CINDERELLA 248 LLC SITE BROOKLYN, NEW YORK

PERIODIC REVIEW REPORT

NOVEMBER 27, 2017 THROUGH MARCH 27, 2019

NYSDEC BCP Number: C224160

Prepared for:

CINDERELLA 248, LLC

For Submittal to:

NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Prepared by:

FPM group...

909 MARCONI AVENUE RONKONKOMA, NEW YORK11779

MAY 2019

TABLE OF CONTENTS

Section	<u>Title</u>	Page No.
	LIST OF ACRONYMS	iii
	EXECUTIVE SUMMARY	iv
1.0 1.1 1.2 1.3	INTRODUCTION AND SITE OVERVIEW Introduction Site Overview Evaluation of Remedy Performance, Effectiveness, and Protectivene	1-1 1-1
2.0 2.1 2.2 2.3	ENGINEERING AND INSTITUTIONAL CONTROLS COMPLIANCE Engineering Control Component. Institutional Control Component. EC/IC Certification	2-1 2-1
3.0 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	MONITORING PLAN COMPLIANCE SSDS Monitoring Summary of Monitoring Program SVI Sampling SSDS Monitoring Results Monitoring Deficiencies Monitoring Conclusions and Recommendations	3-1 3-1 3-6 3-6
4.0 4.1 4.2 4.3 4.4	OPERATION AND MAINTENANCE PLAN COMPLIANCE Summary of O&M Activities Evaluation of O&M Activities O&M Deficiencies O&M Conclusions and Recommendations	4-1 4-1 4-1
5.0 5,1 5.2 5.3	CONCLUSIONS AND RECOMMENDATIONS Compliance with EC/ICs and Monitoring Plan Performance and Effectiveness of the Remedy Recommendations	5-1 5-1

i

LIST OF FIGURES

Figure No.	<u>Title</u>	<u>Page No.</u>
1.2.1 1.2.2 3.1.2.1	Site and Vicinity PlanSSDS LayoutAir Sample Locations – April 5, 2018	1-3
	LIST OF TABLES	
Table No.	<u>Title</u>	Page No.
3.1.2.1	Indoor Air Sampling Results	3-4
3.1.2.2	Effluents Sampling Results – April 5, 2018	3-5
3.1.3.1	PCE Effluent Concentrations	3-7
	LIST OF APPENDICES	
<u>Appendix</u>	<u>Title</u>	
Α	NYSDEC Certificate of Completion/Final Engineering Report App (11/27/17), NYSDEC Site Management Plan Approval (10/3/17), Sampling Data Transmittal (6/1/2018), PRR Reminder Notice (2/1	FPM Air
В	Resumes of Environmental Professionals	
С	EC/IC Certification	
D	System Operating Log	
E	Laboratory Reports for Effluent Samples	

LIST OF ACRONYMS

Acronym	Definition		
AGC	Annual Guidance Concentration		
AS	Air sparging		
ASP	Analytical Services Protocol		
CLP	Contract Laboratory Protocol		
DUSR	Data Usability Summary Report		
ECs	Engineering Controls		
FPM	FPM Group, Ltd.		
HASP	Health and Safety Plan		
ICs	Institutional Controls		
MS/MSD	Matrix spike/matrix spike duplicate		
NYS	New York State		
NYSDEC	New York State Department of Environmental Conservation		
NYSDOH	New York State Department of Health		
ОМ&М	Operation, Monitoring and Maintenance		
QA/QC	Quality Assurance/Quality Control		
scfm	standard cubic feet per minute		
SGC	Short-Term Guidance Concentration		
Standards	NYSDEC Class GA Ambient Water Quality Standards		
SVE	Soil vapor extraction		
ug/l	micrograms per liter		
VCA	Voluntary Cleanup Agreement		
VCP	Voluntary Cleanup Program		
VOC	Volatile organic compound		

EXECUTIVE SUMMARY

The findings in this Periodic Review Report (PRR) for the Cinderella 248 LLC Site (C224160), located in Brooklyn, New York, are summarized as follows:

- The EC (SSDS) remained in place and operational during the reporting period.
 Quarterly monitoring of the SSDS System was conducted during the reporting period in accordance with the SMP. Effluent emissions were in compliance and did not require treatment.
- An IC (environmental easement) is in place and includes restrictions on property and groundwater use and requirements for operating, monitoring, and maintaining the ECs. The provisions of the IC were adhered to during the reporting period.

Effectiveness of Remedial Program

• The remedial program has been effective at providing mitigation as demonstrated by the effluent testing which indicates that PCE is being removed from soil vapor and from the SVI sampling results which indicate that indoor air PCE concentrations are very low and well below its air guidance value.

> Recommendations

• The SSDS should remain in operation to provide mitigation for the Site and select adjoining properties. Termination of mitigation should be considered if the criteria for completion of remediation is achieved.

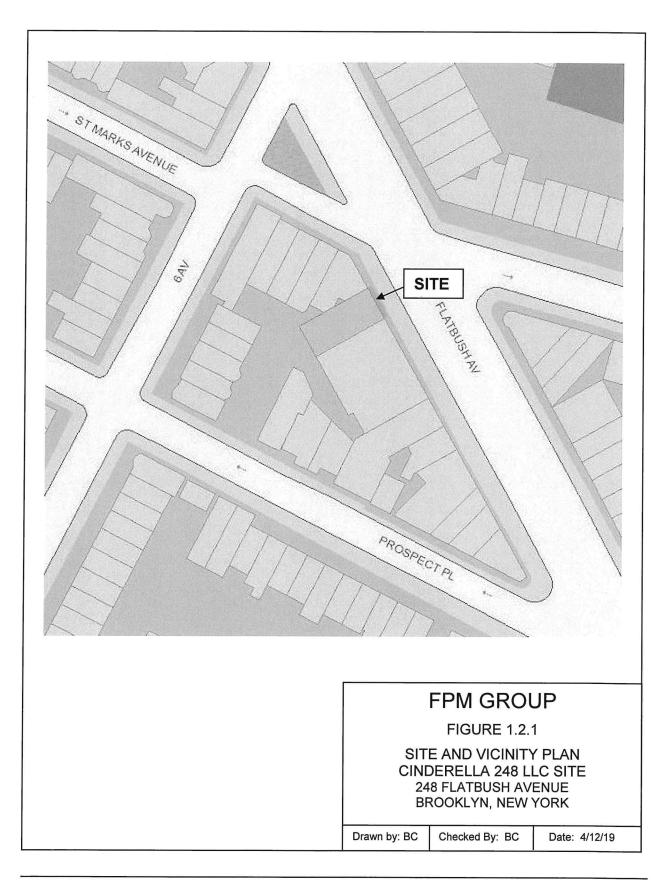
SECTION 1.0 INTRODUCTION AND SITE OVERVIEW

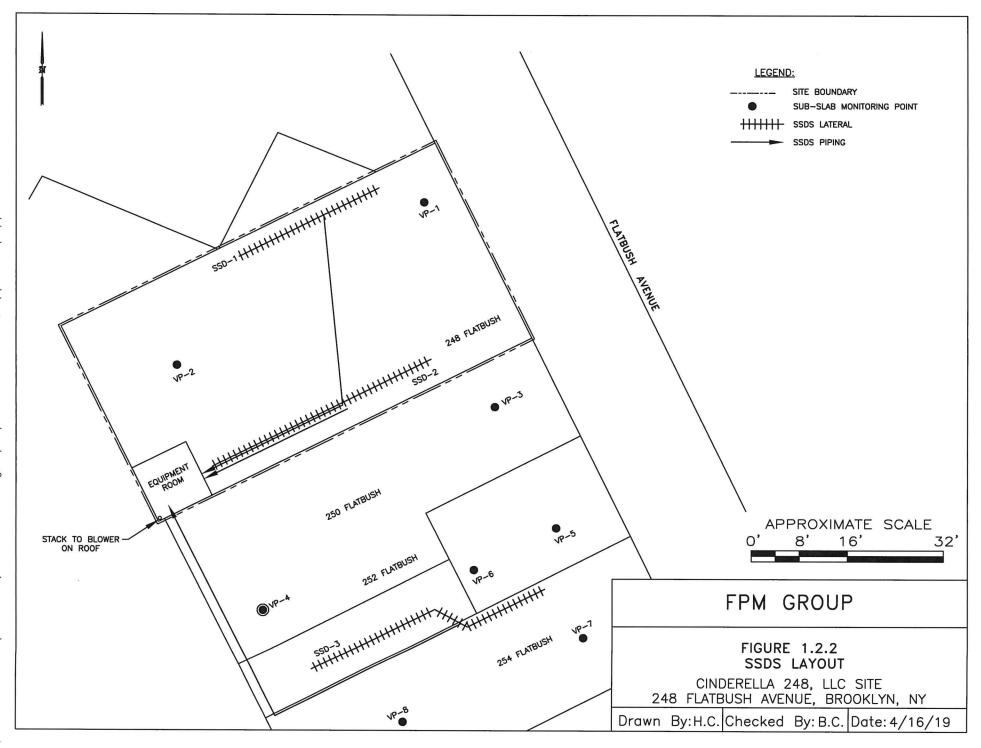
1.1 Introduction

This Periodic Review Report (PRR) was prepared by FPM Group (FPM) to document site management activities at the Cinderella 248 Site (Site) conducted between November 27, 2017 and March 27, 2019 under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). These activities were conducted in accordance with a Site Management Plan (SMP) for the Site. The resumes of the FPM environmental professionals implementing the SMP on behalf of the Owner are included in Appendix B.

The Site has an EC consisting of a sub-slab depressurization system (SSDS) which was installed in accordance with a NYSDEC approved Remedial Design Work Plan to prevent soil vapor intrusion (SVI) at the Site and select nearby properties and prevent further migration of sub-slab soil vapors. The remedial activities were documented in the October 2017 Final Engineering Report, which the NYSDEC approved on November 27, 2017. SVI sampling was performed in accordance with the SMP to demonstrate effectiveness of the SSDS in April 2018. Ongoing activities are conducted by FPM on behalf of the owner in accordance with the Site Management Plan (SMP), which the NYSDEC approved on October 3, 2017. Copies of these NYSDEC correspondence are included in Appendix A.

1.2 Site Overview


Detailed Site background information was provided in the SMP. Information pertinent to implementation of the SMP during the current reporting period is summarized herein.


The site is located in Brooklyn, Kings County, New York and is identified as Block 936 and Lot 12 on the Kings County Tax Map. The site is an approximately 0.057-acre area and is bounded by 244 Flatbush Avenue to the north, 250 Flatbush Avenue to the south, Flatbush Avenue to the east, and 77 Prospect Place to the west (see Figure 1.2.1 – Site and Vicinity Plan).

The Site was formerly operated as a dry-cleaners from at least 1985 to 2005. During operations tetrachloroethylene (PCE), a common dry-cleaning solvent, was utilized onsite. Investigations identified VOC (primarily PCE) impacts to soil, groundwater, soil vapor and indoor air. Soils impacted with PCE were excavated and removed from the Site prior to the Site entering the BCP. Groundwater impacts were identified at low levels during prior investigations and did not require remediation or further investigation. Soil vapor and indoor air impacted by PCE was identified at levels for which mitigation was necessary at the Site and at other buildings in close proximity to the Site.

A SSDS system for the Site was installed between November 2015 and August 2016 to provide mitigation in accordance with the NYSDEC-approved Remedial Design Work Plan for the Site dated July 2015. SVI sampling results are documented in Section 3 of the report. As discussed in Section 3, the results indicate that the SSDS is effective. Figure 1.2.2 depicts the remediation system layout.

1.3 Evaluation of Remedy Performance, Effectiveness, and Protectiveness

The remedy has been implemented in compliance with the submitted and approved work plans and associated correspondence and was managed during this reporting period in compliance with the SMP approved by the NYSDEC. During the reporting period, the remedy performed effectively to prevent SVI at the Site and at properties in its nearby proximity.

SECTION 2.0 ENGINEERING AND INSTITUTIONAL CONTROLS COMPLIANCE

Contamination identified at the Site includes groundwater and soil vapor impacted with chlorinated solvent compounds, primarily PCE, in excess of Standards. Groundwater impacts identified at the Site included low levels of VOCs and did not require additional monitoring or remediation. The Engineering Control (EC) includes a SSDS system to provide mitigation of soil vapor and prevent SVI at the Site and select offsite properties. The SSDS has remained in operation during this reporting period as per NYSDEC requirements. The EC implemented at the Site is described in more detail below.

At present, the SMP and related NYSDEC-approved documents serve as an IC as they are used to implement, maintain, and monitor the EC. Additional ICs are outlined in the IC/EC Certification Form and include a groundwater use restriction and land use restriction.

2.1 Engineering Control Component

The Site EC consisting of a SSDS was installed and has been in continuous operation from August 2016 to present to provide mitigation to the Site and select properties. The layout consists of three sub-slab depressurization laterals, as shown on previously-presented Figure 1.2.2. Emissions from the SSDS are directed to a stack that discharges above the roof of the Site.

Monitoring of the EC was performed during the reporting period in accordance with the approved SMP; the results are documented in Section 3 of this report.

2.2 Institutional Control Component

The Site remedy required that an IC in the form of an environmental easement be placed on the property to (1) implement, maintain and monitor the ECs; (2) prevent future exposure to the remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the property to restricted residential, commercial and industrial uses only. Adherence to these restrictions on the property is required by the environmental easement and is implemented under the SMP. The environmental easement for the property was executed by the property owner, Cinderella 248 LLC and filed with the Kings County Clerk. Copies of the environmental easement and proof of filing are provided in the FER.

The IC for this Site includes the following requirements and restrictions:

- Requires the remedial party or site owner to complete and submit to the Department a
 periodic certification of institutional and engineering controls in accordance with Part 3751.8 (h)(3);
- Allows the use and development of the controlled property for residential use, which allows for restricted-residential use, commercial use and industrial use, as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or NYCDOH; and

Requires compliance with the Department approved Site Management Plan.

These requirements and restrictions are more fully described in the SMP and were complied with during the reporting period. The observed Site use during the reporting period (commercial) is consistent with the allowed uses. No disturbances or excavations of the Site occurred during the reporting period. Municipal water supply is provided in the Site vicinity and the Site groundwater is not used.

2.3 EC/IC Certification

The EC/IC Certification Form provided by the NYSDEC has been completed in accordance with the associated general certification instructions. The completed certification form is included in Appendix C

SECTION 3.0 MONITORING PLAN COMPLIANCE

The monitoring plan for the Site includes measures for evaluating the performance and effectiveness of the EC in mitigating soil vapor at the Site and select nearby properties. Monitoring of the EC was performed during the reporting period by monitoring the SSDS system and SVI sampling was conducted to evaluate the effectiveness of the EC.

3.1 SSDS Monitoring

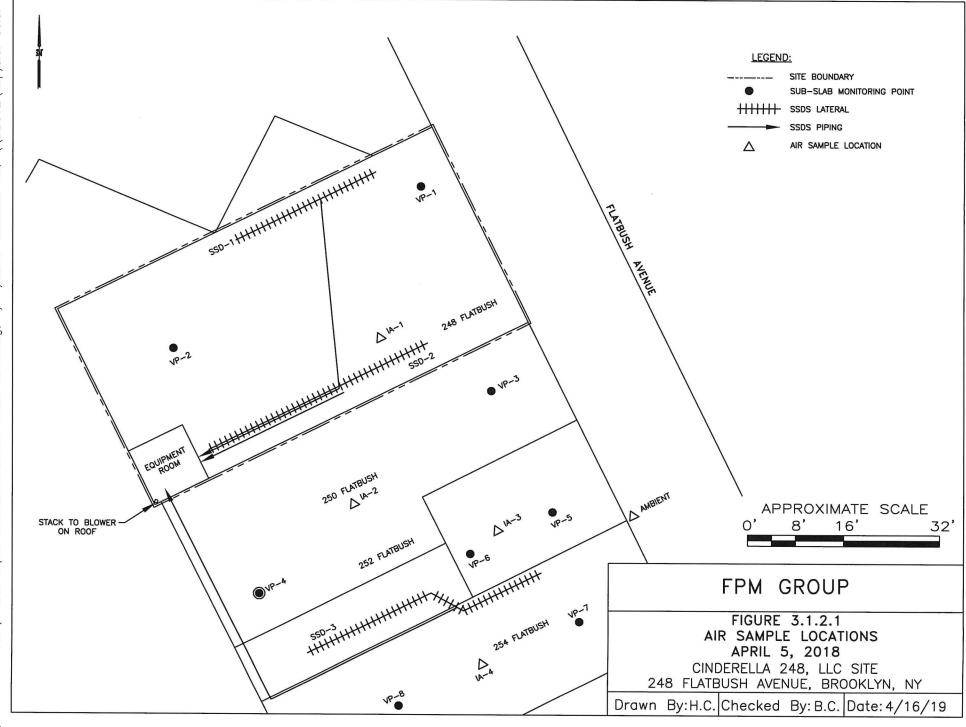
Monitoring of the SSDS system was performed quarterly during the reporting period, as discussed below. The monitoring included procedures to confirm and ensure system operation and to monitor effluent concentrations. Effluent monitoring was performed with a calibrated photoionization detector (PID) and periodically by obtaining effluent samples for laboratory analysis to evaluate the soil vapor conditions.

3.1.1 Summary of Monitoring Program

All monitoring activities were in general accordance with the SMP and were recorded on the System Operating Log. A copy of the System Operating Log is included in Appendix D.

System operation monitoring was performed on a quarterly basis during the reporting period from November 27, 2017 through March 27, 2017. System operation monitoring included recording vacuums and flowrate to confirm system operation parameters and vacuum measurements at monitoring points to confirm depressurization of the building slabs.

Effluent screening was performed during each monitoring event by collecting an effluent sample from the blower discharge piping and screening it with a calibrated PID. Effluent sampling was also performed periodically to further evaluate VOC emissions.


3.1.2 SVI Sampling

To demonstrate the effectiveness of the SSDS system, SVI testing was conducted on April 4, 2018. The work was conducted in general accordance with the procedures in the SMP. One additional indoor air sample was collected from the basement of 252 Flatbush Avenue as this space is now being utilized for storage. An effluent sample was also collected for informational purposes in lieu of soil vapor samples because the SSDS is currently in continuous operation. The SVI testing findings and recommendations (discussed below) were submitted to the NYSDEC (FPM, June 1, 2018, See Appendix A). A site plan showing the locations of the SVI samples is included as Figure 3.1.2.1.

The indoor air samples were collected from a height of approximately four feet above the slab and the ambient air sample was collected from an outdoor location in between 254 and 252 Flatbush Avenue and in a similar manner as the indoor air samples.

The SSDS effluent sample was collected from the sampling port of the SSDS system at the conclusion of indoor air sampling to prevent potential contamination with the indoor sample at 248 Flatbush Avenue.

The air samples were collected in laboratory-provided Summa canisters equipped with flow controllers in accordance with NYSDOH guidance. The flow controllers for the indoor air and ambient air samples were set for an approximately eight-hour period, comparable to typical building occupancy. The effluent air sample was collected in laboratory-provided Summa canister as a grab sample. The filled indoor canisters were managed under chain-of-custody procedures and transmitted to a NYSDOH-certified lab for analysis of volatile organic compounds (VOCs) using the TO-15 low level method. The SSDS effluent samples was analyzed for standard level VOCs by Method TO-15.

A building inventory form for each property was completed during the course of the sampling event to document the construction, HVAC system operations, and the potential presence of VOC sources in the building. No issues with the potential to affect indoor air quality were identified. The completed building inventory form is included as an attachment to FPM's June 1, 2018 data submittal in Appendix A.

Quality assurance/quality control (QA/QC) procedures were implemented and included field screening for organic vapors using a calibrated photoionization detector (PID), use of a chain of custody to document the sequence of sample possession, and collection and analysis of duplicate sample for QA/QC. In addition, the laboratory utilized internal QA/QC procedures and samples to confirm that the laboratory data are of sufficient accuracy and precision for their intended use. Following receipt of the chemical analytical data, the data package and associated QA/QC sample results were evaluated and a Data Usability Summary Report (DUSR) was prepared. The DUSR is included as an attachment to FPM's June 1, 2018 data submittal in Appendix A and did not identify any significant data usability issues.

The data from this sampling event are summarized in Table 3.1.2.1 and the indoor air sample results were evaluated in accordance with NYSDOH Guidance. Based upon the absence of collocated soil vapor data (since the SSDS is currently in operation), which prevents a comparison with the NYSDOH soil vapor/indoor air matrix tables, the applicable air guidance values (AGVs) were utilized to demonstrate that the SSDS is effective and operating as designed. The effluent sample was collected in accordance with the NYSDEC requests, for general informational purposes, this data is summarized in Table 3.1.2.2. Our review of these data indicates the following:

- Two VOCs for which the NYSDOH provides guidance, methylene chloride (MeCl) and tetrachloroethene (PCE), were detected in the indoor air samples;
- PCE was detected in the indoor air at a low (1.5 ug/m³) concentration at the Site (248 Flatbush Ave) and at low estimated concentrations at 250 and 254 Flatbush Avenue (0.95 ug/m³ and 0.75 ug/m³, respectively) and also is the primary contaminant of concern detected in the effluent sample (3,900 ug/m³). PCE was not detected in the ambient outdoor air sample. These results indicate that PCE is well below its respective AGV (30 ug/m³). We conclude that PCE does not present a concern for indoor air;
- MeCl was detected at each of the indoor air sampling locations at generally low concentrations, ranging from 0.73 to 0.97 ug/m³. MeCl was also noted in the ambient outdoor air sample at concentrations similar to the indoor air samples. MeCl is noted well below its respective AGV (60 ug/m³) in all indoor air samples. We conclude that the low MeCl concentration are not attributed to the Site and are related to ambient air conditions in the Site vicinity; and

TABLE 3.1.2.1 INDOOR AIR SAMPLING RESULTS CINDERELLA 248 LLC SITE -NYSDEC SITE NO. C224160 248 FLATBUSH AVENUE, BROOKLYN, NEW YORK

Sample No.	IA-1	IA-1D (duplicate)	IA-2	IA-3	IA-4	Ambient			
Sample Location	248 Flatbush Avenue Basement		250 Flatbush Avenue Basement	252 Flatbush Avenue Basement	254 Flatbush Avenue Basement	Outdoors	Indoor Air Background Levels, Commercial*		
Sample Date	4/5/18								
Volatile Organic Compounds	s in ug/m³	Manual State He September 11 Nov Head was a see							
1,4-Dichlorobenzene	1.9	1.3	ND	ND	ND	62	<0.8 - 12.5		
Acetone	23	26	3.8	4.4	4.9	26	32.4 - 120.2		
Benzene	0.48	0.48	0.35 J	ND	0.48	0.42 J	2.1 - 12.5		
Chloroform	6.3	4.3	2.9	ND	4.3	ND	<0.4 - 1.4		
Chloromethane	ND	ND	0.54	0.47	0.66	0.58	2.1 - 4.4		
Ethyl Acetate	0.94	1.4	ND	ND	ND	0.54	<1.0 - 9.5		
Freon 11	1.3	1.1	1.0	0.79 J	1.2	1.1	<3.7 - 54.0		
Freon 12	2.0	1.9	1.7	1.4	2.1	1.5	4.8 - 32.9		
Heptane	0.49 J	0.66	ND	ND	ND	1.9	-		
Hexane	ND	0.46 J	ND	ND	ND	0.81	1.6 - 15.2		
Isopropyl alcohol	150	230	4.8	2.4	4.4	4.5	-		
m&p-xylene	0.65 J	0.69 J	0.43 J	ND	0.48 J	0.91 J	4.1 - 28.5		
Methyl Ethyl Ketone	1.9	2.2	0.80 J	0.65 J	ND	1.3	3.3 - 13.5		
Methylene chloride	0.73	0.97	0.97	0.94	0.76	0.97	<1.7 - 16.0		
Tetrachloroethene	1.5	1.4	0.95 J	ND	0.75 J	ND	<1.9 - 25.4		
Toluene	3.0	4.2	1.2	0.90	2.7	3.4	10.7 - 70.8		

Notes:

All samples analyzed using Method TO-15.

Only compounds detected in one or more samples are reported herein. See lab report for complete data.

ug/m³ = micrograms per cubic meter.

Shaded compounds are those for which the NYSDOH has provided guidance.

ND = Not detected.

* = US EPA BASE Study 2001; 25th to 95th percentiles.

TABLE 3.1.2.2 EFFLUENT SAMPLING RESULTS - APRIL 5, 2018 CINDERELLA 248 LLC SITE - NYSDEC SITE NO. C224160 248 FLATBUSH AVENUE , BROOKLYN, NEW YORK

Sample No.	SSDS Effluent
Sample Location	248 Flatbush Avenue Basement
Volatile Organic Compounds in ug/m³	
1,2,4-Trimethylbenzene	2.0
1,3,5-Trimethylbenzene	0.84
1,4-Dichlorobenzene	0.60 J
2,2,4-trimethylpentane	5.6
4-ethyltoluene	0.59 J
Acetone	10
Benzene	3.9
Chloroform	6.4
Chloromethane	0.23 J
Cyclohexane	1.3
Ethylbenzene	1.2
Freon 11	1.2
Freon 12	2.1
Heptane	7.0
Hexane _.	5.5
Isopropyl alcohol	15
m&p-Xylene	3.1
Methyl Ethyl Ketone	1.4
Methylene chloride	0.76
o-Xylene	1.0
Tetrachloroethene	3,900
Toluene	2.6

Notes:

All samples analyzed using Method TO-15.

Only compounds detected in one or more samples are reported herein. See lab report for complete data. $ug/m^3 = micrograms per cubic meter$.

ND = Not detected. J- Low estimated concentration below method reporting limit.

 Several VOCs were detected at concentrations generally comparable to concentrations found within indoor air at commercial buildings. None of these detections was highly elevated or presents a concern.

In conclusion, the SVI sampling results confirm that the SSDS is operating as intended to prevent soil vapor intrusion. This testing was performed in general accordance with the NYSDEC-SMP, except as discussed above.

3.1.3 SSDS Monitoring Results

Effluent monitoring was performed to ensure that effluent treatment is not required prior to discharge. During the reporting period PID responses, as measured with a calibrated Photovac 2020 Pro PID, were all low, ranging from 0 to 12.4 ppm (see System Operating Logs in Appendix D).

The summarized effluent sampling results for PCE, the primary compound of concern for the Site, are included in Table 3.1.3.1 and indicate that moderate concentrations continue to be removed by the SSDS. These data were also evaluated for compliance with NYSDEC Air Guide 1 criteria to calculate potential air impacts with respect to the corresponding AGCs and SGCs, as appropriate. No VOCs were noted to exceed their respective AGCs and SGCs, and therefore, the system emissions remain in compliance with NYSDEC Air Guide 1 criteria and well below the levels required for treatment. The complete effluent laboratory reports for the reporting period are included in Appendix E.

System monitoring parameters and vacuum monitoring points were also measured to evaluate the performance of the SSDS. The system parameters (flow rates, vacuums) were generally noted to be within the operating conditions as observed during the startup period of the SSDS. Vapor monitoring point vacuums were generally noted to be variable and have decreased since startup, however the decreased sub-slab vacuum measurements do not appear to be affecting the performance or effectiveness of the system based on the effluent PCE concentrations.

3.1.4 Monitoring Deficiencies

No system monitoring deficiencies were noted during this reporting period.

3.1.5 Monitoring Conclusions and Recommendations

The monitoring results for the reporting period demonstrate that moderate levels of PCE are present are present in soil vapor. Continued operation of the SSDS to prevent SVI is recommended.

TABLE 3.1.3.1 PCE EFFLUENT CONCENTRATIONS CINDERELLA 248 LLC SITE, NYSDEC SITE NO. C224160 248 FLATBUSH AVENUE, BROOKLYN, NEW YORK

Sample Date	8/16/2016	8/25/2016	8/31/2016	9/20/2016	3/29/2017	6/27/2017	9/28/2017	12/18/2017	6/20/2018	9/17/2018	12/17/2018
Tetrachloroethyelene (ug/m³)	3,700	2,900	3,800	930	1,900	2,400	1,500	3,000	1,600	1,300	89

SECTION 4.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Site has O&M requirements for the SSDS while the system is operational. During this reporting period the SSDS operation was checked quarterly.

4.1 Summary of O&M Activities

The SSDS was checked quarterly during the reporting period. Routine maintenance of the system including checks of the condensate vessel, air filter, and other components were performed. System operating parameters, including vacuum and flow rates, were also collected to evaluate system performance and the need for preventative maintenance.

4.2 Evaluation of O&M Activities

The O&M activities enabled the SSDS operating as intended.

4.3 O&M Deficiencies

No O&M deficiencies were noted during this reporting period.

4.4 O&M Conclusions and Recommendations

O&M activities were effective during this reporting period. O&M activities will continue, as appropriate, during the next reporting period.

SECTION 5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Compliance with EC/ICs and Monitoring Plan

Assessment of overall Site compliance, including the EC (SSDS), IC, and monitoring plans during the reporting period are summarized as follows:

ECs and IC Compliance

- The EC for the Site, an SSDS, remained in place and operational during the reporting period.
- An IC (environmental easement) is in place and includes restrictions on property use, and requirements for operating, monitoring, and maintaining the EC. The provisions of the IC were adhered to during the reporting period and the EC/IC Certification is included in this PRR.

Monitoring and O&M

- Monitoring of the SSDS was conducted during the reporting period. Emissions were in compliance and did not require treatment. Routine maintenance was performed, as needed.
- SVI sampling was conducted during the reporting and confirmed the EC was effective for mitigation of soil vapor and preventing SVI.

5.2 Performance and Effectiveness of the Remedy

The remedy has been implemented and managed in compliance with the SMP.

5.3 Recommendations

Based on the current Site conditions, FPM recommends the following:

- The SSDS should remain in operation to provide for mitigation of soil gas as intended.
 Termination of mitigation should be considered if the criteria for termination of the SSDS is achieved as outlined in section 3.3.2 of the SMP.
- SVI sampling will be performed in late 2019 in accordance with the SMP to confirm the SSDS continues to remain effective at preventing SVI.

5-1

APPENDIX A

- NYSDEC CERTIFICATE OF COMPLETION/FINAL ENGINEERING REPORT APPROVAL (11/27/17)
- NYSDEC SITE MANAGEMENT PLAN APPROVAL (10/3/2017)
- FPM AIR SAMPLING DATA TRANSMITTAL (6/1/2018)
- PRR REMINDER NOTICE (2/12/2019)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Office of the Director 625 Broadway, 12th Floor, Albany, New York 12233-7011 P: (518) 402-9706 | F: (518) 402-9020 www.dec.ny.gov

Mr. Michael Pintchik Cinderella 248 LLC 254 Flatbush Avenue Brooklyn, NY 11217

NOV 27 2017

Re: Certificate of Completion

Cinderella 248 LLC, Brooklyn, Kings County, BCP

Site No. C224160

Dear Mr. Pintchik:

Congratulations on having satisfactorily completed the remedial program at the Cinderella 248 LLC site. Enclosed please find an original, signed Certificate of Completion (COC). The New York State Department of Environmental Conservation (Department) is pleased to inform you that the Final Engineering Report is hereby approved, allowing the COC to be issued for the above-referenced site.

Please note that you are required to perform the following tasks:

• If you are the site owner, you must record a notice of the COC in the recording office for the County (or Counties) where any portion of the site is located within 30 days of issuance of the COC. Or, if you are a prospective purchaser of the site, you must record a notice of the COC within 30 days of the date that you acquire the site. A copy of the recorded notice should be provided to the Department's project manager. If you are a non-owner, you must work with the owner to assure the notice of COC is recorded within the time frame specified. A standard notice form is attached to this letter.

Please return the proof of recording to:

Chief, Site Control Section
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7020

- Provide the notice of the COC to the Document Repositories within 10 days
 of issuance of the COC. The Department will develop a fact sheet
 announcing the issuance of the COC and describing the institutional and
 engineering controls (IC/ECs), if any, that are required at the site and
 distribute it to the County Listserv within 10 days;
- Implement the Department-approved Site Management Plan (SMP) which details the activities necessary to assure the performance, effectiveness, and protectiveness of the remedial program. You must report the results of these activities to the Department in a Periodic Review Report (PRR) which also includes any required IC/EC Certifications. The site IC/ECs are identified on the attached Site Management Form. The first PRR including the certification of the IC/ECs is due to the Department in March 2019.

If you have any questions regarding any of these items, please contact Alicia Barraza at alicia.barraza@dec.ny.gov or 518-402-9690.

Sincerely,

Michael J. Ryan, P.E.

neon

Assistant Division Director

Division of Environmental Remediation

ec w/ enclosure:

A. Barraza

J. Nehila

Ben Cancemi, FPM Group, <u>b.cancemi@fpm-group.com</u>
James Rigano, Rigano LLC, JRigano@riganollc.com

NYSDEC BROWNFIELD CLEANUP PROGRAM (BCP) CERTIFICATE OF COMPLETION

Name

Address

Cinderella 248 LLC

254 Flatbush Avenue, Brooklyn, NY 11217

BROWNFIELD CLEANUPAGREEMENT:

Application Approval: 9/27/12 Agreement Execution: 4/10/13 Agreement Index No.: C224160-09-12

Application Approval Amendment: 9/11/17

Agreement Execution Amendment: 9/11/17

SITE INFORMATION:

Site No.: C224160 Site Name: Cinderella 248 LLC

Site Owner: Cinderella 248 LLC
Street Address: 248 Flatbush Avenue

Municipality: Brooklyn County: Kings DEC Region: 2

Site Size: 0.05 Acres

Tax Map Identification Number(s): 936-12 Percentage of site located in an EnZone: 0 - 49 %

A description of the property subject to this Certificate is attached as Exhibit A and a site survey is attached as Exhibit B.

CERTIFICATE ISSUANCE

This Certificate of Completion, hereinafter referred to as the "Certificate," is issued pursuant to Article 27, Title 14 of the New York State Environmental Conservation Law ("ECL").

This Certificate has been issued upon satisfaction of the Commissioner, following review by the Department of the final engineering report and data submitted pursuant to the Brownfield Site Cleanup Agreement, as well as any other relevant information regarding the Site, that the applicable remediation requirements set forth in the ECL have been or will be achieved in accordance with the time frames, if any, established in the remedial work plan.

The remedial program for the Site has achieved a cleanup level that would be consistent with the following categories of uses (actual site use is subject to local zoning requirements):

Altowable Uses under the BCP: Restricted-Residential, Commercial, and Industrial

Cleanup Track: Track 2: Restricted use with generic soil cleanup objectives

Tax Credit Provisions for Entities Taxable Under Article 9, 9-A, 32, and 33:

Site Preparation and On-Site Groundwater Remediation Credit Component Rate is 40 %. Tangible Property Credit Component Rate is 12 %.

Tax Credit Provisions for Entities Taxable Under Article 22 & S Corporations:

Site Preparation and On-Site Groundwater Remediation Credit Component Rate is 40 %. Tangible Property Credit Component Rate is 10 %.

The Remedial Program includes use restrictions or reliance on the long term employment of institutional or engineering controls which are contained in the approved Site Management Plan and an Environmental Easement granted pursuant to ECL Article 71, Title 36 which has been duly recorded in the Recording Office for Kings County as 2017000262435.

LIABILITY LIMITATION

Upon issuance of this Certificate of Completion, and subject to the terms and conditions set forth herein, the Certificate holder(s) shall be entitled to the liability limitation provided in ECL Section 27-1421. The liability limitation shall run with the land, extending to the Certificate holder's successors or assigns through acquisition of title to the Site and to a person who develops or otherwise occupies the Site, subject to certain limitations as set forth in ECL Section 27-1421. The liability limitation shall be subject to all rights reserved to the State by ECL Section 27-1421.2 and any other applicable provision of law.

CERTIFICATE TRANSFERABILITY

This Certificate may be transferred to the Certificate holder's successors or assigns upon transfer or sale of the Site as provided by ECL Section 27-1419.5 and 6NYCRR Part 375-1.9.

CERTIFICATE MODIFICATION/REVOCATION

This Certificate of Completion may be modified or revoked by the Commissioner following notice and an opportunity for a hearing in accordance with ECL Section 27-1419 and 6NYCRR Part 375-1.9(e) upon a finding that:

- (1) either the Applicant or the Applicant's successors or assigns have failed to comply with the terms and conditions of the Brownfield Site Cleanup Agreement;
- (2) the Applicant made a misrepresentation of a material fact tending to demonstrate that it was qualified as a Volunteer:
- (3) either the Applicant or the Applicant's successors or assigns made a misrepresentation of a material fuct tending to demonstrate that the cleanup levels identified in the Brownfield Site Cleanup Agreement were reached;
 - (4) there is good cause for such modification or revocation;
- (5) either the Applicant or the Applicant's successors or assigns failed to manage the controls or monitoring in full compliance with the terms of the remedial program;
- (6) the terms and conditions of the environmental easement have been intentionally violated or found to be not protective or enforceable.

The Certificate holder(s) (including its successors or assigns) shall have thirty (30) days within which to cure any deficiency or to seek a hearing. If the deficiency is not cured or a request for a hearing is not received within such 30-day period, the Certificate shall be deemed modified or vacated on the 31st day after the Department's notice.

Date: 11/27/17.

Basil Seggos Commissioner New York State Department of Environmental Conservation

Division of Environmental Remediation

NOTICE OF CERTIFICATE OF COMPLETION Brownfield Cleanup Program 6 NYCRR Part 375-1.9(d)

Cinderella 248 LLC, Site ID No. C224160 248 Flatbush Avenue, Brooklyn, NY, Brooklyn, Kings County, Tax Map Identification Number 936-12

PLEASE TAKE NOTICE, the New York State Department of Environmental Conservation (Department) has issued a Certificate of Completion (Certificate) pursuant to Article 27, Title 14 of the New York State Environmental Conservation Law (ECL) to <u>Cinderella 248 LLC</u> for a parcel approximately <u>0.05 acres</u> located at <u>248 Flatbush Avenue in Brooklyn, Kings County</u>.

PLEASE TAKE NOTICE, the Certificate was issued upon satisfaction of the Commissioner, following review by the Department of the final engineering report and data submitted pursuant to the Brownfield Site Cleanup Agreement, as well as any other relevant information regarding the Site, that the remediation requirements set forth in ECL Article 27, Title 14 have been or will be achieved in accordance with the time frames, if any, established in the remedial work plan.

PLEASE TAKE NOTICE, the remedial program for the Site has achieved a cleanup level that would be consistent with the following categories of uses (actual site use is subject to local zoning requirements):

	Unrestricted Use, as set forth in 6 NYCRR 375-1.8(g)(1)i
	Residential Use, as set forth in 6 NYCRR 375-1.8(g)(2)i.
\boxtimes	Restricted Residential Use, as set forth in 6 NYCRR 375-1.8(g)(2)ii
\boxtimes	Commercial Use, as set forth in 6 NYCRR 375-1.8(g)(2)iii.
\boxtimes	Industrial Use, as set forth in 6 NYCRR 375-1.8(g)(2)iv.

Further, the use of groundwater is restricted and may not be used, unless treated in accordance with the requirements provided by the New York State Department of Health, or a local County Health Department with jurisdiction in such matters and such is approved by the Department as not inconsistent with the remedy.

PLEASE TAKE NOTICE, since the remedial program relies upon use restrictions or the long term employment of institutional or engineering controls; such institutional or engineering controls are contained in an Environmental Easement granted pursuant to ECL Article 71, Title 36 which has been duly recorded in the Recording Office of the City Register of the City of New York, City Register File No. 2017000262435, recorded on 07-18-2017.

PLEASE TAKE NOTICE, the Environmental Easement requires that the approved site management plan (SMP) for this property be adhered to. The SMP, which may be amended from time to time, may include sampling, monitoring, and/or operating a treatment system on the property, providing certified reports to the NYSDEC, and generally provides for the management of any and all plans and limitations on the property. A copy of the SMP is available upon request by writing to the Department's Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, New York 12233.

PLEASE TAKE NOTICE, provided that the Environmental Easement, SMP and Certificate are complied with, the Certificate holder(s) shall be entitled to the liability limitation provided in ECL Section 27-1421. The liability limitation shall run with the land, extending to the Certificate holder's successors or assigns through acquisition of title to the Site and to a person who develops or otherwise occupies the Site, subject to certain limitations as set forth in ECL Section 27-1421. The liability

limitation shall be subject to all rights reserved to the State by ECL Section 27-1421.2 and any other applicable provision of law.

PLEASE TAKE NOTICE, any change of use of the site, as defined in 6 NYCRR 375, must be preceded by notice to the Department in accordance with 6 NYCRR 375-1.11(d). A transfer of any or all of the property constitutes a change of use.

PLEASE TAKE NOTICE, the Certificate may be revoked if the Environmental Easement as implemented, if applicable, is not protective or enforceable.

PLEASE TAKE NOTICE, the Certificate may entitle the Certificate holder(s) to tax credits in accordance with Tax Law Sections 21, 22 and 23.

PLEASE TAKE NOTICE, the Certificate may only be transferred to the Certificate holder's successors or assigns upon transfer or sale of the Site as provided by ECL Section 27-1419,5 and 6 NYCRR Part 375-1.9. Failure to comply with the regulatory requirements for transfer WILL bar the successors and assigns from the benefits of the Certificate.

PLEASE TAKE NOTICE, the Certificate may be modified or revoked by the Commissioner as set forth in the applicable regulations.

PLEASE TAKE NOTICE, a copy of the Certificate can be reviewed at the NYSDEC's Region 2 office located at 1 Hunter's Point Plaza, 47-40 21st Street, Long Island City, NY, 11101-5401, or by contacting the Regional Environmental Remediation Engineer.

WHEREFORE, the undersigned has signed this Notice of Certificate

	Cinderella 248 LLC
	Ву:
	Title:
	Date:
STATE OF NEW YORK) SS: COUNTY OF)	e e
evidence to be the individual(s) whose name is acknowledged to me that he/she/they executed	he year 20, before me, the undersigned, personally wn to me or proved to me on the basis of satisfactory is (are) subscribed to the within instrument and d the same in his/her/their capacity(ies), and that by the individual(s), or the person upon behalf of which the
Signature and Office of individual taking acknowledgment	Please record and return to: Michael Pintchik 254 Flatbush Avenue Brooklyn, NY, 11217

Exhibit A Site Description

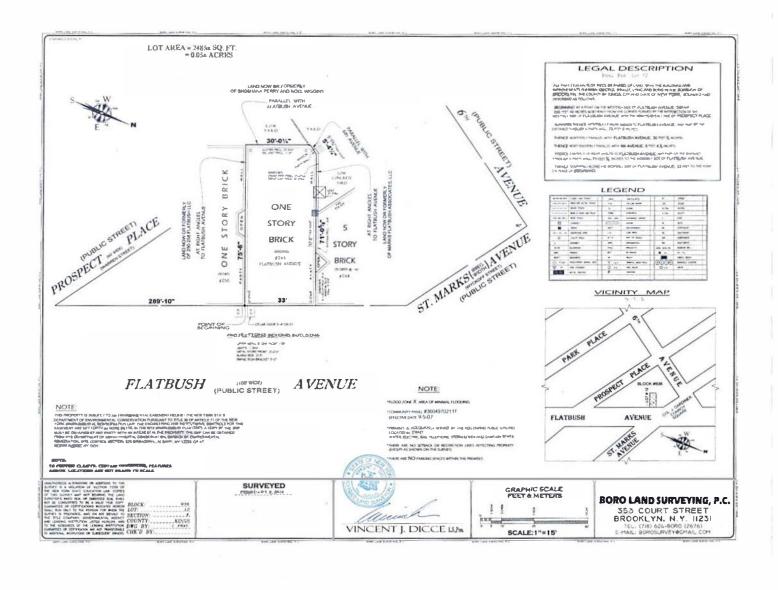
ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough, the County of Kings, City and State of New York, being moi:e particularly described as. follow:

BEGINNING at a point on the westerly side of Flatbush Avenue distant 289 feet 10 inches northerly from the corner formed by the intersection of the westerly side of Flatbush Avenue with the northeasterly side of Prospect Place;

RUNNING THENCE at right angles to Flatbush Avenue and part of the distance through a party wall 75 feet 6 inches:

THENCE northerly parallel with Flatbush Avenue 30 feet 1/4 inch;

THENCE northeasterly parallel with 6th Avenue 5 feet 4 1/4 inches;


THENCE easterly at right angles to Flatbush Avenue and part of the distance through a party wall 71 feet 5/8 inches to the westerly side of Flatbush Avenue;

THENCE southerly along the westerly side of Flatbush Avenue 33 feet to the point or place of BEGINNING.

Being approximately 2,485 square feet or 0.05 acres more or less.

Exhibit B

Site Survey

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Form

11/22/2017

SITE DESCRIPTION

SITE NO.

C224160

SITE NAME Cinderella 248 LLC

SITE ADDRESS: 248 Flatbush Avenue ZIP CODE: 11217

CITY/TOWN:

Brooklyn

COUNTY: Kings

ALLOWABLE USE: Restricted-Residential, Commercial, and Industrial

SITE MANAGEMENT DESCRIPTION

SITE MANAGEMENT PLAN INCLUDES:

YES NO

IC/EC Certification Plan

Monitoring Plan

Operation and Maintenance (O&M) Plan

Periodic Review Frequency: once a year

Periodic Review Report Submitted Date: 03/30/2019

Description of Institutional Control

Cinderella 248 LLC

254 Flatbush Avenue 248 Flatbush Avenue **Environmental Easement** Block: 936 Lot: 12 Sublot:

Section: 4

Subsection:

\$_B_L Image: 936-12

Ground Water Use Restriction

IC/EC Plan

Landuse Restriction

Monitoring Plan

O&M Plan

Site Management Plan

Description of Engineering Control

Cinderella 248 LLC

254 Flatbush Avenue

248 Flatbush Avenue

Environmental Easement

Block: 936

Lot: 12

Sublot:

Section: 4

Subsection:

S_B_L Image: 936-12 Vapor Mitigation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor, Albany, NY 12233-7016 P: (518) 402-9768 I F: (518) 402-9773 www.dec.ny.gov

October 3, 2017

Michael Pintchik 254 Flatbush Avenue Brooklyn, NY 11217

Re: Cinderella 248 LLC, 248 Flatbush Ave, Brooklyn, NY;

BCP Site No. C224160; Site Management Plan,

September 2017

Dear Mr. Pintchik:

The New York State Department of Environmental Conservation (DEC) has reviewed the Site Management Plan (SMP) for the subject site referenced above. DEC finds the SMP acceptable and hereby approves it.

If you have any questions, please contact me at alicia.barraza@dec.ny.gov or 518-402-9690.

Sincerely

Alicia Barraza Project Manager

in Barry

Section A

ec: Ben Cancemi, FPM Group

G. Burke, DEC

M. Komoroske, DEC

J. O'Connell, DEC Region 2

B. Boyd, DOH

J. Deming, DOH

An Olgoonik Company

CORPORATE HEADQUARTERS 909 Marconi Avenue Ronkonkoma, NY 11779 631/737-6200 Fax 631-737-2410

VIA EMAIL

June 1, 2018

Mr. Alicia Barraza
Project Manager
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway
Albany, NY 12233

Re:

Air Sampling Data Transmittal Cinderella 248, LLC Site #C224160 Brooklyn, NY

FPM File No. 1104g-18-05 (02)

Dear Alicia,

FPM Group (FPM) is hereby transmitting the indoor air sampling data conducted on April 5, 2018 for the above-referenced Site, which included air sampling at 248, 250, 252 and 254 Flatbush Avenue and sampling of the sub-slab depressurization system (SSDS) effluent. This work was conducted in accordance with NYSDEC-approved SMP, with the exception of the collection of one additional indoor air sample in a recently occupied space and collection SSDS effluent was collected in lieu of soil vapor, as per our discussions.

This transmittal includes a copy of the lab data and the associated Data Usability Summary Report (Attachment A), sampling forms and a building inventory (Attachment B), a summary data table, and a site plan showing the sampling locations. We have also included a discussion of the procedures and results and our recommendation. The laboratory data Electronic Data Deliverable (EDD) has been prepared and uploaded.

Sampling Procedures

All samples were collected in accordance with the procedures in the SMP. One additional indoor air sample was collected from the basement of 252 Flatbush Avenue as this space is now being utilized for storage. An effluent sample was also collected for informational purposes in lieu of soil vapor samples because the SSDS is currently in continuous operation. Copies of the sample canister forms documenting the sampling procedures are included in Attachment B. The sample locations are shown on Figure 1 (attached).

The indoor air samples were collected from a height of approximately four feet above the slab and the ambient air sample was collected from an outdoor location in between 254 and 252 Flatbush Avenue and in a similar manner as the indoor air samples.

The SSDS effluent sample was collected from the sampling port of the SSDS system at the conclusion of indoor air sampling to prevent potential contamination with the indoor sample at 248 Flatbush Avenue.

The air samples were collected in laboratory-provided Summa canisters equipped with flow controllers in accordance with NYSDOH guidance. The flow controllers for the indoor air and ambient air samples were set for an approximately eight-hour period, comparable to typical building occupancy. The effluent air sample was collected in laboratory-provided Summa canister as a grab sample. The filled indoor canisters were managed under chain-of-custody procedures and transmitted to a NYSDOH-certified lab for analysis of volatile organic compounds (VOCs) using the TO-15 low level method. The SSDS effluent samples was analyzed for standard level VOCs by Method TO-15.

A building inventory form for each property was completed during the course of the sampling event to document the construction, HVAC system operations, and the potential presence of VOC sources in the building. No issues with the potential to affect indoor air quality were identified. The completed building inventory form is included in Attachment B.

Quality assurance/quality control (QA/QC) procedures were implemented and included field screening for organic vapors using a calibrated photoionization detector (PID), use of a chain of custody to document the sequence of sample possession, and collection and analysis of duplicate sample for QA/QC. In addition, the laboratory utilized internal QA/QC procedures and samples to confirm that the laboratory data are of sufficient accuracy and precision for their intended use.

Following receipt of the chemical analytical data, the data package and associated QA/QC sample results were evaluated and a Data Usability Summary Report (DUSR) was prepared. The DUSR is included in Attachment A and did not identify any significant data usability issues.

Sample Results

The data from this sampling event are summarized in Table 1 and the indoor air sample results were evaluated in accordance with NYSDOH Guidance. Based upon the absence of collocated soil vapor data (since the SSDS is currently in operation), which prevents a comparison with the NYSDOH soil vapor/indoor air matrix tables, the applicable air guidance values (AGVs) were utilized to demonstrate that the SSDS is effective and operating as designed. The effluent sample was collected in accordance with the NYSDEC requests, for general informational purposes, this data is summarized in Table 2. Our review of these data indicates the following:

- Two VOCs for which the NYSDOH provides guidance, methylene chloride (MeCl) and tetrachloroethene (PCE), were detected in the indoor air samples;
- PCE was detected in the indoor air at a low (1.5 ug/m³) concentration at the Site (248 Flatbush Ave) and at low estimated concentrations at 250 and 254 Flatbush Avenue (0.95 ug/m³ and 0.75 ug/m³, respectively) and also is the primary contaminant of concern detected in the effluent sample (3,900 ug/m³). PCE was not detected in the ambient outdoor air sample. These results indicate that PCE is well below its respective AGV (30 ug/m³). We conclude that PCE does not present a concern for indoor air;
- MeCI was detected at each of the indoor air sampling locations at generally low concentrations, ranging from 0.73 to 0.97 ug/m³. MeCI was also noted in the ambient outdoor air sample at concentrations similar to the indoor air samples. MeCI is noted well below its respective AGV (60 ug/m³) in all indoor air samples. We conclude that the low MeCI concentration are not contributed to Site and are related to ambient air conditions in the Site vicinity; and
- Several VOCs were detected at concentrations generally comparable to concentrations found within indoor air at commercial buildings. None of these detections was highly elevated or presents a concern.

Conclusions and Recommendations

Indoor air sampling has been conducted at 248 (Site) and neighboring properties located at 250, 252, and 254 Flatbush Avenue to confirm that the SSDS is operating as intended to prevent soil vapor intrusion. This testing was performed in general accordance with the NYSDEC-SMP, except as discussed above. The sampling results demonstrate that the SSDS is operating as intended to prevent soil vapor intrusion.

The information contained within this data transmittal will be included in the next periodic review report for the Site.

Very truly yours,

Ben T. Cancemi, CPG Senior Hydrogeologist Department Manager

BTC:btc Attachments cc: Michael Pintchik

S:\Rigano LLC\Cinderella 248 LLC\Air Sampling\April 2018\IA Report.docx

AM, BW Minolta 10:07:53 5/31/2018 2018.dwg, SAMPLE LOCATION APRIL 248\SMP\AIR Z:\CINDERELLA

TABLE 1 INDOOR AIR SAMPLING RESULTS CINDERELLA LLC, BROOKLYN, NEW YORK

Sample No.	IA-1	IA-1D (duplicate)	IA-2	IA-3	IA-4	Ambient	
Sample Location		sh Avenue ement	250 Flatbush Avenue Basement	252 Flatbush Avenue Basement	254 Flatbush Avenue Basement	Outdoors	Indoor Air Background Levels, Commercial*
Sample Date			4/5	/18			
Volatile Organic Compounds in	ug/m³						
1,4-Dichlorobenzene	1.9	1.3	ND	ND	ND	62	<0.8 - 12.5
Acetone	23	26	3.8	4.4	4.9	26	32.4 - 120.2
Benzene	0.48	0.48	0.35 J	ND	0.48	0.42 J	2.1 - 12.5
Chloroform	6.3	4.3	2.9	ND	4.3	ND	<0.4 - 1.4
Chloromethane	ND	ND	0.54	0.47	0.66	0.58	2.1 - 4.4
Ethyl Acetate	0.94	1.4	ND	ND	ND	0.54	<1.0 - 9.5
Freon 11	1.3	1.1	1.0	0.79 J	1.2	1.1	<3.7 - 54.0
Freon 12	2.0	1.9	1.7	1.4	2.1	1.5	4.8 - 32.9
Heptane	0.49 J	0.66	ND	ND	ND	1.9	-
Hexane	ND	0.46 J	ND	ND	ND	0.81	1.6 - 15.2
Isopropyl alcohol	150	230	4.8	2.4	4.4	4.5	-
m&p-xylene	0.65 J	0.69 J	0.43 J	ND	0.48 J	0.91 J	4.1 - 28.5
Methyl Ethyl Ketone	1.9	2.2	0.80 J	0.65 J	ND	1.3	3.3 - 13.5
Methylene chloride	0.73	0.97	0.97	0.94	0.76	0.97	<1.7 - 16.0
Tetrachloroethene	1.5	1.4	0.95 J	ND	0.75 J	ND	<1.9 - 25.4
Toluene	3.0	4.2	1.2	0.90	2.7	3.4	10.7 - 70.8

Notes:

All samples analyzed using Method TO-15.

Only compounds detected in one or more samples are reported herein. See lab report for complete data.

ug/m³ = micrograms per cubic meter.

Shaded compounds are those for which the NYSDOH has provided guidance.

ND = Not detected.

* = US EPA BASE Study 2001; 25th to 95th percentiles.

TABLE 2 EFFLUENT SAMPLING RESULTS CINDERELLA LLC, BROOKLYN, NEW YORK

Sample No.	Effluent
Sample Location	248 Flatbush Avenue Basement
Sample Date	4/5/18
Volatile Organic Compounds in	ug/m³
1,2,4-Trimethylbenzene	2.0
1,3,5-Trimethylbenzene	0.84
1,4-Dichlorobenzene	0.60 J
2,2,4-trimethylpentane	5.6
4-ethyltoluene	0.59 J
Acetone	10
Benzene	3.9
Chloroform	6.4
Chloromethane	0.23 J
Cyclohexane	1.3
Ethylbenzene	1.2
Freon 11	1.2
Freon 12	2.1
Heptane	7.0
Hexane	5.5
Isopropyl alcohol	15
m&p-Xylene	3.1
Methyl Ethyl Ketone	1.4
Methylene chloride	0.76
o-Xylene	1.0
Tetrachloroethene	3,900
Toluene	2.6

Notes:

All samples analyzed using Method TO-15.
Only compounds detected in one of more samples are reported herein.
See lab report for complete data ug/m³ = micrograms per cubic meter.

ND = Not detected.

ATTACHMENT A

LABORATORY DATA DATA USABILITY SUMMARY REPORT

Centek Laboratories TO-15 Package Review CheckList

Contek Laboratories	Client:	FPM Group	Project:	Cinderella	SD	G:	C1804013
					YES	<u>NO</u>	<u>NA</u>
		0			J		
Analytical Results		Present and Complete Present and Complete			<u> </u>		<u></u>
TIC's Present		Holdin Times Met			Ĭ		
Comments:							
Chain of Custody		Present and Complete			<u>J</u>		
Surrogate		Present and Complete			4		***************************************
		Recoveries within Limits			7		***************************************
		Sample(s) reanalyzed				_1_	OF TAXABLE PARTY.
Internal Standards		Present and Complete			J.		
Recovery		Recoveries within Limits			\mathbb{Z}		
nacovery.		Sample(s) reanalyzed			Assumerer	\checkmark	***********
Comments:				1000 Con 11-11-11-11-11-11-11-11-11-11-11-11-11-			
tale Control Cample		Present and Complete			J		
Lab Control Sample (LCS)		Recoveries within Limits			Ţ		
	_	- 1 de des			J		
Lab Control Sample D	upe	Present and Complete			-\frac{\frac}\fint}}}}{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}}{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac		
(LCSD)		Recoveries within Limits				and the same of th	
MS/MSD		Present and Complete					<u> </u>
		Recoveries within Limits					<u>V</u>
Comments:							
<u></u>		Y NO MS/M	15D X				
					J,		
Sample Raw Data		Present and Complete			\	***********	
		Spectra present				un u	****
Comments:							

Centek Laboratories TO-15 Package Review CheckList

	Client:	FPM Group	Project:	Cinderella	SDG:	C1804013
Cantak Laboratories						
					YES NO	NA
Standards Data						
Intial Calibration		Present and Complete			~ _	
		Calibration meets criteria			1	
Continuing Calibration	า	Present and Complete			<u> </u>	***************************************
		Calibration meets criteria			<u> </u>	***************************************
Standards Raw Data		Present and Complete				UALERANIULE
Comments:						
					THE PROPERTY OF THE STATE OF TH	
Raw Quality Control I	<u>Data</u>	Present and Complete				
Tune Criteria Report Method Blank Data		MB Results <pql< td=""><td></td><td></td><td>- - - -</td><td><u></u></td></pql<>			- - - -	<u></u>
Method Biank Data		Associated results flagged "E	3"		amedia-	乙
LCS Sample Data		Present and Complete			Z =	<u> </u>
LCSD Sample Data		Present and Complete			J	
MS/MSD Sample Data	a	Present and Complete				
Comments:						
						,
<u>Logbooks</u> Injection Log					<i>J</i> ,	
Standards Log					<u> </u>	MARKET PARTY
Can Cleaning Log					$\overline{\smile}$	
					,	
Calculation Sheet					~ —	
IDL's					~~/ _/ —	
Canister Order Form						
Sample Tracking Form	1					
Additional Comments	· •					
	بسسسا يو	11 1 1/.		<i>E</i> /	ha	
Section Supervisor:	Wx	u om	Dat	e: <u>3 / / / /</u>	<u> </u>	
QC Supervisor:	<u></u>	Elbale	Dat	e: <u>5 / /) /</u>	1/8	
Page 2 of 2	48			,		

ASP CAT B DELIVERABLE PACKAGE Table of Contents

- 1. Package Review Check List
- 2. Case Narrative
- a. Corrective actions
- 3. Sample Summary Form
- 4. Sample Tracking Form
- 5. Bottle Order
- 6. Analytical Results
- a. Form 1
- 7. Quality Control Summary
- a. Qc Summary Report
- b. IS Summary Report
- c. MB Summary Report
- d. LCS Summary Report
- e. MSD Summary Report
- f. IDL's
- g. Calculation
- 8. Sample Data
 - a. Form I (if requested) TIC's
 - b. Quantitation Report with Spectra
- 9. Standards Data
 - a. Initial Calibration with Quant Report
 - b. Continuing Calibration with Quant Report
- 10. Raw Data
 - a. Tuning Data
- 11. Raw QC Data
 - a. Method Blank
 - b. LCS
 - c. MS/MSD
- 12. Log Books
 - a. Injection Log Book
 - b. Standards Log Book
 - c. QC Canister Log Book

NYSDOH ELAP Certificate No. 11830 Analytical Report

Wednesday, April 11, 2018

Order No.: C1804013

Chris Linkletter FPM Group, Ltd. 909 Marconi Avenue Ronkonkoma, NY 11779

TEL: (631) 737-6200

FAX

RE: Cinderella

Dear Chris Linkletter:

Centek Laboratories, LLC received 7 sample(s) on 4/9/2018 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHAapproved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Will Doll

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an canister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Date: 16-May-18

CLIENT:

FPM Group, Ltd.

Project:

Cinderella

Lab Order:

C1804013

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitorr prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

						11.				
		וונבע דמה	2110	Serven Labs - Citain of Custous	200	अहम् १४वति ह	(1,0)		חבופכתחוו דיווווו	עבאמנו דפגפו
Centak Laboratorias		143 Midler Park Drive	лive			Project:		oslor	Agridg	Level!
with the second		Syracuse, NY 13206	206			PO#:	7		1 10g/M3	Level
	315	315-431-9730	•	Vapor Intrusion & IAQ	2 MG	Quote #	Q-5P		0.2 NYS	Cal "B" Like
ao	WWW	www.CentekLabs.com	s.com			Canister Order #:	der#: 71.31		· .	
around Time;	Check Ru One Su	Rush TAT Surcharge %	Due Date:	Company:	FPM Group		•	Company: Check Here If Same:	me:	
O E Duringer	ļ	260		0.000	A	7.0		1		
45 Business Days	d	25%		Address: 908	; E	The Coult		mVolce to: Address:		
∞3 Business Days		50%		City, State, Zip	S	Some NY	PLLII	City, State, Zip		
2 Business Days		75%			.					
*Next Day by 5pm	_][100%		Email: C.\.	C. Linke Hec & Spm - group, com	dass - wd	. com	Email:		
*Next Day by Noon *Same Day		150% 200%		Phone: (631)	737 - 6700	,		Phone;		
*For Same and Next Day TAT Please Notify Lab	Please Not	ify Lab		11	Regulator	Analysis Request	Request	Field Vacuum	Labs Vacuum**	Comments
Sample ID		Date Sampled	peldur	Number	Number			Start / Stop	RecV/Analysis	
1-A1		4/5/18		268	579	40	- 15	8-108-	18-	
TA-10		,		1186	513			-301-9	/ b-	
IA-2				77.1	1343			-301-12	-11-1	
IA-3				365	535			-30 1-15	151-	
TA-4				38	111			L-105-	ا ر ر ح	
Ambient				707	1470			-301-12	-(2)	
EATIVENT		->		243			>>	-36 1 0	- 11	
								764-96		
								į.	The state of the s	
								ч-,		
								•		
								•		
									1	
								1		
									Way.	
•		•						-		
Chain of Custody	Prir	Print Name			Signature	·			Courier; CIRCLE ONE	
Sampled by:	Chr	Chris Linklether	73-4		KWID	Sutter		00:P 811/11	(FedEx UPS Pick	Pickup/Droport
Relinquished by:									For LAB USE ONLY	,
	1 61 1	CALC AND AND YEAR	1820	Ş				9-6-1	では、作品がある。	(A) (A) (A)

*** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

Sample Receipt Checklist

Client Name FPM - RONKONKOMA				Date and T	īme Receive		4/9/2018
Work Order Numbe C1804013				Received b	y NM		
Checklist completed by Signature	L Caro	1-7	8	Reviewed t	by <u>い</u>	4/a/1	
Matrix:	Carrier name:	<u>FedEx</u>	: Ground			•	
Shipping container/cooler in good condition?		Yes 🛭	∵	No 🗔	Not Presen		
Custody seals intact on shippping container/coo	oler?	Yes [No 🗔	Not Presen	\square	
Custody seals intact on sample bottles?		Yes [No 🗆	Not Presen	$ \mathbf{Z} $	
Chain of custody present?		Yes 5	Y	No 🗀			
Chain of custody signed when relinquished and	received?	Yes 5	Z i	No 🗆			
Chain of custody agrees with sample labels?		Yes 8	V)	No 🗀			
Samples in proper container/bottle?		Yes 5		No 🗀			
Sample containers intact?		Yes 5	✓	No 🗆			
Sufficient sample volume for indicated test?		Yes §	Y	No 🗆			
All samples received within holding time?		Yes S	<u>v</u>	No 🗔			
Container/Temp Blank temperature in complian	ice?	Yes 🕃	✓	No 🗀			
Nater - VOA vials have zero headspace?	No VOA vials subm	iitled (Z	Yes [No □		
Nater - pH acceptable upon receipt?		Yes [Land .	No 😾			
	Adjusted?		Chec	ked by	v-11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Any No and/or NA (not applicable) response mu	ust be detailed in the co	omment	ts section t :		rson contacted	MAN	* Abbild modely Manks
APPRINT THE THE APPRICATE OF THE PROPERTY OF THE APPRICATE OF THE APPRICAT	#\##\Y!*I	LWAT			asur comeded		
Contacted by:	Regarding:	o os kristo kvista ostanos	namentales e sustantes estimates	an			
Comments:			-un				
The state of the s					and the second of the second o	HAAY PATE TO THE STATE OF THE S	PROFESSIONAL PROFESSIONAL CONTRACTOR IN CONT
***************************************							11.18.04
Corrective Action	MAAANININA'SIN EI ISSISSIAALEESSISSI SESSASSIISAI SESSASSIISAI EI ISSISSI SESSASSI					- 1 - Van hij in 1800 - what him is hid is	
	- I I I I I I I I I I I I I I I I I I I						
Names and office A A A of A Plan A A A A SECTION AND A PLAN A PLA						٠,	77-10818-007
						and or sensitive and the sense of the	

Date: 16-May-18

CLIENT:

FPM Group, Ltd.

Project:

Cinderella

Work Order Sample Summary

Lab Order:	C1804013		WOIR Older 52	imple Sululiary
Lab Sample ID C1804013-001A	Client Sample ID	Tag Number 368.693	Collection Date 4/5/2018	Date Received 4/9/2018
C1804013-002A	IA-ID	1186.513	4/5/2018	4/9/2018
C1804013-003A	1A-2	422.1343	4/5/2018	4/9/2018
C1804013-004A	IA-3	365.535	4/5/2018	4/9/2018
C1804013-005A	IA-4	88.711	4/5/2018	4/9/2018
C1804013-006A	Ambient	207.1420	4/5/2018	4/9/2018
C1804013-007A	Effluent	243	4/5/2018	4/9/2018

Lab Order: Client: Project:	C1804013 FPM Group, Ltd. Cinderella				DATES REPORT	
Sample 1D	Client Sample ID	Collection Date	Matrix	Test Name	TCLP Date Prep Date	Analysis Date
C1804013-001A	lA-1	4/5/2018	Air	lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1 DCE		4/11/2018
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- L,1DCE		4/11/2018
				lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/10/2018
C1804013-002A	IA-1D			Lug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- I,1DCE		4/11/2018
				Tug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- I,1DCE	,	4/11/2018
				Lughn3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/10/2018
C1804013-003A	14-2			lug/m3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/10/2018
C1804013-004A	[4-3			Tug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/10/2018
C1804013-005A	14-4			Tug/m3 w/ 0.2ug/M3 CT-TCE-VC-DCE-1,IDCE		4/10/2018
C1804013-006A	Ambient			lug/m3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/11/2018
				lug/m3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE		4/10/2018
C1804013-007A	Efficant			lugim3 w/ 0.2ug/M3 CT.TCE-VC-DCE- 1,1DCE		4/11/2018
				lug/m3 w/ 0.2ug/M3 CT.TCE-VC-DCE- 1,1DCE		4/10/2018
				lug/m3 w/ 0.2ng/M3 CT-TCE-VC-DCE- I, IDCE		4/11/2018

CANISTER ORDER

7131

16-May-18

Air Quality Testing ... It's a Gas 143 Midler Park Drive * Syracuse, NY 13206

TEL: 315-431-9730 * FAX: 315-431-9731

SHIPPED TO:

Company: FPM Group, Ltd. Contact: Chris Linkletter Address:

909 Marconi Avenue

Ronkonkoma, NY 11779

Phone: (631) 737-6200

Quote ID:

Can / Reg ID

368

Project: PQ:

Submitted By:

MadeBy: rjp

Ship Date: 3/23/2018

VIA: FedEx Ground

Due Date: 3/28/2018

Bottle Code	Bottle Type	TEST(s)	QTY
MC1000CC	1L Mini-Can	1ug/M3 by Method TO15	11

88	1L Mini-Can - 1107 VI
131	1L Mini-Can - 1079 VI
133	1L Mini-Can - 1082 VI
513	Time-Set Reg - 2780 IAQ
529	Time-Set Reg - 2796 IAQ
530	Time-Set Reg - 2797 IAQ
535	Time-Set Reg - 2802 IAQ
1317	1 L Mini-Can -7330 VI
1343	Time-Set Reg-2195 IAQ
1420	Time-Set Reg-2430 IAQ
711	Time-Set Reg - 2001 IAQ
207	1L Mini-Can - 1162 VI
422	1L Mini-Can - 1349 Vł
509	Time-Set Reg - 2776 IAQ
243	1L Mini-Can - 1175 VI
693	Time-Set Reg - 4003 IAQ
1186	1L Mini-Can - 1235 VI
365	1L Mini-Can - 1314 VI

1L Mini-Can - 1317 VI

Description

Comments: 8 1L @ 6 hr + 1 1L w/QG + gauge + tubing WAC 032218C-E

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 ANALYTICAL RESULTS

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-1
Lab Order: C1804013 Tag Number: 368.693
Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-001A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-8		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichtoroethane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	₽₽bV	1	4/10/2018 7:21:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppb∨	1	4/10/2018 7:21:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	opbV	1	4/10/2018 7:21:00 PM
1,2-Dichloroethane	< 0.15	0.15	∨dqq	1	4/10/2018 7:21:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,3-butadiene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,4-Dichlorobenzene	0.32	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 7:21:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	Vđog	1	4/10/2018 7:21:00 PM
4-ethyltoluene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Acetone	9.8	3.0	ppbV	10	4/11/2018 2:11:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Benzene	0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Benzyl chloride	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Bromodichloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
Carbon disulfide	< 0.15	0.15	opb∨	1	4/10/2018 7:21:00 PM
Carbon tetrachloride	< 0.030	0.030	Vdqq	1	4/10/2018 7:21:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Chloroform	1,3	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Chloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	Vdqq	1	4/10/2018 7:21:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Dibromochloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Ethyl acetate	0.26	0.15	ppbV	1	4/10/2018 7:21:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella
Lab ID: C1804013-001A

Client Sample ID: IA-1

Tag Number: 368.693 Collection Date: 4/5/2018

Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/10/2018 7:21:00 PM
Freon 11	0.23	0.15		ppb∨	7	4/10/2018 7:21:00 PM
Freon 113	< 0.15	0.15		Vdqq	1	4/10/2018 7:21:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	4/10/2018 7:21:00 PM
Freon 12	0.40	0,15		ppbV	4	4/10/2018 7:21:00 PM
Heptane	0.12	0.15	J	ppb∨	1	4/10/2018 7:21:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	4/10/2018 7:21:00 PM
Hexane	< 0.15	0.15		ppbV	1	4/10/2018 7:21:00 PM
Isopropyl alcohol	63	6.0		ppb∨	40	4/11/2018 2:47:00 AM
m&p-Xylene	0.15	0.30	j	ppbV	1	4/10/2018 7:21:00 PM
Methyl Butyl Ketone	< 0.30	0.30		Vđạq	1	4/10/2018 7:21:00 PM
Methyl Ethyl Ketone	0.66	0.30		ppbV	1	4/10/2018 7:21:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 7:21:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppb∨	1	4/10/2018 7:21:00 PM
Methylene chloride	0.21	0.15		ppb∨	1	4/10/2018 7:21:00 PM
o-Xylene	< 0.15	0.15		ppbV	7	4/10/2018 7:21:00 PM
Propylene	< 0.15	0.15		₽₽bV	1	4/10/2018 7:21:00 PM
Styrene	< 0.1 5	0.15		ppbV	1	4/10/2018 7:21:00 PM
Tetrachloroethylene	0.22	0.15		∨dqq	1	4/10/2018 7:21:00 PM
Tetrahydrofuran	< 0.15	0.15		Vợqq	1	4/10/2018 7:21:00 PM
Toluene	0.79	0.15		ppb∨	1	4/10/2018 7:21:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/10/2018 7:21:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/10/2018 7:21:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/10/2018 7:21:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	4/10/2018 7:21:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 7:21:00 PM
Vinyl chloride	< 0.040	0.040		ррЬ∨	1	4/10/2018 7:21:00 PM
Surr: Bromofluorobenzene	95.0	70-130		%REC	1	4/10/2018 7:21:00 PM

		_	
Oua	Н	le	rs

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 2 of 14

ries, LLC Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-1
Lab Order: C1804013 Tag Number: 368.693

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-001A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-1	5		Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 7:21:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 7:21:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 7:21:00 PM
1,1-Dichloroethene	< 0.1 6	0.16	ug/m3	1	4/10/2018 7:21:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 7:21:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichlarobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichtoropropane	< 0.69	0,69	ug/m3	1	4/10/2018 7:21:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 7:21:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	սց/m3	1	4/10/2018 7:21:00 PM
1,4-Dichlorobenzene	1.9	0.90	ug/m3	1	4/10/2018 7:21:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 7:21:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 7:21:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
Acetone	23	7.1	ug/m3	10	4/11/2018 2:11:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 7:21:00 PM
Benzene	0.48	0.48	ug/m3	1	4/10/2018 7:21:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 7:21:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 7:21:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 7:21:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 7:21:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 7:21:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 7:21:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 7:21:00 PM
Chloroform	6.3	0.73	ug/m3	1	4/10/2018 7:21:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/10/2018 7:21:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 7:21:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 7:21:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 7:21:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 7:21:00 PM
Ethyl acetate	0.94	0.54	ug/m3	1	4/10/2018 7:21:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 7:21:00 PM
Freon 11	1.3	0.84	ug/m3	1	4/10/2018 7:21:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 7:21:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 14

atories, and

CLIENT: FPM Group, Ltd. Client Sample 1D: IA-1 Lab Order: C1804013 Tag Number: 368.693

< 0.44

< 0.59

< 0.68

< 0.16

< 0.53

< 0.66

< 0.10

3.0

Project: Cinderella Collection Date: 4/5/2018
Lab ID: C1804013-001A Matrix: AIR

**Limit Qual Units DF Date Analyzed Analyses Result 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP Freon 12 4/10/2018 7:21:00 PM 2.0 0.74 ug/m3 1 Heptane 0.49 0.61 J ug/m3 4/10/2018 7:21:00 PM 1 Hexachloro-1,3-butadiene 1 4/10/2018 7:21:00 PM < 1.6 1.6 ug/m3 Hexane 0.53 1 4/10/2018 7:21:00 PM < 0.53 ug/m3 Isopropyl alcohol 40 4/11/2018 2:47:00 AM 150 15 ug/m3 m&p-Xylene 0.65 1.3 ug/m3 1 4/10/2018 7:21:00 PM Methyl Butyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 7:21:00 PM Methyl Ethyl Ketone 1.9 98.0 ug/m3 1 4/10/2018 7:21:00 PM Methyl Isobutyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 7:21:00 PM Methyl tert-butyl ether < 0.54 0.54 ug/m3 1 4/10/2018 7:21:00 PM Methylene chloride 0.73 0.52ид/т3 1 4/10/2018 7:21:00 PM o-Xylene < 0.65 0.65 ug/m3 1 4/10/2018 7:21:00 PM Propylene < 0.26 0.26 ug/m3 1 4/10/2018 7:21:00 PM Styrene < 0.64 0.64 1 4/10/2018 7:21:00 PM ug/m3 Tetrachloroethylene 1,5 1.0 ug/m3 1 4/10/2018 7:21:00 PM

0.44

0.57

0.59

0.68

0.16

0.53

0.66

0.10

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

1

1

1

1

1

1

1

1

4/10/2018 7:21:00 PM

Ous	ĭí	fi	e.	re.	

Tetrahydrofuran

Trichloroethene

Vinyl acetate

Vinyl Bromide

Vinyl chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery fimits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: IA-1D

Lab Order: C1804013 Tag Number: 1186.513
Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-002A Matrix: AIR

Analyses	Result	**Limit Qua	il Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	7	4/10/2018 8:04:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppb∨	1	4/10/2018 8:04:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ρρb∨	1	4/10/2018 8:04:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	†	4/10/2018 8:04:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,3-butadiene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,3-Dichtorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,4-Dichlorobenzene	0.21	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	4/10/2018 8:04:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	1	4/10/2018 8:04:00 PM
4-ethyltoluene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Acetone	11	3.0	ppbV	10	4/11/2018 3:25:00 AM
Allyl chloride	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Benzene	0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Benzyl chloride	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Bromoform	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Carbon disulfide	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 8:04:00 PM
Chlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Chloroform	0.88	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Chloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	Vdqq	1	4/10/2018 8:04;00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Cyclohexane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Dibromochloromethane	< 0.15	0.15	∨dqq	1	4/10/2018 8:04:00 PM
Ethyl acetate	0.38	0.15	ppbV	1	4/10/2018 8:04:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- B Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: IA-1D

Lab Order:C1804013Tag Number:1186.513Project:CinderellaCollection Date:4/5/2018

Lab ID: C1804013-002A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		то	TO-15			Analyst: RJP	
Ethylbenzene	< 0,15	0.15		₽₽bV	1	4/10/2018 8:04:00 PM	
Freon 11	0.20	0.15		Vdqq	1	4/10/2018 8:04:00 PM	
Freon 113	< 0.15	0.15		∨dqq	7	4/10/2018 8:04:00 PM	
Freon 114	< 0.15	0.15		Vdqq	1	4/10/2018 8:04:00 PM	
Freon 12	0.39	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Heptane	0.16	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Hexachtoro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Hexane	0.13	0.15	ل	ppbV	1	4/10/2018 8:04:00 PM	
Isopropyl alcohol	92	6.0		ppbV	40	4/11/2018 4:02:00 AM	
m&p-Xylene	0.16	0.30	J	ppb∨	1	4/10/2018 8:04:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 8:04:00 PM	
Methyl Ethyl Ketone	0.74	0.30		ppbV	1	4/10/2018 8:04:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	1	4/10/2018 8:04:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		ppb∨	1	4/10/2018 8:04:00 PM	
Methylene chloride	0.28	0.15		Vdqq	1	4/10/2018 8:04:00 PM	
o-Xylene	< 0.15	0.15		ppb∨	1	4/10/2018 8:04:00 PM	
Propylene	< 0.15	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Styrene	< 0.15	0.15		Vdqq	1	4/10/2018 8:04:00 PM	
Tetrachloroethylene	0.21	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Toluene	1.1	0.15		ppbV	1	4/10/2018 8:04:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	4/10/2018 8:04:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	4/10/2018 8:04:00 PM	
Trichloroethene	< 0.030	0.030		ppbV	1	4/10/2018 8:04:00 PM	
Vinyl acetate	< 0.15	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 8:04:00 PM	
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 8:04:00 PM	
Surr: Bromofluorobenzene	95.0	70-130		%REC	1	4/10/2018 8:04:00 PM	

Qualifiers:	**	Quantitation Limit
-------------	----	--------------------

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Lab ID: C1804013-002A

Client Sample ID: IA-1D

Tag Number: 1186.513 Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-1	5		Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:04:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:04:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:04:00 PM
1,1-Dichloroethane	< 0.61	0.61	սց/m3	1	4/10/2018 8:04:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:04:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 8:04:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ц д/ m3	1	4/10/2018 8:04:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 8:04:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:04:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 8:04:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,4-Dichlorobenzene	1.3	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 8:04:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 8:04:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 8:04:00 PM
Acetone	26	7.1	ug/m3	10	4/11/2018 3:25:00 AM
Alfyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 8:04:00 PM
Benzene	0.48	0.48	ug/m3	1	4/10/2018 8:04:00 PM
Benzyl chloride	< 0.86	0.86	սց/m3	1	4/10/2018 8:04:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:04:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 8:04:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 8:04:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 8:04:00 PM
Carbon tetrachloride	< 0.19	0.19	սց/m3	1	4/10/2018 8:04:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 8:04:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 8:04:00 PM
Chloroform	4.3	0.73	ug/m3	1	4/10/2018 8:04:00 PM
Chloromethane	< 0.31	0.31	սց/m3	1	4/10/2018 8:04:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:04:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 8:04:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 8:04:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 8:04:00 PM
Ethyl acetate	1,4	0.54	ug/m3	1	4/10/2018 8:04:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 8:04:00 PM
Freon 11	1.1	0.84	ug/m3	1	4/10/2018 8:04:00 PM
Freon 113	< 1,1	1.1	ug/m3	1	4/10/2018 8:04:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 8:04:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.

 S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Project: Cinderella Lab ID: C1804013-002A Client Sample ID: IA-ID

Tag Number: 1186.513 Collection Date: 4/5/2018

Matrix: AIR

Freon 12 1.9 0.74 ug/m3 1 4/10/2018 8:00 Heptane 0.66 0.61 ug/m3 1 4/10/2018 8:00 Hexachloro-1,3-butadiene < 1.6 1.6 ug/m3 1 4/10/2018 8:00 Hexane 0.46 0.53 J ug/m3 1 4/10/2018 8:00 Isopropyl alcohol 230 15 ug/m3 40 4/11/2018 8:00 Methyl Butyl Ketone 0.69 1.3 J ug/m3 1 4/10/2018 8:00 Methyl Ethyl Ketone 2.2 0.88 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 1.2 0.54 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 0.54 0.54 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 0.65 0.65 ug/m3 1	Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
Heptane 0.66 0.61 ug/m3 1 4/10/2018 8:0 Hexachloro-1,3-butadiene < 1.6	1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TC)-15			Analyst: RJP
Hexachioro-1,3-butadiene < 1.6 1.6 ug/m3 1 4/10/2018 8:0 Hexane 0.46 0.53 J ug/m3 1 4/10/2018 8:0 Isopropyl alcohol 230 15 ug/m3 40 4/11/2018 4:0 m&p-Xylene 0.69 1.3 J ug/m3 1 4/10/2018 8:0 Methyl Butyl Ketone < 1.2		•	0.74		սց/m3	1	4/10/2018 8:04:00 PM
Hexane 0.46 0.53 J ug/m3 1 4/10/2018 8:00 Isopropyl alcohol 230 15 ug/m3 40 4/11/2018 4:00 m&p-Xylene 0.69 1.3 J ug/m3 1 4/10/2018 8:00 Methyl Butyl Ketone < 1.2	Heptane	0.66	0.61		ug/m3	1	4/10/2018 8:04:00 PM
Isopropyl alcohol 230 15 ug/m3 40 4/11/2018 4:00 m&p-Xylene 0.69 1.3 J ug/m3 1 4/10/2018 8:00 Methyl Butyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:00 Methyl Ethyl Ketone 2.2 0.88 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ether < 0.54 0.54 ug/m3 1 4/10/2018 8:00 Methyl Isobutyl Ether < 0.54 0.54 ug/m3 1 4/10/2018 8:00 Methylene chloride 0.97 0.52 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.65 0.65 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.66 0.26 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.65 0.57 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.68 0.68 ug/m3 1 4/10/2018 8:00 e-Xylene < 0.68 ug/m3 1 4/10/2018 8:00 e-Xylene	Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 8:04:00 PM
m&p-Xylene 0.69 1.3 J ug/m3 1 4/10/2018 8:0 Methyl Butyl Ketone < 1.2	Hexane	0.46	0.53	J	ug/m3	1	4/10/2018 8:04:00 PM
Methyl Butyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:0 Methyl Ethyl Ketone 2.2 0.88 ug/m3 1 4/10/2018 8:0 Methyl Isobutyl Ketone < 1.2	Isopropył alcohol	230	15		ug/m3	40	4/11/2018 4:02:00 AM
Methyl Ethyl Ketone 2.2 0.88 ug/m3 1 4/10/2018 8:0 Methyl Isobutyl Ketone < 1.2	m&p-Xylene	0.69	1.3	j	ug/m3	1	4/10/2018 8:04:00 PM
Methyl Isobutyl Ketore < 1.2	Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:04:00 PM
Methyl tert-butyl ether < 0.54	Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	4/10/2018 8:04:00 PM
Methylene chloride 0.97 0.52 ug/m3 1 4/10/2018 8:00 o-Xylene < 0.65	Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:04:00 PM
o-Xylene < 0.65	Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 8:04:00 PM
Propylene < 0.26 0.26 ug/m3 1 4/10/2018 8:0 Styrene < 0.64	Methylene chloride	0.97	0.52		ug/m3	1	4/10/2018 8:04:00 PM
Styrene < 0.64 0.64 ug/m3 1 4/10/2018 8:00 Tetrachloroethylene 1.4 1.0 ug/m3 1 4/10/2018 8:00 Tetrahydrofuran < 0.44	o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 8:04:00 PM
Tetrachloroethylene 1.4 1.0 ug/m3 1 4/10/2018 8:0 Tetrahydrofuran < 0.44	Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 8:04:00 PM
Tetrahydrofuran < 0.44 0.44 ug/m3 1 4/10/2018 8:0-10 Toluene 4.2 0.57 ug/m3 1 4/10/2018 8:0-10 trans-1,2-Dichloroethene < 0.59	Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 8:04:00 PM
Toluene 4.2 0.57 ug/m3 1 4/10/2018 8:00 trans-1,2-Dichloroethene < 0.59	Tetrachloroethylene	1.4	1.0		ug/m3	1	4/10/2018 8:04:00 PM
trans-1,2-Dichloroethene < 0.59	Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 8:04:00 PM
trans-1,3-Dichloropropene < 0.68	Toluene	4.2	0.57		ug/m3	1	4/10/2018 8:04:00 PM
Trichforoethene < 0.16 0.16 ug/m3 1 4/10/2018 8:00 Vinyl acetate < 0.53	trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl acetate < 0.53 0.53 ug/m3 1 4/10/2018 8:0- Vinyl Bromide < 0.66	trans-1,3-Dichtoropropene	< 0.68	0.68		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl Bromide < 0.66 0.66 ug/m3 1 4/10/2018 8:0-	Trichtoroethene	< 0.16	0.16		ug/m3	1	4/10/2018 8:04:00 PM
	Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 8:04:00 PM
	Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl chloride < 0.10 0.10 ug/m3 1 4/10/2018 8:0	Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 8:04:00 PM

Oualifiers:	**

^{*} Quantitation Limit

Page 4 of 14

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: IA-2

Lab Order:C1804013Tag Number: 422.1343Project:CinderellaCollection Date: 4/5/2018

Lab ID: C1804013-003A Matrix: AIR

Analyses	Result	**Limit (Qual Unit:	s DF	Date Analyzed
FIELD PARAMETERS		FLC)		Analyst:
Łab Vacuum in	-12		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	5		Analyst: RJI
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,1,2,2-Tetrachioroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,1-Dichloroethane	< 0.15	0.15	∨dqq	1	4/10/2018 8:46:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 8:46:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdgq	1	4/10/2018 8:46:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:46:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:46:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 8:46:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	4/10/2018 8:46:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Acetone	1.6	0.30	ppbV	1	4/10/2018 8:46:00 PM
Allyl chloride	< 0.15	0.15	ppb∨	1	4/10/2018 8:46:00 PM
Benzene	0.11	0.15	J ppbV	1	4/10/2018 8:46:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 8:46:00 PM
Chlorobenzene	< 0.15	0.15	opb∨	1	4/10/2018 8:46:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Chloroform	0.59	0.15	Vdqq	1	4/10/2018 8:46:00 PM
Chloromethane	0.26	0.15	ppbV	1	4/10/2018 8:46:00 PM
cis-1,2-Dichlorgethene	< 0.040	0.040	ppbV	1	4/10/2018 8:46:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Ethyl acetate	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.

