/2009 5:23:00 PM			
Ethylaneumon	Ü	0.3	1.0		port.	1	4/2/2000 5:23:00 PM			
Freque114	i.	0.4	10		µg/L		4/2/2009 5:23:00 PM			
Havachinesturiariana	ũ	9.4	1.0		ual	1	4/2/2009 5:23:00 PM			
isopropyi acetnia	ū	0.4	1.0		ua/L	1	4/2/2009 5:23:00 PM			
bopropyloenzene	ŭ	0.3	1.6		ual.	1	4/2/2009 5:23:00 PM			
ps.p-Xviene	ű	0.3	20		ua/L	1	4/2/2008 5:23:00 PM			
Methyl lani-butyl ether	ŭ	03	1.6		un/L	1	4/2/2009 5:23:00 PM			
Meditylene chiptide	11	0.3	1.0	EC.	ua/L	1	4/2/2009 5:23:00 PM			
n-Amyl acetete	Ü	D.3	1.0		ua/L		4/2/2009 5:23:00 PM			
Nechtheimne	ŭ	0.3	1.0		ua/L	•	4/2/2009 5:23:00 PM			

- B Analyse datectual is the succlased Method Blank
 H Holding lines for proporteion or study/sis exceeded
 LOD Liest of Desection
 No Deceased at the Reporting Limit
 U tadeses the compound was analyzed but not detec

helae.

American Analytical Laboratories, LLC.

Teste: 06-Apr-09

ELAP ID : 11418

Associated Environmental Svcs., LTD. CLIENT: Lab Order: e904030

Client Sample ID: 8-7 (GW)
Callection Date: 4/1/2009 1:10:00 PM Matrix: LIQUID

Sutter Avenue, Brooklyn, NY Project: Lab ID:

0904030-07A

Camidiania of Damite

		COLL	PCD-SEC OF	ROSE	LEAS		
Analyses	Sample Result	LOD	TOO	Qual	Units	DF	Dete/Time Analyzed
VOLATILE SW-848 METHOD	E260		5WI	2608			Analyst: LA
n-Butyl scelate	u u	0.3	2.0		μ g/L	1	4/2/2009 5:23:00 PM
n-Buhdhenzene	U	0.3	1.0		µg/L	1	4/2/2009 5:23:00 PM
n-Propyl sophije	U	0.4	1.0		µg∧.	1	4/2/2000 5:23:00 PM
n-Prombeszene	U	0.3	1.0		μg/L	1	4/2/2009 5:23:00 PM
u-Xyfene	u	0.3	1.0		μg/L	1	4/2/2009 5:23:00 PM
e-Oiethylbenzene	ti	0.3	1.0		µg/L	1	4/2/2008 5:23:00 PM
p-Ethykolumna	·	0.3	1.0		µg/L	1	4/2/2008 5:23:00 PM
sac-Butylburgane	u	0.3	1.0		yg/L	1	4/2/2009 5:23:00 PM
Styrene	U	0.3	1.0		µg/L	1	4/2/2009 5:23:00 PM
1-Butyl sicohol	Ü	0.4	1.0		µg/t.	1	4/2/2009 6:23:00 PM
Ind-Butybenzero	U	0.3	1.0		μg/L	1	4/2/2009 S:23:00 PM
Tetrachiomethene	610	3	10		μg/L	10	4/3/2009 12:54:00 PM
Tokenne	U	0.3	1.0		µg/L	1	4/2/2008 5:23:00 PM
yang-1,2-Dichiorostrone	ū	0.3	1.0		pg/L	1	4/3/2009 8:23:00 PM
trans-1,3-Dichloropropens	บ	0.3	1.0		μg/L	1	4/2/2009 5:23:00 PM
Tricklorosthene	42	6.3	1.0		ue/L	1	4/2/2008 5:23:00 PM
Trichloroftvoromethene	B	0.3	1.0		110/1	1	4/2/2009 5:23:00 PM
Vinvi scalate	ū	0.3	1,0		pg/L	1	4/2/2009 5:20:00 PM
Vinyi chicolde	u	0.3	1.0		μα/L	1	4/2/2009 5:23:00 PM
Succ &-Bromofuorobenzami	101	0	60-130		MARC	1	4/2/2009 5:23:00 PM
Sur: 4-Bramofluorobenzene	62.7	ò	50-130		%REC	10	4/3/2009 12:54:00 PM
Surr Discomplianomethers	116	ā	63-127		%RKC	,	4/2/2008 5:23:00 PM
Sur: Olbromoliuoromeiliene	104	ò	63-127		%REC	10	4/3/2008 12:54:00 PM
Sur: Tobacce-da	P6.0		61-128		WREC	10	4/3/2009 12:54:00 PM
Sur: Toluene-d8	68.P	ā	61-128		WREC	1	4/2/2009 5:23:00 PM

American Analytical Laboratories, Lt.C., 56 Talado Street, Fermingdala, NY, Zip - 11735

American Anaptical Leboratories, L.C., 56 Tolebo Siress, Formegatas, 174: 43144648100 Fax. 431446927 www.American-Anaptical Lors

7 Value cocceds biastimum Contaminant Level

E Value shave questionion range

J Analysis descelabel below questionion limits

LOQ Limit of Quantization

\$ Spike Returnity related accepted yourvery limits

C Culibration 56820940 encoded for non-CCC analyses

- **fielat** Analyse descend to the spenciment Andread Blanck
 Heidding times for propuration or smallysis exceeded
 Lopb Limit of Detection
 Visit of Detection Limit
 Indicate the compound was analysed but not detacted.

25

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

Project:

CLIENT: Associated Environmental Svcs., LTD. Lab Order: 0904030

Climat Sumple ID: B-7 (0-5') Collection Date: 4/1/2009 1:00:00 PM Sotter Avenue, Brooklyn, NY Matrix: SOIL

0904030-08A Lab ID:

Certificate of Results

Azalyzes	Sample Result	LOD	LOQ	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-845 METHOD	#260		8744	280W			Analyst: LA
→ 4-laopropyloiuene	U	0.36	8.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
4-Methyl-2-pantanona	u	0.36	6.0		yg/Kg-dry	1	4/2/2008 3:43:00 PM
- Acetone	υ	9.36	8.0		walke-dry	1	4/2/2009 3:43:00 PM
Acrolein سي	ป	0.36	30	¢	pg/Kg-dry	1	4/2/2009 3:43:00 PM
Acrylonitria	U	0.36	6,0		MD/Kg-chy	1	4/2/2009 3:43:00 PM
- Beruzzane	U	0.36	0.0		µg/Ко-агу	1	4/2/2009 3:43:00 PM
→ Bromobenzene	U	0.36	6.0		pg/Kg-dry	1	4/2/2009 3:43:00 PM
- Bromochloromethane	U	0.48	6.0		μg/Kg-dry	1	4/2/2009 3:43:00 PM
 Bromodichloromethane 	U	0.36	€.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM
_ Bromokrin	U	0.36	6.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM
· Cromomenane	U	-0.36	6,0		porte-dry	1	4/2/2009 3:43:00 PM
→ Carbon élecifide	u	0.36	1.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- Carbon tetrachlorida	U	0.36	5.0		ио Ко-фу	1	4/2/2009 3:43:00 PM
♠ Chlorobenzene	U	0.36	4.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM
➤ Chiorodifluoramethene	U	0.36	6.0		have an	1	4/2/2009 3:43:00 PM
- Chioroethane	Ų	0.35	6.0	C	µg/Kg-dry	1	4/2/2009 3:43:00 PM
Cheoralorm	U	0.36	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- Chloromethane	U	0.36	6.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM
⇔ cls-1,2-Dichloroethene	43	0.36	6.0		pg/Kg-dry	1	4/2/2008 3:43:00 PM
cis-1,3-Dichéoropropone	U	0.36	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- Dibromochloromethane	U	0.36	8.0		yg/Kg-dry	1	4/2/2009 3:43:00 PM
- Dibromomethane	U	0.36	8.0		sgr/Kg-dry	1	4/2/2009 3:43:00 PM
- Dichtgrodiffuoromathane	U	0.36	8.G	C	µg/Kg-dry	1	4/2/2009 3:43:00 PM
Clisopropyl ether	U	0.36	6.0		µg/Kg-dry	t	4/2/2009 3:43:00 PM
Ethenol	U	0.36	30		µg/Kg-dry	1	4/2/2009 3:43:00 PM
→ Ethyl scalate	U	0.48	6.0		µg/Kg-dny	1	4/2/2009 3:43:00 PM
- Elhylbenzene	U	0.36	5.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM
← Freor-114	U	0.48	6.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM
 Hexachtorobutadiene 	U	0.35	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
e isopropyl scetala	U	0.48	6.0		µg/Kg-dry	1	4/2/2009 3:49:00 PM
 Isopropytoenzene 	U	0.36	6.0		ир/Кр-фу	1	4/2/2008 3:43:00 PM
- m.p-Xytens	บ	0.36	12		pg//g-dry	1	4/2/2009 3:43:00 PM
_ Methyl lorl-butyl scher	П	0.36	6.0		µgAKg-dry	1	4/2/2009 3:43:00 PM

American Analytical Laboratories, LLC., 56 Toleda Street, Farming Tar - 8314546100 Fax - 831454802? www.Amortcan-Analytical dala, NY, Zip - 11735 Joon

- B Austyte detected in the insociased Method Bit H Holding times for pregunation or exactysis one LOD Limit of Detection No. No. Detected at the Reporting Limit U Influence the compound was designed but and

American Analytical Laboratories, LLC.

Date: 66-Apr-09

ELAP ID: 11418

Client Semple ID: B-7 (0-5') Associated Environmental Svcs., LTD. CLIENT: Cellection Date: 4/1/2009 1:00:00 PM Lab Order 0904030 Matrix: SOIL.

Sutter Avenue, Brooklyn, NY Project: Lab ID: 0904030-08A

Certificate of Results

Cel titleren at versens											
Analyses	Sample Result	LOD	LOQ	Qual	Unite	DF	Dete/Time Analyze				
PERCENT MOISTURE			02	216			Analyst: HM				
Percent Moleture	18.1	0	0		W(%	1	4/3/2009				
VOLATILE SW-846 METHOD 82	68		SWE	2606			Analyst: LA				
a 1,1,7,2-Teirechloroethene	Ų	0.36	4.0		µо∕Ка-фу	•	4/2/2008 3:43:00 PM				
= 1,1,1-Trichloroethane	Ú	0.36	6.0		µg/Kg-dry		4/2/2009 5:43:00 PM				
1,1,2,2-Tetrechiomethana	U	0.35	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
± 1,1,2-Trichtoro-1,2,2-triffuoroethan	U	0.36	6.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM				
ps 1,1,2-Trichtoroethane	U	0.38	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
■ 1,1-Diohlorosthene	ti	0.36	6.0		µg/Kg-dry	1	4/3/2009 3:43:00 PM				
. 1,1-Dichlorsethens	u	0.36	6.0		µg/Ка-аку	1	4/2/2009 3:45:00 PM				
1,1-Exchioropropone	U	0.36	6.0		pg/Kg-dry	1	4/3/2009 3:43:00 PM				
	u	0.36	8.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
1,2,3-Trichioropropens	u	0.48	6.0		MD/Kg-dry	1	4/2/2009 3:43:00 PM				
- 1.2.4.5-Tetramelin/benzene	IJ	0.35	6.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM				
≠ 1,Z,4-Trichiorobenzare	υ	0.39	0.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
1,2,4-Trimethylbenzene	υ	0.35	6.0		µg/Kg-dry	1	4/2/2009 3;43:00 PM				
1,2-Dibrama-3-chloropropene	U	0.46	8.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
= 1,2-Dibromoetherve	Ų	0.36	6.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM				
- 1,2-Dichlorobenzene	U	0.30	0.0		POTED-DRY	1	4/2/2009 3:43:00 PM				
- 1,2-Dichiorosthane	U	0.34	5.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM				
a. 1,2-Dichioropropane	.u	0.36	8.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
- 1.3.5-Trimethylbenzana	U	0.36	6.0		р рЖо-ску	1	4/2/2008 3:43:00 PM				
- 1,3-Dichiorobenzene	U	0.36	6,0		pg/Kg-dry	1	4/2/2009 3:43:00 PM				
⇒ 1,3-dichteropropene	U	0.36	6.0		µg/Ke-dry	1	4/2/2000 3:43:00 PM				
≠ 1.4-Oichlorobenzum	u	0.36	6.0		ag/Kg-dry	1	4/2/2008 3:43:00 PM				
- 1.4-Dioxane	U	0.48	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
- 2.2-Dichloroproperte	Ų	0.36	8.0		µg/Kg-dry	1	4/2/2008 3:43:00 PM				
- 2-Butanone	υ	0.48	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM				
a 2-Chloroethyl vind ather	u	0.48	6.0		µg/Kg-dry	+	4/2/2009 3:43:00 PM				
- 2-Chlorolgiungs	Ū	0.36	8.0		police dry	1	4/2/2008 3:43:00 PM				
- 2-Hexanone	ū	0.36	6.0		µg/Kg-dry	,	4/2/2009 3:43:00 PM				
- 2-Propago	Ū	0.46	80		µg/Kg-dry	1	4/2/2008 3:43:00 PM				
4-Chlorolpiuene	ű	0.36	8.0		ug/Kg-dry	,	4/2/2008 3:43:00 PM				

American Analytical Laboratorius, LLC., 96 Toledo Sireet, Farmingdate, NY, Zip. + 11735
Tel + 0.714540100 Fax - 6314640027 www.American-Analytical.com

Qualitierre:

Value connels Macianum Contentinae Lovel:

9 AA
E Value potrer quantitation maps

1 Analytic discussed below quantitation limits

LOD Limit of Quantitation

5 Syllic Recovery solide trougend recurrery limits

C Cultimation NATIONAD encoded for son-CCC analytes

helac

- 9 Analyse deceased in the sear-clased Method
American Analytical Laboratories, LLC.

ELAP ID : 11418

CLIENT: Client Sample ID: B-7 (0-5') Collection Date: 4/1/2009 1:00:00 PM 0904030 (ah Order: Suiter Avenue, Brooklyn, NY Matrix: SOIL

Lab ID: 0904030-08A

Certificate of Results

Analyses	Sample Result	LOD	rođ	Qual	Units	DF	Dute/Time Analyzed
VOLATILE SW-846 METHOD	8260		894	2608			Annivst: LA
Mejhylana chiorida	14	0.35	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- n-Amyl scatain	U	0.48	0.6		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- Nachthelane	u	0.36	6.0		µgKe-dry	1	4/2/2009 3:43:00 PM
- n-Butyl scatale	U	0.36	8.0		police dry	•	4/2/2009 3:43:00 PM
· n-Butybonzona	u	0.36	5.0		µg/Kg-dry	1	4/2/2000 3:43:00 PM
n-Propyl soutste	U	0.48	6.0		µg/Ke-dry	•	4/2/2009 3:43:00 PM
- п-Ркорубанизана	U	0.36	5.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
- p-Xylene	U	0.36	8.0		us/Ke-dry	,	4/2/2009 3:43:00 PM
p-Diethylbenzane	U	0.36	8.0		pa/Ka-dry	1	4/2/2009 3:43:00 PM
p-Ethyltoluene	Ü	0.36	6.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
sec-Butybenzure	υ	0.56	8.0		µg/Kg-dry	•	4/2/2009 3:43:00 PM
Styrens	υ	0.36	8.0		ug/Ka-dry	1	4/2/2009 3:43:00 PM
t-Butyl alcohol	Ü	D.36	8.0		ua/Ka-dry	1	4/2/2009 3:43:00 PM
tert-Bulyfbenzene	υ	0.36	8.0		unKe-dry	1	4/2/2009 3:43:00 PM
Tetrachiorostama	5100	60	759		sig/Kg-dry	125	4/3/2009 5:35:00 PM
· Tokenne	u	0.36	6.0		HO/Ke-dry	1	4/2/2008 3:43:00 PM
trans-1,2-Dichtorouthere	U	0.48	6.0		parka-dry	1	4/2/2008 3:43:00 PM
trans-1,3-Dichioropropene	υ	0.36	6.0		ug/Kg-dry	1	4/2/2009 3:43:00 PM
Trichlorosthene	73	0.38	6.0		pa/Ko-dry	1	4/2/2008 3:43:00 PM
- Trichlorofluoromathane	u	0.36	8.0		µg/Kg-dry	1	4/2/2009 3:43:00 PM
Vinyl scattrie	U	0.48	6.0		ug/Ko-dry	1	4/2/2009 3:43:00 PM
Vinyt chloride	Ü	0.36	6.0		µg/Kg-dry		4/2/2009 3:43:00 PM
- Surr. 4-Brome/Juorobenzene	97.8		84-132		WATEG	125	4/3/2009 6:35:00 PM
_ Surr: 4-Bromofluorobenzona	85.7	0	84-132		WREC	1	4/2/2009 3:43:00 PM
- Sur: Dibromofuoromethane	-99.0	ō	66-131		MREC	,	4/2/2009 3:43:00 PM
- Sur: Dibromoflypromethens	95.7	ō	56-131		%REC	125	4/3/2009 6:35:00 PM
- Surr: Toluena-d&	. 99.0	ō	54-132		WREC	125	4/3/2009 6:36:00 PM
■ Surr. Tolueno-d8	67.5		64-132		MREC	1	4/2/2009 3:43:00 PM

American Analytical Laberatories, LLC., 56 Toledo Bleed, Fernangdele, NY, Zip - 11735 Tal - 5314546100 Fax - 6314548027 weer American-Analytical.com

- Value extends felazionae Costaminae Level
 E Value storre specialistic range
 E Value storre specialistic range
 J Antips fenecial fullow quantitation limits
 LOQ Links of Quantitation limits
 LOQ Links of Quantitation coupe

nelat

helate

American Analytical Laboratories, LLC.

Date: 06-4pr-09

ELAP ID : 11418

Associated Environmental Svcs., LTD. CLIENT:

Client Sample ID: B-8 (GW)
Collection Date: 4/1/2009 1:30:00 PM
Matrix: LIQUID

Lab Order: 0904630 Sutter Avenue, Brooklyn, NY Projects

Lab ID: 0904030-09A

Certificate of Results

		CETIL	HERRIC OT N	CHALLE		
Аваўнез	Sample Result	LOD	LOQ Q	sal Units	DF	Date/Time Analyzo
VOLATILE SW-845 METHOD 8	200		5W126	В		Analysi: LA
1,1,1,2-Tetrachioroethans	U	0.4	1.0	page C	1	4/2/2009 6:56:00 PM
1,1,1-Trichlomathana	U	0.3	1.0	μg/L	1	4/2/2009 6:55:00 PM
1,1,2,2-Tetrachieroetivne	U	0.2	1.0	μg/L	1	4/2/2009 6:85:00 PM
1,1,2-Trichloro-1,2,2-bifluoroethen	, u	0.3	1,0	μg/L	1	4/2/2009 6:55:00 PM
1.1.2-Trichloroethane	U	0,4	1.0	μ ο Λ.	3	4/2/2009 6:65:00 PM
1,1-Dighleroethane	u	0.3	1.0	µg/L	1	4/2/2009 6:85:00 PM
1.1-Dichloroethene	ы	0.3	1,0	μg/L	1	4/2/2009 6:55:00 PM
1.1-Dichioropropene	Li Li	0.3	1.0	µgA.	1	4/2/2009 8:56:00 PM
1.7.3-Yrichiombaszana	U	0.3	1.0	µg/L	1	4/2/2009 6:56:00 PM
- 1.2.3-Trichlorograpere	Ū	0.4	1.0	pgA.	1	4/2/2009 5:56:00 PM
1,2,4,5-Telramelly/benzens	U	0.3	1.0	μg/L	1	4/2/2009 6:55:00 PM
1.2.4-Trichlombanzana	u	0.3	1.0	μg/L	1	4/2/2009 6:65:00 PM
1.2.4-Trimelly/benzens	u	0.3	1.0	μg/L	1	4/2/2008 6:55:00 PM
. 1.2-Ditrumo-3-chicuporopane	IJ	0.4	1.0	μg/L	*	4/2/2009 R:55 00 PM
1,2-Olbromosthana	υ	0.3	1.0	ugit.	1	4/2/2009 8:55:00 PM
12-Dichlorobenzame	Ü	0.3	1.0	µg/L	1	4/2/2009 5:55:00 PM
. 12-Cichiomethane	υ	0.3	1.0	µg€.	1	4/2/2009 8:55:00 PM
= 1.2-Dicherogregate	Ü	0.3	1.0	PB/L	1	4/2/2009 0:65:00 PM
1.3.5-Trimethy@nenzene	U	D.3	1.0	µg/L	1	4/2/2009 5:55:00 PM
- 1 3-Clichiorobenzene	Ú	03	1.0	UQ/L	1	4/2/2000 6:55:00 PM
- 1.3-dichloropropane	ū	0.3	1.0	UNIL	1	4/2/2008 6:55:00 PM
1.4.Dichiorobanzana	ū	0.3	1.0	US/L	1	4/2/2009 6:88:00 PM
1.4-Dioxana	ū	0.4	1.0	ug/L	*	4/2/2009 8:58:00 PM
2.2-Dicklomoroomne	ū	0.3	1.0	µg/L	1	4/2/2009 8:55:00 PM
2-Butanone	ŭ	0.3	3.0	ug/L	1	4/2/2009 8:55:00 PM
2-Chlorostral vine ether	Ū	0.3	1.0	POT.	1	4/2/2009 5:55:00 PM
2-Chiorolokana	Ū	0.3	1.0	μg/L	1	4/2/2009 6:58:00 PM
2-Huxanona	ŭ	0.3	2.0	µg/L	1	4/2/2009 8:55:00 PM
2-repayment	ŭ	0.3	LO	hayr.	•	4/2/2009 6:56:00 PM
- 2-Properci - 4-Chlorotoluene	ü	0.3	1.0	NO.C	•	4/2/2009 5:55:00 PM
4-Isopropyliphene	ü	0.3	1.0	pg/.	•	4/2/2009 8:55:90 PM
. 4-tsopropytowene . 4-Methyl-2-pentanone		0.3	2.0	pgr.	•	4/2/2009 5:55:00 PM
		0.3	2.0	ught.	i	4/2/2009 8:55:00 PM
- Acatone	"	43	2.0	hater.	,	B.00.00 F GR

American Analytical Laboratories, LLC, 26 Yorkob Street, Farmingdies, NY, Zip. - 11735
Tel. - 6314-646100 Pax. - 6314-64627 www.Anastrican-Analytical com

Qualiform: Yake caccasis Meximum Consumbant Level 2 A

E Yake show queedlation reage
J Analytic describe bleve quantization limits
LOQ Lines of Qualiformia

S Spike Reverse you make excepted recovery limits
U in

C Calibration %4.520-94D excepted for one-CCC analytes

- **fela**
- Analyse descried in the associated Mexicolor Black
 H Hobbing times for preparation or analysis streamful
 LOD Limit of Describe
 H Modeling times for preparation or analysis streamful
 LOD Limit of Describe
 H Modeling Limit
 Indicates the compound was unalyzed but not descried.

29

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

Associated Environmental Svcs., LTD. Client Sample ID: B-8 (GW)
Collection Date: 4/1/2009 1:30:00 PM CLUENT: 0904030 Lab Order

Suner Average, Brooklyn, NY Lab ID: 0904030-09A

Matrix: LJOUID

		CUTH	cate of	Ken	IM3		
Analyses	Sample Rasult	LOD	LOQ	Qual	Units	DF	Data/Time Analyza
ON ATILE SWARES METHOD	8280		SWI	2608			Anelysi: LA
Acrelen	ı,	0.4	1.0	C	pg/L	1	4/2/2000 6:55:00 PM
Acrelonitrie	U	0.3	1.0		μg/L	1	4/2/2009 6:56:00 PM
Benzene	Ü	0.3	1.0		µg∩.	•	4/2/2009 8:55:00 PM
Bronobenzone	U	0.3	1.0		µg/l.	1	4/2/2009 6:55:00 PM
Bromochiosomelhene	ū	0.3	1.0		μgA	1	4/2/2008 6:55:00 PM
Brumprüchteremethere	Ú	0.3	1.0		ug/L	1	4/2/2009 6:55:00 PM
Bromolom	Ú	0.4	1.0		µg/L	1	4/2/2000 8:55:00 PM
Bromomethane	U	0.3	1.0		µg/L	1	4/2/2008 8:55:00 PM
Carbon disulfida	U	0.3	1.0		µg/L	1	4/2/2009 6:55:00 PM
Cerbon letrachioride	U	0.4	1.0		PB/L	1	4/2/2009 6:55:00 PM
Chicrobenzene	Ü	9.3	1.0		µg/L	1	4/2/7008 6.55:00 PM
Chierodifluoromethene	u	0.3	1.0		μg/L	1	4/2/2008 6:55:00 PM
Chloroethane	U	0.3	1.0		pg/L	1	4/2/2009 B:55:00 PM
Chlemiern	u	0.3	1.0		µg/L	1	4/2/2000 8:55:00 PM
Chicromethens	บ	0.3	1.5		pg4.	1	4/2/2009 8:55:00 PM
de-1.2-Dichleroethens	U	0.3	1.D		μg/L	1	4/2/2009 0:56:00 PM
pis-1,3-Dichtoropropere	υ	0.3	1.0		μg/L	5	4/2/2009 0:55:00 PM
Disramochioromethene	U	0.3	t.Q		μg/L	•	4/2/2009 6:55.00 PM
Discomomethene	Ü	0.4	1.0		ug/L	1	4/2/2008 8:55:00 PM
Dichlorodifluoromethene	U	0.4	1.0		ug/l.	1	4/2/2009 5:55:00 PM
- Dispersoyl other	ū	0.3	1.0		pg/L	1	4/2/2009 8:55:00 PM
Financi	ı.	0.3	10		ua/L	1	4/2/2000 8:55:00 PM
Elint scatale	Ū	0.3	1.0		JAN.	+	4/2/2009 8:55:00 PM
- Elhybenzene	ū	D.3	1.0		µg/t.		4/2/2009 6:55:00 PM
Fmon-114	Ū	04	1.0		port.	1	4/2/2008 5:55:00 PM
- Herechlorobuladiese	ŭ	0.4	10		pot.	1	4/2/2008 6:55:00 PM
- Inopropyl acetale	ŭ	0.4	1.0		µg/.	1	4/2/2009 6:56:00 PM
Isograpyibenzene	ŭ	0.3	1.0		ug/L	•	4/2/2009 8:55:00 PM
m.a-Xviene	ŭ	0.3	2.0		wa/L	1	4/2/2009 6:55:00 PM
- Madayi tari-butyi ether	ű	0.3	1.0		MANUT.	í	4/2/2009 6:56:00 PM
- Methylene Chloride	11	0.3	1.0	ВC	ug/L	ì	4/2/2009 5:55:00 PM
	ü	0.3	1.0	20	hoyr how	i	4/2/2009 6:55:00 PM
- n-Amyl acetale - Naphthalone	ű	0.3	1.0		µg/L		4/2/2009 8:55:00 PM

American Analytical Laboratories, LLC., 96 Teledo Streel, Farmingdale, NY, Zip - 11735 Tel - 6314546100 Fax - 6314546027 www.American-Analytical.com

- nelac_ B Analyse desorted in the nesociated M Hadding litter for proporation or and LOD Limit of Desection ND Not Detected at the Reparting Limit U Indicates the compound was analyze

86

American Analytical Laboratories, LLC.

Date: 06-450-09

ELAP ID : 11418

Associated Environmental Svcs., LTD. CLIENT: Lab Order: 0904030

Client Saurole ID: 8-8 (GW) Collection Date: 4/1/2009 1:30:00 PM Matrix: LIQUID

Sutter Avenue, Brooklyn, NY Project:

0904038-09A

Certificate of Results

		Cerm	SCRIE OF IL			
Analyses	Sample Result	LOD	TOO O	and Valta	DF	Date/Time Analyza
VOLATILE SW-846 METHOD	250	_	5W326	08		Analyst: LA
*U-Britis Series	U U	0.3	2.0	 μg/L	1	4/2/2009 6:55:00 PM
- n-Bulyt scanna	Ū	0.3	1.0	ust.	1	4/2/2009 6:55:00 PM
, n-eurypenzem , n-Propri sostale	ŭ	0.4	1.0	DO-L	1	4/2/2009 5:55:00 PM
n-Propythenzene	ū	0.3	1.0	µg/L	1	4/2/2009 6:55:00 PM
o-Xviene	ŭ	0.3	1.0	pg/L	1	4/2/2009 6:55:00 PM
p-Digitylbarzens	Ü	03	1.0	μg/L	1	4/2/2009 6:55:00 PM
p-Environment	ŭ	0.3	1.0	µgA.	1	4/2/2009 6:55:00 PM
	ŭ	0.3	1.0	μ ο Λ.	1	4/2/2009 8:55:00 PM
pec-Bulyibenzens	ű	0.3	1.0	NO/L	1	4/2/2009 6:55:00 PM
- Styrena	ü	04	1.0	pg/L	1	4/2/2009 6:53:00 PM
- I-Butyl ploated	ű	0.5	1.0	work.	1	4/2/2009 6:55:00 PM
Leni-Bulythenzene	510	3	10	µg/L	10	4/3/2009 1:28:00 PM
Tetrachloroethene	- U	0.3	1.0	ua/L	1	4/2/2009 6:55:00 PM
- Tokuson		0.3	10	ug/L	i	4/2/2000 6:55:00 PM
- 1nam-1,2-Dichluroethene	i.	0.3	1.0	unit.	1	4/2/2008 6:65:00 PM
rans-1.3-Cichioropropené	11	0.5	1.0	pg/L	1	4/2/2009 8:55:00 PM
- Trichleroethene	17	0.3	1.0	HOL.	1	4/2/2008 8:55:90 PM
Trichlorofluoromethene	u	0.3	1.0	MAC.	i	4/2/2006 8:55:00 PM
· Vinyl acetate	-	0.3	1.0	wort.	•	4/2/2006 8:55:00 PM
, Vinyl chtoride		4.3	60-130	MREC	10	4/3/2009 1:28:00 PM
- Surr; 4-Bromofluorobenzene	80.5	-	80-130	WREC	, ,	4/2/2009 0:65:00 PM
Sur: 4-Sromafluomberzere	98,5	0	63-127	WREC	;	4/2/2009 8:88:00 PM
e+ Surr. Dibrumofluoromethene	122	0		NREC	10	4/3/2009 1:28:00 PM
- Sur: Dibromoflueromethane	84.9	a	63-127	MAREC	10	4/3/2008 1:26:00 PM
	104	6	61-128			4/2/2000 0:55:00 PM
5um: Tokusne-d8	99.4	0	H1-128	WREC	t	€222004 WASTON PM

American Analytical Laboratorias, LLC., 56 Totado Streel, Farmingdale, NY, Zip - 11735 Tel - 63143-6100 Fzz: - 6314348027 www.American-Analytical.com

6100 Fax - 6314440027 www.American-inseption issue

- Value control head-time Commonitories Lord

E. Value plave quantitation image:

E. Value plave quantitation image:

LOQ Limit of Quantitation is below

LOQ Limit of Quantitation is below

5. Applicat forcomy on another accepted recovery times

C. Callencian Stat EDNNO consider an imar-CCC entry in

- Bi Analysis detected in the neurosisted Method Blank
 H I-bibling times for pergunsilon or analysis exceeded
 LOD Linds of Describes
 NO Not Described at the Reporting Limit
 U Indicaton tim compound was enalysed but not detec

American Analytical Laboratories, LLC.

Date: 06-Apr-09

ELAP ID : 11418

CLIENT: Associated Environmental Svcs., LTD. Collection Date: 4/1/2009 1:20:00 PM 0904030 Lab Order Project: Sutter Avenue, Brooklyn, NY Matrix: SOLL

Leb ID: 0904030-10A

Certificate of Results

Analyses	Sample Result	LOD	LOQ Qual	Units	D F	Data/Time Analyzed
PERCENT MOISTURE			D2216	"		Analysi: NM
Percent Moisture	19.2	Ð	۵	with	1	4/5/2009
VOLATILE SW-846 METHOD (1260		\$W82806			Analyst: LA
1,1,1,2-Tetrachiorogitene	·	0.37	6.2	pg/Kg-dry	1	4/2/2009 4:58:00 PM
1,1,1-Trichloroethene	υ	0.37	6.2	µg/Kg-dry	1	472/2008 4:36:00 PM
1,1,2,2-Tetrachtprosthene	U	0.37	6.2	pg/Kg-dry	1	4/2/2009 4:36:00 PM
1.1.2-Trichloro-1.2.2-tilluoroethe	ں ہ	0.37	6.2	µg/Kg-dry	1	4/2/2009 4:36:00 PM
1,1,2-Trichloroelfusive	U	0.37	6.2	µg/Kg-dity	•	4/2/2008 4:38:00 PM
1.1-Dichloroethene	U	0.37	6.2	ug/Kg-dry	1	4/2/2009 4:36:00 PM
1.1-DicMoroethene	u	D.37	6.2	vg/Kg-dry	1	4/2/2008 4:35:00 PM
1.1-Dichloropropune	U	0.37	6.7	pg/Kg-dry	1	478/2009 4:36:00 PM
1.2.3-Trichioroberzene	U	0.37	6.2	µg/Kg-dry	1	4/2/2009 4:38:00 PM
1.2.3-Trichturorogene	U	0.49	6.2	uoKo-dry	1	4/2/2008 4:35:00 PM
1.2.4.5-Tetramethymenzene	Ü	0.37	6.2	up/Kg-dry	1	4/2/2009 4:36:00 PM
1.2.4-Trichiprohenzene	Ü	0.37	6.2	µg/Kg-dry	1	4/2/2009 4:36:00 PM
1,2,4-Trimethylbenzene	Ū	0.37	8.2	up/Kp-dry	1	4/2/2008 4:36:00 PM
1.2-Dibrome-3-shlorogroupene	U	0.49	6.2	yg/Kg-dry	1	4/2/2009 4:38:00 PM
1.2-Disromoethene	U	0.37	6.2	Up/Kg-dry	1	4/2/2009 4:36:00 PM
1 2-Dichlombergune	Ū	0.37	6.2	parks-dry	1	4/2/2009 4:36:00 PM
1,2-Dichloroethane	U	0.37	6.2	ug/Ka-dry	1	4/2/2009 4:38:00 PM
1.2-Dichloropropens	u	0.37	6.2	vo/Ko-dry	1	4/2/2009 4:36:00 PM
1.3.5-Trimethy/bensene	ŭ	0.37	6.2	ya/Ka-dry	1	4/2/2009 4:38:00 PM
1.3-Diphorebaszona	ū	0.37	6.2	pg/Kg-dry	1	4/2/2009 4:38:00 PM
1,3-dichioropropene	Ū	0.37	6.2	ug/Kg-dry	1	4/2/2009 4:38:00 PM
1.4-Dichlorobenzere	ŭ	0.37	4.2	µg/Kg-dry	1	4/2/2009 4:36:00 PM
t.4-Dioxana	ŭ	0.49	6.2	policy-dry	i	4/2/2009 4:38:00 PM
2,2-Dighterapropere	ŭ.	0.37	6.2	µg/Kg-dry	•	4/2/2009 4:36:00 PM
2-Butanone	ŭ	0.49	6.2	poMp-dry	1	4/2/2009 4:36:00 PM
2-Chloroethyl visyl ether	ŭ	0.49	6.2	µg/Kg-dry	1	4/2/2009 4:36:00 PM
2-Chiomiolymene	นี้ เ	0.37	6.2	HOKO-dry	i .	4/2/2009 4:36:00 PM
2-Hexanona	ū	9.37	6.2	UDIT-0-DY	i	4/2/2009 4:36:00 PM
2-Propagol	ű	0.48	62	ugKg-dry	,	4/2/2009 4:38:00 PM
4-Chiorolohuma	ŭ	0.37	82	uo/Kg-dry	ì	4/2/2009 4:36:00 PM

American Analytical Laboratories, LLC , 56 Toledo Street, Ferningdele, NY, Zip - 11736 Tel - 8314546100 Fex - 6314548027 www.American-AnalyticaLcom

- Value couché Marianne Contrainment Level
 Value couché Marianne Contrainment Level
 Value couché Marianne Contrainment Level
 Value couché Marianne Contrainment
 Value couché Marianne Contrainment
 Value couché Marianne Contrainment
 Value couché Marianne Contrainment
 Value couché de couché monrour traine
 Value couché MASONAC proceded for see-CCC malytes
- ńelac

- B Analyte detected is the especiated Method Black
 H Holding thems for preparation or entityels executed
 LOD Limit of Detection
 O Not Detected at the Reporting Limit
 U Indicates the compound was markymal but not detected

ELAP ID : 11418

Associated Environmental Sven., LTD. CLIENT Lab Order: 0904030

Cileat Sample ID: B-8 (0-5') Collection Date: 4/1/2009 1:20:00 PM Metrix: SOIL

Project: Leb ID: Sutter Avenue, Brooklyn, NY 0904030-10A

Certificate of Results

Analyses	Sample Result	LOD	100	Qual	Units	DF	Date/Time Analyzed
VOLATILE SW-846 METH	V) 1980		awa	1211015			Analyst: LA
4-leconsoy@dusne	N CAPU	0.37	6.2		ug/Kg-dry	1	4/2/2008 4:36:00 PM
4-sopropynumine 4-kiepyi-2-perianone	ü	0.37	6.2		uoffe-dry	1	4/2/2008 4:36:06 PM
Annions	ű	0.37	6.2		porta-dry	1	4/2/2008 4:36:00 PM
Arminin	ŭ	0.37	31	c	µg/Kg-dry	1	4/2/2009 4:36:00 PM
Acrylonitrile	Ü	0.37	8.2	-	ug/Ko-dity		4/2/2009 4:36:00 PM
Actylonerie Benzene	ŭ	0.37	8.2		µg/Ko-dry	4	4/2/2009 4:38:00 PM
Benzene Bromoberowski	ű	0.37	6.2		ue/Ko-dry	•	4/2/2009 4:38:00 PM
Bramochioremethene	ii ii	0.49	6.2		ug/Kg-dry	1	4/2/2009 4:36:00 PM
Bramachioremethene Bramadichloromethene	u U	0.37	6.2		MOUNT STATE	i	4/2/2009 4:36:00 PM
		0.37	6.2		HOME ON	i	4/7/2009 4:38:00 PM
Bromotom Proposethene	ű	0.37	52		µg/Kg-dry	1	4/2/2009 4:38:00 PM
Carbon disulfida	ű	0.37	62		µg/Kg-dry	1	4/2/2009 4:38:00 PM
Carbon Intrachioride	ŭ	0.37	8.2		up/Kg-dry	•	4/2/2009 4:36:00 PM
Chierobanzana	ű	9.37	6.5		NO/Kg-dry	1	4/2/2009 4:38:00 PM
Charadilluoremethane	์ มี	0.37	8.2		parke-dry	•	4/2/2009 4:36:00 PM
Chioroethene	i.	0.37	6.2	c	ug/Ko-dry	1	4/2/2009 4:35:00 PM
Chioroform	u	G 37	6.2	-	po/Kg-dry	1	4/2/2009 4:35:00 PM
Chiammelhane	ű	D 3/	6.2		ua/Ke-dry	4	4/2/2009 4:36:00 PM
cis-1,2-Dichlorosthane	ű	0.37	8.3		us/Ko-dry	1	4/2/2009 4:36:00 PM
cis-1,3-Cichloromoune	ű	D.37	6.2		ug/Kg-dry	1	4/2/2009 4:36:00 PM
Disconnechioremelhane	11	0.37	6.2		pa/Kp-d/V	1	4/2/2009 4:38:00 PM
Dibromorseihene	ŭ	0.37	62		DOUGHOUS	1	4/2/2009 4:38:00 PM
Dichlomolilluoromeihene	ū	0.37	8.2	С	ua/Ka-dry	1	4/2/2009 4:38:90 PM
Disopropyl ether	ŭ	0.37	0.2	-	µg/Kg-sky		4/2/2009 4:38:00 PM
Prenoi	ű	0.37	31		ug/Ka-dhy	1	4/2/2009 4:36:00 PM
Eliwi acetate	ŭ	0.49	8.2		µg/Kg-dry	1	4/2/2009 4:35:00 PM
Ethylbenisme	ű	0.37	6.2		µg/Kg-dry	1	4/2/2009 4:36:00 PM
Emyroenome Fragn-114	ü	0.49	6.2		ug/Kg-dry	i	4/2/2008 4:35:00 PM
Haractiorotecations		0.37	6.2		uo/Ko-dry	i	4/2/2009 4:36:00 PM
Intraction countries	Ü	0.49	6.2		pg/kg-dry	ì	4/2/2009 4:35:00 PM
	ŭ	0.48	8.2		ug/Kg-dry		4/2/2009 4:36:00 PM
Isopropythenzene	U	0.37	12		ug/Kg-dry		4/2/2009 4:38:00 PM
m.p-Xylene		0.37	6.2		ug/Ko-dry	4	4/2/2009 4:36:00 PM
Mathyl tert-butyl other	U	0.37	6.2		hama-an	1	**************************************

American Analytical Laboratories, LLC., 55 Totedo Street, Farmingdale, NY, Zip - 11735 Tel - 8314545100 Faz - 8314548027 www.American-Analytical.com

relate

B Analyte detected in the nanochated behalted Shatch
H Heiding limited for proparation or analytic secondLOD Links of Detection
M). Not Detected at the Exposting Links
U Indicates the compound wet analyted bost and date

33

American Analytical Laboratories, LLC.

ELAP ID : 11418 Associated Environmental Svcs., LTD. CLIENT 0904030 Lab Order

0904030-10A

Project:

Sutter Avenue, Brooklyn, NY

Client Sample ID: B-8 (0-5)
Collection Date: 4/1/2009 1:20:00 PM

Metriz: SOIL

		Cerm					
Analyses	Sample Result	LOD	100	Qual	Units	DF	Dete/Time Analyz
VOLATILE SW-846 METHOD	8260		8W8	2860			Analyst: LA
Mathylana chiorida	16	0.37	4.2	8	из/Ко-фу	1	4/2/2009 4:35:00 PM
n-Amyl poetale	U	0.49	6.2		µg/Kp-dry	1	4/2/2009 4:36:00 PM
Nachthalans	Ü	0.37	6.2		µg/Ku-dry	1	4/2/2009 4:36:00 PM
n-Buhri ecetale	U	0.37	6.2		pg/Kg-dry	1	4/2/2009 4:36:00 PM
n-Bulylbenzene	at the	0.37	6.2		µg/Kg-dry	1	4/2/2009 4:38:00 PM
n-Propri scutale	υ	0.49	6.2		pg/Kq-dry	1	4/2/2009 4:36:00 PM
n-Procylbenzene	Ű	0.37	6.2		pg/Kg-dry	1	4/2/2009 4:36:00 PM
u-Kylene	U	0.37	6.2		ро Ка-фу	1	4/2/2009 4:36:00 PM
o-Diethylberusene	U U	0.37	5.2		μα/Κα-dry	1	4/2/2009 4:38:00 PM
p-Ethyllokene	U	0.37	6.2		μο∕Κο-αλγ	1	4/2/2009 4:38:00 PM
sec-Butybenzane	U	0.37	6.2		µд≪а-фу	1	4/2/2009 4:35:00 PM
Styrene	U	0.37	6.2		ирже-фу	1	4/2/2009 4:36:00 PM
t-Butyl alcohol	u	0.37	8.2		µg/Kg-dry	1	4/2/2008 4:38:00 PM
tert-Bulyibungane	a a	0.37	4.2		µg/Kg-dry	1	4/2/2009 4:35:00 PM
Tetrachiorosthene	1200	51.8	770		µg/Kg-dry	125	4/3/2009 6:04:00 PM
Toksene	υ	0.37	8.2		µg/Kg-dry	1	4/2/2009 4:35:00 PM
trans-1,2-Dichloroethens	U	0.49	8,2		ug/Kg-dry	1	4/2/2009 4:36:00 PM
Irans-1,3-Dichloroproprinti	U	0.37	6.2		POKE MY	1	4/2/2009 4:36:00 PM
Tricisloreathens	10	0.37	8.2		pg/kg-dry	1	4/2/2009 4:36:00 PM
Trightorofluoromethane	u	0.37	6.2		hay a gu	1	4/2/2009 4:36:00 PM
Vinyl scutate	U	6.49	6.2		µg/Kg-dry	1	4/2/2009 4:38:00 PM
Virgi chioride	U	0.37	6.2		µшКо-аку	1	4/2/2009 4:35:00 PM
Sun: 4-Bromofluorobenzene	96.\$	0	64-132		%REC	125	4/3/2009 B:04:00 PM
Surr: 4-Gramofluoroberszene	64.8	0	64-132		%REC	1	4/2/2009 4:36:00 PM
Sun: Olbramafluoromethane	67.2	0	68-131		%REC	1	4/2/2009 4:36:00 PM
Sur: Dibramafluoramelhana	96.6	o	68 131		%REC	125	4/3/2009 6/04/03 PM
Surr; Toluens-d8	101	o.	54-132		MREC	125	4/3/2009 6:04:00 PM
Sur: Toluene-dB	101	0	54-132		WREC	1	4/2/2009 4:38:00 PM

American Analytical Laboratorias, LLC., 56 Yoledo Strees, Parraingdale, MY, Zip - 11735
Tel: 4314546100 Fax - 4314546027 were American-Analytical com

Qualificate Volve caceab Microrian Commission Level B As
E Value above qualifation range H 16
I Analytic described below quantition finishs LOD LL
LOQ Lichals of Qualification Bill No. 5
S Syllia Ancessay stankide exception recovery litatis
C Calibration MASISHAD accorded for aon-CCC easilytes

Analyse detected in the nutricioned Mathematics
Holding times for proparation or analysis
LOD Linus of Detection
ND Not Detected at the Reporting Limit
Understant the corruptment was monty-and but

94

	Asserting	The second secon	ŧ							
CLIENT: Work Order:	0904030	Associated Environmental SVCS., LTD. 0904030	<u>i</u>			•	NALY	TICAL QCS	ANALYTICAL QC SUMMARY REPORT	K
Project:	Suther Ave.	Suther Avenue, Brooklyn, NY						TestCodes	TestCode: DryF#IB256_Sell	
Sample ID: VIDALCS-640208Y	CS-8402DBY	SampType: LCS	TestCode:	estCode: DryFutti280_ Uni	Units: partice		Prep Deter.		Rusto: 42928	
Care ID: 1033		Batch D: Re2008a	Tenfflor	Territo: SW12998		ş	Analysis Date: 472/2808	472/2900	Sachler 1873461	
Analyse		Result	ğ	SPK value SPK Rar Val	. Val	XAREC L	LowLimin	HONLINE RPD Ref Val	NAPO RPDUM	ð
1,1,1,2-Tekachbroethane	a de la	÷	3	50.00		229	R	125		l
2,1,1-Trightproethers		ŧ	G.	90.06		82.6	8	2		
1,1,2,2-Tetrachionethane	#Ulbra	\$	9,0	30.90	•	200	Я	Š		
1,12.Trichiaro-1,2.2-trifluorpethans	2-tribuorostas	22	D.6	8.8		503	8	5		
1,1,2-Trichlaroethane	ž	\$	9,	90.05	0	ĝ	18	126		
1,1-Dichloroetham		\$	9	20.00	p	46	R	8 2		
1, 3-Dichlaroethene		L	2	90.00	۰	ŝ	ĸ	81		
1,1-Dichloropropene		3	2	80.00	•	9	8	130		
1,2,3-T fichiorobenzame	5	3	9.0	90.00	•	ĝ	8	ŠĮ.		
1,2,3-Tritchioropropane		\$	9	80.00	۰	50.3	R	65		
1.2,4.Trichlorobenden		\$	9	90.00	۰	0.19	×	8		
1,2,4.Trimethy barcans	CBINE	\$	2	30.00	٥	17	R	50		
1,2-Disromo-3-chimopropana	Busich/do.	3	80	90.00	٥	Š	R	85		
1.2-Ditremosthane		\$	26	30.00	•	ê	8	Ş		
1,2-Ochberobsprütens		\$	9.0 0.0	8.8	۰	ž	~	5		
1,2-Dichlorosthure		*	ş	8 8	0	72	8	\$		
1,2-Dichloroproperie		8	D.	8.8		8	ដ	15		
1,3,5 Trimethy/banzane	2	3	5.0	8.00		96.2	8	Š		
1,3-Dichlorobenzene		\$	2	8		7.1	Z)	ş		
1,3-обиючениреле		4	9.0	8	•	2	Ŕ	Š		
1,4-Dichlorobenzage	•	\$	2	8	•	8	ĸ	Ř		
1,4-Digestine		9	0°.	08.04	0	2.0	8	š		
2.2-Dehibrographin		¥	0.4	30.80	•	57	8	ē		
2-Chibeotologuene		3	0,4	90.00	۰	Š	8	Ē		
4-Chidrotoluses		4	2	80.8	•	93.6	æ	ŝ		
4-laqyrdpyflolume		ţ	2	30.05	•	4.0	ĸ	2		
Actylores No.		¥	80	50.85 50.85	۰	7	ĸ	123		
Sections		7	90	30.00	٥	ï	R	Š		
Bromobenzese		*	0.0	30.80	ð	8	R	2		
Bromochloramethane	2	£	Q.	20.00	•	Ę	R	120		
Outlier. E	Value short o	Value show questication range	-	H Holding it mes to present to a seathful sounded	v avenamicles	or amelystis ex	l popular line	J. Amhtu detecte	Analytic detected before committenion is	i
	LOD Limit of Describe	Sign .	. 3	_				ND No Description	No Detack of the Roseling Light	
•	200	P. D. cartelide symmetry between House		Annual Control of the	Approx.	1	į	the state of the state of		

ij											
Project: Sutter Avn	Sutter Avenue, Brooklyn, NY						_	festCode: I	TestCode: DryFull\$260_Soil	78	
Samon ID: VE241 CB-846208Y	SemoTvoi: LC8	TeatCod	r DryFutta	BAKZADE: DryFublicas Units: sup/Kg		Prince Della	L		Runder: 42836		l
ClaritiD: LC98		T T	Testivo: SW62898	:		Analysis Date: 4273909	ACACA		Supple: Supple		
Analys	Result	졅	SPX vela	SPK RefVat	S.	LowCark	Highlins	LOWLLINE Highlins RPD Ref Val	%RPD RPOXimil		7
American de la compansa del compansa de la compansa del compansa de la compansa d	4	3	90.08		è	8	8				
Stornoferm	· 24	2	8	٥	78.3	8	ÿ				
Carton dauglish	8	9	80.08	0	ŝ	R	Š				
Carbon feduraciónsido	\$	-	8	ø	90	23	Ş				
Chloroberbane	\$	8	90.06	0	97	≂	ā				
Chloratorm	3	2	80.08	٥	43	ĸ	2				
de-1.2-Distributions	*	2	80.00	۵	2	8	š				
cis-1,3-Dichloroprosens	\$	2	8.8	6	87.8	z	ā				
Obram behiorsmethene	\$	9	20.00	٥	787	Ø	2				
Simbonzone	\$	3	8.00	۰	Š	ā	ŝ				
Herachicardualechene	*	9.5	89	o	ž	ĸ	53				
samoon/benzene	ŧ	3	90.08	٥	9.5	8	Š				
D-Voters	2	2	100.0	٥	83.0	8	OS.				
definition chloride	\$	9	90.00	•	ž	R	142				
Appropriaters	7	5.0	80.00	0	Š	8	ŭ				
Buyberzene	2	3	90.00	0	920	8	2				
Propriestrans	\$	9.0	90.00	0	2	8	2				
-XX/derre	\$	9	8		42.1	8	5				
ec-ButyDentsene	\$	9.6	30.00	٥	67.3	8	5				
Syribas	5	0.5	90.00	٥	82.9	æ	Š				
any-Buty-Centrame	7	3	80.00	٥	2	R	Ş				
ernetteroeffene	R	9.0	30.00	۰	77.5	2	5				
Differen	\$	20	80,08	٥	113	8	5				
rans-1.2-Oichioroethene	15	3	80.00	0	ğ	8	120				
manger 1,3-Dichloroproperus	R	8.	90'09	•	75.9	I	5				
(rehotospens	2	S	80.00	٥	68 2	ន	7				
Bur. 4-Bromoftonobertsene	*		90.00		8	2	5				
Sur. Dénomofluoromethene	*		90.06		8	8	ē				
Sur: Toluene-di	5		8		ä	*	ž				
Ossillare S Valor above	Value above centulation came		H. Hold	H. Holding, limes for properties or enalysis executed	sylman v.	E ESENCIÓN	-	Analyte Setreted	Austyle detected below querotisation ti		!
8			9	On Line of Committee	•		2	New Detected as 1	Net Detected at the Reporting Limit		
}											

ANALYTICAL OC SUMMARY REPORT		TestCade: DryFull5260_Soll
CLIENT: Associated Environmental Svcs., LTD.	0904030	Project: Sutter Avenue, Brooklyn, NY
	Worth Order: 0904030	Project

