

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICA

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of New York 324 South Service Road Melville, NY 11747

BROWNFIELD CLEANUP PROGRAM APPLICATION

55 ECKFORD ST LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

June 2024 – Revised July 2024 File No. 41.0163263.00

PREPARED FOR:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7020

ON BEHALF OF:

55 ECKFORD ST LLC

110-50 69th Avenue Forest Hills, NY 11375

PREPARED BY:

GOLDBERG-ZOINO ASSOCIATES OF NEW YORK P.C. D/B/A GZA GEOENVIRONMENTAL OF NEW YORK

324 South Service Road | Melville, NY 11747

32 Offices Nationwide www.gza.com

Copyright© 2024 GZA GeoEnvironmental of New York

	TABLE OF CONTENTS
_	LD CLEANUP PROGRAM APPLICATION FORM
	LD CLEANUP PROGRAM APPLICATION SUPPLEMENTAL INFORMATION
	- PROPERTY INFORMATION
	- PROJECT DESCRIPTION
	I - LAND USE FACTORS
	· - PROPERTY'S ENVIRONMENTAL HISTORY
SECTION V	'I - REQUESTOR ELIGIBILITY
	K - CURRENT PROPERTY OWNER AND OPERATOR INFORMATION
	I - CONTACT LIST INFORMATION
TABLES	
Table 1	Soil Data Summary Table – Restricted Residential SCOs
Tab le 1 A	Soil Data Summary Table – Protection of GW SCOs
Table 2	Groundwater Data Summary Table
Table 3	Soil Vapor Data Summary Table
FIGURES	
Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Site Survey Map
Figure 4	Tax Parcel Information and Boundaries
Figure 5	Property Boundary
Figure 6	Zoning Map
Figure 7	Land Use Map
Figure 8A	Chlorinated VOCs in Soil

EXHIBITS

Figure 8B Metals in Soil

Figure 9 Groundwater Exceedances Figure 10 Soil Vapor Concentrations

Exhibit A	Property Deed
Exhibit B	Proposed Building Plans
Exhibit C	Historical Environmental Information
Exhibit D	Requestor Entity Information
Exhibit E	Site Contact List
Exhibit F	Document Repository Letters

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

TOC | ii

BROWNFIELD CLEANUP PROGRAM APPLICATION FORM

BCP App Rev 15 - May 2023

55 ECKFORD ST LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

SUBMITTAL INSTRUCTIONS:

- 1. Compile the application package in the following manner:
 - a. one file in non-fillable PDF of the application form plus supplemental information, excluding the previous environmental reports and work plans, if applicable;
 - b. one individual file (PDF) of each previous environmental report; and,
 - c. one file (PDF) of each work plan being submitted with the application, if applicable.
- 2. Compress all files (PDFs) into one zipped/compressed folder.
- 3. Submit the application to the Site Control Section either via email or ground mail, as described below. Please select only ONE submittal method do NOT submit both email and ground mail.
 - a. VIA EMAIL:
 - Upload the compressed folder to the NYSDEC File Transfer Service. (http://fts.dec.state.ny.us/fts) or another file-sharing service.
 - Copy the download link into the body of an email with any other pertinent information or cover letter attached to the email.
 - Subject line of the email: "BCP Application NEW *Proposed Site Name*"
 - Email your submission to DERSiteControl@dec.ny.gov do NOT copy Site Control staff.
 - b. VIA GROUND MAIL:
 - Save the application file(s) and cover letter to an external storage device (e.g., thumb drive, flash drive). Do NOT include paper copies of the application or attachments.
 - Mail the external storage device to the following address:

Chief, Site Control Section Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7020

PROPOSED SITE NAME: 55 Eckford St LLC		
Is this an application to amend an existing BCA with a major modification	Please refer to	the
application instructions for further guidance related to BCA amendments. If yes, provide existing site number:	Yes	_
Is this a revised submission of an incomplete application? If yes, provide existing site number: C224168	Yes	No

Department of Environmental Conservation BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

BCP App Rev 15 - May 2023

SECT	ION I: Pro	perty Inform	ation									
PROP	OSED SIT	E NAME 55	5 E	ckford St	LLC							
ADDRESS/LOCATION 55 Eckford Street												
CITY/TOWN Brooklyn ZIP CODE 11222												
MUNICIPALITY (LIST ALL IF MORE THAN ONE)												
COUN	ı⊤ΥKinç	gs					SIT	E SIZE (A	CRES) 0	.23	8	
LATIT	UDE				LONGITUE)E						
	0			"		0						"
40		43		18	73		56		53			
Provide tax map information for all tax parcels included within the proposed site boundary below. If a porti of any lot is to be included, please indicate as such by inserting "p/o" in front of the lot number in the appropriate box below, and only include the acreage for that portion of the tax parcel in the corresponding acreage column. ATTACH REQUIRED TAX MAPS PER THE APPLICATION INSTRUCTIONS.							ling					
		Parc	el Add	dress		Sect	ion	Block	Lot	Ac	rea	ge
		55 Eck	xford	Street				2698	32		238	8
1.		ase attach an		aries correspond to ate map of the pro					bounds	(Y	N
2.	Is the rec	uired propert		included with the a	• •					(•	0
(Application will not be processed without a map) 3. Is the property within a designated Environmental Zone (En-zone) pursuant to Tax Law 21(b)(6)? (See <u>DEC's website</u> for more information) If yes, identify census tract: Percentage of property in En-zone (check one): 0% 1-49% 50-99% 100%							0	•				
4.				a disadvantaged co for additional inforn						(\bigcirc	•
5.	Area (BC	A)? See appl	icatior	a NYS Department n instructions for ac	dditional infor	matio	n.			ty (0	•
6.	developn	nent spans mo entify names o	ore tha	tiple applications for an 25 acres (see ac perties and site nun	dditional crite	ria in	appli	ication inst	tructions)?	?	0	•

SECTI	ON I: Property Information (CONTINUED)	Υ	N
7.	Is the contamination from groundwater or soil vapor solely emanating from property other than the site subject to the present application?	0	•
8.	Has the property previously been remediated pursuant to Titles 9, 13 or 14 of ECL Article 27, Title 5 of ECL Article 56, or Article 12 of Navigation Law? If yes, attach relevant supporting documentation.	0	•
9.	Are there any lands under water? If yes, these lands should be clearly delineated on the site map.	\bigcirc	•
10.	Has the property been the subject of or included in a previous BCP application?		
	If yes, please provide the DEC site number: C224168		\cup
	Is the site currently listed on the Registry of Inactive Hazardous Waste Disposal Sites (Class 2, 3, or 4) or identified as a Potential Site (Class P)? If yes, please provide the DEC site number: Class:	0	•
12.	Are there any easements or existing rights-of-way that would preclude remediation in these areas? If yes, identify each here and attach appropriate information.	\bigcirc	•
	Easement/Right-of-Way Holder Description		
13.	List of permits issued by the DEC or USEPA relating to the proposed site (describe below or attach appropriate information):	0	•
	Type Issuing Agency Description		
	Property Description and Environmental Assessment – please refer to the application instructions for the proper format of each narrative requested. Are the Property Description and Environmental Assessment narratives included in the prescribed format?		0
	Questions 15 through 17 below pertain ONLY to proposed sites located within the five co- ising New York City.	untie	S
	Is the Requestor seeking a determination that the site is eligible for tangible property tax	Υ	N
	credits? If yes, Requestor must answer the Supplemental Questions for Sites Seeking Tangible Property Credits Located in New York City ONLY on pages 11-13 of this form.	0	•
16.	Is the Requestor now, or will the Requestor in the future, seek a determination that the property is Upside Down?	\bigcirc	•
17.	If you have answered YES to Question 16 above, is an independent appraisal of the value of the property, as of the date of application, prepared under the hypothetical condition that the property is not contaminated, included with the application?	0	•
applica	If a tangible property tax credit determination is not being requested at the time of application, to the time of application, to the third determination at any time before issuance of a Certificate of Completion by usi mendment Application, except for sites seeking eligibility under the underutilized category.		ne
Reque	changes to Section I are required prior to application approval, a new page, initialed by eastor, must be submitted with the application revisions. s of each Requestor:	ach	

SECTION II: Project Description		
1. The project will be starting at: Investigation Remediation		
NOTE: If the project is proposed to start at the remediation stage, at a minimum, a Remedial Investigation Report (RIR) must be included, resulting in a 30-day public comment period. If an Alternatives Anal Remedial Action Work Plan (RAWP) are also included (see <u>DER-10</u> , <u>Technical Guidance for Site Investigation and Remediation</u> for further guidance), then a 45-day public comment period is required.	lysis a	
2. If a final RIR is included, does it meet the requirements in ECL Article 27-1415(2)?		
3. Have any draft work plans been submitted with the application (select all that apply)?		
✓ RIWP RAWP IRM No		
 Please provide a short description of the overall project development, including the date tha remedial program is to begin, and the date by which a Certificate of Completion is expected issued. 		
Is this information attached? Yes ONO		
SECTION III: Land Use Factors		
1. What is the property's current municipal zoning designation? M1-2/R6B		
2. What uses are allowed by the property's current zoning (select all that apply)?		
Residential Commercial Industrial		
Current use (select all that apply):		
Residential Commercial Industrial Recreational Vacant		
4. Please provide a summary of current business operations or uses, with an emphasis on	Υ	N
identifying possible contaminant source areas. If operations or uses have ceased, provide the date by which the site became vacant.		\bigcirc
Is this summary included with the application?		
5. Reasonably anticipated post-remediation use (check all that apply):		
Residential Commercial Industrial		
If residential, does it qualify as single-family housing?	\bigcirc	•
6. Please provide a statement detailing the specific proposed post-remediation use. Is this summary attached?	•	\bigcirc
Is the proposed post-remediation use a renewable energy facility? See application instructions for additional information.	Ō	•
8. Do current and/or recent development patterns support the proposed use?		\bigcirc
9. Is the proposed use consistent with applicable zoning laws/maps?		$\overline{\cap}$
Please provide a brief explanation. Include additional documentation if necessary. 10. Is the proposed use consistent with applicable comprehensive community master plans,		$\frac{\circ}{\circ}$
local waterfront revitalization plans, or other adopted land use plans? Please provide a brief explanation. Include additional documentation if necessary.	•	\cup

SECTION IV: Property's Envir	onmental History						
All applications must include an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish that contamination of environmental media exists on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the site property and that the site requires remediation. To the extent that existing information/studies/reports are available to the requestor, please attach the following: 1. Reports: an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (ASTM E1903). Please submit a separate electronic copy of each report in Portable Document Format (PDF). Please do NOT submit paper copies of ANY supporting documents. 2. SAMPLING DATA: INDICATE (BY SELECTING THE OPTIONS BELOW) KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. DATA SUMMARY TABLES SHOULD BE INCLUDED AS AN ATTACHMENT, WITH							
LABORATORY REPOR	RTS REFERENCED AND	INCLUDED. SOIL	GROUND	WATER	SOIL (245	
Petroleum	AILGORI	JOIL	GROOND	TAILK	30IL (
Chlorinated Solvents				<u></u>			
Other VOCs		√]	▼		
SVOCs				<u>]</u>]			
Metals		<u> </u>		<u></u>			
Pesticides			<u> </u>	1			
PCBs				<u></u>			
PFAS]			
1,4-dioxane							
Other – indicated below							
*Please describe other know	n contaminants and the	media affect	ed:	_			
 3. For each impacted medium above, include a site drawing indicating: Sample location Date of sampling event Key contaminants and concentration detected For soil, highlight exceedances of reasonably anticipated use For groundwater, highlight exceedances of 6 NYCRR part 703.5 For soil gas/soil vapor/indoor air, refer to the NYS Department of Health matrix and highlight exceedances that require mitigation 							
These drawings are to be representative of all data being relied upon to determine if the site requires remediation under the BCP. Drawings should be no larger than 11"x17" and should only be provided electronically. These drawings should be prepared in accordance with any guidance provided. Are the required drawings included with this application?							
	4. Indicate Past Land Uses (check all that apply):						
	✓ Manufacturing L	_ Agricultura	ı Co-Op	Dry Cl			
Salvage Yard	Bulk Plant	_ Pipeline ∕ ⊑lestraplet	in a		e Statio	n	
l Landfill							

SECTION V: Requestor Information						
NAME	55 Eckford St LLC					
ADDR	ESS 100 Jericho Quadra	ngle, Ste 220				
CITY/	FOWN Jericho		STATENY	ZIP CODE 11753	3	
PHON	E(718) 690-1370	EMAIL dan@renov	ationgroup.com			
					Υ	N
1.	Is the requestor authorized to	conduct business in N	lew York State (NYS	5)?	•	\bigcirc
2. If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS DOS to conduct business in NYS, the requestor's name must appear, exactly as given above, in the <u>NYS Department of State's Corporation & Business Entity Database</u> . A print-out of entity information from the database must be submitted with this application to document that the requestor is authorized to conduct business in NYS. Is this attached?					•	0
3.	If the requestor is an LLC, a I separate attachment. Is this a		members/owners is	required on a N/A	•	0
 4. Individuals that will be certifying BCP documents, as well as their employers, must meet the requirements of Section 1.5 of <u>DER-10: Technical Guidance for Site Investigation and Remediation</u> and Article 145 of New York State Education Law. Do all individuals that will be certifying documents meet these requirements? Documents that are not properly certified will not be approved under the BCP. 				•	O	

SECTION VI: Requestor Eligibility					
	vering "yes" to any of the following questions, please provide appropriate explanation and/or nentation as an attachment.				
		Υ	N		
1.	Are any enforcement actions pending against the requestor regarding this site?		•		
2.	Is the requestor subject to an existing order for the investigation, removal or remediation of contamination at the site?	Ŏ	•		
3.	Any questions regarding whether a party is subject to a spill claim should be discussed with the Spill Fund Administrator.	0	•		
4.	Has the requestor been determined in an administrative, civil or criminal proceeding to be in violation of (i) any provision of the ECL Article 27; (ii) any order or determination; (iii) any regulation implementing Title 14; or (iv) any similar statute or regulation of the State or Federal government?	0	•		
5.	Has the requestor previously been denied entry to the BCP? If so, please provide the site name, address, assigned DEC site number, the reason for denial, and any other relevant information regarding the denied application.	0	•		
6.	Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving the handling, storing, treating, disposing or transporting of contaminants?	0	•		

SECTION VI: Requestor Eligibility (CONTINUED)				
7. Has the requestor been convicted of a criminal offense (i) involving the handling, storing, treating, disposing or transporting or contaminants; or (ii) that involved a violent felony, fraud, bribery, perjury, theft or offense against public administration (as that term is used in Article 195 of the Penal Law) under Federal law or the laws of any state?				
 Has the requestor knowingly falsified statemen within the jurisdiction of DEC, or submitted a fa statement in connection with any document or 	ts or concealed material facts in any matter lse statement or made use of a false application submitted to DEC?	0	•	
9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.9(f) that committed an act or failed to act, and such act or failure to act could be the basis for denial of a BCP application?				
10. Was the requestor's participation in any remedial program under DEC's oversight terminated by DEC or by a court for failure to substantially comply with an agreement or order?				
11. Are there any unregistered bulk storage tanks on-site which require registration?				
12. THE REQUESTOR MUST CERTIFY THAT HE/SHE IS EITHER A PARTICIPANT OR VOLU IN ACCORDANCE WITH ECL 27-1405(1) BY CHECKING ONE OF THE BOXES BELOW:				
PARTICIPANT A requestor who either (1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum, or (2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum. NOTE: By selecting this option, a requestor via beliability arises solely as a result of ownership operation of or involvement with the site cert he/she has exercised appropriate care with reasonable steps to: (i) stop any continuing discharge; (ii) prevent or limit human, environment and, (iii) prevent or limit human, environment natural resource exposure to any previously hazardous waste. If a requestor whose liability arises solely: I				
with the site, submit a statement describing you should be considered a volunteer – be specific as to the appropriate care taken.				
13. If the requestor is a volunteer, is a statement do volunteer attached?		iered :	a	
Yes (•) No () N/A				

SECTION VI: Requestor Eligibility (CONTINUED)							
14. Requestor relationship to the property (check one; if multiple applicants, check all that apply):							
Previous Owner Current Owner Potential/Future Purchaser Other:							
If the requestor is not the current owner, proof of site access sufficient to complete remediation must be provided. Proof must show that the requestor will have access to the property before signing the BCA and throughout the BCP project, including the ability to place an environmental easement on the site.							
Is this proof attached?	Yes	O No (● N/A				
Note: A purchase contract or lease ag	greement does not s	uffice as proof of sit	e access.				
SECTION VII: Requestor Contact In	formation						
REQUESTOR'S REPRESENTATIVE	Daniel Kaykov						
ADDRESS 110-50 69th Avenue							
CITY Forest Hills		STATENY	ZIP CODE 11375				
PHONE (718) 690-1370	EMAIL dan@ren	ovationgroup.co	om				
REQUESTOR'S CONSULTANT (CON	NTACT NAME) Victor	oria Whelan					
COMPANY GZA GeoEnvironme	ntal of New York	<					
ADDRESS 324 South Service R	oad						
CITYMelville		STATENY	ZIP CODE 11747				
PHONE (631) 793-8821	EMAIL Victoria.V	Vhelan@gza.co	m				
REQUESTOR'S ATTORNEY (CONTACT NAME) George Duke							
COMPANY Connell Foley							
ADDRESS 875 Third Avenue 21	ADDRESS 875 Third Avenue 21st Floor						

CITY New York

PHONE (212) 307-3700

STATENY

EMAIL gduke@connellfoley.com

ZIP CODE 10022

SECTION VIII: Program Fee								
Upon submission of an executed Brownfield Cleanup Agreement to the Department, the requestor is required to pay a non-refundable program fee of \$50,000. Requestors may apply for a fee waiver based on demonstration of financial hardship.								
1. Is the requestor applying for a fee waiver based on demonstration of financial hardship?								
2. If yes, appropriate documentation to demonstrate financial hardship must be provided with the application. See application instructions for additional information.								
Is the appropriate documentation included with this application? N/A								
SECTION IX: Current Property Own	ner and Operator Info	ormation						
CURRENT OWNER 55 Eckford S	t LLC							
CONTACT NAME Daniel Kaykov								
ADDRESS 100 Jericho Quad	rangle, Ste 22	0	1					
CITY Jericho STATE NY ZIP CODE 11753								
PHONE (718) 690-1370	EMAIL dan@rend	ovationgroup.com						
OWNERSHIP START DATE April 2	024							
CURRENT OPERATOR 55 Eckford	d St LLC							
CONTACT NAME Daniel Kaykov								
ADDRESS 100 Jericho Quad	rangle, Ste 22	0						
CITY Jericho		STATE NY	ZIP CODE 117	753				
PHONE (718) 690-1370	EMAIL dan@rend	ovationgroup.com						
OPERATION START DATE								
SECTION X: Property Eligibility Info	ormation							
Is/was the property, or any po	rtion of the property. I	isted on the National Pi	riorities List?	Υ	N			
If yes, please provide addition	al information as an a	ittachment.		\bigcirc	•			
Is/was the property, or any po Hazardous Waste Disposal Si If yes, please provide the DEC	te pursuant to ECL 27	isted on the NYS Regis 7-1305? Class:	stry of Inactive	0	•			

SECTI	ON X: Property Eligibility Information (continued)		
3.	Is/was the property subject to a permit under ECL Article 27, Title 9, other than an Interim	Υ	N
	Status facility?		
	If yes, please provide:		
	Permit Type: EPA ID Number:		
	Date Permit Issued: Permit Expiration Date:		
4.	If the answer to question 2 or 3 above is <i>YES</i> , is the site owned by a volunteer as defined under ECL 27-1405(1)(b), or under contract to be transferred to a volunteer? If yes, attach any available information related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filings and corporate dissolution documents.		
5	Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article		
0.	17 Title 10?		
	If yes, please provide the order number:		
6.	Is the property subject to a state or federal enforcement action related to hazardous waste or petroleum?	0	•
	If yes, please provide additional information as an attachment.		

SECTION XI: Site Contact List

To be considered complete, the application must include the Brownfield Site Contact List in accordance with *DER-23: Citizen Participation Handbook for Remedial Programs*. Please attach, at a minimum, the names and mailing addresses of the following:

- The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located.
- Residents, owners, and occupants of the property and adjacent properties.
- Local news media from which the community typically obtains information.
- The public water supplier which services the area in which the property is located.
- Any person who has requested to be placed on the contact list.
- The administrator of any school or day care facility located on or near the property.
- The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site.

SECTION XII: Statement of Ce	tification and Signatures
(By requestor who is an individu	al)
Agreement (BCA) within 60 days set forth in the <u>DER-32</u> , <u>Brownfit</u> of a conflict between the genera BCA, the terms in the site-specif this form and its attachments is the second seco	nereby acknowledge and agree: (1) to execute a Brownfield Cleanup of the date of DEC's approval letter; (2) to the general terms and conditions and Cleanup Program Applications and Agreements; and (3) that in the event terms and conditions of participation and terms contained in a site-specific ic BCA shall control. Further, I hereby affirm that information provided on the rue and complete to the best of my knowledge and belief. I am aware that it is punishable as a Class A misdemeanor pursuant to section 210.45 of the
Date:	Signature:
Print Name:	
(By a requestor other than an inc	lividual)
and all subsequent documents; direction. If this application is ap Cleanup Agreement (BCA) withit conditions set forth in the <u>DER-3</u> in the event of a conflict between site-specific BCA, the terms in the provided on this form and its attack.	esident (title) of 55 Eckford St LLC (entity); that I lake this application and execute a Brownfield Cleanup Agreement (BCA) that this application was prepared by me or under my supervision and proved, I hereby acknowledge and agree: (1) to execute a Brownfield on 60 days of the date of DEC's approval letter; (2) to the general terms and care in the general terms and conditions of participation and terms contained in a me site-specific BCA shall control. Further, I hereby affirm that information are the situation of the best of my knowledge and belief. I am made herein is punishable as a Class A misdemeanor pursuant to section
Print Name: Daniel Kaykov	Signaturo

PLEASE REFER TO THE APPLICATION COVER PAGE AND BCP APPLICATION INSTRUCTIONS FOR DETAILS OF PAPERLESS DIGITAL SUBMISSION REQUIREMENTS.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY

Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27-1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 15

Please respond to the questions below and provide additional information and/or documentation as required. Please refer to the application instructions.					
1.	Is the property located in Bronx, Kings, New York, Queens or Richmond County?	•	0		
2.	Is the requestor seeking a determination that the site is eligible for the tangible property credit component of the brownfield redevelopment tax credit?	0	•		
3.	Is at least 50% of the site area located within an environmental zone pursuant to NYS Tax Law 21(b)(6)?	0	•		
4.	Is the property upside down or underutilized as defined below?				
	Upside down	0	•		
	Underutilized	0	•		

From ECL 27-1405(31):

"Upside down" shall mean a property where the projected and incurred cost of the investigation and remediation which is protective for the anticipated use of the property equals or exceeds seventy-five percent of its independent appraised value, as of the date of submission of the application for participation in the brownfield cleanup program, developed under the hypothetical condition that the property is not contaminated.

From 6 NYCRR 375-3.2(I) as of August 12, 2016 (Please note: Eligibility determination for the underutilized category can only be made at the time of application): 375-3.2:

- (I) "Underutilized" means, as of the date of application, real property on which no more than fifty percent of the permissible floor area of the building or buildings is certified by the applicant to have been used under the applicable base zoning for at least three years prior to the application, which zoning has been in effect for at least three years; and
 - (1) the proposed use is at least 75 percent for industrial uses; or
 - (2) at which:
 - (i) the proposed use is at least 75 percent for commercial or commercial and industrial uses:
 - (ii) the proposed development could not take place without substantial government assistance, as certified by the municipality in which the site is located; and
 - (iii) one or more of the following conditions exists, as certified by the applicant:
 - (a) property tax payments have been in arrears for at least five years immediately prior to the application;
 - (b) a building is presently condemned, or presently exhibits documented structural deficiencies, as certified by a professional engineer, which present a public health or safety hazard; or
 - (c) there are no structures.

"Substantial government assistance" shall mean a substantial loan, grant, land purchase subsidy, land purchase cost exemption or waiver, or tax credit, or some combination thereof, from a governmental entity.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)

5. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the *New York City Department of Housing, Preservation and Development*; the *New York State Housing Trust Fund Corporation*; the *New York State Department of Housing and Community Renewal*; or the *New York State Housing Finance Agency*, though other entities may be acceptable pending Department review).

Check appropriate box below:

O Proje	ect is an Aπordable Housing Project – regulatory agreement attached
O Proje	ect is planned as Affordable Housing, but agreement is not yet available* Selecting this option will result in a "pending" status. The regulatory agreement will need to
be provide	d to the Department and the Brownfield Cleanup Agreement will need to be amended prior
to issuance	e of the CoC in order for a positive determination to be made.

This is not an Affordable Housing Project

From 6 NYCRR 375-3.2(a) as of August 12, 2016:

- (a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty-seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.
 - (1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' household's annual gross income.
 - (2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for homeowners at a defined maximum percentage of the area median income.
 - (3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

FOR SITES SEEKING TANGIBLE PROPERTY CREDITS IN NEW YORK CITY ONLY (continued)
6. Is the site a planned renewable energy facility site as defined below?
Yes – planned renewable energy facility site with documentation
Pending – planned renewable energy facility awaiting documentation *Selecting this option will result in a "pending" status. The appropriate documentation will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.
No – not a planned renewable energy facility site
If yes, please provide any documentation available to demonstrate that the property is planned to be developed as a renewable energy facility site.
From ECL 27-1405(33) as of April 9, 2022:
"Renewable energy facility site" shall mean real property (a) this is used for a renewable energy system, as defined in section sixty-six-p of the public service law; or (b) any co-located system storing energy generated from such a renewable energy system prior to delivering it to the bulk transmission, subtransmission, or distribution system.
From Public Service Law Article 4 Section 66-p as of April 23, 2021:
(b) "renewable energy systems" means systems that generate electricity or thermal energy through use of the following technologies: solar thermal, photovoltaics, on land and offshore wind, hydroelectric, geothermal electric, geothermal ground source heat, tidal energy, wave energy, ocean thermal, and fuel cells which do not utilize a fossil fuel resource in the process of generating electricity.
7. Is the site located within a disadvantaged community, within a designated Brownfield Opportunity Area, and plans to meet the conformance determinations pursuant to subdivision ten of section nine-hundred-seventy-r of the general municipal law?
Yes - *Selecting this option will result in a "pending" status, as a BOA conformance determination has not yet been made. Proof of conformance will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.
No No
From ECL 75-0111 as of April 9, 2022:
(5) "Disadvantaged communities" means communities that bear the burdens of negative public health effects, environmental pollution, impacts of climate change, and possess certain socioeconomic criteria, or comprise high-concentrations of low- and moderate-income households, as identified pursuant to section 75-0111 of this article.

NYSDEC BCP Application - BCP Site No. C224168 55 Eckford Street, Brooklyn, NY 11222

Block 2698, Lot 32

BROWNFIELD CLEANUP PROGRAM APPLICATION SUPPLEMENTAL INFORMATION

55 ECKFORD ST LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

55 Eckford Street, Brooklyn, NY 11222

Block 2698, Lot 32

Page | 2

SECTION I - PROPERTY INFORMATION

PROPERTY DESCRIPTION NARRATIVE

Location

The Site is located in the Greenpoint neighborhood of Brooklyn, New York. The Site is identified as Block 2698, Lot 32 and 10,376 square feet (approximately 0.24 acres) in area. The Site Location Map is provided in **Figure 1**. A Site Plan is provided in **Figure 2**. The Site is bound to the north by a 5-story building (65 Eckford Street, BCP Site No. C224218), to the east by Eckford Street, to the south by a 3-story residential building (68 Engert Avenue) and eight interconnected 5-story residential buildings (49 Engert Avenue), and to the west by 1-story warehouse building (488 Leonard Street) and a parking garage.

Site Features

The partially developed Site is occupied by a 6-story unfinished steel frame construction with concrete foundations. A partial basement is located beneath the southern portion of the unfinished construction. It is covered with bare soil and concrete footings. A partially constructed elevator pit is located in the northern portion of the unfinished basement. Overhead scaffolding is seen along the sidewalk at the entrance of the Site. The rest of the property is covered with overgrown bushes.

A Site Survey is included in **Figure 3**. The tax parcel information and boundaries are shown in **Figure 4**. The Property Metes and Bounds description is included in the Deed shown in **Exhibit A**. The proposed redevelopment building plans are included in **Exhibit B**.

Current Zoning and Land Use

The Site is currently inactive and located in the Greenpoint-Williamsburg Special Mixed-Use District (MX-8) of Brooklyn, New York in an area zoned for residential (R6A, R6B), light manufacturing (M1-2). The following surrounding land uses were observed during the Phase I ESA Site inspection:

North: 65 Eckford Street, a 5-story building in the NYSBCP, C224218.

South: 3-story residential building located at 68 Engert Avenue and eight interconnected 5-

story residential buildings, at 49 Engert Avenue.

East: Eckford Street, residential housing across Eckford Street.

West: A 1-story warehouse building located at 488 Leonard Street and a parking garage.

A map showing 55 Eckford St LLC Site with respect to adjacent streets and roadways and proposed brownfield property boundary lines, with adjacent property owners is shown in **Figure 5**.

The proposed construction will be as-of-right and will be consistent with applicable zoning regulations.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 3

The Zoning Map is shown in **Figure 6**. The Land Use Map is shown in **Figure 7**.