 S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-2

Lab Order:C1804013Tag Number: 422.1343Project:CinderellaCollection Date: 4/5/2018

Lab ID: C1804013-003A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP	
Ethylbenzene	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM	
Freon 11	0.18	0.15		Vdqq	1	4/10/2018 8:46:00 PM	
Freon 113	< 0.15	0.15		Vđqq	1	4/10/2018 8:46:00 PM	
Freon 114	< 0.15	0.15		∨dqq	1	4/10/2018 8:46:00 PM	
Freon 12	0.35	0.15		₽pbV	1	4/10/2018 8:46:00 PM	
Heptane	< 0.15	0.15		ρpbV	1	4/10/2018 8:46:00 PM	
Hexachtoro-1,3-butadiene	< 0.15	0.15		Vdqq	1	4/10/2018 8:46:00 PM	
Hexane	< 0.15	0.15		∨dqq	1	4/10/2018 8:46:00 PM	
tsopropyl alcohol	2.0	0.15		ppb∨	1	4/10/2018 8:46:00 PM	
m&p-Xylene	0.10	0.30	J	Vdqq	1	4/10/2018 8:46:00 PM	
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/10/2018 8:46:00 PM	
Methyl Ethyl Ketone	0.27	0.30	J	Vdqq	1	4/10/2018 8:46:00 PM	
Methyl Isobutyl Ketone	< 0.30	0.30		ppb∨	7	4/10/2018 8:46:00 PM	
Methyl tert-butyl ether	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM	
Methylene chloride	0.28	0.15		∨dqq	1	4/10/2018 8:46;00 PM	
o-Xylene	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM	
Propylene	< 0.15	0.15		Vdqq	1	4/10/2018 8:46:00 PM	
Styrene	< 0.15	0.15		₽pb∨	1	4/10/2018 8:46:00 PM	
Tetrachloroethylene	0.14	0.15	J	Vdqq	1	4/10/2018 8:46:00 PM	
Tetrahydrofuran	< 0.15	0.15		₽₽bV	1	4/10/2018 8:46:00 PM	
Toluene	0.32	0.15		ppbV	1	4/10/2018 8:46:00 PM	
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM	
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM	
Trichloroethene	< 0.030	0.030		ppb∨	1	4/10/2018 8:46:00 PM	
Vinyl acetate	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM	
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM	
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 8:46:00 PM	
Surr: Bromofluorobenzene	95.0	70-130		%REC	1	4/10/2018 8:46:00 PM	

40						
O	u R	ħ	ħ	C1"	5	

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 6 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Project: Cinderella
Lab ID: C1804013-003A

Client Sample ID: 1A-2 Tag Number: 422.1343

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit(Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-1	5		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:46:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:46:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:46:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:46:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dichlorobenzene	< 0. 9 0	0.90	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 8:46:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:46:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 8:46:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:46:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:46:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 8:46:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 8:46:00 PM
Acetone	3.8	0.71	ug/m3	1	4/10/2018 8:46:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 8:46:00 PM
Benzene	0.35	0.48	J ug/m3	1	4/10/2018 8:46:00 PM
Benzył chloride	< 0.86	0.86	ug/m3	1	4/10/2018 8:46:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:46:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 8:46:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 8:46:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 8:46:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 8:46:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 8:46:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 8:46:00 PM
Chloroform	2.9	0.73	ug/m3	1	4/10/2018 8:46:00 PM
Chloromethane	0.54	0.31	ug/m3	1	4/10/2018 8:46:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:46:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 8:46:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 8:46:00 PM
Dibromochioromethane	< 1.3	1.3	րց/ա3	1	4/10/2018 8:46:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 8:46:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 8:46:00 PM
Freon 11	1.0	0.84	ug/m3	1	4/10/2018 8:46:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 8:46:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN-Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: IA-2

Tag Number: 422.1343 C1804013 Lab Order: Collection Date: 4/5/2018 Project: Cinderella

Matrix: AIR Lab ID: C1804013-003A

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	D-DCE-1,1DCE	то	-15		****	Analyst: RJP
Freon 12	1.7	0.74		ug/m3	1	4/10/2018 8:46:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/10/2018 8:46:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 8:46:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/10/2018 8:46:00 PM
Isopropyl alcohol	4.8	0.37		ug/m3	1	4/10/2018 8:46:00 PM
m&p-Xylene	0.43	1.3	J	ug/m3	1	4/10/2018 8:46:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:46:00 PM
Methyl Ethyl Ketone	0.80	0.88	Ĵ	ug/m3	1	4/10/2018 8:46:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:46:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 8:46:00 PM
Methylene chloride	0.97	0.52		ug/m3	1	4/10/2018 8:46:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 8:46:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 8:46:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 8:46:00 PM
Tetrachloroethylene	0.95	1.0	J	ug/m3	1	4/10/2018 8:46:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 8:46:00 PM
Toluene	1.2	0.57		ug/m3	1	4/10/2018 8:46:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 8:46:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 8:46:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 8:46:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 8:46:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 8:46:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 8:46:00 PM

Qualifiers:

Quantitation Limit

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

Analyte detected below quantitation limit J

Not Detected at the Limit of Detection

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-3
Lab Order: C1804013 Tag Number: 365.535
Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-004A Matrix: AIR

Analyses	Result	**Limit Qual	Units	ÐF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum in	-15		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichtoroethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,1-Dichtoroethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppb∨	1	4/10/2018 9:29:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	₽₽b∨	1	4/10/2018 9:29:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 9:29:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
4-ethyltoluene	< 0.15	0.15	opb∨	1	4/10/2018 9:29:00 PM
Acetone	1,9	0.30	ppb∨	1	4/10/2018 9:29:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Benzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Bromodichtoromethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Bromoform	< 0.15	0.15	∨dqq	1	4/10/2018 9:29:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 9:29:00 PM
Chlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Chloroform	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
Chloromethane	0.23	0.15	Vdqq	1	4/10/2018 9:29:00 PM
cis-1,2-Dichtoroethene	< 0.040	0.040	ppbV	1	4/10/2018 9:29:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Cyclohexane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
Dibromochloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
Ethyl acetate	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-3
Lab Order: C1804013 Tag Number: 365.535

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-004A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Freon 11	0.14	0.15	J	ppb∨	1	4/10/2018 9:29:00 PM
Freon 113	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Freon 114	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
Freon 12	0.29	0.15		∨dqq	1	4/10/2018 9:29:00 PM
Heptane	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Hexane	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
isopropyl alcohol	0.97	0.15		ppb∨	1	4/10/2018 9:29:00 PM
m&p-Xylene	< 0.30	0.30		ppbV	1	4/10/2018 9:29:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/10/2018 9:29:00 PM
Methyl Ethyl Ketone	0.22	0.30	J	ppbV	1	4/10/2018 9:29:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		Vdqq	1	4/10/2018 9:29:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Methylene chloride	0.27	0.15		ppb∨	1	4/10/2018 9:29:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Propylene	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Tetrachloroethylene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Toluene	0.24	0.15		ppb∨	1	4/10/2018 9:29:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/10/2018 9:29:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 9:29:00 PM
Surr: Bromofluorobenzene	92.0	70-130		%REC	1	4/10/2018 9:29:00 PM

		-		
Oua	I.S	Ŧŧ	e	r_{s}

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Client Sample ID: 1A-3 Tag Number: 365.535 C1804013 Lab Order: Coffection Date: 4/5/2018 Cinderella Project:

Matrix: AIR Lab ID: C1804013-004A

Analyses	Result	**Limit Q	val Units	ÐF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJ i
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 9:29:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 9:29:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 9:29:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 9:29:00 PN
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 9:29:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 9:29:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PN
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dichlorobenzene	< 0,90	0.90	ug/m3	1	4/10/2018 9:29:00 PN
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dichloropropane	< 0,69	0.69	ug/m3	1	4/10/2018 9:29:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 9:29:00 PN
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 9:29:00 PN
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 9:29:00 PN
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 9:29:00 PN
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 9:29:00 PN
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PN
Acetone	4.4	0.71	ug/m3	1	4/10/2018 9:29:00 PN
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 9:29:00 PN
Benzene	< 0.48	0.48	սց/m3	1	4/10/2018 9:29:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 9:29:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 9:29:00 PN
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 9:29:00 PA
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 9:29:00 PN
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 9:29:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 9:29:00 PN
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 9:29:00 PN
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 9:29:00 PN
Chloroform	< 0.73	0.73	ug/m3	1	4/10/2018 9:29:00 PN
Chloromethane	0.47	0.31	ug/m3	1	4/10/2018 9:29:00 PN
cis-1,2-Dichloroethene	< 0.1 6	0.16	ug/m3	1	4/10/2018 9:29:00 PN
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 9:29:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 9:29:00 PN
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 9:29:00 PN
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 9:29:00 PN
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 9:29:00 PM
Freon 11	0.79	0.84	J ug/m3	1	4/10/2018 9:29:00 PN
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 9:29:00 PN
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 9:29:00 PN

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Ħ Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- Estimated Value above quantitation range E
- J Analyte detected below quantitation limit
- Not Detected at the Limit of Detection ND

Page 7 of 14

C1804013-004A

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013
Project: Cinderella

Lab ID:

Tag Number: 365.535 Collection Date: 4/5/2018

Client Sample ID: 1A-3

Matrix: AIR

Analyses Result **Limit Qual Units \mathbf{DF} Date Analyzed 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP Freon 12 0.74 ug/m3 1 4/10/2018 9:29:00 PM 1.4 Heptane < 0.61 0.61 ug/m3 4/10/2018 9:29:00 PM Hexachloro-1,3-butadiene < 1.6 1.6 ug/m3 1 4/10/2018 9:29:00 PM Hexane < 0.53 0.53 ug/m3 1 4/10/2018 9:29:00 PM Isopropyl alcohol 2,4 0.37 1 4/10/2018 9:29:00 PM ug/m3 m&p-Xylene < 1.3 1.3 ug/m3 1 4/10/2018 9:29:00 PM Methyl Butyl Ketone < 1.2 1.2 4/10/2018 9:29:00 PM ug/m3 1 Methyl Ethyl Ketone 0.65 0.88 ug/m3 4/10/2018 9:29:00 PM Methyl Isobutyl Ketone < 1.21 1.2 ug/m3 4/10/2018 9:29:00 PM Methyl tert-butyl ether < 0.54 0.54 ug/m3 4/10/2018 9:29:00 PM 1 Methylene chloride 0.94 0.52 ug/m3 1 4/10/2018 9:29:00 PM o-Xylene < 0.65 0.65 1 4/10/2018 9:29:00 PM ug/m3 Propylene < 0.26 0.26ug/m3 1 4/10/2018 9:29:00 PM Styrene < 0.64 0.64 ug/m3 1 4/10/2018 9:29:00 PM Tetrachloroethylene 1 < 1.0 4/10/2018 9:29:00 PM 1.0 ug/m3 Tetrahydrofuran < 0.44 0.44 ug/m3 1 4/10/2018 9:29:00 PM Toluene 0.90 0.57 1 ug/m3 4/10/2018 9:29:00 PM trans-1,2-Dichloroethene < 0.59 0.59 ug/m3 1 4/10/2018 9:29:00 PM trans-1,3-Dichloropropene 4/10/2018 9:29:00 PM < 0.68 0.68 ug/m3 1 Trichloroethene < 0.16 0.16 ug/m3 1 4/10/2018 9:29:00 PM Vinyl acetate < 0.53 0.53ug/m3 1 4/10/2018 9:29:00 PM Vinyl Bromide < 0.66 0.66 ug/m3 1 4/10/2018 9:29:00 PM Vinyl chloride < 0.10 0.10 ug/m3 4/10/2018 9:29:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

ories, LLC Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample 1D: IA-4

Lab Order:C1804013Tag Number:88.711Project:CinderellaCollection Date:4/5/2018

Lab ID: C1804013-005A Matrix: AIR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-7		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,1,2-Trichtoroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 10:11:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PN
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	∨dqq	ï	4/10/2018 10:11:00 PN
1,4-Dichlorobenzene	< 0.15	0.15	ppbV	7	4/10/2018 10:11:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 10:11:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PN
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Acetone	2.0	0.30	ppbV	1	4/10/2018 10:11:00 PN
Allyl chloride	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
Benzene	0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Bromomethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 Pfv
Carbon disulfide	< 0.15	0.15	∨dqq	1	4/10/2018 10:11:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 10:11:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Chloroform	0.88	0.15	ppbV	1	4/10/2018 10:11:00 PM
Chloromethane	0.32	0.15	ppbV	1	4/10/2018 10:11:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 10:11:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Ethyl acetate	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 14

ies, LLC Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample 1D: IA-4
Lab Order: C1804013 Tag Number: 88.711

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-005A Matrix: AJR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Freon 11	0.22	0.15		ppbV	1	4/10/2018 10:11:00 PM
Freon 113	< 0.15	0.15		∨dqq	1	4/10/2018 10:11:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Freon 12	0.43	0.15		∨dqq	1	4/10/2018 10:11:00 PM
Heptane	< 0.15	0.15		Vdqq	1	4/10/2018 10:11:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Hexane	< 0.15	0.15		Vdqq	1	4/10/2018 10:11:00 PM
Isopropyl alcohol	1.8	0.15		ppbV	1	4/10/2018 10:11:00 PM
m&p-Xylene	0.11	0.30	J	₽₽bV	1	4/10/2018 10:11:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppb∨	1	4/10/2018 10:11:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppb∨	1	4/10/2018 10:11:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		∨dqq	1	4/10/2018 10:11:00 PM
Methyl tert-butyl ether	< 0.15	0,15		ppbV	1	4/10/2018 10:11:00 PM
Methylene chloride	0.22	0.15		∨dqq	1	4/10/2018 10:11:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Propylene	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Styrene	< 0.15	0.15		₽₽₽V	1	4/10/2018 10:11:00 PM
Tetrachloroethylene	0.11	0.15	j	ppb∨	1	4/10/2018 10:11:00 PM
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Toluene	0.72	0.15		ppb∨	1	4/10/2018 10:11:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	4/10/2018 10:11:00 PM
Trichloroethene	< 0.030	0.030		ppb∨	1	4/10/2018 10:11:00 PM
Vinyl acetate	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 10:11:00 PM
Surr: Bramofluorobenzene	88.0	70-130		%REC	1	4/10/2018 10:11:00 PM

~			v	٠.				
О			٠			43	•	ю
`.	42	43			ч	٠	٠	о

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 14

Date: 26-Apr-18

FPM Group, Ltd. CLIENT:

Lab Order:

C1804013

Project: Lab ID:

Cinderella C1804013-005A Client Sample ID: 1A-4

Tag Number: 88.711 Collection Date: 4/5/2018

Matrix: AlR.

Analyses	Result	**Limit Qua	I Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:11:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:11:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 10:11:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:11:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 10:11:00 PN
1,2,4-Trimethy!benzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dibromoethane	< 1,2	1.2	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:11:00 PN
1,2-Dichloroethane	< 0,61	0.61	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 10:11:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:11:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 10:11:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	սց/m3	1	4/10/2018 10:11:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:11:00 PN
1,4-Dioxane	< 1.1	1,1	սց/m3	1	4/10/2018 10:11:00 PN
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 10:11:00 PN
4-ethyltoluene	< 0.74	0.74	սց/m3	1	4/10/2018 10:11:00 PN
Acetone	4.9	0.71	ug/m3	1	4/10/2018 10:11:00 PN
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 10:11:00 PN
Benzene	0.48	0.48	սց/m 3	1	4/10/2018 10:11:00 PN
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 10:11:00 PN
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 PN
Bromoform	< 1.6	1,6	ug/m3	1	4/10/2018 10:11:00 PN
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 10:11:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 10:11:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 10:11:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 10:11:00 PN
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 10:11:00 PM
Chloroform	4.3	0.73	ug/m3	1	4/10/2018 10:11:00 PM
Chloromethane	0.66	0.31	ug/m3	1	4/10/2018 10:11:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:11:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 10:11:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 10:11:00 Pt
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 10:11:00 的
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 10:11:00 Pf
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 10:11:00 PM
Freon 11	1.2	0.84	սց/m3	1	4/10/2018 10:11:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 10:11:00 PI
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 Pf

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated. JN
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Estimated Value above quantitation range £
- Analyte detected below quantitation limit J
- ND Not Detected at the Limit of Detection

Page 9 of 14

tories, LLC Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: IA-4

Lab Order:C1804013Tag Number:88.711Project:CinderellaCollection Date:4/5/2018

Lab ID: C1804013-005A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	2.1	0.74		սց/m3	1	4/10/2018 10:11:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/10/2018 10:11:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 10:11:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/10/2018 10:11:00 PM
Isopropyl alcohol	4.4	0.37		ug/m3	1	4/10/2018 10:11:00 PM
m&p-Xylene	0.48	1.3	J	ug/m3	1	4/10/2018 10:11:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:11:00 PM
Methyl Ethyl Ketone	< 0.88	88.0		ug/m3	1	4/10/2018 10:11:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:11:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 10:11:00 PM
Methylene chloride	0.7 6	0.52		ug/m3	1	4/10/2018 10:11:00 PN
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 10:11:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 10:11:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 10:11:00 PM
Tetrachloroethylene	0.75	1.0	J	ug/m3	1	4/10/2018 10:11:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 10:11:00 PM
Toluene	2.7	0.57		սց/m3	1	4/10/2018 10:11:00 PN
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 10:11:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 10:11:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:11:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 10:11:00 PA
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 10:11:00 PN
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 10:11:00 PM

Qualifiers:

S Spike Recovery outside accepted recovery limits

ND Not Detected at the Limit of Detection

Page 10 of 14

Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: Ambient

Lab Order:C1804013Tag Number:207.1420Project:CinderellaCollection Date:4/5/2018

Lab ID: C1804013-006A Matrix: AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS	·	FLD			Analyst:
Lab Vacuum In	-12		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15	j		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,1-Dichtoroethane	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 10:54:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	PpbV	1	4/10/2018 10:54:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,2-Dichloropropane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,4-Dichlorobenzene	10	1.5	Vdqq	10	4/11/2018 5:17:00 AM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	4/10/2018 10:54:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
4-ethyltoluene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Acetone	11	3.0	ppbV	10	4/11/2018 5:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Benzene	0.13		J ppbV	1	4/10/2018 10:54:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Bromodichloromethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 10:54:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Chloroform	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Chloromethane	0.28	0.15	ppbV	1	4/10/2018 10:54:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 10:54:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Cyclohexane	< 0.15	0.15	ppbV	,	4/10/2018 10:54:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Ethyl acetate	0.15	0.15	ppbV	, 1	4/10/2018 10:54:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 14

ies, LLC Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: Ambient

Lab Order:C1804013Tag Number: 207.1420Project:CinderellaCollection Date: 4/5/2018

Lab ID: C1804013-006A Matrix: AlR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1.1DCE	TO-15	*****		Analyst: RJP
Ethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Freon 11	0.20	0.15	₽₽bV	1	4/10/2018 10:54:00 PM
Freon 113	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Freon 114	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
Freon 12	0.30	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Heptane	0.47	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Hexane	0.23	0.15	₽pbV	1	4/10/2018 10:54:00 PM
isopropyl alcohol	1.8	0.15	∨dqq	1	4/10/2018 10:54:00 PM
m&p-Xylene	0.21	0.30 J	ppbV	1	4/10/2018 10:54:00 PM
Methyl Butyl Ketone	< 0.30	0.30	ppb∨	1	4/10/2018 10:54:00 PM
Methyl Ethyl Ketone	0.44	0.30	ppb∨	1	4/10/2018 10:54:00 ₽M
Methyl Isobutyl Ketone	< 0.30	0.30	ppbV	1	4/10/2018 10:54:00 PM
Methyl tert-butyl ether	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Methylene chloride	0.28	0.15	ppb∨	1	4/10/2018 10:54:00 PM
o-Xylene	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
Propylene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Styrene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Tetrachloroethylene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Tetrahydrofuran	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Toluene	0.90	0.15	ppb∨	1	4/10/2018 10:54:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Trichloroethene	< 0.030	0.030	ρρb∨	1	4/10/2018 10:54:00 PM
Vinyl acetate	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Vinyl Bromide	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/10/2018 10:54:00 PM
Surr: Bromofluorobenzene	90.0	70-130	%REC	1	4/10/2018 10:54:00 PM

Chan'	lifters
1.71121	HILLELS

^{*} Quantitation Limit

ND Not Detected at the Limit of Detection

Page 12 of 14

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Client Sample ID: Ambient Lab Order: C1804013 Tag Number: 207.1420 Collection Date: 4/5/2018 Project: Cinderella Matrix: AIR Lab ID: C1804013-006A

**Limit Qual Units DF Analyses Result Date Analyzed

1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TO-18	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:54:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	սց/m3	1	4/10/2018 10:54:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:54:00 PM
1,1-Dichloroethane	< 0,61	0.61	ug/m3	1	4/10/2018 10:54:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:54:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 10:54:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dichloroethane	< 0.61	0.61	սց/m3	1	4/10/2018 10:54:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 10:54:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:54:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 10:54:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:54:00 PM
1,4-Dichlorobenzene	62	9.0	ug/m3	10	4/11/2018 5:17:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 10:54:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 10:54:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 10:54:00 PM
Acetone	26	7.1	ug/m3	10	4/11/2018 5:17:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 10:54:00 PM
Benzene	0.42	0.48	J ug/m3	1	4/10/2018 10:54:00 ₽M
Benzyl chloride	< 0.86	0.86	u g /m3	1	4/10/2018 10:54:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 10:54:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 10:54:00 ₽M
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 10:54:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 10:54:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 10:54:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 10:54:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 10:54:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/10/2018 10:54:00 PM
Chloromethane	0.58	0.31	ug/m3	1	4/10/2018 10:54:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:54:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 10:54:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 10:54:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 10:54:00 PM
Ethyl acetate	0.54	0.54	ug/m3	1	4/10/2018 10:54:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 10:54:00 PM
Freon 11	1.1	0.84	ug/m3	1	4/10/2018 10:54:00 PM
Freon 113	< 1.1	1.1	նց/m3	1	4/10/2018 10:54:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 10:54:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank
- 14 Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- 13 Estimated Value above quantitation range
- Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 14

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Lab ID: C1804013-006A

Client Sample ID: Ambient

Tag Number: 207.1420 Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	1.5	0.74		ug/m3	1	4/10/2018 10:54:00 PM
Heptane	1.9	0.61		ug/m3	1	4/10/2018 10:54:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 10:54:00 PM
Hexane	0.81	0.53		սց/m3	1	4/10/2018 10:54:00 PM
Isopropyl alcohol	4.5	0.37		ug/m3	1	4/10/2018 10:54:00 PM
m&p-Xylene	0.91	1.3	J	ug/m3	1	4/10/2018 10:54:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:54:00 PM
Methyl Ethyl Ketone	1.3	0.88		ug/m3	1	4/10/2018 10:54:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:54:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 10:54:00 PM
Methylene chloride	0.97	0.52		ug/m3	1	4/10/2018 10:54:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 10:54:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 10:54:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 10:54:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/10/2018 10:54:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 10:54:00 PM
Toluene	3.4	0.57		ug/m3	1	4/10/2018 10:54:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 10:54:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 10:54:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 10:54:00 PM

a	 	r.	ers

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
 - S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 14

Date: 26-Apr-18

CLIENT:FPM Group, Ltd.Client Sample ID: EffluentLab Order:C1804013Tag Number: 243

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-007A Matrix: AIR

Analyses	Result	**Limit Q	Qual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD)		Analyst:
Lab Vacuum In	~1		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	4/11/2018 7:12:00 AM
1,1,2-Trichtoroethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/11/2018 7:12:00 AM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/11/2018 7;12:00 AM
1,2,4-Trimethylbenzene	0.41	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,2-Dichloroethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,2-Dichloropropane	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM
1,3,5-Trimethylbenzene	0.17	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,3-butadiene	< 0.15	0,15	₽₽bV	1	4/11/2018 7:12:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
1,4-Dichlorobenzene	0.10	0.15	J ppbV	1	4/11/2018 7:12:00 AM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/11/2018 7:12;00 AM
2,2,4-trimethylpentane	1.2	0.15	Vdqq	1	4/11/2018 7:12:00 AM
4-ethyltoluene	0.12	0.15	J ppbV	1	4/11/2018 7:12:00 AM
Acetone	4.4	3.0	ppb∨	10	4/10/2018 11:31:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Benzene	1.2	0.15	Vdqq	1	4/11/2018 7:12:00 AM
Benzyl chloride	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Bromoform	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Bromomethane	< 0.15	0.15	Vdqq	1	4/11/2018 7:12:00 AM
Carbon disulfide	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Carbon tetrachloride	< 0.030	0.030	Vdqq	1	4/11/2018 7:12:00 AM
Chlorobenzene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Chloroethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Chloroform	1.3	0.15	ppbV	1	4/11/2018 7:12:00 AM
Chloromethane	0.11	0.15	J ppbV	1	4/11/2018 7:12:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/11/2018 7:12:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Cyclohexane	0.39	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Ethyl acetate	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 14

CLIENT: FPM Group, Ltd. Client Sample ID: Effluent Lab Order: C1804013 Tag Number: 243

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-007A Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-15			Analyst: RJP
Ethylbenzene	0.27	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Freon 11	0.22	0.15	ppbV	1	4/11/2018 7:12:00 AM
Freon 113	< 0.15	0.15	∨dqq	1	4/11/2018 7:12:00 AM
Freon 114	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Freon 12	0.42	0.15	ppbV	1	4/11/2018 7:12:00 AM
Heptane	1.7	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Hexachloro-1,3-butadiene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Hexane	1.6	0.15	ppb∨	t	4/11/2018 7:12:00 AM
Isopropyi alcohol	6.1	1.5	Vdqq	10	4/10/2018 11:31:00 PM
m&p-Xylene	0.72	0.30	ppb∨	1	4/11/2018 7:12:00 AM
Methyl Butyl Ketone	< 0.30	0.30	ppb∨	1	4/11/2018 7:12:00 AM
Methyl Ethyl Ketone	0.47	0.30	ppb∨	1	4/11/2018 7:12:00 AM
Methyl Isobutyl Ketone	< 0.30	0.30	ppb∨	1	4/11/2018 7:12:00 AM
Methyl tert-butyl ether	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Methylene chloride	0.22	0.15	ppb∨	1	4/11/2018 7:12:00 AM
o-Xylene	0.23	0.15	₽₽bV	1	4/11/2018 7:12:00 AM
Propylene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Styrene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Tetrachloroethylene	580	40	∨dqq	270	4/11/2018 7:49:00 AM
Tetrahydrofuran	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM
Toluene	0.70	0.15	ppb∨	1	4/11/2018 7:12:00 AM
trans-1,2-Dichloroethene	< 0.15	0.15	ррЬ∨	1	4/11/2018 7:12:00 AM
trans-1,3-Dichloropropene	< 0.15	0.15	∨dqq	1	4/11/2018 7:12:00 AM
Trichloroethene	< 0.030	0.030	ppb∨	1	4/11/2018 7:12:00 AM
Vinyl acetate	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM
Vinyl Bromide	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM
Vinyl chloride	< 0.040	0.040	ppb∨	1	4/11/2018 7:12:00 AM
Surr: Bromofluorobenzene	98.0	70-130	%REC	1	4/11/2018 7:12:00 AM

Qualifiers:

Date: 26-Apr-18

ND Not Detected at the Limit of Detection

Page 14 of 14

^{**} Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

[.] Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

atex Laudiatories, Lauc

CLIENT: FPM Group, Ltd. Client Sample ID: Effluent Lab Order: C1804013 Tag Number: 243

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-007A Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/11/2018 7:12:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/11/2018 7:12:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/11/2018 7:12:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/11/2018 7:12:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	*	4/11/2018 7:12:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
1,2,4-Trimethylbenzene	2.0	0.74		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/11/2018 7:12:00 AM
1,3,5-Trimethylbenzene	0,84	0.74		ug/m3	1	4/11/2018 7:12:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/11/2018 7:12:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/11/2018 7:12:00 AM
1,4-Dichlorobenzene	0.60	0.90	J	ug/m3	1	4/11/2018 7:12:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
2,2,4-trimethylpentane	5.6	0.70		ug/m3	1	4/11/2018 7:12:00 AM
4-ethyltoluene	0.59	0.74	J	ug/m3	1	4/11/2018 7:12:00 AM
Acetone	10	7.1		ug/m3	10	4/10/2018 11:31:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/11/2018 7:12:00 AM
Benzene	3.9	0.48		ug/m3	1	4/11/2018 7:12:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/11/2018 7:12:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/11/2018 7:12:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/11/2018 7:12:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/11/2018 7:12:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/11/2018 7:12:00 AM
Carbon tetrachloride	< 0.19	0.19		սց/m3	1	4/11/2018 7:12:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/11/2018 7:12:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/11/2018 7:12:00 AM
Chloroform	6.4	0.73		ug/m3	1	4/11/2018 7:12:00 AM
Chloromethane	0.23	0.31	J	ug/m3	1	4/11/2018 7:12:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/11/2018 7:12:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/11/2018 7:12:00 AM
Cyclohexane	1.3	0.52		ug/m3	1	4/11/2018 7:12:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/11/2018 7:12:00 AM
Ethyl acetate	< 0.54	0.54		ug/m3	1	4/11/2018 7:12:00 AM
Ethylbenzene	1.2	0.65		ug/m3	1	4/11/2018 7:12:00 AM
Freon 11	1.2	0.84		ug/m3	1	4/11/2018 7:12:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/11/2018 7:12:00 AM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 14

Date: 26-Apr-18

CLIENT:

FPM Group, Ltd.

Client Sample ID: Effluent

Lab Order:

C1804013

Tag Number: 243

Project:

Cinderella

Collection Date: 4/5/2018

Lab ID:

C1804013-007A

Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	TO-	15		Analyst: RJP
Freon 12	2.1	0.74	ug/m3	1	4/11/2018 7:12:00 AM
Heptane	7.0	0,61	ug/m3	1	4/11/2018 7:12:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/11/2018 7:12:00 AM
Hexane	5.5	0.53	ug/m3	1	4/11/2018 7:12:00 AM
Isopropyl alcohol	15	3.7	ug/m3	10	4/10/2018 11:31:00 PM
m&p-Xylene	3.1	1.3	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Ethyl Ketone	1.4	0.88	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/11/2018 7:12:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/11/2018 7:12:00 AM
Methylene chloride	0.76	0.52	ug/m3	1	4/11/2018 7:12:00 AM
o-Xylene	1.0	0.65	ug/m3	1	4/11/2018 7:12:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/11/2018 7:12:00 AM
Styrene	< 0.64	0.64	ug/m3	1	4/11/2018 7:12:00 AM
Tetrachloroethylene	3900	270	ug/m3	270	4/11/2018 7:49:00 AM
Tetrahydrofuran	< 0.44	0.44	սց/m3	1	4/11/2018 7:12:00 AM
Toluene	2.6	0.57	սց/m3	1	4/11/2018 7:12:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/11/2018 7:12:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/11/2018 7:12:00 AM
Trichloroethene	< 0.16	0.16	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/11/2018 7:12:00 AM

Qualifiers:

- Quantitation Limit
- 3 Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 14 of 14

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 QUALITY CONTROL SUMMARY

Date: 26-Apr-18

QC SUMMARY REPORT SURROGATE RECOVERIES

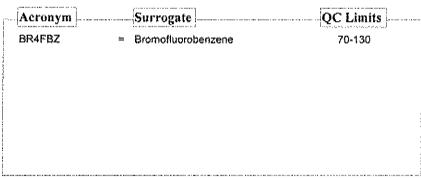
CLIENT:

FPM Group, Ltd.

Work Order:

C1804013

Project:


Cinderella

Test No:

TO-15

Matrix: A

Sample 1D	BR4FBZ	
ALCS1UG-041018	97.0	
ALCS1UGD-041017	105	
AMB1UG-041018	88.0	
C1804013-001A	95.0	
C1804013-002A	95.0	
C1804013-003A	95.0	
C1804013-004A	92.0	
C1804013-005A	0,88	
C1804013-006A	90.0	
C1804013-007A	98.0	

^{*} Surrogate recovery outside acceptance limits

Centek Laboratories, LLC GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AP041004.D Tune Time : 10 Apr 2018 11:52 am

Daily Calibration File : C:\HPCHEM\1\DATA\AP041004.D

(IS2) 178220 (IS1) (IS3) (BFB) 36302 142901

					36302	178220	142901
File	Sample	DL	Surrogate	Recovery %	Internal	Standard R	esponses
AP041005.D	ALCS1UG-04101	8	97	☑ 11. 65 11. 11. 11. 11. 11. 11. 11. 11. 11. 11	35510	1.80352	145756
AP041006.D	AMB1UG-041018		88		32801	165465	
	C1804013-001A		95		35996	177714	139646
AP041014.D	C1804013-002A		95		40213	184462	147579
AP041015.D	C1804013-003A		95		38633	183337	142274
	C1804013-004A		92		36136	176219	137555
AP041017,D	C1804013-005A		88		37097	182265	144466
AP041018.D	C1804013-006A		90		38145	184139	147587
AP041019,D	C1804013-007A	10X	91		35691	179443	150277
AP041022.D	ALCS1UGD-0410	17	105	w m. nr ver us mi er en ne er er em em -en	41170	196782	153210
AP041023.D	C1804013-001A	10X	90		37157	178195	132786
AP041024.D	C1804013-001A	40X	85		37989	175563	130622
AP041025.D	C1804013-002A	rox	88		37295	172669	131854
AP041026.D	C1804013-002A	40%	87		36733	170002	126293
AP041028.D	C1804013-006A	ı.ox	84		36370	171207	130400
AP041031.D	C1804013-007A		98		38780	186480	183812
AP041032.D	C1804013-007A	270x	83		38056	182345	157472

t - fails 24hr time check * - fails criteria

Created: Thu Apr 26 08:59:02 2018 MSD #1/

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 26-4pr-18

FPM Group, Ltd. CLIENT:

C1804013 Work Order: Project:

Cinderella

TestCode: 0.20 NYS

Sample ID: AMB1UG-041018	8 SampType: MBLK	TestCode: 0.20_NYS	ZO_NYS	Units: ppbV		Prep Date:		RunNo: 13517	17	
Client ID: ZZZZZ	Batch ID: R13517	TestNo: TO-15	0-15		An	Analysis Date: 4/10	4/10/2018	SeqNo: 156542	542	
Analyte	Result	PQL SP	SPK value S	SPK Ref Val	%REC L	LowLimit HighLimil	nil RPD Ref Val	%RPD	RPDLimit	Quai
1,1,1-Trichloroethane	< 0.15	0.15								
1,1,2,2-Tetrachloroethane	< 0.15	0.15								
1,1,2-Trichforoethane	< 0.15	0.15								
f,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.040	0.040								
1,2,4-Trichlorobenzene	< 0.15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dibromoethane	< 0.15	0.15								
1,2-Dichlorobenzene	< 0.15	0.15								
1,2-Dichtoroethane	< 0.15	0.15								
1,2-Dichloropropane	< 0.15	0.15								
1,3,5-Trimethylbenzene	< 0.15	0.15								
1,3-butadiene	< 0.15	0.15								
1,3-Dichlorobenzene	< 0.15	0.15								
1,4-Dichlorobenzene	< 0.15	0.15								
f,4-Dioxane	< 0.30	0.30								
2,2,4-trimethylpentane	< 0.15	0.15								
4-ethyltoiuene	< 0.15	0.15								
Acetone	< 0.30	0.30								
Allyl chloride	< 0.15	0.15								
Benzene	< 0.15	0.15								
Benzył chloride	< 0.15	0.15								
Bromodichloromethane	< 0.15	0.15								
Bremoferm	< 0.15	0.15								
Bromomethane	< 0.15	0.15								
Qualifiers: Results re	Results reported are not blank corrected	4	į	Estimated Value above quantitation range	ation range	=	Holding times for preparation or analysis exceeded	preparation or an	alysis exceed	25
J Analyte d	Analyte detected below quantitation limit	包		Not Detected at the Limit of Detection	tection	K	RPD outside accepted recovery limits	oted recovery lim	its	
S Spike Rec	Spike Recovery outside accepted recovery limits	nits							Ð	Page 1 of 3
									•	27.2

CLIENT: FPM Group, Ltd. Work Order: C1804013	p, Ltd.						
Project: Cinderella					TestCode: (0.20 NYS	
Sample ID: AMB1UG-041018	SampType: MBLK	TestCode: 0.20_NYS	O_NYS Units: pobV	Prep Date:	20	RunNo: 13517	
Client ID: 22222	Batch ID: R13517	TestNo: TO-15		Ans	ate: 4/10/2018	SeqNo: 156542	
Analyte	Result	POL SPK	SPK value SPK Ref Val	%REC LOWLIMIT	HighLimit RPD Ref Val	%RPD RPDLimit (Quaj
Carbon disuffide	< 0.15	0.15					
Carbon tetrachloride	< 0.030	0.030					
Chlorobenzene	< 0.15	0.15					
Chloroethane	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1,2-Dichloroethene	< 0.040	0.040					
cis-1,3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromechloromethane	< 0.15	0.15					
Ethyl acetate	< 0.15	0.15					
Ethylbenzene	< 0.15	0,15					
Freon 11	< 0.15	0.15					
Freon 113	< 0.15	0.15					
Freon 114	< 0.15	0.15					
Freon 12	< 0.15	0.15					
Нертаве	< 0.15	0.15					
Hexachloro-1,3-butadiene	< 0.15	0.15					
Hexane	< 0.15	0.15					
isopropyl alcohoi	< 0.15	0.15					
m&p-Xylene	< 0.30	0.30					
Methyl Butyl Ketone	< 0.30	0.30					
Methyl Ethyl Ketone	< 0.30	0:30					
Methyl Isobutyl Kefone	< 0.30	0.30					
Methyl tert-butyl ether	< 0.15	0.15					
Methylene chloride	< 0.15	0.15					
o-Xylene	< 0.15	0.15					
Propylene	< 0.15	0.15					
Styrene	< 0.15	0.15					
Tetrachloroethylene	< 0.15	0.15					
Tetrahydrofuran	< 0.15	0.15					
Qualifiers: Results repor	Results reported are not blank corrected	#1	Estimated Value above quantitation range	nekifation range	H Holding times for	Holding times for preparation or analysis exceeded	
	Analyte detected below quantitation limit	QN	Not Detected at the Limit of Detection	if Detection	R RPD outside accep	RPD outside accepted recovery limits	
S Spike Recove	Spike Recovery outside accepted recovery limits	mits				Pag	Page 2 of 3

FPM Group, Ltd.	
CLIENT:	

C1804013 Work Order:

Cinderella Project:

TestCode: 0.20 NYS

Sample ID: AMB1UG-041018	SampType: MBLK	TestCode:	le: 0.20_NYS	Units: ppbV		Prep Date.	ie.		RunNo: 13517	517	
Client ID: ZZZZZ	Batch ID: R13517	TestNo:	lo: TO-15		-4.	tnatysis Da	Analysis Date: 4/10/2018	18	SeqNo: 156542	5542	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	Hightimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPO RPDLimit	Qua
Toluene	< 0.15	0.15									
frans-1,2-Dichloroethene	< 0.15	0.15									
frans-1,3-Dichloropropene	< 0.15	0.15									
Trichloroethene	< 0.030	0.030									
Vinyl acetate	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyl chloride	< 0.040	0.040									

	Holding times for preparation or analysis exceeded	ecovery limits	Page 3 of 3
	Holding tinges for prepa	RPD outside accepted recovery limits	
	Ξ	×	
	E Estimated Value above quantitation range	ND Not Detected at the Limit of Detection	
	Results reported are not blank corrected	Analyte detected below quantitation limit	Spike Recovery outside accepted recovery limits
- 1			S
	Qualifiers:		

ANALYTICAL QC SUMMARY REPORT

Date: 26-4pr-18

FPM Group, Ltd. CLIENT:

C1804013 Work Order:

Project:	Cinderella							TestCode: 0.20_NYS	0.20 NYS	
Sample ID: ALCS1UG-041018	\$106-041018	SampType: LCS	TestCo	TestCode: 0.20 NYS	Units: ppbV		Prep Date:		RunNo: 13517	
Client fD: ZZZZZ	27	Batch ID: R13517	Test	TestNo: TO-15		•	Analysis Date:	: 4/10/2018	SeqNo: 156543	
Analyte		Result	PO	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLIMIT	Sua Osual
1,1,1-Trichloroethane	lare	0.9500	0.15		0	95.0	22	130		
1,1,2,2-Tetrachloroethane	roethane	1,050	0.15		O	105	70	130		
1,1,2-Trichloroethane	lane	1.090	0.15		O	109	22	130		
1,1-Dichloroethane	92	0.9700	0.15		0	97.0	70	130		
1,1-Dichloroethene	ይ	1.250	0.040	_	o	125	70	130		
1,2,4-Trichlorobenzene	nzene	1.250	0.15	-	0	125	70	130		
1,2,4-Trimethylbenzene	enzene	1.090	0.15	-	0	109	7.0	130		
1,2-Dibromoethane	Je	1.030	0.15	-	0	103	70	130		
1,2-Dichlorobenzene	ene	1.190	0.15	-	0	119	70	130		
1,2-Dichloroethane	£	1.030	0.15	-	0	103	70	130		
1,2-Dichloropropane	ane	0.9400	0.15	-	0	94.0	7.0	130		
1,3,5-Trimethylbenzene	nzene	1.100	0.15	T	0	110	70	130		
1,3-buiadiene		0.8700	0.15	•	O	87.0	70	130		
1,3-Dichlorobenzene	ene	1.170	0.15	₹****	0	117	7.0	130		
1,4-Dichlorobenzene	ene	1.190	0.15	₹"	0	119	7.0	130		
1,4-Dioxane		1.050	0.30	V ····	Q	105	70	130		
2,2,4-trimethylpentane	ntane	0.8900	0.15	**	Đ	69.0	70	130		
4-ethyltoluene		1.130	0.15	W	o	113	70	130		
Acetone		0.8400	0.30	\	0	84.0	70	130		
Allyl chloride		0.7700	0.15	7 ~	0	77.0	70	130		
Benzene		1.040	0.15	dim	0	104	70	130		
Benzył chloride		0.8600	0.15	1	0	96.0	7.0	130		
Bromodichloromethane	shane	0.9800	0.15	Ame	0	98.0	70	130		
Вготобот		0.9500	0.15	***	0	95.0	70	130		
Bromomethane		1.140	0.15		O	75°	70	130		
Qualifiers:	Results report	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	titation rang	3	H Holding times for	Holding times for preparation or analysis exceeded	-
ſ		Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	Detection		R RPD outside acce	RPD outside accepted recovery limits	
S		Spike Recovery outside accepted recovery limits	SHEET						Pa	Page 1 of 5

	CLIENT:	FPM Group, Ltd.
	Work Order:	C1804013
Pa	Project:	Cinderella

TestCode: 0.20 NYS

Sample ID: ALCS1UG-041018	SampType: LCS	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ài		RunNo: 13517	547	
Client ID: ZZZZZ	Batch ID: R13517	Test	TestNo: TO-15			Analysis Date:	s: 4/10/2018	118	SeqNo: 156543	5543	
Analyte	Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	Hightimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	1.070	0.15	-	0	107	70	130				
Carbon tetrachloride	0.7600	0.030	•	0	76.0	22	. es				
Chlorobenzene	1.120	0.15	•	0	112	70	130				
Chloroethane	1.050	0.15	₹‴	0	105	70	130				
Chloroform	1.070	0.15	Årn	0	107	70	130				
Chloromethane	0.9560	0.15	***	0	95.0	70	130				
cis-1,2-Dichlaroethene	0.9100	0.040	φm	0	91.0	02	130				
cis-1,3-Dichloropropene	0.8800	0.15	-	0	88.0	22	130				
Cyclohexane	0.8800	0.15	-	0	88.0	70	130				
Dibromochloromethane	0.9300	0.15		0	93.0	52	130				
Ethyl acetate	0.7800	0.15	****	0	78.0	70	130				
Ethylbenzene	1.030	0.15	←	٥	103	20	130				
Freon 11	1,220	0.15	-	0	122	70	130				
Freon 113	1.220	0.15	*	O	122	52	130				
Freon 114	1.130	0.15	-	0	113	R	130				
Freon 12	1.080	0.15	-	0	108	20	130				
Heptane	0.7400	0.15	-	٥	74.0	70	130				
Hexachloro-1,3-buladiene	1.260	0.15	-	ð	126	202	130				
Hexane	0.8500	0.15	-	0	85.0	26	130				
isopropyl alcohoí	0.9600	0.15	-	O	96.0	73	130				
m&p-Xylene	2.150	0.30	2	0	108	70	130				
Methyl Butyl Ketone	0.6500	0.30	-	Đ	65.0	22	130				υ
Methyl Ethyl Ketone	1,050	0.30	-	0	105	20	130				
Methył Isobutył Ketone	0.7200	0.30	-	0	72.0	72	130				
Methyl tert-butyl ether	0.9500	0.15	_	0	95.0	22	130				
Methylene chloride	0.9400	0.15	-	Đ	0.46	2	130				
o-Xylene	1,110	0.15	-	0	111	70	130				
Propylene	0.7300	0.15	-	0	73.0	£	130				
Styrene	1.080	0.15	-	Ö	108	70	130				
Tetrachloroethylene	1.120	0.15	•	0	112	92	130				
Tetrahydrofuran	0.7300	0.15	•	0	73.0	2	130				
Qualifiers: Results repor	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	itation rang	9.	=	Holding times for preparation or analysis exceeded	preparation or a	nalysis exceed	75
-	Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	Detection		×	RPD outside accepted recovery limits	nted recovery lin	nits	
S Spike Recove	Spike Recovery outside accepted recovery limits	nits								-	Page 2 of 5

TestCode: 0.20 NYS

									1		
Sample ID: ALCS1UG-041018	SampType: LCS	TestCoc	TestCode: 0.20 NYS	Units: ppbV		Prep Date	ài		RunNo: 13517	17	
Client ID: ZZZZZ	Batch ID: R13517	Testh	TestNo: TO-15			Analysis Date:	e: 4/10/2018	61	SeqNo: 156543	543	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Тойгепе	1.060	0.15		0	106	70	130				
trans-1,2-Dichloroethene	0.9900	0.15	τ	o	99.0	70	130				
frans-1,3-Dichloropropene	0.7200	0.15	rfam	0	72.0	70	130				
Trichloroethene	1.100	0.030		0	110	70	130				
Vinyl acetate	0.7200	0.15	*- -	0	72.0	70	130				
Vinyl Bromide	1.190	0.15	~	0	119	70	130				
Vinyl chloride	0.9500	0.040	1	0	95.0	70	130				
Sample ID: ALCS1UGD-041017	SampType: LCSD	TestCoo	TestCode: 0.20 NYS	Units: ppbV		Prep Date:)		RunNo: 13517	17	
Client ID: ZZZZZ	Balch (D: R13517	Testh	TesiNo: TO-15			Analysis Date:	3: 4/11/2018	5	SeqNo: 156544	54	
Analyte	Result	PQL	SP¥ value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9200	0.15	τ	a	92.0	02	130	0.95	3.21	30	
1,1,2,2-Tetrachloroelhane	1.230	0.15	·	0	123	70	130	1.05	15.8	30	
1,1,2-Trichloroethane	1.190	0.15	****	0	119	70	130	1.09	8.77	30	
1,1-Dichloroethane	0.9700	0.15	4****	O	97.0	70	130	76.0	0	30	
1, f-Dichloroethene	0.9300	0.040	***	0	93.0	70	130	1.25	29.4	30	
1,2,4-Trichlombenzene	1.110	0.15	afeur	0	-	22	130	1.25	11.9	30	
1,2,4-Trimethylbenzene	1.160	0.15	***	0	116	22	130	1.09	6.22	30	
1,2-Dibromoethane	1,120	0.15		0	112	70	8	1.03	8.37	30	
1,2-Dichlorobenzene	1.290	0.15	~	0	129	22	130	1.19	8.06	30	
1,2-Dichloroethane	0.9700	0.15	***	O	97.0	70	130	1.03	6.00	36	
1,2-Dichloropropane	1,020	0.15	***	0	102	70	130	0.94	8.16	30	
1,3,5-Trimethylbenzene	1.230	0.15	Ψ-	0	123	70	33	1.1	11.2	39	
1,3-bufadiene	0.7900	0.15	****	o	79.0	70	130	0.87	9.64	30	
1,3-Dichlorobenzene	1.250	0.15	*	0	125	70	130	1.17	6.61	30	
1,4-Dichlorobenzene	1.240	0.15	₩	0	124	22	130	1.19	4.12	8	
1,4-Dioxane	1.000	0.30	*	ō	100	70	£	1.05	4.88	33	
2,2,4-trimethylpentane	0.9400	0.15	₩	0	94.0	70	130	0.89	5.46	8	
4-ethytoluene	1.190	0.15	-	0	119	70	130	1.13	5.17	윲	
Qualifiers: Results report	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	itation rang	9.	H	Holding times for preparation or analysis exceeded	нерагатіов ог ав	alysis exceede	72
	Analyte detected below quantitation limit		ND Not Do	Not Detected at the Limit of Detection	Detection		×	RPD outside accepted recovery limits	ted recovery lim	ils.	
S Spike Recover	Spike Recovery outside accepted recovery limits	nets								ď	Page 3 of 5

FPM Group, Ltd. C1804013 Cinderella

Work Order: Project:

CLIENT:

	COENT	FPM Group, Ltd.
	Work Order:	C1804013
_	Project:	Cinderella

TestCode: 0.20 NYS

O TOTAL OF THE PARTY OF THE PAR											
Sample ID: ALCO 1000-041017	samp libe: LCSD	TestCoc	TestCode: 0.20 NYS	Units: ppbV		Prep Date:			RunNo: 13517	517	
Client ID: 22222	Batch ID: R13517	Testh	TestNo: TO-15			Analysis Date:	4/11/2018	69	SeqNo: 156544	3544	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Acetone	0.7700	0.30	4	0	77.0	£	130	0.84	8.70	36	
Allyl chloride	0.7300	0.15	***	0	73.0	70	130	0.77	5.33	9 6	
Вепzеле	1.130	0.15	•	O	113	70	130	194	8.29	30	
Benzyl chloride	0.8300	0.15	-	0	83.0	70	130	0.85	3.55	98	
Bromodichforomethane	1.040	0.15	-	0	104	70	130	0.98	5.94	33	
Bromoform	1.010	0.15	_	0	101	70	130	0.95	6.12	8	
Bromomethane	1.070	0.15	•	0	107	70	130	11	6.33	8	
Carbon disulfide	1.060	0.15	•	0	106	70	130	1.07	0.939	8	
Carbon letrachloride	0.7600	0.030	τ	0	76.0	70	130	0.76	0	8	
СһІоторепделе	1.200	0.15	•	0	120	70	130	1.12	6.90	S	
Chloroethane	0.9800	0.15	den	0	98.0	70	130	1.05	6.90	8	
Chloroform	1.070	0.15	A	0	107	2	130	1.07	0	30	
Chloromethane	0.8900	0.15	4	0	89.0	7	130	0.95	6.52	8	
cis-1,2-Dichloroethene	0.8700	0.040	4	O	87.0	70	130	0.91	4.49	8	
cis-1,3-Dichloropropene	0.8900	0.15	***	0	89.0	70	130	0.88	1.13	30	
Cyclohexane	0.0000	0.15	₩	0	0.06	70	8 0	0.88	2.25	33	
Dibromochloromethane	1,040	0.15	~	0	12	70	130	0.93	11.2	30	
Ethyl acetate	0.7500	0.15	-	0	75.0	70	130	0.78	3.92	8	
Ethylbenzene	1.100	0.15	-	0	110	70	130	1.03	6.57	8	
Freon 11	1.100	0.15	-	0	110	70	130	1.22	10.3	8	
Freon 113	1.220	0.15	-	0	122	70	130	1.22	0	8	
Freon 114	1.080	0.15	-	0	108	70	130	1.13	4.52	33	
Freon 12	1.090	0.15	-	0	109	23	130	1.08	0.922	8	
Heptane	0.7400	0.15	-	0	74.0	70	130	0.74	0	33	
Hexachloro-1,3-butadiene	1.270	0,15	-	0	127	70	130	1,26	0.791	33	
Hexane	0.8500	0.15	•	0	85.0	70	130	0.85	Ö	30	
isopropyl alcohol	0.9200	0.15	****	0	92.0	70	130	96.0	4.26	33	
m&p-Xylene	2.320	0.30	61	0	316	70	130	2.15	7.61	30	
Methyf Butyl Ketone	0.5800	0.30	₩	0	58.0	70	130	0.65	11.4	30	S
Methyl Ethyl Kelone	1.060	0.30	_	¢	106	70	130	1.05	0.948	30	
Methyl Isobutyl Ketone	0.6600	0:30	(***	0	66.0	70	130	0.72	8.70	88	S
Qualifiers: Results reporte	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	itation tang	· v	H H	Holding times for preparation or analysis exceeded	preparation or a	nalysis exceeds	R
3 Analyte detects	Analyte detected below quantitation limit		ND Not D	Not Detected at the Limit of Detection	Defection		R	RPD outside accepted recovery limits	sted recovery lin	Rits	
S Spike Recover	Spike Recovery outside accepted recovery limits	nits								ď	Price dof 5

TestCode: 0.20_NYS

FPM Group, Ltd.	C1804013	
CLIENE	Work Order:	

Cinderella Project:

Sample ID: ALCS1UGD-041017 SampType: LCSD	SampType: LCSD	TestCode:	de: 0.20_NYS	Units: ppbV		Prep Date:	it i		RunNo: 13517	517	
Client ID: ZZZZZ	Batch ID: R13517	TestNo:	Vo: TO-15		•	Analysis Date:	e: 4/11/2018	18	SeqNo: 156544	5544	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimii	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.8400	0.15	-	0	84.0	7.0	130	0.95	12.3	30	
Methylene chloride	0.9100	0.15	-	o	91.0	70	130	0.94	3.24	8	
o-Xylene	1.230	0.15	~	0	123	70	130		10.3	S S	
Ргору/еле	0.7300	0.15	•	o	73.0	02	130	0.73	0	99	
Styrene	1.180	0.15	ν	0	113	22	130	1,08	8.85	30	
Tetrachloroethylene	1.240	0.15	V	Û	124	70	130	1.12	10.2	30	
Telrahydrofuran	0.7300	0.15	ψm	0	73.0	70	130	0.73	0	30	
Тойнеле	1,120	0.15	***	0	112	22	130	1.06	5.50	30	
trans-1,2-Dichloroethene	0.9400	0.15	***	0	94.0	22	130	0.99	5.18	8	
frans-1,3-Dichloropropene	0.7500	0.15	***	Ō	75.0	70	130	0.72	4.08	8	
Trichloroethene	1.130	0.030	***	0	113	70	130	<u>*.</u> .	2.69	99	
Vinyl acetate	0.6700	0.15	-	0	0.78	70	130	0.72	7.19	39	Ś
Vinyl Bromide	1.110	0.15	-	0	111	2	130	1.19	6.96	30	
Vinyl chloride	0.9200	0.040	-	0	92.0	70	130	0.95	3.21	8	

	-			
Qualifiers:	•	Results reported are not blank corrected	E Estimated Value above quantitation range	H Holding times for preparation or analysis exceeded
	_	Analyte detected below quantitation limit	MD Not Detected at the Limit of Detection R	RPD outside accepted recovery limits
	w	Spike Recovery outside accepted recovery limits		S Jo D con Cl

Method TO-15 Units-pob		ជ	4 000	750.0	2 C	0.043	0.065	10.105	0.048	0.084	0.152	0.031	0.043	0.0g1	G. 102	6.078	0.085	0.107	0.031	0.037	0 Kg	0.034	0.034	0.035	0.034	0.039	0.000	0.043	1000	0.83	O PAR	0.035	0.034	0.050	0.043	0.030	0.040	,	-		
# 23	į	%Rec	11.0%	110.73	17.1%	111.0%	119.0%	111.0%	121.9%	120.5%	118.6%	118.6%	119.0%	118.7%	114.3%	117.1%	121.0%	108.1%	105.2%	101.478	105.28	108.1%	103.8%	104.3%	103.8%	105.7%	15 S	102.4%	13.8%	104 APA	103.8%	165.7%	109.5%	1057%	105.7%	155.7%	155.2%				
ti copporații de findina el librinită și reletral	Nicedon 1	StdDey	3 8 9 6	500	200	100	0.02	6.03	0.02	0.03	8	800 6 0	00 00 00 00 00 00 00 00 00 00 00 00 00	ο 5	6.03	0.03	603	3 3 3 3 3	60 60 60 60 60 60 60 60 60 60 60 60 60 6	200	0.02	0.01	ි ගැට	0.03	00	0.01	्ट्र 2002 र	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	65 C	193	600 600	0.0	0.04	0.02	0.00	 6	9000 G	ekan ing Per	nagrijani N	A 540	(fine)
		AWG	25.00 25.00 25.00	3 2	0.35	0.33	0.36	0.33	0.37	0.36	(38	939	 90	8	3	0.35	χ, φ, ε	3 5	5.22	3 3	0.32	0.32	0.31	0.33	0.33	0.32	G.31	3 5	8 6		0.31	0.32	0.33	0.32	0.32	0.32	0.32				
	ă Ļ	2 2	2 C	2 6	0.33	0.32	0.35	0.31	0.36	0.34	0,35	0.35	0.35	C. 35	0.29	0.38	0.35	55.0	C.5.7	3 5	0.33	0.32	0.3	0.31	0.31	25.5	15.0	5 5	0.00	62	0.33	0.32	0.33	0.33	533	1.32	0.32				
	<u> </u>	101 #6 101 #6	3 6	72.0	0.32	0.32	0.33	0.29	0.35	0.36	0.34	93 0	E G	3	6,35	20 0	25.0	970	0.24	0.33	0.32	0.32	0.31	03	0.31	0.32	97.5	0.34	0.29	0.3	03	0.31	0.3	0.3	8. j	7 6	20				
n Linit		JUL #3	2 C	98	0.37	0.34	0.39	0.35	6.37	0.41	0.4	0.37	56.3	75 C	3 S	8 8	∦ Ω	3 5	2 5 0 5 3 5	0.35	0.32	0.33	0.32	0.33	0.32	E 23	16.55 16.55	0.33	0.33	0.33	0.3	0.33	0.34	0,31	0.33	750	0.33				
tugim3 Delection Lenil October 2017		100		0.33	0.37	0.35	0.37	0.35	0.38	0.38	23	939	Ø 5	₽ 5	\r \r \r \r \r \r	ر د د د د د د د د د د د د د د د د د د د	4 6	2 5	0.33	0.35	0.31	0.34	0,31	9.32	C	3, 6	33.0	633	0.33	63	0.33	0.3	0.34	0.33	0,32	200	25.23				
t Page 1	\$ \$	1		0.34	0.36	0.35	0.37	88	0.39	0.35	ਲ 급	25.0	0.38	6 6 6 7	2 C	0.30	5 6 5 6	0.33	0.32	0.35	0.32	0.31	0.33	0.32	8 28	27 C	* ×	3 X	6.32	0.32	0.3	0.33	0.33	0.34	0.32	7 6	U.3.				
	\$ ©		a.35	0.35	0.37	0.32	£.0	8	8	0.33	0.3	S 6	CC'2	\$ 5°	X 5	2, C	2 4	3 6	0.37	634	0.3	0.32	0.3	. O	0.33	76.0	3 6	0.31	0.32	0.31	0.3	0.32	0.32	6,3	0.31	3,00	0.38				
	¥	0.33	0.35	0.34	0.34	0.33	0.35	63	8 8 8	9	4 8	9	35.0	20.0	, (3 5	30	033	0.3	0.35	55.5	0.33	0.31	e) 6	# # # # # # # # # # # # # # # # # # #	0.32	; ;; ;; ;;	0.31	0.28	0.31	0,33	0.31	0.33	0.31	0.32	. C					
	Amt	63	6,3	6.3	6	63	03	n (5	7 6		2, 6	3 6	3 6	9 6	9 6	9 0	03	0.3	6,3	0.3	0.3	0.3	en e	7 c	3 6	0.0	0.3	0.3	0.3	0.3	0.3	0.3	තු දැ	n ci c	9 6	à				
Cenlek Laboratories IDL Study	Compound	Propylene	Freon 12	Chloromethane	Freca 114	Vinyi Chicalde	Butane 4.5 forther	1, 2-Dilladene	Character		Cutal EB	Control Brownia	Steph 11	ACCEPTANT	Perting	Isoorocví alcohol	1.1-dichloroethene	Freon 113	t-Butyl alcohol	Methylene chloride	Allyl chloride	Carbon disultate	uans-1,2-denionemene	Tempirerbury ener	* Caratago Desamb	Methyl Ethyl Kelone	cis-1,2-dicitionoethene	Hexane	Elftyl acetate	Chloroform	Tetrahydrofuran	1,2-dichloroethane	1,1,1-trichloroethane	Cyclohexane	Calibon terrachiorida Reposene	Methyl methacivian		Confidential			

ČŲ.

Method TC-15	Units=ppb	0.03 0.03 0.03 0.03 0.03 0.03	y	•
Me(h		120.0% 105.7% 100.0%		
usericonfreçasionimentres.	algering plante grade in	000		parrarage,
	03	0.10		
	\$ *	0.1200		
		0.1100		
tion Cirail	¥	0.1760		
0.2 ug/m3 Detection Limit Oranber 2017	2 TO	0.1300 0.1100 0.1000		
0.2 vg		0.1100		
		0.1300 0.1100 0.1000		
		0.1108 0.0900 0.0900		
	Amt	5 5 5		
Centek Laboratories IDL Study	Compound	Viryl Chloride Carbon tetrachloride Trichloroethene	Confideritial	

GC/MS-Whole Air Calculations

Relative Response Factor (RRF)

$$RRF = Ax * Cis$$
 $Ais * Cx$

where: Ax - area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the

compound being measured

Cx = concentration of the compound being measured (ppbv)

Cis = concentration of the internal standard (ppbv)

Percent Relative Standard Deviation (%RSD)

Percent Difference (%D)

where: RRFc = relative response factor from the continuing calibration mean RRFi = mean relative response factor from the initial calibration

Sample Calculations

where: Ax = area of the characteristic ion for the compound being measured

Ais = area of the characteristic ion for the specific internal standard of the compound being measured

Is = Concentration of the internal standard injected (ppbv)

RRF= relative response factor for the compound being measured

Df = Dilution factor

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
SAMPLE DATA

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project:

Lab ID: C1804013-001A

Cinderella

Date: 26-Apr-18

Client Sample ID: 1A-1

Tag Number: 368.693

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vaccum In	-8		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 7:21:00 PM
1,2,4-Trichtorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	₽₽₽₽V	7	4/10/2018 7:21:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
1,3-butadiene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
1,4-Dichlorobenzene	0.32	0.15	ppb∨	1	4/10/2018 7:21:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 7:21:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
4-ethyltoluene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Acetone	9.8	3.0	ppb∨	10	4/11/2018 2:11:00 AM
Allyi chloride	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Benzene	0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Bromodichloromethane	< 0.15	0.15	₽₽₽V	1	4/10/2018 7:21:00 PM
Bromoform	< 0.15	0.15	∨daq	1	4/10/2018 7:21:00 PM
Bromomethane	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Carbon disulfide	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Carbon tetrachloride	< 0.030	0.030	Vdqq	1	4/10/2018 7:21:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
Chloroform	1.3	0.15	ppbV	1	4/10/2018 7:21:00 PM
Chloromethane	< 0.15	0.15	ppbV	1	4/10/2018 7:21:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	Vdqq	1	4/10/2018 7:21:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppb∨	1	4/10/2018 7:21:00 PM
Cyclohexane	< 0.15	0.15	Vdqq	1	4/10/2018 7:21:00 PM
Dibromochloromethane	< 0.15	0.15	∨dqq	1	4/10/2018 7:21:00 PM
Ethyl acetate	0.26	0.15	ppbV	1	4/10/2018 7:21:00 PM

Qualifiers:

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 14

103, 121.0

Date: 26-Apr-18

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-1
Lab Order: C1804013 Tag Number: 368,693

Project: Cinderella Collection Date: 4/5/2018
Lab ID: C1804013-001A Matrix: AIR

DF Analyses Result **Limit Qual Units Date Analyzed 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP Ethylbenzene 4/10/2018 7:21:00 PM < 0.15 0.15 Vdqq 1 Freon 11 0.23 0.15 Vago 1 4/10/2018 7:21:00 PM Freon 113 < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM Freon 114 < 0.15 0.15 ppb∨ 1 4/10/2018 7:21:00 PM Freon 12 0.40 0.15 ₽₽bV 1 4/10/2018 7:21:00 PM Heptane 0.12 0.15 ppbV 1 4/10/2018 7:21:00 PM Hexachloro-1,3-butadiene < 0.15 0.15 Vdqq 1 4/10/2018 7:21:00 PM Hexane < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM isopropyl alcohol 63 6.0 Vdqq 40 4/11/2018 2:47:00 AM 0.15 m&p-Xylene 0.30 1 ppbV 4/10/2018 7:21:00 PM Methyl Butyl Ketone < 0.30 0.30 1 4/10/2018 7:21:00 PM ppoV Methyl Ethyl Ketone 0.66 0.30 1 ppbV 4/10/2018 7:21:00 PM Methyl Isobutyl Ketone < 0.30 0.30 Vdqq 1 4/10/2018 7:21:00 PM Methyl tert-butyl ether < 0.15 0.15 Vdqq 1 4/10/2018 7:21:00 PM Methylene chloride 0.21 0.15 ₽₽bV 1 4/10/2018 7:21:00 PM o-Xylene < 0.15 0.15 Vagq 1 4/10/2018 7:21:00 PM Propylene < 0.15 0.15 Vdqq 1 4/10/2018 7:21:00 PM Styrene < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM Tetrachloroethylene 0.22 0.15 ppbV 1 4/10/2018 7:21:00 PM Tetrahydrofuran < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM Toluene 0.79 0.15 ppbV 1 4/10/2018 7:21:00 PM trans-1,2-Dichloroethene < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM trans-1,3-Dichloropropene < 0.15 0.15 1 ppbV 4/10/2018 7:21:00 PM Trichloroethene < 0.030 0.030 opb∨ 1 4/10/2018 7:21:00 PM Vinyl acetate < 0.15 0.15 ppbV 1 4/10/2018 7:21:00 PM Vinyl Bromide < 0.15 0.15 Vdqq 1 4/10/2018 7:21:00 PM Vinyl chloride < 0.040 0.040 ppbV 1 4/10/2018 7:21:00 PM Surr: Bromofluorobenzene 95.0 70-130 %REC 1 4/10/2018 7:21:00 PM

Q	11	ń	1	ł	П	e	r	8	ŀ

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

CLIENT: FPM Group, Ltd. Client Sample 1D: IA-1
Lab Order: C1804013 Tag Number: 368.693

Project: Cinderella Collection Date: 4/5/2018
Lab ID: C1804013-001A Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то-	15		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 7:21:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 7:21:00 PM
1,1-Dichtoroethane	< 0.61	0.61	ug/m3	1	4/10/2018 7:21:00 PM
1,1-Dichtoroethene	< 0.16	0.16	ug/m3	1	4/10/2018 7:21:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1	սց/m3	1	4/10/2018 7:21:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 7:21:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 7:21:00 PM
1.3,5-Trimethylbenzone	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 7:21:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 7:21:00 PM
1,4-Dichlorobenzene	1.9	0.90	ug/m3	1	4/10/2018 7:21:00 PM
1,4-Dioxane	< 1.1	1,1	ug/m3	1	4/10/2018 7:21:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 7:21:00 PM
4-ethyitoluene	< 0.74	0.74	ug/m3	1	4/10/2018 7:21:00 PM
Acetone	23	7.1	ug/m3	10	4/11/2018 2:11:00 AM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 7:21:00 PM
Вепzеле	0.48	0.48	ug/m3	1	4/10/2018 7:21:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 7:21:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 7:21:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 7:21:00 PM
Carbon disulfide	< 0.47	0.47	սց/m3	1	4/10/2018 7:21:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 7:21:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 7:21:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 7:21:00 PM
Chloroform	6.3	0.73	ug/m3	4	4/10/2018 7:21:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/10/2018 7:21:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 7:21:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 7:21:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 7:21:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 7:21:00 PM
Ethyl acetate	0.94	0.54	ug/m3	1	4/10/2018 7:21:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 7:21:00 PM
Freon 11	1.3	0.84	ug/m3	1	4/10/2018 7:21:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 7:21:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 7:21:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 1 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Cinderella

Project:

Lab ID: C1804013-001A Date: 26-Apr-18

Client Sample ID: IA-1

Tag Number: 368.693 Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	2.0	0.74		ug/m3	1	4/10/2018 7:21:00 PM
Heptane	0.49	0.61	J	սց/m3	1	4/10/2018 7:21:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 7:21:00 PM
Hexane	< 0,53	0.53		ug/m3	1	4/10/2018 7:21:00 PM
Isopropyl alcohol	150	15		ug/m3	40	4/11/2018 2:47:00 AM
m&p-Xylene	0.65	1.3	J	ug/m3	1	4/10/2018 7:21:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 7:21:00 PM
Methy! Ethyl Ketone	1.9	0.88		ug/m3	1	4/10/2018 7:21:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 7:21:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 7:21:00 PM
Methylene chloride	0.73	0.52		ug/m3	1	4/10/2018 7:21:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 7:21:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 7:21:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 7:21:00 PM
Tetrachloroethylene	1.5	1.0		սց/m3	1	4/10/2018 7:21:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 7:21:00 PM
Toluene	3.0	0.57		ug/m3	1	4/10/2018 7:21:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 7:21:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 7:21:00 PM
Trichloroethene	< 0.16	0.16		սց/m3	1	4/10/2018 7:21:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 7:21:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 7:21:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 7:21:00 PM

Qualifiers:

Quantitation Limit

Analyte detected in the associated Method Blank 13

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

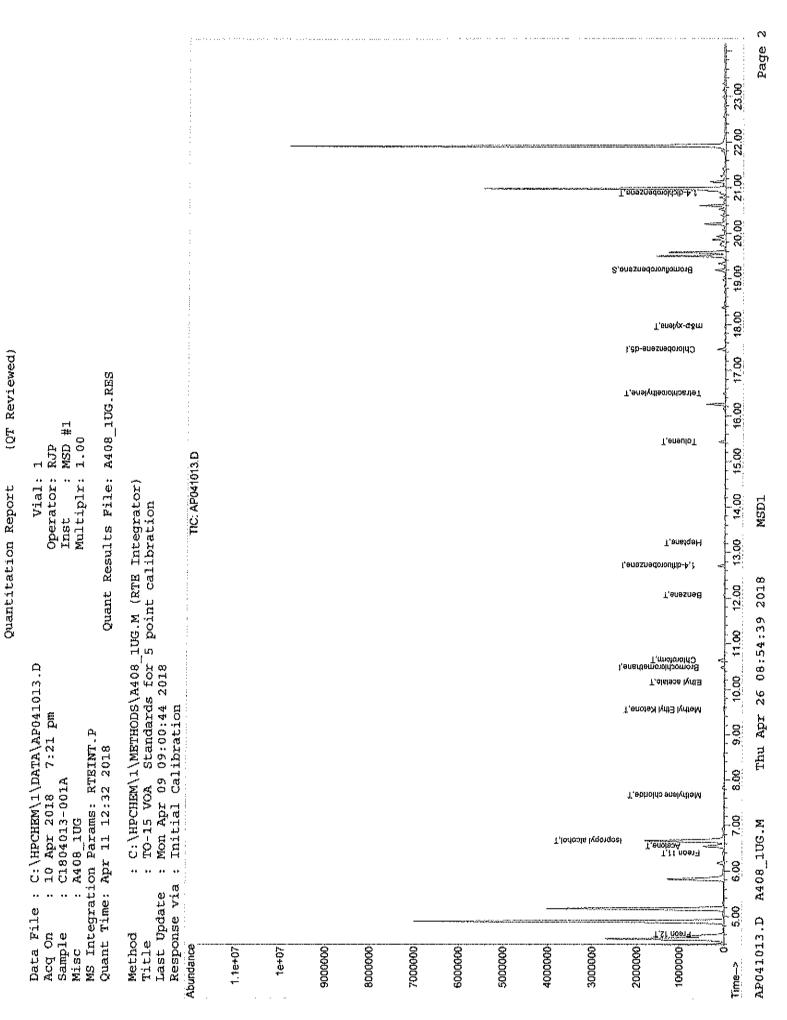
E Estimated Value above quantitation range

J Analyte detected below quantitation limit

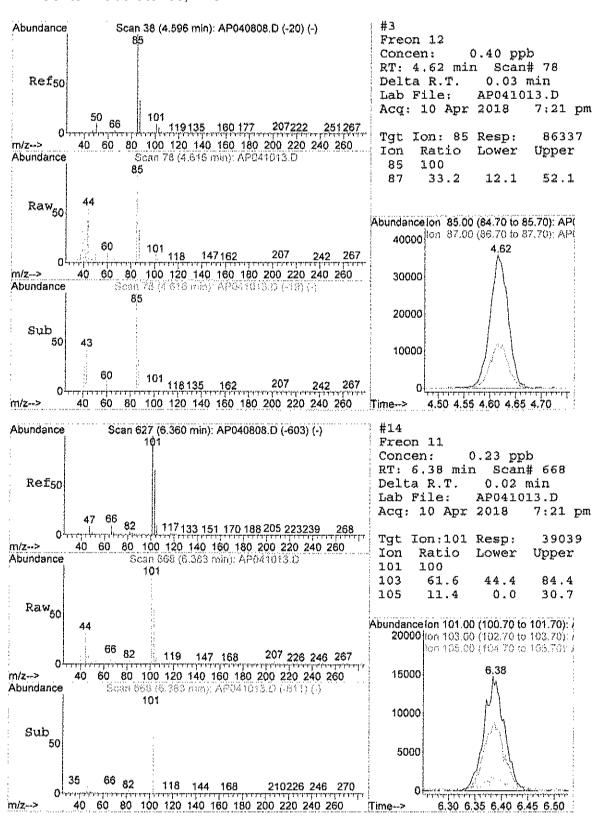
ND Not Detected at the Limit of Detection

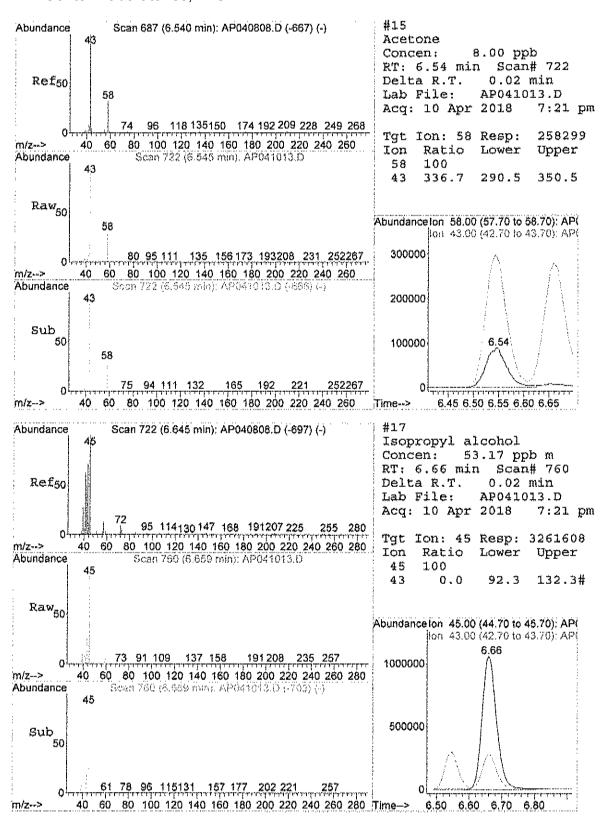
Quantitation Report (QT Reviewed)

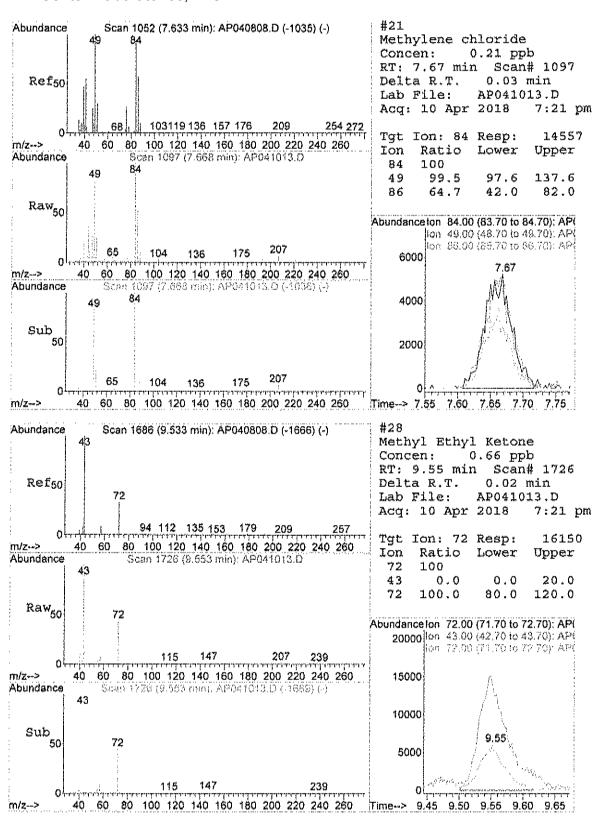
Data File : C:\HPCHEM\1\DATA\AP041013.D Vial: 1 Acq On : 10 Apr 2018 7:21 pm Sample : C1804013-001A Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

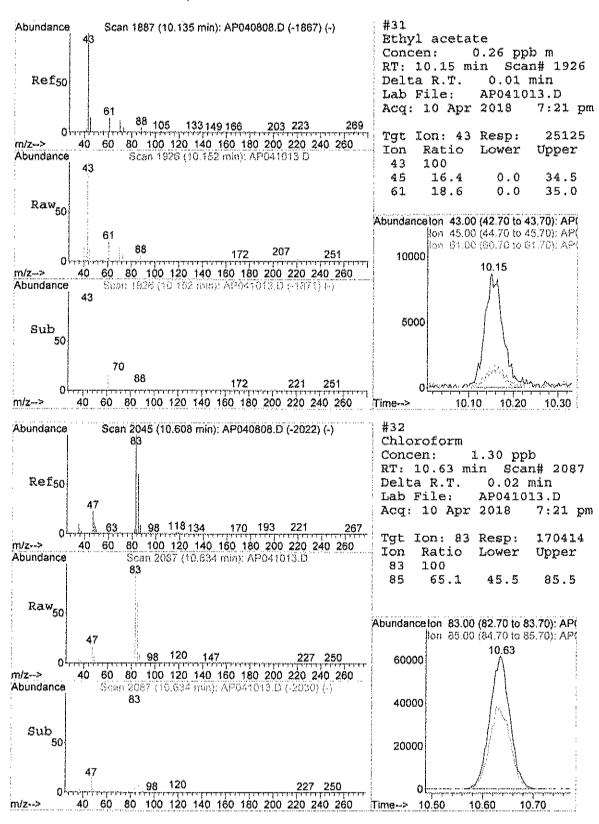

MS Integration Params: RTEINT.P

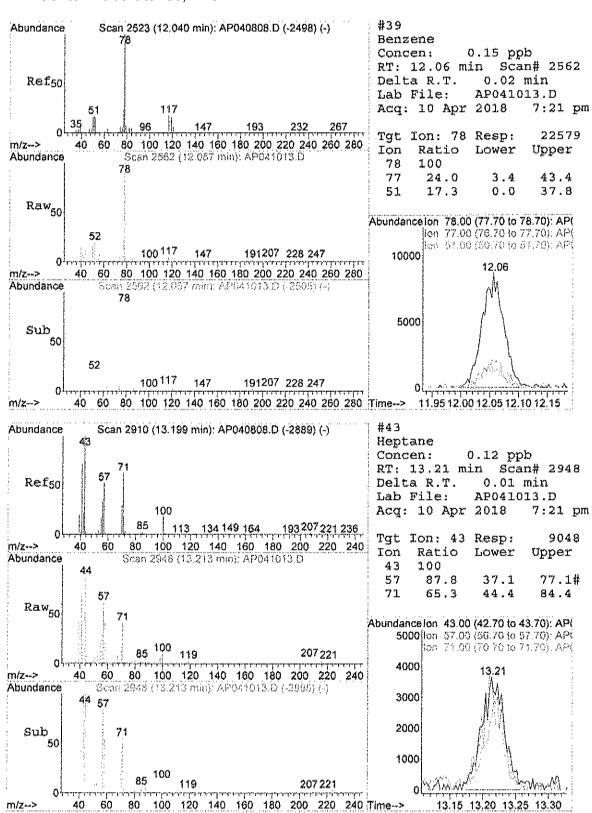
Quant Time: Apr 11 07:23:07 2018 Quant Results File: A408_1UG.RES

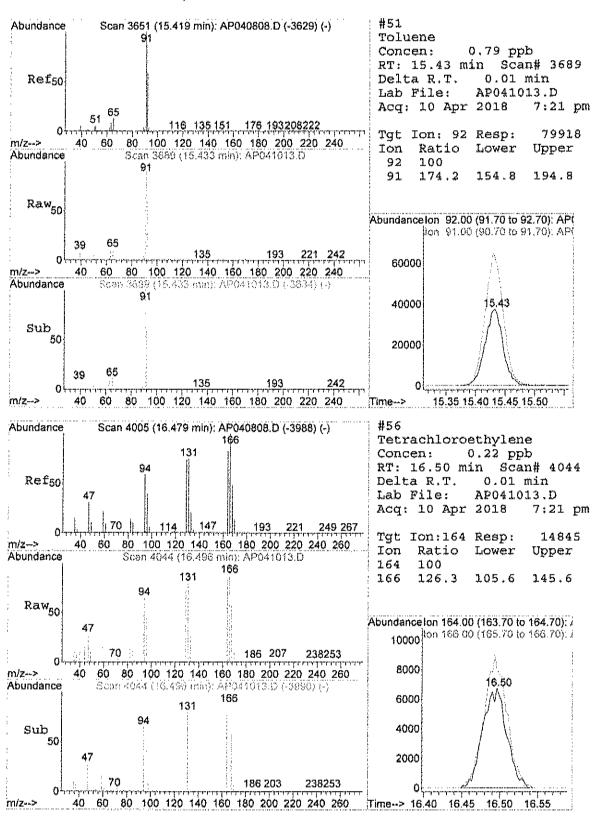

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration

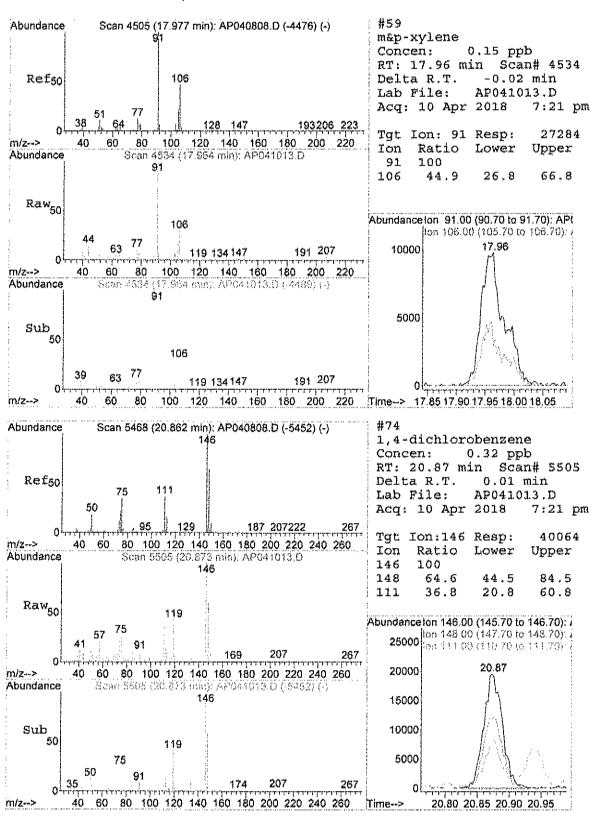

DataAcq Meth : 1UG_RUN


Internal Standards	к.т.	QIon	Response	Conc U	nits	Dev(Mi	in)
1) Bromochloromethane 35) 1,4-difluorobenzene	10.48	128	35996 177714				.03
50) Chlorobenzene-d5	17.46		139646				.01
System Monitoring Compounds 65) Bromofluorobenzene	19.19	95	91726	0.95	daa	0.	.00
Spiked Amount 1.000						.00%	
Target Compounds						Qvalı	1e
3) Freon 12	4.62	85	86337				98
14) Freon 11	6.38	101		0.23	dqq		97
15) Acetone	6.54	58	258299 3261608m /	8.00	ppb		92
17) Isopropyl alcohol	6.66	45		53.17	dqq		
21) Methylene chloride	7.67	84	14557	0.21			88
28) Methyl Ethyl Ketone	9.55	72	16150	0.66		t ti	100
31) Ethyl acetate	10.15	43	25125m/	0.26	ppb		
32) Chloroform	10.63		170414	1.30		Ĵ	100
39) Benzene	12.06	78	22579	0.15			99
43) Heptane	13.21	43	9048	0.12		#	80
51) Toluene	15.43	92	79918	0.79			1.00
56) Tetrachloroethylene	16.50	164		0.22			99
59) m&p~xylene	17.96	91	27284	0.15			97
74) 1,4-dichlorobenzene	20.87	146	40064	0.32	$_{\rm dqq}$		97




Page 64 of 248

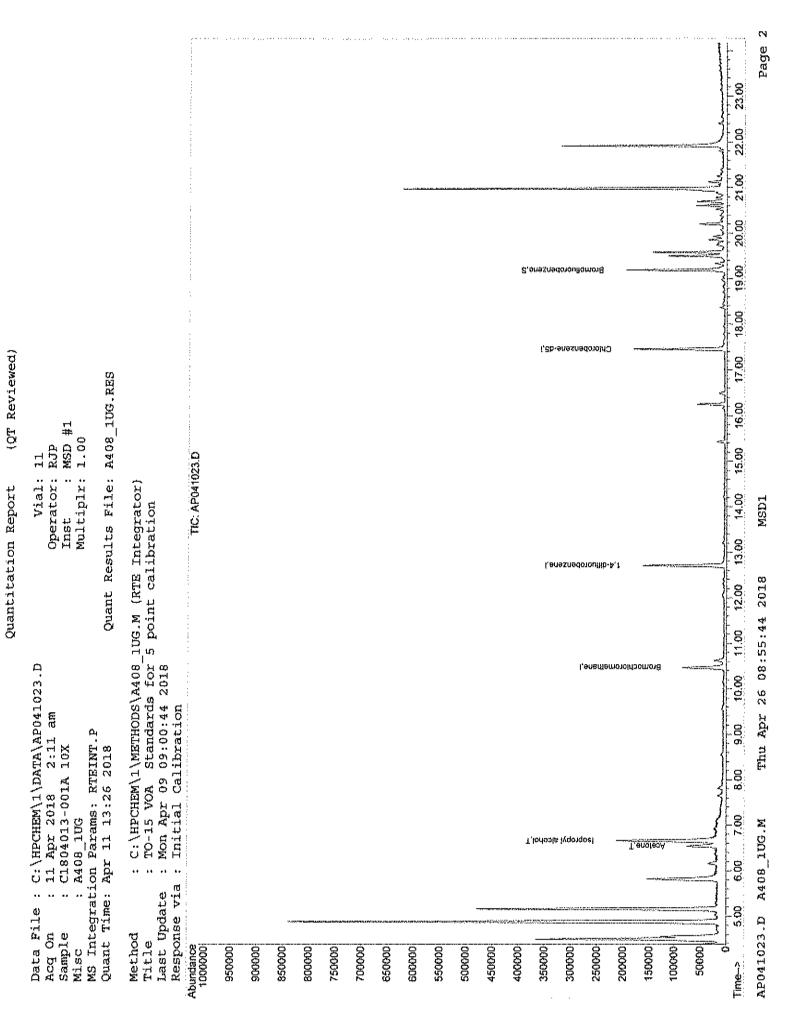




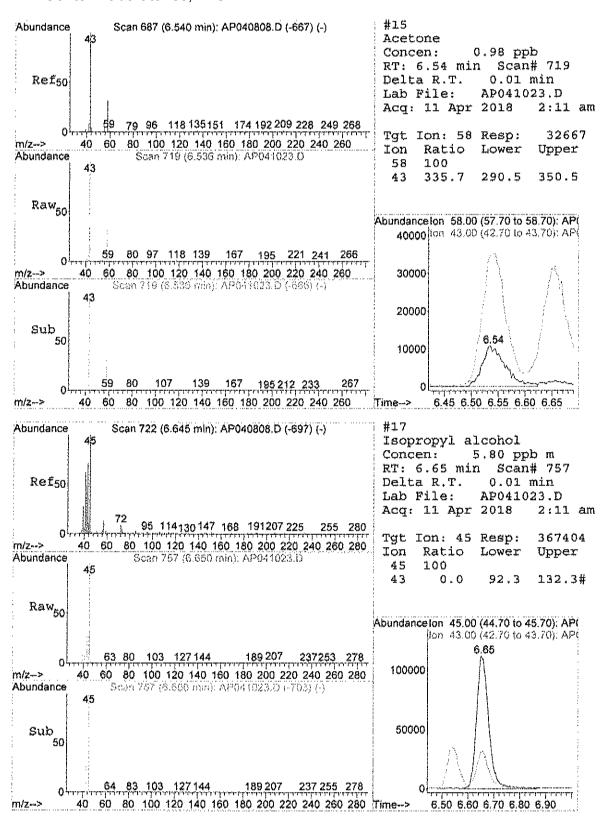
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041023.D
Acq On : 11 Apr 2018 2:11 am
Sample : C1804013-001A 10X
Misc : A408_1UG Vial: 11 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 11 07:23:17 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration

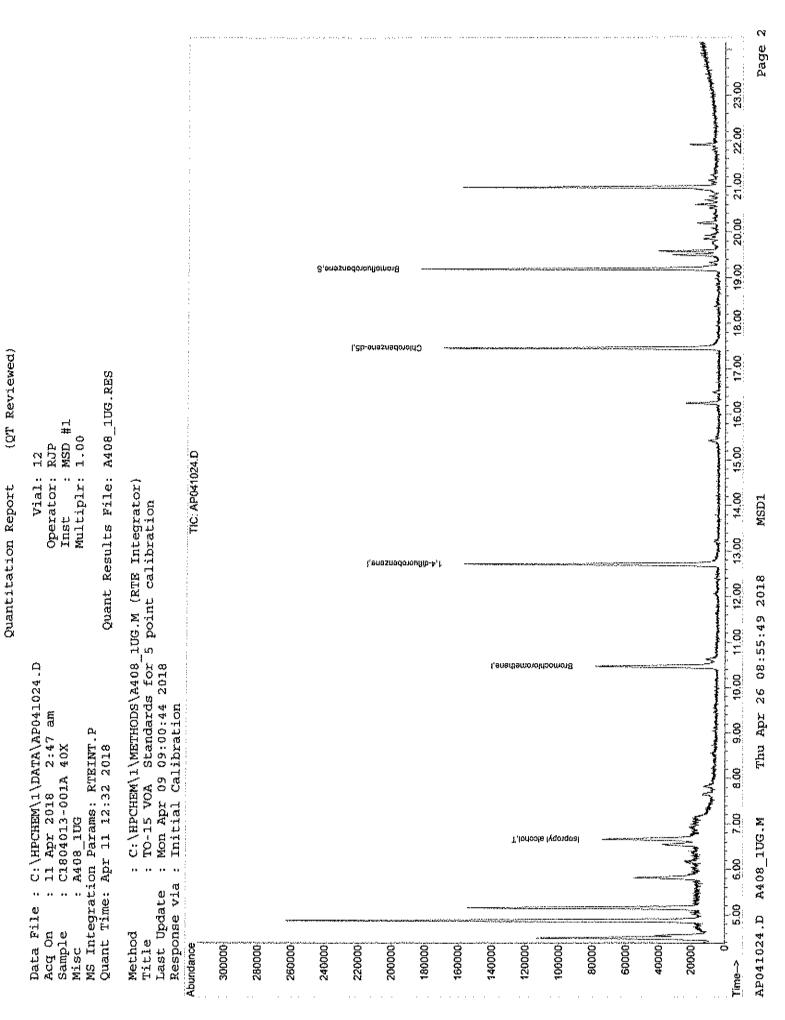
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Units	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.47 12.70 17.45	128 114 117	37157 178195 132786	1.00 ppb 1.00 ppb 1.00 ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	82821 Recovery	0.90 ppb = 90	0.00
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.54 6.65	58 45	32667 367404m &	0.98 ppb 5.80 ppb	

Page 73 of 248

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041024.D Vial: 12 Acq On : 11 Apr 2018 2:47 am Sample : C1804013-001A 40X Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P Quant Time: Apr 11 07:23:18 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.46 12.71 17.46	128 114 117	37989 175563 130622	1.00 1.00 1.00	ppb	0.00 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.18 Range 70	95 - 130	76730 Recovery		ppb 85.	
Target Compounds 17) Isopropyl alcohol	6.66	45	101438	1.57	dqq	Qvalue # 21

Page 76 of 248

CLIENT: FPM Group, Ltd. Client Sample ID: 1A-1D
Lab Order: C1804013 Tag Number: 1186.513
Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-002A Matrix: AlR

Analyses	Result	**Limit Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-9		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,1-Dichloroethene	< 0.040	0.040	Vdqq	1	4/10/2018 8:04:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	₽₽bV	1	4/10/2018 8:04:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	₽₽₽V	1	4/10/2018 8:04:00 PM
1,2-Dichtoroethane	< 0.15	0.15	∨dqq	1	4/10/2018 8:04:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,4-Dichlorobenzene	0.21	0.15	ppb∨	1	4/10/2018 8:04:00 PM
1,4-Dioxane	< 0.30	0.30	ppb∨	1	4/10/2018 8:04:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Acetone	11	3.0	ppb∨	10	4/11/2018 3:25:00 AM
Aliyi chloride	< 0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Benzene	0.15	0.15	ppb∨	1	4/10/2018 8:04:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Bromomethane	< 0.15	0.15	ppb∨	*	4/10/2018 8:04:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 8:04:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:04:00 PM
Chloroform	0.88	0.15	ppbV	1	4/10/2018 8:04:00 PM
Chloromethane	< 0.15	0.15	∨dqq	1	4/10/2018 8:04:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 8:04:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:04:00 PM
Ethyl acetate	0.38	0.15	ppbV	†	4/10/2018 8:04:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 14

CLIENT: FPM Group, Ltd. Client Sample ID: IA-1D Lab Order: C1804013 Tag Number: 1186.513

Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-002A Matrix: AIR

**Limit Qual Units DF Analyses Result Date Analyzed Analyst: RJP 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 4/10/2018 8:04:00 PM Ethylbenzene < 0.15 0.15 ppbV 1 Freon 11 0.20 0.15 ppbV 1 4/10/2018 8:04:00 PM Freon 113 < 0.150.15ppbV 1 4/10/2018 8:04:00 PM Freon 114 < 0.15 0.15 ppbV 1 4/10/2018 8:04:00 PM Freon 12 0.39 0.15 ppbV 1 4/10/2018 8:04:00 PM Heptane 0.160.15 1 4/10/2018 8:04:00 PM ppbV Hexachioro-1,3-butadiene < 0.15 0.15 Vdqq 1 4/10/2018 8:04:00 PM Hexane 4/10/2018 8:04:00 PM 0.13 0.15 ppbV 1 Isopropyl alcohol 92 6.0 ppb∨ 40 4/11/2018 4:02:00 AM m&p-Xylene 0.16 4/10/2018 8:04:00 PM 0.30 Vdqq 1 < 0.30 4/10/2018 8:04:00 PM Methyl Butyl Ketone 0.30 ppbV 1 Methyl Ethyl Ketone 0.74 0.30 ppbV 1 4/10/2018 8:04:00 PM Methyl Isobutyl Ketone < 0.30 0.30 Vdqq 1 4/10/2018 8:04:00 PM Methyl tert-butyl ether < 0.15 1 0.15 ppbV 4/10/2018 8:04:00 PM Methylene chloride 4/10/2018 8:04:00 PM 0.28 0.15 Vdqq 1 o-Xylene < 0.15 0.15 ppbV 1 4/10/2018 8:04:00 PM Propylene < 0.150.15 opb∨ 1 4/10/2018 8:04:00 PM Styrene < 0.15 0.15 ppbV 1 4/10/2018 8:04:00 PM Tetrachloroethylene 0.21 0.15 1 4/10/2018 8:04:00 PM ppbV Tetrahydrofuran < 0.15 0.15 Vdqq 1 4/10/2018 8:04:00 PM Toluene 1.1 0.15 ppbV 1 4/10/2018 8:04:00 PM trans-1,2-Dichloroethene < 0.150.15 ppbV 1 4/10/2018 8:04:00 PM trans-1,3-Dichloropropene < 0.15 0.15 ppbV 1 4/10/2018 8:04:00 PM Trichloroethene < 0.030 0.030 ppbV 1 4/10/2018 8:04:00 PM Vinyl acetate < 0.15 0.15 opbV 1 4/10/2018 8:04:00 PM Vinyl Bromide < 0.15 0.15 4/10/2018 8:04:00 PM Vdqq Vinyl chloride < 0.040 0.040 Vago 1 4/10/2018 8:04:00 PM Surr: Bromofluorobenzene 95,0 70-130 %REC 4/10/2018 8:04:00 PM

Oualifiers: **

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Lab Order: C1804013
Project: Cinderella

Tag Number: 1186.513 Collection Date: 4/5/2018

Client Sample ID: IA-1D

Lab ID: C1804013-002A Matrix: AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15	·		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:04:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	սց/m3	1	4/10/2018 8:04:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:04:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:04:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:04:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 8:04:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:04:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 8:04:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:04:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 8:04:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,4-Dichlorobenzene	1.3	0.90	ug/m3	1	4/10/2018 8:04:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 8:04:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 8:04:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 8:04:00 PM
Acetone	26	7.1	ug/m3	10	4/11/2018 3:25:00 AM
Altyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 8:04:00 PM
Benzene	0.48	0.48	ug/m3	1	4/10/2018 8:04:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 8:04:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:04:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 8:04:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 8:04:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	7	4/10/2018 8:04:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 8:04:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 8:04:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 8:04:00 PM
Chloroform	4.3	0.73	ug/m3	1	4/10/2018 8:04:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	4/10/2018 8:04:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:04:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 8:04:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 8:04:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 8:04:00 PM
Ethyl acetate	1,4	0.54	ug/m3	1	4/10/2018 8:04:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 8:04:00 PM
Freon 11	1.1	0.84	ug/m3	1	4/10/2018 8:04:00 PM
Freon 113	< 1.1	1.1	ug/m3	†	4/10/2018 8:04:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 8:04:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 3 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013
Project: Cinderella

Lab ID: C1804013-002A

Date: 26-Apr-18

Client Sample ID: IA-1D

Tag Number: 1186.513 Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	ÐF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TC	-15			Analyst: RJP
Freon 12	1.9	0.74		ug/m3	1	4/10/2018 8:04:00 PM
Heptane	0.66	0.61		ug/m3	1	4/10/2018 8:04:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 8:04:00 PM
Hexane	0.46	0.53	J	ug/m3	1	4/10/2018 8:04:00 PM
Isopropyl alcohol	230	15		ug/m3	40	4/11/2018 4:02:00 AM
m&p-Xylene	0.69	1.3	J	ug/m3	1	4/10/2018 8:04:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:04:00 PM
Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	4/10/2018 8:04:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 8:04:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 8:04:00 PM
Methylene chloride	0.97	0.52		ug/m3	1	4/10/2018 8:04:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 8:04:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 8:04:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 8:04:00 PM
Tetrachloroethylene	1.4	1.0		ug/m3	1	4/10/2018 8:04:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 8:04:00 PM
Toluene	4.2	0.57		ug/m3	1	4/10/2018 8:04:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 8:04:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 8:04:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 8:04:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 8:04:00 PM

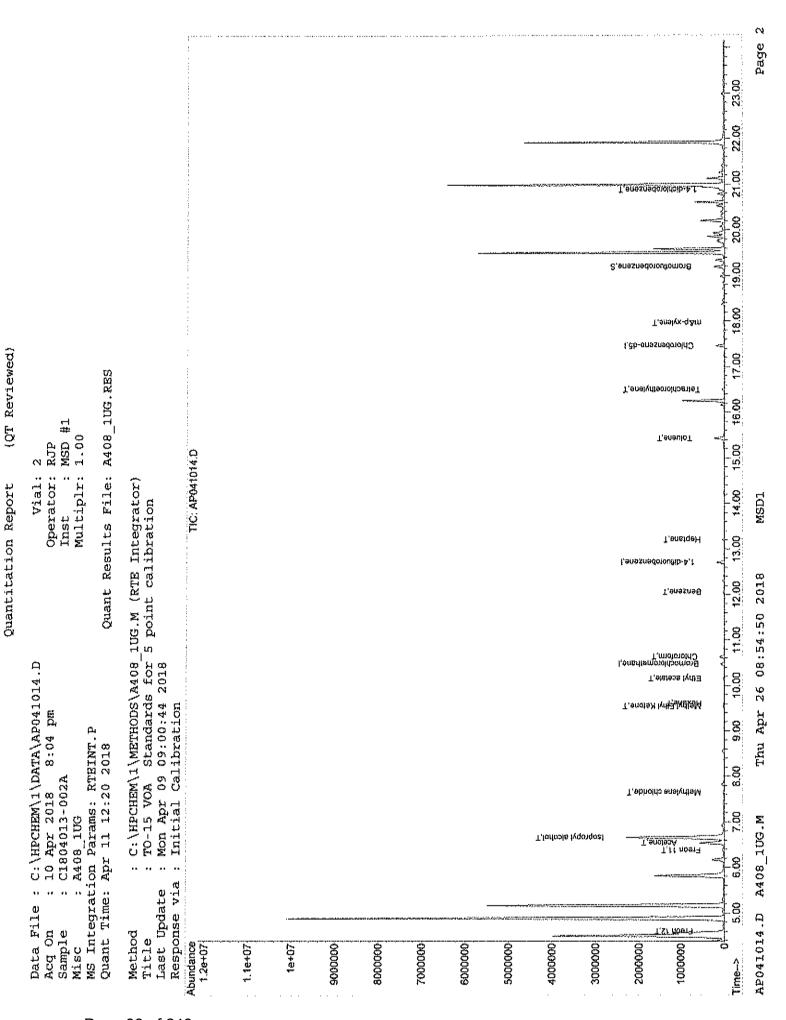
Qualifiers:

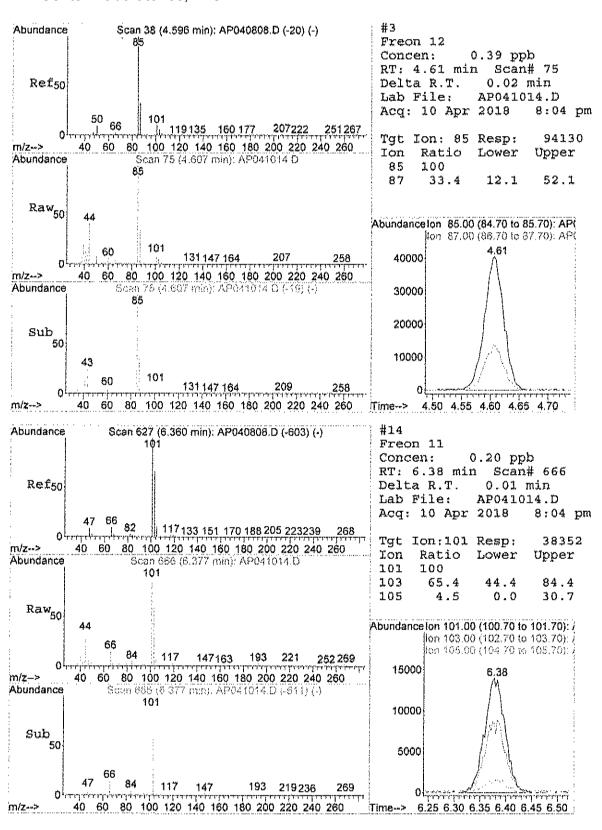
- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

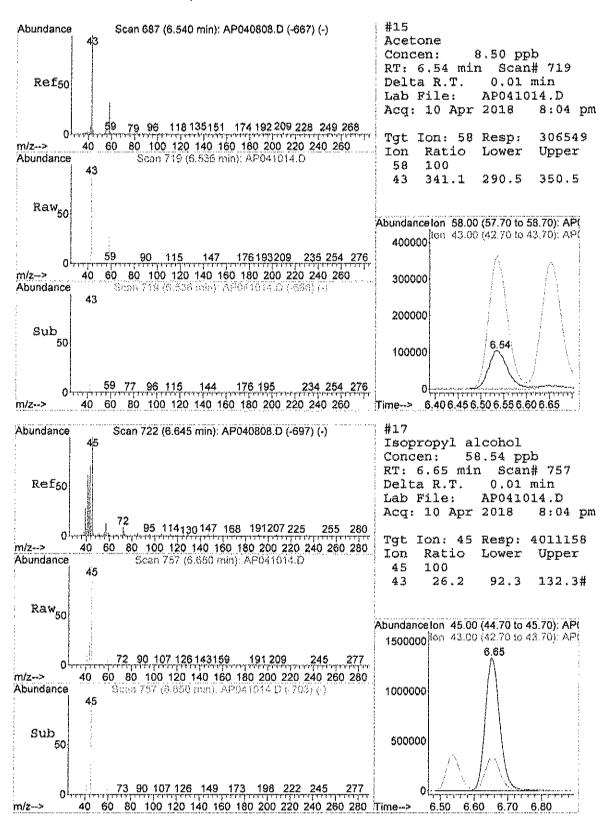
Quantitation Report (QT Reviewed)

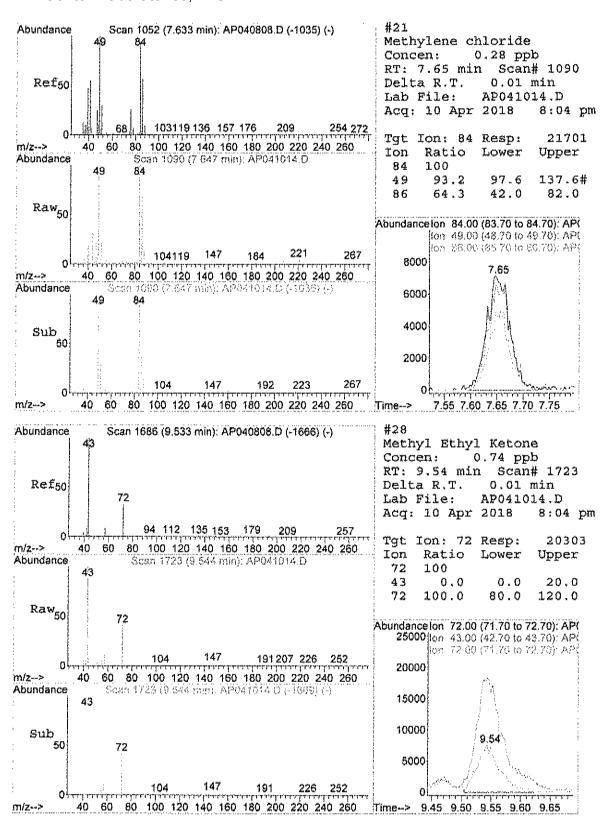
Data File : C:\HPCHEM\1\DATA\AP041014.D Vial: 2 Acq On : 10 Apr 2018 8:04 pm Operator: RJP Sample : C1804013-002A Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

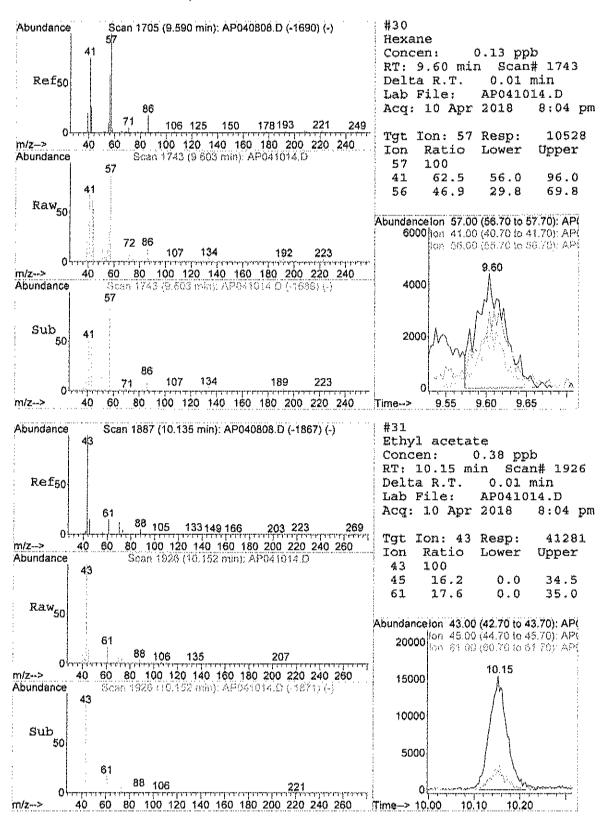
MS Integration Params: RTEINT.P

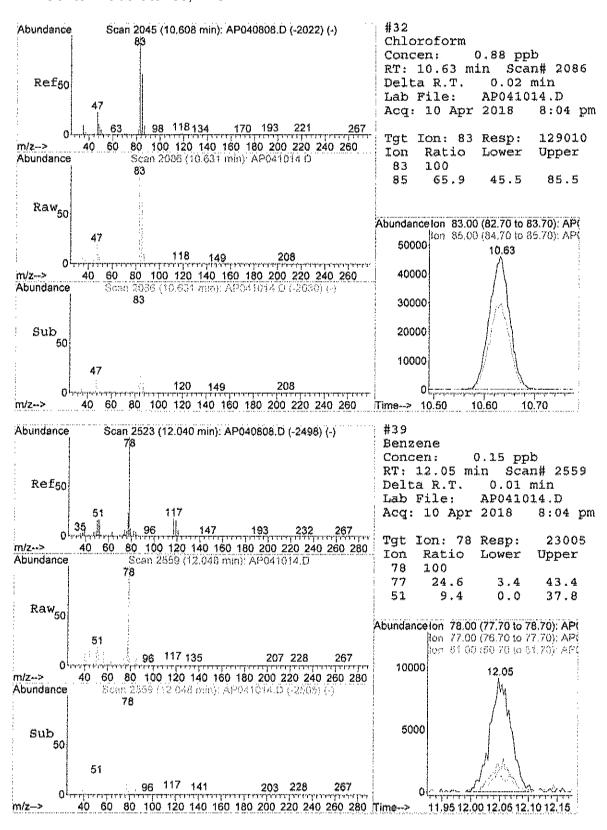

Quant Time: Apr 11 07:23:08 2018 Quant Results File: A408_1UG.RES

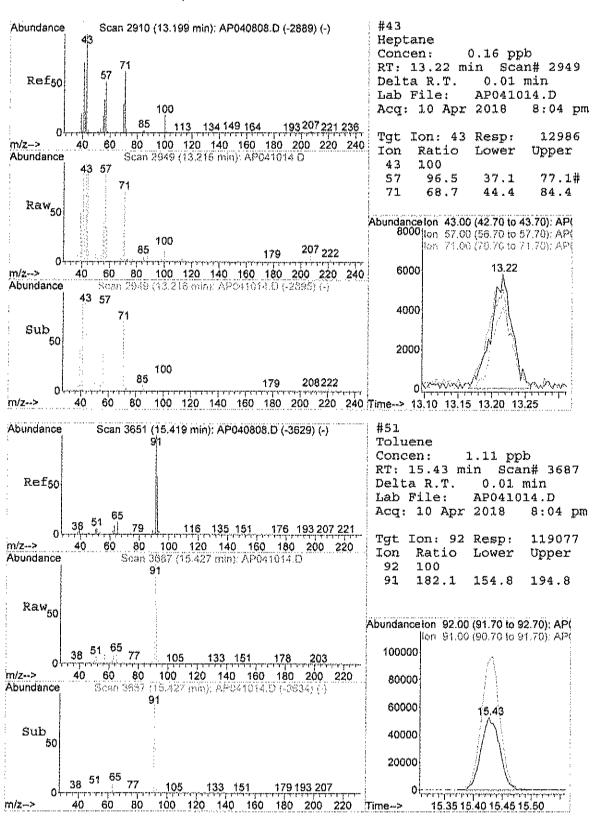

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration

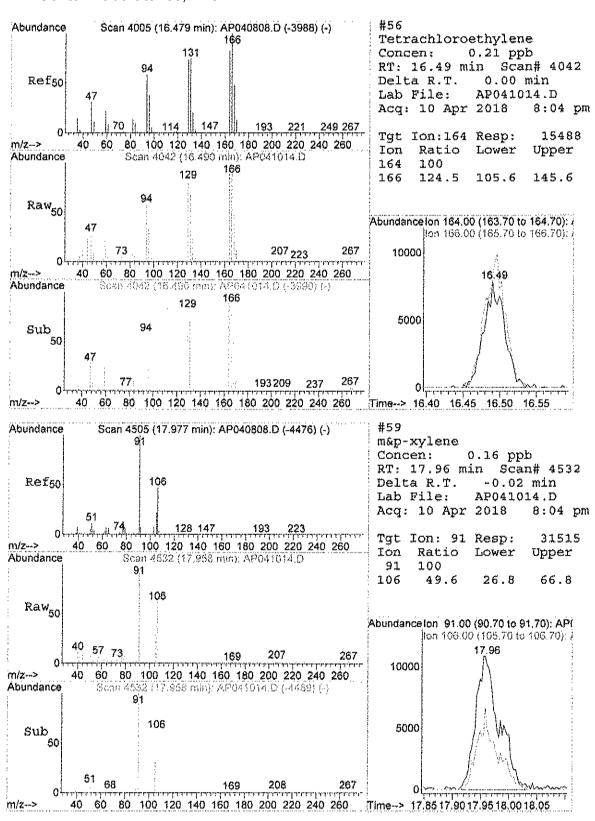

DataAcq Meth : 1UG_RUN

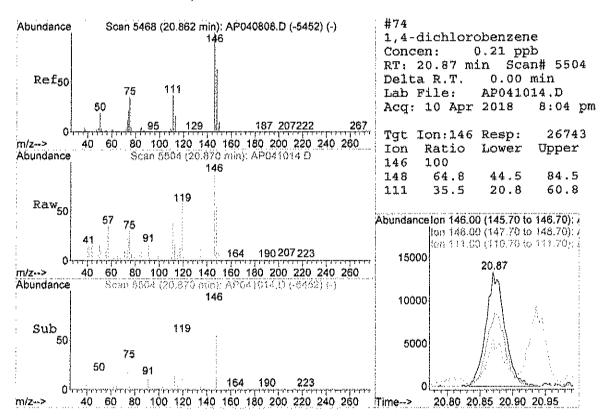

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.71			1.00	ppb		0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000		95 - 130	96574 Recove		ppb 95.		0.00
Target Compounds 3) Freon 12 14) Freon 11 15) Acetone 17) Isopropyl alcohol 21) Methylene chloride 28) Methyl Ethyl Ketone 30) Hexane 31) Ethyl acetate 32) Chloroform 39) Benzene 43) Heptane 51) Toluene 56) Tetrachloroethylene	6.38 6.54 6.65 7.65 9.54 9.60 10.15 10.63	101 58 45 84 72 57 43 78 43 92	4011158 21701 20303 10528 41281 129010 23005 12986 119077	0.20 8.50 58.54 0.28	bbp bbp bbp bbp bbp bbp bbp bbp	#######################################	11ue 98 97 90 19 84 100 89 95 100 72 95
59) m&p-xylene 74) 1,4~dichlorobenzene		91	31515 26743		dqq		96 96


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041014.D A408 1UG.M Thu Apr 26 08:54:49 2018 MSD1



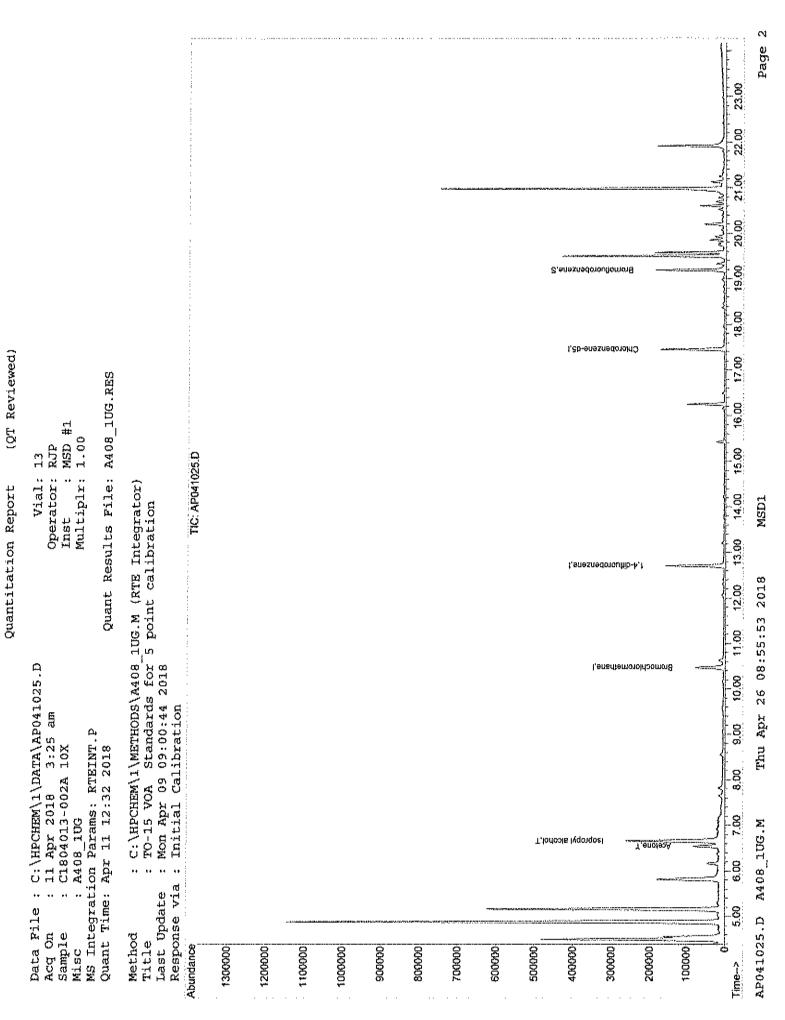




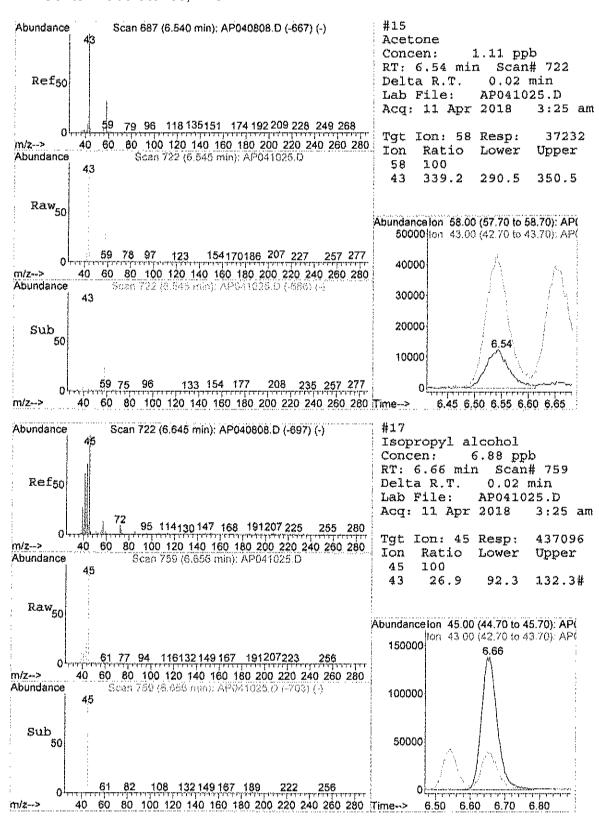


Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041025.D
Acq On : 11 Apr 2018 3:25 am
Sample : C1804013-002A 10X
Misc : A408_1UG Vial: 13 Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 11 07:23:19 2018 Quant Results File: A408_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A408_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration

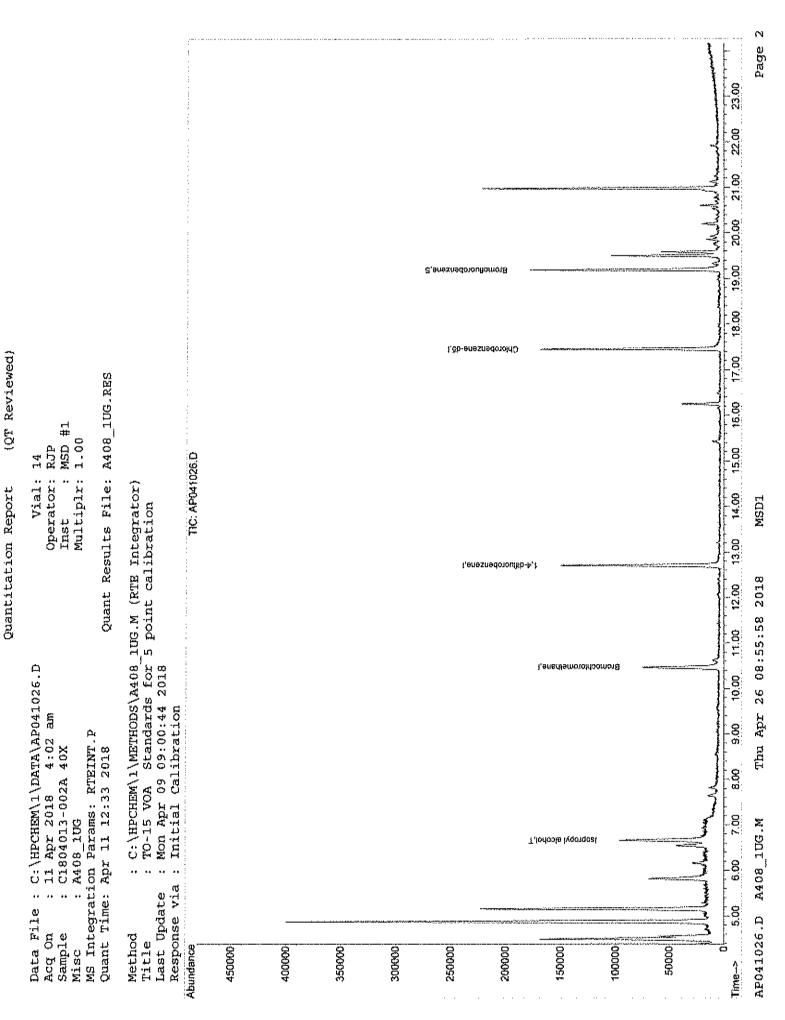
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits)	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.47 12.70 17.45	128 114 117	37295 172669 131854	1.00 1.00 1.00	ppb	0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	80482 Recovery	0.88	ppb 88.	0.00 00%
Target Compounds 15) Acetone 17) Isopropyl alcohol	6.54 6.66	58 45	37232 437096	1.11		Qvalue 91 # 20

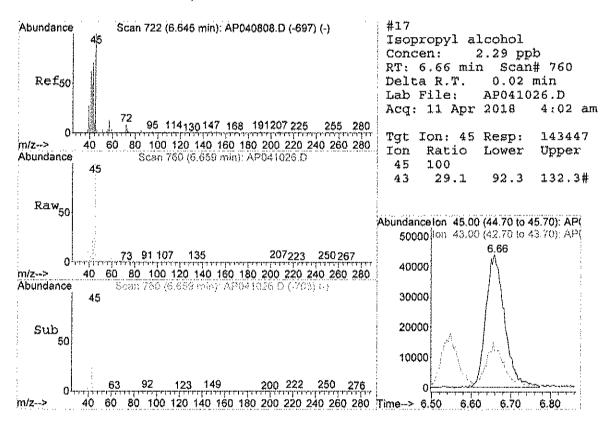
Page 93 of 248

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041026.D
Acq On : 11 Apr 2018 4:02 am
Sample : C1804013-002A 40X
Misc : A408 1UG Vial: 14 Operator: RJP Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 11 07:23:20 2018 Quant Results File: A408_1UG.RES


Quant Method : C:\HPCHEM\l\METHODS\A408_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.47 12.71 17.45	128 114 117	36733 170002 126293	1.00	ppb ppb ppb	0.01 0.01 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	76345 Recovery		' ppb 87	
Target Compounds 17) Isopropyl alcohol	6.66	45	143447	2,29	dqq ı	Qvalue # 22

Page 96 of 248

Date: 26-Apr-18

CLIENT: FPM Group, Ltd.

Client Sample ID: IA-2 Tag Number: 422.1343 Lab Order: C1804013 Collection Date: 4/5/2018 Project: Cinderella

Matrix: AIR Lab ID: C1804013-003A

Anaiyses	Result	**Limit Quat	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-12		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,1,2-Trichtoroethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,1-Dichtoroethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 8:46:00 PM
1,2,4-Trichiorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,2-Dibromoethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
1,4-Dichlorobenzene	< 0.15	0,15	ppbV	1	4/10/2018 8:46:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 8:46:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Acetone	1.6	0.30	ppbV	1	4/10/2018 8:46:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Benzene	0.11	0.15 J	ppbV	1	4/10/2018 8:46:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromodichloromethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 8:46:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
Chloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 8:46:00 PM
Chloroform	0.59	0.15	ppbV	†	4/10/2018 8:46:00 PM
Chloromethane	0.26	0.15		1	4/10/2018 8:46:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 8:46:00 PM
·	< 0.040 < 0.15	0.040	ppbV	1	
cis-1,3-Dichloropropene			ppbV		4/10/2018 8:46:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 8:46:00 PM
Dibromochloromethane Ethyl acetate	< 0.15 < 0.15	0.15 0.15	Vdqq Vdqq	1	4/10/2018 8:46:00 PM 4/10/2018 8:46:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- łЦ Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- j Analyte detected below quantitation limit
- Not Detected at the Limit of Detection

Page 5 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-003A Date: 26-Apr-18

Client Sample ID: IA-2

Tag Number: 422.1343

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Freon 11	0.18	0.15		ppb∨	1	4/10/2018 8:46:00 PM
Freon 113	< 0.15	0.15		∨dqq	1	4/10/2018 8:46:00 PM
Freon 114	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM
Freon 12	0.35	0.15		ppb∨	1	4/10/2018 8:46:00 PM
Heptane	< 0.15	0.15		∨dqq	1	4/10/2018 8:46:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		Vdqq	1	4/10/2018 8:46:00 PM
Hexane	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Isopropyl alcohol	2.0	0.15		ppb∨	1	4/10/2018 8:46:00 PM
m&p-Xylene	0.10	0.30	j	ppbV	1	4/10/2018 8:46:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 8:46:00 PM
Methyl Ethyl Ketone	0.27	0.30	J	ppbV	. 1	4/10/2018 8:46:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		₽₽bV	1	4/10/2018 8:46:00 PM
Methyl tert-butyl ether	< 0.15	0.15		Vdqq	1	4/10/2018 8:46:00 PM
Methylene chloride	0.28	0.15		ppb∨	1	4/10/2018 8:46:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Styrene	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM
Tetrachloroethylene	0.14	0.15	j	ppbV	1	4/10/2018 8:46:00 PM
Tetrahydrofuran	< 0.15	0.15		₽₽₽V	1	4/10/2018 8:46:00 PM
Toluene	0.32	0.15		ppb∨	1	4/10/2018 8:46:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/10/2018 8:46:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/10/2018 8:46:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 8:46:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 8:46:00 PM
Surr: Bromofluorobenzene	95.0	70-130		%REC	1	4/10/2018 8:46:00 PM

О	**	a	и	n	^		o
•	u	æ	17	11	u	1	э

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- ŀΕ Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
 - Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

CLIENT: FPM Group, Ltd. Client Sample ID: IA-2
Lab Order: C1804013 Tag Number: 422.1343
Project: Cinderella Collection Date: 4/5/2018

Lab ID: C1804013-003A Matrix: AIR

Analyses	Result	**Limit (Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15		· · · · · · · · · · · · · · · · · · ·	Analyst: RJ
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:46:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 8:46:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:46:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:46:00 PM
1,2,4-Trichiorobenzene	< 1.1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	7	4/10/2018 8:46:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 8:46:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 8:46:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	7	4/10/2018 8:46:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 8:46:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:46:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 8:46:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 8:46:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 8:46:00 PM
Acetone	3.8	0.71	ug/m3	1	4/10/2018 8:46:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 8:46:00 PM
Benzene	0.35	0.48	J ug/m3	1	4/10/2018 8:46:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 8:46:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 8:46:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 8:46:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 8:46:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 8:46:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 8:46:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 8:46:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 8:46:00 PM
Chloroform	2.9	0.73	ug/m3	1	4/10/2018 8:46:00 PM
Chloromethane	0.54	0.31	ug/m3	1	4/10/2018 8:46:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 8:46:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 8:46:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 8:46:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 8:46:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 8:46:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 8:46:00 PM
Freon 11	1.0	0.84	ug/m3	1	4/10/2018 8:46:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 8:46:00 PM
Freon 114	< 1.0	1,0	ид/м3	1	4/10/2018 8:46:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 5 of 14

CLIENT: FPM Group, Ltd.

Cinderella

Lab Order: C1804013

Project:

Lab ID: C1804013-003A

Date: 26-Apr-18

Client Sample ID: 1A-2

Tag Number: 422.1343 Collection Date: 4/5/2018

Matrix: AIR

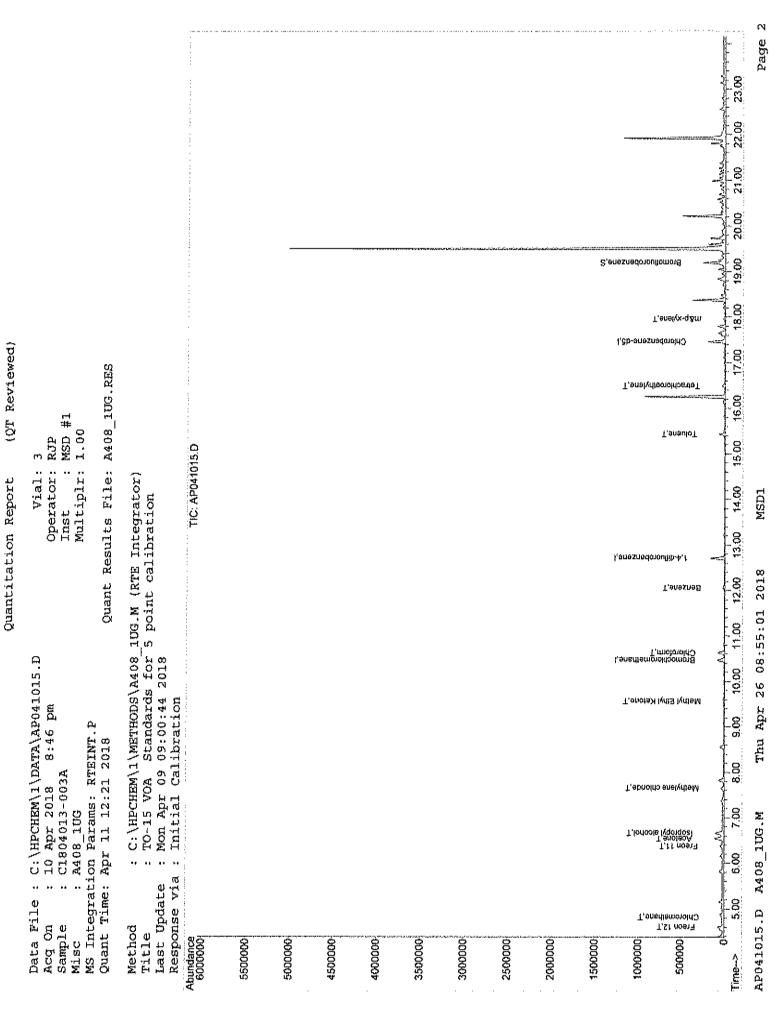
Analyses Result **Limit Qual Units DF Date Analyzed 1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE TO-15 Analyst: RJP Freon 12 0.74 ug/m3 1 4/10/2018 8:46:00 PM 1.7 Heptene < 0.61 0.61 ug/m3 1 4/10/2018 8:46:00 PM Hexachloro-1,3-butadiene < 1.6 1 4/10/2018 8:46:00 PM 1.6 ug/m3 Hexane < 0.53 0.53 ug/m3 1 4/10/2018 8:46:00 PM isopropyl alcohol 4.8 0.37 ug/m3 1 4/10/2018 8:46:00 PM ug/m3 m&p-Xylene 0.43 1.3 1 4/10/2018 8:46:00 PM Methyl Butyl Ketone < 1.2 1.2 ug/m3 1 4/10/2018 8:46:00 PM Methyl Ethyl Ketone 0.80 0.88 4/10/2018 8:46:00 PM ug/m3 1 Methyl Isobutyl Ketone < 1.2 1.2 1 4/10/2018 8:46:00 PM ug/m3 Methyl tert-butyl ether < 0.54 0.54 սց/m3 1 4/10/2018 8:46:00 PM Methylene chloride 0.97 0.52 ug/m3 1 4/10/2018 8:46:00 PM o-Xylene < 0.65 0.65 ug/m3 1 4/10/2018 8:46:00 PM Propylene < 0.26 0.26 ug/m3 1 4/10/2018 8:46:00 PM Styrene < 0.64 0.64 ug/m3 1 4/10/2018 8:46:00 PM Tetrachloroethylene 0.95 1.0 ug/m3 1 4/10/2018 8:46:00 PM Tetrahydrofuran < 0.44 0.44ug/m3 1 4/10/2018 8:46:00 PM Toluene 1.2 0.57 ug/m3 1 4/10/2018 8:46:00 PM trans-1,2-Dichtoroethene < 0.59 0.59 1 ug/m3 4/10/2018 8:46:00 PM trans-1,3-Dichloropropene < 0.68 0.68 ug/m3 1 4/10/2018 8:46:00 PM 0.16 Trichloroethene < 0.16 ug/m3 1 4/10/2018 8:46:00 PM Vinyl acetate < 0.53 0.53 ug/m3 1 4/10/2018 8:46:00 PM Vinyl Bromide < 0.66 0.66 ug/m3 1 4/10/2018 8:46:00 PM Vinyl chloride < 0.10 0.10 ug/m3 4/10/2018 8:46:00 PM

Qualifiers:

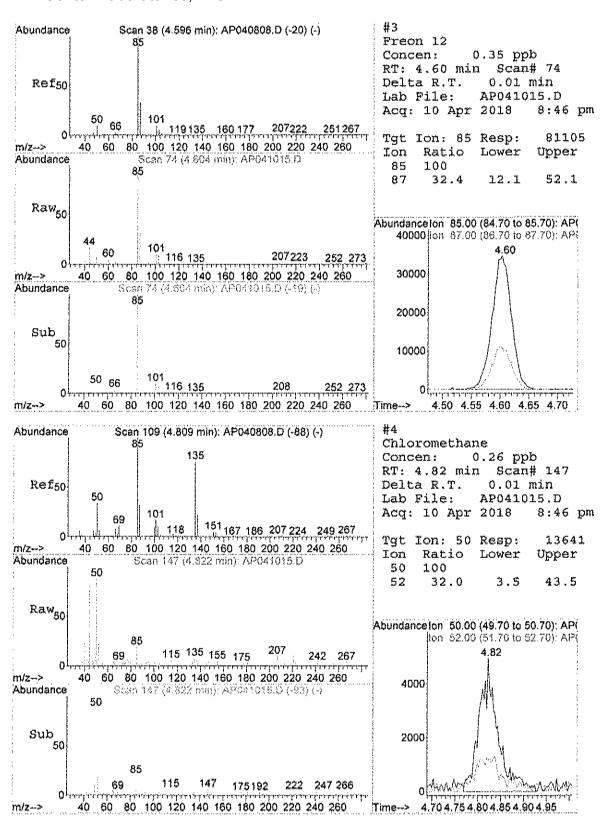
- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

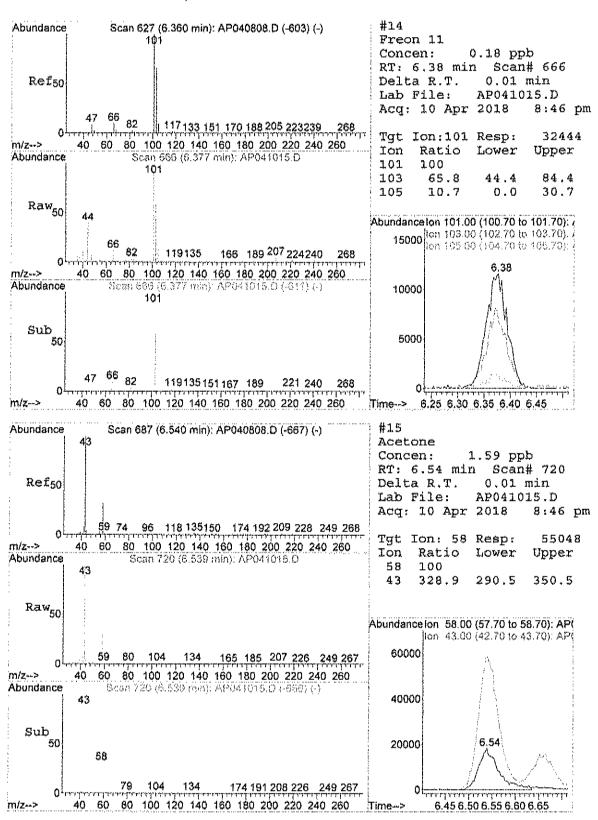
Quantitation Report (QT Reviewed)

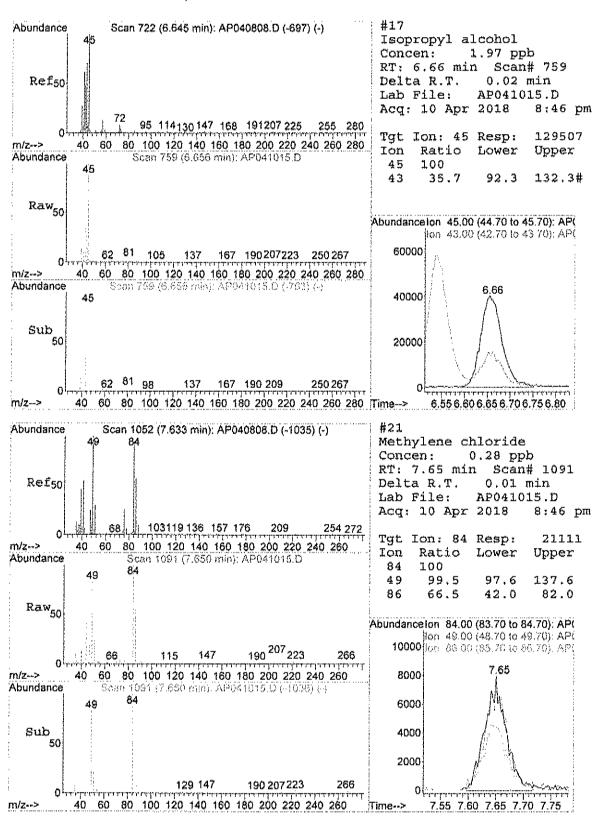
Data File : C:\HPCHEM\1\DATA\AP041015.D Vial: 3 Acq On : 10 Apr 2018 8:46 pm Sample : C1804013-003A Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

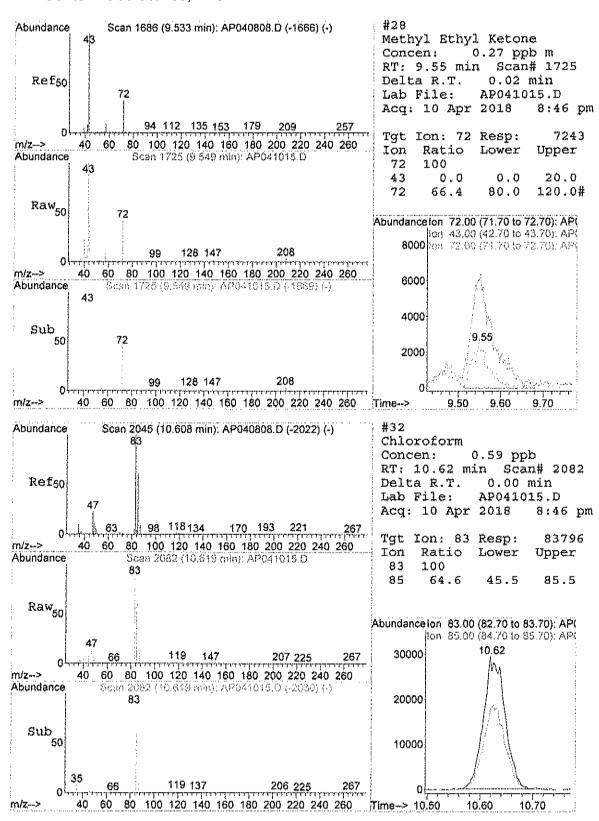

MS Integration Params: RTEINT.P

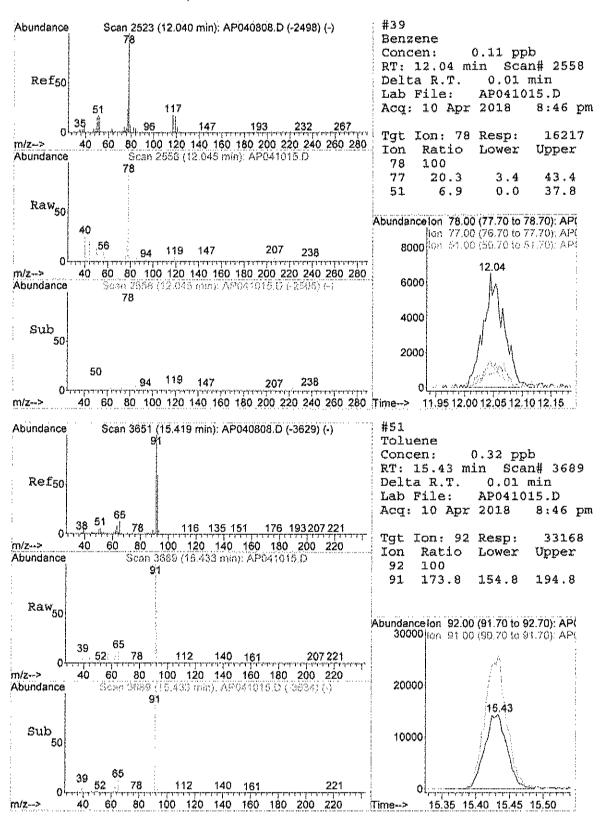
Quant Time: Apr 11 07:23:09 2018 Quant Results File: A408_1UG.RES

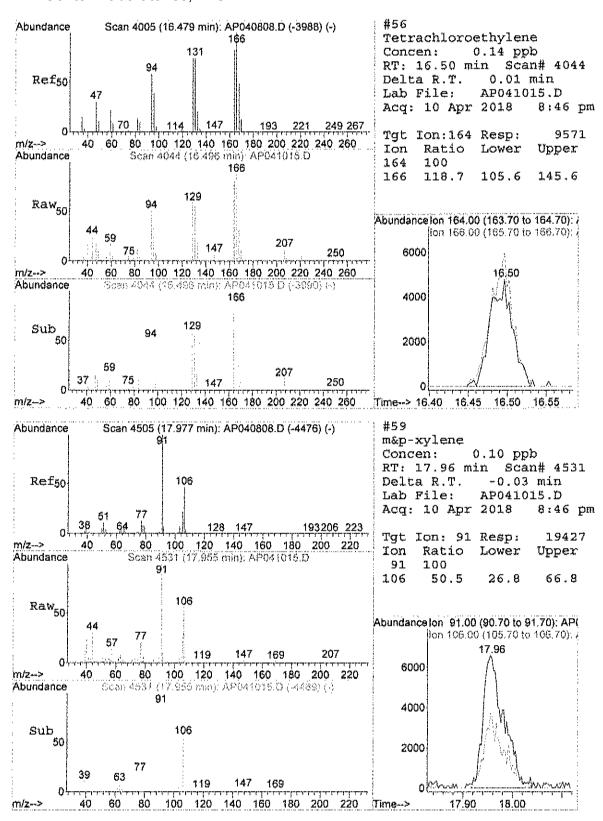

Quant Method : C:\HPCHEM\l\METHODS\A408_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration


DataAcq Meth : 1UG_RUN


Internal Standards		QTon	Response C	onc t	Units	Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	10.47 12.71		38633 183337 142274	1.00	dqq 0 dqq 0	0.01
System Monitoring Compounds	10 10	0.5	02107	0.01	-	0.00
65) Bromofluorobenzene Spiked Amount 1.000			93197 Recovery		95.	
Target Compounds						Qvalue
3) Freon 12	4.60	85	81105	0.35	dqq 5	100
4) Chloromethane	4.82	50	13641	0.26	dqq 3	83
14) Freon 11	6.38	101	32444		g ppb	
15) Acetone	6.54	58	55048	1.59	dqq e	96
17) Isopropyl alcohol	6.66	4.5	129507		7 ppb	
21) Methylene chloride	7.65	84	21111	0.28	daa 8	87
28) Methyl Ethyl Ketone	9.55	72	7243m 🛱	0.27	7 ppb	
32) Chloroform	10.62	83	83796	0.59	dqq e	99
39) Benzene	1.2.04	78	16217	0.13	dqq 1	86
51) Toluene	15.43	92	33168	0.32	dqq S	99
56) Tetrachloroethylene	16.50	164	9571	0.14	1 ppb	94
59) m&p-xylene	17.96	91	19427		daa C	




Page 103 of 248



CLIENT: FPM Group, Ltd.

Cinderella

Lab Order: C1804013

Project:

Lab ID: C1804013-004A

Date: 26-Apr-18

Client Sample ID: 1A-3

Tag Number: 365.535

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-15		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethene	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	₽₽₽V	1	4/10/2018 9:29:00 PM
1,1-Dichloroethane	< 0.15	0.15	Váqq	1	4/10/2018 9:29:00 PM
1,1-Dichloroethene	< 0.040	0.040	₽₽bV	1	4/10/2018 9:29:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,2-Dichloroethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,3-butadiene	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
1,4-Dioxane	< 0.30	0.30	Vdqq	1	4/10/2018 9:29:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
4-ethyltoluene	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
Acetone	1.9	0.30	ppoV	1	4/10/2018 9:29:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Benzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Benzyl chloride	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
Bromodichloromethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
Bromoform	< 0.15	0.15	ppbV	7	4/10/2018 9:29:00 PM
Bromomethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 9:29:00 PM
Chlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Chloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 9:29:00 PM
Chloroform	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Chloromethane	0.23	0.15	ppbV	1	4/10/2018 9:29:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	ppbV	1	4/10/2018 9:29:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM
Dibromochioromethane	< 0.15	0.15	Vdqq	1	4/10/2018 9:29:00 PM
Ethyl acetate	< 0.15	0.15	ppbV	1	4/10/2018 9:29:00 PM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 14

FPM Group, Ltd.

Lab Order: C1804013

CLIENT:

Project: Cinderella

Lab ID: C1804013-004A

Date: 26-Apr-18

Client Sample ID: 1A-3

Tag Number: 365.535

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
Ethylbenzene	< 0.15	0.15		∨dqq	1	4/10/2018 9:29:00 PM
Freon 11	0.14	0.15	٤	ppb∨	1	4/10/2018 9:29:00 PM
Freon 113	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Freon 12	0.29	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Heptane	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Hexane	< 0.15	0.15		₽₽bV	1	4/10/2018 9:29:00 PM
isopropyl alcohol	0.97	0.15		Vdqq	1	4/10/2018 9:29:00 PM
m&p-Xylene	< 0.30	0.30		ppb∨	1	4/10/2018 9:29:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 9:29:00 PM
Methyl Ethyl Ketone	0.22	0.30	j	ppb∨	1	4/10/2018 9:29:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 9:29:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Methylene chloride	0.27	0.15		ppb∨	1	4/10/2018 9:29:00 PM
o-Xylene	< 0.15	0.15		ppb∨	1	4/10/2018 9:29:00 PM
Propylene	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Toluene	0.24	0.15		ppbV	1	4/10/2018 9:29:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	4/10/2018 9:29:00 PM
Trichloroethene	< 0.030	0.030		ppbV	1	4/10/2018 9:29:00 PM
Vinyl acetate	< 0.1 5	0.15		ppbV	1	4/10/2018 9:29:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 9:29:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 9:29:00 PM
Surr: Bromofluorobenzene	92.0	70-130		%REC	1	4/10/2018 9:29:00 PM

o	ŧı	al	iſ	ïe	rs	

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- £ Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-004A

Date: 26-Apr-18

Client Sample ID: IA-3

Tag Number: 365.535 Collection Date: 4/5/2018

Matrix. AlR

Lab ID: C1804013-004A	\		IV.	latrix: AlR	
Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-	15		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 9:29:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 9:29:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 9:29:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	i	4/10/2018 9:29:00 PM
1.1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 9:29:00 PM
1,2,4-Trichlorobenzene	< 1.1	1,1	ug/m3	1	4/10/2018 9:29:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 9:29:00 PM
1,2-Dichloropropane	< 0.69	0.69	սց/m3	1	4/10/2018 9:29:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 9:29:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 9:29:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 9:29:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 9:29:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 9:29:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 9:29:00 PM
Acetone	4.4	0.71	ug/m3	1	4/10/2018 9:29:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 9:29:00 PM
Benzene	< 0.48	0.48	ug/m3	1	4/10/2018 9:29:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 9:29:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 9:29:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 9:29:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 9:29:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 9:29:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 9:29:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 9:29:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 9:29:00 PM
Chloroform	< 0.73	0.73	ug/m3	1	4/10/2018 9:29:00 PM
Chloromethane	0.47	0.31	ug/m3	1	4/10/2018 9:29:00 PM
cis-1,2-Dichtoroethene	< 0.16	0.16	ug/m3	i	4/10/2018 9:29:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 9:29:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 9:29:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	· 1	4/10/2018 9:29:00 PM
≣thyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 9:29:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 9:29:00 PM
reon 11	0.79	0.84	J ug/m3	· i	4/10/2018 9:29:00 PM
reon 113	< 1.1	1.1	ug/m3	1	4/10/2018 9:29:00 PM
Freon 114	< 1.0	1.0	ug/m3	, 1	4/10/2018 9:29:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 7 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-004A

Date: 26-Apr-18

Client Sample ID: 1A-3

Tag Number: 365.535

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJF
Freon 12	1.4	0.74		ug/m3	1	4/10/2018 9:29:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/10/2018 9:29:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 9:29:00 PM
Hexane	< 0.53	0.53		սց/m3	1	4/10/2018 9:29:00 PM
isopropyl alcohol	2.4	0.37		ug/m3	1	4/10/2018 9:29:00 PM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/10/2018 9:29:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 9:29:00 PM
Methyl Ethyl Ketone	0.65	0.88	j	ug/m3	1	4/10/2018 9:29:00 PM
Methyl Isobutyl Ketone	< 1.2	1,2		ug/m3	1	4/10/2018 9:29:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 9:29:00 PM
Methylene chloride	0.94	0.52		ug/m3	1	4/10/2018 9:29:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 9:29:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 9:29:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 9:29:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/10/2018 9:29:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 9:29:00 PM
Toluene	0.90	0.57		ug/m3	1	4/10/2018 9:29:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 9:29:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 9:29:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 9:29:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 9:29:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 9:29:00 PM
Vinyt chloride	< 0.10	0.10		ug/m3	1	4/10/2018 9:29:00 PM

0	tì	a	ı	i	ŕ	ï	e	,	192

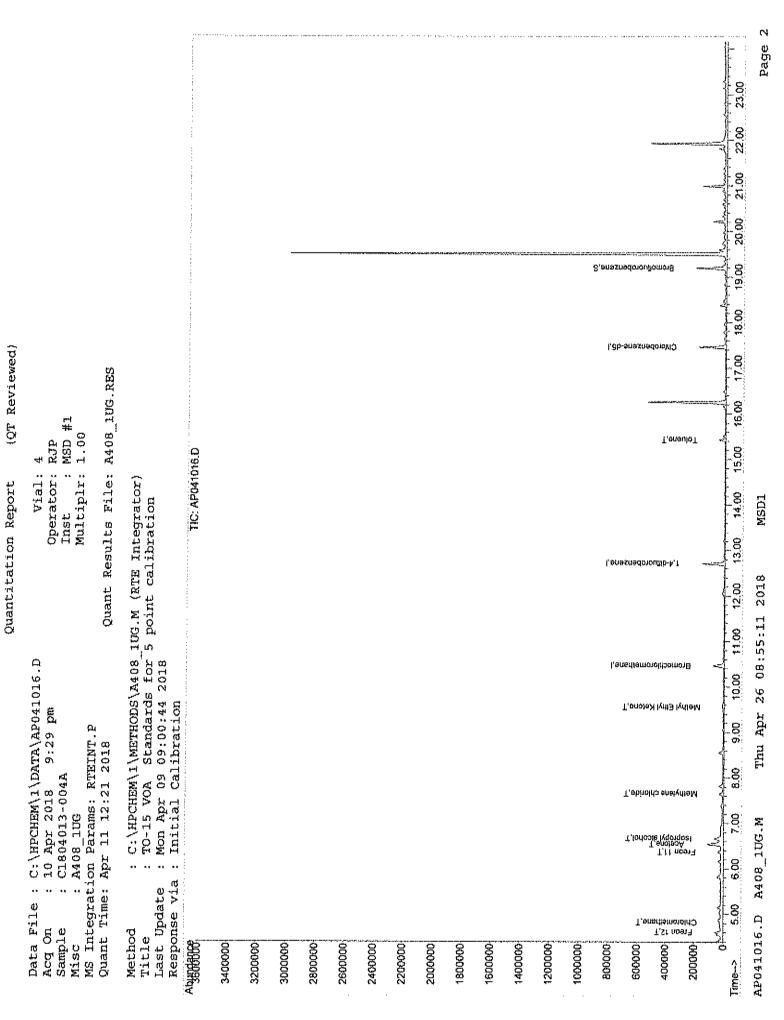
- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 8 of 14

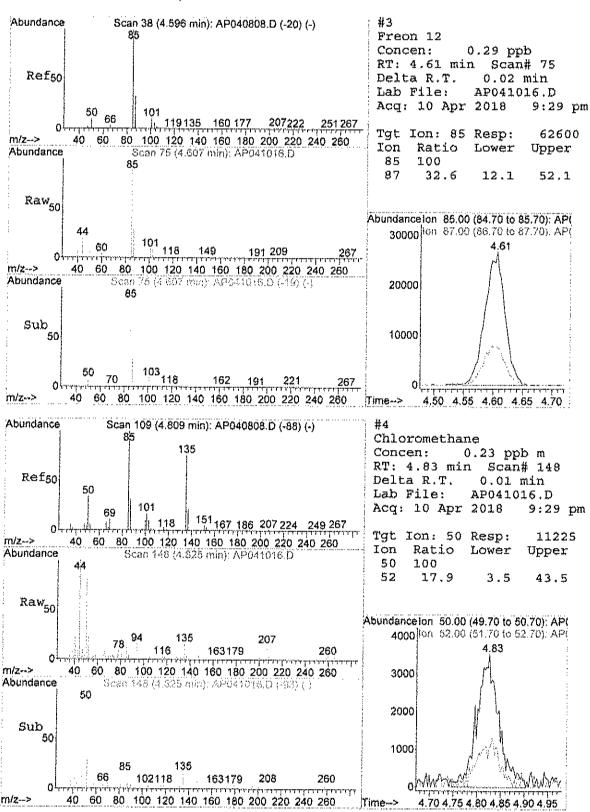
Quantitation Report (QT Reviewed)

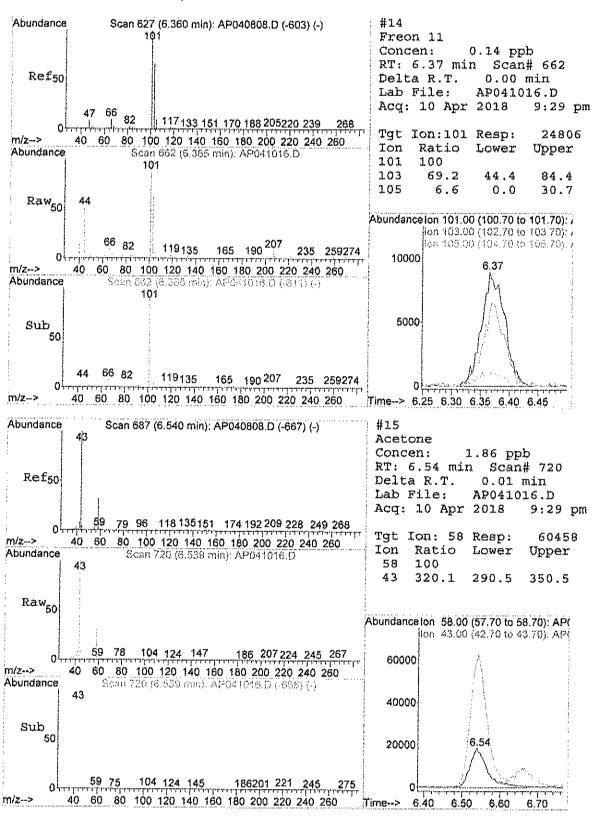
Data File : C:\HPCHEM\1\DATA\AP041016.D Vial: 4 Acq On : 10 Apr 2018 9:29 pm Operator: RJP Sample : C1804013-004A Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

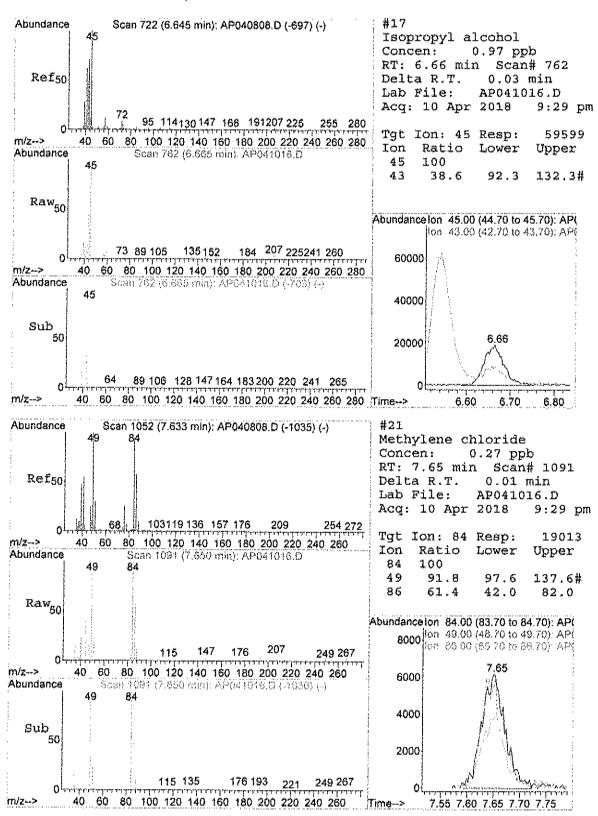
MS Integration Params: RTEINT, P

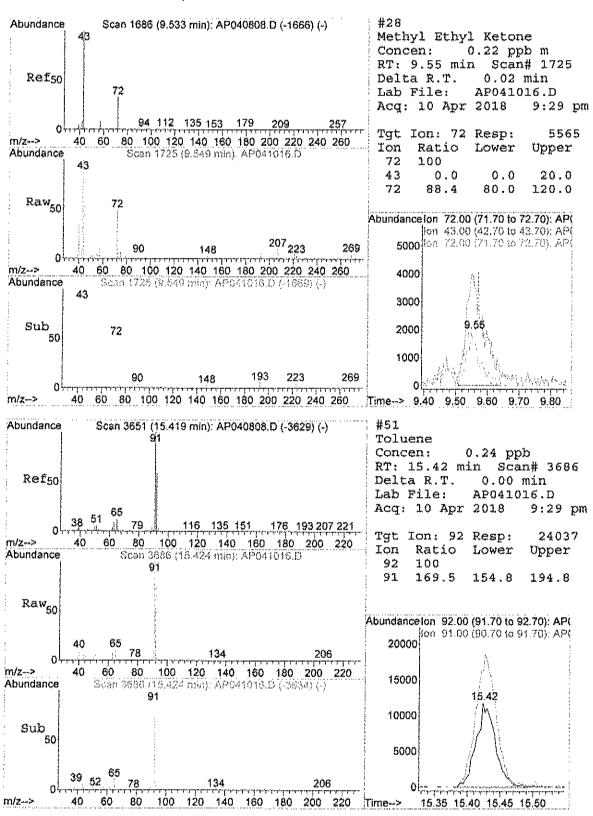

Quant Time: Apr 11 07:23:10 2018 Quant Results File: A408 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration


DataAcq Meth : 1UG RUN


Internal Standards	R.T.	QIon	Response C	onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	12.70			1.00 1.00 1.00	dqq		0.00 0.00 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70		87862 Recovery				0.00
Target Compounds						Ova	lue
3) Freon 124) Chloromethane	4.61 4.83	85 50	62600 11225m	0.29 0.23		2,4	99
14) Freon 11	6,37	101	24806	0.14			93
15) Acetone 17) Isopropyl alcohol	6.54	58	60458	1.86			100
17) Isopropyl alcohol 21) Methylene chloride	6.66	45	59599				31
28) Methyl Ethyl Ketone	7.65	84	19013	0.27	ppp	#	84
51) Toluene	9.55 15.42	72 92	5565m / 24037	$0.22 \\ 0.24$			96


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041016.D A408_1UG.M Thu Apr 26 08:55:10 2018 MSD1



Page 115 of 248

CLIENT: FPM Group, Ltd.

Lab Order: C1804013
Project: Cinderella

Lab ID: C1804013-005A

Date: 26-Apr-18

Client Sample ID: IA-4

Tag Number: 88.711

Collection Date: 4/5/2018

Matrix: AlR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	- 7		"Hg		4/9/2018
Łab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	TO-15	5		Analyst: RJP
1,1,1-Trichioroethane	< 0.15	0.15	Vđqq	1	4/10/2018 10:11:00 PM
1,1,2,2-Tetrachioroethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	₽₽bV	1	4/10/2018 10:11:00 PM
1,1-Dichloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,1-Dichtoroethene	< 0.040	0.040	Vdqq	1	4/10/2018 10:11:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,2-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,2-Dichloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
1,3-butadiene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
1,3-Dichtorobenzene	< 0.15	0.15	Vdqq	r	4/10/2018 10:11:00 PM
1,4-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
1,4-Dioxane	< 0.30	0.30	ppbV	1	4/10/2018 10:11:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
4-ethyltoluene	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Acetone	2.0	0.30	ppbV	1	4/10/2018 10:11:00 PM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Benzene	0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Benzyl chloride	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
Bromodichloromethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
Bromoform	< 0.15	0.15	ppb∨	1	4/10/2018 10:11:00 PM
Bromomethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Carbon tetrachloride	< 0.030	0.030	∨dqq	1	4/10/2018 10:11:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM
Chloroethane	< 0.15	0.15	∨dqq	1	4/10/2018 10:11:00 PM
Chloroform	88.0	0.15	∨dqq	1	4/10/2018 10:11:00 PM
Chloromethane	0.32	0.15	∨dqq	1	4/10/2018 10:11:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	∨dqq	1	4/10/2018 10:11:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	₽pb∨	1	4/10/2018 10:11:00 PM
Cyclohexane	< 0.15	0.15	ppbV	†	4/10/2018 10:11:00 PM
Dibromochloromethane	< 0.15	0.15	ppbV	1	4/10/2018 10:11:00 PM
Ethyl acetate	< 0.15	0.15	Vdqq	1	4/10/2018 10:11:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Lab ID: C1804013-005A Date: 26-Apr-18

Client Sample ID: IA-4

Tag Number: 88.711 Collection Date: 4/5/2018

Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	то	-15			Analyst: RJP
Ethylbenzene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Freon 11	0.22	0.15		ppbV	1	4/10/2018 10:11:00 PM
Freon 113	< 0.15	0.15		Vdqq	1	4/10/2018 10:11:00 PM
Freon 114	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Freon 12	0.43	0.15		ppbV	1	4/10/2018 10:11:00 PM
Heptane	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Нехале	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
isopropyi alcohol	1.8	0.15		ppbV	1	4/10/2018 10:11:00 PM
m&p-Xylene	0.11	0.30	J	ppbV	1	4/10/2018 10:11:00 PM
Methyl Butyl Ketone	< 0.30	0,30		Vdqq	1	4/10/2018 10:11:00 PM
Methyl Ethyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 10:11:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 10:11:00 PM
Methyl tert-butyl ether	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Methylene chloride	0.22	0.15		ppbV	1	4/10/2018 10:11:00 PM
o-Xylene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Propylene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Styrene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Tetrachioroethylene	0.11	0.15	J	ppbV	1	4/10/2018 10:11:00 PM
Tetrahydrofuran	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Toluene	0.72	0.15		Vdqq	1	4/10/2018 10:11:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		ppb∨	1	4/10/2018 10:11:00 PM
Trichloroethene	< 0.030	0.030		ppb∨	1	4/10/2018 10:11:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 10:11:00 PM
Vinyl chloride	< 0.040	0.040		ppb∨	1	4/10/2018 10:11:00 PM
Surr: Bromofiuorobenzene	88.0	70-130		%REC	1	4/10/2018 10:11:00 PM

o		a 1	if	٠.	•	1747
v	u	1.4	11	K.		1.0

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Е Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 14

FPM Group, Ltd.

Lab Order: C1804013

CLIENT:

Project: Cinderella

Lab ID: C1804013-005A Date: 26-Apr-18

Client Sample ID: 1A-4

Tag Number: 88.711 Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Qua	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:11:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/10/2018 10:11:00 PM
1,1-Dichloroethane	< 0.61	0,61	սց/m3	1	4/10/2018 10:11:00 PM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:11:00 PM
1,2,4-Trichlorobenzene	< 1,1	1.1	ug/m3	1	4/10/2018 10:11:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	սց/m3	1	4/10/2018 10:11:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/10/2018 10:11:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/10/2018 10:11:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/10/2018 10:11:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/10/2018 10:11:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:11:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/10/2018 10:11:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/10/2018 10:11:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/10/2018 10:11:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/10/2018 10:11:00 PM
Acetone	4.9	0.71	ug/m3	1	4/10/2018 10:11:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/10/2018 10:11:00 PM
Benzene	0.48	0.48	ug/m3	1	4/10/2018 10:11:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/10/2018 10:11:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	4/10/2018 10:11:00 PM
Bromomethane	< 0.58	0.58	ug/m3	1	4/10/2018 10:11:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/10/2018 10:11:00 PM
Carbon tetrachloride	< 0.19	0.19	ug/m3	1	4/10/2018 10:11:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/10/2018 10:11:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	4/10/2018 10:11:00 PM
Chloroform	4.3	0.73	ug/m3	1	4/10/2018 10:11:00 PM
Chloromethane	0.66	0.31	սց/m3	1	4/10/2018 10:11:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/10/2018 10:11:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/10/2018 10:11:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/10/2018 10:11:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/10/2018 10:11:00 PM
Ethyl acetate	< 0.54	0.54	ug/m3	1	4/10/2018 10:11:00 PM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/10/2018 10:11:00 PM
Freon 11	1.2	0.84	ug/m3	1	4/10/2018 10:11:00 PM
Freon 113	< 1.1	1.1	ug/m3	1	4/10/2018 10:11:00 PM
Freon 114	< 1.0	1.0	ug/m3	1	4/10/2018 10:11:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- Ē Estimated Value above quantitation range
- j Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 9 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Tag Number: 88.711 Cinderella Collection Date: 4/5/2018 Project:

C1804013-005A Matrix: AIR Lab ID:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DOE-1,1DCE	TO-15				Analyst: RJP
Freon 12	2.1	0.74		ug/m3	1	4/10/2018 10:11:00 PM
Heptane	< 0.61	0.61		սց/m3	1	4/10/2018 10:11:00 PM
Hexachtoro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 10:11:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/10/2018 10:11:00 PM
Isopropyl alcohol	4.4	0.37		ug/m3	1	4/10/2018 10:11:00 PM
m&p-Xylene	0.48	1.3	j	ug/m3	1	4/10/2018 10:11:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:11:00 PM
Methyl Ethyl Ketone	< 0.88	0.88		ug/m3	1	4/10/2018 10:11:00 PM
Methyl Isobutyl Ketone	< 1,2	1.2		ug/m3	1	4/10/2018 10:11:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 10:11:00 PM
Methylene chloride	0.76	0.52		ug/m3	1	4/10/2018 10:11:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 10:11:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 10:11:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 10:11:00 PM
Tetrachloroethylene	0.75	1.0	j	ug/m3	1	4/10/2018 10:11:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 10:11:00 PM
Totuene	2.7	0,57		ug/m3	1	4/10/2018 10:11:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 10:11:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 10:11:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:11:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 10:11:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 10:11:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 10:11:00 PM

Qualifiers:

- Quantitation Limit
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Non-routine analyte. Quantitation estimated,
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected

Date: 26-Apr-18

Client Sample ID: IA-4

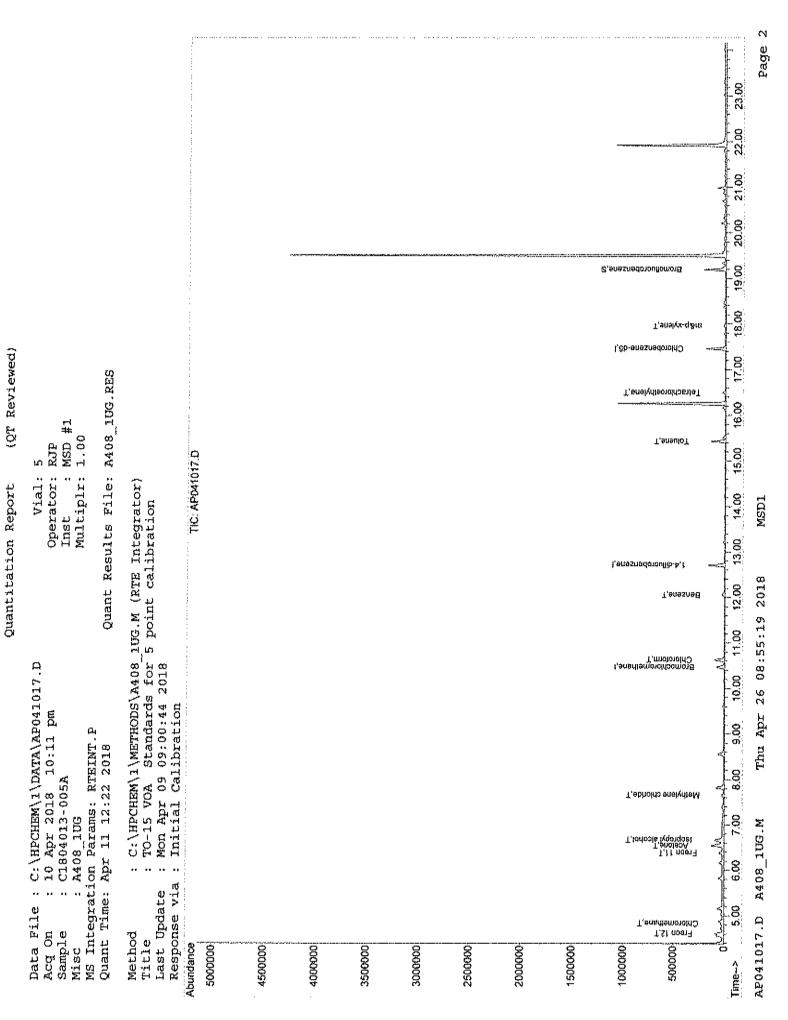
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 10 of 14

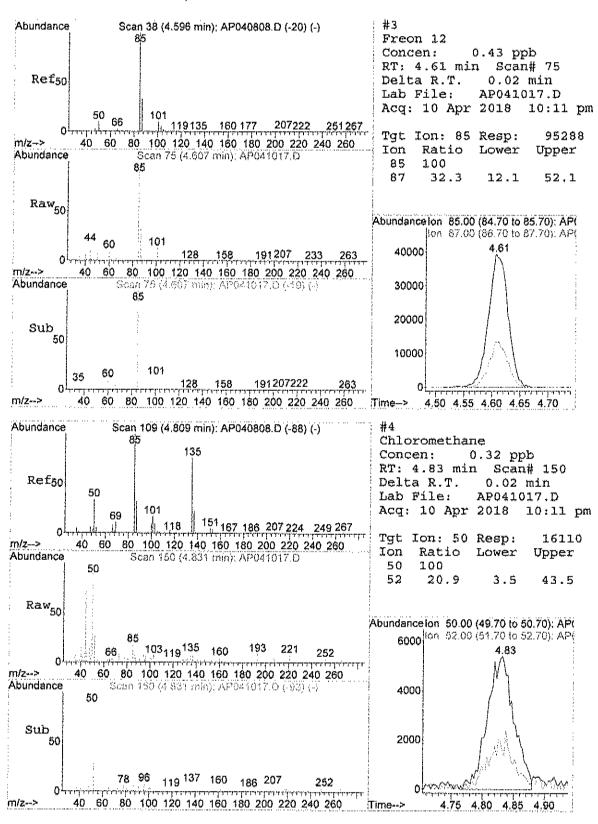
Quantitation Report (QT Reviewed)

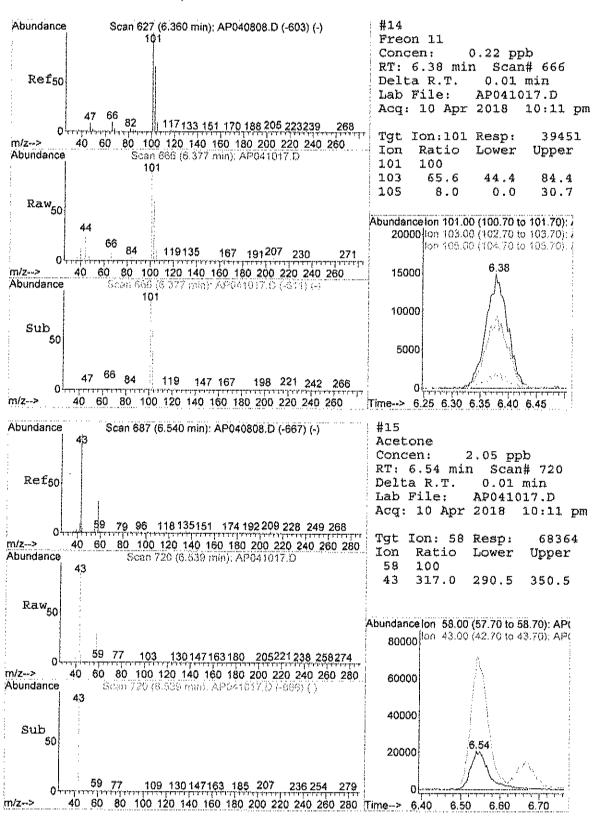
MS Integration Params: RTEINT.P
Quant Time: Apr 11 07:23:11 2018 Quant Results File: A408_1UG.RES

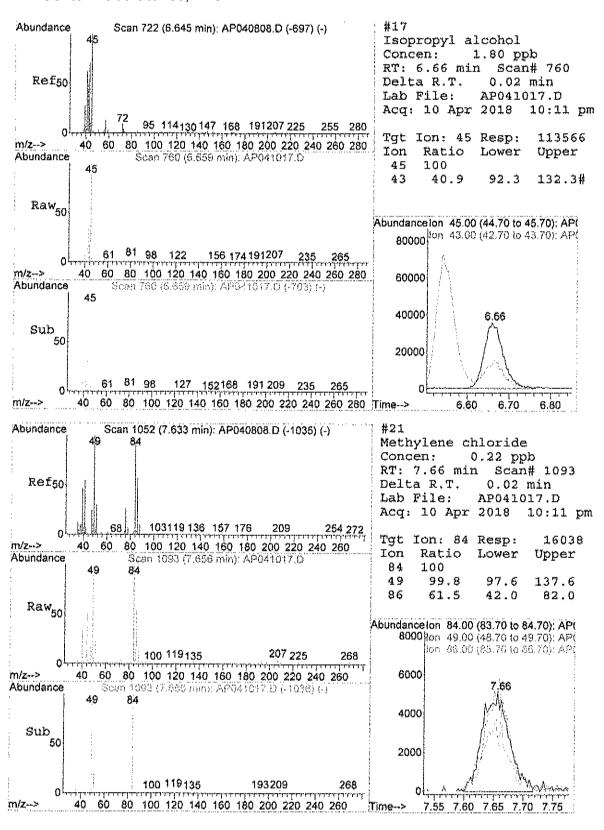
Quant Method : C:\HPCHEM\l\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

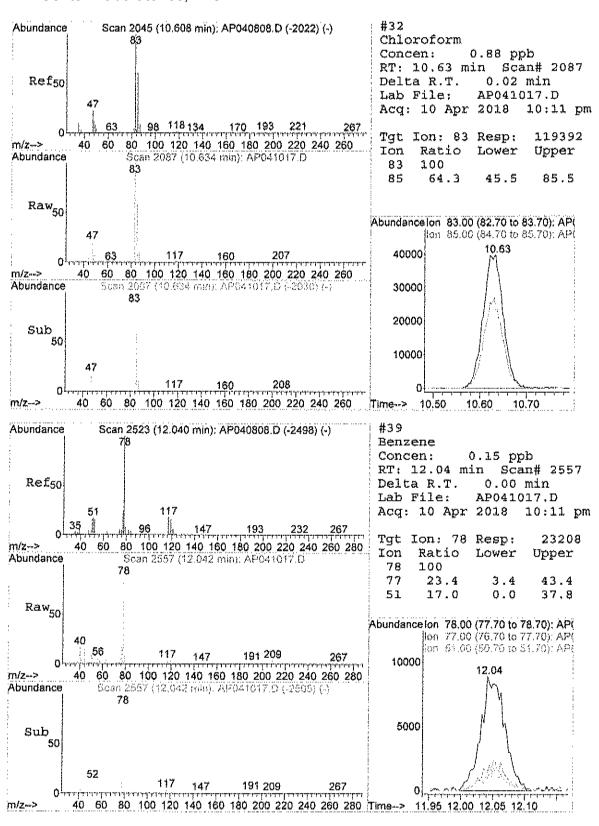

Last Update : Mon Apr 09 09:00:44 2018

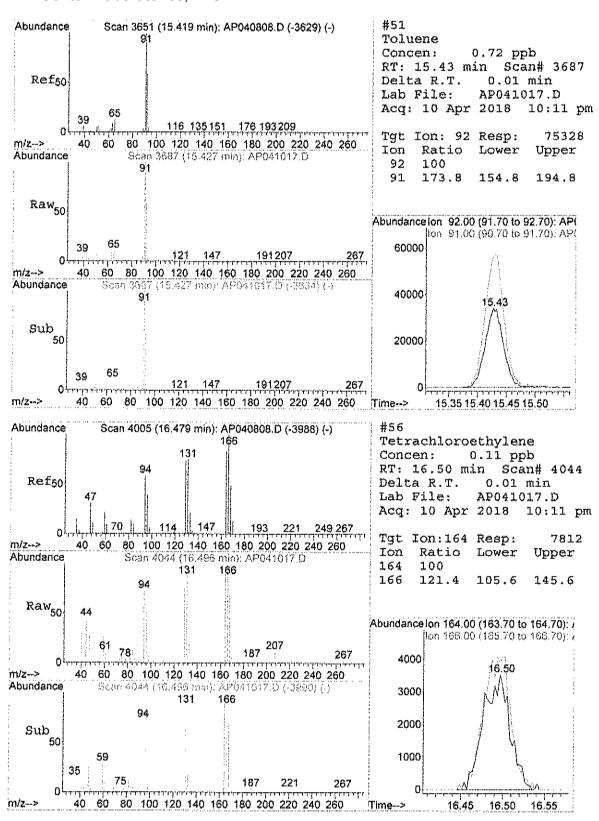
Response via : Initial Calibration

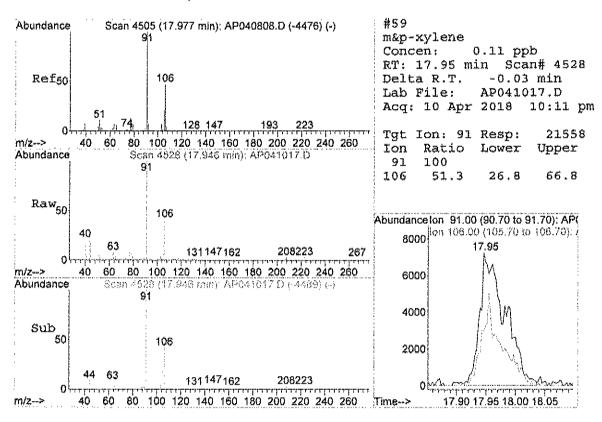

DataAcq Meth : 1UG RUN


Inte	rnal Standards	R.T.	QIon	Response (Cone (Units	Dev	(Min)
	Bromochloromethane	10.47	128	37097	1.00	ppb		0.01
35)	1,4-difluorobenzene	12.71	114	182265		ववृत् (0.01
50)	Chlorobenzene-d5			144466		dqq C		0.01
Syst	em Monitoring Compounds							
65)	Bromofluorobenzene	19.19	95	88102	0.88	dag 8		0.00
Sp	iked Amount 1.000			Recovery		88.		
Targe	et Compounds						Ova	lue
3)	Freon 12	4.61	85	95288	0.43	dqq 8		100
4)	Chloromethane	4.83				dqq 🕄		95
	Freon 11	6.38				dqq S		98
15)	Acetone	6.54	58			dqq		98
17)	Isopropyl alcohol	6.66	45	113566		dqq (33
21)		7.66	84	16038		bbp 5		89
32)		10.63	83	119392		dqq		98
39)		12.04		23208		dad :		99
51)	Toluene		92			dqq :		99
,	Tetrachloroethylene	16.50		7812		ppb bgg		96
	m&p-xylene	17.95	91	21558		daa . daa		9 C


^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041017.D A408_1UG.M Thu Apr 26 08:55:18 2018 MSD1




Page 125 of 248



CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-006A

Date: 26-Apr-18

Client Sample ID: Ambient

Tag Number: 207.1420

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Q	uał Units	DF	Date Analyzed
FIELD PARAMETERS		FLD			Analyst:
Lab Vacuum In	-12		"Hg		4/9/2018
Lab Vacuum Out	-30		"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15	;		Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	₽₽b∨	1	4/10/2018 10:54:00 PM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
1,1,2-Trichloroethane	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
1,1-Dichloroethane	< 0.15	0.15	₽₽bV	1	4/10/2018 10:54:00 PM
1,1-Dichloroethene	< 0.040	0.040	ppb∨	1	4/10/2018 10:54:00 PM
1,2,4-Trichlorobenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,2,4-Trimethylbenzene	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
1,2-Dibromoethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
1,2-Dichlorobenzene	< 0.1 5	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,2-Dichloroethane	< 0.15	0.15	ррЬ∨	1	4/10/2018 10:54:00 PM
1,2-Dichloropropane	< 0.15	0.15	ppbV	7	4/10/2018 10:54:00 PM
1,3,5-Trimethylbenzene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
1,3-butadiene	< 0.15	0.15	∨dqq	1	4/10/2018 10:54:00 PM
1,3-Dichlorobenzene	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
1,4-Dichlorobenzene	10	1.5	ppbV	10	4/11/2018 5:17:00 AM
1,4-Dioxane	< 0.30	0.30	₽₽bV	1	4/10/2018 10:54:00 PM
2,2,4-trimethylpentane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
4-ethyltoluene	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Acetone	11	3.0	ppbV	10	4/11/2018 5:17:00 AM
Allyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Benzene	0.13	0.15	J ppb∨	1	4/10/2018 10:54:00 PM
Benzyl chloride	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Bromodichloromethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Bromoform	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Bromomethane	< 0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM
Carbon disulfide	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Carbon tetrachloride	< 0.030	0.030	ppbV	1	4/10/2018 10:54:00 PM
Chlorobenzene	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Chloroethane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Chloroform	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Chloromethane	0.28	0.15	Vdqq	1	4/10/2018 10:54:00 PM
cis-1,2-Dichloroethene	< 0.040	0.040	∨dqq	1	4/10/2018 10:54:00 PM
cis-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Cyclohexane	< 0.15	0.15	ppbV	1	4/10/2018 10:54:00 PM
Dibromochloromethane	< 0.15	0.15	Vdqq	1	4/10/2018 10:54:00 PM
Ethyl acetate	0.15	0.15	ppb∨	1	4/10/2018 10:54:00 PM

Qualifiers:

- * Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013 Project: Cinderella

Lab ID: C1804013-006A

Date: 26-Apr-18

Client Sample ID: Ambient

Tag Number: 207.1420

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15				Analyst: RJP
Ethylbenzene	< 0.15	0.15		Vdqq	1	4/10/2018 10:54:00 PM
Freon 11	0.20	0.15		ppbV	1	4/10/2018 10:54:00 PM
Freon 113	< 0.15	0.15		ppbV	1	4/10/2018 10:54:00 PM
Freon 114	< 0.15	0.15		∨dqq	1	4/10/2018 10:54:00 PM
Freon 12	0.30	0.15		ppbV	1	4/10/2018 10:54:00 PM
Heptane	0.47	0.15		ppb∀	1	4/10/2018 10:54:00 PM
Hexachloro-1,3-butadiene	< 0.15	0.15		ppbV	1	4/10/2018 10:54:00 PM
Hexane	0.23	0.15		ppbV	1	4/10/2018 10:54:00 PM
Isopropyl alcohol	1.8	0.15		ppbV	1	4/10/2018 10:54:00 PM
m&p-Xylene	0.21	0.30	j	ppb∨	1	4/10/2018 10:54:00 PM
Methyl Butyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 10:54:00 PM
Methyl Ethyl Ketone	0.44	0.30		ppb∨	1	4/10/2018 10:54:00 PM
Methyl Isobutyl Ketone	< 0.30	0.30		ppbV	1	4/10/2018 10:54:00 PM
Methyl tert-butyl ether	< 0.15	0.15		∨dqq	1	4/10/2018 10:54:00 PM
Methylene chloride	0.28	0.15		ppbV	1	4/10/2018 10:54:00 PM
o-Xylene	< 0.15	0.15		ppb∨	1	4/10/2018 10:54:00 PM
Propylene	< 0.15	0.15		ppb∨	1	4/10/2018 10:54:00 PM
Styrene	< 0.15	0.15		ppb∨	1	4/10/2018 10:54:00 PM
Tetrachloroethylene	< 0.15	0.15		ppbV	1	4/10/2018 10:54:00 PM
Tetrahydrofuran	< 0.15	0.15		ppb∨	1	4/10/2018 10:54:00 PM
Toluene	0.90	0.15		ppb∨	1	4/10/2018 10:54:00 PM
trans-1,2-Dichloroethene	< 0.15	0.15		Vdqq	1	4/10/2018 10:54:00 PM
trans-1,3-Dichloropropene	< 0.15	0.15		Vdqq	1	4/10/2018 10:54:00 PM
Trichloroethene	< 0.030	0.030		ppb∨	1	4/10/2018 10:54:00 PM
Vinyl acetate	< 0.15	0.15		ppbV	1	4/10/2018 10:54:00 PM
Vinyl Bromide	< 0.15	0.15		ppbV	1	4/10/2018 10:54:00 PM
Vinyl chloride	< 0.040	0.040		ppbV	1	4/10/2018 10:54:00 PM
Surr: Bromofluorobenzene	90.0	70-130		%REC	1	4/10/2018 10:54:00 PM

- Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 12 of 14

CLIENT: FPM Group, Ltd.