Sames ID: VIII IC BATTORY	RamoTeon Initials	Mark K	Tenthode	Document	Tem Code: Dove paresto Units: portico		Pred Detr.	١		Rusha: 43936	15	
Clentic PSS	Butch 10	Barich IO: R429398	Time	THANKS: SWITZERE		•	Averyole Dieles 472/2008	. 478780		Snethe: 683462	3	
Axaayte		Resuck	ğ	SPK value	SPK Rai Val	*REC	LowLink	Spirit.	SREC LOWLING HIGHLING RPD Ref Vet	SARPD.	RPCCLma	S.
Methy bart-butyl strer		ə	2.0									
Methylane chlorida		9.6	9									
e-Azryl acetale		פ	9									
Maphifiadene		>	9									
n-Butyl acadala		3	9									
n-Butyfberizzine		3	eri O									
n-Propyl acatals		3	9.5									
h-Propylinenzena		3	9.									
o-Xylene		>	9									
p-Clefty/Denzana		>	8.0									
p-Ethyltokuene		-	9.0									
sec-Butybenzere		9	9									
Shyrama		ə	2									
I-Butyl alcohol		J	9.0									
Ind-Butytbercome		,	9									
Tetrachicrosthems		-	2									
Tothere		>	90									
trans-1,2-Dichlaros@sens		2	9.0									
trans-1,3-Dichloropropens		2	90									
Trichibroethava		5	9									
Trichinoflacromethine		2	5.0									
Viryl scutate		5	2									
Viryl Chloride		-	2									
Sur: 4-Bromelhorobergens		4		8		3.0	3	ğ				
Sur: Obmmolluoromethere		ឧ		80.00		ş	8	된				
Sur: Toleany-d6		\$		30.00		8.0	2	Ē				
Sample ID: VERMICS-DAISSOR.	SampType: LCB	8 51	TestCod	: Oryfuligh	TestCode: DryFutB359 Unit: pg/f/g		Page Date	L		Runtle: 4253		
Charles LCSS	Seatch IO:	Beich IO: Pictitale	T S	Techno: Symbolic			Averyale Date: 4(3/2008	#24#		Segrie: #83455	2	
Arabita		3	ğ	\$ X X	SPK water SPK Par Val		Company	Hghilma	MAREC LONGING HIGHLING RPD RM Val	988	RPO. Int	Š
								l				

Armeja	Result	ğ	POL SPK value SPK Pur Val		COMUNIC	Hghim	WREC LONDING HIGHLING RPD Ref Val
						:	
Ossilliers	MINISTER TARRE		21 Holding times for propression or numbrals extended	Appendion or manya	ballounus	-	J Amiya detected by
3	LOO Limit of Discrime		LOQ Limit of Questiscles			£	NO Not Descript at the
•	PPD outside accoming menyment limits		S. Socka Ractivery petricle accepted accepter that	ide necessary recess	A Marie	Þ	C Laddendes the comp

37

CLENT: Associate Environmental Svet. LTD.
ANALYTICAL QC SUMMARY REPORT
Project. Sons Avenue, Brooklyn, NY
Same Dy Wall Delegent. Sensing: Cd. Teacher Delegents (the sense Dy Wall Delegent. Sensing: Cd. Teacher Delegents)

Sample ID: VIZALC'S-DADGON,	SampType: LCI	TeaCo	e: Oryganists	TeatCode: DryPidili288_ Units: pgR/g		Presp Dester	ĸ		RunNe: 42936	8
Charleto LCBB	Batch für RK2504e	Tag	Tesple: SMICOR			Analysis Date: 4/2/2080	4220		BeqNo: 500445	745
Armite	Result	ğ	SPK velue	SPK Ref Vel	*HEC	LowLink	H	RPO Ref Val	A'RPD	*RPD RPDUM
1,1,1,2-Tetraphicospane	ន	3	800		ā	2	2			
1.1,1-Trichleroethene	3	3	8	۰	711	28	52			
1,1,2,2-Tetrachioroestana	3	ŝ	90.00	۰	87.0	8	Ş			
1,1,2-Trichloro-1,2,2-edhornathane	2	3	90,00	o	27.2	8	ş			
1, 1,2-Tifchioropphane	4	ç	8	٥	5,5	*	52			
1,1-Dichloroethene	20	Š	90.00	٥	₽	R	ŗ			
1,1-Dichloroethene	8	9	30.00	۰	5	×	Š			
1,1-Okthoropropane	8	Š	90:36	•	112	R	5			
1,2,3-Trichlorobarmase	33	9	87.8	۰	2	8	5			
1,2,3-Trietharopropens	ş	ő	80,08		90.3	8	5			
1.2.4-Trichlorobencene	5	2	80.00	¢	ħ	R	2			
1,2,4-TrimeDy/Denzene	95	ŝ	90.00	٥	119	R	ž			
1,2-Dibromo-3-chloropropere	Я	ĝ	8.8	٥	ž	8	ă			
1,2-Othromoghaba	\$	8	90.00	•	97.3	8	5			
1,2-Dichlorobenzyme	\$	ş	8	0	2	2	120			
1,2-Oktriproeffram	•	3	80	0	97.0	8	ž			
1.2-Olehlarapropene	\$	<u>.</u>	90.06		8	ផ	2			
1,3,5-Trimethylbenzana	8	ş	80.06	0	13	8	ž			
1,3-OkeMorebergane	3	2	30.00	•	5	ន	120			
1,3-dichloroproperse	\$	2	30.00	•	8	Я	Š			
1,4-Dichlorobenoses	3	3	90.00	D	ē	98	Ē			
1,4-Dloxane	8	ş	\$0.00	۵	Ē	Я	ţ			
2,2-Dichloropropane	5	6	80.00	•	Ę	8	ĕ			
2-Chlorololium	Sn.	9	90.00	0	=	Я	ä			
4-Chloretolesens	16	9	\$0.00	0	5	8	Š			
4-isopropytohaens	8	9	90.00	0	5	ĸ	ij			
Acrytontelle	8	eri O	9000	•	12	ĸ	ķ			
Benzane	7	9	90'06	0	8	8	3			
Bromoberzane	S	e.	20.00	۰	Ē	S	9			
Bromochlaremethans	ā	es es	8008	٥		8	Š			
Bromodichioromethans	23	9	898	•	ğ	8	ä			

Qualiforn	E Volle abort quadrate negs	H Hobbing times for proposation or analysis exempled	J. Assigne detects
2	LOD 1,5mil of Detection	LOQ Limit of Quantitation	ND Ne Decred
	8. RPD autobic secupied recovery limits	S Soike Resovery payside accepted resovery limits	U hetherway the o

T T	A respectable de	Augociazza environmental sweet, el el	į.				ANAL	Ž	ANALYTICAL OC SUMMARY REPORT	MICAR	/ REPO	¥
Work Order: Project:	0904030 Suffer Aveaux	0904030 Sutter Aveaus, Brooklyn, NY						•	TestCode: DryFullB260_Sell	Pry Full Co	5,	
Voltage of annual Contraction	۱	Cameri Total Billi K	TestCr	Dayle	TestCode DevEuill269 Units unito		Pred Date	٠		Runkle: 42938		ı
Clear Dr. Pass		Batch 10. Ruzatish	1	Tesht: Smazeti	· ·	•	Analysis Date: 4/2/2009	#: 47E	8	Saptive: #87450	¥	
Armite		Person	ğ	SPK webs	SPK water SPK Raf Val	KREC		HINN	LIMITAL HINLTH RPD Ref Val	3,4890	RPDLIMB	ð
1,1,1,2-Tetrachiomethans	#fane	-	3									
1.1.1-Trichtocoettene	•	9	ş									
1,1,2,3-Tetrachlomethene	Others	2	2									
1,1,2-Trichlers-1,2,2-arthumosthane	2-influence (harve	2	2									
1,1,2-Trichlomethene	,	>	2.0									
1,1-Dichloroethern		>	9									
1,1-Dichloroethene		>	o,									
1,1-Dichlorapropena	-	>	9									
1,2,3-74chlorobenzene	ŧ	>	5.0									
1,2,3-Trichloropropuns	Ē	>	9,0									
12.4.6-Tetramelhybenzane	Dentaline	7	8.0									
1,2,4-Trightorobenzane		3	2									
1,2,4-Trimming Contracts		3	9.0									
1,2-Obramo-3-chloropropens	минфиф.	3	3.0									
1,2-Dibromosthane		Þ	9									
1,2-Dichlorobenzana		2	9									
1.2-Denioroschans		5	0									
1,2-Dichloropropera		>	98									
1,3,5-Trimefly/benzin	ŧ	>	9									
1,3-Dichtarobenzers		>	9,0									
1.3-dichloropropane		>	\$									
1.4-Dishlandbenzens		5	9.5									
1,4-Diename		7	2.0									
2,2-Dishlovopropens		7	2									
2-Butamone		3	25									
2-Chimodhy vinyi obser	ł	3	9.5									
2-Chlomichum		9	9.0									
2-Heramone		>	3									
2-Propertol		>	8									
4-Chlorotoluene		2	9.0									
+-tsopropylitations		⇒	3									
Qualiform	Value above qu	Value above quantitation ange		HOT X	Holding times for propertition or ensignit expended	or energy		-	Assiyte descried botom quantitation h	beton quantitut	- 8	
9	LOD Limit of Danstina	.3		1 0 1	LOC Limit of Quantitation			9	Not Detailed at the Reporting Lawri	he Reporting Lan	Ŧ	
•		office of the second second second second		S	Spake Recovery coulds secrepted recovery Menta		1	>	Indicates the compount was manyoral	Commence of the last of the la	l	

ANAT VITICAT, OC STROMADY DRIDOUT		TestCode: DryFulli269 Soil
i, LTD.		
Associated Environmental Svos., LTD	0904030	Sutter Avenue, Brooklyn, NY
CLIENT	Work Order: 0904030	Project

					Ì						ļ
mple AD: VBLX-Duggery	SampType: MBLK	Tee Do	TestCode: DayFullSS60_ Units: pgPfg	Units: papifica		And Date	×		Auntho: 42836	2	
58L :QIV	Balch ID: RAZSOSA	,	Teutrio: SWEZEGS		-	Analysis Date: 4772999	*	8	Septor BESAES	Ž.	
ŧ	Result	ğ	SPK value SPK Raf Vel		KREC		Harling.	LOWLINE HIGHLIME REPORTED VAN	0.68%	SCAPO RPDC.INI	30
dolltyl-2-pentamons	>	8									
albne .	>	6.0									
1	-	ង									υ
rytomitrile	>	6.0									
eustu	>	9									
мирентин	2	97									
modificamethuse	2	4i									
modichionmethene	3	3									
этобот.	>	9									
oriomethene	>	90									
rbon disuffide	3	3									
rbon letrachionos	>	49									
iorobenzene	>	4									
bradifuoromethene	7	9									
brathane	>	en O									u
krotom	>	9									
loromethane	>	9									
-1.2-Dichiproethene	>	ş									
-1 3-Dichloropmpene	2	9									
иттостістви (папе	9	9									
rumorselhann	3	0.0									
thoroal floorant (hans	5	9									ů
seprepyl sither	-	9 9									
amol	3	×									
nyl scenario	>	9.0									
ybenzane	>	e:									
ppn-114	>	9.0									
xachiorobutacliane	2	8									
propyl sostale	3	6									
ovazuedygoog	>	ş									
p-Xytere	>	2									

E Value phore quantitation range H Hode
LOO Limits of Descripan
R APO-weische scropped recovery Hereis S Syde

CLERT: Associated Environmental Syst., LTD. ANALYTICAL, QC SUMMARY REPORT
Work Order: 1994039
Freject: Sagest Angres, Brooklyn, HY
TestCodes: Dryfullstad, Safe

							ш				
Sample ID: VELX-040091.	SampType MESLK	TeelCod	e: Dryfullion	TeatCode: DryFulli286 Units: pgR6g		A Dec	¥		Parket 428	2	
Clent D: PBB	Batch (D: PA2836c		Testian: Swezzee		`	ac series	Amiyala Date: 4/3/2008		SeeNo: 682454	2	
Analyte	Pesua	헕	SPK value SPK Ref vel	SPK Net Vel	XREC	LOMUM	Hohlm	WREC LOWLING HIGHLING RPD RATIVES	KRPD	KRPD RPDLIME	8
4-Mathy-2-partianons	ם	8.0				 					
Acatom	>	2									o
Acrolleh	3	ĸ									
Acquantitie	3	2									
Benzase	9	2									
Bromodentente	5	8									
Brancohismaechana	5	9									
Bramodichlammethane	,	9									
Bromotorm	-	9.0									
Bromonghana	7	3									
Carbon discullida	פ	9.0									
Carbon Intrachibride	3	3									
Chipmbanzane	2	20									
Chlorodiffuoramethene	9	9									
Chicrosthere	3	20									
Chlorotom	7	9									
Chipromethane	7	8									
cie-1,2-Dichloroethere	,	9									
cle-1,3-Clestorgonpene	>	3									
Objevochbromethers	3	\$									
Otherwornethene	3	e,									
Dichlond@ucromethene	5	2									
Discompy) other	2	2									
Ethanol	-	10									
Effryl scalints	2	8									
Chylomosine	2	9.0									
Frace-114	_	2									
Herachlorabuladhra	=	2									
Inceptably) acadates	=	9.6									
laupricey/be niterine	3	9									
m.p-Xylene	>	₽									
					1					1	i

	ANAT VITICAL OF STRUMBEY BEPORT
	virusmental Sves. LTD.
	CT IPATE. A conclision Environmental Sucs. LTD.

		ALCOHOL CHICAGO CONTRACTOR CONTRA					į	}	ANALI III AL COMPINALI NEI ONI			1
Work Order: 090 Project Suti	D904030 Sutter Awmu	0904030 Sutter Avenue, Broaklyn, NY						-	TestCode: DryFuBG260_Son	PyPuBBC6	3,	
		A see Chart will be	į	Destruited of	Teathorie Destrations Date unifica		Prep Detr	F		Plumbdo: 42808	200	
Clento, mas	ĺ	Batch D: RA29080	3	TWINC STREAMS		-	dayah D	Amayala Date: 4/3/2908		Sagistic: SECREMENT	#	
Anaple		Peeul	ğ	SPK value	SPK value SPK Raf Val	%.REC	low Limit	High and	Low-Limit Hightisms APID Ray Val	*BP0	SEPO RPDLIM Out	3
Meanury tart-Dutyd other		n	9.6									
Methylana Chloride		3	9,0									
n-Amyl scetate		-	3									
Negrichalens		9	2									
a-Budy scetate		3	2									
Buytbenzene		>	9									
#-Prupyl acellals		2	9									
n-Propybenzens		>	9									
D-X years		>	8									
P-Dieftyfbertann		>	3									
p-Ethylokuene		>	ŝ									
sec-Butybeszens		>	ŝ									
Shrane		-	ş									•
F-Bunyt alexatrol		>	2									•
tent-dudy factoring		3	2									•
Tejrachioroethere		9	2									
Totame		=	2									
tram-1,2-OlethornalDane		>	ŝ									
tram-1,3-Dienloroproperte	ŧ	2	3									
Trichlorcalitana		>	3									
TriphoroBuomediane		>	2									
Very expense		>	2									
vmy chloride		7	S.			1	•					
Sur. 4-Branchandbenzere	MECHA	5		8		â	2 :					
Sun: Discomonancemedians	and Charles	5		8		É	8	Ē :				
Sur: Toluena-d8		\$		8		ĝ	*					

i	- '	ž	=
	Holding times for preparation or analysis exceeded	LOQ Limit of Quantitation	S Spake Recovery ownide matepack recovery health
	Ï	LOD Limit of Detocion	 APD overside accorporal recovery limits

	ANALYTICAL OCSUMMARY REPORT		TestCode: DryFull5269_Soil
ļ	 Associated Environmental Swcs., LTD. 	Mar: 0904030	Sutter Avenne, Brooklyn, NY
	CLIENT	Wark Ord	Project

Sample ID: VEDELCE - BASSOR	SamoTvoe: LCS	TestCed	Dry Call	Transcent Dryfullian Units partice		Prep Date:		į	RunNo: 42936	ŧ	
Client D: LCSB		Y.	Teathio: \$14752508	!		Analysis Date: 473/2009	477700	•	Sachte: stickes	4	
Analys	Restuit	Ę	SPK value	SPK value SPK Ref val	MAREC	LOMAINE	Apr. Cal.	LONGIAN HIGHLINK RPD Ref Val	O.	SLAPO RPOLIMI	3
Brandom	S	0.6	8	þ	ž	R	ŝ				
Certon desifide	8	\$	8.8	•	ē	8	ĕ				
Carbon (atrachismids	8	9.0	88	0	F	ĸ	2				
Chlorobenzene	+	95	8		ž	7	5				
Colombon	\$	E.O	20.00	•	2	18	ž				
cle-1,2-Dichlaroulhere	\$	9	50.05	•	27	8	ä				
cle-1,3 Dichloropropere	\$	8	90.00	•	85.8	ß	ğ				
Digramochieromediane	25	8	8.08	•	ş	R	2				
Embargasa	Si	ě	8	٥	5	2	ã				
Hexachiorebutaciene	4	9.0	8	٥	Ē	22	23				
tacc-configurations	*	3	뢌	6	11	R	윤				
D. D. Mylleria	10	2	<u>6</u>	a	17	R					
Mertylene chipride	128	5.0	8	٥	12	93	7				•
Naphthelene	8	3	808	۵	8	8	ş				
n-Butybentene	5	S.	8,08	•	ij	8	Ş				
n-Preoribanzena	8	35	80.00	•	ş	8	Ş				
o-Xirtene	8	9	8.8	0	Ş	×	Ş				
sac-Butrbenzane	ß	3	80.00	۰	10	R	ş				
Styrans	88	8.0	90.00	٥	2	Я	5				
sert-Buly/Denzane	8	9.0	8	٥	5	8	ä				o
Tetrachloroethene	3	5.0	80.08	۰	Ä	8	\$				
Tolegen	8	2	88	•	8	8	-				
Parse-1, 2-Okchiorogomena	SI	9.0	80.08	0	멸	8	8				
Irans-13-Oktytenpropens	7	3.0	8	•	2	¥	Į				
Trichicrosthers	2	3	8.8	•	Ş	ß	121				
Sur: 4-Branchambersens	23		80		ş	*	캶				
Sur: Otromofluoromethero	9		30.00		4	\$	É				
Sur: Toluene-di	\$		80		87.8	3,	ŭ				

Outlibra E Value short ques	ben Millers E Valles shows quantitation among	H Modeling times for propertition to manages controlled	J Assigne detected before quantitation is
_	LOCI Limit of Detection	100 Limit of Quantificials	ND Not Describe to the Reporting Limit
	RPD metaids accepted recovery lithins	S Space Repovery martile accepted recovery limits	 Indicates the company was analyzed

ANALYTICAL OC SUMMARY REPORT		Tegurane: Diffrance par
 CLARYT: Associated Environmental Sven, LTD.	0904030	Sunter Avenue, Brooklyn, NY
	Work Order: 0904030	Preject

Preject Sund Ave	Summer Avenue, Ordonayn, or F											16
Sample IC: VBLK-648389L	SampType: MBLK	TestOld	TestOxde; Dryfhallidid. Unit: ugiffg	Unit: partie		Prep Date			Runfler 42836	*		
Client D: Pilot	Batch ID: NAZISSE	Tage L	Tachte: SW12800		•	Analysis Dade: 40/2009	80Z/09		Septor: 58348	ą		
Analyte	Result	텇	SPK velue SPK Ref Vill		¥	LowLine	1	WREC LOWLINE HENLINE RPD Ref Val	E	WARD ROOM	1	
5,1,1,2-Teknohloroelhene	>	9.6										
1.1. \$-Trichlomethern	,	8										
1.1.2.2-Vetracislomethern	>	9.0										
1,1,2-Trichlers-1,2,2-triBuorosibuna	2	9										
1,1,2-Trichloroethese	2	9										
1,1-Dichloroelhene	9	9										
1,1-Okhlarosthana	>	9.0										
1,1-Dichloropropene	,	3										
123-Trichlorobenome	3	3										
1,2,3-Trichlorapropere	2	20										
12.4,6-Tetranshyberses	2	2										
1,2,4-Trichlorobengene	2	9										
1.2.4 Innelly Denomin	-	05										
1,2-Obramo-3-chloropropene	-	9										
1,2-Dhromoethene	>	ş										
1,2-Dichelorobenzam	7	2										
1,2-Dichlorostham	Þ	s										
1,2-Cityriorepropere	•	ĝ										
1,3,5-Trimelity/benzers	>	9										
1,3-Dichloraberowne	~	e,										
1.3-distribroprepare	=	8										
1,4-Dichlorobenzene	9	*										
1,4-Diomene	>	9										
2,2-Dichloropropane	>	5										
2-Butanone	5	6										
2-Chiercosthyl vényi séner	¬	G ei										
2-Chistotokusme	9	ei G										
2-Hyzantowa	25	3										
2-Propertol	>	R										
4-Chiandoluene	2	ä										
A Committee Management	=	ć										

42

CLURY	CLURYT: Associated	CLIENT: Associated Environmental Sves., LTD.			ANALYTICAL QC SUMMARY REPORT	PORT
Projects	Suffer Ave	Project: Satter Avenue, Brooklyn, NY			TestCode: Fulk3260_W	ļ
Semple D. VB	L.K. betstret.	Semplype: MRLK	Sample IC: VELICOMMONEL Samplype: HERE.K TestCode: FuelCod.W Unfor part.	Unfor papit.	Prop Desc. 12036	

Samon D: VIII.K.M0209L.	Servol'you: MARIN	TestCx	TestCode: Futticato_W	F Unit: papit.		Pres Des	_		Runke: 4283	×	
Cleriti: PSW	Bytch 10: RA2808	Į.	Testivo. STATE 25.08		-	Analysis Date: 4/2/2008	4/3/20		Seq No. 98336		
Analyte	Result	ğ	SPK value	SPK value SPK Refvet	REC	LowLimit	Highlimk	Low-Limit Hightlimic RPD Ref Val	Oder	MAPO RPDLIME	100
1.1.1.2-Tetrachioroethene	2	1.0									
1,1,1-Trichipepathana	23	2									
1.1.2.2-Tetrachiomethere	3	2									
1,1,2-Trichless-1,2,2-influoroethere	2	2									
1,1,2-Trichloroschars	-	2									
1,1-Dichloroethene	>	-									
1,1-Dichkooethers	>	2									
1.1-Olchioropropene	5	0.0									
1.2,3-Trichierobenome	¬	-									
1.2.3-Trichibergorapane	>	2									
1,2,4,5-TeppemethyBenzane	2	2									
1,2,4-Trichienobenome	-	9									
1,2,4-TrênefityDercone	-	2									
1,2-Obromo-3-chieropropene	-	2									
1,2-Obromoethana	7	5									
1,2-Dehlordenzens	>	2									
1,2-Ochlarosthane	>	2									
1,2-Dchlorapropana	3	2									
1,3,5-Trienethyfbengene	>	5									
1,3-Dichloraberramon	-	2									
1.3-dichloropropane	5	2									
1,4-Dichlardoemante	>	7									
1,4-Clougha	7	ç									
2,2-Old/forspropers	3	2									
2-Butanone	>	2									
2-Chipmosthyl vitryl ather	>	7									
2-Chbrokoluene	>	2									
2-Hunshone	>	2									
2-Propenci	>	2									
4-Churcholana	2	7									
4-tsopropyliciusmi	2	¥									

	3 Amalya docused below q ND Not Decessed in the Paper U fudicates the compound t	
	ge 1.00 Limit of Questions or analysis carceful 1.00 Limit of Questionles 5 Spike Receivery seasible receivery labels	
2	rimage mercey blenks	
4-Laprapytoluens	Qualifiers E Valve above quantitation mage LOD Lient of Decorion R RPD setaids excepted recovery levis	
4-lao	1	47

CLBNT: Work Order: Project:	Associate 0904030 Satter Av	Associated Environmental Svca. LTD. 0904030 Satter Avenue, Brooklyn, NY		:	 		ANAL	TICA	ANALYTICAL QC SUMMARY REPORT Testches: Fubble W	QC SUMMARY	Y REPO	TX.
Sumple ID: VIELK-0402081.	-0-020BC	SampType: MOLK Belch D: 1942938	1	INCODE: FUNEZHO. Y TURNO: SWIZSHS	setCode: FutEcte_W Units: pgfL TestVo: SWECKE	1	Prop Date: A22089	4/3708		Runter: 42938 Septe: 59388	2 3	
Analyte		Result		SPK value	PCA, SPK value SPK Ruf Val	MREC	Lowling	HOLIM	WREC LONLINE HIGHLINE RPD Ref Val %APPD RPDULINE Qual	SARPD	RPD,Imit	8

4-Merinyl-2-perdamone	out a	•	2	ន		
Academie			~	2		
Acrobin			_	9		
Crytonitale			_	9		
Series Series			_	9		
PORTODENZENS	ŧ		· •	9		
Bronochipromelhime	į	•	· •	9		
Bromodichloromethene	į		,	9.		
Promoform			_	9		
Bromomethers	ž		- -	•		
Carbon disustate	ş		7	2		
Substitution temporal	5		- 5	9		
Chlombenzana	2		_	2		
Nondill compliant			_	2		
Chloroethans			- -	5		
Chloroform			· •	=		
Chicamethen	I		· ~	=		
da-1,2-Dichoroathene	5	ŧ	· 2	=		
tis-1.9-Dichloropropens	(Approx	ŧ	· 	=		
Dibromochlotomathene	1	•		2		
Districted Sevie	į		_	•		
Achiprocificationelliane	T.	here	· >	2		
Disapropyl adlar	ě		· •	9		
Elband			· >	2		
Ellry acetale			· •	2		
Estrycomeration			·	2		
Frgor-114			_	3		
**************************************			· ~	2		
supropyl scalale	1		· -	2		
sopropyfoenzana	100		2	2		
n.p-Kylene			<u> </u>	2.0		
,	ш	Vehe above quantitation range	l i	I	Halding times for preparation or analysis exceeded	
	ĝ	LCD Limit of Describe		8	LOQ Limit of Quantitation	

	A LEGISLAND	AMOCINIDO CIDATIONIMENTE SAGA, CA ES	į				7	5	ANALYTICAL UC SUMMAKE KELUKE	***************************************	
Work Order: Project	Sutter Aven	0904030 Sutter Avenue, Brooklyn, NY						F	TestCode: FullE160_W	W 09738	
			Teat	W Onderson State State	Linda sand		Prec Deta			Runkle: 42836	
Sentition IC: VICTORIA COMP.	, Co.	Barbario FA2838	Teathk	Teachic: SWS2886		•	Analysis Data: 4/2/2000	472.00	_	Septic: 683367	
Accepted		Į	ğ	SPK vetas BPK Ref Val	PK Ref Visi	*REC	SMCm2	Hobimi	LOWLINE HIGHLINE RPD Ref Val	WARD HPC	PPDLimit Quel
1 1 0 Telemonthisman		9	2	8.08	٥	ŝ	8	B			
			2	90.00	0	ž	\$	3			
T. Commission of the	1	. 2	1.0	90.00	٥	17	27	7			
A DESCRIPTION OF STREET	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		91	8	۰	÷	2	ş			
1 Technology			9	90'08	•	2	¥	Š			
1 November 1			Ģ	8	•	60	8	ş			
Demonstrat			9.	20'08	٥	Į	S	¥			
	. ;	ş	9	20.00	0	Ē	8	2			
. I Commonweal	. !	1 2	2	0000	•	23	23	2			
Tehlomomy		•	9.	90'09	٥	Ť	19	8			
2.4. Techinospecies			10	80.08	٥	£.7	2	*			
2.4.Trimethylamore		8	9	90.09	•	8. 8.	8	8			
3.Demmo-T-rhemmonane	-	12	0,1	8	•	6.59	×	Ŗ			
2.Decreeding		*	9	8	•	2	×	ä			
2 Dientember		7	a .	90.00	-	9	*	Ė			
2.Okviemelbane	,	*	1.0	90.06	٥	g	Ħ	ž			
2-Dichicanomena		3	0,0	80.08	0	£2.	1	2			
3.5-Trivaethyfbenum		*	2	90.09	0	7	23	\$			
Christophone	1	3	0,1	20.00	4	2	₽	2			
3-dichloroprophology	1	\$	5	90.06	•	ě	38	8			
4-Dichlorobenzera		3	2	8006	٥	2	\$	3			
4.0		4	0,1	20.00	٥	1 9	73	Š			
2.Dichimenomore	3	3	6.	90.00	•	喜	*	2			
	ŀ	. 7	ç	8	-	9	2	2			
Total Control		.*	2	50.00	-	9	8	\$			
- Secondaries	•	24	97	80.00	0	Ş	Ħ	5			
Annual Che	,	67	5	80.09	٥	ž	#	8			
Annual Property of the Parket		4	2	80.08	۰	8	\$	<u>‡</u>			
Bernellette		7	9	90.00	۰	8	×	\$5			
Some or biomorphism			2	30.00	•	ž	×	2			
Prest odichiorome@wne		\$	5	88	٠	1.7	Ħ	ā			
Oneithern	E Value shove	Value above quantitation mage		Hoding.	Holding times for propertion at evalysis extended	N SE	is mondal		Amilyte detected	Analyse detected below questitutes (
	LOD Lissis of Detection	ection.		LOQ Limit of Quantitation	Constitution			ą	Not Detected as a	Not Detected at the Reporter Library	

ANALYTICAL OC SUMMARY REPORT		A CAPTORILY 1900 MIRAL	Paraller 42008
ANAL			
CLIENT: Associated Environmental Sves., LTD.	0904030	Project: Suber Avenue, Brooklyn, NY	
 Ë	Werk Order: 0904030	Project:	

Sample ID: VICHE CR-0402081. SampType: LCS	SamoType: LCS		A: FullEZTO N	TeelCode: FullS710_W Unit: ygil.		Prep Date:			Rumble: 42838	5	
Clear C. C.	Besch D. RAZES	į	Terlific STATESTOP			Analysis Date: 4/2/2008	472780		Sectio: 443367	1367	
Armelyin	Town I	Ź	SPK value SPK Ref Val	SPK Ref Val	SEC	LowLink	AT HOS	LOWLINE HIGHLITHE RPD Ref Vol	ARP.	RPDLIMI OLAN	ě
	4	•	88	ŀ	E	77	12				
Carbon desights	: 4	0,7	00.00	0	47.7	Я	200				
Carter Interestication	3	9	90'00	0	107	4	ž				
Choopenson	4	2	9		85.8	ş	7				
Chombers		-	90.00		9.0	ů	137				
Cir. 1 2-Dishipmenthene	\$	2	8		17.7	A	2				
de-1 *Debloromonene	3	2	90 06	•	67.0	4	ij				
Disconnection	*	9	20.00	٥	ĝ	21	¥				
Efvilouvzene	\$	7	90.08	٥	ģ	ş					
Hermotylomotylandense	9	=	90.06	۰	8	ĸ	Ä				
And a second description of		=	8	٥	ē	Ħ	ij				
To Xulene	8	2.0	100.0	Б	8	R	5				
Mathylana chibololi	2	2	808	0	ķ	8	#				ä
Machiniana	\$	2	8	•	*	2	2				
-Authorizan	3	2	8000	o	8	Я	Ä				
Pundherman	2	2	808	0	3	23	Ş				
p-Xydene	\$	-	90 06	۰	25.3	B	55				
nec-Butyfoerzene	3	5	80.08	0	Ŝ	23	135				
String		5,	90.06	۰	D.8	×	ş				
lart-Ruthermente	55	2	80.08	۰	ŧ	8	3				
Telmetricecelibere	3	9	20.08	0	7.7	\$	7				
12	57	2	8008	٥	ž	\$	ž				
variant 2-Decisional bases	*	2	20.00	0	91.5	7	ä				
wave-1 3-Dichlamorpoane	Ş	97	80.00	٥	2	h	ä				
Trichiamethene	#	2	90:00	۰	98.B	\$	7				
Sur 4-8monthorshers	*		30.00		ş	8	š				
Sur Offennotumoneriblens	. 8		8008		192	8	127				
Sur: Toluna-08	4		8		8	5	2				

-3

H heading lines for proposition or sun-yes excerded LOQ Lines of Quantitation S Sylve Ascerces aversided recovery lines S Sylve Ascerces; securide accepted recovery lines Qualificrie E Valve above quantitation respe LOD Least of Distration R APD Qualifie screptual recovery licitie

ANALYTICAL QC SUMMARY REPORT Associated Environmental Svot., LTD.
0904330
Sutter Avenue, Brookhn, NY

TestCode: Fallt260 W

KRPD RPDLmk Uniter page. Semple IC: 0004030-07A88 Semplype: US Clent IC: B-7 (SM) Bater IC: R4853

Qualificate E. Valva above quantum for mage LOB Limits of Detection R. RPD patietic procepted recovery limits R. RPD patietic procepted recovery limits

Aumégre descrited Inster quantitation is
NO Not Discussed as the Reporting Lines
U Indicates the compound was stably and

Si

H. Hadding litens for preparation or sensymic recommend LOQ. Linkin of Countibution S. Spiles Recovery sensitie secophed recovery limbs

ANALYTICAL QC SUMMARY REPORT TestCode: Pulli260_W Associated Environmental Sves. LTD. 0904030 Suster Avanue, Brooklyn, NY SpergType: MSD Beich ID: PA2836

CREMA ID: B-7 (OWY)

Associated Environmental Svea., LTD. 0904030 Surter Averue, Brooklyn, NY

ANALYTICAL QC SUMMARY REPORT TestCode: Faliabile W

Start C. PBM B	March Contract	1	•								
tunajita metayi test-bugi sitas Antriyense bushida Auryi koptulas Auryi koptulas Auryi koptulas			Testive: SWIGISH		•	Analysis Date: 4/2/2008	47200	_	Sagrie: SE336	=	
Arebyl sed-budyl setter Arebyl sed-budyl setter - Armyl sections Argitizations	Resul	ğ	SPK value SPK Rel Val	SPK Ref Val	*REC	LOWLINE HIGHLINE	- FORTH	RPD Ref Val	Caerx	RPDLIME	3
destryme chartes they bear as haptoens	a	9									
Admy textines Applications	g	0,									u
Naphtheime -But water	5	5									
-Buty explain	7	2									
	7	2.0									
n-Buty Denzans	Þ	7									
Phopyl scatters	2	9,									
-Propriestration	5	91									
XX	>	0,1									
-Dealty-founzeme	5	5.									
Ethyloluene	ח	2									
eec-Butybentene	9	9,1									
Styrtera	2	2									
-Bully alcohol	>	1.0									
ect-Bubylbanamo	>	9									
Tetrachicrosthera	>	2									
Tologra	5	9,									
rass-1,2-Otchtoroefeans	7	2									
rass-1,3-Oschlampropane	>	5									
Trichloroothem	2	ç									
Trichtorofluoromethens	>	0,									
Viryi scelate	5	9									
Viewyl chilochde	>	97									
Sur: 4-Bromofiscrobenzene	<u>.</u>		8		ŝ	8	8				
Sur: Disconding and Sur.	ŝ		80.00		5	22	2				
Surt. Toluena-di	£ .		90.00		흂	ا =	<u> </u>				١
Council III INDAITMANNAME SA	SamoPost: MS	TomECoup	TORKSOON: FLAMESHOW	R CHE MA		Pro Oest			Punho: 42104	*	
i	Basch D. PAZIDE	Z Z	Tarthio: SWR280S			Analysis Dete: 4722808	# 472B	*	Sequie: mata76	•	
	Descrip	2	SOX value	SPK value SPK Paf Val	CAEC	(my final	Herita	MARC LOWLING HIGHLING RPD Ref Val	2000	SUPPLY OUR	ď

 Assafyte decessed before spensional bit ND Net Datected at the Reporting Libral
 Indicate the componed was everyoned. H Hoding trans for prognetion or analysis exceeded LOQ Leat of Quantitation 5 Spite Recovery to the accepted recovery thesis.

CLIEAT: Associated Environmental Svez., LTD.
Work-Order: 0904030
Project: Suther Avenez, Brookyn, NY

TestCode: Full6269 W

ANALYTICAL OC SUMMARY REPORT

KRPD RPDLIMI Ruskio: 42834 SeqNo: 582375 Sample ID: 0864030-97AMS Clert ID: B-7 (BM)

Hebbing times for programition or analysis exceeded
 LOQ Limit of Quantitation
 Spike Recovery outside secrepted recovery finite

Svers, LTD. ANALYTICAL OC SUMMARY REPORT			
CLIRAT: Associated Environmental Svcs., LTD.	0904030	Project: Sutter Avenue, Brooklyn, NY	
CLUBAT	Work Order: 0904030	Project:	

Sample ID: VISALCE MISSEH	SampType: LCS	TestCod	TestCode: Fullitibili, W	Calle MA		Pres Delec			Number: 48838	*	
Chart ID: LCUY	Butch ID: RAZIDAD	Tee.	Touline Statestal			Analysis Date: 4/3/2088	£020	_	Seque: 600439	ş	
Averys	Result	혍	SPK veltus SPK Ref Val	PK Ref Val	MAEC		for Link	LOWLING Highland RPD Ref Val	%RPO	MRPO RPDLIMA	3
Remembers	\$	0.1	20.00	٥	673	38	3				
Copper Charliffe	2	=	20.00	٥	Ā	Я	*				U
Carther tetrachibride	8	2	8	٥	ē	\$	ž				
Calconhanzene	19	9	80	٥	4,0	Ξ	Ţ				
Chipcoloru	Ŧ	0.	80.08	•	ğ	Ş	5				
cla-1.2-Dichloroethans	\$	5	80.08	-	Ē	Я	Z				
in 1 3 Okthionberrament	8	2	90.08	•	8	4	ē				
Obromodisoromethene	7	6.	90.09	٥	5	2	ĕ				
Chechentziera	*	-	30.00	٥	7.7	9	*				
Heracitorabuladism	2	5.0	90.09	•	₽	R	Š				
accommon particular	8	9	89	6	Š	R	2				
n p Xylline	2	2.0	0.00	0	87	¥	2				
Methylene shloride	8	2	80.08		#	8	<u>‡</u>				ğ
Such Statement	**	2	50.00	0	88	×	5				
n-Buth Constante	\$	2	30.00	۰	8	×	ž				
Presidential	!	2	50.02	٥	Ī	8	2				
D-Xefaria	3	1.0	8	0	2	×	\$				
and Bath Changers	\$	2	80.08	•	2	25	3				
Streets	*	2	80.08	D	Ë	2	2				
Mari-Buty-Bunnanda	4	3	90.00		97.3	æ	ž				
Tetracylomethene	*	7	90.00	0	Ē	\$	Ä				
Tokuses	\$	2	\$0.00	٥	8	\$	ž				
Irms-12-Oktykonoshens	2	5	8	•	Ē	Ş	2				u
trans-1.3-Dichipropropens	Ġ	5	8	•	979	S	Š				
Trichkroethene	3	9	8	•	Ē	2	\$				
Sur: 4-Bromofuorobenzane	*		8.8		27	2	2				
Sur: Disconditional Days	7		80.06		97.4	2	127				
	;				ě	ű					

Hodding times for preparation or namelysis and solding	100 Limit of Quantitation	S Spike Recovery metals excepted recovery limits
 Passificers S Value above quantitation mays	LOG Lines of Descrine	R. R.P.D sestable accepted recovery limits

J Azalyse detected below quantitation if NO Net Discosod at the Reporting Limit U testignants the component was maryonal

			ĺ				1					1
CLARNT	Associated Environmental Sves., LTD.	Wal Sves. LT	۵				ANAL	YIICA	ANALYTICAL OC SUMMARY REPORT	MMARY	REPO	H
Work Order:	0904030						:		' !			
Project	Sutter Avenue, Brooklyn, NY	ya, NY						F !	TestCode: Fullitatio_W	W (1977)		
Sumple IO: VIELK-040305H	H	BarroType: MBLK	TestCod	Foliam 1	TestCode: Postszel_W Unit: papt.	ļ	Prep Date			Punite: 42838	*	
Clearit): Part		Batch ID: RAZBORs	Testa	Teahlo: \$79 (2508)		•	Analysis Del	Analysis Dett. 4/3/2009	_	Sequire amount	7	
Analyte	į	Result	ğ	SPK value	POL SPK value SPK Rail Val	S.R.E.C	LowLind	Hench	SREC LONLING Highlink RPD Ref Van		MAPO RPOLINE Dual	3
1,1,1,2-Tetrachbrouthass	ethane	7	1.0									

	0,1	5	ō.	J.	0,5	0, 0		U 1.0	1,0	d. d.	ů,	1.0	0, 0	9,	d. 6.	9,	5,5	1.0	5	3,4	3,5	ů. 10	0,1	3.0	36	27	970	91.	ë.
--	-----	---	----	----	-----	------	--	-------	-----	----------	----	-----	------	----	----------	----	-----	-----	---	-----	-----	----------	-----	-----	----	----	-----	-----	----

		Allays operato some demande a	NO Not Detected at the Reporting Lond	U Indicates the compound was analyzed
		H. Holding somes for preparation or sembly a comment	LOG Liveria of Quantification	S Spike Recovery custoids accepted recovery hinds
5		Qualifiers E Value show quantitation 19695	1.00 Limit of Descripe	R RPD applies accorpted recovery limits
- Schrödinger	1	Qualiforn E	8	•

Associated Environmental Sves., LTD.	0904030	Sutter Avence, Brooklyn, NY	
CLEST	Work Order:	Preject	-

ANALYTICAL QC SUMMARY REPORT Tescede: Painted_W

Semple ID: 0004030-07AMSD	SampType: MSO		TestCode	TestCode: FullE289_W	W Under page.		Page Date:	¥		Kunto: 420	5	
Chert D: B-7 (OW)	Batch ID: R42501	ē		Tentho: SW82996		•	Analysis Date: 42/2009	ederates x	_	Sector section	Ē	
Accepte	2	Reauf	ğ	SPX value	SPK wates SPK Raf Val	MREC	Lowlins	Hephimi	Lowlinsk Highlimin RPD Ref val	CRPD	KRPD RPDLink	3
Benefice		9	=	8.08		흁	R	136	46.29	17.7	R	
Control dividity			9	90		82.5	R	ž.	45.50	9.80	2	
Define tetrachingle			9	90.00	٥	¥	\$	ž	55.55	9.36	2	
		: 5	9	8	٥	74.0	\$	3	4.5	12.2	R	
		. 5	9	20.00	٥	202	4	137	44.88	0.803	8	
cir.1 1.Dichlomothern	•	: 82	5	8	¥. F	ž	19	2	110.4	200	2	
The Continues of the Co		; P)	2	90.00	•	2	4	5	N5.80	10.3	8	
The same of the sa		4	9	808	0	78.6	22	ž	44.08	10.4	R	
			2	8	٥	78.2	45	5	43.39	10.5	8	
Management		. 8	2	8	۰	ž	35	135	41.37	6.72	2	
		2	9	8,08	٥	5.3	អ	2	17.77	13.4	R	
and the second		2	20	100	٥	ä	*	ş	5.0	ğ	R	
		: ::	9	8	4	Z.	8	7	3	10.1	R	8
Management of the Parket		9	-	80		95	A	3	74.16	8	2	
Between		=	0	8.0	٥	2.5	*	ħ	57.5	5.77	8	
- Brondharmon		4	9	8	•	2 6.7	×	2	48.41	12.1	R	
2000		8	9	8	•	7.	3	ş	44.10	10.1	R	
and the Contraction			-	20		808	*	13	8.28	101	R	
		e pr	2	8	0	76.9	ŝ	ħ	4.30	11.8	R	
T. P. C. Parameter		4	-	8.08	-	9	56	45	50.28	11.7		
Tehnologyanania		908	2	80.00	757.3	67.3	4	100	B31.4	3.73		
Total Control		4	9	8	٥	E	4	2	3 , 4	8.27	ឧ	
The state of the s		. 5	9	8	•	79	4	2	43.44	700		
The Management		7	91	90.00	•	75.5	*	ž	43.37	13.3	8	
Total Control of the		2	2	80.00	4	77.8	\$	ž	20.15	7	2	
The second second		: 5		80		ŝ	×	¥		۰	-	
Sur Direction Control		8		90 06		2	2	12		•	•	
Ser. Tohone of		: =		8		ñ	4	121		۰	-	
our research		5										

 Analyse detected below quantitative h 	ND Not Dissected at the Reporting Limit	U Indicates the controlled was bringled
H. Holding times for proposation or sembys is exceeded Assays detected below quantitation if	LOQ Limit of Quantitation	 Spike Rosovery untside accepted rosovery limits
Ong Merre. E. Value sterre gamet unten nonge	LOB Lisel of Descripe	R. RJPD seasone accopied recovery limits.

CLIENT	CLEAT: Associated Environmental Syca, LTD.	ANALYTICAL OC SUMMARY REPORT
Work Order: 0904030 Project: Sotter Av	Work Order: 0904030 Project: Satter Avenue, Brooklyn, NY	TantCode: FullS269_W

Service Co. VS34LCB-04030991 ServoType: LCB	SempType: LCB		ess Code	TestCode: Fullicity	Challe popul		Prep Date			Rumble: 42008	8	
Clert D: 1CBM	Beach ID: NAZISIA	4	Teather	Terthic: SWILZONG		_	Analysis Date: 4/9/2008	4/1/200	_	Staple MOCH	3	
Vision		Result	g	SPK value	SPK value SPK RefVal	KREC	Lowini	-	LOWLINE HENLINE RPD Ret Val	G-BR	KRPD RPDLimit	3
1 t 1 2.7 minutible roadhasa		=	=	8		ä	я	ā				
1 t 1. Trichingmetheren			9	30.00	۰	\$	8	ž				
1 5 2 3. Telephotosthate		. 4	9	80.08	0	2	Ħ	₹				
1.12-Trichioro-1.2.3-triffucroethere	•	8	3.0	80.00	۰	8,72	ş	Š				υ
1.1.2-TAchterosthans		4	5	8	0	93.A	7	8				
1.1-Oktoberathene		4	9	8	0	17.5	\$	Ž				
1 1-Dichesottetheore		SI	2	90,00	۰	ā	8	ž				
1.1-Dichlorisorsonn		£i.	5	8		ŝ	22	2				
123-Thirthproperusine		ij.	9	8		2	2	ā				
1.2.3.Trichloropropana		*	2	8	0	Š	13	2				
1.2.4-Trichlandbengene		3	9	8 9	٥	8	23	8				
1.2.4.Trimathybeacans		*	0.1	8	٥	Ę	28	5				
1.2-Durame-3-chickoptane		×	9	30.00		52	2	3				
1.2-Obrasosthem		2	5	8	0	8	23	135				
12-Dichlorobendame		\$	2	8	6	95,6	₽	2				
1.2-Dichlososthame		4	2	9	-	2	**	Ξ				
12-Donorapropera		7	9	90.00		67.0	\$	2				
1.3.5-Trimediviberizase		\$	9	8.0	٥	3	R	3				
1.3-Dicherrobenzene		Ş	9	90.00	۰	2.2	\$	5				
1,3-dichlangrapment		4	0,	90.00	•	99	*	3				
1.4-Dichlerobenzene		2	2	90.00	-	\$	Ş	Ş				
1.4-Discount		8	9.	80.08	-	5	ş	Š				u
2.2-Dichloropropane		8	1,0	80	0	Ē	Ħ	\$				
2-Chloratoleanu		ŧ	97	90'30		20	R	33				
4-Charactehene		\$	2	8		£.3	Ħ	23				
4- Scorosvitolivens		4	97	90.00	•	Ē	×	Ę				
Acryonielle		R	9	8	•	ē	ĸ	Ą				
Berzana		9	9	8	٥	8	â	ž				
Bromobenzerse		\$	97	90.00	۰	83	R	5				
Bromechloromethene		4	9	90.00	0	8	R	Š				
Browstichbromethane		8	1.0	90.00	•	Ä	Ħ	Š				

Qualiforn E. Vacus devos quantitation rappe H. Hiddag simps for proposition is enabyte corrected J. Austria.

LOC Land of Demotion Co.

In the Co.

R. NETO could be excepted movemy limits S. Spirit Records recorded incomes

ANALYTICAL QC SUMMARY REPORT

Runho: 42838 Septio: 583446 TestCode: FullS260_W Prep Date: 407009 CLLERT: Associated Environmental Sect., LTD.
Work Order: 6004020
Project: Sutter Avenes, Brooklys, NY
Sempe ID: VBLK-4480644 Semplyry: MBLM Test
Clerk ID: Profe Back ID: NestMA Test

Anahta	Result	ğ	SPK seller	SPK walker SPK Red Vol	SEC.	LowCari	HOTEL	SREC LONLING Highlight RPD Ref Visi	CAN	RPCLIME	ā
4 Berber 3 peniangni	2	ដ									
Agains	,	55									
Acrossin	2	9									
Acrytonitrile	,	97									
Benzene	>	9									
Bromobantana	,	=									
Bramochloremethans	-	7									
Bromodichioromethane	3	Ļ									
Bromoform	J	ç									
Svosoomethans	J	9									t
Carbon deuticle	5	6,									د
Carbon intractionals	Þ	2									
Chambana	2	2									
Chievelillucramethine	2	=									
Chlerosthere	2	0,1									
Chieroform	2	9									
Chloromethane	>	2									
cts-1,2-Dichleroethene	,	2									
cie.1.3-Dichlerupeopene	,	5									
Diseasoningsfrens	,	9									
Othoromethere	5	0,1									
Dichloredifluoremethere	כ	<u>.</u>									
Dilacocopy) ether	2	5									
Ethanol	3	2									
Ellyl acetals	5	7									
Ethylosopean	2	2									
Fran-114	2	2									
Hecachlorobutediene	3	9									¢
Expropri scalate	>	2									•
Seption/Distrance	>	2									
map/X-dem	-	22								į	
		: 	T T	Nowline times for commercial or statistics commended	Action 1	Diam'r.	-	Amalyze feterated helens quantitations i	belinen question	 E	

LIENT	LIBINT: Associated Environmental Svcs., LTD.	ANALYTICAL OC SUMMARY REPORT
ork Order: 0904030		A COMPANY OF THE
aject:	njed: Sutter Avenue, Brooklyn, NY	THEOREM AND
		Service Control of the Control of th

	Associated Environmental Svcs. C.I.D.				ANALY	ANALYTICAL OC SUMMARY REPORT	SUMMA	RYR	Š
Ę						9		3	
Project: Sutter An	Sutter Avenue, Brooklyn, NY					1 MILLOGE	THE COOK FRANCES	١,	
Samue IC: VILK AREDDRI	SampTroe: MES.K	PestCode: Pull6289 W	Units: µg/L		Ping Date:		RunNer. 42936	42804	
Charlitic PSW	Datch ID: NAZISSE	Testive: SWE2ND		•	Ansayste Date: 4/3/2008	402204	SeqNo:	SeqNo: 183448	
Amelys	Resort	POL SPK value SPK Ref Val	SPK Ref Vel) HEC	(Imilim)	LOWLINE Highlighet RPO Ref Val		WARD RPOLINE	3
Medity test-budy other	3	1,0							
Methylene chlorida	878	0,1							
n-Amyl acostates	>	t,0							
Negotahadene	>	ā							
n-Butyl accetation	5	20							
n-Bulytrenzena	,	2							
n-Propri scelete	כ	0 .							
n-Propy@enzene	3	5							
o-Kytene	3	5							
p-Diadhy-Denthern	2	ā							
p-Effyliobiene	5	4.0							
way-Butyfibertziene	,	1							
Styrene	>	9.0							
I-Suity etachol	פ	0.1							
hart-StrayBerrzene	>	2							
Tetrachloroetherne	>	9:							
Totalne	>	9							
trans-1,2-Dichlorosthere	>	ō.							
trans-1.3-Okthorophopene	Þ	5							
Trichionoethere	2	5							
Trightomhumomenhane	>	10							
Vinyl southle	>	P .							
Vinyl chloride	>				1	;			
Sur, 4-Brompluonobenzene	3	00.00		27	8 :	2			
Sun Distunchustumentale	;	80.08		2.2	8	121			
Section 10	•	500		2	5	R			

	į.		١,	di stabilita i
į	u		•	ĺ
	ğ	LOG Lieni of Detection	8	Con respect
	≃	R.P.D costside secrepted recovery limes.	4	Spike Rec

H Hadding Litters for perspection or analysis exceeded LOC Livel or Chambitation 5 Spike Exercenty outside accepted receivery ferrits.

SITE CHARACTERIZATION REPORT

1199 SUTTER AVENUE BROOKLYN, NEW YORK

Site ID # 224141 NYSDEC SPILL NO. 0902686

Prepared For:

AAA Sutter Realty LLC. 153-157 Seventh Street Garden City, New York 11530

&

New York State Department of Environmental Conservation Bureau of Program Management- Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

August 19, 2011

Prepared By:

Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, New York 11788

TABLE OF CONTENTS

2.1	E BACKGROUND Site Description	
2.2	Previous Investigation	
MET	<u> </u>	
3.1	Soil Sampling	
3.2	Groundwater Monitoring Wells	
	3.2.1 Monitoring Well Installation	
	3.2.2 Well Development	
	3.2.3 Groundwater Sampling Procedures	
3.3	Sub-Slab Soil Vapor/Ambient Air Sampling	
3.4	Waste Disposal	
3.5	Quality Assurance	
	3.5.1 Decontamination Procedures	
3.6	Community Air Monitoring Program	
RES	<u>ULTS</u>	1
4.1	Soil Data	
4.2	Groundwater Data	1
4.3	Soil Vapor/Indoor & Outdoor Air Data	1
4.2	Data Usability Summary Report	1
CON	NCLUSIONS AND RECOMMENDATIONS	1
5.1	Soil Quality	
5.2	Groundwater Quality	
5 3	Soil Vapor Intrusion	

TABLES

Table 1.	Water-Level Measurements
Table 2.	Purge Parameter Summary
Table 3.	Summary of VOC Concentrations in Soil Samples
Table 4.	Summary of Groundwater Sample Data
Table 5.	Sub-Slab Vapor/Indoor & Outdoor Air Data Summary

FIGURES

Site Location Map	Figure 1.0
Site Diagram	0
Groundwater Flow	U

APPENDICES

Appendix A.	Summary of Previous	Investigation and	Remediation	Sample Data

Appendix B. Field Sampling Logs Appendix C. Laboratory Data Reports
Appendix D. Data Usability Summary Reports

1.0 <u>INTRODUCTION</u>

The Site Characterization Report (SC Report) has been prepared by Associated Environmental Services, Ltd. (AES) for the property located at 1199 Sutter Avenue in Brooklyn, New York (hereinafter referred to as the subject property). The subject property location is depicted on Figure 1. The Site Characterization was conducted to address the requirements by the New York State Department of Environmental Conservation (NYSDEC) under Order on Consent and Administrative Settlement (Consent Order) relating to contaminant impacts from the former dry cleaning operations at the subject property. The Consent Order supplants NYSDEC Spill No. 0902686 previously assigned to the property.