Past Use of the Site

Records from 1887 show the Site as four abutting vacant undeveloped lots. By 1905, the Site is shown as being part of Meisel Danowitz & Co. woodworking operation and contained four 1- to 2-story buildings identified as "moulding shed", "planning & moulding lumber racks", "kiln house", and an office. By 1916, the structures remain but were identified as "vacant and dilapidated"; by 1942 identified as "wool & rags sorting and baling"; and from 1951 until 1992 identified as "electric plating, storage, lacquer spraying". NYC Department of Finance (DOF) records showed the Site was owned by the Berkman Family. Between 1993 and 2004, the structures remain but the use was unknown. By 2003, the Berkman Family sold the property to Blue Diamond Development, LLC. In August 2005, the NYC Department of Buildings (DOB) issued a demolition, and buildings were later demolished. By 2009, the property was sold to 55 Eckford Street Brooklyn LLC / Madison Realty Capital L.P. Between 2009 and 2015, construction permits were issued by NYCOB for the Site redevelopment into residential apartments. By 2016, a stop work order has been issued for the Site, and construction has been paused since then. According to the previous investigations performed at the Site (see Section 4.0), the Site was entered into the BCP under Site No. C224168 in 2017, with the Applicant, TCJ Construction, deemed a Volunteer. By the time of the BCP Application in May 2024, the Site contains a 6-story steel structure for an unfinished building and the property is surrounded by a construction fence.

The NYC Department of Finance (DOF) website lists the following ownership records and deed transfers:

Party 1	Party 2	Address	Date of Ownership or Operation
Eckford-Greenpoint LLC	55 Eckford St LLC	100 Jericho Quadrangle, Jericho, NY	04/24/2024 to 04/25/2024
55 Eckford Street Brooklyn LLC	Eckford-Greenpoint LLC	10 Glenville Street, Greenwich CT	12/28/20212 to 02/12/2013
Blue Diamond Development LLC	55 Eckford Street Brooklyn LLC	825 Third Avenue, New York, NY	06/22/2009 to 12/17/2009
Berkman, Theodore as co-trustees of Arlyne Berkman Revocable Living Trust	Blue Diamond Development LLC	199 Lee St., Suite 287 Brooklyn, NY	09/16/2003 to 03/16/2004
Berkman, Donald	Berkman, Gerald	55 Eckford St., Brooklyn, NY	01/30/2002 to 02/25/2002
Berkman, Arlyne	Berkman, Arlyne Revocable Living Trust	6655 NY 15 th St., Margate, FL	10/31/1995 to 12/21/1995
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	03/04/1994 to 04/15/1994
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	01/05/1972 to 01/05/1972
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	12/27/1971 to 12/27/1971

Records from as early as 1887 show the surrounding areas to the north, west and east of the Site as subdivided vacant interspersed with 2- to 3-story dwellings. The property to the south of the Site is shown with several 1-to 2-story story buildings labeled as "Plastering Hair Manufacturing Co.". By early 1900s until the mid-2000s, the surrounding vicinity saw denser development with multiple 2 to 3-story -story dwellings and several manufacturing and commercial facilities (e.g., cooperage, lumber yards, moving pictures, cab company, garage, printing, furniture manufacturing, etc.). By late 2000s, the manufacturing properties were redeveloped into multi-story residential apartments. By July 16, 2015, the property that abuts the Site to the north (Former Carter Spray Finishing Corp. at 65 Eckford Street), was entered into the BCP under Site No. C224218 with documented contamination in soil related to

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 4

historical operations and fuel storage in underground tanks. In summary, the past occupants' operations of woodworking and electroplating, storage and lacquer spraying as possible sources of contamination.

Site Geology and Hydrogeology

Based on our review of the 1776-7 Original High and Low Grounds, Salt Marsh and Shorelines in the City of Brooklyn Map, the Subject Property lies within the edge of the shoreline (blue) of where the original salt marsh land (green) is located (i.e., the current McCarren Park). Based on our experience in the area, fill used to raise grades is underlain by clayey silts and silty sands.

Source: Map prepared to accompany report to the Board of Health 1875, New York Public Library

Based on Bedrock Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey, dated 1990, the bedrock near the Subject Property consists of interbedded units of gray thinly laminated muscovite-biotite-quartz schist, and white to pinkish with light green weathering gneiss. We anticipate bedrock to be encountered at approximately El. -150 feet NAVD88, which is over 100 feet below ground surface (bgs).

Based on previous investigations performed at the Site, groundwater measurements range from approximately 7 to 13 feet bgs. However, the localized direction of groundwater flow near the Subject Property might vary because of underground utilities, subsurface preferential pathways, variations in weather or heterogeneous geological and/or anthropogenic conditions.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

k 2698, Lot 32 Page | 5

Environmental Assessment

Information from the Phase II Investigation performed in April 2012 by HydroTech Environmental Corporation (HTE) identified several contaminants of concern that may be attributed to the historical manufacturing activities. The laboratory analytical results for soil were compared to New York State Department of Environmental Conservation (NYSDEC) Part 375 Soil Cleanup Objectives (SCOs); for groundwater were compared to NYSDEC Technical Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values (GQS); and for soil vapor were evaluated, but no indoor air samples were collected to compare to New York State Department of Health (NYSDOH) Air Guidance Values (AGVs). The primary contaminants of concern include chlorinated volatile organic compounds (cVOCs) (specifically trichloroethylene [TCE] and methylene chloride) and metals in soils, metals in groundwater, and cVOCs in soil vapor. The historical environmental information is included in **Exhibit C**.

Soil Chemistry

Volatile Organic Compounds (VOCs)

cVOCs, specifically TCE (maximum concentration [max] of 1.2 milligram per kilogram [mg/kg]) and methylene chloride (max of 1.1 mg/kg) were detected at concentrations above Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Protection of Groundwater Soil Cleanup Objectives (PGWSCOs) but below Restricted Residential Use Soil Cleanup Objectives (RRUSCOs). A spider diagram of cVOCs exceedances is included as **Figure 8A**.

Total Metals

Seven (7) metals including arsenic (max of 273 mg/kg), barium (max of 605 mg/kg), cadmium (max of 4.62 mg/kg), chromium (max of 113 mg/kg), copper (max of 1,020 mg/kg), lead (max of 2,410 mg/kg), mercury (max of 8.17 mg/kg), and nickel (max of 1,240 mg/kg) were detected at concentrations above their applicable UUSCOs, RRUSCOs and/or the PGWSCO. A spider diagram of the metals exceedances is included as **Figure 8B.**

Groundwater Chemistry

Metals

Six (6) dissolved metals including arsenic (max of 2.36 milligrams per liter [mg/L]), iron (max of 30.5 mg/L), lead (max of 0.294 mg/L), manganese (max of 0.784 mg/L), selenium (max of 0.02 mg/L), silver (max of 0.073 mg/L) and sodium (max of 259 mg/L) were reported at concentrations exceeding their applicable TOGS 1.1.1 GQS.

A spider diagram showing the groundwater exceedances is included as Figure 9.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 6

• Soil Vapor Chemistry

Six (6) soil vapor samples were Six (6) soil vapor samples were collected and evaluated. Soil vapor samples showed elevated detections of the TCE (max of 1,700 micrograms per cubic meter [ug/m³]).

A spider diagram showing the elevated soil vapor concentrations is included as Figure 10.

SECTION II - PROJECT DESCRIPTION

Project Details

Based on the preliminary evaluation of the available historical environmental information, past uses of the Site as a manufacturing facility may have contributed to Site contamination. Contaminated fill is a source of chemicals of potential concern (CPOCs) such as chlorinated VOCs in soils and soil gas and metals in soil and groundwater. The Requestor proposes to continue redevelopment of the Site under BCP Site No. C224168, in a manner that will render the Site protective of public health and the environment during construction and renders the Site consistent with the contemplated end use.

The Project development will include a horizontal extension of the existing metal structure of 14,400 square feet (SF) to 20,000 SF. The Project will include 14 to 16 residential condominium units, which will be built across the 5-story building. Condominium development will include a recreation space and 6 to 8 at-grade parking in the rear.

The proposed remedy for the Site will be designed to reduce the potential for exposure to hazardous substances during construction. The proposed remedial action will address the removal of the existing contaminated fill material by excavation for redevelopment of the new building. The anticipated excavation depth for new extension will be between an estimated 8 to 9 feet below ground surface (ft bgs) in most of the areas of the foundation. The existing cellar is about 7 ft bgs. The chart below presents a schedule for the proposed RAWP and reporting. If the schedule for remediation and development activities changes, it will be updated and submitted to NYSDEC, as necessary.

Under the Brownfield Cleanup Program, the Requestor / Volunteer (55 Eckford St. LLC.) plans to remediate the Site for the development of 14-16 residential condominium units (see Section III). The proposed building plans are attached as **Exhibit B**.

BROWNFIELD CLEANUP PROGRAM

55 ECKFORD ST. LLC SITE

Duningt Millanton	Cht	FJ	2024								2025 2026																						
Project Milestones	Start	End	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BCP Application and RIWP Submission to NYSDEC	6/21/2024	7/19/2024																															
NYSDEC BCP Application Review and Determination of Completeness	7/22/24	8/19/2024																															
Revisions to BCP Application and RIWP	8/20/2024	9/13/2024																															
30-Day Public Comment for BCP Application	9/16/2024	10/15/2024																															
BCA Execution	10/21/2024	10/21/2024																															
CPP Submission and Review	10/21/2024	10/25/2024																															
NYSDEC and NYSDOH Review of RIWP and Submission of Revisions	9/16/2024	10/31/2024																															
RIWP Implementation	11/1/2024	12/13/2024																															
RIR Preparation	12/16/2024	1/17/2025																															
RAWP Preparation	12/30/2024	1/31/2025																															
NYSDEC and NYSDOH Review of RIR and RAWP, Submission of Revisions and 45-Day Comment Period	2/3/2025	4/14/2025																															
Approval of the RIR and RAWP, Issuance of Decision Document	4/15/2025	5/14/2025																															
Pre-construction Meeting with NYSDEC	5/16/2025	5/16/2025																															
Construction and RAWP Implementation, Documentation of Engineering Controls	5/19/2025	9/22/2026																															
Preparation of FER and SMP	7/13/2026	9/30/2026																															
NYSDEC Review of FER and SMP	10/1/2026	11/30/2026																															
Issuance of COC	12/16/2026	12/16/2026																															

The chart above presents a schedule for the proposed BCP Project Implementation and Reporting. If the schedule for remediation and development activities changes, it will be updated and submitted to NYSDEC, as necessary.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 8

SECTION III - LAND USE FACTORS

Current Zoning and Land Use

The Site is currently located in the Greenpoint-Williamsburg Special Mixed-Use District (MX-8) of Brooklyn, NY in an area zoned for residential (R6, R6B. and light manufacturing (M1-2). The site has been vacant since at least 2005 with NYCDOB issued the demolition permits. The proposed redevelopment will be constructed as-of-right under the current R6B zoning which will necessitate the reduction to a 5-story building with a wider building footprint. The Zoning Map is shown in **Figure 7**. The Land Use Map is shown in **Figure 8**.

Anticipated Use

Under the Brownfield Cleanup Program, the Requestor / Volunteer (55 Eckford St. LLC.) plans to remediate the Site for the development of 14-16 residential condominium units, which will be built across a 5-story building. Condominium development will include recreation space and 6-8 on-grade parking in the rear. The anticipated excavation depth for new extension will be between an estimated 8 to 9 ft bgs in most of the areas of the foundation. Existing cellar is about 7 ft bgs.

Current Business operations

The Site is currently unoccupied with a 6-story unfinished steel frame buildout in the middle. The Site underwent construction and ceased mid-project due to the former owner defaulting.

Compliance with Zoning Laws, Recent Development, and Community Master Plans

The proposed redevelopment will be constructed as-of-right under the current R6B zoning, which is 5-story building with a wider building footprint.

According to the Comprehensive Plan for Brooklyn, dated October 2023, released by the Office of the Brooklyn Borough President in partnership with the Regional Plan Association, most zoning map amendments adopted from 2014-2023 sought to facilitate new affordable housing and mixed-use development. Brooklyn has approved 85 smaller private rezonings to support increased development in Brooklyn since 2014. The 2005 Greenpoint/Williamsburg rezoning has enabled significant multi-family development. Because of this, the area saw large increase in the total number of residences. The proposed project will continue with this goal to provide dense mixed-use development.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 9

SECTION IV - PROPERTY'S ENVIRONMENTAL HISTORY

Previous Reports

The following reports have been reviewed and submitted as part of the Requestor / Volunteer's BCP application:

- Phase I Environmental Site Assessment (ESA) Report, Hydro Tech Environmental Corp., October 27, 2011
- Phase II Environmental Sub Surface Investigation, EEA, INC., December 2011
- Phase II Environmental Site Assessment, Hydro Tech Environmental Corp., April 5, 2012
- Phase I Environmental Site Assessment Report, Hydro Tech Environmental Corp., June 3, 2012
- Phase I Environmental Site Assessment Report, Hydro Tech Environmental Corp., July 25, 2016
- Phase I Environmental Site Assessment (ESA) Report, Touchstone Environmental., April 2024

The historical environmental information is included in **Exhibit C**.

Past Use of the Site

Records from 1887 show the Site as four abutting vacant undeveloped lots. By 1905, the Site is shown as being part of Meisel Danowitz & Co. woodworking operation and contained four 1- to 2-story buildings identified as "moulding shed", "planning & moulding lumber racks", "kiln house", and an office. By 1916, the structures remain but were identified as "vacant and dilapidated"; by 1942 identified as "wool & rags sorting and baling"; and from 1951 until 1992 identified as "electric plating, storage, lacquer spraying". NYC Department of Finance (DOF) records showed the Site was owned by the Berkman Family. Between 1993 and 2004, the structures remain but the use was unknown. By 2003, the Berkman Family sold the property to Blue Diamond Development, LLC. In August 2005, the NYC Department of Buildings (DOB) issued a demolition, and buildings were later demolished. By 2009, the property was sold to 55 Eckford Street Brooklyn LLC / Madison Realty Capital L.P. Between 2009 and 2015, construction permits were issued by NYCOB for the Site redevelopment into residential apartments. By 2016, a stop work order has been issued for the Site, and construction has been paused since then. According to the previous investigations performed at the Site (see Section 4.0), the Site was entered into the BCP under Site No. C224168 in 2017, with the Applicant, TCJ Construction, deemed a Volunteer. By the time of the BCP Application in May 2024, the Site contains a 6-story steel structure for an unfinished building and the property is surrounded by a construction fence.

Records from as early as 1887 show the surrounding areas to the north, west and east of the Site as subdivided vacant interspersed with 2- to 3-story dwellings. The property to the south of the Site is shown with several 1-to 2-story story buildings labeled as "Plastering Hair Manufacturing Co." By early 1900s until the mid-2000s, the surrounding vicinity saw denser development with multiple 2 to 3-story -story dwellings and several manufacturing and commercial facilities (e.g., cooperage, lumber yards,

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 10

moving pictures, cab company, garage, printing, furniture manufacturing, etc.). By late 2000s, the manufacturing properties were redeveloped into multi-story residential apartments. By July 16, 2015, the property that abuts the Site to the north (Former Carter Spray Finishing Corp. at 65 Eckford Street), was entered into the BCP under Site No. C224218 with documented contamination in soil related to historical operations and fuel storage in underground tanks.

Sampling Data

The previous Phase II laboratory soil analytical results were compared to NYSDEC Part 375 UUSCOs, RRUSCOs, PGWSCOs and the exceedances are summarized in **Table 1**. The Phase II groundwater analytical results were compared to TOGS 1.1.1 AWQS and the exceedances are summarized in **Table 2**. The Phase soil vapor analytical results were evaluated, and the elevated concentrations are summarized in **Table 3**.

Soil Chemistry

Volatile Organic Compounds (VOCs)

cVOCs, specifically TCE (maximum concentration [max] of 1.2 milligram per kilogram [mg/kg]) and methylene chloride (max of 1.1 mg/kg) were detected at concentrations above Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Protection of Groundwater Soil Cleanup Objectives (PGWSCOs) but below Residential Use Soil Cleanup Objectives (RUSCOs). A spider diagram of the cVOCs exceedances is included as **Figure 9A**.

Total Metals

Seven (7) metals including arsenic (max of 273 mg/kg), barium (max of 605 mg/kg), cadmium (max of 4.62 mg/kg), chromium (max of 113 mg/kg), copper (max of 1,020 mg/kg), lead (max of 2,410 mg/kg), mercury (max of 8.17 mg/kg), and nickel (max of 1,240 mg/kg) were detected at concentrations above their applicable UUSCOs, RUSCOs and/or the PGWSCO. A spider diagram of the metal exceedances is included as **Figure 9B.**

Groundwater Chemistry

Metals

Six (6) dissolved metals including arsenic (max of 2.36 milligrams per liter [mg/L]), iron (max of 30.5 mg/L), lead (max of 0.294 mg/L), manganese (max of 0.784 mg/L), selenium (max of 0.02 mg/L), silver (max of 0.073 mg/L) and sodium (max of 259 mg/L) were reported at concentrations exceeding their applicable TOGS 1.1.1 GQS.

A spider diagram showing the groundwater exceedances is included as **Figure 10**.

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 11

• Soil Vapor Chemistry

Six (6) soil vapor samples were collected and evaluated. Soil vapor samples showed elevated detections of the TCE (max of 1,700 micrograms per cubic meter [ug/m³]).

A spider diagram showing the elevated soil vapor concentrations is included as **Figure 11**.

SECTION V - REQUESTOR INFORMATION

The Requestor is 55 Eckford St LLC., a New York limited liability company, with a business address located at 100 Jericho Quadrangle, Suite 220, Jericho, NY 11753. 55 Eckford St LLC. is formed from an operating agreement entered into by the Members that was made effective as of September 21, 2023. The names, ownership percentages, and the business, residence, or mailing address of each of the Members is as follows:

	Ownership			
Member Company	Percentage	Name	Title	Address
Poise RE Dev Holdings	50.0%	Val Katayev	President	100 Jericho Quadrangle, Suite 220
LLC				Jericho, NY 11753
DSKAY Realty Holding LLC	50.0%	Daniel Kaykov	Managing	100 Jericho Quadrangle, Suite 220
			Member	Jericho, NY 11753

Daniel Kaykov is an authorized signatory for 55 Eckford St LLC., which is authorized to conduct business in New York State.

The Requestor is the owner of the property identified as 55 Eckford Street, Brooklyn, NY, Block 2698 Lot 32 on the Kings County Tax Map (Site) as of April 24, 2024. The Deed is provided in **Exhibit A**. A print-out of the entity information from the New York State Department of State's Corporation & Business Entity Database is provided in **Exhibit D**.

SECTION VI - REQUESTOR ELIGIBILITY

The Requestor meets the definition of Volunteer per ECL 27-1405(1) because (i) the requestor performed a Phase I Environmental Site Assessment dated, April 2024 that satisfied the "All Appropriate Inquiry" requirements of 40 CFR 312 prior to entering contract. Moreover, ii) the Requestor has not owned or operated the Site at the time of the disposal of hazardous substances, waste, and/or petroleum, if any, and (iii) the Requestor is an unrelated third-party LLC and neither it or its members has any direct involvement with the ownership or operation of the Site.

The Requestor will continue to exercise appropriate care by implementing the requirements of the BCP and is prepared to undertake all necessary remediation required to address contamination at the Site. As such, the Requestor is a Volunteer as defined in ECL 27-1405(1)(b).

55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

Page | 12

SECTION IX - CURRENT PROPERTY OWNER AND OPERATOR INFORMATION

The current property owner is 55 Eckford St LLC. The historical owners and operators of the property do not have any relationship with the Requestor / Current Owner. Please refer to Section IX of the application form Current Property Owner and Operator Information.

The NYC Department of Finance (DOF) website lists the following ownership records and deed transfers:

Property Owner	Last Known Address	Phone No.	Date of Ownership or Operation	Relationship of Owner to Requestor
55 Eckford St LLC	100 Jericho Quadrangle, Jericho, NY	(203)513-7480	04/24/2024 to Current	Requestor
Eckford- Greenpoint LLC	10 Glenville Street, Greenwich CT	(201)525-6285	12/28/20212 to 02/12/2013	None
55 Eckford Street Brooklyn LLC	825 Third Avenue, New York, NY	(718)645-5600	06/22/2009 to 12/17/2009	None
Blue Diamond Development LLC	199 Lee St., Suite 287 Brooklyn, NY	N/A	09/16/2003 to 03/16/2004	None
Berkman, Gerald	55 Eckford St., Brooklyn, NY	N/A	01/30/2002 to 02/25/2002	None
Berkman, Arlyne Revocable Living Trust	6655 NY 15 th St., Margate, FL	N/A	10/31/1995 to 12/21/1995	None
Berkman, Donald	71 Margaret Drive, Valley Stream, NY	N/A	03/04/1994 to 04/15/1994	None
Berkman, Donald	71 Margaret Drive, Valley Stream, NY	N/A	01/05/1972 to 01/05/1972	None
Berkman, Donald	71 Margaret Drive, Valley Stream, NY	N/A	12/27/1971 to 12/27/1971	None

SECTION XI - CONTACT LIST INFORMATION

Please refer to Exhibit E for the Site Contact List and Exhibit F for the Document Repository Letters.

NYSDEC BCP Application - BCP Site No. C224168 55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

TABLES

Table 1 - Soil Data Summary Brownfield Cleanup Application

55 ECKFORD ST., LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

Soil Summary Table											
Analytes > RRUSCOs	Detections > RRUSCOs	Maximum Detection (ppm)	RRUSCO (ppm)	Depth (ft bgs)							
Benzo(a)anthracene	2	2.25	1	0-2							
Benzo(a)pyrene	1	1.57	1	0-2							
Benzo(b)fluoranthene	1	1.21	1	0-2							
Benzo(k)fluoranthene	1	1.81	1	0-2							
Chrysene	5	2.14	3.9	0-2							
Arsenic	8	273	16	8-10							
Cadmium	2	4.62	2.5	0-2							
Chromium	3	51	36	0-2							
Mercury, Total	1	2.75	0.81	1-3							
Arsenic	8	273	16	8-10							
Cadmium	2	4.62	2.5	0-2							
Chromium	3	51.2	36	0-2							
Copper	5	590	270	6-8							
Lead	7	2,980	400	8-10							
Mercury	5	27.4	0.81	7-9							
Nickel	6	1,030	180	0-2							

Notes:

Analytes > RRUSCOs: Displays analytes that exceeded the NYSDEC Part 375 Restricted Residential Use

Detections > RRUSCOs: Number of detections over the applicable RRUSCO.

Maximum Detection (ppm): Maximum detection in parts per million.

RRUSCO (ppm): Restricted Residential Use Soil Cleanup Objective in parts per million.

Depth (ft bgs): Range of depths that exceeded the respective RRUSCO.

Table 1a - Soil Data Summary Brownfield Cleanup Application

FORMER BERKMAN BROTHERS SITE

55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

	Soil Summary Table												
Analytes > PGWSCOs	Detections > PGWSCOs	Maximum Detection (ppm)	PGWSCOs (ppm)	Depth (ft bgs)									
Benzo(a)anthracene	2	2.25	1	0-2									
Benzo(a)pyrene	1	1.57	1	0-2									
Benzo(b)fluoranthene	1	1.21	1	0-2									
Benzo(k)fluoranthene	1	1.81	1	0-2									
Chrysene	5	2.14	3.9	0-2									
Arsenic	8	273	16	8-10									
Mercury, Total	1	2.75	0.73	1-3									
Lead	7	2,980	450	8-10									
Mercury	5	27.4	0.73	7-9									
Nickel	6	1,030	130	0-2									

Notes:

Analytes > PGWSCOs: Displays analytes that exceeded the NYSDEC Part 375 Protection of

Detections > PGWSCOs: Number of detections over the applicable PGWSCOs

Maximum Detection (ppm): Maximum detection in parts per million.

PGWSCO (ppm): Protection of Groundwater Use Soil Cleanup Objective in parts per million.

Depth (ft bgs): Range of depths that exceeded the respective PGWSCO.

Table 2 - Groundwater Data Summary Brownfield Cleanup Application

55 ECKFORD ST., LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

Groundwater Summary Table										
Analytes > AWQS	Detections > AWQS	Maximum Detection (ppb)	AWQS (ppb)							
sec-Butylbenzene	2	8.8	5							
tert-Butylbenzene	1	7	5							
Arsenic	5	522	25							
Manganese	7	822	300							
Sodium	7	29,800	20,000							
Iron	7	20,100	300							
Silver	7	73	50							

Notes:

Analytes > AWQS: Displays analytes that exceed the NYSDEC Technical and Operational Guidance

Series (1.1.1) Ambient Water Quality Standards and Guidance Values.

Detections > AWQS: Number of detections over the applicable AWQS.

Maximum Detection (ppb): Maximum detection in parts per billion.

AWQS (ppb): Ambient Water Quality Standard and Guidance Value in parts per billion.

Table 3 - Soil Vapor Data Summary Brownfield Cleanup Application

55 ECKFORD ST., LLC SITE 55 Eckford Street Brooklyn, New York 11222 Block 2698, Lot 32 BCP Site No. C224168

Soil Vapor Summary Table			
Analytes	Total Detections	Maximum Detection (μg/m³)	Туре
1,1-Dichloroethene	1	26	Soil Vapor
Acetone	4	2,300	Soil Vapor
Methylene chloride	6	33	Soil Vapor
Tetrachloroethene	2	84	Soil Vapor
Trichloroethylene	6	1,700	Soil Vapor

Notes:

Analytes: Volatile Organic Compounds (VOCs) detected during soil vapor sampling.

Total Detections: Number of samples with detections of VOCs. Maximum Detection ($\mu g/m3$): Maximum detection in micrograms per cubic meter.

Type: Indicates the range of samples with reported VOC detection from the Phase II soil vapor samples.

NYSDEC BCP Application - BCP Site No. C224168 55 Eckford Street, Brooklyn, NY 11222

Block 2698, Lot 32

FIGURES

GENERAL NOTES

1. AERIAL IMAGERY DEVELOPED FROM © 2024 MICROSOFT CORPORATION 2024 MAXAR CNES (2024) DISTRIBUTION AIRBUS DS.

LEGEND

APPROXIMATE SITE BOUNDARY

NO.	1330E/ DESCRIPTION	כ	DAIL
UNLESS S	PECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS TH	IE SOLE	PROPERTY OF GZA
	NMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS		
	THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT		
	NG. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR A		
	Y OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR W		
	REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS,		

55 ECKFORD STREET BROOKLYN, NEW YORK

FIGURE 2 - PROPERTY LOCATION MAP - AERIAL BROWNFIELD CLEANUP PROGRAM APPLICATION

PREPARED BY:		PREPARED FOR:	
GZA GeoEnvironmental of NY Engineers and Scientists www.gza.com		55 ECKFORD ST. LLC	
PROJ MGR: RM	REVIEWED BY: VW	CHECKED BY: VW	FIGURE
DESIGNED BY: RM	DRAWN BY: NQ	SCALE: 1"=50"	_
DATE:	PROJECT NO.	REVISION NO.	
JUNE 2024	41.0163263.00	-	SHEET NO. 2 OF 11

©2024 - GZA GeoEnvironmental of NY.

GENERAL NOTES

1. BASE MAP DEVELOPED FROM DRAWING TITLED "TITLE SURVEY", FOR BLOCK 2698, LOT 32, SECTION 8, KINGS COUNTRY, PREPARED BY "AAA GROUP", ORIGINAL SCALE 1"=16', DATED OCTOBER 13, 2013.

LEGEND

APPROXIMATE SITE BOUNDARY

NO.	ISSUE/DESCRIPTION	BY	DATE
NLESS S	PECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS TH	IE SOLE	PROPERTY OF GZA
EOENVIRO	NMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS	SOLELY	r FOR USE BY GZA'S
JENT OR	THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT	AND LC	CATION IDENTIFIED ON

NLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GEOENVIRONMENTAL, INC. (SCA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY CZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON HE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR SE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA. ANY PRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN MAPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LABILITY TO GZA.

55 ECKFORD STREET BROOKLYN, NEW YORK

FIGURE 3 - SITE SURVEY BROWNFIELD CLEANUP PROGRAM APPLICATION

PREPARED BY:		PREPARED FOR:	
GZAGeoEnvironmental of NY Engineers and Scientists www.gza.com		f 55 ECKFORD ST. LLC	
PROJ MGR: RM	REVIEWED BY: VW	CHECKED BY: VW	FIGURE
DESIGNED BY: RM	DRAWN BY: NQ	SCALE: 1"= 20"	2
DATE:	PROJECT NO.	REVISION NO.	3
JUNE 2024	41.0163263.00	-	SHEET NO. 3 OF 11

GENERAL NOTES

- 1. AERIAL IMAGERY DEVELOPED FROM © 2024 MICROSOFT CORPORATION 2024 MAXAR CNES (2024) DISTRIBUTION AIRBUS DS.
- TAX PARCEL LOCATIONS DEVELOPED FROM NYC OPEN DATA GIS BASEMAP PREPARED BY NYC DOITT GIS, LAST UPDATE MAY 2016.
- ADDRESS AND OWNER NAMES DEVELOPED FROM NEW YORK CITY DEPARTMENT OF PLANNING ZONING & LAND USE MAP (ZOLA), ACCESSED MAY 2024.

LEGEND

APPROXIMATE SITE BOUNDARY

APPROXIMATE LOCATION OF SURROUNDING TAX LOTS

ISSUE/DESCRIPTION UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZ GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'

> 55 ECKFORD STREET BROOKLYN, NEW YORK

FIGURE 5 - PROPERTY BASE MAP **BROWNFIELD CLEANUP PROGRAM APPLICATION**

PREPARED BY:		PREPARED FOR:	
Engine	Environmental of NY ers and Scientists ww.gza.com	55 ECKFORD ST. LLC	
PROJ MGR: RM	REVIEWED BY: VW	CHECKED BY: VW	FIGURE
DESIGNED BY: RM	DRAWN BY: JB	SCALE: 1"=50"	_
DATE:	PROJECT NO.	REVISION NO.	5
JUNE 2024	41.0163263.00	-	SHEET NO. 5 OF 11

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

EXHIBIT ADEED

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

This page is part of the instrument. The City Register will rely on the information provided by you on this page for purposes of indexing this instrument. The information on this page will control for indexing purposes in the event of any conflict with the rest of the document.