Lab Order:

C1804013

Cinderella

Project: Lab ID:

C1804013-006A

Date: 26-Apr-18

Client Sample ID: Ambient

Tag Number: 207,1420

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1D		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/10/2018 10:54:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/10/2018 10:54:00 PM
1,1,2-Trichtoroethane	< 0.82	0.82		ug/m3	1	4/10/2018 10:54:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/10/2018 10:54:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:54:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/10/2018 10:54:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dichloroethane	≺ 0.61	0.61		ug/m3	1	4/10/2018 10:54:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/10/2018 10:54:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/10/2018 10:54:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/10/2018 10:54:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/10/2018 10:54:00 PM
1,4-Dichlorobenzene	62	9.0		ug/m3	10	4/11/2018 5:17:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/10/2018 10:54:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/10/2018 10:54:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/10/2018 10:54:00 PM
Acetone	26	7.1		ug/m3	10	4/11/2018 5:17:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/10/2018 10:54:00 PM
Benzene	0.42	0.48	j	ug/m3	1	4/10/2018 10:54:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/10/2018 10:54:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/10/2018 10:54:00 PM
Bromoform	< 1.6	1.6		սց/m3	1	4/10/2018 10:54:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/10/2018 10:54:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/10/2018 10:54:00 PM
Carbon tetrachloride	< 0.19	0.19		ug/n13	1	4/10/2018 10:54:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/10/2018 10:54:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/10/2018 10:54:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/10/2018 10:54:00 PM
Chloromethane	0.58	0.31		ug/m3	1	4/10/2018 10:54:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:54:00 PM
cis-1,3-Dichloropropena	< 0.68	0.68		ug/m3	1	4/10/2018 10:54:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/10/2018 10:54:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/10/2018 10:54:00 PM
Ethyl acetate	0.54	0.54		ug/m3	1	4/10/2018 10:54:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/10/2018 10:54:00 PM
Freon 11	1.1	0.84		ug/m3	1	4/10/2018 10:54:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/10/2018 10:54:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/10/2018 10:54:00 PM

Qualifiers:

- Quantitation Limit
- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- ε Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 11 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013
Project: Cinderella

Lab ID: C1804013-006A

Date: 26-Apr-18

Client Sample ID: Ambient

Tag Number: 207.1420 Collection Date: 4/5/2018

Matrix: AIR

Anulyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15			Analyst: RJP	
Freon 12	1.5	0.74		ug/m3	1	4/10/2018 10:54:00 PM
Heptane	1.9	0.61		ug/m3	1	4/10/2018 10:54:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/10/2018 10:54:00 PM
Hexane	0.81	0.53		ug/m3	1	4/10/2018 10:54:00 PM
Isopropyl alcohol	4,5	0.37		ug/m3	1	4/10/2018 10:54:00 PM
m&p-Xylene	0.91	1.3	J	ug/m3	1	4/10/2018 10:54:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/10/2018 10:54:00 PM
Methyl Ethyl Ketone	1.3	0.88		ug/m3	1	4/10/2018 10:54:00 PM
Methyl Isobutyl Ketone	< 1.2	1,2		ug/m3	1	4/10/2018 10:54:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/10/2018 10:54:00 PM
Methylene chloride	0.97	0.52		ug/m3	1	4/10/2018 10:54:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/10/2018 10:54:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/10/2018 10:54:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/10/2018 10:54:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/10/2018 10:54:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/10/2018 10:54:00 PM
Toluene	3.4	0.57		ug/m3	1	4/10/2018 10:54:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/10/2018 10:54:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/10/2018 10:54:00 PM
Trichloroethene	< 0.16	0.16		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/10/2018 10:54:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/10/2018 10:54:00 PM

Ons	11.5	44.0-44

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- NO Not Detected at the Limit of Detection

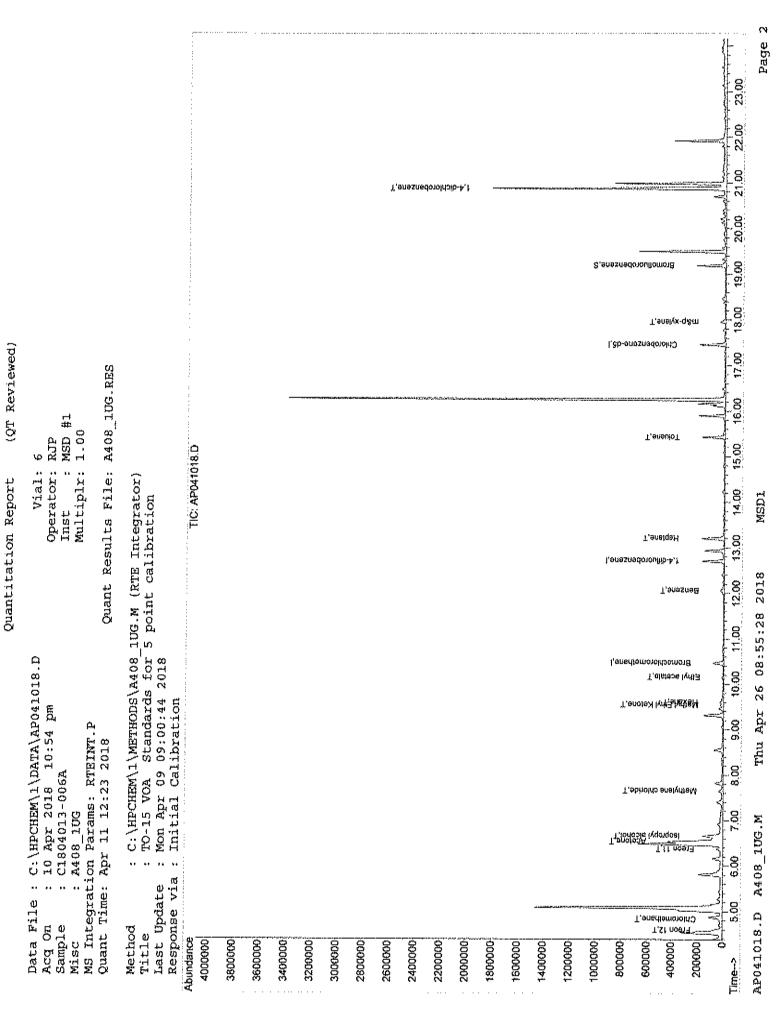
Page 12 of 14

Quantitation Report (QT Reviewed)

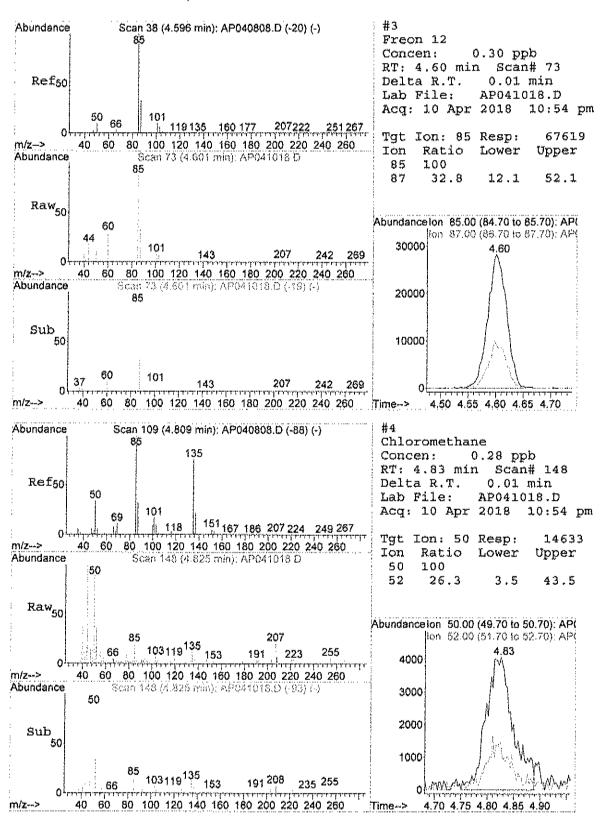
Data File : C:\HPCHEM\1\DATA\AP041018.D
Acq On : 10 Apr 2018 10:54 pm
Sample : C1804013-006A
Misc : A408_1UG Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00

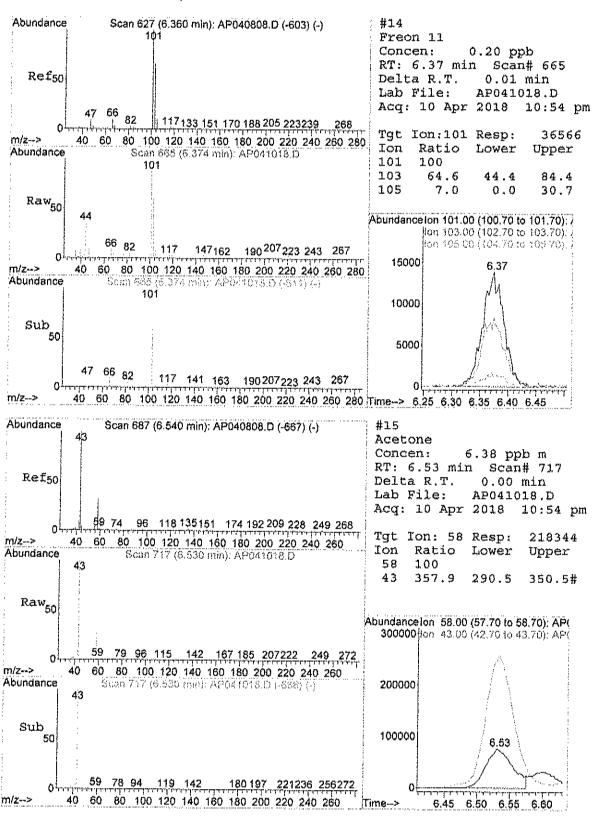
MS Integration Params: RTEINT.P

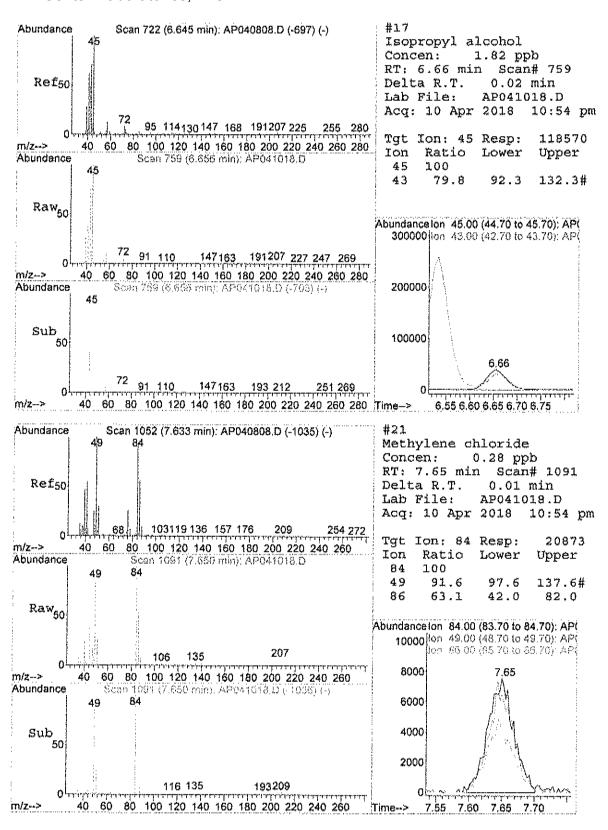
Quant Time: Apr 11 07:23:12 2018 Quant Results File: A408_lUG.RES

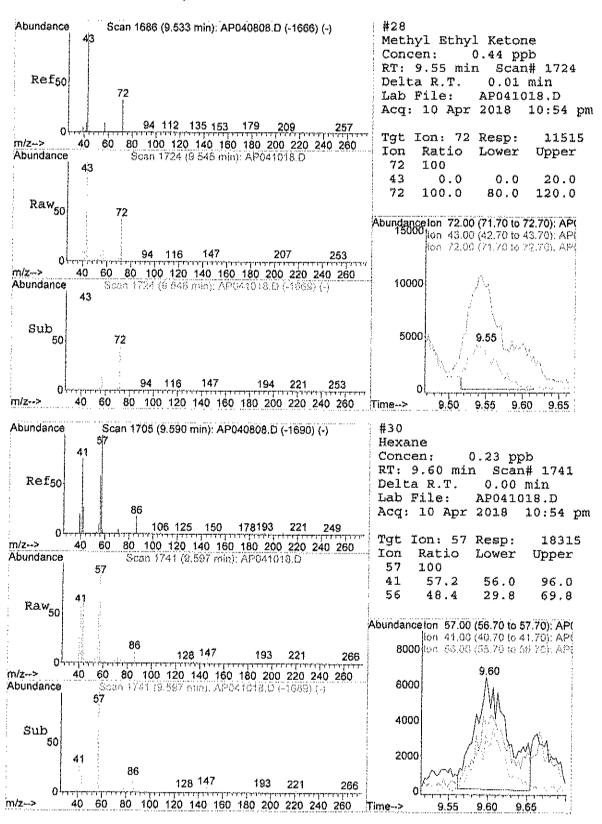

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

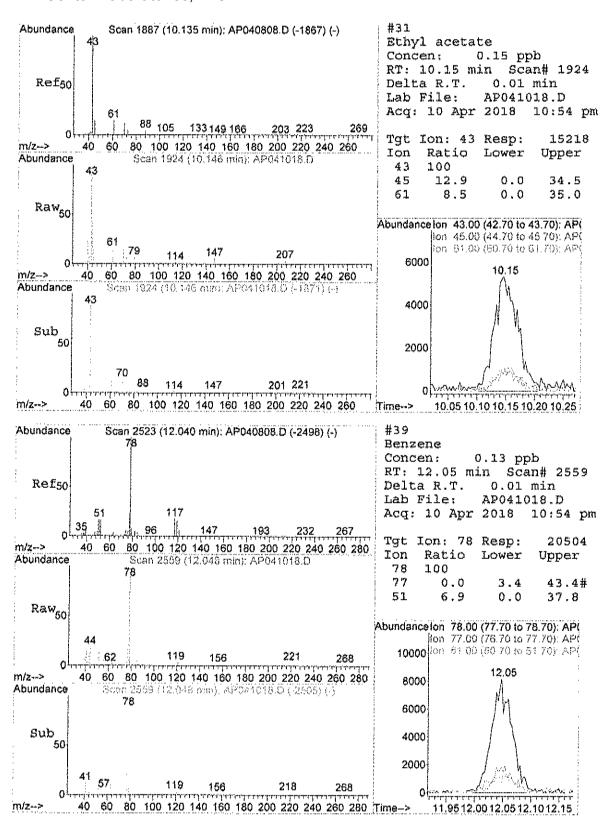
Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration

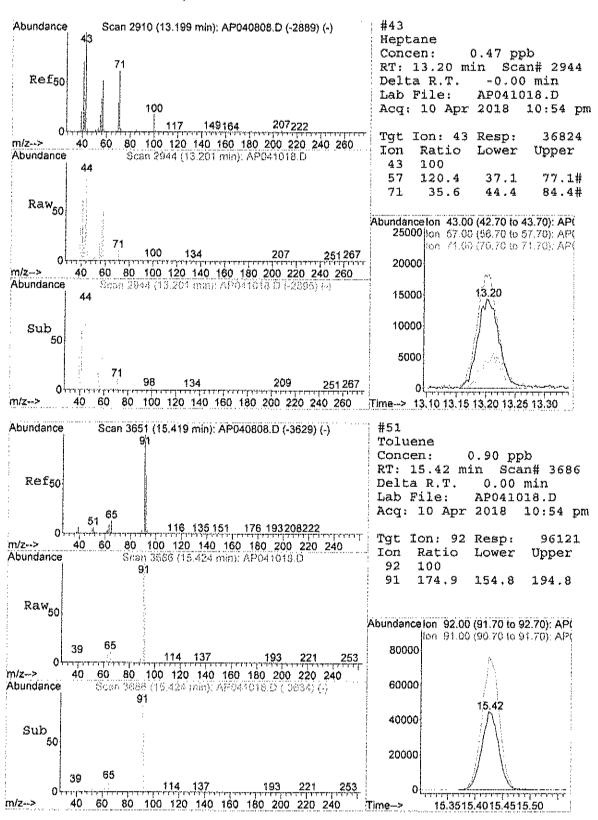

DataAcq Meth : 1UG_RUN

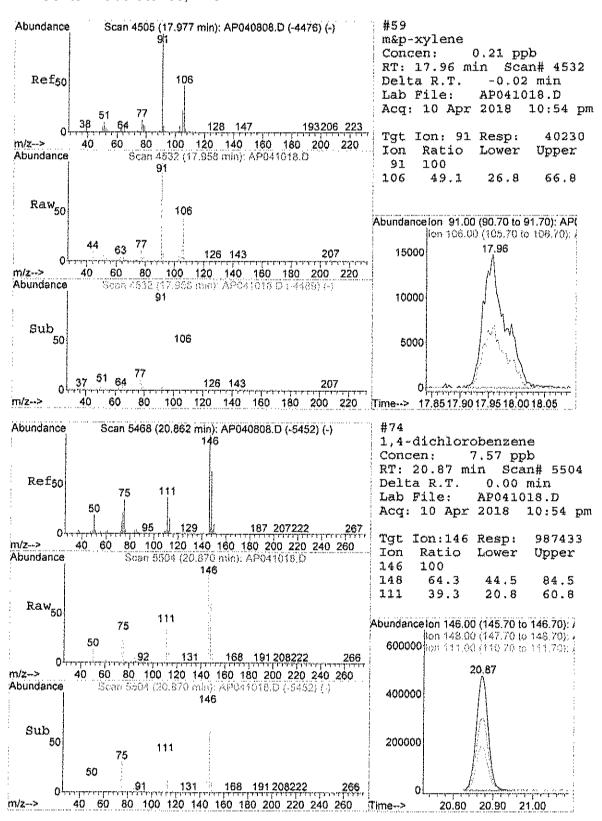

Internal Standards	R.T.	QIon	Response C	onc t	nits	Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene	10.47		38145 184139		ppb		0.02
50) Chlorobenzene-d5	17.45	117	147587		dqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.19	95	91745	0.90	dqq		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery	· <u></u>	90	. OO\$	
Target Compounds						Qva	lue
3) Freon 12	4.60		67619		dqq		99
4) Chloromethane	4.83	50			ppb		94
14) Freon 11	6.37	101	36566 _a		dqq		98
15) Acetone	6.53	58	218344m¶		ppb		
17) Isopropyl alcohol	6.66	45	118570		qqq		70
21) Methylene chloride	7.65	84	20873	0.28	ppb		84
28) Methyl Ethyl Ketone	9.55	72	11515		qqq	#	100
30) Hexane	9.60	57	18315		dqq		86
31) Ethyl acetate	10.15	43	15218	0.15	ppb		90
39) Benzene	12.05	78	20504	0.13	dqq	#	62
43) Heptane	13.20	43	36824	0.47	ppb	#	40
51) Toluene	15.42	92	96121		dqq		100
59) m&p-xylene	17.96	91	40230	0.21	ppb		97
74) 1,4-dichlorobenzene	20.87	146	987433	7.57	dąą		99


^(#) = qualifier out of range (m) = manual integration (+) = signals summed AP041018.D A408 1UG.M Thu Apr 26 08:55:27 2018 MSD1




Page 137 of 248

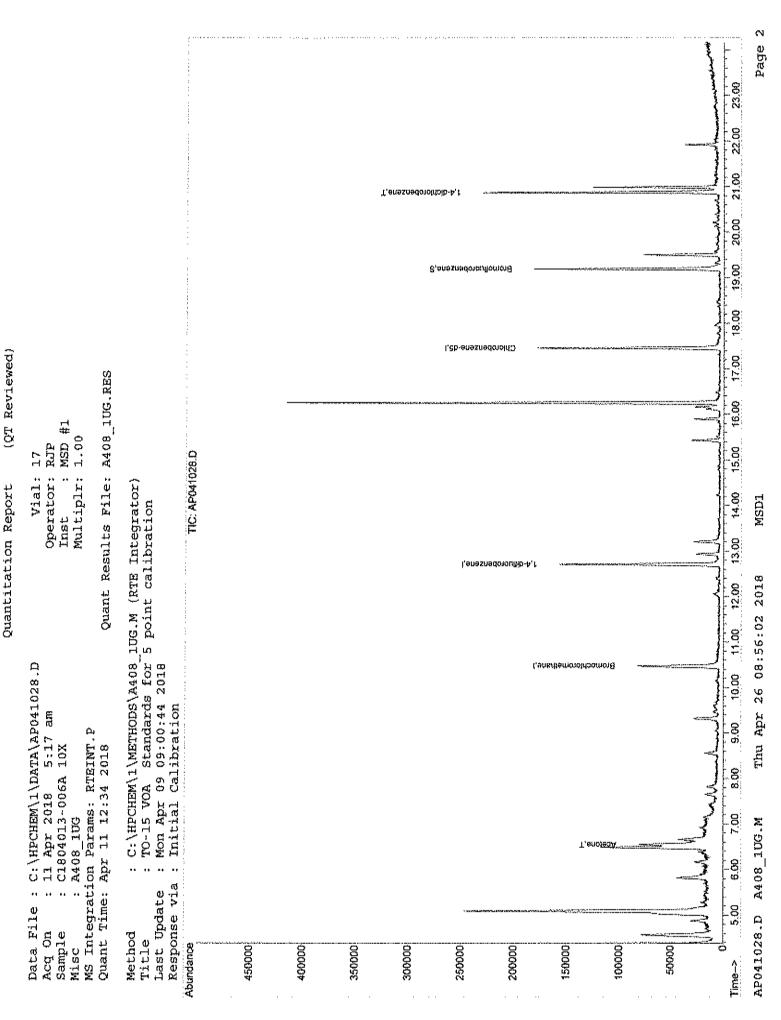




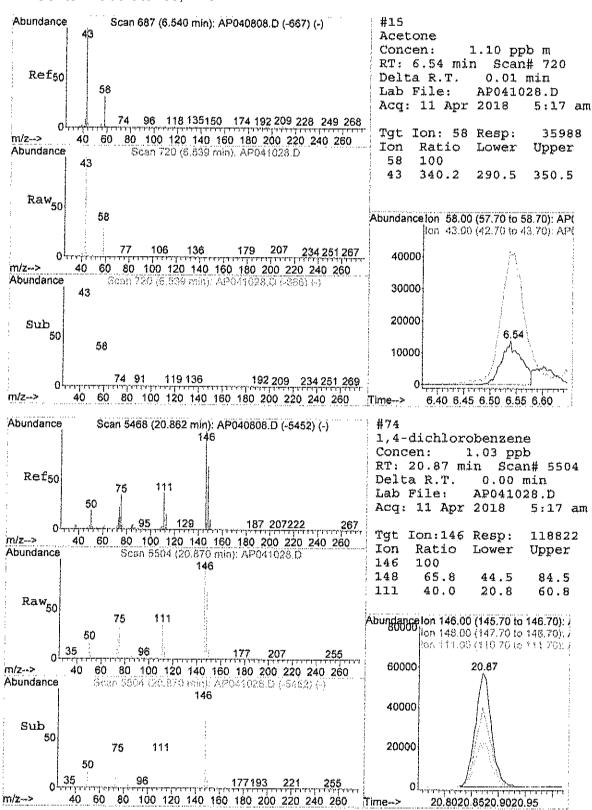
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041028.D Vial: 17 Acq On : 11 Apr 2018 5:17 am Operator: RJP Sample : C1804013-006A 10X Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 11 07:23:22 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	onc Units	: Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.47 12.70 17.45	128 114 117	36370 171207 130400	1.00 pph 1.00 pph 1.00 pph	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	76163 Recovery	0.84 ppb = 84	
Target Compounds		NI -1-			Qvalue
<pre>15) Acetone 74) 1,4-dichlorobenzene</pre>	6.54 20.87	58 146	35988m 🗗 118822	1.10 pph 1.03 pph	

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041028.D A408 1UG.M Thu Apr 26 08:56:01 2018 MSD1

Page 146 of 248

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-007A

Date: 26-Apr-18

Client Sample ID: Effluent

Tag Number: 243

Collection Date: 4/5/2018

Matrix: AlR

Analyses	Result	**Limit (Qual	Units	DF	Date Analyzed
FIELD PARAMETERS		FLE				Analyst:
Lab Vacuum In	- 1		•	"Hg		4/9/2018
Lab Vacuum Out	-30		,	"Hg		4/9/2018
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-1	15			Analyst: RJP
1,1,1-Trichloroethane	< 0.15	0.15	,	ppbV	1	4/11/2018 7:12:00 AM
1,1,2,2-Tetrachloroethane	< 0.15	0.15	ļ	ppb∨	1	4/11/2018 7:12:00 AM
1,1,2-Trichloroethane	< 0.15	0.15	}	Vdqq	1	4/11/2018 7:12:00 AM
1,1-Dichloroethane	< 0.15	0.15	į	ppbV	1	4/11/2018 7:12:00 AM
1,1-Dichloroethene	< 0.040	0.040	1	₽₽bV	1	4/11/2018 7:12:00 AM
1,2,4-Trichtorobenzene	< 0.15	0.15	ŧ	opb∨	1	4/11/2018 7:12:00 AM
1,2,4-Trimethylbenzene	0.41	0.15	F	Vdqq	1	4/11/2018 7:12:00 AM
1,2-Dibromoethane	< 0.15	0.15	ţ	∨dqo	1	4/11/2018 7:12:00 AM
1,2-Dichlorobenzene	< 0.15	0.15	;	opbV	1	4/11/2018 7:12:00 AM
1,2-Dichloroethane	< 0.15	0.15	ķ	opbV	1	4/11/2018 7:12:00 AM
1,2-Dichloropropane	< 0.15	0.15	ŗ	opb∨	1	4/11/2018 7:12:00 AM
1,3,5-Trimethylbenzene	0.17	0.15	Ţ	opb∨	1	4/11/2018 7:12:00 AM
1,3-butadiene	< 0.15	0.15	ţ	opbV	1	4/11/2018 7:12:00 AM
1,3-Dichlorobenzene	< 0.15	0.15	ŗ	opb∨	1	4/11/2018 7:12:00 AM
1,4-Dichlorobenzene	0.10	0.15	J	Vđạc	1	4/11/2018 7:12:00 AM
1,4-Dioxane	< 0.30	0.30	ŗ	∨dqc	1	4/11/2018 7:12:00 AM
2,2,4-trimethylpentane	1.2	0.15	F	pbV	1	4/11/2018 7:12:00 AM
4-ethyltoluene	0.12	0.15	J p	Vdqc	1	4/11/2018 7:12:00 AM
Acetone	4.4	3.0	р	opb∨	10	4/10/2018 11:31:00 PM
Allyl chloride	< 0.15	0.15	ŗ	Vđạc	1	4/11/2018 7:12:00 AM
Benzene	1.2	0.15	þ	Vdqq	1	4/11/2018 7:12:00 AM
Benzyl chloride	≺ 0.15	0.15	Ė	pb∨	1	4/11/2018 7:12:00 AM
Bromodichloromethane	< 0.15	0.15	Þ	Vdqc	1	4/11/2018 7:12:00 AM
Bromoform	< 0.15	0.15	p	pbV	1	4/11/2018 7:12:00 AM
Bromomethane	< 0.15	0.15	р	opbV	1	4/11/2018 7:12:00 AM
Carbon disulfide	< 0.15	0.15		pbV	1	4/11/2018 7:12:00 AM
Carbon tetrachloride	< 0.030	0.030	þ	Vdq	1	4/11/2018 7:12:00 AM
Chlorobenzene	< 0.15	0.15		pb∨	1	4/11/2018 7:12:00 AM
Chloroethane	< 0.15	0.15		pbV	1	4/11/2018 7:12:00 AM
Chloroform	1.3	0.15		pbV	1	4/11/2018 7:12:00 AM
Chloromethane	0.11	0.15		pb∨	1	4/11/2018 7:12:00 AM
cis-1,2-Dichloroethene	< 0.040	0.040		pb∨	1	4/11/2018 7:12:00 AM
cis-1,3-Dichloropropene	< 0.15	0.15		pbV	1	4/11/2018 7:12:00 AM
Cyclohexane	0.39	0.15		pb∨	1	4/11/2018 7:12:00 AM
Dibromochloromethane	< 0.15	0.15		pbV	1	4/11/2018 7:12:00 AM
Ethyl acetate	< 0.15	0.15		pb∨	1	4/11/2018 7:12:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab lD: C1804013-007A Date: 26-Apr-18

Client Sample ID: Effluent

Tag Number: 243

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Qual		DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DC	E-1,1DCE	TO-15			Analyst: RJP
Ethylbenzene	0.27	0.15	₽₽bV	1	4/11/2018 7:12:00 AM
C 44	0.00	0.45			

					Date I I I I I I I I I I I I I I I I I I I	
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-1	5		Analyst: RJF	
Ethylbenzene	0.27	0.15	Vđqq	1	4/11/2018 7:12:00 AM	
Freon 11	0.22	0.15	₽₽bV	1	4/11/2018 7:12:00 AM	
Freon 113	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM	
Freon 114	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM	
Freon 12	0.42	0.15	ppbV	1	4/11/2018 7:12:00 AM	
Heptane	1.7	0.15	ppb∨	1	4/11/2018 7:12:00 AM	
Hexachloro-1,3-butadiene	< 0.15	0.15	Vdqq	1	4/11/2018 7:12:00 AM	
Hexane	1.6	0.15	ppb∨	1	4/11/2018 7:12:00 AM	
Isopropyl alcohol	6.1	1.5	ppb∨	10	4/10/2018 11:31:00 PM	
m&p-Xylene	0.72	0.30	ppbV	1	4/11/2018 7:12:00 AM	
Methyl Butyl Ketone	< 0.30	0.30	ppb∨	1	4/11/2018 7:12:00 AM	
Methyl Ethyl Ketone	0.47	0.30	∨dqq	1	4/11/2018 7:12:00 AM	
Methyl Isobutyl Ketone	< 0.30	0.30	ppb∨	ŧ	4/11/2018 7:12:00 AM	
Methyl tert-butyl ether	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM	
Methylene chloride	0.22	0.15	∨dqq	1	4/11/2018 7:12:00 AM	
o-Xylene	0.23	0.15	ppbV	1	4/11/2018 7:12:00 AM	
Propylene	< 0.15	0.15	ppb∨	1	4/11/2018 7:12:00 AM	
Styrene	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM	
Tetrachloroethylene	580	40	PpbV	270	4/11/2018 7:49:00 AM	
Tetrahydrofuran	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM	
Toluene	0.70	0.15	Vdqq	1	4/11/2018 7:12:00 AM	
trans-1,2-Dichloroethene	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM	
trans-1,3-Dichloropropene	< 0.15	0.15	ppbV	1	4/11/2018 7:12:00 AM	
Trichloroethene	< 0.030	0.030	ppbV	1	4/11/2018 7:12:00 AM	
Vinyl acetate	< 0.15	0.15	Vdqq	1	4/11/2018 7:12:00 AM	
Vinyl Bromide	< 0.15	0.15	₽₽bV	1	4/11/2018 7:12:00 AM	
Vinyl chloride	< 0.040	0.040	Vdqq	1	4/11/2018 7:12:00 AM	
Surr: Bromofluorobenzene	98.0	70-130	%REC	1	4/11/2018 7:12:00 AM	

Qualifiers:

Page 14 of 14

Quantitation Limit

В Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte, Quantitation estimated.

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-007A

Date: 26-Apr-18

Client Sample ID; Effluent

Tag Number: 243

Collection Date: 4/5/2018

Matrix: AlR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TC)-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/11/2018 7:12:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/11/2018 7:12:00 AM
1,1,2-Trichtoroethane	< 0.82	0.82		ug/m3	1	4/11/2018 7:12:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/11/2018 7:12:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/11/2018 7:12:00 AM
1,2,4-Trichtorobenzene	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
1,2,4-Trimethylbenzene	2.0	0.74		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/11/2018 7:12:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/11/2018 7:12:00 AM
1,3,5-Trimethylbenzene	0.84	0.74		ug/m3	1	4/11/2018 7:12:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/11/2018 7:12:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/11/2018 7:12:00 AM
1,4-Dichlorobenzene	0.60	0.90	J	ug/m3	1	4/11/2018 7:12:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
2,2,4-trimethylpentane	5.6	0.70		ug/m3	1	4/11/2018 7:12:00 AM
4-ethyltoluene	0.59	0.74	J	ug/m3	1	4/11/2018 7:12:00 AM
Acetone	10	7.1		ug/m3	10	4/10/2018 11:31:00 PA
Allyl chloride	< 0.47	0.47		ug/m3	1	4/11/2018 7:12:00 AM
Benzene	3.9	0.48		ug/m3	1	4/11/2018 7:12:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/11/2018 7:12:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/11/2018 7:12:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/11/2018 7:12:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/11/2018 7:12:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/11/2018 7:12:00 AM
Carbon tetrachloride	< 0.19	0.19		ug/m3	1	4/11/2018 7:12:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/11/2018 7:12:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/11/2018 7:12:00 AM
Chloroform	6.4	0.73		ug/m3	1	4/11/2018 7:12:00 AM
Chloromethane	0.23	0.31	J	ug/m3	1	4/11/2018 7:12:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/11/2018 7:12:00 AM
bis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/11/2018 7:12:00 AM
Cyclohexane	1.3	0.52		ug/m3	1	4/11/2018 7:12:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/11/2018 7:12:00 AM
Ethyl acetate	< 0.54	0.54		ug/m3	1	4/11/2018 7:12:00 AM
thylbenzene	1.2	0.65		ug/m3	1	4/11/2018 7:12:00 AM
reon 11	1.2	0.84		ug/m3	1	4/11/2018 7:12:00 AM
reon 113	< 1.1	1.1		ug/m3	1	4/11/2018 7:12:00 AM
Freon 114	< 1,0	1.0		ug/m3	1	4/11/2018 7:12:00 AM

Qualifiers:

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

Page 13 of 14

CLIENT: FPM Group, Ltd.

Lab Order: C1804013

Project: Cinderella

Lab ID: C1804013-007A

Date: 26-Apr-18

Client Sample ID: Effluent

Tag Number: 243

Collection Date: 4/5/2018

Matrix: AIR

Analyses	Result	**Limit Qua	l Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO-15			Analyst: RJF
Freon 12	2.1	0.74	ug/m3	1	4/11/2018 7:12:00 AM
Heptane	7.0	0.61	ug/m3	1	4/11/2018 7:12:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/11/2018 7:12:00 AM
Hexane	5.5	0.53	ug/m3	1	4/11/2018 7:12:00 AM
Isopropyi alcohol	15	3.7	ug/m3	10	4/10/2018 11:31:00 PM
m&p-Xylene	3.1	1.3	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Ethyl Ketone	1.4	0.88	ug/m3	1	4/11/2018 7:12:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/11/2018 7:12:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/11/2018 7:12:00 AM
Methylene chloride	0.76	0.52	ug/m3	1	4/11/2018 7:12:00 AM
o-Xylene	1.0	0.65	ug/m3	1	4/11/2018 7:12:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/11/2018 7:12:00 AM
Styrene	< 0.64	0.64	ug/m3	1	4/11/2018 7:12:00 AM
Tetrachloroethylene	3900	270	ug/m3	270	4/11/2018 7:49:00 AM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	4/11/2018 7:12:00 AM
Toluene	2.6	0.57	ug/m3	1	4/11/2018 7:12:00 AM
trans-1,2-Dichtoroethene	< 0.59	0.59	ug/m3	1	4/11/2018 7:12:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/11/2018 7:12:00 AM
Trichloroethene	< 0.16	0.16	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/11/2018 7:12:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	•	4/11/2018 7:12:00 AM

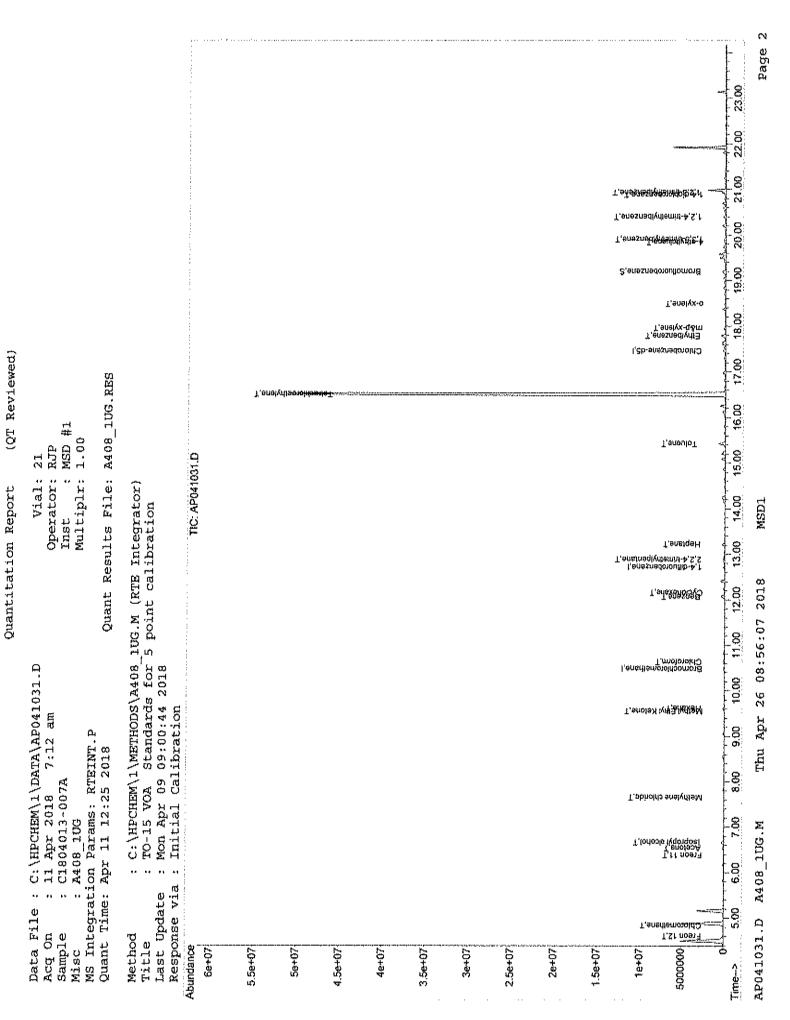
~	ня	311	π.,	
.,	ши	131	114	

- ** Quantitation Limit
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte, Quantitation estimated,
- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

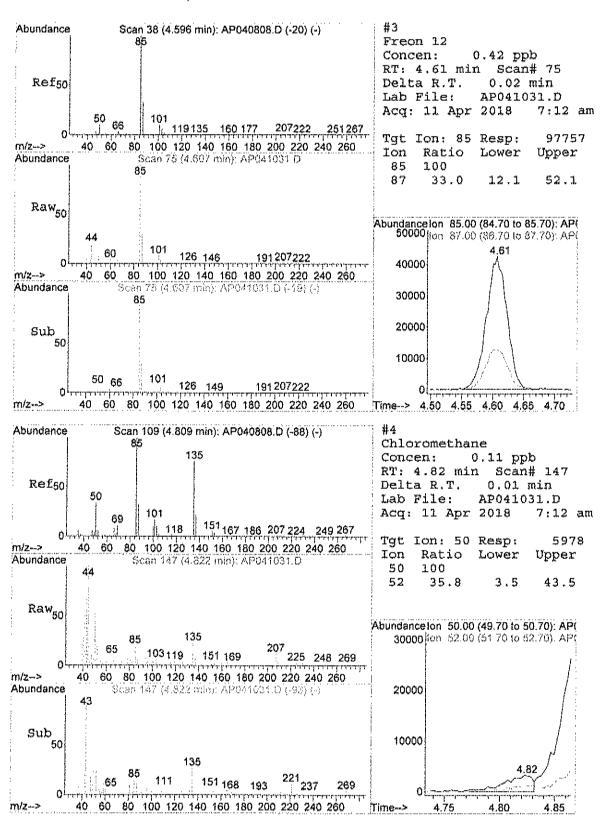
Page 14 of 14

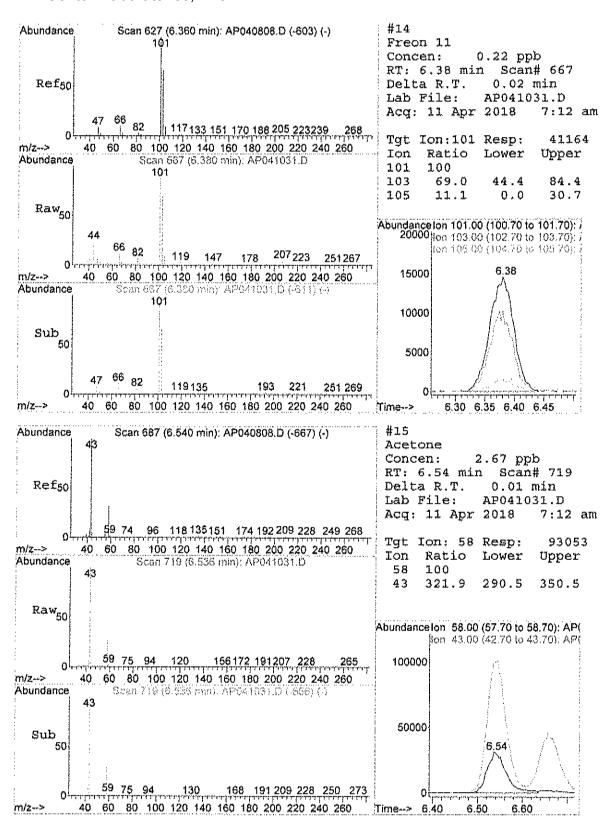
Quantitation Report (QT Reviewed)

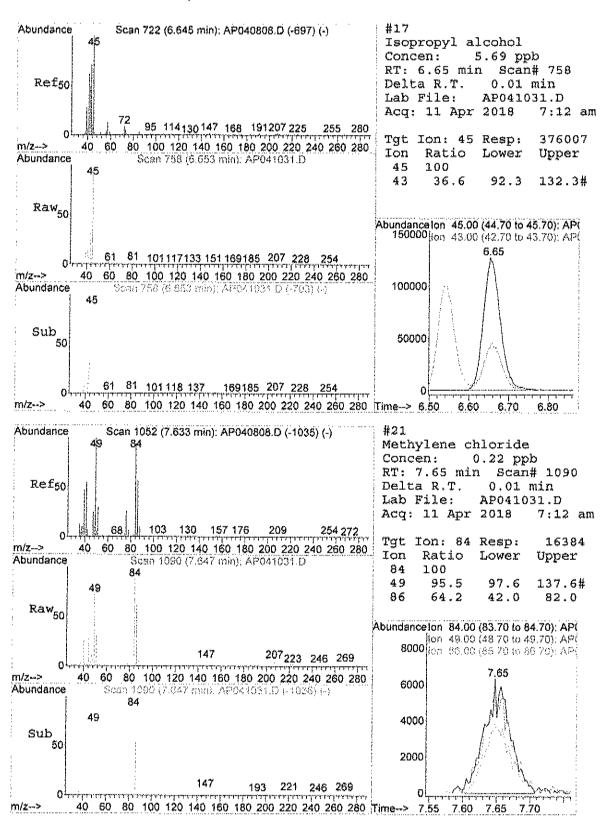
Data File : C:\HPCHEM\1\DATA\AP041031.D Vial: 21 Acq On : 11 Apr 2018 7:12 am Operator: RJP Sample : C1804013-007A Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

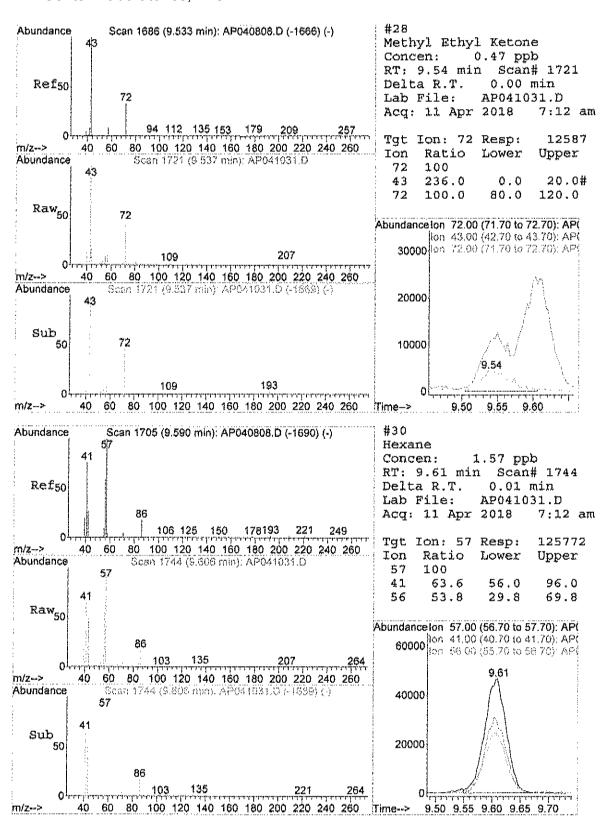

MS Integration Params: RTEINT.P Quant Time: Apr 11 12:24:06 2018 Quant Results File: A408_1UG.RES

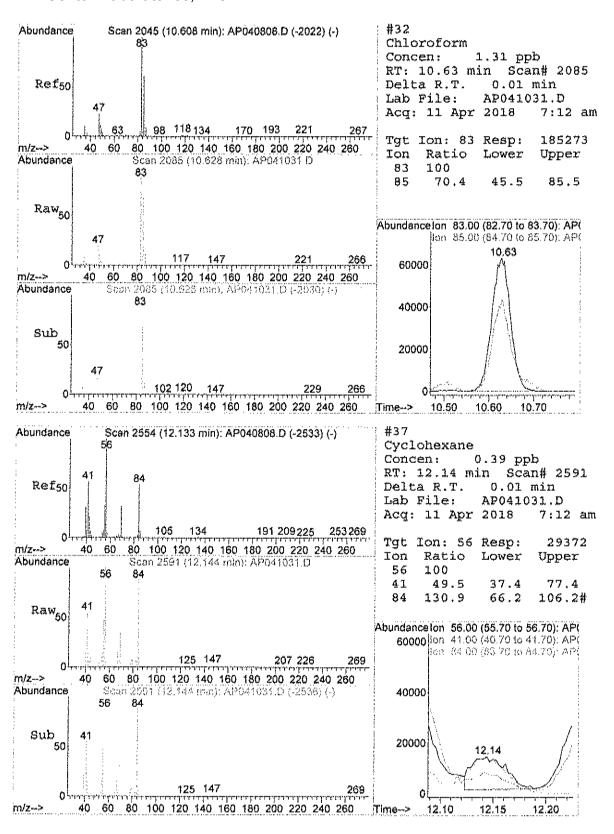
Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration

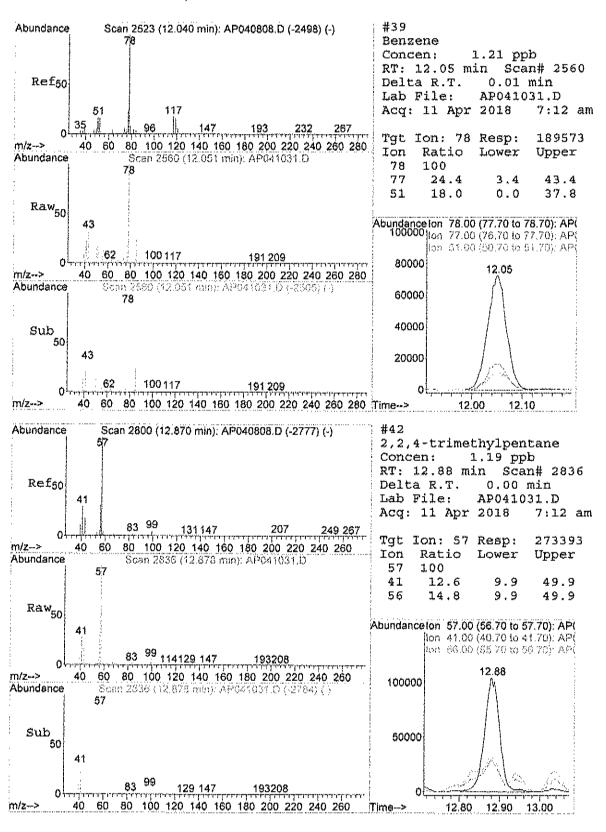

DataAcq Meth : 1UG_RUN

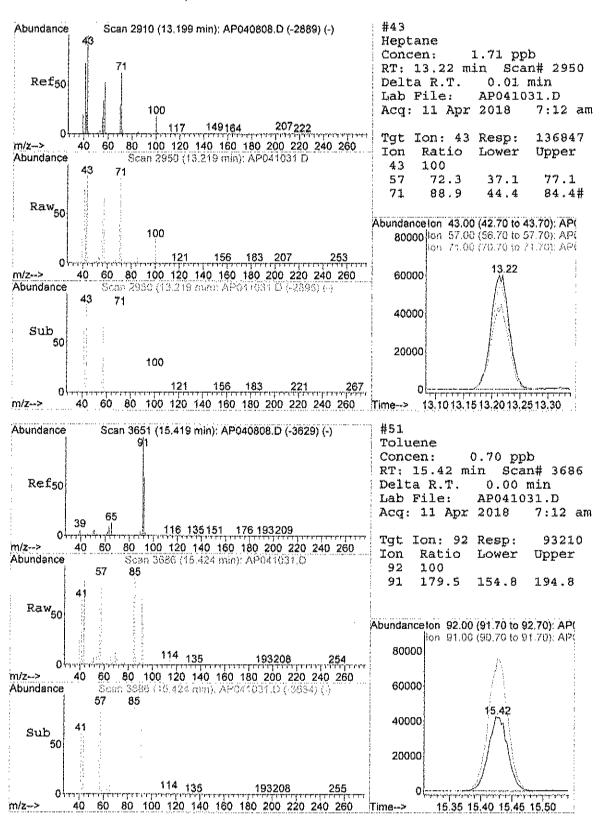

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Bromochloromethane	10.47	128	38780	1 00	ppb		0.02
	12.71				ppb		0.01
50) Chlorobenzene-d5	17.46	117			ppb		0.01
Good and Marit and an array							
System Monitoring Compounds	40.40						
65) Bromofluorobenzene	19.19				dqq		0.00
Spiked Amount 1.000	Range 70	- 130) Recove	xy =	98.	00%	
Target Compounds						Qva	alue
3) Freon 12	4.61	85	97757	0.42	ppb		98
4) Chloromethane	4.82	50	5978	0.11	dqq		75
14) Freon 11	6.38	101	41164	0.22	ppb		95
15) Acetone	6.54	58	93053	2.67			99
17) Isopropyl alcohol	6.65	45	376007		ppb	#	29
21) Methylene chloride	7.65	84	16384			#	86
28) Methyl Ethyl Ketone	9.54	72	12587	0.47	dqq	#	100
30) Hexane	9.61	57	125772	1,57	ppb		89
32) Chloroform	10.63	83	185273	1.31	dqq		94
37) Cyclohexane	12.14	56	29372	0.39	bbp	#	67
39) Benzene	12.05	78	189573	1.21	dqq		99
42) 2,2,4-trimethylpentane	12.88	57	273393	1.19	dqq		70
43) Heptane	13.22	43	136847	1.71	$_{\mathrm{dqq}}$	#	74
51) Toluene	15.42	92	93210	0.70			97
56) Tetrachloroethylene	16.49		23195338	255.60			98
58) Ethylbenzene	17.78	91	82599	0.27	dqq		100
59) m&p-xylene	17.95	91		0.72			99
63) o-xylene	18.48	91	55843	0.23			97
69) 4-ethyltoluene	19.83	105	39580	0.12			99
70) 1,3,5-trimethylbenzene	19.90		47822	0.17			81
71) 1,2,4-trimethylbenzene	20.39	105					99
74) 1,4-dichlorobenzene	20.87		16501	0.10			95
75) 1,2,3-trimethylbenzene	20.92	105	29100	0.11	$_{\mathrm{dqq}}$		92

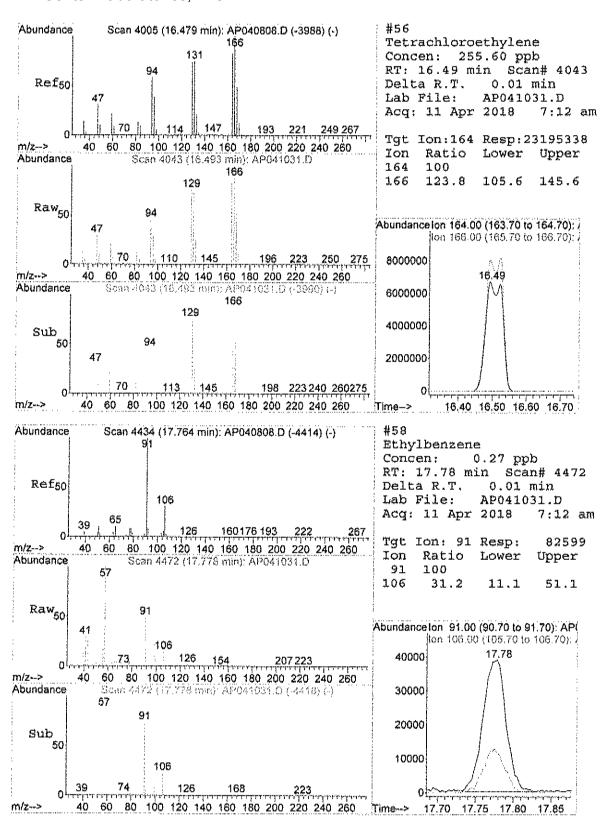

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041031.D A408_1UG.M Thu Apr 26 08:56:06 2018 MSD1

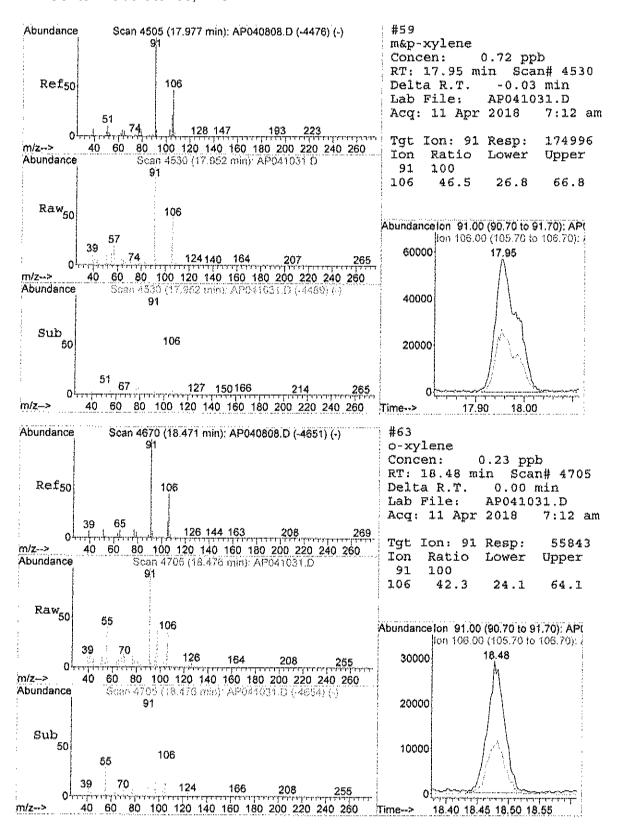


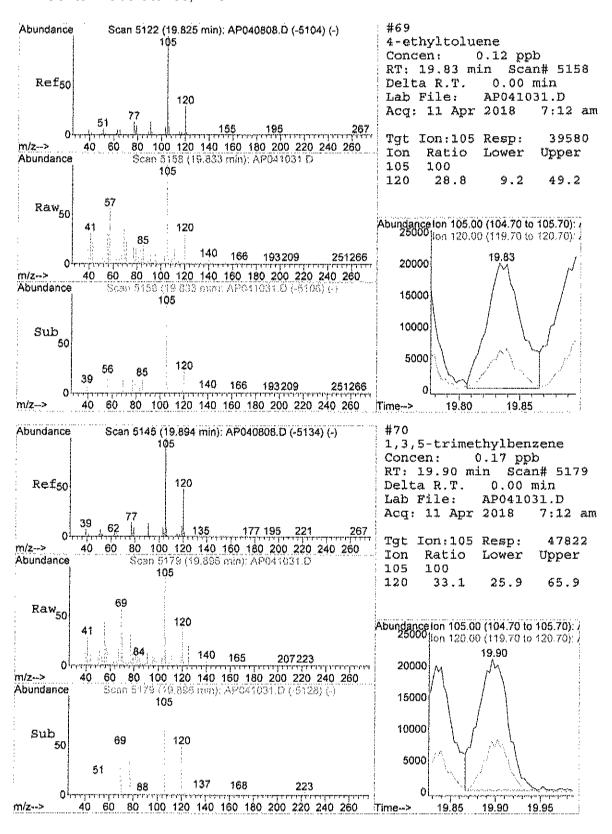

Page 153 of 248

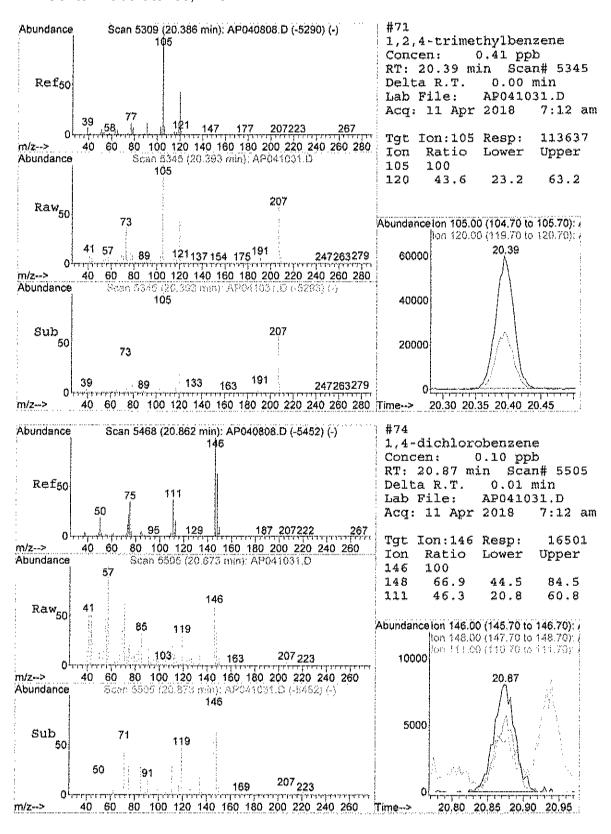


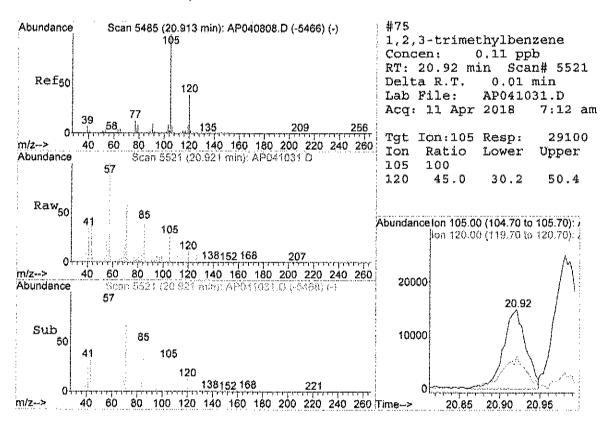








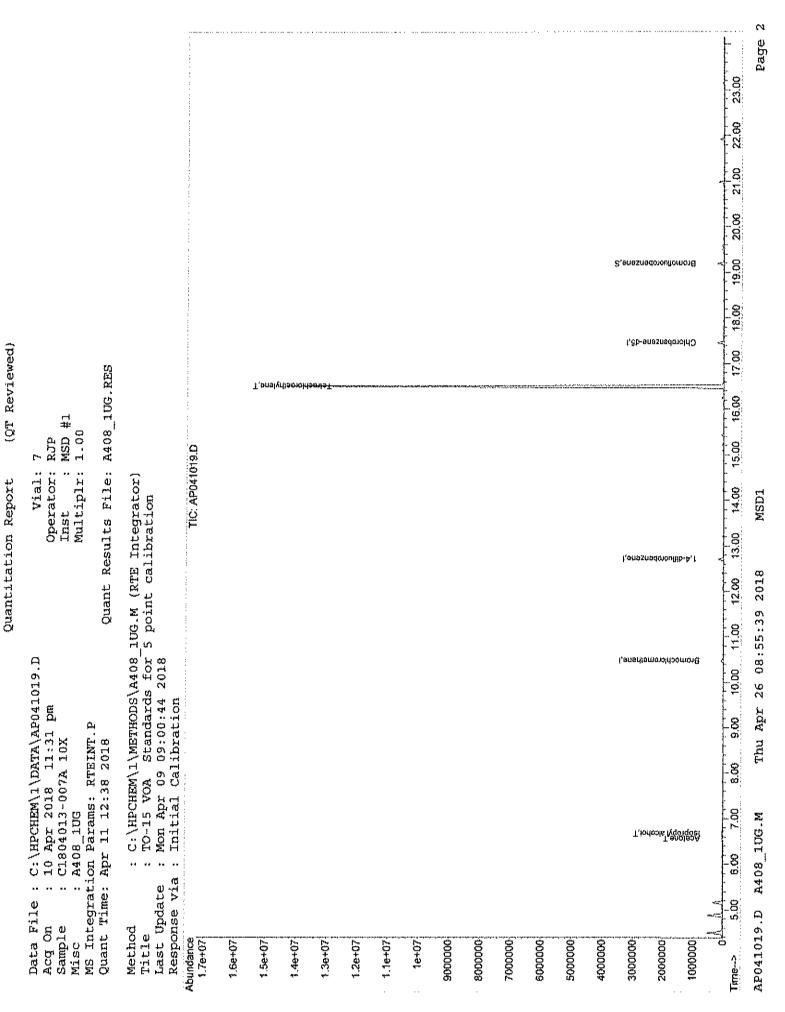


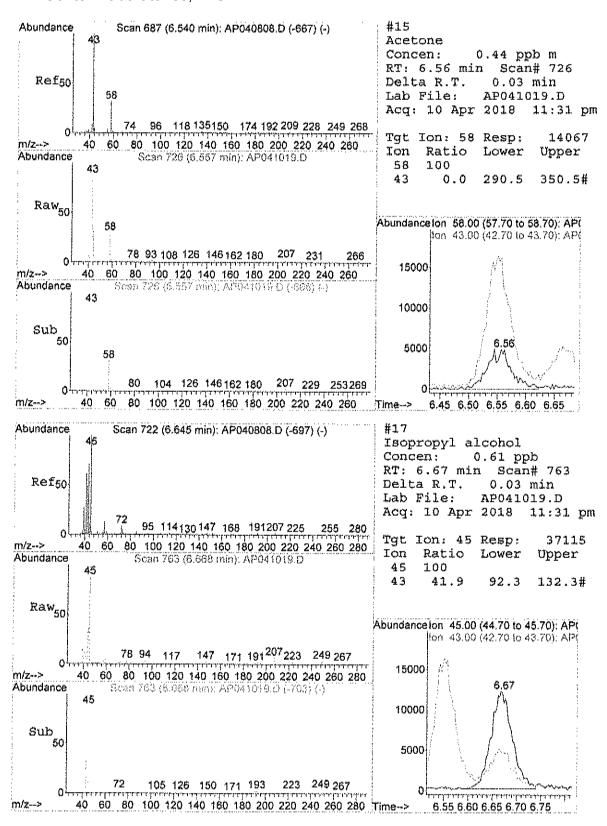


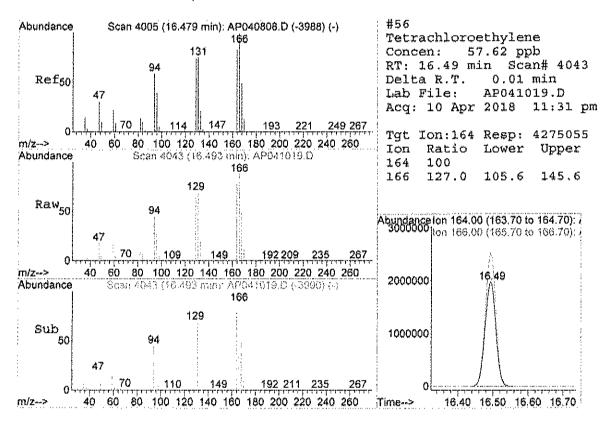
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041019.D
Acq On : 10 Apr 2018 11:31 pm
Sample : C1804013-007A 10X
Misc : A408 1UG Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 11 07:23:13 2018 Quant Results File: A408_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018


Response via : Initial Calibration

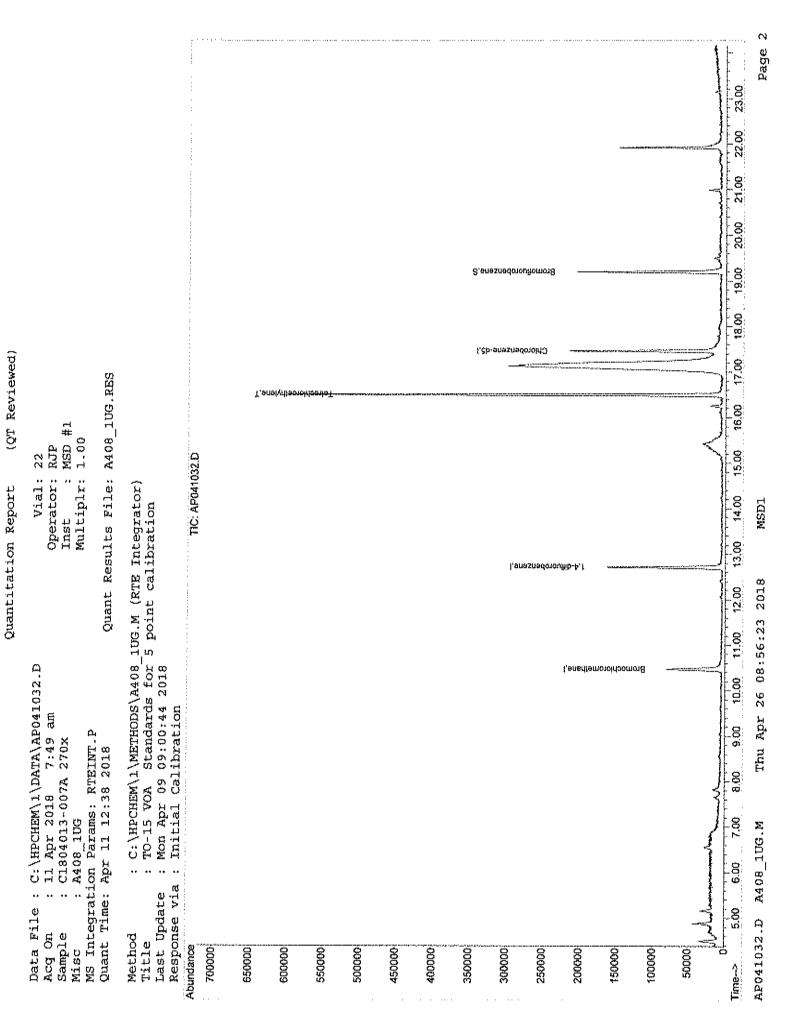
DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.47 12.70 17.46	128 114 117	35691 179443 150277	1.00	ppb	0.02 0.00 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	94758 Recover	0.91 Y =		0.00
Target Compounds 15) Acetone	6.56	58	14067m#	0.44	daa	Qvalue
17) Isopropyl alcohol 56) Tetrachloroethylene	6.67 16.49	45 164	37115 4275055	0.61 57.62	ppb	# 34 99

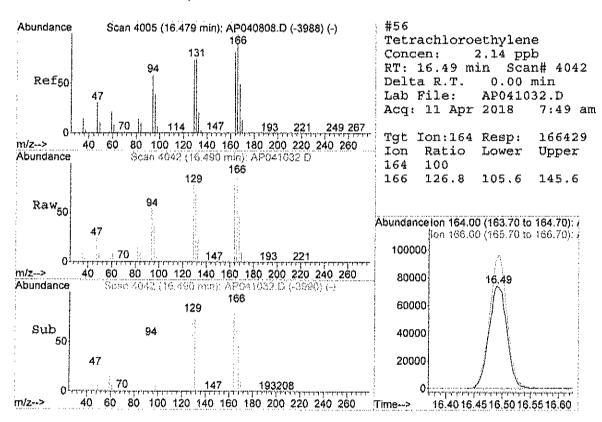
Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041032.D Vial: 22 Acq On : 11 Apr 2018 7:49 am Operator: RJP Sample : C1804013-007A 270x Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 11 12:24:07 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018
Response via : Initial Calibration


DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	one U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.46 12.71 17.46	128 114 117	38056 182345 157472	1.00	ppb	0.01 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 ~ 130	90840 Recovery	0.83	ppb 83.	0.00 00%
Target Compounds 56) Tetrachloroethylene	16.49	164	166429	2.14	dqq	Qvalue 99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041032.D A408_1UG.M Thu Apr 26 08:56:22 2018

Page 171 of 248

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS DATA

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 INITIAL CALIBRATION

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration Calibration Files 2.0 1.5 1.25 1.0 0.75 0.50 Avg Compound 1) I Bromochloromethane ----ISTD-----

 Propylene
 1.207 1.261 1.207 1.207 1.082 1.165 1.239
 11.30

 Freon 12
 5.739 6.023 5.747 5.878 5.770 5.809 5.982
 6.05

 2) T Freon 12 5.739 6.023 5.747 5.878 5.770 5.809 5.982 6.05 Chloromethane 1.312 1.347 1.323 1.383 1.331 1.326 1.378 5.82 Freon 114 3.981 4.197 4.062 4.117 3.928 3.925 4.122 5.65 Vinyl Chloride 1.208 1.246 1.175 1.275 1.190 1.203 1.310 12.24 Butane 1.757 1.814 1.760 1.793 1.716 1.738 1.842 8.86 1,3-butadiene 1.116 1.202 1.120 1.262 1.185 1.249 1.247 10.03 Bromomethane 1.257 1.322 1.268 1.320 1.364 1.251 1.338 9.31 Chloroethane 0.530 0.563 0.553 0.555 0.524 0.489 0.534 4.49 Ethanol 0.416 0.405 0.404 0.414 0.379 0.369 0.391 5.22 Acrolein 0.439 0.487 0.461 0.450 0.433 0.504 0.494 12.68 Vinyl Bromide 1.214 1.269 1.224 1.228 1.244 1.183 1.256 6.20 Freon 11 4.569 4.848 4.723 4.830 4.678 4.672 4.795 4.42 Acetone 0.775 0.839 0.733 0.763 0.824 0.884 0.897 20.36 Pentane 0.969 1.012 1.047 1.035 1.036 0.899 1.049 10.04 Isopropyl alcoh 1.690 1.731 1.673 1.709 1.646 1.608 1.704 7.63 3) T 4) T 5) T 6) T 7) T 8) T 9) T 10) T 11) T 12) T 13) T 14) T 15) T 16) T 17) T Isopropyl alcoh 1.690 1.731 1.673 1.709 1.646 1.608 1.704 1,1-dichloroeth 1.235 1.328 1.286 1.305 1.231 1.240 1.444 18) T 17.09 Freon 113 2.784 2.981 3.331 3.267 3.425 3.308 3.292 19) T 8.95 t-Butyl alcohol 2.836 3.069 3.566 3.433 3.432 3.373 3.543 18.04 20) t Methylene chlor
Allyl chloride
Carbon disulfid
trans-1,2-dichl
methyl tert-but
1,484 5.046 4.839 4.905 4.709 4.663 4.844
1,1-dichloroeth
Vinyl acetate
2.036 3.089 3.368 3.432 3.373 3.543
18.04
1.768 1.765 1.928
20.70
1.688 1.754 1.765 1.928
20.70
1.688 1.754 1.765 1.928
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70
20.70 21) T 22) T 23) T 24) T 25) T 26) T Vinyl acetate 3.403 3.542 3.287 3.382 3.195 3.102 3.284

Methyl Ethyl Ke cis-1,2-dichlor Hexane 2.061 2.123 1.967 2.083 1.993 1.938 2.135

Ethyl acetate 2.920 3.067 2.820 2.883 2.606 2.514 2.709

Chloroform 3.560 3.702 3.548 3.688 3.578 3.579 3.649

Tetrahydrofuran 1.400 1.480 1.342 1.416 1.373 1.280 1.377

2.572 2.686 2.575 2.568 2.477 2.466 2.551 27) T 6.10 28) T 10.46 29) T 30) T 31) T 32) T 33) T 5.16 34) T 1,4-difluorobenzene ------ISTD------35) I
 1,1,1-trichloro
 0.788 0.780 0.777 0.782 0.773 0.772 0.790
 2.81

 Cyclohexane
 0.405 0.408 0.395 0.392 0.384 0.411 0.404
 3.12

 Carbon tetrachl
 0.798 0.799 0.782 0.802 0.785 0.792 0.857
 12.65

 Benzene
 0.846 0.832 0.816 0.844 0.825 0.823 0.840
 3.87
 36) T 37) T 38) T 39) T Methyl methacry 0.380 0.383 0.364 0.369 0.354 0.334 0.359 5.17 1,4-dioxane 0.179 0.180 0.176 0.176 0.176 0.171 0.189 13.84 2,2,4-trimethyl 1.254 1.248 1.219 1.221 1.190 1.182 1.233 3.95 40) T 41) T 42) T 0.438 0.433 0.427 0.430 0.402 0.415 0.430 43) T Heptane 44) T Trichloroethene 0.380 0.369 0.378 0.368 0.368 0.373 0.394 45) T 1,2-dichloropro 0.299 0.294 0.290 0.288 0.277 0.286 0.293 4.67 Bromodichlorome 0.719 0.724 0.718 0.729 0.701 0.701 0.723 2.91 46) T cis-1,3-dichlor 0.498 0.506 0.497 0.484 0.487 0.480 0.490 2.39 47) T trans-1,3-dichl 0.492 0.506 0.481 0.496 0.464 0.458 0.479 48) T 1,1,2-trichloro 0.330 0.336 0.321 0.332 0.327 0.334 0.331 1.84 49) T 50) I Chlorobenzene-d5 0.725 0.714 0.721 0.718 0.718 0.715 0.725 2.02 51) T Toluene

^{(#) =} Out of Range ### Number of calibration levels exceeded format ### A408 1UG.M Thu Apr 26 08:36:52 2018 MSD1

Response Factor Report MSD #1

Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration

Calibration Files

2.0 =AP040805.D 1.0

52) T Methyl Isobutyl 0.744 0.742 0.742 0.716 0.724 0.690 0.785 15.4 53) T Dibromochlorome 0.861 0.852 0.855 0.868 0.854 0.852 0.863 1.5 54) T Methyl Butyl Ke 0.758 0.721 0.727 0.715 0.721 0.749 0.768 9.3 55) T 1,2-dibromoetha 0.656 0.649 0.652 0.644 0.649 0.636 0.651 1.8 56) T Tetrachloroethy 0.477 0.473 0.487 0.488 0.483 0.482 0.494 5.8 57) T Chlorobenzene 0.976 0.964 0.961 0.968 0.985 0.978 0.977 1.5 58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.3 59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.3 60) T Nonane 0.766 0.749 0.754 0.731 0.745 0.739 0.749 2.3	Œ
54) T Methyl Butyl Ke 0.758 0.721 0.727 0.715 0.721 0.749 0.768 9.3 55) T 1,2-dibromoetha 0.656 0.649 0.652 0.644 0.649 0.636 0.651 1.8 56) T Tetrachloroethy 0.477 0.473 0.487 0.488 0.483 0.482 0.494 5.8 57) T Chlorobenzene 0.976 0.964 0.961 0.968 0.985 0.978 0.977 1.5 58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.3 59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.3	
55) T 1,2-dibromoetha 0.656 0.649 0.652 0.644 0.649 0.636 0.651 1.8 56) T Tetrachloroethy 0.477 0.473 0.487 0.488 0.483 0.482 0.494 5.8 57) T Chlorobenzene 0.976 0.964 0.961 0.968 0.985 0.978 0.977 1.5 58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.2 59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.3	
56) T Tetrachloroethy 0.477 0.473 0.487 0.488 0.483 0.482 0.494 5.8 57) T Chlorobenzene 0.976 0.964 0.961 0.968 0.985 0.978 0.977 1.5 58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.5 59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.3	
57) T Chlorobenzene 0.976 0.964 0.961 0.968 0.985 0.978 0.977 1.58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.259) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.331	
58) T Ethylbenzene 1.677 1.651 1.671 1.679 1.705 1.686 1.692 2.7 59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.7	
59) T m&p-xylene 1.330 1.320 1.314 1.331 1.325 1.283 1.324 1.	59
	21
60) T Nonene 0.766 0.749 0.754 0.731 0.745 0.739 0.749 0.2	71
	24
61) T Styrene 0.973 0.954 0.953 0.974 0.952 0.937 0.960 1.8	35
62) T Bromoform 0.800 0.785 0.791 0.798 0.793 0.785 0.795 1.3	76
63) T o-xylene 1.331 1.330 1.340 1.345 1.339 1.331 1.349 2.6	55
64) T Cumene 1.838 1.827 1.809 1.842 1.836 1.800 1.838 1.6	53
65) S Bromofluorobenz 0.714 0.715 0.708 0.708 0.713 0.668 0.692 2.8	38
66) T 1,1,2,2-tetrach 0.877 0.864 0.857 0.864 0.859 0.851 0.865 1.9	∌5
67) T Propylbenzene 0.491 0.478 0.492 0.483 0.493 0.494 0.486 1.5	58
68) T 2-Chlorotoluene 0.439 0.430 0.438 0.447 0.451 0.443 0.446 2.4	12
69) T 4-ethyltoluene 1.845 1.787 1.811 1.844 1.811 1.801 1.807 1.5	56
70) T 1,3,5-trimethyl 1.553 1.530 1.549 1.567 1.552 1.557 1.549 1.3	
71) T 1,2,4-trimethyl 1.518 1.466 1.508 1.536 1.514 1.479 1.499 1.6	57
72) T 1,3-dichloroben 0.943 0.906 0.919 0.938 0.948 0.901 0.918 2.4	
73) T benzyl chloride 1.364 1.263 1.279 1.256 1.219 1,146 1.198 10.1	
74) T 1,4-dichloroben 0.915 0.882 0.904 0.901 0.895 0.871 0.883 2.8	
75) T 1,2,3-trimethyl 1.425 1.389 1.405 1.437 1.436 1.401 1.397 2.3	
76) T 1,2-dichloroben 0.877 0.857 0.871 0.875 0.904 0.846 0.863 2.3	
77) T 1,2,4-trichloro 0.489 0.434 0.446 0.433 0.405 0.364 0.406 13.6	
78) T Naphthalene 1.200 1.094 1.093 1.048 1.012 0.949 1.120 15.7	
79) T Hexachloro-1,3- 0.762 0.725 0.739 0.750 0.766 0.719 0.736 3.0	

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040805.D Vial: 3 Acq On : 8 Apr 2018 11:36 pm Operator: RJP Sample : A1UG_2.0 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:47 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev	(Min)
1) Bromochloromethane		100	43000				
35) 1,4-difluorobenzene	10.45			1.00	ppp		0.00
50) Chlorobenzene-d5	12.70	114		1.00	ppp		0.00
50) Chiorobenzene-ds	17.45	117	181184	1.00	agg		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.18	95	129295	1.00			0.00
Spiked Amount 1.000	Range 70	- 130	Recover	Y =	100	. QQ\$	
Manage Company de							. 7
Target Compounds 2) Propylene	4 53	41	104276	2 00	nnh	QV	alue
3) Freon 12	4.53 4.59	41	104276	2.00			98
4) Chloromethane	4.81	85 50	495922	1.95			98 99
5) Freon 114	4.82	85	113349	1.90			
6) Vinyl Chloride	5.03	62	344017	1,93			93 99
7) Butane	5.14	43	104368	1.89			97
8) 1,3-butadiene	5.14		151841	1.96			
9) Bromomethane	5.53	39 94	96409	1.77	ppp		98 99
10) Chloroethane			108628	1.92			
11) Ethanol	5.71		45788 35921m ∫Î	1.91			99
12) Acrolein	5.81	4.5 56					05
13) Vinyl Bromide	6.42		37958	1.85			95
14) Freon 11	6.07	106	104923	1.98			100
15) Acetone	6.36 6.53	101	394789	1.89			99
16) Pentane		58	66949m ^ 83694				0.5
I	6.65	42	83694	1.87		ш	95
* * * * * * * * * * * * * * * * * * *	6.64	45	146029	1.98		#	82
18) 1,1-dichloroethene 19) Freon 113	7.16	96	1.06744	1.89			89
	7.37	101	240584	1.70	ppo		98
20) t-Butyl alcohol 21) Methylene chloride	7.39	59	245081m	1.65			
22) Allyl chloride	7.64	84	141972m J	1.95			0.0
23) Carbon disulfide	7.62	41	142731	1.99			96
24) trans-1,2-dichloroethene	7.81	76	270938	1.90			98
		61 73	171559	1.95			89
25) methyl tert-butyl ether 26) 1,1-dichloroethane	8.62	73	418605	1.98			87
27) Vinyl acetate	9.04	63	239044	1.92			98
	9.02	43	294027	2.01			98
28) Methyl Ethyl Ketone 29) cis-1,2-dichloroethene	9.53	72	63462	1.97		#	100
30) Hexane		61	178773	1.99			88
31) Ethyl acetate	9.59	57	178085	1.98			93
32) Chloroform	10.14	43	252277	2.03			99
33) Tetrahydrofuran	10.61	83	307640	1.93			100
	10.78	42	120988	1.98			99
34) 1,2-dichloroethane	11.72	62	222257	2.00			99
36) 1,1,1-trichloroethane	11.45	97	353974	2.01			99
37) Cyclohexane	12.13	56	1.82060	2.07			95
38) Carbon tetrachloride	12.08	117	358458	1.99			99
39) Benzene	12.04	78	380166	2.00			98
40) Methyl methacrylate	13.55	41	170625	2.06			90
41) 1,4-dioxane	13.58	88	80477	2.03			95
42) 2,2,4-trimethylpentane	12.87	57 43	563749	2.05			96 96
43) Heptane 44) Trichloroethene	13.21	43	196886	2.04			96 94
			170910	2.07			94
45) 1,2-dichloropropane			134238	2.08		45 W *** ***	99
(#) - ~ ~ 1 i f i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				M			

^{(#) =} qualifier out of range (m) = manual integration

AP040805.D A408 1UG.M Thu Apr 26 08:37:34 2018 Page 1

MSDI

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040805.D Vial: 3 Acq On : 8 Apr 2018 11:36 pm Sample : A1UG 2.0 Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:47 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QTon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.77	83	323148	1.97 ppb	100
47)	cis-1,3-dichloropropene	14.58	75	223694	2.06 ppb	97
48)	trans-1,3-dichloropropene	15.33	75	221128	1.99 ppb	98
49)	1,1,2-trichloroethane	15.66	97	148136	1.99 ppb	99
51)	Toluene	15.42	92	262630	2.01 ppb	98
52)	Methyl Isobutyl Ketone	14.48	43	269505	2.07 ppb	97
53)	Dibromochloromethane	16.39	129	311880	1.97 ppb	99
54)		15.83	43	274639	2.11 ppb	98
55)	1,2-dibromoethane	16.66	107	237857	2.03 ppb	1.00
56)	Tetrachloroethylene	16.49	164	172775	1.94 ppb	99
57)	Chlorobenzene	17.50	112	353693	2.01 ppb	92
58)	Ethylbenzene	17.77	91	607811	1.99 ppb	99
59)		17.98	91	963654	3.98 ppb	97
60)	Nonane	18.36	43	277534	2.08 ppb	96
61)	Styrene	18.44	104	352628	1.99 ppb	91
62)	Bromoform	18.57	173	289791	1.99 ppb	99
63)	o-xylene	18.47	91	482336	1.97 ppb	97
64)	Cumene	19.06	105	665987	1.98 ppb	99
66)	, , ,	18.94	83	317746	2.02 ppb	99
	Propylbenzene	19.65	120	178020	2.02 ppb	93
68)	2-Chlorotoluene	19.70	126	159217	1.96 ppb	# 85
69)	4-ethyltoluene	19.83	105	668665	1.99 ppb	99
70)	1,3,5-trimethylbenzene	19.89	105	562656	1.97 ppb	96
	1,2,4-trimethylbenzene	20.39	105	550041	1.97 ppb	96
	1,3-dichlorobenzene	20.72	146	341740	2.00 ppb	97
	benzyl chloride	20.79	91	494304	2.16 ppb	94
74)	1,4-dichlorobenzene	20.86	146	331641	2.02 ppb	97
75)	1,2,3-trimethylbenzene	20.91	105	516253	1.97 ppb	96
	1,2-dichlorobenzene	21.23	1.46	317733	1.99 ppb	97
	1,2,4-trichlorobenzene	23.35	180	177357	2.25 ppb	98
	Naphthalene	23.56	128	434777	2.28 ppb	96
79)	Hexachloro-1,3-butadiene	23.68	225	276272	2.02 ppb	100

Reviewed)

(QT

Report

Quantitation

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040806.D Vial: 4 Acq On : 9 Apr 2018 12:17 am Operator: RJP Sample : AlUG_1.50 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:48 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

1) Bromochloromethane 10.46 128 40404 1.00 ppb 0.00 35 1,4-difluorobenzene 12.70 114 220451 1.00 ppb 0.00			R.T.	QIon	Response	Conc	Units	Dev	(Min)
35	1)	Bromochloromethane	10.46	128					
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000 Range 70 - 130 Recovery = 100.00* Target Compounds 2) Propylene	35)	1,4-difluorobenzene							
Spiked Amount	50)	Chlorobenzene-d5	17.45	117	180498				
Target Compounds	Syst	em Monitoring Compounds							
Target Compounds 2) Propylene 4.53 41 76432 1.57 ppb 3) Freon 12 4.59 85 365008 1.54 ppb 100 4) Chloromethane 4.81 50 81617 1.46 ppb 99 5) Freon 114 4.82 85 254372 1.53 ppb 93 6) Vinyl Chloride 5.03 62 75500 1.47 ppb 99 7) Butane 5.14 43 109929 1.52 ppb 98 8) 1,3-butadiene 5.15 39 72841 1.43 ppb 97 91 Bromomethane 5.51 64 34135 1.52 ppb 90 10) Chloroethane 5.57 64 34135 1.52 ppb 90 11) Ethanol 5.643 56 29534 1.51 ppb 91 12) Acrolein 6.43 56 29534 1.51 ppb 98 13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.65 42 61306 1.47 ppb 99 17) Isopropyl alcohol 18) 1,1-dichloroethene 7.16 96 80462 1.53 ppb 90 19) Freon 113 7.37 101 180684 1.37 ppb 98 20) t-Butyl alcohol 21) Methylene chloride 7.64 84 108133m	65)	Bromofluorobenzene	19.18	95	129064	1.0	dqq 0		0.00
2) Propylene	Sp	iked Amount 1.000	Range 70	- 1.30	Recover	ъ =	100	. ००%	
3) Freon 12								Qva	alue
Chloromethane				41	76432	1.5	7 ppb		98
Simple S	3)	Freon 12	4.59			1.5-	4 ppb		100
8) 1,3-butadiene			4.81	50	81617	1.4	dqq a		
8) 1,3-butadiene			4.82	85	254372	1.5	dqq 8		93
8) 1,3-butadiene	6)	Vinyl Chloride	5.03	62	75500	1.4	dqq 7		
8) 1,3-butadiene			5.14	43	109929	1.5	2 ppb		98
12) Acrolein 6.43 56 29534 1.54 ppb 98 13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.53 58 50839m			5.15	39	72841	1.4	dqq E		97
12) Acrolein 6.43 56 29534 1.54 ppb 98 13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.53 58 50839m	9)	Bromomethane	5.52	94	80149	1.5			100
12) Acrolein 6.43 56 29534 1.54 ppb 98 13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.53 58 50839m	10)	Chloroethane	5,71	64	34135	1.5	dqq S		99
12) Acrolein 6.43 56 29534 1.54 ppb 98 13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.53 58 50839m	11)	Ethanol	5.80	45	24538	1.5			52
13) Vinyl Bromide 6.07 106 76894 1.55 ppb 99 14) Freon 11 6.37 101 293799 1.51 ppb 99 15) Acetone 6.53 58 50839m 1.65 ppb 16) Pentane 6.65 42 61306 1.47 ppb 95 17) Isopropyl alcohol 6.65 45 104937 1.52 ppb 96 18) 1,1-dichloroethene 7.16 96 80462 1.53 ppb 90 19) Freon 113 7.37 101 180684 1.37 ppb 98 20) t-Butyl alcohol 7.39 59 186021 1.34 ppb # 88 21) Methylene chloride 7.64 84 108133m 7 1.59 ppb 94 22) Allyl chloride 7.62 41 103388 1.54 ppb 94 23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 97 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 95 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 99 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 35) Tetrahydrofuran 10.78 42 89709 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 99 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacxylate 13.54 41 126571 1.56 ppb # 87			6.43	56	29534	1.5			98
15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Wethyl acetate 28) Methyl Ethyl Ketone 29) Cis-1,2-dichloroethene 20) tiyl acetate 21) Methylene chloride 22) Allyl chloride 33) Carbon disulfide 34) Typl 35) methyl tert-butyl ether 36) 1,1-dichloroethane 36) 1,1-dichloroethane 37) 101 38) 1234 1.49 ppb 39 27) Vinyl acetate 39.02 43 305800 31.54 ppb 37) Wethyl Ethyl Ketone 39.52 72 46364 31.54 ppb 40) Hexane 300 Hexane 3100 61 3128747 3100 92 320 Chloroform 3100 61 3128747 3100 92 3214692 331 Tetrahydrofuran 342 387 970 398 1.57 ppb 399 311 Chloroethane 310.14 310.18 3224356 31.51 ppb 393 31 Tetrahydrofuran 310.78 32 89709 331 Tetrahydrofuran 310.78 32 89709 331 1.57 ppb 341,2-dichloroethane 31.72 32 62 162797 331 1.56 ppb 331 Carbon tetrachloride 32.04 378 378 378 378 378 378 378 378 378 378	13)	Vinyl Bromide	6.07	1.06	76894	1.5			99
15) Acetone 16) Pentane 17) Isopropyl alcohol 18) 1,1-dichloroethene 18) 1,1-dichloroethene 19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 24) trans-1,2-dichloroethene 25) methyl tert-butyl ether 26) 1,1-dichloroethane 27) Wethyl acetate 28) Methyl Ethyl Ketone 29) Cis-1,2-dichloroethene 20) tiyl acetate 21) Methylene chloride 22) Allyl chloride 33) Carbon disulfide 34) Typl 35) methyl tert-butyl ether 36) 1,1-dichloroethane 36) 1,1-dichloroethane 37) 101 38) 1234 1.49 ppb 39 27) Vinyl acetate 39.02 43 305800 31.54 ppb 37) Wethyl Ethyl Ketone 39.52 72 46364 31.54 ppb 40) Hexane 300 Hexane 3100 61 3128747 3100 92 320 Chloroform 3100 61 3128747 3100 92 3214692 331 Tetrahydrofuran 342 387 970 398 1.57 ppb 399 311 Chloroethane 310.14 310.18 3224356 31.51 ppb 393 31 Tetrahydrofuran 310.78 32 89709 331 Tetrahydrofuran 310.78 32 89709 331 1.57 ppb 341,2-dichloroethane 31.72 32 62 162797 331 1.56 ppb 331 Carbon tetrachloride 32.04 378 378 378 378 378 378 378 378 378 378	14)	Freon 11	6.37	101	293799	1.5			99
16) Pentane 6.65 42 61306 1.47 ppb 95 17) Isopropyl alcohol 6.65 45 104937 1.52 ppb 84 18) 1,1-dichloroethene 7.16 96 80462 1.53 ppb 90 19) Freon 113 7.37 101 180684 1.37 ppb 98 20) t-Butyl alcohol 7.39 59 186021 1.34 ppb 88 21) Methylene chloride 7.64 84 108133m 7 1.59 ppb 22) Allyl chloride 7.62 41 103388 1.54 ppb 94 23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 99 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 99 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	15)	Acetone	6.53	58	50839m 🌈	1.63			
17) Isopropyl alcohol 18) 1,1-dichloroethene 17.16 96 80462 1.53 ppb 90 19) Freon 113 7.37 101 180684 1.37 ppb 98 20) t-Butyl alcohol 7.39 59 186021 1.34 ppb # 88 21) Methylene chloride 7.64 84 108133m 1.59 ppb 22) Allyl chloride 7.62 41 103388 1.54 ppb 94 23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 99 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	16)	Pentane	6.65	42			7 စိုစိုင်		95
18) 1,1-dichloroethene 7.16 96 80462 1.53 ppb 90 19) Freon 113 7.37 101 180684 1.37 ppb 98 20) t-Butyl alcohol 7.39 59 186021 1.34 ppb # 88 21) Methylene chloride 7.64 84 108133m	17)	Isopropyl alcohol	6.65	45	104937				84
19) Freon 113 20) t-Butyl alcohol 21) Methylene chloride 22) Allyl chloride 23) Carbon disulfide 36	18)	1,1-dichloroethene	7.16	96	80462				90
20) t-Butyl alcohol 7.39 59 186021 1.34 ppb # 88 21) Methylene chloride 7.64 84 108133m	19)	Freon 113	7.37	101	180684				98
21) Methylene Chloride 7.64 84 108133m/ 1.59 ppb 22) Allyl chloride 7.62 41 103388 1.54 ppb 94 23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 97 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 99 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	20)	t-Butyl alcohol	7.39	59	186021				88
22) Allyl chloride 7.62 41 103388 1.54 ppb 94 23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	21)	Methylene chloride	7.64	84	108133m 🞢	1.59			
23) Carbon disulfide 7.81 76 202035 1.52 ppb 100 24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 95 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	22)	Allyl chloride	7.62	41		1.5	daa i		94
24) trans-1,2-dichloroethene 8.61 61 122334 1.49 ppb 91 25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb <td>23)</td> <td>Carbon disulfide</td> <td></td> <td>76</td> <td></td> <td></td> <td></td> <td></td> <td>100</td>	23)	Carbon disulfide		76					100
25) methyl tert-butyl ether 8.63 73 305800 1.54 ppb 87 26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 99 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87				61					
26) 1,1-dichloroethane 9.05 63 172144 1.48 ppb 99 27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 95 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87			8.63	73	305800				
27) Vinyl acetate 9.02 43 214692 1.57 ppb 97 28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87				63	172144				
28) Methyl Ethyl Ketone 9.52 72 46364 1.54 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	27)	Vinyl acetate	9.02						
29) C18-1,2-d1chloroethene 10.00 61 128747 1.53 ppb 89 30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	28)	Methyl Ethyl Ketone	9.52	72	46364				
30) Hexane 9.59 57 128683 1.53 ppb 95 31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	29)	cis-1,2-dichloroethene	10.00	61	128747	1.53	dgg 8		
31) Ethyl acetate 10.14 43 185861 1.60 ppb 98 32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87				57	128683				
32) Chloroform 10.61 83 224356 1.51 ppb 99 33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	31)	Ethyl acetate							
33) Tetrahydrofuran 10.78 42 89709 1.57 ppb 95 34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87				83	224356	1.53	daa		
34) 1,2-dichloroethane 11.72 62 162797 1.57 ppb 99 36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb #									
36) 1,1,1-trichloroethane 11.44 97 258034 1.50 ppb 99 37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb #									
37) Cyclohexane 12.13 56 134971 1.56 ppb 93 38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb #	:								
38) Carbon tetrachloride 12.07 117 264364 1.49 ppb 100 39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87									
39) Benzene 12.04 78 275072 1.48 ppb 98 40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87									
40) Methyl methacrylate 13.54 41 126571 1.56 ppb # 87	:								
								#	
	41)		13.58	88	59671			,,	94
42) 2,2,4-trimethylpentane 12.87 57 412605 1.53 ppb 97									
43) Heptane 13.21 43 143066 1.51 ppb 94									
44) Trichloroethene 13.34 130 122178 1.51 ppb 92						7 57	, 5,5,4,4		
45) 1,2-dichloropropane 13.44 63 97383 1.54 ppb 99						1 54	למם:		
**************************************							. L. Fr.		