The Site Characterization was conducted in conformance with the approved June 20, 2011 Site Characterization Work Plan (AES) to acquire additional data as recommended by the NYSDEC via the May 6, 2011 electronic mail from NYSDEC Case Manager Michael MacCabe to AES Project Manager Gregory Ernst. The Site Characterization was conducted to complete delineation of soil impacts, determine the current groundwater quality and flow, and evaluate the potential for soil vapor intrusion within the building's basement. The SC Report provides a brief description of the site history, the methods and procedures utilized to collect soil, groundwater, and soil vapor data, and an evaluation of the analytical results to determine the environmental conditions at the subject property.

2.0 SITE BACKGROUND

The following section provides a description of the subject property and summarizes the previous investigations. A site plan of the property is provided on Figure 2.

2.1 Site Description

The subject property is designated as 1199-1221 Sutter Avenue in Brooklyn, New York and bounded by Sutter Avenue to the south, Chestnut Street to the east, residential properties to the north and Crystal Street to the west. The subject property contains a single-story commercial building along the southern portion and an asphalt parking lot covering the northern portion of the subject property. Catch basins within the parking lot direct runoff into the municipal stormwater drainage system. The building is divided into five separate retail/office units. A former dry cleaner establishment was located within the eastern-most unit, which is currently occupied by a self-service Laundromat. Sanitary waste and waste water from the Laundromat are discharged to the municipal sewerage system located beneath Sutter Avenue. The building is underlain with a basement segmented for each retail/office unit with utilities, storage and service rooms.

The subject property is located within the Pavement & Buildings-Flatbush-Riverhead Series Soil Map Unit, which is described as anthropogenic urban fill overlying glacial outwash deposits and characterized as a sandy loam. The property is generally flat and is fully developed with impermeable surface cover comprised of building, asphalt parking lot and concrete sidewalks.

The site is underlain by the Upper Glacial Aquifer, which is composed of outwash-plain deposits of stratified sand and gravel. The Upper Glacial Aquifer is the only formation considered in this investigation. Groundwater beneath the subject property is encountered approximately 13 feet below grade and is characterized as Class GA indicating it as a potential source of potable water. Based on regional data, groundwater flow is to the south. Groundwater is not utilized as a source of potable water at the subject property.

2.2 Previous Investigations

In January 2009, an initial investigation comprised of a Phase II Environmental Site Assessment (ESA) was conducted by Atlantic Environmental Solutions, Inc. at the subject property to evaluate a recognized environmental condition (REC) associated with the former dry cleaner operation that was located within the eastern-most unit of the building. As part of this investigation, two soil borings were drilled adjacent to the former dry cleaner's unit to collect soil and groundwater samples for laboratory analysis. The results of the analysis detected a concentration of tetrachloroethene (PCE) above NYSDEC cleanup objective in one soil sample, S3, and in both groundwater samples, S2 and S3. Additionally, concentrations of trichloroethene (TCE) were detected in the groundwater samples in exceedance of the applicable NYSDEC guidance.

Based on the results of the initial investigation, AES conducted a supplemental Phase II subsurface investigation in April 2009. The supplemental investigation was conducted to determine the severity of the PCE and TCE contamination and delineate the extent of the impacts in the soil and groundwater underlying the former dry cleaners. A total of eight soil borings were drilled; six borings, B-1 through B-6, were located within the parking lot and sidewalk adjacent to the building and two borings, B-7 and B-8, were located within the basement area of the former dry cleaners.

A contaminant concentration (i.e., in excess of the NYSDEC guidance values) of PCE was detected in the soil sample from boring B-7, however, no other contaminant concentrations of VOCs were detected in the soil samples from the property. The results of the groundwater sample analysis detected concentrations of PCE at borings B-4 through B-8 in excess of the NYSDEC Ambient Water Quality Standards and Guidance Values (Water Quality Values) provided in the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1. Concentrations of TCE were also detected above the NYSDEC Water Quality Values in borings B-6 through B-8. Finally, concentrations of cis-1,2-dichloroethene (c-1,2-DCE), a common byproduct of PCE and TCE degradation, were detected above the NYSDEC Water Quality Values in the samples from B-5 and B-7.

Based on the results of the supplemental subsurface investigation, AES recommended the injection of potassium permanganate into the subsurface to mitigate the concentrations of PCE, TCE and c-1,2-DCE detected in the groundwater. Coupled with the aforementioned proposed injections, the installation of shallow and deep groundwater monitoring wells was recommended to evaluate and monitor the effectiveness of the proposed remedial approach. Prior to initiating the proposed remedial approach, the NYSDEC was notified of the site conditions and Spill No. 0902686 was assigned for the pending remedial action.

Between August 5, 2009 and August 24, 2009, a four percent solution of potassium permanganate was injected at 12 grid points at intervals of 40, 35, 20, 15, and 10 feet below grade within and adjacent to the former dry cleaner facility. Groundwater samples were collected at the time of injection and then subsequently two months following the injections.

The results of the August 2009 initial groundwater sample analysis detected PCE in one deep well, MW-4D, and in three shallow wells, MW-1S, MW-2S, and MW-4S during the August 2009 initial sampling event. Concentrations of acetone and chloroform in exceedance of their respective NYSDEC Water Quality Values were also detected in well MW-4S at this time. The results of the November 2009 performance monitoring samples indicated the concentration of PCE had decreased in MW-1S and was no longer detected in MW-2S. Concentrations of PCE MW-3S and MW-4S were higher than the August 2009 data, but showed significant improvement from the Phase II Subsurface Investigation data. Degradation products including TCE and c-1,2-DCE were also detected in MW-4S. Concentrations of acetone and chloroform were no longer detected in the November 2009 samples. Based on the performance data, AES concluded had been effective, but

that additional sampling data was warranted to further evaluate the success of the injection program and determine if additional injections should be performed.

On February 25, 2010, groundwater samples were collected from the four shallow monitoring wells (MW-1S through MW-4S). Groundwater data indicated the concentrations of VOCs were generally consistent with the November 2009 concentrations, however, the concentrations of VOCs in well MW-1S had increased since the November 2009 sampling, but remained at roughly one half of the levels detected during the Phase II Subsurface Investigation from April 2009. Thus the increase of VOC concentrations in MW-1S since the November 2009 was likely due to rebound from the initial injection of potassium permanganate at the property. Based on the second set of data, AES recommends a second round of potassium permanganate injections be conducted at greater density than the previous injections in order to fully remediate the residual VOC contamination in the groundwater.

The location and designation of the sample points associated with the previous investigations are provided on Figure 2. A summary of the previous investigation and remediation sample data is provided in Appendix A.

3.0 <u>METHODOLOGY</u>

The Site Characterization was performed to further delineate impacted soil beneath the rear parking lot of the Laundromat, assess current groundwater quality and flow, and determine the potential for soil vapor intrusion to adversely impacted indoor air quality in the building in compliance with the NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation. All field activities were recorded on the appropriate field logs as provided in Appendix B.

The soil characterization was performed to quantify soil impacts in the apparent source area within the onsite parking lot where the dry cleaning facility dumpster was formerly located. The groundwater characterization was conducted to determine groundwater flow direction in assessment of potential plume migration and evaluate current groundwater quality at and downgradient of the subject property. Onsite soil vapor/indoor air/outside air testing was conducted beneath the Laundromat to identify the likelihood of vapor intrusion into the building. The following sections describe the procedures and protocols used to conduct the Site Characterization.

3.1 Soil Sampling

Three soil borings, designated B-10 through B-12, were drilled within the rear parking lot behind the Laundromat using Geoprobe direct-push sampling equipment. The location and designation of the soil borings is provided on Figure 2. The soil borings were drilled to approximately 15 feet below grade, and into the water table encountered at approximately 13 feet below grade. Soil samples were collected on a continuous basis throughout the entire depth of the soil boring. A stainless steel hand auger was used to collect soil samples to approximately five feet below grade to assure clearance from potential underground utilities. A dual-tube macro-core apparatus equipped with new acetate liners was then used to collect the soil samples from five feet below grade to the terminal depth of the boring. Soil sample lithology and visual or olfactory indication of contamination (i.e., odor or staining) were noted, and photo-ionization detector (PID) readings were screened in one-foot intervals were measured and recorded on the soil boring logs (Appendix B).

Field observations did not indicate obvious indications of contamination. PID readings ranged from approximately 0.5 to 9 part per million (ppm) in Boring B-10 with the five to six-foot interval, exhibiting the highest reading, submitted for laboratory analysis. In Boring B-11, PID readings ranged from approximately 1.5 to 9.6 ppm with the five to six-foot interval, exhibiting the highest PID reading, submitted for laboratory analysis. In Boring B-12, PID readings ranged from approximately 0.1 to 0.9 ppm with the nine to 10-foot interval, exhibiting the highest PID reading, submitted for analysis.

The selected soil sample interval was placed directly into laboratory-supplied glassware and placed in an ice-filled insulated cooler to maintain a temperature of approximately 4°Celsius pending delivery to the laboratory. The samples were submitted to Alpha Analytical, a New York State Department of

Health (NYSDOH)-Environmental Laboratory Approval Program (ELAP)-certified laboratory located in Westborough, Massachusetts, for analysis of Target Compound List (TCL) VOCs using USEPA Method 8260.

3.2 Groundwater Monitoring Wells

One monitoring well, MW-5, was installed along the south-side of Sutter Avenue, downgradient of the subject property, to evaluate possible plume migration, if any. The location of Monitoring Well is shown on Figure 3. Prior to installing the well, the existing monitoring wells at the subject property were surveyed using a laser level to determine on-site groundwater flow to properly locate the well downgradient of the property. The elevations of the top of the existing well casings were surveyed to within 0.01 feet relative to an arbitrary site datum of 20 feet. The measuring point on the top of the well casing were marked using an indelible ink marker, and the depth to water was measured to the nearest 0.01 of a foot using a Solinst electronic oil/water interface probe and the readings subsequently recorded on the field log. The newly installed monitoring well was also surveyed in order to supplement the groundwater flow data from the onsite wells. A summary of the monitoring well elevations and depth to water measurement are provided in Table 1. The locations of the monitoring wells at the subject property are provided on Figure 3.

3.2.1 Monitoring Well Installation

Well MW-5 was constructed of new two-inch diameter, schedule 40 PVC with American Society of Testing Materials (ASTM) F-480 pipe threading and 15 feet of two-inch diameter, 0.020-inch (20-slot) PVC well screen. The well was constructed between 10 to 25 feet below grade (bg) so that the well screen was installed across the top of the water table measured at approximately 13 feet bg, consistent with the on-site shallow monitoring wells.

The well was constructed with Morie No. 1 sand emplaced around the screened zone to approximately two feet above the top of the well screen. A two-foot thick bentonite seal was then emplaced above the sand pack and the remaining annulus was backfilled with shallow soil. The well was completed at grade with a flush-mount steel curb box and locking cap, and the sidewalk was repaired as required by New York City regulations. The well construction log is provided in Appendix B.

3.2.2 Well Development

The newly-installed monitoring well was developed using a disposable polyethylene bailer. The bailer will be repeatedly lowered into the well and briefly actuated within well to surge and flush sediments from the well. Turbidity measurements were periodically taken while developing the well to assure sediment-free water would be provided for sampling. At the completion of development, turbidity was measured at 15.4 Nephleometric Turbidity Units (NTUs). Approximately 20 gallons of water were removed during development and placed in a 55-gallon drum pending off site disposal.

3.2.3 Groundwater Sampling

This section describes the types of equipment and procedures that used to obtain groundwater samples from the existing and newly-installed monitoring wells installed at the subject property. The groundwater sampling was performed in accordance with the United States Environmental Protection Agency (USEPA) guidance document EPA/540/S-95/504.

Prior to sampling, a round of water levels were measured in the wells using an electronic water-level indicator and recorded on the field log. The water-level measurements are provided in Table 1. To avoid cross contamination between wells, the immersed portion of the water-level indicator was cleaned between measurements with a detergent solution, followed by a potable water rinse.

Prior to sample collection, the wells were purged using the low-flow sampling technique. A Geoprobe Model MBP470 bladder pump and dedicated polyethylene tubing was used to purge the wells at a pumping rate no greater than one-half liter per minute (LPM). While purging the well, field parameters including pH, temperature, specific conductivity, dissolved oxygen, and oxidation/reduction potential (ORP) were measured at five-minute intervals within a flow-through cell using a field-calibrated Horiba U-22 portable meter. The wells were considered to be purged when field parameters of the discharge water stabilized within consecutive readings within 10 percent. A summary of field parameter measurements collected during purging of the monitoring wells is provided in Table 2. The purged water was containerized in a 55-gallon drum pending proper off-site disposal.

Once purged, the pumping rate was slowed to approximately 0.1 LPM, water from the pump discharge was placed directly into laboratory-supplied sample bottles using care not aerate the sample. The samples were then placed in an ice-filled insulated cooler to maintain a temperature of approximately 4° Celsius pending delivery to the laboratory. The samples were submitted to Alpha Analytical for analysis of TCL VOCs using USEPA Method 8260.

3.3 Sub-Slab Soil Vapor/Ambient Air Sampling

One sub-slab soil vapor sample, SSV-1, was collected beneath the poured concrete slab within the basement of the Laundromat on the subject property in compliance with the New York Department of Health (NYSDOH) *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* issued in October of 2006 (hereinafter, the NYSDOH Guidance Document). The location of the sub-slab soil vapor sample is provided on Figure 2.

On July 19, 2011, sub-slab soil vapor sampling point SSV-1 was installed using hand-held power tools in the basement area of the laundromat. The soil vapor point consisted of one-quarter inch polyethylene tubing set approximately two inches beneath the bottom of the concrete floor slab. The annular space surrounding the end of the tubing was filled with washed #1 crushed stone as a filter

pack. Bentonite clay was then installed atop of the filter pack and hydrated to prevent atmospheric air infiltration.

As a quality assurance/quality control (QA/QC) measure, a one-gallon container was sealed with bentonite surrounding the sampling tube, and helium gas was introduced into the container as a tracer gas. A helium detector was then connected to the sub-slab sampling tubing, which was run through the sealed container, to check for possible leaks in the floor seal. Helium was not detected leaking into the sub-slab vapor point indicating the floor seal was sufficient.

On July 20, 2011, the sub-slab soil vapor sampling point was purged of three tubing volumes at a flow rate no greater than 0.2 liters per minute (L/m) using a PID. The initial PID reading during the sampling point purge was recorded to be approximately 760 PPM. Once purged, a laboratory-supplied six-liter vacuum Summa canister was connected to the sub-slab sample point and the sample collected over eight hours using a flow regulator calibrated by the laboratory for a flow rate of approximately 0.0125 L/m. The sampling tubing was connected to the Summa canister using the appropriate air-tight compression fitting.

Concurrently, indoor air quality and outdoor air quality samples were collected over the same duration as the sub-slab soil vapor sample. The indoor/outdoor air samples were collected using laboratory-supplied six-liter Summa canisters set atop three-foot tall stand to represent the air quality within the typical breathing zone to establish indoor and outdoor ambient air conditions at the subject property.

An inspection of the basement area was conducted to record chemical use within the sample space in the building. A list of the products observed within the basement of the laundromat is provided in Appendix B. A comparison of chemical storage in the laundromat basement to the indoor air analytical data was conducted to determine if onsite chemical use has deleteriously impacted the indoor air quality of the building. The comparison is discussed in Section 4, below.

3.4 Waste Disposal

The downgradient monitoring well was installed using Geoprobe direct-push equipment, thus no drill cuttings were generated during drilling activities. Groundwater from well development and sampling activities was containerized into US DOT-approved 55-gallon drums, labeled and stored at the rear of the laundromat. Soiled personal protective equipment, disposable sampling equipment, and supplies were placed into a plastic bag and disposed of as trash. The disposal records for the drum of impacted groundwater staged at the subject property will be provided as available.

3.5 Quality Assurance

During the groundwater sampling activities for the Site Characterization, the Uriba U-22 field meter could not be calibrated for specific conductivity. The meter was properly calibrated for the remaining parameters, therefore field personnel continued with field sampling activities. No other issues were noted as the calibration and operation of the field instruments were within manufacturer's recommendations during the Site Characterization.

3.5.1 Decontamination Procedures

All non-disposable sampling equipment was decontaminated before and after each use. The equipment was washed with a detergent and water solution to remove all residual materials, rinsed with potable water, and then allowed to air dry. All disposable materials, such as the groundwater and soil vapor sampling tubing, was used new and then discarded after a single use.

3.6 Community Air Monitoring Program

The Community Air Monitoring Plan (CAMP) as established in the Work Plan was conducted during all intrusive field work. Continuous monitoring of VOCs was conducted using a MiniRAE 2000 PID at the appropriate upwind and downwind locations. Based on the site setting and the proposed scope of work, AES did not perform particulate monitoring during the Site Characterization. The PIDs will be calibrated at least once daily in compliance with the manufacturer's specifications. At no time during the Site Characterization did the downwind VOC concentrations exceed the established action level of five ppm above background.

4.0 **RESULTS**

A copy of the laboratory report for the soil, groundwater and vapor/air samples is provided in Appendix C. The soil and groundwater samples were submitted for analysis of TCL VOCs using USEPA Method 8260. The analytical results of the soil samples were compared to the 6NYCRR Part 375 Table 375-6.8(a) Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Table 375-6.8(b) Restricted Use Soil Cleanup Objectives for Commercial applications (RCUSCOs). The analytical results of the groundwater samples were compared to the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (Water Quality Values).

Soil vapor, indoor air and outdoor ambient air samples were submitted for analysis of VOCs using USEPA Method TO-15. The analytical results for the vapor/air samples were compared to the NYSDOH Guidance Document decision matrices provided therein and the USEPA OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathways from Groundwater and Soils (Subsurface Vapor Intrusion Guidance) dated November 2002.

4.1 Soil Data

A summary of VOC concentrations detected in the soil samples is provided in Table 3. Concentrations of tetrachloroethene (PCE) were detected in the three soil boring samples, with one concentration of 1.6 milligrams per kilogram (mg/kg) in B-11 exceeding the UUSCO of 1.3 mg/kg. The concentrations of PCE in B-10 and B-12 were detected well below the UUSCO, however, concentrations of acetone, at 0.17 mg/kg in B-10 and 0.21 mg/kg in B-12, were detected in exceedance of the UUSCO of 0.05 mg/kg. No other concentrations of VOCs were detected in the soil samples above the respective UUSCOs. No concentrations of VOCs detected in the soil samples were above the respective RCUSCOs.

4.2 Groundwater Data

Groundwater elevation data indicates groundwater flow is to the south, consistent with regional groundwater conditions. The groundwater beneath the subject property is observed at a hydraulic gradient of approximately 0.0033 feet per foot.

A summary of VOC concentrations detected in the groundwater monitoring wells at the subject property are provided in Table 4. Concentrations of chloroform and PCE were detected in the five water table wells, MW-1S, MW-2S, MW-3S, MW-4 and MW-5. Concentrations of chloroform exceeded the Water Quality Value in the five wells, and ranged from 13 micrograms per liter (ug/L) in MW-2S to 30 ug/L in MW-1S. Concentrations of PCE in the water table wells ranged from 0.73 ug/L in the upgradient well MW-3S to 470 ug/L in well MW-4 located in the basement beneath the laundromat. The concentrations of PCE detected in wells, MW-1S, MW-2S, MW-4 and MW-5 were

in exceedance of the NYSDEC Water Quality Value at 5 ug/L. Concentrations of chloroform were detected in wells MW-1D, MW-2D and MW-3D but at levels well below the Water Quality Values. Concentrations of PCE were also detected in wells MW-1D at 6.8 ug/L, MW-2D at 9.6 ug/L, and MW-3D at 20 ug/L, which are in exceedance of the Water Quality Value.

Additionally, concentrations of trichloroethene (TCE) and cis-1,2-dichloroethene (c-1,2-DCE) were detected in four water table wells, MW-1S, MW-2S, MW-4, and MW-5, of which the concentrations of TCE in MW-4 and MW-5 and of c-1,2-DCE in MW-5 were above the Water Quality Values. Concentrations of trans-1,2-dichloroethene (t-1,2-DCE) were detected in samples MW-2S, MW-3S, MW-4, and MW-5, but at levels well below the Water Quality Value. Concentrations of bromodichloromethane were detected in MW-1S, MW-2S and MW-3S, and vinyl chloride was detected in MW-5, but at levels below the respective Water Quality Values. Concentrations of TCE, C-1,2-DCE, and T-1,2-DCE were detected in the samples from MW-1D, MW-2D, and MW-3D, but none were in exceedance of the Water Quality Values in these wells.

4.3 Soil Vapor/Indoor & Outdoor Air Data

A summary of the sub-slab vapor and indoor/outdoor air sample data is provided in Table 5. The Indoor Air Quality Questionnaire and Building Inventory completed for the subject property is provided in Appendix C. Analysis of the sub-slab vapor sample SS-1 detected concentrations of 13 VOCs beneath the building. Of concern from the former use of the property as a dry cleaner, PCE was detected at 428,000 micrograms per cubic meter (ug/m³), TCE was detected at 9,730 ug/m³, c-1,2-DCE was detected at 3,830 ug/m³, 1,1,1-trichloroethane (1,1,1-TCA) was detected at 4,020 ug/m³, 1,2-dichloroethane (1,2-DCA) was detected at 538 ug/m³, 1,1-dichloroethane (1,1-DCA) was detected at 380 ug/m³, t-1,2-DCE was detected at 390 ug/m³, and vinyl chloride (VC) was detected at 795 ug/m³. Additionally, concentrations of Freon 113 at 3,720 ug/m³, chloroform at 444 ug/m³, toluene at 757 ug/m³, ethyl benzene at 330 ug/m³, and styrene at 262 ug/m³ were detected in sample SS-1. The concentrations of PCE, TCE, 1,1,1-TCA, 1,2-DCA, c-1,2-DCE, chloroform, and VC were in exceedance of the USEPA Subsurface Vapor Intrusion Guidance Target Shallow Soil Gas Concentration (TSSGC) values.

The indoor air sample, IA-1, detected 27 VOCs within the basement. Of the VOCs detected in the sub-slab vapor sample, chloroform at 38.4 ug/m3, TCE at 1.27 ug/m3, toluene at 11.4 ug/m3, PCE at 68.5 ug/m3, ethyl benzene at 1.7 ug/m3, and styrene at 3.62 ug/m3 were also detected in sample IA-1. The remaining VOCs detected in IA-1 included propylene, dichlorodifluoromethane, chloromethane, ethanol, trichlorofluoromethane, isopropanol, 2-butanone, ethyl acetate, tetrahydrofuran, n-hexane, benzene, cyclohexane, bromodichloromethane, 2,2,4-trimethylpentane, heptane, xylenes, 4-ethyltoluene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and 1,4-dichlorobenzene. Concentrations of these remaining VOCs in sample IA-1 ranged from 1.9 ug/m³ of 4-ethyltoluene to 920 ug/m³ of ethanol, but with typical concentrations of less than 10 ug/m³.

The outdoor air sample, OA-1, detected nine VOCs in the ambient air. The VOCs detected in ambient air included dichlorodifluoromethane, chloromethane, ethanol, acetone, trichlorofluoromethane, isopropanol, 2-butanone, benzene, and toluene. Concentrations of VOCs detected in the ambient air ranged from 0.831 ug/m³ of benzene to 14.9 ug/m³ of ethanol.

4.4 Data Usability Summary Report

The analytical results were provided as a New York Analytical Services Protocol (ASP) Category B data packages. The laboratory data packages were evaluated by MJW Corporation to determine if the data is appropriate and accurate for the evaluation of the site conditions. A Data Usability Summary Report as described in Appendix 2B of DER-10 has been prepared in documentation for the verification of the data. The DUSR is provided in Appendix D.

5.0 <u>CONCLUSIONS AND RECOMMENDATIONS</u>

5.1 Soil Quality

The additional soil samples collected in the rear parking lot area were conducted to delineate the PCE impacts detected in boring S-3 during the January 6, 2009 investigation adjacent to the stormwater catch basin in the rear parking lot behind the Laundromat (see Appendix A). During the Site Characterization, field screening of the soil samples indicated the most likely impacted depth interval within each soil boring, and that depth interval was submitted for laboratory analysis of VOCs. The analytical results detected concentrations of PCE in the three soil samples with the concentration in B-11 (5-6 feet bg) slightly above the 6NYCRR Part 375 UUSCO. The results of the Site Characterization soil boring samples indicate the PCE impacts delineated to be primarily at the boring S-3 location. AES recommends the PCE impacts within the subsurface soil be addressed insitu in concert with sub-slab vapor mitigation as described below.

Concentrations of acetone in contravention of the UUSCO were detected in samples B-10 (5-6 feet bg) and B-12 (9-10 feet bg). Acetone is not typically associated with former dry cleaning operations and has not previously been detected at the subject property in soil, groundwater, or vapor samples. Acetone is a common laboratory artifact and it is believed these concentrations are remnant of laboratory contamination. No further action is recommended regarding the occurrence of acetone in the soil samples.

5.2 Groundwater Quality

Groundwater elevation data collected during the Site Characterization has identified groundwater flow beneath the subject property is to the south, consistent with regional groundwater flow. Groundwater flow was measured at a gradient of 0.0033 feet per foot. Based on the groundwater flow, well MW-5 was installed along the southern side of Sutter Avenue directly downgradient of the subject property.

Groundwater sampling was conducted in the seven existing and one newly-installed well MW-5 using low-flow purge and sampling procedures to assess current conditions at the property. Specific conductivity was not able to be monitored during purge activities, however, the measurements of temperature, pH, DO, ORP, and turbidity were determined to have stabilized prior to sample collection. Samples were collected directly from the bladder pump discharge operating at approximately 0.1 LPM, properly preserved, and submitted to Alpha Analytical for analysis.

Groundwater data detected PCE and its associated degradation byproducts, TCE, c-1,2-DCE, and t-1,2-DCE in the groundwater beneath the subject property with the highest concentrations of VOCs detected in well MW-4 located within the basement of the Laundromat. The results of the Site Characterization indicate that groundwater quality has remained consistent with the prior water

quality data collected at the property, and in general, the groundwater plume has been delineated to the upgradient and side-gradient boundaries. However, concentrations of PCE, TCE and c-1,2-DCE were detected in exceedance of the Water Quality Values in the downgradient well MW-5. Concentrations of PCE were also detected in the deeper wells, MW-1D, MW-2D, and MW-3D but at levels only slightly above the Water Quality Values indicating the groundwater impacts are limited to the shallow groundwater. The results of the Site Characterization indicate the groundwater plume is stagnant beneath the subject property, but the downgradient limit of the plume extends southerly beyond Sutter Avenue.

New York City Housing Authority (NYCHA) property is located to the south of Sutter Avenue and extends westward to Fountain Avenue, southward to Linden Boulevard, and eastward to Euclid Avenue (see Figure 1). AES recommends the installation of two additional monitoring wells in the southern sidewalk of Sutter Avenue to delineate the lateral boundaries of the downgradient plume. Additional downgradient wells may be installed to the south of Sutter, but would be dependent on approved access by the NYCHA. Additional wells to the south of the NYCHA property would be required to be approximately 1,500 feet away from the subject property and thus would not provide useful data attributable to the subject property.

AES also recommends a second round of potassium permanganate injections be conducted within the subject property. Based on the current VOC concentrations and manufacturer's recommendations, approximately 1,200 pounds of potassium permanganate will be injected into 16 points located in four rows of four points drilled on 10-foot centers. This amount of potassium permanganate is roughly double the amount used in the previous injections. A higher dose of potassium permanganate will be injected within the center portion of the rows where groundwater concentrations are greatest.

Approximately two months following the completion of the potassium permanganate injections, AES will conduct a post-inject sampling of the groundwater monitoring wells at the property. Groundwater samples will be collected using the establish low-flow protocols for the property and submit the samples for laboratory analysis of TCL VOCs using USEPA Method 8260.

5.3 Soil Vapor Intrusion

Of the compounds identified in the NYSDOH Guidance, the concentrations of VOCs detected in the sub-slab soil vapor will necessitate mitigation as indicated by the decision matrices criteria regardless of the indoor air quality. Concentrations of PCE, TCE, and chloroform, reported in the sub-slab vapor, were also detected in the indoor air sample, however, no concentrations of 1,1,1-TCA, 1,2-DCA, c-1,2-DCE, and VC were reported in the indoor air sample. Thus the data is inconclusive to indicate if vapor intrusion is occurring within the Laundromat basement area. Concentrations of dichlorodifluoromethane and chloromethane were detected at comparable levels within the indoor and outdoor air samples indicating these compounds are representative of ambient

air quality. With the exception of the above, the remaining VOCs detected in the indoor air sample were not detected in the sub-slab vapor or outdoor ambient air samples and are likely from the chemical storage and utilization within the Laundromat.

Based on the sub-slab vapor data, AES recommends an additional sub-slab vapor and indoor air samples be collected beneath the adjacent grocery store to determine the potential risk of vapor intrusion into this portion of the property. As previously conducted, sub-slab vapor and indoor air samples will be collected over eight hours into laboratory-supplied Summa canisters, and using the established QA/QC measures. Upon receipt of the laboratory data, a supplemental investigation report will be prepared and submitted to the NYSDEC.

Further, AES recommends the installation and operation of a sub-slab depressurization system beneath the Laundromat portion of the building. The system will be designed and installed in conformance with the USEPA Radon Prevention in the Design and Construction of Schools and Other Large Buildings, June 1994. Prior to installation, a pilot test will be conducted to assure proper coverage and design of the sub-slab depressurization system. Should the additional sub-slab soil vapor testing indicate mitigation is needed beneath the grocery store, an additional system will be installed to address that area.

Prepared By:

Gregory Ernst Project Manager

Associated Environmental Services, Ltd.

Table 1
Water-Level Measurements
1199 Sutter Avenue, Brooklyn, New York
NYSDEC Site ID # 224141

Well (feet) (feet) MW-1S 10/14/2009 15.79 12.50 13.15 7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	Water
Well (feet) (feet) MW-1S 10/14/2009 15.79 12.50 2/25/2010 13.15 7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	Table
MW-1S 10/14/2009 15.79 12.50 2/25/2010 13.15 7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	Elevation
2/25/2010 13.15 7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	(feet)
2/25/2010 13.15 7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	3.29
7/19/2011 12.67 MW-1D 10/14/2009 15.90 12.58 7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	2.64
7/19/2011 12.74 MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	3.12
MW-2S 10/14/2009 16.33 13.03 2/25/2010 12.52 7/19/2011 13.19 10/14/2009 16.44 13.12	3.32
2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	3.16
2/25/2010 12.52 7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	3.30
7/19/2011 13.19 MW-2D 10/14/2009 16.44 13.12	3.81
	3.14
7/40/2044	3.32
7/19/2011 13.29	3.15
MW-3S 10/14/2009 16.40 12.94	3.46
2/25/2010 13.46	2.94
7/19/2011 13.10	3.30
MW-3D 10/14/2009 16.78 13.36	3.42
7/19/2011 13.52	3.26
MW-4S 10/14/2009 NA 5.08	NA
2/25/2010 5.69	NA
7/19/2011 5.85	NA
MW-5 7/19/2011 16.13 13.15	2.98

Table 2.
Purge Parameter Summary
1199 Sutter Avenue
Brooklyn, New York
NYSDEC Site ID #224141

				Specific		Dissolved	
Monitoring	Date	Time	pН	Conductivity	Temp	Oxygen	Redox
Well			(units)	(mS/cm)	(degrees C)	(mg/L)	(mV)
MW-3S	7/20/11	8:06	3.85	0.000	27.71	7.93	241
		8:11	4.05	0.000	24.36	8.94	228
		8:16	4.18	0.000	23.52	8.96	217
		8:21	4.30	0.000	23.13	8.91	202
		8:26	4.32	0.000	22.38	9.12	195
		8:31	4.36	0.000	22.34	9.13	197
MW-5	7/20/11	9:00	3.88	0.001	26.48	8.80	235
		9:05	3.98	0.001	24.66	9.33	230
		9:10	4.15	0.001	21.92	9.77	222
		9:15	4.25	0.000	20.54	9.80	217
		9:20	4.27	0.000	19.83	9.68	213
		9:25	4.30	0.000	19.45	9.61	209
		9:30	4.36	0.000	19.38	9.52	205
MW-2S	7/20/11	9:57	3.95	0.000	24.44	8.87	225
		10:02	3.98	0.000	23.94	9.10	226
		10:07	4.02	0.000	23.20	9.38	220
		10:12	4.15	0.000	22.58	9.52	211
		10:17	4.29	0.000	22.37	9.52	197
		10:22	4.49	0.000	22.04	9.52	179
		10:27	4.48	0.000	21.77	9.53	179
MW-1S	7/20/11	10:52	4.09	0.000	26.83	8.89	209
		10:57	4.18	0.000	26.02	9.13	202
		11:02	4.35	0.000	24.12	9.57	188
		11:07	4.60	0.000	23.35	9.67	169
		11:12	4.88	0.000	22.50	9.73	144
		11:17	4.78	0.000	22.33	9.59	152
		11:22	4.86	0.000	22.29	9.62	147

mS/cm Millisiemen per centimeter

C Celsius

mg/L Milligrams per liter

mV Millivolts

NTU Nephleometric Turbidity Units

Table 2.
Purge Parameter Summary
1199 Sutter Avenue
Brooklyn, New York
NYSDEC Site ID #224141

				Specific		Dissolved	
Monitoring	Date	Time	pН	Conductivity	Temp	Oxygen	Redox
Well			(units)	(mS/cm)	(degrees C)	(mg/L)	(mV)
MW-4	7/20/11	12:17	4.19	0.000	27.38	8.73	209
		12:22	4.39	0.000	25.78	8.95	201
		12:27	4.75	0.000	24.41	9.09	180
		12:32	4.93	0.000	22.80	9.16	160
		12:37	4.91	0.000	21.95	9.11	160
		12:42	4.85	0.000	21.40	8.99	162
		12:47	4.83	0.000	21.36	8.99	162
MW-3D	7/20/11	1:42	4.15	0.000	27.29	8.27	202
		1:47	4.24	0.000	26.46	8.56	196
		1:52	4.60	0.000	24.15	9.07	171
		1:57	4.90	0.000	23.40	9.22	149
		2:02	4.90	0.000	22.98	9.22	151
		2:07	4.87	0.000	23.08	9.20	152
MW-2D	7/20/11	2:30	4.19	0.000	27.38	8.73	209
		2:35	4.39	0.000	25.78	8.95	201
		2:40	4.75	0.000	24.41	9.09	180
		2:45	4.93	0.000	22.80	9.16	160
		2:50	4.91	0.000	21.95	9.11	160
		2:55	4.85	0.000	21.40	8.99	162
MW-1D	7/20/11	3:51	4.51	0.000	29.27	8.40	188
		3:56	4.65	0.000	27.33	8.87	181
		4:01	5.22	0.000	25.00	9.25	134
		4:06	5.12	0.000	23.35	9.30	138
		4:11	5.06	0.000	22.88	9.20	143
		4:16	4.97	0.000	22.76	9.05	150
		4:21	4.93	0.000	22.68	8.96	152

mS/cm Millisiemen per centimeter

C Celsius

mg/L Milligrams per liter

mV Millivolts

NTU Nephleometric Turbidity Units

Table 3
Summary of VOC Concentrations in Soil Samples
1199 Sutter Avenue, Brooklyn, New York
NYSDEC Site ID #224141

	Sa	ole Location: mple Depth: mpling Date:	B-10 5-6 ft. bg 7/19/11	B-11 5-6 ft. b 7/19/11	_	B-12 9-10 ft. 7/19/1	_
Parameters:	Part 375 UUSCOs	Part 375 RCUSCOs					
Tetrachloroethene	1.30	150	0.68	1.6		0.56	
cis-1,2-Dichloroethene	0.250	500	0.048	0.0038		0.052	
Methylene chloride	0.050	500	0.011 J	0.01	J	0.011	J
Trichloroethene	0.470	200	0.033	0.024		0.034	
Toluene	0.700	500	0.001 J				
Ethyl benzene	1.000	390	0.011	0.0028		0.011	
trans-1,2-Dichloroethene	0.190	500	0.020			0.022	
m/p-Xylene	0.26*	500*	0.035	0.0079		0.036	
o-Xylene	0.26*	500*	0.0092	0.002	J	0.0094	
Acetone	0.050	500	0.17	0.023	J	0.21	
2-Butanone	0.120	500	0.086			0.11	

Concentrations in milligrams per kilogram (mg/kg)

-- - Not Detected

UUSCO - Unrestricted Use Soil Cleanup Objective

RCUSCO - Restricted Commercial Use Soil Cleanup Objective

Bold values indicate exceedance of the UUSCO Outlined values indicate exceedance of RCUSCO

bg - below grade

^{* -} Objective is for mixed isomers.

Table 4.

Summary of Groundwater Sample Data
1199 Sutter Avenue
Brooklyn, New York
NYSDEC Site No. #224141

		Corresponding								Corresponding							
		Phase II		Monitoring Well					Phase II Monitoring Well								
		Data								Data							
Sa	mple Designation:	B-6		MW	′-1S			MW-1D		B-5		MW	7-2S			MW-2D	
	Date:	4/1/09	8/27/09	11/2/09	2/25/10	7/20/11	8/27/09	11/2/09	7/20/11	4/1/09	8/27/09	11/2/09	2/25/10	7/20/11	8/27/09	11/2/09	7/20/11
Parameters	TOGS																
	Value																
2-Butanone	50	<3.0	<10	<10	<10	<10	<10	<10	<5	<3.0	<10	<10	<10	<5	<10	<10	<5
Acetone	50	<2.0	< 50	< 50	< 50	<10	< 50	< 50	<5	<2.0	< 50	< 50	< 50	<5	< 50	< 50	<5
Chloroform	7	<1.0	<5	<5	<5	30	<5	<5	0.9	<1.0	<5	<5	<5	13	<5	<5	1.1
cis-1,2-Dichloroet	hene 5	4.6	<5	<5	5.82	0.71 J	<5	<5	< 0.5	6.8	<5	<5	<5	0.20 J	<5	<5	< 0.5
Tetrachloroethene	5	380	98.3	48.2	172	84	5	<5	6.8	93	18.9	<5	<5	10	<5	<5	9.6
Bromodichlorome	thane 50	<1.0	<5	<5	<5	1.2	<5	<5	< 0.5	<1.0	<5	<5	<5	0.63	<5	<5	< 0.5
Vinyl Chloride	2	<1.0	<5	<5	<5	< 2.0	<5	<5	<1.0	<1.0	<5	<5	<5	<1.0	<5	<5	<1.0
trans-1,2-Dichloro	ethene 5	<1.0	<5	<5	<5	<1.5	<5	<5	0.21 J	<1.0	<5	<5	<5	0.46 J	<5	<5	0.40 J
Trichloroethene	5	14	<5	<5	8.37	3.2	<5	<5	1.7	2.7	<5	<5	<5	0.36 J	<5	<5	0.95

All data is in micrograms per liter (ug/L)

TOGS - NYSDEC Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

NA - Not analyzed/not available

Bold indicate an exceedance of the applicable regulatory guidanc value.

Table 4.

Summary of Groundwater Sample Data
1199 Sutter Avenue
Brooklyn, New York
NYSDEC Site No. #224141

		Corresponding	7							Correspondin	g						
		Phase II			Mo	nitoring V	Vell			Phase II			Monitor	ing Well			
		Data								Data							
S	ample Designation:	S2		MW	V-3S			MW-3D		B-7		MW	V-4S		MW	7-4D	MW-5
	Date:	1/6/09	8/27/09	11/2/09	2/25/10	7/20/11	8/27/09	11/2/09	7/20/11	4/1/09	8/27/09	11/2/09	2/25/10	7/20/11	8/27/09	11/2/09	7/20/11
Parameters	TOGS																
	Value																
2-Butanone	50	< 0.21	<10	<10	<10	<5	<10	<10	<5	<3.0	24.4	<10	<10	<12	<10	<10	<12
Acetone	50	10.3	< 50	< 50	< 50	<5	< 50	< 50	<5	< 2.0	577	< 50	< 50	<12	< 50	< 50	<12
Chloroform	7	< 0.14	<5	<5	<5	14	<5	<5	1.8	<1.0	97.7	<5	<5	15	<5	<5	29
cis-1,2-Dichloroethe	ene 5	NA	<5	<5	<5	< 0.5	<5	<5	0.34 J	81	<5	16.9	<5	4.3	<5	<5	9.8
Tetrachloroethene	5	187	<5	14.9	<5	0.73	<5	<5	20	610	51	359	348	470	23.1	<5	98
Bromodichlorometh	ane 50	< 0.14	<5	<5	<5	1.1	<5	<5	< 0.5	<1.0	<5	<5	<5	<1.2	<5	<5	<1.2
Vinyl Chloride	2	< 0.14	<5	<5	<5	<1.0	<5	<5	<1.0	<1.0	<5	<5	<5	<2.5	<5	<5	0.70 J
trans-1,2-Dichloroe	thene 5	< 0.14	<5	<5	<5	0.65 J	<5	<5	0.51 J	<1.0	<5	<5	<5	0.67 J	<5	<5	0.60 J
Trichloroethene	5	1.5	<5	<5	<5	< 0.5	<5	<5	1.1	42	<5	20.4	11.9	14	<5	<5	5.2

All data is in micrograms per liter (ug/L)

TOGS - NYSDEC Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

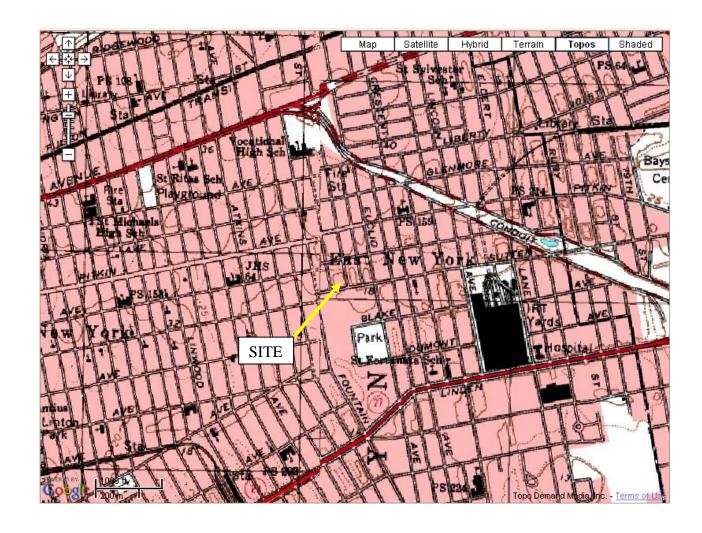
NA - Not analyzed/not available

Bold indicate an exceedance of the applicable regulatory guidanc value.

Table 5 Sub-Slab Soil Vapor/Indoor Outdoor Air Data Summary 1199 Sutter Avenue, Brooklyn, New York NYSDEC Site #224141

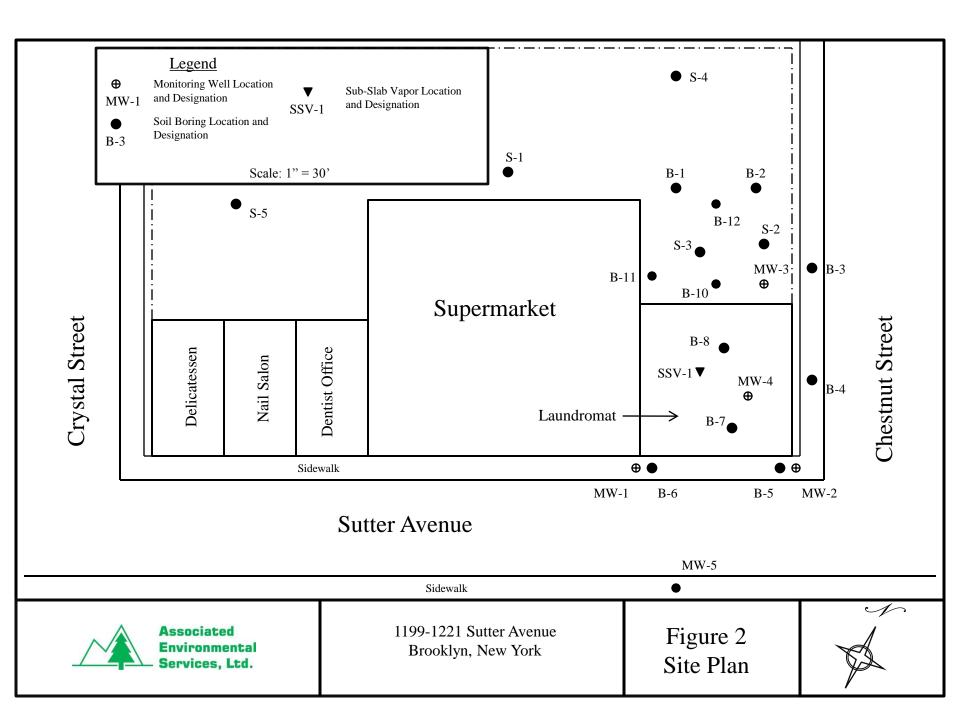
	Sample Location: Sampling Date:	SS-1 7/20/11	IA-1 7/20/11	OA-1 7/20/11
Parameter:	USEPA TSSGC			
Propylene	NA		1.91	
Dichlorodifluoromethane	2,000		3.81	2.38
Chloromethane	NA		3.45	1.2
Vinyl Chloride	280	795		
Ethanol	NA		920	14.9
Acetone	3,500			6.44
Trichlorofluoromethane	7,000		27.8	1.4
Isopropanol	NA		61.4	1.81
Freon 113	NA	3,720		
trans-1,2-Dichloroethene	NA	390		
1,1-Dichloroethane	5,000	380		
2-Butanone	10,000		16.5	2.13
cis-1,2-Dichloroethene	350	3,830		
Ethyl Acetate	32,000		8.11	
Chloroform	110	444	38.4	
Tetrahydrofuran	NA		17.5	
1,2-Dichloroethane	94	538		
n-Hexane	2,000		7.79	
1,1,1-Trichloroethane	22,000	4,020		
Benzene	310		3.77	0.831
Cyclohexane	NA		2.11	
Bromodichloromethane	140		1.67	
Trichloroethene	22	9,730	1.27	
2,2,4-Trimethylpentane	NA		1.63	
Heptane	NA		5.04	
Toluene	4,000	757	11.4	1.96
Tetrachloroethene	810	428,000	68.5	
Ethylbenzene	2,200	330	1.7	
p+m Xylenes	70,000		6.34	
Styrene	10,000	262	3.62	
o Xylene	70,000		2.96	
4-Ethyltoluene	NA		1.9	
1,3,5-Trimethylbenzene	60		2.9	
1,2,4-trimethylbenzene	60		8.65	
1,4-Dichlorobenzene	8,000		2.84	

All concentrations provided in micrograms per cubic meter (ug/m³)


NA - Not Applicable/Not Available

TSSGC - Target Shallow Soil Gas Concentration

Bold and outlined values indicate exceedance of the TSSGC.