RECORDING AND ENDORSEMENT COVER PAGE

PAGE 1 OF 5

Document ID: 2024042500193001 Document Date: 04-24-2024 Preparation Date: 04-25-2024

Document Type: DEED Document Page Count: 3

PRESENTER:

INSIGNIA NATIONAL TITLE AGENCY, LLC 31 WEST 34TH STREET - SUITE 7028 TITLE NO. ITC-21829-23FN NEW YORK, NY 10001 212-465-0777

RECORDINGS@INTALLC.COM

RETURN TO:

INSIGNIA NATIONAL TITLE AGENCY, LLC 31 WEST 34TH STREET - SUITE 7028 TITLE NO. ITC-21829-23FN NEW YORK, NY 10001 212-465-0777 RECORDINGS@INTALLC.COM

PROPERTY DATA Borough Block Lot Address

BROOKLYN 55 ECKFORD STREET 2698 32 Entire Lot

Property Type: COMMERCIAL REAL ESTATE

CROSS REFERENCE DATA DocumentID Year Reel Page File Number

GRANTOR/SELLER:

CRFN

HELMUT BORCHET, ESQ AS REFEREE 55 ECKFORD STREET BROOKLYN, NY 11222

PARTIES

GRANTEE/BUYER: 55 ECKFORD ST LLC

100 JERICHO QUADRANGLE, STE 220

JERICHO, NY 11753

☑ Additional Parties Listed on Continuation Page

FEES AND TAXES

Mortgage :		Filing Fee:
Mortgage Amount:	\$ 0.00	\$
Taxable Mortgage Amount:	\$ 0.00	NYC Real Property Transfer Tax:
Exemption:		\$
TAXES: County (Basic):	\$ 0.00	NYS Real Estate Transfer Tax:
City (Additional):	\$ 0.00	\$
Spec (Additional):	\$ 0.00	RECORDED OR FILI
TASF:	\$ 0.00	OF THE CITY REC
MTA:	\$ 0.00	CITY OF N
NYCTA:	\$ 0.00	Recorded/Filed
Additional MRT:	\$ 0.00	City Register F
TOTAL:	\$ 0.00	City Register 1
Recording Fee:	\$ 52.00	
Affidavit Fee:	\$ 0.00	DATES WILL IN CHIL
		A SECULIAR STATE OF THE SECULIAR STATE OF TH

	\$	250.00
NYC Real Property T	ransfer Tax:	
	\$	189,767.81
NYS Real Estate Tran	sfer Tax:	

46,696.00

ED IN THE OFFICE GISTER OF THE **IEW YORK**

04-25-2024 16:34 File No.(CRFN):

2024000107235

City Register Official Signature

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

2024042500193001002CEC55

RECORDING AND ENDORSEMENT COVER PAGE (CONTINUATION)

PAGE 2 OF 5

Document ID: 2024042500193001

Document Date: 04-24-2024

Preparation Date: 04-25-2024

PARTIES

GRANTOR/SELLER:

Document Type: DEED

ECKFORD-GREENPOINT LLC 55 ECKFORD STREET BROOKLYN, NY 11222 -Referee's Deed In Foreclosure-

THIS IS A LEGAL INSTRUMENT AND SHOULD BE EXECUTED UNDER SUPERVISION OF AN ATTORNEY

THIS DEED, made the 24 day of 40), in the year two thousand and twenty-four,

BETWEEN

Helmut Borchert, Esq., having an address at 17 Washington Avenue, Glen Head, New York,

Referee,

duly appointed in the action hereinafter mentioned, Grantor,

AND

55 Eckford St LLC, having an address at 100 Jericho Quadrangle, Suite 200, Jericho, New York 11753, hereinafter referred to as the Grantee,

Grantee.

WITNESSETH, that the Grantor, the Referee appointed in the action between

Confidential Lending LLC,

plaintiff,

and

Eckford-Greenpoint LLC, et al.,

defendants.

bearing Index Number 522669/2018, foreclosing a mortgage recorded on the 5th day of August 2013 in the Office of the City Register of the City of New York as City Register File Number 2013000307251, in pursuance of a judgment of the Supreme Court of the State of New York, County of New York, dated January 28, 2022 and filed on February 9, 2022, and in consideration of the sum of Seven Million and 00/100 Dollars (\$7,000,000.00) paid by the Grantee, being the highest sum bid at the sale under said judgment does hereby grant and convey unto the Grantee,

ALL that certain plot, piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City of New York, and State of New York, known as 55 Eckford Street, being more particularly bounded and described in Schedule A annexed hereto an made a part hereof.

TO HAVE AND TO HOLD the premises herein granted unto the Grantee, and assigns forever,

IN WITNESS WHEREOF, the Grantor has hereunto set his/her hand and seal, the date first above written.

In presence of:

Holymant Borchert, Referee L.S.

Fidelity National Title Insurance Company by its Authorized Agent

Title Number: ITC-21829-K-23FN

Page 1 of 1

SCHEDULE A - DESCRIPTION

ALL that certain plot piece or parcel of land, with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the Westerly side of Eckford Street, distant 91 feet 6-1/2 inches northerly from the comer formed by the intersection of the westerly side of Eckford Street with the northerly side of Engert Avenue;

RUNNING THENCE westerly parallel with Engert Avenue and through a party wall 24 feet 8 inches;

THENCE southerly parallel with Eckford Street 12 feet;

THENCE westerly parallel with Engert Avenue 75 feet 4 inches;

THENCE northerly parallel with Eckford Street 99 feet 10 inches;

THENCE easterly parallel with Engert Avenue and through a party wall 30 feet 6 inches;

THENCE northerly parallel with Eckford Street and through a party wall 9 feet 11 inches;

THENCE easterly parallel with Engert Avenue and through a party wall 69 feet 6 inches to the westerly side of Eckford Street; and

THENCE southerly along the westerly side of Eckford Street 97 feet 9 inches to the point or place of BEGINNING.

FOR INFORMATION ONLY:

PREMISES are designated as Block 2698 Lot 32 on the tax map for the Borough of Brooklyn

INSURE

FOR CONVEYANCING ONLY: TOGETHER with all the right, title and interest of the party of the first part, in and to the land lying in the street in front of and adjoining said premises.

	ACKNOWLEDGEMENT TAKEN IN NEW YORK STATE	ACKNOWLEDGEMENT TAKEN IN NEW	V YORK STATE
R	QUEENS State of New York, County of New York , ss:	State of New York, County of	, ss:
	On the 24 day of Heu in the year 2024, before me, the undersigned, personally appeared Helmut Borchert, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name(s) is (are) subscribed	On the day of i before me, the undersigned, personally appear	n the year ,
	to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.	, personally known to me obasis of satisfactory evidence to be the individ is (are) subscribed to the within instrument and that he/she/they executed the same in his/her/that by his/her/their signature(s) on the instrument or the person upon behalf of which the individ the instrument.	ual(s) whose name(s) d acknowledged to me heir capacity(ies), and nent, the individual(s),
	(signatifie Gibb of the DREWING High taking acknowledgment) NOTARY PUBLIC, STATE OF NEW High taking acknowledgment) Registration No. 01AN8295435 Qualified in Suffolk County Commission Expires January 6, 2028	(signature and office of individual taking	acknowledgment)
	ACKNOWLEDGEMENT BY SUBSCRIBING WITNESS TAKEN IN NEW YORK STATE	ACKNOWLEDGEMENT TAKEN OUTSII STATE	DE NEW YORK
	State of New York, County of , ss: On the day of in the year , before me, the undersigned, a Notary Public in and for said State, personally appeared , the subscribing witness to the foregoing instrument, with whom I am personally acquainted, who, being by me duly sworn, did depose and say that he/she/they reside(s) in that he/she/they know(s) to be the individual described in and who executed the foregoing instrument; that said subscribing witness was present and saw said execute the same; and that said witness at the same time subscribed his/her/their name(s) as a witness thereto	*State of , County of *(Or insert District of Columbia, Territory, County) On the day of in , before me the undersigned persenally known to me or proved to me on the evidence to be the individual(s) whose name(s) the within instrument and acknowledged to me executed the same in his/her/their capacity(ies signature(s) on the instrument, the individual(s) behalf of which the individual(s) acted, execut that such individual make such appearance before the (add the city or political subdivision and the steplace the acknowledgement was taken).	on the year , sonally appeared e basis of satisfactory) is (are) subscribed to that he/she/they), that by his/her/their o) or the person upon ed the instrument, and fore the undersigned in
	(signature and office of individual taking acknowledgment)	(signature and office of individual taking	acknowledgment)

Referee's Deed

HELMUT BORCHERT, Referee BLOCK TO

55 ECKFORD ST LLC, Grantee

SECTION

2698

LOTS

COUNTY Kings

STREET ADDRESS 55 Eckford Street

Brooklyn, New York

RETURN BY MAIL TO:

32

GARY ROSEN, ESQ. 216 LAKEVILLE ROAD GREAT NECK, NY. 11028

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER

SUPPORTING DOCUMENT COVER PAGE

PAGE 1 OF 1

Document ID: 2024042500193001

Document Date: 04-24-2024

Document Type: DEED

Preparation Date: 04-25-2024

ASSOCIATED TAX FORM ID: 2023110700256

SUPPORTING DOCUMENTS SUBMITTED:

Page Count

DEP CUSTOMER REGISTRATION FORM FOR WATER AND SEWER BILLING RP - 5217 REAL PROPERTY TRANSFER REPORT

The City of New York
Department of Environmental Protection
Bureau of Customer Services
59-17 Junction Boulevard
Flushing, NY 11373-5108

Customer Registration Form for Water and Sewer Billing

Customer Registration Form for water and sewer bining
Property and Owner Information:
(1) Property receiving service: BOROUGH: BROOKLYN BLOCK: 2698 LOT: 32
(2) Property Address: 55 ECKFORD STREET, BROOKLYN, NY 11222
(3) Owner's Name: 55 ECKFORD ST LLC
Additional Name:
Affirmation:
Your water & sewer bills will be sent to the property address shown above.
Customer Billing Information:
Please Note:
A. Water and sewer charges are the legal responsibility of the owner of a property receiving water and/or sewer service. The owner's responsibility to pay such charges is not affected by any lease, license or other arrangement, or any assignment of responsibility for payment of such charges. Water and sewer charges constitute a lien on the property until paid. In addition to legal action against the owner, a failure to pay such charges when due may result in foreclosure of the lien by the City of New York, the property being placed in a lien sale by the City or Service Termination.
B. Original bills for water and/or sewer service will be mailed to the owner, at the property address or to an alternate mailing address. DEP will provide a duplicate copy of bills to one other party (such as a managing agent), however, any failure or delay by DEP in providing duplicate copies of bills shall in no way relieve the owner from his/her liability to pay all outstanding water and sewer charges. Contact DEP at (718) 595-7000 during business hours or visit www.nyc.gov/dep to provide us with the other party's information.
Owner's Approval:
The undersigned certifies that he/she/it is the owner of the property receiving service referenced above; that he/she/it has read and understands Paragraphs A & B under the section captioned "Customer Billing Information"; and that the information supplied by the undersigned on this form is true and complete to the best of his/her/its knowledge.
Print Name of Owner: 4/24/2024
Print Name of Owner: 4/24/1024, Signature:
Name and Title of Person Signing ∕or Owner, if applicable:
ICS-7CRF-ACRIS REV. 8/08

C1. County Code C2. Date Deed Recorded C3. Book C4. Page C5. CRFN	REAL PROPERTY TRANSFER REPORT STATE OF NEW YORK STATE BOARD OF REAL PROPERTY SERVICES RP - 5217NYC
PROPERTYINFORMATION	
1. Property 55 ECKFORD STREET LOCATION STREET NAMES	BROOKLYN 11222
2. Buyer 55 ECKFORD ST LLC LAST MAME / COMPANY	FIRST NATIE
LAST NAME / COMPANY	FIRST NAME
3. Tax Indicate where future Tax Bits are to be sent Bitling if other than buyer address (at bottom of form) Address CAST NAME: COMPANY C	PIRST NAME
STREET NUMBER AND STREET NAME STY OR TO	W i STATE ZP CODE
4. Indicate the number of Assessment Roll parcels transferred on the deed # of Parcels OR P	4A. Planning Board Approval - N/A for NYC 4B. Agricultural District Notice - N/A for NYC
5. Deed Property Size FRONT FEET X DEPTH OR ACRES	Check the boxes below as they apply: 6. Ownership Type is Condominium 7. New Construction on Vacant Land
8. Seller BÖRCHET, ESQ AS REFEREE Name LAST NAME / COMPANY	HELMUT
FCKFORD-GREENPOINT LLC LAST NAME TO COMPANY	F. PST NAME
9. Check the box below which most accurately describes the use of the property at	
A One Family Residential C Residential Vacant Land E V Non-Residential Vacant Land F	Commercial G Entertainment / Amusement I Industrial Apartment H Community Service J Pub"c Service
SALE INFORMATION	14. Check one or more of these conditions as applicable to transfer:
10. Sale Contract Date 9 / 21 2023 Month Tay Sale Transfer 4 24 2024 Month Day Year	A Sale Between Relatives or Former Relatives B Sale Between Related Companies or Partners in Business C One of the Buyers is also a Seller D Buyer or Seller is Government Agency or Lending Institution E Deed Type not Warranty or Barcain and Sale (Specify Below)
12. Full Sale Price \$	F Sale of Fractional or Less than Fee Interest (Specify Below)
12. Full Sale Price 3 7 2 2 9 2 5 0 (Full Sale Price is the total amount paid for the property including personal property. This payment may be in the form of cash, other property or goods, or the assumption of mortgages or other obligations.) Please round to the nearest whole dollar amount. 13. Indicate the value of personal property included in the sale	G Significant Change in Property Between Taxable Status and Sale Dates H Sale of Business is Included in Sale Price Unusual Factors Affecting Sale Price (Specify Below) None
ASSESSMENT INFORMATION - Data should reflect the latest Final Assessment	Roll and Tay Bill
15. Building Class D 3 16. Total Assessed Value (of all parcels	
17. Borough, Block and Lot / Roll Identifier(s) (If more than three, attach sheet wi	th additional identifier(s))
BROOKLYN 2698 32	

 $https://a836-acris.nyc.gov/DS/DocumentSearch/DocumentImageView?doc_id=2024042500193001$

understand that the mal	I certify that all of the items of information entered on this form are true and correct (to the best of my knowledge and belief) and understand that the making of any willful false statement of material fact herein will subject me to the provisions of the penal law relative to the making and filing of false instruments.				
Lan pegl & BUYER	ין אליבין איני	Rose	BUYER'S ATTORNEY		
100 JERICHO QUADRANGLE, STE 220	BATE	LAST NAME	TRST NAME		
200000000000000000000000000000000000000		516	437-3400		
STREET NUMBER STREET NAME (AFTER S	(E)	AREA CODE	TELEPHONE NUMBER		
JERICHO	NY 11753	Helmin	Souchest 4/24	2024	
CITY OR TOWN	STATE ZPCODE	SELLEP SIGNATURE	DATE	·'-	

CERTIFICATION

I certify that all of the items of information entered on this form are true and correct (to the best of my knowledge and belief) and understand that the making of any willful false statement of material fact herein will subject me to the provisions of the penal law relative to the making and filing of false instruments.

BUYERS		SELLERS	. 1
		Keteree	4 /2024
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Dale
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Selier Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Dale
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date
Buyer Signature	Date	Seller Signature	Date

NYSDEC BCP Application - BCP Site No. C224168 55 Eckford Street, Brooklyn, NY 11222 Block 2698, Lot 32

EXHIBIT B PROPOSED BUILDING PLANS

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

EXHIBIT CHISTORICAL ENVIRONMENTAL INFORMATION

Table 1 Soil Samples Volatile Organic Analytical Results

55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4		NYSDEC
Boring Number	B-1	B-2	B-3	B-4	NYSDEC	Brownfield's Part
Sample Depth	12-14 feet	11-13 feet	9-11 feet	11-12 feet	CP-51 Cleanup	375-6.8(a) Restricted
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	Guidelines	Use Resdential Soil
Sample Matrix	Soil	Soil	Soil	Soil	Guidennes	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg		Cleanup Objectives
	Volatile	e Organic Compo	unds (µg/kg) - EP	A Method 8260		
1,1,1,2-Tetrachloroethane	<1800	<5.7	<300	<1500	NS	NS
1,1,1-Trichloroethane	<1800	<5.7	<300	<1500	680	100,000
1,1,2,2-Tetrachloroethane	<1800	<5.7	<300	<1500	NS	NS
1,1,2-Trichloroethane	<1800	<5.7	<300	<1500	NS	NS
1,1-Dichloroethane	<1800	<5.7	<300	<1500	270	19,000
1,1-Dichloroethene	<1800	<5.7	<300	<1500	330	100,000
1,1-Dichloropropene	<1800	<5.7	<300	<1500	NS	NS
1,2,3-Trichlorobenzene	<1800	<5.7	<300	<1500	NS	NS
1,2,3-Trichloropropane	<1800	<5.7	<300	<1500	NS	NS
1,2,4-Trichlorobenzene	<1800	<5.7	<300	<1500	3,600	NS
1,2,4-Trimethylbenzene	<1800	<5.7	<300	<1500	NS	NS
1,2-Dibromo-3-chloropropane	<1800	<5.7	<300	<1500	NS	NS
1,2-Dichlorobenzene	<1800	<5.7	<300	<1500	1,100	1,100
1,2-Dichloroethane	<1800	<5.7	<300	<1500	20	2300
1,2-Dichloropropane	<1800	<5.7	<300	<1500	NS	NS
1,3,5-Trimethylbenzene	<1800	<5.7	<300	<1500	8,400	NS
1,3-Dichlorobenzene	<1800	<5.7	<300	<1500	2,400	NS
1,3-Dichloropropane	<1800	<5.7	<300	<1500	NS	NS
1,4-Dichlorobenzene	<1800	<5.7	<300	<1500	1,800	9,800
2,2-Dichloropropane	<1800	<5.7	<300	<1500	NS	NS
2-Chlorotoluene	<1800	<5.7	<300	<1500	NS	NS
2-Hexanone	<9100	<29	<1500	<7400	NS	NS
2-Isopropyltoluene	<1800	<5.7	550	10000	NS	NS
4-Chlorotoluene	<1800	<5.7	<300	<1500	NS	NS
4-Methyl-2-Pentanone (MIBK)	<9100	<29	<1500	<7400	NS	NS
Acetone	<9100	<29	<1500	<7400	50	100,000
Acrylonitrile	<3600	<11	<610	<3000	NS	NS
Benzene	<1800	<5.7	<300	<1500	60	2900
Bromobenzene	<1800	<5.7	<300	<1500	NS	NS
Bromochloromethane	<1800	<5.7	<300	<1500	NS	NS
Bromodichloromethane	<1800	<5.7	<300	<1500	NS	NS
Bromoform	<1800	<5.7	<300	<1500	NS	NS
Bromomethane	<1800	<5.7	<300	<1500	NS	NS
Carbon Disulfide	<1800	<5.7	<300	<1500	NS	100,000
Carbon Tetrachloride	<1800	<5.7	<300	<1500	760	1,400
Chlorobenzene	<1800	<5.7	<300	<1500	1,100	100,000
Chloroethane	<1800	<5.7	<300	<1500	NS	NS
Chloroform	<1800	<5.7	<300	<1500	370	100,000
Chloromethane	<1800	<5.7	<300	<1500	NS	NS
cis-1,2-Dichloroethene	<1800	<5.7	<300	<1500	250	59,000
cis-1,3-Dichloropropene	<1800	<5.7	<300	<1500	NS	NS
Dibromochloromethane	<1800	<5.7	<300	<1500	NS	NS
Dibromoethane	<1800	<5.7	<300	<1500	NS	NS
Dibromomethane	<1800	<5.7	<300	<1500	NS	NS
Dichlorodifluoromethane	<1800	<5.7	<300	<1500	NS	NS
Ethylbenzene	<1800	<5.7	<300	<1500	1,000	30,000
Hexachlorobutadiene	<1800	<5.7	<300	<1500	330	NS
Isopropylbenzene	<1800	<5.7	<300	<1500	NS	NS
m&p-Xylene	<1800	<5.7	<300	<1500	NS	NS

Table 1 (Cont'd) Soil Samples Volatile Organic Analytical Results

55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4		NYSDEC
Boring Number	B-1	B-2	B-3	B-4	NYSDEC	Brownfield's Part
Sample Depth	12-14 feet	11-13 feet	9-11 feet	11-12 feet	CP-51 Cleanup	375-6.8(a) Restricted
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	Guidelines	Use Resdential Soil
Sample Matrix	Soil	Soil	Soil	Soil	Guidennes	Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg		Cleanup Objectives
	Volatile	e Organic Compo	unds (µg/kg) - EP.	A Method 8260		
Methyl Ethyl Ketone	<9100	<29	<1500	<7400	120	100,000
Methyl t-Butyl Ether (MTBE)	<3600	<11	<610	<3000	930	62,000
Methylene Chloride	<1800	<29	<300	<1500	50	51,000
Naphthalene	<1800	<5.7	<300	<1500	NS	NS
n-Butylbenzene	<1800	<5.7	<300	5500	NS	NS
n-Propylbenzene	<1800	<5.7	<300	<1500	3,900	100,000
o-Xylene	<1800	<5.7	<300	<1500	NS	NS
p-Isopropyltoluene	<1800	<5.7	<300	<1500	NS	NS
sec-Butylbenzene	5500	<5.7	730	20000	11,000	100,000
Styrene	<1800	<5.7	<300	<1500	NS	NS
tert-Butylbenzene	2300	<5.7	<300	4500	5,900	100,000
Tetrachloroethene	<1800	<5.7	<300	<1500	1,300	5,500
Tetrahydrofuran (THF)	<3600	<11	<610	<3000	NS	NS
Toluene	<1800	<5.7	<300	<1500	700	100,000
Total Xylenes	<1800	<5.7	<300	<1500	260	100,000
trans-1,2-Dichloroethene	<1800	<5.7	<300	<1500	190	100,000
trans-1,3-Dichloropropene	<1800	<5.7	<300	<1500	NS	NS
trans-1,4-dichloro-2-butene	<3600	<11	<610	<3000	NS	NS
Trichloroethene	<1800	<5.7	<300	<1500	470	100,000
Trichlorofluoromethane	<1800	<5.7	<300	<1500	NS	NS
Trichlorotrifluoroethane	<1800	<5.7	<300	<1500	NS	NS
Vinyl Chloride	<1800	<5.7	<300	<1500	20	210

 $NS: No\ Standard$

NS: No Standard
ug/kg...micrograms per kilogram
Bold values indicate concentrations exceeding laboratory method detection limits.
Shaded values indicate concentrations above NYSDEC Brownfield Unresticted Use Guidelines.

Table 2 Soil Samples Volatile Organic Analytical Results

55 Eckford Street, Brooklyn, New York

Sample Identification	S-5	S-6	S-7		NYSDEC
Boring Number	B-5	B-5	B-6	NYSDEC	
Sample Depth	11-12 feet	13-15 feet	13-15 feet		Brownfield's Part
Sample Date	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup	375-6.8(a) Restricted
Sample Matrix	Soil	Soil	Soil	Guidelines	Use Resdential Soil
Units	ug/kg	ug/kg	ug/kg		Cleanup Objectives
			/kg) - EPA Metho	d 8260	
1,1,1,2-Tetrachloroethane	<290	<340	<310	NS	NS
1,1,1-Trichloroethane	<290	<340	<310	680	100,000
1,1,2,2-Tetrachloroethane	<290	<340	<310	NS	NS
1,1,2-Trichloroethane	<290	<340	<310	NS	NS
1,1-Dichloroethane	<290	<340	<310	270	19,000
1,1-Dichloroethene	<290	<340	<310	330	100,000
1,1-Dichloropropene	<290	<340	<310	NS	NS
1,2,3-Trichlorobenzene	<290	<340	<310	NS	NS
1,2,3-Trichloropropane	<290	<340	<310	NS	NS
1,2,4-Trichlorobenzene	<290	<340	<310	3,600	NS
1,2,4-Trimethylbenzene	<290	<340	<310	NS	NS
1,2-Dibromo-3-chloropropane	<290	<340	<310	NS	NS
1,2-Dichlorobenzene	<290	<340	<310	1,100	1,100
1,2-Dichloroethane	<290	<340	<310	20	2300
1,2-Dichloropropane	<290	<340	<310	NS	NS
1,3,5-Trimethylbenzene	<290	<340	<310	8,400	NS
1,3-Dichlorobenzene	<290	<340	<310	2,400	NS
1,3-Dichloropropane	<290	<340	<310	NS	NS
1,4-Dichlorobenzene	<290	<340	<310	1,800	9,800
2,2-Dichloropropane	<290	<340	<310	NS	NS
2-Chlorotoluene	<290	<340	<310	NS	NS
2-Hexanone	<1500	<1700	<1600	NS	NS
2-Isopropyltoluene	1400	2200	790	NS	NS
4-Chlorotoluene	<290	<340	<310	NS	NS
4-Methyl-2-Pentanone (MIBK)	<1500	<1700	<1600	NS	NS
Acetone	<1500	<1700	<1600	50	100,000
Acrylonitrile	<580	<680	<630	NS	NS
Benzene	<290	<340	<310	60	2900
Bromobenzene	<290	<340	<310	NS	NS
Bromochloromethane	<290	<340	<310	NS	NS
Bromodichloromethane	<290	<340	<310	NS	NS
Bromoform	<290	<340	<310	NS	NS
Bromomethane	<290	<340	<310	NS	NS
Carbon Disulfide	<290	<340	<310	NS	100,000
Carbon Tetrachloride	<290	<340	<310	760	1,400
Chlorobenzene	<290	<340	<310	1,100	100,000
Chloroethane	<290	<340	<310	NS	NS
Chloroform	<290	<340	<310	370	100,000
Chloromethane	<290	<340	<310	NS	NS
cis-1,2-Dichloroethene	<290	<340	<310	250	59,000
cis-1,3-Dichloropropene	<290	<340	<310	NS	NS
Dibromochloromethane	<290	<340	<310	NS	
Dibromoethane	<290	<340	<310	NS	NS
Dibromomethane	<290	<340	<310	NS	
Dichlorodifluoromethane	<290	<340	<310	NS	NS
Ethylbenzene	<290	<340	<310	1,000	30,000
Hexachlorobutadiene	<290	<340	<310	330	NS
Isopropylbenzene	<290	<340	<310	NS	NS
m&p-Xylene	<290	<340	<310	NS	

Table 2 (Cont'd) Soil Samples Volatile Organic Analytical Results

55 Eckford Street, Brooklyn, New York

Sample Identification	S-5	S-6	S-7		NYSDEC
Boring Number	B-5	B-5	B-6	NYSDEC	Brownfield's Part
Sample Depth	11-12 feet	13-15 feet	13-15 feet		
Sample Date	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup Guidelines	375-6.8(a) Restricted Use Resdential Soil
Sample Matrix	Soil	Soil	Soil	Guidelines	
Units	ug/kg	ug/kg	ug/kg		Cleanup Objectives
			/kg) - EPA Metho	d 8260	
Methyl Ethyl Ketone	<1500	<1700	<1600	120	100,000
Methyl t-Butyl Ether (MTBE)	<580	<680	<630	930	62,000
Methylene Chloride	<290	<340	<310	50	51,000
Naphthalene	<290	<340	<310	NS	NS
n-Butylbenzene	370	910	<310	NS	NS
n-Propylbenzene	<290	<340	<310	3,900	100,000
o-Xylene	<290	<340	<310	NS	NS
p-Isopropyltoluene	<290	<340	<310	NS	NS
sec-Butylbenzene	1300	2800	350	11,000	100,000
Styrene	<290	<340	<310	NS	NS
tert-Butylbenzene	560	1500	780	5,900	100,000
Tetrachloroethene	<290	<340	<310	1,300	5,500
Tetrahydrofuran (THF)	<580	<680	<630	NS	NS
Toluene	<290	<340	<310	700	100,000
Total Xylenes	<290	<340	<310	260	100,000
trans-1,2-Dichloroethene	<290	<340	<310	190	100,000
trans-1,3-Dichloropropene	<290	<340	<310	NS	NS
trans-1,4-dichloro-2-butene	<580	<680	<630	NS	NS
Trichloroethene	<290	<340	<310	470	100,000
Trichlorofluoromethane	<290	<340	<310	NS	NS
Trichlorotrifluoroethane	<290	<340	<310	NS	NS
Vinyl Chloride	<290	<340	<310	20	210

NS : No Standard

ug/kg...micrograms per kilogram
Bold values indicate concentrations exceeding laboratory method detection limits.