(#) = qualifier out of range (m) = manual integration

AP040806.D A408 lUG.M Thu Apr 26 08:37:38 2018

MSDl

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040806.D Vial: 4 Acq On : 9 Apr 2018 12:17 am Operator: RJP Sample : Alug 1.50 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

Quant Time: Apr 09 06:51:48 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)		13.77	83	239454	1.49 ppb	99
47)	cis-1,3-dichloropropene	14.57	75	167218	1.57 ppb	96
48)	trans-1,3-dichloropropene	15.33	75	167462	1.54 ppb	99
49)	1,1,2-trichloroethane	15.66	97	111076	1.52 ppb	100
51)	Toluene	15.42	92	193231	1.48 ppb	97
52)	Methyl Isobutyl Ketone	14.48	43	200855	1.55 ppb	98
53)	Dibromochloromethane	16.39	129	230659	1.46 ppb	99
54)	Methyl Butyl Ketone	15.82	4.3	195206	1.51 ppb	99
55)	1,2-dibromoethane	16.65	107	175632	1.50 ppb	100
56)	Tetrachloroethylene	16.49	164	127980	1.44 ppb	1.00
57)	Chlorobenzene	17.50	112	260987	1.49 ppb	90
58)	Ethylbenzene	17.77	91	447128	1.47 ppb	98
59)	m&p-xylene	17.98	91	714573	2.96 ppb	97
60)	Nonane	18.36	43	202835	1.53 ppb	98
61)	Styrene	18.44	104	258427	1.46 ppb	91
62)	Bromoform	18.56	173	212438	1.47 ppb	100
63)	o-xylene	18,47	91	360172	1.48 ppb	97
64)	Cumene	19.06	105	494558	1.48 ppb	99
66)	1,1,2,2-tetrachloroethane	18.94	83	234035	1.49 ppb	99
	Propylbenzene	19.65	120	129334	1.48 ppb	94
68)	2-Chlorotoluene	19.70	126	116525	1.44 ppb	89
69)	4-ethyltoluene	19.83	105	483736	1.45 ppb	100
70)	1,3,5-trimethylbenzene	19.89	105	414349	1.46 ppb	96
	1,2,4-trimethylbenzene	20.39	105	396948	1.42 ppb	96
72)	1,3-dichlorobenzene	20.72	146	245173	1.44 ppb	97
73)	benzyl chloride	20.79	91	341846	1.50 ppb	95
74)	1,4-dichlorobenzene	20.86	146	238882	1.46 ppb	97
75)	1,2,3-trimethylbenzene	20.91	105	375998	1.44 ppb	96
	1,2-dichlorobenzene	21,23	146	231982	1.46 ppb	97
77)	1,2,4-trichlorobenzene	23.35	180	117562	1.50 ppb	98
78)	Naphthalene	23.56	128	296298	1.56 ppb	96
79)	Hexachloro-1,3-butadiene	23.68	225	196369	1.44 ppb	100

Reviewed)

(QT

Quantitation Report

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040807.D Vial: 5 Acq On : 9 Apr 2018 12:58 am Sample : A1UG 1.25 Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:49 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408 lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

Inte	ernal Standards	R.	T.	QIon	Response	Conc	Units	Dev	(Min)
	Bromochloromethane	10.	46	128	41576	1.0	dqq 0		0.00
35)	1,4-difluorobenzene	12.	70	114	220726	1.0	dqq 0		0.00
50)	Chlorobenzene-d5	17.	45	117	173753	1.0	dqq 0		0.00
Syst	em Monitoring Compounds								
65)	Bromofluorobenzene	19.	18	95	122931	0.9	dqq e		0.00
SF	iked Amount 1.000	Range	70	- 130					
Targ	et Compounds							QV	alue
2)	Propylene	4.	54	41	62724 298668 68775	1.2	dqq 8		97
3)	Freon 12	4.	60	85	298668	1.2	dqq s		98
4)	Chloromethane	4.	82	50	68775	1.2	daa 0		100
5)	Freon 114	4.		85	211115	1.2	dqq E		93
6)	Vinyl Chloride	5.	03	62	61063	1.1	daa a		96
7)	Butane	5.	1,5	43	61063 91466	1.2	dgg 8		97
8)	1,3-butadiene	5.3	15	39	58219	7.7	l ppb		96
9)	Bromomethane	5.	52	94	65885 28758 20974 23983	1.2	dqq 1		98
10)	Chloroethane	5.1	71.	64	28758	1,29	dqq ō		99
11)	Ethanol	5.1	81	45	20974	1.2	dqq 8		90
12)	Acrolein	6.4	42	56	23983	1.2	l ppb		88
13)	Vinyl Bromide	6.0	07	106	63587	1.29	daa a		98
14)	Freon 11	6.3		101	63587 245444	1.2	dqq S		99
15)	Acetone	6.1	54	58	245444 38080		dqq (92
16)	Pentane	6.6			54411		dqq		94
17)	Isopropyl alcohol	6.6	54	45	86922	1.22	gqq s		82
18)	1,1-dichloroethene	6.6 7.5	16	96	86922 66832	1.23	dgg 8		91
19)	Freon 113	7.3	37	101	66832 173087	1.2	ppb		96
20)	t-Butyl alcohol	7.3	39	59	185313	1.30	ववृव (85
21)	Methylene chloride	7.6	53	84	90145m/\) 84487	1.28	dqq 8	"	
22)	Allyl chloride	7.6	52	41	84487	1.23	dqq 8		95
23)	Carbon disulfide	7.8	31	76	161438	1.18	dqq 8		96
24)	trans-1,2-dichloroethene	8.6	51.	61	100876		ppb		89
25)	methyl tert-butyl ether	8.6		73		1.23	dqq 8		86
26)	methyl tert-butyl ether 1,1-dichloroethane	8.6 9.0	05	63	142429	1.19	ppb		99
27)	Vinyl acetate	9.0	02	43	170833	1.21	dqq		99
28)	Methyl Ethyl Ketone	9.5	53	72	37301	1.20	dqq (#	100
29)	Methyl Ethyl Ketone cis-1,2-dichloroethene	10.0	00	61	106151	1.23	dqq 8		88
30)	Hexane	9.6	5 Q	57	102211	1.18	dqq 8		98
31)	Ethyl acetate	10.3		4.3		1.22	dqq s		98
32)	Chloroform	10.6		83	184383		ववृष्		99
33)	Tetrahydrofuran	10.7	78	4.2	69729	1.18	dqq		99
34)	1,2-dichloroethane	11.7		62	133847	1.25	dag		99
36)	1,1,1-trichloroethane	11.4		97	214260	1.24	dqq		99
37)	Cyclohexane	12.1		56	109062		dqq		93
	Carbon tetrachloride	12.0	7	117	215736	1.22	ppb		99
39)		12.0		78	225085	1.21	dqq .		97
40)	Methyl methacrylate	13.5		41	100530	1.23	dqq		90
	1,4-dioxane	13.5		88	48663		ppb		8,9
	2,2,4-trimethylpentane	12,8			336224		dqq		97
	Heptane	13.2		43	117878	1.24	ppb		95
	Trichloroethene	13.3					dqq		95
* T /									

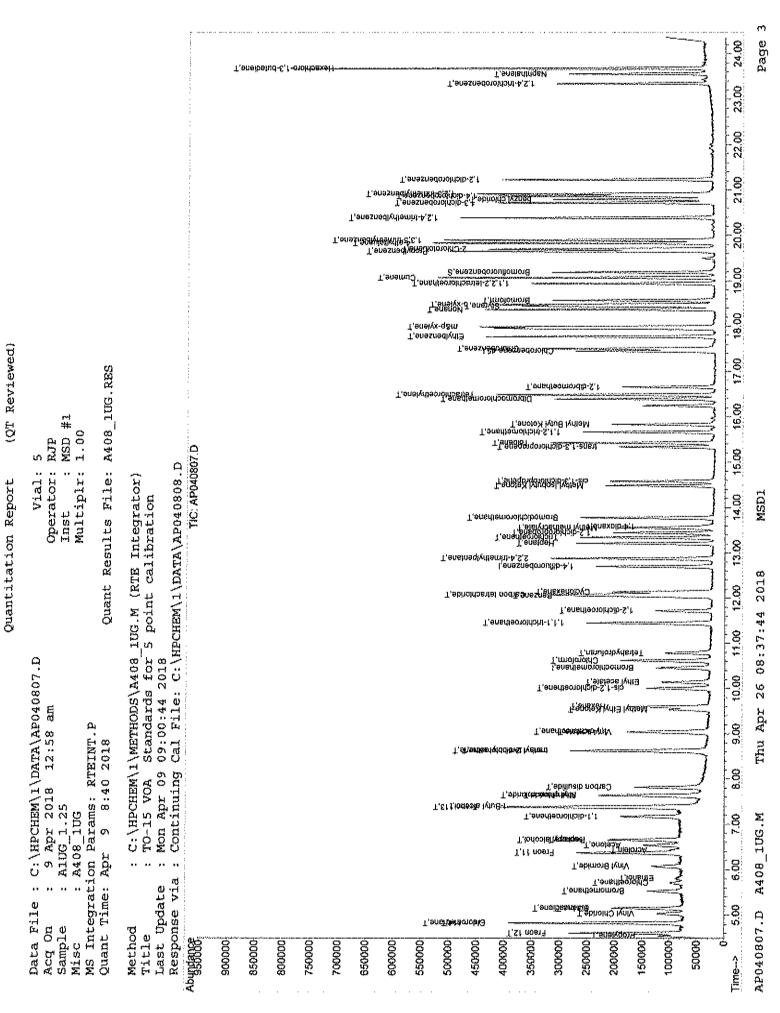
(#) = qualifier out of range (m) = manual integration

AP040807.D A408_1UG.M Thu Apr 26 08:37:42 2018

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040807.D Vial: 5 Acq On : 9 Apr 2018 12:58 am Operator: RJP Sample : AlUG_1.25 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 09 06:51:49 2018 Quant Results File: A408 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46) Bromodichloromethane	13.77	83	198223	1.23 ppb	98
47) cis-1,3-dichloropropene	14.57	75	137097	1.28 ppb	96
48) trans-1,3-dichloropropene	15.33	75	132624	1.22 ppb	99
49) 1,1,2-trichloroethane	15.66	97	88655	1.21 ppb	100
51) Toluene	15.42	92	156661	1.25 ppb	97
52) Methyl Isobutyl Ketone	14.48	43	161122	1.29 ppb	98
53) Dibromochloromethane	16.39	129	185670	1.22 ppb	100
54) Methyl Butyl Ketone	15.83	43	157813	1.26 ppb	99
55) 1,2-dibromoethane	16.66	107	141501	1.26 ppb	100
56) Tetrachloroethylene	16.48	164	105831	1.24 ppb	1,00
57) Chlorobenzene	17.50	112	208639	1.23 ppb	92
58) Ethylbenzene	17.77	91	362840	1.24 ppb	99
59) m&p-xylene	17.98	91	570881	2.46 ppb	97
60) Nonane	18.36	43	163676	1.28 ppb	94
61) Styrene	18.44	104	207057	1.22 ppb	90
62) Bromoform	18.56	173	171735	1.23 ppb	100
63) o-xylene	18.47	91	290966	1.24 ppb	97
64) Cumene	19.06	105	392862	1.22 ppb	99
66) 1,1,2,2-tetrachloroethane	18.94	83	186127	1.23 ppb	1.00
67) Propylbenzene	19.65	120	106898	1.27 ppb	94
68) 2-Chlorotoluene	19.70	1.26	95129	1.22 ppb	# 88
69) 4-ethyltoluene	19.83	105	393338	1.22 ppb	100
70) 1,3,5-trimethylbenzene	19.89	105	336385	1.23 ppb	96
71) 1,2,4-trimethylbenzene	20.38	105	327452	1.22 ppb	96
72) 1,3-dichlorobenzene	20.72	146	199650	1.22 ppb	96
73) benzyl chloride	20.79	91	277723	1.27 ppb	95
74) 1,4-dichlorobenzene	20.86	146	196404	1.25 ppb	98
75) 1,2,3-trimethylbenzene	20.91	105	305075	1.22 ppb	97
76) 1,2-dichlorobenzene	21.23	146	189141	1.24 ppb	97
77) 1,2,4-trichlorobenzene	23,35	180	96889	1.28 ppb	99
78) Naphthalene	23.56	128	237429	1.30 ppb	96
79) Hexachloro-1,3-butadiene	23.68	225	160588	1.23 ppb	99

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP040807.D A408_1UG.M Thu Apr 26 08:37:43 2018 MSD1

Page 185 of 248

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040808.D Vial: 6 Acq On : 9 Apr 2018 1:37 am Operator: RJP Sample : AlUG_1.0 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:50 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

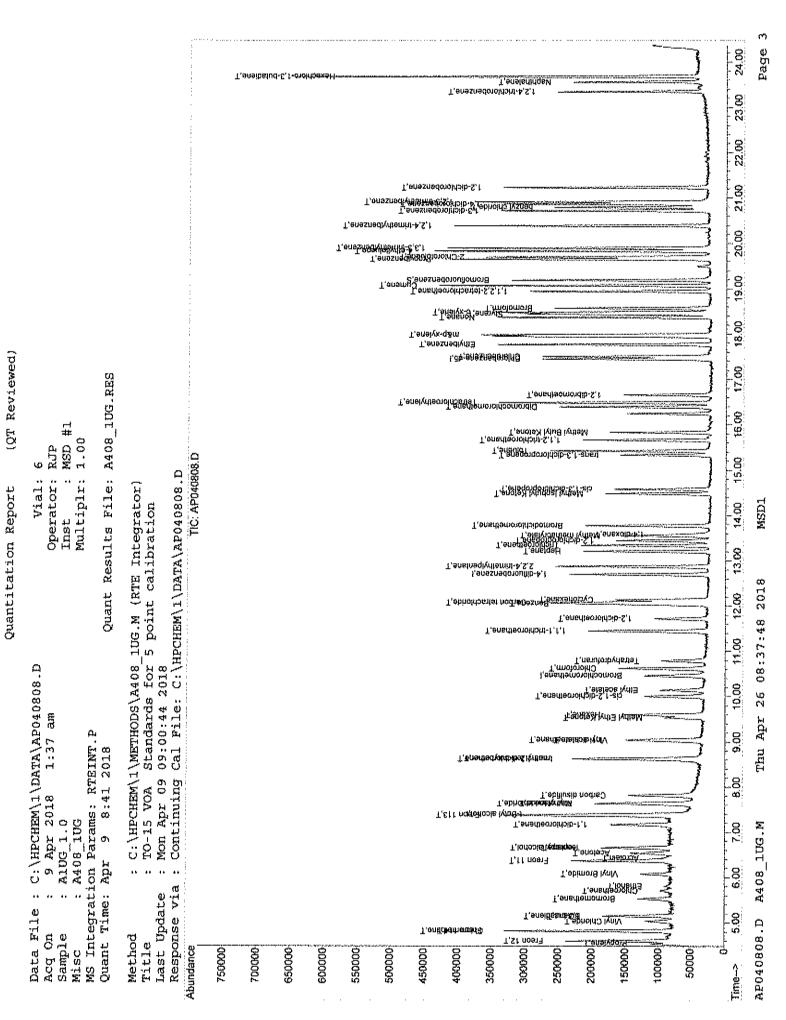
DataAcq Meth : 1UG_RUN

Bromochloromethane		-							
1) Bromochloromethane 10.45 1.28 40178 1.00 ppb 0.00 35 1,4-difluorobenzene 12.70 114 214337 1.00 ppb 0.00 0.00 50 Chlorobenzene-d5 17.45 117 172777 1.00 ppb 0.00 0.0				QIon	***				
35 1,4-difluorobenzene	3)	Bromochloromethane		128					
System Monitoring Compounds 650 Bromoflucrobenzene 19.18 95 122323 0.99 ppb 0.00	35)	1.4-difluorobenzene	12.70	114	214337	1.0			
### System Monitoring Compounds 19.18 95 122323 0.99 ppb 0.00	50)	Chlorobenzene-d5	17.45	117	172777	1.0			
Spiked Amount	,		- ()	mr m ·	mr / mr 1 / /		· FF-		0,00
Target Compounds 2) Propylene									
Target Compounds 2) Propylene 4.54 41 48511 1.00 ppb 97 3) Freon 12 4.60 85 236184 1.00 ppb 98 4) Chloromethane 4.81 50 55564 1.00 ppb 98 5) Freon 114 4.82 85 165397 1.00 ppb 98 6) Vinyl Chloride 5.03 62 51235 1.00 ppb 99 7) Butane 5.14 43 72049 1.00 ppb 97 8) 1,3-butadiene 5.15 39 50723 1.00 ppb 93 9) Bromomethane 5.52 94 53044 1.01 ppb 99 10) Chloroethane 5.70 64 22282 1.00 ppb 99 11) Ethanol 5.80 45 16616m // 1.00 ppb 95 12) Acrolein 6.43 56 18082 0.95 ppb 95 13) Vinyl Bromide 6.07 106 49340 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 99 16) Pentane 6.55 42 41593 1.00 ppb 89 17) Tsopropyl alcohol 6.64 45 68657 1.00 ppb 88 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 98 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 96 18) 1,1-dichloroethene 8.61 61 815747 1.00 ppb 86 12) Actone dishtylenchene 8.62 41 18652 1.00 ppb 95 12) Allyl chloride 7.63 44 66662 1.00 ppb 95 12) Allyl chloride 7.63 46 6665 1.00 ppb 95 12) Allyl chloride 7.63 47 66562 1.00 ppb 95 12) Allyl chloride 7.63 48 67806 1.00 ppb 96 12) Allyl chloride 7.63 48 67806 1.00 ppb 96 12) Allyl chloride 7.63 41 66562 1.00 ppb 97 12) Allyl chloride 7.63 48 67806 1.00 ppb 96 13) Chloroethane 9.04 63 115747 1.00 ppb 88 14) Heyl Retone 9.05 78 8850 1.00 ppb 96 15) Mexane 9.04 63 115747 1.00 ppb 97 17) Vinyl acetate 9.02 43 135879 1.00 ppb 96 18) Hexane 9.05 78 8850 1.00 ppb 96 19) Firshyl acetate 10.13 43 115833 1.00 ppb 96 100 12-dichloroethane 10.61 83 148194 1.00 ppb 96 100 12-dichloroethane 11.72 62 103166 1.00 ppb 96 100 13) Hexane 12.13 56 84061 1.00 ppb 97 100 13) Hexane 12.24 4.74 1.00 ppb 98 100 1.00 1.00 ppb 99 110 1.00 1.00 ppb 99 120 1.1-trichloroethane 11.72 62 103166 1.00 ppb 99 110 100 100 100 100 100 100 100 100 100									0.00
2) Propylene	Sp	iked Amount 1.000	Range 70	- 130	Recovery	<i>r</i> ==:	99	.00%	
2) Propylene	Tarq	et Compounds						O'tz	- 1 m
3 Freon 12			4.54	41	48511	1.0	0 nnh	W. * *	
4) Chloromethane 5) Freon 114 4				85	236184	7.0	daa o		
S									
Sutane			4 82	85	165397	T. 0	0 ppb		
Sutane			5.03	62	51235	1.0			
8) 1,3-butadiene			5 14	43	72049				
12) Acrolein 6.43 56 18082 0.95 ppb 95 13) Vinyl Bromide 6.07 106 49340 1.00 ppb 96 14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 89 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 96 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132237 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 90 32) Chloroform 10.61 83 148194 1.00 ppb 90 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 99 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.75 68056 1.00 ppb 99 37) Cyclohexane 12.13 56 84061 1.00 ppb 99 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.58 88 37754 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 99 44) Trichloroethene 13.34 130 78809 1.00 ppb 99			5 75	39	50723				
12) Acrolein 6.43 56 18082 0.95 ppb 95 13) Vinyl Bromide 6.07 106 49340 1.00 ppb 96 14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 89 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 96 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132237 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 90 32) Chloroform 10.61 83 148194 1.00 ppb 90 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 99 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.75 68056 1.00 ppb 99 37) Cyclohexane 12.13 56 84061 1.00 ppb 99 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.58 88 37754 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 99 44) Trichloroethene 13.34 130 78809 1.00 ppb 99			5.52	94	53044	1 0			
12) Acrolein 6.43 56 18082 0.95 ppb 95 13) Vinyl Bromide 6.07 106 49340 1.00 ppb 96 14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 89 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 96 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132237 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 90 32) Chloroform 10.61 83 148194 1.00 ppb 90 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 99 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.75 68056 1.00 ppb 99 37) Cyclohexane 12.13 56 84061 1.00 ppb 99 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.58 88 37754 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 99 44) Trichloroethene 13.34 130 78809 1.00 ppb 99			5 70	64	22282	7 0			
12) Acrolein 6.43 56 18082 0.95 ppb 95 13) Vinyl Bromide 6.07 106 49340 1.00 ppb 96 14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 89 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 96 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132237 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 90 32) Chloroform 10.61 83 148194 1.00 ppb 90 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 99 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.75 68056 1.00 ppb 99 37) Cyclohexane 12.13 56 84061 1.00 ppb 99 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.58 88 37754 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 99 44) Trichloroethene 13.34 130 78809 1.00 ppb 99	•		5.70	45	16616m M				
14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 99 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 88 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 96 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.62 41 66562 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 87 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 97 32) Chloroform 10.61 83 148194 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.75 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.75 62 103166 1.00 ppb 97 36) 1,1,1-trichloroethane 11.75 68 84061 1.00 ppb 99 36) 1,1,1-trichloroethane 11.75 62 103166 1.00 ppb 99 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 99 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 99 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 97 43) Heptane 13.20 43 92076 1.00 ppb 94 43) Heptane 13.34 130 78809 1.00 ppb 95			6 43	55	18082	n 9	o pro-		95
14) Freon 11 6.36 101 194055 1.00 ppb 99 15) Acetone 6.54 58 30640 1.00 ppb 89 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 21) Methylene chloride 7.62 41 66562 1.00 ppb 95 21) Methylene chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tetrt-butyl ether 8.62 73 197074 1.00 ppb <				106			o ppp		
16) Pentane 6.54 58 30640 1.00 ppb 98 16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 86 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 95 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 27) Vinyl acetate 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 27) Vinyl acetate 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 90 32) Chloroform 10.61 83 148194 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 36) 1,1,1-trichloroethane 11.72 62 103166 1.00 ppb 97 39) Benzene 12.13 56 84061 1.00 ppb 98 39 Benzene 12.04 78 180950 1.00 ppb 98 40 Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 41 Trichloroethene 13.34 130 78809 1.00 ppb 97 44) Trichloroethene 13.34 130 78809 1.00 ppb 97 44) Trichloroethene 13.34 130 78809 1.00 ppb 97 44) Trichloroethene 13.34 130 78809 1.00 ppb 98 44) Trichloroethene 13.34 130 78809 1.00 ppb 98				101	104055	1 0			
16) Pentane 6.65 42 41593 1.00 ppb 98 17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 95 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 90 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 90 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 97 34) 1,2-dichloroethane 11.45 97 167637 1.00 ppb 97 34) 1,2-dichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 96 39 Benzene 12.13 56 84061 1.00 ppb 96 39 Benzene 12.04 78 180950 1.00 ppb 97 39 Benzene 12.04 78 180950 1.00 ppb 97 39 Benzene 12.04 78 180950 1.00 ppb 97 42) 2,2,4-trimethylpentane 13.58 88 37754 1.00 ppb 97 42) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 1,7-drichloroethene 13.20 43 92076 1.00 ppb 98 44) Trichloroethene 13.20 43 92076 1.00 ppb 97 42) 1,7-drichloroethene 13.20 43 92076 1.00 ppb 97 42) 1,7-drichloroethene 13.20 43 92076 1.00 ppb 97 42) 1,7-drichloroethene 13.20 43 92076 1.00 ppb 98 44) Trichloroethene 13.20 43 92076 1.00 ppb 97 42) 1,7-drichloroethene 13.20 43 92076 1.00 ppb 98 44) Trichloroethene 13.34 130 78809 1.00 ppb 91					30640	7 0			
17) Isopropyl alcohol 6.64 45 68657 1.00 ppb 86 18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb # 86 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 96 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 32) Chloroform 10.61 83 148194 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 91						1.0			
18) 1,1-dichloroethene 7.16 96 52446 1.00 ppb 89 19) Freon 113 7.37 101 131280 1.00 ppb 96 20) t-Butyl alcohol 7.40 59 137912 1.00 ppb 96 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb <td></td> <td></td> <td>6.05</td> <td>44</td> <td>4+373</td> <td>1.0</td> <td>o ppp</td> <td></td> <td></td>			6.05	44	4+373	1.0	o ppp		
20) t-Butyl alcohol 7.40 59 137912 1.00 ppb # 86 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 27) Vinyl acetate 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 96 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 95			7.16	4.5	50446	1.0	o ppp		
20) t-Butyl alcohol 7.40 59 137912 1.00 ppb # 86 21) Methylene chloride 7.63 84 67806 1.00 ppb 91 22) Allyl chloride 7.62 41 66562 1.00 ppb 95 23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 97 27) Vinyl acetate 9.53 72 29999 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 96 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 40) Methyl methacrylate 13.58 88 37754 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.20 43 92076 1.00 ppb 98 43) Heptane 13.34 130 78809 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 95			7.16	30	52446	1.0			
23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 32) Chloroform 10.61 83 148194 1.00 ppb 100 32) Chloroform 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 36) Carbon tetrachloride 12.07 117 172000 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.58 88 37754 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 95			, , ,		10120				
23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 32) Chloroform 10.61 83 148194 1.00 ppb 100 32) Chloroform 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 36) Carbon tetrachloride 12.07 117 172000 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.58 88 37754 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 95			7.40	59	137912				
23) Carbon disulfide 7.81 76 132337 1.00 ppb 96 24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 88 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 32) Chloroform 10.61 83 148194 1.00 ppb 100 32) Chloroform 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 97 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 96 36) Carbon tetrachloride 12.07 117 172000 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98 42) 2,2,4-trimethylpentane 13.58 88 37754 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 95			7.63	84	67806	1.0	add o		
24) trans-1,2-dichloroethene 8.61 61 81675 1.00 ppb 87 25) methyl tert-butyl ether 8.62 73 197074 1.00 ppb 98 26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 96 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 96 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 9				4 7	0000	1.0	o ppp		
26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91				76	132337	1.00	agg o		
26) 1,1-dichloroethane 9.04 63 115747 1.00 ppb 97 27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91				61	81675				
27) Vinyl acetate 9.02 43 135879 1.00 ppb 100 28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 90 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 98									
28) Methyl Ethyl Ketone 9.53 72 29999 1.00 ppb # 100 29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 99 36) 1,1,1-trichloroethane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91		•							
29) cis-1,2-dichloroethene 10.00 61 83698 1.00 ppb 90 30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	27)	Vinyl acetate	9.02	43	135879				
30) Hexane 9.59 57 83850 1.00 ppb 96 31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	28)	Methyl Ethyl Ketone	9.53	72	29999				
31) Ethyl acetate 10.13 43 115833 1.00 ppb 100 32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91				61	83698				
32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91				57	83850	1.00	dqq 0		
32) Chloroform 10.61 83 148194 1.00 ppb 100 33) Tetrahydrofuran 10.78 42 56895 1.00 ppb 97 34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91				43	115833	1.0	qqq 0		
34) 1,2-dichloroethane 11.72 62 103166 1.00 ppb 99 36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 98 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	32)		10.61	83	148194	1.00	qqq 0		
36) 1,1,1-trichloroethane 11.45 97 167637 1.00 ppb 100 37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91			10.78	42	56895	1.00	dqq 0		97
37) Cyclohexane 12.13 56 84061 1.00 ppb 96 38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	34)	1,2-dichloroethane		62	103166	1.00	dqq 0		99
38) Carbon tetrachloride 12.07 117 172000 1.00 ppb 99 39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	36)	1,1,1-trichloroethane	11.45	97	167637	1.00	dqq 0		100
39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	37)	Cyclohexane	12.13	56	84061	1.00	dqq 0		96
39) Benzene 12.04 78 180950 1.00 ppb 98 40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	38)	Carbon tetrachloride	12.07	117	172000	1.00	dqq 0		99
40) Methyl methacrylate 13.55 41 79057 1.00 ppb 88 41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	39)	Benzene	12.04	78	180950				98
41) 1,4-dioxane 13.58 88 37754 1.00 ppb 97 42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91	40)	Methyl methacrylate	13.55	41	79057				88
42) 2,2,4-trimethylpentane 12.87 57 261746 1.00 ppb 98 43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91									
43) Heptane 13.20 43 92076 1.00 ppb 95 44) Trichloroethene 13.34 130 78809 1.00 ppb 91									
44) Trichloroethene 13.34 130 78809 1.00 ppb 91									
· · · · · · · · · · · · · · · · · · ·									
· , · · · · · · · · · · · · · · · · · ·	•								
		, A — A — — — — — — — — — — — — — — — —							

^{(#) =} qualifier out of range (m) = manual integration

AP040808.D A408_1UG.M Thu Apr 26 08:37:46 2018

Quantitation Report (QT Reviewed)


Data File: C:\HPCHEM\1\DATA\AP040808.D
Acq On: 9 Apr 2018 1:37 am
Sample: AlUG 1.0
Misc: A408 1UG Vial: 6 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:50 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.77	83	156348	1.00 ppb	98
47)	cis-1,3-dichloropropene	14.57	75	103754	1.00 ppb	97
48)	trans-1,3-dichloropropene	15.33	75	106394	1.01 ppb	100
49)	1,1,2-trichloroethane	15.66	97	71067	1.00 ppb	100
51)	Toluene	15.42	92	124025	0.99 ppb	97
52)	Methyl Isobutyl Ketone	14.48	43	123673	0.99 ppb	99
53)	Dibromochloromethane	16.39	129	149968	0.99 ppb	100
54)	Methyl Butyl Ketone	15.83	43	123472	dqq 99.0	98
55)	1,2-dibromoethane	16.65	107	111212	0.99 ppb	9,9
56)	Tetrachloroethylene	16.48	164	84399	0.99 ppb	99
57)	Chlorobenzene	17.50	112	167213	0.99 ppb	91
58)	Ethylbenzene	17.76	91	290168	0.99 ppb	99
59)	m&p-xylene	17.98	91	459993	1.99 ppb	97
60)	Nonane	18.36	43	126374	0.99 ppb	98
61)	Styrene	18.44	104	168363	0.99 ppb	92
62)	Bromoform	18.56	173	137820	0.99 ppb	98
63)	o-xylene	18.47	91	232388	0.99 ppb	98
64)	Cumene	19.06	105	318315	dqq ee.0	99
66)	1,1,2,2-tetrachloroethane	18.94	83	149201	0.99 ppb	99
67)	Propylbenzene	19.65	120	83427	0.99 ppb	93
68)	2-Chlorotoluene	19.70	126	77163	0.99 ppb	# 83
69)	4-ethyltoluene	19.83	105	318517	0.99 ppb	100
70)	1,3,5-trimethylbenzene	19.89	105	270725	0.99 ppb	96
71)	1,2,4-trimethylbenzene	20.39	105	265458	0.99 ppb	96
72)	1,3-dichlorobenzene	20.72	146	162039	0.99 ppb	98
73)	benzyl chloride	20.79	91	216956	dqq ee.o	95
74)	1,4-dichlorobenzene	20.86	146	155693	0.99 ppb	97
75)	1,2,3-trimethylbenzene	20.91	105	248234	0.99 ppb	96
	1,2-dichlorobenzene	21.23	146	151149	0.99 ppb	95
77)	1,2,4-trichlorobenzene	23.35	180	74792	dqq ee.0	99
78)	Naphthalene	23.56	128	181076	0.99 ppb	96
79)	Hexachloro-1,3-butadiene	23.68	225	129660	0.99 ppb	99

Quantitation Report (QT Reviewed)

Data File: C:\HPCHEM\1\DATA\AP040809.D
Acq On: 9 Apr 2018 2:16 am
Sample: A1UG_0.75
Misc: A408_1UG Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:51 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
 Bromochloromethane 	10.46	128	40806	1,00			0.00
35) 1,4-difluorobenzene			217406				0.00
50) Chlorobenzene-d5	17.45	117	173705	1.00	bbp		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.18	95	123788	1.00	daa		0.00
Spiked Amount 1.000	Range 70		Recover			.00%	
Target Compounds						ÓΨ.	alue
2) Propylene	4.53	41	33116	0.67	daa	₩.**	98
3) Freon 12	4.60	85	176590	0.74			100
4) Chloromethane	4.82	50	40748	0,72	daa		100
5) Freon 114	4.82			0.72			96
6) Vinyl Chloride	5.03	62	36405	0.70	daa		99
7) Butane	5.15	43	E3E33	0.72			90
8) 1,3-butadiene	5.15		36277	0.70	daa	17	99
9) Bromomethane	5.52	94	41758	0.78	ppb		92
10) Chloroethane	5.71	64	16025		nph	#	87
11) Ethanol	5.80	64 45 56	11595	0.71	daa		94
12) Acrolein	6.42	56	13253m //)	0.68			
13) Vinyl Bromide	6.07	1.06	38060	0.76			96
14) Freon 11	6.37	101	143175	0.73			99
15) Acetone	6.54		25206	0.81			98
16) Pentane	6.65	42	31702	0.75			97
17) Isopropyl alcohol	6.65	45					87
18) 1,1-dichloroethene	7.16	96	37671	0.71			86
19) Freon 113	7.37	101	104810	0.79	かわか	**	94
20) t-Butyl alcohol	7.40	59	105020	0.75			90
21) Methylene chloride	7.64	84	53689				97
22) Allyl chloride	7.62			0.71	dad		99
23) Carbon disulfide	7.81	41 76	95125	0.71	ggg		97
24) trans-1,2-dichloroethene		61	58107	0.70	daa		92
25) methyl tert-butyl ether		73		0.72			89
26) 1,1-dichloroethane	9.04	63	84787	0 72	daa		99
27) Vinyl acetate	9.02	43	97792	0.71	daa		100
28) Methyl Ethyl Ketone			21527		daa	#	100
29) cis-1,2-dichloroethene	10.00	61	61003	0.72	daa		91
30) Hexane	9.59	57	61003 59857	0.70	daa		97
31) Ethyl acetate	10,13		79770	0.68	daa		98
32) Chloroform	10.62	83	109507		daa		100
33) Tetrahydrofuran	10.79	42	42022	0.73	daa		97
34) 1,2-dichloroethane	11.72	62	75814	0.72	ppb		99
36) 1,1,1-trichloroethane	11,44	97	126015	0.74	daa		100
37) Cyclohexane	12.13	56	62577	0.73			95
38) Carbon tetrachloride	12.07	117	127979	0.73	daa		100
39) Benzene	12.03	78	134458	0.73	daa		97
40) Methyl methacrylate	13.55	41	57688	0.72			89
41) 1,4-dioxane	13.59	88	28639	0.75			95
42) 2,2,4-trimethylpentane	12.87	57	194056	0.73			98
43) Heptane	13.21	43	65525	0.70			99
44) Trichloroethene	13.34	130	59989	0.75			93
45) 1,2-dichloropropane	13.44	63	45176	0.72	daa		98
+5) I, Z-GIGHIOTOPLODAME			401/0	·	 555		

^{(#) =} qualifier out of range (m) = manual integration

AP040809.D A408 1UG.M Thu Apr 26 08:37:50 2018

Page 1

Quantitation Report (QT Reviewed)

Data File: C:\HPCHEM\1\DATA\AP040809.D
Acq On: 9 Apr 2018 2:16 am
Sample: Alug_0.75
Misc: A408_1UG Vial: 7 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:51 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.77	83	114257	0.72 ppb	98
47)	cis-1,3-dichloropropene	14.57	75	79358	0.75 ppb	97
48)	trans-1,3-dichloropropene	15.33	75	75619	0.70 ppb	96
49)	1,1,2-trichloroethane	15.66	97	53366	0.74 ppb	98
51)	Toluene	15.42	92	93512	0.75 ppb	98
52)	Methyl Isobutyl Ketone	14.48	43	94350	0.75 ppb	97
53)	Dibromochloromethane	16.39	129	111233	0.73 ppb	99
54)	Methyl Butyl Ketone	15.83	43	93959	0.75 ppb	97
55)	1,2-dibromoethane	16.66	107	84554	0.75 ppb	99
56)	Tetrachloroethylene	16.48	164	62926	0.74 ppb	98
57)	Chlorobenzene	17.50	112	128310	0.76 ppb	93
58)	Ethylbenzene	17.76	91	222092	0.76 ppb	98
59)	m&p-xylene	17.98	91	345283	1.49 ppb	97
60)	Nonane	18.36	43	97045	0.76 ppb	96
61.)	Styrene	18.44	104	124009	0.73 ppb	91
62)	Bromoform	18.56	173	103346	0.74 ppb	98
63)	o-xylene	18.47	91	174477	0.74 ppb	98
64)	Cumene	19.06	105	239224	0.74 ppb	100
66)	1,1,2,2-tetrachloroethane	18.94	83	111868	0.74 ppb	98
67)	Propylbenzene	19.65	120	64201	0.76 ppb	99
68)	2-Chlorotoluene	19.69	126	58817	0.75 ppb	# 85
69)		19.83	105	235920	0.73 ppb	99
70)	1,3,5-trimethylbenzene	19.89	105	202160	0.74 ppb	98
71)	1,2,4-trimethylbenzene	20.39	105	197280	0.74 ppb	99
72)	1,3-dichlorobenzene	20.72	146	123552	0.75 ppb	97
73)	benzyl chloride	20.79	91	158789	0.72 ppb	97
74)		20.86	146	116629	0.74 ppb	98
75)	1,2,3-trimethylbenzene	20.91	105	187141	0.75 ppb	96
76)	1,2-dichlorobenzene	21.22	146	117746	0.77 ppb	98
	1,2,4-trichlorobenzene	23.34	1.80	52773	0.70 ppb	97
78)	Naphthalene	23.55	128	131784	0.72 ppb	97
79)	Hexachloro-1,3-butadiene	23.68	225	99843	0.76 ppb	99

Page 191 of 248

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040810.D Vial: 8
Acq On : 9 Apr 2018 2:54 am Operator: RJP
Sample : AlUG 0.50 Inst : MSD #1
Misc : A408_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:52 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

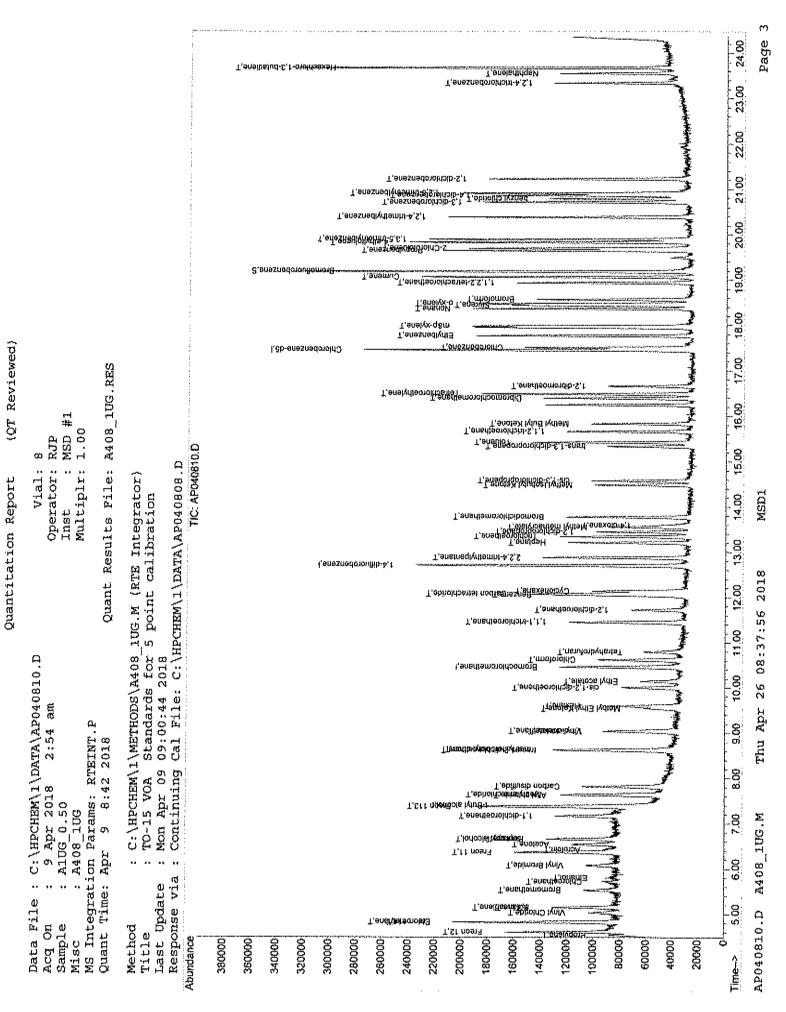
Internal Standards	R.T.	QIon	Response (Conc U	nits	Dev	(Min)
1) Bromochloromethane	10.46	1,28	41870	1.00	ppb		0.00
35) 1,4-difluorobenzene				1.00	$_{ m ppb}$		0.00
50) Chlorobenzene-d5	17.44	117	177190	1.00	dqq		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.18	95	118374	0,94	ppb		0.00
Spiked Amount 1.000	Range 70	- 130	Recovery		94		
Target Compounds						Qvá	alue
Propylene	4.54	41	24384	0.48	dqq	_	96
3) Freon 12	4.60	85	121610	0.49	dqq		96
4) Chloromethane	4.81	50	27753	0.48	dqq		99
5) Freon 114	4.82	85	97T/2	0.48	dqq		93
6) Vinyl Chloride	5.04	62	25185		dqq		95
7) Butane	5.14	43	36385		ppb		96
8) 1,3-butadiene	5.14	43 39 94	26155	0.49	ppb		90
9) Bromomethane	5.53	94	26197	0.48	ppb		99
10) Chloroethane	5.71	64	10229	0.44	gpb		99
11) Ethanol	5.81	45 56	7716	0.46	ppb		93
12) Acrolein	6.42	56	7716 10546m ₩	0.53	dqq		
13) Vinyl Bromide	6.07	106	24773	0.48	ppb		92
14) Freon 11	6.36	101	97815		ppp		99
15) Acetone	6.53	58	18512	0.58			91
16) Pentane	6.65	42	18818	0.43			87
17) Isopropyl alcohol	6.65	4.5	33671	0.47			88
18) 1,1-dichloroethene	7.17	96	25967	0.48			89
19) Freon 113	7.37	101	69251	0.51			96
20) t-Butyl alcohol	7.40	59	70608		ppb	#	88
21) Methylene chloride		84	36950	0.52			90
22) Allyl chloride	7.61	41	36536	0.53			90
23) Carbon disulfide 24) trans-1,2-dichloroethene	7.81	76	62056	0.45			92
25) methyl tert-butyl ether	8.60	61	38945	0.46			88
26) 1,1-dichloroethane		73	97611	0.48			88
27) Vinyl acetate	9.05 9.02	63	56165	0.47			98
28) Methyl Ethyl Ketone	9.02	43 72	64935 13295	0.46		ш	98
29) cis-1,2-dichloroethene	10.00			0.43		#	100
30) Hexane	9.59	61 57	40569 41265	0.47	ppp		92 97
31) Ethyl acetate	10.13	57 43	52622	0.44	FPD		97
32) Chloroform	10.61	83	74932				98
33) Tetrahydrofuran	10.78	42	26798	$0.49 \\ 0.45$	PPP		98
34) 1,2-dichloroethane	11.72	62	51630	0.48	PPA		99
36) 1,1,1-trichloroethane	11.45	97	84593	0.49	ppp		100
37) Cyclohexane	12.13	56	44984	0.52			93
38) Carbon tetrachloride	12.07	117	86775	0.49			99
39) Benzene	12.04	78	90159	0.49			97
40) Methyl methacrylate	13.54	41	36566	0.45			89
41) 1,4-dioxane	13.59	88	18744	0.49			97
42) 2,2,4-trimethylpentane	12,87	57	129471	0.48			97
43) Heptane	13.20	43	45469	0.48			97
44) Trichloroethene	13,33		40868	0.51			95
45) 1,2-dichloropropane	13.44	63	31306	0.50	daa		97

^{(#) =} qualifier out of range (m) = manual integration AP040810.D A408_1UG.M Thu Apr 26 08:37:54 2018

MSD1

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P


Quant Time: Apr 09 06:51:52 2018 Quant Results File: A408 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)		13.77	83	76795	0.48 ppb	96
47)		14.57	75	52568	0.50 ppb	97
48)	trans-1,3-dichloropropene	15.33	75	50183	0.46 ppb	99
49)	1,1,2-trichloroethane	15.66	97	36575	dgg 02.0	96
51)	Toluene	15.42	92	63307	0.50 ppb	98
52)	Methyl Isobutyl Ketone	14.48	43	61173	0.48 ppb	98
53)	Dibromochloromethane	16.39	129	75513	$0.49 \tilde{p} pb$	1.00
54)		15.83	43	66338	0.52 ppb	96
55)		16.66	107	56371	0.49 ppb	99
56)	Tetrachloroethylene	16.49	164	42668	0.49 ppb	97
57)	Chlorobenzene	17.50	112	86640	0,50 ppb	94
58)	Ethylbenzene	17.76	91	149347	0.50 ppb	98
59)	m&p-xylene	17.98	91	227300	0.96 ppb	100
60)	Nonane	18.36	43	65456	0.50 ppb	96
61)	Styrene	18.44	104	83036	0.48 ppb	90
	Bromoform	18.56	173	69504	0.49 ppb	99
63)	o-xylene	18.47	91	117928	0.49 ppb	98
64)	Cumene	19.06	105	159469	0.49 ppb	99
66)	1,1,2,2-tetrachloroethane	18.94	83	75355	0.49 ppb	99
67)	Propylbenzene	19.65	120	43776	0.51 ppb	100
68)	2-Chlorotoluene	19.69	126	39283	0.49 ppb	91
69)	4-ethyltoluene	19.83	105	159569	0.49 ppb	98
70)	1,3,5-trimethylbenzene	19.89	105	137904	0.49 ppb	94
71)	1,2,4-trimethylbenzene	20.38	105	131067	0.48 ppb	99
72)	1,3-dichlorobenzene	20.72	146	79834	0.48 ppb	97
73)	benzyl chloride	20.79	91	101514	0.45 ppb	95
74)	l,4-dichlorobenzene	20.87	146	77200	0.48 ppb	98
75)	1,2,3-trimethylbenzene	20.91	105	124112	0.49 ppb	95
	1,2-dichlorobenzene	21.22	146	74964	0.48 ppb	95
77)	1,2,4-trichlorobenzene	23.35	180	32251	0.42 ppb	99
78)	Naphthalene	23.56	128	84090	0.45 ppb	97
79)	Hexachloro-1,3-butadiene	23.68	225	63660	0.48 ppb	99

Page 194 of 248

Quantitation Report (QT Reviewed)

Data File: C:\HPCHEM\1\DATA\AP040811.D
Acq On: 9 Apr 2018 3:31 am
Sample: AlUG_0.30
Misc: A408_lUG Vial: 9 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:53 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

DataAcq Meth : 1UG_RUN

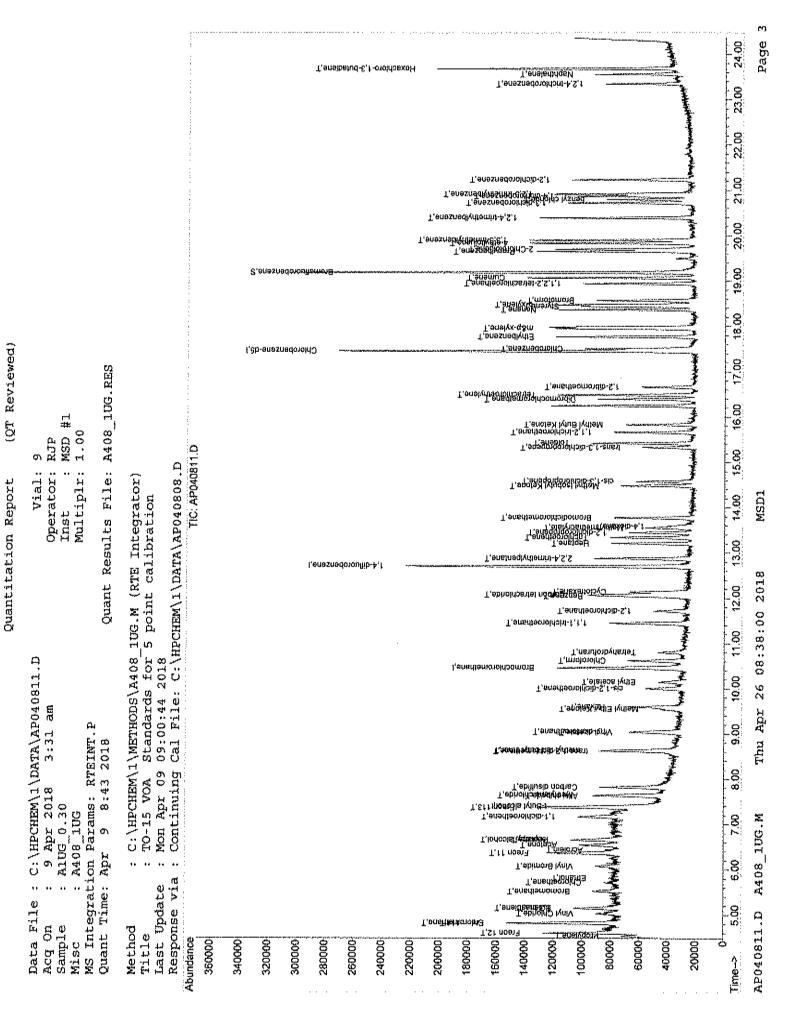
Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
1) Bromochloromethane	10.46	128	40488				0.00
35) 1,4-difluorobenzene	12.70	114	213668 172675	1.00			0.00
50) Chlorobenzene-d5	17.45	117	172675	1.00	bbp		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.18						0.00
Spiked Amount 1.000	Range 70	- 130	Recover	Λ	98	.00%	
Target Compounds						Qv	alue
Propylene	4.55	41	14844	0.30	ppb		86
3) Freon 12	4.60	85	73709	0.31			97
4) Chloromethane	4.82	50	17817	0.32	ppb		84
5) Freon 114	4.82	85 62 43	50085	0.30	dqq		93
6) Vinyl Chloride	5.03	62	1.5050	0.29	ppb		99
7) Butane	5.14	43	23704	0.33	ppb		98
8) 1,3-butadiene	5.15	39	16384	0.32	ppb		90
9) Bromomethane	5.52	94	15698	0.30			97
10) Chloroethane	5.71	64	6333m 🗗	0.28	ppb		
11) Ethanol	5.81	45	23704 16384 15698 6333m \$ 4436 7023m \$	0.27	ďąą	#	50
12) Acrolein	б.44	56 106 101	7023m /	0.36	ppb		
13) Vinyl Bromide	6.08	106	15130 V				90
14) Freon 11	6.36		m 1	0.30			96
15) Acetone	6.53	58	14890		ppb	#	85
16) Pentane	6.66	42 45 96	14158	0.34	dqq		97
17) Isopropyl alcohol	6.66	45	19140 16894	0.28	ppb		96
18) 1,1-dichloroethene	7.16	96	16894				95
19) Freon 113	7.36		42830				92
20) t-Butyl alcohol	7.40	59	44431	0.32		##	88
21) Methylene chloride	7.40 7.65	84	27433	0.40			97
22) Allyl chloride	7.02	- + +		0.37	ppb		83
23) Carbon disulfide	7.81	76	40627		dqq		92
24) trans-1,2-dichloroethene	8.60	61 73	21147	0.26	ppb		94
25) methyl tert-butyl ether				0.29	ppp	#	52
26) 1.1-dichloroethane		63			ppb		95
27) Vinyl acetate	9.02	43	35564	0.26			90
28) Methyl Ethyl Ketone	9.54	72 61	7051	0.23	dqq	#	100
29) cis-1,2-dichloroethene	10.00	61	24057	0.29	bbp		93
30) Hexane			25578	0.30	ggg		98
31) Ethyl acetate	10,14		30197	0.26	ppb		99
32) Chloroform	10.61	83	44655	0.30			99
33) Tetrahydrofuran	10.79	42	15612	0.27	ppb		95
34) 1,2-dichloroethane	11.72	62	30568	0.29			99
36) 1,1,1-trichloroethane	11.45	97	51804	0.31			98
37) Cyclohexane	12.14	56	27098	0.32			96
38) Carbon tetrachloride	12.07	117	52557	0.31			98
39) Benzene	12.04	78	52486	0.29			93
40) Methyl methacrylate	13.55	41	21500	0.27			87
41) 1,4-dioxane	13.59	88	13041	0.35			92
42) 2,2,4-trimethylpentane	12.87	57	77571	0.30	dqq		99
43) Heptane	13.21	43	27415	0.30			98
44) Trichloroethene	13.33	130	24982	0.32	dqq		96
45) 1,2-dichloropropane	13.44	63	18526	0.30	ppb		93

^{(#) =} qualifier out of range (m) = manual integration

AP040811.D A408_1UG.M Thu Apr 26 08:37:58 2018

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040811.D Vial: 9 Acq On : 9 Apr 2018 3:31 am Operator: RJP Sample : A1UG_0.30 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:53 2018 Quant Results File: A408 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	· ··· - · · · · · · · · · · · · · · · ·	13.77	83	46250	0.30 ppb	98
47)	cis-1,3-dichloropropene	14.57	75	30200	0.29 ppb	99
48)	trans-1,3-dichloropropene	15.33	75	28759	0.27 ppb	93
49)	1,1,2-trichloroethane	15.66	97	21170	0.30 ppb	95
51)	Toluene	15.42	92	38032	0.31 ppb	97
52)	Methyl Isobutyl Ketone	14.48	43	44741	0.36 ppb	99
53)	Dibromochloromethane	16.39	129	45361	0.30 ppb	99
54)	Methyl Butyl Ketone	15.83	43	43272	0.35 ppb	97
55)	1,2-dibromoethane	16.66	107	33509	0.30 ppb	99
56)	Tetrachloroethylene	16.48	164	25745	0.30 ppb	97
57)	Chlorobenzene	17.50	112	50668	0.30 ppb	92
58)	Ethylbenzene	17.77	91	87456	dqq 08.0	98
59)	m&p-xylene	17.95	91	136906	0.59 ppb	97
60)	Nonane	18.36	43	37916	0.30 ppb	96
61)	Styrene	18.44	104	48821	0.29 ppb	92
62)	Bromoform	18.57	173	40736	0.29 ppb	97
63)	o-xylene	18.47	91	69207	0.30 ppb	97
64)	Cumene	19.07	105	95911	0.30 ppb	98
66)	1,1,2,2-tetrachloroethane	18.94	83	43839	0.29 ppb	97
67)	Propylbenzene	19.65	120	24631	0.29 ppb	93
68)	2-Chlorotoluene	19.70	126	23611	dqq 08.0	90
69)	4-ethyltoluene	19.83	105	91193	0.29 ppb	100
70)	1,3,5-trimethylbenzene	19.89	1.05	78125	0.29 ppb	97
71)	1,2,4-trimethylbenzene	20.39	105	77761	0.29 ppb	95
72)	1,3-dichlorobenzene	20.72	146	46553	0.29 ppb	97
73)	benzyl chloride	20.79	91	54065	0.25 ppb	94
74)	1,4-dichlorobenzene	20.86	146	44299	0.28 ppb	96
75)	1,2,3-trimethylbenzene	20.92	105	70101	0.28 ppb	100
76)	1,2-dichlorobenzene	21.23	145	43763	0.29 ppb	97
77)	1,2,4-trichlorobenzene	23.34	1.80	17904	0.24 ppb	99
78)	Naphthalene	23.56	128	47273	0.26 ppb	99
79)	Hexachloro-1,3-butadiene	23.68	225	36647	0.28 ppb	98

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP040811.D A408 1UG.M Thu Apr 26 08:37:59 2018 MSD1

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040812.D Vial: 10 Acq On : 9 Apr 2018 4:08 am Sample : Alug 0.15 Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 09 06:51:54 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

Internal Standards	R.T.		Response	Conc U			
1) Bromochloromethane	10.46	128	39621	1.00			0.00
35) 1,4-difluorobenzene	12.70	114	212180	1.00			
50) Chlorobenzene-d5	17.45	117	166066	1.00	ppb		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.18	95	111947	0.95	daa		0.00
Spiked Amount 1.000	Range 70						
Target Compounds						0**	alue
2) Propylene	4.54	41	9274m 🖍	0.19	nnh	٧v	arue
3) Freon 12	4.61	85	40553	0.17			95
4) Chloromethane	4.82	50	9108	0.17	ppp		70
5) Freon 114	4.82		27610	0.17	ppb		95
6) Vinyl Chloride	5.04	62	7771	0.15			89
7) Butane	5.14	43	7771 13095	0.18			96
8) 1,3-butadiene	5.15	39	13095 8864	0.18	daa		92
9) Bromomethane	5.52	94	9699	0.19	ppp		87
10) Chloroethane	5.71	64		0.15	daa	#	70
11) Ethanol	5.83	45	2256	0.14			61
12) Acrolein	6.41	56		0.19		"	-
13) Vinyl Bromide	6.08	106		0.18			97
14) Freon 11	6.37	101	31313	0.16			93
15) Acetone	6.54	58	31313 6744m	0.22			
16) Pentane	6.66	4.2		0.18			99
17) Isopropyl alcohol	6.65	4.5					88
18) 1,1-dichloroethene	7.17	96	8645	0.17			80
19) Freon 113	7.37	101	8645 22073	0.17	daa	"	95
20) t-Butyl alcohol	7.41	59	29605		daa	#	58
21) Methylene chloride	7.65	84 41	16612		daa	**	92
22) Allyl chloride	7.65			0.16	dqq		92
23) Carbon disulfide	7.82	76	22221	0.17			98
24) trans-1,2-dichloroethene	8.60	61	11812		ďďď		93
25) methyl tert-butyl ether	8.63	73 63		0.15	dqq		81
26) 1,1-dichloroethane	9.04	0.5	エリノキン	0.16	dqq		99
27) Vinyl acetate	9.03	43	20418	0.15	ppb		1.00
28) Methyl Ethyl Ketone	9.55	72	3526	0.12			100
29) cis-1,2-dichloroethene		61	12590 13689	0.15	ppb		94
30) Hexane	9.60		13689		ppb		91
31) Ethyl acetate	10.14	43			ppb		97
32) Chloroform	10.61	83	22920	0.16	dqq		99
33) Tetrahydrofuran	10.80	42	8540	0.15	dqq		88
34) 1,2-dichloroethane	11.72	62	15144	0.15	ppb		77
36) 1,1,1-trichloroethane	11.45	97	26625	0.16	dąą		99
37) Cyclohexane	12.14	56	13127	0.16	ppb		93
38) Carbon tetrachloride	12.08	117	26068	0.15			98
39) Benzene	12.04	78	29143	0.16			97
40) Methyl methacrylate	13.55	41	11140m 🧳	0.14	ppb		
41) 1,4-dioxane	13.60	88	7921	0.21	dqq		88
42) 2,2,4-trimethylpentane	12.88	57	42524	0.16	dqq		97
43) Heptane	13.21	43	14772	0.16	ppb		93
44) Trichloroethene	13.34	130	12531	0.16			94
45) 1,2-dichloropropane	13.44	63	10292	0.17	dqq		91

^{(#) =} qualifier out of range (m) = manual integration AP040812.D A408_1UG.M Thu Apr 26 08:38:02 2018 MSDl

Quantitation Report (QT Reviewed)

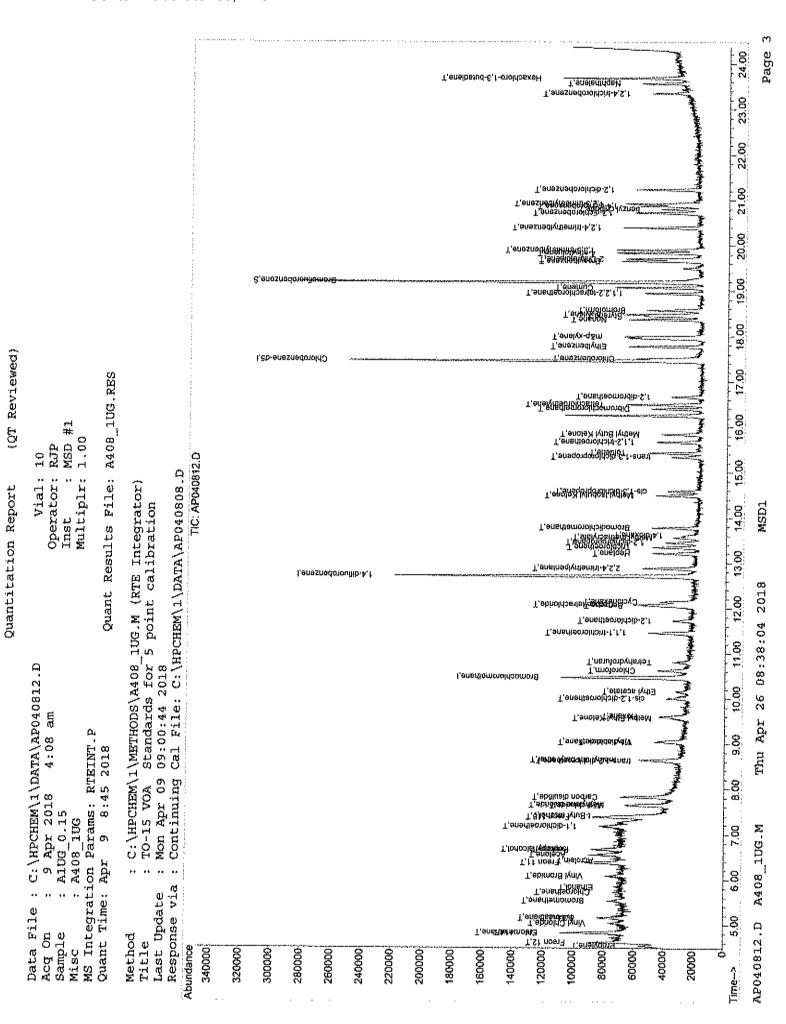
 Data File: C:\HPCHEM\1\DATA\AP040812.D
 Vial: 10

 Acq On: 9 Apr 2018 4:08 am
 Operator: RJP

 Sample: Alug 0.15
 Inst: MSD #1

 Misc: A408_lug
 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 09 06:51:54 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 09 06:50:59 2018

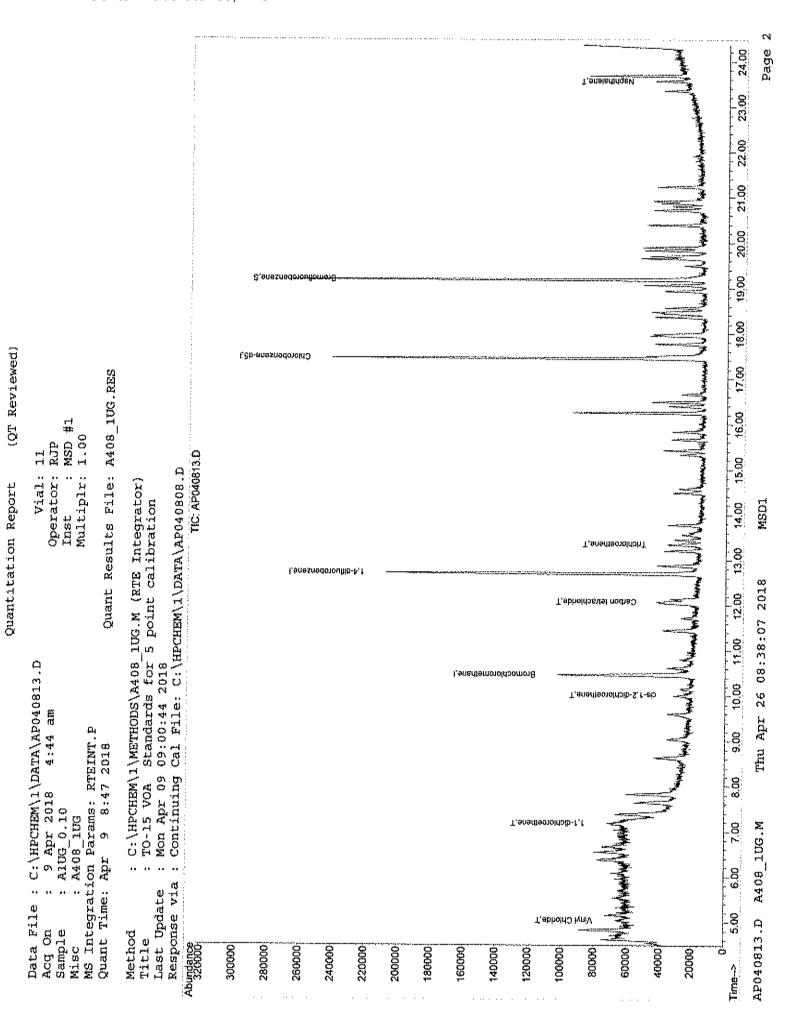
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)		13.77	83	24452	0.16 ppb	95
47)	cis-1,3-dichloropropene	14.57	75	15932	0.16 ppb	90
48)	trans-1,3-dichloropropene	15.34	75	15401	0.15 ppb	97
49)	1,1,2-trichloroethane	15.66	97	10883	0.15 ppb	98
51)	Toluene	15.43	92	18872	0.16 ppb	96
52)	Methyl Isobutyl Ketone	14.48	43	26344	0.22 ppb	95
53)		16.39	129	22140	0.15 ppb	99
54)	Methyl Butyl Ketone	15.83	43	22795	0.19 ppb	96
55)	1,2-dibromoethane	16.65	107	16864	0.16 ppb	97
56)	Tetrachloroethylene	16.48	164	14019	0.17 ppb	97
57)		17.50	112	25161	0.16 ppb	87
58)	Ethylbenzene	17.76	91	44249	0.16 ppb	99
59)	m&p-xylene	17.98	91	68006	0.31 ppb	97
60)	Nonane	18.36	43	19423	0.16 ppb	97
61)	Styrene	18.44	104	24644	0.15 ppb	94
62)	Bromoform	18.56	173	20603	0.15 ppb	96
63)	o-xylene	18.47	91	35770	0.16 ppb	95
64)	Cumene	19.07	105	47284	0.15 ppb	98
66)		18.94	83	22407	0.16 ppb	97
67)	Propylbenzene	19.65	120	11937	0.15 ppb	99
68)	2-Chlorotoluene	19.70	126	11565	0.16 ppb	# 85
69)		19.83	105	44753	0.15 ppb	99
70)	1,3,5-trimethylbenzene	19,90	105	39250	0.15 ppb	94
	1,2,4-trimethylbenzene	20.39	105	36615	0.14 ppb	92
72)	1,3-dichlorobenzene	20,72	146	22230	0.14 ppb	96
73)	benzyl chloride	20.80	91	25232m 💋	0.12 ppb	
74)	1,4~dichlorobenzene	20.87	146	21006	0.14 ppb	97
75)	1,2,3-trimethylbenzene	20.91	1.05	33211	0.14 ppb	99
	1,2-dichlorobenzene	21.23	146	20607	0.14 ppb	97
77)	1,2,4-trichlorobenzene	23.34	180	8179	0.11 ppb	92
	Naphthalene	23.56	128	26385	0.15 ppb	100
79)	Hexachloro-1,3-butadiene	23.68	225	17843	0.14 ppb	97

Page 200 of 248

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT.P


Quant Time: Apr 09 06:51:55 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 09 06:50:59 2018

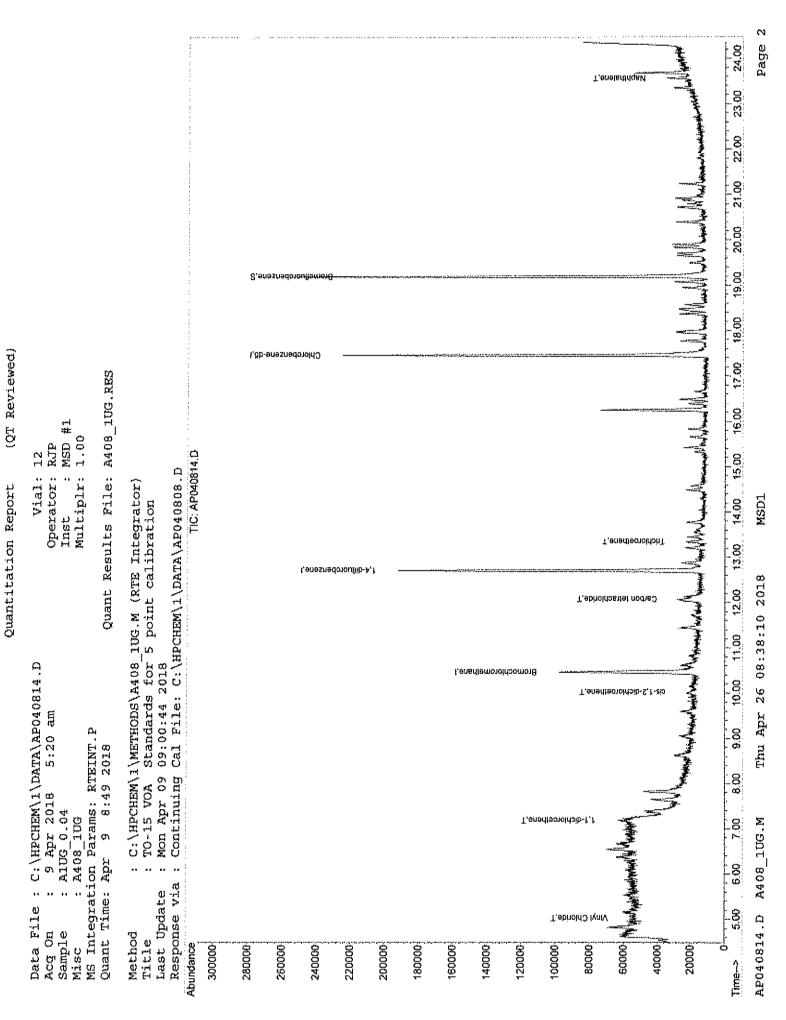
Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

Internal Standards	R.T.	QIon	Response C	onc	Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.46 12.70 17.45		39129 203437 162268	1.0	0 ppb 0 ppb	0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19,19 Range 70	95 - 130	107778 Recovery			
Target Compounds						Ovalue
6) Vinyl Chloride	5.04	62	5202 A	0.1	dqq 0	70
18) 1,1-dichloroethene	7.18	96	6761m ,		3 ppb	
29) cis-1,2-dichloroethene	10.01	61	8475m 🚮	0.1	dqq 0	
38) Carbon tetrachloride	12.08	117	18283 V	0.1	1 ppb	98
44) Trichloroethene	13.34	130	8112	0.1	1 ppb	96
78) Naphthalene	23.56	128	17467	0.1	dag 0	98

Page 202 of 248

Quantitation Report (QT Reviewed)

MS Integration Params: RTEINT,P Quant Time: Apr 09 06:51:56 2018 Quant Results File: A408_1UG.RES


Quant Method : C:\MPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

Internal Standards	R.T.	QIon	Response (onc U	nits	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.46 12.70 17.45		36802 197826 152999	1.00 1.00 1.00	dqq	
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000		95 - 130	104290 Recovery	0.96		0.00
Target Compounds			źn			Qvalue
6) Vinyl Chloride	5.03	62	2396m 👫	0.05		
18) 1,1-dichloroethene		96	2867	0.06		# 74
29) cis-1,2-dichloroethene	10.02		3917m 🔥	0.05		
38) Carbon tetrachloride	12.06	117	8559	0.05		95
44) Trichloroethene	13.34	130	3881	0.05		86
78) Naphthalene	23.56	128	9129	0.06	dqq	# 75

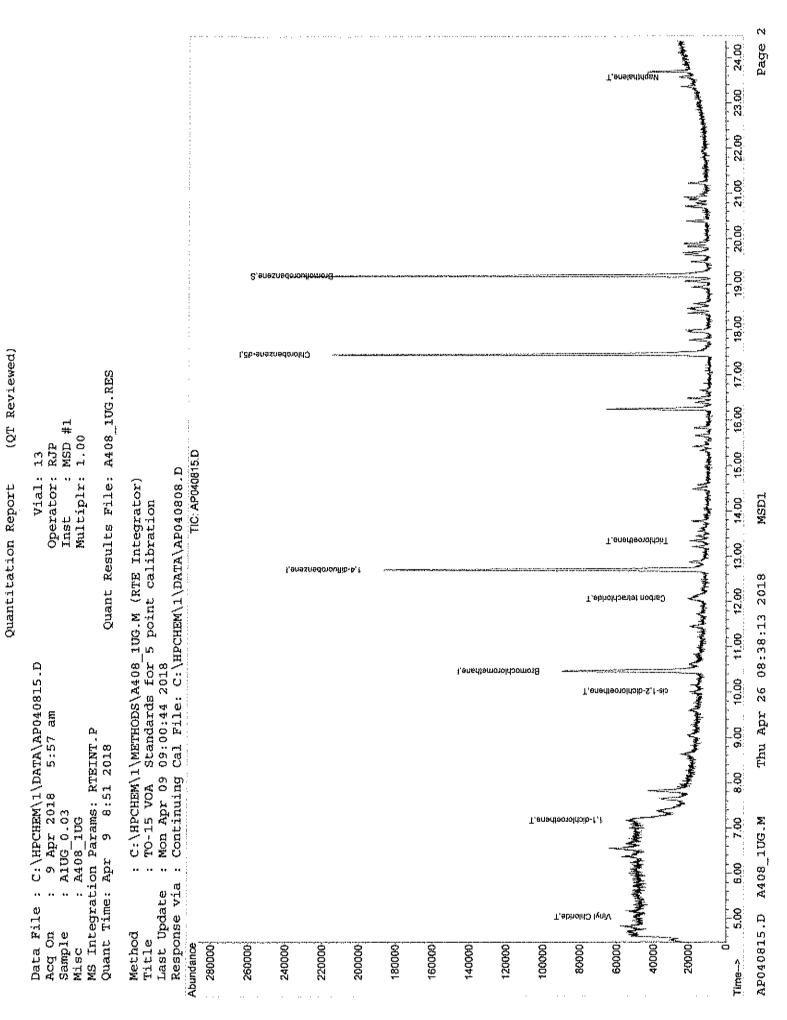
^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP040814.D A408_1UG.M Thu Apr 26 08:38:09 2018 MSD1

Page 204 of 248

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP040815.D Vial: 13 Acq On : 9 Apr 2018 5:57 am Operator: RJP Sample : AlUG_0.03 Misc : A408_lUG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Apr 09 06:51:57 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 06:50:59 2018

Response via : Continuing Cal File: C:\HPCHEM\1\DATA\AP040808.D

Internal Standards	R.T.	QIon	Response C	onc t	Units	Dev(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.46 12.70 17.45		37163 186787 147801	1.00	dqq 0 dqq 0 dqq 0		0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.18 Range 70		99852 Recovery		5 ppb 59		0.00
Target Compounds						Qva	lue
6) Vinyl Chloride	5.04	62	1797m 👭	0.04	4 ppb	-	
18) 1,1-dichloroethene	7.16	96	1932m 🎶	0.04	ppb		
29) cis-1,2-dichloroethene	10.01	61	2571	0.00	dqq 8	#	25
38) Carbon tetrachloride	12.07	117	5891	0.04	dqq i		97
44) Trichloroethene	13.34	130	2353	0.03	gqq 8	#	80
78) Naphthalene	23.56	128	6146	0.04	daa A	#	70

______ (#) = qualifier out of range (m) = manual integration (+) = signals summed AP040815.D A408 1UG.M Thu Apr 26 08:38:13 2018 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 CALIBRATION VERIFICATION

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AP041004.D Vial: 4 Acq On : 10 Apr 2018 11:52 am Sample : AlUG_1.0 Misc : A408_1UG Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT, P

: C:\HPCHEM\l\METHODS\A408_lUG.M (RTE Integrator) : TO-15 VOA Standards for 5 point calibration Method Title

Last Update : Mon Apr 09 09:00:44 2018 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
1	. I	Bromochloromethane	1.000	1.000	0.0	90	0.00
	T	Propylene	1.239		29.0		0.02
	T	Freon 12	5.982				0.02
	T	Chloromethane	1.378	1.239			0.01
5		Freon 114	4.122	4.437	-7.6	97	0.00
	T	Vinyl Chloride	1.310	1.151	12.1		0.01
7	T	Butane	1.842	1.537	16.6		0.02
	T	1,3-butadiene			18.5		0.01
9		Bromomethane	1.247 1.338	1.499	-12.0		0.00
	T	Chloroethane	0.534	0.535	-0.2	87	0.00
	\mathbf{T}	Ethanol	0.391	0.345	11.8	75	0.00
	${f T}$	Acrolein	0.494	0.433	12.3		0.02
	${f T}$	Vinyl Bromide	0.494 1.256	1.393	-10.9	103	0.00
	\mathbf{T}	Freon 11	4.795	5.635	-17.5	1.05	0.00
	T	Acetone	0.897	0.756	15.7	90	0.00
	${f T}$	Pentane	1.049	0.896	14.6	78	0.01
	${f T}$	Isopropyl alcohol	1.704	1.602	6.0	85	0.01
	${f T}$	1,1-dichloroethene	1.444	1.418	1.8	98	0.01
	\mathbf{T}	Freon 113	3.292	4.020	~22.1	111	0.01
20		t-Butyl alcohol	3.543	3.184	10.1	84	0.01
21		Methylene chloride	1.928		9.6	93	0.01
	T	Allyl chloride	1.714			71	0.01
	${f T}$	Carbon disulfide	3.253 1,933	3.317	-2.0	91	0.02
24		trans-1,2-dichloroethene	1.933	1.867	3.4		0.01
25		methyl tert-butyl ether	4.844		5.6	84	0.01
26		1,1-dichloroethane	2.826	2.687	4.9	84	0.01
27		Vinyl_acetate	3.284	2.329	29.1	62	0.02
28		Methyl Ethyl Ketone	0.685	0.675	1.5		0.01
29		cis-1,2-dichloroethene		1.897	11.1	82	0.02
30		Hexane	2.072	1.797	13.3		0.00
31		Ethyl acetate	2.709	2.006	26.0	63	0.01
32		Chloroform	3.649	3.724	-2.1	91	0.01
33		Tetrahydrofuran	1.377		28.4	63	0.02
34	T	1,2-dichloroethane	2.551	2.530	8.0	89	0.00
35	Ĭ	1,4-difluorobenzene	1.000	1.000	0.0	83	0.00
36		1,1,1-trichloroethane	0.790	0.755	4.4	80	0.00
37	Ť	Cyclohexane	0.404	0.346	14.4	73	0.00
38		Carbon tetrachloride	0.857	0.662	22.8	69	0.00
39		Benzene	0.840	0.887	~5.6	87	0.00
40		Methyl methacrylate	0.359	0.264	26.5	59	0.01
41		1,4-dioxane	0.189	0.188	0.5	89	0.02
42		2,2,4-trimethylpentane	1.233	1.095	11.2	75	0.00
43		Heptane	0.430	0.321	25.3	62	0.00
44		Trichloroethene	0.394	0.434	-10.2	98	0.00
45	T	1,2-dichloropropane	0.293	0.272	7.2	79	0.00
46		Bromodichloromethane	0.723	0.717	0.8	82	0.00
47		cis-1,3-dichloropropene	0.490	0.437	10.8	75	0.00
		trans-1,3-dichloropropene	0.479	0.348	27.3	58	0.00
49	T	1,1,2-trichloroethane	0.331	0.370	-11.8	93	0.00

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\AP041004.D
Acq On : 10 Apr 2018 11:52 am
Sample : AlUG_1.0
Misc : A408_1UG Vial: 4 Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Mon Apr 09 09:00:44 2018

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.33min

Max. RRF Dev : 30% Max. Rel. Area : 150%

		Compound	AvgRF	CCRF	%Dev	Area%	Dev(min)
51		Toluene	0.725	0.762	-5.1.	88	0.00
52		Methyl Isobutyl Ketone	0.785	0.559	28.8	65	0.00
53		Dibromochloromethane	0.863	0.845	2.1	81	0.00
54		Methyl Butyl Ketone	0.768	0.544	29.2	63	0.00
55	${f T}$	1,2-dibromoethane	0.651	0.661	-1.5	85	0.00
5 6	T	Tetrachloroethylene	0.494	0.572	~15.8	97	0.00
57	${f T}$	Chlorobenzene	0.977	1.106	-13.2	95	0.00
58	T	Ethylbenzene	1.692	1.774	-4.8	87	0.00
59		m&p-xylene	1.324	1.422	-7.4	88	0.00
60		Nonane	0.749	0.555	25.9	63	0.00
61	${f r}$	Styrene	0.960	1.049	-9.3	89	0.01
62		Bromoform	0.795	0.765	3.8	79	0.00
63	Ţ	o-xylene	1.349	1.523	-12.9	94	0.00
64	T	Cumene	1.838	1.993	-8.4	89	0.00
65	s	Bromofluorobenzene	0.692	0.663	4.2	77	0.00
66		1,1,2,2-tetrachloroethane	0.865	0.897	-3.7	86	0.00
67	${f T}$	Propylbenzene	0.486	0.536	-10.3	92	0.00
68	T	2-Chlorotoluene	0.446	0.509	-14.1	94	0.00
69	Ť	4-ethyltoluene	1.807	2.030	-12.3	91	0.00
70		1,3,5-trimethylbenzene	1.549	1.750	~13.0		0.00
71		1,2,4-trimethylbenzene	1.499	1.635	-9.1	88	0.00
72		1,3-dichlorobenzene	0.918	1.077	-17.3	95	0.00
73	${f r}$	benzyl chloride	1.198	1.027	14.3	68	0.00
74	${f T}$	1,4-dichlorobenzene	0.883	1.046	-18.5	96	0.00
75	T	1,2,3-trimethylbenzene	1.397	1.586	-13.5	91	0.00
76		1,2-dichlorobenzene	0.863	1.028	-19.1	97	0.00
77	T	1,2,4-trichlorobenzene	0.406	0.461	-13.5	88	0.00
78	T	Naphthalene	1.120	1.056	5.7	83	0.01
79	T.	Hexachloro-1,3-butadiene	0.736	0.917	-24.6	101	0.01

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041004.D Vial: 4 Acq On : 10 Apr 2018 11:52 am Operator: RJP Sample : AlUG_1.0 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 10 12:21:38 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

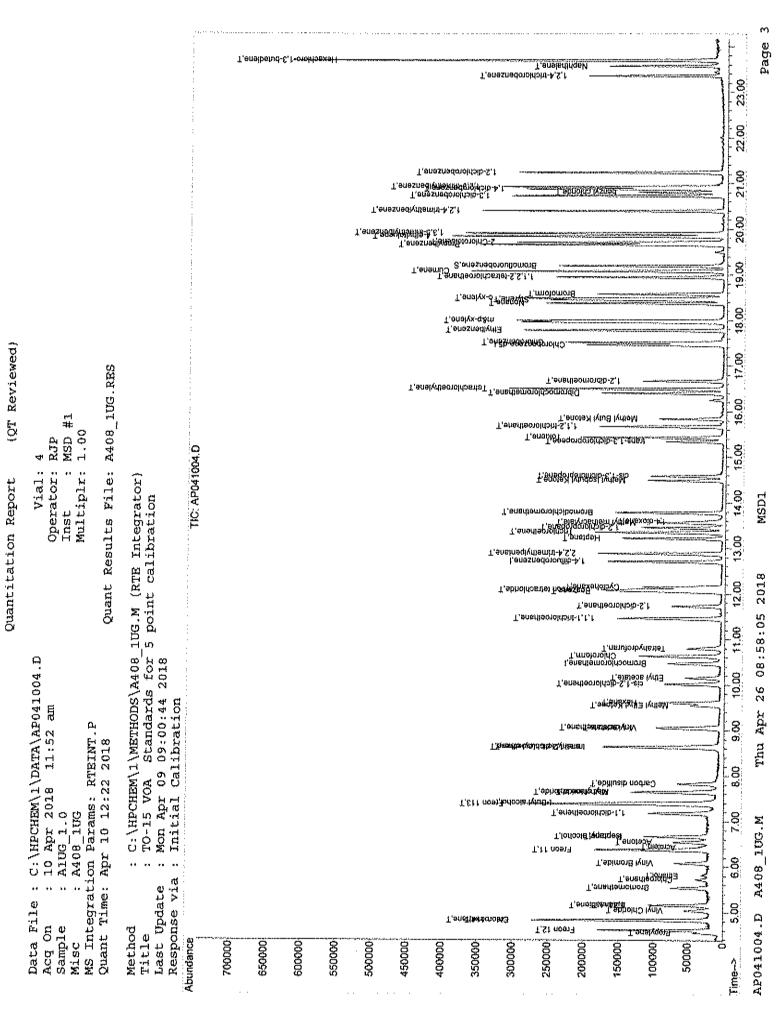
"					
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane	10.46	128	36302	1.00 pph	
<pre>35) 1,4-difluorobenzene 50) Chlorobenzene-d5</pre>	12.70	114	178220 142901	1.00 ppt	0.00
50) Chlorobenzene-d5	17.46	117	142901	1.00 ppl	0.0
System Monitoring Compounds					
65) Bromofluorobenzene	19,19				0.00
Spiked Amount 1.000	Range 70	- 130	Recover	y = 96	5.00%
Warrent Company de					
Target Compounds		4.5	0.00mm B		Qvalue
2) Propylene3) Freon 12	4.55	41	31955m 🌶	0.71 pph	
4) Chloromethane	4.61	85	224549	1.03 ppk	99
5) Freon 114	4.83	20	44965 161062 41773 55789	0.90 pph	
6) Vinyl Chloride	4.82 5.04	85	161062	1.08 ppk	
7) Butane	5.16	62	41773	0.88 pph	97
8) 1,3-butadiene	5.10	4.5	35/89	0.83 pph	100
9) Bromomethane	5.16 5.53 5.72 5.81	39	36900	0.82 pph	96
10) Chloroethane	5.33	24	54415 19439 12526	1.12 pph	99
11) Ethanol	5.72	64	19439	1.00 pph	98
12) Acrolein	5.81	45	12226	199 88.0	
13) Vinyl Bromide	6.44	300	15711 50586 204574	0.88 pph	
14) Freon 11	6.08 6.37	100	5V586	1.11 ppb	94
15) Acetone	6.37	T () T	27441	1.18 ppb	98
16) Pentane	6.54	20	2 7 4 4 T	0.84 pph	
17) Isopropyl alcohol	6.66 6.65 7.17	45	32544 58142 51459	0.85 ppb	
18) 1,1-dichloroethene	7 17	96	20145	0.94 ppb	9.8
19) Freon 113	7.38	101	145926		
20) t-Butyl alcohol	7.30				96
21) Methylene chloride	7.41 7.65	59 84	63223	0.90 ppb	
22) Allyl chloride	7.63	<i>∆</i> . 1	47283m ¢	0.90 ppb	
23) Carbon disulfide	7.82	76	120405		
24) trans-1,2-dichloroethene	8.61		67780	1.02 ppb 0.97 ppb	90
25) methyl tert-butyl ether	8.64	73	67780 166087	0.94 ppb	
26) 1,1-dichloroethane	9.06	63	97556	0 95 nnh	
27) Vinyl acetate	9.04	43	84532m ¥	0.71 ppb	,
28) Methyl Ethyl Ketone	9.54	72	24515	0.99 ppb	
29) cis-1,2-dichloroethene	10.02	61	84532m 24515 68875	0.89 ppb	
30) Hexane	9.60	57	65248	0.87 pph	
31) Ethyl acetate	10.15	4.3	72804 135184	0.74 ppb	
32) Chloroform	10.63	83	135184	1.02 ppb	100
33) Tetrahydrofuran	10.80	42	35778m/	0.72 ppb	M. O G
34) 1,2-dichloroethane	11.73	62	91830	0.99 ppb	98
36) 1,1,1-trichloroethane	11.45	97	134504	0.96 ppb	
37) Cyclohexane	12.14	56	61647	0.86 ppb	
38) Carbon tetrachloride	12.08	117	117914	0.77 ppb	100
39) Benzene	12.04	78	158165	1.06 ppb	97
40) Methyl methacrylate	13.56	41	46988	0.74 ppb	# 78
41) 1,4-dioxane	13.59	88	33482	0.99 ppb	" <u>8</u> 9
42) 2,2,4-trimethylpentane	12.88	57	195167	0.89 ppb	99
43) Heptane	13.21	43	57234	0.75 ppb	80
44) Trichloroethene	13.34	130	77394	1.10 ppb	98
45) 1,2-dichloropropane	13.45	63	48544	0.93 ppb	100

^{(#) =} qualifier out of range (m) = manual integration AP041004.D A408_1UG.M Thu Apr 26 08:58:04 2018

MSDl

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041004.D Vial: 4 Acq On : 10 Apr 2018 11:52 am Operator: RJP Sample : Alug_1.0 Misc : A408_1ug Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 10 12:21:38 2018 Quant Results File: A408_1UG.RES

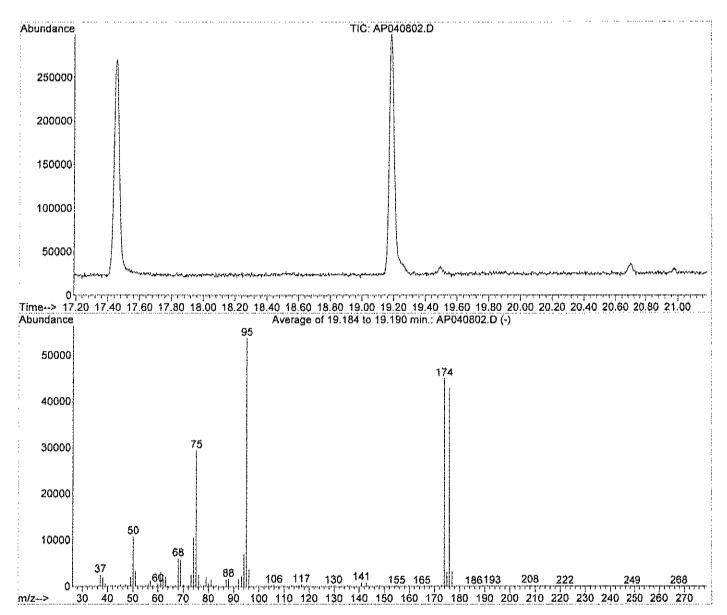
Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018

Response via : Initial Calibration

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.78	83	127747	0.99 ppb	99
47)	cis-1,3-dichloropropene	14.58	75	77902	0.89 ppb	96
48)	trans-1,3-dichloropropene	15.34	75	62097	0.73 ppb	99
49)	1,1,2-trichloroethane	15.67	97	65908	1.12 ppb	97
51)	Toluene	15.42	92	108916	1.05 ppb	100
52)	Methyl Isobutyl Ketone	14.48	43	79891m 🛭	0,71 ppb	
53)	Dibromochloromethane	16.40	129	120742	0.98 ppb	96
54)		15.83	43	77668m 🛭	0.71 ppb	
55)	1,2-dibromoethane	16.66	107	94474	1.02 ppb	99
56)	Tetrachloroethylene	16.49	164	81709	1.16 ppb	98
57)	Chlorobenzene	17.51	112	158096	1.13 ppb	95
58)	Ethylbenzene	17.78	91	253502	1.05 ppb	100
59)		17.99	91	406310	2.15 ppb	98
60)	Nonane	18.37	43	79291	0.74 ppb	# 82
61)	Styrene	18.45	104	149905	1,09 ppb	98
62)	Bromoform	18.57	173	109265	0.96 ppb	99
63)	o-xylene	18.48	91	217575	1.13 ppb	98
64)		19.07	105	284785	1.08 ppb	99
66)	1,1,2,2-tetrachloroethane	18.94	83	128188	1.04 ppb	98
67)	Propylbenzene	19.66	120	76534	1.10 ppb	93
68)	2-Chlorotoluene	19,70	126	72716	1.14 ppb	92
69)		19.83	105	290100	1.12 ppb	98
70)		19.90	105	250098	1.13 ppb	99
	1,2,4-trimethylbenzene	20.39	105	233647	1.09 ppb	98
72)	1,3-dichlorobenzene	20.72	146	153892	1.17 ppb	99
73)	benzyl chloride	20.80	91	146716m/	0.86 ppb	
74)	1,4-dichlorobenzene	20.87	146	149527	1.18 ppb	99
	1,2,3-trimethylbenzene	20,92	105	226644	1.14 ppb	98
	1,2-dichlorobenzene	21.23	146	146962	1,19 ppb	99
	1,2,4-trichlorobenzene	23.36	180	65909	1.14 ppb	98
78)	Naphthalene	23.57	128	150879	0.94 ppb	99
79)	Hexachloro-1,3-butadiene	23.69	225	131007	1.25 ppb	99

Page 212 of 248

GC/MS VOLATILES-WHOLE AIR

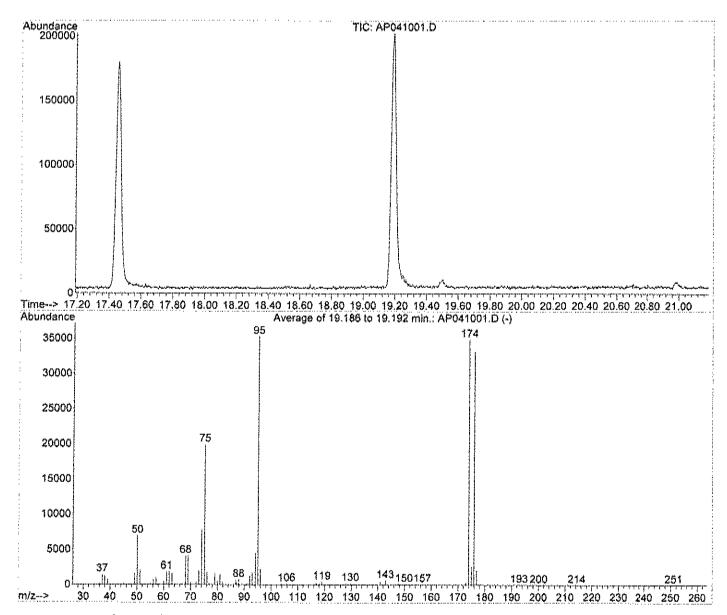

METHOD TO-15

RAW DATA

BFB

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration


Spectrum Information: Average of 19.184 to 19.190 min.