⁻⁻ Not Detected

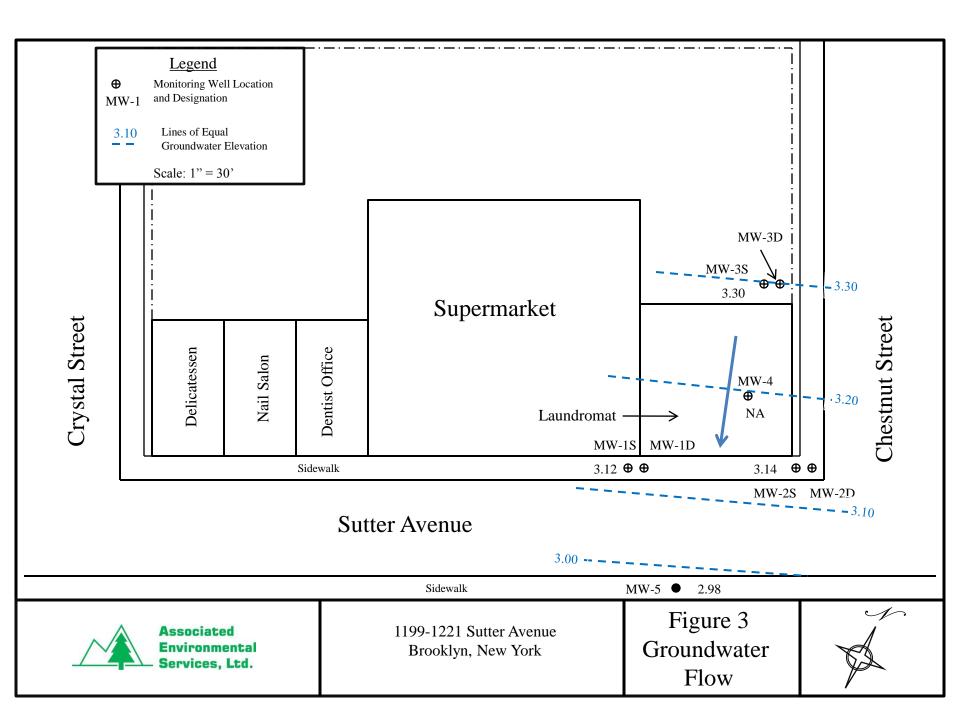


FIGURE 1.0 SITE LOCATION

1199-1221 SUTTER AVENUE BROOKLYN, NEW YORK

APPENDIX A PREVIOUS DATA

Table A-1 Summary of Previous Soil Sample Data 1199 Sutter Avenue, Brooklyn, New York NYSDEC Site ID #224141

	Sai	le Location: mple Depth: npling Date:	S1 4-5 ft. bg 1/6/09	S2 14-15 ft. bg 1/6/09	S3 10 ft. bg 1/6/09	S3D 14-15 ft. bg 1/6/09	S4 6-7 ft. bg 1/6/09	S5 14-15 ft. bg 1/6/09	B-7 0-5 ft. bbf 4/1/09	B-8 0-5 ft. bbf 4/1/09
Parameters:	Part 375 UUSCOs	Part 375 RCUSCOs								
Tetrachloroethene	1.30	150			37.50	0.443			5.1	1.2
Cis-1,2-dichloroethene	0.250	500							0.043	
Methylene chloride	0.050	500							0.014	0.016
Trichloroethene	0.470	200			0.414				0.073	0.01
Acenaphthylene	100	500	0.074						NA	NA
Acenaphthene	20	500	0.150				0.043		NA	NA
Dibenzofuran	100	500	0.098						NA	NA
Fluorene	30	500	0.180						NA	NA
Phenanthrene	100	500	1.510				0.471		NA	NA
Anthracene	100	500	0.407				0.098		NA	NA
Fluoranthene	100	500	2.730				0.773		NA	NA
Pyrene	100	500	2.470				0.618		NA	NA
Benzo(a)anthracene	1	5.6	1.630				0.357		NA	NA
Chrysene	1	56	1.650				0.360		NA	NA
Bis(2-ethylhexyl)phthalate	50	500	0.424	0.814	1.46	0.29	0.605	0.429	NA	NA
Benzo(b)fluoranthene	1	5.6	1.090				0.213		NA	NA
Benzo(k)fluoranthene	0.8	56	1.810				0.366		NA	NA
Benzo(a)pyrene	1	1	1.190	0.046			0.245		NA	NA
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.342						NA	NA
Dibenzo(a,h)anthracene	0.33	0.56	0.125						NA	NA
Benzo(g,h,i)perylene	100	500	0.247						NA	NA

Concentrations in milligrams per kilogram (mg/kg)

NA - Not analyzed/not applicable

-- - Not Detected

UUSCO - Unrestricted Use Soil Cleanup Objective

RCUSCO - Restricted Commercial Use Soil Cleanup Objective

Bold values indicate exceedance of the UUSCO

Outlined values indicate exceedance of RCUSCO

bg - below grade

bbf - below basement floor

APPENDIX B FIELD SAMPLING LOGS

Geologic Log

Soil Boring SB-10

1199 Sutter Avenue Brooklyn, New York

				ט	rookiyn, New 1			
Client:							to Water	Site Elevation Datum
AAA Sutter Realty L Site Name:	LC	Address:				(ft. fro	m grade) DTW	NM
Site Name:			er Avenue, Bi	rooklyn N	Υ	Date	DIW	- INIVI
Drilling Company:		Method:						†
Associated Environn	nental	Geoprobe	with 5' Macro	o-core		1		Measuring Point Elevation
Date Started:		Date Com	pleted:					
7/19/11		7/19/11				4		NM
Completion Depth: 15'		Geologist: Gregory E						
15	DEPTH	Gregory E	SAMPLES				1	<u> </u>
GEOLOGY	(ft below	Reco-	Blow			S	OIL DESCRIPT	ION
	grade)	very	per	PID				
	,	(ft.)	6 in.	(ppm)				
	0 _	4						
				5.2				
		NA	NA					
	4 _	4						
						fill material	- dark brown s	silty fine sand with trace rubble,
		4		9.1	dry, no odor.			
	_	_						
	8 _	1.5	NA	7.9				
		-		6.2				
	10			2.4				
	12 _	ا ء ا	NIA	3.1	Dark brown fire	and wat at	-12! no od	
		3.5	NA	2.2	Dark brown fine s	sand, wet at	~13°, no odor	
		-		2.3				
	16							
	- 10 -	-				End of Bori	na	
						LIIU UI DON	ııy	
	+ -	┪ ┃						
	20							
	-	┪ ┃						
	† –	1						
	24							
	<u> </u>	1						
	_	1						
	28							
]						
	L							
	32]						
Coarse Sand	ļ _	4						
Madii								
Medium Sand	36 _							
Fine Sand								A
i ilie Galiu								Associated
W. Bedrock	40	1					/	Environmenta
								Services, Ltd.
NTS - Not to Scale	NA - Not /	Applicable		ND - No	t Detected	NM - Not Me	easured	DTW - Depth to Water

Geologic Log

Soil Boring SB-11

1199 Sutter Avenue Brooklyn, New York

					rookiyii, iyew i			1
Client:					to Water	Site Elevation Datum		
AAA Sutter Realty LL	_C						m grade)	
Site Name:		Address:				Date	DTW	NM
			er Avenue, Bro	ooklyn, N	1Y	ļ		1
Drilling Company:		Method:					1	
Associated Environm	nental		with 5' Macro	-core		4	1	Measuring Point Elevation
Date Started:		Date Com	ipietea:				1	NIA.
7/19/11		7/19/11				1	1	NM
Completion Depth:		Geologist					1	
15'	DEPTH	Gregory E				<u> </u>	<u> </u>	<u> </u>
CECLOCY		Reco-	SAMPLES	1		0.0	או הבפסטורדי	ON
GEOLOGY	(ft below grade)		Blow	PID		SC	DIL DESCRIPTI	ON
	grade)	very (ft.)	per 6 in.	(ppm)				
		(11.)	0 111.	(ррііі)				
	0							
	├	1						
				4.5				
	<u> </u>	- ∣		1.5				
		NA	NA					
	4 _	4				6 111		
						fill material -	dark brown s	ilty fine sand with trace rubble,
	L _			9.6	dry, no odor.			
	_ 8 _	3.5	NA	7.2				
				6.0				
	12			6.2				
	_	4.5	NA		Dark brown fine s	and, wet at ~	~13', no odor	
			,	5.2		,	,	
	 	1		J				
	16							
	- '0 -	┪				End of Bori	na	
						LIIU UI DUIII	ig.	
	<u> </u>	-						
	00							
	_ 20 _	-						
	<u> </u>	4						
	_ 24 _							
	L _]						
	28]						
	_	1						
	32							
		1						
Coarse Sand								
	-	1						
Medium Sand	36							
	_	1						
Fine Sand								
	L						/	
W. Bedrock	40							
W. Bedrock NTS - Not to Scale		Applicable		ND - No	ot Detected	NM - Not Me	asured	Environmenta Services, Ltd

Geologic Log

Soil Boring SB-12

1199 Sutter Avenue Brooklyn, New York

Olicant					rookiyn, New Y		4-14/-4::	Otto Flore Co. Dut.
Client:	1.0						to Water	Site Elevation Datum
AAA Sutter Realty LI	LU	Address:					m grade) DTW	- NINA
Site Name:			er Avenue, Bro	ooklyn N	IY	Date	אוט	NM
Drilling Company:		Method:	or Attende, Bri	50Kijii, 1	••			1
Associated Environn	nental		with 5' Macro	-core				Measuring Point Elevation
Date Started:		Date Com				1		
7/19/11		7/19/11						NM
Completion Depth:		Geologist:						
15'		Gregory E						
	DEPTH		SAMPLES					
GEOLOGY	(ft below	Reco-	Blow	DID		SC	OIL DESCRIPT	ION
	grade)	very (ft.)	per 6 in.	PID (ppm)				
	1	(11.)	U III.	(bhiii)	<u> </u>			
	0							
	+ ' -	┪ ┃						
				0.2				
	-	NA	NA	0.2				
	4	INA	INA					
	+ * -	┪ ┃			Hand clear to 5'	fill material	- dark brown s	silty fine sand with trace rubble,
				0.2	dry, no odor.	IIII IIIaleiiai .	- dark blowil s	mity line sand with trace rubble,
	-	┨		0.2	ury, no odor.			
	8	1.5	NA	0.1				
	} ° −	1.5	INA	0.1				
				0.0				
	-	-		0.9				
	10			0.2				
	12	3.5	NIA	0.2	Dark brown fine s	and wat at	~13' no odor	
		3.5	NA	0.4	Dark brown line s	anu, wet at	- 13 , 110 0001	
	-	┨		0.1				
	16							
	_ 16 _	 				End of Dom	na	
						End of Bori	ng	
	-	┪ ┃						
	20							
	- 20 -	┨						
	<u> </u>	┨						
	24							
	- 24 -	┪ ┃						
	<u> </u>	┪ ┃						
	28							
		┪ ┃						
	† –	†						
	32							
	- 52 -	┪ ┃						
Coarse Sand								
	-	1						
Medium Sand	d36							
Fine Sand								▲ Associated
		4						Environmenta
W. Bedrock	40							Services, Ltd.
NTS - Not to Scale	NA - Not	Applicable		ND - NA	I ot Detected	NM - Not Me	asured	DTW - Depth to Water
IN 19 - INOL TO 20916	INA - NOT	hpiicable		אן - טאו	or Detected	ON JON - IVIN	asureu	יום יייעי - Deptii to watei

Monitoring Well Construction Associated Environmental Services, Ltd.

Hauppauge, New York **MW-5**

		Depth to	o Water	Site Elevation Datum	
			(ft. from	grade.)	Arbitrary
Site Name:		Address:	Date	DTW	Ground Elevation
Commercial Buildin	ng	1199-1221 Sutter Avenue, Brookly	yn 💮		20'
Drilling Company:		Method:	7/19/2011	~13'	
Associated Env		Geoprobe 6610			Measuring Point Elevation
Date Started:		Date Completed:			
7/19/2011		7/19/2011			16.13'
Completion Depth:		AES Geologist:			
25'		Greg E.			
	DEPTH	SAMPLES			

Completion De	pth:		AES Geolo	gist:					
25'		1	Greg E.						
	DEPTH		SAMPLES			_			
(1)(TO)	(ft below	Reco-	Blow	PID		SOI	L DESCRIPT	TION	
(NTS)	grade)	very	per	ppm					
		<u> </u>	6 in.						
	0								
	<u> </u>								
	- ₅ -								
	-								
	10								
	-								
	<u> </u>								
	15								
					A 4 '4 ' 1A/ II	o , , ,			
					Monitoring Well	Construction.	:		
	-				10' x 2" PVC Ris	er			
	20				15' x 2" 20 Slot F	PVC Screen			
	25 —								
	-								
	-								
	_								
	_								
	-								
LEGEND:									
Natural Ba	ckfill								
Bentonite									
Cement									
Silica								٨	Associated
Screen							/		Environmental
En <u>d C</u> ap									- Services, Ltd.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	GREGORY ERNST Date/Time Prepared 7/20/11 1700
Preparer's Affiliation	Gregory Ernst Date/Time Prepared 7/20/11, 1700 Associated Env. Services Phone No. 63/234 4280
	on Former Day Cleaning Operation
1. OCCUPANT:	
Interviewed: Y	
Last Name:	First Name:
Address:	
County:	
Home Phone:	Office Phone:
Number of Occupants	/persons at this location Age of Occupants
2. OWNER OR LAN	IDLORD: (Check if same as occupant)
Interviewed: 🏈 N	
Last Name:	First Name:
Address:	
County:	
Home Phone:	Office Phone:
3. BUILDING CHAI	RACTERISTICS
Type of Building: (C	ircle appropriate response)
Residential Industrial	School Commercial/Multi-use Church Other:

If the property is residential,	type? (Circle approp	priate response)
Ranch	2-Family	3-Family
Raised Ranch	Split Level	
Cape Cod	Contemporary	
Duplex		Townhouses/Condos
Modular	Log Home	Other:
If multiple units, how many?	NA	
If the property is commercial,	type?	
Business Type(s) Launda	y, GROCERY STO.	ar, Shys
		If yes, how many? <u>WA</u>
Other characteristics:		
Number of floors/_	Ві	uilding age
Is the building insulated	ул н	ow air tight? Tight Average Not Tight
4. AIRFLOW		
Use air current tubes or trace	r smoke to evaluat	e airflow patterns and qualitatively describe:
	· Mione to evaluat	e an now patterns and quantatively describe.
Airflow between floors		
Not ob		
	SERVER	
Airflow near source		
	IRCE IS ex	Terior To building
Outdoor air infiltration		
PRimary 1	Air How T	hrough frequent passage Through
doors in fro	nT and Rea	hrough frequent passage Through
Infiltration into air ducts	/	0
NO ducts	observed	,
	<u></u>	

		3			
5.	BASEMENT AND CONSTRUC	CTION CHARA	CTERISTICS (Circle all that ap	ply)
	a. Above grade construction:	wood frame	concrete	stone	brick
	b. Basement type:	full	crawlspace	slab	other
	c. Basement floor:	concrete	dirt	stone	other
	d. Basement floor:	uncovered	covered	covered with _	
	e. Concrete floor:	unsealed	sealed	sealed with	
	f. Foundation walls:	poured	block	stone	other
	g. Foundation walls:	unsealed	sealed	sealed with	
	h. The basement is:	wet	damp (dry	moldy
	i. The basement is:	finished (unfinished	partially finishe	ed
	j. Sump present?	YON			
	k. Water in sump? Y/N	not applicable			
Ba	sement/Lowest level depth below	grade: 8	(feet)		
Ide	entify potential soil vapor entry p	oints and approx	kimate size (e.g.,	cracks, utility	ports, drains)
	Cracks, utility	ponts, de	ains, sup	plemental s	Support footing
6.	HEATING, VENTING and AIR	R CONDITIONII	NG (Circle all th	at annly)	
	pe of heating system(s) used in th				<i>(</i>)
•	Hot air circulation	Heat pump		ater baseboard	,
	Space Heaters Electric baseboard	Stream radiation Wood stove		nt floor or wood boiler	Other
Th	e primary type of fuel used is:				
	Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerose Solar	ene	

Electric Propane Solar
Wood Coal

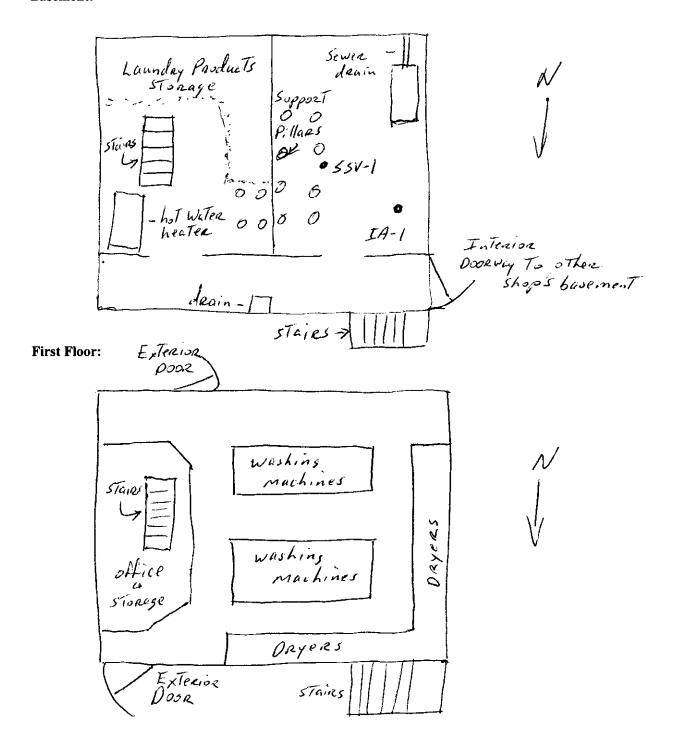
Domestic hot water tank fueled by: electric gas

Boiler/furnace located in: Basement Outdoors Main Floor Other

Air conditioning: Central Air Window units Open Windows None

Are	there	air	distribution	ducts	present?
		****	TIDEL IN THEIGH		Dr Cocme.

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.


Ducting located within Susp	ended ceiling with Root-
Top Un, T. Dusting observet, building but appeared To be T.	ion limited due To activity in
building but appeared To be T.	ight cold air return
present in laundry	
,	
7. OCCUPANCY	
Is basement/lowest level occupied? Full-time Occa	sionally Seldom Almost Never
Level General Use of Each Floor (e.g., familyroo	
	=
Basement STozage, UTILITY	
1st Floor Coin-operated Laurelay	
2 nd Floor NA	
3 rd Floor WA	
4 th Floor <i>NA</i>	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR (QUALITY
a. Is there an attached garage?	Y D
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles	Y/N/MA
stored in the garage (e.g., lawnmower, atv, car)	Please specify
d. Has the building ever had a fire?	Y (N) When?
e. Is a kerosene or unvented gas space heater present?	Y Where?
f. Is there a workshop or hobby/craft area?	Y 🕟 Where & Type?
g. Is there smoking in the building?	Y Now frequently?
h. Have cleaning products been used recently?	DIN When & Type? Launday products - Constantly
i. Have cosmetic products been used recently?	Y When & Type?

j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
l. Have air fresheners been used recently?	Y N When & Type?
m. Is there a kitchen exhaust fan?	Y / If yes, where vented?
n. Is there a bathroom exhaust fan?	Y 🕟 If yes, where vented?
o. Is there a clothes dryer?	N If yes, is it vented outside N
p. Has there been a pesticide application?	Y 🕟 When & Type?
Are there odors in the building? If yes, please describe: Laundey product	ON T-solor in basement + 1 ST Floor
Do any of the building occupants use solvents at work? e.g., chemical manufacturing or laboratory, auto mechanic or a poiler mechanic, pesticide application, cosmetologist	Y (D) auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y Ø
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	e? Y N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Drive	n Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	n Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residenti	al emergency)
a. Provide reasons why relocation is recommended:	NA
b. Residents choose to: remain in home relocate to fr	iends/family relocate to hotel/motel
c. Responsibility for costs associated with reimburseme	nt explained? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

1 Commercial 1 ChrysTal STREET WINDOWS TOMAN ChesTnut STREET Post office

1 Residential A Sutter AVE

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Min. Rae 2000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Basem'T	Launday DeTeagenTs Fabric Softeners	1901	4 40		NA	N
i	Fabric Softeners	1 pt	U4 U0			
	Bleach Color-Sate Bleach	Igal	u 4 40			
\bigvee	Color-Sate Bleach	1/2901	u 4 40 u 4 40		\bigvee	
					* *****	
	" " " " " " " " " " " " " " " " " " " "					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX C LABORATORY DATA

Alpha Analytical

Laboratory Code: 11148 SDG Number: L1111021

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha holds no responsibility for results and/or data that are not consistent with the original.

Project Name:Not SpecifiedLab Number:L1111021Project Number:Not SpecifiedReport Date:07/28/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1111021-01, -02, and -10 were re-analyzed on dilutions in order to quantitate the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analyses were performed only for the compounds that exceeded the calibration range.

L1111021-04, -10, and -11 have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Elizabeth & Simmons Elizabeth Simmons

Title: Technical Director/Representative Date: 07/28/11

List of Organic Method Qualifiers

Table 1

Qualifier (Q)	Description
В	Entered if the analyte is found in the associated blank as well as the sample.
С	Applied to pesticide results when the identification has been confirmed by GC/MS.
D	Included when the all identified compounds in the analysis are at the secondary dilution factor.
E	Identified compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
J	Indicates an estimated value, may indicate one of the following, depending on the situation: (1) The reported value is estimated and below the MDL. (2) Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the identification criteria, but the results is less than the quantitation limit, but greater than zero. (3) QC associated with this analyte is within warning limits.
N	Included for TIC that indicate presumptive evidence of a compound.
U	Entered if the analyte was analyzed for, but not detected.
Р	Used for a pesticide/Aroclor target analyte when the concentration difference between 2 GC columns is greater than 25%; the lower value is flagged with a "P".
EMPC	"Estimated Maximum Possible Concentration" – The amount of analyte cannot be accurately quantified, so a maximum concentration has been estimated for the compound.
	"Wildcard" or Laboratory defined qualifier.

Note: Form I allows only one character in each qualifier column. If multiple qualifiers are applicable, please assess qualifier priority in the following order: U, E, J, B, D, C, P, N. Reporting done in the EDD may include multiple qualifiers when applicable, separated by a single space.

(Information obtained from NYSDEC ASP Exhibit B, 7/2005, page 64)

List of Inorganic Method Qualifiers

Table 2

Table 2		
Qualifier	Column (1)	Description
Concentrati	on qualifiers	
В	С	Entered if the reported value was less than the CRDL, but greater than the IDL.
U	С	Entered if the analyte was analyzed for, but not detected.
J	С	Entered if the reported value is estimated and below the MDL.
*	С	Duplicate precision exceeds RPD limit.
М	С	Replicate precision exceeds RPD limit.
"XYZ"	С	"Wildcard" or Laboratory defined qualifier.
Qualifier sp	ecific entries	
E	Q	Entered if the reported value is estimated because of the presence of interferences.
Method qua	llifiers	
Α	М	Flame atomic absorption
AS	М	Semi-automated spectrophotometric
AV	М	Automated cold vapor atomic absorption
С	М	Manual spectrophotometric
F	M	Furnace atomic absorption
MS	M	Mass spectrometry (ICP-MS)
NR	M	Analyte is not required to be analyzed
Р	M	Inductively coupled plasma (ICP)
""	M	No data have been entered

⁽¹⁾ The term "Column" is used to indicate under which column heading in the reporting forms that the qualifier will be found under.

Note: Form I allows only one character in each qualifier column. If multiple qualifiers are applicable to column C, please assess qualifier priority in the following order: U, J, B. Reporting done in the EDD may include multiple qualifiers when applicable, separated by a single space.

(Information obtained from NYSDEC ASP Exhibit B, 7/2005, page 65)

Volatile Organics Instruments

Volatile Organics: Jack

Instrument: Agilent 5975MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: EST Encon Autosampler: EST Centurion

Purge time: 11 min

Volatile Organics: Quimby

Instrument: Agilent 5973MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: EST Encon Autosampler: EST Centurion

Purge time: 11 min

Volatile Organics: Curly

Instrument: Agilent 5972 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Tekmar 3000

Autosampler: Archon Purge time: 11 min

Volatile Organics: Elaine

Instrument: Agilent 5973 MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Teledyne Velocity Autosampler: Teledyne Solatek

Purge time: 11 min

Volatile Organics: Charlie

Instrument: Agilent 5975C MSD

Trap: Supelco K Trap (VOACARB 3000)

Concentrator: Encon Evolution Autosampler: EST Centurion

Purge time: 11 min

Column Type: RTX-VMS Column Length: 20 Meters

df: 1.00um ID: 0.18mm Desorb: 2 min

Column Type: RTX-VMS Column Length: 20 Meters

df: 1.00um ID: 0.18mm Desorb: 2 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Column Type: Restek RTX-502.2

Column Length: 40 Meters

df: 1.00 um ID: 0.18 mm Desorb: 2 min

Column Type: Agilent DB-624

Column Length: 25 Meters df: 1.12 um

ID: 0.20 mm Desorb: 2 min Volatile Organics: Newman

Instrument: Agilent 5973 MSD Column Type: Restek RTX-502.2

Trap: Supelco K Trap (VOACARB 3000) Column Length: 40 Meters

Concentrator: Encon Evolution df: 1.00 um
Autosampler: EST Centurion ID: 0.18 mm
Purge time: 11 min Desorb: 2 min

Volatile Organics: VPH

Instrument: Agilent 6890 Column Type: Restek RTX 502.2

Column Length: 105 Meters

Concentrator: Tekmar 2016 df: 3.00 um Autosampler: Tekmar 3100 lD: 0.53 mm

Volatile Organics in Air Instruments

Volatile Organics in Air:

Instrument: Agilent 6890 GC / 5975 MSD Column Type: Restek RTX-1

Column Length: 60 Meters

Concentrator: Entech 7100A df: 1.00 um Autosampler: Entech 7016CA ID: 0.52 mm

Trap 1: Glass Bead: manufacturer-Entech: 20 cm packing material

Trap 2: Tenax: manufacturer-Entech: 20 cm packing material

Semivolatile Organics Instruments

Semivolatile Organics (Acid/Base/Neutral Extractables): Buffy

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RTX-5 df: 0.25 um
Column Length: 30 Meters ID: 0.30 mm

Semivolatile Organics (Acid/Base/Neutral Extractables): Juliet/GCMS5

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RTX-5MS df: 0.25 um Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Dakota

Instrument: Agilent 5973 MSD Injection volume: 1 ul

Column Type: Restek RTX-5MS df: 0.25 um
Column Length: 30 Meters ID: 0.25 mm

Polynuclear Aromatic Hydrocarbons by 8270 SIM: Mork/Mindy

Instrument: Agilent 5973N MSD Injection volume: 1 ul

Column Type: Restek RXI-5SILMS df: 0.25 um Column Length: 30 Meters ID: 0.25 mm

Pesticides/PCB

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column Type: Restek RTX-CLP (Channel A) df: 0.32 um Column: Restek RTX-CLPPesticide II (Channel B) df: 0.25 um

Column Length: 30 Meters (Both) ID: 0.32 mm (Both)

Pesticides/PCB: Pest 10

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column Type: Restek STX-CLP (Channel A) df: 0.32 um Column: Restek STX-CLPPesticide II (Channel B) df: 0.25 um

Column Length: 30 Meters (Both) ID: 0.32 mm (Both)

<u>Herbicides</u>

Instrument: Agilent 6890 w/Dual Micro ECDs Injection Volume: 1uL

Column Type: Restek RTX-1701 (Channel A) df: 0.25 um Column Type: Restek RTX-5 (Channel B) df: 0.25 um

Column Length: 30 Meters (Both) ID: 0.32 mm (Both)

Petro9

Instrument: Agilent 6890 w/FID Injection Volume: 1uL

Column: Restek RTX-5 df: 0.25 um
Column Length: 30 Meters ID: 0.32 mm

Petro 7

Instrument: HP 5890 w FID Injection volume: 1uL

Column: Restek RTX-5 df: 0.25 um
Column length: 30 meters ID: 0.32 mm

EPH

Instrument: Agilent 6890N w/FID Injection Volume: 1uL

Column: Restek RTX-5 df: 0.25um
Column Length: 30 Meters ID: 0.32 mm

Explosives

Instrument: Dionex ICS-3000, AS50 Autosampler and PDA-100 detectors.

Injection Volume: 100uL

Column: Phenomenex Synergi 4u Hydro-RP and Luna 5u Phenyl-Hexyl.

Sample Delivery Group Form

Laboratory Job number: L1111021

Client Account: Associated Environmental Services, Ltd. Received: 07/21/2011 22:35

Samples Delivered by: COURIER Call Tracker #

Bill Of Laden N/A Trackingnum

Coc Present Present

Container Status Intact Sample IDs

All Containers Accounted For? Yes

Were Extra Samples Received? No

Do Sample Labels and COC agree? Yes

Are Samples in Appropriate Containers? Yes

Are Samples Received within Holding time? Yes

pH of Samples upon Receipt N/A Are samples Properly Preserved? Yes

Initial pH preserved in house with Final pH

Other Issues

Chlorine Check N/A

Are VOA/VPH Vials Present? Yes

Aqueous: Do Vials Contain Head Space? No

Soils: Is MeOHCovering the Soil? N/A

Reagent H2O Preserved vials Frozen on N/A

Frozen by Client N/A

Cooler	Seal	Ice Present	Blue Ice Present	Temp. (Celsius)	Frozen upon Receipt	Direct from Site
A	Absent	Yes	No	3.3 - Temp. Blank	No	No

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Jul 29 2011, 03:24 pm

Login Number: L1111021

Account: ASSOCENV Associated Environmental Services, Ltd.

Received: 21.III.11 Due Date: 28.III.11

Sample #	Client ID	Received: 21JUL11 Mat PR Collected	Due Date: 28JUL11 Container
	B-10 (5-6') kage Due Date: 07/	3 SO 19JUL11 08:3) 1-Vial-Large
ASP-B,NYTCI	L-8260,TS		
	2 B-11 (5-6') Due Date: 07/22/11) 1-Vial-Large
NYTCL-8260,	TS		
	B-12 (9-10') Due Date: 07/22/11		1-Vial-Large
NYTCL-8260,	TS		
L1111021-04 Package	l MW-1S Due Date: 07/22/11	1 SO 20JUL11 11:2	3-Vial-B
NYTCL-8260			
L1111021-05 Package	6 MW-1D Due Date: 07/22/11	1 SO 20JUL11 16:2	3-Vial-B
NYTCL-8260			
L11111021-06 Package	5 MW-2S Due Date: 07/22/11	1 S0 20JUL11 10:3	3-Vial-B
NYTCL-8260			
L1111021-07 Package	7 MW-2D Due Date: 07/22/11	1 SO 20JUL11 14:5	O 3-Vial-B
NYTCL-8260			
L1111021-08 Package	3 MW-3S Due Date: 07/22/11	1 SO 20JUL11 08:3	5 3-Vial-B

Page 1

ALPHA ANALYTICAL LABORATORIES, INC. LOGIN CHAIN OF CUSTODY REPORT Jul 29 2011, 03:24 pm

Login Number: L1111021

Account: ASSOCENV Associated Environmental Services, Ltd.

Received: 21JUL11 Due Date: 28JUL11

Sample #	Client ID	Mat PR Collec	cted Container	
NYTCL-8260				
L1111021-09 Package	MW-3D Due Date: 07/22/11	1 S0 20JUL	11 14:10 3-Vial-B	
NYTCL-8260				
L1111021-10 Package	MW-4 Due Date: 07/22/11	1 S0 20JUL	11 12:50 3-Vial-B	
NYTCL-8260				
L1111021-11 Package NYTCL-8260	MW-5 Due Date: 07/22/11	1 SO 20JUL	11 09:35 _{3-Vial-В}	

Page 2

Logged By: Kim L. Bailey

APHA	CHAI	N OF CU	ISTOI	DY PA	GE	of	Date R	ec'd in Lal	::D7-2	[.]	ALF	PHA Job #:	1
WESTBORO, MA	MANSFIELD, MA	Projec	t Informat	ion			Repo	rt Informa	ation - Data	Deliverable	s Bill	ing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project	Name:				□ FA		ÆMAIL		Sa Sa	me as Client info PO#:	
Client Information		Project	Location:	199 S.	77	Aue	AD		☐ Add'l De				
Client: Associat	Ted Env. Service	Project	Location: // #: Manager: /	BROOK	lyn	7700				Report Limi	ts		
ddress: 25 Cei		Project I	Manager:	Res ER	nst		1	ed Prograi		Criteria	TR	Deliverables	
		SP ALPHA	Quote #:				1010	<i>01</i>		<i>C</i> = <i>y</i> + <i>i</i>		//EITUCKAB/RS	
hone: 63/ 2	uge, NY 117. 34-4280	Turn-	Around Tir	ne				•					
	34-4297								. *				
	assocenvs ve	Stand S.Com		RUSH (only o	onfirmed if pre-ap	pproved!)		1 /	/ / /	/ /	/ / /		
	ve been previously analyzed	Date Do	ue:07/28	lu i	Time:		ANALYSIS		/ / /	///	' / /	SAMPLE HANDL	ING
Other Project S	pecific Requiremen	ts/Comments/D							/ /	/ / /		/ / Filtration	_
Cat B	Deliverable	25					₹/			' / /	/ / /	Not needed	
								/ /	/ / /		/ / /	Lab to do Preservation	
ALPHA Lab ID			Colle	ection	Sample	Sampler's	$-1/\mathcal{L}$	_/ /		/ / /		Lab to do (Please specify below)	
Lab Use Only)	Sampl	e ID	Date	Time	Matrix	Initials			/_//		///	Sample Specific Comme	ents
021-01	B-10 (5-6	()	7/19/11	8:30	5	GE	X					402 Jak	
02	B-11 (5-6	:)	7/19/11	8:50	5		×					1	
03	B-12 19-		7/19/11	9:10	5		X					V	
64	<u> </u>		7/2011	11:25	GW		Х					40ml Viel	/ ₹
	MW-1D		1 1	4:25	1		χ		W 101	W		40 ml Vialy	/ 3.
Tb.		1 THE STORM AND ALL AN		15:30			X						
- and a second control of the contro	MW-20		1	2:55			Y						
	MW-35	, , , , , , , , , , , , , , , , , , , ,	<u> </u>	8:36			$\frac{1}{\chi}$						
KA.	MW-X30			2:10			X						
U 	MU-4_	717777411147		12:50	<u> </u>		X						1.
11	pw-5		V	9:35	V	<u> </u>	X						
- 1	-					ainer Type eservative						Please print clearly, legibly pletely. Samples can not l	and con
	Г	Relina	ished By:			e/Time					Date/Time	in and turnaround time clo	ck will no
n		7-2-1	aloned by.		7/2//	/ /6.24)	React	ved By.	7121	Date/Time	start until any ambiguities All samples submitted are	subject t
RM NO: 01-01 (rev. 14-C)CT-07)	156			7/2//	4 14:	5/ 1/4	Sara	TR.	7/2	111 120	Alpha's Terms and Conditi	ons.
		She	re//		7/2/11		Xa	UM	\mathcal{M}	7/11/1	1 223	5	e 11 of

APPENDIX D DUSR

September 16, 2011

Mr. Gregory Ernst Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, NY 11788

Dear Mr. Ernst:

The data reported by Alpha Analytical Laboratories under SDG L1111021 has been reviewed for quality assurance validation. Data was reported for Volatiles for 11 samples as requested by Associated Environmental Services, Ltd. The 11 samples listed below were validated by MJW. The data in this report has either been approved for use or approved with qualification.

- B-10 (5-6') (Lab ID: 11021-01)
- B-11 (5-6') (Lab ID: 11021-02)
- B-12 (9-10') (Lab ID: 11021-03)
- MW-1S (Lab ID: 11021-04)
- MW-1D (Lab ID: 11021-05)
- MW-2S (Lab ID: 11021-06)

- MW-2D (Lab ID: 11021-07)
- MW-3S (Lab ID: 11021-08)
- MW-3D (Lab ID: 11021-09)
- MW-4 (Lab ID: 11021-10)
- MW-5 (Lab ID: 11021-11)

If you have any questions concerning this data validation report, please contact me at 585-344-7197.

Very truly yours,

MJW Corporation Inc.

annette Canal

Annette Guilds, CES Senior Scientist

Approved by:

David A. Dooley, Ph.D., CHP President, MJW Corporation Inc

2011-1019.001

DATA USABILITY SUMMARY REPORT

Site Characterization 1199 Sutter Avenue Brooklyn, New York

Site ID#224141 NYSDEC Spill No. 0902686 SDG: L1111021

Prepared for

Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, New York 11788

September 2011

MJW

MJW Corporation, Inc. 1900 Sweet Home Road Amherst, NY 14228 (716)-631-8291 Project # 2011-1019

Data Review 1199 Sutter Ave. Brooklyn, NY

Laboratory SDG: L1111021 Reviewer: Annette Guilds Date Reviewed: 9/16/11

Guidance: USEPA NYSDEC ASP "B" Protocol 2005.

USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008.

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes.

2.0 Laboratory Case Narrative \ Sample Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form? Yes.

Sample Receipt Form: Cooler and Samples did not have chain of custody seals.

Laboratory Case Narrative:

L1111021-01, -02, and -10 were re-analyzed on dilutions in order to quantitate the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analyses were performed only for the compounds that exceeded the calibration range.

L1111021-04, -10, and -11 have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits? Yes.

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks? No.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria? Yes.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria? Yes.

7.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria? Yes.

8.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG? No.

Were MS/MSD recoveries within evaluation criteria? N/A

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples reported as part of this SDG? No.

Were Duplicate RPD's within evaluation criteria? N/A.

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG? No.

Were field duplicates within evaluation criteria? N/A.

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? No.

12.0 Additional Qualifications

Were additional qualifications applied? Yes. Some analytes/samples were qualified "UJ" due to out of control continuing calibration data.

13.0 Package Completeness

Analytical completeness for this package is 97.98% (776 usable analytes/792 analytes requested).

DATA ASSESSMENT NARRATIVE (ORGANICS)

ORGANIC DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis
CASE NO.: SDG NO.: L1111021 LABORATORY: Alpha Analytical SITE: 1199 Sutter Avenue Brooklyn New York
DATA ASSESSMENT
All data were found to be valid and acceptable except those analytes that have been rejected, "R" (unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All action is detailed on the attached sheets.
The "R" flag means that the associated value is unusable. In other words, significant data bias is evident and the reported analyte concentration is unreliable.
Data is fully usable and acceptable.
Reviewer's Signature: Date: 9/16/2011
MJW Approval: Date: 9/16/2011
θ
Organic Data Assessment page 1 of 5

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The following action was taken in the samples and analytes shown due to excessive holding time.

No action necessary.

2. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below.

No action necessary.

3. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

No action necessary.

4. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than 5 times the blank contaminant level (10 times for common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the sample shown were qualified with "U" for these reasons:

A) Method blank contamination:

No action necessary.

B) Field or rinse blank contamination:

There are no field blanks or rinse blanks associated with this SDG.

C) Trip blank contamination:

There are no trip blanks associated with this SDG.

5. MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene and for semi-volatiles Decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, all associated data will be classified as unusable "R".

No action necessary.

6. CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

Λ) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be ≥ 0.05 in both initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected "R".

No action necessary.

7. CALIBRATION:

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial

calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detects data may be qualified "R".

For the PEST/PCB fraction, if %RSD exceeds 20% for all analytes except for the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ".

The following analytes in some samples were qualified for %D:

<u>Continuing calibration-VOA's:</u> Dichlorodifluoromethane, Carbon tetrachloride, Chloromethane, Acctone, 1,2,4-trichlorobenzene, 1,2,3-trichlorobenzene, Naphthalene. Refer to the Summary of Sample Data Qualifiers Form and the Data Outlier Form for samples and analytes affected.

8. INTERNAL STANDARDS PERFORMANCE GC/MS:

Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than ± 30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction.

No action necessary.

9. COMPOUND IDENTIFICATION:

A) Volatile and Semi-Volatile Fractions:

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

No action necessary.

B) Pesticide Fraction:

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract.

N/A

- 10. CONTRACT PROBLEMS NON-COMPLIANCE:
 - Neither the cooler nor the samples had chain of custody seals.
 - No record of individual pH values was provided for VOA's.
 - No Form I Part B (TIC Forms) present for VOA's.
- 11. FIELD DOCUMENTATION:

none

12. OTHER PROBLEMS:

none

13. This package contains reextractions, reanalyses or dilutions. Upon reviewing the QA results, the following Form 1(s) are identified to be used.

none

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

DPO: [] Action [] FYI				
CASE/SAS NO.:	LABORATORY: Alph	na Analytica	1	
SDG NO.: <u>L1111021</u>	DATA USER: Associa	ted Environi	mental Services	
SOW:	REVIEW COMPLETI	ION DATE:	9/16/11	
NO. OF SAMPLES: 8 WATI	ER 3 SOIL	ОТІ	HER	
REVIEWER: ESD ESAT :	X OTHER, CONTRAC	CTOR MJV	√ Corporation, I	nc.
QC ITEM	VOA	BNA	PEST	
HOLDING TIMES	О	N/A	N/A	
GC-MS PERFORMANCE	О	N/A	N/A	
INITIAL CALIBRATIONS	О	N/A	N/A	
CONTINUING CALIBRATIONS	X	N/A	N/A	
FIELD BLANKS (F = N/A)	F	N/A	N/A	
LABORATORY BLANKS	О	N/A	N/A	
SURROGATES	0	N/A	N/A	
MATRIX SPIKE/DUPLICATES	О	N/A	N/A	
QC SAMPLES (LCS, PVS)	0	N/A	N/A	
INTERNAL STANDARDS	0	N/A	N/A	
COMPOUND IDENTIFICATION	0	N/A	N/A	
COMPOUND QUANTITATION	0	N/A	N/A	
SYSTEM PERFORMANCE	О	N/A	N/A	
OVERALL ASSESSMENT	0	N/A	N/A	
O = No problems or minor problems that dX = No more than about 5% of the data points M = More than about 5% of the data points Z = More than about 5% of the data points DPO ACTION ITEMS:	ints are qualified as either s are qualified as either est are qualified as unusable.	imated or un	usable.	
AREAS OF CONCERN:				
DVP-4 Rev. 0	page 1 of 1			Attachment 6

DATA REJECTION SUMMARY

SDG No.: I.1111021 Lab Name: Alpha Analytical	
Date: 9/15/11	Number of Samples:
Type of Review: Level 1V Site Name: 1199 Sutton Avenue Brooklyn New York	Reviewer's Initials:

Analytes Rejected Due to Exceeding Review Criteria For:

						No. of Compa	onnds/No. of	No. of Compounds/No. of Fractions (Samples)	es)		
	Surrogates	Holding Time	Calibration	Surrogates Holding Time Calibration Contamination ID	a	Internal Standards	Other	Total # of Samples	Total # Rejected/Total # in All Samples	# in All Sample	g.
V0A(33)									/	11	%
ACID(14)									,		%
B/N(50)									,	i Ir	%
PEST(21)									,		<u>%</u>
PCB(7)									/	1	%
											1

NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.

Analytes Estimated Due to Exceeding Review Criteria For:

						No. of Compa	9unds/10.01	IND. OF COMPOUNDS/IND. OF FRACTIONS (Samples)	(8)	
	Surrogates	Surrogates Holding Time Calibration	Calibration	Contamination	Q)	Internal Standards	Other	Total#of Samples	Total # Estimated/Total # in All Samples	# in All Sample
V0A(33)			91						16 / 792	= 2.02 %
ACID(14)									/	% =
B/N(50)									,	% =
PEST(21)										% =
PCB(7)									,	0% =
1 1 1 4 1 4				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						

NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.

Summary Data Qualifiers

Summary of Sample Data Qualifiers

SDG # <u>L1111021</u> Site Name <u>1199 Sutter Avenue Brooklyn New York</u>

Client ID	Lab ID	Matrix	Dichlorodifluor methane	Carbon tetrachloride	Chloromethane	1,2,4-trichlorobenzene
B-10 (5-6')	L1111021-01	Soil	UJ			
B-11 (5-6')	L1111021-02	Soil	UJ			
B-12 (9-10')	L1111021-03	Soil	UJ			
MW-1S	L1111021-04	Water		UJ		
MW-1D	L1111021-05	Water		UJ		
MW-2S	L1111021-06	Water		UJ		
MW-2D	L1111021-07	Water		UJ		
MW-3S	L1111021-08	Water		UJ		
MW-3D	L1111021-09	Water	,	UJ	•	
MW-4	L1111021-10	Water		UJ		
MW-5	L1111021-11	Water		UJ	UJ	UJ

Client ID	Lab ID	Matrix	Acetone	Naphthalene	1,2,3-trichlorobenzene	
B-10 (5-6')	L1111021-01	Soil				
B-11 (5-6')	L1111021-02	Soil				
B-12 (9-10')	L1111021-03	Soil				
MW-1S	L1111021-04	Water				
MW-1D	L1111021-05	Water				
MW-2S	L1111021-06	Water	****			
MW-2D	L1111021-07	Water	-			Ì
MW-3S	L1111021-08	Water				
MW-3D	L1111021-09	Water				
MW-4	L1111021-10	Water				
MW-5	L1111021-11	Water	UJ	UJ	UJ	

Data Outlier Forms

Samples Affected	Matrix	Analyte	Detector/Problem	Qualifier
B-10 (5-6')	Soil	Dichlorodifluoromethane	CCV / 32% D	UJ
B-11 (5-6')	Soil	Dichlorodifluoromethane	CCV / 32% D	UJ
B-12 (9-10')	Soil	Dichlorodifluoromethane	CCV / 32% D	UJ
MW-1S	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-1D	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-2S	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-2D	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-3S	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-3D	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-4	Water	Carbon tetrachloride	CCV / 25.074% D	UJ
MW-5	Water	Chloromethane	CCV / 28% D	UJ
MW-5	Water	Acetone	CCV / 28% D	UJ
MW-5	Water	Carbon tetrachloride	CCV / 29% D	UJ
MW-5	Water	1,2,4-trichlorobenzene	CCV / 28% D	ÜJ
MW-5	Water	Naphthalene	CCV / 38% D	UJ
MW-5	Water	1,2,3-trichlorobenzene	CCV / 36% D	UJ
	_			
				, i
				-
			······································	

CERTIFICATES OF ANALYSIS (COA's)

with Data Validation Qualifiers Added

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date: **SAMPLE RESULTS**

07/28/11

Lab ID:

L1111021-01

Date Collected:

07/19/11 08:30

Client ID:

B-10 (5-6')

Date Received:

07/21/11

Sample Location:	nple Location: 1199 SUTTER AVE, BROOKLYN		Field Prep:		07/21/11 Not Specified		
Parameter		Result	Qualifier		·		•
	C/MC Manthause L. L.	Result	Qualifier	Units	RL	MDL	Dilution Factor
volatile Organics by G	C/MS - Westborough Lab						
Methyl tert butyl ether		ND		ug/kg	5.5	1,3	1
p/m-Xylene		35		ug/kg	5.5	1.2	1
o-Xylene		9.2		ug/kg	5.5	1.1	1
cis-1,2-Dichloroethene		48		ug/kg	2.7	0.83	1
Dibromomethane		ND		ug/kg	27	1.2	1
Styrene		ND		ug/kg	5.5	2.0	1
Dichlorodifluoromethane		ND	U ゴ	ug/kg	27	1.1	1
Acetone		170		ug/kg	27	8.9	1
Carbon disulfide		ND		ug/kg	27	1.0	1
2-Butanone		86		ug/kg	27	11.	1
Vinyl acetate		ND		ug/kg	27	2.1	1
4-Methyl-2-pentanone		ND		ug/kg	27	2.2	1
1,2,3-Trichloropropane		ND		ug/kg	27	1,1	1
2-Hexanone		ND		ug/kg	27	1.1	1
Bromochloromethane		ND		ug/kg	14	0.83	1
2,2-Dichloropropane		ND		ug/kg	14	2.2	1
1,2-Dibromoethane		ND		ug/kg	11	1.1	1
1,3-Dichloropropane		ND		ug/kg	14	1.6	1
1,1,1,2-Tetrachloroethane		ND		ug/kg	2.7	0.90	1
Bromobenzene		ND		ug/kg	14	0.60	1
n-Butylbenzene		ND		ug/kg	2.7	0.86	1
sec-Butylbenzene		ND		ug/kg	2.7	0.76	1
tert-Butylbonzone		ND		ug/kg	14	1.6	1
o-Chlorotoluene		ND		ug/kg	14	0.86	1
p-Chlorotoluene		ND		ug/kg	14	0.99	1
1,2-Dibromo-3-chloropropane	e	ND		ug/kg	14	2.3	1
Hexachlorobutadiene		ND		ug/kg	14	1.2	1
Isopropylbenzene		ND		ug/kg	2.7	0.49	1
p-Isopropyltoluene		ND		ug/kg	2.7	0.75	1
Naphthalene		ND		ug/kg	14	2.1	1
Acrylonitrile		ND		ug/kg	27	1.0	1
n-Propylbenzene		ND		ug/kg	2.7	0.78	1
1,2,3-Trichlorobenzene		ND		ug/kg	14	1.1	1
1,2,4-Trichlorobenzene		ND		ug/kg	14	2.2	1
1,3,5-Trimethylbenzene		ND		ug/kg	14	1.6	1
1,2,4-Trimethylbenzene		ND		ug/kg	14	1.6	1
1,4-Diethylbenzene		ND		ug/kg	11	0.55	1
4-Ethyltoluene		ND		ug/kg	11	0.27	1
1,2,4,5-Tetramethylbenzene		ND		ug/kg	11	0.50	1

Not Specified Lab Number:

Project Name: L1111021 Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-02 Date Collected: 07/19/11 08:50 Client ID: B-11 (5-6') Date Received: 07/21/11 Sample Location: 1199 SUTTER AVE BROOKLYN

Sample Location:	1199 SUTTER AVE, BROOKLYN	199 SUTTER AVE, BROOKLYN			Not Specified	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by (GC/MS - Westborough Lab					
Methyl tert butyl ether	ND		ug/kg	5.7	1.4	1
p/m-Xylene	7.9		ug/kg	5.7	1.2	1
o-Xylene	2.0	J	ug/kg	5.7	1.2	1
cis-1,2-Dichloroethene	3.8		ug/kg	2.8	0.86	1
Dibromomethane	ND		ug/kg	28	1.2	1
Styrene	ND		ug/kg	5.7	2.1	1
Dichlorodifluoromethane	ND	43	ug/kg	28	1.1	1
Acetone	23	J	ug/kg	28	9.2	1
Carbon disulfide	ND		ug/kg	28	1.1	1
2-Butanone	ND		ug/kg	28	11.	1
Vinyl acetate	ND		ug/kg	28	2.1	1
4-Methyl-2-pentanone	ND		ug/kg	28	2.3	1
1,2,3-Trichloropropane	ND		ug/kg	28	1.1	1
2-Hexanone	ND		ug/kg	28	1.1	1
Bromochloromethane	ND		ug/kg	14	0.86	1
2,2-Dichloropropane	ND		ug/kg	14	2.2	1
1,2-Dibromoethane	ND		ug/kg	11	1.2	1
1,3-Dichloropropane	ND		ug/kg	14	1.6	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	2.8	0.93	1
Bromobenzene	ND		ug/kg	14	0.62	1
n-Butylbenzene	ND		ug/kg	2.8	0.89	1
sec-Butylbenzene	ND		ug/kg	2.8	0.78	1
tert-Butylbenzono	ND		ug/kg	14	1.7	1
o-Chlorotoluene	ND		ug/kg	14	0.89	1
p-Chlorotoluene	ND		ug/kg	14	1.0	1
1,2-Dibromo-3-chloropropa	ne ND		ug/kg	14	2.4	1
Hexachlorobutadiene	ND		ug/kg	14	1.3	1
Isopropylbenzene	ND		ug/kg	2.8	0.50	1
p-Isopropyltoluene	ND		ug/kg	2.8	0.78	1
Naphthalene	ND		ug/kg	14	2.2	1
Acrylonitrile	ND		ug/kg	28	1.1	1
n-Propylbenzene	ND		ug/kg	2.8	0.81	1
1,2,3-Trichlorobenzene	ND		ug/kg	14	1.1	1
1,2,4-Trichlorobenzene	ND		ug/kg	14	2.2	1
1,3,5-Trimethylbenzene	ND		ug/kg	14	1.7	1
1,2,4-Trimethylbenzene	ND		ug/kg	14	1.6	1
1,4-Diethylbenzene	ND		ug/kg	11	0.57	1
4-Ethyltoluene	ND		ug/kg	11	0.28	1
1,2,4,5-Tetramethylbenzene	e ND		ug/kg	11	0.51	1

L1111021

Project Name: Not Specified Lab Number:

Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-03 Date Collected: 07/19/11 09:10 Client ID: B-12 (9-10') Date Received: 07/21/11

Sample Location:	ple Location: 1199 SUTTER AVE, BROOKLYN			Field Prep:		Not Specified	
Parameter	Re	sult	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by G	C/MS - Westborough Lab						
Methyl tert butyl ether	1	ND		ug/kg	5.9	1.4	1
p/m-Xylene		36		ug/kg	5.9	1.3	1
o-Xylene		9.4		ug/kg	5.9	1.2	1
cis 1,2 Dichloroethene		52		ug/kg	2.9	0.89	1
Dibromomethane	!	ND		ug/kg	29	1.3	1
Styrene	1	ND		ug/kg	5.9	2.1	1
Dichlorodifluoromethane	ı	ND	レゴ	ug/kg	29	1.1	1
Acetone	2	210		ug/kg	29	9.5	1
Carbon disulfide	t	ΝD		ug/kg	29	1.1	1
2-Butanone	1	10		ug/kg	29	11.	1
Vinyl acetate	!	ΝD		ug/kg	29	2.2	1
4-Methyl-2-pentanone	1	ND		ug/kg	29	2.4	1
1,2,3-Trichloropropane	1	ND		ug/kg	29	1. 1	1
2-Hexanone	1	٧D		ug/kg	29	1.2	1
Bromochloromethane	1	ND		ug/kg	15	0.89	1
2,2-Dichloropropane	1	ΝD		ug/kg	15	2.3	1
1,2-Dibromoethane	1	ND		ug/kg	12	1.2	1
1,3-Dichloropropane	1	ΝĎ		ug/kg	15	1.7	1
1,1,1,2-Tetrachloroethane	١	ND		ug/kg	2.9	0.96	1
Bromobenzene	١	۷D		ug/kg	15	0.65	1
n-Butylbenzene	N	ND		ug/kg	2.9	0.92	1
sec-Butylbenzene	٩	ND		ug/kg	2.9	0.81	1
tert-Butylbenzene	1	ND		ug/kg	15	1.8	1
o-Chlorotoluene	١	ND		ug/kg	15	0.92	1
p-Chlorotoluene	N	ND		ug/kg	15	1.1	1
1,2-Dibromo-3-chloropropan-	e 1	۷D		ug/kg	15	2.5	1
Hexachlorobutadiene	١	ND		ug/kg	15	1.3	1
Isopropylbenzene	N	ND		ug/kg	2.9	0.52	1
p-Isopropyltoluene	N	ND		ug/kg	2.9	0.80	1
Naphthalene	N	ND		ug/kg	15	2.3	1
Acrylonitrile	١	1D		ug/kg	29	1.1	1
n-Propylbenzene	1	1D		ug/kg	2.9	0.84	1
1,2,3-Trichlorobenzene	N	1D		ug/kg	15	1.2	1
1,2,4-Trichlorobenzene	N	ND		ug/kg	15	2.3	1
1,3,5-Trimethylbenzene	١	ND		ug/kg	15	1.8	1
1,2,4-Trimethylbenzene	1	1D		ug/kg	15	1.7	1
1,4-Diethylbenzene	1	1D		ug/kg	12	0.59	1
4-Ethyltoluene		1D		ug/kg	12	0.28	1
1,2,4,5-Tetramethylbenzeпe	1	1D		ug/kg	12	0.53	1

Project Name: Not Specified Lab Number:

L1111021 **Project Number:** Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-04 D Date Collected: 07/20/11 11:25

Client ID: MW-1S Date Received: 07/21/11 Sample Location: 1199 SUTTER AVE, BROOKLYN Field Prep: Not Specified

Matrix: Water

Analytical Method: 1,8260B

Analytical Date: 07/26/11 14:45 Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Makhadana ahlarida	NO			40				
Methylene chloride	ND		ug/l 	10	1.1	2		
1,1-Dichloroethane	ND		ug/l	1.5	0.43	2		
Chloroform	30		ug/l	1.5	0.40	2		
Carbon tetrachloride	ND	しづ	ug/l	1.0	0.33	2		
1,2-Dichloropropane	ND		ug/l	3.5	0.59	2		
Dibromochloromethane	ND		ug/l	1.0	0.38	2		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.52	2		
Tetrachloroethene	84		ug/l	1.0	0.36	2		
Chlorobenzene	ND		ug/l	1.0	0.38	2		
Trichlorofluoromethane	ND		ug/l	5.0	0.53	2		
1,2-Dichloroethane	ND		ug/l	1.0	0.32	2		
1,1,1-Trichloroethane	ND		ug/l	1.0	0.32	2		
Bromodichloromethane	1.2		ug/l	1.0	0.38	2		
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2		
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2		
1,1-Dichloropropene	ND		ug/l	5.0	0.51	2		
Bromoform	ND		ug/l	4.0	0.50	2		
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.38	2		
Benzene	ND		ug/l	1.0	0.39	2		
Toluene	ND		ug/l	1.5	0.45	2		
Ethylbenzene	ND		ug/l	1.0	0.53	2		
Chloromethane	ND		ug/l	5.0	0.56	2		
Bromomethane	ND		ug/l	2.0	0.51	2		
Vinyl chloride	ND		ug/l	2.0	0.45	2		
Chloroethane	ND		ug/l	2.0	0.47	2		
1,1-Dichloroethene	ND		ug/i	1.0	0.36	2		
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.42	2		
Trichloroethene	3.2		ug/l	1.0	0.35	2		
1,2-Dichlorobenzene	ND		ug/l	5.0	0.37	2		
1,3-Dichlorobenzene	ND		ug/l	5.0	0.37	2		
1,4-Dichlorobenzene	ND		ug/l	5.0	0.43	2		

Project Name: Not Specified Lab Number:

L1111021

Project Number:

Report Date:

07/28/11

Lab ID:

Not Specified

SAMPLE RESULTS

Date Collected:

07/20/11 16:25

Client ID:

L1111021-05 MW-1D

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Date Received: Field Prep:

Not Specified

Matrix:

Water

1,8260B

Analytical Method: Analytical Date:

07/26/11 15:20

Analyst:

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab)					
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	0.90		ug/l	0.75	0.20	1
Carbon tetrachloride	ND	UJ	ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	6.8		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.21	J	ug/l	0.75	0.21	1
Trichloroethene	1.7		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Project Name: Not Specified Lab Number: L1111021

Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

 Lab ID:
 L1111021-06
 Date Collected:
 07/20/11 10:30

 Client ID:
 MW-2S
 Date Received:
 07/21/11

Sample Location: 1199 SUTTER AVE, BROOKLYN Field Prep: Not Specified

Matrix: Water
Analytical Method: 1,8260B
Analytical Date: 07/26/11 15:54

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	13		ug/l	0.75	0.20	1
Carbon tetrachloride	ND	UJ	ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	0.63		ug/I	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethanc	NĎ		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.46	J	ug/l	0.75	0.21	1
Trichloroethene	0.36	J	ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Lab Number:

Project Name: Not Specified L1111021 Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

07/26/11 16:29

Lab ID: L1111021-07 Date Collected: 07/20/11 14:55

Client ID: MW-2D Date Received: 07/21/11 1199 SUTTER AVE, BROOKLYN Sample Location:

Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260B

Analyst: PD

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		"	5.0	0.5.	
1,1-Dichloroethane			ug/l	5.0	0.54	1
	ND		ug/l	0.75	0.22	1
Chloroform	1.1	1,-	ug/l 	0.75	0.20	1
Carbon tetrachloride	ND	UJ	ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1.1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	9.6		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.40	J	ug/l	0.75	0.21	1
Trichloroethene	0.95		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Lab Number:

L1111021

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

Not Specified

Not Specified

L1111021-08

Client ID:

MW-3S

Sample Location:

Project Name:

Project Number:

1199 SUTTER AVE, BROOKLYN

Matrix:

Water

Analytical Method:

1,8260B

Analytical Date:

07/26/11 17:03

Analyst:

PD

Date Collected:

07/20/11 08:36

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		#	5.0	0.54	_
1,1-Dichloroethane	ND		ug/l	5.0	0.54	1
Chloroform	ND		ug/l	0.75	0.22	1
	14	(, ~~~	ug/l 	0.75	0.20	1
Carbon tetrachloride	ND	LN	ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachioroethene	0.73		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	1.1		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzerie	ND		ug/l	0.50	0.19	1
Toluene	0.29	J	ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chioromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.65	J	ug/l	0.75	0.21	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	25	0 18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Lab Number:

L1111021

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-09

Client ID:

MW-3D

Not Specified

Not Specified

Sample Location:

Project Name:

Project Number:

1199 SUTTER AVE, BROOKLYN

Matrix:

Water

Analytical Method:

1,8260B

Analytical Date:

07/26/11 17:38

Analyst:

PD

Date Collected:

07/20/11 14:10

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		"	- 0		
1,1-Dichloroethane	ND		ug/l	5.0	0.54	1
Chloroform	ND		ug/l	0.75	0.22	1
	1,8		ug/l	0.75	0.20	1
Carbon tetrachloride	ND	にコ	ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	20		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/I	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachioroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	0.27	J	ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.51	J	ug/l	0.75	0.21	1
Trichloroethene	1.1		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Lab Number:

L1111021

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-10

D

Date Collected:

07/20/11 12:50

Client ID:

MW-4

Not Specified

Not Specified

Date Received: 1199 SUTTER AVE, BROOKLYN

Field Prep:

07/21/11 Not Specified

Sample Location: Matrix: Analytical Method:

Water

Project Name:

Project Number:

1,8260B

Analytical Date:

07/26/11 18:12

Analyst:

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	12	1.3	2.5
1,1-Dichloroethane	ND		ug/l	1.9	0.54	2.5
Chloroform	15		ug/l	1.9	0.49	2.5
Carbon tetrachloride	ND	UJ	ug/l	1.2	0.41	2.5
1,2-Dichloropropane	ND		ug/l	4.4	0.74	2.5
Dibromochloromethane	ND		ug/l	1.2	0.47	2.5
1,1,2-Trichloroethane	ND		ug/l	1.9	0.65	2.5
Tetrachloroethene	440	E	ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/i	1.2	0.48	2.5
Trichlorofluoromethane	ND		ug/l	6.2	0.67	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.40	2.5
1,1,1-Trichloroethane	ND		ug/l	1.2	0.40	2.5
Bromodichloromethane	NĎ		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cís-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	0.64	2.5
Bromoform	ND		ug/l	5.0	0.62	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.48	2.5
Benzene	ND		ug/l	1.2	0.48	2.5
Toluene	ND		ug/l	1.9	0.57	2.5
Ethylbenzene	ND		ug/l	1.2	0.66	2.5
Chloromethane	ND		ug/l	6.2	0.70	2.5
Bromomethane	ND		ug/l	2.5	0.64	2.5
Vinyl chloride	ND		ug/l	2.5	0.56	2.5
Chloroethane	ND		ug/l	2.5	0.58	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.45	2.5
trans-1,2-Dichloroethene	0.67	J	ug/l	1.9	0.53	2.5
Trichloroethene	14		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,3-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	0.54	2.5

L1111021

Not Specified Lab Number:

Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-11 D Date Collected: 07/20/11 09:35

Client ID: MW-5 Date Received: 07/21/11

Sample Location: 1199 SUTTER AVE, BROOKLYN Field Prep: Not Specified Matrix: Water

Analytical Method: 1,8260B

Analytical Date: 07/27/11 10:41

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/l	12	1.3	2.5
1,1-Dichloroethane	ND		ug/l	1.9	0.54	2.5
Chloroform	29		ug/l	1.9	0.49	2.5
Carbon tetrachloride	ND	ひて	ug/l	1.2	0.41	2.5
1,2-Dichloropropane	ND	-	ug/l	4.4	0.74	2.5
Dibromochloromethane	ND		ug/l	1.2	0.47	2.5
1,1,2-Trichloroethane	ND		ug/l	1.9	0.65	2.5
Tetrachloroethene	98		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	1.2	0.48	2.5
Trichlorofluoromethane	ND		ug/l	6.2	0.67	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.40	2.5
1,1,1-Trichloroethane	ND		ug/l	1.2	0.40	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	0.64	2.5
Bromoform	ND		ug/l	5.0	0.62	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.48	2.5
Benzene	ND		ug/l	1.2	0.48	2.5
Toluene	ND		ug/l	1.9	0.57	2.5
Ethylbenzene	ND		ug/l	1.2	0.66	2.5
Chloromethane	ND	UJ	ug/l	6.2	0.70	2.5
Bromomethane	ND		ug/l	2.5	0.64	2.5
Vinyl chloride	0.70	J	ug/l	2.5	0.56	2.5
Chloroethane	ND		ug/l	2.5	0.58	2.5
1,1-Dichloroethene	ND		ug/l	12	0 45	2.5
trans-1,2-Dichloroethene	0.60	J	ug/l	1.9	0.53	2.5
Trichloroethene	5.2		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,3-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	0.54	2.5

Project Name:

Analyst:

PD

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-11

Date Collected:

07/20/11 09:35

Client ID:

MW-5

D

Date Received:

07/21/11

Sample Location:	1199 SUTTER AVE, BR	ROOKLYN		Field	d Prep:	Not	Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	GC/MS - Westborough Lab						
Methyl tert butyl ether		ND		ug/l	2.5	0.40	2.5
p/m-Xylene		ND		ug/l	2.5	0.87	2.5
o-Xylene		ND		ug/l	2.5	0.82	2.5
cis-1,2-Dichloroethene		9.8		ug/l	1.2	0.47	2.5
Dibromomethane		ND		ug/l	12	0.91	2.5
1,2,3-Trichloropropane		ND		ug/l	12	1.1	2.5
Acrylonitrile		ND		ug/l	12	1.1	2.5
Styrene		ND		ug/l	2.5	0.90	2.5
Dichlorodifluoromethane		ND		ug/l	12	0.75	2.5
Acetone		ND	い ゴ	ug/l	12	3.9	2.5
Carbon disulfide		ND		ug/l	12	0.75	2.5
2-Butanone		ND		ug/l	12	4.8	2.5
Vinyl acetate		ND		ug/l	12	0.78	2.5
4-Methyl-2-pentanone		ND		ug/l	12	1.0	2.5
2-Hexanone		ND		ug/l	12	1.4	2.5
Bromochioromethane		ND		ug/l	6.2	0.82	2.5
2,2-Dichloropropane		ND		ug/l	6.2	0.99	2.5
1,2-Dibromoethane		ND		ug/l	5.0	0.48	2.5
1,3-Dichloropropane		ND		ug/l	6.2	0.53	2.5
1,1,1,2-Tetrachloroethane		ND		ug/l	1.2	0.41	2.5
Bromobenzene		ND		ug/l	6.2	0.46	2.5
n-Butylbenzene		ND		ug/l	1.2	0.49	2.5
sec-Butylbenzene		ND		ug/l	1.2	0.45	2.5
tert-Butylbenzene		ND		ug/l	6.2	0.75	2.5
o-Chlorotoluene		ND		ug/l	6.2	0.46	2.5
p-Chlorotoluene		ND		ug/l	6.2	0.46	2.5
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	6.2	0.82	2.5
Hexachlorobutadiene		ND		ug/l	1.5	0.58	2.5
Isopropylbenzene		ND		ug/l	1.2	0.47	2.5
p-Isopropyltoluene		ND		ug/l	1.2	0.47	2.5
Naphthalene		ND	U J	ug/l	6.2	0.54	2.5
n-Propylbenzene		ND		ug/l	1.2	0.43	2.5

ND

ND

ND

ND

ND

ND

ND

UJ

UJ

ug/l

ug/l

ug/l

ug/l

ug/i

ug/l

ug/l

2.5

2.5

2.5

2.5

2.5

2.5

2.5

0.58

0.55

0.53

0.67

0.27

1.0

0.24

6.2

6.2

6.2

6.2

5.0

5.0

5.0

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

1,4-Diethylbenzene

4-Ethyltoluene

LABORATORY QA SHEETS

For Out of Limit QA Results

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1111021-01, -02, and -10 were re-analyzed on dilutions in order to quantitate the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analyses were performed only for the compounds that exceeded the calibration range.

L1111021-04, -10, and -11 have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

0

Upsbeth & Simmons Elizabeth Simmons

Title: Technical Director/Representative

Date: 07/28/11

Sample Delivery Group Form

Laboratory Job number: L1111021

Client Account: Associated Environmental Services, Ltd.

Received: 07/21/2011 22:35

Samples Delivered by: COURIER

Call Tracker #

Bill Of Laden N/A

Trackingnum

Coc Present Present

Container Status Intact

Sample IDs

All Containers Accounted For?

Were Extra Samples Received? No

Do Sample Labels and COC agree? Yes

Are Samples in Appropriate Containers?

Are Samples Received within Holding time? Yes

pH of Samples upon Receipt N/A

Are samples Properly Preserved?

Initial pH

preserved in house with

Final pH

Other Issues

Chlorine Check N/A

Are VOA/VPH Vials Present? Yes

Aqueous: Do Vials Contain Head Space? No

Soils: Is MeOHCovering the Soil?

Reagent H2O Preserved vials Frozen on N/A

Frozen by Client N/A

Delivered Direct from Frozen lce Blue Ice upon Receipt Site Present Present Cooler Seal Temp. (Celsius)

Α Absent Yes Nο 3.3 - Temp. Blank Nο No

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: curly.i Calibration Date: 27-JUL-2011 Time: 06:55

Lab File ID: 0727A01 Init. Calib. Date(s): 08-JUN-2 08-JUN-2

Sample No: wg481303-1,31,2 Init. Calib. Times : 16:43 20:32

Compound	 RRF	 RRF	MIN RRF	% D	MAX	
- <u></u>						
dichlorodifluoromethane		.2229				F
chloromethane		.23369			25	
vinyl chloride	.33915	.27526	.001i			
bromomethane	.26151			24	25 [
	1.20038	.15278	.001	24	25	
trichlorofluoromethane	1.52875	.48854	.001		25	
ethyl ether		.13217		_17		
acrolein	100			$\bigcirc 64$		F
freon 113	1.27628	.23911		13	25	
acetone	i 100	95.888	.001 i	4	40	
1,1-dichloroethene	.2452	.20601	.001	16	20	
Tert-Butyl Alcohol	j 500	494	.001 j	. 1	25	
methvl acetate	.18353	17736	.001		25	
methylene chloride	.29684	.26889	.001	9	25	
carbon disulfide	.81033	.71421	.001	12	25	
acrylonitrile		.07008				
methyl tert butyl ether		i.64678		-2	25	
trans-1,2-dichloroethene	.26407			14		
Diisopropyl Ether		.63285				
1,1-dichloroethane		.45343		10		
vinyl acetate	i.39847	.37939	.001	5	40	
Ethyl-Tert-Butyl-Ether	65278	.60088	.001			
12-but anone	i.11579	.0961	.001	17	40	
2,2-dichloropropane	100	103	.001	-3	25	
Ethyl Acetate	1.22997	.2318	001	-1	25	
cis-1,2-dichloroethene	1.28089	1.23506	.001	16	25	
chloroform		.53033		8		
bromochloromethane	.11954	.0989	.001			
tetrahydrofuran	.07112	.06314	.001		40	
1,1,1-trichloroethane	1.47285	.45969	.001	3	25	
cyclohexane		.34036				
1,1-dichloropropene	1.42138	.38717	.001	8	25	
carbon tetrachloride	100	94.922	.001		25	
Tertiary-Amyl Methyl Ether	1.65097					
1,2-dichloroethane		1.50969				
benzene	11.0660	1.95454	.001			
trichloroethene		1.25536			25	
methyl cyclohexane	.4333	.40965	.001	5	25	
	l	l	l		l	

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: Gonzo.i Calibration Date: 26-JUL-2011 Time: 08:32

Lab File ID: 0726A02 Init. Calib. Date(s): 19-JUL-2 19-JUL-2

Sample No: wg481-1,31,10 Init. Calib. Times : 10:48 14:10

 Compound	RRF	RRF	MIN RRF	%D	MAX % D	
dichlorodifluoromethane chloromethane vinyl chloride bromomethane chloroethane trichlorofluoromethane ethyl ether acrolien Freon 113 acetone 1,1,-dichloroethene Tert-Butyl Alcohol iodomethane Methyl Acetate methylene chloride carbon disulfide acrylonitrile methyl tert butyl ether halothane trans-1,2-dichloroethene Diisopropyl Ether 1,1-dichloroethane vinyl acetate Ethyl-Tert-Butyl-Ether 2-butanone 2,2-dichloropropane Ethyl Acetate cis-1,2-dichloroethene chloroform bromochloromethane	===== .21539 .32617 .15987 .15987 .13269 .34974 .09045 .19889 .3047 .01534 .13998 .30413 .77835 .57781 .18784 .25654 .46829 .07285 .73356 .35106 .35106 .29633 .48074 .05653 .35136 .35136 .35136 .35136 .35136	===== .19723 .25564 .16814 86.892 .1334 .34427 .08232 477 .20938 71.135 .21024 .0139 57.602 .1356 .28194 .06905 .4687 .23236 .74318 .060995 .4783 .080995 .080993 .12162 .04221 80.572 .04221 80.572	===== .01 .0	8 22 -5 13 -1 2 9 1 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	======================================	F F F F

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: curly.i Calibration Date: 28-JUL-2011 Time: 07:05

Sample No: wg481740-1,31,2 Init. Calib. Times : 16:43 20:32

chloromethane vinyl chloride chloromethane chloroethane chlorofluoromethane chlorofluoromethane chyl ether acrolein freon 113 acetone 1,1-dichloroethene Tert-Butyl Alcohol methyl acetate chloride chyl ether chloroethene chyl ether chloroethene chloroeth	32816 30774 33915 26151 20038 52875 15835 100 27628 100 .2452 500 .18353 29684 81033 08522	.25077 .28288 .34152 .23941 .18203 .55659 .1404 .195 .25807 .113 .22801 .567 .19725 .33982 .75312	.001 .001	24 8 -1 8 9 -5 11 -95 7 -13 -7 -14 7	25 25 25 25 25 25 25 25
vinyl chloride chloromethane chloroethane chlorofluoromethane chlorofluoromethane chlorofluoromethane chlorofluoromethane chlorolein chlorolein chlorolein chlorolein chlorolein chlorolethene chl	33915 26151 20038 52875 15835 100 27628 100 .2452 500 18353 29684 81033	.34152 .23941 .18203 .55659 .1404 .195 .25807 .113 .22801 .567 .19725 .33982 .75312	.001 .001	-1 8 9 -5 11 -95 7 -13 -7 -13 -7 -14 7	20 25 25 25 25 40 20 25 25 25 25 25
bromomethane chloroethane chloroethane chlorofluoromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethane chyloromethyloromethane chyloromethyloromethane chyloromethyloromethane chyloromethyloromethyloromethane chyloromethyloromethane chyloromethane ch	26151 20038 52875 15835 100 27628 100 .2452 500 .18353 29684 81033	.23941 .18203 .55659 .1404 .25807 .113 .22801 .567 .19725 .33982 .75312	.001 .001	8 9 -5 11 -95 7 -13 -7 -13 -7 -14 7	25 25 25 25 40 E 25 20 25 25 25 25
bromomethane	20038 52875 15835 100 27628 100 .2452 500 .18353 .29684 .81033	.18203 .55659 .1404 .195 .25807 .113 .22801 .567 .19725 .33982 .75312	.001 .001	9 -5 11 -95 7 -13 -7 -13 -7 -14 7	25 25 25 40 E 25 20 25 25 25 25
trichlorofluoromethane ethyl ether acrolein freon 113 acetone 1,1-dichloroethene Tert-Butyl Alcohol methyl acetate	.52875 .15835 .100 .27628 .100 .2452 .500 .18353 .29684 .81033	.55659 .1404 .195 .25807 .113 .22801 .567 .19725 .33982 .75312	.001 .001 .001 .001 .001 .001 .001 .001	$ \begin{array}{c c} -5 \\ 11 \\ -95 \\ 7 \\ -13 \\ 7 \\ -13 \\ -7 \\ -14 \\ 7 \end{array} $	25 25 40 E 25 40 20 25 25 25 25
ethyl ether acrolein freon 113 acetone 1,1-dichloroethene Tert-Butyl Alcohol methyl acetate	.15835 100 .27628 100 .2452 500 .18353 .29684 .81033	.1404 195 .25807 113 .22801 567 .19725 .33982 .75312	.001 .001 .001 .001 .001 .001 .001	$ \begin{array}{c c} -5 \\ 11 \\ -95 \\ 7 \\ -13 \\ 7 \\ -13 \\ -7 \\ -14 \\ 7 \end{array} $	25 25 40 E 25 40 20 25 25 25 25
ethyl ether acrolein freon 113 acetone 1,1-dichloroethene Tert-Butyl Alcohol methyl acetate	100 .27628 100 .2452 500 .18353 .29684 .81033	195 .25807 113 .22801 567 .19725 .33982 .75312	.001 .001 .001 .001 .001 .001	$ \begin{array}{c c} & -95 \\ & 7 \\ & -13 \\ & 7 \\ & -13 \\ & -7 \\ & -14 \\ & 7 \end{array} $	40 E 25 40 20 25 25 25 25 25 25 25 25 25 25 25 25 25
acrolein	.27628 100 .2452 500 .18353 .29684 .81033	.25807 113 .22801 567 .19725 .33982 .75312	.001 .001 .001 .001 .001 .001 .001	7 -13 7 -13 -7 -14	25 40 20 25 25 25 25
Treon 113	100 .2452 500 .18353 .29684 .81033 .08522	113 .22801 .567 .19725 .33982 .75312 .08087	.001 .001 .001 .001 .001	7 -13 7 -13 -7 -14	25 40 20 25 25 25 25
1,1-dichloroethene	.2452 500 18353 29684 81033 08522	.22801 567 .19725 .33982 .75312 .08087	.001 .001 .001 .001	7 -13 -7 -14 7	20 25 25 25 25 25 25
Tert-Butyl Alcohol	500 18353 29684 81033 08522	567 .19725 .33982 .75312 .08087	.001 .001 .001 .001	-13 -7 -14 7	25 25 25 25 25 25
methyl acetate .	.18353 .29684 .81033 .08522	.19725 .33982 .75312 .08087	.001 .001 .001	-7 -14 7	25 25 25 25
methyl acetate .	.29684 .81033 .08522	.33982 .75312 .08087	.001 .001	-14 7	25 25 25
lmothilland ablanida	.81033 .08522	.75312 .08087	.001	7	25 l 25 l
IMEGIATERE CHIOTIGE	.08522	1.08087			25
carbon disulfide			i .001 i		25
acrylonitrile .					
	. 63608	1.72656		-14	1 251
		.26509		j 0	25
Diisopropyl Ether	.6926	.73236	.001	-6	25
	.50635	.5677	.1	-12	25
vinvl acetate .	.39847	.4 3787	.001	-10	40
Ethyl-Tert-Butyl-Ether .	.65278	69712	.001	-7	25
	.11579	.11059	.001	4	40
2-butanone 2,2-dichloropropane	100	117	.001		
Ethyl Acetate .	22997	.27612		-20	25
cis-1,2-dichloroethene .	28089	.29382	.001	-5	25
chloroform .	.57546	.64104	.001	-11	201
		1.11946		0	25
	.07112	1.07397	.001		
		1.53696			[25]
cyclohexane .		.35772			
1,1-dichloropropene .	.42138	.44574	.001		
carbon tetrachloride	100				
Tertiary-Amyl Methyl Ether .		1.66268			
1,2-dichloroethane		.6166			
benzene 1		1.1363			
		.30694			
methyl cyclohexane	.4333	1.47239	1 .001	-9	25

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: curly.i Calibration Date: 28-JUL-2011 Time: 07:05

Sample No: wg481740-1,31,2 Init. Calib. Times : 16:43 20:32

Compound	RRF	 RRF	MIN RRF	% D	MAX % D
Compound	===== .23753 .38804 .00323 .15524 100 .08499 100 .97424 100 .52827 .27621 .25307 .54941	===== .26353 .44137 .0034 .17127 109 .09067 109 1.0310 115 .51992 .29928 .30174 .63527 .36422	RRF	 -11 -14 -5 -10 -9 -7 -9 -6 -15 2 -8 -19 -16 -16 -16	%D 20 25 25 25 25 25 25 25
1,2-dibromoethane chlorobenzene 1,1,1,2-tetrachloroethane ethylbenzene p/m-xylene o-xylene styrene bromoform isopropylbenzene 1,4-dichlorobutane 1,1,2,2-tetrachloroethane	.24349 1.0093 100 1.9470 .69419 .65304 1.1142 100 1.8885 1.0552 .78207 .72452	.26534 1.0436 108 2.1972 .74101 .69063 1.2073 109 2.0418 1.2653 .92743 .90918	.001 .3 .001 .001 .001 .001 .001 .1 .001 .00	-9 -3 -8 -13 -7 -6 -8 -9 -8 -20 -19	25 25 25 25 25 25 25 25
trans-1,4-dichloro-2-butene n-propylbenzene bromobenzene 4-ethyltoluene 1,3,5-trimethylbenzene 2-chlorotoluene 4-chlorotoluene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene	.81331 3.5834 3.1307 3.1232 2.8618 2.6089 3.1272 3.7817	126 5.2907 .85519 3.9888 3.6657 3.7496 3.4472 3.0206 3.7902 4.3572 3.8139	.001 .001 .001 .001 .001 .001 .001 .001 .001	-22 -5 -11 -17 -20 -20 -16 -21 -15	25 25 25

FORM VII NYTCL-8260

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: curly.i Calibration Date: 28-JUL-2011 Time: 07:05

Sample No: wg481740-1,31,2 Init. Calib. Times : 16:43 20:32

Compound		RRF	 RRF	MIN RRF	% D	MAX % D
1,3-dichlorok 1,4-dichlorok 1,4-dichlorok 1,0-dichlorok 1,2-dichlorok 1,2,4,5-tetra 1,2-dibromo-3 1,3,5-trichlorok 1,2,4-trichlorok 1,2,4-trichlorok 1,2,3-trichlorok 1,4-dichlorok 1,2,3-trichlorok 1,4-dichlorok 1,4-dichlorok 1,4-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,3-trichlorok 1,3-trichlorok 1,3-trichlorok 1,4-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,2-dichlorok 1,3-trichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,2-dichlorok 1,3-trichlorok 1,2-dichlorok 1,2-	penzene de d	1.6324 3.9544 2.1387 1.5090 3.1595 .18635 1.0926 .92459 .54331 100 .91128	.24135 1.0285 .91509 .50519	.001 .001 .001 .001 .001 .001 .001 .001	$ \begin{array}{r} -4 \\ -4 \\ -20 \\ -8 \\ -2 \\ -7 \\ 6 \\ 1 \\ 7 \\ -1 \\ 5 \end{array} $	25 25 25 25 25 25 25 25 25 25
dibromofluoro 1,2-dichloro toluene-d8 4-bromofluoro	ethane-d4	.23842 .37013 .1.2133	= = = = = =	.001	-3 -19 -12	30 30 30 30 30

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: Gonzo.i Calibration Date: 27-JUL-2011 Time: 08:25

Lab File ID: 0727A02 Init. Calib. Date(s): 19-JUL-2 19-JUL-2

Sample No: wg481-1,31,10 Init. Calib. Times : 10:48 14:10

Compound	RRF	 RRF	MIN RRF	% D	MAX %D	
=====================================	===== .21539				==== 25	
chloromethane chloromethane		.23402				 됴
vinyl chloride		1.16185				_
bromomethane		83.543				
chloroethane	13269	1.12236	.01		25	
trichlorofluoromethane	34974	32502	.01		25	
		08209				
(acrolien)	100			-368)		। ਜ
Freon 113		.19595			25	
acetone		71.659				
1,1,-dichloroethene		.2017				
Tert Butyl Alcohol		.01351				
lodomethane		60.590		39		
		.1386		1		
		.28195			25	
carbon disulfide		1.64002			25	
acrylonitrile		.06892				
		1.47252				
(halothane)		.00007				
		.22673			25	
Dijeopropul Ethor		77852			25	
1,1-dichloroethane		.43192				
IVIDVI acerare		.05656				
Ethyl-Tert-Butyl-Ether		.62723				
2-butanone		.07823				
2,2-dichloropropane		.31038				
Ethyl Acetate		85.251			25	
cis-1,2-dichloroethene		.2743		7	25	
chloroform	.48059	.44881	.01		20	ĺ
bromochloromethane	.12474	.11707			25	1
tetrahydrofuran		.04468		21	40	
1,1,1-trichloroethane	100	77.476	.01	23	25	
Cyclohexane	.39586	.39996	.01	-1	25	
1,1-dichloropropene		.31604		10	25	
(carbontetrachloride)		71.101			25	
Tertiary-Amyl Methyl Ether		1.53856			25	
1,2-dichloroethane		.32113			25	
benzene	1.1030	1.0127	.01	8	25	

Lab Name: Alpha Analytical Labs

SDG No.: L1111021

Instrument ID: Gonzo.i Calibration Date: 27-JUL-2011 Time: 08:25

Lab File ID: 0727A02 Init. Calib. Date(s): 19-JUL-2 19-JUL-2

Sample No: wg481-1,31,10 Init. Calib. Times : 10:48 14:10

Compound	RRF	 RRF =====	MIN	 %D ======	MAX %D
	2.4309 1.5501 1.5554 2.6395 1.4946 1.3809 2.0765 100 1.0262 .79391 .4544 1.1428 .60737 ===== .24408 .2394	3.1496 2.4703 1.4966 1.4918 2.5336 1.4891 1.3108 1.9836 82.163 .57103 .57103 .36028 .71138 .38674 ===== .24677 .25145 1.1062	.01 .01 .01 .01 .01 .01 .01 .01 .01 .01	0 -2 3 4 4 0 5 4 18 15 21 30 6 ==== -1 -5 -1	25 25 25 25 25 25 25 25

Laboratory Level II Analytical Report

ANALYTICAL REPORT

Lab Number:

L1111021

Client:

Associated Environmental Services, Ltd.

25 Central Avenue

Hauppauge, NY 11788

ATTN:

Greg Ernst

Phone:

(631) 234-4280

Project Name:

Not Specified

Project Number:

Not Specified

Report Date:

07/28/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: Not Specified Project Number: Not Specified

Lab Number:

L1111021

Report Date:

07/28/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1111021-01	B-10 (5-6')	1199 SUTTER AVE, BROOKLYN	07/19/11 08:30
L1111021-02	B-11 (5-6')	1199 SUTTER AVE, BROOKLYN	07/19/11 08:50
L1111021-03	B-12 (9-10')	1199 SUTTER AVE, BROOKLYN	07/19/11 09:10
L1111021-04	MW-1S	1199 SUTTER AVE, BROOKLYN	07/20/11 11:25
L1111021-05	MW-1D	1199 SUTTER AVE, BROOKLYN	07/20/11 16:25
L1111021-06	MW-2S	1199 SUTTER AVE, BROOKLYN	07/20/11 10:30
L1111021-07	MW-2D	1199 SUTTER AVE, BROOKLYN	07/20/11 14:55
L1111021-08	MW-3S	1199 SUTTER AVE, BROOKLYN	07/20/11 08:36
L1111021-09	MW-3D	1199 SUTTER AVE, BROOKLYN	07/20/11 14:10
L1111021-10	MW-4	1199 SUTTER AVE, BROOKLYN	07/20/11 12:50
L1111021-11	MW-5	1199 SUTTER AVE, BROOKLYN	07/20/11 09:35

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date: 07/28/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1111021-01, -02, and -10 were re-analyzed on dilutions in order to quantitate the samples within the calibration range. The results should be considered estimated, and are qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analyses were performed only for the compounds that exceeded the calibration range.

L1111021-04, -10, and -11 have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Unsbeth of Summons Elizabeth Simmons

Title: Technical Director/Representative

Date: 07/28/11

ORGANICS

VOLATILES

L1111021

Not Specified Lab Number:

Edd ((dilibur.

Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Project Name:

 Lab ID:
 L1111021-01
 Date Collected:
 07/19/11 08:30

 Client ID:
 B-10 (5-6')
 Date Received:
 07/21/11

Sample Location: 1199 SUTTER AVE, BROOKLYN Field Prep: Not Specified

Matrix: Soil

Analytical Method: 1,8260B
Analytical Date: 07/27/11 09:12

Analyst: BN
Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab					-g/\$1"	N ₁ v ¹ ¹
Methylene chloride	11	J	ug/kg	27	2.2	1
1,1-Dichloroethane	ND		ug/kg	4,1	0.81	1
Chloroform	ND		ug/kg	4.1	0.89	1
Carbon tetrachloride	ND		ug/kg	2.7	0.58	1
1,2-Dichloropropane	ND		ug/kg	9.6	0.70	1
Dibromochloromethane	ND		ug/kg	2.7	0.84	1
1,1,2-Trichloroethane	ND		ug/kg	4.1	1.1	1
Tetrachloroethene	640	E	ug/kg	2.7	0.84	1
Chlorobenzene	ND		ug/kg	2.7	0.51	1
Trichlorofluoromethane	ND		ug/kg	14	1.1	1
1,2-Dichloroethane	ND		ug/kg	2.7	0.62	1
1,1,1-Trichloroethane	ND		ug/kg	2.7	0.74	1
Bromodichloromethane	ND		ug/kg	2.7	1.0	1
trans-1,3-Dichloropropene	ND		ug/kg	2.7	0.82	1
cis-1,3-Dichloropropene	ND		ug/kg	2.7	0.73	1
1,1-Dichloropropene	ND		ug/kg	14	1.2	1
Bromoform	ND		ug/kg	11	1.4	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.7	0.66	1
Benzene	ND		ug/kg	2.7	0.82	1
Toluene	1.0	J	ug/kg	4.1	0.66	1
Ethylbenzene	11		ug/kg	2.7	0.61	1
Chloromethane	ND		ug/kg	14	2.2	1
Bromomethane	ND		ug/kg	5.5	1.8	1
Vinyl chloride	ND		ug/kg	5.5	2.1	1
Chloroethane	ND		ug/kg	5.5	1.2	1
1,1-Dichloroethene	МÐ	- -	ug/kg	2.7	0.71	1
trans-1,2-Dichloroethene	20		ug/kg	4.1	1.1	1
Trichloroethene	33		ug/kg	2.7	0.62	1
1,2-Dichlorobenzene	ND		ug/kg	14	1.0	1
1,3-Dichlorobenzene	ND		ug/kg	14	1.1	1
1.4-Dichlorobenzene	ND		ug/kg	14	1.2	1

Project Name: N

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-01

Date Collected:

07/19/11 08:30

Client ID:

B-10 (5-6')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result		Jnits	RL.	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab	A New year	e de la completa del completa de la completa del completa de la completa del la completa de la completa de la	ini Mi	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
Methyl tert butyl ether	ND	u	ıg/kg	5.5	1.3	1
p/m-Xylene	35	u	ıg/kg	5.5	1.2	1
o-Xylene	9.2	u	ıg/kg	5.5	1.1	1
cis-1,2-Dichloroethene	48	u	ıg/kg	2.7	0.83	1
Dibromomethane	ND	u	ıg/kg	27	1.2	1
Styrene	ND	ι	ıg/kg	5.5	2.0	1
Dichlorodifluoromethane	ND	ι	ıg/kg	27	1.1	1
Acetone	170	ι	ıg/kg	27	8.9	1
Carbon disulfide	ND	ι	ıg/kg	27	1.0	1
2-Butanone	86	ι	ıg/kg	27	11.	1
Vinyl acetate	ND	ι	ıg/kg	27	2.1	1
4-Methyl-2-pentanone	ND	ı	ıg/kg	27	2.2	1
1,2,3-Trichloropropane	ND	ι	ıg/kg	27	1,1	1
2-Hexanone	ND	ι	ıg/kg	27	1.1	1
Bromochloromethane	ND	ı	ıg/kg	14	0.83	1
2,2-Dichloropropane	ND		ıg/kg	14	2.2	1
1,2-Dibromoethane	ND	ι	ıg/kg	11	1.1	1
1,3-Dichloropropane	ND	ι	ıg/kg	14	1.6	1
1,1,1,2-Tetrachloroethane	ND	· ·	ıg/kg	2.7	0.90	1
Bromobenzene	ND	ı	ıg/kg	14	0.60	1
n-Butylbenzene	ND	į	ug/kg	2.7	0.86	1
sec-Butylbenzene	ND	ι	ug/kg	2.7	0.76	1
tert-Butylbenzene	ND	ı	ug/kg	14	1.6	1
o-Chlorotoluene	ND	ı	ug/kg	14	0.86	1
p-Chlorotoluene	ND		ug/kg	14	0.99	1
1,2-Dibromo-3-chloropropane	ND	(ug/kg	14	2.3	1
Hexachiorobutadiene	ND	(ug/kg	14	1.2	1
Isopropylbenzene	ND	1	ug/kg	2.7	0.49	1
p-Isopropyltoluene	ND	1	ug/kg	2.7	0.75	1
Naphthalene	ND		ug/kg	14	2.1	1
Acrylonitrile	ND		ug/kg	27	1.0	1
n-Propylbenzene	ND		ug/kg	2.7	0.78	1
1,2,3-Trichlorobenzene	ND		ug/kg	14	1.1	1
1,2,4-Trichlorobenzene	ND		ug/kg	14	2.2	1
1,3,5-Trimethylbenzene	ND		ug/kg	14	1.6	1
1,2,4-Trimethylbenzene	ND		ug/kg	14	1.6	1
1,4-Diethylbenzene	ND		ug/kg	11	0.55	1
4-Ethyltoluene	ND		ug/kg	11	0.27	1
1,2,4,5-Tetramethylbenzene	ND		ug/kg	11	0.50	1

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-01

Date Collected:

07/19/11 08:30

Client ID:

B-10 (5-6')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab	e a t		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			11 LAN
Ethyl ether	ND		ug/kg	14	1.0	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	14	4.1	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	120		70-130	
Toluene-d8	107		70-130	
4-Bromofluorobenzene	121		70-130	
Dibromofluoromethane	97		70-130	

Project Name: Not Specified Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

D

Lab ID:

L1111021-01

Date Collected:

07/19/11 08:30

Client ID:

Date Received:

07/21/11

Sample Location:

B-10 (5-6')

1199 SUTTER AVE, BROOKLYN

Field Prep:

Not Specified

Matrix:

Soil

Analytical Method:

1,8260B

Analytical Date:

Percent Solids:

07/28/11 08:48

Analyst:

ΒN

91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab	ty i s		in Augus Santa		W ₁
Tetrachloroethene	680		ug/kg	27	8.4	10
Surrogate	% Recovery	Qualifier	Acceptance Criteria		_	
1,2-Dichloroethane-d4	124		70-130			
Toluene-d8	114		70-130			
4-Bromofluorobenzene	128		70-130			
Dibromofluoromethane	99		70-130			

Project Name: Not Specified

Lab Number: Report Date:

L1111021

Project Number:

Not Specified

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-02

Client ID:

B-11 (5-6')

Sample Location: Matrix:

1199 SUTTER AVE, BROOKLYN Soil

Analytical Method:

1,8260B

Analytical Date:

07/27/11 09:47

Analyst:

BN

Percent Solids:

88%

Date Collected:

07/19/11 08:50

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab	٠.			j.	- 2	
Methylene chloride	10	J	ug/kg	28	2.3	1
1,1-Dichloroethane	ND		ug/kg	4.3	0.84	1
Chloroform	ND		ug/kg	4.3	0.92	1
Carbon tetrachloride	ND		ug/kg	2.8	0.60	1
1,2-Dichloropropane	ND		ug/kg	9.9	0.72	1
Dibromochloromethane	ND		ug/kg	2.8	0.87	1
1,1,2-Trichloroethane	ND		ug/kg	4.3	1.1	1
Tetrachloroethene	1000	E	ug/kg	2.8	0.87	1
Chlorobenzene	ND		ug/kg	2.8	0.53	1
Trichlorofluoromethane	ND		ug/kg	14	1.1	1
1,2-Dichloroethane	ND		ug/kg	2.8	0.65	1
1,1,1-Trichloroethane	ND		ug/kg	2.8	0.77	1
Bromodichloromethane	ND		ug/kg	2.8	1.1	1
trans-1,3-Dichloropropene	ND		ug/kg	2.8	0.85	1
cis-1,3-Dichloropropene	ND		ug/kg	2.8	0.76	1
1,1-Dichloropropene	ND		ug/kg	14	1.3	1
Bromoform	ND		ug/kg	11	1.4	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.8	0.68	1
Benzene	ND		ug/kg	2.8	0.84	1
Toluene	ND		ug/kg	4.3	0.69	1
Ethylbenzene	2.8		ug/kg	2.8	0.63	1
Chloromethane	ND		ug/kg	14	2.2	1
Bromomethane	ND		ug/kg	5.7	1.8	1
Vinyl chloride	ND		ug/kg	5.7	2.1	1
Chloroethane	ND		ug/kg	5.7	1.2	1
1,1-Dichloroethene	ND		ug/kg	2.8	0.74	1
trans-1,2-Dichloroethene	ND		ug/kg	4.3	1.1	1
Trichloroethene	24		ug/kg	2.8	0.64	1
1,2-Dichlorobenzene	ND		ug/kg	14	1.0	1
1,3-Dichlorobenzene	ND		ug/kg	14	1.1	1
1,4-Dichlorobenzene	ND		ug/kg	14	1.2	1

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-02

Date Collected:

07/19/11 08:50

Client ID:

B-11 (5-6')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

rep: Not Specified

platile Organics by GC/MS - Westborough Lab ethyl tert butyl ether n-Xylene	ND	1 1930 1 14		en e	14 17	1.7 <u>1</u> 1.71 1.71
	ND					
n-Xvlene			ug/kg	5.7	1.4	1
ii Alyiona	7.9		ug/kg	5.7	1.2	1
Xylene	2.0	J	ug/kg	5.7	1.2	1
s-1,2-Dichloroethene	3.8		ug/kg	2.8	0.86	1
bromomethane	ND		ug/kg	28	1.2	1
yrene	ND		ug/kg	5.7	2.1	1
chlorodifluoromethane	ND		ug/kg	28	1.1	1
eetone	23	t	ug/kg	28	9.2	1
arbon disulfide	ND		ug/kg	28	1.1	1
Butanone	ND		ug/kg	28	11.	1
nyl acetate	ND		ug/kg	28	2.1	1
Methyl-2-pentanone	ND		ug/kg	28	2.3	1
2,3-Trichloropropane	ND		ug/kg	28	1.1	1
Hexanone	ND		ug/kg	28	1.1	1
omochloromethane	ND		ug/kg	14	0.86	1
2-Dichloropropane	ND		ug/kg	14	2.2	1
2-Dibromoethane	ND		ug/kg	11	1.2	1
3-Dichloropropane	ND		ug/kg	14	1.6	1
1,1,2-Tetrachloroethane	ND		ug/kg	2.8	0.93	1
omobenzene	ND		ug/kg	14	0.62	1
Butylbenzene	ND		ug/kg	2.8	0.89	1
c-Butylbenzene	ND		ug/kg	2.8	0.78	1
rt-Butylbenzene	ND		ug/kg	14	1.7	1
Chlorotoluene	ND		ug/kg	14	0.89	1
Chlorotoluene	ND		ug/kg	14	1.0	1
2-Dibromo-3-chloropropane	ND		ug/kg	14	2.4	1
exachlorobutadiene	ND		ug/kg	14	1.3	1
opropylbenzene	ND		ug/kg	2.8	0.50	1
Isopropyltoluene	ND		ug/kg	2.8	0.78	1
aphthalene	ND		ug/kg	14	2.2	1
crylonitrile	ND		ug/kg	28	1. 1	1
Propylbenzene	ND		ug/kg	2.8	0.81	1
2,3-Trichlorobenzene	ND		ug/kg	14	1.1	1
2,4-Trichlorobenzene	ND		ug/kg	14	2.2	1
3,5-Trimethylbenzene	ND		ug/kg	14	1.7	1
2,4-Trimethylbenzene	ND		ug/kg	14	1.6	1
4-Diethylbenzene	ND		ug/kg	11	0.57	1
Ethyltoluene	ND		ug/kg	11	0.28	1
2,4,5-Tetramethylbenzene	ND		ug/kg	11	0.51	1

Project Name: Not Specified Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-02

Date Collected:

07/19/11 08:50

Client ID:

B-11 (5-6')

Date Received:

07/21/11

Not Specified

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab	e e a fec	1 (45) 4)		t in propiete Propiete		As Section 1997 (1997)
Ethyl ether	ND		ug/kg	14	1.1	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	14	4.2	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	105		70-130	
4-Bromofluorobenzene	118		70-130	
Dibromofluoromethane	95		70-130	

Project Name: Not Specified Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-02

D

Date Collected:

07/19/11 08:50

Client ID:

B-11 (5-6')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Not Specified

Matrix:

Soil

Analytical Method:

1,8260B

Analytical Date:

07/28/11 09:22

Analyst:

ΒN

Percent Solids:

88%

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile C	Organics by GC/MS - Westbord	ough Lab		Colesia Colesia Colesia		F 1.	
Tetrachloro	ethene	1600		ug/kg	28	8.7	10
	Surrogate	% Recovery	Qualifier	Acceptance Criteria			
	1,2-Dichloroethane-d4	122		70-130			
	Toluene-d8	104		70-130			
	4-Bromofluorobenzene	118		70-130			
	Dibromofluoromethane	96		70-130			

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-03

Client ID:

B-12 (9-10')

Sample Location: Matrix:

1199 SUTTER AVE, BROOKLYN Soil

Analytical Method:

1,8260B

Analytical Date:

07/27/11 10:21

Analyst:

BN

Percent Solids:

85%

Date Collected:

07/19/11 09:10

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab	15, 174 17				
Methylene chloride	11	J	ug/kg	29	2.4	1
1.1-Dichloroethane	ND		ug/kg	4.4	0.87	1
Chloroform	ND		ug/kg	4.4	0.95	1
Carbon tetrachloride	ND		ug/kg	2.9	0.62	1
1,2-Dichloropropane	ND		ug/kg	10	0.75	1
Dibromochloromethane	ND		ug/kg	2.9	0.90	1
1,1,2-Trichloroethane	ND		ug/kg	4.4	1.2	1
Tetrachloroethene	560		ug/kg	2.9	0.90	1
Chlorobenzene	ND		ug/kg	2.9	0.55	1
Trichlorofluoromethane	ND		ug/kg	15	1.2	1
1,2-Dichloroethane	ND		ug/kg	2.9	0.67	1
1,1,1-Trichloroethane	ND		ug/kg	2.9	0.79	1
Bromodichloromethane	ND		ug/kg	2.9	1.1	1
trans-1,3-Dichloropropene	ND		ug/kg	2.9	0.88	1
cis-1,3-Dichloropropene	ND		ug/kg	2.9	0.78	1
1,1-Dichloropropene	ND		ug/kg	15	1.3	1
Bromoform	ND		ug/kg	12	1.4	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.9	0.71	1
Benzene	ND		ug/kg	2.9	0.87	1
Toluene	ND		ug/kg	4.4	0.71	1
Ethylbenzene	11		ug/kg	2.9	0.65	1
Chloromethane	ND		ug/kg	15	2.3	1
Bromomethane	ND		ug/kg	5.9	1.9	1
Vinyl chloride	ND		ug/kg	5.9	2.2	1
Chloroethane	ND		ug/kg	5.9	1.3	1
1,1-Dichloroethene	ND		ug/kg	2.9	0.76	1
trans-1,2-Dichtoroethene	22		ug/kg	4.4	1.2	1
Trichloroethene	34		ug/kg	2.9	0.66	1
1,2-Dichlorobenzene	ND		ug/kg	15	1.1	1
1,3-Dichiorobenzene	ND		ug/kg	15	1.2	1
1,4-Dichlorobenzene	ND		ug/kg	15	1.2	1

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-03

Date Collected:

07/19/11 09:10

Client ID:

B-12 (9-10')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Sample Location. 1133 301 TER AVE, BR	OOKEIII		1 101	и гтер.	1400	pecineu
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Facto
Volatile Organics by GC/MS - Westborough Lab			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			¥.
Methyl tert butyl ether	ND		ug/kg	5.9	1.4	1
p/m-Xylene	36		ug/kg	5.9	1.3	1
o-Xylene	9.4		ug/kg	5.9	1.2	1
cis-1,2-Dichloroethene	52		ug/kg	2.9	0.89	1
Dibromomethane	ND		ug/kg	29	1.3	1
Styrene	ND		ug/kg	5.9	2.1	1
Dichlorodifluoromethane	ND		ug/kg	29	1.1	1
Acetone	210		ug/kg	29	9.5	1
Carbon disulfide	ND		ug/kg	29	1.1	1
2-Butanone	110		ug/kg	29	11.	1
Vinyl acetate	ND		ug/kg	29	2.2	1
4-Methyl-2-pentanone	ND		ug/kg	29	2.4	1
1,2,3-Trichloropropane	ND		ug/kg	29	1.1	1
2-Hexanone	ND		ug/kg	29	1.2	1
Bromochloromethane	ND		ug/kg	15	0.89	1
2,2-Dichloropropane	ND		ug/kg	15	2.3	1
1,2-Dibromoethane	ND		ug/kg	12	1.2	1
1,3-Dichloropropane	ND		ug/kg	15	1.7	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	2.9	0.96	1
Bromobenzene	ND		ug/kg	15	0.65	1
n-Butylbenzene	ND		ug/kg	2.9	0.92	1
sec-Butylbenzene	ND		ug/kg	2.9	0.81	1
tert-Butylbenzene	ND		ug/kg	15	1.8	1
o-Chlorotoluene	ND		ug/kg	15	0.92	1
p-Chlorotoluene	ND		ug/kg	15	1.1	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	15	2.5	1
Hexachlorobutadiene	ND		ug/kg	15	1.3	1
Isopropylbenzene	ND		⊔g/kg	2.9	0.52	1
p-Isopropyltoluene	ND		ug/kg	2.9	0.80	1
Naphthalene	ND		ug/kg	15	2.3	1
Acrylonitrile	ND		ug/kg	29	1.1	1
n-Propylbenzene	ND		ug/kg	2.9	0.84	1
1,2,3-Trichlorobenzene	ND		ug/kg	15	1.2	1
1,2,4-Trichlorobenzene	ND		ug/kg	15	2.3	1
1,3,5-Trimethylbenzene	ND		ug/kg	15	1.8	1
1,2,4-Trimethylbenzene	ND		ug/kg	15	1.7	1
1,4-Diethylbenzene	ND		ug/kg	12	0.59	1
4-Ethyltoluene	ND		ug/kg	12	0.28	1
1,2,4,5-Tetramethylbenzene	ND		ug/kg	12	0.53	1

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Lab ID:

SAMPLE RESULTS

L1111021-03

Date Collected:

07/19/11 09:10

Client ID:

B-12 (9-10')

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab	1. T	e la	1 200	2.1		
Ethyl ether	ND		ug/kg	15	1.1	1
trans-1,4-Dichloro-2-butene	ND		ug/kg	15	4.3	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	126		70-130	
Toluene-d8	113		70-130	
4-Bromofluorobenzene	128		70-130	
Dibromofluoromethane	103		70-130	

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-04

D

Date Collected:

07/20/11 11:25

Client ID:

MW-1S

Date Received:

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

07/21/11 Not Specified

Matrix:

Analytical Method:

Water

1,8260B

Analytical Date:

07/26/11 14:45

Analyst:

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					10 10 10 10 10 10 10 10 10 10 10 10 10 1
Methylene chloride	ND		ug/l	10	1.1	2
1,1-Dichloroethane	ND		ug/l	1.5	0.43	2
Chloroform	30		ug/l	1.5	0.40	2
Carbon tetrachloride	ND		ug/l	1.0	0.33	2
1,2-Dichtoropropane	ND		ug/l	3.5	0.59	2
Dibromochloromethane	ND		ug/l	1.0	0.38	2
1,1,2-Trichloroethane	ND		ug/l	1.5	0.52	2
Tetrachioroethene	84		ug/l	1.0	0.36	2
Chlorobenzene	ND		ug/l	1.0	0.38	2
Trichlorofluoromethane	ND		ug/l	5.0	0.53	2
1,2-Dichloroethane	ND		ug/l	1.0	0.32	2
1,1,1-Trichloroethane	ND		ug/l	1.0	0.32	2
Bromodichloromethane	1.2		ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
1,1-Dichloropropene	ND		ug/l	5.0	0.51	2
Bromoform	ND		ug/l	4.0	0.50	2
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.38	2
Benzene	ND		ug/l	1.0	0.39	2
Toluene	ND		ug/l	1.5	0.45	2
Ethylbenzene	ND		ug/l	1.0	0.53	2
Chloromethane	ND		ug/l	5.0	0.56	2
Bromomethane	ND		ug/l	2.0	0.51	2
Vinyl chloride	ND		ug/l	2.0	0.45	2
Chloroethane	ND		ug/l	2.0	0.47	2
1,1-Dichloroethene	ND		ug/l	1.0	0.36	2
trans-1,2-Dichloroethene	ND		ug/l	1.5	0.42	2
Trichloroethene	3.2		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	0.37	2
1,3-Dichlorobenzene	ND		ug/l	5.0	0.37	2
1,4-Dichlorobenzene	ND		ug/l	5.0	0.43	2

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-04

D

Date Collected:

Date Received:

07/20/11 11:25

Client ID: Sample Location: MW-1S

07/21/11 Not Specified

Sample Location: 1199 SUTTER AVE, BROOKLYN			e Received: d Prep:	07/21/11 Not Specified		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab		The state of the s		# 12 1	•	
Methyl tert butyl ether	ND		ug/l	2.0	0.32	2
p/m-Xylene	ND		ug/l	2.0	0.70	2
o-Xylene	ND		ug/l	2.0	0.66	2
cis-1,2-Dichloroethene	0.71	J	ug/l	1.0	0.37	2
Dibromomethane	ND		ug/l	10	0.73	2
1,2,3-Trichloropropane	ND		ug/l	10	0.86	2
Acrylonitrile	ND		ug/l	10	0.86	2
Styrene	ND		ug/l	2.0	0.72	2
Dichlorodifluoromethane	ND		ug/ł	10	0.60	2
Acetone	ND		ug/l	10	3.1	2
Carbon disulfide	ND		ug/l	10	0.60	2
2-Butanone	ND		ug/l	10	3.9	2
Vinyl acetate	ND		ug/l	10	0.62	2
4-Methyl-2-pentanone	ND		ug/l	10	0.83	2
2-Hexanone	ND		ug/l	10	1.2	2
Bromochloromethane	ND		ug/l	5.0	0.66	2
2,2-Dichloropropane	ND		ug/l	5.0	0.80	2
1,2-Dibromoethane	ND		ug/l	4.0	0.38	2
1,3-Dichloropropane	ND		ug/l	5.0	0.42	2
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Bromobenzene	ND		ug/l	5.0	0.37	2
n-Butylbenzene	ND		ug/l	1.0	0.39	2
sec-Butylbenzene	ND		ug/l	1.0	0.36	2
tert-Butylbenzene	ND		ug/l	5.0	0.60	2
o-Chlorotoluene	ND		ug/l	5.0	0.36	2
p-Chlorotoluene	ND		ug/l	5.0	0.37	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	0.65	2
Hexachlorobutadiene	ND		ug/l	1.2	0.46	2
Isopropylbenzene	ND		ug/l	1.0	0.37	2
p-Isopropyltoluene	ND		ug/l	1.0	0.38	2
Naphthalene	ND		ug/l	5.0	0.43	2
n-Propylbenzene	ND		ug/l	1.0	0.35	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	0.47	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.44	2
1,3,5-Trimethylbenzene	ND		ug/l	5.0	0.42	2
1,2,4-Trimethylbenzene	ND		ug/l	5.0	0.54	2
1,4-Diethylbenzene	ND		ug/l	4.0	0.22	2
4 = 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2						
4-Ethyltoluene	ND		ug/l	4.0	0.83	2

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Sample Location:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-04

Da

Date Collected:

07/20/11 11:25

Client ID:

MW-1S

1199 SUTTER AVE, BROOKLYN

D

Date Received: Field Prep:

07/21/11 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab					14.8	. Pilot
Ethyl ether	ND		ug/l	5.0	0.41	2
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	0.35	2

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	99		70-130	

07/20/11 16:25

Not Specified

07/21/11

Date Collected:

Date Received:

Field Prep:

Not Specified Lab Number:

Project Name: L1111021 **Project Number:** Not Specified Report Date: 07/28/11

Resuit

ND

ND

0.90

ND

ND

ND

ND

6.8

ND

0.21

1.7

ND

ND

ND

Qualifier

SAMPLE RESULTS

Lab ID: L1111021-05 Client ID: MW-1D

Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix: Water Analytical Method: 1,8260B Analytical Date: 07/26/11 15:20

Analyst: PD

Volable Creatiles by Ge/ME

Parameter

Chloroform

Methylene chloride

1,1-Dichloroethane

Carbon tetrachloride

1,2-Dichloropropane

Dibromochloromethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2-Dichloroethane

1,1,1-Trichloroethane

Bromodichloromethane

cis-1,3-Dichloropropene

1,1-Dichloropropene

Bromoform

Benzene

Toluene

Ethylbenzene

Chloromethane

Bromomethane

Vinyl chloride

Chloroethane

Trichloroethene

1,1-Dichloroethene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachioroethane

Tetrachloroethene

Chlorobenzene

Units	RL	MDL	Dilution Factor
		7.7	
	- ^	A = 4	. The state of the
ug/i	5.0	0.54	1
ug/l	0.75	0.22	1
ug/l	0.75	0.20	1
ug/l	0.50	0.16	1
ug/l	1.8	0.30	
ug/l ug/l	0.50 0.75	0.19	1
ug/l	0.75	0.26 0.18	1
	0.50	0.18	1
ug/l ug/l	2.5	0.19	
ug/l	0.50	0.16	1
ug/l	0.50	0.16	1
ug/l	0.50	0.10	1
ug/l	0.50	0.16	' 1
ug/l	0.50	0.14	1
ug/l	2.5	0.26	1
ug/l	2.0	0.25	
ug/l	0.50	0.19	1
ug/l	0.50	0.19	1
ug/l	0.75	0.23	1
ug/l	0.50	0.26	1
ug/l	2.5	0.28	1
ug/l	1.0	0.26	1
ug/l	1.0	0.22	1
4	4.0		

1.0

0.50

0.75

0.50

2.5

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.23

0.18

0.21

0.17

0.18

0.19

0.22

Project Name: Not Specified

Lab Number:

L1111021

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-05

Client ID:

MW-1D

Not Specified

Sample Location:

Project Number:

1199 SUTTER AVE, BROOKLYN

Date Collected:

07/20/11 16:25

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatilis Greathers by GO/MS - Wastiblicagh I	ara isang	Ti da			Villa Ca	P. P. Aye San See
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND	•	ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	 1
Dichlorodifluoromethane	ND	•	ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND	n'al	ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND	P9 &	ug/i	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	1
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyitoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/i	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

Not Specified

Lab Number:

L1111021

Project Name: **Project Number:**

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID: Client ID:

L1111021-05

Date Collected:

07/20/11 16:25

MW-1D

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
A HERITE CHOOK SELECTION OF THE STATE OF THE PROPERTY OF THE P	Mr. With			M W		47. W. 17. W.
Ethyl ether	ND		ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	95		70-130	

Lab Number:

L1111021

Report Date:

07/28/11

Lab ID:

L1111021-06

Client ID:

MW-2\$

Not Specified

Not Specified

Sample Location:

Project Name:

Project Number:

1199 SUTTER AVE, BROOKLYN

SAMPLE RESULTS

Matrix:

Water

Analytical Method:

1,8260B

Analytical Date:

07/26/11 15:54

Analyst:

PD

Date	Collected:
Data	Pagaired

07/20/11 10:30

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Vermon eni cto establishmen	Siffugh Lathus (*)					
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	13		ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	0.63		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.46	J	ug/l	0.75	0.21	1
Trichloroethene	0.36	J	ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/i	2.5	0.22	1

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Lab ID:

07/20/11 10:30

Client ID:

L1111021-06

Date Collected: Date Received:

07/21/11

Sample Location:

MW-2S 1199 SUTTER AVE, BROOKLYN

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
volicilie opprantessimes (Mes _{te} Westes) etgin Lab						· 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图 · 图
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	0.20	J	ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/i	2.5	0.33	1
Hexachlorobutadiene	NĎ		ug/l	0.60	0.23	1
Isopropylbenzene	ND	•	ug/l	0.50	0.19	1
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

SAMPLE RESULTS

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-06

......

Date Collected:

07/20/11 10:30

Client ID:

MW-2S

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Vojatije Grganjes by GC/MS - Westboroti	Micabook 海泉	o ne ster a				
Ethyl ether	ND		ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	.1.

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	102		70-130	

Lab Number:

L1111021

Report Date:

07/28/11

Project Number: Not Specified

SAMPLE RESULTS

Lab ID:

L1111021-07

Client ID:

MW-2D

Not Specified

Sample Location:

Project Name:

1199 SUTTER AVE, BROOKLYN

Matrix:

Water

Analytical Method:

1,8260B

Analytical Date:

07/26/11 16:29

Analyst:

PD

Date Collected:

07/20/11 14:55

Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Valletie Organica by SIO/AS - West	Krayon Leb		60.			
Methylene chloride	ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	<u> </u>
Chloroform	1.1		ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	 1
Dibromochloromethane	ND		ug/l	0.50	0.19	<u>.</u> 1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	9.6		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	ND		ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.40	J	ug/l	0.75	0.21	1
Trichloroethene	0.95		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Project Name: Not Specified

ecified Lab Number:

Report Date:

L1111021 07/28/11

Project Number: Not Specified

SAMPLE RESULTS

Date Collected:

07/20/11 14:55

Lab ID: Client ID:

L1111021-07 MW-2D

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifler	Units	RL	MDL	Dilution Factor
Volation Stylerics by GC/PIC MUSEUSON	oughaste (
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/l	5.0	1.6	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND	• •	ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND	84	ug/l	0.50	0.20	 1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2,5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-07

Date Collected:

07/20/11 14:55

Client ID:

MW-2D

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Material and security of the second	entroleus (Allen Allen A					
Ethyl ether	ND		ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	98		70-130	

07/20/11 08:36

Not Specified Lab Number:

Project Name: L1111021 Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-08 Date Collected: Client ID: MW-3S Date Received:

07/21/11 Sample Location: 1199 SUTTER AVE, BROOKLYN Field Prep: Not Specified

Matrix: Water Analytical Method: 1,8260B Analytical Date: 07/26/11 17:03

Analyst: PD

Methylene chloride I,1-Dichloroethane Chloroform Carbon tetrachloride I,2-Dichloropropane Dibromochloromethane I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene Frichlorofluoromethane	ND ND 14 ND ND ND ND		ug/l ug/l ug/l ug/l ug/l	5.0 0.75 0.75 0.50	0.54 0.22 0.20 0.16	1 1 1
I,1-Dichloroethane Chloroform Carbon tetrachloride I,2-Dichloropropane Dibromochloromethane I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	ND 14 ND ND ND		ug/l ug/l ug/l	0.75 0.75 0.50	0.22 0.20	1
Chloroform Carbon tetrachloride I,2-Dichloropropane Dibromochloromethane I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	14 ND ND ND ND		ug/l ug/l	0.75 0.50	0.20	1
Carbon tetrachloride I,2-Dichloropropane Dibromochloromethane I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	ND ND ND		ug/l	0.50		4
I ,2-Dichloropropane Dibromochloromethane I ,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	ND ND ND		. =		0.16	ı
Dibromochloromethane I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	ND ND		ug/l	4 ^		1
I,1,2-Trichloroethane Fetrachloroethene Chlorobenzene	ND			1.8	0.30	1
Tetrachloroethene Chlorobenzene			ug/i	0.50	0.19	1
Chlorobenzene	0.73		ug/l	0.75	0.26	1
			ug/l	0.50	0.18	1
Frichlorofluoromethane	ND		ug/l	0.50	0.19	1
TICHOTOHOO OTHERNOR	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
i,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	1.1		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND		ug/l	2.0	0.25	1
I,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	0.29	J	ug/l	0.75	0.23	1
Ethylbenzene	ND		ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
/inyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
rans-1,2-Dichloroethene	0.65	J	ug/l	0.75	0.21	1
Trichloroethene	ND		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene		· · · · · · · · · · · · · · · · · · ·				

Project Name: Not Specified

Lab Number:

L1111021

Not Specified

Report Date:

07/28/11

Lab ID:

L1111021-08

Date Collected:

07/20/11 08:36

Client ID:

MW-3S

Date Received:

07/21/11

Sample Location:

Project Number:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
p/m-Xylene	ND		ug/l	1.0	0.35	1
o-Xylene	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
Acetone	ND		ug/i	5.0	1.6	1
Carbon disulfide	ND		ug/i	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.58	1
Bromochloromethane	ND		ug/l	2.5	0.33	1
2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.18	1
n-Butylbenzene	ND		ug/l	0.50	0.20	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.30	1
o-Chlorotoluene	ND		ug/l	2.5	0.18	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
Hexachlorobutadiene	ND		ug/l	0.60	0.23	1
Isopropyibenzene	ND		ug/l	0.50	0.19	1
p-Isopropyttoluene	ND		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
1,2,4-Trimethylbenzene	ND .		ug/l	2.5	0.27	1
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
4-Ethyltoluene	ND		ug/l	2.0	0.42	. 1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

SAMPLE RESULTS

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-08

Date Collected:

07/20/11 08:36

Client ID:

MW-3S

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result Qu	allfier Units	RL	MDL	Dilution Factor
ACTURIES ENGINEERS OF CLERKING SAN LOSS	Alched As Al	A PUNISH AND			
Ethyl ether	ND	ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.17	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	100		70-130	

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Report Date:

07/28/11

Not Specified

SAMPLE RESULTS

Lab ID:

L1111021-09

Client ID:

MW-3D

Sample Location:

1199 SUTTER AVE, BROOKLYN

Matrix:

Water

Analytical Method:

1,8260B

Analytical Date:

07/26/11 17:38

Analyst:

PD

07/20/11 14:10 Date Collected: Date Received:

07/21/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volume (Including by GC/MS Westborough	Leb			ALT.		
Methylene chloride	, ND		ug/l	5.0	0.54	1
1,1-Dichloroethane	ND		ug/l	0.75	0.22	1
Chloroform	1.8		ug/l	0.75	0.20	1
Carbon tetrachloride	ND		ug/l	0.50	0.16	1
1,2-Dichloropropane	ND		ug/l	1.8	0.30	1
Dibromochloromethane	ND		ug/l	0.50	0.19	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26	1
Tetrachloroethene	20		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.19	1
Trichlorofluoromethane	ND		ug/l	2.5	0.27	1
1,2-Dichloroethane	ND		ug/l	0.50	0.16	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.26	1
Bromoform	ND.		ug/l	2.0	0.25	1
1,1,2,2-Tetrachioroethane	ND		ug/l	0.50	0.19	1
Benzene	ND		ug/l	0.50	0.19	1
Toluene	0.27	J	ug/l	0.75	0.23	1
Ethylbenzene	ND	•	ug/l	0.50	0.26	1
Chloromethane	ND		ug/l	2.5	0.28	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.22	1
Chloroethane	ND		ug/l	1.0	0.23	1
1,1-Dichloroethene	ND		ug/l	0.50	0.18	1
trans-1,2-Dichloroethene	0.51	J	ug/i	0.75	0.21	1
Trichloroethene	1.1		ug/l	0.50	0.17	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22	1

Project Name:

Not Specified

Lab Number:

SAMPLE RESULTS

Not Specified

L1111021

Report Date:

07/28/11

Lab ID:

L1111021-09

Date Collected:

07/20/11 14:10

Client ID:

MW-3D

Date Received:

07/21/11

Sample Location:

Project Number:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Methyl terh butyl ether ND ug/l 1.0 0.16 p/m-Xylene ND ug/l 1.0 0.35 c-Xylene ND ug/l 1.0 0.33 ci-1,2-Dichloroethene 0.34 J ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.38 1,23-Trichloropropane ND ug/l 5.0 0.43 Acyrjonitrile ND ug/l 5.0 0.43 Styrene ND ug/l 5.0 0.43 Styrene ND ug/l 5.0 0.36 Dichlorodiflucromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 0.30 Cerbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Mothyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.	Parameter	Result	Qualifler	Units	RL	MDL	Dilution Factor
p/m-Xylene ND ug/l 1.0 0.35 c-Xylene ND ug/l 1.0 0.33 cis-1,2-Dichloroethene 0.34 J ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,2,3-Trichloropropane ND ug/l 5.0 0.43 Acrylontifile ND ug/l 5.0 0.43 Styrene ND ug/l 5.0 0.30 Dichlorodifluoromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 0.30 Acetonidilluffe ND ug/l 5.0 0.30 Acetonidilluffe ND ug/l 5.0 0.31 Cerbon disulfide ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 2.5	Volentic augustate (1994) Saulis a vestilonot	City in the second					
o-Xylene ND ug/l 1.0 0.33 cis-1_2-Dichloroethene 0.34 J ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.38 1_23-Trichloropropane ND ug/l 5.0 0.43 Acylonitrile ND ug/l 5.0 0.43 Styrone ND ug/l 5.0 0.30 Dichlorodifluromethane ND ug/l 5.0 0.30 Acatone ND ug/l 5.0 0.30 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentamone ND ug/l 5.0 0.31 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.42 1-2-bibromoethane ND ug/l 2.5 <t< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td>0.16</td><td>1</td></t<>	Methyl tert butyl ether	ND		ug/l	1.0	0.16	1
cis-1,2-Dichloroethene 0.34 J ugl 0.50 0.19 Dibromoethane ND ugl 5.0 0.36 1,23-Trichloropropane ND ugl 5.0 0.43 Acryfonktrile ND ugl 5.0 0.43 Styrene ND ugl 5.0 0.30 Acetone ND ugl 5.0 0.30 Acetone ND ugl 5.0 0.30 2-Butanone ND ugl 5.0 0.30 2-Butanone ND ugl 5.0 0.31 4-Methyl-2-pentanone ND ugl 5.0 0.42 2-Hexanone ND ugl 2.5 0.33 2-Hexanone ND ugl 2.5 0.33 2-Hexanone ND ugl 2.5 0.40 1-12-Dibromoethane ND ugl 2.5 0.40 1-2-Dibromoethane ND ugl 2.5 0.16	p/m-Xylene	ND		ug/l	1.0	0.35	1
Dibromomethane ND ug/l 5.0 0.36 1,2,3-Trichloropropane ND ug/l 5.0 0.43 Acrylonitrile ND ug/l 5.0 0.43 Styrene ND ug/l 1.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 0.30 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.32 2-Hexanone ND ug/l 5.0 0.33 Bromothoromethane ND ug/l 2.5 0.33 1,2-Dibromothane ND ug/l 2.5 <td< td=""><td>o-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td>0.33</td><td>1</td></td<>	o-Xylene	ND		ug/l	1.0	0.33	1
1.2.3-Trichloropropane ND ugfl 5.0 0.43 Acrylonitrile ND ugfl 5.0 0.43 Styrene ND ugfl 1.0 0.36 Dichlorodfiluoromethane ND ugfl 5.0 0.30 Acetone ND ugfl 5.0 0.30 Carbon disulfide ND ugfl 5.0 0.30 2-Butanone ND ugfl 5.0 0.30 2-Butanone ND ugfl 5.0 0.31 4-Methyl-2-pentanone ND ugfl 5.0 0.31 4-Methyl-2-pentanone ND ugfl 5.0 0.31 4-Methyl-2-pentanone ND ugfl 5.0 0.42 2-Hexanone ND ugfl 5.0 0.58 Bromochloromethane ND ugfl 2.5 0.33 1,2-Distromesthane ND ugfl 2.5 0.40 1,3-Dichloropropane ND ugfl 0.50	cis-1,2-Dichloroethene	0.34	J	ug/l	0.50	0.19	1
Actylonitrile ND ug/l 5.0 0.43 Styrene ND ug/l 1.0 0.36 Dichiorodifluoromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.33 1,2-Dichromoethane ND ug/l 2.5 0.21 1,3-Dichloropropane ND ug/l 2.5 0.21 Bromocherace ND ug/l 2.5 0.18 Bromotherace ND ug/l 0.50 0.18 <	Dibromomethane	ND		ug/l	5.0	0.36	1
Styrene ND ug/l 1.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 0.30 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 2.5 0.33 Bromochloromethane ND ug/l 2.5 0.33 Bromochloromethane ND ug/l 2.5 0.33 12-Dichloropropane ND ug/l 2.5 0.40 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.21 Bromobenzene ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.20	1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	1
Dichlorodifluoromethane ND ug/l 5.0 0.30 Acetone ND ug/l 5.0 1.6 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 Vilval acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,1-1,2-Tetrachloropthane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloropthane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 2.5	Acrylonitrile	ND		ug/l	5.0	0.43	1
Acetone ND ug/l 5.0 1.6 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 Viryl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 2.5 0.33 Bromochloromethane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloropethane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloropethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 tetr-Butylbenzene ND ug/l 0.50	Styrene	ND		ug/i	1.0	0.36	1
Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2-Pokinforopropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 tetr-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 2.5 0.38 tetr-Butylbenzene ND ug/l	Dichlorodifluoromethane	ND		ug/l	5.0	0.30	1
2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 tetr-Gutybenzene ND ug/l 0.50 0.18 tetr-Gutybenzene ND ug/l 2.5 0.18 tetr-Gutybenzene ND ug/l 2.5 <td< td=""><td>Acetone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.6</td><td>1</td></td<>	Acetone	ND		ug/l	5.0	1.6	1
Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.5 0.40 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.18 tert-Butylbenzene ND ug/l 2.5	Carbon disulfide	ND		ug/l	5.0	0.30	1
4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.5 0.40 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 Institution experience ND ug/l 0.50 0.18 Institution experience ND ug/l 0.50 0.18 Inter-Butylbenzene ND ug/l 2.5 0.30 O-Chlorotoluene ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 0.58 Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tetr-Butylbenzene ND ug/l 0.50 0.18 tetr-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 tetr-Butylbenzene ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l	Vinyl acetate	ND		ug/l	5.0	0.31	1
Bromochloromethane ND ug/l 2.5 0.33 2,2-Dichloropropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.18 n-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 Hexachlorobutadiene ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l	4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2.2-Dichloropropane ND ug/l 2.5 0.40 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 tert-Butylbenzene ND ug/l 2.5 0.18 tert-Butylbenzene ND ug/l 2.5 0.23 laser-Butylbenzene ND ug/l	2-Hexanone	ND		ug/l	5.0	0.58	1
1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 2.5 0.18 Bromobenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.18 Hexachlorobutadiene ND ug/l 0.50 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l </td <td>Bromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.33</td> <td>1</td>	Bromochloromethane	ND		ug/l	2.5	0.33	1
1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 2.5 0.18 n-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylteluzene ND ug/l 0.50 0.19 P-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug	2,2-Dichloropropane	ND		ug/l	2.5	0.40	1
1,1,2-Tetrachloroethane ND ug/l 0.50 0.16 Bromobenzene ND ug/l 2.5 0.18 n-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 p-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 tert-Butylbenzene ND ug/l 0.60 0.23 Hexachlorobutadiene ND ug/l 0.50 0.19 Hexachlorobutadiene ND ug/l 0.50 0.19 Naphthalene ND ug/l 0.50 0.19 Naphthalene ND ug/l 0.50	1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
Bromobenzene ND ug/l 2.5 0.18 n-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 2.5 0.23 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.23 1,3,5-Trimethylbenzene ND ug/l	1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
n-Butylbenzene ND ug/l 0.50 0.20 sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.16</td> <td>1</td>	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
sec-Butylbenzene ND ug/l 0.50 0.18 tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trichtylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND <t< td=""><td>Bromobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.18</td><td>1</td></t<>	Bromobenzene	ND		ug/l	2.5	0.18	1
tert-Butylbenzene ND ug/l 2.5 0.30 o-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 2.5 0.23 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.5 0.27	n-Butylbenzene	ND		ug/l	0.50	0.20	1
co-Chlorotoluene ND ug/l 2.5 0.18 p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 P-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.23 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	sec-Butylbenzene	ND		ug/l	0.50	0.18	1
p-Chlorotoluene ND ug/l 2.5 0.18 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.5 0.27	tert-Butylbenzene	ND		ug/l	2.5	0.30	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.33 Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.5 0.27	o-Chlorotoluene	ND		ug/l	2.5	0.18	1
Hexachlorobutadiene ND ug/l 0.60 0.23 Isopropylbenzene ND ug/l 0.50 0.19 p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.5 0.27	p-Chlorotoluene	ND		ug/l	2.5	0.18	1
Isopropylbenzene ND ug/l 0.50 0.19	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	1
p-Isopropyltoluene ND ug/l 0.50 0.19 Naphthalene ND ug/l 2.5 0.22 n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	Hexachlorobutadiene	ND	•	ug/l	0.60	0.23	1
p-Isopropyltoluene ND ug/I 0.50 0.19 Naphthalene ND ug/I 2.5 0.22 n-Propylbenzene ND ug/I 0.50 0.17 1,2,3-Trichlorobenzene ND ug/I 2.5 0.23 1,2,4-Trichlorobenzene ND ug/I 2.5 0.22 1,3,5-Trimethylbenzene ND ug/I 2.5 0.21 1,2,4-Trimethylbenzene ND ug/I 2.5 0.27 1,4-Diethylbenzene ND ug/I 2.0 0.11	Isopropylbenzene	ND		ug/l	0.50	0.19	1
n-Propylbenzene ND ug/l 0.50 0.17 1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11		ND			0.50	0.19	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.23 1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	Naphthalene	ND		ug/l	2.5	0.22	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.22 1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	n-Propylbenzene	ND		ug/l	0.50	0.17	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.21 1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.27 1,4-Diethylbenzene ND ug/l 2.0 0.11	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1
1,4-Diethylbenzene ND ug/l 2.0 0.11	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	1
e de la companya de	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	1
4-Ethyltoluene ND ug/l 2.0 0.42	1,4-Diethylbenzene	ND		ug/l	2.0	0.11	1
and the second control of the second control	4-Ethyltoluene	ND		ug/l	2.0	0.42	1
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.10	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	1

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Sample Location:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID: Client ID: L1111021-09

MW-3D 1199 SUTTER AVE, BROOKLYN Date Collected:

Field Prep:

07/20/11 14:10

Date Received:

07/21/11 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Clean Party Se/MS : Wealb	orough Lab. 198				化物物	Newsper III
Ethyl ether	ND		ug/l	2.5	0.20	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	106		70-130	
Dibromofluoromethane	99		70-130	

Not Specified Lab Number:

L1111021

Project Number: Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-10

Client ID: Sample Location: MW-4

1199 SUTTER AVE, BROOKLYN

D2

Matrix: Analytical Method:

Project Name:

Water

Analytical Date:

1,8260B 07/27/11 10:07

Analyst:

PD

Date Collected: Date Received:

07/20/11 12:50 07/21/11

Field Prep:

Parameter	•	Result	Qualifier	Units	RL	MDL	Dilution Factor
	aganics by SOMS Presiboro	oughi di K				i i ji	
Tetrachloroethene		470		ug/l	5.0	1.8	10
	Surrogate	% Recovery	Qualifier	Acceptance Criteria			
	1,2-Dichloroethane-d4	103		70-130			
	Toluene-d8	103		70-130			
	4-Bromofluorobenzene	109		70-130			
	Dibromofluoromethane	97		70-130			

07/20/11 12:50

Not Specified

07/21/11

Date Collected:

Date Received:

Field Prep:

Not Specified Lab Number:

L1111021 **Project Number:** Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-10 D

Client ID: MW-4 Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix: Water Analytical Method: 1,8260B Analytical Date: 07/26/11 18:12

Analyst: PD

Project Name:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Granics by GCANS (AVEStboro)	ught kein ka					
Methylene chloride	ND		ug/l	12	1.3	2.5
1,1-Dichloroethane	ND		ug/l	1.9	0.54	2.5
Chloroform	15		ug/l	1.9	0.49	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.41	2.5
1,2-Dichloropropane	ND		ug/l	4.4	0.74	2.5
Dibromochloromethane	ND		ug/l	1.2	0.47	2.5
1,1,2-Trichloroethane	ND		ug/l	1.9	0.65	2.5
Tetrachloroethene	440	E	ug/l	1,2	0.45	2.5
Chlorobenzene	ND		ug/l	1.2	0.48	2.5
Trichlorofluoromethane	ND		ug/l	6.2	0.67	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.40	2.5
1,1,1-Trichloroethane	ND		ug/l	1.2	0.40	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	0.64	2.5
Bromoform	ND		ug/l	5.0	0.62	2.5
1,1,2,2-Tetrachioroethane	ND		ug/l	1.2	0.48	2.5
Benzene	ND		ug/l	1.2	0.48	2.5
Toluene	ND		ug/l	1.9	0.57	2.5
Ethylbenzene	ND		ug/l	1.2	0.66	2.5
Chloromethane	ND		ug/l	6.2	0.70	2.5
Bromomethane	ND		ug/l	2.5	0.64	2.5
Vinyl chloride	ND		ug/l	2.5	0.56	2.5
Chloroethane	ND ND		ug/l	2.5	0.58	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.45	2.5
trans-1,2-Dichloroethene	0.67	J	ug/l	1.9	0.53	2.5
Trichloroethene	14		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,3-Dichlorobenzene	. ND		ug/l	6.2	0.46	2.5
			_			

ND

2.5

0.54

6.2

ug/l

1,4-Dichlorobenzene

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-10

D

Date Collected:

07/20/11 12:50

Client ID:

MW-4

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifler	Units	RL	MDL	Dilution Factor
Child Stabilizative Stability (Verticalisation)						
Methyl tert butyl ether	ND		ug/l	2.5	0.40	2.5
p/m-Xylene	ND		ug/l	2.5	0.87	2.5
o-Xylene	ND		ug/l	2.5	0.82	2.5
cis-1,2-Dichloroethene	4.3		ug/l	1.2	0.47	2.5
Dibromomethane	ND		ug/l	12	0.91	2.5
1,2,3-Trichloropropane	ND		ug/l	12	1.1	2.5
Acrylonitrile	ND		ug/l	12	1.1	2.5
Styrene	ND		ug/l	2.5	0.90	2.5
Dichlorodifluoromethane	ND		ug/l	12	0.75	2.5
Acetone	ND		ug/l	12	3.9	2.5
Carbon disulfide	ND		ug/l	12	0.75	2.5
2-Butanone	ND		ug/l	12	4.8	2.5
Vinyl acetate	ND		ug/l	12	0.78	2.5
4-Methyl-2-pentanone	ND		ug/l	12	1.0	2.5
2-Hexanone	ND		ug/l	12	1.4	2.5
Bromochloromethane	ND		ug/l	6.2	0.82	2.5
2,2-Dichloropropane	ND		ug/l	6.2	0.99	2.5
1,2-Dibromoethane	ND		ug/l	5.0	0.48	2.5
1,3-Dichloropropane	ND		ug/l	6.2	0.53	2.5
1,1,1,2-Tetrachloroethane	ND		ug/l	1.2	0.41	2.5
Bromobenzene	ND		ug/l	6.2	0.46	2.5
n-Butylbenzene	ND		ug/l	1.2	0.49	2.5
sec-Butylbenzene	ND		ug/l	1.2	0.45	2.5
tert-Butylbenzene	ND		ug/l	6.2	0.75	2.5
o-Chlorotoluene	ND		ug/l	6.2	0.46	2.5
p-Chlorotoluene	ND		ug/l	6.2	0.46	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	0.82	2.5
Hexachlorobutadiene	ND		ug/l	1.5	0.58	2.5
Isopropylbenzene	ND		ug/l	1.2	0.47	2.5
p-isopropyltoluene	ND		ug/l	1.2	0.47	2.5
Naphthalene	ND		ug/l	6.2	0.54	2.5
n-Propylbenzene	ND		ug/l	1.2	0.43	2.5
1,2,3-Trichlorobenzene	ND 		ug/l	6.2	0.58	2.5
1,2,4-Trichlorobenzene	ND		ug/l	6.2	0.55	2.5
1,3,5-Trimethylbenzene	ND		ug/l	6.2	0.53	2.5
1,2,4-Trimethylbenzene	ND		ug/l	6.2	0.67	2.5
1,4-Diethylbenzene	ND		ug/l	5.0	0.27	2.5
4-Ethyltoluene	ND		ug/l	5.0	1.0	2.5
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	0.24	2.5

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID: Client ID:

L1111021-10

D

Date Collected:

C

07/20/11 12:50 07/21/11

Sample Location:

MW-4

1199 SUTTER AVE, BROOKLYN

Date Received: Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile State files by GC/MS-: We	siredeagh Lab 📜 🙀 🔆		2,377			
Ethyl ether	ND		ug/l	6.2	0.51	2.5
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	0.43	2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	107		70-130	
Dibromofluoromethane	97		70-130	

07/20/11 09:35

Not Specified

07/21/11

Date Collected:

Date Received:

Field Prep:

Project Name: Not Specified Lab Number: L1111021

Project Number: Not Specified Report Date: 07/28/11

SAMPLE RESULTS

Lab ID: L1111021-11 D

Client ID: MW-5
Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix: Water
Analytical Method: 1,8260B
Analytical Date: 07/27/11 10:41

Analyst: PD

Parameter	Result	Qualifler	Units	RL	MDL	Dilution Factor
X dejije Presijtesby GC/ME sWeistboroudhiiLa	b			J. 125 (F)		
Methylene chloride	ND		ug/l	12	1.3	2.5
1,1-Dichloroethane	ND		ug/l	1.9	0.54	2.5
Chloroform	29		ug/l	1.9	0.49	2.5
Carbon tetrachloride	ND		ug/l	1.2	0.41	2.5
1,2-Dichloropropane	ND		ug/l	4.4	0.74	2.5
Dibromochloromethane	ND		ug/l	1.2	0.47	2.5
1,1,2-Trichloroethane	ND		ug/l	1.9	0.65	2.5
Tetrachloroethene	98		ug/l	1.2	0.45	2.5
Chlorobenzene	ND		ug/l	1.2	0.48	2.5
Trichlorofluoromethane	ND		ug/l	6.2	0.67	2.5
1,2-Dichloroethane	ND		ug/l	1.2	0.40	2.5
1,1,1-Trichloroethane	ND		ug/l	1.2	0.40	2.5
Bromodichloromethane	ND		ug/l	1.2	0.48	2.5
trans-1,3-Dichloropropene	ND		ug/l	1.2	0.41	2.5
cis-1,3-Dichloropropene	ND		ug/l	1.2	0.36	2.5
1,1-Dichloropropene	ND		ug/l	6.2	0.64	2.5
Bromoform	ND		ug/l	5.0	0.62	2.5
1,1,2,2-Tetrachloroethane	ND		ug/l	1.2	0.48	2.5
Benzene	ND		ug/l	1.2	0.48	2.5
Toluene	ND		ug/l	1.9	0.57	2.5
Ethylbenzene	ND		ug/l	1.2	0.66	2.5
Chloromethane	ND		ug/l	6.2	0.70	2.5
Bromomethane	ND		ug/l	2.5	0.64	2.5
Vinyl chloride	0.70	J	ug/l	2.5	0.56	2.5
Chloroethane	ND		ug/l	2.5	0.58	2.5
1,1-Dichloroethene	ND		ug/l	1.2	0.45	2.5
trans-1,2-Dichloroethene	0.60	J	ug/l	1.9	0.53	2.5
Trichloroethene	5.2		ug/l	1.2	0.44	2.5
1,2-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,3-Dichlorobenzene	ND		ug/l	6.2	0.46	2.5
1,4-Dichlorobenzene	ND		ug/l	6.2	0.54	2.5

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-11

D

Date Collected:

07/20/11 09:35

Client ID:

MW-5

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Votable Organics by GC/MS - Westbo	rough Lab					
Methyl tert butyl ether	ND		ug/l	2.5	0.40	2.5
p/m-Xylene	ND		ug/l	2.5	0.87	2.5
o-Xylene	ND		ug/l	2.5	0.82	2.5
cis-1,2-Dichloroethene	9.8		ug/l	1.2	0.47	2.5
Dibromomethane	ND		ug/l	12	0.91	2.5
1,2,3-Trichloropropane	ND		ug/l	12	1.1	2.5
Acrylonitrile	ND		ug/l	12	1.1	2.5
Styrene	ND		ug/l	2.5	0.90	2.5
Dichlorodifluoromethane	ND		ug/l	12	0.75	2.5
Acetone	ND		ug/l	12	3.9	2.5
Carbon disulfide	ND		ug/l	12	0.75	2.5
2-Butanone	ND		ug/l	12	4.8	2.5
Vinyl acetate	ND		ug/l	12	0.78	2.5
4-Methyl-2-pentanone	ND		ug/l	12	1.0	2.5
2-Hexanone	ND		ug/l	12	1.4	2.5
Bromochloromethane	ND		ug/l	6.2	0.82	2.5
2,2-Dichloropropane	ND		ug/l	6.2	0.99	2.5
1,2-Dibromoethane	ND		ug/l	5.0	0.48	2.5
1,3-Dichloropropane	ND		ug/l	6.2	0.53	2.5
1,1,1,2-Tetrachloroethane	ND		ug/l	1.2	0.41	2.5
Bromobenzene	ND		ug/l	6.2	0.46	2.5
n-Butylbenzene	ND		ug/l	1.2	0.49	2.5
sec-Butylbenzene	ND		ug/l	1.2	0.45	2.5
tert-Butylbenzene	ND		ug/l	6.2	0.75	2.5
o-Chlorotoluene	ND		ug/l	6.2	0.46	2.5
p-Chlorotoluene	ND		ug/l	6.2	0.46	2.5
1,2-Dibromo-3-chloropropane	ND		ug/l	6.2	0.82	2.5
Hexachlorobutadiene	ND		ug/l	1.5	0.58	2.5
Isopropylbenzene	ND		ug/l	1.2	0.47	2.5
p-Isopropyltoluene	ND		ug/l	1.2	0.47	2.5
Naphthalene	ND		ug/l	6.2	0.54	2.5
n-Propylbenzene	ND		ug/l	1.2	0.43	2.5
1,2,3-Trichlorobenzene	ND		ug/l	6.2	0.58	2.5
1,2,4-Trichlorobenzene	ND		ug/l	6.2	0.55	2.5
1,3,5-Trimethylbenzene	ND		ug/l	6.2	0.53	2.5
1,2,4-Trimethylbenzene	ND		ug/l	6.2	0.67	2.5
1,4-Diethylbenzene	ND		ug/l	5.0	0.27	2.5
4-Ethyltoluene	ND		ug/l	5.0	1.0	2.5
1,2,4,5-Tetramethylbenzene	ND		ug/l	5.0	0.24	2.5

Project Name: Not Specified

Lab Number:

L1111021

Project Number:

Sample Location:

Not Specified

Report Date:

07/28/11

07/21/11

SAMPLE RESULTS

Lab ID:

L1111021-11

Date Collected: Date Received: 07/20/11 09:35

Client ID:

MW-5

1199 SUTTER AVE, BROOKLYN

D

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Voladie za sa się zwieskie swiedko o			1614.446.25			
Ethyl ether	ND		ug/l	6.2	0.51	2.5
trans-1,4-Dichloro-2-butene	ND		ug/l	6.2	0.43	2.5

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	100		70-130	

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date: Analyst:

07/26/11 09:38

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS .	Westborough La	ab for sample.	s).404-10	Batch: WG48	1142-8 17 (44-62)
Methylene chloride	ND		ug/l	5.0	0.54
1,1-Dichloroethane	ND		ug/l	0.75	0.22
Chloroform	ND		ug/l	0.75	0.20
Carbon tetrachloride	ND		ug/l	0.50	0.16
1,2-Dichloropropane	ND		ug/l	1.8	0.30
Dibromochloromethane	ND		ug/l	0.50	0.19
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	0.50	0.19
Trichlorofluoromethane	ND		ug/l	2.5	0.27
1,2-Dichloroethane	ND		ug/l	0.50	0,16
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.26
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19
Benzene	ND		ug/l	0.50	0.19
Toluene	ND		ug/l	0.75	0.23
Ethylbenzene	ND		ug/l	0.50	0.26
Chloromethane	ND		ug/l	2.5	0.28
Bromomethane	ND		ug/l	1.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.22
Chloroethane	ND		ug/l	1.0	0.23
1,1-Dichloroethene	ND		ug/l	0.50	0.18
trans-1,2-Dichloroethene	ND	•	ug/l	0.75	0.21
Trichloroethene	ND		ug/l	0.50	0.17
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

07/26/11 09:38

Analyst:

arameter	Result	Qualifier	Units	RL	MDL	
daile Organice by GC/M9 - W	estbolough Le	b for sample	87° 0.840°	Barch MG48	11423	
Methyl tert butyl ether	ND		ug/l	1.0	0.16	
p/m-Xylene	ND		ug/l	1.0	0.35	
o-Xylene	ND		ug/l	1.0	0.33	
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	
Dibromomethane	ND		ug/l	5.0	0.36	
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43	
Acrylonitrile	ND		ug/l	5.0	0.43	
Styrene	ND		ug/l	1.0	0.36	
Dichlorodifluoromethane	ND		ug/l	5.0	0.30	
Acetone	ND		ug/l	5.0	1.6	
Carbon disulfide	ND		ug/l	5.0	0.30	
2-Butanone	ND		ug/l	5.0	1.9	
Vinyl acetate	ND		ug/l	5.0	0.31	
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	
2-Hexanone	ND		ug/l	5.0	0.58	
Bromochloromethane	ND		ug/l	2.5	0.33	
2,2-Dichloropropane	ND		ug/l	2.5	0.40	
1,2-Dibromoethane	ND		ug/l	2.0	0.19	
1,3-Dichloropropane	ND		ug/l	2.5	0.21	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	
Bromobenzene	ND		ug/l	2.5	0.18	
n-Butylbenzene	ND		ug/l	0.50	0.20	
sec-Butylbenzene	ND		ug/l	0.50	0.18	
tert-Butylbenzene	ND		ug/l	2.5	0.30	
o-Chlorotoluene	ND		ug/l	2.5	0.18	
p-Chlorotoluene	ND		ug/l	2.5	0.18	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.33	
Hexachlorobutadiene	ND		ug/l	0.60	0.23	
Isopropylbenzene	ND		ug/l	0.50	0.19	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	
Naphthalene	ND		ug/l	2.5	0.22	

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/26/11 09:38

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL	
/olatile Org <mark>anita by</mark> GC/MS - y	Veste orong hit		e/www.	Batch! WG48	i i i i i i i i i i i i i i i i i i i	
n-Propylbenzene	ND		ug/l	0.50	0.17	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27	
1,4-Diethylbenzene	ND		ug/l	2.0	0.11	
4-Ethyltoluene	ND		ug/l	2.0	0.42	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.10	
Ethyl ether	ND		ug/l	2.5	0.20	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	104		70-130		
Toluene-d8	104		70-130		
4-Bromofluorobenzene	112		70-130		
Dibromofluoromethane	95		70-130		

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/27/11 09:33

Analyst:

rameter	Result	Qualifier	Units	RL	MDL
ifatile Organics by GC/MS -	Vestorkuja D		6): 10-11-	Batch WG48	11,142-6
Methylene chloride	ND		ug/l	5.0	0.54
1,1-Dichloroethane	ND		ug/l	0.75	0.22
Chloroform	ND		ug/l	0.75	0.20
Carbon tetrachloride	ND		ug/l	0.50	0.16
1,2-Dichloropropane	ND		ug/l	1.8	0.30
Dibromochloromethane	ND		ug/l	0.50	0.19
1,1,2-Trichloroethane	ND		ug/l	0.75	0.26
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	0.50	0.19
Trichlorofluoromethane	ND	- 4	ug/l	2.5	0.27
1,2-Dichloroethane	ND		ug/l	0.50	0.16
1,1,1-Trichioroethane	ND		ug/l	0.50	0.16
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.26
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.19
Benzene	ND		ug/l	0.50	0.19
Toluene	ND		ug/l	0.75	0.23
Ethylbenzene	ND		ug/l	0.50	0.26
Chloromethane	ND		ug/l	2.5	0.28
Bromomethane	ND		ug/l	1.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.22
Chloroethane	ND		ug/l	1.0	0.23
1,1-Dichloroethene	ND		ug/l	0.50	0.18
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.21
Trichloroethene	ND		ug/l	0.50	0.17
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19
1,4-Dichlorobenzene	ND		ug/l	2.5	0.22

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/27/11 09:33

Analyst:

arameter	Result	Qualifier	Units	RL	MDL
olatiere of the by SC/MS - W	(estronough Le	<u>ព្រំព្រឹក្សា ព្រះ</u> ព្រ	s): 10-11	Balch: WG48	1142,6 1 1 17,7
Methyl tert butyl ether	ND		ug/l	1.0	0.16
p/m-Xylene	ND		ug/l	1.0	0.35
o-Xylene	ND		ug/l	1.0	0.33
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19
Dibromomethane	ND		ug/l	5.0	0.36
1,2,3-Trichloropropane	ND		ug/l	5.0	0.43
Acrylonitrile	ND		ug/l	5.0	0.43
Styrene	ND		ug/l	1.0	0.36
Dichlorodifluoromethane	ND		ug/l	5.0	0.30
Acetone	ND		ug/l	5.0	1.6
Carbon disulfide	ND		ug/l	5.0	0.30
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	0.31
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42
2-Hexanone	ND		ug/l	5.0	0.58
Bromochloromethane	ND		ug/l	2.5	0.33
2,2-Dichloropropane	ND		ug/l	2.5	0.40
1,2-Dibromoethane	ND		ug/l	2.0	0.19
1,3-Dichloropropane	ND		ug/l	2.5	0.21
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0,16
Bromobenzene	ND		ug/l	2.5	0.18
n-Butylbenzene	ND		ug/l	0.50	0.20
sec-Butylbenzene	ND		ug/l	0.50	0.18
tert-Butylbenzene	ND		ug/l	2.5	0.30
o-Chlorotoluene	ND		ug/l	2.5	0.18
p-Chlorotoluene	ND		ug/l	2.5	0.18
1,2-Dibromo-3-chloropropane	ND	1111	ug/l	2.5	0.33
Hexachlorobutadiene	ND		ug/l	0.60	0.23
Isopropylbenzene	ND		ug/l	0.50	0.19
p-Isopropyltoluene	ND		ug/l	0.50	0.19
Naphthalene	ND		ug/l	2.5	0.22

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/27/11 09:33

Analyst:

Parameter	Result	Qualifier	Units	RL	MDL
Vol aweren ialia by GC/MS-A	Vesticitetign La	ab foreampple	SPRICE I	Batch: WG48	(1)-2-6
n-Propylbenzene	ND		ug/l	0.50	0.17
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.21
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.27
1,4-Diethylbenzene	ND		ug/l	2.0	0.11
4-Ethyltoluene	ND		ug/l	2.0	0.42
1,2,4,5-Tetramethylbenzene	ND	•	ug/l	2.0	0.10
Ethyl ether	ND		ug/l	2.5	0.20
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.17

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	105		70-130		
Toluene-d8	103		70-130		
4-Bromofluorobenzene	111		70-130		
Dibromofluoromethane	97		70-130		

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

07/27/11 08:04

Analyst:

arameter	Result	Qualifler	Units	RL	MDL
olettle:Organics by GG/MS -	Westbordugh L	માં હોલ્લાના ક્લાઇ છે.	i)):∖01-03.	Baich WG4	
Methylene chloride	ND		ug/kg	25	2.0
1,1-Dichloroethane	ND		ug/kg	3.8	0.74
Chloroform	ND		ug/kg	3.8	0.81
Carbon tetrachloride	ND		ug/kg	2.5	0.53
1,2-Dichloropropane	ND		ug/kg	8.8	0.64
Dibromochloromethane	ND		ug/kg	2.5	0.77
1,1,2-Trichloroethane	ND		ug/kg	3.8	0.98
Tetrachloroethene	ND		ug/kg	2.5	0.76
Chlorobenzene	ND		ug/kg	2.5	0.46
Trichlorofluoromethane	ND		ug/kg	12	0.98
1,2-Dichloroethane	ND		ug/kg	2.5	0.57
1,1,1-Trichloroethane	ND		ug/kg	2.5	0.67
Bromodichloromethane	ND		ug/kg	2.5	0.96
trans-1,3-Dichloropropene	ND		ug/kg	2.5	0.75
cis-1,3-Dichloropropene	ND		ug/kg	2.5	0.67
1,1-Dichloropropene	ND		ug/kg	12	1.1
Bromoform	ND		ug/kg	10	1.2
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.5	0.60
Benzene	ND		ug/kg	2.5	0.74
Toluene	ND		ug/kg	3.8	0.60
Ethylbenzene	ND		ug/kg	2.5	0.55
Chloromethane	ND		ug/kg	12	2.0
Bromomethane	ND		ug/kg	5.0	1.6
Vinyl chloride	ND		ug/kg	5.0	1.9
Chloroethane	ND		ug/kg	5.0	1.1
1,1-Dichloroethene	ND		ug/kg	2.5	0.65
trans-1,2-Dichloroethene	ND		ug/kg	3.8	0.98
Trichloroethene	ND		ug/kg	2.5	0.56
1,2-Dichlorobenzene	ND		ug/kg	12	0.91
1,3-Dichlorobenzene	ND		ug/kg	12	1.0
1,4-Dichlorobenzene	ND	-	ug/kg	12	1.0

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

07/27/11 08:04

Analyst:

arameter	Result	Qualifler	Units	RL	MDL
olatile Organica by GC/MS/AV	Astborough Le	b for sample	(e):	Batch: 30004	1803-3
Methyl tert butyl ether	ND		ug/kg	5.0	1.2
p/m-Xylene	ND		ug/kg	5.0	1.1
o-Xylene	ND		ug/kg	5.0	1.0
cis-1,2-Dichloroethene	ND		ug/kg	2.5	0.75
Dibromomethane	ND		ug/kg	25	1.1
Styrene	ND		ug/kg	5.0	1.8
Dichlorodifluoromethane	ND		ug/kg	25	0.97
Acetone	ND		ug/kg	25	8.1
Carbon disulfide	ND		ug/kg	25	0.94
2-Butanone	ND		ug/kg	25	9.7
Vinyl acetate	ND		ug/kg	25	1.9
4-Methyl-2-pentanone	ND		ug/kg	25	2.0
1,2,3-Trichloropropane	ND		ug/kg	25	0.97
2-Hexanone	ND		ug/kg	25	0.99
Bromochioromethane	ND		ug/kg	12	0.76
2,2-Dichloropropane	ND		ug/kg	12	2.0
1,2-Dibromoethane	ND		ug/kg	10	1.0
1,3-Dichloropropane	ND		ug/kg	12	1.4
1,1,1,2-Tetrachloroethane	ND		ug/kg	2.5	0.82
Bromobenzene	ND		ug/kg	12	0.55
n-Butylbenzene	ND		ug/kg	2.5	0.79
sec-Butylbenzene	ND		ug/kg	2.5	0.69
tert-Butylbenzene	ND		ug/kg	12	1.5
o-Chlorotoluene	ND		ug/kg	12	0.78
p-Chlorotoluene	ND		ug/kg	12	0.90
1,2-Dibromo-3-chloropropane	ND		ug/kg	12	2.1
Hexachlorobutadiene	ND		ug/kg	12	1.1
Isopropylbenzene	ND		ug/kg	2.5	0.44
p-Isopropyitoluene	ND		ug/kg	2.5	0.68
Naphthalene	ND	-	ug/kg	12	1.9
Acrylonitrile	ND		ug/kg	25	0.94

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/27/11 08:04

Analyst:

Parameter	Result	Qualifler	Units	RL	MDL	
Valatile sarganice by GLANS . V	Vestborolle Le	b for samp				E -2
n-Propylbenzene	ND		ug/kg	2.5	0.71	
1,2,3-Trichlorobenzene	ND		ug/kg	12	1.0	
1,2,4-Trichlorobenzene	ND		ug/kg	12	2.0	
1,3,5-Trimethylbenzene	ND		ug/kg	12	1.5	
1,2,4-Trimethylbenzene	ND		ug/kg	12	1.4	
1,4-Diethylbenzene	ND		ug/kg	10	0.50	
4-Ethyltoluene	ND		ug/kg	10	0.24	-
1,2,4,5-Tetramethylbenzene	ND		ug/kg	10	0.45	
Ethyl ether	ND		ug/kg	12	0.95	
trans-1,4-Dichloro-2-butene	ND		ug/kg	12	3.7	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	115		70-130		
Toluene-d8	105		70-130		
4-Bromofluorobenzene	115		70-130		
Dibromofluoromethane	94		70-130		

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

07/28/11 08:14

Analyst:

arameter	Result	Qualifier	Units	RL	MDL
olatile Organies by GC/MS -	Westborough La	bilők samplet	(s); =(0)(e) (2);	Setch & WCA	\$1308-6: H-15-16: \$
Methylene chloride	ND		ug/kg	25	2.0
1,1-Dichloroethane	ND		ug/kg	3.8	0.74
Chloroform	ND		ug/kg	3.8	0.81
Carbon tetrachloride	ND		ug/kg	2.5	0.53
1,2-Dichloropropane	ND		ug/kg	8.8	0.64
Dibromochloromethane	ND		ug/kg	2.5	0.77
1,1,2-Trichloroethane	ND		ug/kg	3.8	0.98
Tetrachloroethene	ND		ug/kg	2.5	0.76
Chlorobenzene	ND		ug/kg	2.5	0.46
Trichlorofluoromethane	ND		ug/kg	12	0.98
1,2-Dichloroethane	ND		ug/kg	2.5	0.57
1,1,1-Trichloroethane	ND		ug/kg	2.5	0.67
Bromodichloromethane	ND		ug/kg	2.5	0.96
trans-1,3-Dichloropropene	ND		ug/kg	2.5	0.75
cis-1,3-Dichloropropene	ND		ug/kg	2.5	0.67
1,1-Dichloropropene	ND		ug/kg	12	1.1
Bromoform	ND		ug/kg	10	1.2
1,1,2,2-Tetrachloroethane	ND		ug/kg	2.5	0.60
Benzene	ND		ug/kg	2.5	0.74
Toluene	ND		ug/kg	3.8	0.60
Ethylbenzene	ND		ug/kg	2.5	0.55
Chloromethane	ND		ug/kg	12	2.0
Bromomethane	ND		ug/kg	5.0	1.6
Vinyl chloride	ND		ug/kg	5.0	1.9
Chloroethane	ND		ug/kg	5.0	1.1
1,1-Dichloroethene	ND		ug/kg	2.5	0.65
trans-1,2-Dichloroethene	ND		ug/kg	3.8	0.98
Trichloroethene	ND		ug/kg	2.5	0.56
1,2-Dichlorobenzene	ND		ug/kg	12	0.91
1,3-Dichlorobenzene	ND		ug/kg	12	1.0
1,4-Dichlorobenzene	ND		ug/kg	12	1.0

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8260B

07/28/11 08:14

Analyst:

arameter	Result	Qualifier	Units	RL	MDL	
olanie Organie – V statyle 20		ab tor ser nale		Endowy yG 4	h	
Methyl tert butyl ether	ND		ug/kg	5.0	1.2	
p/m-Xylene	ND		ug/kg	5.0	1.1	
o-Xylene	ND		ug/kg	5.0	1.0	
cis-1,2-Dichloroethene	ND		ug/kg	2.5	0.75	
Dibromomethane	ND		ug/kg	25	1.1	
Styrene	ND		ug/kg	5.0	1.8	-
Dichlorodifluoromethane	ND		ug/kg	25	0.97	
Acetone	ND		ug/kg	25	8.1	•
Carbon disulfide	ND		ug/kg	25	0.94	
2-Butanone	ND	-	ug/kg	25	9.7	
Vinyl acetate	ND		ug/kg	25	1.9	• •
4-Methyl-2-pentanone	ND		ug/kg	25	2.0	
1,2,3-Trichloropropane	ND		ug/kg	25	0.97	
2-Hexanone	ND		ug/kg	25	0.99	
Bromochloromethane	ND		ug/kg	12	0.76	
2,2-Dichloropropane	ND		ug/kg	12	2.0	
1,2-Dibromoethane	ND		ug/kg	10	1.0	
1,3-Dichloropropane	ND		ug/kg	12	1.4	
1,1,1,2-Tetrachloroethane	ND		ug/kg	2.5	0.82	
Bromobenzene	ND		ug/kg	12	0.55	
n-Butylbenzene	ND		ug/kg	2.5	0.79	
sec-Butylbenzene	ND		ug/kg	2.5	0.69	
tert-Butylbenzene	ND		ug/kg	12	1.5	
o-Chlorotoluene	ND		ug/kg	12	0.78	
p-Chlorotoluene	ND		ug/kg	12	0.90	
1,2-Dibromo-3-chloropropane	ND		ug/kg	12	2.1	
Hexachlorobutadiene	ND		ug/kg	12	1.1	
Isopropylbenzene	ND		ug/kg	2.5	0.44	
p-Isopropyltoluene	ND		ug/kg	2.5	0.68	
Naphthalene	ND		ug/kg	12	1.9	
Acrylonitrile	ND		ug/kg	25	0.94	