Table 3
Soil Samples Semi-Volatile Organic Analytical Results
55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4		
Boring Number	B-1	B-2	B-3	B-4		NYSDEC
Sample Depth	12-14 feet	11-13 feet	9-11 feet	11-12 feet	NYSDEC	Brownfield's Part
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup Guidelines	375-6.8(b) Residential Use Soil
Sample Matrix	Soil	Soil	Soil	Soil		Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg		
	Semi-Vola	tile Organic Com	pounds (μg/kg) -	EPA Method 827	0	
1,2 Dichlorobenzene(sv)	<1700	<260	<280	<1400	NG	NG
1,3 Dichlorobenzene(sv)	<1700	<260	<280	<1400	NG	NG
1,4 Dichlorobenzene(sv)	<1700	<260	<280	<1400	NG	NG
2,4-Dinitrotoluene	<1700	<260	<280	<1400	NG	NG
2,6-Dinitrotoluene	<1700	<260	<280	<1400	NG	NG
2-Chloronaphthalene	<1700	<260	<280	<1400	NG	NG
2-Methylnaphthalene	<1700	<260	<280	<1400	NG	NG
2-Nitroaniline	<7000	<1100	<1200	<5700	NG	NG
3,3'-Dichlorobenzidine	<9600	<1500	<1600	<7800	NG	NG
3-Nitroaniline	<7000	<1100	<1200	<5700	NG	NG
4-Bromophenyl phenyl ether	<1700	<260	<280	<1400	NG	NG
4-Chloroaniline	<1700	<260	<280	<1400	NG	NG
4-Chlorophenyl phenyl ether	<1700	<260	<280	<1400	NG	NG
4-Nitroaniline	<7000	<1100	<1200	<5700	NG	NG
Acenaphthene	<1700	<260	<280	<1400	20,000	100,000
Acenaphthylene	<1700	<260	<280	<1400	100,000	100,000
Anthracene	<1700	<260	<280	<1400	100,000	100,000
Azobenzene	<1700	<260	<280	<1400	NG	NG
Benzo(a)anthracene	<1700	<260	510	<1400	1,000	1,000
Benzidine	<9600	<1500	<1600	<7800	NG	NG
Benzo(a)pyrene	<1700	<260	470	<1400	1,000	1,000
Benzo(b)fluoranthene	<1700	<260	570	<1400	1,000	1,000
Benzo(ghi)perylene	<1700	<260	300	<1400	100,000	100,000
Benzo(k)fluoranthene	<1700	<260	<280	<1400	800	1,000
Benzoic acid	<2400	<370	<400	<2000	NG	NG
Benzyl alcohol	<1700	<260	<280	<1400	NG	NG
Benzyl butyl phthalate	<1700	<260	<280	<1400	NG	100,000
Bis(2-chloroethoxy)methane	<1700	<260	<280	<1400	NG	NG
Bis(2-chloroethyl)ether	<1700	<260	<280	<1400	NG	NG
Bis(2-chloroisopropyl)ether	<1700	<260	<280	<1400	NG	NG
Bis(2-ethylhexyl)phthalate	<1700	<260	<280	<1400	NG	NG
Chrysene	<1700	<260	450	<1400	1,000	1,000
Dibenzo(a,h)anthracene	<1700	<260	<280	<1400	330	1,000
Dibenzofuran	<1700	<260	<280	<1400	NG	NG
Diethyl Phthalate	<1700	<260	<280	<1400	NG	NG
Dimethyl Phthalate	<1700	<260	<280	<1400	NG	NG
Di-n-Butyl Phthalate	<1700	<260	<280	<1400	NG	NG
Di-n-octyl Phthalate	<1700	<260	<280	<1400	NG	NG
Fluoranthene	<1700	<260	1200	<1400	100,000	100,000
Fluorene	<1700	<260	<280	<1400	30,000	100,000
Hexachlorobenzene	<1700	<260	<280	<1400	NG	100,000
Hexachlorobutadiene	<1700	<260	<280	<1400	NG	NG

Table 3 (Cont'd) Soil Samples Semi-Volatile Organic Analytical Results 55 Eckford Street, Brooklyn, New York

			, ,			
Sample Identification	S-1	S-2	S-3	S-4		
Boring Number	B-1	B-2	B-3	B-4		NYSDEC
Sample Depth	12-14 feet	11-13 feet	9-11 feet	11-12 feet	NYSDEC	Brownfield's Part
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup Guidelines	375-6.8(b) Residential Use Soil
Sample Matrix	Soil	Soil	Soil	Soil		Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg	ug/kg		
	Semi-Vola	tile Organic Comp	pounds (μg/kg) -	EPA Method 8270		
Hexachlorocyclopentadiene	<1700	<260	<280	<1400	NG	NG
Hexachloroethane	<1700	<260	<280	<1400	NG	NG
Indeno(1,2,3-cd)pyrene	<1700	<260	<280	<1400	500	500
Isophorone	<1700	<260	<280	4200	NG	500
Naphthalene(sv)	<1700	<260	<280	<1400	12,000	100,000
Nitrobenzene	<1700	<260	<280	<1400	NG	NG
N-Nitrosodimethylamine	<1700	<260	<280	<1400	NG	NG
N-Nitrosodi-n-propylamine	<1700	<260	<280	<1400	NG	NG
N-Nitrosodiphenylamine	<1700	<260	<280	<1400	NG	NG
Phenanthrene	<1700	<260	680	<1400	100,000	100,000
Pyrene	<1700	<260	1200	<1400	100,000	100,000

NS : No Standard

ug/kg...micrograms per kilogram

 $Note: The \,MS \,and \,MSD \,sample \,results \,are \,displayed; however, these \,results \,were \,not \,compared \,to \,NYSDEC \,guildeines.$

Table 4
Soil Samples Semi-Volatile Organic Analytical Results
55 Eckford Street, Brooklyn, New York

Sample Identification	S-5	S-6	S-7			
Boring Number	B-5	B-5	B-6		NYSDEC	
Sample Depth	11-12 feet	13-15 feet	13-15 feet	NYSDEC	Brownfield's Part	
Sample Date	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup Guidelines	375-6.8(b) Residential Use Soil	
Sample Matrix	Soil	Soil	Soil	Guidelines	Cleanup Objectives	
Units	ug/kg	ug/kg	ug/kg			
Se	emi-Volatile Orga	anic Compounds	(μg/kg) - EPA Me	thod 8270		
1,2 Dichlorobenzene(sv)	<1300	<310	<290	NG	NG	
1,3 Dichlorobenzene(sv)	<1300	<310	<290	NG	NG	
1,4 Dichlorobenzene(sv)	<1300	<310	<290	NG	NG	
2,4-Dinitrotoluene	<1300	<310	<290	NG	NG	
2,6-Dinitrotoluene	<1300	<310	<290	NG	NG	
2-Chloronaphthalene	<1300	<310	<290	NG	NG	
2-Methylnaphthalene	<1300	<310	<290	NG	NG	
2-Nitroaniline	<5500	<1300	<1200	NG	NG	
3,3'-Dichlorobenzidine	<7600	<1800	<1700	NG	NG	
3-Nitroaniline	<5500	<1300	<1200	NG	NG	
4-Bromophenyl phenyl ether	<1300	<310	<290	NG	NG	
4-Chloroaniline	<1300	<310	<290	NG	NG	
4-Chlorophenyl phenyl ether	<1300	<310	<290	NG	NG	
4-Nitroaniline	<5500	<1300	<1200	NG	NG	
Acenaphthene	1400	<310	<290	20,000	100,000	
Acenaphthylene	<1300	<310	<290	100,000	100,000	
Anthracene	<1300	<310	<290	100,000	100,000	
Azobenzene	<1300	<310	<290	NG	NG	
Benzo(a)anthracene	2100	600	340	1,000	1,000	
Benzidine	<7600	<1800	<1700	NG	NG	
Benzo(a)pyrene	1400	630	<290	1,000	1,000	
Benzo(b)fluoranthene	1800	720	350	1,000	1,000	
Benzo(ghi)perylene	<1300	450	<290	100,000	100,000	
Benzo(k)fluoranthene	<1300	<310	<290	800	1,000	
Benzoic acid	<1900	<450	<410	NG	NG	
Benzyl alcohol	<1300	<310	<290	NG	NG	
Benzyl butyl phthalate	<1300	<310	<290	NG	100,000	
Bis(2-chloroethoxy)methane	<1300	<310	<290	NG	NG	
Bis(2-chloroethyl)ether	<1300	<310	<290	NG	NG	
Bis(2-chloroisopropyl)ether	<1300	<310	<290	NG	NG	
Bis(2-ethylhexyl)phthalate	<1300	<310	320	NG	NG	
Chrysene	1700	530	300	1,000	1,000	
Dibenzo(a,h)anthracene	<1300	<310	<290	330	1,000	
Dibenzofuran	<1300	<310	<290	NG	NG	
Diethyl Phthalate	<1300	<310	<290	NG	NG	
Dimethyl Phthalate	<1300	<310	<290	NG	NG	
Di-n-Butyl Phthalate	<1300	<310	<290	NG	NG	
Di-n-octyl Phthalate	<1300	<310	<290	NG	NG	
Fluoranthene	7000	1800	940	100,000	100,000	
Fluorene	<1300	<310	<290	30,000	100,000	
Hexachlorobenzene	<1300	<310	<290	NG	100,000	
Hexachlorobutadiene	<1300	<310	<290	NG	NG	

Table 4 (Cont'd) Soil Samples Semi-Volatile Organic Analytical Results 55 Eckford Street, Brooklyn, New York

Sample Identification	S-5	S-6	S-7		
Boring Number	B-5	B-5	B-6		NYSDEC
Sample Depth	11-12 feet	13-15 feet	13-15 feet	NYSDEC	Brownfield's Part
Sample Date	12/3/2011	12/3/2011	12/3/2011	CP-51 Cleanup Guidelines	375-6.8(b) Residential Use Soil
Sample Matrix	Soil	Soil	Soil		Cleanup Objectives
Units	ug/kg	ug/kg	ug/kg		
Se	emi-Volatile Orga	nic Compounds (ug/kg) - EPA Met	hod 8270	J.
Hexachlorocyclopentadiene	<1300	<310	<290	NG	NG
Hexachloroethane	<1300	<310	<290	NG	NG
Indeno(1,2,3-cd)pyrene	<1300	320	<290	500	500
Isophorone	<1300	<310	<290	NG	500
Naphthalene(sv)	<1300	<310	<290	12,000	100,000
Nitrobenzene	<1300	<310	<290	NG	NG
N-Nitrosodimethylamine	<1300	<310	<290	NG	NG
N-Nitrosodi-n-propylamine	<1300	<310	<290	NG	NG
N-Nitrosodiphenylamine	<1300	<310	<290	NG	NG
Phenanthrene	6200	1100	370	100,000	100,000
Pyrene	5900	1800	900	100,000	100,000

NS : No Standard

ug/kg...micrograms per kilogram

Note: The MS and MSD sample results are displayed; however, these results were not compared to NYSDEC guildeines.

Table 5
Soil Samples Inorganic Analytical Results
55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4	S-5	S-6	S-7		NYSDEC
Boring Number	B-1 12-14ft	B-2 11-13ft	B-3 9-11ft	B-4 10-12ft	B-5 11-12ft	B-5 13-15ft	B-6 13-15ft		Brownfield's Part
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	12/3/2011	12/3/2011	12/3/2011	NYSDEC CP-51 Guidelines	375-6.8(b) Residential Use
Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	or or ouncemies	Soil Cleanup
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		Objectives
Metals (TAL) (mg/kg)									
Arsenic as As	14.7	86.3	63.3	5.65	12.2	7.54	53.9	13	16
Barium as Ba	271	188	233	50.9	51.3	68.1	212	350	350
Cadmium as Cd	1.26	2.05	1.95	0.62	2.47	0.9	1.25	2.5	2.5
Chromium as Cr	12.7	113	37.5	16.7	25.7	16.2	13.3	30	36
Lead as Pb	401	895	590	76.3	172	1080	547	63	400
Mercury as Hg	2.15	0.19	1.77	0.9	0.53	0.23	0.23	0.18	0.81
Selenium as Se	9.7	3.4	4.3	<1.6	3	<1.8	3.9	3.9	36
Silver as Ag	<0.45	<0.4	<0.42	<0.4	<0.37	<0.44	< 0.45	2	36

NS : No Standard

m/kg...miligram per kilogram

Bold values indicate concentrations exceeding laboratory method detection limits.

Shaded values indicate concentrations above NYSDEC CP-51 Guidelines.

Shaded values indicate concentrations above NYSDEC CP-51 and Brownfield Residential Use Guidelines.

Note: The MS and MSD sample results are displayed; however, these results were not compared to NYSDEC guildeines.

Table 6 Groundwater Samples Organic Analytical Results

55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4	
Boring Number	B-1GW	B-2GW	B-4 GW	B-6 GW	NYSDEC TOGS 1.1.1
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/5/2011	Groundwater Quality
Sample Matrix	Water	Water	Water	Water	Standards
Units	ug/L	ug/L	ug/L	ug/L	
			L) - EPA Method 826		
1,1,1,2-Tetrachloroethane	<2	<1	<5	<2	5
1,1,1-Trichloroethane	<2	<1	<5	<2	5
1,1,2,2-Tetrachloroethane	<1	<0.5	<2.5	<1	5
1,1,2-Trichloroethane	<2	<1	<5	<2	1
1,1-Dichloroethane	<2	<1	<5	<2	5
1,1-Dichloroethene	<2	<1	<5	<2	5
1,1-Dichloropropene	<2	<1	<5	<2	5
1,2,3-Trichlorobenzene	<2	<1	<5	<2	5
1,2,3-Trichloropropane	<2	<1	<5	<2	0.04
1,2,4-Trichlorobenzene	<2	<1	<5	<2	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	<2	<1	<5	<2	5
		<1			0.04
1,2-Dibromo-3-chloropropane	<2		<5	<2	
1,2-Dichlorobenzene	<2	<1	<5	<2	3
1,2-Dichloroethane	<2	<1	<5	<2	5
1,2-Dichloropropane	<2	<1	<5	<2	1
1,3,5-Trimethylbenzene	<2	<1	<5	<2	5
1,3-Dichlorobenzene	<2	<1	<5	<2	3
1,3-Dichloropropane	<2	<1	<5	<2	5
1,4-Dichlorobenzene	<2	<1	<5	<2	3
2,2-Dichloropropane	<2	<1	<5	<2	5
2-Chlorotoluene	<2	<1	<5	<2	5
2-Hexanone	<10	<5	<25	<10	50
2-Isopropyltoluene	50	<1	65	14	5
4-Chlorotoluene	<2	<1	<5	<2	5
4-Methyl-2-Pentanone (MIBK)	<10	<5	<25	<10	NS
Acetone	<50	<25	<130	<50	50
Acrylonitrile	<10	<5	<25	<10	0.07
Benzene	<2	<1	<5	<2	1
Bromobenzene	<2	<1	<5	<2	5
Bromochloromethane	<2	<1	<5	<2	5
Bromodichloromethane	<1	<0.5	<2.5	<1	50
Bromoform	<2	<1	<5	<2	NS
Bromomethane	<2	<1	<5	<2	5
Carbon Disulfide	<10	<5	<25	<10	NS
Carbon Tetrachloride	<2	<1	<5	<2	5
Chlorobenzene	<2	<1	<5	<2	5
Chloroethane	<2	<1	<5	<2	5
Chloroform	<2	<1	<5	<2	7
Chloromethane	<2	<1	<5	<2	NS
cis-1,2-Dichloroethene	<2	<1	<5	<2	NS
cis-1,3-Dichloropropene	<1	<0.5	<2.5	<1	0.4
Dibromochloromethane	<1	<0.5	<2.5	<1	NS
Dibromoethane	<2	<1	<5	<2	NS
Dibromomethane	<2	<1	<5	<2	5
Dichlorodifluoromethane	<2	<1	<5	<2	5
Ethylbenzene	<2	<1	<5	<2	5
Hexachlorobutadiene	<0.8	<0.4	<2	<0.8	5
Isopropylbenzene	35	<1	6.8	<2	5
m&p-Xylene	<2	<1	< 5	<2	5
map /yich	`~	71	~~~~	72	1

Table 6 Cont'd **Groundwater Samples Organic Analytical Results**

55 Eckford Street, Brooklyn, New York

Sample Identification	S-1	S-2	S-3	S-4					
Boring Number	B-1GW	B-2GW	B-4 GW	B-6 GW	NYSDEC TOGS 1.1.1				
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/5/2011	Groundwater Quality				
Sample Matrix	Water	Water	Water	Water	Standards				
Units	ug/L	ug/L	ug/L	ug/L					
Volatile Organic Compounds (μg/L) - EPA Method 8260									
Methyl Ethyl Ketone	<10	<5	<25	<10	50				
Methyl t-Butyl Ether (MTBE)	<2	<1	<5	<2	NS				
Methylene Chloride	<2	<1	<5	<2	5				
Naphthalene	<2	<1	<5	<2	5				
n-Butylbenzene	<2	<1	34	<2	5				
n-Propylbenzene	3	<1	< 5	<2	5				
o-Xylene	<2	<1	<5	<2	5				
p-Isopropyltoluene	<2	3.1	<5	<2	5				
sec-Butylbenzene	130	1.2	110	4	5				
Styrene	<2	<1	<5	<2	5				
tert-Butylbenzene	37	<1	33	14	5				
Tetrachloroethene	<2	<1	<5	<2	5				
Tetrahydrofuran (THF)	<10	<5	<25	<10	NS				
Toluene	<2	<1	<5	<2	5				
Total Xylenes	<2	<1	<5	<2	5				
trans-1,2-Dichloroethene	<2	<1	<5	<2	NS				
trans-1,3-Dichloropropene	<1	<0.5	<2.5	<1	NS				
trans-1,4-dichloro-2-butene	<10	<5	<25	<10	5				
Trichloroethene	<2	<1	<5	<2	5				
Trichlorofluoromethane	<2	<1	<5	<2	5				
Trichlorotrifluoroethane	<2	<1	<5	<2	NS				
Vinyl Chloride	<2	<1	<5	<2	2				

NS : No Standard

ug/L...micrograms per liter

Bold values indicate concentrations exceeding laboratory method detection limits.

Shaded values indicate concentrations above NYSDEC TOGS 1.1.1 Guidelines.

Table 7
Water Samples Inorganic Analytical Results
55 Eckford Street, Brooklyn, New York

Sample Identification	S-5	S-6	S-7	S-8	NYSDEC
Sample Location	B-1GW	B-2GW	B-4 GW	B-6 GW	TOGS 1.1.1
Sample Date	12/3/2011	12/3/2011	12/3/2011	12/3/2011	Groundwater
Sample Matrix	Water	Water	Water	Water	Quaility Standard
	Meta	ıls(TAL) mg/L -	Unfiltered		
Arsenic as As	1.09	39.7	2.59	0.479	0.025
Barium as Ba	4.19	4.3	9.05	2.09	1
Cadmium as Cd	0.001	<0.01	0.034	0.012	0.005
Chromium as Cr	0.581	1.43	1.41	0.16	0.05
Lead as Pb	19.7	13.5	25.4	3.4	0.025
Mercury as Hg	0.0057	<0.0008	<0.0008	<0.0008	0.0007
Selenium as Se	0.117	0.796	0.336	0.121	0.01
Silver as Ag	< 0.001	<0.001	0.01	<0.01	0.05
	Me	tals(TAL) mg/L	- Filtered		
Arsenic as As	0.022	2.36	0.12	0.014	0.025
Barium as Ba	0.302	0.1	0.121	0.088	1
Cadmium as Cd	<0.001	< 0.001	< 0.001	0.001	0.005
Chromium as Cr	0.011	0.009	0.006	< 0.001	0.05
Lead as Pb	0.294	0.061	0.065	0.009	0.025
Mercury as Hg	<0.0008	<0.0008	<0.0008	<0.0008	0.0007
Selenium as Se	0.02	0.022	0.011	0.011	0.01
Silver as Ag	<0.001	<0.001	<0.001	< 0.001	0.05

mg/L...miligrams per liter

Shaded values represent concentration exceeding the GQS

Bold values represent concentration exceeding the laboratory method detection limits

Shaded values indicate concentrations above NYSDEC TOGS 1.1.1 Guidelines.

Table 1
Groundwater Monitoring and Surveying Details - February 2012
55 Eckford Street, Brooklyn NY

			701000, 2100111y 11 11 1							
Monitoring Well (MW)	Sep-09									
	Casing Elevation(Feet)	Depth to Water (Feet)	Benchmark	Groundwater Elevation (Feet)	Depth to Product					
MW-1	5.62	12.94	30	11.44	ND					
MW-2	7.02	11.55	30	11.43	ND					
MW-3	7.72	10.89	30	11.39	ND					
MW-4	7.29	11.35	30	11.36	ND					
MW-5	6.26	12.45	30	11.29	ND					
MW-6	8.19	10.39	30	11.42	ND					
MW-7	7.89	10.65	30	11.46	ND					

ND...None Detected

					M-11- 0				
				Soil Analyt	Table 2 ical Results	(Shallow)			
			5		reet, Brookly				
SampleID	SP-1 0-2'	SP-2 0-2'	SP-3 0-2'	SP-4 0-2'	SP-5 0-2'	SP-6 0-2'	SP-7 0-2'	NYSDEC Part 375 Unrestricted	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-
Sampling Date	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	Use Soil Cleanup Objectives	Residential
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/Kg	mg/Kg
				Volatile	Organics, 826	50 List			
1,1,1,2-Tetrachloroethane	< 0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013	< 0.0014	NS	NS
1,1,1-Trichloroethane	< 0.0023	< 0.0023	< 0.0024	< 0.0025	< 0.0024	< 0.0023	< 0.0024	0.68	100
1,1,2,2-Tetrachloroethane	< 0.0014	< 0.0014	< 0.0014	< 0.0015	< 0.0014	< 0.0014	< 0.0014	NS	NS
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.0015	< 0.0014	< 0.0015	< 0.0016	< 0.0015	< 0.0015	< 0.0015	NS	NS
1,1,2-Trichloroethane	< 0.0015	< 0.0015	< 0.0015	< 0.0016	< 0.0015	< 0.0015	< 0.0015	NS	NS
1,1-Dichloroethane	< 0.0017	< 0.0017	< 0.0017	< 0.0018	< 0.0017	< 0.0017	< 0.0017	0.27	19
1,1-Dichloroethylene	< 0.0032	< 0.0032	< 0.0033	< 0.0035	< 0.0033	< 0.0033	< 0.0033	0.33	100
1,1-Dichloropropylene	< 0.0010	< 0.0010	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	NS	NS
1,2,3-Trichlorobenzene	<0.00090	< 0.00089	< 0.00092	< 0.00096	< 0.00092	< 0.00091	< 0.00093	NS	NS
1,2,3-Trichloropropane	< 0.0028	< 0.0028	<0.0028	< 0.0030	<0.0028	<0.0028	< 0.0029	NS	NS
1,2,4-Trichlorobenzene	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	NS	NS
1,2,4-Trimethylbenzene	< 0.0012	< 0.0012	0.0039	0.0040	< 0.0012	0.0020	0.0032	3.6	47
1,2-Dibromo-3-chloropropane	<0.0032	<0.0032	< 0.0033	<0.0034	< 0.0033	< 0.0032	<0.0033	NS	NS
1,2-Dibromoethane	< 0.0016	< 0.0016	< 0.0017	<0.0018	< 0.0017	< 0.0017	< 0.0017	NS	NS
1,2-Dichlorobenzene	<0.0014	<0.0014	<0.0017	<0.0015	<0.0017	<0.0017	<0.0017	1.1	100
1,2-Dichloroethane	<0.0014	<0.0014	<0.0015	<0.0013	<0.0015	<0.0015	<0.0015	0.02	2.3
1,2-Dichloropropane	<0.0016	<0.0016	<0.0016	<0.0017	<0.0016	<0.0016	<0.0016	NS	NS NS
	<0.00053	<0.00089	<0.00055	0.0020	<0.00034	<0.00054	<0.00033	NS 8.4	47
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	<0.00090	<0.00089	<0.00092	<0.0020	<0.00092	<0.00091	<0.00093	2.4	17
,								**	
1,3-Dichloropropane	<0.0017	<0.0017	<0.0017	<0.0018	<0.0017	<0.0017	<0.0017	NS 1.0	NS 9.8
1,4-Dichlorobenzene	<0.0016	<0.0016	<0.0017	<0.0018	<0.0017	<0.0017	<0.0017	1.8	
1,4-Dioxane	<0.077	<0.076	< 0.079	<0.082	<0.078	<0.078	< 0.079	0.1	9.8
2,2-Dichloropropane	<0.0023	<0.0023	<0.0024	<0.0025	<0.0024	<0.0024	<0.0024	NS	NS
2-Butanone	<0.0063	<0.0062	<0.0064	<0.0067	<0.0064	<0.0063	<0.0065	0.12	100
2-Chlorotoluene	< 0.0012	< 0.0012	< 0.0012	<0.0013	< 0.0012	< 0.0012	<0.0012	NS	NS
4-Chlorotoluene	< 0.0012	< 0.0012	< 0.0012	< 0.0013	< 0.0012	< 0.0012	< 0.0012	NS	NS
Acetone	0.016	0.011	0.019	0.042	0.013	0.015	0.026	0.05	100
Benzene	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	< 0.0012	0.06	2.9
Bromobenzene	< 0.0015	< 0.0015	< 0.0015	< 0.0016	< 0.0015	< 0.0015	< 0.0015	NS	NS
Bromochloromethane	< 0.0031	< 0.0031	< 0.0032	< 0.0033	< 0.0032	< 0.0031	< 0.0032	NS	NS
Bromodichloromethane	< 0.0015	< 0.0015	< 0.0015	< 0.0016	< 0.0015	< 0.0015	< 0.0016	NS	NS
Bromoform	< 0.0014	< 0.0014	< 0.0014	< 0.0015	< 0.0014	< 0.0014	< 0.0015	NS	NS
Bromomethane	< 0.0030	< 0.0030	< 0.0031	< 0.0032	< 0.0031	< 0.0031	< 0.0031	NS	NS
Carbon tetrachloride	< 0.0025	< 0.0025	< 0.0026	< 0.0027	< 0.0026	< 0.0026	< 0.0026	0.76	1.4
Chlorobenzene	<0.00085	<0.00085	< 0.00087	< 0.00091	< 0.00087	<0.00086	<0.00088	1.1	100
Chloroethane	< 0.0018	< 0.0018	< 0.0019	< 0.0020	< 0.0019	< 0.0019	< 0.0019	NS	NS
Chloroform	< 0.00087	< 0.00087	< 0.00090	< 0.00094	< 0.00089	< 0.00089	< 0.00090	0.37	10
Chloromethane	< 0.0022	< 0.0022	< 0.0022	< 0.0023	< 0.0022	< 0.0022	< 0.0022	NS	NS
cis-1,2-Dichloroethylene	< 0.0023	< 0.0023	< 0.0024	< 0.0025	< 0.0024	< 0.0024	< 0.0024	0.25	59
cis-1,3-Dichloropropylene	<0.00085	<0.00085	<0.00087	<0.00091	<0.00087	<0.00086	<0.00088	NS	NS
Dibromochloromethane	< 0.0016	< 0.0016	< 0.0017	< 0.0017	< 0.0017	< 0.0016	< 0.0017	NS	NS
Dibromomethane	< 0.0032	< 0.0032	< 0.0033	<0.0035	< 0.0033	< 0.0033	<0.0033	NS	NS
Dichlorodifluoromethane	<0.0020	<0.0020	< 0.0021	<0.0022	< 0.0021	<0.0020	<0.0021	NS	NS
Ethyl Benzene	<0.0020	0.0019	0.0074	0.011	0.0050	0.0059	0.012	1	30
Hexachlorobutadiene	<0.0010	<0.0019	<0.0014	<0.0011	<0.0011	<0.0039	<0.012	NS	NS
Isopropylbenzene	<0.0010	<0.0010	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	NS NS	NS NS
Methyl tert-butyl ether (MTBE)	<0.00093	<0.00094	<0.00097	<0.0010	<0.00097	<0.00098	<0.00098	0.93	62
Methylene chloride	0.0092	0.0092	0.00095	0.070	0.018	0.019	0.043	0.93	51
n-Butylbenzene	<0.00078	<0.00077	<0.00080	<0.00083	<0.00079	<0.0079	<0.00080	12	100
n-Butyidenzene	<0.000/8	<0.00077	<0.00080	<0.00083	<0.00079	<0.00079	<0.00080	12	100