	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit%	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	8	40	20.0	10770	PASS
	75	95	30	66	54.8	29488	PASS
1	95	95	100	100	100.0	53771	PASS
	96	95	5	9	6.7	3612	PASS
	173	174	0.00	2	0.8	378	PASS
	1.74	95	50	120	83.7	45024	PASS
	175	174	4	9	6.8	3080	PASS
İ	1.76	174	95	101	95.4	42957	PASS
	177	176	5	9	7.7	3320	PASS
					<u></u>		

BFB

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration

Spectrum Information: Average of 19.186 to 19.192 min.

,	Target Mass	Rel. to Mass	Lower Limit%	Upper Limit*	Rel. Abn%	Raw Abn	Result Pass/Fail
1	50	95	8	40	19.7	6967	PASS }
	75	95	30	66	56.5	19970	PASS
ĺ	95	95	100	100	100.0	35373	PASS
1	96	95	5	9	6.4	2261	PASS
1	173	174	0.00	2	1.0	343	PASS
	174	95	50	120	98.8	34965	PASS
1	175	174	4	9	7.7	2701	PASS
	176	174	95	101	95.0	33234	PASS
Ì	177	176	5	9	6,2	2070	PASS
				,			

APO41001.D A408_1UG.M Thu Apr 26 08:57:50 2018 MSD1

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
RAW QC DATA

Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit

- w

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-18

FPM Group, Ltd. CLIENT:

C1804013 Work Order: Project:

Cinderella

TestCode: 0.20 NYS

Sample ID: AMB1UG-041018	SampType: MBLK	TestCode:	TestCode: 0.20 NYS	Units: ppbV		Prep Date:		RunNo: 13517	,	
Client ID: ZZZZZ	Batch ID: R13517	TestNo: TO-15	TO-15		A	Analysis Date:	4/10/2018	SeqNo: 156542	42	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit Hi	HighLimit RPD Ref Val	%RPD	RPOLimit	Qual
1,1,1-Trichloroethane	< 0.15	0.15								
1,1,2,2-Tetrachloroethane	< 0.15	0.15								
1,1,2-Trichloroethane	< 0.15	0.15								
1,1-Dichloroethane	< 0.15	0.15								
1,1-Dichloroethene	< 0.040	0.040								
1,2,4-Trichlorobenzene	< 0.15	0.15								
1,2,4-Trimethylbenzene	< 0.15	0.15								
1,2-Dibromoethane	< 0.15	0.15								
1,2-Dichlorobenzene	< 0.15	0.15								
1,2-Dichkoroethane	< 0.15	0.15								
1,2-Dichloropropane	< 0.15	0.15								
1,3,5-Trimethylbenzene	< 0.15	0.15								
1,3-butadiene	< 0.15	0.15								
1,3-Dichlorobenzene	< 0.15	0.15								
1,4-Dichlorobenzene	< 0.15	0.15								
1,4-Dioxane	< 0.30	0.30								
2,2,4-trimethylpentane	< 0.15	0.15								
4-ethyltoluene	< 0.15	0.15								
Асеголе	< 0.30	0.30								
Allyl chloride	< 0.15	0.15								
Benzene	< 0.15	0.15								
Benzyl chloride	< 0.15	0.15								
Bromodichloromethane	< 0.15	0.15								
Bromoform	< 0.15	0.15								
Bromomethane	< 0.15	0.15								
Qualifiers: Results report	Results reported are not blank corrected		E Estimate	Estimated Value above quantitation range	lion range		H Holding ti	Holding times for preparation of analysis exceeded	vsis exceede	
I Amilyte detect	Analyte detected below manifestion limit	*	MIN Mod Date	Most Detected of the Liens of Describer	, define					
***	100 October 4000 0000 0000 0000	•		ACCOLUMN USC EMBINI UL LUCI	CCDAN			KU'U outside accepted recovery timits	co.	

Work Order: Project:	C1804013 Cinderella							£		SAIN OC		
	Cintacina							-	restcode; U	0.20 NYS		
Sample ID: AMB1UG-041018	UG-041018	SampType: MBLK	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	2		RunNo: 13517	77	
Client ID: ZZZZZ	k.	Batch ID: R13517	Test	TestNo: TO-15		-4,	Analysis Date:	le: 4/10/2018	<u> 60</u>	SeqNo: 156542	1542	
Analyte		Result	PaL	SPK value	SPK Ref Val	%REC	LowLimii	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide		< 0.15	0.15									
Carbon letrachloride	ě	< 0.030	0.030									
Chlorobenzene		< 0.15	0.15									
Chloroethane		< 0.15	0.15									
Chloroform		< 0.15	0.15									
Chloromethane		< 0.15	0.15									
cis-1,2-Dichlaroethene	ene	< 0.040	0.040									
cis-1,3-Dichloropropene	репе	< 0.15	0.15									
Cyclothexane		< 0.15	0.15									
Dibromochloromethane	hane	< 0.15	0.15									
Ethyl acetate		< 0.15	0.15									
Ethylbenzene		< 0.15	0.15									
Freon 11		< 0.15	0.15									
Freon 113		< 0.15	0.15									
Freon 114		< 0.15	0.15									
Freon 12		< 0.15	0.15									
Heptane		< 0.15	0.15									
Hexachloro-1,3-butadiene	tadiene	< 0.15	0.15									
Hexane		< 0.15	0.15									
Isopropyi alcohol		< 0.15	0.15									
ጠ&p-Xylene		< 0.30	0.30									
Methyl Butyl Ketone	<u>0</u>	< 0.30	0.30									
Methyl Ethyl Ketone	Φ	< 0.30	0.30									
Methyl Isobutyi Ketone	tone	< 0.30	0.30									
Methyl tent-butyl ether	her	< 0.15	0.15									
Methylene chloride		< 0.15	0.15									
o-Xylene		< 0.15	0.15									
Propylene		<0.15	0.15									
Styrene		< 0.15	0.15									
Tetrachloroethylene	Φ	< 0.15	0.15									
Tetrahydrofuran		< 0.15	0.15									
Qualifiers:	Results report	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	ration range	9	=	Holding times for preparation or analysis exceeded	preparation or a	nalysis exceed	3
ſ	Analyte detec	Analyte detected below quantitation limit		ND Not Do	Not Detected at the Limit of Detection	telection		α.	RPD outside accepted recovery limits	ated recovery lin	nits	
\$43	Spike Recove	Spike Recovery outside accepted recovery limits	mits								a.	Page 2 of 3
												-

FPM Group, Ltd.

CLIENT:

CLIENT:	FPM Group, Ltd.	o, L.td.		
Work Order:	C1804013			
Project:	Cinderella			TestCode: 0.20_NYS
Samula 17: AMS	111C.044040	Sample ID: AMSHIR DATING Complime: 1801 V	Took oder a so and	

Sample ID: AMB1UG-041018	SampType: MBLK	TestCox	TestCode: 0.20_NYS	Units: ppbV		Prep Date:	le:		RunNo: 13517	17	
Client ID: ZZZZZ	Batch ID: R13517	Testh	TestNo: TO-15		~	⁴ natysis Dal	Analysis Date: 4/10/2018		SeqNo: 156542	542	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimil	%REC LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Toluene	< 0.15	0.15									
trans-1,2-Dichloroethene	< 0.15	0.15									
trans-1,3-Dichloropropene	< 0.15	0.15									
Trichloroethene	< 0.030	0.030									
Vinyl acetale	< 0.15	0.15									
Vinyl Bromide	< 0.15	0.15									
Vinyl chloride	< 0.040	0.040									

Qualifiers:		Results reported are not blank corrected	E Estimated Value above quantitation range	H Holding times for preparation or analysis exceeded
	~	Analyte detected below quantitation limit	ND Not Detected at the Limit of Detection	R RPD outside accepted recovery limits
	V	Saile Recomme might sweetled recovery limits		

Centek Laboratories, LLC

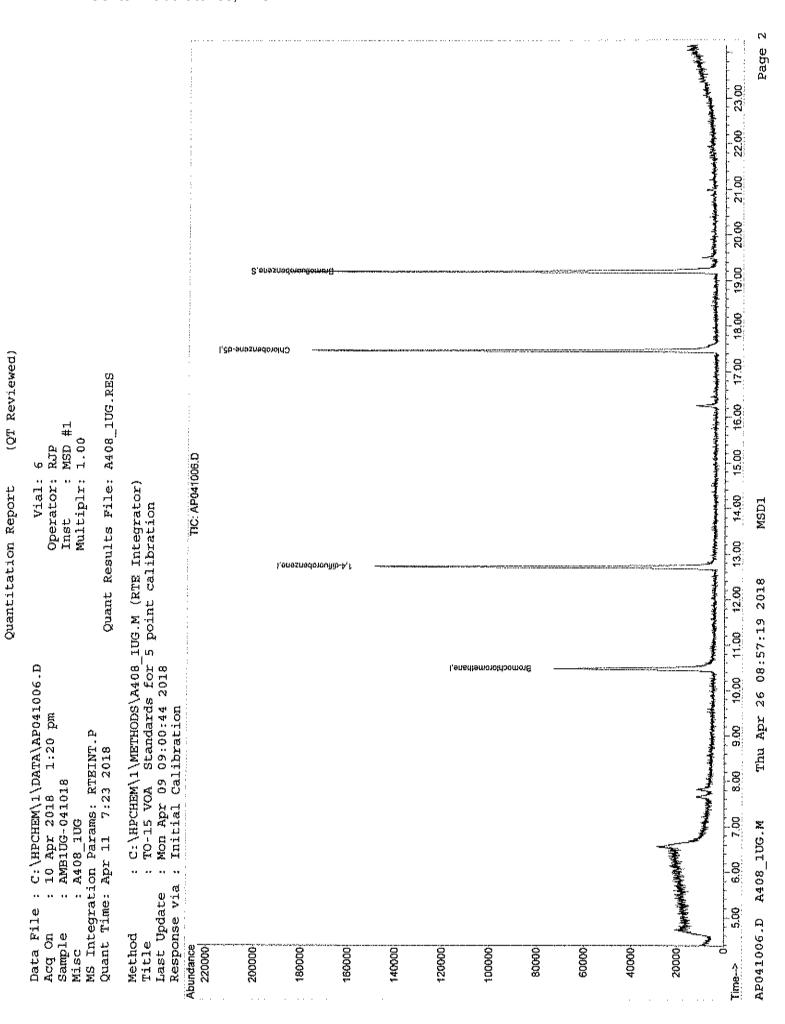
Quantitation Report

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041006.D Vial: 6 Acq On : 10 Apr 2018 1:20 pm Operator: RJP Sample : AMB1UG-041018 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 11 07:23:00 2018 Quant Results File: A408_1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	Conc U	nits Dev	(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.47 12.71 17.46		32801 165465 130691	1.00	ppb ppb	0.02 0.01 0.01
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.19 Range 70	95 - 130	79487 Recovery		ppb 88.00%	0.00
Target Compounds					Q	value

^{(#) =} qualifier out of range (m) = manual integration (+) = signals summed AP041006.D A408_1UG.M Thu Apr 26 08:57:18 2018 MSDI

Page 221 of 248

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

Date: 26-Apr-18

FPM Group, Ltd. CLIENT:

C1804013 Work Order:

Cinderella Project:

TestCode: 0.20 NYS

								l	
Sample ID: ALCS1UG-041018	SampType: LCS	TestCode	TestCode: 0.20_NYS	Units: ppbV		Prep Date		RupNo: 13517	
Client ID: ZZZZZ	Batch ID: R13517	TestNc	TestNo: TO-15			Analysis Date:	4/10/2018	SeqNo: 156543	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
1,1,1-Trichloroethane	0.9500	0.15	-	0	95.0	70	130		
1,1,2,2-Tetrachloroethane	1.050	0.15	-	o	105	70	130		
1,1,2-Trichloroethane	1.090	0.15	•	0	109	70	130		
1,1-Dichloroethane	0.9700	0.15	•	0	97.0	2	130		
1,1-Dichloroethene	1.250	0.040	₹	0	125	70	130		
1,2,4-Trichlorobenzene	1.250	0.15		0	125	22	130		
1,2,4-Trimethylbenzene	1.090	0.15	+	0	109	70	130		
1,2-Dibromoethane	1.030	0.15		0	103	70	- E		
1,2-Dichlorobenzene	1.190	0.15	-	0	119	70	130		
1,2-Dichloroethane	1.030	0.15	-	0	103	70	130		
1,2-Dichloropropane	0.9400	0.15	•	0	0.46	7.0	130		
1,3,5-Trimethylbenzene	1.100	0.15	***	0	110	76	130		
t,3-butadiene	0.8700	0.15	4.00	0	87.0	70	130		
1,3-Dichlorobenzene	1.170	0.15	4	0	117	70	130		
1,4-Dichlorobenzene	1.190	0.15		0	2	70	130		
1,4-Dioxane	1.050	0.30	₩	Ð	105	2	130		
2,2,4-trimethylpentane	0.8900	0.15	*	o	89.0	02	130		
4-ethyltoluene	1.130	0.15	-	ō	113	2	130		
Acetone	0.8400	0.30	-	0	84.0	70	85		
Allyl chloride	0.7700	0.15	-	Ó	77.0	22	130		
Вепzете	1.040	0.15	•	0	\$	70	130		
Benzyl chloride	0.8600	0.15	•	0	86.0	2	130		
Bromodichloromethane	0.9800	0.15	****	0	98.0	70	130		
Bromoform	0.9500	0.15	7**	0	95.0	30	130		
Bromomethane	1,140	0.15	\	0	₹ •	70	130		
Qualifiers: Results reports	Results reported are not blank corrected		E Estima	Estimated Value above quantitation range	ation range		H Holding times for	Holding times for preparation or analysis exceeded	-
	Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	election		R RPD outside acce	RPD outside accepted recovery limits	
S Spike Recover	Spike Recovery outside accepted recovery limits	mits							

CLIENT: FPM Group, Ltd. Work Order: C1804013	p, Ltd.									{
Project: Cinderella							TesfCode:	le: 0.20_NYS		
Sample ID: ALCS1UG-041018	SampType: LCS	TestCode	TestCode: 0.20_NYS	Units: pobV		Prep Date		Runklo: 4	12647	
Client ID: ZZZZZ	Batch ID: R13517	TestNo	TestMo: TO-15		4	Analysis Date:	: 4/10/2018		56543	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	ef Val %RPD) RPDLimit	Oug.
Carbon disulfide	1.070	0.15	-	G	107	62	- T-30		ł	
Carbon tetrachloride	0.7600	0.030	سپ ،	, c	76.0	2 8	130			
Chlorobenzene	1,120	0.15		· ~	13.5	2 6	130			
Chloroethane	1.050	0.15		• =	10.5	2 £	130			
Chloroform	1.070	0.15	· •••	· 0	407	2 5	130			
Chloromethane	0.9500	0.15	ų.	0	95.0	2 5	£,			
cis-1,2-Dichloroethene	0.9100	0.040	*	٥	91.0	5 62	£ 5			
cis-1,3-Dichloropropene	0.8800	0.15	~	0	88.0	2 8	33			
Cyclohexane	0.8800	0.15	-	Φ	88.0	70	130			
Dibromochloromethane	0.9300	0.15	-	Ō	93.0	70	130			
Ethyl acetate	0.7800	0.15	***	0	78.0	70	130			,
Ethylbenzene	1.030	0.15	*	o	103	70	130			
Freon 11	1.220	0.15	٣-	O	122	2	130			
Freon 113	1.220	0.15	~~	0	122	20	130			
Freon 114	1.130	0.15	-	0	113	55	130			
Freon 12	1.080	0.15	-	٥	108	22	130			
Heplane	0.7400	0.15	-	o	74.0	70	130			
Hexachloro-1,3-butadiene	1.260	0.15	₩	0	126	70	130			
Hexane	0.8500	0.15	••	0	85.0	70	130			
Isopropyi alcohol	0.9600	0.15	V un	0	96.0	02	130			
m&p-Xylene	2.150	0.30	62	0	108	22	130			
Methyl Butyl Ketone	0.6500	0.30		0	65.0	70	130			w
Methyl Ethyl Ketone	1.050	0.30	-	0	105	70	130			,
Methyl Isobulyl Kelone	0.7200	0.30	-	0	72.0	70	130			
Methyl tert-butyl ether	0.9500	0.15		0	95.0	70	130			
Methylene chloride	0.9400	0.15	•	0	94.0	70	130			
o-Xylene	1.110	0.15	*	0	£	70	130			
Propylene	0.7300	0.15	4~	0	73.0	70	130			
Styrene	1.080	0.15	₩.	0	108	70	130			
Tetrachkoroethylene	1.120	0.15	-	٥	112	22	130			
Tetrahydrofuran	0.7300	0.15		0	73.0	70	130			
Qualifiers: Results reporte	Results reported are not blank corrected		E Estimated	Estimated Value above quantitation range	tation range		H Holding is	Holding lisus for menastion or analysis averaged	analycic perced	-5
J Analyte detect	Analyte detected below quantitation limit		ND Not Detec	Not Detected at the Linni of Detection	etection			RPD mitting accorded nocuerationic	mile	ş
S Spike Recover	Spike Recovery outside accepted recovery limits	mits						a farana madagan a	234FF	
									6	•

Project:	Cinderella							—	TestCode: 0	0.20_NYS		
Sample ID: ALCS1UG-041018	106-041018	SampType: LCS	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	e.		RunNo: 13517		
Cilent ID: ZZZZZ	2	Batch ID: R13517	Test	TestNo: TO-15		4	Analysis Dale:	e: 4/10/2018	<u>8</u>	SeqNo: 156543	ជ	
Analyte		Result	정	SPK value	SPK Ref Val	%REC	Lowtimit	HighLimit	RPD Ref Vai	%RPD R	RPDLimit	Qual
Toluene		1.060	0.15		0	106	2	130				
trans-1,2-Dichloroethene	ethene	0.9900	0.15	+	0	93.0	2	130				
trans-1,3-Dichloropropene	ргорепе	0.7200	0.15	-	0	72.0	70	130				
Trichloroethene		1.100	0.030	-	¢	110	70	130				
Vinyl acetate		0.7200	0.15	-	¢	72.0	22	130				
Vinyl Bramide		1.190	0.15	-	0	119	20	130				
Vinyl chloride		0.9500	0.040	•	0	95.0	70	130				
Sample ID: ALCS1UGD-041017	1UGD-041017	SampType: LCSD	TestCo	TestCode: 0.20_NYS	Units: ppbV		Prep Date	ei ei		RunNo: 13517		
Client ID: ZZZZZ	2	Batch ID: R13517	Test	TestNo: TO-15		4	Analysis Date:	e: 4/11/2018	<u>so</u>	SeqNo: 156544	4	
Analyte		Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	RPOLimit	Qual
1,1,1-Trichloroethane	эие	0.9200	0.15	-	0	92.0	8	130	0.95	3.21	30	
1,1,2,2-Tetrachloroethane	oethane	1.230	0.15	**	O	123	70	130	1,05	15.8	83	
1,1,2-Trichloroethane	are	1,190	0.15	***	0	119	70	130	1.09	8.77	30	
1,1-Dichloroethane	m	0.9700	0.15	₩.	0	97.0	£	130	16.0	0	30	
1,1-Dichloroethene	m	0.9300	0.040	***	0	93.0	2	130	1.25	29.4	30	
1,2,4-Trichlorobenzene	z епе	1,110	0.15	~	0	111	70	130	1.25	11.9	8	
1,2,4-Trimethylbenzene	ızene	1.160	0.15	-	0	118	330	130	1.09	6.22	8	
1,2-Dibromoethane	w	1.120	0.15	-	0	112	70	130	1.03	8.37	33	
1,2-Dichlorobenzene	୩୫	1.290	0.15	-	0	129	70	130	1.19	8.05	8	
1,2-Dichloroethane	g)	0.9700	0.15	•	0	97.0	70	130	1.03	6.00	8	
1,2-Dichloropropane	le Ie	1.020	0.15	-	0	102	20	130	0.94	8.15	8	
1,3,5-Trimethylbenzene	тепе	1.230	0.15	-	Φ	123	70	130	Arr.	11.2	33	
1,3-butadiene		0.7900	0.15	-	0	79.0	70	130	0.87	9.64	8	
1,3-Dichlorobenzene	пе	1.250	0.15	-	0	125	7.0	130	1.17	6.61	30	
1,4-Dichlorobenzene	ne	1.240	0.15	-	0	124	70	130	1.19	4.12	30	
1,4-Dioxane		1.000	0.30	•	0	100	70	130	1.05	4.88	33	
2,2,4-trimethylpentane	tane	0.9400	0.15	***	0	94.0	70	130	0.89	5.46	30	
4-ethylloluene		1.190	0.15	***	o	119	70	130	1.13	5.17	30	
Qualifiers:	Results report	Results reported are not blank corrected		E Estimal	Estimated Value above quantitation range	itation range		HH	olding times for p	Holding times for preparation or analysis exceeded	ysis exceeded	
	Analyte detect	Analyte detected below quantitation limit		ND Not De	Not Detected at the Limit of Detection	Xetection		*	PD outside accep	RPD outside accepted recovery limits		
S	Spike Recover	Spike Recovery outside accepted recovery limits	imits								Pai	Page 3 of 5

FPM Group, Ltd. C1804013

CLIENT: Work Order:

Spike Recovery outside accepted recovery limits

FPM Group, Ltd.	***********
CLIENT:	

CI804013 Cinderella Work Order: Project:

13517	
RunNo: 13517	
Prep Date:	
Units: ppbV	
TestCode: 0.20 NYS	
SampType: LCSD	!
Sample ID: ALCS1UGD-041017	41.
Sample	

TestCode: 0.20 NYS

Sample ID: At Certifich 044047	Camp Type: CCD	1	0707	1							
Campion of the Control of the Contro	Samplybe. LOSD	Socie	estuade: 0.20 NYS	Addd: SILLO		Prep Date:	<u></u>		RunNo: 13517	17	
Client ID: ZZZZZ	Batch ID: R13517	TestN	TestNo: TO-15		,	Analysis Date:	4/11/2018	13	SeqNo: 156544	544	
Analyte	Result	Pal	SPK value	SPK Ref Val	%REC	LowLimit	Hight_imit	RPD Ref Val	%RPD	RPDLimit	Quai
Acetone	0.7700	0.30	-	0	77.0	70	130	0.84	8.70	30	
Allyl chloride	0.7300	0.15	•	0	73.0	22	130	7.70	5.33	8	
Senzene	1,130	0.15	\rightarrow	O	<u> </u>	20	130	1.04	8.29	8	
Benzył chloride	0.8300	0.15	***	0	83.0	72	130	0.86	3.55	30	
Bromodichloromethane	1.040	0.15	· mv	0	104	22	0£1	0.98	5.94	33	
Вготобот	1,010	0.15	Åπ.	٥	101	2	130	0.95	6.12	R	
Bromomethane	1.070	0.15	***	0	107	22	£1	1.14	6.33	39	
Carbon disulfide	1,060	0.15	+	Ů	106	70	130	1.07	0.939	8	
Carbon tetrachloride	0.7600	0.030	₩-	٥	76.0	29	130	0.76	0	33	
Chłorobenzene	1.200	0.15	**	0	120	22	130	1.12	6.90	33	
Chloroethane	0.9800	0.15	τ	0	98.0	70	130	1.05	6.90	93	
Chioroform	1.070	0.15	-	0	107	70	130	1.07	o	8	
Chloromethane	0.8900	0.15	-	0	89.0	70	130	0.95	6.52	83	
cis-1,2-Dichloroethene	0.8700	0.040	-	0	87.0	70	133	0.93	4.49	æ	
cis-1,3-Dichloropropene	0.8900	0.15	-	0	99.0	20	130	0.88	1.13	8	
Cyclohexane	0.9000	0.15	-	0	90.0	92	130	0.88	2.25	8	
Dibromochioromethane	1.040	0.15	-	0	\$	70	130	0.93	11.2	8	
Ethyl acetate	0.7500	0.15	_	0	75.0	70	130	0.78	3.92	83	
Ethylbenzene	1.100	0.15		0	110	70	130	1.03	6.57	30	
Freon 11	1.100	0.15	•	0	110	70	130	1.22	10.3	æ	
Freon 113	1,220	0.15		٥	122	70	130	1.22	0	33	
Freon 114	1.080	0.15		0	108	29	130	1.13	4.52	30	
Freon 12	1.090	0.15	-	0	109	70	33	1.08	0.922	30	
Heplane	0.7400	0.15	T	0	74.0	70	130	0.74	0	8	
Hexachloro-1,3-buladiene	1.270	0.15	•	0	127	70	130	1.26	0.791	30	
Hexane	0.8500	0.15	₹***	¢.	85.0	70	130	0.85	0	8	
Isopropyl alcohot	0.9200	0.15	T	0	92.0	2	130	0.96	4.26	30	
тъ&р-Хујеле	2.320	0.30	2	0	116	20	130	2.15	7.61	33	
Methyl Butyl Ketone	0.5800	0.30	,	٥	58.0	70	130	0.65	## ##	33	σ
Methyl Ethyl Ketone	1.060	0.30	,	0	106	20	130	1.05	0.948	33	
Methyl Isobutyl Ketone	0.6600	0.30	here	O	66.0	70	130	0.72	8.70	30	တ
Qualifiers: Results reporte	Results reported are not blank corrected		E Estimat	Estimated Value above quantitation range	itation rang	9	H	Holding times for preparation or analysis exceeded	preparation or a	alysis exceed	ļ.
J Analyte detects	Analyse detected below ournitation limit		ND Not De	Not Detector at the Limit of Detection	Retection			PD anteride accounted recovered timits	ing recover tim	, ,,,,	
		,		TATION IN the Section of	- Contraction			II C valous way	asservation		

TestCode: 0,20 NYS

FPM Group, Ltd.	
CLIENT:	

Work Order: C1804013
Project: Cinderella

Sample ID: ALCS1UGD-041017 SampType: LCSD	SampType: LCSD	TestCo	TestCode: 0.20 NYS	Units: ppbV		Prep Date:	Ĝí		RunNo: 13517	47	
Client ID: ZZZZZ	Batch ID: R13517	Fest	TestNo: TO-15		•	Analysis Date: 4/11/2018	e: 4/11/20	8	SeqNo: 156544	544	
Analyte	Result	PQt.	SPK value	SPK Ref Val	%REC	LowLimit	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-butyl ether	0.8400	0.15	+-	0	84.0	70	130	0.95	12.3	93	
Methylene chloride	0.9100	0.15	-	0	91.0	33	130	0.94	3.24	8	
o-Xylene	1.230	0.15	-	0	123	20	130	1.1	10.3	33	
Propylene	0.7300	0.15	-	0	73.0	70	130	0.73	0	30	
Slyrene	1.180	0.15	•	0	118	70	130	1.08	8.85	8	
Tetrachloroethylene	1.240	0.15	•	¢	124	70	130	1.12	10.2	8	
Tetrahydrofuran	0.7300	0.15	v	0	73.0	70	130	0.73	0	8	
Toluene	1.120	0.15	q um	0	112	70	130	1.06	5.50	33	
trans-1,2-Dichloroethene	0.9400	0.15	***	0	94.0	70	130	0.99	5.18	30	
trans-1,3-Dichloropropene	0.7500	0.15	Arm	0	75.0	70	130	0.72	4.08	30	
Trichloroethene	1.130	0.030	Aan	0	13	70	130	1.4	2.69	8	
Vinyl acetale	0.6700	0.15	/	0	67.0	20	130	0.72	7.19	33	S
Vinyl Bromide	1.110	0.15	*-	0	7	70	130	1,19	96.9	30	
Vinyl chloride	0.9200	0.040	₩	0	92.0	70	130	0.95	3.21	30	

Qualifiers:		Results reported are not blank corrected	E Estimated Value above quantitation range	Holding times for preparation or analysis exceeded
		Analyte detected below quantitation limit	ND Not Detected at the Limit of Detection	RPD outside accepted recovery limits
	U.	Spike Becovery anticke appendant recovery limits		

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041005.D Vial: 5 Acq On : 10 Apr 2018 12:43 pm Operator: RJP Sample : ALCS1UG-041018 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 10 13:43:47 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc Ur	nits	Dev(Min)
1) Bromochloromethane			35510	1.00		
35) 1,4-difluorobenzene 50) Chlorobenzene-d5		114				
50) Chioropenzene-ds	1,45	1 L /	145756	1.00	րքո	0.00
System Monitoring Compounds						
65) Bromofluorobenzene	19.19	95	98030	0.97	daa	0.00
Spiked Amount 1.000			Recover			00%
-	.			•		
Target Compounds			4			Qvalue
2) Propylene	4.54	41.	32193m	0.73		
3) Freon 12	4.60	85	230425	1.08		98
4) Chloromethane	4.82	50	46261	0.95	dąą	97
5) Freon 114	4.83	85	165247		ppb	92
6) Vinyl Chloride	5.03	62	44421	0.95		99
7) Butane	5.15	43 39	54371 38404	0.83	ppb	92
8) 1,3-butadiene	5.15	39	38404		dqq	96
9) Bromomethane	5.52	94	54268		ppb	100
10) Chloroethane	5.72	64	19928	1.05	dqq	97
11) Ethanol	5.82	64 45 56	12709	ዕ ዓገ	dqq	85
12) Acrolein	6.42	56	17508m Ø	1.00	ppp	
13) Vinyl Bromide	6.08	106	52971	1.19		99
14) Freon 11	6.37	101	207180	1.22		99
15) Acetone	6.54	58	26871	0.84	dqq	89
16) Pentane	6.66	42	26871 34659	0.93		97
17) Isopropyl alcohol	6.66	45	58292	0.96		99
18) 1,1-dichloroethene	7.17	96	64089	1.25		91
19) Freon 113	7.38	101	142153	1.22		98
20) t-Butyl alcohol	7.40	59	116095	0.92		95
21) Methylene chloride	7.65	84	64104	0.94		88
22) Allyl chloride	7.63	41	64104 47019m/ ³ 123598	0.77		
23) Carbon disulfide	7.82	76	123598	1.07		95
24) trans-1,2-dichloroethene	8.61		68228	0.99		88
25) methyl tert-butyl ether	8.63	73	163994	0.95		96
26) 1,1-dichloroethane	9.06	63	97623	0.97	daa	99
27) Vinyl acetate	9.03	43	84438m/	0.72	dqq	
28) Methyl Ethyl Ketone	9.54	72	25490	1.05		# 100
29) cis-1,2-dichloroethene	10.00	61	68822	0.91	dag	88
30) Hexane	9.61	61 57	62409	0.85	daa	94
31) Ethyl acetate	10.14	43	74958	0.78		96
32) Chloroform	10.63	8.3	138894	1.07		100
33) Tetrahydrofuran	10.79	42	35582	0.73	daa	79
34) 1,2-dichloroethane	11.72	62	93481	1.03	dqq	99
36) 1,1,1-trichloroethane	11.45	97	135098	0.95		99
37) Cyclohexane	12.14	56	64263	0.88		87
38) Carbon tetrachloride	12.08	117	117989	0.76		99
39) Benzene	12.05	78	158057	1.04		97
40) Methyl methacrylate	13.56	41	46440	0.72		# 73
41) 1,4-dioxane	13.59	88	35716	1.05		90
42) 2,2,4-trimethylpentane	12.88	57	196885	0.89		99
43) Heptane	13.21	43	57530	0.74		81
44) Trichloroethene	13.34		77814	1.10		97
45) 1,2-dichloropropane	13.45	63	49511	0.94		99

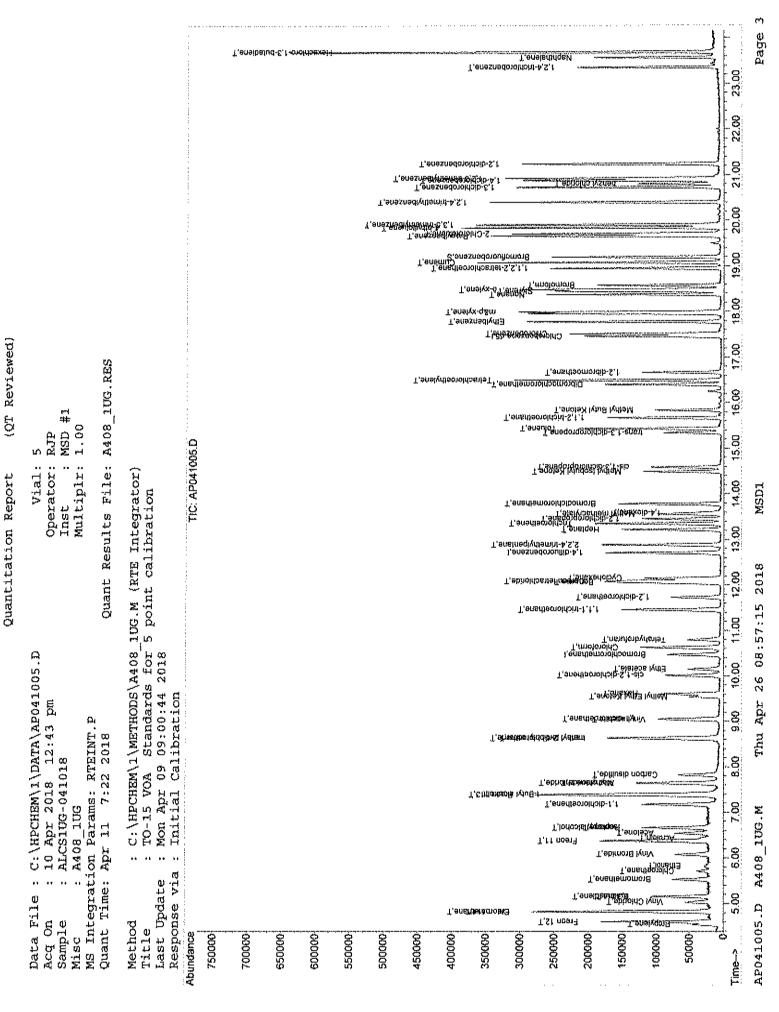
(#) = qualifier out of range (m) = manual integration

AP041005.D A408_1UG.M Thu Apr 26 08:57:14 2018 MSD1

Centek Laboratories, LLC

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041005.D Vial: 5 Acq On : 10 Apr 2018 12:43 pm Operator: RJP Sample : ALCSIUG-041018 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 10 13:43:47 2018 Quant Results File: A408 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
46)		13.78	83	128347	0.98 ppb	100
47)	cis-1,3-dichloropropene	14.58	75	78045	0.88 ppb	97
48)	trans-1,3-dichloropropene	15.34	75	62161	0.72 ppb	95
49)	1,1,2-trichloroethane	15.67	97	65118	1.09 ppb	96
51)	Toluene	15.43	92	112243	1.06 ppb	100
52)	Methyl Isobutyl Ketone	14.49	43	82486m °	0.72 ppb	
53)	Dibromochloromethane	16.40	129	116996	0.93 ppb	99
54)	Methyl Butyl Ketone	15.83	43	72514	0.65 ppb	92
55)	1,2-dibromoethane	16.67	107	97317	1.03 ppb	98
56)	Tetrachloroethylene	16.49	164	80795	1.12 ppb	98
57)	Chlorobenzene	17.51	112	159991	1.12 ppb	96
58)	Ethylbenzene	17.78	91	253692	1.03 ppb	99
59)	m&p-xylene	17.98	91	414152	2.15 ppb	99
60)	Nonane	18.37	43	81497	0.75 ppb	# 83
61)	Styrene	18.44	104	151628	1.08 ppb	98
62)	Bromoform	18.57	173	110119	0.95 ppb	98
63)	o-xylene	18.48	91	218027	1.11 ppb	99
64)	Cumene	19.08	105	288104	1.08 ppb	99
66)	1,1,2,2-tetrachloroethane	18.95	83	132714	1.05 ppb	98
67)	Propylbenzene	19.66	120	78185	1.10 ppb	95
68)	2-Chlorotoluene	19.71	126	74144	1.14 ppb	# 89
69)	4-ethyltoluene	19.84	105	297545	1.13 ppb	99
70)	1,3,5-trimethylbenzene	19.90	105	247732	1.10 ppb	99
71)	· · ·	20.39	105	238546	1.09 ppb	98
72)	1,3-dichlorobenzene	20.72	146	156153	1.17 ppb	99
73)	benzyl chloride	20.80	91	149431ଲ∤	dqq 38.0	
74)	1,4-dichlorobenzene	20.88	146	153362	1.19 ppb	98
75)	1,2,3-trimethylbenzene	20.92	105	227563	1.12 ppb	97
76)	1,2-dichlorobenzene	21.23	146	149553	1.19 ppb	99
77)	1,2,4-trichlorobenzene	23.35	180	73624	1.25 ppb	97
78)	Naphthalene	23.56	128	164199	1.01 ppb	100
79)	Hexachloro-1,3-butadiene	23.69	225	134830	1.26 ppb	99

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041022.D Vial: 10 Acq On : 11 Apr 2018 1:34 am Operator: RJP Sample : ALCS1UGD-041017 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Apr 11 07:23:16 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018 Response via : Initial Calibration DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response	Conc U	nits	Dev	(Min)
 Bromochloromethane 	10.47	128	41170	1.00	dqq		0.01
35) 1,4-difluorobenzene							0.00
50) Chlorobenzene-d5	17.45	117	153210	1.00	ppp		0.00
System Monitoring Compounds							
65) Bromofluorobenzene	19.19			1.05	dqq		0.00
Spiked Amount 1.000	Range 70	- 130	Recover	λ ~	105.	800	
Target Compounds						Qvá	alue
2) Propylene	4.55	41	37300	0.73	dqq		98
3) Freon 12	4.60	85	267811	1.09	ppb		99
4) Chloromethane	4.82	50	50503 183144	0.89	dqq		97
5) Freon 114	4.83	85	183144	1.08	ppb		94
6) Vinyl Chloride	5.04	62	49662	0.92			
7) Butane	5.15	43 39	63229 40568	0.83			99
8) 1,3-butadiene	5.15	39	40568				90
9) Bromomethane	5.53	94					99
10) Chloroethane	5.72	64 45 56	21624	0.98			99
11) Ethanol	5.82	45	16940 16404	1.05			91
12) Acrolein	6.44	5€	16404				97
13) Vinyl Bromide	6.08	106	57511				1.00
14) Freon 11	6.37	101	216791	1.10			99
15) Acetone	6.53	58 42	28551 37020	0.77	bbp	#	
16) Pentane	6.66	42		0.86	dqq		99
17) Isopropyl alcohol	6.65	45	64223	0.92			100
18) 1,1-dichloroethene	7.17 7.37	96	55368 165655	0.93	qqq		96
19) Freon 113	7.37	101	165655 104115 71969	1.22	ppb		98
20) t-Butyl alcohol	7.41	59	104115	0.71			98
21) Methylene chloride	7.64	φ±	من جها جي جاب ۽	0.71			88
22) Allyl chloride 23) Carbon disulfide	7.63	41	51411m <i>f</i>)	0.73			
24) trans 1 2 dichleresthere	7.02	76	141525	1.06			96
24) trans-1,2-dichloroethene		61	75147	0.94			86
25) methyl tert-butyl ether	8.63	73	166711	0.84			99
26) 1,1-dichloroethane 27) Vinyl acetate	9.05 9.03	63	112979 90670m /	0.97			99
28) Methyl Ethyl Ketone	9.03	43	29796				7.00
29) cis-1,2-dichloroethene	9.54	74	23796 27705	1.06			
30) Hexane	9.60	Ε.3 Ω.T	70595	0.87			86
31) Ethyl acetate	10.15	43	76595 72170 83121	0.85			89 95
32) Chloroform	10.62	83	160499	0.75	ppp		99
33) Tetrahydrofuran	10.62	42	41302m		ppo		שע
34) 1,2-dichloroethane	11.73	62	102059	0.73 0.97	ppp		0.0
36) 1,1,1-trichloroethane	11.45	97	142336	0.92	ppp		99
37) Cyclohexane	12.14	56 56	71267	0.32	ppp		99
38) Carbon tetrachloride	12.08	117	128580	0.90 0.76	PPP		87 98
39) Benzene	12.04	78	187431	1,13	PPD		97
40) Methyl methacrylate	13.56	41	49583	0.70	ppb	#	65
41) 1,4-dioxane	13.59	88	37191	1.00		TT	91
42) 2,2,4-trimethylpentane	12.88	5 <i>7</i>	227063	0.94			97
43) Heptane	13.21	4.3	62152	0.74	አንተሪያ ችኒካተላ	#	76
44) Trichloroethene	13.34		87795	1.13		17	98
45) 1,2-dichloropropane	13.45	63	59098	1.02			98
					 550		

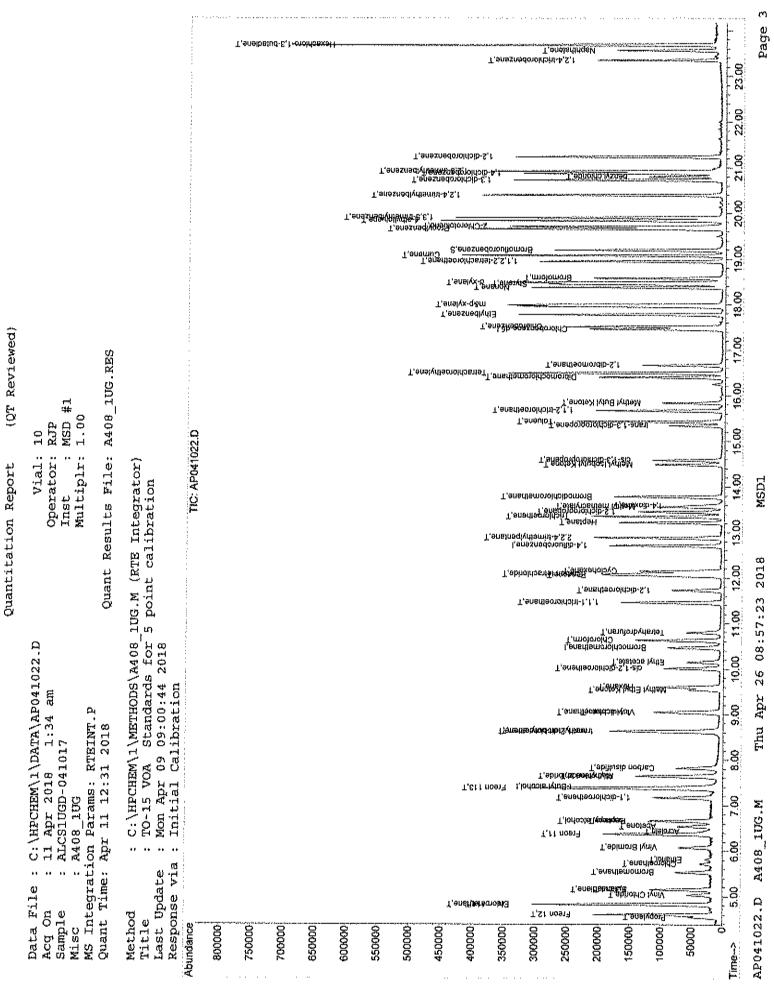
(#) = qualifier out of range (m) = manual integration

AP041022.D A408_1UG.M Thu Apr 26 08:57:21 2018

Centek Laboratories, LLC

Quantitation Report (QT Reviewed)

Data File : C:\HPCHEM\1\DATA\AP041022.D Vial: 10 Acq On : 11 Apr 2018 1:34 am Operator: RJP Sample : ALCS1UGD-041017 Misc : A408_1UG Inst : MSD #1 Multiplr: 1.00


MS Integration Params: RTEINT.P

Quant Time: Apr 11 07:23:16 2018 Quant Results File: A408_1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A408_1UG.M (RTE Integrator) Title : TO-15 VOA Standards for 5 point calibration Last Update : Mon Apr 09 09:00:44 2018

Response via : Initial Calibration DataAcq Meth : lug_RUN

	Compound	R.T.	Qion	Response	Conc Unit	Qvalue
46)	Bromodichloromethane	13.78	83	148478	1.04 ppb	99
47)	cis-1,3-dichloropropene	14.58	75	86257	0.89 ppb	97
48)	trans-1,3-dichloropropene	15.34	75	70357m 🗗	0.75 ppb	
49)	1,1,2-trichloroethane	15.66	97	77485	1.19 ppb	98
51)	Toluene	15.42	92	123993	1.12 ppb	98
52)	Methyl Isobutyl Ketone	14.48	43	79203m 🖋		
53)	Dibromochloromethane	16.40	129	137110	1.04 ppb	99
54)	Methyl Butyl Ketone	15.83	43	67838	0.58 ppb	84
55)	1,2-dibromoethane	16.66	107	111425	1.12 ppb	100
56)	Tetrachloroethylene	16.49	164	93609	1.24 ppb	100
57)	Chlorobenzene	17.51	112	179121	1.20 ppb	95
58)		17.77	91.	286330	1.10 ppb	99
59)	m&p-xylene	17.99	91	470152	2.32 ppb	99
60)	Nonane	18.37	43	94149	0.82 ppb	# 81
61)	Styrene	18.44	104	173440	1.18 ppb	97
62)	Bromoform	18.57	173	122718	1.01 ppb	99
63)	o-xylene	18.48	91	254295	$1.23 \stackrel{\circ}{ppb}$	98
64)	Cumene	19.07	105	325497	1.16 ppb	100
66)	1,1,2,2-tetrachloroethane	18.94	83	162541	1.23 ppb	100
67)	Propylbenzene	19.65	120	87575	1.18 ppb	98
68)	2-Chlorotoluene	19.70	126	85715	1.25 ppb	92
69)		19.83	105	330614	1.19 ppb	98
70)		19.90	105	291650	1.23 ppb	99
	1,2,4-trimethylbenzene	20.39	105	266639	1.16 ppb	98
	1,3-dichlorobenzene	20.72	146	175693	1.25 ppb	99
73)	benzyl chloride	20.80	91	151762m∄	dqq 88.0	
74)	1,4-dichlorobenzene	20.87	146	168491	1.24 ppb	99
	1,2,3-trimethylbenzene	20,91	105	268016	1.25 ppb	99
	1,2-dichlorobenzene	21.23	146	170823	1.29 ppb	99
	1,2,4-trichlorobenzene	23.35	180	68845	1.11 ppb	99
78)	Naphthalene	23.56	128	150015	0.87 ppb	99
79)	Hexachloro-1,3-butadiene	23.69	225	142864	1.27 ppb	97

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15

INJECTION LOG

Centek Laboratories, LLC

Injection Log Institute Interview Interv

Instrument # Internal Standard Stock # A2455
Standard Stock # A2456
LCS Stock # A2457

					LCS Stock #A_2	57.57
Line	Vial	FileName	Multiplier	SampleName	Mistelliod Ref: EPA TO-1	5 / Jag 1999
2110			man.po.		Wilde title	
221	33	Ap040710.d	1.	C1804012	A318_1UG -004A 5X	7 Apr 2018 16:36
222	34	Ap040711.d	1.	C1804012-005A 9X	A318_1UG	7 Apr 2018 17:16
223	35	Ap040712.d	1.	C1804012-005A 90X	A318_1UG	7 Apr 2018 17:53
224	36	Ap040713.d	1.	C1804012	A318_1UG -005A 180X	7 Apr 2018 18:35
225	37	Ap040714.d	1.	ALCS1UGD-040718	A318_1UG	7 Apr 2018 19:14
226	38	Ap040715.d	1.	C1804012	A318_1UG -005A 180X	7 Apr 2018 19:51
227		Ap040716.d	1.	No MS or GC data present		
	2	Ap040801.d	1.	BFB1UG	A408_1UG	8 Apr 2018 20:51
229		Ap040802.d	1.	BFB1UG	A408_1UG	8 Apr 2018 21:28
230	1	Ap040803.d	1.	A1UG	A408_1UG	8 Apr 2018 22:14
231	2	Ap040804.d	1,	A1UG	A408_1UG	8 Apr 2018 22:53
232	3	Ap040805.d	1.	A1UG_2.0	A408_1UG	8 Apr 2018 23:36
233		Ap040806.d	1,	A1UG_1.50	A408_1UG	9 Apr 2018 00:17
	5	Ap040807.d	1.	A1UG 1.25	A408_1UG	9 Apr 2018 00:58
	6	Ap040808.d	1.	A1UG_1.0	A408_1UG	9 Apr 2018 01:37
	7	Ap040809.d	1.	A1UG_0.75	A408_1UG	9 Apr 2018 02:16
	8	Ap040810.d	1.	A1UG_0.50	A408_1UG	9 Apr 2018 02:54
238	9	Ap040811.d	1.	A1UG_0.30	A408_1UG	9 Apr 2018 03:31
239	10	Ap040812.d	1.	A1UG_0.15	A408_1UG	9 Apr 2018 04:08
240	11	Ap040813.d	1.	A1UG_0.10	A408_1UG	9 Apr 2018 04:44
241	12	Ap040814.d	1,	A1UG_0.04	A408_1UG	9 Apr 2018 05:20
242	13	Ap040815.d	i.	A1UG_0.03	A408_1UG	9 Apr 2018 05:57
243		Ap040816.d	1.	No MS or GC data present	· · · · · · · · · · · · · · · · · · ·	4 / pr ma 10 00/01
	1	Ap040901.d	1.	BFB1UG	A408_1UG	9 Apr 2018 09:07
		Ap040902.d	1,	A1UG_1.0	A408_1UG	9 Apr 2018 11:23
246		Ap040903.d	1.	ALCS1UG-040917	A408_1UG	9 Apr 2018 12:06
247		Ap040904.d	1.	AMB1UG-040917	A408_1UG	9 Apr 2018 12:43
248	5	Ap040905.d	1.	IDL #1 0.15ppb	A408_1UG	9 Apr 2018 13:46
?49	6	Ap040906.d	1.	IDL #1 0.1ppb	A408_1UG	9 Apr 2018 14:23
?50	7	Ap040907.d	1.	C1804014-001A	A408_1UG	9 Apr 2018 16:56
!51	8	Ap040908.d	1.	C1804014-002A	A408_1UG	9 Apr 2018 17:37
		Ap040909.d	1.	bík	A408_1UG	9 Apr 2018 21:09
!53		Ap040910.d	1.	IDL#1 0.30ppb	A408_1UG	10 Apr 2018 06:48
!54		Ap040911.d	1.	C1804015-001A	A408_1UG	10 Apr 2018 07:33
!55	12	Ap040912.d	1.	C1804015-001A 10x	A408_1UG	10 Apr 2018 08:10
:56	13	Ap040913.d	1.	C1804015-001A 270x	A408_1UG	10 Apr 2018 08:47
157		Ap040914.d	1.	No MS or GC data present		·
		Ap041001.d	1.	BFB1UG	A408_1UG	10 Apr 2018 09:33
		Ap041002.d	1.	A1UG	A408_1UG	10 Apr 2018 10:32
:60	3	Ap041003.d	1.	A1UG	A408_1UG	10 Apr 2018 11:12
:61	4	Ap041004.d	1.	A1UG_1.0	A408_1UG	10 Apr 2018 11:52
:62	5	Ap041005.d	1,	ALCS1UG-041018	A408_1UG	10 Apr 2018 12:43
63	6	Ap041006.d	1.	AMB1UG-041018	A408_1UG	10 Apr 2018 13:20
64	21	Ap041007.d	1.	WAC041018A	A408_1UG	10 Apr 2018 15:29
65	22	Ap041008.d	1.	WAC041018B	A408_1UG	10 Apr 2018 16:07
	23	Ap041009.d	1.	WAC041018C	A408_1UG	10 Apr 2018 16:45
		Ap041010.d	1.	WAC041018D	A408_1UG	10 Apr 2018 17:23
		Ap041011.d	1.	WAC041018E	A408_1UG	10 Apr 2018 18:01
		Ap041012.d	1.	WAC041018F	A408_1UG	10 Apr 2018 18:39
70	1 .	Ap041013.d	1.	C1804013-001A	A408_1UG	10 Apr 2018 19:21
71	2	Ap041014.d	1.	C1804013-002A	A408_1UG	10 Apr 2018 20:04
		Ap041015.d	1.	C1804013-003A	A408_1UG	10 Apr 2018 20:46
		Ap041016.d	1.	C1804013-004A	A408_1UG	10 Apr 2018 21:29
		Ap041017.d	1.	C1804013-005A	A408_1UG	10 Apr 2018 22:11
75	6 ,	Ap041018.d	1.	C1804013-006A	A408_1UG	10 Apr 2018 22:54

	ā	irectory:	C:\HPCHEI		Injection Log	Internal Standard St	ock #_ <i>A3.45</i> _7
Line	Vial	FileName	Multiplier	SampleName		Standard Stock # LCS Stock # Method Ref: EF	
276 277 278 279 280 281 282 283 284 285	8 9 10 11 12 13 14	Ap041019.d Ap041020.d Ap041021.d Ap041023.d Ap041023.d Ap041025.d Ap041025.d Ap041027.d Ap041028.d	1. 1. 1. 1. 1. 1.	C1804013-007A 10X C1804017-001A C1804017-002A ALCS1UGD-041017 C1804013-001A 10X C1804013-001A 40X C1804013-002A 10X C1804013-002A 40X C1804013		A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG -003A 10X A408_1UG	10 Apr 2018 23:31 11 Apr 2018 00:12 11 Apr 2018 00:54 11 Apr 2018 01:34 11 Apr 2018 02:47 11 Apr 2018 03:25 11 Apr 2018 04:02 11 Apr 2018 04:39 11 Apr 2018 05:17
286 287 288 289 290 291 292 293 294 295	20 / 21 / 22 / 1 / 2 / 3 / 4 /	Ap041029.d Ap041030.d Ap041031.d Ap041032.d Ap041033.d Ap041101.d Ap041103.d Ap041104.d Ap041105.d	1. 1. 1. 1. 1. 1.	C1804017-001A 10X C1804017-002A 10X C1804013-007A C1804013-007A 270x No MS or GC data press BFB1UG A1UG A1UG_1.0 ALCS1UG-041118 AMB1UG-041118		A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG	11 Apr 2018 05:54 11 Apr 2018 06:31 11 Apr 2018 07:12 11 Apr 2018 07:49 11 Apr 2018 08:36 11 Apr 2018 09:20 11 Apr 2018 10:00 11 Apr 2018 10:41 11 Apr 2018 11:18
303 304	7	Ap041106.d Ap041107.d Ap041108.d Ap041109.d Ap041110.d Ap041111.d Ap041112.d Ap041113.d Ap041114.d	1. 1. 1. 1. 1. 1. 1.	WAC041118A WAC041118B C1804016-005A C1804016-001A C1804016-002A C1804016-003A C1804016-004A C1804016-005A 10X C1804016-001A 10X C1804016-001A 40X		A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG	11 Apr 2018 11:55 11 Apr 2018 12:33 11 Apr 2018 13:14 11 Apr 2018 13:54 11 Apr 2018 14:35 11 Apr 2018 15:15 11 Apr 2018 15:57 11 Apr 2018 16:34 11 Apr 2018 17:11
107 108 109 110 111 12 13 14	30 A 31 A 32 A 33 A 35 A 36 A 37 A 38 A 39 A	1041116.d 1041117.d 1041118.d 1041119.d 1041120.d 1041121.d 1041122.d 1041123.d 1041124.d 1041125.d	1. 1. 1. 1. 1. 1. 1.	C1804016-002A 10X C1804016-002A 40X C1804016-003A 10X C1804016-003A 40X C1804016-004A 20X ALCS1UGD-041118 C1804016-001A 540X C1804016-002A 2430X C1804016-003A 7290X C1804016		A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG A408_1UG -003A 14	11 Apr 2018 18:26 11 Apr 2018 19:03 11 Apr 2018 19:40 11 Apr 2018 20:17 11 Apr 2018 20:55 11 Apr 2018 21:52 11 Apr 2018 22:29 11 Apr 2018 23:06 11 Apr 2018 23:43 12 Apr 2018 00:20
17 18 19 20 21 22 23 24	41 A 1 A 2 A 3 A 1 A 2 A 4 A	p041126.d p041127.d p041201.d p041202.d p041203.d p041204.d p041205.d p041206.d p041207.d p041208.d	1. 1. 1. 1. 1. 1. 1.	C1804016-004A 810X BFB1UG A1UG_2.0 A1UG_1.0 A1UG_1.5 A1UG_1.25 A1UG_0.75 A1UG_0.50 A1UG_0.30	,	A408_1UG A408_1UG A408_1UG A412_1UG A412_1UG A412_1UG A412_1UG A412_1UG A412_1UG A412_1UG	12 Apr 2018 00:57 12 Apr 2018 06:49 12 Apr 2018 08:34 12 Apr 2018 09:54 12 Apr 2018 10:34 12 Apr 2018 11:16 12 Apr 2018 11:57 12 Apr 2018 12:36 12 Apr 2018 13:14 12 Apr 2018 13:51
26 6 27 7 28 8 29 9 30 1	7 Ai 3 Ai 9 Ai	p041209.d p041210.d p041211.d p041212.d p041213.d	1.	A1UG_0.15 A1UG_0.10 A1UG_0.04 A1UG_0.03 ALCS1UG-041218	, , ,	A412_1UG A412_1UG A412_1UG A412_1UG A412_1UG	12 Apr 2018 14:32 12 Apr 2018 15:09 12 Apr 2018 15:46 12 Apr 2018 16:23 12 Apr 2018 17:18

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15 STANDARDS LOG

Centek Laboratories, LLC

GC/MS Calibration Standards Logbook

Prep by Chkd by 77 7 Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb) PPM PPM 500 50 Q STOTISMONIC 5.00 2 0 2200 BJC 2000 PS/IG コン 30 45 7 0 A 180 <u>C</u> 20 (C) 3 5000h MOBS -FT-47281 Ppm 10,000 -F-84X7 Assn A 1807 A0270 A0269 106 IS A 230Y STD A2305 P2318 A230L Stock # A2.316 A331) A 2320 \$PCH5 12322 A3269 A2315 2515 4232 100/1 SULF FORM H25 4 PCA 5/5 514.0X 50LF 1625 STD Description A KININSTOCK 1000 3 12/18/17/12/19/18 TOIS 7001 2/04/18 12/24/11 12/15/17 Date Prep Date Exp 12/12/11 162/17 77/04/ 2317 2314 A-2315 A-2313 A- 2312 A-2316 132 A- 2324 A-2330 A: 2320 2311 A-1333 A- 2326 4-2327 A-23328 #PtS A- 1325 A-2325 A-2331 A- 233 4

46 # 34

Centek Laboratories, LLC Prep by /<u>3</u> 3 Finlal Vol (psia) Final Conc (ppb) 580 500 20 50 50 20 000 ائے۔ \forall 3 30 15 子 30 80 30 3 30 Stock Conc Initial Vol (psig) 6.0 0,19 9 3,0 īŽ 300 12/2 5.0 50000 500pp 11.9 com 900005) (Oppm 150 pp lo ppm 11.9 ppm 50 00 1 ppm 1007 POW 121088 12014 12014 A2454 A 2464 A 23/8 A2467 ISM2452 Stock # 5245A 9519 90230 A0269 56-170A PJ-05 7425 AO2669 A2317 982H A 233 | 1333 1% TOLM 507 SULF 725 FORT YPath 51cox 484 $\langle \rangle$ 5 Description H 1015 Jug TOIS ING 7015 7015 Date Prep Date Exp 41318 17 3 3/27/18 2018 3 A. 2433 4.2462 5463 2458 2460 545 2466 24 YZ A.2468 7.457 19HZ A-2467 A.2470 A.2465 A-2469 A.2471 Std # A. 2-461

FORM 153

3 _>

50

30

→

~>

<u>~</u>)

00m

Azsilo

H

1015

4/10/18

413118

4.2474

4.2475 A.2475

A- 2477 A.2476

A231,

分分

<u>~</u>>

1) 2466

LKS.

A2465

S7.5

J

Page#

Centek Laboratories, LLC

3C/MS Calibration Standards Logbook

TTC
ratories,
k Labor
Cente

GC/MS Calibration Standards Logbook

	orate		3, L										······································					······································			
Prep by Chkd by									ALTER BUTTON A												
1 1	Z) Z)									>	LL										>
Stock Conc Initial Vol (psig) Finial Vol (psia) Final Conc (ppb)	55	>	150	50	R	25	500	7		→	20		up iirrur anii	→	Ŋ	50	50	->	506	7-1	->
Finial Vol (psia)	30	~	30	7	30	30	3	45	AMOUNT	\rightarrow	30				→	<u>1</u> ك	30		7	L 57	>
Initial Vol (psig	1,5	\rightarrow	3,0	૦,1૧	5.0	<u>:</u>	1.5	કેજ	1	→	75	. —		→	3,0	61.0	3,0	برن	->	6.0	->
Stock Conc	\M\0,0\	>	50,00	Mg pm	500,005		7	150 Oct	* , <u>, , , , , , , , , , , , , , , , , ,</u>	1	DOM			>	150pp		1 50d p		10 pp.m	5000	\rightarrow
Stock #	H1318	9519	A2479	A233)	1304/ 1986	AUZIC	1265	ACHZA	LLHZH	8CH24	A2316	A231-	A2318	9519	A	A233	APPROP	A0270	A0269	A2488	A2489
Description	SON	Hodh	4PCHS	FORM (A233)) Xonits		N.S.	lug IS	_		TS	STD	rcs	4PCH	чРСНБ	FORM	SILX	SULF	H25 AC	TO 15 NGTS A2488	SID A
	105	-					\rightarrow	125.		ラ	(To) 5					**************************************	-		7		
Date Exp	HIMIS TOIS	***************************************								À	4/17/18	_						***************************************			->
Date Prep	4/3/18									>	\$1 0 7								7/1		\Rightarrow
Std #	A-2478	A-2479	A-2-480	A-248)	A.2482	A-2483	4.2484	A.2485	A-2486	A-2487	A. 2488	A. 2489	4-2490	A-249	A-2492	A-2493	4- 2494	A. 2495	A. 2496	A. 2497	A-2499

FORM 153

¥ 7.0		<u> </u>		,						
# 010	Date Flep		Describinon	plion			(Bisd) ion leiliui	듼	Final Conc (ppp)	Lieb oy
A-2499	4 10 13	, SI LI h	105 N	201 301 510	A2490	50pp	6	45	7	Z
A-2.500	4117118	1 July 18	TO15	TS	A2316	Loom	1.5	30	50	
A-2501		- -		STD	A2317					<u>-</u>
A-2502				LCS	A2318		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
A-2503				HDGH	19519	->	\rightarrow	•	\rightarrow	<u> </u>
A-2504			"	HPCHI5	5 A2503	3 50 mbb	3,0	>	Ŋ	
A-2505				FORM	-4		_	45	50	
A-2506				STO	(Aloss, 1	SILUXAIOM SOOPU	3,0	30	50	
A-2507				SULF	A02.70	1 0000	1,5	30	S	
A-2508			Ą	H25		10 ppm	1.5	30	500	
A-2509	,		Tols 11	UG IS		100 DS	0,9	НБ	7-1	<u> </u>
A-2510				CLIS		-/	.,	-		
A-2511	\rightarrow	\rightarrow	>	557	1	→	^	-)	>	>
7.52.Y	811152115	15/11/8	7015	IS		wad	1,5	30	50	3
A. 2513			y	57	L1524		<u> </u>			,_
A. 2514				LCS	A2318					
A. 2515				4PCH	ુકાવુ	\rightarrow	- >	\Rightarrow	>	
A. 2516				HPCHS	S1524	god os	१५	30	ſΛ	
A-2517				Forem			biro	45	50	
A. 2518				SICOX	A 10/85 A 10/89		3.0	30	50	
9126	>	->	>	כואני			シー	30	215	Ş

Page 240 of 248

8

İ

T.

Wassa

anyoning.

ě

ets)

(Section)

\$130-4500

Afficacy in

FORM 153

Page # 43

GC/MS VOLATILES-WHOLE AIR

METHOD TO-15
CANISTER CLEANING LOG

Centek Laboratories, LLC Leak Test 24hr Int & Date 457 QC Canister Cleaning Logbook + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 30 33 + 30 + 30 + 30 +33 + 30 + 30 Detection Limits 14g m > +0.20 WAC032218E QC Batch Number 181225224m WAC 032218G 3/22/18 W/ WACO32218 WAC032218 Int & Date Cleaned Canister Number | Canister Size QC Can Number | # of Cycles 358 365 50 ET Centek Laboratories, LLC 290 1181 Instrument: Entech 3100 245 119 382 425 1307 133 MSL 504 183 290 80 365 3 533 7 13 89 8 324 1811

Centek Laboratories, $LLC_{\tt Quantitation\ Report}$

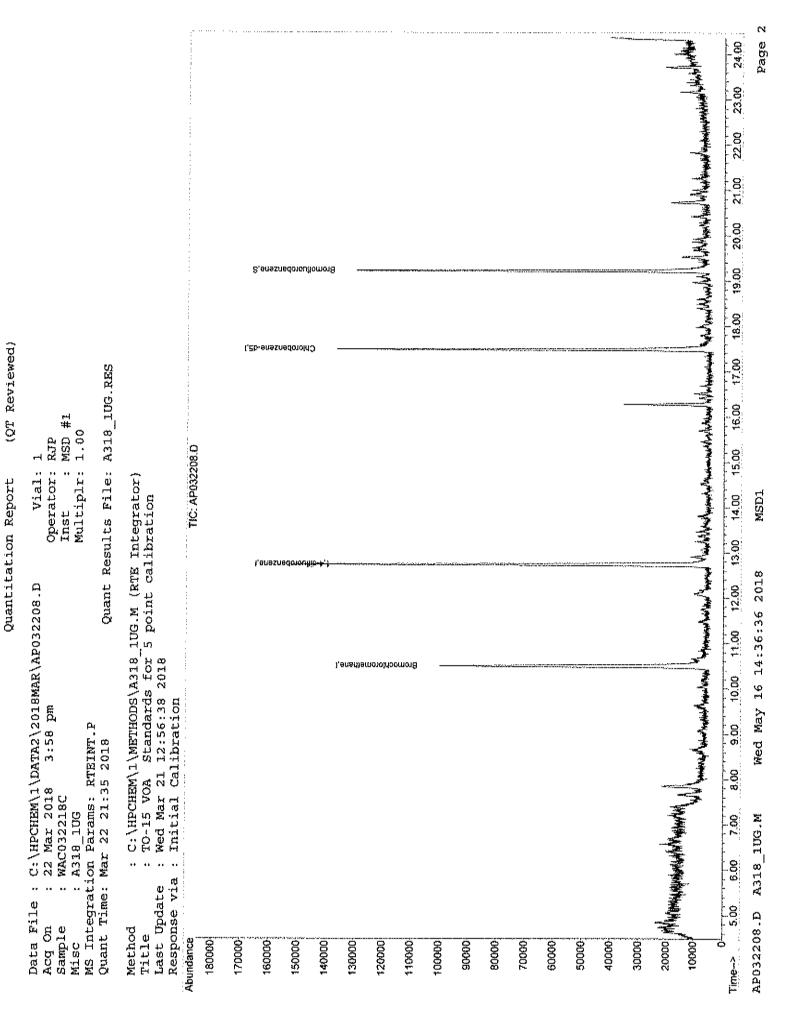
(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2018MAR\AP032208.D

Vial: 1 Acq On : 22 Mar 2018 3:58 pm Sample : WAC032218C Operator: RJP Inst : MSD #1 Misc : A318_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 22 21:35:01 2018 Quant Results File: A318 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 21 12:56:38 2018

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T. QI	Con Response C	Conc Units Dev(Min)
 Bromochloromethane 1,4-difluorobenzene Chlorobenzene-d5 	12.73 1	128 41126 114 157554 117 101760	1.00 ppb 0.00 1.00 ppb 0.00 1.00 ppb 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.22 Range 70 -	95 53241 130 Recovery	0.76 ppb 0.00 76.00%
Marget Compounds			Overalism

Target Compounds Qvalue

Page 244 of 248

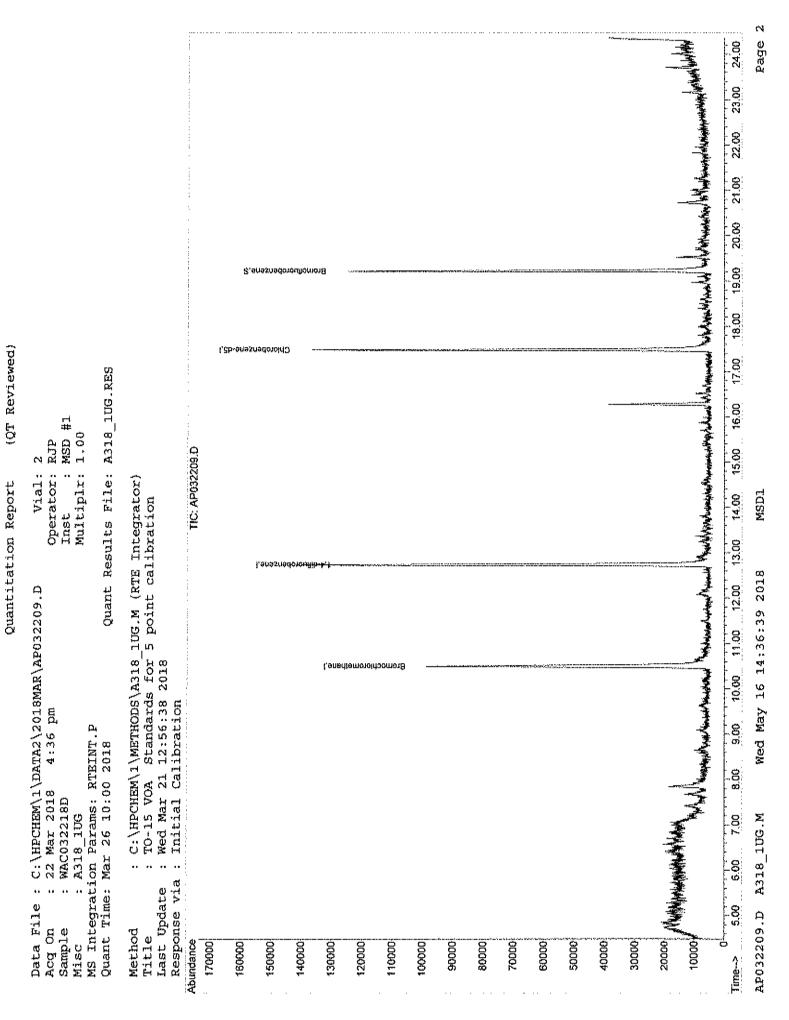
Centek Laboratories, LLC $_{\tt Quantitation\ Report}$

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2018MAR\AP032209.D Vial: 2 Acq On : 22 Mar 2018 Sample : WAC032218D Misc : A318_1UG 4:36 pm Operator: RJP Inst : MSD #1 Multiplr: 1.00

MS Integration Params: RTEINT.P

Quant Time: Mar 22 21:35:02 2018 Quant Results File: A318 1UG.RES


Quant Method : C:\HPCHEM\1\METHODS\A318_lUG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 21 12:56:38 2018

Response via : Initial Calibration

DataAcq Meth : IUG_RUN

Internal Standards	R.T.	QIon	Response C	onc U	nits De	v(Min)
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.51 12.73 17.48		39278 147860 97975	1.00	ppb	0.01 0.00 0.00
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70		47912m 9 Recovery	0.71	ppb 71.00	0.00
						_

Target Compounds Qvalue

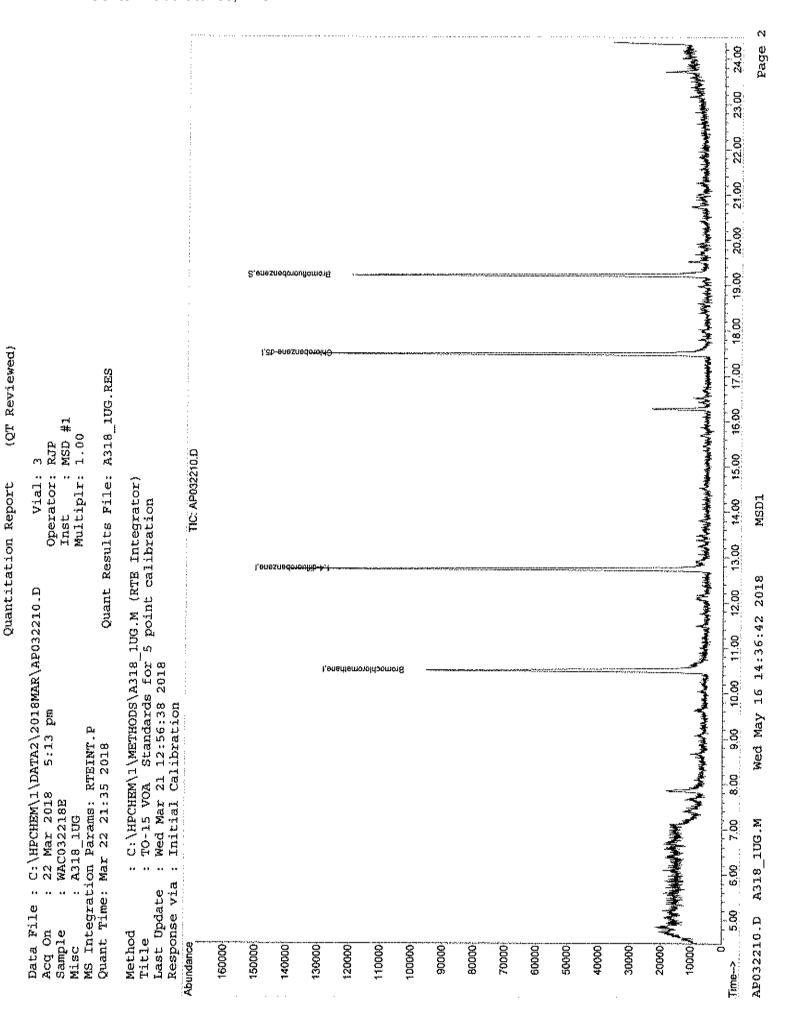
Page 246 of 248

Centek Laboratories, $LLC_{Quantitation\ Report}$

(QT Reviewed)

Data File : C:\HPCHEM\1\DATA2\2018MAR\AP032210.D Vial: 3 Acq On : 22 Mar 2018 5:13 pm Operator: RJP Sample : WAC032218E Inst : MSD #1 Misc : A318_1UG Multiplr: 1.00

MS Integration Params: RTEINT.P


Quant Time: Mar 22 21:35:03 2018 Quant Results File: A318 1UG.RES

Quant Method : C:\HPCHEM\1\METHODS\A318_1UG.M (RTE Integrator)
Title : TO-15 VOA Standards for 5 point calibration
Last Update : Wed Mar 21 12:56:38 2018

Response via : Initial Calibration

DataAcq Meth : 1UG_RUN

Internal Standards	R.T.	QIon	Response C	Conc U	nits Dev	(Min)		
1) Bromochloromethane 35) 1,4-difluorobenzene 50) Chlorobenzene-d5	10.50 12.74 17.49	128 114 117	40684 146807 98156	1.00 1.00 1.00	ppb	0.00		
System Monitoring Compounds 65) Bromofluorobenzene Spiked Amount 1.000	19.21 Range 70	95 - 130	49357 Recovery	0.73	ppb 73.00%	0.00		
Target Compounds								

Page 248 of 248

DATA USABILITY SUMMARY REPORT FOR APRIL 2018 AIR SAMPLING CINDERELLA 248, LLC SITE, BROOKLYN, NY SAMPLE DELIVERY GROUP # C1804013

This DUSR was prepared using the entire original laboratory report, including the sample data summary report and the extended data package. The sampling event included four indoor air sample, one outdoor air sample and one effluent sample. Primary environmental sample numbers include the indoor air samples (IA-1 through IA-4) and the ambient sample (Ambient). The duplicate and associated parent sample are IA-1D and IA-1, respectively. The effluent sample was collected from the sub-slab depressurization system at the request of the NYSDEC project manager for information purposes.

Sample Collection Procedures

The samples were collected in laboratory-provided batch-certified one-liter Summa canisters equipped with laboratory calibrated flow controllers. Collection of each sample was performed over an approximate eight-hour period, with the exception of the effluent sample which was collected as a grab sample. Each of the flow controllers for the primary samples was closed when the vacuum in the canister was nearly depleted but some vacuum remained. Chain-of-custody documentation was present and complete.

Sample Analyses

The samples were transported to the laboratory and analyzed by Centek Laboratories, LLC at their Syracuse, New York facility, which is NYSDOH-certified for the analyses performed. The samples were analyzed for volatile organic compounds (VOCs) using Method TO-15, with low-level analyses for the indoor air and ambient samples. The analytical methods and analytes are appropriate for the intended use of the data. The sample holding times were met and no problems with sample receipt or handling were reported by the laboratory. The samples were logged in by the lab based on the sample IDs on the tags and the correct can numbers printed on the canisters themselves were used.

Surrogate recoveries were complete and within limits. Internal standards were also noted to be complete and within limits.

A blind duplicate sample was collected and utilized to evaluate the precision of the laboratory analyses. The results from the duplicate sample (IA-1D) and the associated parent sample (IA-1) are very similar. Based on the blind duplicate sample results, the laboratory results are likely to be precise.

A duplicate sample analysis was also performed by the laboratory and utilized to evaluate the precision of the laboratory analyses. The results from the laboratory duplicate sample and the associated parent sample are very similar. Based on the laboratory's duplicate sample results, the laboratory results are likely to be precise.

Method blank (MB) samples were analyzed by the laboratory to evaluate the potential for cross-contamination associated with the sample preparation and analysis. The MB results did not show detectable concentrations of VOCs and, therefore, cross-contamination associated with sample preparation or analysis does not appear to affect the sample data.

Air canister cleanings logs are maintained by the laboratory to evaluate the potential for cross-contamination associated with the sample containers. The air canister cleanings logs show that cleaning measures are taken to prevent cross-contamination associated with sample containers.

Laboratory control sample (LCS) and Laboratory control sample duplicate (LCSD) were used by the laboratory to verify the accuracy and precision of the analyses. The LCS/LCSD percent recoveries (%REC) and relative percent differences (RPDs) were within established guidelines., with the following exceptions:

The %REC for methyl butyl ketone, was slightly below its limit for the LCS and LCSD samples for batch R13517. The %REC for methyl isobutyl ketone and vinyl acetate were also slightly below their limits for the LCSD sample for batch R13517. The associated sample results may be biased slightly low. This does not present a concern as these VOCs were not detected in any of the associated primary samples and they are not VOC of concern for this site;

Based on this information, the analytical results for the VOCs of concern are anticipated to be precise and accurate.

Questions and Responses

1. Is the data package complete as defined under the current requirements for the NYSDEC ASP Category B or USEPA CLP deliverables?

The data package is complete. The external and internal chain of custody forms are present and complete. The case narrative and sample analysis summaries are present and complete. The analytical QA/QC summary forms, including surrogate recovery forms, LCS forms, IDL forms, initial and continuing calibration summary forms, standards raw data, tuning criteria report, and MB data are all present and complete. The data report forms, including sample prep logs, injection logs, canister cleaning logs, and examples of the calculations used to determine the sample concentrations are all present and complete. The raw data used to identify and quantify the contract-specified analytes are present and complete.

Data completeness for the field program was also verified. The numbers and types of samples collected are in agreement with the work plan.

2. Have all holding times been met?

All samples were received and analyzed within the EPA-recommended holding times for the analyses performed.

3. Do all the QC data: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data, fall within the protocol-required limits and specifications?

No – One to three VOCs in the LCSs were detected outside their respective %REC criteria. These VOCs were not detected in the primary samples and are not VOCs of concern for this site. Therefore, these issues do not appear to affect the sample data for the VOCs of concern for this site.

- 4. Have all of the data been generated using established and agreed-upon analytical protocols?
 - Yes all of the data were generated using the Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.
- 5. Does an evaluation of the raw data confirm the results provided in the data summary sheets and quality control verification forms?
 - Yes a representative number of raw data results were compared with the reported data results to confirm that the reported analytical results (identification and quantification) are substantiated by the raw data.
- 6. Have the correct data qualifiers been used?

Yes

- 7. Have any quality control (QC) exceedances been specifically noted in the DUSR and have the corresponding QC summary sheets from the data package been attached to the DUSR?
 - Yes The affected QC summary sheets are attached to this DUSR.

Conclusions

The indoor/outdoor air samples were collected in accordance with NYSDOH guidance. No field or laboratory conditions occurred that would result in non-valid analytical data for the VOCs of concern at this site. The data appear to be adequate for their intended purpose.

Attachments

S:\Rigano LLC\Cinderella 248 LLC\Air Sampling\April 2018\DUSR IA.Docx

Phone (315) 431-9730 * Emergency 24/7 (315) 416-2752 NYSDOH ELAP Certificate No. 11830

Analytical Report

Chris Linkletter FPM Group, Ltd. 909 Marconi Avenue Ronkonkoma, NY 11779

TEL: (631) 737-6200

FAX

RE: Cinderella

Dear Chris Linkletter:

Wednesday, April 11, 2018 Order No.: C1804013

Centek Laboratories, LLC received 7 sample(s) on 4/9/2018 for the analyses presented in the following report.

I certify that this data package is in compliance with the terms and conditions of the Contract, both technically and for completeness. Release of the data contained in this hardcopy data package and/or in the computer readable data submitted has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the case narrative. All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

Centek Laboratories is distinctively qualified to meet your needs for precise and timely volatile organic compound analysis. We perform all analyses according to EPA, NIOSH or OSHA-approved analytical methods. Centek Laboratories is dedicated to providing quality analyses and exceptional customer service. Samples were analyzed using the methods outlined in the following references:

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999.

Centek Laboratories SOP TS-80

Analytical results relate to samples as received at laboratory. We do our best to make our reporting format clear and understandable and hope you are thoroughly satisfied with our services.

Please contact your client service representative at (315) 431-9730 or myself, if you would like any additional information regarding this report.

This report cannot be reproduced except in its entirety, without prior written authorization.

Sincerely,

William Dobbin

Lead Technical Director

Will Doll

Disclaimer: The test results and procedures utilized, and laboratory interpretations of the data obtained by Centek as contained in this report are believed by Centek to be accurate and reliable for sample(s) tested. In accepting this report, the customer agrees that the full extent of any and all liability for actual and consequential damages of Centek for the services performed shall be equal to the fee charged to the customer for the services as liquidated damages. ELAP does not offer certification for the following parameters by this method at present time, they are: 4-ethyltoluene, ethyl acetate, propylene, tetrahydrofuran, 4-PCH, sulfur derived and silcon series compounds.

Centek Laboratories, LLC Terms and Conditions

Sample Submission

All samples sent to Centek Laboratories should be accompanied by our Request for Analysis Form or Chain of Custody Form. A Chain of Custody will be provided with each order shipped for all sampling events, or if needed, one is available at our website www.CentekLabs.com. Samples received after 3:00pm are considered to be a part of the next day's business.

Sample Media

Samples can be collected in an eanister or a Tedlar bag. Depending on your analytical needs, Centek Laboratories may receive a bulk, liquid, soil or other matrix sample for headspace analysis.

Blanks

Every sample is run with a surrogate or tracer compound at a pre-established concentration. The surrogate compound run with each sample is used as a standard to measure the performance of each run of the instrument. If required, a Minican can be provided containing nitrogen to be run as a trip blank with your samples.