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

Method Blank Analysis Batch Quality Control

Analytical Method:

1,8260B

Analytical Date:

07/28/11 08:14

Analyst:

Parameter	Result	Qualifler	Units	RL	MDL
Volatile of the property of the comment of the comm	Vesi Moligia P	is to sample	(s): 01 702		603-6
n-Propylbenzene	ND		ug/kg	2.5	0.71
1,2,3-Trichlorobenzene	ND		ug/kg	12	1.0
1,2,4-Trichlorobenzene	ND		ug/kg	12	2.0
1,3,5-Trimethylbenzene	ND		ug/kg	12	1.5
1,2,4-Trimethylbenzene	ND		ug/kg	12	1.4
1,4-Diethylbenzene	ND		ug/kg	10	0.50
4-Ethyltoluene	ND		ug/kg	10	0.24
1,2,4,5-Tetramethylbenzene	ND		ug/kg	10	0.45
Ethyl ether	ND		ug/kg	12	0.95
trans-1,4-Dichloro-2-butene	ND		ug/kg	12	3.7

Surrogate		Acceptance		
	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	117		70-130	
Toluene-d8	109		70-130	
4-Bromofluorobenzene	124		70-130	
Dibromofluoromethane	101		70-130	

L1111021 Lab Number:

07/28/11 Report Date:

> Not Specified Project Number:

Not Specified

Project Name:

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Surrogate	LCS %Recovery Qual		LCSD "Recovery Qual	Acceptance Criteria
2-Dichloroethane-d4	101	66		70-130
oluene-d8	100	86		70-130
Sromofluorobenzene	103	102		70-130
oromofluoromethane	101	86		70-130

L1111021 Lab Number:

07/28/11 Report Date:

Not Specified Not Specified Project Number: Project Name:

	its
	RPD Limi
	Qual
	RPD
%Recovery	Limits
	Qual
CSD	%Recovery
	Qual
SOT	"Recovery
	ameter

Parameter	"Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits
Velatile Organis by Gelh Se Westboliong	M.ab Associated			VG-494442	4 (C) 81.142			
Chlorobenzene			A. T. A.		75-130	2		20
Benzene			**********		76-127			20
Toluene	6		8		76-125			20
1,1-Dichloroethene	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				61-145			20
Trichloroethene			# V 98		71-120	2		20

Surrogate	LCS %Recovery Qual	LCSD Qual "Recovery Qual	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	102		70-130
Toluene-d8	101	101		70-130
4-Bromofluorobenzene	103	103		70-130
Dibromofluoromethane	101	66		70-130

L1111021 Lab Number:

> Not Specified Project Number:

Not Specified

Project Name:

07/28/11 Report Date:

	D Qual RPD Limits
	RPD
"Recovery	Limits
	Qual
CSD	%Recovery
	Qual
SOT	%Recovery
	Parameter

Surrogate	LCS %Recovery Qual	Qual	LCSD %Recovery Qual	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107		109		70-130
Toluene-d8	86		102		70-130
4-Bromofluorobenzene	107		111		70-130
Dibromofluoromethane	99		93		70-130

L1111021 07/28/11 Lab Number:

Report Date:

Not Specified Not Specified Project Number: Project Name:

	Qual RPD Limits	
	RPD	
"Recovery	Limits	The state of the s
	Qual	
CSD	"Recovery	7179
	Qual	į
CS	"Recovery	
	rameter	

Parameter	"Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Qual RPD Limits
Volenistics of the Science of the Sc	paja ka kasa pilano da	e misse	(基 02 Batch 指		# M = 481.300			
Chlorobenzene	COL		88		60-133		essorto	30
Benzene	(A) (A)		2		66-142			30
Toluene					59-139		# # ()	30
1,1-Dichloroethene				:	59-172		2050-2002	30
Trichloroethene	- 401 ve				62-137		summer to	30

Surrogate	LCS **Recovery Qual	_	LCSD "Recovery Qual	Qual	Acceptance Criteria
1,2-Dichloroethane-d4	119		126		70-130
Toluene-d8	112		117		70-130
4-Bromofluorobenzene	118		130		70-130
Dibromofluoromethane	103		110		70-130

INORGANICS & MISCELLANEOUS

Project Name:

Not Specified

Lab Number:

L1111021

Project Number: Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-01

Client ID:

B-10 (5-6')

Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix:

Soil

Date Collected:

07/19/11 08:30

Date Received:

07/21/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
G.			(Spinish							
Solids, Total	91		%	0.10	NA	1	-	07/27/11 07:40	30,2540G	JC

Project Name: Not Specified Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-02

Client ID:

B-11 (5-6')

Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix:

Soil

Date Collected:

07/19/11 08:50

Date Received:

07/21/11

Field Prep:

Not Specified

	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Ğ	entere vontere story a Vocare de	night Leb	3 Mg/4								
S	olids, Total 88	3		%	0.10	NA	1	-	07/27/11 07:40	30,2540G	JC

Project Name: Not Specified Lab Number:

L1111021

Project Number: Not Specified

Report Date:

07/28/11

SAMPLE RESULTS

Lab ID:

L1111021-03

Client ID:

B-12 (9-10')

Sample Location: 1199 SUTTER AVE, BROOKLYN

Matrix:

Soil

Date Collected:

07/19/11 09:10

Date Received:

07/21/11

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Solver Mist (A. Westl	orough te						78.54 Z			
Solids, Total	85		%	0.10	NA	1	-	07/27/11 07:40	30,2540G	JC

Lab Duplicate Analysis
Batch Quality Control

Not Specified Not Specified

Project Number: Project Name:

Lab Number:

L1111021

07/28/11 Report Date:

Seneral Chémistry - Westborough Lab Passociated samplé(s): 01-03 · Gébistron ID; WG481274-1 · QC Samplex L11411257-12 ©lientilD; DUP Sample RPD Limits 8 Qual RPD Units **Duplicate Sample** 82 Native Sample 8 Solids, Total Parameter

Project Name: Not Specified Project Number: Not Specified

Lab Number: L1111021 **Report Date:** 07/28/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

YE\$

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α

Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1111021-01A	Vial Large unpreserved	Α	N/A	3.3	Υ	Absent	TS(7),NYTCL-8260(14)
L1111021-02A	Vial Large unpreserved	Α	N/A	3.3	Y	Absent	TS(7),NYTCL-8260(14)
L1111021-03A	Vial Large unpreserved	Α	N/A	3.3	Υ	Absent	TS(7),NYTCL-8260(14)
L1111021-04A	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-04B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-04C	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-05A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-05B	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-05C	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-06A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-06B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-06C	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-07A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-07B	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-07C	Vial HCl preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-08A	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-08B	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-08C	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-09A	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-09B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-09C	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-10A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-10B	Vial HCl preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-10C	Vial HCl preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-11A	Vial HCI preserved	Α	N/A	3.3	Υ	Absent	NYTCL-8260(14)
L1111021-11B	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)
L1111021-11C	Vial HCI preserved	Α	N/A	3.3	Y	Absent	NYTCL-8260(14)

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L1111021 **Report Date:** 07/28/11

Container Information

Container ID Container Type

Temp

Cooler pH deg C Pres Seal

Analysis(*)

Project Name: Not Specified
Project Number: Not Specified

Lab Number: Report Date: L1111021

ort Date: 07/28/11

GLOSSARY

Acronyms

LÇS

EPA - Environmental Protection Agency.

Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL • Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E . Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: DU Report with "J" Qualifiers

Project Name: Not Specified
Project Number: Not Specified

Lab Number: L1111021 **Report Date:** 07/28/11

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL). This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the method detection limit (MDL) for the sample.

Report Format: DU Report with "J" Qualifiers

Project Name:

Not Specified

Lab Number:

L1111021

Project Number:

Not Specified

Report Date:

07/28/11

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. 1 Third Edition. Updates I - IIIA, 1997.

Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-30 WPCF, 18th Edition, 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised June 7, 2011 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB), 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223 P/A), E. Coli. – Colilert (SM9223 P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D))

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mendo (SM9222B), Total Coliform – MTF (SM9221B), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E).)

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. Organic Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2130B, 2320B, 4500Cl-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, SM2320B, 2510B, 2540C, 2540D, 426C, 4500Cl-D, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500NH3-B, 4500NH3-B, 4500NH3-H, 4500NO3-F, 4500P-B, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,TI) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl, V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B;Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. *NELAP Accredited*. *Drinking Water* (<u>Inorganic Parameters</u>: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 245.2, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 1664A, SW-846 9010, 9030, 9040B, 9050A, SM426C, SM2120B, 2310B, 2320B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. Organic Parameters: SW-846 3510C, 5030B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A, 8151A.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010B, 7196A, 7471A, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040B, 9045C, 9050C, 9065,1311, 1312, 3005A, 3050B. Organic Parameters: SW-846 3540C, 3546, 3580A, 5030B, 5035, 8260B, 8270C, 8330, 8151A, 8015B, 8082, 8081A.)

New Jersey Department of Environmental Protection <u>Certificate/Lab ID</u>: MA935. *NELAP Accredited*. *Drinking Water* (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.2, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, 4500CN-CE, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. Organic Parameters: SW-846 8260B, 8270C, 8270C-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8081A, 8082, 8151A, 8330, NJ OQA-QAM-025 Rev.7, NJ EPH.)

Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 7196A, 9010B, 9030B, 1010, 1030, 1311, 1312, 3005A, 3050B, 7471A, 9014, 9012A, 9040B, 9045C, 9050A, 9065. Organic Parameters: SW-846 8015B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 8270C-SIM, 3540C, 3545, 3546, 3550B, 3580A, 3630C, 5030B, 5035L, 5035H, NJ OQA-QAM-025 Rev.7, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. *NELAP Accredited*. *Drinking Water* (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500H-B, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B-4a, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-04-1-C, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, SM3500Cr-D, EPA 245.1, 245.2, 7470A, SM2120B, LACHAT 10-204-00-1-A, EPA 9040B, SM4500-HB, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 3005A, 9010B, 9030B.. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, EPA 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: 1010, 1030, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 1312, 3005A, 3050B, 9010B, 9030B. Organic Parameters: EPA 8260B, 8270C, 8015B, 8081A, 8151A, 8330, 8082, 3540C, 3545, 3546, 3580, 5030B, 5035.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. <u>Organic</u> Parameters: MA-EPH, MA-VPH.

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited.*Drinking Water (<u>Organic Parameters</u>: EPA 524.2)

Non-Potable Water (Inorganic Parameters: EPA 1312. Organic Parameters: EPA 3510C, 5030B, 625, 624, 608, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3050B, 6010B, 7196A, 7471A, 9010B, 9012A, 9014, 9040B, 9045C, 9050, 9065, SM 4500NH3-H. Organic Parameters: 3540C, 3545, 3546, 3550B,

3580A, 3630C, 5035, 8015B, 8081A, 8082, 8151A, 8260B, 8270C, 8330)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. NELAP Accredited via NY-DOH.

Refer to MA-DEP Certificate for Potable and Non-Potable Water.

Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476-09-1. *NELAP Accredited. Non-Potable Water* (Inorganic Parameters: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 376.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2 D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Department of Defense Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6020, 245.1, 245.2, 7470A, 9040B, 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 5220D, 5310C, 2320B, 2540C, 3005A, 3015, 9010B, 9056. Organic Parameters: EPA 8260B, 8270C, 8330A, 625, 8082, 8081A, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 7471A, 9010, 9012A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8270C, 8330A/B-prep, 8082, 8081A, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 8260B: Freon-113, 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. EPA 8330A: PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. EPA 8270C: Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine (Azobenzene). EPA 625: 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, Chloride in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix, SO4 in a soil matrix.

September 16, 2011

Mr. Gregory Ernst Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, NY 11788

Dear Mr. Ernst:

The data reported by Alpha Analytical Laboratories under SDG L1111041 has been reviewed for quality assurance validation. Data was reported for Volatiles for 3 samples as requested by Associated Environmental Services, Ltd. The 3 samples listed below were validated by MJW. The data in this report has either been approved for use or approved with qualification.

SS-1 (Lab ID: 11041-01)
IA-1 (Lab ID: 11041-02)
OA-1 (Lab ID: 11041-03)

If you have any questions concerning this data validation report, please contact me at 585-344-7197.

Very truly yours,

MJW Corporation Inc.

amette Centil

Annette Guilds, CES Senior Scientist

Approved by:

David A. Dooley, Ph.D., CHP

President, MJW Corporation Inc.

DATA USABILITY SUMMARY REPORT

Site Characterization 1199 Sutter Avenue Brooklyn, New York

Site ID#224141 NYSDEC Spill No. 0902686 SDG: L1111041

Prepared for

Associated Environmental Services, Ltd. 25 Central Avenue Hauppauge, New York 11788

September 2011

MJW

MJW Corporation, Inc. 1900 Sweet Home Road Amherst, NY 14228 (716)-631-8291 Project # 2011-1019

Data Review 1199 Sutter Ave. Brooklyn, NY

Laboratory SDG: L1111041 Reviewer: Annette Guilds Date Reviewed: 9/16/11

Guidance: USEPA NYSDEC ASP "B" Protocol 2005.

USEPA National Functional Guidelines for Superfund Organic Methods Data Review 2008.

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC as appropriate? Yes.

2.0 Laboratory Case Narrative

Were problems noted in the laboratory case narrative? Yes.

L1111041-01 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L1111041-01 and -02 were re-analyzed on dilution in order to quantitate the samples within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

L1111041-02-The presence of Acetone could not be determined in this sample due to non-target compounds interfering with the identification and quantification of this compound.

L1111041-03 results for Acetone should be considered estimated due to co-elution with a non-target peak. The WG480668-3 LCS recovery for 1,2,4-Trichlorobenzene (138%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

3.0 Holding Times

Were samples extracted/analyzed within applicable limits? Yes.

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks? No.

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria? No. The LCS recovery for 1,2,4-Trichlorobenzene (138%) is outside the 70%-130% acceptance limit.

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria? Yes.

7.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria? Yes.

8.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples collected as part of this SDG? No.

Were MS/MSD recoveries within evaluation criteria? N/A

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples reported as part of this SDG? Yes.

Were Duplicate RPD's within evaluation criteria? Yes.

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG? No.

Were field duplicates within evaluation criteria? N/A.

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported? Yes.

12.0 Additional Qualifications

Were additional qualifications applied? Yes. Some analytes/samples were qualified "UJ" due to out of control continuing calibration data.

13.0 Package Completeness

Analytical completeness for this package is 98.43% (189 usable analytes/192 analytes requested).

DATA ASSESSMENT NARRATIVE (ORGANICS)

ORGANIC DATA ASSESSMENT

Functional Guidelines for Evaluating Organic Analysis
CASE NO.: SDG NO.: L1111041 LABORATORY: Alpha Analytical SITE: 1199 Sutter Avenue Brooklyn New York
DATA ASSESSMENT
All data were found to be valid and acceptable except those analytes that have been rejected, "R" (unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material), "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All action is detailed on the attached sheets.
The "R" flag means that the associated value is unusable. In other words, significant data bias is evident and the reported analyte concentration is unreliable.
Data is fully usable and acceptable.
Reviewer's Signature: Date: 9/16/2011 MJW Approval: Date: 9/16/2011

Organic Data Assessment

page 1 of 5

1. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

The following action was taken in the samples and analytes shown due to excessive holding time.

No action necessary.

2. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below.

No action necessary.

3. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data.

No action necessary.

4. BLANK CONTAMINATION:

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. If the concentration of the analyte is less than 5 times the blank contaminant level (10 times for common contaminants), the analytes are qualified as non-detects, "U". The following analytes in the sample shown were qualified with "U" for these reasons:

A) Method blank contamination:

No action necessary.

B) Field or rinse blank contamination:

There are no field blanks or rinse blanks associated with this SDG.

C) Trip blank contamination:

There are no trip blanks associated with this SDG.

5. MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene and for semi-volatiles Decafluorotriphenyl-phosphine (DFTPP).

If the mass calibration is in error, all associated data will be classified as unusable "R".

No action necessary.

6. CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be ≥ 0.05 in both initial and continuing calibrations. A value < 0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected "R".

No action necessary.

7. CALIBRATION:

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial

calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 30% and %D must be < 25%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria, non-detects data may be qualified "R".

For the PEST/PCB fraction, if %RSD exceeds 20% for all analytes except for the two surrogates (which must not exceed 30% RSD), qualify all associated positive results "J" and non-detects "UJ".

The following analytes in some samples were qualified for %D:

Continuing calibration-VOA's: 1,2,4-trichlorobenzene. Refer to the Summary of sample data qualified form and the data outlier form for samples and analytes affected.

8. INTERNAL STANDARDS PERFORMANCE GC/MS:

Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-50% to +100%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than ± 30 seconds from the associated continuing calibration standard. If the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction.

No action necessary.

- 9. COMPOUND IDENTIFICATION:
- A) Volatile and Semi-Volatile Fractions:

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound and have an ion spectra which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

No action necessary.

B) Pesticide Fraction:

The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract.

N/A

10. CONTRACT PROBLEMS NON-COMPLIANCE:

none

11. FIELD DOCUMENTATION:

none

12. OTHER PROBLEMS:

none

13. This package contains reextractions, reanalyses or dilutions. Upon reviewing the QA results, the following Form 1(s) are identified to be used.

none

ORGANIC REGIONAL DATA ASSESSMENT SUMMARY

ASE/SAS NO.:	LABO	RATORY: Alph	a Analytica		
DG NO.: L1111041	DATA	USER: Associat	ted Environt	nental Services	<u>s</u>
ow:	REVII	EW COMPLETI	ON DATE:	9/16/11	
O. OF SAMPLES:	WATER	SOIL	3 OT	HER	
EVIEWER: [] ESD [] F					Inc.
EVIEWER.[]ESD []E	SAI A OIII				
QC ITEM	1	VOA	BNA	PEST	
OLDING TIMES		0	N/A	N/A	
C-MS PERFORMANCE		0	N/A	N/A	
NITIAL CALIBRATIONS		0	N/A	N/A	
CONTINUING CALIBRATIO	ONS	X	N/A	N/A	
TIELD BLANKS (F = N/A)		F	N/A	N/A	
ABORATORY BLANKS		О	N/A	N/A	
URROGATES		О	N/A	N/A	
MATRIX SPIKE/DUPLICAT	ES	0	N/A	N/A	
C SAMPLES (LCS, PVS)		X	N/A	N/A	
NTERNAL STANDARDS		О	N/A	N/A	
COMPOUND IDENTIFICAT	ION	0	N/A	N/A	
COMPOUND QUANTITATION	ON	О	N/A	N/A	
YSTEM PERFORMANCE		0	N/A	N/A	
OVERALL ASSESSMENT		0	N/A	N/A	
D = No problems or minor prob X = No more than about 5% of the M = More than about 5% of the Z = More than about 5% of the DPO ACTION ITEMS:	the data points are data points are quadata points are qual	qualified as either lified as either est ified as unusable.	estimated or un	r unusable. nusable.	
		MB+	<u></u>		
AREAS OF CONCERN:					
AREAS OF CONCERN:					
AREAS OF CONCERN:					

DATA REJECTION SUMMARY

Alpha Analytical SDG No: U1111041	11	Analytes Rejected Due to Exceeding Review Criteria For:	No. of Compounds/No. of Fractions (Samples)	Ontamination ID Internal Other Total # of Total # Rejected/Total # in All Samples Samples	% = /	% = /	% = !	% = /	% = /	FECERDANCES OF REVIEW CRITERIA.
Date: 9/16/11 Lab Name: Alpha Analytical	Number of Samples:	Analytes Re		Calibration Contamination						DNAT EXCEEDANCES OF REV
Type of Review: Level IV Site Name: 1199 Sutton Avenue Brooklyn New York	Reviewer's Initials:			Surrogates Holding Time Calibration						NOTE: ACTEDIST (*) INDICATES ADDITIONAL
Type of Review: Level IV Site Name: 1199 Sutton Ave	Reviewer's Initis				VOA(33)	ACID(14)	B/N(50)	PEST(21)	PCB(7)	

Analytes Estimated Due to Exceeding Review Criteria For:

						No. of Comp.	ounds/No. of	No. of Compounds/No. of Fractions (Samples)	es)		
	Surrogates	Holding Time	Calibration	Surrogates Holding Time Calibration Contamination	a	Internal Standards	Other	Total # of Samples	Total # Estimated/Total # in All Samples	/Total#inAllS	amples
VOA(33)			3					3	3 /192	11	1.56 %
ACID(14)									,	; II	%
B/N(50)									/	li	%
PEST(21)										0	%
PCB(7)									,	III	%
NOTE: A	NOTE: ASTERISK (*) INDICATES ADDITIONAL EXCEEDANCES OF REVIEW CRITERIA.	CATES ADDITIK	ONAL EXCEEI	DANCES OF REVI	LEW CRITE	RIA.					

Summary Data Qualifiers

Summary of Sample Data Qualifiers

SDG # L1111041 Site Name 1199 Sutter Avenue Brooklyn New York

Client ID	Lab ID	Matrix	1,2,4-trichlorobenzene		
SS-1	L1111041-01	Air	UJ		
IA-1	L1111041-02	Air	UJ	 	
OA-1	L1111041-03	Air	UJ	 	
-					
	<u>-</u>				
	-				

Data Outlier Forms

Samples Affected	Matrix	Analyte	Detector/Problem	Qualifier
SS-1	Air	1,2,4-trichlorobenzene	CCV / -37.6% D	UJ
IA-1	Air	1,2,4-trichlorobenzene	CCV / -37.6% D	ΟΊ
OA 1	Air	1,2,4-trichlorobenzene	CCV / -37.6% D CCV / -37.6% D	UJ
OA-1	All —	1,2,4-41011010501120110		
	<u> </u>			
	<u> </u>			
	 			
	 -			
				
	 			
	 			
	<u> </u>	<u> </u>		
				
				<u> </u>
				
<u></u>		 		
				
				
				<u> </u>
				
				<u> </u>
	<u> </u>			
			 	
			 	
				+
	-			
		-		
	i			

Samples Affected	Matrix	Analyte	Percent Recovery	Control Limits	Qualifier
		1,2,4-Trichlorobenzene	138.0%	70-130%	UJ
SS-1	Air	1,2,4-Trichlorobenzene	138.0%	70-130%	UJ
IA-1	Air	1,2,4-Trichlorobenzene	138.0%	70-130%	UJ
OA-1	Air	1,2,4-Trichloroberizerie	100.070	10 10 10	
		ļ			
					 -
					<u> </u>
					-
				 	
			<u></u>	 	
					
			<u> </u>		
 					
				<u> </u>	
					
	+				
	 				
	 			 	
	<u> </u>			 	<u> </u>
				 	
				 	
			<u> </u>	- 	
					-
					
				 	
		ì			

CERTIFICATES OF ANALYSIS (COA's)

with Data Validation Qualifiers Added

Project Name:

Project Number: Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-01 D

Date Collected:

07/20/11 15:16

Client ID:

SS-1

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lab			E				
Styrene	61.6	55.3		262	235	-		276.4
1,1,2,2-Tetrachloroethane	ND	55.3		ND	380			276.4
o-Xylene	ND	55.3		ND	240			276.4
4-Ethyltoluene	ND	55.3		ND	272.			276.4
1,3,5-Trimethybenzene	ND	55.3		ND	272.			276.4
1,2,4-Trimethylbenzene	ND	55.3		ND	272.			276.4
Benzyl chloride	ND	55.3		ND	286.			276.4
1,3-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,4-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,2-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,2,4-Trichlorobenzene	ND	55.3		ND	410.		UJ	276.4
Hexachlorobutadiene	ND	55.3		ND	590.	_		276.4

Internal Standard	% Recovery	Qualifler	Acceptance Criteria
1,4-Difluorobenzene	111		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	104		60-140

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-02

Client ID:

Sample Location:

IA-1

1199 SUTTER AVE, BROOKLYN

Date Collected:

07/20/11 15:17

Date Received:

07/21/11

Field Prep:

-		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
/olatile Organics in Air (Low Le	vel) - Mansfield Lab				111111111111	territables De	Italies (Teas)	
Styrene	0.851	0.200		3.62	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.681	0.200		2.96	0.869			1
i-Ethyltoluene	0.386	0.200		1.90	0.983			1
,3,5-Trimethybenzene	0.589	0.200		2.90	0.983			1
,2,4-Trimethylbenzene	1.76	0.200		8.65	0.983			. 1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	0.472	0.200		2.84	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		レリ	1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	110		60-140

Project Name:

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-03

Client ID:

OA-1

Sample Location:

1199 SUTTER AVE, BROOKLYN

Date Collected:

07/20/11 15:21

Date Received:

07/21/11

Field Prep:

Sample Location. 1199 0		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	RL MDL		Factor	
Volatile Organics in Air (Low L	evel) - Mansfield Lab	Single -	Hilling.		Talletin.				
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethybenzene	ND ND	0.200		ND	0.983			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		ピシ	1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	93		60-140

LABORATORY QA SHEETS

For Out of Limit QA Results

Sample Delivery Group Form

Laboratory Job number: L1111041

Client Account: Associated Environmental Services, Ltd.

Received: 07/21/2011 22:35

Samples Delivered by: COURIER

Call Tracker #

Bill Of Laden N/A

Trackingnum

Coc Present Present

Container Status Intact

Sample IDs

All Containers Accounted For? Yes

Were Extra Samples Received? No

Do Sample Labels and COC agree? Yes

Are Samples in Appropriate Containers? Yes

Are Samples Received within Holding time? Yes

pH of Samples upon Receipt N/A

Are samples Properly Preserved? Ye

Initial pH

preserved in house with

Final pH

Other Issues

Chlorine Check N/A

Are VOA/VPH Vials Present? No

Aqueous: Do Viais Contain Head Space? N/A

Soils: Is MeOHCovering the Soil? N/A

Reagent H2O Preserved vials Frozen on N/A

Frozen by Client N/A

Project Name:

Not Specified

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.

Volatile Organics in Air

The canister certification results are provided as an addendum.

L1111041-01 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L1111041-01 and -02 were re-analyzed on dilution in order to quantitate the samples within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

L1111041-02 The presence of Acetone could not be determined in this sample due to non-target compounds

Project Name:

Not Specified

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

Case Narrative (continued)

interfering with the identification and quantification of this compound.

L1111041-03 results for Acetone should be considered estimated due to co-elution with a non-target peak.

The WG480668-3 LCS recovery for 1,2,4-Trichlorobenzene (138%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

While M. While Kathleen O'Brien

Title: Technical Director/Representative

Date: 07/27/11

Page 3 of 490

AIR VOLATILE

Lab Name: Alpha Analytical Labs

SDG No.: L1111041

Matrix: Air

Lab Control Sample - WG480668-3LCS

	SPIKE	ISAMPLE	LCS	LCS	LCSD	LCSD		QC QC
!	ADDED	CONC	CONC	8	CONC	૪	ajo	LIMITS
COMPOUND	Vdaa	Vdqq I	Vdqq	REC	ppbV	REC	RPD	RPD REC.
CONF COND	10	======= NA	= ===== : 9.60	====== 96	===== 	======		70-130
Chlorodifluoromethane	10	INA	9.36	94	- 1	_	_	
Propylene	10	INA	9.041	90	_		_	70-130
Propane		INA	1 10.1	101	i –	–	_	
oichlorodifluoromethane	10 1 10	INA	10.5	105	i –	I –	_	70-13
Chloromethane			1 10.7	107		, 	–	
Freon-114	10	NA	33.8	68 *	. -	I –		€ 70-13
Methanol	50	NA .	1 10.51	105	7 1 –	_	-	70-13
/inÿl chloride	10	NA		101		' I	1 –	170-13
,3-Butadiene	10	NA	10.1	114		· –	i –	170-13
Butane	10	! NA	11.4	102		i –	i –	170-13
Bromomethane	1 10	NA .	10.21		-	_	· _	170-13
Chloroethane	10	NA	9.89	99] — ! —	-	i –	170-13
Ethanol	50	NA	62.31	125			<u> </u>	70-13
Dichlorofluoromethane	10	NA	10.2	102	ļ -	1 -		170-13
Jinyl bromide	10	NA	10.21	102	-	1 -	- -	170-13
Acrolein	10	NA	10.3	103	_	1		170 13
Acetone	10	NA	11.6		-	-	-	1 170-13
Acetonitrile	10	NA	11.4	114	_	-	_	170-1
Trichlorofluoromethane	10	NA	10.71		_	_	l .	1 170-1
ISOPROPANOL	10	NA	10.2	102	_	-	1 -	
Acrylonitrile	i 10	NA	10.6	106	-	-	-	170-1
Pentane	i 10	NA	10.5	105	_	-	1 -	70-1
rentane Ethyl ether	i 10	l NA	10.4	104	-	_	-	
1,1-Dichloroethene	10	NA	10.2	102	-	-	1 -	70-1
Tertiary butyl Alcohol	i 10	NA	12.1	121	-	_	-	170-1
leftiary butyr Arconor	10	NA.	12.1	121	-	-	1 -	70-1
Methylene chloride	1 10	NA	9.48	95	1 -	-	-	
3-Chloropropene	10	NA	8.17			1 -	1 -	70-1
Carbon disulfide	1 10	NA	9.27	•	i -	_		
Freon-113		INA	8.38		i -	i -	-	70-1
trans-1,2-Dichloroethene	1 10	INA	8.88		i -	i -	-	
1,1-Dichloroethane			8.56		· -	i -	-	70-1
Methyl tert butyl ether	10	NA	9,60		i -	i -	i -	
Vinyl acetate	1 10	NA	10.0		i –	i -	· -	70-1
2-Butanone	10	NA	9.29		i -	i –	i –	
cis-1,2-Dichloroethene	1 10	NA	,	•	i –	i –	· -	70-1
Ethyl Acetate	10	NA	10.2		1 -	i –	i -	j j70-1
Chloroform	10	NA	9.42	•				
Tetrahydrofuran	10	NA	8.62			· -	-	70-1
2,2-Dichloropropane	10	NA	8.66	•	_		1 -	170-1
1,2-Dichloroethane	10	NA	9.14	91	-	_	1	, ,,,,,,

* V	alues	outside	of Q	C limits.		
COM	MENTS:				 	 _ _

LAB CONTROL SAMPLE RECOVERY AIR VOLATILE

Lab Name: Alpha Analytical Labs

SDG No.: L1111041

Matrix: Air

Lab Control Sample - WG480668-3LCS

<u> </u>		LOTWEL B	LCS	LCS	LCSD I	LCSD		QC I
	SPIKE	SAMPLE	CONC I	∦ 11CD	CONC	26	Q	LIMITS
	ADDED	CONC	Vdqq	REC	ppbV	REC	RPD	RPD REC.
[COMPOUND	ppbV	ppbV	_======!	======	=====		======	
======================================	10	INA	10.2	102	i - 1	_	-	
Isopropylbenzene	10	INA	10.01	100	j - 1	_	1 -	
Bromobenzene	10	NA	9.821	98	1 - 1	_	i -	
2-Chlorotoluene	10 10	INA	10.4	104	i – I	-	_	
In-Propylbenzene		INA	10.4	104	j - 1	_	-	
4-Chlorotoluene	10	INA INA	10.1	101	i -	i -	-	70-130
4-Ethyltoluene	1 10	INA	10.4	104	-	_	-	
11,3,5-Trimethybenzene	10	INA	10.9	109	i -	-	1 -	70-130
tert-Butylbenzene	10	•	11.11	111	i –	<u> </u>	-	
11,2,4-Trimethylbenzene	1 10	NA	11.4	114	i –	1 -	_	70-130
Decane	10	NA NA	10.6	106	i -	i -	-	
Benzyl chloride	10	1	1 10.8	108	i –	i –	-	
1,3-Dichlorobenzene	10	NA	11.01	110	i -	i –	-	70-130
1,4-Dichlorobenzene	10	NA	1 11.41	114	i -	i –	-	
sec-Butylbenzene	1 10	NA	10.9	109	i -	i -	i -	70-130
p-Isopropyltoluene	10	NA	10.71	107	-	i -	i -	
11,2-Dichlorobenzene	1 10	NA	1 12.7		_	i -	i -	70-130
n-Butylbenzene	10	NA	12.8		-	-	i -	
11,2-Dibromo-3-chloroprop	10	NA	1 13.3		o' -	1 -	i -	(70-130)
(Undecane)	10	NA	•		F -	-	-	470-130
(Dodecane)	10	NA	16.1) Fra _	-	i -	70-130
(1,2,4-Trichlorobenzene)	10	NA	13.8			. –	i –	170-1301
(Naphthalene)	10	NA	14.9			l 	i -	70-130
(1,2,3-Trichlorobenzene)	10	NA	14.7		7 -	_	i -	70-130
Hexachlorobutadiene	10	NA	11.6	116			1	
	l	_	_	·	_ '	_'	_'	_' ''

* Values outside of QC limits.
COMMENTS:

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: Alpha Analytical Labs

SDG No.: L1111041

Instrument ID: AIRPIANO1 Calibration Date(s): 06/13/11 06/14/11

Calibration Times: 23:20 04:19

	Compound	0.2	0.5	1.0	2.5	5.0	10	20	50	100	Avg	%RSD
98)	1,3,5-trimethylbenzene	4.178	3.927	4.358	4.244	4.563	4.155	5.331	4,392	4.900	4.4499	9.67
99)	tert-butylbenzene	4.115	3.749	4.277	4.469	4.933	4.362	5.560	4.032	4.264	4,4179	12.15
100)	1,2,4-trimethylbenzene	4.032	3.498	4.120	4.077	4.519	4.106	5.404	4.437	1.682	4.3196	12.31
101)	decane	3.162	2.276	2.334	2.613	3.455	3.077	4.351	3.160	3.572	3.1111	21.02
102)	Benzyl Chloride	3.092	2.550	3.069	3.108	3.867	3.656	4.874	4.089	4.775	3.6756	21.83
103)	1,3-dichiorobenzene	3.005	2.598	2.842	2.841	3.319	3.084	3,882	3.324	3.624	3.1688	12.90
104)	1,4-dichlorobenzene	2.772	2.426	2.871	2.759	3.264	3.027	3.879	3.316	3.607	3,1025	14.74
105)	sec-butylbenzene	5.292	5.032	5.565	6.337	6.870	6.057	7.789	5.628	6,210	6.0866	14.01
106)	1,2,3-trimethylbenzene	2.887	2.568	3.083	2.662	2.874	2.918	3.837	3,148	3.574	3.0613	13.48
107)	p-isopropyltoluene	4.087	3.877	4.412	5,022	5.625	5.108	6.669	4.744	5.300	4.9828	17.06
108)	1,2-dichlorobenzene	2.825	2.436	2.875	2.799	3.141	2.879	3.640	3.023	3.358	2.9972	11.66
109)	n-butylbenzene	3.841	3.078	3.544	4.494	5.393	4.823	6.380	4.473	5.182	4.5786	22.13
(10)	indan	2.787	2.633	2,933	2.526	2.822	2.902	3.691	3.066	3.440	2.9778	12.57
111)	indene	1.843	1.608	1.806	1.436	1.670	1.949	2.510	2.108	2.421	1.9280	18.77
112)	1,2-dibromo-3-chloropropane	1.153	1.030	1.089	1.239	1.593	1.428	1.801	1.177	1.461	1.3302	19.33
113)	undecane	2.936	1.939	2.158	2.134	3.298	2.924	3.658	2.775	3.831	2.8504	23.72
114) (1,2,4,5-tetramethylbenzene	1.778	1.177	1,481	2.390	3.508	2.762	3.593	1.865	2.506	2.3400	36.31#
115)	dodecane	2.5/1	1.430	1.824	1.786	3.187	2.657	3.374	1.860	2.638	2.3696	28.52
116)	1,2,4-trichlorobenzene	1.563	1.269	1.489	1.403	2.112	1.949	2.640	2.078	2.714	1.9129	27.51
117)	naphthalene	2.619	1.871	2.368	2.565	3.865	3.541	4.622	2.928	4.198	3.1751	29.13
118)	1,2,3-trichlorobenzene	1.464	1.066	1.276	1.384	2.078	1.801	2.291	1.342	2.050	1.6391	26.05
119)	benzothlophens	1.546	1.322	1.670	1.337	2.041	2.189	2.854	2.032	2.899	1.9877	29.70
120)	hexachlorobutadiene	2.274	1.835	2.151	2.330	2.887	2.473	3.269	2.674	3.256	2.5721	19.15
121)	2-methylnaphthalene			0.613	0.762	1.387	0.961	1.207	0.780	1.313	1.0032	30.09₽
122)	i-methylnaphthalene			0.824	0.996	1.718	1.396	1.694	0.912	1.595	1.3048	29.59

FORM VI-TO15-LL

7A VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1111041

Instrument ID: AIRPIANO1 Calibration Date: 07/22/2011 Time: 16:12
Lab File ID: R117374 Init. Calib. Date(s): 06/13/11 06/14/11
Sample No: wg480668-2,3,25 Init. Calib. Times : 23:20 04:19

Min. RRF : 0.000 Min. Rel. Area : 60% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 140%

	Compound	AvgRF	CCRF	%Dev Area%	Dev(min)
123456789101134156178921223456789012333333333333333333333333333333333333	bromochloromethane chlorodifluoromethane propylene propane dichlorodifluoromethane chloromethane Freen-114 methanol) vinyl chloride 1,3-butadiene butane bromomethane chloroethane ethanol dichlorofluoromethane vinyl bromide acrolein acetone acetonitrile trichlorofluoromethane isopropyl alcohol acrylonitrile pentane ethyl ether 1,1-dichloroethene tertiary butyl alcohol methylene chloride 3-chloropropene carbon disulfide Freon 113 trans-1,2-dichloroethene 1,1-dichloroethane MTBE vinyl acetate 2-butanone cis-1,2-dichloroethene Ethyl Acetate chloroform Tetrahydrofuran	1.000 1.562 0.656 0.656 0.656 0.452 0.452 0.73385 0.4279 0.5790 0.5780 0.7584 1.75384 1.6635 1.6359 1.758 1.6379 1.6379 1.6659 1.7599 1.7599 1.7599	1.000 1.499 0.633 0.593 2.282 1.010 2.633 0.928 1.5203 0.928 1.9203 0.422 1.942 0.8051 1.960 0.351 1.055 1.624 1.154 1.139 1.334 1.474 2.1517 1.334 1.474 2.616 0.248 0.5826	7.3 6 16.2 6 11.2 7 14.4 7 4.1 9 -0.2 8 7.1 7 -2.1 8 5.8 7	0.00 0.00 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00

TALL110613.M Sat Jul 23 13:34:03 2011

Evaluate Continuing Calibration Report

Data Path : O:\Forensics\Data\AIR1\2011\110722T\

Data File: R117374.D

Acq On : 22 Jul 2011 4:12 pm Operator : AIRPIANO1:ry Sample : wg480668-2,3,250,250 Misc : wg480668,ical5978 ALS Vial : 2 Sample Multiplier: 1

Quant Time: Jul 22 16:38:59 2011 Quant Method: O:\Forensics\Data\AIR1\2011\110722T\TALL110613.M Quant Title: TO-14A/TO-15 SIM/Full Scan Analysis QLast Update: Tue Jun 14 09:05:32 2011

Min. RRF : 0.000 Min. Rel. Area : 60% Max. R.T. Dev 0.33min Max. RRF Dev : 30% Max. Rel. Area : 140%

Plax.	Compound	AvgRF	CCRF	%Dev Area% De	ev(min)
81 82 84 85 86 87 88 99 99 99 99 100 101 103 104 107 109 113 116 117 118 120	chlorobenzene ethylbenzene m+p-xylene bromoform styrene 1,1,2,2-tetrachloroethane o-xylene 1,2,3-trichloropropane nonane bromofluorobenzene isopropylbenzene bromobenzene 2-chlorotoluene n-propylbenzene 4-chlorotoluene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene decane Benzyl Chloride 1,3-dichlorobenzene 1,4-dichlorobenzene 1,4-dichlorobenzene p-isopropyltoluene 1,2-dichlorobenzene n-butylbenzene 1,2-dichlorobenzene n-butylbenzene 1,2-dichlorobenzene n-butylbenzene 1,2-dichlorobenzene n-butylbenzene 1,2-dichlorobenzene hexachlorobutadiene	3.208 5.142 4.045 3.625 3.517 4.186 2.670 5.1974 1.375 4.045 9.411 1.375 4.418 4.321 3.116 3.108 4.418 4.321 3.116 3.108 3	3.055 4.737 3.823 3.240 2.712 3.837 4.158 2.5668 2.5996 1.429 4.199 4.643 4.199 4.643 4.794 3.843 3.4406 5.457 5.457 5.457 5.457 3.843 6.955 3.4406 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.457 5.468 5.457 5.	4.8 75 7.9 75 7.5 78 10.6 69 4.3 76 -9.1 91 0.7 82 -5.5 81 -1.6 78 2.3 81 -1.8 87 -2.3 81 -1.8 87 -1.1 88 -3.6 88 -1.1 88 -1.1 88 -1.1 9.4 885 -1.1 9.8 886 -1.1 9.8 886 -1.1 88 -1.1 0 88 -1.1 88 -1.1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 88 -1.1 1 0 100 -1.1 10	

^{*} Evaluation of CC level amount vs concentration.

FORM VII TO15-LL

Laboratory Level II Analytical Report

ANALYTICAL REPORT

Lab Number:

L1111041

Client:

Associated Environmental Services, Ltd.

25 Central Avenue

Hauppauge, NY 11788

ATTN:

Greg Ernst

Phone:

(631) 234-4280

Project Name:

Not Specified

Project Number:

Not Specified

Report Date:

07/27/11

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NY (11627), CT (PH-0141), NH (2206), NJ (MA015), RI (LAO00299), ME (MA0030), PA (Registration #68-02089), LA NELAC (03090), FL NELAC (E87814), US Army Corps of Engineers.

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Project Number: Not Specified

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1111041-01	SS-1	1199 SUTTER AVE, BROOKLYN	07/20/11 15:16
L1111041-02	IA-1	1199 SUTTER AVE, BROOKLYN	07/20/11 15:17
L1111041-03	OA-1	1199 SUTTER AVE, BROOKLYN	07/20/11 15:21

Project Name:

Not Specified

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

For additional information, please contact Client Services at 800-624-9220.	

Volatile Organics in Air

The canister certification results are provided as an addendum.

L1111041-01 has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L1111041-01 and -02 were re-analyzed on dilution in order to quantitate the samples within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The re-analysis was performed only for the compound that exceeded the calibration range.

L1111041-02 The presence of Acetone could not be determined in this sample due to non-target compounds

Project Name: Project Number: Not Specified

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

Case Narrative (continued)

interfering with the identification and quantification of this compound.

L1111041-03 results for Acetone should be considered estimated due to co-elution with a non-target peak.

The WG480668-3 LCS recovery for 1,2,4-Trichlorobenzene (138%) is outside the 70%-130% acceptance limit. The LCS was within overall method allowances, therefore the analysis proceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

With M. Whi Kathleen O'Brien

Title: Technical Director/Representative

Date: 07/27/11

AIR

Project Name:

Project Number:

Not Specified

Lab Number:

Report Date:

L1111041

07/27/11

SAMPLE RESULTS

Lab ID:

D L1111041-01

Client ID: Sample Location: SS-1

1199 SUTTER AVE, BROOKLYN

Matrix:

Soil_Vapor 48,TO-15

Anaytical Method: Analytical Date:

07/23/11 02:45

Analyst:

RY

Date Collected:

07/20/11 15:16

Date Received:

07/21/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	ovel) - Mansfield Lab							A60. 7066
Propylene	ND	138.		ND	238.			276.4
Dichlorodifluoromethane	ND	55.3		ND	273.			276.4
Chloromethane	ND	55.3		ND	114.			276.4
Freon-114	ND	55.3		ND	386.			276.4
Vinyl chloride	311	55.3		795	141			276.4
1,3-Butadiene	ND	55.3		ND	122.			276.4
Bromomethane	ND	55.3		ND	215.			276.4
Chloroethane	ND	55.3		ND	146.			276.4
Ethanol	ND	691		ND	1300			276.4
Vinyl bromide	ND	55.3		ND	242.			276.4
Acetone	ND	276		ND	656			276.4
Trichlorofluoromethane	ND	55.3		ND	311.			276.4
Isopropanol	ND	138.		ND	339.			276.4
1,1-Dichloroethene	ND	55.3		ND	219			276.4
Methylene chloride	ND	276	_	ND	959			276.4
3-Chloropropene	ND	55.3		ND	173.			276.4
Carbon disulfide	ND	55.3		ND	172.			276.4
Freon-113	485	55.3		3720	424			276.4
trans-1,2-Dichloroethene	98.4	55.3		390	219			276.4
1,1-Dichloroethane	94.0	55.3		380	224	-		276.4
Methyl tert butyl ether	ND	55.3		ND	199.			276.4
Vinyl acetate	ND	55.3		ND	195.			276.4
2-Butanone	ND	55.3		ND	163.			276.4
cis-1,2-Dichloroethene	966	55.3		3830	219			276.4

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-01 D

Date Collected:

07/20/11 15:16

Client ID:

SS-1

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL.	MDL.	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab		H			N E		
Ethyl Acetate	ND	138.		ND	497.			276.4
Chloroform	90.9	55.3		444	270			276.4
Tetrahydrofuran	ND	55.3		ND	163.			276.4
1,2-Dichloroethane	133	55.3		538	224			276.4
n-Hexane	ND	55.3		ND	195.			276.4
1,1,1-Trichloroethane	737	55.3		4020	302			276.4
Benzene	ND	55.3		ND	177			276.4
Carbon tetrachloride	ND	55.3		ND	348.			276.4
Cyclohexane	ND	55.3		ND	190.			276.4
1,2-Dichloropropane	ND	55.3		ND	256.			276.4
Bromodichloromethane	ND	55.3	_	ND	370.	_	·	276.4
1,4-Dioxane	ND	55.3		ND	199.			276.4
richloroethene	1810	55.3		9730	297	_		276.4
2,2,4-Trimethylpentane	ND	55.3		ND	258.			276.4
Heptane	ND	55.3		ND	227.			276.4
cis-1,3-Dichloropropene	ND	55.3		ND	251.			276.4
4-Methyl-2-pentanone	ND	55.3		ND	227.			276.4
trans-1,3-Dichloropropene	ND	55.3		ND	251.			276.4
1,1,2-Trichloroethane	ND	55.3		ND	302.			276.4
Toluene	201	55.3		757	208			276.4
2-Hexanone	ND	55.3		ND	227.			276.4
Dibromochloromethane	ND	55.3		ND	471.			276.4
1,2-Dibromoethane	ND	55.3		ND	425.			276.4
Tetrachloroethene	66600	55.3	_	452000	375		E	276.4
Chlorobenzene	ND	55.3		ND	255			276.4
Ethylbenzene	76.0	55.3		330	240			276.4
p/m-Xylene	ND	110		ND	478			276.4
Bromoform	ND	55.3		ND	572.			276.4

Project Name:

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

D L1111041-01

Date Collected:

07/20/11 15:16

Client ID:

Project Number:

SS-1

Not Specified

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

		ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL.	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Mansfield Lab		diagnal.			In Harrier		
Styrene	61.6	55.3		262	235			276.4
1,1,2,2-Tetrachloroethane	ND	55.3		ND	380.			276.4
o-Xylene	ND	55.3		ND	240			276.4
4-Ethyltoluene	ND	55.3		ND	272.			276.4
1,3,5-Trimethybenzene	ND	55.3		ND	272.			276.4
1,2,4-Trimethylbenzene	ND	55.3		ND	272.			276.4
Benzyl chloride	ND	55.3		ND	286.			276.4
1,3-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,4-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,2-Dichlorobenzene	ND	55.3		ND	332.			276.4
1,2,4-Trichlorobenzene	ND	55.3		ND	410.			276.4
Hexachlorobutadiene	ND	55.3		ND	590.			276.4

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	111		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	104		60-140

Project Name:

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-01

Date Collected:

07/20/11 15:16

Client ID:

SS-1

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

D2

Matrix: Anaytical Method: Soil_Vapor 48,TO-15

Field Prep:

Not Specified

Analytical Date:

07/23/11 10:29

Analyst:

RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Level) - N	Mansfield Lab		13 Tables					46.
Tetrachloroethene	63200	276		428000	1870		4	1382

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	103		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	98		60-140

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-02

Client ID:

IA-1

Sample Location:

1199 SUTTER AVE, BROOKLYN

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 07/22/11 19:55

Analyst:

RY

Date Collected:

07/20/11 15:17

Date Received:

07/21/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield Lab					ľ.		
Propylene	1.11	0.500		1.91	0.860		-	1
Dichlorodifluoromethane	0.771	0.200		3.81	0.989			1
Chloromethane	1.67	0.200	·	3.45	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND .	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	531	2.50		1000	4.71		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	4.95	0.200		27.8	1.12			. 1
Isopropanol	25.0	0.500		61.4	1.23		-	1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	1.00	-	ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND .	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	5.61	0.200		16.5	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-02

Client ID:

IA-1

Sample Location:

1199 SUTTER AVE, BROOKLYN

Date Collected:

07/20/11 15:17

Date Received:

07/21/11

Field Prep:

•		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	rel) - Mansfield Lat		y本歌· 說。					
Ethyl Acetate	2.25	0.500		8.11	1.80			1
Chloroform	7.86	0.200		38.4	0.977			1
Tetrahydrofuran	5.95	0.200		17.5	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	2.21	0.200		7.79	0.705	••		1
1,1,1-Trichloroethane	ND	0.200		ND	1.09	•••		1
Benzene	1.18	0.200		3.77	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.613	0.200		2.11	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924		-	1
Bromodichloromethane	0.249	0.200		1.67	1.34	-		1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.236	0.200		1.27	1.07			1
2,2,4-Trimethylpentane	0.349	0.200		1.63	0.934			. 1
Heptane	1.23	0.200		5.04	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200	***	ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	3.03	0.200		11.4	0.754			1
2-Hexanone	ND	0.200	-	ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			. 1
Tetrachloroethene	10.1	0.200		68.5	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.391	0.200		1.70	0.869			1
p/m-Xylene	1.46	0.400		6.34	1.74			1
Bromoform	ND	0.200		ND	2.07			1

Project Name:

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-02

Client ID:

Sample Location:

IA-1

1199 SUTTER AVE, BROOKLYN

Date Collected:

07/20/11 15:17

Date Received:

07/21/11

Field Prep:

Sample Location. 1199 Sc	₽₽bV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
Volatile Organics in Air (Low Le						"唐俊		
Styrene	0.851	0.200		3.62	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.681	0.200		2.96	0.869			. 1
4-Ethyltoluene	0.386	0.200		1.90	0.983			1
1,3,5-Trimethybenzene	0,589	0.200		2.90	0.983			1
1,2,4-Trimethylbenzene	1.76	0.200		8.65	0.983			. 1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			. 1
1,4-Dichlorobenzene	0.472	0.200		2.84	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200	· 	ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	110		60-140

Project Name:

Lab Number:

L1111041

Project Number:

Not Specified

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-02 D

Client ID:

IA-1

Sample Location:

1199 SUTTER AVE, BROOKLYN

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 07/23/11 09:53

Analyst:

RY

Date Collected:

07/20/11 15:17

Date Received:

07/21/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Leve	el) - Mansfield Lab							
Ethanol	488	6.25		920	11.8			2.5

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	113		60-140
Bromochloromethane	110		60-140
chlorobenzene-d5	104		60-140

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-03

Client ID:

OA-1

Sample Location:

1199 SUTTER AVE, BROOKLYN

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15 07/22/11 19:18

Analyst:

RY

Date Collected:

07/20/11 15:21

Date Received:

07/21/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	vel) - Mansfield Lat							DALLES OF STREET
Propylene	ND	0.500	_	ND	0.860			1
Dichlorodifluoromethane	0.482	0.200		2.38	0.989			1

Parameter	Results	RL	MDL	Results	KL	MDL	Qualifier	
Volatile Organics in Air (Lo	w Level) - Mansfield Lab							Continue de la contin
Propylene	ND	0.500	_	ND	0.860			1
Dichlorodifluoromethane	0.482	0.200		2.38	0.989			1
Chloromethane	0.579	0.200		1.20	0.413			1
Freon-114	ND	0.200	••	ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442		**	1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	7.91	2.50		14.9	4.71	-		1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.71	1.00		6.44	2.38			1
Trichlorofluoromethane	0.249	0.200		1.40	1.12			1
Isopropanol	0.737	0.500		1.81	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200	<u></u>	ND	0.626			1
Carbon disulfide	ND	0.200	_	ND	0.623			1
Freon-113	ND	0.200		ND	1.53	-		1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809	_		1
Methyl tert butyl ether	ND	0.200		ND	0.721			. 1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	0.721	0.200		2.13	0.590	-		1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name:

Project Number:

Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-03

Date Collected:

07/20/11 15:21

Client ID:

OA-1

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Lev	rel) - Mansfi e ld Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.260	0.200		0.831	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200	-	ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820	_		1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.520	0.200		1.96	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1

Project Name:

Lab Number:

Project Number: Not Specified

L1111041

Report Date:

07/27/11

SAMPLE RESULTS

Lab ID:

L1111041-03

Date Collected:

07/20/11 15:21

Client ID:

OA-1

Date Received:

07/21/11

Sample Location:

1199 SUTTER AVE, BROOKLYN

Field Prep:

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
) - Mansfield Lab	27112468		The state of the s	ii .	L		
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			. 1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND.	0.200		ND	2.13			1
	ND N	ND 0.200	ND 0.200	ND 0.200 ND ND 0.200 ND	ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 2.13	ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 0.201 ND 0.201) Mansfield Lab ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 1.20 ND 0.200 ND 1.20 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	93		60-140

Project Name: Not Specified Lab Number:

L1111041

Project Number: Not Specified

Report Date:

07/27/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15

Analytical Date:

07/22/11 17:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low	Level) - Mansfield I	ab for sa	mple(s):	01-03 Batch	: WG48	0668-4		
Propylene	ND	0.500		ND	0.860			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200	_	ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200	-	ND	0.721			1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: Not Specified
Project Number: Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

Method Blank Analysis Batch Quality Control

Analytical Method:

48,TO-15

Analytical Date:

07/22/11 17:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low Le	evel) - Mansfield I	Lab for sa	mple(s):	01-03 Batcl	i: WG48	0668-4		No.
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.200		ND	0.590			1
1,2-Dichloroethane	ND	0.200	~=	ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200	••	ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200	•••	ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	N D	0.200		ND	0.820			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			. 1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	NĎ	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869	-		1

Project Name: Not Specified
Project Number: Not Specified

Lab Number:

L1111041

Report Date:

07/27/11

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/22/11 17:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low l	.evel) - Mansfield I	ab for sa	mple(s):	01-03 Batcl	ı: WG48	0668-4		
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

L1111041 Lab Number:

07/27/11 Report Date:

Not Specified Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Asso	sfield Lab Associat	ciated sample(s)); 01-03 Batch: WG480668-3	i: WG480	E-899			
Chlorodifluoromethane			•		70-130	ı		
Propylene	3		•		70-130		i i	
Propane			•		70-130	•		
Dichlorodifluoromethane		:	•		70-130	•		
Chloromethane	501		•		70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane			•		70-130	•		
Methanol		σ			70-130	•		
Vinyl chloride	901		ı	-	70-130	•		
1,3-Butadiene	100		1		70-130			
Butane	114				70-130	•		
Bromomethane	102		•		70-130	•		
Chloroethane	86		•		70-130			
Ethyl Alcohol	(25		•		70-130			
Dichlorofluoromethane	705		•		70-130			
Vinyl bromide	. 102,		•		70-130	•		
Acrolein	100		•		70-130			
Acetone	116		•		70-130			
Acetonitrile	114		ı		70-130	•		
Trichlorofluoromethane	107		•		70-130	•		
iso-Propyl Alcohol			,		70-130	:		
Acrylonitrile	106		,		70-130	•		

L1111041 Lab Number:

Not Specified Not Specified

Project Number: Project Name:

07/27/11 Report Date:

Qual RPD %Recovery Limits Pino LCSD %Recovery LCS %Recons

	LCS %Recovery	C	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Parameter	(a cooking			10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	(の)の (の)の (の)の (の)の (の)の (の)の (の)の (の)の		0.30m2 m	
Volatile Organics in Air (Low Level) - Mansfield Lab. Associated sample(s)	Mansfield Lab Associat	ed sample	5	-03 Batch: WG480668-3	668-3			
Pentane	90		ı		70-130	•		
Ethyl ether	8				70-130	1	:	
1,1-Dichloroethene	102		•		70-130	•		
tert-Butyl Alcohol	121 × 22				70-130			
Methylene chloride			1		70-130	•		
3-Chloropropene	96		1		70-130	,	1	
Carbon disulfide	78. 1		•		70-130	1		
1,1,2-Trichloro-1,2,2-Trifluoroethane	86		•		70-130	•	:	
trans-1,2-Dichloroethene	***		•		70-130	•		
1,1-Dichloroethane	88		1		70-130	•		÷
Methyl tert butyl ether	98	:		:	70-130	I ;	** * * * * * * * * * * * * * * * * * *	
Vinyl acetate	8		ì		70-130	•		
2-Butanone	001			:	70-130	,		
cis-1,2-Dichloroethene	86		•		70-130	1		
Ethyl Acetate		; ;	•		70-130	ı		
Chloroform	3		•		70-130	•		
Tetrahydrofuran	8		1		70-130	1		
2,2-Dichloropropane	84		1		70-130	,		
1,2-Dichloroethane	5		•		70-130	ı	:	
n-Hexane	8		ı		70-130	1		i
Isopropyl Ether	107		ı		70-130	•		

Not Specified

L1111041 Lab Number:

07/27/11 Report Date:

Not Specified Project Number: Project Name:

	LCS "Recovery	C.	LCSD %Recovery	Oual	%Recovery Limits	RPD	Qual	RPD Limits
Parameter				WICHBOR				は 一般
Volatile Organics in Air (Low Level) -Mansfield Lab Associ	eld Lab Associat	ed sample(s	3					
Ethyl-Tert-Butyl-Ether	105		•		70-130	•		
1,1,1-Trichloroethane	26	***************************************	1.	:	70-130			
1,1-Dichloropropene	in the second se		,		70-130	,		
Benzene	86	:			70-130	•		£
Carbon tetrachloride	87		1		70-130	1		
Cyclohexane					70-130	•	:	
Tertiary-Amyl Methyl Ether			i		70-130	ı		
Dibromomethane	101		•	:	70-130	•		
1,2-Dichloropropane	103		ı		70-130	1	i	
Bromodichloromethane	7 786	!	. !	a manage or a	70-130		:	
1,4-Dioxane	112		1	i	70-130	• !		:
Trichloroethene	8		1		70-130	1		
2,2,4-Trimethylpentane	101				70-130	1		
Heptane	8		•		70-130			
2,4,4-Trimethyl-1-Pentene	8	;	•		70-130	:	:	
cis-1,3-Dichloropropene	20		•		70-130	•		
4-Methyl-2-pentanone	725		•		70-130			
2,4,4-Trimethyt-2-Pentene	**************************************				70-130	•		
trans-1,3-Dichloropropene	8	:	ı		70-130		ı	
1,1,2-Trichloroethane	103				70-130	•		
Toluene	76		,		70-130	1		

L1111041

Lab Number:

07/27/11 Report Date:

> Not Specified Project Number:

Not Specified

Project Name:

Volatile Organics in Air (Low Level) - Mansfield Lab Association 102 1,3-Dichloropropane 1,2-Hexanone Dibromochloromethane Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene Chlorobenzene	nsfield Lab Associated	ated sample(s))): 01-03 Barch	4.5		着	1 (A)	
1,3-Dichloropropane 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene		:		WG4806	2 2000			
2-Hexanone Dibromochloromethane 1,2-Dibromoethane Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene	707				70-130	•		
Dibromochloromethane 1,2-Dibromoethane Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene	122	:			70-130	:		
1,2-Dibromoethane Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene	8		•		70-130	•		
Butyl Acetate Octane Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene	16		•		70-130	•		
Octane Tetrachioroethene 1,1,1,2-Tetrachioroethane Chlorobenzene	118		•		70-130	,		
Tetrachloroethene 1,1,1,2-Tetrachloroethane Chlorobenzene	92		•		70-130	•	:	
1,1,1,2-Tetrachloroethane Chlorobenzene	6		•		70-130	•		
Chlorobenzene			I .		70-130	•		
	56		• :		70-130	,		
Ethylbenzene			•		70-130	1		
p/m-Xylene	S. S		:		70-130			
Bromoform	8		1		70-130			
Styrene	8,		,		70-130			
1,1,2,2-Tetrachioroethane	801		1		70-130	٠		
o-Xylene	8				70-130	•		
1,2,3-Trichloropropane	108		1		70-130	•		
Nonane (C9)	102	٠	•		70-130	,		
Isopropylbenzene	701		•		70-130	ı		
Bromobenzene	80		i		70-130	1		
o-Chlorotoluene	86		1		70-130			
n-Propylbenzene	8		ı		70-130	1		

Lab Control Sample Analysis Batch Quality Control

L1111041 Lab Number:

Not Specified

Not Specified

Project Number:

Project Name:

07/27/11 Report Date:

Parameter	LCS "Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associa	Mansfield Lab Associate	ed sample(s): 01-03 Batc	Batch: WG480	9			
p-Chlorotoluene	*01				70-130	,		
4-Ethyltoluene	101		•	:	70-130	•		
1,3,5-Trimethylbenzene			•		70-130	ı		
tert-Butylbenzene	8		ı		70-130	•		
1,2,4-Trimethylbenzene			ı		70-130	ι		
Decane (C10)	411		•		70-130			
Benzyl chloride	108		•		70-130	ı		
1,3-Dichlorobenzene			ı	-	70-130	•		
1,4-Dichlorobenzene		:	ı	:	70-130	•	:	
sec-Butylbenzene			•		70-130	ı	:	
p-Isopropyltoluene	100		•	•	70-130	ı		
1,2-Dichlorobenzene	107		1		70-130	•		
n-Butylbenzene					70-130	•		
1,2-Dibromo-3-chtoropropane	8		ı		70-130	1		
Undecane		ø	ı		70-130	: 1		
Dodecane (C12)		ø	ī		70-130	•		
1,2,4-Trichlorobenzene	138	Ø	•		70-130	,		
Naphthalene		ø	•		70-130	1		
1,2,3-Trichlorobenzene	41	σ	•		70-130	ı		
Hexachlorobutadiene	116		•		70-130	•	:	

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1111041 07/27/11 Report Date: Not Specified Not Specified Project Number: Project Name:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-03 Sample	sfield Lab Associated sample(s): 01-03	QC Batch ID: WG480668-5 QC Sample:	S-00-8-8900	ample: L111	L1110975-02 Client ID: DUP
Propylene	5.89	5.84	√qdd		25
Dichlorodifluoromethane	0.556	0.594	√ddd	7	25
Chloromethane	2.25	2.18	√ddd		25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	QV	Q	∧qdd	2	25
Vinyl chloride	0.255	0.233	√dqq	6	25
1,3-Butadiene	QN	9	∆ddd	2	25
Bromomethane	QN	9	∧qdd	NC	25
Chloroethane	0.211	Q	Addd	2	. 25
Trichlorofluoromethane	0.254	0.248	∧qdd	7	25
1,1-Dichloroethene	QN	9	∆ddd	NC	25
Methylene chloride	QN	ð	∧qdd	Ŋ	25
Carbon disulfide	7.83	7.89	∆qdd		25
1,1,2-Trichloro-1,2,2-Trifluoroethane	QN	Q	∧qdd	N	25
trans-1,2-Dichloroethene	QN	Q	∧qdd	2	25
1,1-Dichloroethane	QN	Q	∧qdd	2	25
Methyl tert butyl ether	QN	Q	∆qdd	2	25
2-Butanone	37.9	38.0	∆ddd		25
cis-1,2-Dichloroethene	۵۷	Q	∆qdd	2	25
Chloroform	0.451	0.474	√dqq		25

Lab Duplicate Analysis

Not Specified Not Specified

Project Name:

Project Number:

Lab Number:

L11111041 07/27/11

Report Date:

Batch Quality Control

QC Batch ID WG480668-5 QC Sample L1110975-02 Client ID: DUP RPD Limits 25 25 35 25 22 22 25 25 25 35 35 25 2 NG N NC Ŋ Ó. NC 2 Q, . . . 2 2 , NG 9 Q. RPD Units ∆qdd \qdd ∆qdd ρβρ ∆qdd ∆qdd ∆qdd ∆qdd ∆qdd >qdd \qdd \qdd ∆qdd ∆ddd \qdd ∆qdd ∧qdd /qdd **Duplicate Sample** 0.324 0.351 3.78 9 9 9 9 2 2 9 9 9 9 9 9 9 2 Volatile Organics in Air (Low Level) - Mansfield Lab Associated sample(s): 01-03 Native Sample 0.316 0.348 3.98 2 9 9 9 ᄝ 9 9 皇 2 9 9 2 2 身 trans-1,3-Dichloropropene 1,1,2,2-Tetrachloroethane cis-1,3-Dichloropropene Sample 1,1,1-Trichloroethane 1,1,2-Trichloroethane Carbon tetrachloride 1,2-Dichloropropane 1,2-Dibromoethane 1,2-Dichloroethane Tetrachloroethene Trichloroethene Chlorobenzene Ethylbenzene Cyclohexane p/m-Xylene **Parameter** n-Hexane **Benzene** Toluene Styrene

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1111041 07/27/11

Report Date: Not Specified Not Specified Project Number: Project Name:

Darameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics in Air (Low Level) - Mansfield Lab Associ	sociated sample(s): 01-03 QC Batch ID: WG480668-5 루QC Sample의	QC Batch ID: WG4	80668-5 40C S	- N	110975-02 Client ID: DUP
o-Xylene	QN	QN	√ddd	QN T	25
1,3,5-Trimethylbenzene	QN	QN	√ddd	NC	25
1,2,4-Trimethylbenzene	Q	QN	∧qdd	No.	25
Benzyl chloride	ON	ND	√ddd	Q	25
1,3-Dichlorobenzene	N	ND	√dqq	2	25
1,4-Dichlorobenzene	ND	QN	∧qdd	2	25
1,2-Dichlorobenzene	QN	QN	Vdqq	9	25
1,2,4-Trichlorobenzene	QN	QN	∧qdd	9	25
Hexachlorobutadiene	QN	Q	∧gdd	CN	25

Project Name:

Project Number:

Serial_No:07271116:22 **Lab Number:** L1111041

Report Date: 07/27/11

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Cleaning Batch ID	initiai Pressure (in. Hg)	Pressure on Receipt (In. Hg)	Flow Out	Flow In m⊔/min	% RSD
L1111041-01	S\$-1	0009	#20 AMB		-	-	9.9	9.9	0
L1111041-01	\$8-1	766	6.0L Can	L1110016	-29.5	-5.9	-	-	-
L1111041-02	IA-1	0231	#20 AMB		•	-	10.0	9.7	3
L1111041-02	IA-1	806	6.0L Can	L1110016	-29.6	-4.9	-	-	-
L1111041-03	OA-1	0228	#20 AMB		-	•	10.0	10.0	0
L1111041-03	QA-1	1624	6.0L Can	L1110016	-29.4	-5.2	-	-	-

Air Volatiles Can Certification

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 07/08/11 10:06

Analyst:

RY

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics th Air (Low L	every manerate cap		100		44		12 (120%)	
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.860			1
Propane	ND	0.200	-	ND	0.361			1
Dichlorodifluoromethane	ND	0.200	-	ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			. 1
Freon-114	ND	0.200		ND	1.40			. 1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511	-		1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1 .
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23	-		1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606	-		1
1,1-Dichloroethene	ND	0.200		ND	0.793	-		1
Tertiary butyl Alcohol	ND	0.500		ND	1.52	-		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

	<u></u>	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
Volatile Organics in Air (Low Li	eyel) - Maristielt Lat				NE.			
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200	***	ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623	_		1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200	-	ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721	-		. 1
Vinyl acetate	ND	0.200		ND	0.704			1
2-Butanone	ND	0.200		ND	0.590			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			. 1
Chloroform	ND	0.200	-	ND	0.977	- -		1 .
Tetrahydrofuran	ND	0.200		ND	0.590	-		1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200	-	ND	0.809			1
п-Hexane	ND	0.200	-	ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908	-		1
Benzene	ND	0.200	-	ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200	_	ND	0.836	_		1
Dibromomethane	ND	0.200	-	ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
	Ministration of the second							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
2,4,4-trimethyl-1-pentene	ND	0.500	-	ND	2.29			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200		ND	0.820			.1
2,4,4-trimethyl-2-pentene	ND	0.500		ND	2.29			1
trans-1,3-Dichloropropene	ND	0.200	-	ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09	-		1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200	_	ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38	-		1
Octane	ND	0.200	_	ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400	-	ND	1.74	-		1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852	-		1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.20	-		1
Nonane	ND	0.200	_	ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Velatile Organise IF Air (Low Eev	ei) - Mässfield Let							
Bromobenzene	ND	0.200	-	ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983		·	1
4-Chlorotoluene	ND	0.200	_	ND	1.04	-		1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10	-		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16	-		1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200	-	ND	1.10	_		1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200	-	ND	1.93	-		1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05	_		1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Date Collected:

06/30/11 00:00

Date Received:

MDL

06/30/11

Field Prep:

Sample Location:

ppbV

Not Specified

Results Parameter

作別語 (Trigatic Stri Afr (Low Level) - Manafialo Lab

RL MDL

ug/m3 Results RL

Dilution Factor Qualifier

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	89		60-140

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 07/08/11 10:06

Analyst:

RY

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
/olalis Organics in As by SIM	Mertsfield Lab				Market		ANAL THE	#1+1;
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500	-	ND	1.03			.1
Freon-114	ND	0.050		ND	0.349			1
/inyl chloride	ND	0.020		ND	0.051			1
,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020	-	ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00		ND	4.75			
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500	**	ND	1.08			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47			1
Freon-113	ND	0.050		ND	0.383	_		1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072	••		1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126	-		1
1,2-Dichloropropane	ND	0.020		ND	0.092			. 1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Sample Location:

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organiçe in Partoy SIM	Mansfeld Lab	1444	i de la companya de l			Till virginia	4	THE 24
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107	-		1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020	-	ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050	-	ND	0.188			1
Dibromochloromethane	ND	0.020	-	ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092	-		1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	0.072	0.040	-	0.313	0.174			1
3romoform	ND	0.020		ND	0.207	-		1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137	-		1
o-Xylene	ND	0.020	-	ND	0.087			1
sopropylbenzene	ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098	-		1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND .	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74	-		1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.500		ND	2.74			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

Sample Location:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

Client ID:

CAN 1632 SHELF 47

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
Volatile Organics in Alf-By SIM - Na	iteliati Labye							
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthaiene	ND	0.050		ND	0.262	-		1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050	-	ND	0.533			1 .

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-01

(Glassoft and September 1976) Wanding Control of the Control of th

Client ID:

CAN 1632 SHELF 47

Date Collected:

06/30/11 00:00

Date Received:

06/30/11

Field Prep:

Not Specified

Sample Location:

ppbV

ug/m3

MDL

Dilution Factor

Parameter

RL MDL Results

RL Results

Qualifier

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	101		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	90		60-140

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Matrix:

Analyst:

Air

Anaytical Method: Analytical Date: 48,TO-15

RY

07/07/11 19:58

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air (Low L	evel) - Mansfield Lab			Tara P			THAC	
Chlorodifluoromethane	ND	0.200	-	ND	0.707			1
Propylene	ND	0.500		ND	0.860			1
Propane	ND	0.200		ND	0.361			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200	_	ND	1.40	_		1
Methanol	ND	5.00	-	ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442		*** * *** * ***	. 1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200	_	ND	0.777	-		1
Chloroethane	ND	0.200	_	ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842			.1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38	 .		1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606	_		1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep: Not Specified

		Vadd			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
diatle Orgenies in Air (Low to	evel) - Marisilaid Lab						This?	1000
Methylene chloride	ND	1.00		ND	3.47			1
-Chloropropene	ND	0.200		ND	0.626			1
arbon disulfide	ND	0.200		ND	0.623	 .		1
reon-113	ND	0.200		ND	1.53	_		1
ans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809	-		1
lethyl tert butyl ether	ND	0.200		ND	0.721			. 1
inyl acetate	ND	0.200	-	ND	0.704			1
-Butanone	ND	0.200		ND	0.590	-		1
is-1,2-Dichloroethene	ND	0.200		ND	0.793	-		1
thyl Acetate	ND	0.500	_	ND	1.80			1
hloroform	ND	0.200		ND	0.977	-	100	1
etrahydrofuran	ND	0.200		ND	0.590			1
,2-Dichloropropane	ND	0.200		ND	0.924	**		1
,2-Dichloroethane	ND	0.200		ND	0.809			. 1
ı-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0,200	-	ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			. 1
Benzene	ND	0.200	-	ND	0.639	_		1
Carbon tetrachloride	ND	0.200	-	ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688	-		1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
到国际电影的名词形形(ow e	er in the second					A CONTRACTOR		
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
2,4,4-trimethyl-1-pentene	ND	0.500	-	ND	2.29			. 1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.200	_	ND	0.820			1
2,4,4-trimethyl-2-pentene	ND	0.500		ND	2.29	_		1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200	-	ND	1.09	_		1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			. 1
 2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			. 1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200	_	ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200	-	ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921	-		1
Ethylbenzene	ND	0.200	-	ND	0.869	-		1
p/m-Xylene	ND	0.400		ND	1.74	-		1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37	_		1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200	-	ND	1.20			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200	-	ND	0.983			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
Volating Trics in Air (Lakel et	el Mansfeldigel		A PARTIES					
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200	-	ND	0.983			. 1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND .	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10	-		1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200	••	ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20	-		1
1,4-Dichlorobenzene	ND	0.200	_	ND	1.20	-		1
sec-Butylbenzene	ND	0.200		ND	1.10	-		1
p-Isopropyitoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			. 1
n-Butylbenzene	ND	0.200		ND	1.10	_		1
1,2-Dibromo-3-chloropropane	ND	0.200	-	ND	1.93			1
Undecane	ND	0.200		ND	1.28	-		1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

Parameter

CAN 1546 SHELF 52

07/07/11 00:00

Date Collected: Date Received:

07/07/11

Field Prep:

Not Specified

Sample Location:

Results

Results

ug/m3 RL MDL

Qualifier

Dilution Factor

Volatile Organics in Air (Low Level) - Mansfield Lab

MDL

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	92		60-140

ppbV

RL

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 07/07/11 19:58

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV	ppbV			ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
We remain the								u r ii.
Dichlorodifluoromethane	ND	0.050	-	ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND 	0.044	-		. 1
Bromomethane	ND	0.020		ND	0.078	-		1
Chloroethane	ND	0.020	-	ND	0.053			1
Acetone	ND	2.00		ND	4.75			. 1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.08	_		1
1,1-Dichloroethene	ND	0.020	-	ND	0.079			1
Methylene chloride	ND	1.00	***	ND	3.47			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			. 1
trans-1,2-Dichloroethene	ND	0.020	-	ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020	-	ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		, , , , ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100	-	ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
A STANDARD IN A STANDARD IN								
Bromodichloromethane	ND	0.020	-	ND	0.134	-		1
I,4-Dioxane	ND	0.100		ND	0.360			1
Frichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109	-		1
Toluene	ND	0.050	-	ND	0.188	_		1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040	_	ND	0.174			. 1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachioroethane	ND	0.020	_	ND	0.137	_		1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74			1
p-Isopropyltoluene	ND	0.500		ND	2.74	-		1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.500		ND	2.74			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

Sample Location:

CAN 1546 SHELF 52

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Parameter		ppbV			ug/m3		Dilution	
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organitas in Air by SIM - Ma	insfield (cd)	A 11						
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050	_	ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

MDL

07/07/11

Field Prep:

Not Specified

ppbV

ug/m3

Dilution Factor

Parameter

RL MDL Results

Results RL

Qualifier

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

BATCH CANISTER CERTIFICATION Project Name:

Lab Number:

L1110016

Project Number: **CANISTER QC BAT**

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Matrix:

Аіг

Anaytical Method: Analytical Date:

48,TO-15 07/15/11 16:26

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
7.202		AN 18				() () ()		
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500	-	ND	0.860		,	.1 .
Propane	ND	0.200		ND	0.361			1
Dichlorodifluoromethane	ND	0.200	-	ND	0.989			. 1
Chloromethane	ND	0.200	_	ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200	-	ND	0.511	-		1
1,3-Butadiene	ND	0.200		ND	0.442	_		1
Butane	ND	0.200		ND	0.475	-		1
Bromomethane	ND	0.200	_	ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	2.50		ND	4.71			1
Dichlorofluoromethane	ND	0.200		ND	0.842	-		1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15	-		1
Acetone	ND	1.00		ND	2.38	-		1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12	_		1
Isopropanol	ND	0.500		ND	1.23	-		1
Acrylonitrile	ND	0.200		ND	0.434			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200	-	ND	0.606	-		1
1,1-Dichloroethene	ND	0.200		ND	0.793	-		1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
oduke jakit akut		<u> </u>				2 7 0		
Methylene chloride	ND	1.00		ND	3.47			1
-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
reon-113	ND	0.200	_	ND	1.53			1
ans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809	-		1
Methyl tert butyl ether	ND	0.200		ND	0.721	-		1
/inyl acetate	ND	0.200		ND	0.704			1
P-Butanone	ND	0.200	-	ND	0.590	-		1
is-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977		•	1
Tetrahydrofuran	ND	0.200		ND	0.590			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200	-	ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0,200		ND	0.836	-		1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09		-	1
1,1-Dichloropropene	ND	0.200		ND	0.908			. 1
Benzene	ND	0.200	***	ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			. 1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200	-	ND	1.42	-		1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200	-	ND	1.34			
1,4-Dioxane	ND	0.200		ND	0.721		-	1

BATCH CANISTER CERTIFICATION Project Name:

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
	VIEW MARKETON FIL				(42 /08); 1	9 Wildely B		1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	ND	0.200		ND	0.820			1
,4,4-trimethyl-1-pentene	ND	0.500		ND	2.29			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908	-		1
-Methyl-2-pentanone	ND	0.200		ND	0.820			. 1
2,4,4-trimethyl-2-pentene	ND	0.500		ND	2.29			1
rans-1,3-Dichloropropene	ND	0.200	-	ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09	-		1
Coluene	ND	0.200		ND	0.754	-		1
I,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820	-		1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200	-	ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0,200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37	-		1
Chlorobenzene	ND	0.200	-	ND	0.921			1
Ethylbenzene	ND	0.200	-	ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200	+-	ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.20	-		1
Nonane	ND	0.200		ND	1.05			. 1
Isopropylbenzene	ND	0.200	_	ND	0.983	-		1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
				202		4		
Bromobenzene	ND	0.200		ND	0.793	-		1
2-Chlorotoluene	ND	0.200	-	ND	1.04			1
n-Propylbenzene	ND	0.200	-	ND	0.983	···		1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983	-		1
1,3,5-Trimethybenzene	ND	0.200	_	ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			_ 1
Decane	ND	0.200	-	ND	1.16	-		1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200	-	ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-isopropyltoluene	ND	0.200		ND	1.10	-		1
1,2-Dichlorobenzene	ND	0.200	••	ND	1.20	-		1
n-Butylbenzene	ND	0.200	-	ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200	-	ND	1.93	-		1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200	-	ND	1.39		-	1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48	-		1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48	-		1
Hexachlorobutadiene	ND	0.200		ND	2.13	-		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

Sample Location:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Date Collected: Date Received: 07/07/11 00:00

07/07/11

Field Prep:

Not Specified

ug/m3 ppbV

Dilution Factor

Qualifler Results RL MDL RL MDL Results Parameter

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	82		60-140

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 07/15/11 16:26

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Valenta in original and compared to	Markfeld Harry		3.5	A STATE OF THE STA				
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03	-		1
Freon-114	ND	0.050	-	ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020	_	ND	0.044	-		1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053	-		1
Acetone	ND	2.00	-	ND	4.75			1
Trichlorofluoromethane	ND	0.050		ND	0.281	_		1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020	-	ND	0.079	-		1
Methylene chloride	ND	1.00	-	ND	3.47			1
Freon-113	ND	0.050	-	ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020	-	ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020		ND	0.072			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020	_	ND	0.079	-		1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109	-		1
Benzene	ND	0.100		ND	0.319	-		1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Maile Organism Ar Nythir	Vanener seab							
Bromodichloromethane	ND	0.020		ND	0.134			1
richloroethene	ND	0.020		ND	0.107	-		1
,4-Dioxane	ND	0.100		ND	0.360			1
is-1,3-Dichloropropene	ND	0.020		ND	0.091	_		1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
,1,2-Trichloroethane	ND	0.020		ND	0.109			1
oluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
etrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.020	-	ND	0.092	_		1
Ethylbenzene	ND	0.020		ND	0.087			1
/m-Xylene	ND	0.040	···	ND	0.174			1
Bromoform	ND	0.020		ND	0.207	-		1
Styrene	ND	0.020	-	ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020	-	ND	0.087			1
sopropylbenzene	ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			. 1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74	-		1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020	-	ND	0.120			1
n-Butylbenzene	ND	0.500		ND	2.74	-		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Date Collected:

07/07/11 00:00

Client ID:

CAN 705 SHELF 41

Date Received:

07/07/11

Sample Location:

Field Prep:

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
and - haday								
1,2,4-Trichlorobenzene	ND	0.050	-	ND	0.371			1
Naphthalene	ND	0.050	-	ND	0.262	-		1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371	-		1
Hexachlorobutadiene	ND	0.050		ND	0.533	_		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

Sample Location:

Voicilla Marinis in Alguaria

chlorobenzene-d5

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Not Specified

Results **Parameter**

ppbV RL MDL

ug/m3 RL Results

60-140

MDL Qualifier

Dilution **Factor**

Acceptance Criteria Qualifier Internal Standard % Recovery 1,4-difluorobenzene 60-140 95 101 60-140 bromochloromethane

89

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

Analyst:

CAN 111 SHELF 1

Sample Location: Matrix:

Anaytical Method: Analytical Date:

Air 48,TO-15

07/15/11 17:00

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	PpbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Votefile: Organical Marie Loya		MINE DE			(E. A. S.			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.860			1
Propane	ND	0.200	-	ND	0.361			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			. 1
Methanol	ND	5.00		ND	6.55			1
/inyl chloride	ND	0.200		ND	0.511			1
,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475	-		1
Bromomethane	ND	0.200	-	ND	0.777	-		1
Chloroethane	ND	0.200		ND	0.528	-		1
Ethanol	ND	2.50		ND	4.71	 .		1
Dichlorofluoromethane	ND	0.200	-	ND	0.842			1
/inyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500	-	ND	1.15	-		. 1
Acetone	ND	1.00		ND	2.38	-		1
Acetonitrile	ND	0.200		ND	0.336		•	1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.200		ND	0.434			
Pentane	ND	0.200		ND	0.590	-		1
Ethyl ether	ND	0.200		ND	0.606	-		1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500	_	ND	1.52	-		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

	<u></u>	ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
							1119 <u>4</u> 3112-78	100 Marie 100 Ma
Methylene chloride	ND	1.00		ND	3.47			1
3-Chloropropene	ND	0.200		ND	0.626	-		1
Carbon disulfide	ND	0.200	••	ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
ans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809	_		1
lethyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	0.200		ND	0.704			1
-Butanone	ND	0.200	-	ND	0.590			1
is-1,2-Dichloroethene	ND	0.200		ND	0.793			1
thyl Acetate	ND	0.500	-	ND	1.80	_		1
hloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.200		ND	0.590	-		1
,2-Dichloropropane	ND	0.200	_	ND	0.924			1
,2-Dichloroethane	ND	0.200	-	ND	0.809			1
-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200	-	ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
,1,1-Trichloroethane	ND	0.200		ND	1.09	_		1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200	_	ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200	-	ND	0.924	-		1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200	-	ND	0.721	_		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

Sample Location:

CAN 111 SHELF 1

Date Collected: Date Received: 07/07/11 00:00

07/07/11

Field Prep:

	Vdqq			ug/m3				Dilution
arameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
		e don't						
richloroethene	ND	0.200		ND	1.07	_		1
,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	ND	0.200		ND	0.820	-		1
4,4-trimethyl-1-pentene	ND	0.500	-	ND	2.29			1
s-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.200		ND	0.820			1
4,4-trimethyl-2-pentene	ND	0.500		ND	2.29	-		1
ans-1,3-Dichloropropene	ND	0.200	•	ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754	_		1
,3-Dichloropropane	ND	0.200	-	ND	0.924			1
Hexanone	ND	0.200	-	ND	0.820	<u></u>		1
ibromochloromethane	ND	0.200	_	ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
utyl acetate	ND	0.500		ND	2.38	-		1
Octane	ND	0.200	-	ND	0.934	-		1
etrachloroethene	ND	0.200		ND	1.36			1
,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200	-	ND	0.921	-		1
thylbenzene	ND	0.200		ND	0.869			1
/m-Xylene	ND	0.400		ND	1.74			1
dromoform	ND	0.200	-	ND	2.07	-		1
Styrene	ND	0.200	-	ND	0.852			1
,1,2,2-Tetrachloroethane	N D	0.200		ND	1.37			_ 1
-Xylene	ND	0.200		ND	0.869	-		1
,2,3-Trichloropropane	ND	0.200		ND	1.20			1
lonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
voletie commission Air (Low) Lake	al) 2 Najaraja A							
Bromobenzene	ND	0.200	-	ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200	_	ND	1.04	_		1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200	-	ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200	-	ND	1.20			1
1,4-Dichlorobenzene	ND	0.200	_	ND	1.20			1
sec-Butylbenzene	ND	0.200	-	ND	1.10			1
p-!sopropyltoluene	NĐ	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20	_		1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05	_		1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48	-		1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Date Collected:

07/07/11 00:00

Client ID:

CAN 111 SHELF 1

Date Received:

Sample Location:

07/07/11

Not Specified

ppbV

Field Prep:

Parameter Results

Bromochloromethane

chlorobenzene-d5

RL MDL

ug/m3 Results RL

60-140

60-140

MDL Qualifier Dilution Factor

Acceptance Criteria Internal Standard % Recovery Qualifier 1,4-Difluorobenzene 87 60-140

90

83

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Matrix:

Αir

Anaytical Method: Analytical Date:

48,TO-15-SIM 07/15/11 17:00

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
			Mór Má		7	7 1	ransa:	
Dichlorodifluoromethane	ND	0.050		ND	0.247			1
Chloromethane	ND	0.500		ND	1.03	_		1
Freon-114	ND	0.050	_	ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020	· ·	ND	0.044			1
Bromomethane	ND	0.020	-	ND	0.078			1
Chloroethane	ND	0.020		ND	0.053	-		1
Acetone	ND	2.00		ND	4.75			1
Trichlorofluoromethane	ND	0.050	-	ND	0.281	_		1
Acrylonitrile	ND	0.500		ND	1.08			1
1,1-Dichloroethene	ND	0.020	_	ND	0.079			1
Methylene chloride	ND	1.00		ND	3.47	-		1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404	-		1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020	<u> </u>	ND	0.072	-		1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098	_		1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109	-		1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3	3		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
								716
3romodichloromethane	ND	0.020		ND	0.134			1
richloroethene	ND	0.020		ND	0.107		_	1
,4-Dioxane	ND	0.100		ND	0.360			1 .
is-1,3-Dichloropropene	ND	0.020		ND	0.091			1
-Methyl-2-pentanone	ND	0.500	_	ND	2.05	-		1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			
.1.2-Trichloroethane	ND	0.020	_	ND	0.109			1
Coluene	ND	0.050	-	ND	0.188			. 1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020	-	ND	0.154	-		1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137	_		1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174		an .	1
Bromoform	ND	0.020	-	ND	0.207	-		1
Styrene	ND	0.020	_	ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.500	-	ND	2.46			1
1,3,5-Trimethyberizene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500	-	ND	2.74			1
p-Isopropyltoluene	ND	0.500		ND	2.74			1
1,2-Dichlorobenzene	ND	0.020	-	ND	0.120	-		. 1
n-Butylbenzene	ND	0.500		ND	2.74			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
Ver Salar								建 设。
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichiorobenzene	ND	0.050	•••	ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number:

Sample Location:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Date Collected:

07/07/11 00:00

Date Received:

MDL

07/07/11

Not Specified

Field Prep:

Results **Parameter**

ppbV RL MDL

ug/m3 RL Results

Qualifier

Dilution Factor

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochioromethane	93		60-140
chlorobenzene-d5	90		60-140

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15

07/12/11 18:35

Analyst:

AR

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
	evel) a Warranti F Ear								
Chlorodifluoromethane	ND	0.200		ND	0.707	-		1	
Propylene	ND	0.500	-	ND	0.860			1	
Propane	ND	0.200	-	ND	0.361			1	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200	-	ND	0.413			1 .	
Freon-114	ND	0.200		ND	1.40			1	
Methanoi	ND	5.00		ND	6.55			1	
Vinyl chloride	ND	0.200		ND	0.511			_ 1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Butane	ND	0.200		ND	0.475			1	
Bromomethane	ND	0.200	-	ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528	-		1	
Ethanol	ND	2.50	-	ND	4.71			1	
Dichlorofluoromethane	ND	0.200		ND	0.842		****	1	
Vinyl bromide	ND	0.200		ND	0.874	-		1	
Acrolein	ND	0.500		ND	1.15			1	
Acetone	ND	1.00	-	ND	2.38			1	
Acetonitrile	ND	0.200		ND	0.336			1	
Trichlorofluoromethane	ND	0.200		ND	1.12			1	
Isopropanol	ND	0.500		ND	1.23			1	
Acrylonitrile	ND	0.200		ND	0.434	-		. 1	
Pentane	ND	0.200		ND	0.590	-		1	
Ethyl ether	ND	0.200	-	ND	0.606	-		1	
1,1-Dichloroethene	ND	0.200	-	ND	0.793			1	
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1	

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Project Number: **CANISTER QC BAT** Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

Sample Location:

CAN 1497 SHELF 14

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
lethylene chloride	ND	1.00	_	ND	3.47	-		1
-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
reon-113	ND	0.200		ND	1.53			1
ans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809			1
lethyl tert butyl ether	ND	0.200		ND	0.721		***	. 1
inyl acetate	ND	0.200		ND	0.704			1
-Butanone	ND	0.200		ND	0.590			1
is-1,2-Dichloroethene	ND	0.200		ND	0.793			1
thyl Acetate	ND	0.500	_	ND	1.80	-		1
chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.200	***	ND	0.590			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200	-	ND	0.809			. 1
-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200	·-	ND	0.836	-		1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836	_		1
1,1,1-Trichloroethane	ND	0.200	-	ND	1.09			1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200	_	ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200	-	ND	0.721	_		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
SINDS Copanicating At (85% Le	ye) eMarting							
richloroethene	ND	0.200	-	ND	1.07	-		1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	ND	0.200		ND	0.820			1
,4,4-trimethyl-1-pentene	ND	0.500		ND	2.29			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908	-		1
-Methyl-2-pentanone	ND	0.200		ND	0.820			. 1
,4,4-trimethyl-2-pentene	ND	0.500	-	ND	2.29			1
rans-1,3-Dichloropropene	ND	0.200	-	ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09	-		1
oluene	ND	0.200	-	ND	0.754			1
,3-Dichloropropane	ND	0.200	-	ND	0.924			1 .
-Hexanone	ND	0.200		ND	0.820			. 1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			. 1
Butyl acetate	ND	0.500		ND ·	2.38			1
Octane	ND	0.200		ND	0.934	-		1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921	-		
Ethylbenzene	ND	0.200	-	ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200	-	ND	1.37			1
o-Xylene	ND	0.200	••	ND	0.869			1
1,2,3-Trichloropropane	ND	0.200	-	ND	1.20	-		1
Nonane	ND	0.200	-	ND	1.05	-	*****	1
Isopropylbenzene	ND	0.200	-	ND	0.983			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Sample Location:

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Date Collected: Date Received: 07/07/11 00:00

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
				ich Striker		j.		
Bromobenzene	ND	0.200		ND	0.793			1
2-Chiorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chiorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200	_	ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04	-		1
1,3-Dichlorobenzene	ND	0.200	_	ND	1.20			1
1,4-Dichlorobenzene	ND	0.200	-	ND	1.20	_		1
sec-Butylbenzene	ND	0.200		ND	1.10	<u></u>		1
p-Isopropyltoluene	ND	0.200		ND	1.10	-		1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	N D	0.200	**	ND	1.93			1
Undecane	ND	0.200	_	ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48	-		1
Naphthalene	ND	0.200		ND	1.05	_		1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13	_		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Date Collected:

07/07/11 00:00

Client ID:

CAN 1497 SHELF 14

Date Received:

07/07/11

Sample Location:

ppbV

Field Prep:

Not Specified

ug/m3

Dilution Factor RL Qualifier RL Results MDL Results MDL Parameter

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	94		60-140

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Sample Location:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 07/15/11 17:35

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
AND SECTION OF THE PROPERTY OF THE			1600				7.7.7. 62. 3 .5	
Dichlorodifluoromethane	ND	0.050	-	ND	0.247			1
Chloromethane	ND	0.500		ND	1.03			. 1
Freon-114	ND	0.050		ND	0.349	_		1
/inyl chloride	ND	0.020		ND	0.051	-		1
,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078	<u></u>		1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	2.00	-	ND	4.75			1
richlorofluoromethane	ND	0.050	-	ND	0.281			1
Acrylonitrile	ND	0.500	**	ND	1.08	-		1
,1-Dichloroethene	ND	0.020		ND	0.079	-		1
Methylene chloride	ND	1.00	-	ND	3.47	-		. 1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
rans-1,2-Dichloroethene	ND	0.020	-	ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.020	-	ND	0.072	_		1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098	<u></u>		1 .
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020	-	ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092	-		1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Sample Location:

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
GIANICO E LA CARROLLA DE C					*			
3romodichloromethane	ND	0.020		ND	0.134			1
Frichloroethene	ND	0.020	-	ND	0.107			1
,4-Dioxane	ND	0.100		ND	0.360			. 1
sis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109	_		1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020	-	ND	0.170	-		1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137	-		1
Chlorobenzene	ND	0.020		ND	0.092			1
Ethylbenzene	ND	0.020	-	ND	0.087			. 1.
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020	_	ND	0.207	-		1
Styrene	ND	0.020	-	ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087	-		1
isopropylbenzene	ND	0.500		ND	2.46			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098	-		1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120	_		1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.500		ND	2.74			1
p-Isopropyltoluene	ND	0.500	-	ND	2.74			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.500		ND	2.74	-		1

Project Name: **BATCH CANISTER CERTIFICATION** Lab Number:

L1110016

Sample Location:

Project Number: CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifler	Factor
					Parallini (* 1			
1,2,4-Trichlorobenzene	ND	0.050	-	ND	0.371	-		1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371	- -		1
Hexachlorobutadiene	ND	0.050	-	ND	0.533			1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

Air Canister Certification Results

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Date Collected: Date Received: 07/07/11 00:00

07/07/11

Field Prep:

Not Specified

Sample Location:

ppbV

ug/m3

Dilution

Factor Results RL MDL Qualifier Results RL MDL Parameter

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	86		60-140

AIR Petro Can Certification

BATCH CANISTER CERTIFICATION **Project Name:**

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

AIR CAN CERTIFICATION RESULTS

Lab ID:

L1110016-02

Client ID:

CAN 1546 SHELF 52

Sample Location:

Not Specified

Matrix:

Air

Analytical Method: 96,APH

Analytical Date:

07/15/11 14:13

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Brand Aviorations in Alex	Many feld Eab ' v	Trans.				
1,3-Butadiene	ND	A3 - A0000000000000000000000000000000000	ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0		1
Benzene	ND ND		ug/m3	2.0		1
Toluene	ND		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1
Ethylbenzene	ND		ug/m3	2.0	-	1
p/m-Xylene	ND		ug/m3	4.0	<u> </u>	1
o-Xylene	ND		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0	••	1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14	••	1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

07/27/11

07/07/11

CANISTER QC BAT

AIR CAN CERTIFICATION RESULTS

07/07/11 00:00

Not Specified

Lab ID:

L1110016-03

Client ID:

CAN 705 SHELF 41

Sample Location:

Not Specified

Matrix:

Air

Analytical Method: 96,APH

Analytical Date:

07/15/11 14:51

Analyst:

RY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
promise to be a little	maine in the					
1,3-Butadiene	ND		ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0		1
Benzene	ND		ug/m3	2.0		. 1
Toluene	ND		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1
Ethylbenzene	ND		ug/m3	2.0		1
p/m-Xylene	ND		ug/m3	4.0		1
o-Xylene	ND		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

AIR CAN CERTIFICATION RESULTS

Lab ID:

L1110016-04

Client ID:

CAN 111 SHELF 1

Sample Location:

Not Specified

Matrix:

Air

Analytical Method:

96,APH

Analytical Date:

07/15/11 15:30

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Result	Qualifier	Units	RL	MDL	Dilution Factor
ND		ug/m3	2.0		1
ND		ug/m3	2.0		1
ND		ug/m3	2.0		, 1
ND		ug/m3	2.0		1
ND		ug/m3	12	-	1
ND		ug/m3	2.0		1
ND		ug/m3	4.0		1
ND		ug/m3	2.0		1
ND		ug/m3	2.0		1
ND		ug/m3	14		
ND		ug/m3	10	_	1
	ND N	ND N	ND ug/m3	ND ug/m3 2.0 ND ug/m3 2.0 ND ug/m3 2.0 ND ug/m3 2.0 ND ug/m3 12 ND ug/m3 2.0 ND ug/m3 4.0 ND ug/m3 2.0 ND ug/m3 2.0 ND ug/m3 2.0 ND ug/m3 14	ND ug/m3 2.0 ND ug/m3 12 ND ug/m3 2.0 ND ug/m3 14

Project Name:

BATCH CANISTER CERTIFICATION

Lab Number:

L1110016

Project Number:

CANISTER QC BAT

Report Date:

07/27/11

AIR CAN CERTIFICATION RESULTS

Lab ID:

L1110016-05

Client ID:

CAN 1497 SHELF 14

Sample Location:

Not Specified

Matrix:

Air

Analytical Method:

96,APH

Analytical Date:

07/15/11 16:09

Analyst:

RY

Date Collected:

07/07/11 00:00

Date Received:

07/07/11

Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
eatiologicalitions of the	[7] (alleldread)					
1,3-Butadiene	ND		ug/m3	2.0		1
Methyl tert butyl ether	ND		ug/m3	2.0	_	1
Benzene	ND		ug/m3	2.0		1
Toluene	ND		ug/m3	2.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/m3	12		1
Ethylbenzene	ND		ug/m3	2.0		1
p/m-Xylene	ND		ug/m3	4.0		1
o-Xylene	ND		ug/m3	2.0		1
Naphthalene	ND		ug/m3	2.0	_	1
C9-C12 Aliphatics, Adjusted	ND		ug/m3	14		1
C9-C10 Aromatics Total	ND		ug/m3	10		1

Project Name: Not Specified Project Number: Not Specified

Lab Number: L1111041 **Report Date:** 07/27/11

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Reagent H2O Preserved Vials Frozen on:

NA

Cooler Information Custody Seal

Cooler

N/A

Present/Intact

Container Info	rmation	Temp				
Container ID	Container Type	Cooler	pН	deg C Pres	Seal	Analysis(*)
L1111041-01A	Canister - 6 Liter	N/A	NA	Υ	Present/Intact	TO15-LL(30)
L1111041-02A	Canister - 6 Liter	N/A	NA	Y	Present/Intact	TO15-LL(30)
L1111041-03A	Canister - 6 Liter	N/A	NA	Y	Present/Intact	TO15-LL(30)

L1111041

07/27/11

Project Name: Not Specified Lab Number:
Project Number: Not Specified Report Date:

GLOSSARY

Acronyms

EPA - Environmental Protection Agency.

Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
 analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported due to obvious interference.
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name: Project Number: **Not Specified**

Lab Number:

L1111041

Not Specified

Report Date:

07/27/11

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

- Analytical results are from sample re-extraction. RE

- Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).

ND - Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:

Not Specified

Not Specified

Lab Number:

L1111041

Project Number: Not Spec

Report Date:

07/27/11

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 19, 2011 - Mansfield Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141.

Wastewater/Non-Potable Water (Inorganic Parameters: pH, Turbidity, Conductivity, Alkalinity, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc, Total Residue (Solids), Total Suspended Solids (non-filterable), Total Cyanide. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables, Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, PAHs, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.)

Solid Waste/Soil (Inorganic Parameters: pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Organic Carbon, Total Cyanide, Corrosivity, TCLP 1311. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Volatile Organics, Acid Extractables, Benzidines, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Florida Department of Health Certificate/Lab ID: E87814. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, SM2540G.)

Solid & Chemical Materials (Inorganic Parameters: 6020, 7470, 7471, 9045. Organic Parameters: EPA 8260, 8270, 8082, 8081.)

Air & Emissions (EPA TO-15.)

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA 180.1, 245.7, 1631E, 3020, 6020A, 7470A, 9040, 9050A, SM2320B, 2540D, 2540G, 4500H-B, Organic Parameters: EPA 3510C, 3580A, 3630C, 3640A, 3660B, 3665A, 5030B, 8015D, 3570, 8081B, 8082A, 8260B, 8270C, 8270D.)

Solid & Chemical Materials (Inorganic Parameters: EPA 1311, 3050, 3051A, 3060A, 6020A, 7196A, 7470A, 7471B, 7474, 9040B, 9045C, 9060. Organic Parameters: EPA 3540C, 3570B, 3580A, 3630C, 3640A, 3660, 3665A, 5035, 8015D, 8081B, 8082A, 8260B, 8270C, 8270D.)

Biological Tissue (Inorganic Parameters: EPA 6020A. Organic Parameters: EPA 3570, 3510C, 3610B, 3630C, 3640A, 8270C, 8270D.)

Air & Emissions (EPA TO-15.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: EPA, 245.1, 245.7, 1631E, 180.1, 6020A, 7470A, 9040B, 9050A, SM2540D, 2540G, 4500H+B, 2320B. Organic Parameters: EPA 8081, 8082, 8260B, 8270C.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 1311, 1312, 3050B, 3051A, 3060A, 6020A, 7470A, 7471A, 9040B, 9045C, 7196A. Organic Parameters: SW-846 3540C, 3580, 3630C, 3640A, 3660B, 3665A, 5035, 8260B, 8270C, 8015D, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SW-846 1312, 3010, 3020A, 3015, SM2320B, SM2540D, 2540G, , EPA 180.1, 1631E, SW-846 7470A, 9040B, 6020. Organic Parameters: SW-846 3510C, 3580A, 5030B, 5035L, 5035H, 3630C, 3640C, 3660B, 3665A, 8015B 8081A, 8082, 8260B, 8270C)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6020, 1311, 1312, 3050B, 3051, 3060A, 7196A, 7470A, 7471A, 9040B, 9045C, 9050A, 9060. Organic Parameters: SW-846 3540C, 3570, 3580A, 5030B, 5035L, 5035H, 3630C, 3640A, 3660B, 3665A, 8081A, 8082, 8260B, 8270C, 8015B.)

Atmospheric Organic Parameters (EPA TO-15)

Biological Tissue (Inorganic Parameters: SW-846 6020 Organic Parameters: SW-846 8270C, 3510C, 3570, 3610C, 3630C, 3640A)

New York Department of Health Certificate/Lab ID: 11627. NELAP Accredited.

Non-Potable Water (Inorganic Parameters: SM2320B, SM2540D, EPA 200.8, 6020, 1631E, 245.1, 245.7, 7470A, 9014, 9040B, 9050, 120.1, 4500CN-E, 4500H-B, EPA 376.2, 180.1, 3020A. Organic Parameters: EPA 8260B, 8270C, 8081A, 8082, 3510C, 5030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 6020, 7196A, 3060A, 7471A, 7474, 9014, 9040B, 9045C, 9010B. Organic Parameters: EPA 8260B, 8270C, 8081A, DRO 8015B, 8082, 1311, 1312, 3050B, 3580, 3570, 3051, 5035, 5030B.)

Air & Emissions (EPA TO-15.)

Rhode Island Department of Health Certificate/Lab ID: LAO00299. NELAP Accredited via LA-DEQ.

Refer to LA-DEQ Certificate for Non-Potable Water.

Texas Commission of Environmental Quality Certificate/Lab ID: T104704419-08-TX. NELAP Accredited.

Solid & Chemical Materials (Inorganic Parameters: EPA 6020, 7470, 7471, 1311, 7196, 9014, 9040, 9045, 9060. Organic Parameters: EPA 8015, 8270, 8260, 8081, 8082.)

Air (Organic Parameters: EPA TO-15)

Washington State Department of Ecology Certificate/Lab ID: C954. Non-Potable Water (Inorganic Parameters: SM2540D, 2510B, EPA 120.1, 180.1, 1631E, 245.7.)

Solid & Chemical Materials (Inorganic Parameters: EPA 9040, 9060, 6020, 7470, 7471, 7474. Organic Parameters: EPA 8081, 8082, 8015 Mod, 8270, 8260.)

U.S. Army Corps of Engineers

Department of Defense Certificate/Lab ID: L2217.01.

Non-Potable Water (Inorganic Parameters: EPA 6020A, SM4500H-B. Organic Parameters: 3020A, 3510C, 5030B, 8260B, 8270C, 8270C-ALK-PAH, 8082, 8081A, 8015D-SHC.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 3050B, 6020A, 7471A, 9045C, 9060, SM 2540G, ASTM D422-63. Organic Parameters: EPA 3580A, 3570, 3540C, 5035A, 8260B, 8270C, 8270-ALK-PAH, 8082, 8081A, 8015D-SHC, 8015-DRO.

Air & Emissions (EPA TO-15.)

Analytes Not Accredited by NELAP

Certification is not available by NELAP for the following analytes: **8270C**: Biphenyl. **TO-15**: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 2-Methylnaphthalene, 1-Methylnaphthalene.