n-Propylbenzene	< 0.0014	< 0.0014	< 0.0014	< 0.0015	< 0.0014	< 0.0014	< 0.0015	3.9	100
Naphthalene	0.015	0.0079	0.0065	0.015	0.0030	0.0021	0.0040	12	100
o-Xylene	< 0.0012	< 0.0012	0.0059	0.0094	0.0042	0.0054	0.0093	NS	NS
p- & m- Xylenes	0.0019	< 0.0013	0.024	0.034	0.0071	0.020	0.038	NS	NS
p-Isopropyltoluene	< 0.00061	<0.00060	< 0.00062	< 0.00065	< 0.00062	< 0.00062	< 0.00063	NS	NS
sec-Butylbenzene	< 0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013	< 0.0013	11	100
Styrene	< 0.0010	< 0.0010	< 0.0011	< 0.0011	< 0.0011	< 0.0011	< 0.0011	NS	NS
tert-Butylbenzene	< 0.0011	< 0.0011	< 0.0011	< 0.0012	< 0.0011	< 0.0011	< 0.0012	5.9	100
Tetrachloroethylene	< 0.0013	< 0.0013	< 0.0013	< 0.0014	< 0.0013	< 0.0013	0.0021	1.3	5.5
Toluene	< 0.00056	< 0.00056	< 0.00057	0.0087	< 0.00057	< 0.00057	<0.00058	0.7	100
trans-1,2-Dichloroethylene	< 0.0016	< 0.0016	< 0.0016	< 0.0017	< 0.0016	< 0.0016	< 0.0016	NS	NS
trans-1,3-Dichloropropylene	< 0.0016	< 0.0016	< 0.0017	< 0.0018	< 0.0017	< 0.0017	< 0.0017	NS	NS
Trichloroethylene	< 0.0014	< 0.0014	< 0.0014	0.23	< 0.0014	< 0.0014	0.019	0.47	10
Trichlorofluoromethane	< 0.0022	< 0.0022	< 0.0023	< 0.0024	< 0.0023	< 0.0022	< 0.0023	NS	NS
Vinyl Chloride	< 0.0024	< 0.0023	< 0.0024	< 0.0025	< 0.0024	< 0.0024	< 0.0024	0.02	0.21
Xylenes, Total	<0.0025	< 0.0025	0.030	0.043	0.011	0.026	0.047	0.26	100
<i>y</i> ,				Sami Vols	tiles, 8270 Ta	raet List	•		
	1	1							
1,2,4-Trichlorobenzene	< 0.102	<0.102	<0.105	<0.109	<0.104	<0.104	<0.105	NS	NS
1,2-Dichlorobenzene	<0.0819	<0.0816	<0.0840	<0.0878	<0.0836	<0.0831	<0.0845	1.1	100
1,3-Dichlorobenzene	<0.0891	<0.0888	< 0.0914	<0.0956	<0.0910	<0.0904	<0.0920	2.4	17
1,4-Dichlorobenzene	<0.0642	<0.0639	<0.0658	<0.0688	<0.0655	<0.0651	<0.0662	1.8	9.8
2,4,5-Trichlorophenol	<0.0509	< 0.0507	< 0.0522	<0.0546	<0.0520	< 0.0516	< 0.0525	NS	NS
2,4,6-Trichlorophenol	< 0.0916	< 0.0912	<0.0939	< 0.0981	< 0.0934	< 0.0929	< 0.0945	NS	NS
2,4-Dichlorophenol	<0.0765	< 0.0762	<0.0784	<0.0820	<0.0780	< 0.0776	<0.0789	NS	NS
2,4-Dimethylphenol	<0.0600	<0.0598	< 0.0616	< 0.0643	< 0.0613	< 0.0609	< 0.0619	NS	NS
2,4-Dinitrophenol	< 0.157	< 0.157	< 0.161	<0.168	< 0.160	< 0.159	< 0.162	NS	NS
2,4-Dinitrotoluene	< 0.0819	< 0.0816	<0.0840	<0.0878	<0.0836	< 0.0831	< 0.0845	NS	NS
2,6-Dinitrotoluene	< 0.0891	<0.0888	< 0.0914	<0.0956	< 0.0910	< 0.0904	< 0.0920	NS	NS
2-Chloronaphthalene	< 0.0571	< 0.0569	<0.0586	< 0.0613	<0.0583	<0.0580	< 0.0590	NS	NS
2-Chlorophenol	< 0.109	< 0.109	< 0.112	< 0.117	< 0.111	< 0.111	< 0.112	NS	NS
2-Methylnaphthalene	< 0.0652	< 0.0649	< 0.0669	0.134	<0.0665	< 0.0661	< 0.0673	NS	NS
2-Methylphenol	<0.0689	<0.0686	< 0.0706	<0.0738	< 0.0703	<0.0698	< 0.0710	0.33	100
2-Nitrophenol	< 0.0642	< 0.0639	<0.0658	<0.0688	< 0.0655	< 0.0651	< 0.0662	NS	NS
3,3'-Dichlorobenzidine	< 0.0472	< 0.0470	<0.0484	< 0.0505	< 0.0481	< 0.0478	<0.0486	NS	NS
3- & 4-Methylphenols	< 0.0842	< 0.0839	< 0.0864	< 0.0903	< 0.0859	< 0.0854	< 0.0869	NS	NS
3-Nitroaniline	< 0.0679	< 0.0676	<0.0696	< 0.0727	< 0.0693	<0.0688	< 0.0700	NS	NS
4,6-Dinitro-2-methylphenol	< 0.141	< 0.141	< 0.145	< 0.152	< 0.144	< 0.144	< 0.146	NS	NS
4-Bromophenyl phenyl ether	< 0.0781	< 0.0778	< 0.0801	< 0.0837	< 0.0797	< 0.0792	<0.0805	NS	NS
4-Chloro-3-methylphenol	< 0.0202	< 0.0201	< 0.0207	< 0.0216	< 0.0206	< 0.0205	<0.0208	NS	NS
4-Chloroaniline	< 0.0739	< 0.0736	< 0.0758	< 0.0792	< 0.0754	< 0.0750	< 0.0762	NS	NS
4-Chlorophenyl phenyl ether	< 0.0539	< 0.0537	< 0.0553	< 0.0578	< 0.0551	< 0.0547	< 0.0557	NS	NS
4-Nitroaniline	< 0.0621	< 0.0619	<0.0638	< 0.0666	< 0.0634	< 0.0630	< 0.0641	NS	NS
4-Nitrophenol	< 0.0677	< 0.0674	< 0.0694	< 0.0726	< 0.0691	< 0.0687	< 0.0698	NS	NS
Acenaphthene	< 0.108	< 0.108	< 0.111	0.509	< 0.111	< 0.110	0.159	20	100
Acenaphthylene	< 0.0524	< 0.0522	< 0.0538	0.163	< 0.0535	< 0.0532	0.0591	100	100
Aniline	< 0.0673	< 0.0671	< 0.0691	< 0.0722	< 0.0687	< 0.0683	< 0.0695	NS	NS
Anthracene	0.106	0.151	0.303	1.12	< 0.0474	0.0858	0.409	100	100
Benzo(a)anthracene	0.394	0.873	0.979	2.25	0.148	0.314	0.988	1	1
Benzo(a)pyrene	0.197	0.629	0.655	1.57	0.105	0.295	0.150	1	1
Benzo(b)fluoranthene	0.189	0.425	0.727	1.21	0.104	0.134	0.555	1	1
Benzo(g,h,i)perylene	0.147	0.274	0.390	0.350	< 0.0574	0.0664	0.0788	100	100
	0.198	0.431	0.610	1.81	0.0985	0.174	0.575	0.8	1
Benzo(k)fluoranthene	0.270			0.0640	< 0.0618	< 0.0614	< 0.0625	NS	NS
	<0.0606	< 0.0603	< 0.0621	< 0.0649	<0.0618			110	
Benzo(k)fluoranthene		<0.0603 <0.0778	<0.0621 <0.0801	<0.0649	<0.0618	<0.0792	< 0.0805	NS	NS
Benzo(k)fluoranthene Benzyl alcohol	<0.0606								
Benzo(k)fluoranthene Benzyl alcohol Benzyl butyl phthalate	<0.0606 <0.0781	<0.0778	<0.0801	<0.0837	<0.0797	< 0.0792	<0.0805	NS	NS
Benzo(k)fluoranthene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy)methane	<0.0606 <0.0781 <0.0690	<0.0778 <0.0687	<0.0801 <0.0708	<0.0837 <0.0740	<0.0797 <0.0704	<0.0792 <0.0700	<0.0805 <0.0712	NS NS	NS NS
Benzo(k)fluoranthene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethox)methane Bis(2-chloroethyl)ether	<0.0606 <0.0781 <0.0690 <0.0636	<0.0778 <0.0687 <0.0633	<0.0801 <0.0708 <0.0652	<0.0837 <0.0740 <0.0681	<0.0797 <0.0704 <0.0649	<0.0792 <0.0700 <0.0645	<0.0805 <0.0712 <0.0656	NS NS NS	NS NS NS
Benzo[k]fluoranthene Benzyl alcohol Benzyl butyl phthalate Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	<0.0606 <0.0781 <0.0690 <0.0636 <0.0695	<0.0778 <0.0687 <0.0633 <0.0693	<0.0801 <0.0708 <0.0652 <0.0713	<0.0837 <0.0740 <0.0681 <0.0745	<0.0797 <0.0704 <0.0649 <0.0709	<0.0792 <0.0700 <0.0645 <0.0705	<0.0805 <0.0712 <0.0656 <0.0717	NS NS NS NS	NS NS NS NS

Di-n-octyl phthalate	< 0.0842	< 0.0839	<0.0864	< 0.0903	< 0.0859	< 0.0854	< 0.0869	NS	NS
Dibenzo(a,h)anthracene	< 0.0473	0.101	0.116	0.153	<0.0483	<0.0480	<0.0488	0.33	0.33
Dibenzofuran	<0.0604	<0.0602	0.0722	0.317	<0.0465	<0.0430	0.0815	7	14
Diethyl phthalate	<0.0982	<0.0002	<0.101	<0.105	<0.100	<0.0013	<0.101	NS	NS
Diethyl phthalate	<0.0539	<0.0537	<0.101	<0.103	<0.100	<0.0547	<0.101	NS NS	NS NS
Fluoranthene	0.685	1.29	2.06	5.56	0.291	0.582	1.91	100	100
Fluorene	<0.0524	<0.0522	0.117	0.629	<0.0535	<0.0532	0.200	30	100
	<0.0324	<0.0322	<0.0313	< 0.0327	<0.0333	<0.0332	<0.0315	0.33	0.33
Hexachlorobenzene Hexachlorobutadiene	<0.0305	<0.0304	<0.0313	<0.0327	<0.0311	<0.0309	<0.0315	0.33 NS	0.33 NS
							<0.0773		
Hexachlorocyclopentadiene	<0.139	<0.139	<0.143	<0.149	<0.142	<0.141		NS	NS
Hexachloroethane	<0.0673	<0.0671	<0.0691	< 0.0722	<0.0687	<0.0683	<0.0695	NS	NS
Indeno(1,2,3-cd)pyrene	0.133	0.238	0.291	0.410	<0.0704	<0.0700	0.0969	0.5	0.5
Isophorone	<0.0695	<0.0693	< 0.0713	<0.0745	<0.0709	<0.0705	< 0.0717	NS	NS
N-nitroso-di-n-propylamine	<0.0489	<0.0487	< 0.0501	<0.0524	<0.0499	<0.0496	<0.0504	NS	NS
N-Nitrosodimethylamine	<0.0677	<0.0674	<0.0694	<0.0726	<0.0691	<0.0687	<0.0698	NS	NS
N-Nitrosodiphenylamine	<0.108	<0.108	< 0.111	<0.116	< 0.111	< 0.110	< 0.112	NS	NS
Naphthalene	< 0.0559	< 0.0557	0.0691	0.236	< 0.0571	< 0.0567	0.0676	12	100
Nitrobenzene	< 0.0842	<0.0839	<0.0864	<0.0903	<0.0859	<0.0854	<0.0869	NS	NS
Pentachlorophenol	< 0.0524	< 0.0522	<0.0538	< 0.0562	< 0.0535	< 0.0532	< 0.0541	0.8	2.4
Phenanthrene	0.397	0.443	1.35	4.67	0.177	0.339	1.72	100	100
Phenol	< 0.0749	< 0.0746	<0.0768	<0.0803	< 0.0764	< 0.0760	< 0.0773	0.33	100
Pyrene	0.692	1.56	2.05	4.69	0.283	0.637	1.96	100	100
Pyridine	< 0.0731	< 0.0728	< 0.0750	< 0.0784	< 0.0746	< 0.0741	< 0.0754	NS	NS
				Pesticides/PC	CBs, EPA 808	1/8082 List			
4,4'-DDD	<0.00165	<0.00164	0.00354	<0.00177	<0.00168	< 0.00167	0.00199	0.0033	2.6
4,4'-DDE	< 0.00212	< 0.00211	0.00247	< 0.00227	< 0.00217	< 0.00215	< 0.00219	0.0033	1.8
4,4'-DDT	0.0125	0.00756	0.00303	0.00255	0.00260	0.00288	0.00279	0.0033	1.7
Aldrin	< 0.00237	0.00322	0.00506	< 0.00254	< 0.00242	< 0.00240	< 0.00244	0.005	0.019
alpha-BHC	<0.00280	< 0.00279	< 0.00287	<0.00300	<0.00285	< 0.00284	<0.00288	0.02	0.097
beta-BHC	< 0.00234	< 0.00233	< 0.00240	< 0.00250	<0.00238	< 0.00237	< 0.00241	0.036	0.072
Chlordane, total	< 0.0148	< 0.0148	< 0.0152	< 0.0159	< 0.0151	< 0.0150	< 0.0153	NS	NS
delta-BHC	<0.00202	<0.00201	< 0.00207	< 0.00217	<0.00206	<0.00205	<0.00209	0.04	100
Dieldrin	0.0217	0.0112	0.00772	<0.00235	0.00379	<0.00222	< 0.00226	0.005	0.039
Endosulfan I	<0.00180	< 0.00179	<0.00184	< 0.00233	<0.00183	<0.00182	< 0.00185	2.4	4.8
Endosulfan II	<0.00227	<0.00226	<0.00233	<0.00133	<0.00231	<0.00230	<0.00234	2.4	4.8
Endosulfan sulfate	<0.00227	<0.00189	<0.00233	<0.00243	<0.00231	<0.00230	<0.00234	2.4	4.8
Endrin	<0.00190	<0.00189	<0.00193	<0.00203	<0.00194	<0.00192	<0.00190	0.014	2.2
Endrin aldehyde									
THUIH MUCHVUC					<0.002E4	<0.00252	<0.00257	NC	NC
	<0.00249	<0.00248	<0.00256	<0.00267	<0.00254	<0.00253	<0.00257	NS NS	NS NS
Endrin ketone	< 0.00163	< 0.00162	< 0.00167	< 0.00175	<0.00166	<0.00165	<0.00168	NS	NS
Endrin ketone gamma-BHC (Lindane)	<0.00163 <0.00257	<0.00162 <0.00256	<0.00167 <0.00264	<0.00175 <0.00276	<0.00166 <0.00262	<0.00165 <0.00261	<0.00168 <0.00265	NS 0.1	NS 0.28
Endrin ketone gamma-BHC (Lindane) Heptachlor	<0.00163 <0.00257 <0.00295	<0.00162 <0.00256 <0.00294	<0.00167 <0.00264 <0.00303	<0.00175 <0.00276 <0.00317	<0.00166 <0.00262 <0.00301	<0.00165 <0.00261 <0.00300	<0.00168 <0.00265 <0.00305	NS 0.1 0.042	NS 0.28 0.42
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide	<0.00163 <0.00257 <0.00295 <0.00163	<0.00162 <0.00256 <0.00294 <0.00162	<0.00167 <0.00264 <0.00303 <0.00167	<0.00175 <0.00276 <0.00317 <0.00175	<0.00166 <0.00262 <0.00301 <0.00166	<0.00165 <0.00261 <0.00300 <0.00165	<0.00168 <0.00265 <0.00305 <0.00168	NS 0.1 0.042 NS	NS 0.28 0.42 NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986	NS 0.1 0.042 NS NS	NS 0.28 0.42 NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980 0.0106	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102 0.0388	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788	NS 0.1 0.042 NS NS 0.1	NS 0.28 0.42 NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980 0.0106 <0.192	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102 0.0388 <0.201	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788 <0.193	NS 0.1 0.042 NS NS 0.1	NS 0.28 0.42 NS NS 1
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016	<pre><0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887</pre>	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980 0.0106 <0.192 <0.00910	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102 0.0388 <0.201 <0.00951	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19 <0.00900	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788 <0.193 <0.00915	NS 0.1 0.042 NS NS 0.1	NS 0.28 0.42 NS NS 1 1
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221	<pre><0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887 <0.00887</pre>	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980 0.0106 <0.192 <0.00910	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102 0.0388 <0.201 <0.00951	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19 <0.00900	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788 <0.193 <0.00915 <0.00915	NS 0.1 0.042 NS NS 0.1 NS NS	NS 0.28 0.42 NS NS 1 NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232	<pre><0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887 <0.00887</pre>	<0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884	<0.00167 <0.00264 <0.00303 <0.00167 <0.00980 0.0106 <0.192 <0.00910 <0.00910	<0.00175 <0.00276 <0.00317 <0.00175 <0.0102 0.0388 <0.201 <0.00951 <0.00951	<0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905 <0.00905	<0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19 <0.00900 <0.00900	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788 <0.193 <0.00915 <0.00915	NS 0.1 0.042 NS NS 0.1 NS NS NS	NS 0.28 0.42 NS NS 1 NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	 <0.00163 <0.00257 <0.00295 <0.00163 <0.00955 <0.0118 <0.188 <0.0887 <0.00887 <0.00887 	 <0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884 <0.00884 	 <0.00167 <0.00264 <0.00303 <0.00167 <0.00980 <0.0192 <0.00910 <0.00910 <0.00910 	 <0.00175 <0.00276 <0.00317 <0.0102 <0.0388 <0.201 <0.00951 <0.00951 <0.00951 	 <0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905 <0.00905 <0.00905 <0.00905 	 <0.00165 <0.00261 <0.00300 <0.00165 <0.00974 <0.00774 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 	 <0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00788 <0.193 <0.00915 <0.00915 <0.00915 	NS 0.1 0.042 NS NS 0.1 NS 0.1 NS NS NS NS NS NS NS	NS 0.28 0.42 NS NS NS NS 1 NS NS NS NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1242	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887 <0.00887 <0.00887 <0.00887 <0.00887	 <0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 	 <0.00167 <0.00264 <0.00303 <0.00167 <0.00980 <0.0192 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 	 <0.00175 <0.00276 <0.00317 <0.00175 <0.0102 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 	 <0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905 <0.00905 <0.00905 <0.00905 <0.00905 	 <0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 	 <0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00988 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 	NS 0.1 0.042 NS NS NS 0.1 NS 0.1 NS	NS 0.28 0.42 NS NS NS NS NS 1 NS NS NS NS NS NS NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1242 Aroclor 1248 Aroclor 1254	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887 <0.00887 <0.00887 <0.00887 <0.00887 <0.00887	 <0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.009761 <0.187 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 	 <0.00167 <0.00264 <0.00303 <0.00167 <0.00980 <0.0192 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 	 <0.00175 <0.00276 <0.00317 <0.00175 <0.0102 <0.0388 <0.201 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 	 <0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00975 <0.191 <0.00905 <0.00905 <0.00905 <0.00905 <0.00905 <0.00779 	 <0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.009774 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 <0.009774 	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00988 <0.193 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915	NS 0.1 0.042 NS NS NS 0.1 NS NS 0.1 NS	NS 0.28 0.42 NS NS NS NS NS 1 NS NS NS NS NS NS NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260	<0.00163 <0.00257 <0.00295 <0.00163 <0.00955 0.0118 <0.188 <0.00887 <0.00887 <0.00887 <0.00887 <0.00887	 <0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884 <0.00884 <0.00884 <0.00884 	 <0.00167 <0.00264 <0.00303 <0.00167 <0.00980 <0.0192 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 	 <0.00175 <0.00276 <0.00317 <0.00175 <0.0102 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 	 <0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00779 <0.191 <0.00905 <0.00905 <0.00905 <0.00905 <0.00905 	 <0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.00774 <0.19 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 	 <0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00988 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 	NS 0.1 0.042 NS NS NS 0.1 NS 0.1 NS	NS 0.28 0.42 NS NS NS NS 1 NS NS NS NS NS NS NS NS NS
Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1242 Aroclor 1248 Aroclor 1254	 <0.00163 <0.00257 <0.00295 <0.00163 <0.00163 <0.00955 <0.0118 <0.188 <0.00887 <0.00887 <0.00887 <0.00887 <0.00763 <0.00718 	 <0.00162 <0.00256 <0.00294 <0.00162 <0.00952 <0.00761 <0.187 <0.00884 <0.00884 <0.00884 <0.00761 	 <0.00167 <0.00264 <0.00303 <0.00167 <0.00980 <0.0192 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 <0.00910 	 <0.00175 <0.00276 <0.00317 <0.00175 <0.0102 <0.0388 <0.201 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 <0.00951 	 <0.00166 <0.00262 <0.00301 <0.00166 <0.00975 <0.00975 <0.191 <0.00905 <0.00905 <0.00905 <0.00905 <0.00905 <0.00779 	 <0.00165 <0.00261 <0.00300 <0.00165 <0.00969 <0.009774 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 <0.00900 <0.009774 	<0.00168 <0.00265 <0.00305 <0.00168 <0.00986 <0.00988 <0.193 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915 <0.00915	NS 0.1 0.042 NS NS NS 0.1 NS NS 0.1 NS	NS 0.28 0.42 NS NS NS NS NS 1 NS NS NS NS NS NS NS NS NS

Table 3 Metals Analytical Results (Shallow) 55 Eckford Street, Brooklyn, New York

	55 Eckford Street, Brooklyn, New York									
SampleID	SP-1 0-2'	SP-2 0-2'	SP-3 0-2'	SP-4 0-2'	SP-5 0-2'	SP-6 0-2'	SP-7 0-2'	NYSDEC Part 375 Unrestricted	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-	
Sampling Date	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	Use Soil Cleanup Objectives	Residential	
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/Kg	mg/Kg	
Aluminum	9350	10100	8980	6400	8660	7630	6850	NS	NS	
Antimony	< 0.157	1.76	14.1	302	1.32	81.8	74.5	NS	NS	
Arsenic	4.27	4.20	24.9	88.2	5.71	139	72.2	13	16	
Barium	241	276	244	605	<121	464	352	350	350	
Beryllium	< 0.009	<0.009	<0.009	< 0.010	<0.009	< 0.009	<0.009	7.2	14	
Cadmium	1.85	2.56	2.16	4.62	0.149	1.24	0.651	2.5	2.5	
Calcium	5130	27400	13100	8750	23200	13200	15000	NS	NS	
Chromium, Trivalent	19.8	38.3	34.9	36.7	24.1	51.5	35.8	30	36	
Chromium, Hexavalent	1.35	1.34	< 0.403	< 0.421	1.83	< 0.399	< 0.405	1	22	
Cobalt	7.63	7.12	8.73	8.99	7.77	10.6	9.26	NS	NS	
Copper	28.9	27.9	154	833	52.7	987	1020	50	270	
Iron	21600	19000	31900	38100	15000	28000	23100	NS	NS	
Lead	206	160	411	2410	126	1670	1140	63	400	
Magnesium	2400	4610	3560	1960	6780	2480	4410	NS	NS	
Manganese	377	343	368	352	276	323	260	1600	2000	
Nickel	20.9	26.2	143	462	42.6	1240	1030	30	140	
Mercury	0.337	0.190	< 0.112	< 0.117	0.183	< 0.110	< 0.112	0.18	0.81	
Potassium	1260	1810	1640	874	1370	1310	1090	NS	NS	
Selenium	1.31	1.07	2.83	8.77	< 0.242	5.33	4.07	3.9	36	
Silver	< 0.101	< 0.101	< 0.104	<0.108	< 0.103	< 0.103	< 0.104	2	36	
Sodium	1630	774	670	207	427	394	289	NS	NS	
Thallium	< 0.213	< 0.213	< 0.219	< 0.229	< 0.218	< 0.216	< 0.220	NS	NS	
Vanadium	31.3	29.7	31.6	39.2	30.8	31.7	33.8	NS	NS	
Zinc	156	129	428	1150	105	805	485	109	2200	

NS...No Standard
Grey Shaded values represent concentration exceeding the Unrestercited Residential SCO
Red Marked values represent concentration exceeding the Residential SCO

Table 4
Soil Analytical Results (Deep)
55 Eckford Street, Brooklyn, New York

SampleID	SP-1 8'-10'	SP-2 6'-8'	SP-3 6'-8'	SP-4 6'-8'	SP-5 10'-12'	SP-6 8'-10'	SP-7 9'-11'	NYSDEC Part 375 Unrestricted	NYSDEC Part 375 Restricted
Sampling Date	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	Use Soil Cleanup Objectives	Use Soil Cleanup Objectives- Residential
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/Kg	mg/Kg
				Volatile	Organics, 826	50 List			
1,1,1,2-Tetrachloroethane	< 0.0014	<0.067	< 0.067	< 0.070	<0.0014	<0.0015	<0.0016	NS	NS
1,1,1-Trichloroethane	<0.0024	< 0.12	<0.12	<0.12	<0.0024	<0.0026	<0.0028	0.68	100
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	<0.0015 <0.0015	<0.071 <0.074	<0.071 <0.074	<0.074 <0.078	<0.0014 <0.0015	<0.0016 <0.0016	<0.0017 <0.0017	NS NS	NS NS
1,1,2-Trichloroethane	<0.0013	<0.074	<0.074	<0.079	<0.0015	< 0.0017	<0.0017	NS NS	NS
1,1-Dichloroethane	<0.0018	<0.086	<0.086	<0.090	<0.0018	< 0.0019	<0.0020	0.27	19
1,1-Dichloroethylene	<0.0034	< 0.17	< 0.17	<0.17	<0.0034	<0.0036	<0.0039	0.33	100
1,1-Dichloropropylene 1,2,3-Trichlorobenzene	<0.0011 <0.00094	<0.053 <0.046	<0.053 <0.046	<0.056 <0.048	<0.0011	<0.0012 <0.0010	<0.0013 <0.0011	NS NS	NS NS
1,2,3-Trichloropropane	<0.0029	<0.14	<0.14	<0.15	<0.0029	<0.0010	<0.0033	NS	NS
1,2,4-Trichlorobenzene	< 0.0012	<0.060	<0.060	< 0.062	< 0.0012	< 0.0013	< 0.0014	NS	NS
1,2,4-Trimethylbenzene	<0.0013	0.15	0.087	0.095	0.0029	0.0035	0.0026	3.6 NS	47 NO
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	<0.0034 <0.0017	<0.16 <0.084	<0.16 <0.084	<0.17 <0.088	<0.0034 <0.0017	<0.0036 <0.0019	<0.0038 <0.0020	NS NS	NS NS
1,2-Dichlorobenzene	<0.0017	<0.073	<0.073	<0.077	<0.0017	<0.0015	< 0.0017	1.1	100
1,2-Dichloroethane	< 0.0017	<0.081	<0.081	<0.084	< 0.0017	<0.0018	< 0.0019	0.02	2.3
1,2-Dichloropropane	<0.00056	<0.027	< 0.027	<0.029	<0.00056	<0.00060	<0.00064	NS	NS
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	<0.00094 <0.0012	<0.046 <0.058	<0.046 <0.058	<0.048 <0.061	<0.00094 <0.0012	<0.0010 <0.0013	0.0027 < 0.0014	8.4 2.4	47 17
1,3-Dichloropropane	<0.0012	<0.086	<0.086	<0.090	<0.0012	<0.0019	<0.0020	NS NS	NS
1,4-Dichlorobenzene	< 0.0017	<0.084	<0.084	<0.088	< 0.0017	<0.0019	<0.0020	1.8	9.8
1,4-Dioxane	<0.080	<3.9 <0.12	<3.9 <0.12	<4.1	<0.080	<0.086 <0.0026	<0.092	0.1	9.8
2,2-Dichloropropane 2-Butanone	<0.0024 <0.0066	<0.12	<0.12	<0.12 <0.34	<0.0024 <0.0066	<0.0026	<0.0028 <0.0075	NS 0.12	NS 100
2-Chlorotoluene	<0.0012	<0.061	< 0.061	<0.064	<0.0012	<0.0011	<0.0014	NS	NS NS
4-Chlorotoluene	<0.0012	<0.061	< 0.061	<0.064	< 0.0012	< 0.0013	<0.0014	NS	NS
Acetone	0.034 < 0.0012	1.3 0.15	1.4 0.66	1.1 0.14	0.016 < 0.0012	0.039 < 0.0013	0.054 <0.0014	0.05 0.06	100 2.9
Benzene Bromobenzene	<0.0012	0.15 <0.076	<0.076	<0.079	<0.0012	<0.0013	<0.0014	0.06 NS	2.9 NS
Bromochloromethane	<0.0033	<0.16	<0.16	<0.17	<0.0033	<0.0035	<0.0037	NS	NS
Bromodichloromethane	<0.0016	< 0.077	< 0.077	<0.081	<0.0016	< 0.0017	<0.0018	NS	NS
Bromoform Bromomethane	<0.0015 <0.0032	<0.072 <0.15	<0.072 <0.15	<0.075 <0.16	<0.0015 <0.0031	<0.0016 <0.0034	<0.0017 <0.0036	NS NS	NS NS
Carbon tetrachloride	<0.0032	<0.13	<0.13	<0.16	<0.0031	<0.0034	<0.0030	0.76	1.4
Chlorobenzene	< 0.00089	<0.043	<0.043	<0.045	<0.00089	<0.00096	<0.0010	1.1	100
Chloroethane	<0.0019	<0.094	<0.094	<0.099	<0.0019	<0.0021	<0.0022	NS	NS
Chloroform Chloromethane	<0.00092 <0.0023	<0.045 <0.11	<0.045 <0.11	<0.047 <0.12	<0.00091	<0.00098 <0.0024	<0.0010 <0.0026	0.37 NS	10 NS
cis-1,2-Dichloroethylene	<0.0023	0.15	<0.11	0.14	<0.0023	<0.0024	<0.0028	0.25	59
cis-1,3-Dichloropropylene	<0.00089	<0.043	<0.043	<0.045	<0.00089	<0.00096	<0.0010	NS	NS
Dibromochloromethane	< 0.0017	<0.083	<0.083	<0.087	< 0.0017	<0.0018	<0.0020	NS	NS
Dibromomethane Dichlorodifluoromethane	<0.0034 <0.0021	<0.17 <0.10	<0.17	<0.17	<0.0034 <0.0021	<0.0036 <0.0023	<0.0039 <0.0024	NS NS	NS NS
Ethyl Benzene	0.0033	0.16	0.20	0.18	0.014	0.0023	0.011	1	30
Hexachlorobutadiene	< 0.0011	< 0.053	< 0.053	<0.056	<0.0011	< 0.0012	<0.0013	NS	NS
Isopropylbenzene	<0.00099	<0.048	<0.048	< 0.051	<0.00099	<0.0011	<0.0011	NS	NS
Methyl tert-butyl ether (MTBE) Methylene chloride	<0.00097 0.046	<0.047	<0.047	<0.049	<0.00097 0.055	<0.0010 0.045	<0.0011 0.042	0.93 0.05	62 51
n-Butylbenzene	<0.00081	<0.040	<0.040	<0.042	<0.00081	<0.00088	<0.00093	12	100
n-Propylbenzene	< 0.0015	< 0.072	< 0.072	0.20	<0.0015	<0.0016	< 0.0017	3.9	100
Naphthalene	0.012 0.0028	0.44	0.32 0.12	0.36	0.0040	0.0035 0.011	<0.0015 0.0069	12 NS	100 NS
o-Xylene p- & m- Xylenes	0.0028	0.13	0.12	0.53	0.011	0.011	0.0069	NS NS	NS NS
p-Isopropyltoluene	<0.00064	< 0.031	< 0.031	< 0.032	< 0.00063	<0.00068	<0.00073	NS	NS
sec-Butylbenzene	<0.0013	<0.065	<0.065	0.50	<0.0013	<0.0014	<0.0015	11 NO	100
Styrene tert-Butylbenzene	<0.0011 <0.0012	<0.053 <0.057	<0.053 0.27	<0.056 <0.060	<0.0011 <0.0012	<0.0012 0.0022	<0.0013	NS 5.9	NS 100
Tetrachloroethylene	<0.0012	<0.065	<0.065	0.13	< 0.0012	< 0.0014	< 0.0015	1.3	5.5
Toluene	<0.00059	0.082	<0.16	0.081	0.013	<0.00063	<0.00067	0.7	100
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	<0.0017 <0.0017	<0.081 <0.084	<0.081 <0.084	<0.084 <0.088	<0.0017 <0.0017	<0.0018 <0.0019	<0.0019 <0.0020	NS NS	NS NS
Trichloroethylene	0.0017	0.084	0.084	1.2	0.017	0.0019	0.0020	0.47	10
Trichlorofluoromethane	< 0.0023	< 0.11	< 0.11	< 0.12	<0.0023	< 0.0025	< 0.0027	NS	NS
Vinyl Chloride	<0.0025	<0.12	<0.12	<0.13	<0.0025	<0.0027	<0.0028	0.02	0.21
Xylenes, Total	0.011	0.64	0.68	0.63	0.053	0.037	<0.040	0.26	100
1.0.4 Printless 3	-0.10=	-0.10:	-0.10:		tiles, 8270 Ta		-0.100	270	WO.
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	<0.107 <0.0860	<0.104 <0.0838	<0.104 <0.0838	<0.109 <0.0878	<0.107 <0.0858	<0.115 <0.0924	<0.123 <0.0985	NS 1.1	NS 100
1,3-Dichlorobenzene	<0.0936	<0.0912	<0.0912	<0.0955	<0.0933	<0.101	<0.107	2.4	17
1,4-Dichlorobenzene	< 0.0674	< 0.0657	< 0.0657	<0.0688	< 0.0672	< 0.0724	< 0.0772	1.8	9.8
2,4,5-Trichlorophenol	< 0.0534	< 0.0521	<0.0521	<0.0545 <0.0981	<0.0533	<0.0574	<0.0612	NS NC	NS NC
2,4,6-Trichlorophenol 2,4-Dichlorophenol	<0.0961 <0.0803	<0.0937 <0.0782	<0.0937 <0.0782	<0.0981	<0.0959 <0.0801	<0.103 <0.0862	<0.110 <0.0919	NS NS	NS NS
2,4-Dimethylphenol	<0.0630	<0.0614	<0.0614	<0.0643	<0.0629	<0.0677	<0.0722	NS NS	NS
2,4-Dinitrophenol	< 0.165	< 0.161	<0.161	<0.168	<0.165	< 0.177	< 0.189	NS	NS
2,4-Dinitrotoluene	<0.0860	<0.0838	<0.0838	<0.0878	<0.0858	<0.0924	<0.0985	NS NC	NS NC
2,6-Dinitrotoluene 2-Chloronaphthalene	<0.0936 <0.0600	<0.0912 <0.0585	<0.0912 <0.0585	<0.0955 <0.0612	<0.0933 <0.0598	<0.101 <0.0644	<0.107 <0.0687	NS NS	NS NS
2-Chlorophenol	<0.114	<0.112	<0.112	<0.117	<0.114	<0.123	<0.131	NS NS	NS NS
2-Methylnaphthalene	<0.0684	<0.0667	<0.0667	<0.0699	<0.0683	0.0768	<0.0784	NS	NS
2-Methylphenol	< 0.0723	<0.0705	<0.0704	<0.0738	<0.0721	<0.0776	<0.0828	0.33	100
2-Nitrophenol 3,3'-Dichlorobenzidine	<0.0674 <0.0495	<0.0657 <0.0482	<0.0657 <0.0482	<0.0688 <0.0505	<0.0672 <0.0494	<0.0724 <0.0532	<0.0772 <0.0567	NS NS	NS NS
3- & 4-Methylphenols	<0.0493	<0.0462	<0.0462	<0.0902	<0.0494	<0.0332	<0.101	NS NS	NS NS