Sampling Equipment

Centek Laboratories will be happy to provide the canisters to carry-out your sampling event at no charge. The necessary accessories, such as regulators, tubing or personal sampling belts, are also provided to meet your sampling needs. The customer is responsible for all shipping charges to the client's destination and return shipping to the laboratory. Client assumes all responsibility for lost, stolen and any dameges of equipment.

Turn Around time (TAT)

Centek Laboratories will provide results to its clients in one business-week by 6:00pm EST after receipt of samples. For example, if samples are received on a Monday they are due on the following Monday by 6:00pm EST. Results are faxed or emailed to the requested location indicated on the Chain of Custody. Non-routine analysis may require more than the one business-week turnaround time. Please confirm non-routine sample turnaround times.

Reporting

Results are emailed or faxed at no additional charge. A hard copy of the result report is mailed within 24 hours of the faxing or emailing of your results. Cat "B" like packages are within 3-4 weeks from time of analysis. Standard Electronic Disk Deliverables (EDD) is also available at no additional charge.

Payment Terms

Payment for all purchases shall be due within 30 days from date of invoice. The client agrees to pay a finance charge of 1.5% per month on the overdue balance and cost of collection, including attorney fees, if collection proceedings are necessary. You must have a completed credit application on file to extend credit. Purchase orders or checks information must be submitted for us to release results

Rush Turnaround Samples

Expedited turn around times is available. Please confirm rush turnaround times with Client Services before submitting samples.

Applicable Surcharges for Rush Turnaround Samples: Same day TAT = 200%

Next business day TAT by Noon = 150%

Next business day TAT by 6:00pm = 100%

Second business day TAT by 6:00pm = 75%

Third business day TAT by 6:00pm = 50%

Fourth business day TAT by 6:00pm = 35%

Fifth business day = Standard

Statement of Confidentiality

Centek Laboratories, LLC is aware of the importance of the confidentiality of results to many of our clients. Your name and data will be held in the strictest of confidence. We will not accept business that may constitute a conflict of interest. We commonly sign Confidential Nondisclosure Agreements with clients prior to beginning work. All research, results and reports will be kept strictly confidential. Secrecy Agreements and Disclosure Statements will be signed for the client if so specified. Results will be provided only to the addressee specified on the Chain of Custody Form submitted with the samples unless law requires release. Written permission is required from the addressee to release results to any other party.

Limitation on Liability

Centek Laboratories, LLC warrants the test results to be accurate to the methodology and sample type for each sample submitted to Centek Laboratories, LLC. In no event shall Centek Laboratories, LLC be liable for direct, indirect, special, punitive, incidental, exemplary or consequential damages, or any damages whatsoever, even if Centek Laboratories, LLC has been previously advised of the possibility of such damages whether in an action under contract, negligence, or any other theory, arising out of or in connection with the use, inability to use or performance of the information, services, products and materials available from the laboratory or this site. These limitations shall apply notwithstanding any failure of essential purpose of any limited remedy. Because some jurisdictions do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of liability for consequential or incidental damages, the above limitations may not apply to you. This is a comprehensive limitation of

Centek Laboratories, LLC

liability that applies to all damages of any kind, including (without limitation) compensatory, direct, indirect or consequential damages, loss of data, income or profit and or loss of or damage to property and claims of third parties.

Date: 16-May-18

CLIENT:

FPM Group, Ltd.

Projects

Cinderella

Lab Order:

CI804013

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Centek Laboratories, LLC SOP TS-80

Compendium of Methods for the Determination of Toxic Organic Compounds, Compendium Method TO-15, January 1999

All method blanks, laboratory spikes, and/or matrix spikes met quality assurance objective except as indicated in the corrective action report(s). All samples were received and analyzed within the EPA recommended holding times. Test results are not Method Blank (MB) corrected for contamination.

NYSDEC ASP samples:

Canisters should be evacuated to a reading of less than or equal to 50 millitors prior to shipment to sampling personnel. The vacuum in the canister will be field checked prior to sampling, and must read 28" of Hg (±2", vacuum, absolute) before a sample can be collected. After the sample has been collected, the pressure of the canister will be read and recorded again, and must be 5" of Hg (±1", vacuum, absolute) for the sample to be valid. Once received at the laboratory, the canister vacuum should be confirmed to be 5" of Hg,±1". Please record and report the pressure/vacuum of received canisters on the sample receipt paperwork. A pressure/vacuum reading should also be taken just prior to the withdrawal of sample from the canister, and recorded on the sample preparation log sheet. All regulators are calibrated to meet these requirements before they leave the laboratory. However, due to environmental conditions and use of the equipment Centek can not guarantee that this criteria can always be achieved.

Centek Laboratories, LLC

Lab Order:

C1804013

Client:

FPM Group, Lid.

Project:

Cinderella

DATES REPORT

Parameter Contraction							
Sample ID	Client Sample 10	Collection Date	Matrix	Test Name	T(3,P Date	Prep Date	Analysis Date
C1804013-001A	IA-1	4/5/2018	Air	fugán3 w/ 0.2ug/M3 CT-TCE-VC-DCE- 1.1DCE		. , ,	4/11/2016
				Tug/m3 w/ 0.2ng/M3 CTFFCE-VC-DCE- E,1DCE			4/11/2018
				lag/m3 w/ 0.2ag/M3 CT-TCE-VC-DCE- t,1DCE			4/10/2018
C1804013-002A	IA-1D			Lug/m3 w/ 0.2ug/M3 CT-FCE-VC-DCE- F, LDCE			4/11/2018
				Fug/m3 w/ 0.2ng/M3 CT-TCE-VC-DCE- F_1DCE			4/11/2018
				tաց/m3 w/ 0.2ug/M3 CT-TCE-VC-DCG- t,1DCE			4/10/2018
C1804013-003A	IA-2			Fught3 w/ 0.2ug/M3 CT-TCE-VC-DCG- 1.1DCE			4/10/2018
C1804013-004A	IA-3			lag/m3 w/ 9.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/10/2018
C1804013-005A	IA-4			lug/m3 w/ 0.2ng/M3 CT-TCE-VC-DCE- 1,1DCE			4/10/2018
C1804013-006A	Ambieat			lug/m3 w/ 0.2ug/M3 C3-TC6-VC-DC6- 1,1DC6			4/11/2018
				lug/m3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,tDCE			4/10/2018
C1804013-007A	Effluent			1upim3 w/0.2ug/M3 CT-TCE-VC-DCE- 1,1DCE			4/11/2018
				Trig/m3 tvf 0.2arg/M3 CT-TCE-VC-DCE- 1,1DCE			4/10/2018
				Ing/m5 w/ 0.2ng/M3 CT-TCE-VC-DCE- E, IDCE			4/11/2018

Centek Laboratories, LLC

CLIENT:

FPM Group, Ltd.

Work Order:

C1804013

Project;

Page 50 of 248

Cinderella

TostCode: 0.20_NYS

Sample ID: ALCS1UG-041018	SampType: LCS	TestCo	de: 0.20_NYS	Units: ppbV		Ргер Ов	le;		RunNo: 135	517	
Client 10: 22222	Batch ID; R13517	Testi	Vo: TO-15			Analysis Da	te: 4/10/20	18	SeqNo: 156	5543	
Analyle	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPO	RPDLimit	Qual
Carbon disulfide	1.070	0.15	1	0	107	70	130				
Carbon tetrachloride	0.7600	0.030	1	0	76.0	70	130				
Chlorobenzene	1.120	0.15	1	0	112	70	130				
Chlorpethane	1.050	0.15	1	D	105	70	130				
Chloroform	1.070	0.15	1	0	107	70	130				
Chloromethane	0.9500	0.15	1	0	₽5,0	70	130				
cis-1,2-Dichloroethene	0.9160	0.040	76	0	91.0	70	130				
cis-1,3-Dichloropropene	0.8800	0.15	t	0	88.0	70	130				
Cyclohexane	0.8800	0.15	7	Đ	88.D	70	130				
Dibromochloromethane	0.9300	0.15	7	0	93.0	70	130				
Ethyl acetate	0.7800	0.15	t	0	78.0	70	130				
Sthylbenzene	1.030	0.15	4	o	103	70	130				
reon 11	1.220	0.15	1	0	122	70	130				
Freon 113	1.220	0.15	1	0	122	70	130				
reon 114	1.130	0.15	4	0	113	70	130				
Freon 12	1.080	0.15	1	0	108	70	130				
teptana	0.7400	0.15	1	0	74.0	70	130				
Rexachloro-1,3-buladiene	1,260	0.15	1	0	126	70	130				
dexane	0.8500	0.15	1	0	85.0	70	130				
sopropyl alcohol	0.9600	0.15	1	0	96.0	70	130				
m&p-Xylene	2.150	0.30	2	0	108	70	130				
Methyl Butyl Ketone	0.6500	0.30	1	0	65.0	70	130				s
Methyl Ethyl Ketone	1.050	0.30	1	O	105	70	130				
dethyl Isobutyl Ketone	0.7200	0.30	1	0	72.0	70	130				
Vethyl tert-bulyl ether	0.9500	0.15	Ì	a	95.0	70	130				
fethylene chloride	0.9400	0.15	1	0	94,0	70	130				
o-Xylene	1.110	0.15	1	0	111	70	130				
ropylene	0.7300	0.15	1	0	73.0	70	130				
Styrene	1.080	0.15	1	ō	108	70	130				
Tetrachlomethylene	1.120	0.15	1	٥	112	70	130				
Tetrahydrofuran	0.7300	0.15	1	O	73.0	70	130				

Qualifiers:

Results reported are not blank corrected

Analyte detected below quantifation limit

S Spike Reenvery outside accepted recovery limits

E Estimated Value above quantitation range

ND Not Detected at the Limit of Detection

II Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CLIENT:

FPM Group, Ltd.

Work Order:

C1804013

Project:

Page 52 of 248

Cinderella

TestCode: 0.20_NYS

Sample ID: ALCS1UGD-041017	SampType: LCSD	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	le:	2006 5 23 5000	RunNo: 135	517	
Client ID: ZZZZZ	Batch ID: R13517	Testi	Vo: TO-15			Analysis Da	to: 4/11/20	118	SeqNo: 156	5544	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acetone	0.7700	0.30	1	0	77.0	70	130	0.84	8.70	30	
Allyl chloride	0.7300	0.15	1	c	73.0	70	130	0.77	5.33	30	
Benzene	1.130	0.15	1	0	113	70	130	1.04	8.29	30	
Benzyl chłoride	0.8300	0.15	1	٥	83.0	70	130	0.86	3.55	30	
Bromodichioromethane	1.040	0.15	1	0	104	70	130	0.98	5.94	30	
Bromoform	1.010	0.15	1	٥	101	70	130	0.95	6.17	30	
Bromomethane	1.070	0.15	1	0	107	70	130	1.14	6.33	30	
Carbon disullide	1.060	0.15	1	Q	106	70	130	1.07	0.939	30	
Carbon tetrachloride	0.7600	0.030	1	0	76.0	70	130	0.76	0.550	30	
Chlorobenzene	1,200	0.15	1	0	120	70	130	1.12	6.90	30	
Chloroethane	0.9800	0.15	9	0	98.0	70	130	1.05	6.90	30	
Chloroform	1.070	0.15	1	0	107	70	130	1.07	0.30	30	
Chloromethane	0.8900	0.15	1	9	89.0	70	130	0.95	6.52	30	
cis-1,2-Dichtoroethene	0.8700	0.040	1	0	87.0	70	130	0.91	4,49	30	
cis-1.3-Dichloropropene	0.8900	0.15	1	0	89.0	70	130	88.0	1.13	30	
Cyclohexane	0.9000	0.15	1	0	90.0	70	130	0.88	2.25	30	
Dibromochloromethane	1.040	0.15	1	0	104	70	130	0.93	11.2	30	
Ethyl acelate	0.7500	0.15	1	0	75.0	70	130	0.78	3.92	30	
Ethylbenzene	1.100	0.15	1	O	110	70	13D	1.03	6.57	30	
Freon 11	1.100	0.15	1	0	110	70	130	1.22	10.3	30	
Freon 113	1.220	0.15	1	0	122	70	130	1.22	0	30	
Freon 114	1,080	0.15	1	0	108	70	130	1.13	4.52	30	
Freon 12	1.090	0.15	1	0	109	70	130	1.08	0.922	30	
Heplane	0.7400	0.15	1	0	74.0	70	130	0.74	0.022	30	
Hexachloro-1,3-butadiene	1.270	0.15	1	0	127	70	130	1.26	0.791	30	
lexane	0.8500	0.15	1	D	85.0	70	130	0.85	0.707	30	
sopropyl alcohol	0.9200	0.15	1	0	92.0	70	130	0.96	4,26	30	
n&p-Xylene	2.320	0.30	2	D	116	70	130	2.15	7.61	30	
Viethyl Butyl Ketone	0.5800	0.30	1	0	58.0	70	130	0.65	17.4	30	s
Methyl Elhyl Kelone	1.060	0.30	1	0	106	70	130	1.05	0.948	30	~
Methyl Isobulyl Ketone	0.6600	0.30	à	Đ	66.0	70	130	0.72	8.70	30	Ş

Qualifiers:

Results reported are not blank corrected

E Estimated Value above quantitation range

³ Analyte detected below quantilation limit

ND Not Detected at the Limit of Detection

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CLIENT:

FPM Group, Ltd.

Work Order:

C1804013

Project:

Page 53 of 248

Cinderella

TestCode: 0.20_NYS

Sample ID: ALCS1UGD-041017	SampType: LCSD	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	le:		RunNo: 134	517	
Client ID: ZZZZZ	Batch ID: R13517	Testi	Vo: TQ-15			Analysis Da	le: 4/11/20	18	SeqNo: 156	544	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPOLimit	Qual
Methyl tert-butyl other	0.8400	0.15	1	0	84.0	70	130	0.95	12.3	30	
Methylene chloride	0.9100	0.15	1	0	91.0	70	130	0.94	3,24	30	
σ-Xylene	1.230	0.15	1	0	123	70	130	1.11	10.3	30	
Propylena	0.7300	0.15	1	O	73.0	70	130	0.73	0	30	
Styrene	1.180	0.15	1	0	118	70	130	1.08	8.85	30	
Tetrachioroethylene	1.240	0.15	1	0	124	70	130	1.12	10.2	30	
Tetrahydrofuran	0.7300	0.15	1	0	73.0	70	130	0.73	0	30	
Toluene	1,120	0.15	1	0	112	70	130	1.06	5.50	30	
trans-1,2-Dichloroethene	0.9400	0.15	1	σ	94.0	70	130	0.99	5.18	30	
trans-1,3-Dichloropropene	0.7500	0.15	t	0	75.0	70	130	0.72	4.08	30	
Trichloroethena	1,130	0.030	1	Q	113	70	130	1.1	2.69	30	
Vinyl acetate	0.6700	9.15	1	σ	67.0	70	130	0.72	7.19	30	S
Vinyl Bromide	1.110	0.15	1	٥	111	70	130	1.19	5.96	30	~
Vinyl chloride	0.9200	0.040	1	0	92.0	70	130	0.95	3.21	30	

Results reported are not blank corrected

E Estimated Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte described below quantitation limit

ND Not Detected at the Limit of Detection

K RPD outside accepted recovery limits

ATTACHMENT B

CANISTER SAMPLING FORMS BUILDING INVENTORY FORM

Project:		Cinda	erella				
Site Location: 248 Flo		Flotbush	Avenue				
Sample ID	IA-I			Canister ID		368	
Sampler	CL			Canister Volume		\ L	
Location	Basem	tas		Flow Controller ID		693	
Height	Арргах. 4	++		Flow Controller Setting	-	8hr	
Sample Type	(sub-slab, s	oil gas, amb	indoor				

Reading	Date	Time	Vacuum
Initial Canister Vacuum	4/5/18	6:30	-30
Final Canister Vacuum	4/5/18	2:30	-8

Weather or Ambient Conditions:	Partly Cloudy, 45°F
Purge Data:	NA
Helium Check Data:	NA
Comments:	

Project:		Cinder	rella				
Site Location: 248 Flatbus		Flatbush	Avenue				
Sample ID	IA-	. 0		Canister ID	_	1186	,
Sampler	CL			Canister Volume	_	16	
Location	Baseme	nt		Flow Controller ID		513	
Height	Approx. 4	F +		Flow Controller Setting	_	8 hr	
Sample Type	(sub-slab, s	oil gas, amb,	, (indoor)				

Reading	Date	Time	Vacuum
Initial Canister Vacuum	415/18	6:35	-30
Final Canister Vacuum	4/5/18	2:30	-9

Weather or Ambient Cond	tions: Partly Cloudy, 45°F	
Purge Data: _	NA	
Helium Check Data: _	NA	
Comments:	DUPLICATE OF IA-1	

Project:	-	Cinderella		
Site Location	n: _	250 Flatbush	Avenue	
Sample ID	IA-2		Canister ID	368
Sampler	CL		Canister Volume	\L
Location	Bosemen	+	Flow Controller ID	1343
Height	Approx. 4	21	Flow Controller Setting	860
Sample Type	(sub-slab, s	oil gas, amb, indoor)		

Reading	Date	Time	Vacuum
Initial Canister Vacuum	4/5/18	7:15	-30
Final Canister Vacuum	4/5/18	3:00	-12

Weather or Ambient Conditions	: Partly Cloudy, 45°F
Purge Data:	NA
Helium Check Data:	AM AM
Comments:	

Project:		Cinderella					
Site Location: 252 Flatbush Avenue							
Sample ID	IA-3			Canister ID	365		
Sampler	CL			Canister Volume	<u>\</u>		
Location	Baseme	nt		Flow Controller ID	535		
Height	Арргох. 5	F		Flow Controller Setting	8hr		
Sample Type	* 1		o,(indoor)		-		

Reading	Date	Time	Vacuum
Initial Canister Vacuum	4/5/18	7:45	- 30
Final Canister Vacuum	4/5/18	3:30	-15

Weather or Ambient Conditions:	Partly Cloudy, 45°F
Purge Data:	NA
Helium Check Data:	NA
Comments:	

Project:	<u>Cinderella</u>	Cinderella					
Site Location: 254 Flatbush Avenue							
Sample ID	IA-4	Canister ID	88				
Sampler	CL	Canister Volume	1				
Location	pasement	Flow Controller ID	711				
Height App	cox. 5 Ft	Flow Controller Setting	8 hr				
11	-slab, soil gas, amb, (indoor)						

Reading	Date	Time	Vacuum
Initial Canister Vacuum	4/5/18	37:00	-30
Final Canister Vacuum	4/5/18	2:55	-7

Weather or Ambient Conc	litions: Partly Cloudy, 45°F
Purge Data:	NA
Helium Check Data:	NA
Comments:	

Project:	_	Cinderella					
Site Location	n: _	254 F	latbush Avenue				
Sample ID	Ambient		Canister ID	207			
Sampler	CL		Canister Volume	1 Likes			
Location	Outside		Flow Controller ID	1450			
Height	Approx. 4	4	Flow Controller Setting	8hc			
Sample Type	(sub-slab, so	il gas,(amb _{),} indo	oor) Ambient				

Reading	Date	Time	Vacuum
Initial Canister Vacuum	4/5/18	6:45	-30
Final Canister Vacuum	4/5/18	2:45	-12

Weather or Ambient Con	ditions:	Partly Cloudy, 45°F
Purge Data:	NA	
Helium Check Data:	AM	
Comments:		

Site Name: Cinderella 24	18 LLC		Site Code:	Operable Unit:
Building Code:	Bui	lding Nam	e:	
Address: 254 Flatbush A	venue			Apt/Suite No:
City: Brooklyn	Stat	e: NY	Zip: 11217	County: Kings
Contact Information				
Preparer's Name: Chris Li	nkletter			Phone No: (631) 737-6200
Preparer's Affiliation: FPM Gr	coup			Company Code:
Purpose of Investigation:				Date of Inspection: Apr 5, 2018
6				_ Affiliation:
Phone No:	Alt. Phone No:			Email:
Number of Occupants (total):	Number of Child	dren:		
Occupant Interviewed?		Owner Oc	cupied?	Owner Interviewed?
Owner Name (if different):				Owner Phone:
Owner Mailing Address:				
Building Details				
Bldg Type (Res/Com/Ind/Mixed):	COMMERCIAL/MIXED			Bldg Size (S/M/L): SMALL
If Commercial or Industrial Facili	ty, Select Operations:		If Residential Sele	ect Structure Type:
Number of Floors: 1	Approx. Year Construction:		Buildin	g Insulated? Attached Garage?
Describe Overall Building 'Tightr	ness' and Airflows(e.g., results o	of smoke to	ests):	
Foundation Description				
Foundation Type: BASEME	NT		Foundation Deptl	n (bgs): Unit: FEET
Foundation Floor Material:	POURED CONCRETE		Foundation Floor	Thickness:
Foundation Wall Material:			Foundation Wall 7	Thickness: Unit: INCHES
☐ Floor penetrations? Descr	ibe Floor Penetrations: Uti	lities		
▼ Wall penetrations? Descri	ibe Wall Penetrations: Util	lities		
Basement is: PARTIALLY FI	NISHED Basement is:		Sump	s/Drains? Water In Sump?:
Describe Foundation Condition	(cracks, seepage, etc.):			
Radon Mitigation System Ins	stalled?	VOC Mitiga	ation System Instal	led? Mitigation System On?
Heating/Cooling/Ventila	tion Systems			
Heating System: FORCED	AIR Heat F	uel Type:	GAS	Central A/C Present?
Vented Appliances				
Water Heater Fuel Type:			Clothes Dryer Fuel	Туре:
Water Htr Vent Location:			Dryer Vent Locatio	n:

PRODUCT INVENTORY							
Building Nam	e:		Bldg C	Code:	Date:	Apr 5, 20	018
Bldg Address: 254 Flatbush Avenue Apt/Suite No:						0:	
Bldg City/Stat	ce/Zip: Brooklyn NY, 112	217					
Make and Mo	del of PID:			Date of 0	Calibration:		
	I					T	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingred	ients	PID Reading	COC Y/N?
Basement	All purpose joint compound	5.0 gal	UO				
Basement	Condenser coil cleaner	1.0 gal	UO				
Basement	Latex paint	5.0 gal	UO				
Basement	Semigloss enamel	1.0 gal	UO				
	condition of the product contain						

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No	Products with CO
-----------------------------	-----	--	------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Cinderella	248 LLC	Si	te Code:	Operable Unit:	
Building Code:	Buildi	ng Name:			
Address: 254 Flatbush	Avenue			_ Apt/Suite No:	
City: Brooklyn		State: NY	_ Zip:_ 11217	County: Kings	
Factors Affecting Indo	or Air Quailty				
Frequency Basement/Lowest	Level is Occupied?: SELDOM		Floor Material:	CEMENT	
Inhabited?	HVAC System On?	☐ Bathro	om Exhaust Fan?	Kitchen Exhaus	st Fan?
Alternate Heat Source:				s there smoking in the building	g?
Air Fresheners?	Description/Location of Air Fre	shener:			
Cleaning Products Used F	Recently?: Description of Cleaning	g Products:			
Cosmetic Products Used	Recently?: Description of Cosmet	ic Products:			
	Location of New Carpet/Furnit	ure:			
Recent Dry Cleaning?	Location of Recently Dry Clean	ed Fabrics:			
Recent Painting/Staining	? Location of New Painting:				
	rs? Describe Odors (if any):				
	olvents At Work? If So, List Solven				
	cide? Description of Last Use:				
	vities (chemical use,/storage, unver			hat May Affect Indoor Air Oual	litv·
Describe Ally Household Act	vides (enermedi dse, storage, arriver	red appliance	23, 11000103, 000.)	riacinay Airece inaggi 7th Qual	ity.
Any Prior Testing For Rad	on? If So, When?:				
Any Prior Testing For VOC	 				
Consulting Constitutions					
Sampling Conditions Weather Conditions:	ADELY CLOUDY	Outdo	oor Temperature:	4.5	°F
	ARTLY CLOUDY			43	
Current Building Use: O	THER		netric Pressure:	I	in(hg)
Product Inventory Complete	? Yes Building Que	estionnaire Co	mpleted?		

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Building Code:	Ac	ddress: 252 Fla	tbush Avenue Bro	ooklyn, NY 1121	7		
Sampling Informa	tion						
Sampler Name(s):	Chris Linklette	r	Sampler Com	pany Code: FPM (Group		
Sample Collection Dat	e: Apr 5, 2018		Date Samples	S Sent To Lab:			
Sample Chain of Custo	ody Number:		Outdoor Air S	sample Location ID:			
SUMMA Canister I	nformation						
Sample ID:	IA-4						
Location Code:							
Location Type:	BASEMENT						
Canister ID:	88						
Regulator ID:	711						
Matrix:	Indoor Air						
Sampling Method:	SUMMA AIR SAMPLII						
Sampling Area Inf	ō						
Slab Thickness (inches):							
Sub-Slab Material:							
Sub-Slab Moisture:							
Seal Type:							
Seal Adequate?:							
Sample Times and	Vacuum Readings						
Sample Start Date/Time	: 04/05/2018 7:00						
Vacuum Gauge Start:	-30						
Sample End Date/Time:	04/05/2018 14:						
Vacuum Gauge End:	- 7						
Sample Duration (hrs):	8						
Vacuum Gauge Unit:	in(hg)						
Sample QA/QC Re	adings						
Vapor Port Purge:							
Purge PID Reading:							
Purge PID Unit:							
Tracer Test Pass:							
Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM							

Site Name: Cinderella 248 LLC		Site Code:	Operable Unit:
Building Code:	Building Nar	ne:	
Address: 252 Flatbush Avenue			Apt/Suite No:
City: Brooklyn	State: NY	Zip: 11217	County: Kings
Contact Information			
Preparer's Name: Chris Linklette	r		Phone No: (631) 737-6200
Preparer's Affiliation: FPM Group			Company Code:
Purpose of Investigation:			Date of Inspection: Apr 5, 2018
6			Affiliation:
Phone No:	Alt. Phone No:		Email:
Number of Occupants (total):	Number of Children:		
Occupant Interviewed?	Owner O	ccupied?	☐ Owner Interviewed?
Owner Name (if different):			Owner Phone:
Owner Mailing Address:			
Building Details			
Bldg Type (Res/Com/Ind/Mixed): COM	MERCIAL/MIXED		Bldg Size (S/M/L): SMALL
If Commercial or Industrial Facility, Select C	Operations:	If Residential Sel	ect Structure Type:
Number of Floors: 1 Approx. Y	ear Construction:	Buildir	ng Insulated? Attached Garage?
Describe Overall Building 'Tightness' and A	irflows(e.g., results of smoke t	tests):	
L Foundation Description			
Foundation Type: BASEMENT		Foundation Dept	h (bgs): Unit: FEET
Foundation Floor Material: POURED	CONCRETE	Foundation Floor	Thickness:
Foundation Wall Material:		Foundation Wall	Thickness: Unit: INCHES
Floor penetrations? Describe Floor F	Penetrations: Utilities		
Wall penetrations? Describe Wall P	enetrations: Utilities		
Basement is: PARTIALLY FINISHED	Basement is:	☐ Sump	s/Drains? Water In Sump?:
Describe Foundation Condition (cracks, see	epage, etc.):		
Radon Mitigation System Installed?	☐ VOC Mitig	ation System Instal	led?
Heating/Cooling/Ventilation Sys	stems		
Heating System: FORCED AIR	Heat Fuel Type:	GAS	Central A/C Present?
Vented Appliances			
Water Heater Fuel Type:		Clothes Dryer Fuel	Type:
Water Htr Vent Location:		Dryer Vent Location	on:

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PF	RODUCT INV	'ENTORY		
Building Nam	e:		Bldg C	Tode:	Date: Apr 5,	2018
Bldg Address:	252 Flatbush Avenue				_ Apt/Suite No:	
Bldg City/Stat	ze/Zip: Brooklyn NY, 112	217				
Make and Mo	del of PID:			Date of Ca	alibration:	
					DID.	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredie	ents PID Readin	COC Y/N?
Basement	Interior paint	1.0 gal	UO			

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No	Products with CO
-----------------------------	-----	--	------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Cinderella	248 LLC	Si	te Code:	Operable Unit:	
Building Code:	Buildi	ng Name:			
Address: 252 Flatbush	Avenue			_ Apt/Suite No:	
City: Brooklyn		State: NY	_ Zip: 11217	County: Kings	
Factors Affecting Indo	or Air Quailty				
Frequency Basement/Lowest	Level is Occupied?: SELDOM		Floor Material:	CEMENT	
Inhabited?	HVAC System On?	☐ Bathro	om Exhaust Fan?	Kitchen Exh	aust Fan?
Alternate Heat Source:				s there smoking in the build	ling?
Air Fresheners?	Description/Location of Air Fre	shener:			
Cleaning Products Used F	Recently?: Description of Cleaning	g Products:			
Cosmetic Products Used	Recently?: Description of Cosmet	c Products:			
	Location of New Carpet/Furnit	ure:			
Recent Dry Cleaning?	Location of Recently Dry Clean	ed Fabrics:			
Recent Painting/Staining	? Location of New Painting:				
Solvent or Chemical Odo	rs? Describe Odors (if any):				
	olvents At Work? If So, List Solven				
Recent Pesticide/Rodenti	cide? Description of Last Use:				
Describe Any Household Acti	vities (chemical use,/storage, unver				
Any Prior Testing For Rad	on? If So, When?:				
Any Prior Testing For VOC	 Cs? If So, When?:				
Sampling Conditions					_
Weather Conditions:	ARTLY CLOUDY	Outdo	or Temperature:	45	°F
Current Building Use:	THER	Baron	netric Pressure:		in(hg)
Product Inventory Complete	? Yes Building Que	estionnaire Co	mpleted?		

$Structure\ Sampling\ Question naire\ and\ Building\ Inventory$

New York State Department of Environmental Conservation

Building Code:	A	address: 250 Flat	bush Avenue Bro	ooklyn, NY 11217	7	
Sampling Informa	tion					
Sampler Name(s):	Chris Linklette	er	Sampler Com	pany Code: FPM G	Group	
Sample Collection Date	e: Apr 5, 2018		Date Samples	Sent To Lab:		
Sample Chain of Custo	dy Number:		Outdoor Air S	ample Location ID:		
SUMMA Canister I	nformation					
Sample ID:	IA-3					
Location Code:						
Location Type:	BASEMENT					
Canister ID:	365					
Regulator ID:	535					
Matrix:	Indoor Air					
Sampling Method:	SUMMA AIR SAMPLII					
Sampling Area Inf	o					
Slab Thickness (inches):						
Sub-Slab Material:						
Sub-Slab Moisture:						
Seal Type:						
Seal Adequate?:						
Sample Times and	Vacuum Readings					
Sample Start Date/Time:	04/05/2018 7:45					
Vacuum Gauge Start:	-30					
Sample End Date/Time:	04/05/2018 15:					
Vacuum Gauge End:	-15					
Sample Duration (hrs):	8					
Vacuum Gauge Unit:	in(hg)					
Sample QA/QC Re	adings					
Vapor Port Purge:						
Purge PID Reading:						
Purge PID Unit:						
Tracer Test Pass:						
Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM						

Site Name: Cinderella 248 LLC		Site Code:	Operable Unit:
Building Code:	Building Nam	e:	
Address: 250 Flatbush Avenue			Apt/Suite No:
City: Brooklyn	State: NY	Zip: 11217	County: Kings
Contact Information			
Preparer's Name: Chris Linkletter			Phone No: (631) 737-6200
Preparer's Affiliation: FPM Group			Company Code:
Purpose of Investigation:			Date of Inspection: Apr 5, 2018
C			_ Affiliation:
Phone No:	Alt. Phone No:		Email:
Number of Occupants (total):	Number of Children:		
Occupant Interviewed?	Owner Occ	cupied?	Owner Interviewed?
Owner Name (if different):			Owner Phone:
Owner Mailing Address:			
Building Details			
Bldg Type (Res/Com/Ind/Mixed): COMI	ERCIAL/MIXED		Bldg Size (S/M/L): SMALL
If Commercial or Industrial Facility, Select O	perations:	If Residential Sel	ect Structure Type:
Number of Floors: 1 Approx. Ye	ear Construction:	Buildir	ng Insulated? Attached Garage?
Describe Overall Building 'Tightness' and Ai	rflows(e.g., results of smoke te	ests):	
L Foundation Description			
Foundation Type: BASEMENT		Foundation Dept	h (bgs): Unit: FEET
Foundation Floor Material: POURED (CONCRETE	Foundation Floor	Thickness:
Foundation Wall Material:		Foundation Wall	Thickness: Unit: INCHES
Floor penetrations? Describe Floor P	enetrations: Utilities		
▼ Wall penetrations? Describe Wall Pe	netrations: Utilities		
Basement is: PARTIALLY FINISHED E	Basement is:	☐ Sump	s/Drains? Water In Sump?:
Describe Foundation Condition (cracks, see	page, etc.):		
Radon Mitigation System Installed?	☐ VOC Mitiga	ation System Instal	led?
Heating/Cooling/Ventilation Sys	tems		
Heating System: FORCED AIR	Heat Fuel Type:	GAS	Central A/C Present?
Vented Appliances			
Water Heater Fuel Type:		Clothes Dryer Fuel	Type:
Water Htr Vent Location:		Dryer Vent Locatio	n:

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

PRODUCT INVENTORY							
Building Nam	e:		Bldg C	Code:	Date:	Apr 5, 20	018
Bldg Address	250 Flatbush Avenue				Apt/Suite N	lo:	
Bldg City/Stat	ce/Zip: Brooklyn NY, 112	217					
Make and Mo	del of PID:			Date of	Calibration:		
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingred	lients	PID Reading	COC Y/N?
Basement	Floor finsh	5.0 gal	UO				
Basement	Heavy duty stripper	2.5 oz	U				

Product Inventory Complete?	Yes	Were there any elevated PID readings taken on site? No	Products with CO
-----------------------------	-----	--	------------------

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Cinderella	248 LLC	S	te Code:	Operable U	Jnit:
Building Code:	Build	ding Name:			
Address: 250 Flatbush	Avenue			_ Apt/Suite No:	
City: Brooklyn		_ State: NY	_ Zip: 11217	County: Ki:	ngs
Factors Affecting Indo	or Air Quailty				
Frequency Basement/Lowest	Level is Occupied?: ALMOST	NEVER	Floor Material:	CEMENT	
Inhabited?	HVAC System On?	☐ Bathro	om Exhaust Fan?	☐ Kitcher	n Exhaust Fan?
Alternate Heat Source:				s there smoking in the	building?
☐ Air Fresheners?	Description/Location of Air F	reshener:			
Cleaning Products Used F	Recently?: Description of Cleani	ng Products:			
Cosmetic Products Used	Recently?: Description of Cosme	etic Products:			
New Carpet or Furniture?	Location of New Carpet/Furn	iture:			
Recent Dry Cleaning?	Location of Recently Dry Clea	ned Fabrics:			
Recent Painting/Staining	? Location of New Painting:				
Solvent or Chemical Odo	rs? Describe Odors (if any):				
	olvents At Work? If So, List Solve				
	cide? Description of Last Use:				
	vities (chemical use,/storage, unve			hat May Affect Indoor	
,	, , , , , , , , , , , , , , , , , , , ,	• •	, , ,	,	
Any Prior Testing For Rad	on? If So, When?:				
Any Prior Testing For VOC	Cs? If So, When?:				
Sampling Conditions					
	ARTLY CLOUDY	Outdo	oor Temperature:	45	°F
Current Building Use:	THER	Baron	netric Pressure:		in(hg)
Product Inventory Complete	? Yes Building Qu	uestionnaire Co	mpleted?		

Building Code:	Ac	ddress: 248 Flat	bush Avenue Bro	oklyn, NY 11217		
Sampling Informa	tion					
Sampler Name(s): Chris Linkletter			Sampler Com	Sampler Company Code: FPM Group		
Sample Collection Date	e: Apr 5, 2018		Date Samples	Sent To Lab:		
Sample Chain of Custo	dy Number:		Outdoor Air S	ample Location ID:		
SUMMA Canister I	nformation					
Sample ID:	IA-2					
Location Code:						
Location Type:	BASEMENT					
Canister ID:	368					
Regulator ID:	1343					
Matrix:	Indoor Air					
Sampling Method:	SUMMA AIR SAMPLII					
Sampling Area Inf	o					
Slab Thickness (inches):						
Sub-Slab Material:						
Sub-Slab Moisture:						
Seal Type:						
Seal Adequate?:						
Sample Times and	Vacuum Readings					
Sample Start Date/Time:	04/05/2018 7:15					
Vacuum Gauge Start:	-30					
Sample End Date/Time:	04/05/2018 15:					
Vacuum Gauge End:	-12					
Sample Duration (hrs):	8					
Vacuum Gauge Unit:	in(hg)					
Sample QA/QC Re	adings					
Vapor Port Purge:						
Purge PID Reading:						
Purge PID Unit:						
Tracer Test Pass:						
Cample start	and and times should	he entered using	the following for	~~+: MM/DD/VVV	/ LILIMM	

Site Name: Cinderella 248 LLC		Site Code:	C224160	Operable Unit:
Building Code:	Building Nam	ne:		
Address: 248 Flatbush Avenue			Apt/Suite No:	
City: Brooklyn	State: NY	Zip: 11217	County: Ki	ngs
Contact Information				
Preparer's Name: Chris Linkletter			Phone No:	(631) 737-6200
Preparer's Affiliation: FPM Group			Company Code	:
Purpose of Investigation:			Date of Inspec	tion: Apr 5, 2018
- · · · · · · ·			Affiliation:	
Phone No:	Alt. Phone No:		Email:	
Number of Occupants (total):	Number of Children:			
Occupant Interviewed?	Owner Oc	cupied?		Owner Interviewed?
Owner Name (if different):			Owner Phone:	
Owner Mailing Address:				
Building Details				
Bldg Type (Res/Com/Ind/Mixed): COMMER	RCIAL/MIXED		Bldg Size (S/M	/L): SMALL
If Commercial or Industrial Facility, Select Ope	rations:	If Residential Sel	ect Structure Ty _l	oe:
Number of Floors: 1 Approx. Year	Construction:	Buildir	ng Insulated?	Attached Garage?
Describe Overall Building 'Tightness' and Airfle	ows(e.g., results of smoke to	ests):		
 Foundation Description				
Foundation Type: BASEMENT		Foundation Dept	h (bgs):	Unit: FEET
Foundation Floor Material: POURED CO	NCRETE	Foundation Floor Thickness:		
Foundation Wall Material:		Foundation Wall	Thickness:	Unit: INCHES
Floor penetrations? Describe Floor Pen	etrations: Utilities			
▼ Wall penetrations? Describe Wall Pene	etrations: Utilities			
Basement is: FINISHED Base	sement is:	☐ Sump	s/Drains? Wat	er In Sump?:
Describe Foundation Condition (cracks, seepa	ge, etc.):			
Radon Mitigation System Installed?	▼ VOC Mitiga	ation System Instal	led?	Mitigation System On?
Heating/Cooling/Ventilation Syste	ms			
Heating System: FORCED AIR	Heat Fuel Type:	GAS		Central A/C Present?
Vented Appliances				
Water Heater Fuel Type:		Clothes Dryer Fuel	Type:	
Water Htr Vent Location:		Dryer Vent Location	n:	

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PI	RODUCT INV	ENTORY			
Building Name:			Bldg C	Code:	Date: Apr 5, 2018		
Bldg Address:	248 Flatbush Avenue				Apt/Suite No:		
Bldg City/Stat	te/Zip: Brooklyn NY, 112	217					
Make and Mo	del of PID:			Date of Ca	alibration:		
	T				ND.		
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredie	ents PID Reading	COC Y/N?	
Basement	All purpose joint compund	5.0 gal	UO				
Basement	Chalkboard latex paint	30 oz	U				
Basement	Chalkboard finish spray	12 oz	U				
Basement	Spackling compound	8 oz	UO				
Basement	70% Isopropyl Alcohol	128 oz	U				

Product Inventory Complete? Yes Were there any elevated PID readings taken on site? No Product
--

^{*} Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Site Name: Cinderella	248 LLC	Site C	Code: C2241	Operable	Unit:
Building Code:	Build	ding Name:			
Address: 248 Flatbush	Avenue			Apt/Suite No:	
City: Brooklyn		_ State: NY Zi	p: 11217	County: K	ings
Factors Affecting Indo	or Air Quailty				
Frequency Basement/Lowest	Level is Occupied?: OCCASIO	NALLY Flo	oor Material:	CEMENT	
☐ Inhabited?	⊠ HVAC System On?	☐ Bathroom I	Exhaust Fan?	☐ Kitch	en Exhaust Fan?
Alternate Heat Source:			Is	there smoking in th	e building?
Air Fresheners?	Description/Location of Air Fr	reshener:			
	Recently?: Description of Cleanin	ng Products: Cle	eaning disi	infectant	
Cosmetic Products Used	Recently?: Description of Cosme	tic Products:			
New Carpet or Furniture?	Location of New Carpet/Furn	iture:			
Recent Dry Cleaning?	Location of Recently Dry Clea	ned Fabrics:			
Recent Painting/Staining	? Location of New Painting:				
Solvent or Chemical Odo	rs? Describe Odors (if any):				
Do Any Occupants Use So	olvents At Work? If So, List Solve	nts Used:			
Recent Pesticide/Rodenti	cide? Description of Last Use:				
Describe Any Household Acti	vities (chemical use,/storage, unve	ented appliances, h	obbies, etc.) Th	nat May Affect Indoo	or Air Quality:
Any Prior Testing For Rad	lon? If So, When?:				
Any Prior Testing For VOC	Cs? If So, When?: July 2	016			
<u> </u>					
Sampling Conditions Weather Conditions:	ARTLY CLOUDY	Outdoor T	Temperature:	45	°F
			-	1 7	in(hg)
,	THER		ic Pressure:		(IIB)
Product Inventory Complete	? Yes Building Qu	uestionnaire Compl	eted?		

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

Building Code:	Ad	ddress: 248 Flat	bush Avenue Bro	ooklyn, NY 1121	7		
Sampling Information	tion						
Sampler Name(s):	Chris Linklette	<u>-</u>	Sampler Company Code: FPM Group				
Sample Collection Date	e: Apr 5, 2018		Date Samples	Sent To Lab:			
Sample Chain of Custo	dy Number:		Outdoor Air S	ample Location ID:			
SUMMA Canister Information							
Sample ID:	IA-1	IA-1D	Ambient				
Location Code:							
Location Type:	BASEMENT	BASEMENT	OUTDOOR				
Canister ID:	368	1186	207				
Regulator ID:	693	513	1420				
Matrix:	Indoor Air	Indoor Air	Ambient Outd				
Sampling Method: $ig[$	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA				
Sampling Area Inf	o						
Slab Thickness (inches):							
Sub-Slab Material:							
Sub-Slab Moisture:							
Seal Type:							
Seal Adequate?:							
Sample Times and	Vacuum Readings						
Sample Start Date/Time:	04/05/2018 6:30	04/05/2018	04/05/2018				
Vacuum Gauge Start:	-30	-30	-30				
Sample End Date/Time:	04/05/2018 14:	04/05/2018	04/05/2018				
Vacuum Gauge End:	-8	-9	-12				
Sample Duration (hrs):	8	8	8				
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)				
Sample QA/QC Readings							
Vapor Port Purge:							
Purge PID Reading:							
Purge PID Unit:							
Tracer Test Pass:							
Sample start and end times should be entered using the following format: MM/DD/YYYY HH:MM							

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

2/12/2019

Michael Pintchik Cinderella 248 LLC 254 Flatbush Avenue Brooklyn, NY 11217

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Cinderella 248 LLC

Site No.: C224160

Site Address: 248 Flatbush Avenue

Brooklyn, NY 11217

Dear Michael Pintchik:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **April 26, 2019**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Alicia Barraza, the Project Manager, at 518-402-9690 or alicia.barraza@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation Division of Environmental Remediation, BURB 625 Broadway Albany, NY 12233-7016

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

Alicia Barraza, Project Manager

Michael Komoroske, Section Chief

Jane O'Connell, Hazardous Waste Remediation Supervisor, Region 2

FPM Group - Ben Cancemi - b.cancemi@fpm-group.com

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No. C22	4160	Site Details		Box 1	
Sit	e Name Cindere	lla 248 LLC				
City Co	e Address: 248 F y/Town: Brooklyr unty: Kings e Acreage: 0.050	ı	Zip Code: 11217			
Re	porting Period: N	ovember 27, 2017 t	o March 27, 2019			
					YES	NO
1.	Is the information	n above correct?				
	If NO, include ha	andwritten above or	on a separate sheet.			
2.		of the site property nent during this Rep		merged, or undergone a		
3.	Has there been a (see 6NYCRR 3	, ,	at the site during this R	eporting Period		
4.	•	ıl, state, and/or loca perty during this Rep		, discharge) been issued		
	-	-		cumentation or evidence h this certification form		
5.	Is the site curren	ntly undergoing deve	elopment?			
					Box 2	
					YES	NO
6.		e use consistent wit lential, Commercial,	h the use(s) listed belo , and Industrial	w?		
7.	Are all ICs/ECs i	n place and function	ning as designed?			
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
AC	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
Sia	nature of Owner. F	Remedial Party or De	esignated Representative	 e Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)		
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C224160 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u>

936-12 Cinderella 248 LLC

Institutional Control

Ground Water Use Restriction
Landuse Restriction
Monitoring Plan

Site Management Plan

O&M Plan IC/EC Plan

- 1. Requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- 2. Allows the use and development of the controlled property for restricted-residential use, which allows for commercial use and industrial use, as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- 3. Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and
- 4. Requires compliance with the Department approved Site Management Plan.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

936-12

Vapor Mitigation

Operation and maintenance of a sub-slab depressurization system (SSDS) to mitigate soil vapor intrusion at the site building and adjacent buildings.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. C224160

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I	at	,
print name	print business address	
am certifying as	(Own	ner or Remedial Party)
for the Site named in the Site Details	Section of this form.	
Signature of Owner, Remedial Party, Rendering Certification	or Designated Representative Date	e

IC/EC CERTIFICATIONS				
Professional Eng	ineer Signature	Box 7		
certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is bunishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.				
Iat		,		
print name	print business address			
am certifying as a Professional Engineer for the				
	(Owner or Remedial I	Party)		
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	Stamp [(Required for PE)	Date		

Enclosure 3 Periodic Review Report (PRR) General Guidance

I. Executive Summary: (1/2-page or less)

- A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
- B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.

C. Compliance

- 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
- 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.

D. Recommendations

- 1. recommend whether any changes to the SMP are needed
- 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
- 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.

B. IC/EC Certification

1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

APPENDIX B RESUMES OF ENVIRONMENTAL PROFESSIONALS

Engineering and Environmental Science

Mr. Cancemi has diversified experience in geology and hydrogeology. His professional experience includes groundwater and soil investigations, design and management of soil remediation projects, installation and maintenance of groundwater containment and remediation systems, aquifer testing and interpretation, geotechnical studies, evaluation of site compliance with environmental regulations and environmental permitting.

Functional Role	Title	Years of Experience
Senior Hydrogeologist	Department Manager - Hydrogeology	22

Personal Data

Education

M.S./2001/Hydrogeology/SUNY Stony Brook B.S./1995/Geology/SUNY Stony Brook

Registration and Certifications

New York State Professional Geologist, #7051 Certified Professional Geologist – American Institute of Professional Geologists

NYC Office of Environmental Remediation – Gold Certified Professional

OSHA 40-hour HAZWOPER and Current 8-hour Health and Safety Training and Current Annual Physical

OSHA 8-hour HAZWOPER Supervisor
OSHA 10-hour Construction Safety and Health
OSHA Permit-Required Confined Space Training
Long Island Geologists
National Groundwater Association

Employment History

2001-Present	FPM Group
1998-2001	Burns & McDonnell Engineering Company
1997-1998	Groundwater and Environmental
1997-1990	Services
1996-1997	Advanced Cleanup Technologies

Detailed Experience

Hydrogeologic Evaluations

Project Manager, Lower Manhattan, NY.
NYCT. Coordinated and performed constant
head hydraulic conductivity (packer) testing in
boreholes located in fractured bedrock in lower
Manhattan, NY to evaluate fracture connectivity
with the nearby Hudson and East Rivers and
determine hydraulic conductivity and related
parameters such that water management
procedures could be implemented for
redevelopment of the New South Ferry Subway
Station.

- Project Manager, Manhattan, NY. NYCT
 Coordinated and performed a hydrogeologic
 investigation, including utility clearing, soil
 borings, rock coring, packer testing, aquifer
 pumping testing, data collection, and
 interpretation, to evaluate subsurface conditions
 and determine geologic parameters for a
 proposed subway extension of the NYC Transit
 No.7 Subway Line.
- Project Manager, Various Sites Long Island, NYC, and Westchester County, NY Performed aquifer pumping and slug tests and evaluated hydrologic properties using the computer program AQTESOLV.

Site Investigations

- Program Manager for ongoing investigation and remedial projects at several New York State Inactive Hazardous Waste Disposal sites, Voluntary Cleanup Program (VCP) sites, and NYC OER e-designated sites. Investigations have included site characterization, Remedial Investigations/Feasibility Studies (RI/FS), and Resource Conservation and Recovery Act (RCRA) facility investigations and closures. Remedial services have included contaminated soil removal; design, installation, and operation of air sparge/soil vapor extraction (AS/SVE) systems and sub-slab depressurization systems (SSDS), capping, and other remedial services.
- Program Manager NYSDEC **BCP** Brooklyn, NY Coordinated and performed an investigation, implemented remedial measures and regulatory reporting at a former dry-cleaning facility in Brooklyn, NY, including groundwater and soil vapor sampling to assess onsite chlorinated solvent impacts. Remedial actions included conducting pilot testing for installation of a sub-slab depressurization system (SSDS), coordinating the installation of vapor barrier and SSDS. Prepared a Final Engineering Report documenting remedial activities and a Site Management Plan for continued site monitoring.

Engineering and Environmental Science

- Program Manager NYSDEC Inactive Hazardous Waste Site, Garden City, NY Coordinated and performed an investigation, implemented remedial measures and regulatory reporting for a former printing facility in Garden City, NY, including soil, groundwater and soil vapor sampling to assess onsite chlorinated solvent impacts. Remedial actions included pilot testing and installation of an air sparge/soil vapor system (AS/SVE) and extraction coordinating the installation of an SSDS, removal of contaminated soils from two areas and removal of impacted sediments from twelve leaching structures. Prepared а Final Engineering Report documenting remedial activities.
- Program Manager, NYC Redevelopment Site, Queens NY. Program Manager environmental activities at a NYC Voluntary Cleanup Program Site. Environmental activities included preparation of a Phase I report, of a investigation, completion remedial preparation of associated work implementation of a community air monitoring program for site activities, excavation and disposal of impacted soils, management and disposal of clean soils, and regulatory reporting.
- Project Manager Remedial Investigation NYSDEC BCP Site, Queens, NY Coordinated and performed an investigation at a vacant commercial property Far Rockaway, NY, including soil, groundwater and soil vapor sampling to assess onsite chlorinated solvent impacts from an adjoining offsite source. Prepared Remedial Work Plan and Report and provided monthly updates.
- Project Manager, Site Investigation, Former Aerospace Facilities, Long Island, NY Coordinated and performed soil and groundwater sampling and soil vapor studies at several aerospace manufacturing facilities on Long Island, NY. Assessments included an evaluation of past manufacturing and facility operations, storage and use of solvents, petroleum and manufacturing-derived wastes, and impacts to soils, soil vapor, and groundwater. Areas of concern were identified for further evaluation and/or corrective action.
- Project Manager, Municipal Landfill Monitoring, Town of East Hampton, NY Coordinated and performed long term groundwater monitoring at two closed Town of

- East Hampton, NY municipal landfills, including the sampling a multi-depth monitoring well network, analysis and interpretation of analytical and hydrogeologic data, and regulatory reporting in accordance with NYSDEC Part 360 requirements.
- Project Manager, Site Investigation, Former agricultural facilities, Long Island, NY Coordinated and performed soil and groundwater investigations at various agricultural and horticultural properties to evaluate impacts of past herbicide and pesticide usage on the underlying soil and groundwater.
- Program Manager, Municipal Landfill Gas Monitoring, Town of East Hampton, NY Managed and performed routine methane monitoring at two Town of East Hampton landfills for compliance with NYSDEC requirements and to evaluate potential offsite migration to the surrounding community. Monitored indoor air with a flame ionization detector (FID) to evaluate impacts to buildings.
- Hydrogeologist, Groundwater Modeling, Town of East Hampton, NY Assisted with groundwater flow modeling for the Springs-Fireplace Road Landfill to evaluate the nature and extent of the landfill plume, its likely downgradient extent, and its fate.
- Program Manager, Petroleum Release Sites, Various NYC, Long Island and Westchester County Coordinated and performed onsite and offsite monitoring at petroleum release sites on Long Island, the New York metropolitan area, and in Westchester County in accordance with NYSDEC Spill program requirements. The monitoring programs generally included sampling multi-depth monitoring well networks low-flow sampling utilizina techniques, analysis/interpretation of analytical hydrogeologic data, and regulatory reporting.
- Project Manager, Site Investigation, Logan International Airport, Boston. MA. Coordinated a soil and groundwater sampling program to evaluate environmental conditions at Terminal A, Logan International Airport, East Boston, Massachusetts. The program included an assessment of the current fuel hydrant system and other locations of potential environmental concern using non-destructive air extraction-clearing vacuum techniques combined with direct-push sampling.

Engineering and Environmental Science

- Project Manager, Site Investigation, Pyrotechnics Facility, Suffolk County, NY. Managed and performed a soil and groundwater investigation, a remedial soil excavation, and groundwater monitoring at a pyrotechnics manufacturing facility in Suffolk County, NY. The work was performed under the direction of the Suffolk County Department of Health Services (SCDHS) to investigate and remediate contamination from historic use of perchloratecontaining materials at the facility.
- Project Manager, Site Investigation, Automobile Franchise, Westchester County, NY. Coordinated and performed soil, groundwater and soil vapor investigations at several automobile dealerships in Westchester County, NY to evaluate potential impacts from petroleum and chemical solvent storage and usage and onsite waste water disposal systems.
- Project Manager, Site, Investigation, Former mercury thermometer manufacturing facility, NYC, NY. Coordinated and performed soil and soil vapor intrusion study at a former mercury thermometer manufacturing facility in NYC. Assessments included an evaluation of past manufacturing and facility operations, storage and use of mercury, manufacturing-derived wastes, and impacts to soils and soil vapor Areas of concern were identified for further evaluation and remedial action.

Phase I Environmental Site Assessments

 Project Manager, Various Northeastern and Mid-Atlantic States. Performed numerous Phase I Environmental Site Assessments (ESAs) for commercial and industrial properties throughout the Northeastern and Mid-Atlantic States for various clients including trucking companies, major airlines, telecommunication companies, chemical/ petroleum storage facilities, aerospace manufacturing facilities, machine shops, retail shopping centers, auto dealerships and service stations.

Remediation

Project Manager, Remediation, Former Landfill. Suffolk County, NY. Managed remedial activities at a NY State Environmental Restoration Program (ERP) Site situated at a former hospital landfill in Northport, NY. Responsibilities contractor management and oversight, disposal management, soil confirmatory testing, data review,

- preparation of remedial work plan and final engineering report for remedial activities.
- Project Manager, Remediation AS/SVE, Various Sites, NYC and Long Island. Performed pilot testing, design, installation and procurement of numerous multi-depth soil vapor extraction (SVE) and air sparge (AS) remediation systems on Long Island and in the NYC metropolitan area to remediate chlorinated solvents and petroleum. Conducted remediation system operation and maintenance, and evaluations of system performance.
- Project Manager, Remediation UIC Structures, Nassau and Suffolk County, NY.
 Performed numerous storm water and sanitary leaching structure (UIC) cleanouts utilizing excavation and/or vacuum assisted equipment to remove contaminated sediments and liquids. Conducted waste characterization and profiling, pipe camera surveys, and structure locating utilizing water-soluble dyes and electronic locating equipment.
- Project Manager, Remediation Sub-Slab Depressurization Systems, NYC, Nassau and Suffolk Counties, NY Conceptually designed and oversaw the installation of a sub- slab depressurization system (SSDS) at several commercial properties in the NYC and Long Island to mitigate chlorinated solvent impacts. SSDS monitoring was conducted to ensure proper operation and emissions compliance of with NYSDEC air discharge guidelines.
- Project Manager, Remediation System O & M, NYC and Long Island. Operated and maintained remediation systems, including SVE, groundwater pump and treat, AS, dual-phase extraction, SSDS and free-phase petroleum recovery systems.
- Project Manager, Remediation. White Plains, NY. Managed and coordinated a petroleum spill investigation to evaluate the nature and extent of a fuel oil release at an office building in White The investigation included Plains, NY. excavation and removal of a 5,000-gallon UST situated over 20 feet below grade, tightness testing of the UST and associated piping, a soil and groundwater investigation, free product utilizing recovery vacuum-enhanced recovery techniques, and coordination and reporting to the NYSDEC and Westchester County Department of Health.

Engineering and Environmental Science

Health and Safety

- HASP and CAMP Plan Preparation, Various Sites. Prepared community air monitoring and health and safety plans for several NYSDEC inactive hazardous waste, brownfield cleanup program, volunteer cleanup program, petroleum spill, and NYC e-designation program sites
- HASP Monitoring, Various Sites. Performed health and safety monitoring at investigation and remediation sites during intrusive activities. Calibrated and operated photoionization detectors (PID) and flame-ionization detectors (FID) for organic vapors and combustible gas indicators (CGI) for methane. Compared results to applicable action levels and took preventative/protective measures as necessary.
- CAMP Monitoring, Various Sites. Performed community monitoring, including monitoring for noise, particulates (dust), and organic vapors. Recorded observations and compared to applicable action levels. Calibrated and operated noise meters, particulate monitors, and PID/FID.
- Radiation Screening, Various Sites.
 Performed screening for radiation at select sites.
 Operated Geiger counter in different radiation modes and obtained and evaluated background readings.
- Mercury Screening. Performed screening of mercury vapor for several projects. Operated and experienced with Jerome and Lumex Mercury Vapor Analyzers.

Expert Witness/Technical Services

- Expert Witness Services. Glen Cove Provided expert Waterfront Redevelopment. witness services regarding environmental procedures conditions and remedial redevelopment of a former industrial and commercial area in Glen Cove, NY.
- Technical Services, multiple sites, Town of Brookhaven. Provided technical services regarding environmental conditions at various commercial and residential sites within the municipality to evaluate potential compliance issues with Town code. Services included coordinating subsurface investigations, sampling of various media, methane surveys, tidal surveys, technical oversight of investigation activities.
- Technical Services, multiple sites, Town of Huntington. Provide technical review of environmental investigations and soil

management plans prepared for proposed development for the Planning Division to asses if the proposed development has been properly evaluated in accordance with town requirements.

MGP Site Experience

- Field Team Leader, Property Transfer of MGP sites. Conducted soil and groundwater sampling at several Nicor MGP sites in Illinois prior to property transfer to Con Edison. Coordinated sampling crews, oversaw sampling and sample management, and implemented HASP monitoring.
- Project Manager, Geophysical Investigation at Brooklyn Union Greenpoint MGP site.
 Developed and implemented a geophysical investigation at an MGP site that was subject to differential settlement. Coordinated with client and subcontractors, oversaw survey activities, implemented HASP, interpreted results, and prepared a report to document the completed work.

Other

- Project Manager, RCRA Closure, Nassau County, NY Coordinated RCRA closure activities and performed confirmatory sampling at a former package manufacturing and printing facility in Nassau County, NY. Project duties included preparation of a closure work plan, contractor procurement, a subsurface site investigation, rinseate sampling, and regulatory agency reporting and coordination, and preparation of a closure report.
- Project Manager, Former Landfill, Suffolk County, NY. Prepared a remedial design (RD) work plan for a former hospital landfill on Long Island. The RD work plan included a summary of past investigations, a materials management plan for the excavation and disposal of contaminated soils and debris, a post-excavation sampling plan, a site restoration plan, community air monitoring plan (CAMP), health and safety plan (HASP) and a quality assurance and quality control (QA/QC) plan.
- Project Manager, Air Monitoring, Nassau County, NY. Managed and performed monthly soil gas sampling and quarterly indoor air quality sampling at an elementary school in southwestern Nassau County, NY. The monitoring and associated NYSDEC reporting were performed to ensure that a gasoline groundwater plume migrating through the school

Engineering and Environmental Science

property was not impacting indoor air at the school.

 Project Manager, Environmental Compliance, Multiple Sites. Performed compliance inspections to assess issues of potential environmental concern at manufacturing, aviation, trucking, retail, and not-for-profit facilities.

_____ Engineering and Environmental Science

Mr. Loyst has over 25 years of experience in environmental and civil engineering involving areas such as design & construction, regulation compliance & permitting, site investigation & remediation, environmental impact analysis, and expert witness testimony.

His clients include Federal agencies – USACE, US Army, USAF, FAA, USCG, USDA, USPS, IRS, VA; State agencies – NYSOGS, NYSParks, NYSDOT, DASNY, NYSOMH, NYSDEC, NYSPolice; City agencies – NYCT, NYCDEP, NYCDOC; Municipalities – Riverhead, Islip, Brookhaven, Smithtown, East Hampton, Village of Lake Success, Greenburgh, City of Rye and numerous private clients.

Functional Role	Title	Years of Experience
Program Manager	Corporate Vice President Department Manager - Environmental Engineering	29

Personal Data

Education

M.S./1997/Environmental Engineering – New York University (formerly Brooklyn Polytechnic University) B.S./1989/Interdisciplinary Engineering & Management–Clarkson University

B.S./1988/Civil and Environmental Engineering – Clarkson University

Registration and Certifications

Licensed Professional Engineer in State of New York Project Management Professional NYSDEC Stormwater Qualified Inspector Training OSHA-approved 40-hr Health and Safety Training OSHA-approved 8-hr Refresher Training Course OSHA 8-hr HAZWOPER Supervisor Training

Societies/Associations

American Society of Civil Engineers Project Management Institute

Employment History

1992 to Present FPM Group

1989-1992 Westinghouse Electric Corp.

Technical Seminars

Stormwater, Soil Erosion & Sediment Control, Hazardous Waste/RCRA, Emergency Planning & Community Right-To-Know (EPCRA), Environmental Impact Analysis/NEPA/EIS/EA, Air/CAA, Soil Remediation

Detailed Experience

Design & Construction

 Performed site reconnaissance, surveying, identification, and enumeration activities to develop plans, specifications, and environmental permitting for NYSOGS for processing waste tire materials into beneficial shred material to be used by the New York State Department of Transportation (NYSDOT) in road construction projects and landfills. Following the development of plans and specifications, FPM assisted NYSOGS with bidding phase services including contractor award and construction/remediation/restoration/ oversight. In total approx. 20 million tires were recycled at four sites across New York State (Smithtown, Saugerties, Catskill, and Plattsburgh).

- Prepared Program Reports and Design services for NYSOGS/ NYSDOT water supply treatment facilities in Wellsville, N. Java, and Oswego, NY.
- Evaluated existing site drainage design issues and provided corrective action for NYSOGS/DMNA AAFS in Rochester, NY.
- Investigated and designed corrective actions for failing maintenance bay trench drains at NYS Police Headquarters in Farmingdale, NY.
- Performed SWPPP services for NYSOGS/NYSPolice including weekly construction inspections and filing NOT upon project completion for new State Police zone headquarters in Hempstead, NY.
- Reviewed, prepared, and implemented numerous State Pollutant Discharge Elimination System (SPDES) General Permits for Stormwater Discharges from Construction Activities, Stormwater Pollution Prevention Plans (SWPPPs), and Soil Erosion and Sediment Control Plans for NYSOGS, NYSDEC, NYCDEP, municipalities, and private clients.
- Hazardous material storage area design for NYSOGS, NYSParks, and industrial facilities in accordance with Suffolk County and Nassau County regulations and containment provisions (e.g., containment buildings, bermed epoxy coated storage areas).
- Conventional subsurface sewage disposal system and reduced pressure zone device designs and construction management services for NYSOGS and numerous governmental, municipal, and private facilities.
- Hydrologist consultant to New York City Transit (NYCT) involving numerous drainage studies and

Engineering and Environmental Science

investigation of mitigation measures for stormwater and groundwater issues at bus depots, train yards, and subway stations.

- Hydrologist consultant to Town of Greenburgh involving the review of EIS documents, Stormwater Management Plans, Soil Erosion and Sediment Control Plans, drainage calculations, and modeling for proposed development projects on sites up to 300 acres.
- Hydrologist consultant to City of Rye involving site design review, flooding analyses, and environmental impact assessment for a 10-acre Brownfield remediation/development project.
- Prepared SWPPP and performed bi-weekly stormwater inspections for a NYCDEP 11-acre, 30 million gallon combined storage overflow facility in Brooklyn, NY.
- Performed dye-testing studies at several NYCT facilities in NYC and La Salle Military Academy in Oakdale, NY to identify discharges and remedies.
- Assisted NYCT with design mitigation measures and resiliency projects for critical infrastructure damaged during Hurricane Sandy.
- Design and construction services for rehabilitation and stabilization of streams and drainage channels for USACE in Binghamton, Endicott and Johnson, NY, and Danville, PA.
- Runoff calculations, drainage alternatives, and best management practices for site development projects in Long Island, NYC, and Westchester County.
- Evaluation and rehabilitation of groundwater well dewatering pumping systems for NYCT via downhole camera videotaping, riser swab cleaning, high velocity jetting, pump test analysis, specific capacity testing, and pump redesign.
- Performed leak investigation studies, and designed corrective measures for MTA Grand Central Station and South Ferry Station in Manhattan, NY.
- Certified numerous types of reports including periodic review, feasibility study, engineering, and work plans for inactive hazardous waste disposal (NYS Superfund) and environmental restoration program (ERP) sites.
- As Village of Lake Success environmental consultant, involved in groundwater pump and treat system quarterly OU-1 and OU-2 remedial system reporting, OMM and SSDS design review, indoor air quality monitoring, and overseeing sub-slab construction activities.
- Removal, recycling, and disposal of over 10,000 cy of construction and demolition debris at various waste management areas on Plum Island, NY involving development of plans and specifications, cost estimating, and construction oversight for USDA.
- Soil erosion and sediment control plans and certifications for FAA airport navigational aid projects.

- Performed Dam Classification, Spillway Analysis, and Design services for NYSParks repair/replacement of Connetquot Dam in Long Island, NY.
- Analyzed existing Paumanok Village Sewage Treatment Plant design to evaluate if 60 additional condominium units could be accommodated.
- Porous pavement designs and evaluations for NYCT bus depots.
- Prepared Remedial Design Report, plans and specifications, bid phase services, and construction supervision for remediation of a 3-acre VNSA landfill in Huntington, NY.
- Assisted the Town of Riverhead with capping estimates, feasibility study for reclaiming and capping a reduced landfill and engineering reviews for a full Part 360 landfill cap design.
- Development of plans and specifications for asbestos abatement projects for elementary schools in Long Island.
- Asbestos abatement specification reviews for FAA facility rehabilitations.
- Designed new track and field athletic complex at USCG Academy, New London, CT involving NCAA regulation 8-lane track with synthetic type running service, separate event throwing areas, NCAA regulation soccer field inside the track and all necessary elements for typical collegiate facilities (lighting, grandstand, scoreboard, etc.) design aspects included managing infiltration and surface water runoff for discharge into Thames River and environmental permitting (SWPPP and coastal zone consistency determination).
- Performed study and conceptual design of an equalization tank for storing roof runoff to be used at two NYCT bus depots in Manhattan and Staten Island.
- Soil Vapor Intrusion (SVI) and sub slab depressurization system (SSDS) design work for office buildings and aircraft hangar/warehouses at former Griffiss AFB and 1.3 million sf of office building in Nassau County.
- Prepared plans for relocation of scales/scalehouse at a waste transfer/recycling facility in Islip, NY.
- Acquired Joint Application/Water Withdrawal Permits and prepared Engineering Report and Plans for construction of a lowered hydraulic connection between 2 lakes in Lake Success, NY.
- Sub-slab depressurization system (SSDS) design including a horizontal well and blower system for a DASNY and NYS Office of Alcoholism and Substance Abuse Services (OASAS) 4,000 sf facility on a 1-acre parcel on a municipal landfill in the City of Peekskill.
- Designed an 80'x45'x30' deep recharge basin with infiltration wells for an 11-acre NYCT bus depot in Staten Island, NY.

Engineering and Environmental Science

- Provided water well treatment design services for a golf course irrigation system in Lake Success, NY.
- Designed ground mounted 10kw Photovoltaic system for a Town of Islip Compost Facility.
- Performed condition assessments for the Latimer Reef and Little Gull Light Stations in Southold, NY.
- Feasibility Study (FS) to prevent the potential migration of a PCB oil pool/contaminated aqueous plume and peat layer settlement due to dewatering activities at Sunnyside Yard, Queens.
- FS for disposal alternatives for permanent subway dewatering activities in Brooklyn and Manhattan, NY.
- FS for property consolidations and expansion of shopping centers in Long Island. Site development potential was evaluated in accordance with local ordinances/codes.
- Evaluated roof leaks, mold investigation, and designed corrective action for Great Neck Post Office, NY.

Regulation Compliance/Permitting

- Suffolk County Department of Health Services (SCDHS) Article 12 and Nassau County Department of Health (NCDOH) Article 11 Toxic and Hazardous Material Storage Facility Permits for NYSOGS, USPS, NYS Parks, and private clients.
- UST compliance inspections in accordance with NYSDEC - Petroleum Bulk Storage (PBS) and Chemical Bulk Storage (CBS) regulations; SCDHS Article 12; NCDOH Article 11; and National Fire Protection Agency (NFPA) codes for NYSOGS, NYSDOT, USPS, and private clients.
- Department of Environmental Conservation (NYSDEC) State Pollution Discharge Elimination System (SPDES) permits for industrial and stormwater discharges for NYSOGS, NYCT, USPS, and private clients.
- Environmental compliance audits covering the Clean Air Act (CAA), Resource Conservation and Recovery Act (RCRA), Clean Water Act (CWA), Emergency Planning and Community Right to Know Act (EPCRA), and local regulations involving areas such as hazardous material storage for USPS and private clients
- Air permitting and associated reporting including Title
 V and 76-19-3 air permits; new source review;
 seasonal variance applications; BACT analysis;
 emission statements; EPA NESHAP surveys, annual
 and semi-annual compliance certifications; Air Guide
 1 and Screen 2 modeling; Air Facility Registrations;
 air quality assessments; emission reduction credits,
 and stack testing for VA, Islip, and private clients.
- Performed RCRA compliance activities involving waste stream characterizations; waste minimization; pollution prevention; manifest tracking; preparation of

- quarterly, annual, and bi-annual reports; and training for USPS and private clients.
- Prepared hazardous waste closure plans in accordance with 6NYCRR 373-3 and implemented closure of hazardous waste management areas in accordance with 6NYCRR 373-3.7(c) for private clients.
- Performed EPCRA/Sara Title III audits, reporting and investigated administrative complaints for private clients
- Prepared, reviewed, and certified numerous Spill Prevention Control and Countermeasure Plans (SPCCPs) in accordance with 40 CFR Part 112 for NYSParks, NYCDOC, and private clients.
- UST Closure activities for private clients in Long Island, NY in accordance with SCDHS requirements.
- SCDHS Article 7 compliance reviews for restricted chemical storage for private clients.
- SCDPW sewer connection and agreements for private clients.
- Prepared and acquired NYCDEP construction dewatering permits for private clients in NYC.
- Developed Stormwater Management Plan for Town of Smithtown in response to USEPA notice of violations.
- Prepared SAPs and performed Indoor Air Quality Sampling for VOCs and mold for municipalities and industrial clients in Long Island.
- Baseline and semi-annual monitoring, BMR and SMR reporting, and sampling for wastewater discharges for compliance with NYCDEP and SCDPW requirements.
- Performed health and safety monitoring at investigation and remediation sites during intrusive activities. Monitoring included calibration and operation of photoionization detector (PID) and flameionization detector (FID) for organic vapors and combustible gas indicator (CGI) for methane. Compared results to applicable action levels and took preventative/protective measures as necessary.
- Site Specific Health and Safety Plans (HASPs) for USACE, USDA, NYSOGS, and private clients.
- Sound level studies to determine compliance with local noise ordinances for private clients.
- Prepared engineering reports for Long Island Well permits.
- Prepared Solid Waste Management Plan (SWMP) for Town of Riverhead.
- Performed compliance inspections and corrected NOVs for shellfish operation in Westbury, NY.

Site Investigation & Remediation

 Petroleum Spill Investigations (gasoline, diesel, No. 2 and No. 6 fuel oil, and lubricating oil) and associated closure work for tanks and other types of discharges for NYSOGS, USAF and private clients in the metropolitan and upstate NY regions.

Engineering and Environmental Science

- Identification, characterization, and removal of hazardous material and hazardous waste at industrial facilities and psychiatric centers for NYSOGS and private clients in Long Island and NYC.
- Developed and Implemented SAPs for USCG Station dredging projects in Long Island in accordance with NYSDEC Region 1 Marine Habitat Division protocols.
- Quarterly and semi-annual sampling/monitoring and reporting in accordance with NYSDEC Part 360 regulations for several landfills in Long Island.
- ASTM Phase I Environmental Assessments for property transactions in Suffolk, Nassau, and the five boroughs of New York.
- Sampling and Analysis Plans for Phase II investigations in Long Island and NYC.
- Groundwater, soil, and air sampling at numerous sites on Long Island and NYC for landfill closures, remedial investigations, and petroleum spills.
- Hazardous, Toxic, and Radioactive Waste (HTRW) Surveys and Preliminary Assessments in NY and NJ for FAA and USACE.
- Polychlorinated Biphenyl (PCB) basewide (3500 acres) evaluation of electrical equipment at Griffiss Air Force Base.
- Anthrax sampling for IRS mail sorting facilities in Holtsville, NY, and Andover, MA.
- Performed Indoor Air Quality Studies for office buildings in Long Island, NY.
- Performed Environmental Assessment Boring Programs (EABP) for NYCT stations/substation construction projects.
- Remediation of lead contaminated soil at four water tower sites at Barksdale Air Force Base, LA via excavation/disposal. Feasibility studies, work plans, Health and Safety Plans, Closure Reports, and No Further Response Action Planned Memorandums were prepared in conjunction with the remediation.
- In-situ soil remediation of VOCs through vapor extraction and soil aeration techniques at Long Island and NJ contaminated sites.
- Estimated the remaining volume and footprint for the Youngs Avenue Landfill, Riverhead, NY, which currently was in full scale reclamation mode, via a boring and excavation plan involving numerous deep borings and shallow test pits and topographic surveys/landfill maps.

Environmental Impact Analysis

 Coastal/Biological Monitoring Program components for the USACE, New York District Beach Erosion Control Projects including intertidal ichthyoplankton studies, intertidal offshore finfish studies, nearshore and offshore benthic sampling, water quality analysis, and creel census.

- Cultural resource projects for USACE and FAA in the northeast region including cultural resource surveys; cultural resource assessments; underwater archeology surveys; and recordations.
- Wetland Delineations and Biological Surveys (Grassland Birds) in support of FAA EAs at Teterboro Airport.
- Historic Preservation Plan for Plum Island NY and Historic Structure Report for Plum Island Light Station, Plum Island Animal Disease Center, NY.
- Environmental Scoping Document and presentation agenda for the District's Atlantic Coast of Long Island Fire Island Inlet to Montauk Point, NY Storm Damage Reduction Reformation Study.
- Preliminary Environmental Assessment (PEA) Reconnaissance Studies for USACE Flood Control and Shore Protection Projects in South River, Raritan River Basin, NJ and Cliffwood Beach, NJ.
- Environmental assessment and architectural and historical study for a USMA historical building/site at West Point, NY.
- Draft Supplemental Environmental Impact Statement (EIS) Limited Reevaluation Study for the Deepening of the Arthur Kill/Howland Hook Navigation Channel in NY/NJ.
- Water resources impact analysis for Ramapo Energy Limited Partnership DEIS.
- Long and Short Environmental Assessment Forms (EAFs) for construction and site development projects in Long Island, NY.
- Environmental Assessments for Federal Aviation Administration (FAA) navigational aid projects at numerous airports in the northeast region in accordance with the National Environmental Policy Act (NEPA) and FAA order 1050.1D Policies and Procedures for Considering Environmental Impacts. Airport projects included Instrument Landing Systems (ILS), Approach Lighting Systems, Remote Transmitters, Doppler Equipment, Air Traffic Control Towers and Air Route Traffic Control Centers. Airports and support areas included Teterboro, Richmond Intl, Baltimore Washington Intl, Syracuse-Hancock Intl, Newark Intl, Stewart, Philadelphia Intl, LaGuardia Intl, and Leesburgh.
- Environmental assessments for the Army and Air Force Exchange Service (AAFES) at bases in Oahu, HI in accordance with NEPA, AR-200 Environmental Effects of Army Actions and DOD Directive 6050.1 Environmental Effects in the US of DOD Actions. Projects included capital improvement projects at Schofield Barracks, Helemano Military Reservation, Aliamanu Military Reservation, and Bellows Air Force Base.
- Surveying and mapping 3 shoreline and wetland conservation areas as part of a stipulation agreement between NYSDEC and PIADC on Plum Island, NY.

Engineering and Environmental Science

- Environmental Assessment for Rehabilitation of the Mine Lake Dam for USAG West Point, NY.
- Long Form EAF and Pine Barrens Core Preservation Area application for Westhampton Ready Mix Corp.
- Evaluated stormwater and subsurface impacts for D/FEIS and Findings Statement for parking improvements and conversion of building use from warehouse to office space at a 93-acre site in Village of Lake Success/Town of North Hempstead, NY.
- Evaluated Planned Development District (PDD)
 Alternatives for former 105-acre Dowling College site in Brookhaven, NY.

Expert Witness Testimony

 Beach erosion and accretion issues and evaluation of engineering/construction alternatives for case between Sea Gate Beach Club and USACE.

- Hazardous waste and disposal issues for case between defendant/Salinger & Sack and Ecolab, Inc. Engineering and Permitting issues for case between Town of Brookhaven and BRT for new rail line in Yaphank, NY. Landfill volume evaluation and closure alternatives for case between Town of Riverhead and Grimes Contracting.
- Hydrology and stormwater issues for case between Town of Greenburgh and Fortress Bible Church.
- Site contamination and site management plans, engineering and institution control issues for case between Town residents and City of Glen Cove/developers in Glen Cove, NY.

Christopher J. Linkletter

Engineering and Environmental Science

Mr. Linkletter has a diversified experience in geology and hydrogeology. His professional experience includes groundwater and soil investigations, routine landfill gas monitoring, Phase I Environmental Site Assessments, soil remediation projects, soil vapor intrusion evaluation, maintenance of groundwater, soil and soil vapor remediation systems, and evaluation of site compliance with environmental regulation.

Functional Role	Title	Years of Experience
Hydrogeologist	Hydrogeologist	3

Personal Data

Education

B.S./2015/Geology/SUNY Oneonta, NY

Registration and Certifications

OSHA 40-hour HAZWOPER Health & Safety Training Current OSHA 8-hour HAZWOPER Health & Safety Refresher

Employment History

2015-Present FPM Group

Detailed Experience

Site Investigation and Monitoring

- Performs soil, soil vapor, indoor air and groundwater monitoring and sampling at commercial, industrial, and municipal sites throughout Long Island and the New York metropolitan area. Monitoring and sampling activities are conducted in accordance with NYSDEC-approved work plans, Phase II work plans, and regulatory agency requirements.
- Conducts Phase I and II Environmental Site Assessments (ESAs) for various residential, commercial, industrial and vacant sites in New York State in accordance with the ASTM Standard. Phase I ESA tasks included site inspections, interviews, evaluation of state and federal databases, record reviews at local and state government agencies, and reports.
- Skilled in use and calibration of field equipment including photoionization detectors (PID), Landtec Infrared Gas Analyzer, combustible gas indicator (CGI), water-level meters, interface probes, groundwater quality instrumentation, and survey equipment.
- Performs data tabulation and evaluation relative to established regulatory agency criteria including USEPA, NYSDEC, NCDOH, and SCDHS.

- Conducted Phase II ESAs for several sites in the New York City Office of Environmental Restoration (NYC OER) e-designations. Responsibilities include soil, groundwater, and soil vapor sampling, as well as frequent correspondence and coordination of NYC OER personnel.
- Performed long-term monitoring projects at several landfills at McGuire AFB, New Hanover, NJ for AFCEE. Collected groundwater, leachate, and surface water samples.
- Assisted in a groundwater, soil, and soil vapor investigation at a Brownfield Cleanup Program (BCP) Site in Far Rockaway, NY including petroleum compounds. Responsibilities included groundwater, soil, and soil vapor sampling for characterization and delineation, subcontractor coordination and oversight, and report preparation.
- Performed sediment sampling for the Town of Brookhaven, including sample collection, grain size analysis, and report preparation.

Remediation

- Field Technician Operates and maintains remediation systems, including soil vapor extraction, air sparge systems, groundwater pump and treat, and sub-slab depressurization systems.
- Field Technician, East Harlem, NY Assisted in remedial activities at a Voluntary Cleanup Program (VCP) and NYC OER e-designated redevelopment site. Responsibilities included the collection of waste characterization and endpoint samples, oversight and documentation of the excavation and removal of impacted soils to various disposal facilities, and daily air monitoring to evaluate the effect of site activities on the surrounding community.
- Environmental Scientist, Brooklyn, NY Assisted in remedial activities at a NYS Superfund Site in Greenpoint, NY. Responsibilities included collection of waste, monitoring product thickness and recovery, and documentation.

Christopher J. Linkletter

Engineering and Environmental Science

 Field Technician, Queens, NY - Assisted in remedial activities at a VCP and NYC OER edesignated redevelopment site in Woodside, NY. Responsibilities included the collection of waste characterization and endpoint samples, oversight and documentation of the excavation and removal of impacted soils to various disposal facilities, and daily air monitoring to evaluate the effect of site activities on the surrounding community.

Landfills

- Hydrogeologist, Town of East Hampton -Conducts ongoing groundwater and methane monitoring programs for the Springs-Fireplace and Montauk town landfills. Responsibilities include collection of routine and baseline groundwater samples, methane monitoring and operating, tabulation of analytical data, and report preparation.
- Hydrogeologist, Town of Islip, NY Conducts ongoing landfill gas monitoring projects at three Town of Islip landfills. Monitoring program includes monthly collection of landfill gas data from onsite and offsite methane wells, methane collection systems (extraction wells), and flare systems, volatile organic compound (VOC)

- monitoring, greenhouse gas monitoring, and report preparation.
- Hydrogeologist, Town of Islip, NY Manages ongoing field and reporting activities for the U.S. Environmental Protection Agency (EPA) Greenhouse Gas (GHG) Reporting Program at the Blydenburgh Landfill in the Town of Islip. Program includes weekly GHG data collection, usage and maintenance of a dedicated data logging system, data management, and report preparation in accordance with EPA specifications.

Health and Safety

- Performed health and safety monitoring at investigation and remediation sites during intrusive activities. Monitoring included calibration and operation of photoionization detectors (PIDs), flame-ionization detectors (FIDs), dust monitors, and combustible gas indicators (CGI). Compared results to applicable action levels and undertook preventative/protective measures as necessary.
- Performed community air monitoring (CAMP), including monitoring for noise, particulates (dust), and organic vapors at several sites throughout New York State. Recorded observations and compared to applicable action levels.