I						1			
3-Nitroaniline	<0.0712	<0.0694	<0.0694	<0.0727	< 0.0711	<0.0765	<0.0816	NS	NS
4,6-Dinitro-2-methylphenol	<0.149	< 0.145	<0.145	<0.152	<0.148	<0.160	<0.170	NS	NS
4-Bromophenyl phenyl ether	<0.0819	<0.0799	<0.0799	<0.0836	<0.0817	<0.0880	<0.0938	NS	NS
4-Chloro-3-methylphenol	<0.0212	<0.0206	<0.0206	<0.0216	<0.0211	<0.0227	<0.0242	NS	NS
4-Chloroaniline	<0.0776	<0.0756	<0.0756	<0.0792	<0.0774	<0.0833	<0.0888	NS	NS
4-Chlorophenyl phenyl ether	<0.0566	<0.0552	<0.0552	<0.0578	<0.0565	<0.0608	<0.0649	NS	NS
4-Nitroaniline	<0.0652	<0.0636	<0.0636	<0.0666 <0.0725	<0.0651	<0.0701	<0.0747	NS	NS
4-Nitrophenol	<0.0711	<0.0693	<0.0693		<0.0709	<0.0763	<0.0814	NS	NS
Acenaphthene	< 0.114	< 0.111	< 0.111	<0.116	0.185	0.293	<0.130	20	100
Acenaphthylene	<0.0550	< 0.0537	< 0.0537	< 0.0562	0.0635	< 0.0591	<0.0630	100	100
Aniline	<0.0707	<0.0689	<0.0689	< 0.0721	<0.0705	< 0.0759	<0.0809	NS	NS
Anthracene	0.218	0.101	0.147	0.0758	0.405	0.656	0.119	100	100
Benzo(a)anthracene	0.473	0.325	0.464	0.223	0.915	1.12	0.286	1	1
Benzo(a)pyrene	0.390	0.261	0.408	0.209	0.779	0.812	0.142	1	1
Benzo(b)fluoranthene	0.296	0.183	0.279	0.142	0.469	0.635	0.157	1	1
Benzo(g,h,i)perylene	0.212	0.125	0.155	0.0750	0.153	0.192	<0.0676	100	100
Benzo(k)fluoranthene	0.251	0.178	0.276	0.169	0.578	0.589	0.166	0.8	1
Benzyl alcohol	< 0.0636	< 0.0620	< 0.0620	< 0.0649	< 0.0634	<0.0683	< 0.0728	NS	NS
Benzyl butyl phthalate	< 0.0820	< 0.0799	< 0.0799	< 0.0837	<0.0818	<0.0880	< 0.0939	NS	NS
Bis(2-chloroethoxy)methane	< 0.0724	< 0.0706	<0.0706	< 0.0739	< 0.0723	<0.0778	<0.0830	NS	NS
Bis(2-chloroethyl)ether	< 0.0667	< 0.0650	< 0.0650	< 0.0681	<0.0666	< 0.0717	< 0.0764	NS	NS
Bis(2-chloroisopropyl)ether	< 0.0730	< 0.0711	< 0.0711	< 0.0745	< 0.0728	<0.0784	<0.0836	NS	NS
Bis(2-ethylhexyl)phthalate	0.180	0.150	0.252	0.112	0.726	0.161	< 0.0753	NS	NS
Chrysene	0.482	0.346	0.480	0.243	1.06	1.30	0.330	1	1
Di-n-butyl phthalate	< 0.0587	< 0.0572	< 0.0572	< 0.0599	<0.0585	< 0.0630	< 0.0672	NS	NS
Di-n-octyl phthalate	<0.0884	< 0.0862	< 0.0861	< 0.0902	< 0.0882	< 0.0950	< 0.101	NS	NS
Dibenzo(a,h)anthracene	0.103	<0.0484	0.0532	< 0.0507	0.0690	0.0654	< 0.0569	0.33	0.33
Dibenzofuran	<0.0634	<0.0618	<0.0618	< 0.0647	0.111	<0.0681	< 0.0726	7	14
Diethyl phthalate	< 0.103	< 0.101	< 0.101	< 0.105	< 0.103	< 0.111	< 0.118	NS	NS
Dimethyl phthalate	< 0.0566	< 0.0552	< 0.0552	< 0.0578	< 0.0565	<0.0608	< 0.0649	NS	NS
Fluoranthene	1.01	0.727	1.10	0.440	2.07	2.42	0.575	100	100
Fluorene	0.106	0.0597	0.0574	< 0.0562	0.203	0.328	< 0.0630	30	100
Hexachlorobenzene	< 0.0320	< 0.0312	< 0.0312	< 0.0327	< 0.0319	< 0.0344	< 0.0367	0.33	0.33
Hexachlorobutadiene	< 0.0786	< 0.0766	< 0.0766	< 0.0802	< 0.0784	< 0.0844	< 0.0900	NS	NS
Hexachlorocyclopentadiene	< 0.146	< 0.142	< 0.142	< 0.149	< 0.146	< 0.157	< 0.167	NS	NS
Hexachloroethane	< 0.0707	< 0.0689	< 0.0689	< 0.0721	< 0.0705	< 0.0759	< 0.0809	NS	NS
Indeno(1,2,3-cd)pyrene	0.159	0.101	0.147	< 0.0739	0.165	0.164	< 0.0830	0.5	0.5
Isophorone	< 0.0730	< 0.0711	< 0.0711	< 0.0745	< 0.0728	< 0.0784	< 0.0836	NS	NS
N-nitroso-di-n-propylamine	< 0.0513	< 0.0500	< 0.0500	< 0.0523	< 0.0512	< 0.0551	< 0.0587	NS	NS
N-Nitrosodimethylamine	< 0.0711	< 0.0693	< 0.0693	< 0.0725	< 0.0709	< 0.0763	< 0.0814	NS	NS
N-Nitrosodiphenylamine	< 0.114	< 0.111	< 0.111	< 0.116	0.114	< 0.122	< 0.130	NS	NS
Naphthalene	< 0.0587	0.0613	< 0.0572	< 0.0599	0.0882	0.121	< 0.0672	12	100
Nitrobenzene	< 0.0884	< 0.0862	< 0.0861	< 0.0902	< 0.0882	< 0.0950	< 0.101	NS	NS
Pentachlorophenol	< 0.0550	< 0.0537	< 0.0537	< 0.0562	< 0.0549	< 0.0591	< 0.0630	0.8	2.4
Phenanthrene	0.798	0.512	0.467	0.319	1.72	2.54	0.475	100	100
Phenol	< 0.0786	< 0.0766	< 0.0766	< 0.0802	< 0.0784	< 0.0845	< 0.0900	0.33	100
Pyrene	1.06	0.711	1.09	0.432	1.94	2.31	0.568	100	100
Pyridine	< 0.0767	< 0.0748	< 0.0748	< 0.0783	< 0.0765	< 0.0824	< 0.0879	NS	NS
				Pesticides /Po	CBs, EPA 808	1 /8082 Liet			
4,4'-DDD	<0.00173	<0.00169	< 0.00169	< 0.00177	< 0.00173	<0.00186	<0.00198	0.0033	2.6
4,4'-DDE	<0.00223	<0.00217	< 0.00217	< 0.00227	< 0.00222	<0.00239	<0.00255	0.0033	1.8
4,4'-DDT	<0.00174	< 0.00170	< 0.00170	0.00268	0.00202	<0.00187	<0.00200	0.0033	1.7
Aldrin	<0.00249	<0.00242	<0.00242	<0.00254	<0.00248	<0.00267	<0.00285	0.005	0.019
alpha-BHC	<0.00293	<0.00286	<0.00286	<0.00300	<0.00293	<0.00315	<0.00336	0.02	0.097
beta-BHC	<0.00245	<0.00239	<0.00239	<0.00250	<0.00245	<0.00263	<0.00281	0.036	0.072
Chlordane, total	<0.0156	<0.0152	<0.0152	<0.0159	<0.0155	<0.0167	<0.0178	NS 0.04	NS 100
delta-BHC	<0.00212 <0.00230	<0.00207 <0.00224	<0.00207 <0.00224	<0.00217	<0.00212	<0.00228	<0.00243	0.04	100
Dieldrin			<0.00224	< 0.00235	< 0.00229	< 0.00247	< 0.00263	0.005	0.039
				-0.00100	-0.00100		-0.00017		
Endosulfan I	<0.00189	< 0.00184	< 0.00184	<0.00192	<0.00188	< 0.00203	<0.00216	2.4	4.8
Endosulfan II	<0.00189 <0.00238	<0.00184 <0.00232	<0.00184 <0.00232	< 0.00243	< 0.00237	<0.00203 <0.00256	< 0.00273	2.4	4.8
Endosulfan II Endosulfan sulfate	<0.00189 <0.00238 <0.00199	<0.00184 <0.00232 <0.00194	<0.00184 <0.00232 <0.00194	<0.00243 <0.00203	<0.00237 <0.00199	<0.00203 <0.00256 <0.00214	<0.00273 <0.00228	2.4 2.4	4.8 4.8
Endosulfan II Endosulfan sulfate Endrin	<0.00189 <0.00238 <0.00199 <0.00236	<0.00184 <0.00232 <0.00194 <0.00230	<0.00184 <0.00232 <0.00194 <0.00230	<0.00243 <0.00203 <0.00241	<0.00237 <0.00199 <0.00235	<0.00203 <0.00256 <0.00214 <0.00253	<0.00273 <0.00228 <0.00270	2.4 2.4 0.014	4.8 4.8 2.2
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde	<0.00189 <0.00238 <0.00199 <0.00236 <0.00262	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255	<0.00243 <0.00203 <0.00241 <0.00267	<0.00237 <0.00199 <0.00235 <0.00261	<0.00203 <0.00256 <0.00214 <0.00253 <0.00281	<0.00273 <0.00228 <0.00270 <0.00300	2.4 2.4 0.014 NS	4.8 4.8 2.2 NS
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone	<0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170	<0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196	2.4 2.4 0.014 NS NS	4.8 4.8 2.2 NS NS
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	<0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269	<0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00309	2.4 2.4 0.014 NS NS 0.1	4.8 4.8 2.2 NS NS 0.28
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor	<pre><0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270 <0.00310</pre>	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309	<0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00309 <0.00355	2.4 2.4 0.014 NS NS 0.1 0.042	4.8 4.8 2.2 NS NS 0.28 0.42
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor	<pre><0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270 <0.00310 <0.00171</pre>	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316 <0.00174	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309 <0.00170	<pre><0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184</pre>	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00309 <0.00355 <0.00196	2.4 2.4 0.014 NS NS 0.1 0.042 NS	4.8 4.8 2.2 NS NS 0.28 0.42 NS
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor	<pre><0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270 <0.00310 <0.00171 <0.00170</pre>	<0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978	<0.00184 <0.00232 <0.00194 <0.00235 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316 <0.00174 <0.0102	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309 <0.00170 <0.0100	<0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184 <0.0108	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00309 <0.00355 <0.00196 <0.0115	2.4 2.4 0.014 NS NS 0.1 0.042 NS	4.8 4.8 2.2 NS NS 0.28 0.42 NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00270 <0.00310 <0.00171 <0.00801 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00781 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00302 <0.00167 <0.00978 <0.00781 	<0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316 <0.00174 <0.0102 0.0399	<0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309 <0.00170 <0.0100 <0.00799	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184 <0.0108 <0.00861 	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00355 <0.00196 <0.0115 <0.00918	2.4 2.4 0.014 NS NS 0.1 0.042 NS NS	4.8 4.8 2.2 NS NS 0.28 0.42 NS NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270 <0.00310 <0.00171 <0.00170 <0.00171 <0.00171 <0.00171 <0.00170 <0.00170 <0.00170 <0.00170 <0.00170 <0.00170 <0.00170 <0.000801 <0.00170 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.0192 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.0192 	<pre><0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316 <0.00174 <0.0102 </pre> <pre>0.0399 <0.201</pre>	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309 <0.00170 <0.00799 <0.196 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184 <0.00361 <0.00184 <0.00184<	 <0.00273 <0.00228 <0.00270 <0.00300 <0.0039 <0.00355 <0.00196 <0.00196 <0.00198 <0.00918 <0.225 	2.4 2.4 0.014 NS NS 0.1 0.042 NS NS 0.1 0.042 NS	4.8 4.8 2.2 NS NS NS 0.28 0.42 NS NS NS NS
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor Heptachlor Total PCBs Toxaphene Aroclor 1016	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00270 <0.00270 <0.00310 <0.00171 <0.0100 <0.00801 <0.0931 <0.00801 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00167 <0.00978 <0.00978 <0.0098 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00781 <0.192 <0.00907 	<pre><0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00174 <0.00174 <0.000276 <0.00174 <0.000276 <0.000276</pre>	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.0039 <0.00170 <0.0009 <0.00079 <0.00799 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184 <0.0108 <0.00861 <0.211 <0.0100 	 <0.00273 <0.00228 <0.00270 <0.00300 <0.00309 <0.00355 <0.00196 <0.00196 <0.00195 <0.00196 <0.00196 <0.0015 <0.0010 <0.0010 <0.00018 <0.0225 <0.0107 	2.4 2.4 0.014 NS NS 0.1 0.042 NS NS NS 0.1	4.8 4.8 2.2 NS NS NS 0.28 0.42 NS NS NS NS NS NS NS NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00171 <0.00270 <0.00310 <0.00171 <0.0100 <0.00801 <0.097 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00302 <0.00302 <0.00167 <0.00978 <0.00781 <0.192 <0.00908 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00781 <0.0907 <0.00907 	 <0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00316 <0.00174 <0.0102 <0.00399 <0.201 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00170 <0.00170 <0.00170 <0.00170 <0.00190 <0.00799 <0.196 <0.00929 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00290 <0.00333 <0.00333 <0.0184 <0.0108 <0.00861 <0.211 <0.0100 <0.0100 	<0.00273 <0.00228 <0.00220 <0.00270 <0.00300 <0.00196 <0.00355 <0.00196 <0.0115 <0.00918 <0.225 <0.0107	2.4 2.4 0.014 NS NS 0.1 0.042 NS NS NS NS NS NS NS	4.8 4.8 2.2 NS NS 0.28 0.42 NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1021 Aroclor 1221 Aroclor 1232	 <0.00189 <0.00236 <0.00199 <0.00236 <0.00270 <0.00270 <0.00310 <0.00171 <0.00070 <0.000801 <0.00931 <0.00931 <0.00931 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00167 <0.00978 <0.00978 <0.00908 <0.00908 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.00907 <0.00907 <0.00907 <0.00907 <0.00907 	 <0.00243 <0.00203 <0.00267 <0.00174 <0.00276 <0.00174 <0.00174 <0.0019 <0.00174 <0.00174 <0.00172 <0.00174 <0.00174 <0.00174 <0.00174 <0.00174 <0.001950 <0.00950 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00261 <0.0039 <0.0039 <0.00170 <0.00170 <0.00799 <0.196 <0.00929 <0.00929 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00184 <0.00184 <0.000861 <0.211 <0.0100 <0.0100 	 <0.00273 <0.00228 <0.00270 <0.00300 <0.00309 <0.00355 <0.00196 <0.00196 <0.00196 <0.00196 <0.00115 <0.00918 <0.225 <0.0107 <0.0107 	2.4 2.4 0.014 NS NS NS 0.1 0.042 NS NS NS NS NS NS NS NS NS	4.8 4.8 2.2 NS NS 0.28 0.42 NS NS NS NS NS NS NS NS NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	 <0.00189 <0.00238 <0.00236 <0.00262 <0.00270 <0.00271 <0.00271 <0.00271 <0.00171 <0.00171 <0.00070 <0.00801 <0.0197 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00167 <0.00978 <0.00978 <0.00978 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.00907 <0.00907 <0.00907 <0.00907 <0.00907 <0.00907 <0.00908 	 <0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00316 <0.00174 <0.00174 <0.00174 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00269 <0.00309 <0.00170 <0.00170 <0.00100 <0.00799 <0.00929 <0.00929 <0.00929 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00280 <0.00184 <0.0108 <0.0108 <0.00861 <0.211 <0.0100 <0.0100 <0.0100 	<0.00273 <0.00228 <0.00220 <0.00300 <0.00196 <0.00309 <0.00355 <0.00196 <0.0015 <0.0015 <0.0017 <0.0107 <0.0107	2.4 2.4 0.014 NS NS NS 0.1 0.042 NS	4.8 4.8 2.2 NS NS NS 0.28 0.42 NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00270 <0.00310 <0.00310 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00363 <0.00363 <0.00362 <0.00167 <0.00781 <0.00781 <0.0908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00263 <0.00363 <0.00362 <0.00167 <0.00978 <0.00781 <0.00907 <0.00907 <0.00907 <0.00907 <0.00908 <0.00908 <0.00908 	 <0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00174 <0.00174 <0.00170 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00261 <0.00369 <0.00309 <0.00170 <0.00170 <0.00799 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00214 <0.00253 <0.00281 <0.00281 <0.00333 <0.00184 <0.00333 <0.00184 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 	<0.00273 <0.00228 <0.00270 <0.00300 <0.00309 <0.00355 <0.00196 <0.00115 <0.00918 <0.0115 <0.00918 <0.225 <0.0107 <0.0107 <0.0107 <0.0107 <0.0107	2.4 2.4 0.014 NS NS NS 0.1 0.042 NS	4.8 4.8 4.8 2.2 NS NS 0.28 0.42 NS NS 1 NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor Heptachlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00262 <0.00310 <0.00310 <0.00171 <0.00171 <0.00171 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00781 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00263 <0.00302 <0.00167 <0.00978 <0.00978 <0.00907 <0.00907 <0.00907 <0.00908 <0.00908 <0.00908 <0.00781 	 <0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00174 <0.00179 <0.00179 <0.00179 <0.00050 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00170 <0.00309 <0.00170 <0.00170 <0.00170 <0.00190 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00253 <0.00281 <0.00184 <0.00290 <0.00333 <0.00184 <0.0108 <0.00861 <0.211 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.00861 	<0.00273 <0.00228 <0.00270 <0.00300 <0.00196 <0.00399 <0.00195 <0.00196 <0.0015 <0.0017 <0.0107 <0.0107 <0.0107 <0.00918	2.4 2.4 0.014 NS NS NS 0.1 0.042 NS NS 0.1 NS	4.8 4.8 2.2 NS NS NS 0.28 0.42 NS
Endosulfan II Endosulfan sulfate Endrin Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) Heptachlor Heptachlor epoxide Methoxychlor Total PCBs Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248	 <0.00189 <0.00238 <0.00199 <0.00236 <0.00270 <0.00310 <0.00310 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.0017 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 <0.00931 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00167 <0.00363 <0.00363 <0.00362 <0.00167 <0.00781 <0.00781 <0.0908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 <0.00908 	 <0.00184 <0.00232 <0.00194 <0.00230 <0.00255 <0.00263 <0.00363 <0.00362 <0.00167 <0.00978 <0.00781 <0.00907 <0.00907 <0.00907 <0.00907 <0.00908 <0.00908 <0.00908 	 <0.00243 <0.00203 <0.00241 <0.00267 <0.00174 <0.00276 <0.00174 <0.00174 <0.00170 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 <0.00950 	 <0.00237 <0.00199 <0.00235 <0.00261 <0.00261 <0.00369 <0.00309 <0.00170 <0.00170 <0.00799 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 <0.00929 	 <0.00203 <0.00256 <0.00214 <0.00214 <0.00253 <0.00281 <0.00281 <0.00333 <0.00184 <0.00333 <0.00184 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 	<0.00273 <0.00228 <0.00270 <0.00300 <0.00309 <0.00355 <0.00196 <0.00115 <0.00918 <0.0115 <0.00918 <0.225 <0.0107 <0.0107 <0.0107 <0.0107 <0.0107	2.4 2.4 0.014 NS NS NS 0.1 0.042 NS	4.8 4.8 2.2 NS NS NS 0.28 0.42 NS

NS...No Standard

Grey Shaded values represent concentration exceeding the Unrestercited Residential SCO

Red Marked values represent concentration exceeding the Residential SCO

Table 5
Metals Analytical Results (Deep)
55 Eckford Street, Brooklyn, New York

				00 = 0111	014 201000, -	srookiyii, New			
SampleID	SP-1 8'-10'	SP-2 6'-8'	SP-3 6'-8'	SP-4 6'-8'	SP-5 10'-12'	SP-6 8'-10'	SP-7 9'-11'	NYSDEC Part 375 Unrestricted	NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-
Sampling Date	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	2/15/2012	Use Soil Cleanup Objectives	Residential
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Units	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/kg dry	mg/Kg	mg/Kg
Aluminum	5490	6320	5960	6420	7080	5930	7840	NS	NS
Antimony	68.0	28.4	14.4	34.7	15.1	22.9	3.43	NS	NS
Arsenic	81.2	273	153	102	33.0	77.5	57.6	13	16
Barium	242	212	195	221	564	331	356	350	350
Beryllium	< 0.009	<0.009	<0.009	< 0.010	<0.009	< 0.010	< 0.011	7.2	14
Cadmium	0.960	<0.149	< 0.149	<0.156	0.741	1.52	< 0.175	2.5	2.5
Calcium	7980	8350	9990	7790	21900	13600	12200	NS	NS
Chromium, Trivalent	33.6	42.1	22.2	36.7	24.8	38.2	25.0	30	36
Chromium, Hexavalent	< 0.413	< 0.402	< 0.402	< 0.421	< 0.412	<0.443	< 0.472	1	22
Cobalt	8.33	7.34	6.99	10.0	8.57	9.04	10.3	NS	NS
Copper	582	482	590	712	354	258	361	50	270
Iron	21000	22200	20700	21400	32800	24400	18400	NS	NS
Lead	2980	1430	1660	621	1050	630	884	63	400
Magnesium	1550	2220	3160	1840	5440	3480	871	NS	NS
Manganese	338	316	356	258	340	388	243	1600	2000
Nickel	652	290	163	637	126	608	376	30	140
Mercury	1.85	1.37	< 0.111	< 0.117	2.03	< 0.123	< 0.131	0.18	0.81
Potassium	917	1140	1350	1240	893	1020	1020	NS	NS
Selenium	5.87	7.75	3.42	6.85	3.42	6.38	3.11	3.9	36
Silver	<0.106	< 0.103	<0.103	<0.108	<0.106	< 0.114	< 0.121	2	36
Sodium	470	886	658	310	191	260	641	NS	NS
Thallium	< 0.224	<0.218	<0.218	< 0.229	<0.223	<0.241	<0.256	NS	NS
Vanadium	25.6	25.8	23.2	25.1	27.4	27.2	35.1	NS	NS
Zinc	579	267	277	323	1820	416	532	109	2200

NS...No Standard

Grey Shaded values represent concentration exceeding the Unrestercited Residential SCO $\,$

Red Marked values represent concentration exceeding the Residential SCO

Table 6 Soil Samples Organic Analytical Results 55 Eckford Street, Brooklyn, New York

55 Eckford Street, Brooklyn, New York								
Sample Identification	SP-8	SP-9						
Sample Depth	7'-9'	6'-8'	Unrestricted Use Soil	Restricted Use Soil Cleanup Objectives (6				
Sample Date	3/17/2012	3/17/2012	Cleanup Objectives (6 NYC RR Pt.375-6.8)	NYC RR Pt.375-6.8b) - Restricted Residential				
Sample Matrix	Soil	Soil		Trootstea Trootaestaa				
Units	uk/kg	ug/kg	ug/kg	ug/kg				
	Semi-Volatile	Organic Compound	ls (μg/kg)					
Acenaphthene	<334	<359	20,000	100,000				
Acenaphthylene	<334	<359	100,000	100,000				
Anthracene	<334	<359	100,000	100,000				
Benzo (a) Anthracene	<334	<359	1,000	1,000				
Benzo (a) Pyrene	<334	<359	1,000	1,000				
Benzo (b) Fluoranthene	<334	<359	1,000	1,000				
Benzo (g,h,l) Perylene	<334	<359	100,000	100,000				
Benzo (k) Fluoranthene	<334	<359	800	3,900				
4-Bromophenyl Phenyl Ether	<334	<359	NS	NS				
Benzyl Butyl Phthalate	<334	<359	NS NS	NS				
4-Chloroaniline	<334	<359	NS NS	NS NS				
bis (2-Chloroethoxy) Methane	<334	<359	NS NS	NS NS				
	<334	<359	NS NS	NS NS				
bis (2-Chloroethyl) Ether								
bis (2-Chloroisopropyl) Ether	<334	<359	NS	NS				
2-Chloronaphthalene	<334	<359	NS	NS				
4-Chlorophenyl Phenyl Ether	<334	<359	NS	NS				
Chrysene	<334	<359	1,000	3,900				
Dibenzo (a,h) Anthracene	<334	<359	330	330				
Dibenzofuran	<334	<359	NS	NS				
Di-n-Butyl Phthalate	<334	<359	NS	NS				
1,2-Dichlorobenzene	<334	<359	NS	NS				
1,4-Dichlorobenzene	<334	<359	NS	NS				
1,3-Dichlorobenzene	<334	<359	NS	NS				
3,3'-Dichlorobenzidine	<334	<359	NS	NS				
Diethyl Phthalate	<334	<359	NS	NS				
Dimethyl Phthalate	<334	<359	NS	NS				
2,4-Dinitrotoluene	<334	<359	NS	NS				
2,6-Dinitrotoluene	<334	<359	NS	NS				
D-n-n-octyl Phthalate	<334	<359	NS	NS				
bis (2-Ethyl Hexyl) Phthalate	<401	<430	NS	NS				
Fluoranthene	<334	<359	100,000	100,000				
Fluorene	<334	<359	30,000	100,000				
Hexachlorobenzene	<334	<359	NS	NS				
Hexachlorobudadiene	<334	<359	NS	NS				
Hexachlorocyclopentadiene	<668	<717	NS	NS				
Hexachloroethane	<334	<359	NS	NS				
Indeno (1,2,3-cd) Pyrene	<334	<359	500	500				
Isophorone	<334	<359	NS	NS				
2-Methylnaphthalene	<334	<359	NS	NS				
Naphthalene	<334	<359	12,000	100,000				
3-Nitroaniline	<334	<359	NS	NS				
2-Nitroaniline	<334	<359	NS	NS				
4-Nitroaniline	<334	<359	NS	NS				
Nitrobenzene	<334	<359	NS	NS				
N-Nitrosodiphenylamine	<334	<359	NS	NS				
n-Nitrosodi-n-propylamine	<334	<359	NS	NS				
Phenanthrene	<334	<359	100,000	100,000				
Pyrene	<334	<359	100,000	100,000				
1,2,4-Trichlorobenzene	<334	<359	NS	NS				
NS No Standard	,001	.007	110	110				

NS...No Standara

 $ug/kg...micrograms\ per\ kilogram$

Table 7
Soil Metals Samples Inorganic Analytical Results
55 Eckford Street, Brooklyn, New York

Sample Identification	SP-8	SP-9			
Sample Depth	7'-9'	6'-8'	Unrestricted Use Soil Cleanup Objectives (6	Restricted Use Soil Cleanup Objectives (6 NYC RR Pt.375-6.8b) - Restricted Residential	
Sample Date	3/17/2012	3/17/2012	NYC RR Pt.375-6.8)		
Sample Matrix	Metals	Metals			
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	
Arsenic	<2.97	29.8	13	16	
Barium	241	328	350	400	
Cadmium	1.70	<1.68	2.5	4.3	
Chromium	10.3	<1.68	NS	NS	
Lead	219	358	63	400	
Mercury	27.4	8.17	0.18	0.81	
Selenium	<1.49	<1.68	3.9	180	
Silver	<1.49	<1.68	2	180	

NS...No Standard

mg/kg...milligrams per kilogram

Grey Shaded values represent concentration exceeding the Unrestercited Residential SCO

Red Marked values represent concentration exceeding the Residential SCO

Table 8
Field Blanks Analytical Results
55 Eckford Street, Brooklyn, New York

Sample ID	Field Blank	Trip Blank
Sample 1D	FIEIU DIAIIK	THP Blank
Sampling Date	2/15/2012	2/15/2012
Matrix	Water	Water
Units	mg/L	mg/L
Volatile	Organics, 8260 List	
1,1,1,2-Tetrachloroethane	<0.00054	<0.00054
1,1,1-Trichloroethane	< 0.00095	<0.00095
1,1,2,2-Tetrachloroethane	< 0.00057	< 0.00057
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.00060	<0.00060
1,1,2-Trichloroethane	< 0.00061	< 0.00061
1,1-Dichloroethane	<0.00069	< 0.00069
1,1-Dichloroethylene	< 0.0013	< 0.0013
1,1-Dichloropropylene	< 0.00043	< 0.00043
1,2,3-Trichlorobenzene	< 0.00037	< 0.00037
1,2,3-Trichloropropane	< 0.0011	< 0.0011
1,2,4-Trichlorobenzene	<0.00048	<0.00048
1,2,4-Trimethylbenzene	< 0.00053	< 0.00053
1,2-Dibromo-3-chloropropane	< 0.0013	< 0.0013
1,2-Dibromoethane	<0.00068	<0.00068
1,2-Dichlorobenzene	< 0.00059	< 0.00059
1,2-Dichloroethane	< 0.00065	< 0.00065
1,2-Dichloropropane	< 0.00022	< 0.00022
1,3,5-Trimethylbenzene	< 0.00037	< 0.00037
1,3-Dichlorobenzene	< 0.00047	< 0.00047
1,3-Dichloropropane	<0.00069	< 0.00069
1,4-Dichlorobenzene	<0.00068	<0.00068
2,2-Dichloropropane	<0.00096	<0.00096
2-Butanone	< 0.0026	<0.0026
2-Chlorotoluene	<0.00049	< 0.00049
4-Chlorotoluene	<0.00049	< 0.00049
Acetone	< 0.0031	< 0.0031
Benzene	<0.00048	<0.00048
Bromobenzene	<0.00061	< 0.00061
Bromochloromethane	< 0.0013	< 0.0013
Bromodichloromethane	< 0.00062	< 0.00062
Bromoform	<0.00058	<0.00058
Bromomethane	< 0.0012	< 0.0012
Carbon tetrachloride	< 0.0010	< 0.0010
Chlorobenzene	<0.00035	<0.00035
Chloroethane	< 0.00076	< 0.00076
Chloroform	0.0014	<0.00036
Chloromethane	<0.00089	<0.00089
cis-1,2-Dichloroethylene	<0.00096	<0.00096
cis-1,3-Dichloropropylene	<0.00035	<0.00035
Dibromochloromethane	< 0.00067	< 0.00067
Dibromomethane	< 0.0013	< 0.0013
Dichlorodifluoromethane	<0.00083	<0.00083
Ethyl Benzene	< 0.00035	<0.00035
Hexachlorobutadiene	<0.00043	<0.00043

[
Isopropylbenzene	<0.00039	<0.00039
Methyl tert-butyl ether (MTBE)	<0.00038	<0.00038
Methylene chloride	<0.0011	<0.0011
n-Butylbenzene	<0.00032	<0.00032
n-Propylbenzene	<0.00058	<0.00058
Naphthalene	<0.00050	<0.00050
o-Xylene	<0.00050	<0.00050
p- & m- Xylenes	<0.00055	<0.00055
p-Isopropyltoluene	<0.00025	<0.00025
sec-Butylbenzene	<0.00052	<0.00052
Styrene	<0.00043	<0.00043
tert-Butylbenzene	<0.00046	<0.00046
Tetrachloroethylene	<0.00052	<0.00052
Toluene	<0.00023	<0.00023
trans-1,2-Dichloroethylene	<0.00065	<0.00065
trans-1,3-Dichloropropylene	<0.00068	<0.00068
Trichloroethylene	<0.00057	<0.00057
Trichlorofluoromethane	<0.00091	<0.00091
Vinyl Chloride	<0.00097	<0.00097
Xylenes, Total	<0.0010	<0.0010
Semi-Vo	olatiles, 8270 Target List	
1,2,4-Trichlorobenzene	<0.00135	NA
1,2-Dichlorobenzene	<0.00168	NA
1,3-Dichlorobenzene	<0.00282	NA
1,4-Dichlorobenzene	<0.00331	NA
2,4,5-Trichlorophenol	<0.00370	NA
2,4,6-Trichlorophenol	<0.00336	NA
2,4-Dichlorophenol	<0.00317	NA
2,4-Dimethylphenol	<0.00378	NA
2,4-Dinitrophenol	<0.00985	NA
2,4-Dinitrotoluene	<0.00243	NA
2,6-Dinitrotoluene	<0.00360	NA
2-Chloronaphthalene	<0.00358	NA
2-Chlorophenol	<0.00350	NA
2-Methylnaphthalene	<0.00315	NA
2-Methylphenol	< 0.000879	NA
2-Nitroaniline	<0.00308	NA
2-Nitrophenol	<0.00318	NA
3,3'-Dichlorobenzidine	< 0.00360	NA
3- & 4-Methylphenols	<0.00381	NA
3-Nitroaniline	<0.00164	NA
4,6-Dinitro-2-methylphenol	<0.00687	NA
4-Bromophenyl phenyl ether	<0.00353	NA
4-Chloro-3-methylphenol	<0.00372	NA
4-Chloroaniline	<0.00384	NA
4-Chlorophenyl phenyl ether	<0.00320	NA
4-Nitroaniline	<0.00387	NA
4-Nitrophenol	<0.00404	NA
Acenaphthene	<0.00332	NA
Acenaphthylene	<0.00438	NA
Aniline	<0.00202	NA
Anthracene	<0.00375	NA
Benzo(a)anthracene	<0.00417	NA
(,	0,00.11	* * *

D/1-\fl	10.00400	B.T. A
Benzo(b)fluoranthene	<0.00423	NA NA
Benzo(g,h,i)perylene	<0.00426	NA NA
Benzo(k)fluoranthene	<0.00354	NA NA
Benzyl alcohol	<0.00410	NA NA
Benzyl butyl phthalate Bis(2-chloroethoxy)methane	<0.00236 <0.00497	NA NA
, , , , , , , , , , , , , , , , , , , ,		NA NA
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	<0.00423 <0.00426	NA NA
1 15 7	<0.00426	NA NA
Bis(2-ethylhexyl)phthalate	<0.00264	NA NA
Chrysene Di-n-butyl phthalate	<0.00428	NA NA
Di-n-octyl phthalate	<0.00423	NA NA
Dibenzo(a,h)anthracene	<0.00420	NA NA
Dibenzofuran	<0.00318	NA NA
Diethyl phthalate	<0.00297	NA NA
Dimethyl phthalate	<0.00220	NA NA
Fluoranthene	<0.00164	NA NA
Fluorene	<0.00331	NA NA
Hexachlorobenzene	<0.00331	NA NA
Hexachlorobutadiene	<0.00339	NA NA
Hexachlorocyclopentadiene	<0.00353	NA
Hexachloroethane	<0.00333	NA
Indeno(1,2,3-cd)pyrene	<0.00282	NA
Isophorone	<0.00331	NA
N-nitroso-di-n-propylamine	<0.00264	NA
N-Nitrosodimethylamine	<0.00318	NA
N-Nitrosodiphenylamine	<0.00371	NA
Naphthalene	<0.00396	NA
Nitrobenzene	<0.00202	NA
Pentachlorophenol	<0.00386	NA
Phenanthrene	<0.00370	NA
Phenol	<0.00336	NA
Pyrene	<0.00243	NA
Pyridine	< 0.00327	NA
Pesticides	s/PCBs, EPA 8081/8082 List	
4,4'-DDD	<0.0000112	NA
4,4'-DDE	<0.00000118	NA
4,4'-DDT	<0.00000988	NA
Aldrin	<0.0000102	NA
alpha-BHC	<0.0000113	NA
Aroclor 1016	<0.000427	NA
Aroclor 1221	<0.000427	NA
Aroclor 1232	<0.000427	NA
Aroclor 1242	<0.000427	NA
Aroclor 1248	<0.000427	NA
Aroclor 1254	<0.000496	NA
Aroclor 1260	<0.000496	NA
beta-BHC	<0.00000929	NA
Chlordane, total	<0.0000471	NA
delta-BHC	<0.0000113	NA
Dieldrin	<0.00000835	NA
Endosulfan I	<0.00000929	NA
Endosulfan II	<0.00000988	NA
Endosulfan sulfate	<0.0000112	NA

Endrin	<0.0000111	NA
Endrin aldehyde	<0.00000800	NA
Endrin ketone	0.0000107	NA
gamma-BHC (Lindane)	<0.0000113	NA
Heptachlor	<0.0000112	NA
Heptachlor epoxide	<0.00000882	NA
Methoxychlor	<0.0000231	NA
Total PCBs	<0.000427	NA
Toxaphene	<0.000588	NA

Table 9
Metals Field Blanks Analytical Results
55 Eckford Street, Brooklyn, New York

55 Ecklord Street, Brooklyn, New York							
Sample ID	Field Blank	Trip Blank					
Sampling Date	2/15/2012	2/15/2012					
Matrix	Water	Water					
Units	mg/L	mg/L					
Aluminum	0.007	NA					
Antimony	0.002	NA					
Arsenic	0.001	NA					
Barium	0.004	NA					
Beryllium	0.0009	NA					
Cadmium	0.001	NA					
Calcium	0.009	NA					
Chromium, Trivalent	0.00800	NA					
Chromium, Hexavalent	0.00600	NA					
Cobalt	0.001	NA					
Copper	0.002	NA					
Iron	0.006	NA					
Lead	0.001	NA					
Magnesium	0.008	NA					
Manganese	0.001	NA					
Nickel	0.0008	NA					
Mercury	0.00004	NA					
Potassium	0.026	NA					
Selenium	0.002	NA					
Silver	0.001	NA					
Sodium	0.066	NA					
Thallium	0.002	NA					
Vanadium	0.001	NA					
Zinc	0.0009	NA					

Table 10 Groundwater Samples Organic Analytical Results 55 Eckford Street, Brookltn, New York

			55 Eckiora Stre	et, Brookltn, New	iork			
Sample Identification	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	
G1- D-+-	0.402.40010	0./02./0010	0.402.40010	0./02./0010	0./02./0010	0./02./0010	0./02./0010	NYSDEC TOGS 1.1.1
Sample Date	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	Groundwater Quality Standard
Sample Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Standard
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
			Volotile Or	ganic Compounds				
Benzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1
Bromobenzene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
Bromochloromethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Bromodichloromethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Bromoform	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Bromomethane	< 2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NS
sec-Butylbenzene	1.61	4.34	<1.00	<1.00	8.82	1.62	5.99	5
n-Butylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
tert-Butylbenzene	4.49	4.54	<1.00	2.41	6.98	<1.00	1.91	5
Carbon tetrachloride	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Chlorobenzene	<1.00	<1.00 <2.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Chloroethane Chloroform	<2.00 <1.00	< 1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	5 7
Chloromethane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NS
2-Chlorotoluene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
4-Chlorotoluene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
1,2-Dibromo-3-chloropropane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	0.04
Dibromochloromethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,2-Dibromoethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.0006
Dibromomethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,2-Dichlorobenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	3
1,3-Dichlorobenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	3
1,4-Dichlorobenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	3
Dichlorodifluoromethane 1,1-Dichloroethane	<1.00	<1.00 <2.00	<1.00	<1.00	<1.00	<1.00	<1.00 <2.00	5 5
1,1-Dichloroethane 1,2-Dichloroethane	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	5
1,1-Dichloroethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
cis-1,2-Dichloroethene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
trans-1,2-Dichloroethene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,3-Dichloropropane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
2,2-Dichloropropane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
1,2-Dichloropropane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	1
trans-1,3-Dichloropropene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.4
1,1-Dichloropropene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
cis-1,3-Dichloropropene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.4
Ethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Hexachlorobutadiene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.5
Isopropylbenzene	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	<1.00 <1.00	1.08 <1.00	5 5
4-Isopropyltoluene Methyl-t-butyl ether	5.30	6.35	8.84	<1.00	1.11	2.70	1.59	10
Methylene chloride	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	5
n-Propylbenzene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	NS
Styrene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,1,2,2-Tetrachloroethane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
1,1,1,2-Tetrachloroethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Tetrachloroethene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Toluene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,2,4-Trichlorobenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,2,3-Trichlorobenzene	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	<2.00 <1.00	5
1,1,1-Trichloroethane 1,1,2-Trichloroethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5 1
Trichloroethene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Trichlorofluoromethane	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,2,3-Trichloropropane	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	0.04
1,2,4-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
1,3,5-Trimethylbenzene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
Vinyl chloride	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	2
o-Xylene	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	5
m,p-Xylene	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	5
			Semivolatile	Organic Compound	S			
Acenaphthene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	20
Acenaphthylene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
Anthracene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
Benzo(a)anthracene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS NS
Benzo(a)pyrene Benzo(b)fluoranthene	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	NS 0.002
Benzo(g,h,i)perylene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	0.002 NS
Benzo(k)fluoranthene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	0.002
4-Bromophenyl phenyl ether	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	0.04
Butyl benzyl phthalate	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	50
4-Chloroaniline	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	5
bis(2-Chloroethoxy)methane	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	NS
bis(2-Chloroethyl)ether	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	NS
bis(2-Chloroisopropyl)ether	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	NS
2-Chloronaphthalene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	10
4-Chlorophenol phenyl ether	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS 0.000
Chrysene	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	<3.00 <3.00	0.002 NS
Dibenzo(a,h)anthracene Dibenzofuran	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS NS
Di-n-butylphthalate	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
1,2-Dichlorobenzene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
1,4-Dichlorobenzene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
1,3-Dichlorobenzene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
3,3'-Dichlorobenzidene	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	5
			_					

Diethyl phthalate	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
Dimethyl phthalate	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
2,4-Dinitrotoluene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
2,6-Dinitrotoluene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
Di-n-octylphthalate	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	50
bis(2-Ethylhexyl)phthalate	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
Fluoranthene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
Fluorene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
Hexachlorobenzene	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	0.04
Hexachlorobutadiene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
Hexachlorocyclopentadiene	<6.00	<6.00	<6.00	<6.00	<6.00	<6.00	<6.00	5
Hexachloroethane	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	5
Indeno(1,2,3-cd)pyrene	< 2.00	< 2.00	< 2.00	< 2.00	< 2.00	<2.00	< 2.00	0.002
Isophorone	<2.00	< 2.00	<2.00	< 2.00	<2.00	< 2.00	< 2.00	50
2-Methylnaphthalene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS
Naphthalene	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	10
3-Nitroaniline	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
2-Nitroaniline	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	<4.00	5
4-Nitroaniline	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	5
Nitrobenzene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	0.4
N-Nitrosodiphenylamine	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	50
N-Nitrosodi-n-propylamine	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	NS
Phenanthrene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
Pyrene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	50
1,2,4-Trichlorobenzene	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	NS NS
1,2,4-111cilio1obelizelle	₹3.00	<3.00	<3.00	<3.00	₹3.00	₹3.00	₹3.00	NS
			1	Pesticides				
4,4-DDD	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.3
a BHC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
Alachlor	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.5
Aldrin	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
b BHC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
Chlordane	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05
d BHC	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
Dieldrin	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.004
Endosulfan I	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	NS
Endosulfan II	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
Endosulfan Sulfate	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	NS
Endrin	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	NS
Endrin Aldehyde	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5
Endrin Ketone	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	5
Heptachlor	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.04
Heptachlor Epoxide	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.03
Lindane	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	NS
Methoxychlor	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	35
p,p-DDE	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2
p,p-DDT	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2
p,p-DD1	\0.03	NO.00	NO.00	NO.00	×0.03	NO.03	NO.00	0.2
				PCBs				
Aroclor 1016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.09
Aroclor 1221	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.09
Aroclor 1232	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.09
Aroclor 1242	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	0.09
Aroclor 1248	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.09
Aroclor 1254	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	0.09
Aroclor 1260	<0.400	< 0.400	<0.400	<0.400	<0.400	<0.400	<0.400	0.09
1			•		•			,

NS...No Standard
ug/L...micrograms per Liter
ND...not detected
Shaded values represent concentration exceeding the GQS
This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection Limit

Table 11 Groundwater Samples Inorganic Analytical Results 55 Eckford Street, Brooklyn, New York

	55 Eckiora Street, Brooklyn, New York								
Sample Identification	MW-1 Unfiltered	MW-2 Unfiltered	MW-3 Unfiltered	MW-4 Unfiltered	MW-5 Unfiltered	MW-6 Unfiltered	MW-7 Unfiltered	Field Blank Unfiltered	NYSDEC TOGS 1.1.1
Sample Date	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	Groundwater Quality Standard
Sample Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Standard
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Aluminum	1.40	< 0.040	< 0.040	<0.040	0.085	< 0.040	< 0.040	< 0.040	NS
Antimony	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.003
Arsenic	0.522	0.509	0.181	0.211	< 0.040	< 0.040	0.045	<0.040	0.025
Barium	0.282	0.309	0.381	0.570	0.341	0.392	0.386	0.015	1
Beryllium	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.003
Cadmium	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.005
Calcium	127	134	153	244	162	215	220	3.95	NS
Chromium	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.05
Chromium Hexavalent	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.05
Cobalt	0.014	0.017	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	NS
Copper	0.034	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.012	0.2
Iron	11.0	12.8	31.1	14.2	13.0	19.0	17.8	<0.040	0.3
Lead	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	0.025
Magnesium	23.1	24.1	26.4	29.3	14.0	22.0	26.4	0.919	35
Manganese	0.343	0.351	0.542	0.822	0.723	0.777	0.714	0.007	0.30
Mercury	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.0007
Nickel	0.013	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.1
Potassium	49.9	36.8	28.8	26.1	15.6	26.5	28.7	0.514	NS
Selenium	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.01
Silver	0.040	0.021	0.028	< 0.020	< 0.020	0.039	0.042	0.023	0.05
Sodium	298	238	127	60.0	31.7	236	244	5.50	20
Thallium	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.0005
Vanadium	0.005	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	NS
Zinc	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	5

NS...No Standard
mg/L...milligrams per Liter
ND...not detected
ND...not detected
Staded values represent concentration exceeding the GQS
This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection Limit

Table 12 Groundwater Samples Inorganic Analytical Results 55 Eckford Street, Brooklyn, New York

Sample Identification	MW-1 Filtered	MW-2 Filtered	MW-3 Filtered	MW-4 Filtered	MW-5 Filtered	MW-6 Filtered	MW-7 Filtered	Field Blank Filtered	NYSDEC TOGS 1.1.1
Sample Date	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	2/23/2012	Groundwater Quality
Sample Matrix	Groundwater	Standard							
Units	mg/L	mg/L							
Aluminum	0.267	<0.040	<0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	NS
Antimony	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	< 0.040	0.003
Arsenic	0.522	0.564	0.193	0.224	< 0.040	< 0.040	0.056	< 0.040	0.025
Barium	0.281	0.320	0.388	0.553	0.344	0.402	0.378	0.016	1
Beryllium	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	<0.004	<0.004	0.003
Cadmium	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.005
Calcium	126	136	156	230	164	225	218	4.22	NS
Chromium	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.05
Chromium Hexavalent	NA	0.05							
Cobalt	0.015	0.016	<0.008	<0.008	<0.008	<0.008	<0.008	<0.008	NS
Copper	0.012	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	0.015	0.2
Iron	10.3	13.4	30.5	14.8	13.3	20.1	18.2	<0.040	0.3
Lead	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.040	<0.040	0.025
Magnesium	22.9	25.2	27.0	28.1	14.2	23.2	26.7	0.983	35
Manganese	0.338	0.358	0.530	0.783	0.724	0.784	0.697	0.010	0.30
Mercury	< 0.030	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	<0.30	0.0007
Nickel	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.1
Potassium	30.9	31.0	26.6	23.5	16.0	26.8	28.5	0.578	NS
Selenium	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.01
Silver	0.060	0.057	0.060	0.059	0.073	0.062	0.068	0.060	0.05
Sodium	259	220	117	49.6	25.9	240	244	5.78	20
Thallium	<0.040	< 0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	0.0005
Vanadium	0.004	<0.004	0.004	<0.004	<0.004	< 0.004	<0.004	<0.004	NS
Zinc	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	5

NS...No Standard
mg/L...milligrams per Liter
ND...not detected
ND...not detected
Staded values represent concentration exceeding the GQS
This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection Limit

Table 13
Field & Trip Blank Samples Organic Analytical Results
55 Eckford Street, Brookltn, New York

Sample Identification	Field Blank	Trip Blank	
Sample Date	2/23/2012	2/23/2012	NYSDEC TOGS 1.1.1 Groundwater Quality
Sample Matrix	Groundwater	Groundwater	Standard
Units	ug/L	ug/L	ug/L
	Volatile Organic Con	nnounds	
Benzene	<1.00	<1.00	1
Bromobenzene	<2.00	<2.00	5
Bromochloromethane	<1.00	<1.00	5
Bromodichloromethane	2.05	<1.00	5
Bromoform	<1.00	<1.00	5
Bromomethane	<2.00	<2.00	NS
sec-Butylbenzene	<1.00	<1.00	5
n-Butylbenzene	<1.00	<1.00	5
tert-Butylbenzene	<1.00	<1.00	5
Carbon tetrachloride	<1.00	<1.00	5
Chlorobenzene	<1.00	<1.00	5
Chloroethane	<2.00	<2.00	5
Chloroform	16.2	<1.00	7
Chloromethane	<2.00	<2.00	NS
2-Chlorotoluene	<2.00	<2.00	5
4-Chlorotoluene	<2.00	<2.00	5
1,2-Dibromo-3-chloropropane Dibromochloromethane	<2.00 <1.00	<2.00 <1.00	0.04
	<1.00	<1.00	0.0006
1,2-Dibromoethane			
Dibromomethane	<1.00 <1.00	<1.00	5 3
1,2-Dichlorobenzene		<1.00	
1,3-Dichlorobenzene	<1.00	<1.00	3
1,4-Dichlorobenzene	<1.00 <1.00	<1.00	
Dichlorodifluoromethane		<1.00	5 5
1,1-Dichloroethane	<2.00	<2.00	
1,2-Dichloroethane	<1.00	<1.00	5
1,1-Dichloroethene	<1.00	<1.00	5
cis-1,2-Dichloroethene	<1.00	<1.00	5
trans-1,2-Dichloroethene	<1.00	<1.00	5
1,3-Dichloropropane	<1.00	<1.00	5
2,2-Dichloropropane	<2.00	<2.00	5
1,2-Dichloropropane	<2.00	<2.00	1
trans-1,3-Dichloropropene	<1.00	<1.00	0.4
1,1-Dichloropropene	<1.00	<1.00	5
cis-1,3-Dichloropropene	<1.00	<1.00	0.4
Ethylbenzene	<1.00	<1.00	5
Hexachlorobutadiene	<1.00	<1.00	0.5
Isopropylbenzene	<1.00	<1.00	5
4-Isopropyltoluene	<1.00	<1.00	5
Methyl-t-butyl ether	<1.00	<1.00	10
Methylene chloride	<10.0	<10.0	5
n-Propylbenzene	<2.00	<2.00	NS
Styrene	<1.00	<1.00	5

1,1,2,2-Tetrachloroethane	<2.00	<2.00	5
1,1,1,2-Tetrachloroethane	<1.00	<1.00	5
Tetrachloroethene	<1.00	<1.00	5
Toluene	<1.00	<1.00	5
1,2,4-Trichlorobenzene	<1.00	<1.00	5
1,2,3-Trichlorobenzene	<2.00	<2.00	5
1,1,1-Trichloroethane	<1.00	<1.00	5
1,1,2-Trichloroethane	<1.00	<1.00	1
Trichloroethene	<1.00	<1.00	5
Trichlorofluoromethane	<1.00	<1.00	5
1,2,3-Trichloropropane	<2.00	<2.00	0.04
1,2,4-Trimethylbenzene	<1.00	<1.00	5
1,3,5-Trimethylbenzene	<1.00	<1.00	5
Vinyl chloride	<5.00	<5.00	2
o-Xylene	<1.00	<1.00	5
m,p-Xylene	<2.00	<2.00	5
Sor	nivolatile Organic C	'omnounds	
Acenaphthene	<3.00	NA	20
Acenaphthene Acenaphthylene	<3.00	NA NA	NS
Anthracene	<3.00	NA NA	50
Benzo(a)anthracene	<3.00	NA NA	NS
` '	<3.00	NA NA	NS NS
Benzo(a)pyrene			
Benzo(b)fluoranthene	<3.00	NA NA	0.002 NS
Benzo(g,h,i)perylene	<3.00	NA NA	
Benzo(k)fluoranthene	<3.00	NA	0.002
4-Bromophenyl phenyl ether	<3.00	NA NA	0.04
Butyl benzyl phthalate	<4.00	NA NA	50
4-Chloroaniline	<4.00	NA NA	5 NG
bis(2-Chloroethoxy)methane	<4.00	NA NA	NS
bis(2-Chloroethyl)ether	<4.00	NA NA	NS
bis(2-Chloroisopropyl)ether	<4.00	NA	NS 10
2-Chloronaphthalene	<3.00	NA	10 NG
4-Chlorophenol phenyl ether	<3.00	NA NA	NS
Chrysene	<3.00	NA	0.002
Dibenzo(a,h)anthracene	<3.00	NA	NS
Dibenzofuran	<3.00	NA	NS To
Di-n-butylphthalate	<3.00	NA	50
1,2-Dichlorobenzene	<3.00	NA	NS
1,4-Dichlorobenzene	<3.00	NA	NS
1,3-Dichlorobenzene	<3.00	NA	NS
3,3'-Dichlorobenzidene	<4.00	NA	5
Diethyl phthalate	<3.00	NA	50
Dimethyl phthalate	<3.00	NA	5
2,4-Dinitrotoluene	<3.00	NA	5
2,6-Dinitrotoluene	<3.00	NA	5
Di-n-octylphthalate	<4.00	NA	50
bis(2-Ethylhexyl)phthalate	<3.00	NA	5
Fluoranthene	<3.00	NA	50
Fluorene	<3.00	NA	50
Hexachlorobenzene	<5.00	NA	0.04
Hexachlorobutadiene	<3.00	NA	NS
Hexachlorocyclopentadiene	<6.00	NA	5
Hexachloroethane	<4.00	NA	5
Indeno(1,2,3-cd)pyrene	<2.00	NA	0.002

Isophorone	< 2.00	NA	50	
2-Methylnaphthalene	<3.00	NA	NS	
Naphthalene	<4.00	NA	10	
3-Nitroaniline	<3.00	NA	5	
2-Nitroaniline	<4.00	NA	5	
4-Nitroaniline	<3.00	NA	5	
Nitrobenzene	<3.00	NA	0.4	
N-Nitrosodiphenylamine	<5.00	NA	50	
N-Nitrosodi-n-propylamine	<5.00	NA	NS	
Phenanthrene	<3.00	NA	50	
Pyrene	<3.00	NA	50	
1,2,4-Trichlorobenzene	<3.00	NA	NS	
	Pesticides			
4,4-DDD	<0.05	NA	0.3	
а ВНС	<0.05	NA	NS	
Alachlor	<0.05	NA	0.5	
Aldrin	<0.05	NA	NS	
ь внс	<0.05	NA	NS	
Chlordane	< 0.05	NA	0.05	
d BHC	< 0.05	NA	NS	
Dieldrin	<0.05 NA		0.004	
Endosulfan I	<0.05 NA		NS	
Endosulfan II	<0.05 NA		NS	
Endosulfan Sulfate	<0.05 NA		NS	
Endrin	< 0.05	NA	NS	
Endrin Aldehyde	<0.05	NA	5	
Endrin Ketone	<0.05	NA	5	
Heptachlor	< 0.05	NA	0.04	
Heptachlor Epoxide	<0.05	NA	0.03	
Lindane	<0.05	NA	NS	
Methoxychlor	<0.05	NA	35	
p,p-DDE	< 0.05	NA	0.2	
p,p-DDT	<0.05	NA	0.2	
	PCBs			
Aroclor 1016	<1.00	NA	0.09	
Aroclor 1221	<1.00	NA	0.09	
Aroclor 1232	<1.00	NA	0.09	
Aroclor 1242	<0.500	NA	0.09	
Aroclor 1248	<1.00	NA	0.09	
Aroclor 1254	<1.00	NA	0.09	
Aroclor 1260	<0.400	NA	0.09	
	5,.55		0.05	

NS...No Standard

 $ug/L...micrograms\ per\ Liter$

ND...not detected

Shaded values represent concentration exceeding the GQS

This Table Lists Only Compounds Detected At Concentrations Exceeding Their Respective Method Detection

Table 14 Soil Vapor Analytical Results 55 Eckford Street, Brooklyn, New York

55 Eckford Street, Brooklyn, New York								
Sample ID	SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7	
Sampling Date	2/22/2012	2/22/2012	2/22/2012	2/22/2012	2/22/2012	2/22/2012	2/22/2012	NYSDOH Background
Matrix	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Standards Indoor Air 1 & 2
Units	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³
Ointo	ug/iii		atile Organics, EP	l	ug/m	ug/III	ug/ III	ug/ III
								-
1,1,1-Trichloroethane	<1.9	NA	<1.9	<1.8	<2.0	<2.0	<2.0	<0.25 - 1.1
1,1,2,2-Tetrachloroethane	<3.3	NA	<3.1	<3.1	<3.3	<3.3	<3.3	<0.25
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	<1.1 <2.7	NA NA	<1.0 <2.6	<1.0 <2.6	<1.1 <2.8	<1.1 <2.7	<1.1 <2.7	NS <0.25
1,1,2-Trichloroethane 1,1-Dichloroethane	<0.96	NA NA	<0.93	<0.91	<0.98	<0.98	<0.97	<0.25
1,1-Dichloroethylene	26	NA NA	<1.1	<1.1	<1.2	<1.2	<1.2	NS
1,2,4-Trichlorobenzene	<3.2	NA NA	<3.1	<3.1	<3.3	<3.3	<3.3	<0.25
1,2,4-Trimethylbenzene	<1.2	NA	<1.1	<1.1	<1.2	<1.2	<1.2	0.69 - 4.3
1,2-Dichlorobenzene	<3.0	NA	<2.9	<2.8	<3.0	<3.0	<3.0	<0.25
1,2-Dichloroethane	<1.9	NA	<1.9	<1.8	<2.0	<2.0	<1.9	< 0.25
1,2-Dichloropropane	<2.0	NA	<1.9	<1.9	<2.1	<2.0	<2.0	< 0.25
1,2-Dichlorotetrafluoroethane	<2.4	NA	<2.3	<2.2	<2.4	<2.4	<2.4	25 - 75
1,3,5-Trimethylbenzene	<1.3	NA	<1.2	<1.2	<1.3	<1.3	40	0.27 -1.7
1,3-Butadiene	<1.3	NA	<1.2	<1.2	<1.3	<1.3	<1.3	NS
1,3-Dichlorobenzene	<2.1	NA	<2.1	<2.0	<2.2	<2.2	<2.2	< 0.25
1,4-Dichlorobenzene	<2.6	NA	<2.5	<2.5	<2.7	<2.7	<2.6	NS
1,4-Dioxane	<6.4	NA	<6.2	<6.1	<6.6	<6.5	<6.5	NS
2,2,4-Trimethylpentane	<1.1	NA	<1.1	<1.0	<1.1	<1.1	<1.1	NS
2-Butanone	<2.3	NA	<2.2	<2.2	<2.4	<2.4	<2.4	NS
2-Hexanone	<4.5	NA	<4.3	<4.2	<4.6	<4.5	<4.5	NS
3-Chloropropene	<1.1	NA	<1.1	<1.1	<1.1	<1.1	<1.1	NS
4-Methyl-2-pentanone	<2.9	NA	<2.8	<2.8	<3.0	<3.0	<3.0	NS
Acetone	770	NA	2100	2300	1800	1600	2400	10 - 52
Benzene	19	NA	<0.91	<0.90	<0.97	<0.96	<0.96	1.1 - 5.9
Benzyl chloride	<1.2	NA	<1.2	<1.2	<1.3	<1.2	<1.2	NS NS
Bromodichloromethane Bromoform	<2.9 <3.7	NA NA	<2.8 <3.5	<2.8 <3.5	<3.0 <3.8	<3.0 <3.7	<3.0 <3.7	NS NS
Bromomethane	<0.92	NA NA	<0.89	<0.87	<0.94	<0.94	<0.93	<0.25
Carbon disulfide	30	NA NA	<0.71	<0.70	<0.76	<0.75	<0.75	NS
Carbon tetrachloride	<1.5	NA NA	<1.4	<1.4	<1.5	<1.5	<1.5	<0.25 - 0.59
Chlorobenzene	<1.6	NA	<1.6	<1.5	<1.7	<1.7	<1.7	<0.25
Chloroethane	<0.63	NA	<0.60	<0.59	<0.64	<0.64	< 0.63	NS
Chloroform	<1.4	NA	<1.4	<1.4	<1.5	<1.5	<1.5	<0.25 - 0.54
Chloromethane	<1.2	NA	<1.2	<1.2	<1.3	<1.2	<1.2	<0.25 - 1.8
cis-1,2-Dichloroethylene	49	NA	32	<1.3	<1.4	<1.4	34	NS
cis-1,3-Dichloropropylene	<2.2	NA	<2.2	<2.1	<2.3	<2.3	<2.3	NS
Cyclohexane	< 0.82	NA	< 0.79	< 0.77	< 0.84	< 0.83	< 0.83	<0.25 - 2.6
Dichlorodifluoromethane	<2.4	NA	<2.4	<2.3	<2.5	<2.5	<2.5	<0.25 - 4.1
Ethyl acetate	<1.8	NA	<1.7	<1.7	<1.8	<1.8	<1.8	NS
Ethyl Benzene	<1.5	NA	<1.5	<1.5	<1.6	<1.6	<1.6	0.41 - 2.8
Hexachlorobutadiene	<3.8	NA	<3.7	<3.6	<3.9	<3.9	<3.8	NS
Isopropanol (MTDD)	<1.7	NA	<1.6	<1.6	<1.7	<1.7	<1.7	NS 0.50 A.C
Methyl tert-butyl ether (MTBE)	<0.85	NA	<0.82	<0.81	<0.88	<0.87	<0.86	0.50 - 4.6
Methylene chloride	33 <0.97	NA NA	17 <0.94	30 28	19 <1.0	20 <0.99	21 <0.98	0.31 - 6.6 <0.25 - 5.6
n-Heptane n-Hexane	<0.97 95	NA NA	<0.94 <0.81	28 49	<1.0 <0.86	<0.99 <0.85	<0.98 <0.85	<0.25 - 5.6 1.0 - 7.6
n-Hexane o-Xylene	<1.5	NA NA	<0.81	<1.5	<0.86	<0.85	<0.85 <1.6	0.63 - 6.0
p- & m- Xylenes	<2.9	NA NA	31	24	25	21	33	0.39 - 3.1
p-& m- Ayrenes p-Ethyltoluene	<1.8	NA NA	<1.7	<1.7	<1.8	<1.8	<1.8	NS
Propylene	<1.6	NA NA	<1.5	<1.5	<1.6	<1.6	<1.6	NS
Styrene	<1.5	NA	<1.5	<1.4	<1.6	<1.5	<1.5	<0.25 - 0.64
Tetrachloroethylene	<1.6	NA	53	<1.5	<1.6	<1.6	84	NS
Tetrahydrofuran	<1.5	NA	<1.4	<1.4	<1.5	<1.5	<1.5	<0.25 - 0.35
Toluene	39	NA	29	25	28	22	32	3.5 - 24.8
trans-1,2-Dichloroethylene	<0.94	NA	< 0.91	<0.89	<0.96	<0.96	< 0.95	NS
trans-1,3-Dichloropropylene	<1.6	NA	<1.6	<1.5	<1.7	<1.6	<1.6	NS
Trichloroethylene	180	NA	780	30	190	58	1700	NS
Trichlorofluoromethane (Freon 11)	< 0.67	NA	<0.64	<0.63	<0.68	<0.68	<0.68	1.1 - 5.4
Vinyl acetate	<1.0	NA	<1.0	<0.99	<1.1	<1.1	<1.1	NS
Vinyl bromide	<1.3	NA	<1.3	<1.2	<1.3	<1.3	<1.3	NS
Vinyl Chloride	<1.2	NA NA Fixel Oil Heated H	<1.2	<1.1	<1.2	<1.2	<1.2	<0.25

NS - No Standard

All reported values are in microgram per cubic meter (mcg/m^3)

NA...Air volume not available after sampling for analysis

Vinyi Chioride | <1.2 | NA | <1.2 | <1.1 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <1.2 | <

Means "less than." The number following a "less than sign" (c) is the lowest level the laboratory test can reliably measure (reporting limit). Shaded values represent concentration exceeding the NYSDEC Background Standards

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

EXHIBIT DREQUESTOR ENTITY INFORMATION

55 ECKFORD ST LLC AUTHORIZATION TO COMPLETE REMEDIAL REQUIREMENTS

The undersigned, being the members of 55 Eckford St LLC, a New York limited liability company (the "Company") hereby certify as of June 13, 2024, as follows and adopt the following resolutions and authorize the Company to authorize and direct Daniel Kaykov (the "Authorized Signatory") to take the following actions on behalf of the Company:

WHEREAS, the Company desires to authorize the Authorized Signatory, set forth below, to undertake actions necessary to redevelop 55 Eckford Street, Brooklyn, New York, Block 2698 Lot 32 (the "Property" or the "Site").

WHEREAS, in connection with the redevelopment of the Property, the Company has or will prepare and submit an application to participate in the New York State Brownfield Cleanup Program ("BCP") and, if accepted into the BCP, file related documents with the New York State Department of Environmental Conservation ("DEC") pursuant to the BCP, including, but not limited to an environmental easement and notice of certificate of completion; and undertake environmental remediation work related thereto consistent with applicable laws, regulations and guidance under the BCP (collectively referred to as the "Remedial Program Requirements");

NOW THEREFORE, BE IT

RESOLVED, the Authorized Signatory be, and hereby is, authorized and directed, in the name of and on behalf of the Company, to execute and to deliver all applications, documents and instruments required to effectuate the BCA and/or subsequent amendments, and make any filings required to comply with the BCA consistent with the Remedial Program Requirements; and be it further;

RESOLVED, that this Authorization may be signed in any number of counterparts, including but not limited to electronic, and shall become effective as of the date herein below written when each person named below shall have signed a copy hereof; and

RESOLVED, The Authorized Signatory is authorized to bind the Company as an Authorized Signatory for the purposes set forth in this Authorization, the signature set forth opposite his name below is his actual signature:

Authorized Signatory	<u>Signature</u>
Daniel Kaykov	Sand Koglas

IN WITNESS WHEREOF, the undersigned have signed and sealed this Member Consent on June 13, 2024.

MEMBERS:

Poise RE Dev Holdings LLC

Weil Kentryei By: Val Katayev

DSKAY Realty Holding LLC

By: Daniel Kavkov

6/3/24, 9:46 PM Public Inquiry

Department of State Division of Corporations

Entity Information

Return to Results

Return to Search

Entity Details ENTITY NAME: 55 ECKFORD ST LLC DOS ID: 7085019 **FOREIGN LEGAL NAME: FICTITIOUS NAME: ENTITY TYPE: DOMESTIC LIMITED LIABILITY COMPANY DURATION DATE/LATEST DATE OF DISSOLUTION:** SECTIONOF LAW: LIMITED LIABILITY COMPANY LAW - 203 LIMITED LIABILITY COMPANY LAW - LIMITED LIABILITY COMPANY LAW **ENTITY STATUS: ACTIVE DATE OF INITIAL DOS FILING:** 09/20/2023 **REASON FOR STATUS: EFFECTIVE DATE INITIAL FILING:** 09/20/2023 **INACTIVE DATE: FOREIGN FORMATION DATE: STATEMENT STATUS: CURRENT COUNTY: KINGS NEXT STATEMENT DUE DATE:** 09/30/2025 **JURISDICTION: NEW YORK, UNITED STATES** NFP CATEGORY: **ENTITY DISPLAY** NAME HISTORY FILING HISTORY **ASSUMED NAME HISTORY** Service of Process on the Secretary of State as Agent The Post Office address to which the Secretary of State shall mail a copy of any process against the corporation served upon the Secretary of State by personal delivery: Name: THE LLC Address: 100 JERICHO QUADRANGLE, SUITE 220, JERICHO, NY, UNITED STATES, 11753 Electronic Service of Process on the Secretary of State as agent: Not Permitted Chief Executive Officer's Name and Address Name: Address: Principal Executive Office Address

Registered Agent Name and Address

Address:

Name:

6/3/24, 9:46 PM Public Inquiry

Address:		
ntity Primary Location Na	ame and Address	
Name:		
Address:		
armcorpflag		
s The Entity A Farm Co	orporation: NO	
tock Information		

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

EXHIBIT ESITE CONTACT LIST

55 Eckford St LLC Brownfield Cleanup Program Application Site Contact List Section XI

Local Government Offices

1. Eric Adams

New York City Mayor City Hall New York, NY 10007

2. Thomas P. DiNapoli

New York City Comptroller 1 Centre Street

New York, NY 10007

3. Antonio Reynoso

Brooklyn Borough President 209 Joralemon Street Brooklyn, NY 11201

4. Dealize Fuller

Brooklyn Community Board 1 District manager 435 Graham Avenue Brooklyn, NY 11221

5. Shaminder Chawla

Director

NYC Office of Environmental Protection

100 Gold Street

New York NY, 10038

6. Jane H. O'Connell, P.G.

New York State Department of Environmental Conservation Regional Remediation Engineer, Division of Environmental Remediation 47-40 21st Street Long Island City, NY 11101

7. Thoms V. Panzone

NYSDEC Public Participation Specialist 47-40 21st Street Long Island City, NY 11101

8. Dan Tucholski

New York State Department of Health Services Public Health Specialist Empire Plaza Corning Tower, Room 178 Albany, NY 12233

9. Hon Charles Schumer U.S. Senator

780 Third Avenue, Suite 2301 New York, NY 10017

10. Hon Kirsten Gillibrand

U.S. Senator 780 Third Avenue, Suite 2301 New York, NY 10017

11. Julia Salazar

NY Senate -District 18 212 Evergreen Avenue Brooklyn, NY 11211

12. Lincoln Restler

New York City Council – District 33 410 Atlantic Avenue Brooklyn NY 11217

13. Emily Gallagher

Assemblyman – District 50 685A Manhattan Avenue Brooklyn NY 11222

14. Vincent Sapienza – Commissioner

NYCDEP 59-17 Junction Blvd.

Flushing NY 11373

Document Repository

- Brooklyn Library Greenpoint Branch Approved 107 Norman Avenue Brooklyn NY 11222 Abby Garnett – Branch manager AGarnett@Bklynlibrary.org
- Brooklyn Community District 1 acknowledged.
 435 Graham Avenue
 Brooklyn, NY 11221
 BK01@cb.nyvc.gov

Local Community Board

Brooklyn Community District 1 435 Graham Avenue Brooklyn, NY 11221 BK01@cb.nyvc.gov

Local Media Outlets

- New York Daily News
 New York Plaza
 New York, NY 10004
- Spectrum News 1
 75 Ninth Avenue
 New York, NY 11211
- Greenpoint Gazette online
 597 Manhattan Ave
 Brooklyn, NY 11222
- The Brooklyn Eagle -print 16 Court Street Brooklyn, NY 11222

School and Daycare Facilities

John Ericsson Middle School 126
 424 Leonard Street, Brooklyn, NY 11222
 (718) 782-2527
 Attn: Maria Ortega

Northside Charter High School
 424 Leonard Street, Brooklyn, NY 11222
 (347) 390-1273 Attn: Suzanne Curran

Automotive High School
 Bedford Avenue, Brooklyn, New York 11222
 (718) 218-9301

Attn: Caterina Lafergola

4. Williamsburg Charter School 198 Varet Street Brooklyn, NY 11206

 Eileen Zaccone ABC Infant & Toddler Center, Inc. 109 Nassau Avenue, Brooklyn, NY 11222 (718) 389-9004

Adjacent Property Owners

 Owner: 55 Eckord 1875 DNB LLC 562 Coney Island Avenue, Brooklyn, NY

 Owner: East Star Realty LLC 1740 E 27th Street Brooklyn, NY 11229

 Owner: 488 Leonard Street LLC c/o James P. Clark 127 Nassau Avenue Brooklyn, NY 11222

4. Owner: Aldona Stamper 116 Beach 91st Rockaway, NY 11693

Owner: Current owner
 63-65 Engert Avenue
 Brooklyn, NY 11222

6. Owner: YM7, LLC 56 Leonard Street, Apt 50W, New York, NY 10013

7. Owner: Janusz Bartnicki 149-35 10th Avenue Whitestone, NY 11357 8. Owner: Maria George 60-61 Myrtle Avenue Brooklyn, NY 11385

9. Owner: Christopher M. Burke

56 Eckford Street Brooklyn, NY 11222

Owner: Adam Szpyt Trustee
 528 Graham Avenue, Apt. 1R
 Brooklyn, NY 11222

11. Owner: Kazimierz & Jolanta Sikorski

60 Eckford Street Brooklyn, NY 11222

12. Owner: Pamela McGee 62 Eckford Street Brooklyn, NY 11222

13. Owner: Linda Grippo 64 Eckford Street Brooklyn, NY 11222-4638

14. Owner: Jeanine & Robert Grippo

66 Eckford Street Brooklyn, NY 11222

15. Owner: 68 Eckford Street LLC

68 Eckford Street Brooklyn, NY 11222

16. The McCarren Condominium

c/o 474 Leonard Street LLC (aka 49 Engert Avenue)

96-20 Atlantic Avenue Ozone Park, NY 11416

17. 65-73 Eckford Realty LLC

65 Eckford Street

Brooklyn, NY 11222

The following table shows the historic list of owners, the Requestor has no relationship to the previous owners.

Party 1	Party 2	Address	Date of Ownership or Operation
Eckford-Greenpoint LLC	55 Eckford St LLC	100 Jericho Quadrangle, Jericho, NY	04/24/2024 to 04/25/2024
55 Eckford Street Brooklyn LLC	Eckford-Greenpoint LLC	10 Glenville Street, Greenwich CT	12/28/20212 to 02/12/2013
Blue Diamond Development LLC	55 Eckford Street Brooklyn LLC	825 Third Avenue, New York, NY	06/22/2009 to 12/17/2009
Berkman, Theodore as co-trustees of Arlyne Berkman Revocable Living Trust	Blue Diamond Development LLC	199 Lee St., Suite 287 Brooklyn, NY	09/16/2003 to 03/16/2004
Berkman, Donald	Berkman, Gerald	55 Eckford St., Brooklyn, NY	01/30/2002 to 02/25/2002
Berkman, Arlyne	Berkman, Arlyne Revocable Living Trust	6655 NY 15 th St Margate, FL	10/31/1995 to 12/21/1995
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	03/04/1994 to 04/15/1994
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	01/05/1972 to 01/05/1972
Berkman, Lillie	Berkman, Donald	71 Margaret Drive, Valley Stream, NY	12/27/1971 to 12/27/1971

The following provides the list of historic operators from the City Directory. The Requestor has no relationship to the former operators.

Name	Address	Years of Operation	Relationship to Requestor
Eckford-Greenpoint LLC	10 Glenville Street, Greenwich CT	2013-2018	None
Processing Techniques, Inc.	55 Eckford Street Brooklyn	2005-2013	None
BG Finishing Inc./Processing Techniques Inc.	55 Eckford Street Brooklyn	2000	None
Berkman Bros Platers/ Processing Techniques Inc.	55 Eckford Street Brooklyn	1949-1997	None
Schoolsky Bros Wool Stock Corp.	55 Eckford Street Brooklyn	-1945	None
Formmetal Peter Mgr Miramar Trading Corp.	55 Eckford Street Brooklyn	1934	None

NYSDEC BCP Application - BCP Site No. C224168
55 Eckford Street, Brooklyn, NY 11222
Block 2698, Lot 32

EXHIBIT FDOCUMENT REPOSITORY LETTERS

Known for excellence. Built on trust.

EOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of New York 104 West 29th Street 10th Floor New York, NY 10001 T: 212.594.8140 F: 212.279.8180 www.gza.com May 28, 2024

Library Manager Brooklyn Public Library - Greenpoint 107 Norman Ave Brooklyn NY, 11211

RE: Brownfield Cleanup Program Application Repository Request

Requestor: 55 Eckford St LLC

Site Name: 55 Eckford Street, Brooklyn NY

To Whom it May Concern:

GZA GeoEnvironmental of New York (GZA) represents 55 Eckford St LLC (Requestor) in its Brownfield Cleanup Program (BCP) application for the 55 Eckford Street, Brooklyn, New York site. As part of this application, the New York State Department of Environmental Conservation (NYSDEC) requires that we reach out to you, the local library, and request your assistance in becoming a public document repository for the BCP project documents. The documents will be provided in electronic format, and public access to it will only be made available by a digital download link, so as to not impede with your current operation. We anticipate that these documents will only be stored at a minimum of two years to a maximum of five years (or earlier upon receipt of Notice of Satisfaction from the NYSDEC).

May we request your office's concurrence to this request by signing below and returning this letter as an attachment to an email as soon as possible.

Very truly yours,

GZA GEOENVIRONMENTAL OF NEW YORK

Victoria Whelan, P.G. Associate Principal

Yes, the Brooklyn Public Library is willing and able to act as a public repository for documents related to the cleanup of the 55 Eckford Street, Brooklyn, New York Site under the NYS BCP.

Acacia Thompson

5/30/24

Library ManagerBrooklyn Library

Date

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of New York 104 West 29th Street 10th Floor New York, NY 10001 T: 212.594.8140 F: 212.279.8180 www.gza.com May 28, 2024 Revised July 16, 2024

Brooklyn Community Board - 1 435 Graham Avenue Brooklyn, New York 11211

RE: Brownfield Cleanup Program Application Repository Request

Requestor: 55 Eckford St LLC

Site Name: 55 Eckford St Brooklyn, New York

To Whom it may Concern:

GZA GeoEnvironmental of New York (GZA) represents 55 Eckford St LLC (Requestor) in its Brownfield Cleanup Program (BCP) application for the 55 Eckford Street, Brooklyn New York) site. As part of this application, the New York State Department of Environmental Conservation (NYSDEC) requires that we reach out to you, the local Community Board 1, and request your assistance in becoming a public repository for the BCP project documents. The documents will only be provided in electronic format, and public access to it will only be made available by a digital download link, so as to not impede with your current operation. We anticipate that these documents will only be stored at a minimum of two years to a maximum of five years (or earlier upon receipt of Notice of Satisfaction from the NYSDEC).

May we request your office's concurrence to this request by signing below and returning this letter as an attachment to an email as soon as possible.

Very truly yours,

GZA GEOENVIRONMENTAL OF NEW YORK

Victoria Whelan, P.G. Associate Principal

Yes, the Brooklyn Community Board 1 is willing and able to act as a public repository for the 55 Eckford Street, Brooklyn, New York Site under the NYS BCP.

Community Board 1

Date

Victoria Whelan

From: Victoria Whelan

Sent: Tuesday, July 16, 2024 4:22 PM

To: bk01@cb.nyc.gov

Subject: RE: 55 Eckford St LLC - NYSDEC BCP Application - Document Repository

Attachments: CB-1 BCP Repository Letter.pdf

Good afternoon – I just realized this letter had Bronx as the address. Attached is the corrected request. I appreciate if you can sign this letter and return to my attention to provide to NYSDEC along the Site BCP application. If you require any additional information, please feel free to contact me directly.

Victoria D. Whelan, P.G.

Vice President

GZA | 324 South Service Rd | Suite 119 | Melville, NY 11747 c: 631-793-8821 | victoria.whelan@gza.com | www.gza.com

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

From: Victoria Whelan

Sent: Tuesday, May 28, 2024 12:47 PM
To: 'bk01@cb.nyc.gov' <bk01@cb.nyc.gov>

Subject: 55 Eckford St LLC - NYSDEC BCP Application - Document Repository

Good afternoon,

Please find attached a letter requesting your approval to use Brooklyn Community Board 1 as a documents repository for the above New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site. This document repository is intended to house, for community review, all principal documents generated prior and during the remediation of this BCP site as per the requirements of the NYSDEC.

I appreciate if you can sign this letter and return to my attention to provide to NYSDEC along the Site BCP application. If you require any additional information, please feel free to contact me directly.

Thank You,

Victoria D. Whelan, P.G.

Vice President

GZA | 324 South Service Rd | Suite 119 | Melville, NY 11747 c: 631-793-8821 | victoria.whelan@qza.com | www.qza.com

GEOTECHNICAL | ENVIRONMENTAL | ECOLOGICAL | WATER | CONSTRUCTION MANAGEMENT

Known for excellence. Built on trust.

Victoria Whelan

Victoria D. Whelan, P.G.

Vice President

From:	BK01 (CB) <bk01@cb.nyc.gov></bk01@cb.nyc.gov>		
Sent:	Tuesday, May 28, 2024 2:37 PM		
To: Subject:	Victoria Whelan Re: [EXTERNAL] 55 Eckford St LLC - NYSDEC BCP Application - Document Repository		
Kindly be advis	ed that your email has been forwarded to Chair Dealice Fuller.		
Thank you.			
	nelan <victoria.whelan@gza.com> ay 28, 2024 12:46 PM</victoria.whelan@gza.com>		
	AL] 55 Eckford St LLC - NYSDEC BCP Application - Document Repository		
You don't often ge	et email from victoria.whelan@gza.com. <u>Learn why this is important</u>		
	il originated from outside of the organization. Do not click links or open attachments unless you recognize the se content is safe. Forward suspect email to phish@oti.nyc.gov as an attachment (Click the More button, then ent).		
Good afternoon,			
repository for th Cleanup Program	thed a letter requesting your approval to use Brooklyn Community Board 1 as a documents e above New York State Department of Environmental Conservation (NYSDEC) Brownfield in (BCP) Site. This document repository is intended to house, for community review, all ents generated prior and during the remediation of this BCP site as per the requirements of		
	appreciate if you can sign this letter and return to my attention to provide to NYSDEC along the Site BCP pplication. If you require any additional information, please feel free to contact me directly.		
Thank You,			

GZA 324 South Service Rd Suite 119 Melville, NY 11747
c: 631-793-8821 victoria.whelan@gza.com www.gza.com
GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT
Known for excellence. Built on trust.
This electronic message is intended to be viewed only by the individual or entity to which it is addressed and may contain privileged and/or confidential information intended for the exclusive use of the addressee(s). If you are
not the intended recipient, please be aware that any disclosure, printing, copying, distribution or use of this information is prohibited. If you have received this message in error, please notify the sender immediately and
destroy this message and its attachments from your system.

For information about GZA GeoEnvironmental, Inc. and its services, please visit our website at www.gza.com.

Known for excellence. Built on trust.

SEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of New York 104 West 29th Street 10th Floor New York, NY 10001 T: 212.594.8140 F: 212.279.8180 www.gza.com May 28, 2024

Library Manager Brooklyn Public Library - Williamsburg 240 Division Avenue Brooklyn NY, 11211

RE: Brownfield Cleanup Program Application Repository Request

Requestor: 55 Eckford St LLC

Site Name: 55 Eckford Street, Brooklyn NY

To Whom it May Concern:

GZA GeoEnvironmental of New York (GZA) represents 55 Eckford St LLC (Requestor) in its Brownfield Cleanup Program (BCP) application for the 55 Eckford Street, Brooklyn, New York site. As part of this application, the New York State Department of Environmental Conservation (NYSDEC) requires that we reach out to you, the local library, and request your assistance in becoming a public document repository for the BCP project documents. The documents will be provided in electronic format, and public access to it will only be made available by a digital download link, so as to not impede with your current operation. We anticipate that these documents will only be stored at a minimum of two years to a maximum of five years (or earlier upon receipt of Notice of Satisfaction from the NYSDEC).

May we request your office's concurrence to this request by signing below and returning this letter as an attachment to an email as soon as possible.

Very truly yours,

GZA GEOENVIRONMENTAL OF NEW YORK

Victoria Whelan, P.G. Associate Principal

Yes, the Brooklyn Public Library is willing and able to act as a public repository for documents related to the cleanup of the 55 Eckford Street, Brooklyn, New York Site under the NYS BCP.

Library Manager

Brooklyn Library

Known for excellence. Built on trust.

SEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of New York 104 West 29th Street 10th Floor New York, NY 10001 T: 212.594.8140 F: 212.279.8180 www.gza.com May 28, 2024

Library Manager Brooklyn Public Library - Greenpoint 107 Norman Ave Brooklyn NY, 11211

RE: Brownfield Cleanup Program Application Repository Request

Requestor: 55 Eckford St LLC

Site Name: 55 Eckford Street, Brooklyn NY

To Whom it May Concern:

GZA GeoEnvironmental of New York (GZA) represents 55 Eckford St LLC (Requestor) in its Brownfield Cleanup Program (BCP) application for the 55 Eckford Street, Brooklyn, New York site. As part of this application, the New York State Department of Environmental Conservation (NYSDEC) requires that we reach out to you, the local library, and request your assistance in becoming a public document repository for the BCP project documents. The documents will be provided in electronic format, and public access to it will only be made available by a digital download link, so as to not impede with your current operation. We anticipate that these documents will only be stored at a minimum of two years to a maximum of five years (or earlier upon receipt of Notice of Satisfaction from the NYSDEC).

May we request your office's concurrence to this request by signing below and returning this letter as an attachment to an email as soon as possible.

Very truly yours,

GZA GEOENVIRONMENTAL OF NEW YORK

Victoria Whelan, P.G. Associate Principal

Brooklyn Library

Yes, the Brooklyn Public Library is willing and able to act as a public repository for documents related to the cleanup of the 55 Eckford Street, Brooklyn, New York Site under the NYS BCP.

Library Manager

Date

GZA GeoEnvironmental of New York