APPENDIX C EC/IC CERTIFICATION

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	C224160	Site Details		Box 1	
Site	e Name Cir	nderella 248 LLC				
City	e Address: 2 y/Town: Bro unty:Kings e Acreage: (Zip Code: 11217			
Rej	eporting Period: November 27, 2017 to March 27, 2019					
					YES	NO
1.	Is the inform	mation above correct?			X	
	If NO, inclu	de handwritten above o	r on a separate sheet.			
2.		or all of the site property nendment during this Re	been sold, subdivided, mereporting Period?	ged, or undergone a		X
3.		peen any change of use RR 375-1.11(d))?	at the site during this Repor	rting Period		X
4.	Have any for or at the	ederal, state, and/or loc e property during this Re	al permits (e.g., building, dis porting Period?	charge) been issued		风
	If you answ that docum	wered YES to question nentation has been pro	s 2 thru 4, include docume eviously submitted with th	entation or evidence is certification form.		
5.	Is the site of	currently undergoing dev	velopment?			X
					Box 2	
					YES	NO
6.		nt site use consistent w Residential, Commercia	ith the use(s) listed below? ıl, and Industrial		泊	
7.	Are all ICs/	ECs in place and function	oning as designed?		A.	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
A C	Corrective M	easures Work Plan mus	st be submitted along with t	this form to address t	hese iss	ues.
Sia	nature of Ow	ner. Remedial Party or D	esignated Representative	Date		

			Box 2A	1
			YES	NO
8.	Has any new information revealed that assumptions made in the Qualitat Assessment regarding offsite contamination are no longer valid?	ive Exposure		<u>K</u>
	If you answered YES to question 8, include documentation or evidenthat documentation has been previously submitted with this certific	nce ation form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	A	
	If you answered NO to question 9, the Periodic Review Report must updated Qualitative Exposure Assessment based on the new assum	include an options.		
SITI	E NO. C224160		Вох	3
	Description of Institutional Controls			
<u>Parcel</u> <u>Owner</u>		<u>itutional Control</u>	L _{el}	
936-1	Ground Water Use Landuse Restriction Monitoring Plan Site Management F O&M Plan IC/EC Plan			ion
1. Requires the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3); 2. Allows the use and development of the controlled property for restricted-residential use, which commercial use and industrial use, as defined by Part 375-1.8(g), although land use is subject to zoning laws; 3. Restricts the use of groundwater as a source of potable or process water, without necessary quality treatment as determined by the NYSDOH or County DOH; and 4. Requires compliance with the Department approved Site Management Plan.				s for
			Box	4
	Description of Engineering Controls			
Parce 936-	12			
	Vapor Mitigation	5.55 to		
	ration and maintenance of a sub-slab depressurization system (SSDS) to r sion at the site building and adjacent buildings.	nitigate soil vapo	or	

		-
ь	SOX	5

	Periodic Review Report (PRR) Certification Statements										
1.	I certify by checking "YES" below that:										
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 										
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted										
	engineering practices; and the information presented is accurate and compete. YES NO										
	Ճ □										
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:										
	 (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; 										
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;										
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;										
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and										
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.										
	YES NO										
	⊁ □										
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.										
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.										
	Signature of Owner, Remedial Party or Designated Representative Date										

IC CERTIFICATIONS SITE NO. C224160

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

MICHAEL PINTOHIC print name	at 254 FLATIBUSH AVE BROWLLYN print business address	11217
am certifying as <u>OWNER</u>	(Owner or Remedial P	arty)
for the Site named in the Site Details S Signature of Owner, Remedial Party, o Rendering Certification	2019-04-18	

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at FPM 6	PUT JUD MARCONI AVE PONKONICOMA NY, print business address
am certifying as a Professional Engineer for the	(Owner or Remedial Party)
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	TE OF NEW TOTAL TO

APPENDIX D SYSTEM OPERATING LOG

SSDS OPERATING LOG CINDERELLA 248 LLC SITE NYSDEC SITE NO. C224160 248 FLATBUSH AVENUE, BROOKLYN, NY

					SSDS							Va	apor Monit	oring Poin	ts			Comments/
Date	Vacuum Before Air Filter	Vacuum After Air Filter	Vacuum at Well SSDS- 1		Vacuum at Well SSDS-2	Flowrate at Well SSDS-2	Vacuum at Well SSDS-3	Flowrateat Well SSDS-3	Effluent PID	VMP-1	VMP-2	VMP-3	VMP-4	VMP -5	VMP-6	VMP-7	VMP=8	Observations
8/10/2016	24	32	18	60	18	60	16	60	150.0	0.02	0.05	0.02	0.02	0	0.005	0.15	0.1	
8/116/16	24	34	20	40	20	60	18	40	20.0	0.02	0.08	0.07	0.01	0.01	0.02	0.02	0.08	Effluent sample collected
8/25/2016	26	34	20	40	20	65	18	50	1.4	0.02	0.07	0.11	0.01	0.01	0.16	0.08	0.07	Effluent sample collected
8/31/2016	26	35	20	45	20	70	18	50	13.5	0.01	0.07	0.01	0.01	0.02	0.03	0.02	0.08	Effluent sample collected
9/20/2016	26	36	20	45	21	70	18	50	16.8	0.01	0.04	0.02	0.02	0.03	0.03	0.03	0.07	Effluent sample collected
12/28/2016	26	38	20	45	22	55	20	40	0.0		0.02	0.01	0.02	0.01	0.01	0.02	0.03	
3/29/2017	28	30	26	55	26	60	24	55	0.7	-	0.02	0.01	-	0	0.01	0.01	0.06	Effluent sample collected
6/27/2017	30	32	27	60	28	60	26	50	3.7	0.01	0.01	0.02	0	0	0.01	0.01	0.03	Effluent sample collected
9/28/2017	30	28	26	60	26	60	24	70	2.9	0	0.01	0.01	0.01	0	0	0.01	0.03	Effluent sample collected
12/28/2017	30	40	38	60	38	60	38	60	10.6									Effluent sample collected System offfline on arrivial - high knockout alarm
3/29/2018	30	28	24	60	26	60	24	60	12.4									System offfline on arrivial - high knockout alarm
4/15/2018	30	30	26	60	28	70	24	50	0.0	0.01	0.01	0.01	0.01	0	0.01	0.01	0.02	Effluent sample collected SVI Sampling performed
6/20/2018	30	30	28	70	30	70	25	60	0.0	0	0.01	0	0.01	0	0.01	0.01	0.11	Effluent sample collected
9/17/2018	30	30	26	70	28	80	25	70	0.0	0	0.01	0	0.01	0.01	0.01	0	0.02	Effluent sample collected
12/17/2018	32	30	26	70	28	70	26	65	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	Effluent sample collected
3/27/2018	30	30	26	70	28	75	26	65	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	

Notes:

"H₂O = inches of water ppm = parts per million scfm = standard cubic feet per minute

psi = pounds per square inch

APPENDIX E LABORATORY REPORTS FOR EFFLUENT SAMPLES

Technical Report

prepared for:

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 Attention: Chris Linkletter

Report Date: 12/29/2017

Client Project ID: Cinderella/1104g-15-03

York Project (SDG) No.: 17L0888

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 12/29/2017

Client Project ID: Cinderella/1104g-15-03 York Project (SDG) No.: 17L0888

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 Attention: Chris Linkletter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on December 21, 2017 and listed below. The project was identified as your project: Cinderella/1104g-15-03.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
17L0888-01	Effluent121817	Air	12/18/2017	12/21/2017

General Notes for York Project (SDG) No.: 17L0888

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director

12/29/2017

Date:

Sample Information

Client Sample ID: Effluent121817

York Sample ID:

17L0888-01

York Project (SDG) No. 17L0888 <u>Client Project ID</u> Cinderella/1104g-15-03 Matrix Air <u>Collection Date/Time</u> December 18, 2017 1:00 pm Date Received 12/21/2017

Volatile Organics, EPA TO15 Full List

Log-in Notes:

TO-TD

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference N	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND	IS-LO	ug/m³	6.9	10	EPA TO-15 Certifications:		12/22/2017 22:04	12/22/2017 22:04	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND	IS-LO	ug/m³	6.9	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
79-00-5	1,1,2-Trichloroethane	ND	IS-LO	ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
120-82-1	1,2,4-Trichlorobenzene	ND	IS-LO	ug/m³	7.4	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
95-63-6	1,2,4-Trimethylbenzene	ND	IS-LO	ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
106-93-4	1,2-Dibromoethane	ND	IS-LO	ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
95-50-1	1,2-Dichlorobenzene	ND	IS-LO	ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
78-87-5	1,2-Dichloropropane	ND	IS-LO	ug/m³	4.6	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	7.0	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
108-67-8	1,3,5-Trimethylbenzene	ND	IS-LO	ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	6.6	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
541-73-1	1,3-Dichlorobenzene	ND	IS-LO	ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queens	12/22/2017 22:04	LDS
142-28-9	* 1,3-Dichloropropane	ND	IS-LO	ug/m³	4.6	10	EPA TO-15 Certifications:		12/22/2017 22:04	12/22/2017 22:04	LDS
106-46-7	1,4-Dichlorobenzene	110	IS-LO	ug/m³	6.0	10	EPA TO-15 Certifications:	NEL AC N	12/22/2017 22:04 Y12058,NJDEP-Queen	12/22/2017 22:04	LDS
123-91-1	1,4-Dioxane	ND	IS-LO	ug/m³	7.2	10	EPA TO-15		12/22/2017 22:04 /12/058,NJDEP-Queens	12/22/2017 22:04	LDS
78-93-3	2-Butanone	4.1		ug/m³	2.9	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
		•					Certifications:	NELAC-N	Y12058,NJDEP-Queen	s	
591-78-6	* 2-Hexanone	ND	IS-LO	ug/m³	8.2	10	EPA TO-15 Certifications:		12/22/2017 22:04	12/22/2017 22:04	LDS

Sample Information

Client Sample ID: Effluent121817 **York Sample ID:** 17L0888-01

York Project (SDG) No. Client Project ID Matrix Collection Date/Time 17L0888 Cinderella/1104g-15-03 Air

December 18, 2017 1:00 pm

Date Received 12/21/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

TO-TD **Log-in Notes: Sample Notes:**

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/T Method Prep		Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND		ug/m³	16	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDH		12/22/2017 22:04	LDS
108-10-1	4-Methyl-2-pentanone	ND	IS-LO	ug/m³	4.1	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDH		12/22/2017 22:04	LDS
67-64-1	Acetone	98		ug/m³	4.8	10	EPA TO-15	12/22/2017		12/22/2017 22:04	LDS
							Certifications:	NELAC-NY12058,NJD	EP-Queens		
107-13-1	Acrylonitrile	ND		ug/m³	2.2	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
71-43-2	Benzene	ND		ug/m³	3.2	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
100-44-7	Benzyl chloride	ND	IS-LO	ug/m³	5.2	10	EPA TO-15 Certifications:	12/22/2017 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
75-27-4	Bromodichloromethane	ND	IS-LO	ug/m³	6.7	10	EPA TO-15 Certifications:	12/22/2017 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
75-25-2	Bromoform	ND	IS-LO	ug/m³	10	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
74-83-9	Bromomethane	ND		ug/m³	3.9	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
75-15-0	Carbon disulfide	ND		ug/m³	3.1	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
56-23-5	Carbon tetrachloride	ND		ug/m³	1.6	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
108-90-7	Chlorobenzene	ND	IS-LO	ug/m³	4.6	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
75-00-3	Chloroethane	ND		ug/m³	2.6	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
67-66-3	Chloroform	5.9		ug/m³	4.9	10	EPA TO-15	12/22/2017	7 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-NY12058,NJD	EP-Queens		
74-87-3	Chloromethane	2.5		ug/m³	2.1	10	EPA TO-15	12/22/201	7 22:04	12/22/2017 22:04	LDS
		-10		Ü			Certifications:	NELAC-NY12058,NJD	EP-Queens		
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	12/22/2017 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
10061-01-5	cis-1,3-Dichloropropylene	ND	IS-LO	ug/m³	4.5	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
110-82-7	Cyclohexane	ND		ug/m³	3.4	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
124-48-1	Dibromochloromethane	ND	IS-LO	ug/m³	8.5	10	EPA TO-15 Certifications:	12/22/2011 NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
75-71-8	Dichlorodifluoromethane	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
141-78-6	* Ethyl acetate	ND		ug/m³	7.2	10	EPA TO-15 Certifications:	12/22/201		12/22/2017 22:04	LDS
100-41-4	Ethyl Benzene	ND	IS-LO	ug/m³	4.3	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDI		12/22/2017 22:04	LDS
87-68-3	Hexachlorobutadiene	ND	IS-LO	ug/m³	11	10	EPA TO-15 Certifications:	12/22/201' NELAC-NY12058,NJDI	7 22:04	12/22/2017 22:04	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 4 of 16

Client Sample ID: Effluent121817 **York Sample ID:** 17L0888-01

York Project (SDG) No. Client Project ID 17L0888 Cinderella/1104g-15-03 Matrix Collection Date/Time December 18, 2017 1:00 pm Air

Date Received 12/21/2017

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	TO-TD	Sample Notes:
---------------	-------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-63-0	Isopropanol	9.6		ug/m³	4.9	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
80-62-6	Methyl Methacrylate	16	IS-LO	ug/m³	4.1	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer		
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	3.6	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen	12/22/2017 22:04 s	LDS
75-09-2	Methylene chloride	24		ug/m³	6.9	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
142-82-5	n-Heptane	ND		ug/m³	4.1	10	EPA TO-15	NEL ACAR	12/22/2017 22:04	12/22/2017 22:04	LDS
110.54.2		ND		/3	2.5	10	Certifications:	NELAC-N1	/12058,NJDEP-Queen	s 12/22/2017 22:04	I DC
110-54-3	n-Hexane	ND		ug/m³	3.5	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen		LDS
95-47-6	o-Xylene	ND	IS-LO	ug/m³	4.3	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-NY	/12058,NJDEP-Queen	S	
179601-23-1	p- & m- Xylenes	ND	IS-LO	ug/m³	8.7	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen	12/22/2017 22:04	LDS
622-96-8	* p-Ethyltoluene	ND	IS-LO	ug/m³	4.9	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
	p zarynorache	112	10 20				Certifications:				
115-07-1	* Propylene	1.7		ug/m³	1.7	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:				
100-42-5	Styrene	ND	IS-LO	ug/m³	4.3	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen	12/22/2017 22:04 s	LDS
127-18-4	Tetrachloroethylene	3000		ug/m³	6.8	40	EPA TO-15		12/29/2017 11:30	12/29/2017 11:30	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
109-99-9	* Tetrahydrofuran	ND		ug/m³	5.9	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
	m. I						Certifications:				
108-88-3	Toluene	6.0	IS-LO	ug/m³	3.8	10	EPA TO-15 Certifications:	NEL AC N	12/22/2017 22:04 Y12058,NJDEP-Queer	12/22/2017 22:04	LDS
156-60-5	trong 1.2 Dishlargathylana	ND		ug/m³	4.0	10	EPA TO-15	NELAC-N	12/22/2017 22:04	12/22/2017 22:04	LDS
130-00-3	trans-1,2-Dichloroethylene	ND		ug/m³	4.0	10	Certifications:	NELAC-NY	/12058,NJDEP-Queen		LDS
10061-02-6	trans-1,3-Dichloropropylene	ND	IS-LO	ug/m³	4.5	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-NY	/12058,NJDEP-Queen		
79-01-6	Trichloroethylene	ND	IS-LO	ug/m³	1.3	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen	12/22/2017 22:04 s	LDS
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	5.6	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
	Themore and the control	112					Certifications:	NELAC-NY	/12058,NJDEP-Queen		
108-05-4	Vinyl acetate	ND		ug/m³	3.5	10	EPA TO-15	NEV 4 C NE	12/22/2017 22:04	12/22/2017 22:04	LDS
502 (0.2	X7. 11	ND		/ 3	4.4	10	Certifications:	NELAC-NY	/12058,NJDEP-Queen		LDC
593-60-2	Vinyl bromide	ND		ug/m³	4.4	10	EPA TO-15 Certifications:	NELAC-NY	12/22/2017 22:04 /12058,NJDEP-Queen	12/22/2017 22:04 s	LDS
75-01-4	Vinyl Chloride	ND		ug/m³	0.64	10	EPA TO-15		12/22/2017 22:04	12/22/2017 22:04	LDS
							Certifications:	NELAC-NY	/12058,NJDEP-Queen	s	
	Surrogate Recoveries	Result		Acceptan	ce Range						
460-00-4	Surrogate: p-Bromofluorobenzene	85.8 %		70-	130						

120 RESEARCH DRIVE

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

FAX (203) 357-0166

Analytical Batch Summary

Batch ID: BL71104 Preparation Method: EPA TO15 PREP Prepared By:	LDS
--	-----

YORK Sample ID C	Client Sample ID	Preparation Date
BL71104-BLK1 B	Effluent121817 Blank JCS	12/22/17 12/22/17 12/22/17

Batch ID: BL71325 Preparation Method: EPA TO15 PREP Prepared By: LDS

YORK Sample ID	Client Sample ID	Preparation Date
17L0888-01RE1	Effluent121817	12/29/17
BL71325-BLK1	Blank	12/29/17
BL71325-BS1	LCS	12/29/17

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BL71104 - EPA TO15 PREP											
Blank (BL71104-BLK1)							Prep	ared & Anal	yzed: 12/22/	2017	
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³								-
1,1,1-Trichloroethane	ND	0.55	"								
1,1,2,2-Tetrachloroethane	ND	0.69	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"								
1,1,2-Trichloroethane	ND	0.55	"								
1,1-Dichloroethane	ND	0.40	"								
1,1-Dichloroethylene	ND	0.099	"								
1,2,4-Trichlorobenzene	ND	0.74	"								
1,2,4-Trimethylbenzene	ND	0.49	"								
1,2-Dibromoethane	ND	0.77	"								
1,2-Dichlorobenzene	ND	0.60	"								
1,2-Dichloroethane	ND	0.40	"								
1,2-Dichloropropane	ND	0.46	"								
1,2-Dichlorotetrafluoroethane	ND	0.70	"								
1,3,5-Trimethylbenzene	ND	0.49	"								
1,3-Butadiene	ND	0.66	"								
1,3-Dichlorobenzene	ND	0.60	"								
1,3-Dichloropropane	ND	0.46	"								
1,4-Dichlorobenzene	ND	0.60	"								
1,4-Dioxane	ND	0.72	"								
2-Butanone	ND	0.29	"								
2-Hexanone	ND	0.82	"								
3-Chloropropene	ND	1.6	"								
4-Methyl-2-pentanone	ND	0.41	"								
Acetone	ND	0.48	"								
Acrylonitrile	ND	0.22	"								
Benzene	ND	0.32	"								
Benzyl chloride	ND	0.52	"								
Bromodichloromethane	ND	0.67	"								
Bromoform	ND	1.0	"								
Bromomethane	ND	0.39	"								
Carbon disulfide	ND	0.31	"								
Carbon tetrachloride	ND	0.16	"								
Chlorobenzene	ND	0.46	"								
Chloroethane	ND	0.26	"								
Chloroform	ND	0.49	"								
Chloromethane	ND	0.21	"								
cis-1,2-Dichloroethylene	ND	0.099	"								
cis-1,3-Dichloropropylene	ND	0.45	"								
Cyclohexane	ND	0.34	"								
Dibromochloromethane	ND	0.85	"								
Dichlorodifluoromethane	ND	0.49	"								
Ethyl acetate	ND	0.72	"								
Ethyl Benzene	ND	0.43	"								
Hexachlorobutadiene	ND	1.1	"								
Isopropanol	ND	0.49	"								
Methyl Methacrylate	ND	0.49	"								
Methyl tert-butyl ether (MTBE)	ND	0.36	"								
Methylene chloride	ND	0.69	"								
n-Heptane	ND	0.09	"								
Trepunie	ND	U. 4 1									

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 7 of 16

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BL71104-BLK1)						Pre	pared & Analyzed: 12/22/2017
-Hexane	ND	0.35	ug/m³				<u>-</u>
-Xylene	ND	0.43	ug/III				
& m- Xylenes	ND	0.43					
Ethyltoluene	ND	0.49					
opylene	ND ND	0.49	,,				
yrene	ND ND	0.17	,,				
trachloroethylene	ND ND	0.43	"				
trahydrofuran	ND ND	0.17	,,				
luene	ND ND	0.39	,,				
ns-1,2-Dichloroethylene	ND ND	0.38	,,				
ns-1,3-Dichloropropylene	ND ND	0.40	,,				
chloroethylene	ND ND		,,				
chlorofluoromethane (Freon 11)		0.13	,,				
	ND	0.56	,,				
nyl acetate	ND	0.35	,,				
nyl bromide nyl Chloride	ND	0.44	"				
Tyl Chloride	ND	0.064					
rogate: p-Bromofluorobenzene	8.30		ppbv	10.0	83.0	70-130	
CS (BL71104-BS1)						Pre	pared & Analyzed: 12/22/2017
,1,2-Tetrachloroethane	10.0		ppbv	10.0	100	70-130	
,1-Trichloroethane	10.7		"	10.0	107	70-130	
,2,2-Tetrachloroethane	9.55		"	10.0	95.5	70-130	
2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.9		"	10.0	109	70-130	
2-Trichloroethane	9.08		"	10.0	90.8	70-130	
-Dichloroethane	9.98		"	10.0	99.8	70-130	
-Dichloroethylene	9.54		"	10.0	95.4	70-130	
,4-Trichlorobenzene	8.69		"	10.0	86.9	70-130	
,4-Trimethylbenzene	9.61		"	10.0	96.1	70-130	
-Dibromoethane	9.31		"	10.0	93.1	70-130	
2-Dichlorobenzene	9.70		"	10.0	97.0	70-130	
-Dichloroethane	9.84		"	10.0	98.4	70-130	
-Dichloropropane	8.59		"	10.0	85.9	70-130	
-Dichlorotetrafluoroethane	9.14			10.0	91.4	70-130	
,5-Trimethylbenzene	9.63		"	10.0	96.3	70-130	
-Butadiene	9.17			10.0	91.7	70-130	
-Dichlorobenzene	9.34			10.0	93.4	70-130	
-Dichloropropane	8.79		"	10.0	87.9	70-130	
-Dichlorobenzene	9.06		,,	10.0	90.6	70-130	
-Dioxane	9.06 7.74		,,	10.0	90.6 77.4	70-130	
Butanone	8.77		,,	10.0	87.7	70-130	
Hexanone	7.37		,,	10.0	73.7	70-130	
Chloropropene			,,				
	9.39		,,	10.0	93.9	70-130	
Methyl-2-pentanone	8.09		,,	10.0	80.9	70-130	
etone	7.82		,,	10.0	78.2	70-130	
rylonitrile	9.66		,,	10.0	96.6	70-130	
nzene	10.0			10.0	100	70-130	
nzyl chloride	9.37			10.0	93.7	70-130	
omodichloromethane	9.27		"	10.0	92.7	70-130	
omoform	10.6		"	10.0	106	70-130	. D.
omomethane	6.15		"	10.0	61.5	70-130	Low Bias
rbon disulfide	10.4		"	10.0	104	70-130	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BL71104-BS1)					Prep	pared & Analyzed: 12/22/2017
Carbon tetrachloride	11.2	ppbv	10.0	112	70-130	
Chlorobenzene	9.51	"	10.0	95.1	70-130	
Chloroethane	5.69	"	10.0	56.9	70-130	Low Bias
Chloroform	10.4	"	10.0	104	70-130	
Chloromethane	10.0	"	10.0	100	70-130	
cis-1,2-Dichloroethylene	8.53	"	10.0	85.3	70-130	
cis-1,3-Dichloropropylene	9.58	"	10.0	95.8	70-130	
Cyclohexane	9.75	"	10.0	97.5	70-130	
Dibromochloromethane	9.71	"	10.0	97.1	70-130	
Dichlorodifluoromethane	9.40	"	10.0	94.0	70-130	
Ethyl acetate	9.27	"	10.0	92.7	70-130	
Ethyl Benzene	9.36	"	10.0	93.6	70-130	
Hexachlorobutadiene	10.2	"	10.0	102	70-130	
sopropanol	8.82	"	10.0	88.2	70-130	
Methyl Methacrylate	8.98	"	10.0	89.8	70-130	
Methyl tert-butyl ether (MTBE)	9.41	"	10.0	94.1	70-130	
Methylene chloride	9.47	"	10.0	94.7	70-130	
n-Heptane	9.23	"	10.0	92.3	70-130	
n-Hexane	9.77	"	10.0	97.7	70-130	
p-Xylene	9.59	"	10.0	95.9	70-130	
o- & m- Xylenes	18.7	"	20.0	93.6	70-130	
p-Ethyltoluene	9.98	"	10.0	99.8	70-130	
Propylene	7.95	"	10.0	79.5	70-130	
Styrene	9.74	"	10.0	97.4	70-130	
Tetrachloroethylene	7.46	"	10.0	74.6	70-130	
Tetrahydrofuran	9.03	"	10.0	90.3	70-130	
Гoluene	9.01	"	10.0	90.1	70-130	
rans-1,2-Dichloroethylene	9.93	"	10.0	99.3	70-130	
rans-1,3-Dichloropropylene	10.0	"	10.0	100	70-130	
Trichloroethylene	9.21	"	10.0	92.1	70-130	
Trichlorofluoromethane (Freon 11)	8.86	"	10.0	88.6	70-130	
Vinyl acetate	11.9	"	10.0	119	70-130	
Vinyl bromide	7.83	"	10.0	78.3	70-130	
Vinyl Chloride	8.73	"	10.0	87.3	70-130	

10.0

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

9.71

Surrogate: p-Bromofluorobenzene

97.1

70-130

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RL 71325 -	EPA TO15 PREP	
рансп			

Blank (BL71325-BLK1)				Prepared & Analyzed: 12/29/20
,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
,1,1-Trichloroethane	ND	0.55	"	
,1,2,2-Tetrachloroethane	ND	0.69	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"	
,1,2-Trichloroethane	ND	0.55	"	
,1-Dichloroethane	ND	0.40	"	
,1-Dichloroethylene	ND	0.099	"	
,2,4-Trichlorobenzene	ND	0.74	"	
,2,4-Trimethylbenzene	ND	0.49	II .	
,2-Dibromoethane	ND	0.77	II .	
,2-Dichlorobenzene	ND	0.60	II .	
,2-Dichloroethane	ND	0.40	"	
,2-Dichloropropane	ND	0.46	"	
,2-Dichlorotetrafluoroethane	ND	0.70	"	
,3,5-Trimethylbenzene	ND	0.49	"	
,3-Butadiene	ND	0.66	"	
,3-Dichlorobenzene	ND	0.60	"	
,3-Dichloropropane	ND	0.46	"	
,4-Dichlorobenzene	ND	0.60	"	
,4-Dioxane	ND	0.72	II .	
-Butanone	ND ND	0.72	II .	
-Hexanone	ND	0.82	II .	
-Chloropropene	ND	1.6	II .	
-Methyl-2-pentanone	ND ND	0.41	11	
cetone	ND ND	0.41	11	
crylonitrile	ND ND	0.48	11	
enzene	ND	0.32	II .	
enzyl chloride	ND ND	0.52	"	
Bromodichloromethane	ND ND	0.52	11	
Bromoform	ND ND	1.0	11	
Bromomethane	ND ND	0.39	11	
arbon disulfide	ND ND	0.39	11	
arbon tetrachloride			"	
Chlorobenzene	ND	0.16	"	
Chloroethane	ND	0.46	"	
Chloroform	ND	0.26	11	
Chloromethane	ND ND	0.49	"	
is-1,2-Dichloroethylene	ND ND	0.21 0.099	"	
is-1,3-Dichloropropylene			"	
Syclohexane	ND	0.45	"	
Dibromochloromethane	ND ND	0.34	"	
Dichlorodifluoromethane		0.85	"	
Ethyl acetate	ND	0.49	"	
thyl Benzene	ND	0.72	"	
-	ND	0.43	"	
Hexachlorobutadiene sopropanol	ND	1.1	"	
	ND	0.49		
Methyl Methacrylate	ND	0.41	"	
Methyl tert-butyl ether (MTBE)	ND	0.36		
Methylene chloride -Heptane	ND ND	0.69	"	
	NIIX	0.41	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 10 of 16

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BL71325 - EPA TO15 PREP							
Blank (BL71325-BLK1)						Prep	pared & Analyzed: 12/29/2017
o-Xylene	ND	0.43	ug/m³				
o- & m- Xylenes	ND	0.87	"				
Ethyltoluene	ND	0.49	"				
ropylene	ND	0.17	"				
yrene	ND	0.43	"				
etrachloroethylene	ND	0.17	"				
etrahydrofuran	ND	0.59	"				
pluene	ND	0.38	"				
ans-1,2-Dichloroethylene	ND	0.40	"				
nns-1,3-Dichloropropylene	ND	0.45	"				
ichloroethylene	ND	0.13	"				
ichlorofluoromethane (Freon 11)	ND	0.56	"				
nyl acetate	ND	0.35	"				
nyl bromide	ND	0.44	"				
inyl Chloride	ND	0.064	"				
urrogate: p-Bromofluorobenzene	8.38	0.004	ppbv	10.0	83.8	70-130	
	0.50		ppov	10.0	03.0		agency of Amelyzada 12/20/2017
CS (BL71325-BS1)	0.06		,	10.0	00.6		pared & Analyzed: 12/29/2017
1,1,2-Tetrachloroethane	9.06		ppbv "	10.0	90.6	70-130	
1,1-Trichloroethane	8.23			10.0	82.3	70-130	
1,2,2-Tetrachloroethane	9.20		"	10.0	92.0	70-130	
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.00		"	10.0	90.0	70-130	
1,2-Trichloroethane	8.92		"	10.0	89.2	70-130	
-Dichloroethane	9.23		"	10.0	92.3	70-130	
1-Dichloroethylene	8.82		"	10.0	88.2	70-130	
2,4-Trichlorobenzene	7.67		"	10.0	76.7	70-130	
2,4-Trimethylbenzene	9.54		"	10.0	95.4	70-130	
2-Dibromoethane	8.58		"	10.0	85.8	70-130	
2-Dichlorobenzene	9.45		"	10.0	94.5	70-130	
2-Dichloroethane	7.65		"	10.0	76.5	70-130	
2-Dichloropropane	9.11		"	10.0	91.1	70-130	
2-Dichlorotetrafluoroethane	9.46		"	10.0	94.6	70-130	
3,5-Trimethylbenzene	9.49		"	10.0	94.9	70-130	
3-Butadiene	7.09		"	10.0	70.9	70-130	
3-Dichlorobenzene	9.46		"	10.0	94.6	70-130	
3-Dichloropropane	8.86		"	10.0	88.6	70-130	
4-Dichlorobenzene	9.59		"	10.0	95.9	70-130	
4-Dioxane	10.8		"	10.0	108	70-130	
Butanone	7.93		"	10.0	79.3	70-130	
Hexanone	10.1		"	10.0	101	70-130	
Chloropropene	8.53		"	10.0	85.3	70-130	
Methyl-2-pentanone	9.23		"	10.0	92.3	70-130	
cetone	6.28		"	10.0	62.8	70-130	Low Bias
crylonitrile	8.84		,,	10.0	88.4	70-130	Zon Dius
enzene	8.95		,,	10.0	89.5	70-130	
enzyl chloride			,,				
	9.49		,,	10.0	94.9	70-130	
romodichloromethane	8.73		"	10.0	87.3	70-130	
romoform	9.45		"	10.0	94.5	70-130	
romomethane	11.1			10.0	111	70-130	
arbon disulfide	9.70		"	10.0	97.0	70-130	
arbon tetrachloride	8.19		"	10.0	81.9	70-130	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 11 of 16

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BL71325-BS1)					Prepared & Analyzed: 12/29/2017
Chlorobenzene	8.85	ppbv	10.0	88.5	70-130
Chloroethane	12.6	"	10.0	126	70-130
Chloroform	8.39	"	10.0	83.9	70-130
Chloromethane	7.16	"	10.0	71.6	70-130
eis-1,2-Dichloroethylene	7.33	"	10.0	73.3	70-130
eis-1,3-Dichloropropylene	9.11	"	10.0	91.1	70-130
Cyclohexane	9.48	"	10.0	94.8	70-130
Dibromochloromethane	8.98	"	10.0	89.8	70-130
Dichlorodifluoromethane	9.60	"	10.0	96.0	70-130
Ethyl acetate	8.02	"	10.0	80.2	70-130
Ethyl Benzene	9.18	"	10.0	91.8	70-130
Hexachlorobutadiene	9.43	"	10.0	94.3	70-130
sopropanol	8.19	"	10.0	81.9	70-130
Methyl Methacrylate	9.10	"	10.0	91.0	70-130
Methyl tert-butyl ether (MTBE)	8.65	"	10.0	86.5	70-130
Methylene chloride	8.58	"	10.0	85.8	70-130
-Heptane	8.78	"	10.0	87.8	70-130
-Hexane	8.02	"	10.0	80.2	70-130
-Xylene	9.27	"	10.0	92.7	70-130
- & m- Xylenes	18.4	"	20.0	92.2	70-130
-Ethyltoluene	9.42	"	10.0	94.2	70-130
Propylene	9.09	"	10.0	90.9	70-130
Styrene	9.31	"	10.0	93.1	70-130
Tetrachloroethylene	7.61	"	10.0	76.1	70-130
Tetrahydrofuran	9.29	"	10.0	92.9	70-130
Coluene	8.89	"	10.0	88.9	70-130
rans-1,2-Dichloroethylene	8.71	"	10.0	87.1	70-130
rans-1,3-Dichloropropylene	9.22	"	10.0	92.2	70-130
Trichloroethylene	8.01	"	10.0	80.1	70-130
Frichlorofluoromethane (Freon 11)	8.93	"	10.0	89.3	70-130
Vinyl acetate	8.57	"	10.0	85.7	70-130
Vinyl bromide	10.4	"	10.0	104	70-130
Vinyl Chloride	7.14	"	10.0	71.4	70-130
Surrogate: p-Bromofluorobenzene	9.62	"	10.0	96.2	70-130
o Save. p Diomojinoi o o cinzene	2.02		10.0	70.2	, 0 100

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 16

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-TD	The sample was re	eceived in a tedlar had	which is not come	pliant with EPA TO-15	requirements
10-10	The sample was re	octived ili a tediai baş	willen is not comp	phant with Lin 10-15	equirements.

OL-03 This LCS analyte recovered outside of acceptance limits. The LCS contains approximately 70 compounds, a limited number of

which may be outside acceptance windows.

IS-LO The internal std associated with this target compound did not meet acceptance criteria (area <50% CCV) at the stated dilution due to

matrix effects. Sample was rerun to confirm matrix effects.

CCV-A The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>30%

Difference for average Rf). This applies to dectected analytes only.

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL) ND

REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve. RL

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the

lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDI METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is Non-Dir. outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user

Certification for pH is no longer offered by NYDOH ELAP.

STRATFORD, CT 06615 120 RESEARCH DRIVE 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 14 of 16

RICHMOND HILL, NY 11418

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 15 of 16

Technical Report

prepared for:

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 **Attention: Chris Linkletter**

Report Date: 06/28/2018

Client Project ID: 1104g-15-03 York Project (SDG) No.: 18F1062

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 06/28/2018 Client Project ID: 1104g-15-03 York Project (SDG) No.: 18F1062

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 Attention: Chris Linkletter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 21, 2018 and listed below. The project was identified as your project: 1104g-15-03.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18F1062-01	Effluent 0620	Air	06/20/2018	06/21/2018

General Notes for York Project (SDG) No.: 18F1062

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director >A-

06/28/2018

Date:

Client Sample ID: York Sample ID: 18F1062-01

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 18F1062
 1104g-15-03
 Air
 June 20, 2018 12:00 pm
 06/21/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	10-10	Sample Notes

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Me	thod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications:		06/26/2018 00:18	06/26/2018 00:18	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.77	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.40	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.099	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.74	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
95-63-6	1,2,4-Trimethylbenzene	1.3		ug/m³	0.49	1	EPA TO-15 Certifications: NE	ELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen	06/26/2018 00:18 s	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.77	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.40	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.70	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.49	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.66	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications:		06/26/2018 00:18	06/26/2018 00:18	LDS
106-46-7	1,4-Dichlorobenzene	140		ug/m³	0.60	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
								ELAC-NY	12058,NJDEP-Queen		
123-91-1	1,4-Dioxane	ND		ug/m³	0.72	1	EPA TO-15 Certifications: NE	LAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
78-93-3	2-Butanone	7.3		ug/m³	0.29	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
								ELAC-NY	12058,NJDEP-Queen		
591-78-6	* 2-Hexanone	ND		ug/m³	0.82	1	EPA TO-15 Certifications:		06/26/2018 00:18	06/26/2018 00:18	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 3 of 14

Client Sample ID: Effluent 0620

York Sample ID: 18F1062-01

York Project (SDG) No. 18F1062

Client Project ID 1104g-15-03 Matrix Air Collection Date/Time
June 20, 2018 12:00 pm

Date Received 06/21/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	TO-TD	Sample Notes:
----------------------	-------	---------------

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND	ug/m³	1.6	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
108-10-1	4-Methyl-2-pentanone	5.1	ug/m³	0.41	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
			· ·			Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
67-64-1	Acetone	93	ug/m³	0.48	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
107-13-1	Acrylonitrile	ND	ug/m³	0.22	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
71-43-2	Benzene	0.96	ug/m³	0.32	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
100-44-7	Benzyl chloride	ND	ug/m³	0.52	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-27-4	Bromodichloromethane	ND	ug/m³	0.67	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-25-2	Bromoform	ND	ug/m³	1.0	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
74-83-9	Bromomethane	ND	ug/m³	0.39	1	EPA TO-15		06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-15-0	Carbon disulfide	2.6	ug/m³	0.31	1	EPA TO-15	NELAC-N1	06/26/2018 00:18	06/26/2018 00:18	LDS
, 5 15 0		2.0	ug	0.51	•	Certifications:	NELAC-N	Y12058,NJDEP-Queen		LDO
56-23-5	Carbon tetrachloride	0.44	ug/m³	0.16	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen	is	
108-90-7	Chlorobenzene	ND	ug/m³	0.46	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-00-3	Chloroethane	2.0	ug/m³	0.26	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
67-66-3	Chloroform	3.6	ug/m³	0.49	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen		
74-87-3	Chloromethane	3.6	ug/m³	0.21	1	EPA TO-15 Certifications:	NEL AC NO	06/26/2018 00:18 Y12058,NJDEP-Queen	06/26/2018 00:18	LDS
156-59-2	. 100:11 4.1	MD	v.c/m³	0.099	1	EPA TO-15	NELAC-N	06/26/2018 00:18	06/26/2018 00:18	LDS
130-39-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.077	1		NELAC-NY	12058,NJDEP-Queens		LDS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.45	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
110-82-7	Cyclohexane	0.83	ug/m³	0.34	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
124-48-1	Dibromochloromethane	ND	ug/m³	0.85	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
75-71-8	Dichlorodifluoromethane	2.0	ug/m³	0.49	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
141-78-6	* Ethyl acetate	1.2	ug/m³	0.72	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:				
100-41-4	Ethyl Benzene	1.0	ug/m³	0.43	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queen	IS	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 14

Client Sample ID: Effluent 0620

York Sample ID: 18F1062-01

York Project (SDG) No. 18F1062 Client Project ID 1104g-15-03 Matrix Air Collection Date/Time
June 20, 2018 12:00 pm

Date Received 06/21/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	TO-TD	Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
37-68-3	Hexachlorobutadiene	ND		ug/m³	1.1	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen:	06/26/2018 00:18	LDS
7-63-0	Isopropanol	44		ug/m³	0.49	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
0-62-6	Methyl Methacrylate	ND		ug/m³	0.41	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen	06/26/2018 00:18 s	LDS
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.36	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen:	06/26/2018 00:18 s	LDS
5-09-2	Methylene chloride	2.6		ug/m³	0.69	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
42-82-5	n-Heptane	13		ug/m³	0.41	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
10-54-3	n-Hexane	1.8		ug/m³	0.35	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
5-47-6	o-Xylene	0.87		ug/m³	0.43	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
79601-23-1	p- & m- Xylenes	2.5		ug/m³	0.87	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
2-96-8	* p-Ethyltoluene	0.98		ug/m³	0.49	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:				
5-07-1	* Propylene	16		ug/m³	0.17	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:				
0-42-5	Styrene	3.1		ug/m³	0.43	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
7-18-4	Tetrachloroethylene	1600		ug/m³	1.7	10	EPA TO-15		06/26/2018 10:14	06/26/2018 10:14	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
9-99-9	* Tetrahydrofuran	ND		ug/m³	0.59	1	EPA TO-15 Certifications:		06/26/2018 00:18	06/26/2018 00:18	LDS
8-88-3	Toluene	5.6		ug/m³	0.38	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.40	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen:	06/26/2018 00:18 s	LDS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.45	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen:	06/26/2018 00:18 s	LDS
9-01-6	Trichloroethylene	0.27		ug/m³	0.13	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
-69-4	Trichlorofluoromethane (Freon 11)	1.5		ug/m³	0.56	1	EPA TO-15		06/26/2018 00:18	06/26/2018 00:18	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
08-05-4	Vinyl acetate	ND		ug/m³	0.35	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen	06/26/2018 00:18 s	LDS
93-60-2	Vinyl bromide	ND		ug/m³	0.44	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queen:	06/26/2018 00:18 s	LDS
5-01-4	Vinyl Chloride	ND		ug/m³	0.064	1	EPA TO-15 Certifications:	NELAC-NY	06/26/2018 00:18 12058,NJDEP-Queens	06/26/2018 00:18	LDS
	Surrogate Recoveries	Result		Acceptai	ice Range						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 14

Client Sample ID: Effluent 0620

York Sample ID: 18F1062-01

Collection Date/Time

Client Project ID York Project (SDG) No. 18F1062 1104g-15-03

Matrix June 20, 2018 12:00 pm Air

Date Received 06/21/2018

Volatile Organics, EPA TO15 Full List

TO-TD **Log-in Notes: Sample Notes:**

Sample Prepared by Method: EPA TO15 PREP

CAS	No.	Parameter	Result	Flag	Units		Reported t	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
460-00-4	Surrogate: p-B	romofluorobenzene	110 %			70-130						

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE **RICHMOND HILL, NY 11418** FAX (203) 357-0166 ClientServices@ Page 6 of 14

www.YORKLAB.com (203) 325-1371

Analytical Batch Summary

Batch ID: BF81413 Preparation Method: EPA TO15 PREP Prepared By:	LDS
--	-----

YORK Sample ID	Client Sample ID	Preparation Date
18F1062-01	Effluent 0620	06/26/18
18F1062-01RE1	Effluent 0620	06/26/18
BF81413-BLK1	Blank	06/25/18
BF81413-BS1	LCS	06/25/18

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

7 that yee	Result	Limit	Omto	LCVCI	Result	/UKLC	Limits	1 146	1412	2,,,,,,	1 146
Batch BF81413 - EPA TO15 PREP											
Blank (BF81413-BLK1)							Prep	ared & Anal	yzed: 06/25/2	2018	
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³								
1,1,1-Trichloroethane	ND	0.55	"								
1,1,2,2-Tetrachloroethane	ND	0.69	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"								
1,1,2-Trichloroethane	ND	0.55	"								
1,1-Dichloroethane	ND	0.40	"								
1,1-Dichloroethylene	ND	0.099	"								
1,2,4-Trichlorobenzene	ND	0.74	"								
1,2,4-Trimethylbenzene	ND	0.49	"								
1,2-Dibromoethane	ND	0.77	"								
1,2-Dichlorobenzene	ND	0.60	"								
1,2-Dichloroethane	ND	0.40	,,								
1,2-Dichloropropane	ND	0.46	,,								
1,2-Dichlorotetrafluoroethane	ND	0.70	,,								
1,3,5-Trimethylbenzene	ND	0.70	,,								
1,3-Butadiene	ND	0.66	,,								
1,3-Dichlorobenzene	ND	0.60	,,								
1,3-Dichloropropane	ND	0.46	,,								
1,4-Dichlorobenzene	ND ND	0.40	"								
1,4-Dioxane	ND ND		,,								
2-Butanone		0.72	,,								
2-Hexanone	ND ND	0.29	,,								
		0.82	"								
3-Chloropropene	ND ND	1.6	,,								
4-Methyl-2-pentanone Acetone		0.41	,,								
Acrylonitrile	ND	0.48	,,								
-	ND	0.22	,,								
Benzene	ND	0.32	,,								
Benzyl chloride	ND	0.52	,,								
Bromodichloromethane	ND	0.67	,,								
Bromoform	ND	1.0	,,								
Bromomethane	ND	0.39									
Carbon disulfide	ND	0.31	"								
Carbon tetrachloride	ND	0.16	"								
Chlorobenzene	ND	0.46	"								
Chloroethane	ND	0.26	"								
Chloroform	ND	0.49	"								
Chloromethane	ND	0.21	"								
cis-1,2-Dichloroethylene	ND	0.099	"								
cis-1,3-Dichloropropylene	ND	0.45	"								
Cyclohexane	ND	0.34	"								
Dibromochloromethane	ND	0.85	"								
Dichlorodifluoromethane	ND	0.49	"								
Ethyl acetate	ND	0.72	"								
Ethyl Benzene	ND	0.43	"								
Hexachlorobutadiene	ND	1.1	"								
Isopropanol	ND	0.49	"								
Methyl Methacrylate	ND	0.41	"								
Methyl tert-butyl ether (MTBE)	ND	0.36	"								
Methylene chloride	ND	0.69	"								
n-Heptane	ND	0.41	"								

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 14

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

1 mary to					 , orther	
Batch BF81413 - EPA TO15 PREP						
Blank (BF81413-BLK1)						Prepared & Analyzed: 06/25/2018
n-Hexane	ND	0.35	ug/m³			
o-Xylene	ND	0.43	"			
p- & m- Xylenes	ND	0.87	"			
p-Ethyltoluene	ND	0.49	"			
Propylene	ND	0.17	"			
Styrene	ND	0.43	"			
Tetrachloroethylene	ND	0.17	"			
Tetrahydrofuran	ND	0.59	"			
Toluene	ND	0.38	"			
trans-1,2-Dichloroethylene	ND	0.40	"			
trans-1,3-Dichloropropylene	ND	0.45	"			
Trichloroethylene	ND	0.13	"			
Trichlorofluoromethane (Freon 11)	ND	0.56	"			
Vinyl acetate	ND	0.35	"			
Vinyl bromide	ND	0.44	"			
Vinyl Chloride	ND	0.064	"			
Surrogate: p-Bromofluorobenzene	9.10	0.001	ppbv	10.0	91.0	70-130
	2.10		ppor	10.0	71.0	Prepared & Analyzed: 06/25/2018
LCS (BF81413-BS1) 1,1,2-Tetrachloroethane	9.78		ppbv	10.0	97.8	70-130
1,1,1-Trichloroethane	10.0		ppov "	10.0	100	70-130
1,1,2,2-Tetrachloroethane	9.87		"	10.0		70-130
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)			,,		98.7	
1,1,2-Trichloroethane	10.1 9.85		"	10.0 10.0	101	70-130 70-130
1,1-Dichloroethane			,,		98.5	
	9.92		"	10.0	99.2	70-130
1,1-Dichloroethylene	9.09		"	10.0	90.9	70-130
1,2,4-Trichlorobenzene	9.77		,,	10.0	97.7	70-130
1,2,4-Trimethylbenzene	9.89		,,	10.0	98.9	70-130
1,2-Dibromoethane	9.94		"	10.0	99.4	70-130
1,2-Dichlorobenzene	11.0		"	10.0	110	70-130
1,2-Dichloroethane	9.86		,,	10.0	98.6	70-130
1,2-Dichloropropane	9.55		"	10.0	95.5	70-130
1,2-Dichlorotetrafluoroethane	10.4		"	10.0	104	70-130
1,3,5-Trimethylbenzene	9.68		"	10.0	96.8	70-130
1,3-Butadiene	9.86		"	10.0	98.6	70-130
1,3-Dichlorobenzene	11.3		"	10.0	113	70-130
1,3-Dichloropropane	9.59			10.0	95.9	70-130
1,4-Dichlorobenzene	11.6		"	10.0	116	70-130
1,4-Dioxane	8.78		"	10.0	87.8	70-130
2-Butanone	9.61		"	10.0	96.1	70-130
2-Hexanone	10.1		"	10.0	101	70-130
3-Chloropropene	9.46		"	10.0	94.6	70-130
4-Methyl-2-pentanone	9.64		"	10.0	96.4	70-130
Acetone	9.15		"	10.0	91.5	70-130
Acrylonitrile	10.3		"	10.0	103	70-130
Benzene	9.46		"	10.0	94.6	70-130
Benzyl chloride	10.6		"	10.0	106	70-130
Bromodichloromethane	9.90		"	10.0	99.0	70-130
Bromoform	10.3		"	10.0	103	70-130
Bromomethane	9.75		"	10.0	97.5	70-130
Carbon disulfide	10.7		"	10.0	107	70-130

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BF81413-BS1)					Prepare	d & Analyzed: 06/25/2018
Carbon tetrachloride	9.22	ppbv	10.0	92.2	70-130	
Chlorobenzene	9.85	"	10.0	98.5	70-130	
Chloroethane	11.2	"	10.0	112	70-130	
Chloroform	9.97	"	10.0	99.7	70-130	
Chloromethane	10.0	"	10.0	100	70-130	
eis-1,2-Dichloroethylene	9.36	"	10.0	93.6	70-130	
cis-1,3-Dichloropropylene	9.97	"	10.0	99.7	70-130	
Cyclohexane	9.85	"	10.0	98.5	70-130	
Dibromochloromethane	10.0	"	10.0	100	70-130	
Dichlorodifluoromethane	10.4	"	10.0	104	70-130	
Ethyl acetate	9.67	"	10.0	96.7	70-130	
Ethyl Benzene	9.24	"	10.0	92.4	70-130	
Hexachlorobutadiene	9.75	"	10.0	97.5	70-130	
sopropanol	11.1	"	10.0	111	70-130	
Methyl Methacrylate	9.82	"	10.0	98.2	70-130	
Methyl tert-butyl ether (MTBE)	17.6	"	10.0	176	70-130 H	igh Bias
Methylene chloride	9.93	"	10.0	99.3	70-130	
n-Heptane	9.28	"	10.0	92.8	70-130	
n-Hexane	9.92	"	10.0	99.2	70-130	
-Xylene	9.14	"	10.0	91.4	70-130	
- & m- Xylenes	18.8	"	20.0	94.0	70-130	
-Ethyltoluene	10.7	"	10.0	107	70-130	
Propylene	9.63	"	10.0	96.3	70-130	
Styrene	10.3	"	10.0	103	70-130	
Tetrachloroethylene	10.6	"	10.0	106	70-130	
Tetrahydrofuran	9.68	"	10.0	96.8	70-130	
oluene	9.29	"	10.0	92.9	70-130	
rans-1,2-Dichloroethylene	10.2	"	10.0	102	70-130	
rans-1,3-Dichloropropylene	9.60	"	10.0	96.0	70-130	
Trichloroethylene	9.03	"	10.0	90.3	70-130	
Crichlorofluoromethane (Freon 11)	9.99	"	10.0	99.9	70-130	
Vinyl acetate	14.6	"	10.0	146	70-130 H	igh Bias
/inyl bromide	10.5	"	10.0	105	70-130	

10.0

10.0

98.9

105

70-130

70-130

120 RESEARCH DRIVE www.YORKLAB.com

Vinyl Chloride

 ${\it Surrogate: p-Bromofluor obenzene}$

STRATFORD, CT 06615 (203) 325-1371

9.89

10.5

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 14

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-TD The sample was received in a tedlar bag which is not compliant with EPA TO-15 requirements.

OL-03 This LCS analyte recovered outside of acceptance limits. The LCS contains approximately 70 compounds, a limited number of

which may be outside acceptance windows.

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL. REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

Not reported NR

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 12 of 14

RICHMOND HILL, NY 11418

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc.

132-02 89th Ave Queens, NY 11418 120 Research Drive Stratford, CT 06615

clientservices@yorklab.com www.yorklab.com

Field Chain-of-Custody Record

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

YORK Project No.

of 1

Container Description **Turn-Around Time** YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) Temp. Received at Lab Special Instruction 1x tedlar bag Standard (5-7 Day) RUSH - Three Day Field Filtered Lab to Filter RUSH - Next Day RUSH - Four Day RUSH - Two Day NJDEP SRP HazSite Standard Excel EDD EQuIS (Standard) NYSDEC EQUIS ZnAc YOUR Project Number YOUR Project Name Report / EDD Type (circle selections) 11049-15-03 Other: Cinderella Preservation: (check all that apply NaOH Analysis Requested Samples Received by / Company CT RCP DQA/DUE NJDEP Reduced H2SO4 Deliverables YOUR PO#: NJDKQP CT RCP 70-15 HNO3 Other: NY ASP B Package NY ASP A Package Summary Report МеОН Ascorbic Acid QA Report Invoice To: 고 모 Date/Time Sampled 6/20/18 12:00 Samples From SAME Pennsylvania Connecticut New Jersey **New York** Other DW - drinking water Matrix Codes GW - groundwater Sample Matrix WW - wastewater O-Oil Other S - soil / solid Air Report To 6/20/18 15:00 E-mair.

C. 1: ALLeHer(の Fpm- group) complete. Samples Please print clearly and legibly. All information must be complete. Samples questions by YORK are resolved. SAME Samples Collected by: (print your name above and sign below) Sample Identification Chris Linkletter FPM E FF West 0620 Rokonkoma NY 11719 Address: 909 Marcen: Avenue YOUR Information Chris Linkletter (631) 737 - 6200 FPM Grayp Comments: Page 14 of 14

Technical Report

prepared for:

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 Attention: Chris Linkletter

Report Date: 09/25/2018

Client Project ID: 1104g-18-05/01 Cinderella

York Project (SDG) No.: 1810756

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 09/25/2018

Client Project ID: 1104g-18-05/01 Cinderella

York Project (SDG) No.: 18I0756

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779 Attention: Chris Linkletter

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 19, 2018 and listed below. The project was identified as your project: 1104g-18-05/01 Cinderella.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18I0756-01	Effluent 091718	Vapor Extraction	09/17/2018	09/19/2018


General Notes for York Project (SDG) No.: 1810756

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia

Laboratory Director

09/25/2018

Date:

Client Sample ID: Effluent 091718

York Sample ID:

18I0756-01

York Project (SDG) No. 1810756

<u>Client Project ID</u> 1104g-18-05/01 Cinderella <u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 17, 2018 12:00 pm Date Received 09/19/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

TO-TD

Sample Notes:

	ed by Method: EPA TO15 PREP				Reported to				Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analys
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications:		09/22/2018 08:08	09/22/2018 08:08	LDS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.77	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 712058,NJDEP-Queens	09/22/2018 08:08	LDS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.40	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.099	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.74	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.49	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.77	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
107-06-2	1,2-Dichloroethane	8.3		ug/m³	0.40	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 712058,NJDEP-Queens	09/22/2018 08:08	LDS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.70	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.49	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 712058,NJDEP-Queens	09/22/2018 08:08	LDS
106-99-0	1,3-Butadiene	ND		ug/m³	0.66	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications:		09/22/2018 08:08	09/22/2018 08:08	LDS
106-46-7	1,4-Dichlorobenzene	28		ug/m³	0.60	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	IS	
123-91-1	1,4-Dioxane	ND		ug/m³	0.72	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
78-93-3	2-Butanone	3.4		ug/m³	0.29	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
591-78-6	* 2-Hexanone	ND		ug/m³	0.82	1	Certifications: EPA TO-15	NELAC-N	Y12058,NJDEP-Queen 09/22/2018 08:08	09/22/2018 08:08	LDS

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 3 of 16

Client Sample ID: Effluent 091718

York Sample ID: 18I0756-01

York Project (SDG) No. 18I0756 <u>Client Project ID</u> 1104g-18-05/01 Cinderella <u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 17, 2018 12:00 pm Date Received 09/19/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	TO-TD	Sample Notes:
----------------------	-------	---------------

CAS No	o. Parameter	Result Flag	Units	Reported to LOQ Dilu	ıtion	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND	ug/m³	1.6		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
108-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.41		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
67-64-1	Acetone	150	ug/m³	4.8		EPA TO-15 Certifications:	NELAC-N	09/24/2018 11:43 Y12058,NJDEP-Queens	09/24/2018 15:12	LDS
107-13-1	Acrylonitrile	ND	ug/m³	0.22		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
71-43-2	Benzene	ND	ug/m³	0.32		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
100-44-7	Benzyl chloride	ND	ug/m³	0.52		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-27-4	Bromodichloromethane	ND	ug/m³	0.67		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-25-2	Bromoform	ND	ug/m³	1.0		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
74-83-9	Bromomethane	ND	ug/m³	0.39	C	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-15-0	Carbon disulfide	5.0	ug/m³	0.31		EPA TO-15 Certifications:	NELAC-N	09/22/2018 08:08 Y12058,NJDEP-Queens	09/22/2018 08:08	LDS
56-23-5	Carbon tetrachloride	ND	ug/m³	0.16		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
108-90-7	Chlorobenzene	ND	ug/m³		C	EPA TO-15 Certifications:	NELAC-NY	12058,NJDEP-Queens		LDS
75-00-3	Chloroethane	6.3	ug/m³	0.26		EPA TO-15 Certifications:	NELAC-N	Y12058,NJDEP-Queens		LDS
67-66-3	Chloroform	5.3	ug/m³	0.49		EPA TO-15 Certifications:	NELAC-N	09/22/2018 08:08 Y12058,NJDEP-Queens	09/22/2018 08:08	LDS
74-87-3	Chloromethane	34	ug/m³	0.21		EPA TO-15 Certifications:	NELAC-N	09/22/2018 08:08 Y12058,NJDEP-Queens	09/22/2018 08:08	LDS
156-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.099		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.45		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
110-82-7	Cyclohexane	ND	ug/m³	0.34		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queens	09/22/2018 08:08	LDS
124-48-1	Dibromochloromethane	ND	ug/m³		C	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
75-71-8	Dichlorodifluoromethane	ND	ug/m³		C	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens		LDS
141-78-6	* Ethyl acetate	3.1	ug/m³		C	EPA TO-15 Certifications:		09/22/2018 08:08	09/22/2018 08:08	LDS
100-41-4	Ethyl Benzene	ND	ug/m³		C	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens		LDS
87-68-3	Hexachlorobutadiene	ND	ug/m³	1.1		EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 12058,NJDEP-Queens	09/22/2018 08:08	LDS
120 DES	SEARCH DRIVE	STRATEORD CT 06615		132-02 8	igth Δ\/	'ENLIE		RICHMOND HILL	NY 11418	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 4 of 16

Client Sample ID: Effluent 091718

York Sample ID: 18I0756-01

York Project (SDG) No. 18I0756

<u>Client Project ID</u> 1104g-18-05/01 Cinderella <u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 17, 2018 12:00 pm Date Received 09/19/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

<u>Log-in Notes:</u> TO-TD <u>Sample Notes:</u>

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
67-63-0	Isopropanol	25	ug/m³	0.49	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
80-62-6	Methyl Methacrylate	ND	ug/m³	0.41	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.36	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
75-09-2	Methylene chloride	7.0	ug/m³	0.69	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
142-82-5	n-Heptane	ND	ug/m³	0.41	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
110-54-3	n-Hexane	4.8	ug/m³	0.35	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
95-47-6	o-Xylene	ND	ug/m³	0.43	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
179601-23-1	p- & m- Xylenes	3.2	ug/m³	0.87	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	18	
622-96-8	* p-Ethyltoluene	ND	ug/m³	0.49	1	EPA TO-15 Certifications:		09/22/2018 08:08	09/22/2018 08:08	LDS
115-07-1	* Propylene	19	ug/m³	0.17	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:				
100-42-5	Styrene	2.3	ug/m³	0.43	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	1S	
127-18-4	Tetrachloroethylene	1300	ug/m³	1.7	10	EPA TO-15		09/24/2018 11:43	09/24/2018 15:12	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
109-99-9	* Tetrahydrofuran	ND	ug/m³	0.59	1	EPA TO-15 Certifications:		09/22/2018 08:08	09/22/2018 08:08	LDS
108-88-3	Toluene	6.4	ug/m³	0.38	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	18	
156-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	0.40	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	0.45	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
79-01-6	Trichloroethylene	3.9	ug/m³	0.13	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
75-69-4	Trichlorofluoromethane (Freon 11)	3.0	ug/m³	0.56	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
108-05-4	Vinyl acetate	ND	ug/m³	0.35	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
593-60-2	Vinyl bromide	ND	ug/m³	0.44	1	EPA TO-15 Certifications:	NELAC-NY	09/22/2018 08:08 /12058,NJDEP-Queen	09/22/2018 08:08 s	LDS
75-01-4	Vinyl Chloride	3.0	ug/m³	0.064	1	EPA TO-15		09/22/2018 08:08	09/22/2018 08:08	LDS
						Certifications:	NELAC-N	Y12058,NJDEP-Queer	ıs	
	Surrogate Recoveries	Result	Accepta	ance Range						
460-00-4	Surrogate: p-Bromofluorobenzene	99.1 %	-	70-130						
	Zana p Zanajmoroochiene	>>.1 /V	,							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 16

Analytical Batch Summary

Batch ID: BI81096 Preparation Method: EPA TO15 PREP Prepared By:	LDS
--	-----

Client Sample ID	Preparation Date	
Effluent 091718	09/22/18	
Blank	09/21/18	
LCS	09/21/18	
	Blank	Effluent 091718 09/22/18 Blank 09/21/18

Batch ID: BI81140 Preparation Method: EPA TO15 PREP Prepared By: LDS

YORK Sample ID	Client Sample ID	Preparation Date
18I0756-01RE1	Effluent 091718	09/24/18
BI81140-BLK1	Blank	09/24/18
BI81140-BS1	LCS	09/24/18

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI81096 - EPA TO15 PREP				
Blank (BI81096-BLK1)				Prepared & Analyzed: 09/21/2018
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
1,1,1-Trichloroethane	ND	0.55	"	
1,1,2,2-Tetrachloroethane	ND	0.69	"	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"	
1,1,2-Trichloroethane	ND	0.55	"	
1,1-Dichloroethane	ND	0.40	"	
1,1-Dichloroethylene	ND	0.099	"	
1,2,4-Trichlorobenzene	ND	0.74	"	
1,2,4-Trimethylbenzene	ND	0.49	"	
1,2-Dibromoethane	ND	0.77	"	
1,2-Dichlorobenzene	ND	0.60	"	
1,2-Dichloroethane	ND	0.40	"	
1,2-Dichloropropane	ND	0.46	"	
1,2-Dichlorotetrafluoroethane	ND	0.70	"	
1,3,5-Trimethylbenzene	ND	0.49	"	
1,3-Butadiene	ND	0.66	"	
1,3-Dichlorobenzene	ND	0.60	"	
1,3-Dichloropropane	ND	0.46	"	
1,4-Dichlorobenzene	ND	0.60	"	
1,4-Dioxane	ND	0.72	"	
2-Butanone	ND	0.29	"	
2-Hexanone	ND	0.82	"	
3-Chloropropene	ND	1.6	"	
4-Methyl-2-pentanone	ND	0.41	"	
Acetone	ND	0.48	"	
Acrylonitrile	ND	0.22	"	
Benzene	ND	0.32	"	
Benzyl chloride	ND	0.52	"	
Bromodichloromethane	ND	0.67	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	0.39	"	
Carbon disulfide	ND	0.31	"	
Carbon tetrachloride	ND	0.16	"	
Chlorobenzene	ND	0.46	"	
Chloroethane	ND	0.26	"	
Chloroform	ND	0.49	"	
Chloromethane	ND	0.21	"	
cis-1,2-Dichloroethylene	ND	0.099	"	
cis-1,3-Dichloropropylene	ND	0.45	"	
Cyclohexane	ND	0.34	"	
Dibromochloromethane	ND	0.85	"	
Dichlorodifluoromethane	ND	0.49	"	
Ethyl acetate	ND	0.72	"	
Ethyl Benzene	ND	0.43	"	
Hexachlorobutadiene	ND	1.1	"	
Isopropanol	ND	0.49	"	
Methyl Methacrylate	ND	0.41	"	
Methyl tert-butyl ether (MTBE)	ND	0.36	"	
Methylene chloride	ND	0.69	"	
n-Heptane	ND	0.41	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Time yee	resurt	Linne	Omio	Level	resure	/ UTCE C	Zimio - 6	
Batch BI81096 - EPA TO15 PREP								
Blank (BI81096-BLK1)							Prepared & Analyzed: 09/21/2018	
n-Hexane	ND	0.35	ug/m³					
o-Xylene	ND	0.43	"					
p- & m- Xylenes	ND	0.87	"					
p-Ethyltoluene	ND	0.49	"					
Propylene	ND	0.17	"					
Styrene	ND	0.43	"					
Tetrachloroethylene	ND	0.17	"					
Tetrahydrofuran	ND	0.59	"					
Toluene	ND	0.38	"					
trans-1,2-Dichloroethylene	ND	0.40	"					
trans-1,3-Dichloropropylene	ND	0.45	"					
Trichloroethylene	ND	0.13	"					
Trichlorofluoromethane (Freon 11)	ND	0.56	"					
Vinyl acetate	ND	0.35	"					
Vinyl bromide	ND	0.44	"					
Vinyl Chloride	ND	0.064	"					
		0.004						
Surrogate: p-Bromofluorobenzene	8.67		ppbv	10.0		86.7	70-130	
LCS (BI81096-BS1)							Prepared & Analyzed: 09/21/2018	
1,1,1,2-Tetrachloroethane	10.2		ppbv	10.0		102	70-130	
1,1,1-Trichloroethane	9.78		"	10.0		97.8	70-130	
1,1,2,2-Tetrachloroethane	10.2		"	10.0		102	70-130	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.2		"	10.0		102	70-130	
1,1,2-Trichloroethane	10.1		"	10.0		101	70-130	
1,1-Dichloroethane	9.79		"	10.0		97.9	70-130	
1,1-Dichloroethylene	8.87		"	10.0		88.7	70-130	
1,2,4-Trichlorobenzene	8.25		"	10.0		82.5	70-130	
1,2,4-Trimethylbenzene	10.1		"	10.0		101	70-130	
1,2-Dibromoethane	9.96		"	10.0		99.6	70-130	
1,2-Dichlorobenzene	11.1		"	10.0		111	70-130	
1,2-Dichloroethane	8.89		"	10.0		88.9	70-130	
1,2-Dichloropropane	9.72		"	10.0		97.2	70-130	
1,2-Dichlorotetrafluoroethane	10.8		"	10.0		108	70-130	
1,3,5-Trimethylbenzene	9.82		"	10.0		98.2	70-130	
1,3-Butadiene	10.0		"	10.0		100	70-130	
1,3-Dichlorobenzene	11.4		"	10.0		114	70-130	
1,3-Dichloropropane	9.69		"	10.0		96.9	70-130	
1,4-Dichlorobenzene	11.3		"	10.0		113	70-130	
1,4-Dioxane	8.13		"	10.0		81.3	70-130	
2-Butanone	8.85		"	10.0		88.5	70-130	
2-Hexanone	9.27		"	10.0		92.7	70-130	
3-Chloropropene	8.89		"	10.0		88.9	70-130	
4-Methyl-2-pentanone	9.36		"	10.0		93.6	70-130	
Acetone	8.34		"	10.0		83.4	70-130	
Acrylonitrile	10.0		"	10.0		100	70-130	
Benzene	9.54		"	10.0		95.4	70-130	
Benzyl chloride	9.82		"	10.0		93.4 98.2	70-130	
Bromodichloromethane	9.82 9.92		,,					
Bromoform	9.92 10.7		,,	10.0 10.0		99.2	70-130 70-130	
Bromomethane	9.45		"	10.0		107 94.5	70-130	
Carbon disulfide			"					
Carbon disunide	10.7			10.0		107	70-130	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

GG (DYOLOG C DGL)					Prepared & Analyzed: 09/21/2018
LCS (BI81096-BS1)					
Carbon tetrachloride	9.02	ppbv	10.0	90.2	70-130
Chlorobenzene	10.3	"	10.0	103	70-130
Chloroethane	11.1	"	10.0	111	70-130
Chloroform	9.78	"	10.0	97.8	70-130
Chloromethane	10.2	"	10.0	102	70-130
is-1,2-Dichloroethylene	9.18	"	10.0	91.8	70-130
is-1,3-Dichloropropylene	9.95	"	10.0	99.5	70-130
Cyclohexane	9.68	"	10.0	96.8	70-130
Dibromochloromethane	10.2	"	10.0	102	70-130
Dichlorodifluoromethane	10.1	"	10.0	101	70-130
Ethyl acetate	9.07	"	10.0	90.7	70-130
Ethyl Benzene	9.55	"	10.0	95.5	70-130
Hexachlorobutadiene	10.3	"	10.0	103	70-130
sopropanol	10.3	"	10.0	103	70-130
Methyl Methacrylate	9.66	"	10.0	96.6	70-130
Methyl tert-butyl ether (MTBE)	17.3	"	10.0	173	70-130 High Bias
fethylene chloride	9.53	"	10.0	95.3	70-130
-Heptane	8.86	"	10.0	88.6	70-130
-Hexane	9.87	"	10.0	98.7	70-130
-Xylene	9.40	"	10.0	94.0	70-130
- & m- Xylenes	19.4	"	20.0	97.2	70-130
-Ethyltoluene	10.4	"	10.0	104	70-130
ropylene	8.88	"	10.0	88.8	70-130
Styrene	10.5	"	10.0	105	70-130
etrachloroethylene	10.4	"	10.0	104	70-130
etrahydrofuran	8.97	"	10.0	89.7	70-130
Coluene	9.69	"	10.0	96.9	70-130
rans-1,2-Dichloroethylene	9.96	"	10.0	99.6	70-130
ans-1,3-Dichloropropylene	9.33	"	10.0	93.3	70-130
richloroethylene	9.24	"	10.0	92.4	70-130
richlorofluoromethane (Freon 11)	9.72	"	10.0	97.2	70-130
/inyl acetate	13.2	"	10.0	132	70-130 High Bias
/inyl bromide	10.5	"	10.0	105	70-130
/inyl Chloride	9.92	"	10.0	99.2	70-130

10.0

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

10.1

Surrogate: p-Bromofluorobenzene

101

70-130

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc.

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI81140 - EPA TO15 PREP

Blank (BI81140-BLK1)				
1,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
,1,1-Trichloroethane	ND	0.55	"	
,1,2,2-Tetrachloroethane	ND	0.69	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"	
,1,2-Trichloroethane	ND	0.55	"	
1,1-Dichloroethane	ND	0.40	"	
1,1-Dichloroethylene	ND	0.099	"	
1,2,4-Trichlorobenzene	ND	0.74	"	
1,2,4-Trimethylbenzene	ND	0.49	"	
1,2-Dibromoethane	ND	0.77	"	
1,2-Dichlorobenzene	ND	0.60	"	
1,2-Dichloroethane	ND	0.40	"	
1,2-Dichloropropane	ND	0.46	"	
1,2-Dichlorotetrafluoroethane	ND	0.70	"	
1,3,5-Trimethylbenzene	ND	0.49	"	
1,3-Butadiene	ND	0.66	"	
1,3-Dichlorobenzene	ND	0.60	"	
1,3-Dichloropropane	ND	0.46	"	
1,4-Dichlorobenzene	ND	0.60	"	
1.4-Dioxane	ND	0.72	"	
2-Butanone	ND	0.72	"	
2-Hexanone	ND	0.82	"	
3-Chloropropene	ND	1.6	"	
4-Methyl-2-pentanone	ND	0.41	"	
Acetone	ND	0.48	"	
Acrylonitrile	ND	0.22	"	
Benzene	ND	0.32	"	
Benzyl chloride	ND	0.52	"	
Bromodichloromethane	ND	0.67	"	
Bromoform	ND	1.0	"	
Bromomethane	ND ND	0.39	"	
Carbon disulfide	ND	0.39	"	
Carbon tetrachloride	ND	0.16	"	
Chlorobenzene	ND ND		"	
Chloroethane		0.46	"	
Chloroform	ND	0.26	"	
	ND	0.49	"	
Chloromethane	ND	0.21	"	
cis-1,2-Dichloroethylene	ND	0.099		
cis-1,3-Dichloropropylene	ND	0.45		
Cyclohexane	ND	0.34	"	
Dibromochloromethane	ND	0.85	"	
Dichlorodifluoromethane	ND	0.49	"	
Ethyl acetate	ND	0.72	"	
Ethyl Benzene	ND	0.43	"	
Hexachlorobutadiene	ND	1.1	"	
Isopropanol	ND	0.49	"	
Methyl Methacrylate	ND	0.41	"	
Methyl tert-butyl ether (MTBE)	ND	0.36	"	
Methylene chloride	ND	0.69	"	
n-Heptane	ND	0.41	"	
n-Hexane	ND	0.35	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 10 of 16

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

lank (BI81140-BLK1)						Prepared & Analyzed: 09/24/2018
Xylene	ND	0.43	ug/m³			
& m- Xylenes	ND	0.87	"			
Ethyltoluene	ND	0.49	"			
opylene	ND	0.17	"			
yrene	ND	0.43	"			
trachloroethylene	ND	0.17	"			
trahydrofuran	ND	0.59	"			
luene	ND	0.38	"			
nns-1,2-Dichloroethylene	ND	0.40	"			
ns-1,3-Dichloropropylene	ND	0.45	"			
richloroethylene	ND	0.13	"			
ichlorofluoromethane (Freon 11)	ND	0.56	"			
nyl acetate	ND	0.35	"			
nyl bromide	ND	0.44	"			
inyl Chloride	ND	0.064	"			
rogate: p-Bromofluorobenzene	8.47		ppbv	10.0	84.7	70-130
	****		rr~'	- * 1 *	· · · ·	Prepared & Analyzed: 09/24/2018
CS (BI81140-BS1)						
1,1,2-Tetrachloroethane	10.1		ppbv	10.0	101	70-130
,1-Trichloroethane	12.0		"	10.0	120	70-130
2,2-Tetrachloroethane	9.25		"	10.0	92.5	70-130
,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.7		"	10.0	117	70-130
,2-Trichloroethane	9.65		"	10.0	96.5	70-130
-Dichloroethane	10.5		"	10.0	105	70-130
Dichloroethylene	9.47		"	10.0	94.7	70-130
4-Trichlorobenzene	8.25		"	10.0	82.5	70-130
,4-Trimethylbenzene	9.77		"	10.0	97.7	70-130
-Dibromoethane	9.63		"	10.0	96.3	70-130
2-Dichlorobenzene	11.0		"	10.0	110	70-130
-Dichloroethane	10.2		"	10.0	102	70-130
-Dichloropropane	8.53		"	10.0	85.3	70-130
-Dichlorotetrafluoroethane	10.2		"	10.0	102	70-130
,5-Trimethylbenzene	9.11		"	10.0	91.1	70-130
-Butadiene	10.6		"	10.0	106	70-130
-Dichlorobenzene	11.2		"	10.0	112	70-130
-Dichloropropane	8.94		"	10.0	89.4	70-130
-Dichlorobenzene	11.2		"	10.0	112	70-130
-Dioxane	7.61		"	10.0	76.1	70-130
utanone	8.64		"	10.0	86.4	70-130
Hexanone	7.65		"	10.0	76.5	70-130
Chloropropene	8.83		"	10.0	88.3	70-130
Methyl-2-pentanone	7.75		"	10.0	77.5	70-130
etone	8.44		"	10.0	84.4	70-130
rylonitrile	10.1		"	10.0	101	70-130
nzene	10.8		"	10.0	108	70-130
nzyl chloride	9.32		"	10.0	93.2	70-130
omodichloromethane	9.32		,,	10.0	93.2	70-130
omoform			"			
omomethane	10.7		"	10.0	107	70-130 70-130
omometnane rbon disulfide	10.6		"	10.0	106	70-130
rbon disumde rbon tetrachloride	11.6 11.3		"	10.0 10.0	116 113	70-130 70-130

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@

Page 11 of 16

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

.CS (BI81140-BS1)		Prepared & Analyzed: 09/24/2018				
Chlorobenzene	9.80	ppbv	10.0	98.0	70-130	
Chloroethane	11.4	"	10.0	114	70-130	
Chloroform	11.2	"	10.0	112	70-130	
Chloromethane	10.4	"	10.0	104	70-130	
is-1,2-Dichloroethylene	9.87	"	10.0	98.7	70-130	
is-1,3-Dichloropropylene	9.25	"	10.0	92.5	70-130	
Cyclohexane	10.2	"	10.0	102	70-130	
Dibromochloromethane	10.4	"	10.0	104	70-130	
Dichlorodifluoromethane	10.6	"	10.0	106	70-130	
thyl acetate	8.82	"	10.0	88.2	70-130	
thyl Benzene	8.91	"	10.0	89.1	70-130	
exachlorobutadiene	10.6	"	10.0	106	70-130	
sopropanol	10.3	"	10.0	103	70-130	
ethyl Methacrylate	8.83	"	10.0	88.3	70-130	
fethyl tert-butyl ether (MTBE)	19.9	"	10.0	199	70-130	High Bias
lethylene chloride	9.58	"	10.0	95.8	70-130	
Heptane	8.84	"	10.0	88.4	70-130	
Hexane	10.2	"	10.0	102	70-130	
Xylene	9.14	"	10.0	91.4	70-130	
- & m- Xylenes	18.6	"	20.0	92.8	70-130	
-Ethyltoluene	10.2	"	10.0	102	70-130	
ropylene	7.49	"	10.0	74.9	70-130	
tyrene	10.4	"	10.0	104	70-130	
etrachloroethylene	10.8	"	10.0	108	70-130	
etrahydrofuran	8.82	"	10.0	88.2	70-130	
oluene	9.30	"	10.0	93.0	70-130	
ans-1,2-Dichloroethylene	10.7	"	10.0	107	70-130	
ans-1,3-Dichloropropylene	8.82	"	10.0	88.2	70-130	
richloroethylene	8.92	"	10.0	89.2	70-130	
richlorofluoromethane (Freon 11)	11.6	"	10.0	116	70-130	
inyl acetate	13.2	"	10.0	132	70-130	High Bias
inyl bromide	12.0	"	10.0	120	70-130	
inyl Chloride	10.6	"	10.0	106	70-130	

10.0

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Surrogate: p-Bromofluorobenzene

9.65

96.5

70-130

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-TD	The sample was received in a tedlar bag which is not compliant with EPA TO-15 requirements.
QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
CCV-A	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>30% Difference for average Rf). This applies to dectected analytes only.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 14 of 16

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 15 of 16

120 Research Drive Stratford, CT 06615

York Analytical Laboratories, Inc.

132-02 89th Ave Queens,

clientservices@yorklab.com

www.yorklab.com

Field Chain-of-Custody Record - AIR

YORK Project No.

VOTE: YORK's Standard Terms & Conditions are listed on the back side of this document our written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.

Turn-Around Time YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) Page \ of \ Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Two Day RUSH - Four Day Standard Excel EDD YOUR Project Number YOUR Project Name 11049-18-05/01 Cinderella Report / EDD Type (circle selections) YOUR PO#: Summary Report Invoice To: SAME Samples From New York Air Matrix Codes Al - Indoor Ambient Air 4O - Outdoor Amb. Air Report To: SAME Please print clearly and legibly. All/information must'be complete. Sam not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. Ronkonkoma Ny 11779 Chris Linkletter Ches Laketter YOUR Information 900 Marconi Avenue (631) 737 - 6200 Company: FPM Group

NJDEP SRP HazSite EQuIS (Standard) NYSDEC EQUIS NJDEP Reduced Deliv. CT RCP DOA/DUE NJDKOP NY ASP B Package NY ASP A Package OA Report Other: Pennsylvania Connecticut New Jersey AE - Vapor Extraction Well/ AS - Soil Vapor/Sub-Slab Samples Collected by: (print your name above and sign below) Individual

Analysis Requested Reporting Units: ug/m³ X ppbv Flow Cont. ID Canister ID Please enter the following REQUIRED Field Data Canister Vacuum After Sampling (in Hg) Canister Vacuum Before Sampling (in Hg) Air Matrix AE 12:00 Date/Time Sampled 9/17/18 Certified Canisters: Batch Sample Identification EFF Went Oal718

Sampling Media 4-19-18 6 Liter Canister Tedlar Bag NYSDEC V1 Limits **Detection Limits Required** Routine Survey X m/m X
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x
 X m/m x

200 eived by / Compa 8:30

81/81/6

FPM

16 of 16

Comments:

04C 81-674

Technical Report

prepared for:

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779

Attention: Stephanie Davis

Report Date: 12/28/2018

Client Project ID: 1104g-18-05/01 Cinderella

York Project (SDG) No.: 18L0800

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

Report Date: 12/28/2018

Client Project ID: 1104g-18-05/01 Cinderella

York Project (SDG) No.: 18L0800

FPM Group

909 Marconi Avenue Ronkonkoma NY, 11779

Attention: Stephanie Davis

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on December 19, 2018 and listed below. The project was identified as your project: 1104g-18-05/01 Cinderella.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
18L0800-01	Effluent 121718	Vapor Extraction	12/17/2018	12/19/2018

General Notes for York Project (SDG) No.: 18L0800

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Benjamin Gulizia Laboratory Director **Date:** 12/28/2018

Client Sample ID: Effluent 121718 York Sample ID:

18L0800-01

York Project (SDG) No. 18L0800

Client Project ID 1104g-18-05/01 Cinderella

Matrix Vapor Extraction

Collection Date/Time December 17, 2018 12:00 pm Date Received 12/19/2018

Volatile Organics, EPA TO15 Full List

Log-in Notes:

TO-TD

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP											
CAS No.	Parameter	Result	Flag	Units	Reported to LOO Dilution	Reference Method					

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:		12/27/2018 09:00	12/27/2018 15:58	PP
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
75-34-3	1,1-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	7.4	10	EPA TO-15 Certifications:		12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
95-63-6	1,2,4-Trimethylbenzene	16		ug/m³	4.9	10	EPA TO-15	TIELITO IV	12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
106-93-4	1,2-Dibromoethane	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
107-06-2	1,2-Dichloroethane	4.0		ug/m³	4.0	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
78-87-5	1,2-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	7.0	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
108-67-8	1,3,5-Trimethylbenzene	4.9		ug/m³	4.9	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
106-99-0	1,3-Butadiene	ND		ug/m³	6.6	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:		12/27/2018 09:00	12/27/2018 15:58	PP
106-46-7	1,4-Dichlorobenzene	280		ug/m³	6.0	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
123-91-1	1,4-Dioxane	ND		ug/m³	7.2	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
78-93-3	2-Butanone	26		ug/m³	2.9	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ıs	
591-78-6	* 2-Hexanone	ND		ug/m³	8.2	10	EPA TO-15 Certifications:		12/27/2018 09:00	12/27/2018 15:58	PP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 3 of 14

Client Sample ID: Effluent 121718 **York Sample ID:** 18L0800-01

York Project (SDG) No. Client Project ID 18L0800 1104g-18-05/01 Cinderella

Matrix Vapor Extraction

Collection Date/Time December 17, 2018 12:00 pm Date Received 12/19/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

TO-TD

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
107-05-1	3-Chloropropene	ND		ug/m³	16	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
108-10-1	4-Methyl-2-pentanone	61		ug/m³	4.1	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens	1	
67-64-1	Acetone	450		ug/m³	4.8	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
107-13-1	Acrylonitrile	ND		ug/m³	2.2	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
71-43-2	Benzene	14		ug/m³	3.2	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
100-44-7	Benzyl chloride	ND		ug/m³	5.2	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
75-27-4	Bromodichloromethane	ND		ug/m³	6.7	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
75-25-2	Bromoform	ND		ug/m³	10	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
74-83-9	Bromomethane	ND		ug/m³	3.9	10	EPA TO-15 Certifications:			12/27/2018 15:58	PP
75-15-0	Carbon disulfide	ND		ug/m³	3.1	10	EPA TO-15 Certifications:			12/27/2018 15:58	PP
56-23-5	Carbon tetrachloride	5.0		ug/m³	1.6	10	EPA TO-15	NELAC-N1		12/27/2018 15:58	PP
30 23 3	Carbon tetraemoriae	3.0		ug/m	1.0	10	Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
108-90-7	Chlorobenzene	ND		ug/m³	4.6	10	EPA TO-15 Certifications:			12/27/2018 15:58	PP
75-00-3	Chloroethane	ND		ug/m³	2.6	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
67-66-3	Chloroform	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
74-87-3	Chloromethane	15	QL-03	ug/m³	2.1	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens	ı	
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	4.5	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 /12058,NJDEP-Queens	12/27/2018 15:58	PP
110-82-7	Cyclohexane	9.3		ug/m³	3.4	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens		
124-48-1	Dibromochloromethane	ND		ug/m³	8.5	10	EPA TO-15 Certifications:	NELAC-NY	12/27/2018 09:00 712058,NJDEP-Queens	12/27/2018 15:58	PP
75-71-8	Dichlorodifluoromethane	22		ug/m³	4.9	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-NY	Y12058,NJDEP-Queens	i	
141-78-6	* Ethyl acetate	100		ug/m³	7.2	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:				
00-41-4	Ethyl Benzene	28		ug/m³	4.3	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
		-					Certifications:	NELAC-NY	Y12058,NJDEP-Queens	1	
	Hexachlorobutadiene	ND		ug/m³	11	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 4 of 14

Client Sample ID: Effluent 121718 **York Sample ID:** 18L0800-01

York Project (SDG) No. Client Project ID 18L0800 1104g-18-05/01 Cinderella

Matrix Collection Date/Time Vapor Extraction December 17, 2018 12:00 pm Date Received 12/19/2018

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	TO-TD	Sample Notes:
---------------	-------	---------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference I	Method	Date/Time Prepared	Date/Time Analyzed	Analys
57-63-0	Isopropanol	180		ug/m³	4.9	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	ns	
0-62-6	Methyl Methacrylate	20		ug/m³	4.1	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	3.6	10	EPA TO-15 Certifications:	NELAC-N	12/27/2018 09:00 Y12058,NJDEP-Queen	12/27/2018 15:58 s	PP
5-09-2	Methylene chloride	14		ug/m³	6.9	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
2-82-5	n-Heptane	18		ug/m³	4.1	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer		
0-54-3	n-Hexane	28		ug/m³	3.5	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
15.4	V.I						Certifications:	NELAC-N	Y12058,NJDEP-Queer		nn.
-47-6	o-Xylene	27		ug/m³	4.3	10	EPA TO-15 Certifications:	NEL AC N	12/27/2018 09:00	12/27/2018 15:58	PP
0(01.22.1	n & m Vydonos	100		/3	0.7	10		NELAC-N	Y12058,NJDEP-Queer	ns 12/27/2018 15:58	DD
9601-23-1	p- & m- Xylenes	100		ug/m³	8.7	10	EPA TO-15 Certifications:	NEI AC-N	12/27/2018 09:00 Y12058,NJDEP-Queen		PP
2-96-8	* p-Ethyltoluene	15		ug/m³	4.9	10	EPA TO-15	TILLITO-IT	12/27/2018 09:00	12/27/2018 15:58	PP
2 70 0	p Emynomene	13		ug/m	4.9	10	Certifications:		12/2//2010 05:00	12/2//2010 13:50	
5-07-1	* Propylene	13		ug/m³	1.7	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
	••						Certifications:				
)-42-5	Styrene	9.4		ug/m³	4.3	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
7-18-4	Tetrachloroethylene	89		ug/m³	1.7	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
1-99-9	* Tetrahydrofuran	ND		ug/m³	5.9	10	EPA TO-15 Certifications:		12/27/2018 09:00	12/27/2018 15:58	PP
8-88-3	Toluene	420		ug/m³	3.8	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
6-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	4.0	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queen	S	
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	4.5	10	EPA TO-15 Certifications:	NELAC-N	12/27/2018 09:00 Y12058,NJDEP-Queen	12/27/2018 15:58 s	PP
-01-6	Trichloroethylene	2.7		ug/m³	1.3	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
-69-4	Trichlorofluoromethane (Freon 11)	13		ug/m³	5.6	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
							Certifications:	NELAC-N	Y12058,NJDEP-Queer	ns	
8-05-4	Vinyl acetate	ND		ug/m³	3.5	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
								NELAC-N	Y12058,NJDEP-Queen		
3-60-2	Vinyl bromide	ND		ug/m³	4.4	10	EPA TO-15 Certifications:	NEL AC-N	12/27/2018 09:00 Y12058,NJDEP-Queen	12/27/2018 15:58	PP
-01-4	Vinyl Chloride	ND		ug/m³	0.64	10	EPA TO-15		12/27/2018 09:00	12/27/2018 15:58	PP
	Surrogate Recoveries	Result		Acceptan	ce Range		Certifications:	NELAC-N'	Y12058,NJDEP-Queen	s	
60-00-4	Surrogate: SURR: p-Bromofluorobenzene	86.4 %		-	-130						
00 1	эштодие. БОАА. р-втотојноговепгепе	00.7 /0		/0-	150						

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 14

Client Sample ID: York Sample ID: 18L0800-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received18L08001104g-18-05/01 CinderellaVapor ExtractionDecember 17, 2018 12:00 pm12/19/2018

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 6 of 14

Analytical Batch Summary

Batch ID: BL81381 **Preparation Method:** EPA TO15 PREP Prepared By: AS

YORK Sample ID	Client Sample ID	Preparation Date	
18L0800-01	Effluent 121718	12/27/18	
BL81381-BLK1	Blank	12/27/18	
BL81381-BS1	LCS	12/27/18	

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

nk (BL81381-BLK1)				Prepared & Analyzed:
,2-Tetrachloroethane	ND	0.69	ug/m³	
Trichloroethane	ND	0.55	"	
2-Tetrachloroethane	ND	0.69	"	
Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.77	"	
Frichloroethane	ND	0.55	"	
chloroethane	ND	0.40	"	
chloroethylene	ND	0.099	II .	
Frichlorobenzene	ND	0.099	II .	
Trimethylbenzene	ND	0.74	"	
promoethane	ND	0.49	"	
chlorobenzene	ND ND	0.77	"	
chloroethane			"	
chloropropane	ND ND	0.40	"	
chlorotetrafluoroethane	ND ND	0.46	"	
Frimethylbenzene		0.70	"	
-	ND	0.49	"	
ntadiene	ND	0.66	"	
chlorobenzene	ND	0.60	"	
chloropropane	ND	0.46	"	
chlorobenzene	ND	0.60		
oxane	ND	0.72	"	
none	ND	0.29	"	
none	ND	0.82	"	
ropropene	ND	1.6	"	
yl-2-pentanone	ND	0.41	"	
ne	ND	0.48	"	
nitrile	ND	0.22	"	
ne	ND	0.32	"	
l chloride	ND	0.52	"	
odichloromethane	ND	0.67	"	
oform	ND	1.0	"	
omethane	ND	0.39	"	
n disulfide	ND	0.31	"	
n tetrachloride	ND	0.16	"	
obenzene	ND	0.46	"	
pethane	ND	0.26	"	
oform	ND	0.49	"	
omethane	ND	0.21	II .	
-Dichloroethylene	ND	0.099	II .	
3-Dichloropropylene	ND	0.45	II .	
hexane	ND	0.34	II .	
nochloromethane	ND	0.85	II .	
orodifluoromethane	ND	0.49	"	
acetate	ND	0.72	"	
Benzene	ND	0.43	"	
hlorobutadiene	ND	1.1	"	
ppanol	ND	0.49	"	
yl Methacrylate	ND	0.41	II .	
yl tert-butyl ether (MTBE)	ND	0.36	II .	
vlene chloride	ND	0.69	II .	
tane	ND	0.41	"	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 8 of 14

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BL81381 - EPA TO15 PREP						
Blank (BL81381-BLK1)						Prepared & Analyzed: 12/27/2018
n-Hexane	ND	0.35	ug/m³			
p-Xylene	ND	0.43	"			
- & m- Xylenes	ND	0.87	"			
-Ethyltoluene	ND	0.49	"			
ropylene	ND	0.17	"			
tyrene	ND	0.43	"			
etrachloroethylene	ND	0.17	"			
etrahydrofuran	ND	0.59	"			
bluene	ND	0.38	"			
ans-1,2-Dichloroethylene	ND	0.40	"			
ans-1,3-Dichloropropylene	ND	0.45	"			
richloroethylene	ND	0.13	"			
richlorofluoromethane (Freon 11)	ND	0.56	"			
inyl acetate	ND	0.35	"			
inyl bromide	ND	0.33	"			
Tinyl Chloride	ND ND	0.064	"			
·		0.004				7 0.100
urrogate: SURR: p-Bromofluorobenzene	8.31		ppbv	10.0	83.1	70-130
CS (BL81381-BS1)						Prepared & Analyzed: 12/27/2018
1,1,2-Tetrachloroethane	10.9		ppbv	10.0	109	70-130
1,1-Trichloroethane	11.2		"	10.0	112	70-130
1,2,2-Tetrachloroethane	11.1		"	10.0	111	70-130
1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.0		"	10.0	110	70-130
1,2-Trichloroethane	10.5		"	10.0	105	70-130
1-Dichloroethane	11.0		"	10.0	110	70-130
1-Dichloroethylene	10.5		"	10.0	105	70-130
2,4-Trichlorobenzene	9.40		"	10.0	94.0	70-130
2,4-Trimethylbenzene	11.3		"	10.0	113	70-130
2-Dibromoethane	10.6		"	10.0	106	70-130
2-Dichlorobenzene	12.0		"	10.0	120	70-130
2-Dichloroethane	10.3		"	10.0	103	70-130
2-Dichloropropane	10.3		"	10.0	103	70-130
2-Dichlorotetrafluoroethane	11.2		"	10.0	112	70-130
3,5-Trimethylbenzene	11.1		"	10.0	111	70-130
3-Butadiene	11.5		"	10.0	115	70-130
3-Dichlorobenzene	11.9		"	10.0	119	70-130
3-Dichloropropane	10.3		"	10.0	103	70-130
4-Dichlorobenzene	12.1		"	10.0	121	70-130
4-Dioxane	10.7		"	10.0	107	70-130
Butanone	10.7		"	10.0	107	70-130
Hexanone	10.7		,,	10.0	107	70-130
-Chloropropene	10.5		"	10.0		70-130
Methyl-2-pentanone			,,		105	
	10.4		"	10.0	104	70-130 70-130
cetone	9.18		"	10.0	91.8	70-130
crylonitrile	10.4			10.0	104	70-130
enzene	10.9			10.0	109	70-130
enzyl chloride	10.1		"	10.0	101	70-130
romodichloromethane	10.4		"	10.0	104	70-130
romoform	12.3		"	10.0	123	70-130
romomethane	11.0		"	10.0	110	70-130
arbon disulfide	11.1		"	10.0	111	70-130

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 14

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BL81381-BS1)					Prepared & Analyzed: 12/27/2018
Carbon tetrachloride	11.0	ppbv	10.0	110	70-130
Chlorobenzene	10.9	"	10.0	109	70-130
Chloroethane	11.0	"	10.0	110	70-130
Chloroform	10.9	"	10.0	109	70-130
Chloromethane	13.1	"	10.0	131	70-130 High Bias
sis-1,2-Dichloroethylene	10.2	"	10.0	102	70-130
sis-1,3-Dichloropropylene	10.4	"	10.0	104	70-130
Cyclohexane	10.7	"	10.0	107	70-130
Dibromochloromethane	10.6	"	10.0	106	70-130
Dichlorodifluoromethane	11.9	"	10.0	119	70-130
Ethyl acetate	10.8	"	10.0	108	70-130
Ethyl Benzene	10.9	"	10.0	109	70-130
Hexachlorobutadiene	12.7	"	10.0	127	70-130
sopropanol	10.7	"	10.0	107	70-130
Methyl Methacrylate	10.7	"	10.0	107	70-130
Methyl tert-butyl ether (MTBE)	11.6	"	10.0	116	70-130
Methylene chloride	11.1	"	10.0	111	70-130
n-Heptane	10.6	"	10.0	106	70-130
-Hexane	10.8	"	10.0	108	70-130
-Xylene	11.6	"	10.0	116	70-130
- & m- Xylenes	22.7	"	20.0	114	70-130
-Ethyltoluene	11.9	"	10.0	119	70-130
Propylene	10.2	"	10.0	102	70-130
Styrene	11.8	"	10.0	118	70-130
Tetrachloroethylene	10.0	"	10.0	100	70-130
Tetrahydrofuran	10.6	"	10.0	106	70-130
Toluene	9.98	"	10.0	99.8	70-130
rans-1,2-Dichloroethylene	10.8	"	10.0	108	70-130
rans-1,3-Dichloropropylene	10.2	"	10.0	102	70-130
Trichloroethylene	10.1	"	10.0	101	70-130
Trichlorofluoromethane (Freon 11)	11.2	"	10.0	112	70-130
Vinyl acetate	10.6	"	10.0	106	70-130
/inyl bromide	11.4	"	10.0	114	70-130
Vinyl Chloride	11.6	"	10.0	116	70-130

10.0

120 RESEARCH DRIVE www.YORKLAB.com

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

STRATFORD, CT 06615 (203) 325-1371

9.79

132-02 89th AVENUE FAX (203) 357-0166

97.9

70-130

RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 14

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-TD The sample was received in a tedlar bag which is not compliant with EPA TO-15 requirements.

OL-03 This LCS analyte recovered outside of acceptance limits. The LCS contains approximately 70 compounds, a limited number of

which may be outside acceptance windows.

Definitions and Other Explanations

Analyte is not certified or the state of the samples origination does not offer certification for the Analyte

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL. REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOO LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is

based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located Reported to

above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and

semi-volatile target compounds only.

Not reported NR

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note

that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take

note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high

due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 12 of 14

RICHMOND HILL, NY 11418

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

10.0 **Turn-Around Time** YORK Reg. Comp. Compared to the following Regulation(s): (please fill in) YORK Project No. Sampling Media 6 Liter Canister Page of Standard (5-7 Day) RUSH - Three Day RUSH - Next Day RUSH - Two Day RUSH - Four Day 00 Tedlar Bag Analysis Requested 1616 Date/Time Reporting Units: ug/m² X ppbv 10-15 NJDEP SRP HazSite Standard Excel EDD YOUR Project Number EQuIS (Standard) Field Chain-of-Custody Record - AIR YOUR Project Name NYSDEC EQuIS 11043-18-05/01 NYSDEC V1 Limits **Detection Limits Required** Report / EDD Type (circle selections) Cinderella imples Received in LAB by NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions. Flow Cont. ID NJDEP Reduced Deliv. CT RCP DQA/DUE YOUR PO# Routine Survey s 1 ug/m X NJDKQP CT RCP Please enter the following REQUIRED Field Data Canister ID NY ASP B Package NY ASP A Package 81/61/61 Summary Report Canister Vacuum
Belore Sampling (in Hg)
After Sampling (in Hg) OA Report Invoice To: Date/Time Other: Samples From SAME Pennsylvania John J. New Jersey Connecticut New York Other ontact: 3 Samples Received by / Company Al - Indoor Ambient Air Air Matrix Codes AO - Outdoor Amb. Air AS - Soil Vapor/Sub-Slab AE - Vapor Extraction Well Process Gas/Effluent Air Matrix AE Report To: Please print clearly and legibly All infermation must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any questions by YORK are resolved. 12/17/18 16:00 120 Research Drive 132-02 89th Ave Queens, Stratford, CT 06615 NY 11418 Date/Time Sampled 12/17/18 12:00 York Analytical Laboratories, Inc. SAME clientservices@yorklab.com Samples Collected by: (print your name above and sign below) Individual www.yorklab.com Certified Canisters: Batch Rankonkoma NY 11779 ornamy FPM Group Sample Identification YOUR Information (631) 737 - 6200 ETT1020+121718 Cheis Linkletter Samples Relinquished by / Company Comments: