

March 12, 2024

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 2 47-40 21st Street Long Island City, NY 11101

Attn: Marlen Salazar, Project Manager

Re: Response to Comments Received January 18, 2024 Former Getty Service Station No. 00564 Site No. C224176 1103-1107 Dekalb Avenue Periodic Review Report

Ms. Salazar,

Please find the revised Periodic Report (PRR) enclosed. The comments were addressed as follows:

1. <u>Comment</u>: Please include a clickable table of contacts and associated bookmarks in the PDF document for convenience and searchability.

<u>Response</u> – Clickable tabs have been added as bookmarks for aid in searchability for your convenience.

2. <u>Comment:</u> Executive Summary: The PRR notes that during the 2023 annual inspection of the site, the SSDS was "found to be active." Please clarify this statement – does this mean the three SSDS legs are all outfitted with fans? Later sections of the document are not clear on this point. For example, Section III. Remedy Performance, Effectiveness & Protectiveness – Sub Slab Depressurization System does not mention any fans related to the SSDS, but states that "Vacuum was observed at the three loop gauges during each inspection." If there are fans associated with the three SSDS loops, please provide updated PE-stamped as-built drawings of the complete SSDS system. Figure 9 from the FER only shows the sub-slab piping layout. See executive summary and Section III for clarification on the status of the SSDS.

<u>Response</u>: See the revised Executive Summary and Section III for clarification.

- <u>Comment</u>: IV. IC/EC Plan Compliance Report, A2. EC Requirements and Compliance, EC Conclusions and Recommendations and V. Monitoring Plan Compliance Report, E. Conclusions and Recommendations: NYSDEC does not agree with the conclusion that groundwater monitoring should be discontinued. Well MW-1402 continues to show concentrations of both petroleum and chlorinated VOCs at concentrations significantly above the Ambient Water Quality Standards.
 - Specifically, MW-1402 continues to contain high concentrations of VOCs that appears to follow cyclical highs and lows. Please provide seasonal groundwater elevation overlay on Graph 2.

- Quarterly groundwater sampling in MW-1401 may be discontinued as the past seven quarterly sampling events have demonstrated a bulk reduction in VOC concentrations to asymptotic levels.
- Quarterly groundwater sampling in MW-1402 and MW-1403 should continue.
- NYSDEC recommends that well MW-1401 should be properly decommissioned in accordance with NYSDEC guidance and reinstalled north of MW-1402 at an equal distance as between MW-1402 and MW-1403 to confirm that the plume is being properly monitored.

Response: Comments on Section IV have been addressed in the report.

4. <u>Comment:</u> Monitoring and Compliance Report, B, Summary of Monitoring Completed During the Reporting Period: Please provide an explanation as to why the 4thquarterly groundwater samples (October to December 2023) were not collected.

<u>Response</u>: Due to scheduling issues this PRR includes only three quarters. One quarter was missed.

5. <u>Comment:</u> Figures: Please indicate the direction of groundwater flow on Figure 4 for reference. Groundwater flow direction can be found in Figure 7 of the Final FER, dated December 9, 2019, accessible through DECinfo Locator.

<u>Response:</u> Groundwater Flow Direction has been added to figure 4 of the PRR

If you have any questions or need any additional detail, please do not hesitate to call us.

PREFERRED ENVIRONMENTAL SERVICES

Christopher P. Zweier Project Manager, Environmental Scientist

Brownfield Cleanup Program Periodic Review Report Reporting Period: November 2022 to November 2023

Former Getty Service Station No. 00564 1103-1107 Dekalb Avenue Brooklyn, New York 11221

Site No.: C224176

Prepared for

ABC NY 45 North Station Plaza – Suite 315 Great Neck, New York 11021

Submitted to:

New York State Department of Environmental Conservation

Prepared by

Tyll Engineering and Consulting PC. & Preferred Environmental Services

March 2024

Table of Contents

Certification	
I. EXECUTIVE SUMMARY	1
II. SITE OVERVIEW	3
A. Site Location	3
B. Site Chronology	3
III. REMEDY PERFORMANCE, EFFECTIVENESS & PROTECTIVENESS	.5
IV. IC / EC PLAN COMPLIANCE REPORT	.8
A1. IC Requirements and Compliance	8
1. IC Controls	9
2. Status of each IC	10
3. Corrective Measures	10
4. IC Conclusions and Recommendations	10
A2. EC Requirements and Compliance	10
1. EC Controls	11
2. Status of each EC	11
3. Corrective Measures	11
4. EC Conclusions and Recommendations	11
V. MONITORING PLAN COMPLIANCE REPORT	12
A. Components of the Monitoring Plan	12
B. Summary of Monitoring Completed During Reporting Period 1	2
C. Comparisons with Remedial Objectives 1	13
D. Monitoring Deficiencies 1	3
E. Conclusions and Recommendations	14
VI. OPERATIONS & MAINTENANCE PLAN COMPLIANCE REPORT	14
A. Components of the O&M Plan	14
B. Summary of O&M Completed During Reporting Period	16
C. Evaluation of Remedial Systems	16
D. O&M Deficiencies	16
E. Conclusions and Recommendations for Improvements	16
VII. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS1	7
A. Compliance with the SMP	7
1	
B. Performance and Effectiveness of Remedy1	.7
C. Future PRR Submittals 1	7

Preferred Environmental Services

TABLES

Table 1 Groundwater Analytical Results – MW1401 Table 2 Groundwater Analytical Results – MW1402 Table 3 Groundwater Analytical Results – MW1403 Table 4 Soil Vapor Analytical Results – SVE Influent and Effluent Table 5 QA/QC Analytical Results

GRAPHS

Graph 1 MW1401 Graph 2 MW1402 Graph 3 MW1403 Graph 4 SVE Influent Graph 5 MW-1402 Depth to Water

FIGURES

Preferred Figures Figure 1 Site Location Map Figure 4 Monitoring Well Network

AMC Engineering, LLC. Figures

Figure 2 Site Cover Figure 3 Soil Vapor Extraction Layout

APPENDICES

Appendix A Site Inspection Checklists and Photolog Appendix B Laboratory Reports – Groundwater Sampling Appendix C Laboratory Reports – SVE Sampling Appendix D Groundwater Purge Logs Appendix E SVE Monitoring Forms

Preferred Environmental Services

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

10/3/2023

Moris Yeroshalmi 1107D LLC 45 N. Station Plaza, Suite 315 Great Neck, NY 11021 Moris@AbcNY.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Former Getty Service Station No. 00564

Site No.: C224176 Site Address: 1103-1107 DEKALB AVENUE Brooklyn, NY 11221

Dear Moris Yeroshalmi:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **December 15, 2023**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Shaun Bollers, the Project Manager, at 718-482-4096 or shaun.bollers@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation One Hunters Point Plaza 47-40 21st Street Long Island City, NY 11101

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

ec: w/ enclosures

Shaun Bollers, Project Manager Jane O'Connell, Hazardous Waste Remediation Supervisor, Region 2

Preferred Environmental Services - Victoria Whelan, CPG - vwhelan@preferredenv.com Tyll Engineering and Consulting PC - Karen G. Tyll, P.E. - karen@tyllengineering.com

The following parcel owner did not receive an ec: 1107D LLC - Parcel Owner

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C224176		Site De	etails			Box 1	
Sit	e Name Fo	ormer Getty Servi	ce Station	No. 00	564				
Site City Co Site	e Address: y/Town: Br unty: Kings e Acreage:	1103-1107 DEKA ooklyn 0.218	LB AVENU	E Zi	p Code: 1122	1			
Re	porting Peri	od: November 15	, 2022 to N	ovembe	er 15, 2023				
								YES	NO
1.	Is the infor	mation above corr	ect?					X	
	If NO, inclu	ude handwritten at	oove or on	a separ	ate sheet.				
2.	Has some tax map ar	or all of the site pr mendment during	operty bee his Report	n sold, ing Peri	subdivided, m iod?	erged, or unde	ergone a		X
3.	Has there (see 6NYC	been any change CRR 375-1.11(d))?	of use at th	ie site d	luring this Rep	oorting Period			x
4.	Have any f for or at the	federal, state, and e property during f	/or local pe his Reporti	rmits (e ing Peri	e.g., building, c od?	lischarge) beei	n issued		×
	If you ans that docu	wered YES to qu mentation has be	estions 2 f en previor	thru 4, i usly su	include docu bmitted with	mentation or o this certificati	evidence on form)	
5.	Is the site	currently undergoi	ng develop	ment?					X
								Box 2	
								YES	NO
6.	Is the curre Restricted	ent site use consis -Residential, Com	tent with th mercial, an	ie use(s d Indus	s) listed below trial	?		X	
7.	Are all ICs	in place and funct	tioning as c	lesigneo	d?		X		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
AC	Corrective N	leasures Work Pla	an must be	submit	ted along with	n this form to a	iddress t	hese iss	ues.
Sig	nature of Ov	vner, Remedial Par	ty or Desig	nated Re	epresentative		Date		

				Box 2	Α
8	Has any new information revealed	ad that assumptions made in the C	ualitative Exposure	YES	NO
0.	Assessment regarding offsite contamination are no longer valid?				X
	If you answered YES to questi that documentation has been	on 8, include documentation or previously submitted with this c	evidence ertification form.		
9.	Are the assumptions in the Qual (The Qualitative Exposure Asses	itative Exposure Assessment still v ssment must be certified every five	valid? years)	X	
	If you answered NO to question updated Qualitative Exposure	n 9, the Periodic Review Report Assessment based on the new	must include an assumptions.		
SITE	NO. C224176			Box	x 3
	Description of Institutional Con	trols			
Parce	<u>l</u> <u>Owner</u> 28 1107D L	C	Institutional Contro	<u>bl</u>	
	1600-28 Ground Water Use Soil Management F Landuse Restriction Monitoring Plan Site Management F O&M Plan IC/EC Plan				tion
All EC . The NYCE . The . The . Qua	Cs must be maintained as specifie use of Groundwater is prohibited OOH; potential for soil vapor intrusion r Site shall not be used for Reside arterly monitoring of groundwater	d in the SMP; without necessary treatment as de nust be assessed for any buildings ntial (single family housing)purpos	etermined by NYSDC s developed on the sit es	9H or te;	
				Bo	x 4
	Description of Engineering Con	trols			
Parce	<u>I</u>	Engineering Control			
1600-	28	Groundwater Treatment System Air Sparging/Soil Vapor Extracti Monitoring Wells Vapor Mitigation	n on		
- Add - Soil - Cov the fir	tional groundwater treatment as r Vapor extraction System er system consisting of the redeve st floor	needed elopment 14-inch thick concrete ce	llar slab and 8-inch s	lab on	
- Sub	slab Depressurization System Pi	ping (passive)			

			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direc reviewed by, the party making the Engineering Control certification; 	tion of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generative provide and the information provided in accordance with the requirements of the site remedial program.	this ce ally acc	ertificatio epted
	engineering practices; and the information presented is accurate and compete.	YES	NO
		X	
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all o following statements are true:	f the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department.	artmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect p the environment;	ublic h	ealth an
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the	
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	the site e docur	e, the nent.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
1	A Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	ues.
	Signature of Owner, Remedial Party or Designated Representative Date		

Γ

IC CERTIFICATIONS SITE NO. C224176

Box 6

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Moris Yeroshalmy	at 45 N Station Plaza, Suite 315, Great Neck, NY 11201
print name	print business address
am certifying as1107D LLC	(Owner or Remedial Party)
for the Site named in the Site Details Se	ction of this form.
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative Date

	EC CERTIFICATIONS
	Box 7
	Professional Engineer Signature
certify that all information in Boxe ounishable as a Class "A" misdem	es 4 and 5 are true. I understand that a false statement made herein neanor, pursuant to Section 210.45 of the Penal Law.
Karen Tyll, PE	Tyll Engineering and Consulting PC 169 Cmomack Road, Suite H173, Commack, NY 11725 at
print name	print business address
am certifying as a Professional En	ngineer for the
$V \rightarrow 2$	(Owner, or Remedial Party) OF NEW GA

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

Certification

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- a. The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by DER;
- b. Nothing has occurred that would impair the ability of such control to protect public health and the environment;
- c. Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;
- d. Access to the site will continue to be provided to DER to evaluate the remedy, including access to evaluate the continued maintenance of this control.

IKaren G. Tyll, PE	Tyll Engir at	neering and Consulting, PC mack Road, Suite H173, Comma	ack, NY 11731_,
(Print Name)		(Print Business Address)	
And certifying as a Professional En	gineer for the	Owner	•
Kanze	<u>ر</u>	(Owner or Remedial party) OF NEW OF NEW OF NEW OF NEW OF NEW OF NEW	2/16/2024
Signature of Professional Engineer, for	the Owner or	Stamp for PE	Date

Remedial Party, Rendering Certification

I. EXECUTIVE SUMMARY

Tyll Engineering and Consulting PC and Preferred Environmental Services have prepared this Periodic Review Report (PRR) for the reporting period of November 2022 to November 2023 (reporting period), for the property located at 1103-1107 DeKalb Avenue in Brooklyn, New York 11221 under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with the Brownfield Cleanup Agreement (BCA) #C224176-05-13.

Pre-injection groundwater sampling (aka baseline sampling) from three (3) onsite monitoring wells was completed on August 17, 2016, to determine the total VOC concentrations prior to treatment. Results concluded that several petroleum related VOCs were detected above their respective AWQS in all three monitoring wells. Total BTEX concentrations ranged from 450 μ g/L (MW1401) to 4,279 μ g/L(MW1402).

The first round of chemical injections (pre-excavation) was performed in September 2016. A second round of injections (post-excavation) was performed in May 2017. During excavation activities, two of the onsite monitoring wells (MW1401 and MW1403) were destroyed. They were replaced/reinstalled in November 2017. As part of the reinstallation, MW1401 was relocated to a position south of MW1403, at the NYSDEC's request.

The quarterly groundwater sampling program began in March 2018. During this reporting period (9/2022 to 9/2023), the groundwater VOC concentrations in MW1401, MW 1402 and MW1403 continue to show an overall declining trend. The groundwater VOC concentration in MW1402, which has historically showed the most significant concentrations of contamination, has decreased during this period from 2,497.4 μ g/L to 1,116.66 μ g/L throughout this monitoring period.

The soil vapor extraction (SVE) system was started on December 11, 2017. Initial concentrations in the influent air stream reported a total PVOC concentration of 162,139.11 μ g/m₃, a total CVOC concentration of 3,592.66 μ g/m³ and a total VOC concentration of 165,731.70. A significant and steady decrease of total VOC concentrations have continued over time. The current results demonstrate a 98.14% reduction in total VOCs since December 2017 (Total VOCs concentrations in September 2023 – 3,085.74 μ g/m³.

As the remedy was being implemented, it was determined that a Track 2 cleanup could not be achieved. On May 15, 2019, the NYSDEC issued an Explanation of Significant Difference (ESD) to document the changes to the selected remedy (Track 2) to achieve a Track 4 restricted-residential remedy. The changes included:

- Installation and maintenance of a site cover system to prevent exposure to remaining contaminated soil;
- Installation of a sub-slab depressurization system (SSDS) piping beneath the building slab to mitigate against soil vapor intrusion into the on-site building. The SSDS would be activated, if necessary, pending the results of indoor air sampling performed at the site following the completion of system installation, or upon determination that the SVE system is no longer needed to remediate remaining VOCs in soil above the water table. Provisions for activating the SSDS are documented in the Site Management Plan.

During the recent reporting period, it was determined that the three (3) SSDS effluent pipes were outfitted with blowers and supplied with power. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. Following this report, EBC recommended to the NYSDEC that the system be turned off and only turned on in the future when the SVE system was taken out of commission after allowing soil vapors to reach asymptotic concentrations in compliance with remedial guidelines. It appears that after the repair of the SVE blower in 2021, the SSDS was unintentionally left running by EBC and has been running to date.

After discussion with the NYSDEC, it was decided that the SSDS will be left on, and an investigation into the efficiency of the SSDS system in depressurizing the soil vapor below the slab of the building will be performed. Based on the results of the SSDS investigation and precarbon SVE system soil vapor data, the NYSDEC may grant permission to turn off the SVE and leave the SSDS system as the sole form of vapor mitigation during the next reporting period.

I. SITE OVERVIEW

A. Site Location

The Site is located at 1103-1107 DeKalb Avenue in the Borough of Brooklyn (Kings County), New York (see **Figure 1** - Location Map), and is identified as Section 1900 Block 1600 and Lot 28 on the New York City Tax Map. The Site an approximately 0.218-acre area located on the northeast corner of DeKalb Avenue and Malcolm X Boulevard. The Site is bounded by a 7-story mixed use building (Block 1600, Lot 4 - 1080 Broadway) to the north, a 2-story mixed use apartment building with a first floor store (Block 1600, Lot 10 - 1086 Broadway) and a 3-story mixed-use apartment building with a first floor store (Block 1600, Lot 27 - 1009 DeKalb Avenue) to the east, DeKalb Avenue to the south, and Malcolm X Boulevard to the west (see **Figure 2** – Site Layout Map). The Site is now developed with an 8-story mixed use building. The building has a partial below grade (11 ft) basement level with storage, mechanical rooms, and retail/commercial space.

B. Site Chronology

The Remedial Action for the Site was performed in accordance with the remedy selected by the NYSDEC in the Interim Remedial Measures Work Plan dated March 2012 (revised June 2012) and Remedial Action Work Plan dated August 2014. The selected remedy achieved a Track 4 Cleanup and included the following items:

- Removal of four (4) 550-gallon underground storage tanks (USTs) and associated petroleum contaminated soil from the former UST area in the south-west area of the Site;
- Excavation and off-Site disposal of soil / fill as necessary to construct the basement levels and foundation of the new buildings; screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- Injection of a chemical oxidant solution to address petroleum VOCs in groundwater and residual petroleum VOC contamination in soil at and below the water table;
- Installation of three (3) monitoring wells and the collection of post-injection groundwater samples to evaluate the performance of the remedy with respect to attainment of groundwater standards;
- Installation of a soil vapor extraction (SVE) system and sub slab depressurization system (SSDS) piping on the Site; and
- Construction of a composite cover system consisting of the concrete building slabs and concrete and / or asphalt sidewalks and parking areas;

The SVE system consists of two (2) 2-inch diameter soil vapor extraction wells:

1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and

2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard in the vicinity of the southern petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55ft below

sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017. On March 9, 2022, the SVE blower was inspected and was found to be inoperable. The blower was brought for servicing but was unable to be repaired. A new blower was installed in August 2022. The blower was operating as intended during the September 2022 inspection.

Analysis of influent and effluent air sample procured during the January 9, 2023 site inspection showed that carbon breakthrough had occurred within the SVE system. The carbon drums associated with the system were replaced in March 2023.

Chemical oxidant injections performed at the Site in the past have consisted of injecting a 10 to 30% solution of sodium persulfate activated with chelated iron into the ten permanent injection wells. No chemical oxidant injections were performed during the reporting period of this Periodic Review Report.

The SSDS on site consists of three (3) separate loops comprised of 8" slotted PVD below the slab with 8" solid PVC risers above the roofline completed with electric blowers for vapor removal. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. Following this report, EBC recommended to the NYSDEC that the system be turned off and only turned on in the future when the SVE system was taken out of commission after allowing soil vapors to reach asymptotic concentrations in compliance with remedial guidelines. It appears that after the repair of the SVE blower in 2021, the SSDS was left on and has been running to date.

Remedial Action at the Site performed previously under Remedial Action Work Plan, included the following:

- removal of four (4) 550-gallon USTs;
- removal of historic fill and petroleum contaminated soil from around three UST areas;
- injection of chemical oxidants though 1-inch PVC injection wells;
- installation of an SVE system;
- installation SSDS piping; and
- installation of a site cover system;

No chemical oxidant injections were performed during the reporting period of this Periodic Review Report.

<u>Groundwater</u>

Petroleum-related VOCs (PVOCs) only include compounds associated with gasoline contamination. Total VOCs include all compounds identified in the EPA Method 8260 List. The highest concentrations of PVOCs and total VOCs in groundwater were reported in down-gradient monitoring well MW1402.

The analytical results have been plotted on graphs to show the change of contaminant levels over time, as shown in **Graphs 1-3** (representing MW1401, MW1402, and MW1403, respectively).

<u>MW1401</u>

Monitoring wells MW1401, MW1402, and MW1403 were installed on the sidewalk along Malcolm X Boulevard, immediately downgradient of the former petroleum source areas. Monitoring well MW1401 is the southern-most monitoring well.

The total VOC concentration has decreased from 239.74 μ g/L in December 2017 to 8.20 μ g/L in September 2023.

The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (43 μ g/L in December 2017), chloroform (40 μ g/L in August 2020), ethylbenzene (27 μ g/L in September 2018), and n-Propylbenzene (50 μ g/L in December 2017). The concentration of each of these compounds has since been reduced to compliant conditions outlined in TOGS 1.1.1 WQ/GA Table 1.

One compound (Trichloroethene - $6 \mu g/L$) remains above its applicable Standards and Guidance Values (SGVs) of 5 $\mu g/L$ in September 2023, but has shown to be steadily declining since the start of the remedial process.

<u>MW1402</u>

Monitoring well MW1402 is northern-most monitoring well.

The total VOC concentration started at 8,978 μ g/L in August 2016 has been shown to have decreased to 1,116.66 μ g/L in September 2023.

The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (2900 μ g/L in August 2016), 1,3,5-trimethylbenzene (460 μ g/L in August 2016), ethylbenzene (1700 μ g/L in September 2018), m&p-Xylenes (2500 μ g/L in August 2016), and naphthalene (540 μ g/L in August 2016). Each of these compounds has been shown to have declined since the start of the remedial process.

<u>MW1403</u>

Monitoring well MW1403 is the middle monitoring well.

Although the total VOC concentration initially increased from 735.70 μ g/L in August 2016 to 2,220 μ g/L in November 2016, the total VOC concentration has generally decreased to 18.70 μ g/L in September 2023.

The analytes with the greatest concentrations consisted 1,2,4-trimethylbenzene (240 μ g/L in November 2016), m&p-Xylenes (960 μ g/L in November 2016), and o-Xylene (350 μ g/L) in November 2016). Each of these compounds has been shown to have declined since the start of the remedial process.

SVE System

The SVE system consists of two (2) 2-inch diameter soil vapor extraction wells:

- 1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and
- 2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard In the vicinity of the southern, petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55ft below sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017 and continues to operate.

SVE System Sampling

In accordance with the approved Site Management Plan (SMP), the influent and effluent (aka precarbon and post-carbon) streams of the SVE system require quarterly sampling. The SVE system was started on December 11, 2017. Initial concentrations in the influent air stream reported a total PVOC concentration of 162,139.11 μ g/m₃, a total CVOC concentration of 3,592.66 μ g/m₃ and a total VOC concentration of 165,731.77. A significant and steady decrease of total VOC concentrations have continued over time. The current results demonstrate a 98.14% reduction in total VOCs since December 2017. The layout of the SVE system is shown in **Figure 3**.

Sub Slab Depressurization System

The Decision Document required that all future buildings constructed on the Site be evaluated for the potential for soil vapor intrusion (SVI). The developer installed the sub-slab depressurization system (SSDS) piping beneath the new building cellar slab in the event that an SSDS system is required. The horizontal sub slab piping consists of fabric wrapped, perforated schedule 40, 4-inch PVC pipe connected to a 6-inch steel riser pipe. Three (3) SSDS loops were installed within porous granular material. The loops provide the correct coverage in accordance with USEPA SSDS design specifications, which recommend a separate vent loop for every 4,000 ft2 of slab area. The loops are each outfitted with a collection point and riser which extends to the roof and are each completed with electric blowers outfitted to comply with the required vacuum pressure necessary for each loop. The three (3) legs are inspected quarterly to make sure that there is vacuum maintained within the SSDS piping. Vacuum was observed at the three loop gauges during each inspection. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. Following this report, EBC recommended to the NYSDEC that the system be turned off and only turned on in the future when the SVE system was taken out of commission after allowing soil vapors to reach asymptotic concentrations in compliance with remedial guidelines. It appears that after the repair of the SVE blower in 2021, the SSDS was left on by EBC and has been running to date.

After discussion with the NYSDEC, it was decided that the SSDS will be left on, and an investigation into the efficiency of the SSDS system in depressurizing the soil vapor under the slab of the building will be performed. Based on the results of the SSDS investigation and pre-carbon SVE system soil vapor data, the NYSDEC may grant permission to turn off the SVE and leave the SSDS system as the sole form of vapor mitigation during the next monitoring period.

IV. IC / EC PLAN COMPLIANCE REPORT

A1. IC Requirements and Compliance

1. IC Controls

A series of Institutional Controls (ICs), required under the Site Management Plan, were placed on the property in the form of an Environmental Easement which was recorded with the NYC Department of Finance, Office of the City Register (NYSDOF-OCR). The recorded ICs are as follows:

- implement, maintain and monitor Engineering Control systems;
- prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; and
- limit the use and development of the Site to restricted residential uses only.

Adherence to these Institutional Controls on the Site (Controlled Property) is required under the Environmental Easement and will be implemented under the Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement by the Grantor and the Grantor's successors and assigns with all elements of the SMP;
- All Engineering Controls must be operated and maintained as specified in the SMP;
- A composite cover system consisting of concrete covered sidewalks, and concrete building slabs must be inspected, certified, and maintained as required in the SMP;
- A soil vapor mitigation system consisting of a soil vapor extraction system must be inspected, certified, operated, and maintained as required in the SMP;
- Groundwater treatment consisting of a series of injection and monitoring wells must be inspected, certified, operated, and maintained as required in the SMP;
- All Engineering Controls on the Controlled Property must be inspected and certified at a frequency and in a manner defined in the SMP;
- Groundwater, soil vapor, and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

- On-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells and soil vapor probes, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP; and
- Engineering Controls may not be discontinued without an amendment or the extinguishment of this Environmental Easement.

Site restrictions include:

The property may be used for: restricted-residential, commercial, and industrial uses. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the New York City Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.

- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- Vegetable gardens and farming on the Site are prohibited.

2. Status of each IC

An inquiry was made with the NYCDOF-OCR (Office of the City Registrar) to confirm that the Environmental Easement, as described above, remains in place and has not been changed, revised, or modified. It was confirmed that the Easement is recorded in the NYCDOF database via ACRIS.

3. Corrective Measures

No deficiencies in the ICs were noted for the current reporting period; therefore, no corrective

measures were required.

4. IC Conclusions and Recommendations

It is recommended that the Institutional Controls remain in place.

A2. EC Requirements and Compliance

1. EC Controls

Composite Cover System

Exposure to remaining contamination in soil / fill at the Site is prevented by a composite cover system placed over the Site. This cover system is comprised of 14-inch thick concrete building slab with a 20 mil vapor barrier, and an 8-inch concrete building slab at the rear of the building (first floor).

Soil Vapor Extraction System

The SVE system consists of two (2) 2-inch diameter soil vapor extraction wells:

- 1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and
- 2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard in the vicinity of the southern petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55ft below sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017.

Sub Slab Depressurization Piping

The Decision Document required that all future buildings constructed on the Site be evaluated for the potential for soil vapor intrusion (SVI). The developer has elected to install a sub-slab depressurization system (SSDS) piping beneath the new building cellar slab in the event that an SSDS system is required. The horizontal sub slab piping consists of fabric wrapped, perforated schedule 40, 4-inch PVC pipe connected to a 6-inch steel riser pipe. Three (3) SSDS loops were installed within porous granular material. The loops provide the correct coverage in accordance with USEPA SSDS design specifications, which recommend a separate vent loop for every 4,000 ft2 of slab area. The loops are each outfitted with a collection point and riser which extends to the roof and are each completed with electric blowers outfitted to comply with the required vacuum pressure necessary for each loop. The three (3) legs are inspected quarterly to make sure that there is vacuum maintained under the slab. Vacuum was observed at the three loop gauges during each inspection. During this reporting period, it was recommended by the NYSDEC that the three (3) blowers continue to run. An investigation into the efficiency of the SSDS to depressurize sub slab soil vapor will be completed during the upcoming reporting period.

2. Status of each EC

Composite Cover System

On November 30, 2023, a Site-wide inspection was performed, which included inspection for evidence of cracking in the concrete slab installed above the vapor barrier. No new cracks or new slab penetrations were observed throughout the visible areas of the building slab. Copies of the Annual Checklists are attached as **Appendix A**.

Soil Vapor Extraction System and SSDS System

When evaluating the data collected during the January 2023 site inspection, it was found that carbon breakthrough had occurred in the SVE system. The carbon drums were replaced during the site visit in March 2023. A subsequent SVE system inspection in September 2023 found all portions of the SVE system to be functioning adequately. Outside of the period from January to March 2023, the system was functioning continuously. Copies of the Annual Checklists are attached as **Appendix A**. No analytical data for influent and effluent air associated with the blower is available for the March 2023 sampling event as the system was under maintenance.

3. Corrective Measures

The carbon drums associated with the SVE system were found to be ineffective in the removal of VOCs during the January 2023 sampling event. the drums were replaced during the March 2023 sampling event and spent drums were properly disposed of. At this time, all corrective measures have been taken, and all onsite ECs are operating as intended.

4. EC Conclusions and Recommendations

Based on the analytical results of the SVE system influent samples between November 2022 and November 2023, the site has reached asymptotic reduction of VOCs. Several elevated VOC concentrations are still present on the site such as tetrachloroethene in Soil Vapor (2,370 ug/L in September 2023) and Trichloroethene in water and soil vapor (6 ug/L in water and 105 ug/L in soil vapor in September 2023) however the petroleum related compounds associated with the site's former use as a gas station have been reduced to asymptotic levels below at or below their associated SGVs. Based on these observations, we recommend stopping the use of the SVE system and utilizing the SSDS system as the sole vapor mitigation control on site. The NYSDEC has indicated that they will consider removing the SVE system from service and utilizing the SSDS as the sole form of vapor mitigation pending the results of the investigation into the system's efficiency.

Based on VOC data demonstrating asymptotic reduction for VOCs, and given that groundwater is at 42 ft below grade surface, the DEC has approved the abandonment of MW-1401. The DEC has

also requested the installation of an additional monitoring well north of MW-1402 on site. Groundwater monitoring on site is to continue for the next monitoring period.

It is recommended that all ECs, composite cover system, and SSDS remain in place, unless otherwise specified by the NYSDEC.

V. MONITORING PLAN COMPLIANCE REPORT

A. Components of the Monitoring Plan

The Monitoring Plan within the Site Management Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Monitoring and Sampling Plan.

Quarterly sampling of groundwater from the on-site monitoring well network is required. Sampling is to be conducted in accordance with the previously approved Site Management Plan, and groundwater samples are to be analyzed for volatile organic compounds via EPA Method 8260. SVE discharge samples are to be collected from the SVE effluent on a quarterly basis. Sampling is to be conducted in accordance with the previously approved Site Management Plan, and SVE discharge samples are to be analyzed for volatile organic compounds via EPA Method 624.

B. Summary of Monitoring Completed During Reporting Period

Groundwater quality was monitored during this reporting period by sampling the off-Site monitoring wells in January, March and September 2023. Due to scheduling issues, no monitoring was completed in the third quarter 2023 (June 2023).

Prior to sampling each monitoring well, depth to bottom and depth to water measurements were collected utilizing a decontaminated electronic water level measuring device. A total of approximately 3-5 well casing volumes were removed from each monitoring well utilizing a check valve equipped with disposable polyethylene tubing. Groundwater samples were then collected in pre-cleaned, laboratory supplied glassware, stored in a cooler with ice and submitted for analysis to Phoenix Environmental Laboratories (Phoenix) of 587 East Middle Turnpike, Manchester, CT 06040, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301) for laboratory analysis of volatile organic compounds (VOCs) via EPA method 8260.

Groundwater sample results were compared to the water quality standards specified in New York State 6NYCRR Part 703.5 Class GA Groundwater Quality Standards (GQS). Analytical data for the groundwater samples for this reporting period are summarized in **Tables 1-3**. Copies of the laboratory analytical reports are included in **Appendix B**. The total PVOCs, total CVOCs and total VOC concentrations are shown on **Graphs 1-3** for visual comparison. SVE system samples were collected on 12/11/17, 3/28/2018, 6/26/2018, 9/18/18, 3/21/19, 6/24/19, 9/28/20, 12/29/20, 3/31/21, 8/9/21, 12/21/21, 9/2/22, 1/9/23 and 9/5/23. Prior to sampling, the SVE discharge was field screened with a photo-ionization detector (PID) at the pre-carbon, mid-carbon, and post-carbon locations. A copy of the SVE monitoring forms is attached in **Appendix E**. Soil vapor samples were collected in 1-L tedlar bags at the pre-carbon and post-carbon locations and were submitted for analysis to Phoenix Environmental Laboratories (Phoenix) of 587 East Middle Turnpike, Manchester, CT 06040, a New York State ELAP certified environmental laboratory (ELAP Certification No. 11301) for laboratory analysis of volatile organic compounds (VOCs) via EPA method TO-15.

Analytical data for the soil vapor samples for this reporting period are summarized in **Table 4**. A copy of the laboratory analytical reports is included in **Appendix C**. The PVOC, CVOC and total VOC concentrations are presented in **Graph 4** attached, for visual comparison.

C. Comparisons with Remedial Objectives

As shown in **Tables 1-3** and **Graphs 1-3**, the highest concentrations of total VOCs in groundwater were reported in MW1402. The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (2,900 μ g/L in August 2016), 1,3,5-trimethylbenzene (460 μ g/L in August 2016), ethylbenzene (1,700 μ g/L in September 2018), m&p-xylenes (2,500 μ g/L in August 2016), and naphthalene (540 μ g/L in August 2016).

During this reporting period (1/2023 to 9/2023), the groundwater VOC concentrations in MW1401 MW 1402 and MW1403 show an overall declining trend. The groundwater VOC concentration in MW1402, which has historically showed the most significant concentrations of contamination, has decreased from 2,497.40 μ g/L to 1,116.66 μ g/L throughout this monitoring period.

D. Monitoring Deficiencies

The Carbon drums associated with the SVE system were found to be ineffective following the January 2023 sampling event. The drums were replaced during the March 2023 Sampling event. The system was not properly functioning to remove VOCs from the soil vapor from January 2023 to March 2023.

At this time, all corrective measures have been completed, and all onsite ECs are operating as intended.

E. Conclusions and Recommendations

The highest VOC concentrations throughout the reporting period were reported within the downgradient monitoring well MW1402 (1,116.66 μ g/L). Both MW1401 and MW1403 have reportedly low VOC concentrations (less than 20 μ g/L). Based on the decreasing trend of VOC concentrations in groundwater and the depth to groundwater on site (42 ft), Preferred has recommended that groundwater monitoring be discontinued at MW-1401, and the monitoring of

MW-1402 and MW-1403 be continued until compliant results are observed. The NYSDEC has approved the discontinuation of sampling at MW-1401, however, has requested the installation of a new monitoring well north of MW-1402 at an equal distance as between MW-1402 and MW-1403 to confirm that the plume is being properly monitored. A change will be made to the SMP to adjust to this change.

Based on the analytical results of the SVE system influent samples between December 2017 and September 2023, the soil vapor on site has reached asymptotic reduction of VOCs. It is recommended that the SVE system continue to operate in conjunction with continuing all EC/IC controls including the SSDS system.

The NYSDEC has advised that the SSDS is redundant with an operating SVE system, as has recommended that the SSDS be turned off to comply with the current FER and SMP.

VI. OPERATIONS & MAINTENANCE PLAN COMPLIANCE REPORT

A. Components of the O&M Plan

The Operation and Maintenance provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the Site.

1. Soil Vapor Extraction System

The system is currently installed and operating. If the blower fails, the unit will be replaced with a new/rebuilt 1.5-hp regenerative blower as soon as possible. Following installation of the new or rebuilt 1.5-hp regenerative blower, the following items will be inspected to ensure proper operation:

1) Check all exposed/visible SVE piping for evidence of damage, cracks, or leaks;

2) Turn system on and off to ensure the audible alarm is functioning properly;

3) Record vacuum readings and pressure readings (on the discharge piping prior to carbon drums).

The system testing described above will be conducted if, in the course of the SVE system lifetime, the system goes down or significant changes are made to the system and the system must be restarted. The regenerative blower was replaced in August 2022.

2. Monitoring Well Maintenance

If biofouling or silt accumulation is discovered in the on-Site and/or off-Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan) if an event renders the wells unusable. In addition, monitoring well caps and covers will be replaced and repaired, if required.

The NYSDEC has approved the recommendation to stop monitoring in well MW-1401 following several rounds of sampling compliant with state regulations. The NYSDEC has required that an

additional well be installed to the north of MW-1402 to assure accurate coverage of the plume area.

3. Reporting

A checklist is to be completed during each routine maintenance event which is scheduled to be on an annual basis. Checklists / forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist / form or on an attached sheet); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist / form).

During each non-routine maintenance event, a form is to be completed that includes, but is not limited to, the following information:

- Date;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and,
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

4. Contingency Plan

The SVE system is designed to run 24/7 with no maintenance. Periodic inspections were performed to assure that the system was continuing to operate properly.

B. Summary of O&M Completed During Reporting Period

1. SVE System

Following the January 2023 sampling event, it was found that carbon breakthrough had occurred in the SVE system. The carbon drums associated with the system were replaced during the March 2023 sampling event and have been confirmed to be effective since their replacement.

2. Monitoring Well Network System

No problems were encountered during sampling throughout the monitoring period that required O&M.

The NYSDEC has approved the recommendation to stop monitoring in well MW-1401 following several rounds of sampling compliant with state regulations. The NYSDEC has required that an additional well be installed to the north of MW-1402 to assure accurate coverage of the plume area.

C. Evaluation of Remedial Systems

1. Soil Vapor Extraction System

The SVE system has been effective in remediating the soil vapor at the site. Based on the analytical results of the SVE influent samples, the site has reached asymptotic reduction for subsurface soil vapors.

All corrective work required for the previous reporting period has since been completed.

D. O&M Deficiencies

In the current reporting period, there were no deficiencies to the O&M plan.

E. Conclusions and Recommendations for Improvements

The SVE system is operating as designed following the replacement of the blower. The SVE system has been effective in treating the soil in the tank field and petroleum hotspot areas. It is recommended that operation of the SVE system continue in conjunction with keeping the IC/EC controls in operation. It has been recommended that the SSDS will be left on, and an investigation into the efficiency of the SSDS system in depressurizing the soil vapor under the slab of the building will be performed. Based on the results of the SSDS investigation and pre-carbon SVE system soil vapor data, the NYSDEC may grant permission to turn off the SVE and leave the SSDS system as the sole form of vapor mitigation. An addendum to the SMP will be submitted to the NYSDEC to assure that the active SSDS is compliant with site documentation.

VII. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

A. Compliance with the SMP

All requirements of the SMP were implemented during this PRR reporting period. In order to implement all of the SMP requirements, the following items were completed:

- Groundwater samples were collected from the on-Site monitoring wells in January 2023, March 2023 and September 2023.
- The concrete slab was inspected and the checklist was completed.
- The soil vapor extraction system was inspected to ensure proper operation and inspection checklist was completed.

• The ICs / ECs were inspected and the ICs were certified by the remedial engineer. All reported EC deficiencies observed (Carbon Drum/knockout drum deficiencies) have been repaired, and therefore certified by the remedial engineer.

B. Performance and Effectiveness of Remedy

The VOC concentrations in groundwater show an overall declining trend across all the monitoring points.

The highest VOC concentrations were reported within the downgradient monitoring well MW1402 which showed a decrease in total VOCs between the September 2016 and September 2023 sampling events from ~9000 μ g/L to <1117 μ g/L.

Both MW1401 and MW1403 have reportedly low VOC concentrations (less than 20 µg/L).

The NYSDEC has approved the recommendation to stop monitoring in well MW-1401 following several rounds of sampling compliant with state regulations. The NYSDEC has required that an additional well be installed to the north of MW-1402 to assure accurate coverage of the plume area.

C. Future PRR Submittals

The next PRR submittal will reflect the PRR reporting period of November 2023 to November 2024. The following will be completed during the next reporting period:

- MW-1401 will be abandoned and reinstalled upgradient;
- The installation details of the SSDS will be investigated with the aim to conclude that all subgrade piping was installed in accordance with the NYSDEC approved RAWP;
- The SVE will be shut down after the SSDS has been determined to satisfy the requirements set by the NYSDEC;
- Groundwater sampling will be continued as outlined in the SMP; and
- An addendum to the SMP will be submitted to discuss the SVE, SSDS and continued GW monitoring.

<u>Tables</u>

Table 1 Groundwater Analytical Results - MW-1401 1103-1107 Dekalb Avenue, Brooklyn, NY

November 2022 - November 2023

				MW-	1401		
		Grounc 1/9/	l Water 2023	Ground 3/31,	l Water /2023	Grounc 9/5/	l Water 2023
Volatiles By SW8260C	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane	5	ND	U	ND	U	ND	U
1,1,1-Trichloroethane	5	ND	U	ND	U	ND	U
1,1,2,2-Tetrachloroethane	5	ND	U	ND	U	ND	U
1,1,2-Trichloroethane	1	ND	U	ND	U	ND	U
1,1-Dichloroethane	5	ND	0	ND	U	ND	0
1,1-Dichloroetnene	5		U U	ND	0		0
1,1-Dichloropenzene	5		<u> </u>		<u> </u>		U
1,2,3-Trichloropropane	0.04	ND	U U	ND	U	ND	U
1.2.4-Trichlorobenzene	0.01	ND	U	ND	U	ND	U
1,2,4-Trimethylbenzene	5	ND	U	ND	U	ND	U
1,2-Dibromo-3-chloropropane	0.04	ND	U	ND	U	ND	U
1,2-Dibromoethane	0.0006	ND	U	ND	U	ND	U
1,2-Dichlorobenzene		ND	U	ND	U	ND	U
1,2-Dichloroethane	0.6	ND	U	ND	U	ND	U
1,2-Dichloropropane	1	ND	U	ND	U 	ND	U
1,3,5-1 rimetnyibenzene	5	ND	0	ND	U 11	ND	0
1 3-Dichloropropane	<u>э</u> 5		11		U 11		11
1,4-Dichlorobenzene	,	ND	U	ND	U	ND	U
2,2-Dichloropropane	5	ND	U	ND	U	ND	U
2-Chlorotoluene	5	ND	U	ND	U	ND	U
2-Hexanone	50	ND	U	ND	U	ND	U
2-Isopropyltoluene	5	ND	U	ND	U	ND	U
4-Chlorotoluene	5	ND	U	ND	U	ND	U
4-Methyl-2-pentanone	50	ND	U	ND	U	ND	U
Acetone	50	ND	U	ND	U	ND	U
Acryionitrile	5		U U		U 11		U 11
Bromohenzene	1	ND	U U	ND	U	ND	U
Bromochloromethane	5	ND	U	ND	U	ND	U
Bromodichloromethane	5	ND	U	ND	U	ND	U
Bromoform	50	ND	U	ND	U	ND	U
Bromomethane	50	ND	U	ND	U	ND	U
Carbon Disulfide	5	ND	U	ND	U	ND	U
Carbon tetrachloride	r.	ND	0	ND	U	ND	U
Chloroethane	5		U U	ND	0	ND	U U
Chloroform	5	13	0	ND	<u> </u>	1.2	0
Chloromethane	7	ND	U	ND	J	ND	U
cis-1,2-Dichloroethene	5	ND	U	ND	U	ND	U
cis-1,3-Dichloropropene	5	ND	U	ND	J	ND	U
Dibromochloromethane	0.4	ND	U	ND	U	ND	U
Dibromomethane	50	ND	U	ND	U	ND	U
Dichlorodifluoromethane	5	ND	0	ND	U	ND	0
Ethylbenzene	5		U U		U 11		U 11
	0.5	ND	U U	ND	U	ND	U
m&p-Xylene	5	ND	U	ND	U	ND	U
Methyl ethyl ketone		ND	U	ND	U	ND	U
Methyl t-butyl ether (MTBE)	50	ND	U	ND	U	ND	U
Methylene chloride		ND	U	ND	U	ND	U
Naphthalene	5	ND	U	ND	U	ND	U
n-Butylbenzene	10	ND	U	ND	U	ND	U
	5		U 11		U 11		U 11
p-Isopropyltoluene	5	ND	U	ND	U	ND	U
sec-Butylbenzene	5	ND	U	ND	U	ND	U
Styrene	5	ND	U	ND	U	ND	U
tert-Butylbenzene	5	ND	U	ND	U	ND	U
Tetrachloroethene	5	2.2		ND	U	1	
Tetrahydrofuran (THF)	5	ND	U	1.9		ND	U
Total Vulanas	50	ND	0	ND	U	ND	U
trans-1 2-Dichloroethene	 с		0		U 11		0
trans-1.3-Dichloropropene	0.4	ND	U	ND	U	ND	U
trans-1,4-dichloro-2-butene	5	ND	U	ND	U	ND	U
Trichloroethene	5	7.8		6.5		6	
Trichlorofluoromethane	5	ND	U	ND	U	ND	U
Trichlorotrifluoroethane	5	ND	U	ND	U	ND	U
Vinyl chloride	2	ND	U	ND	U	ND	U
PVOCs		0.	00	0.	00	0.	00
Total VOCs		11.	.30	8.	40	8.	20

Table 2 Groundwater Analytical Results - MW-1402 1103-1107 Dekalb Avenue, Brooklyn, NY

November 2022 - November 2023

		MW-1402					
		Ground Water Ground Water Grou 1/9/2023 3/31/2023 9/			Grounc 9/5/2	nd Water 5/2023	
Volatiles By SW8260C	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual	Result	Oual
1,1,1,2-Tetrachloroethane	5	ND	U	ND	U	ND	U
1,1,1-Trichloroethane	5	ND	U	ND	U	ND	U
1,1,2,2-Tetrachloroethane	5	ND	U	ND	U	ND	U
1,1,2-Trichloroethane	1	ND	U	ND	U	ND	U
1,1-Dichloroethane	5	ND	U	ND	U	ND	U
1 1-Dichloropropene	5		U				
1,2,3-Trichlorobenzene	5	ND	U	ND	U	ND	U
1,2,3-Trichloropropane	0.04	ND	U	ND	U	ND	U
1,2,4-Trichlorobenzene		ND	U	ND	U	ND	U
1,2,4-Trimethylbenzene	5	560		310	D	190	U
1,2-Dibromo-3-chloropropane	0.04	ND	U	ND	U	ND	U
1,2-Dibromoethane	0.0006	ND	U U	ND	U	ND	U
1.2-Dichloroethane	0.6	ND	U	ND	U	ND	U
1,2-Dichloropropane	1	ND	U	ND	U	ND	U
1,3,5-Trimethylbenzene	5	74		43	D	40	U
1,3-Dichlorobenzene	3	ND	U	ND	U	ND	U
1,3-Dichloropropane	5	ND	U	ND	U	ND	U
1,4-Dichlorobenzene		ND	U	ND	U	ND	U
2,2-Dichloropropane	5		U 11		U 11		U
2-Hexanone	50	ND	U	ND	U	ND	U
2-Isopropyltoluene	5	ND	U	1		1.2	U
4-Chlorotoluene	5	ND	U	ND	U	ND	U
4-Methyl-2-pentanone		ND	U	ND	U	ND	U
Acetone	50	ND	U	ND	U	ND	U
Acrylonitrile	5	ND	0	ND	U	ND	U
Bromohenzene	5		U 11	ND 0.85	0	0.76 ND	U
Bromochloromethane	5	ND	U	0.85 ND	U	ND	U
Bromodichloromethane	5	ND	U	ND	U	ND	U
Bromoform	50	ND	U	ND	U	ND	U
Bromomethane	50	ND	U	ND	U	ND	U
Carbon Disulfide	5	ND	U	ND	U	ND	U
Carbon tetrachloride	5	ND	U 11	ND	U 11	ND	U
Chloroethane	5		U	ND	U	ND	U
Chloroform	5	ND	U	ND	U	ND	U
Chloromethane	7	ND	U	ND	U	ND	U
cis-1,2-Dichloroethene	5	10		13		13	
cis-1,3-Dichloropropene	5	ND	U	ND	U	ND	U
Dibromochloromethane	0.4	ND	U	ND	U	ND	U
Dichlorodifluoromethane	5		U		<u> </u>		U
Ethylbenzene	5	490	0	340	D	220	0
Hexachlorobutadiene	5	ND	U	ND	U	ND	U
Isopropylbenzene	0.5	52		39	D	46	
m&p-Xylene	5	550		310	D	230	U
Methyl ethyl ketone	50	ND	U	ND	U	ND	U
Methylene chloride	50		U 11				U 11
Naphthalene	5	100	0	55	D	44	U
n-Butylbenzene	10	ND	U	3.4		3.5	
n-Propylbenzene	5	100		73	D	82	
o-Xylene	5	ND	U	0.87	J	1.5	U
p-lsopropyltoluene	5	ND	U	0.77	J	ND	U
Styrene	5			3.7 ND	11	5.1	
tert-Butylbenzene	5	ND	U	ND	U	ND	U
Tetrachloroethene	5	ND	U	ND	U	ND	U
Tetrahydrofuran (THF)	5	ND	U	ND	U	ND	U
Toluene	50	5.4		5.3		5.2	U
Total Xylenes	5	550		ND	U	231.5	U
trans-1,2-Dichloroethene	5	ND	U	ND	U	ND	U
trans-1.4-dichloro-2-butene	U.4 5	ND	0	טאו 2 1	U		U
Trichloroethene	5	ND	U	ND	U	2.9	0
Trichlorofluoromethane	5	ND	U	ND	U	ND	U
Trichlorotrifluoroethane	5	ND	U	ND	U	ND	U
Vinyl chloride	2	ND	U	ND	U	ND	U
PVOCs		248	7.40	118	5.04	110	0.76
total VUCS		249	7.40	120	0.99	111	0.66
Table 3

Groundwater Analytical Results - MW-1403

1103-1107 Dekalb Avenue, Brooklyn, NY

November 2022 - November 2023

				MW-	1403		
		Grounc 1/9/	l Water 2023	Ground 3/31,	l Water /2023	Grounc 9/5/	l Water 2023
Volatiles By SW8260C	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane	5	ND	U	ND	U	ND	U
1,1,1-Trichloroethane	5	ND	U	ND	U	ND	U
1,1,2,2-Tetrachloroethane	5	ND	0	ND	U	ND	U
1,1,2-Trichloroethane	1	ND	0	ND	U	ND	U
1,1-Dichloroethane	5	ND	0	ND	0		0
1 1-Dichloropropene	5		U		U 11		0
1 2 3-Trichlorobenzene	5	ND	<u> </u>	ND	<u> </u>	ND	U
1.2.3-Trichloropropane	0.04	ND	U	ND	U	ND	U
1.2.4-Trichlorobenzene	0.01	ND	U	ND	U	ND	U
1,2,4-Trimethylbenzene	5	ND	U	ND	U	ND	U
1,2-Dibromo-3-chloropropane	0.04	ND	U	ND	U	ND	U
1,2-Dibromoethane	0.0006	ND	U	ND	U	ND	U
1,2-Dichlorobenzene		ND	U	ND	U	ND	U
1,2-Dichloroethane	0.6	ND	U	ND	U	ND	U
1,2-Dichloropropane	1	ND	U	ND	U	ND	U
1,3,5-Trimethylbenzene	5	ND	U	ND	U	ND	U
1,3-Dichlorobenzene	3	ND	U	ND	U	ND	U
1,3-Dichloropropane	5	ND	0	ND	U	ND	U
1,4-Dichloropenzene	с.	ND	0		U 11	ND	U
2,2-Dichloropropane	5		0	ND	0		0
2-Hexanone	5 50	ND	11		11	ND	11
2-Isopropyltoluene	5	ND	U	0.26		ND	U
4-Chlorotoluene	5	ND	U	ND	U U	ND	U
4-Methyl-2-pentanone	, , , , , , , , , , , , , , , , , , ,	ND	U	ND	U	ND	U
Acetone	50	ND	U	ND	U	ND	U
Acrylonitrile	5	ND	U	ND	U	ND	U
Benzene	5	ND	U	ND	U	ND	U
Bromobenzene	1	ND	U	ND	U	ND	U
Bromochloromethane	5	ND	U	ND	U	ND	U
Bromodichloromethane	5	ND	U	ND	U	ND	U
Bromoform	50	ND	U	ND	U	ND	U
Bromomethane	50	ND	U	ND	U	ND	U
Carbon Disulfide	5	ND	U	ND	U	ND	0
	5		U		0		0
Chloroethane	5		<u> </u>		<u> </u>		<u> </u>
Chloroform	5	ND	U	ND	U	ND	U
Chloromethane	7	ND	U	ND	U	ND	U
cis-1,2-Dichloroethene	5	3.5	-	ND	U	2.9	-
cis-1,3-Dichloropropene	5	ND	U	2.2		ND	U
Dibromochloromethane	0.4	ND	U	ND	U	ND	U
Dibromomethane	50	ND	U	ND	U	ND	U
Dichlorodifluoromethane	5	ND	U	ND	U	ND	U
Ethylbenzene	5	5		ND	U	2.2	
Hexachlorobutadiene	5	ND	U	2.7		ND	U
Isopropylbenzene	0.5	4.3		ND	U	3.8	
Mathyl ethyl ketono	5	ND	0	3.2	11	ND	U
Methyl t-hutyl ether (MTRF)	50	ND	11		11	ND	11
Methylene chloride	50	ND	U	ND	<u>บ</u>	ND	U
Naphthalene	5	ND	U	ND	U	ND	U
n-Butylbenzene	10	ND	U	ND	U	1.5	
n-Propylbenzene	5	2.7		0.96	J	2.2	
o-Xylene	5	ND	U	1.7		ND	U
p-Isopropyltoluene	5	ND	U	ND	U	ND	U
sec-Butylbenzene	5	2.5		0.31	J	3	
Styrene	5	ND	U	3.4		ND	U
tert-Butylbenzene	5	ND	U	ND	U	ND	U
	5	1.1		ND	U ·	ND	U
Tetranydrofuran (THF)	5	ND	0	0.37	J	ND	0
	5U E		0		0	ND	0
trans-1 2-Dichloroethene	 с		11		11		11
trans-1,3-Dichloropropene	0.4	ND	U	ND	 []	ND	U
trans-1,4-dichloro-2-butene	5	ND	U	ND	U	ND	U
Trichloroethene	5	1.1		1.9	-	3.1	
Trichlorofluoromethane	5	ND	U	ND	U	ND	U
Trichlorotrifluoroethane	5	ND	U	ND	U	ND	U
Vinyl chloride	2	ND	U	ND	U	ND	U
PVOCs		14	.50	9.	83	12	.70
Total VOCs		20	.20	17	.00	18	.70

Table 4
SVE Vapor Anaytical Results - SVE Influent and Effluent
1130-1107 Dekalb Avenue, Brooklyn, NY
November 2022 - November 2023

		1/9/	2023			9/5/	2023	
		-	CCCLUCK!	-	INCLUENT		FEELLENT	
	INFLUEN	1	EFFLUEN	1	INFLUENT		EFFLUENT	
	Result	RL	Result	RL	Result	RL	Result	RL
Volatiles (TO15) By TO15								
1,1,1,2-Tetrachloroethane	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
1,1,1-Trichloroethane	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
1.1.2-Trichloroethane	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
1,1-Dichloroethane	< 9.99	9.99	< 9.99	9.99	< 5.02	5.02	< 5.02	5.02
1,1-Dichloroethene	< 9.99	9.99	< 9.99	9.99	< 4.99	4.99	< 4.99	4.99
1,2,4-Trimethylbenzene	< 10.0	10.0	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
1,2-Dibromoethane(EDB)	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
1,2-Dichloroethane	< 9.99	9.99	< 9.99	9.99	< 5.02	5.02	< 5.02	5.02
1,2-dichloropropane	< 10.0	10.0	< 10.0	10.0	< 4.99	4.99	< 4.99	4.99
1 3 5-Trimethylbenzene	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
1,3-Butadiene	< 9.99	9.99	< 9.99	9.99	< 5.00	5.00	< 5.00	5.00
1,4-Dioxane	< 10.0	10.0	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
2-Hexanone(MBK)	< 9.99	9.99	< 9.99	9.99	< 4.99	4.99	< 4.99	4.99
4-Ethyltoluene	< 10.0	10.0	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
4-Isopropyltoluene	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
4-Methyl-2-pentanone(MIBK)	< 9.99	9.99	< 9.99	9.99	5.98	4.99	< 4.99	4.99
Acetone	50.6	9.99	261	9.99	21.7	5.01	10.6	5.01
Benzene	< 9.99	9 99	< 9.99	9 99	< 5.01	5.01	< 5.01	5.01
Bromodichloromethane	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
Bromoform	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
Bromomethane	< 10.0	10.0	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
Carbon Disulfide	< 9.99	9.99	< 9.99	9.99	< 5.01	5.01	< 5.01	5.01
Carbon Tetrachloride	< 2.50	2.50	< 2.50	2.50	< 1.24	1.24	< 1.24	1.24
Chlorobenzene	< 9.98	9.98	< 9.98	9.98	< 5.01	5.01	< 5.01	5.01
Chloroform	< 10.0	10.0	< 10.0 121	10.0	< 5.01	5.01	< 5.01	1 98
Chloromethane	< 10.0	10.0	< 10.0	10.0	< 4.99	4.99	< 4.99	4.99
Cis-1,2-Dichloroethene	< 9.99	9.99	< 9.99	9.99	< 4.99	4.99	< 4.99	4.99
cis-1,3-Dichloropropene	< 9.98	9.98	< 9.98	9.98	< 4.99	4.99	< 4.99	4.99
Cyclohexane	< 10.0	10.0	< 10.0	10.0	< 4.99	4.99	< 4.99	4.99
Dibromochloromethane	< 9.96	9.96	< 9.96	9.96	< 5.00	5.00	< 5.00	5.00
Dichlorodifluoromethane	< 9.98	9.98	< 9.98	9.98	< 4.99	4.99	< 4.99	4.99
Ethanol Ethyl acetate	137	10.0	56.1	10.0	411	29.9	439	5.01
Ethylbenzene	< 9.98	9.98	< 9.98	9.98	< 4.99	4 99	< 4.99	4 99
Heptane	< 9.99	9.99	< 9.99	9.99	< 5.00	5.00	< 5.00	5.00
Hexachlorobutadiene	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
Hexane	< 10.0	10.0	18.5	10.0	< 5.00	5.00	< 5.00	5.00
Isopropylalcohol	< 10.0	10.0	< 10.0	10.0	20.1	5.01	8.18	5.01
Isopropylbenzene	< 10.0	10.0	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
m,p-Xylene	< 9.98	9.98	< 9.98	9.98	< 4.99	4.99	< 4.99	4.99
Methyl tert-hutyl ether(MTBE)	< 10.0	9.99	< 10.0	10.0	< 5.01	5.01	< 5.01	5.01
Methylene Chloride	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
n-Butylbenzene	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
o-Xylene	< 9.98	9.98	< 9.98	9.98	< 4.99	4.99	< 4.99	4.99
Propylene	< 9.99	9.99	< 9.99	9.99	< 5.01	5.01	< 5.01	5.01
sec-Butylbenzene	< 9.98	9.98	< 9.98	9.98	< 5.00	5.00	< 5.00	5.00
Tetrachioroethene	4,020	5.00	2,540	2.50	2,370	/.52	< 1.25	1.25
Toluene	< 9.99	9.99	< 9.99	9.99	< 5.01	5.01	< 5.01	5.01
Trans-1.2-Dichloroethene	< 9.99	9,99	< 9.99	9,99	< 4.99	4.99	< 4.99	4,99
Trichloroethene	136	2.50	118	2.50	105	1.25	< 1.25	1.25
Trichlorofluoromethane	< 9.99	9.99	< 9.99	9.99	7.86	5.00	7.24	5.00
Trichlorotrifluoroethane	< 10.0	10.0	< 10.0	10.0	< 5.00	5.00	< 5.00	5.00
Vinyl Chloride	< 2.50	2.50	< 2.50	2.50	< 1.25	1.25	< 1.25	1.25
Total PVOCs	0.0				6.1			
Total CVOCs	4,267				2,620.86			
lotal VUCs	4,454.6				3,085.74			

Table 5 QA/QC Analytical Results

1103-1107 Dekalb Avenue, Brooklyn, NY November 2022 - November 2023

		MV	V-X	TRIP BI	_ANK
		1/9/2 (Duplic	2023 ate of	1/9/2	.023
Volatiles By SW8260C	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane	5	< 5.0	U	< 1.0	U
1,1,1-Trichloroethane	5	< 5.0	U	< 1.0	U
1,1,2,2-Tetrachloroethane	5	< 2.5	<u> </u>	< 0.50	<u> </u>
1,1,2- Inchloroethane	5	< 5.0	<u> </u>	< 1.0	<u> </u>
1,1-Dichloroethene	5	< 5.0	U	< 1.0	U
1,1-Dichloropropene	5	< 5.0	U	< 1.0	U
1,2,3-Trichlorobenzene		< 5.0	U	< 1.0	U
1,2,3-Trichloropropane	0.04	< 5.0	U	< 1.0	U
1,2,4-Trichlorobenzene		< 5.0	U	< 1.0	U
1,2,4- I rimetnyibenzene	5	440	11	< 1.0	<u> </u>
1,2-Dibromoethane	0.04	< 5.0	<u> </u>	< 1.0	<u> </u>
1,2-Dichlorobenzene	0.0000	< 5.0	U	< 1.0	U
1,2-Dichloroethane	0.6	< 3.0	U	< 0.60	U
1,2-Dichloropropane	1	< 5.0	U	< 1.0	U
1,3,5-Trimethylbenzene	5	77		< 1.0	U
1,3-Dichlorobenzene	3	< 5.0	U	< 1.0	U
1,3-Dichloropropane	5	< 5.0	U	< 1.0	0
1,4-Dictiloropene	ς	< 5.0	U 	< 1.0	0
2-Chlorotoluene	5	< 5.0	U	< 1.0	U
2-Hexanone	50	< 25	U	< 5.0	U
2-Isopropyltoluene	5	< 5.0	U	< 1.0	U
4-Chlorotoluene	5	< 5.0	U	< 1.0	U
4-Methyl-2-pentanone		< 25	U	< 5.0	U
Acetone	50	< 130	U	< 25	<u> </u>
Acrylonitrile	5	< 5.0	<u> </u>	< 1.0	<u> </u>
Bromobenzene	1	< 5.0	U	< 1.0	<u> </u>
Bromochloromethane	5	< 5.0	U	< 1.0	U
Bromodichloromethane	5	< 2.5	U	< 0.50	U
Bromoform	50	< 5.0	U	< 1.0	U
Bromomethane	50	< 5.0	U	< 1.0	U
Carbon Disulfide	5	< 25	U	< 5.0	U
Carbon tetrachloride		< 5.0	<u> </u>	< 1.0	<u> </u>
Chloroethane	5	< 5.0	<u> </u>	< 1.0	<u> </u>
Chloroform	5	< 5.0	U	< 1.0	U
Chloromethane	7	< 5.0	U	< 1.0	U
cis-1,2-Dichloroethene	5	10		< 1.0	U
cis-1,3-Dichloropropene	5	< 2.0	U	< 0.40	U
Dibromochloromethane	0.4	< 2.5	U	< 0.50	U
Dibromomethane Dichlorodifluoromethane	50	< 5.0	<u> </u>	< 1.0	<u> </u>
Ethylbenzene	5	< 5.0 390	0	< 1.0	
Hexachlorobutadiene	5	< 2.0	U	< 0.40	U
Isopropylbenzene	0.5	56	-	< 1.0	U
m&p-Xylene	5	440		< 1.0	U
Methyl ethyl ketone		< 25	U	< 5.0	U
Methyl t-butyl ether (MTBE)	50	< 5.0	U	< 1.0	U
Methylene chloride		< 5.0	U	< 1.0	<u> </u>
n-Butylbenzene	5 10	5.4		< 1.0	0
n-Propylbenzene	5	110		< 1.0	U
o-Xylene	5	< 5.0	U	< 1.0	U
p-Isopropyltoluene	5	< 5.0	U	< 1.0	U
sec-Butylbenzene	5	6.4		< 1.0	U
Styrene	5	< 5.0	U	< 1.0	U
tert-Butylbenzene	5	< 5.0	U	< 1.0	U
Tetrahydrofuran (THF)	5 5	< 5.0 - 12	U 11	< 1.0	0
Toluene	50	< 13 5 5	0	< 1.0	U
Total Xylenes	5	440		< 1.0	U
trans-1,2-Dichloroethene	5	< 5.0	U	< 1.0	U
trans-1,3-Dichloropropene	0.4	< 2.0	U	< 0.40	U
trans-1,4-dichloro-2-butene	5	< 25	U	< 5.0	U
Trichloroethene	5	< 5.0	U	< 1.0	U
Irichlorotluoromethane	5	< 5.0	U	< 1.0	U
i richiorotrifiuoroethane	5	< 5.0	U	< 1.0	0
viriyi chionae	2	< 5.0	U	< 1.0	U

Figures

Graphs

Date		########	########	6/26/2018	9/18/2018	12/6/2018	3/21/2019	6/24/2019	8/9/2021	#########	3/9/2022	6/17/2022	9/1/2022	1/9/2023	########	9/5/2023
MW-1401	PVOC	158.34	56.9	0.55	51.29	0.62	0	0.4	17.49	0	0	0	0	0	0	0
	VOC	239.74	86	17.95	81.29	17.55	18.2	11.08	59.93	11.56	10.78	11.89	16.09	11.3	8.4	8.2

Date		8/17/2016	11/9/2016	12/11/2017	3/12/2018	6/26/2018	9/18/2018	12/6/2018	3/21/2019	6/24/2019	9/24/2019	12/31/2019	3/25/2020	6/17/2020	9/28/2020	12/29/2020	3/31/2021
NAVA 1402	PVOC	6009	5799.9	4849.1	1677.7	904.1	3256.4	1734.6	1026.8	910.8	1928.7	1997.9	2486	984.46	1319.6	1361	1491.7
10100-1402	VOC	8978	7939.9	6536.1	2154	1214.1	4034	2182.8	1332.8	1368.7	2534.7	2447.3	3240.9	1276.1	1745.4	1821.5	2487.7
Date		8/9/2021	12/21/2021	3/9/2022	6/17/2022	9/1/2022	1/9/2023	3/31/2023	9/5/2023								
NAVA 1402	PVOC	2594.4	2419.7	2223.5	1975.9	1809.27	2487.4	806.04	1100.76								
10100-1405	VOC	3724.4	2457.9	2254.1	2011.5	1840.88	2497.4	1200.99	1116.66								

Date		8/17/2016	11/9/2016	12/11/2017	3/12/2018	6/26/2018	9/18/2018	12/6/2018	3/21/2019	6/24/2019	9/24/2019	12/31/2019	3/25/2020	6/17/2020	9/28/2020	12/29/2020	3/31/2021
MM 1402	PVOC	590.4	1958.8	33.3	40	13.47	29.8	11.77	9.4	44.9	23.6	24.51	69.62	54.3	48.56	37.05	6.9
10100-1405	VOC	735.7	2220	39.8	52.1	21.77	41.2	21.47	20.2	62.9	34.6	60.81	102.32	72.9	66.31	46.37	21.9
Date		8/9/2021	12/21/2021	3/9/2022	6/17/2022	9/1/2022	1/9/2023	3/31/2023	9/5/2023								
NAVA 1404	PVOC	18.87	4.74	13.6	26.51	11.02	14.5	9.83	12.7								
10100-1404	VOC	19.67	7.96	21.45	36.15	25.22	20.2	17	18.7								

Date	Date	12/11/2017	3/28/2018	6/26/2018	9/18/2018	12/6/2018	3/21/2019	6/24/2019	9/28/2020	12/29/2020	3/31/2021	8/9/2021	12/21/2021	9/1/2022	1/9/2023	9/5/2023
Influent	Total VOCs	165731.77	38681.5	11389.74	8526.4	6072.75	4746.16	4384.68	5739.46	4339.17	1206.34	4411.46	2341.97	2450.17	4454.6	3085.74
	PVOCs	162139.11	30279	6352.5	3634.6	1686.06	860.58	804.02	236.75	109.94	331.4	457.98	29.49	120.5	0.0	6.1
	CVOCs	3592.66	8402.5	5037.24	4891.8	4386.69	3885.58	358.66	5502.71	4229.23	874.94	3953.48	2312.48	2329.67	4267	2620.86

Appendices

Appendix A

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

1/4/23_Time: Date:

ne: **9:00**

Inspector Name/Organization:

Chris Zrere, Preferred Environment Services

Visual Inspection of Building's Concrete Slab

Building Interior

Inspect concrete slab for cracks, perforations, patching

Describe General Condition of slab

perf's - crucs no

Describe and Cracks or New Penetrations

none

100

none

Describe any patching

in new atchi Slab

eracks

perf.'s

Visual Inspection of Sidewalks/Paved Areas

Building Exterior

Inspect concrete slab for cracks, perforations, patching

Describe General Condition of slab

Describe and Cracks or New Penetrations

Describe any patching

no new patching

no

Repairs Needed and / or Maintenance at this time?

ntria exterior renars subject make AD need 1/9/23 Signature: Date:

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

4:15 pm 17 -Time: Date: INSTIN M/Preferred Gutowitz All(Inspector Name/Organization: Visual Inspection of Building's Concrete Slab **Building Interior** Inspect concrete slab for cracks, perforations, patching New CIULIC/PONE FAMILYAS Describe General Condition of slab 00 በበ **Describe and Cracks or New Penetrations** Patchin 9 Describe any patching Visual Inspection of Sidewalks/Paved Areas **Building Exterior** Inspect concrete slab for cracks, perforations, patching ACN UNKS/PORFERHONS **Describe General Condition of slab** Vr. **Describe and Cracks or New Penetrations** n Describe any patching 1PW nin (i $' \cap$ 747 Repairs Needed and / or Maintenance at this time?

munterio \cap f_{0}

Signature: ッ Date:

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

Date:

5/23 Time:

10:70 hris Zweier + Kennedy Thomas PES

(2000)

0

200

Visual Inspection of Building's Concrete Slab

Building Interior

Inspect concrete slab for cracks, perforations, patching

Describe General Condition of slab

Inspector Name/Organization:

Describe and Cracks or New Penetrations

Describe any patching

Visual Inspection of Sidewalks/Paved Areas

Building Exterior

Inspect concrete slab for cracks, perforations, patching

Describe General Condition of slab

Describe and Cracks or New Penetrations

Describe any patching

God

100

Repairs Needed and / or Maintenance at this time?

Signature:

Date:

1

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

11/30/23 Time: Date:

11:00

Inspector Name/Organization:

Chris Zuere + Karen Tyll, PE

Visual Inspection of Building's Concrete Slab

Building Interior	Inspect concrete slab for cracks	s, perforations, patching
Describe General Condition of s	lab	good condition
Describe and Cracks or New Pe	netrations	no new perretrations - several About dains - not apen to soil
Describe any patching		no patching observed
Visual Inspection of Sidewalks	s/Paved Areas	
Building Exterior	Inspect concrete slab for cracks	s, perforations, patching
Describe General Condition of s	lab	-good condition
Describe and Cracks or New Pe	enetrations	no ner, peretations
Describe any patching		no patching observed
Repairs Needed and / or Mainte	nance at this time? I to interior or exten	nor composite rove system
Signature:		Date:

Photograph No. 1: View of the new knockout drum, Blower, and Carbon Drums associated with the SVE system on site.

Photograph No. 2: Negative Pressure was confirmed within the influent piping leading to the blower.

Photograph No. 3: Negative Pressure was observed at the blower.

<u>Photograph No. 4:</u> Negative Pressure was confirmed in each leg of the active SSDS on Site. No Alarms were active during the annual inspection.

Photograph No. 5: View of the SSDS Discharge Piping with proper signage and no deficiencies,

Photograph No. 6: Basement cover system consisting of epoxy sealed concrete floors.

Photograph No. 7: Basement cover system consisting of epoxy sealed concrete floors.

Photograph No. 8: Exterior cover system consisting of concrete and no vegetation.

<u>Appendix B</u>

Wednesday, September 20, 2023

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1107 DEKALB AVENUE SDG ID: GCN20371 Sample ID#s: CN20371 - CN20377

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

September 20, 2023

SDG I.D.: GCN20371

Version 2: Per client request VOA compound list was revised.

Sample Id Cross Reference

September 20, 2023

SDG I.D.: GCN20371

Project ID: 1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1401	CN20371	GROUND WATER
MW-1402	CN20372	GROUND WATER
MW-1403	CN20373	GROUND WATER
MW-140X	CN20374	GROUND WATER
TRIP BLANK-2	CN20375	GROUND WATER
INFLUENT	CN20376	TEDLAR BAG
EFFLUENT	CN20377	TEDLAR BAG

Analysis Report

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

Sample Information

Matrix:	GROUND WATER
Location Code:	PREFRDNY
Rush Request:	Standard
P.O.#:	

Custody Inforn	Custody Information						
Collected by:							
Received by:	SW						
Analyzed by:	see "By" below						

01/09/2310:5501/10/2316:36

<u>Time</u>

<u>Date</u>

Laboratory Data

SDG ID: GCN20371 Phoenix ID: CN20371

Project ID:	1107 DEKALB AVENUE
Client ID:	MW-1401

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Client MS/MSD	Completed				01/11/23			
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	01/11/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloroethene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloropropene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2-Dibromoethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,3-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,4-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
2-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
2-Hexanone	ND	5.0	ug/L	1	01/11/23	НМ	SW8260D	
2-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	1
4-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	

Project ID: 1107 DEKALB AVENUE

Client ID: MW-1401

_		ppbv				_	
Parameter	Result	RL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D
Acetone	ND	25	ug/L	1	01/11/23	HM	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Benzene	ND	0.70	ug/L	1	01/11/23	HM	SW8260D
Bromobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D
Bromoform	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	01/11/23	HM	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloroform	1.3	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D
Dibromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	01/11/23	НМ	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	01/11/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Methylene chloride	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Naphthalene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
o-Xylene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Styrene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Tetrachloroethene	2.2	1.0	ug/L	1	01/11/23	HM	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	01/11/23	HM	SW8260D 1
Toluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Total Xylenes	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	01/11/23	HM	SW8260D
Trichloroethene	7.8	1.0	ug/L	1	01/11/23	HM	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	01/11/23	НМ	70 - 130 %
% Bromofluorobenzene	94		%	1	01/11/23	HM	70 - 130 %

Project ID: 1107 DEKALB AVENUE Client ID: MW-1401

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	By	Reference
% Dibromofluoromethane	96		%	1	01/11/23	HM	70 - 130 %
% Toluene-d8	97		%	1	01/11/23	HM	70 - 130 %
<u>1,4-dioxane</u>							
1,4-dioxane	ND	100	ug/l	1	01/11/23	MH	SW8260C
Volatile Library Search Top 10	Completed				01/13/23	MH	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

9:58

Analysis Report

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

Sample Information

Matrix:GROUND WATERLocation Code:PREFRDNYRush Request:StandardP.O.#:

Custody Inform	nation
Collected by:	
Received by:	SW
Analyzed by:	see "By" below

01/10/23 16:36

<u>Date</u>

01/09/23

Laboratory Data

SDG ID: GCN20371 Phoenix ID: CN20372

Project ID:	1107 DEKALB AVENUE
Client ID:	MW-1402

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Volatiles								
1.1.1.2-Tetrachloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1.1.1-Trichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	2.5	ug/L	5	01/14/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloroethene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloropropene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,4-Trimethylbenzene	560	20	ug/L	20	01/11/23	НМ	SW8260D	
1,2-Dibromo-3-chloropropane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dibromoethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichloroethane	ND	3.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichloropropane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,3,5-Trimethylbenzene	74	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,3-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,3-Dichloropropane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
2,2-Dichloropropane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
2-Chlorotoluene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
2-Hexanone	ND	25	ug/L	5	01/14/23	HM	SW8260D	
2-Isopropyltoluene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	1
4-Chlorotoluene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
4-Methyl-2-pentanone	ND	25	ug/L	5	01/14/23	HM	SW8260D	

Project ID: 1107 DEKALB AVENUE

Client ID: MW-1402

		ppbv					
Parameter	Result	RL	Units	Dilution	Date/Time	By	Reference
Acetone	ND	130	ug/L	5	01/14/23	НМ	SW8260D
Acrylonitrile	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Benzene	ND	3.5	ug/L	5	01/14/23	HM	SW8260D
Bromobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromochloromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromodichloromethane	ND	2.5	ug/L	5	01/14/23	HM	SW8260D
Bromoform	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromomethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Carbon Disulfide	ND	25	ug/L	5	01/14/23	HM	SW8260D
Carbon tetrachloride	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloroethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloroform	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
cis-1,2-Dichloroethene	10	5.0	ug/L	5	01/14/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	2.0	ug/L	5	01/14/23	HM	SW8260D
Dibromochloromethane	ND	2.5	ug/L	5	01/14/23	HM	SW8260D
Dibromomethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Dichlorodifluoromethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Ethylbenzene	490	20	ug/L	20	01/11/23	HM	SW8260D
Hexachlorobutadiene	ND	2.0	ug/L	5	01/14/23	НМ	SW8260D
Isopropylbenzene	52	5.0	ug/L	5	01/14/23	НМ	SW8260D
m&p-Xylene	550	20	ug/L	20	01/11/23	НМ	SW8260D
Methyl ethyl ketone	ND	25	ug/L	5	01/14/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Methylene chloride	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Naphthalene	100	5.0	ug/L	5	01/14/23	НМ	SW8260D
n-Butylbenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
n-Propylbenzene	100	5.0	ug/L	5	01/14/23	HM	SW8260D
o-Xylene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
p-lsopropyltoluene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
sec-Butylbenzene	6.0	5.0	ug/L	5	01/14/23	HM	SW8260D
Styrene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
tert-Butylbenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Tetrachloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Tetrahydrofuran (THF)	ND	13	ug/L	5	01/14/23	HM	SW8260D 1
Toluene	5.4	5.0	ug/L	5	01/14/23	HM	SW8260D
Total Xylenes	550.0	5.0	ug/L	5	01/11/23	HM	SW8260D
trans-1,2-Dichloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
trans-1,3-Dichloropropene	ND	2.0	ug/L	5	01/14/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND	25	ug/L	5	01/14/23	HM	SW8260D
Trichloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Trichlorofluoromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Trichlorotrifluoroethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Vinyl chloride	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4 (5x)	101		%	5	01/14/23	НМ	70 - 130 %
% Bromofluorobenzene (5x)	98		%	5	01/14/23	НМ	70 - 130 %
% Dibromofluoromethane (5x)	92		%	5	01/14/23	НМ	70 - 130 %

Project ID: 1107 DEKALB AVENUE Client ID: MW-1402

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	Ву	Reference	
% Toluene-d8 (5x)	100		%	5	01/14/23	HM	70 - 130 %	
% 1,2-dichlorobenzene-d4 (20x)	101		%	20	01/11/23	HM	70 - 130 %	
% Bromofluorobenzene (20x)	98		%	20	01/11/23	HM	70 - 130 %	
% Dibromofluoromethane (20x)	95		%	20	01/11/23	HM	70 - 130 %	
% Toluene-d8 (20x)	101		%	20	01/11/23	HM	70 - 130 %	
<u>1,4-dioxane</u>								
1,4-dioxane	ND	500	ug/l	5	01/14/23	MH	SW8260C	
Volatile Library Search Top 10	Completed				01/16/23	MH		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Mr. William J. Schlageter 323 Merrick Avenue

September 20, 2023

Preferred Environmental Services North Merrick, New York 11566

Sample Information

Matrix:	GROUND WATER
Location Code:	PREFRDNY
Rush Request:	Standard
P.O.#:	

Custody Informat	<u>ion</u>
Collected by:	
Received by:	SW
Analyzed by:	see "By" below

01/09/23 12:05 01/10/23 16:36

<u>Time</u>

<u>Date</u>

Laboratory Data

SDG ID: GCN20371 Phoenix ID: CN20373

Project ID:	1107 DEKALB AVENUE
Client ID:	MW-1403

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	01/11/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloroethene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,1-Dichloropropene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dibromoethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	ug/L	1	01/11/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
2-Hexanone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D	
2-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	1
4-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D	
Project ID: 1107 DEKALB AVENUE

Client ID: MW-1403

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	By	Reference	
Acetone	ND	25	ug/L	1	01/11/23	HM	SW8260D	
Acrylonitrile	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Benzene	ND	0.70	ug/L	1	01/11/23	НМ	SW8260D	
Bromobenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
Bromochloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Bromodichloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D	
Bromoform	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Bromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Carbon Disulfide	ND	5.0	ug/L	1	01/11/23	HM	SW8260D	
Carbon tetrachloride	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Chlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Chloroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Chloroform	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Chloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
cis-1.2-Dichloroethene	3.5	1.0	ug/L	1	01/11/23	НМ	SW8260D	
cis-1.3-Dichloropropene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D	
Dibromochloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D	
Dibromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Dichlorodifluoromethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
Ethvlbenzene	5.0	1.0	ug/L	1	01/11/23	HM	SW8260D	
Hexachlorobutadiene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D	
Isopropylbenzene	4.3	1.0	ug/L	1	01/11/23	HM	SW8260D	
m&p-Xvlene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D	
Methyl ethyl ketone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Methylene chloride	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Naphthalene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
n-Butylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
n-Propylbenzene	2.7	1.0	ug/L	1	01/11/23	НМ	SW8260D	
o-Xylene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
p-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
sec-Butylbenzene	2.5	1.0	ug/L	1	01/11/23	HM	SW8260D	
Styrene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
tert-Butylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Tetrachloroethene	1.1	1.0	ug/L	1	01/11/23	HM	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	01/11/23	HM	SW8260D	1
Toluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Total Xylenes	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	01/11/23	HM	SW8260D	
Trichloroethene	1.1	1.0	ug/L	1	01/11/23	HM	SW8260D	
Trichlorofluoromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Trichlorotrifluoroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
Vinyl chloride	ND	1.0	ug/L	1	01/11/23	HM	SW8260D	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	101		%	1	01/11/23	HM	70 - 130 %	
% Bromofluorobenzene	97		%	1	01/11/23	HM	70 - 130 %	
% Dibromofluoromethane	97		%	1	01/11/23	HM	70 - 130 %	

Project ID: 1107 DEKALB AVENUE Client ID: MW-1403

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101		%	1	01/11/23	HM	70 - 130 %
1,4-dioxane 1,4-dioxane	ND	100	ug/l	1	01/11/23	MH	SW8260C
Volatile Library Search Top 10	Completed				01/20/23	MH	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

Sample Information

Matrix:GROUND WATERLocation Code:PREFRDNYRush Request:StandardP.O.#:

Custody Information							
Collected by:							
Received by:	SW						
Analyzed by:	see "By" below						

 Date
 Time

 01/09/23
 01/10/23
 16:36

Laboratory Data

SDG ID: GCN20371 Phoenix ID: CN20374

Project ID:	1107 DEKALB AVENUE
Client ID:	MW-140X

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	2.5	ug/L	5	01/14/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloroethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloroethene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,1-Dichloropropene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2,4-Trimethylbenzene	440	20	ug/L	20	01/11/23	НМ	SW8260D	
1,2-Dibromo-3-chloropropane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dibromoethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichloroethane	ND	3.0	ug/L	5	01/14/23	НМ	SW8260D	
1,2-Dichloropropane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,3,5-Trimethylbenzene	77	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,3-Dichloropropane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
2,2-Dichloropropane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
2-Chlorotoluene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	
2-Hexanone	ND	25	ug/L	5	01/14/23	НМ	SW8260D	
2-Isopropyltoluene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D	1
4-Chlorotoluene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	25	ug/L	5	01/14/23	ΗM	SW8260D	

Project ID: 1107 DEKALB AVENUE

Client ID: MW-140X

		ppbv					
Parameter	Result	RL	Units	Dilution	Date/Time	By	Reference
Acetone	ND	130	ug/L	5	01/14/23	НМ	SW8260D
Acrylonitrile	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Benzene	ND	3.5	ug/L	5	01/14/23	HM	SW8260D
Bromobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromochloromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromodichloromethane	ND	2.5	ug/L	5	01/14/23	HM	SW8260D
Bromoform	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Bromomethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Carbon Disulfide	ND	25	ug/L	5	01/14/23	HM	SW8260D
Carbon tetrachloride	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chlorobenzene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloroethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloroform	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Chloromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
cis-1,2-Dichloroethene	10	5.0	ug/L	5	01/14/23	НМ	SW8260D
cis-1,3-Dichloropropene	ND	2.0	ug/L	5	01/14/23	HM	SW8260D
Dibromochloromethane	ND	2.5	ug/L	5	01/14/23	HM	SW8260D
Dibromomethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Dichlorodifluoromethane	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Ethylbenzene	390	20	ug/L	20	01/11/23	НМ	SW8260D
Hexachlorobutadiene	ND	2.0	ug/L	5	01/14/23	НМ	SW8260D
Isopropylbenzene	56	5.0	ug/L	5	01/14/23	НМ	SW8260D
m&p-Xylene	440	20	ug/L	20	01/11/23	НМ	SW8260D
Methyl ethyl ketone	ND	25	ug/L	5	01/14/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Methylene chloride	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Naphthalene	110	5.0	ug/L	5	01/14/23	НМ	SW8260D
n-Butylbenzene	5.4	5.0	ug/L	5	01/14/23	НМ	SW8260D
n-Propylbenzene	110	5.0	ug/L	5	01/14/23	НМ	SW8260D
o-Xylene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
p-Isopropyltoluene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
sec-Butylbenzene	6.4	5.0	ug/L	5	01/14/23	НМ	SW8260D
Styrene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
tert-Butylbenzene	ND	5.0	ug/L	5	01/14/23	НМ	SW8260D
Tetrachloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Tetrahydrofuran (THF)	ND	13	ug/L	5	01/14/23	HM	SW8260D 1
Toluene	5.5	5.0	ug/L	5	01/14/23	HM	SW8260D
Total Xylenes	440.0	5.0	ug/L	5	01/11/23	HM	SW8260D
trans-1,2-Dichloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
trans-1,3-Dichloropropene	ND	2.0	ug/L	5	01/14/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND	25	ug/L	5	01/14/23	HM	SW8260D
Trichloroethene	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Trichlorofluoromethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Trichlorotrifluoroethane	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
Vinyl chloride	ND	5.0	ug/L	5	01/14/23	HM	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4 (5x)	101		%	5	01/14/23	НМ	70 - 130 %
% Bromofluorobenzene (5x)	98		%	5	01/14/23	НМ	70 - 130 %
% Dibromofluoromethane (5x)	85		%	5	01/14/23	НМ	70 - 130 %

Project ID: 1107 DEKALB AVENUE Client ID: MW-140X

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	By	Reference	
% Toluene-d8 (5x)	99		%	5	01/14/23	HM	70 - 130 %	
% 1,2-dichlorobenzene-d4 (20x)	101		%	20	01/11/23	HM	70 - 130 %	
% Bromofluorobenzene (20x)	97		%	20	01/11/23	HM	70 - 130 %	
% Dibromofluoromethane (20x)	97		%	20	01/11/23	HM	70 - 130 %	
% Toluene-d8 (20x)	102		%	20	01/11/23	HM	70 - 130 %	
<u>1,4-dioxane</u>								
1,4-dioxane	ND	500	ug/l	5	01/14/23	MH	SW8260C	
Volatile Library Search Top 10	Completed				01/16/23	ΜН		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Custody Information

Laboratory Data

Analysis Report

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

Sample Information

GROUND WATER Matrix: Location Code: PREFRDNY Rush Request: Standard P.O.#:

Collected by:	
Received by:	SW
Analyzed by:	see "By" belov

Time Date 01/09/23 01/10/23 16:36

N

SDG ID: GCN20371

1107 DEKALB AVENUE Project ID: Client ID: **TRIP BLANK-2**

Phoenix ID: CN20375

		RL/				_	- /
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
1,1,1-Trichloroethane	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	01/11/23	НМ	SW8260D
1,1,2-Trichloroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,1-Dichloroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,1-Dichloroethene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,1-Dichloropropene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2,3-Trichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2-Dibromoethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,2-Dichloroethane	ND	0.60	ug/L	1	01/11/23	HM	SW8260D
1,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,3-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,3-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
1,4-Dichlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
2,2-Dichloropropane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
2-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
2-Hexanone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D
2-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
4-Chlorotoluene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
4-Methyl-2-pentanone	ND	5.0	ug/L	1	01/11/23	HM	SW8260D

Project ID: 1107 DEKALB AVENUE Client ID: TRIP BLANK-2

Parameter	Result	ppbv Bl	Linite	Dilution	Date/Time	Bv	Reference
	Nesuit	NL	Onits	Dilution		Dy	
Acetone	ND	25	ug/L	1	01/11/23	НМ	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Benzene	ND	0.70	ug/L	1	01/11/23	НМ	SW8260D
Bromobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D
Bromoform	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Bromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	01/11/23	HM	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloroethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloroform	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Chloromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	01/11/23	HM	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	01/11/23	HM	SW8260D
Dibromomethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	01/11/23	HM	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	01/11/23	НМ	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	01/11/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Methylene chloride	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
Naphthalene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
n-Butvlbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
o-Xvlene	ND	1.0	ua/L	1	01/11/23	НМ	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	01/11/23	нм	SW8260D
Styrene	ND	1.0	ug/L	1	01/11/23	НМ	SW8260D
tert-Butylbenzene	ND	1.0	ug/l	1	01/11/23	НМ	SW8260D
Tetrachloroethene	ND	1.0	ug/l	1	01/11/23	НМ	SW8260D
Tetrabydrofuran (THF)	ND	2.5	ug/L	1	01/11/23	нм	SW8260D 1
	ND	1.0	ug/L	1	01/11/23	нм	SW8260D
Total Xylenes	ND	1.0	ug/L	1	01/11/23	нм	SW8260D
trans-1 2-Dichloroethene	ND	1.0	ug/L	1	01/11/23	нм	SW8260D
trans-1,2-Dichloropropene	ND	0.40	ug/L	1	01/11/23	нм	SW/8260D
trans 1.4 dichloro 2 butono	ND	5.0	ug/L	1	01/11/23	нм	SW8260D
Trichloroothono	ND	1.0	ug/L	1	01/11/23	нм	SW/8260D
Trichlorofluoromothono	ND	1.0	ug/L	1	01/11/23	нм	SW/8260D
Trichlorotrifluoroothono	ND	1.0	ug/L	1	01/11/23	нм	SW(8260D
		1.0	ug/L	1	01/11/20		SW/8260D
	ND	1.0	ug/L	I	01/11/23	1 1171	3440200D
WAR dishere area of the	400		0/	4	01/11/00	1.18.4	70 120 0/
	102		<i>%</i>	1	01/11/23	HIVI	70 - 130 %
	90		%	1	01/11/23	HM	70 - 130 %
% Dibromotluoromethane	93		%	1	01/11/23	HM	70 - 130 %

Project ID: 1107 DEKALB AVENUE Client ID: TRIP BLANK-2

ppbv Parameter Result RL Units Dilution Date/Time Bv Reference % Toluene-d8 100 % 1 01/11/23 HM 70 - 130 % 1,4-dioxane 1,4-dioxane ND 100 ug/l 1 01/11/23 MH SW8260C Completed 01/12/23 MH Volatile Library Search Top 10

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

	CLIENT ID				
VOI	LATILE ORGANICS ANALYS TENTATIVELY IDENTIFIED	SIS DATA SHEET COMPOUNDS		MW-14	01
Lab Name: Phoenix Er	vironmental Labs	Client:	PREFRDNY		
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20371	
Sample wt/vol:	(g/mL)	<u>mL</u>	Lab File ID:	0111_19.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/11/23	
GC Column:	RTX-VMS ID:	<u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	<u>25000</u> (uL)		Soil Aliquot Vol (uL	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L		
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found:

21

	MW-14	02			
Lab Name: Phoenix Er	nvironmental Labs		Client: PREFRDNY	-	
Lab Code: Phoenix	Case No.:		SAS No.:	SDG No.:	GCN2037
Matrix:(soil/water) G	ROUND WATER		Lab Sample ID:	CN20372	
Sample wt/vol:	25	(g/mL) <u>mL</u>	Lab File ID:	0113_43.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/14/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	5
Purge Volume:	(uL)		Soil Aliquot Vol (ul	_):	n.a.
		CONCENTRATION	NUNITS:		

(ug/L or ug/KG)

ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000106-97-8	Butane	1.200	38	JN
000078-78-4	Butane, 2-methyl-	1.431	67	JN
000109-66-0	Pentane	1.546	22	JN
	unknown	2.058	39	J
	unknown	2.074	31	J
000096-14-0	Pentane, 3-methyl-	2.215	31	JN
000096-37-7	Cyclopentane, methyl-	2.770	42	JN
000590-73-8	Hexane, 2,2-dimethyl-	3.549	33	JN
103-65-1	n-Propylbenzene	7.168	100	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.247	110	JN
108-67-8	1,3,5-Trimethylbenzene	7.309	74	Q
	Benzene, 1-ethyl-2-methyl- Isomer	7.451	69	JN
95-63-6	1,2,4-Trimethylbenzene	7.576	330	Q
135-98-8	sec-Butylbenzene	7.644	6	Q
000496-11-7	Indane	7.932	110	JN
104-51-8	n-Butylbenzene	7.999	5	Q
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	8.151	23	JN
000767-58-8	Indan, 1-methyl-	8.261	30	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.575	25	JN
	1H-Indene, 2,3-dihydro-4-methyl- Isomer	8.669	41	JN
91-20-3	Naphthalene	9.066	100	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	TENTATIVELY IDENTIFIED COMPOUNDS					
Lab Name: Phoenix Er	nvironmental Labs		Client: PREFRDNY	·		
Lab Code: Phoenix	Case No.:		SAS No.:	SDG No.:	GCN2037	
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20373		
Sample wt/vol:	25	(g/mL) <u>mL</u>	Lab File ID:	0111_20.D		
Level: (low/med)			Date Received:	01/10/23		
% Moisture: not dec.	100		Date Analyzed:	01/11/23		
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	1	
Purge Volume:	(uL)		Soil Aliquot Vol (uL	.):	n.a.	
		CONCENTRATION	UNITS:			

Number TICs found:

20

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-	1.431	6.5	JN
000079-29-8	Butane, 2,3-dimethyl-	2.053	7.3	JN
000096-14-0	Pentane, 3-methyl-	2.215	3.9	JN
000108-08-7	Pentane, 2,4-dimethyl-	2.743	2.5	JN
000096-37-7	Cyclopentane, methyl-	2.769	6.8	JN
	unknown	3.476	2.7	J
000590-73-8	Hexane, 2,2-dimethyl-	3.549	21	JN
000565-75-3	Pentane, 2,3,4-trimethyl-	4.380	11	JN
	unknown	4.475	14	J
	unknown	4.767	4.3	J
103-65-1	n-Propylbenzene	7.168	2.7	Q
108-67-8	1,3,5-Trimethylbenzene	7.309	0.58	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.451	4	JN
95-63-6	1,2,4-Trimethylbenzene	7.57	0.98	Q
135-98-8	sec-Butylbenzene	7.644	2.5	Q
	unknown	7.926	4.6	J
104-51-8	n-Butylbenzene	7.994	0.97	Q
000767-58-8	Indan, 1-methyl-	8.261	3.8	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.669	2.9	JN
017059-48-2	1H-Indene, 2,3-dihydro-1,6-dimethyl-	8.905	2.6	JN

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	TENTATIVELY IDENTIFIED COMPOUNDS					0X
Lab Name: Phoenix Er	nvironmental Labs		Client:	PREFRDNY	-	
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) G	ROUND WATER			Lab Sample ID:	CN20374	
Sample wt/vol:	25	(g/mL) <u>mL</u>		Lab File ID:	0113_44.D	
Level: (low/med)				Date Received:	01/10/23	
% Moisture: not dec.	100			Date Analyzed:	01/14/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	_	5
Purge Volume:	(uL)			Soil Aliquot Vol (ul	_):	n.a.
		CONCENTRATIO	N UNITS:			

Number TICs found:

21

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	unknown	1.201	41	J
000078-78-4	Butane, 2-methyl-	1.431	74	JN
000109-66-0	Pentane	1.546	24	JN
000107-83-5	Pentane, 2-methyl-	2.058	43	JN
	unknown	2.074	33	J
000096-14-0	Pentane, 3-methyl-	2.215	33	JN
000096-37-7	Cyclopentane, methyl-	2.770	45	JN
000590-73-8	Hexane, 2,2-dimethyl-	3.549	33	JN
103-65-1	n-Propylbenzene	7.168	110	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.247	120	JN
108-67-8	1,3,5-Trimethylbenzene	7.309	77	Q
	Benzene, 1-ethyl-2-methyl- Isomer	7.451	71	JN
95-63-6	1,2,4-Trimethylbenzene	7.576	340	Q
135-98-8	sec-Butylbenzene	7.644	6.4	Q
104-51-8	n-Butylbenzene	7.999	5.4	Q
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	8.152	25	JN
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	8.199	23	JN
000767-58-8	Indan, 1-methyl-	8.261	32	JN
098640-29-0	3a,6-Methano-3aH-indene, 2,3,6,7-t	8.575	27	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.669	44	JN
91-20-3	Naphthalene	9.066	110	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

	CLIENT ID				
	LATILE ORGANICS ANAL TENTATIVELY IDENTIFIEI	COMPOUNDS		TRIP BLA	NK-2
Lab Name: Phoenix En	vironmental Labs	Client:	PREFRDNY	-	
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20375	
Sample wt/vol:	25(g/m	L) <u>mL</u>	Lab File ID:	0111_08.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/11/23	
GC Column:	RTX-VMS	D: <u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	<u>25000</u> (uL)		Soil Aliquot Vol (ul	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	COMPOUND N	AME	RT	EST. CONC.	Q
	1		1	1	

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

QA/QC Report

September 20, 2023

QA/QC Data

SDG I.	D.: (GCN	12037	1

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 659856 (ug/L)	, QC Sampl	le No: CN20371 (CN20371)									
Volatiles - Ground Wat	er										
1,1,1,2-Tetrachloroethane	ND	1.0	105	107	1.9	105	112	6.5	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	97	100	3.0	103	110	6.6	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	103	101	2.0	97	102	5.0	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	109	106	2.8	106	112	5.5	70 - 130	30	
1,1-Dichloroethane	ND	1.0	99	102	3.0	102	108	5.7	70 - 130	30	
1,1-Dichloroethene	ND	1.0	96	99	3.1	107	113	5.5	70 - 130	30	
1,1-Dichloropropene	ND	1.0	100	106	5.8	108	116	7.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	111	108	2.7	106	114	7.3	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	104	104	0.0	100	104	3.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	108	108	0.0	107	116	8.1	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	106	111	4.6	110	117	6.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	98	103	5.0	100	107	6.8	70 - 130	30	
1,2-Dibromoethane	ND	1.0	107	107	0.0	104	111	6.5	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	99	102	3.0	100	106	5.8	70 - 130	30	
1,2-Dichloroethane	ND	1.0	100	101	1.0	99	106	6.8	70 - 130	30	
1,2-Dichloropropane	ND	1.0	101	103	2.0	104	111	6.5	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	108	111	2.7	111	119	7.0	70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	102	105	2.9	102	109	6.6	70 - 130	30	
1,3-Dichloropropane	ND	1.0	106	107	0.9	103	113	9.3	70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	100	102	2.0	100	108	7.7	70 - 130	30	
1,4-dioxane	ND	100	103	104	1.0	92	104	12.2	70 - 130	30	
2,2-Dichloropropane	ND	1.0	95	98	3.1	89	95	6.5	70 - 130	30	
2-Chlorotoluene	ND	1.0	105	110	4.7	109	117	7.1	70 - 130	30	
2-Hexanone	ND	5.0	103	94	9.1	99	103	4.0	70 - 130	30	
2-Isopropyltoluene	ND	1.0	104	109	4.7	108	116	7.1	70 - 130	30	
4-Chlorotoluene	ND	1.0	105	109	3.7	107	114	6.3	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	104	99	4.9	103	106	2.9	70 - 130	30	
Acetone	ND	5.0	91	94	3.2	103	101	2.0	70 - 130	30	
Acrylonitrile	ND	5.0	103	101	2.0	99	107	7.8	70 - 130	30	
Benzene	ND	0.70	98	102	4.0	103	111	7.5	70 - 130	30	
Bromobenzene	ND	1.0	102	106	3.8	103	110	6.6	70 - 130	30	
Bromochloromethane	ND	1.0	102	103	1.0	103	109	5.7	70 - 130	30	
Bromodichloromethane	ND	0.50	102	101	1.0	101	108	6.7	70 - 130	30	
Bromoform	ND	1.0	101	99	2.0	93	103	10.2	70 - 130	30	
Bromomethane	ND	1.0	115	123	6.7	107	135	23.1	70 - 130	30	m
Carbon Disulfide	ND	1.0	89	92	3.3	96	104	8.0	70 - 130	30	
Carbon tetrachloride	ND	1.0	98	100	2.0	106	111	4.6	70 - 130	30	
Chlorobenzene	ND	1.0	100	103	3.0	102	110	7.5	70 - 130	30	
Chloroethane	ND	1.0	99	104	4.9	107	114	6.3	70 - 130	30	
Chloroform	ND	1.0	97	107	9.8	108	104	3.8	70 - 130	30	
Chloromethane	ND	1.0	82	84	2.4	93	99	6.3	70 - 130	30	

QA/QC Data

SDG I.D.: GCN20371

		DIK	1.05		1.05	MC	MCD	MC	% Dec	% חחח
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits
cis-1,2-Dichloroethene	ND	1.0	97	99	2.0	104	106	1.9	70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	104	0.0	100	110	9.5	70 - 130	30
Dibromochloromethane	ND	0.50	104	105	1.0	103	109	5.7	70 - 130	30
Dibromomethane	ND	1.0	106	105	0.9	103	111	7.5	70 - 130	30
Dichlorodifluoromethane	ND	1.0	75	77	2.6	103	108	4.7	70 - 130	30
Ethylbenzene	ND	1.0	107	110	2.8	110	119	7.9	70 - 130	30
Hexachlorobutadiene	ND	0.40	99	103	4.0	103	114	10.1	70 - 130	30
Isopropylbenzene	ND	1.0	108	114	5.4	114	122	6.8	70 - 130	30
m&p-Xylene	ND	1.0	108	112	3.6	111	120	7.8	70 - 130	30
Methyl ethyl ketone	ND	5.0	91	92	1.1	89	93	4.4	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	100	96	4.1	96	101	5.1	70 - 130	30
Methylene chloride	ND	1.0	96	96	0.0	96	103	7.0	70 - 130	30
Naphthalene	ND	1.0	113	112	0.9	113	119	5.2	70 - 130	30
n-Butylbenzene	ND	1.0	111	114	2.7	114	122	6.8	70 - 130	30
n-Propylbenzene	ND	1.0	106	111	4.6	111	119	7.0	70 - 130	30
o-Xylene	ND	1.0	108	113	4.5	111	119	7.0	70 - 130	30
p-Isopropyltoluene	ND	1.0	110	114	3.6	114	122	6.8	70 - 130	30
sec-Butylbenzene	ND	1.0	107	113	5.5	112	121	7.7	70 - 130	30
Styrene	ND	1.0	113	115	1.8	112	121	7.7	70 - 130	30
tert-Butylbenzene	ND	1.0	108	113	4.5	113	121	6.8	70 - 130	30
Tetrachloroethene	ND	1.0	100	104	3.9	108	117	8.0	70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	96	91	5.3	88	92	4.4	70 - 130	30
Toluene	ND	1.0	104	107	2.8	108	115	6.3	70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	98	100	2.0	103	109	5.7	70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	105	105	0.0	101	108	6.7	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	91	93	2.2	79	84	6.1	70 - 130	30
Trichloroethene	ND	1.0	103	105	1.9	110	120	8.7	70 - 130	30
Trichlorofluoromethane	ND	1.0	96	98	2.1	107	114	6.3	70 - 130	30
Trichlorotrifluoroethane	ND	1.0	88	89	1.1	97	103	6.0	70 - 130	30
Vinyl chloride	ND	1.0	97	100	3.0	111	119	7.0	70 - 130	30
% 1,2-dichlorobenzene-d4	103	%	101	101	0.0	100	98	2.0	70 - 130	30
% Bromofluorobenzene	91	%	102	101	1.0	101	101	0.0	70 - 130	30
% Dibromofluoromethane	97	%	95	94	1.1	95	93	2.1	70 - 130	30
% Toluene-d8	101	%	99	99	0.0	100	100	0.0	70 - 130	30
Comment:										

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 659737 (ug/L), QC Sample No: CN20375 (CN20372 (20X) , CN20373, CN20374 (20X) , CN20375)

Volatiles	- Ground	Water
VUIALIES		vvalei

1,1,1,2-Tetrachloroethane	ND	1.0	105	107	1.9	70 -	130	30
1,1,1-Trichloroethane	ND	1.0	97	100	3.0	70 -	130	30
1,1,2,2-Tetrachloroethane	ND	0.50	103	101	2.0	70 -	130	30
1,1,2-Trichloroethane	ND	1.0	109	106	2.8	70 -	130	30
1,1-Dichloroethane	ND	1.0	99	102	3.0	70 -	130	30
1,1-Dichloroethene	ND	1.0	96	99	3.1	70 -	130	30
1,1-Dichloropropene	ND	1.0	100	106	5.8	70 -	130	30
1,2,3-Trichlorobenzene	ND	1.0	111	108	2.7	70 -	130	30
1,2,3-Trichloropropane	ND	1.0	104	104	0.0	70 -	130	30
1,2,4-Trichlorobenzene	ND	1.0	108	108	0.0	70 -	130	30
1,2,4-Trimethylbenzene	ND	1.0	106	111	4.6	70 -	130	30
1,2-Dibromo-3-chloropropane	ND	1.0	98	103	5.0	70 -	130	30
1,2-Dibromoethane	ND	1.0	107	107	0.0	70 -	130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2-Dichlorobenzene	ND	1.0	99	102	3.0				70 - 130	30
1,2-Dichloroethane	ND	1.0	100	101	1.0				70 - 130	30
1,2-Dichloropropane	ND	1.0	101	103	2.0				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	108	111	2.7				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	102	105	2.9				70 - 130	30
1,3-Dichloropropane	ND	1.0	106	107	0.9				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	100	102	2.0				70 - 130	30
1,4-dioxane	ND	100	103	104	1.0				70 - 130	30
2,2-Dichloropropane	ND	1.0	95	98	3.1				70 - 130	30
2-Chlorotoluene	ND	1.0	105	110	4.7				70 - 130	30
2-Hexanone	ND	5.0	103	94	9.1				70 - 130	30
2-Isopropyltoluene	ND	1.0	104	109	4.7				70 - 130	30
4-Chlorotoluene	ND	1.0	105	109	3.7				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	104	99	4.9				70 - 130	30
Acetone	ND	5.0	91	94	3.2				70 - 130	30
Acrylonitrile	ND	5.0	103	101	2.0				70 - 130	30
Benzene	ND	0.70	98	102	4.0				70 - 130	30
Bromobenzene	ND	1.0	102	106	3.8				70 - 130	30
Bromochloromethane	ND	1.0	102	103	1.0				70 - 130	30
Bromodichloromethane	ND	0.50	102	101	1.0				70 - 130	30
Bromoform	ND	1.0	101	99	2.0				70 - 130	30
Bromomethane	ND	1.0	115	123	6.7				70 - 130	30
Carbon Disulfide	ND	1.0	89	92	3.3				70 - 130	30
Carbon tetrachloride	ND	1.0	98	100	2.0				70 - 130	30
Chlorobenzene	ND	1.0	100	103	3.0				70 - 130	30
Chloroethane	ND	1.0	99	104	4.9				70 - 130	30
Chloroform	ND	1.0	97	107	9.8				70 - 130	30
Chloromethane	ND	1.0	82	84	2.4				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	97	99	2.0				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	104	0.0				70 - 130	30
Dibromochloromethane	ND	0.50	104	105	1.0				70 - 130	30
Dibromomethane	ND	1.0	106	105	0.9				70 - 130	30
Dichlorodifluoromethane	ND	1.0	75	77	2.6				70 - 130	30
Ethylbenzene	ND	1.0	107	110	2.8				70 - 130	30
Hexachlorobutadiene	ND	0.40	99	103	4.0				70 - 130	30
Isopropylbenzene	ND	1.0	108	114	5.4				70 - 130	30
m&p-Xylene	ND	1.0	108	112	3.6				70 - 130	30
Methyl ethyl ketone	ND	5.0	91	92	1.1				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	100	96	4.1				70 - 130	30
Methylene chloride	ND	1.0	96	96	0.0				70 - 130	30
Naphthalene	ND	1.0	113	112	0.9				70 - 130	30
n-Butylbenzene	ND	1.0	111	114	2.7				70 - 130	30
n-Propylbenzene	ND	1.0	106	111	4.6				70 - 130	30
o-Xylene	ND	1.0	108	113	4.5				70 - 130	30
p-Isopropyltoluene	ND	1.0	110	114	3.6				70 - 130	30
sec-Butylbenzene	ND	1.0	107	113	5.5				70 - 130	30
Styrene	ND	1.0	113	115	1.8				70 - 130	30
tert-Butylbenzene	ND	1.0	108	113	4.5				70 - 130	30
Tetrachloroethene	ND	1.0	100	104	3.9				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	96	91	5.3				70 - 130	30
Toluene	ND	1.0	104	107	2.8				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	98	100	2.0				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	105	105	0.0				70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
trans-1,4-dichloro-2-butene	ND	5.0	91	93	2.2				70 - 130	30	
Trichloroethene	ND	1.0	103	105	1.9				70 - 130	30	
Trichlorofluoromethane	ND	1.0	96	98	2.1				70 - 130	30	
Trichlorotrifluoroethane	ND	1.0	88	89	1.1				70 - 130	30	
Vinyl chloride	ND	1.0	97	100	3.0				70 - 130	30	
% 1,2-dichlorobenzene-d4	103	%	101	101	0.0				70 - 130	30	
% Bromofluorobenzene	91	%	102	101	1.0				70 - 130	30	
% Dibromofluoromethane	97	%	95	94	1.1				70 - 130	30	
% Toluene-d8	101	%	99	99	0.0				70 - 130	30	

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 660084 (ug/L), QC Sample No: CN23824 (CN20372 (5X) , CN20374 (5X))

Volatiles - Ground Water

1 1 1 2-Tetrachloroethane	ND	10	104	10/	0.0	70 - 130	30
1 1 1-Trichloroethane	ND	1.0	85	85	0.0	70 - 130	30
1 1 2 2-Tetrachloroethane	ND	0.50	101	104	2.9	70 - 130	30
1.1.2-Trichloroethane	ND	1.0	106	111	4.6	70 - 130	30
1.1-Dichloroethane	ND	1.0	88	88	0.0	70 - 130	30
1.1-Dichloroethene	ND	1.0	86	86	0.0	70 - 130	30
1.1-Dichloropropene	ND	1.0	89	89	0.0	70 - 130	30
1.2.3-Trichlorobenzene	ND	1.0	107	109	1.9	70 - 130	30
1,2,3-Trichloropropane	ND	1.0	99	102	3.0	70 - 130	30
1.2.4-Trichlorobenzene	ND	1.0	106	108	1.9	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	99	99	0.0	70 - 130	30
1,2-Dibromoethane	ND	1.0	106	110	3.7	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	99	98	1.0	70 - 130	30
1,2-Dichloroethane	ND	1.0	97	100	3.0	70 - 130	30
1,2-Dichloropropane	ND	1.0	102	104	1.9	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	103	102	1.0	70 - 130	30
1,3-Dichlorobenzene	ND	1.0	100	100	0.0	70 - 130	30
1,3-Dichloropropane	ND	1.0	107	108	0.9	70 - 130	30
1,4-Dichlorobenzene	ND	1.0	99	98	1.0	70 - 130	30
1,4-dioxane	ND	100	99	102	3.0	70 - 130	30
2,2-Dichloropropane	ND	1.0	84	83	1.2	70 - 130	30
2-Chlorotoluene	ND	1.0	104	103	1.0	70 - 130	30
2-Hexanone	ND	5.0	99	102	3.0	70 - 130	30
2-Isopropyltoluene	ND	1.0	100	99	1.0	70 - 130	30
4-Chlorotoluene	ND	1.0	105	103	1.9	70 - 130	30
4-Methyl-2-pentanone	ND	5.0	101	107	5.8	70 - 130	30
Acetone	ND	5.0	83	93	11.4	70 - 130	30
Acrylonitrile	ND	5.0	91	94	3.2	70 - 130	30
Benzene	ND	0.70	101	96	5.1	70 - 130	30
Bromobenzene	ND	1.0	103	103	0.0	70 - 130	30
Bromochloromethane	ND	1.0	92	96	4.3	70 - 130	30
Bromodichloromethane	ND	0.50	98	99	1.0	70 - 130	30
Bromoform	ND	1.0	98	98	0.0	70 - 130	30
Bromomethane	ND	1.0	107	99	7.8	70 - 130	30
Carbon Disulfide	ND	1.0	80	79	1.3	70 - 130	30
Carbon tetrachloride	ND	1.0	86	86	0.0	70 - 130	30
Chlorobenzene	ND	1.0	101	100	1.0	70 - 130	30

QA/QC Data

SDG I.D.: GCN20371

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits
Chloroethane	ND	1.0	89	87	2.3				70 - 130	30
Chloroform	ND	1.0	88	89	1.1				70 - 130	30
Chloromethane	ND	1.0	87	87	0.0				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	91	92	1.1				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	105	1.0				70 - 130	30
Dibromochloromethane	ND	0.50	103	104	1.0				70 - 130	30
Dibromomethane	ND	1.0	104	108	3.8				70 - 130	30
Dichlorodifluoromethane	ND	1.0	81	82	1.2				70 - 130	30
Hexachlorobutadiene	ND	0.40	91	92	1.1				70 - 130	30
Isopropylbenzene	ND	1.0	104	102	1.9				70 - 130	30
Methyl ethyl ketone	ND	5.0	91	88	3.4				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	91	94	3.2				70 - 130	30
Methylene chloride	ND	1.0	87	88	1.1				70 - 130	30
Naphthalene	ND	1.0	110	116	5.3				70 - 130	30
n-Butylbenzene	ND	1.0	103	102	1.0				70 - 130	30
n-Propylbenzene	ND	1.0	102	99	3.0				70 - 130	30
o-Xylene	ND	1.0	108	107	0.9				70 - 130	30
p-Isopropyltoluene	ND	1.0	102	101	1.0				70 - 130	30
sec-Butylbenzene	ND	1.0	100	99	1.0				70 - 130	30
Styrene	ND	1.0	113	111	1.8				70 - 130	30
tert-Butylbenzene	ND	1.0	102	100	2.0				70 - 130	30
Tetrachloroethene	ND	1.0	98	97	1.0				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	86	93	7.8				70 - 130	30
Toluene	ND	1.0	102	103	1.0				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	87	86	1.2				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	101	106	4.8				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	85	90	5.7				70 - 130	30
Trichloroethene	ND	1.0	100	99	1.0				70 - 130	30
Trichlorofluoromethane	ND	1.0	83	84	1.2				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	75	76	1.3				70 - 130	30
Vinyl chloride	ND	1.0	91	90	1.1				70 - 130	30
% 1,2-dichlorobenzene-d4	105	%	99	100	1.0				70 - 130	30
% Bromofluorobenzene	92	%	102	102	0.0				70 - 130	30
% Dibromofluoromethane	89	%	85	88	3.5				70 - 130	30
% Toluene-d8	100	%	98	99	1.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Data

SDG I.D.: GCN20371

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 659655 (ppbv), Q	C Sam	ple No:	CN20377	(CN203	76 (10X, 20X)	, CN203	377 (10	X))				
Volatiles												
1,1,1,2-Tetrachloroethane	ND	1.50	ND	10.3	98	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	1.80	ND	9.8	101	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	1.50	ND	10.3	104	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	1.80	ND	9.8	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	2.50	ND	10.1	102	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	2.50	ND	9.9	102	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	2.00	ND	9.8	106	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	1.30	ND	10.0	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	2.50	ND	10.1	101	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	2.20	ND	10.2	100	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	1.40	ND	9.8	98	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	2.00	ND	9.8	103	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	4.50	ND	9.9	97	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	2.80	ND	10.1	105	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	2.40	ND	9.8	107	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	2.00	ND	9.8	111	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	1.80	ND	9.9	91	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	2.40	ND	9.8	104	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	4.20	ND	10.0	92	261	249	110	105	4.7	70 - 130	25
Acrylonitrile	ND	4.60	ND	10.0	76	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	3.10	ND	9.9	101	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	1.50	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.970	ND	10.0	127	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	2.60	ND	10.1	98	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	3.20	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.400	ND	2.51	109	ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	2.20	ND	10.1	106	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	3.80	ND	10.0	95	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	2.00	ND	9.8	105	121	122	24.7	25.0	1.2	70 - 130	25
Chloromethane	ND	4.80	ND	9.9	93	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	2.50	ND	9.9	102	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	2.20	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	2.90	ND	10.0	100	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	1.20	ND	10.2	115	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	2.00	ND	9.9	101	ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	5.30	ND	10.0	129	56.1	58.0	29.8	30.8	3.3	70 - 130	25
Ethyl acetate	ND	2.80	ND	10.1	84	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	2.30	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	2.40	ND	9.8	102	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.940	ND	10.0	87	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	2.80	ND	9.9	104	18.5	16.5	5.24	4.68	NC	70 - 130	25

QA/QC Data

SDG I.D.: GCN20371

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Samp Resu ug/m	e Sample t Dup 3 ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Isopropylalcohol	ND	4.10	ND	10.1	99	ND	ND	ND	ND	NC	70 - 130	25	
Isopropylbenzene	ND	2.00	ND	9.8	89	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	2.30	ND	10.0	111	ND	ND	ND	ND	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	3.40	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	2.80	ND	10.1	103	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	2.90	ND	10.1	103	ND	ND	ND	ND	NC	70 - 130	25	
n-Butylbenzene	ND	1.80	ND	9.9	92	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	2.30	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25	
Propylene	ND	5.80	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
sec-Butylbenzene	ND	1.80	ND	9.9	92	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.370	ND	2.51	104	2540	2620	375	386	2.9	70 - 130	25	
Tetrahydrofuran	ND	3.40	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	2.70	ND	10.2	104	ND	ND	ND	ND	NC	70 - 130	25	
Trans-1,2-Dichloroethene	ND	2.50	ND	9.9	103	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.470	ND	2.52	102	118	118	21.9	22.0	0.5	70 - 130	25	
Trichlorofluoromethane	ND	1.80	ND	10.1	97	ND	ND	ND	ND	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	1.30	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.980	ND	2.50	100	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	101		101		103	107	110	107	110	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	115	%	115	%	105	97	89	97	89	NC	60 - 140	25	
% IS-Bromochloromethane	115	%	115	%	105	98	91	98	91	NC	60 - 140	25	
% IS-Chlorobenzene-d5	111	%	111	%	114	96	89	96	89	NC	60 - 140	25	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shille

Phyllis Shiller, Laboratory Director September 20, 2023

Wednesday, September 20, 2023 Criteria: None			Sample Criteria E	xceedances Report				
State: SampNo	NY Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
*** No Data	to Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

September 20, 2023

SDG I.D.: GCN20371

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM20 01/11/23-1: CN20376, CN20377

The following Continuing Calibration compounds did not meet % deviation criteria: Ethanol 34%H (30%) The following Continuing Calibration compounds did not meet Maximum % deviation criteria: Ethanol 34%H (30%)

VOA Narration

<u>CHEM17 01/11/23-1:</u> CN20372, CN20373, CN20374, CN20375

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.033 (0.05), Acetone 0.024 (0.05), Acrylonitrile 0.034 (0.05), Methyl ethyl ketone 0.037 (0.05), Tetrahydrofuran (THF) 0.023 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 01/11/23-3: CN20371

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.033 (0.05), Acetone 0.024 (0.05), Acrylonitrile 0.034 (0.05), Methyl ethyl ketone 0.037 (0.05), Tetrahydrofuran (THF) 0.023 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 01/13/23-2: CN20372, CN20374

Analysis Comments

September 20, 2023

SDG I.D.: GCN20371

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.032 (0.05), 2-Hexanone 0.039 (0.05), Acetone 0.028 (0.05), Acrylonitrile 0.035 (0.05), Methyl ethyl ketone 0.041 (0.05), Tetrahydrofuran (THF) 0.024 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

NY Temperature Narration

September 20, 2023

SDG I.D.: GCN20371

The samples in this delivery group were received at 2.7°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

{					PEL-111 Rev 10/2021
Cooler: Yes K No Oler: IPK I ICE No Oler 2、ア C Pg of 546-1100	O: section MUST be npleted with te Quantities. ↓ ↓ ↓			 ***	PA Clean Fill Limits PA-GW Reg Fill Limits PA Soil Restricted PA Soil non-restricted State Samples Collected?
Coolant: Term Term Frax: Eax: Eax: Eax:	Project P. This con Bott	00000000000000000000000000000000000000	65 65 65 65 65 65 65 65 65 65 65 65 65 6	2	NY TOGS GW CP-51 SOIL 375SC0 Unrestricted Soil 375SC0 Residential Soil 375SC0 Residential Soil 375SC0 Commercial Soil Industrial Soil Industrial Soil Subpart 5 DW
RECORD ter, CT 06040 45-0823	calo Avenue etro Corecondan		5 105 10 10 10 10 10 10 10 10 10 10 10 10 10		NJ Res. Criteria Non-Res. Criteria Impact to GW Soli Cleanup Criteria Soli screen Criteria Soli screen Criteria div. * Other
OF CUSTODY F OF CUSTODY F DBx.com Fax (860) 6 bbs.com Fax (860) 6 ces (860) 645-8726	Bill Scher	A TA LANGE ST.			ED Data Package: Data Package: NJ Reduced De
NJ/PA CHAIN ast Middle Turnpike, F Email: info@phoenixla Client Servi	Project: Report to Invoice tr	Analysis Request		×× ×	ate: Tim ate: Tim //o/2.3 9. 0 //o/2.3 /6 //o/2.3 /6 //o/2.3 /6 //o/2.5 /6 //o/2.5 /6 //o/2.5 /6
NY 587 E	1 Serves Norn Merride	(cation 1/4/23 	Image: Sampled Sam		Data Format:
X States	ed Enviorment Ernek Avenue, Fede 11566	ble - Information - Identifi Mater SW=Surface Wards SL=Sludge S=Soil SD=1	mer sample samp Intification Matrix I HO 2 GW 10 3 GW 10 X GW	ink-2 Rim	Accepted by: ZM Ruulle- analyi's on
HOENI onmental Labor	mer: <u>Prekra</u> ess: <u>323 m</u> <u>Nev 1</u>	Client Samp Client Samp Code: king Water GW-Groun king Water SE-Sediment B=Bulk L=Liquid	ULE# Idention Custon ULE# Idention Idention DAM IV - IL DAM - IL DAM - IL	nlow Lla	shed by: special Requirement in mS/ms/d
P Envir	Custc Addr	Sampler's Signature Matrix Co DW=Drin RW=Brin RW=Raw	PHOENX SAMF SAMF SAMF SAMF SAMF SAMF SAMF SAMF	203 203 203	Relinquit Relinquit

Bobbi Aloisa

From:	Christopher Zweier <czweier@preferredenv.com></czweier@preferredenv.com>
Sent:	Monday, September 18, 2023 9:15 AM
То:	Bobbi Aloisa
Cc:	Bill Schlageter; Victoria Whelan
Subject:	Corrections needed on reports
Attachments:	lists for phoenix.pdf; 4.23 report.pdf; 9.23 report.pdf; 1.23 report.pdf

Good Morning Bobbi,

I think last year I had you guys correct some reports for me for our project "Dekalb Avenue" due to them having an incomplete VOC list. I'm running across the same problem this year writing our report. The list provided excludes a significant amount of PVOCs. I've attached a table showing the list provided and the list we need each report corrected to. Can you correct the reports as well as the EDDs to have the proper list? The following reports require corrections:

1

GCN20371 GCN74070 GCO91340

Also is there a name for this list that we should request on our COCs to avoid this in the future?

Please reach out with any questions.

Thanks,

Christopher P. Zweier Project Manager, Environmental Scientist

PREFERRED ENVIRONMENTAL SERVICES NYS, NYC, PANY/NJ, New York City School Construction Authority-certified WBE 323 Merrick Avenue North Merrick, New York 11566 work: 516 546 1100 cell: 516 729 3293 fax: 516 213 8156

list provided Volatiles By SW8260C Volatiles By SW8260C 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1.2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1.2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Trichlorotrifluoroethane Vinyl chloride

,1,1,2-Tetrachloroetha ,1-Dichloropropene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane ,1,2-Trichloroethane 1,1-Dichloroethane L,1-Dichloroethene 1,2,3-Trichlorobenzene 2,3-Trichloropropane 1,2,4-Trichlorobenzene ,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane -Trimethylbenzen 1,3-Dichlorobenzene 3-Dichloropropane 1,4-Dichlorobenzene ,2-Dichloroprop nane -Chlorotoluene -Hexanone -Isopropyltoluene Chlorotoluene 4-Methyl-2-pentanone Acetone crolein crylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene is-1,3-Dichloropropene Cyclohexane Dibromochloromethane ibromomethane Dichlorodifluoromethane Ethylbenzene lexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) /lethylacetate Methylcyclohexane Methylene chloride laphthalene -Butvlbenzene <mark>i-Propylbenzene</mark> o-Xylene -Isopropyltoluene ec-Butylbenzene Styrene ert-Butylbenzene Tetrachloroethene etrahydrofuran (THF) Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene rans-1,4-dichloro-2-butene [richloroethene] Trichlorofluoromethane Trichlorotrifluoroethane Vinyl chloride

list needed

analyte not present on list provided

Page 43 of 43

Tuesday, October 03, 2023

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID:1107 DEKALB AVESDG ID:GCN74070Sample ID#s:CN74070 - CN74072

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Preferred Environmental Services Project: 1107 DEKALB AVE Laboratory Project: GCN74070

NY Analytical Services Protocol Format

October 03, 2023

SDG I.D.: GCN74070

Preferred Environmental Services 1107 DEKALB AVE

Methodology Summary

Volatile Organic Compounds:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 8260D and Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983 (Methods 624) as printed in 40CFR part 136.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

October 03, 2023

SDG I.D.: GCN74070

Preferred Environmental Services 1107 DEKALB AVE

Laboratory Chronicle

The samples in this delivery group were received at 2.1°C.

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
CN74070	1,4-dioxane	03/31/23	04/04/23	04/04/23	MH	Y
CN74070	Volatiles	03/31/23	04/04/23	04/04/23	HM	Y
CN74071	1,4-dioxane	03/31/23	04/04/23	04/04/23	MH	Y
CN74071	Volatiles	03/31/23	04/04/23	04/04/23	HM	Y
CN74072	1,4-dioxane	03/31/23	04/05/23	04/05/23	MH	Y
CN74072	Volatiles	03/31/23	04/05/23	04/05/23	HM	Y

SDG Comments

October 03, 2023

SDG I.D.: GCN74070

1,4-dioxane:

1,4-dioxane does not meet GW criteria, this compound is analyzed by GC/MS method 522 or 8270SIM when this criteria needs to be met.

8260 Volatile Organics:

1,2-Dibromoethane, 1,2,3 Trichloropropane, and 1,2-Dibromo-3-chloropropane do not meet NY TOGS GA criteria, these compounds are analyzed by GC/ECD method 504 or 8011 to achieve this criteria.

Aqueous library searches do not include peaks that were also found in the blank or are known column bleed compounds

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus raw data.

Version 2: Voa compound list was revised.

Sample Id Cross Reference

October 03, 2023

SDG I.D.: GCN74070

Project ID: 1107 DEKALB AVE

Client Id	Lab Id	Matrix
MW-1401	CN74070	GROUND WATER
MW-1402	CN74071	GROUND WATER
MW-1403	CN74072	GROUND WATER

Time

16:35

15:08

Analysis Report

P.O.#:

Project ID: Client ID:

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

October 03, 2023

1107 DEKALB AVE

MW-1401

Sample Information **Custody Information** Date **GROUND WATER** 03/31/23 Matrix: Collected by: PREFRDNY Received by: CP 04/03/23 Location Code: Analyzed by: Rush Request: 5 Day see "By" below

RL/

aboratory Data

LOD/

SDG ID: GCN74070 Phoenix ID: CN74070

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	04/04/23	HM	SW8260D
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	04/04/23	HM	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
2-Hexanone	ND	2.5	2.5	ug/L	1	04/04/23	HM	SW8260D
2-Isopropyltoluene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	04/04/23	HM	SW8260D

ug/L

4-Methyl-2-pentanone

1

Project ID: 1107 DEKALB AVE

Client ID: MW-1401

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Acetone	ND	5.0	2.5	ug/L	1	04/04/23	НМ	SW8260D
Acrolein	ND	5.0	2.5	ug/L	1	04/04/23	HM	SW8260D
Acrylonitrile	ND	5.0	2.5	ug/L	1	04/04/23	HM	SW8260D
Benzene	ND	0.70	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromochloromethane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromodichloromethane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromoform	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromomethane	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Carbon Disulfide	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chlorobenzene	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloroethane	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloroform	1.3	J 5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloromethane	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
cis-1,2-Dichloroethene	0.30	J 1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	04/04/23	HM	SW8260D
Dibromochloromethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Dibromomethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Ethylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Hexachlorobutadiene	ND	0.50	0.20	ug/L	1	04/04/23	НМ	SW8260D
Isopropylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
m&p-Xylene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Methyl ethyl ketone	ND	2.5	2.5	ug/L	1	04/04/23	НМ	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Methylene chloride	ND	3.0	1.0	ug/L	1	04/04/23	НМ	SW8260D
Naphthalene	ND	1.0	1.0	ug/L	1	04/04/23	НМ	SW8260D
n-Butylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
n-Propylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
o-Xylene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
p-Isopropyltoluene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
sec-Butylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Styrene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Tetrachloroethene	1.9	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Tetrahydrofuran (THF)	ND	5.0	2.5	ug/L	1	04/04/23	НМ	SW8260D 1
Toluene	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
trans-1,2-Dichloroethene	ND	5.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
trans-1.3-Dichloropropene	ND	0.40	0.25	ug/L	1	04/04/23	НМ	SW8260D
trans-1.4-dichloro-2-butene	ND	2.5	2.5	ug/L	1	04/04/23	НМ	SW8260D
Trichloroethene	6.5	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
Vinyl chloride	ND	1.0	0.25	ug/L	1	04/04/23	НМ	SW8260D
QA/QC Surrogates				-				
% 1,2-dichlorobenzene-d4	99			%	1	04/04/23	НМ	70 - 130 %
% Bromofluorobenzene	99			%	1	04/04/23	НМ	70 - 130 %
% Dibromofluoromethane	98			%	1	04/04/23	НМ	70 - 130 %

Project ID: 1107 DEKALB AVE

Client ID: MW-1401

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100			%	1	04/04/23	HM	70 - 130 %
1,4-dioxane 1,4-dioxane	ND	100	50	ug/l	1	04/04/23	МН	SW8260C
Volatile Library Search Top 10	Completed					04/05/23	MH	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

CN74070 - The pH in the preserved volatile vial was greater than 2. A negative bias may have occurred.

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

Rush Request:

P.O.#:

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Dilution

October 03, 2023

Sample InformationCustody InformationMatrix:GROUND WATERCollected by:Location Code:PREFRDNYReceived by:CP

CP see "By" below

 Date
 Time

 03/31/23
 11:55

 04/03/23
 15:08

Date/Time

Laboratory Data

Units

Analyzed by:

SDG ID: GCN74070 Phoenix ID: CN74071

Reference

By

Parameter	Result	PQL	MDL
		RL/	LOD/
Client ID:	MW-1402		
Project ID:	1107 DEKALB AVE		

5 Day

<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2,4-Trimethylbenzene	310	D 20	5.0	ug/L	20	04/04/23	HM	SW8260D	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	04/04/23	HM	SW8260D	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	04/04/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,3,5-Trimethylbenzene	43	D 20	5.0	ug/L	20	04/04/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
2-Hexanone	ND	2.5	2.5	ug/L	1	04/04/23	HM	SW8260D	
2-Isopropyltoluene	1.0	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	04/04/23	HM	SW8260D	

Project ID: 1107 DEKALB AVE

Client ID: MW-1402

Parameter	Result		rl/ Pql	LOD/ MDL	Units	Dilution	Date/Time	By	Reference
Acetone	ND		5.0	2.5	ug/L	1	04/04/23	НМ	SW8260D
Acrolein	ND		5.0	2.5	ug/L	1	04/04/23	HM	SW8260D
Acrylonitrile	ND		5.0	2.5	ug/L	1	04/04/23	HM	SW8260D
Benzene	0.85		0.70	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromobenzene	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromochloromethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromodichloromethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromoform	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Bromomethane	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Carbon Disulfide	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Carbon tetrachloride	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chlorobenzene	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloroethane	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloroform	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Chloromethane	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
cis-1,2-Dichloroethene	13		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
cis-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	04/04/23	HM	SW8260D
Dibromochloromethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Dibromomethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Dichlorodifluoromethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Ethylbenzene	340	D	20	5.0	ug/L	20	04/04/23	HM	SW8260D
Hexachlorobutadiene	ND		0.50	0.20	ug/L	1	04/04/23	HM	SW8260D
Isopropylbenzene	39	D	20	5.0	ug/L	20	04/04/23	HM	SW8260D
m&p-Xylene	310	D	20	5.0	ug/L	20	04/04/23	HM	SW8260D
Methyl ethyl ketone	ND		2.5	2.5	ug/L	1	04/04/23	HM	SW8260D
Methyl t-butyl ether (MTBE)	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Methylene chloride	ND		3.0	1.0	ug/L	1	04/04/23	HM	SW8260D
Naphthalene	55	D	20	20	ug/L	20	04/04/23	HM	SW8260D
n-Butylbenzene	3.4		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
n-Propylbenzene	73	D	20	5.0	ug/L	20	04/04/23	HM	SW8260D
o-Xylene	0.87	J	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
p-lsopropyltoluene	0.77	J	1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
sec-Butylbenzene	3.7		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Styrene	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
tert-Butylbenzene	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Tetrachloroethene	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Tetrahydrofuran (THF)	ND		5.0	2.5	ug/L	1	04/04/23	HM	SW8260D 1
Toluene	5.3		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
trans-1,2-Dichloroethene	ND		5.0	0.25	ug/L	1	04/04/23	HM	SW8260D
trans-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	04/04/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND		2.5	2.5	ug/L	1	04/04/23	HM	SW8260D
Trichloroethene	2.1		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Trichlorofluoromethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Trichlorotrifluoroethane	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
Vinyl chloride	ND		1.0	0.25	ug/L	1	04/04/23	HM	SW8260D
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	98				%	1	04/04/23	HM	70 - 130 %
% Bromofluorobenzene	102				%	1	04/04/23	HM	70 - 130 %
% Dibromofluoromethane	97				%	1	04/04/23	HM	/0 - 130 %

Project ID: 1107 DEKALB AVE

Client ID: MW-1402				
		RL/	LOD/	
Parameter	Result	PQL	MDL	l

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	101			%	1	04/04/23	HM	70 - 130 %
% 1,2-dichlorobenzene-d4 (20x)	98			%	20	04/04/23	HM	70 - 130 %
% Bromofluorobenzene (20x)	99			%	20	04/04/23	HM	70 - 130 %
% Dibromofluoromethane (20x)	96			%	20	04/04/23	HM	70 - 130 %
% Toluene-d8 (20x)	99			%	20	04/04/23	HM	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100	50	ug/l	1	04/04/23	MH	SW8260C
Volatile Library Search Top 10	Completed					04/05/23	МН	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Time

Analysis Report

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

October 03, 2023

Sample Information

Project ID: Client ID:

GROUND WATER Matrix: Location Code: PREFRDNY Rush Request: 5 Day P.O.#:

1107 DEKALB AVE

MW-1403

Custody Information									
Collected by:									
Received by:	CP								
Analyzed by:	see "By" below								

03/31/23 15:32 04/03/23 15:08

Date

Date/Time

_aboratory Data

SDG ID: GCN74070 Phoenix ID: CN74072

Reference

By

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution
Volatiles					
<u>volatiles</u>					
1,1,1,2-letrachloroethane	ND	1.0	0.25	ug/L	1
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1

1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/05/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	5.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,1-Dichloroethane	ND	5.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2,3-Trichloropropane	ND	0.25	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2,4-Trimethylbenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2-Dibromo-3-chloropropane	ND	0.50	0.50	ug/L	1	04/05/23	HM	SW8260D	
1,2-Dibromoethane	ND	0.25	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	0.50	ug/L	1	04/05/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,3,5-Trimethylbenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
2-Hexanone	ND	2.5	2.5	ug/L	1	04/05/23	HM	SW8260D	
2-Isopropyltoluene	0.26	J 1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	04/05/23	HM	SW8260D	

1

Project ID: 1107 DEKALB AVE

Client ID: MW-1403

Parameter	Result		RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND		5.0	2.5	ug/L	1	04/05/23	HM	SW8260D
Acrolein	ND		5.0	2.5	ug/L	1	04/05/23	HM	SW8260D
Acrylonitrile	ND		5.0	2.5	ug/L	1	04/05/23	HM	SW8260D
Benzene	ND		0.70	0.25	ug/L	1	04/05/23	HM	SW8260D
Bromobenzene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Bromochloromethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Bromodichloromethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Bromoform	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Bromomethane	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Carbon Disulfide	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Carbon tetrachloride	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Chlorobenzene	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Chloroethane	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Chloroform	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Chloromethane	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
cis-1,2-Dichloroethene	2.2		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
cis-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	04/05/23	HM	SW8260D
Dibromochloromethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Dibromomethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Dichlorodifluoromethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Ethylbenzene	2.7		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Hexachlorobutadiene	ND		0.50	0.20	ug/L	1	04/05/23	HM	SW8260D
Isopropylbenzene	3.2		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
m&p-Xylene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Methyl ethyl ketone	ND		2.5	2.5	ug/L	1	04/05/23	HM	SW8260D
Methyl t-butyl ether (MTBE)	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Methylene chloride	ND		3.0	1.0	ug/L	1	04/05/23	HM	SW8260D
Naphthalene	ND		1.0	1.0	ug/L	1	04/05/23	HM	SW8260D
n-Butylbenzene	0.96	J	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
n-Propylbenzene	1.7		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
o-Xylene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
p-Isopropyltoluene	0.31	J	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
sec-Butylbenzene	3.4		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Styrene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
tert-Butylbenzene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Tetrachloroethene	0.37	J	1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Tetrahydrofuran (THF)	ND		5.0	2.5	ug/L	1	04/05/23	HM	SW8260D 1
Toluene	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
trans-1,2-Dichloroethene	ND		5.0	0.25	ug/L	1	04/05/23	HM	SW8260D
trans-1,3-Dichloropropene	ND		0.40	0.25	ug/L	1	04/05/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND		2.5	2.5	ug/L	1	04/05/23	HM	SW8260D
Trichloroethene	1.9		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Trichlorofluoromethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Trichlorotrifluoroethane	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
Vinyl chloride	ND		1.0	0.25	ug/L	1	04/05/23	HM	SW8260D
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	97				%	1	04/05/23	HM	70 - 130 %
% Bromofluorobenzene	100				%	1	04/05/23	HM	70 - 130 %
% Dibromofluoromethane	95				%	1	04/05/23	HM	70 - 130 %

Project ID: 1107 DEKALB AVE

Client ID: MW-1403

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98			%	1	04/05/23	HM	70 - 130 %
1,4-dioxane 1,4-dioxane	ND	100	50	ug/l	1	04/05/23	МН	SW8260C
Volatile Library Search Top 10	Completed					04/06/23	MH	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director October 03, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

		CLIENT ID			
VOI F	LATILE ORGANICS ANALYS TENTATIVELY IDENTIFIED	SIS DATA SHEET COMPOUNDS		MW-1401	
Lab Name: Phoenix En	vironmental Labs	Client:	PREFRDNY		
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCN7407
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN74070	
Sample wt/vol:	25(g/mL)	<u>mL</u>	Lab File ID:	0404_14.D	
Level: (low/med)			Date Received:	04/03/23	
% Moisture: not dec.	100		Date Analyzed:	04/04/23	
GC Column:	RTX-VMS ID:	<u>0.18mm</u>	Dilution Factor:	-	1
Purge Volume:	<u>25000</u> (uL)		Soil Aliquot Vol (uL	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q
	l				

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

		MW-1402				
Lab Name: Phoenix E	Environmental Labs		Client: PREF	RDNY		
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCN74070
Matrix:(soil/water)	GROUND WATER		Lab S	ample ID:	CN74071	
Sample wt/vol:	25	(g/mL) <u>mL</u>	Lab F	ile ID:	0404_15.D	
Level: (low/med)			Date I	Received:	04/03/23	
% Moisture: not dec.	100		Date	Analyzed:	04/04/23	
GC Column:	RTX-VMS	ID: <u>0.18mm</u>	Dilutic	on Factor:	-	1
Purge Volume:	(uL)		Soil A	liquot Vol (uL):	n.a.
		CONCENTRATIO	N UNITS:			

Number TICs found:

22

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000106-97-8	Butane	1.335	39	JN
000078-78-4	Butane, 2-methyl-	1.586	80	JN
000109-66-0	Pentane	1.712	26	JN
000930-18-7	Cyclopropane, 1,2-dimethyl-, cis-	1.895	13	JN
000107-83-5	Pentane, 2-methyl-	2.255	40	JN
000287-92-3	Cyclopentane	2.276	36	JN
000096-14-0	Pentane, 3-methyl-	2.412	25	JN
000096-37-7	Cyclopentane, methyl-	2.967	43	JN
103-65-1	n-Propylbenzene	7.281	90	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.360	50	JN
108-67-8	1,3,5-Trimethylbenzene	7.417	51	Q
	Benzene, 1-ethyl-2-methyl- Isomer	7.559	37	JN
95-63-6	1,2,4-Trimethylbenzene	7.674	210	Q
135-98-8	sec-Butylbenzene	7.742	3.7	Q
99-87-6	p-Isopropyltoluene	7.83	0.77	Q
527-84-4	2-Isopropyltoluene	7.982	1	Q
104-51-8	n-Butylbenzene	8.082	3.4	Q
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	8.228	12	JN
000767-58-8	Indan, 1-methyl-	8.343	16	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.647	13	JN
	1H-Indene, 2,3-dihydro-4-methyl- Isomer	8.741	23	JN
91-20-3	Naphthalene	9.133	72	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

(g/mL) mL

Lab Name: Phoenix Environmental Labs

Case No.:

Water

25

Low

n.a.

25000 (uL)

RTX-VMS

0

Phoenix

Lab Code:

Matrix:(soil/water)

Sample wt/vol:

Level: (low/med)

GC Column:

Purge Volume:

% Moisture: not dec.

Number TICs found:

CLI	EN	ГID

CN74072 BLK Client: SAS No.: SDG No.: Lab Sample ID: CN74072 BLK Lab File ID: 0405_07.D

Date Received: 04/03/23 Date Analyzed: 04/05/23 ID: 0.18mm **Dilution Factor:** 1 Soil Aliquot Vol (uL): n.a.

ug/L

CONCENTRATION UNITS: (ug/L or ug/KG)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

Lab Name: Phoenix Er	nvironmental Labs		Client: P	PREFRDNY		
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCN7407(
Matrix:(soil/water) G	ROUND WATER		L	ab Sample ID:	CN74072	
Sample wt/vol:	25	(g/mL) <u>mL</u>	L	ab File ID:	0405_08.D	
Level: (low/med)			D	Date Received:	04/03/23	
% Moisture: not dec.	100		D	Date Analyzed:	04/05/23	
GC Column:	RTX-VMS	ID: <u>0.18mm</u>	D	Dilution Factor:	-	1
Purge Volume:	(uL)		S	Soil Aliquot Vol (uL):	n.a.
		CONCENTRATION	NUNITS:			

Number TICs found:

16

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-	1.586	3.6	JN
000079-29-8	Butane, 2,3-dimethyl-	2.245	8.3	JN
000096-14-0	Pentane, 3-methyl-	2.407	2.7	JN
000108-08-7	Pentane, 2,4-dimethyl-	2.935	6.1	JN
000565-59-3	Pentane, 2,3-dimethyl-	3.458	5.4	JN
002532-58-3	Cyclopentane, 1,3-dimethyl-, cis-	3.657	2.2	JN
000540-84-1	Pentane, 2,2,4-trimethyl-	3.730	15	JN
000565-75-3	Pentane, 2,3,4-trimethyl-	4.546	6.7	JN
000560-21-4	Pentane, 2,3,3-trimethyl-	4.640	8.8	JN
	unknown	4.923	2.1	J
	unknown	5.268	1.4	J
135-98-8	sec-Butylbenzene	7.736	3.4	Q
104-51-8	n-Butylbenzene	8.081	0.96	Q
000934-10-1	3-Phenylbut-1-ene	8.338	1.7	JN
000874-35-1	1H-Indene, 2,3-dihydro-5-methyl-	8.741	1.7	JN
017059-48-2	1H-Indene, 2,3-dihydro-1,6-dimethy	8.966	2.7	JN

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

MW-1403

QA/QC Report

October 03, 2023

<u>QA/QC Data</u>

SDG I.D.: GCN74070

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 671596 (ug/L), QC	C Samp	le No: CN74072 (CN74072)								
Volatiles - Ground Water										
1 1 1 2-Tetrachloroethane	ND	1.0	101	113	11 2				70 - 130	30
1 1 1-Trichloroethane		1.0	93	102	9.2				70 - 130	30
1 1 2 2-Tetrachloroethane	ND	0.50	102	114	11 1				70 - 130	30
1 1 2-Trichloroethane	ND	10	105	114	8.2				70 - 130	30
1.1-Dichloroethane	ND	1.0	96	106	9.9				70 - 130	30
1.1-Dichloroethene	ND	1.0	92	102	10.3				70 - 130	30
1.1-Dichloropropene	ND	1.0	95	105	10.0				70 - 130	30
1.2.3-Trichlorobenzene	ND	1.0	106	118	10.7				70 - 130	30
1.2.3-Trichloropropane	ND	1.0	94	105	11.1				70 - 130	30
1.2.4-Trichlorobenzene	ND	1.0	102	115	12.0				70 - 130	30
1 2 4-Trimethylbenzene	ND	1.0	95	107	11.9				70 - 130	30
1 2-Dibromo-3-chloropropane	ND	1.0	108	121	11.7				70 - 130	30
1 2-Dibromoethane	ND	1.0	100	114	9.2				70 - 130	30
1.2-Dichlorobenzene	ND	1.0	98	108	9.7				70 - 130	30
1.2-Dichloroethane	ND	1.0	102	111	8.5				70 - 130	30
1.2-Dichloropropane	ND	1.0	100	110	9.5				70 - 130	30
1.3.5-Trimethylbenzene	ND	1.0	95	107	11.9				70 - 130	30
1.3-Dichlorobenzene	ND	1.0	96	108	11.8				70 - 130	30
1.3-Dichloropropane	ND	1.0	105	114	8.2				70 - 130	30
1.4-Dichlorobenzene	ND	1.0	96	108	11.8				70 - 130	30
1.4-dioxane	ND	100	106	115	8.1				70 - 130	30
2.2-Dichloropropane	ND	1.0	95	105	10.0				70 - 130	30
2-Chlorotoluene	ND	1.0	96	107	10.8				70 - 130	30
2-Hexanone	ND	5.0	98	109	10.6				70 - 130	30
2-Isopropyltoluene	ND	1.0	93	105	12.1				70 - 130	30
4-Chlorotoluene	ND	1.0	97	110	12.6				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	107	119	10.6				70 - 130	30
Acetone	ND	5.0	92	99	7.3				70 - 130	30
Acrolein	ND	5.0	87	96	9.8				70 - 130	30
Acrylonitrile	ND	5.0	98	110	11.5				70 - 130	30
Benzene	ND	0.70	98	109	10.6				70 - 130	30
Bromobenzene	ND	1.0	99	111	11.4				70 - 130	30
Bromochloromethane	ND	1.0	99	110	10.5				70 - 130	30
Bromodichloromethane	ND	0.50	103	114	10.1				70 - 130	30
Bromoform	ND	1.0	110	122	10.3				70 - 130	30
Bromomethane	ND	1.0	104	118	12.6				70 - 130	30
Carbon Disulfide	ND	1.0	85	95	11.1				70 - 130	30
Carbon tetrachloride	ND	1.0	90	102	12.5				70 - 130	30
Chlorobenzene	ND	1.0	97	107	9.8				70 - 130	30
Chloroethane	ND	1.0	96	105	9.0				70 - 130	30
Chloroform	ND	1.0	95	106	10.9				70 - 130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LC %	S LCS	SD 6	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Chloromethane	ND	1.0	94	10)5	11.1				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	96	10)7	10.8				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	10	5 11	3	7.3				70 - 130	30
Dibromochloromethane	ND	0.50	10	5 11	7	10.8				70 - 130	30
Dibromomethane	ND	1.0	10	5 11	6	9.0				70 - 130	30
Dichlorodifluoromethane	ND	1.0	89	98	8	9.6				70 - 130	30
Ethylbenzene	ND	1.0	97	10)7	9.8				70 - 130	30
Hexachlorobutadiene	ND	0.40	93	10)5	12.1				70 - 130	30
Isopropylbenzene	ND	1.0	94	10)6	12.0				70 - 130	30
m&p-Xylene	ND	1.0	96	10)6	9.9				70 - 130	30
Methyl ethyl ketone	ND	5.0	97	10)5	7.9				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	103	3 11	4	10.1				70 - 130	30
Methylene chloride	ND	1.0	97	10	8	10.7				70 - 130	30
Naphthalene	ND	1.0	10	3 12	20	10.5				70 - 130	30
n-Butylbenzene	ND	1.0	96	10	8	11.8				70 - 130	30
n-Propylbenzene	ND	1.0	93	10)4	11.2				70 - 130	30
o-Xylene	ND	1.0	97	10)7	9.8				70 - 130	30
p-Isopropyltoluene	ND	1.0	95	10)7	11.9				70 - 130	30
sec-Butylbenzene	ND	1.0	94	10)5	11.1				70 - 130	30
Styrene	ND	1.0	10	2 11	3	10.2				70 - 130	30
tert-Butylbenzene	ND	1.0	93	10)4	11.2				70 - 130	30
Tetrachloroethene	ND	1.0	92	10)2	10.3				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	104	4 11	1	6.5				70 - 130	30
Toluene	ND	1.0	99	10	8	8.7				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	95	10)5	10.0				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	104	4 11	5	10.0				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	11:	2 12	24	10.2				70 - 130	30
Trichloroethene	ND	1.0	94	10)4	10.1				70 - 130	30
Trichlorofluoromethane	ND	1.0	90	90	9	9.5				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	82	8	7	5.9				70 - 130	30
Vinyl chloride	ND	1.0	91	10)2	11.4				70 - 130	30
% 1,2-dichlorobenzene-d4	99	%	10	0 10)2	2.0				70 - 130	30
% Bromofluorobenzene	100	%	10	2 10)2	0.0				70 - 130	30
% Dibromofluoromethane	99	%	99	90	9	0.0				70 - 130	30
% Toluene-d8	99	%	100	0 10)1	1.0				70 - 130	30
QA/QC Batch 671366 (ug/L), Q	C Sampl	e No: CN74375 (CN74070, CN7407	1)							
Volatiles - Ground Water											
1,1,1,2-Tetrachloroethane	ND	1.0	10	9 12	20	9.6				70 - 130	30
1,1,1-Trichloroethane	ND	1.0	10) 11	2	11.3				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	10	5 11	7	10.8				70 - 130	30
1,1,2-Trichloroethane	ND	1.0	104	4 11	9	13.5				70 - 130	30
1,1-Dichloroethane	ND	1.0	10) 11	1	10.4				70 - 130	30
1,1-Dichloroethene	ND	1.0	97	10)7	9.8				70 - 130	30
1,1-Dichloropropene	ND	1.0	10	1 11	2	10.3				70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	10	9 12	23	12.1				70 - 130	30
1,2,3-Trichloropropane	ND	1.0	97	12	20	21.2				70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	10	9 12	21	10.4				70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	103	3 11	4	10.1				70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	11:	2 12	29	14.1				70 - 130	30
1,2-Dibromoethane	ND	1.0	10	3 12	20	10.5				70 - 130	30
1,2-Dichlorobenzene	ND	1.0	104	4 11	5	10.0				70 - 130	30
1,2-Dichloroethane	ND	1.0	10	5 11	7	10.8				70 - 130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2-Dichloropropane	ND	1.0	103	116	11.9				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	104	115	10.0				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	104	114	9.2				70 - 130	30
1,3-Dichloropropane	ND	1.0	106	121	13.2				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	103	114	10.1				70 - 130	30
1,4-dioxane	ND	100	106	121	13.2				70 - 130	30
2,2-Dichloropropane	ND	1.0	106	116	9.0				70 - 130	30
2-Chlorotoluene	ND	1.0	105	116	10.0				70 - 130	30
2-Hexanone	ND	5.0	99	112	12.3				70 - 130	30
2-Isopropyltoluene	ND	1.0	101	112	10.3				70 - 130	30
4-Chlorotoluene	ND	1.0	105	116	10.0				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	106	119	11.6				70 - 130	30
Acetone	ND	5.0	91	103	12.4				70 - 130	30
Acrolein	ND	5.0	83	99	17.6				70 - 130	30
Acrylonitrile	ND	5.0	96	114	17.1				70 - 130	30
Benzene	ND	0.70	103	115	11.0				70 - 130	30
Bromobenzene	ND	1.0	105	118	11.7				70 - 130	30
Bromochloromethane	ND	1.0	104	116	10.9				70 - 130	30
Bromodichloromethane	ND	0.50	106	120	12.4				70 - 130	30
Bromoform	ND	1.0	115	131	13.0				70 - 130	30 I
Bromomethane	ND	1.0	118	134	12.7				70 - 130	30 I
Carbon Disulfide	ND	1.0	89	100	11.6				70 - 130	30
Carbon tetrachloride	ND	1.0	100	112	11.3				70 - 130	30
Chlorobenzene	ND	1.0	102	114	11.1				70 - 130	30
Chloroethane	ND	1.0	99	109	9.6				70 - 130	30
Chloroform	ND	1.0	101	112	10.3				70 - 130	30
Chloromethane	ND	1.0	105	115	9.1				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	103	116	11.9				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	108	122	12.2				70 - 130	30
Dibromochloromethane	ND	0.50	109	124	12.9				70 - 130	30
Dibromomethane	ND	1.0	107	122	13.1				70 - 130	30
Dichlorodifluoromethane	ND	1.0	93	103	10.2				70 - 130	30
Ethylbenzene	ND	1.0	104	115	10.0				70 - 130	30
Hexachlorobutadiene	ND	0.40	101	112	10.3				70 - 130	30
Isopropylbenzene	ND	1.0	104	114	9.2				70 - 130	30
m&p-Xylene	ND	1.0	102	113	10.2				70 - 130	30
Methyl ethyl ketone	ND	5.0	99	111	11.4				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	103	116	11.9				70 - 130	30
Methylene chloride	ND	1.0	99	111	11.4				70 - 130	30
Naphthalene	ND	1.0	111	125	11.9				70 - 130	30
n-Butylbenzene	ND	1.0	105	116	10.0				70 - 130	30
n-Propylbenzene	ND	1.0	102	112	9.3				70 - 130	30
o-Xylene	ND	1.0	104	114	9.2				70 - 130	30
p-Isopropyltoluene	ND	1.0	104	115	10.0				70 - 130	30
sec-Butylbenzene	ND	1.0	102	112	9.3				70 - 130	30
Styrene	ND	1.0	108	119	9.7				70 - 130	30
tert-Butylbenzene	ND	1.0	103	112	8.4				70 - 130	30
Tetrachloroethene	ND	1.0	100	110	9.5				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	103	118	13.6				70 - 130	30
Toluene	ND	1.0	103	115	11.0				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	99	111	11.4				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	108	121	11.4				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	118	127	7.3				70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Trichloroethene	ND	1.0	100	110	9.5				70 - 130	30
Trichlorofluoromethane	ND	1.0	97	106	8.9				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	87	95	8.8				70 - 130	30
Vinyl chloride	ND	1.0	99	108	8.7				70 - 130	30
% 1,2-dichlorobenzene-d4	99	%	100	101	1.0				70 - 130	30
% Bromofluorobenzene	100	%	100	101	1.0				70 - 130	30
% Dibromofluoromethane	101	%	101	103	2.0				70 - 130	30
% Toluene-d8	100	%	100	101	1.0				70 - 130	30
Comment:										
A LCS and LCS Duplicate were per	ormed	instead of a matrix spike and matrix	spike du	plicate.						
QA/QC Batch 671376 (ug/L), QC	Samp	e No: CN75196 (CN74071 (20X))							
Volatiles - Ground Water										
1,2,4-Trimethylbenzene	ND	1.0	101	102	1.0				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	101	103	2.0				70 - 130	30
Ethylbenzene	ND	1.0	103	103	0.0				70 - 130	30
Isopropylbenzene	ND	1.0	101	102	1.0				70 - 130	30
m&p-Xylene	ND	1.0	102	102	0.0				70 - 130	30
Naphthalene	ND	1.0	103	108	4.7				70 - 130	30
n-Propylbenzene	ND	1.0	99	100	1.0				70 - 130	30
% 1,2-dichlorobenzene-d4	100	%	98	99	1.0				70 - 130	30
% Bromofluorobenzene	100	%	101	102	1.0				70 - 130	30
% Dibromofluoromethane	96	%	97	97	0.0				70 - 130	30
% Toluene-d8	99	%	101	101	0.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

by this

Phyllis/Shiller, Laboratory Director October 03, 2023

Tuesday, October 03, 2023

Criteria: NY: GW

State: NY

Sample Criteria Exceedances Report

GCN74070 - PREFRDNY

State:	IN Y						RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CN74070	\$8260DP25R	Trichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	6.5	1.0	5	5	ug/L
CN74070	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CN74070	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CN74070	\$8260DP25R	Trichloroethene	NY / TOGS - Water Quality / GA Criteria	6.5	1.0	5	5	ug/L
CN74070	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CN74071	\$8260DP25R	cis-1,2-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	13	1.0	5	5	ug/L
CN74071	\$8260DP25R	Benzene	NY / TAGM - Volatile Organics / Groundwater Standards	0.85	0.70	0.7	0.7	ug/L
CN74071	\$8260DP25R	Toluene	NY / TAGM - Volatile Organics / Groundwater Standards	5.3	1.0	5	5	ug/L
CN74071	\$8260DP25R	Toluene	NY / TOGS - Water Quality / GA Criteria	5.3	1.0	5	5	ug/L
CN74071	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CN74071	\$8260DP25R	Ethylbenzene	NY / TAGM - Volatile Organics / Groundwater Standards	340	20	5	5	ug/L
CN74071	\$8260DP25R	Ethylbenzene	NY / TOGS - Water Quality / GA Criteria	340	20	5	5	ug/L
CN74071	\$8260DP25R	Isopropylbenzene	NY / TOGS - Water Quality / GA Criteria	39	20	5	5	ug/L
CN74071	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CN74071	\$8260DP25R	n-Propylbenzene	NY / TOGS - Water Quality / GA Criteria	73	20	5	5	ug/L
CN74071	\$8260DP25R	1,3,5-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	43	20	5	5	ug/L
CN74071	\$8260DP25R	1,2,4-Trimethylbenzene	NY / TOGS - Water Quality / GA Criteria	310	20	5	5	ug/L
CN74071	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CN74071	\$8260DP25R	Naphthalene	NY / TAGM - Semi-Volatiles / Groundwater Standards	55	20	10	10	ug/L
CN74071	\$8260DP25R	Naphthalene	NY / TAGM - Volatile Organics / Groundwater Standards	55	20	5	5	ug/L
CN74071	\$8260DP25R	Naphthalene	NY / TOGS - Water Quality / GA Criteria	55	20	10	10	ug/L
CN74072	\$8260DP25R	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CN74072	\$8260DP25R	1,2,3-Trichloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.04	0.04	ug/L
CN74072	\$8260DP25R	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY Temperature Narration

October 03, 2023

SDG I.D.: GCN74070

The samples in this delivery group were received at 2.1°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

	<u></u> ؤ	I 1	·······				 · · · · ·				10/2021	PEL-111 Rev
Coolant: IPK ☐ ICE K No ☐ Temp 2. (° C Pg ² of	Contact Options: 516 · 546 - 1106 bschlageter Optreforr chenv.c	Project P.O. This section MUST be completed with Bottle Quantities.		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				GW Clean Fill imits	Solt PA-GW	Irricted Soil Reg Fill Limits Co Intial Soil PA Soil Restricted	O Intial PASoil non-restricted red Soil	lercial Soil SO rial Soil rt 5 DW
	Phone Fax: Email	.		7 1 1 1 1 1 1 1 1 1 1	n m	\sim		TOGS	CP-51 375SC	Unres 375SC Reside	375SC Reside Restric 375SC	Comr 375SC Indust Subpa
A CHAIN OF CUSTODY RECORD	le Tumpike, P.O. Box 370, Manchester, CT 06040 to@phoenixlabs.com Fax (860) 645-0823 :lient Services (860) 645-8726	Project: 11 0 7 D tKulb Ave Report to: <u>b Schlageter@Preferredenv.co</u> Invoice to: Sume QUOTE # :	Analysis Request					Time: Turnaround: NJ 3 11.5av 11.5av	$\frac{3}{2} \sqrt{\lambda_{\delta}} \sqrt{\frac{10}{2}} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$	I-308 Impact to GW Soli 10 Days Cleanup Criteria 110 Days Cleanup Criteria 110 Days Cleanup Criteria	Soul Screen Criteria U 3 Soul Screen Criteria U 3 APPLIES NJ Hazsite EDD GW Criteria R	NY EZ EDD Data Package: NJ Reduced Deliv. * Other Other Other State (ASP B) *
d/ſn/	East Mide Email: ir		[]	e Sed	2 5	4		Date:	-1101	(-3-2	₩ Tog	
۸	587 F		3/5//2	Samp	15	163			<u>, 200</u>	3~ Ti	x Std Re	ey
		wice S princh	n <u>Date:</u> W =Wast W =Wip	Date Sampled						ata Form	Z Phoenii Excel	□ PDF □ GIS/K
		V. Me	tificatio	nple		~			ر	ä		
		e. 1	n - Iden Ortun Surface =Soil SI	Sar	20	6			3	ans:		
	HNIX S	Preferred Environ 323 Merrich An N Y 11566	Client Sample - Informatic Dry Burtin M GW=Ground Water SW= ≡Sediment SL=Sludge S	Customer Sample Identification ハ ハ - ト ゲ ト	MW-1402	M.W1403		Accepted	MANN	Requirements or Regulati		
	PHO Environment	Customer: Address:	Sampler's A Signature A Matrix Code: DW=Drinking Water RW=Raw Water SE OIL=OII B=Bulk L=	PHOENIX USE ONLY SAMPLE #	Itint -	2492		Relinquished by:	ncoll what	Comments, Special I		

Bobbi Aloisa

From:	Christopher Zweier <czweier@preferredenv.com></czweier@preferredenv.com>
Sent:	Monday, September 18, 2023 9:15 AM
То:	Bobbi Aloisa
Cc:	Bill Schlageter; Victoria Whelan
Subject:	Corrections needed on reports
Attachments:	lists for phoenix.pdf; 4.23 report.pdf; 9.23 report.pdf; 1.23 report.pdf

Good Morning Bobbi,

I think last year I had you guys correct some reports for me for our project "Dekalb Avenue" due to them having an incomplete VOC list. I'm running across the same problem this year writing our report. The list provided excludes a significant amount of PVOCs. I've attached a table showing the list provided and the list we need each report corrected to. Can you correct the reports as well as the EDDs to have the proper list? The following reports require corrections:

1

GCN20371 GCN74070 GCO91340

Also is there a name for this list that we should request on our COCs to avoid this in the future?

Please reach out with any questions.

Thanks,

Christopher P. Zweier Project Manager, Environmental Scientist

PREFERRED ENVIRONMENTAL SERVICES NYS, NYC, PANY/NJ, New York City School Construction Authority-certified WBE 323 Merrick Avenue North Merrick, New York 11566 work: 516 546 1100 cell: 516 729 3293 fax: 516 213 8156

list provided Volatiles By SW8260C 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1.2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1.2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Trichlorotrifluoroethane Vinyl chloride

Volatiles By SW8260C ,1,1,2-Tetrachloroetha ,1-Dichloropropene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane ,1,2-Trichloroethane 1,1-Dichloroethane L,1-Dichloroethene 1,2,3-Trichlorobenzene 2,3-Trichloropropane 1,2,4-Trichlorobenzene ,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane -Trimethylbenzen 1,3-Dichlorobenzene 3-Dichloropropane 1,4-Dichlorobenzene ,2-Dichloroprop nane -Chlorotoluene -Hexanone -Isopropyltoluene Chlorotoluene 4-Methyl-2-pentanone Acetone crolein crylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene is-1,3-Dichloropropene Cyclohexane Dibromochloromethane ibromomethane Dichlorodifluoromethane Ethylbenzene lexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) /lethylacetate Methylcyclohexane Methylene chloride laphthalene -Butvlbenzene <mark>i-Propylbenzene</mark> o-Xylene -Isopropyltoluene ec-Butylbenzene Styrene ert-Butylbenzene Tetrachloroethene etrahydrofuran (THF Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene rans-1,4-dichloro-2-butene [richloroethene] Trichlorofluoromethane Trichlorotrifluoroethane

Vinyl chloride

list needed

analyte not present on list provided

Page 28 of 28

Wednesday, September 20, 2023

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1103-1107 DEKALB AVENUE SDG ID: GCO91340 Sample ID#s: CO91340 - CO91344

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

September 20, 2023

SDG I.D.: GCO91340

Version 2: Per client request VOA compound list was revised.

Sample Id Cross Reference

September 20, 2023

SDG I.D.: GCO91340

Project ID: 1103-1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1401	CO91340	GROUND WATER
MW-1403	CO91341	GROUND WATER
MW-1402	CO91342	GROUND WATER
INFLUENT	CO91343	TEDLAR BAG
EFFLUENT	CO91344	TEDLAR BAG

Analysis Report

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Sample Information

Matrix:GROUND WATERLocation Code:PREFRDNYRush Request:StandardP.O.#:

September 20, 2023

Custody Information Collected by: Received by: CP Analyzed by: see "By" below

09/05/238:3009/06/2316:10

Time

Date

Laboratory Data

SDG ID: GCO91340 Phoenix ID: CO91340

Project ID:	1103-1107 DEKALB AVENUE
Client ID:	MW-1401

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	09/07/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloroethene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloropropene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dibromoethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2-Hexanone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	
2-Isopropyltoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	1
4-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1401

Descentes	Deck	ppbv	11.25			-	
Parameter	Result	RL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	09/07/23	HM	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Benzene	ND	0.70	ug/L	1	09/07/23	HM	SW8260D
Bromobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	09/07/23	HM	SW8260D
Bromoform	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Bromomethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	09/07/23	HM	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Chloroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Chloroform	1.2	1.0	ug/L	1	09/07/23	HM	SW8260D
Chloromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	09/07/23	HM	SW8260D
Dibromochloromethane	ND	0.50	ug/L	1	09/07/23	HM	SW8260D
Dibromomethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Dichlorodifluoromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Ethylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	09/07/23	HM	SW8260D
Isopropylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
m&p-Xylene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Methylene chloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Naphthalene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
n-Butylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
n-Propylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
o-Xylene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
sec-Butylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Styrene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Tetrachloroethene	1.0	1.0	ug/L	1	09/07/23	HM	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	09/07/23	HM	SW8260D 1
Toluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Total Xylenes	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	09/07/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	09/07/23	HM	SW8260D
Trichloroethene	6.0	1.0	ug/L	1	09/07/23	HM	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	09/07/23	НМ	70 - 130 %
% Bromofluorobenzene	98		%	1	09/07/23	НМ	70 - 130 %
% Dibromofluoromethane	95		%	1	09/07/23	НМ	70 - 130 %

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1401

ppbv Parameter Result RL Units Dilution Date/Time Bv Reference % Toluene-d8 100 % 1 09/07/23 HM 70 - 130 % 1,4-dioxane 1,4-dioxane ND 100 ug/l 1 09/07/23 HM SW8260D 09/08/23 HM Volatile Library Search Top 10 Completed

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Sample Information						
Matrix:	GROUND WATER					
Location Code:	PREFRDNY					
Rush Request:	Standard					
P.O.#:						

September 20, 2023

Custody Information Collected by: Received by: CP Analyzed by: see "By" below
 Date
 Time

 09/05/23
 9:30

 09/06/23
 16:10

Laboratory Data

SDG ID: GCO91340 Phoenix ID: CO91341

Project ID:	1103-1107 DEKALB AVENUE
Client ID:	MW-1403

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	09/07/23	HM	SW8260D	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,1-Dichloroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,1-Dichloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,1-Dichloropropene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dibromoethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichloroethane	ND	0.60	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,4-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2-Hexanone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	
2-Isopropyltoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	1
4-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
4-Methyl-2-pentanone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1403

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	By	Reference	
Acetone	ND	25	ug/L	1	09/07/23	НМ	SW8260D	
Acrylonitrile	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Benzene	ND	0.70	ug/L	1	09/07/23	НМ	SW8260D	
Bromobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Bromochloromethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Bromodichloromethane	ND	0.50	ug/L	1	09/07/23	НМ	SW8260D	
Bromoform	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Bromomethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Carbon Disulfide	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	
Carbon tetrachloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Chlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Chloroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Chloroform	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Chloromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
cis-1,2-Dichloroethene	2.9	1.0	ug/L	1	09/07/23	НМ	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	09/07/23	НМ	SW8260D	
Dibromochloromethane	ND	0.50	ug/L	1	09/07/23	НМ	SW8260D	
Dibromomethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Dichlorodifluoromethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Ethylbenzene	2.2	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Hexachlorobutadiene	ND	0.40	ug/L	1	09/07/23	НМ	SW8260D	
Isopropylbenzene	3.8	1.0	ug/L	1	09/07/23	НМ	SW8260D	
m&p-Xylene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Methyl ethyl ketone	ND	5.0	ug/L	1	09/07/23	НМ	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Methylene chloride	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
Naphthalene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
n-Butylbenzene	1.5	1.0	ug/L	1	09/07/23	НМ	SW8260D	
n-Propylbenzene	2.2	1.0	ug/L	1	09/07/23	НМ	SW8260D	
o-Xylene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
p-Isopropyltoluene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
sec-Butylbenzene	3.0	1.0	ug/L	1	09/07/23	HM	SW8260D	
Styrene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
tert-Butylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Tetrachloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	09/07/23	HM	SW8260D	1
Toluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Total Xylenes	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	09/07/23	HM	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	
Trichloroethene	3.1	1.0	ug/L	1	09/07/23	HM	SW8260D	
Trichlorofluoromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Trichlorotrifluoroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
Vinyl chloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99		%	1	09/07/23	HM	70 - 130 %	
% Bromofluorobenzene	99		%	1	09/07/23	HM	70 - 130 %	
% Dibromofluoromethane	96		%	1	09/07/23	HM	70 - 130 %	

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1403

ppbv Parameter Result RL Units Dilution Date/Time Bv Reference % Toluene-d8 100 % 1 09/07/23 HM 70 - 130 % 1,4-dioxane 1,4-dioxane ND 100 ug/l 1 09/07/23 HM SW8260D 09/08/23 HM Volatile Library Search Top 10 Completed

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

September 20, 2023

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Sample Information

Sample Information						
Matrix:	GROUND WATER					
Location Code:	PREFRDNY					
Rush Request:	Standard					
P.O.#:						

Custody Information Collected by: Received by: CP Analyzed by: see '

CP see "By" below
 Date
 Time

 09/05/23
 10:05

 09/06/23
 16:10

Laboratory Data

SDG ID: GCO91340 Phoenix ID: CO91342

Project ID:	1103-1107 DEKALB AVENUE
Client ID:	MW-1402

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Volatiles								
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1,1-Trichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	09/07/23	НМ	SW8260D	
1,1,2-Trichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloroethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloroethene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,1-Dichloropropene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,3-Trichloropropane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2,4-Trimethylbenzene	190	10	ug/L	10	09/08/23	НМ	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2-Dibromoethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,2-Dichloroethane	ND	0.60	ug/L	1	09/07/23	HM	SW8260D	
1,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
1,3,5-Trimethylbenzene	40	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,3-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,3-Dichloropropane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
1,4-Dichlorobenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2,2-Dichloropropane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D	
2-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
2-Hexanone	ND	5.0	ug/L	1	09/07/23	НМ	SW8260D	
2-Isopropyltoluene	1.2	1.0	ug/L	1	09/07/23	НМ	SW8260D	1
4-Chlorotoluene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D	
4-Methyl-2-pentanone	ND	5.0	ug/L	1	09/07/23	HM	SW8260D	

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1402

Parameter	Result	ppbv RL	Units	Dilution	Date/Time	Bv	Reference
Acetone	ND	25	ug/l	1	09/07/23	НМ	SW8260D
Acrylonitrile	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D
Benzene	0.76	0.70	ug/L	1	09/07/23	НМ	SW8260D
Bromobenzene	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D
Bromochloromethane	ND	1.0	ug/L	1	09/07/23	НМ	SW8260D
Bromodichloromethane	ND	0.50	ug/L	1	09/07/23	НМ	SW8260D
Bromoform	ND	1.0	ug/l	1	09/07/23	нм	SW8260D
Bromomethane	ND	1.0	ug/L	1	09/07/23	нм	SW8260D
Carbon Disulfide	ND	5.0	ug/L	1	09/07/23	нм	SW8260D
Carbon tetrachloride	ND	1.0	ug/L	1	09/07/23	нм	SW8260D
Chlorobenzene	ND	1.0	ug/L	1	09/07/23	нм	SW8260D
Chloroothana		1.0	ug/L	1	09/07/23	нм	SW/8260D
Chloroform		1.0	ug/L	1	09/07/23	нм	SW/8260D
Chloromothana		1.0	ug/L	1	09/07/23	нм	SW(8260D
	12	1.0	ug/L	1	00/07/23		SW0200D
cis-1,2-Dichloropropopo		0.40	ug/L	1	09/07/23		SW0200D
CIS-1,3-Dichloropropene		0.40	ug/L	1	09/07/23		SW0200D
Dibromocnioromethane		1.0	ug/L	1	09/07/23		SW0200D
Dibromometnane		1.0	ug/L	1	09/07/23		SW8260D
		1.0	ug/L	1	09/07/23	HIVI	SW8260D
Ethylbenzene	220	10	ug/L	10	09/08/23	HIVI	SW8260D
Hexachlorobutadiene	ND	0.40	ug/L	1	09/07/23	HIVI	SW8260D
Isopropylbenzene	46	1.0	ug/L	1	09/07/23	НМ	SW8260D
m&p-Xylene	230	10	ug/L	10	09/08/23	НМ	SW8260D
Methyl ethyl ketone	ND	5.0	ug/L	1	09/07/23	НМ	SW8260D
Methyl t-butyl ether (MIBE)	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Methylene chloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Naphthalene	44	1.0	ug/L	1	09/07/23	HM	SW8260D
n-Butylbenzene	3.5	1.0	ug/L	1	09/07/23	HM	SW8260D
n-Propylbenzene	82	1.0	ug/L	1	09/07/23	HM	SW8260D
o-Xylene	1.5	1.0	ug/L	1	09/07/23	HM	SW8260D
p-Isopropyltoluene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
sec-Butylbenzene	5.1	1.0	ug/L	1	09/07/23	HM	SW8260D
Styrene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
tert-Butylbenzene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Tetrachloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	09/07/23	HM	SW8260D 1
Toluene	5.2	1.0	ug/L	1	09/07/23	HM	SW8260D
Total Xylenes	231.5	1.0	ug/L	1	09/07/23	HM	SW8260D
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	09/07/23	HM	SW8260D
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	09/07/23	HM	SW8260D
Trichloroethene	2.9	1.0	ug/L	1	09/07/23	HM	SW8260D
Trichlorofluoromethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Trichlorotrifluoroethane	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
Vinyl chloride	ND	1.0	ug/L	1	09/07/23	HM	SW8260D
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	98		%	1	09/07/23	HM	70 - 130 %
% Bromofluorobenzene	103		%	1	09/07/23	HM	70 - 130 %
% Dibromofluoromethane	97		%	1	09/07/23	HM	70 - 130 %

Project ID: 1103-1107 DEKALB AVENUE Client ID: MW-1402

Parameter	Result	ppbv RL	Units	Dilution	n Date/Tim	e By	Reference	
% Toluene-d8	100		%	1	09/07/23	HM	70 - 130 %	
% 1,2-dichlorobenzene-d4 (10x)	101		%	10	09/08/23	HM	70 - 130 %	
% Bromofluorobenzene (10x)	98		%	10	09/08/23	HM	70 - 130 %	
% Dibromofluoromethane (10x)	95		%	10	09/08/23	HM	70 - 130 %	
% Toluene-d8 (10x)	101		%	10	09/08/23	HM	70 - 130 %	
<u>1,4-dioxane</u>								
1,4-dioxane	ND	100	ug/l	1	09/07/23	HM	SW8260D	
Volatile Library Search Top 10	Completed				09/08/23	НМ		

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

	CLIENT	ID			
VOI T	MW-14	01			
Lab Name: Phoenix En	vironmental Labs	Client:	<u> </u>		
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCO9134
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CO91340	
Sample wt/vol:	<u> 5 (g</u> /n	nL) <u>mL</u>	Lab File ID:	0907_25.D	
Level: (low/med)			Date Received:	09/06/23	
% Moisture: not dec.	100		Date Analyzed:	09/07/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	<u> 5000 (uL)</u>		Soil Aliquot Vol (uL	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L		
CAS NUMBER	COMPOUND	NAME	RT	EST. CONC.	Q
			1		
			 		

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

Lab Name: Phoenix Environmental Labs			Client:	PREFRDNY		
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCO9134
Matrix:(soil/water) GF	ROUND WATER			Lab Sample ID:	CO91341	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:	0907_26.D	
Level: (low/med)				Date Received:	09/06/23	
% Moisture: not dec.	100			Date Analyzed:	09/07/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	-	1
Purge Volume:	<u> 5000 </u> (uL)			Soil Aliquot Vol (ul	L): _	n.a.
		CONCENTRATION	I UNITS:			

Number TICs found:

9

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-	1.446	3.7	JN
	unknown	1.933	9.4	J
000096-14-0	Pentane, 3-methyl-	2.043	5	JN
000108-08-7	Pentane, 2,4-dimethyl-	2.404	8	JN
000096-37-7	Cyclopentane, methyl-	2.430	3.6	JN
	unknown	2.921	3	J
000540-84-1	Pentane, 2,2,4-trimethyl-	2.968	26	JN
000565-75-3	Pentane, 2,3,4-trimethyl-	3.580	12	JN
135-98-8	sec-Butylbenzene	6.368	3	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

MW-1403

Number TICs found:

17

		MW-14	02			
Lab Name: Phoenix Environmental Labs			Client: PREFRDNY			
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCO9134
Matrix:(soil/water) G	ROUND WATER			Lab Sample ID:	CO91342	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:	0907_27.D	
Level: (low/med)				Date Received:	09/06/23	
% Moisture: not dec.	100			Date Analyzed:	09/07/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	-	1
Purge Volume:	<u> 5000 </u> (uL)			Soil Aliquot Vol (ul	L):	n.a.
		CONCENTRATIO	ON UNITS:			

(ug/L or ug/KG)

ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000106-97-8	Butane	1.242	36	JN
000078-78-4	Butane, 2-methyl-	1.452	27	JN
000107-83-5	Pentane, 2-methyl-	1.938	35	JN
000096-14-0	Pentane, 3-methyl-	2.043	20	JN
000096-37-7	Cyclopentane, methyl-	2.430	27	JN
103-65-1	n-Propylbenzene	5.876	82	Q
000620-14-4	Benzene, 1-ethyl-3-methyl-	5.955	55	JN
108-67-8	1,3,5-Trimethylbenzene	6.012	40	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	6.159	37	JN
95-63-6	1,2,4-Trimethylbenzene	6.289	230	Q
135-98-8	sec-Butylbenzene	6.362	5.1	Q
526-73-8	1,2,3-Trimethylbenzene	6.598	59	Q
104-51-8	n-Butylbenzene	6.776	3.5	Q
000767-58-8	Indan, 1-methyl-	7.116	21	JN
000874-35-1	1H-Indene, 2,3-dihydro-5-methyl-	7.524	17	JN
	Indan, 1-methyl- Isomer	7.649	33	JN
91-20-3	Naphthalene	8.167	44	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

QA/QC Report

September 20, 2023

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 696120 (ug/L), Q	C Samp	le No: CO90274 (CO9	91340, CO91341,	CO9134	42)						
Volatiles - Ground Water											
1.1.1.2-Tetrachloroethane	ND	1.0	100	102	2.0	97	100	3.0	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	109	108	0.9	107	106	0.9	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	103	103	0.0	109	111	1.8	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	102	101	1.0	104	107	2.8	70 - 130	30	
1,1-Dichloroethane	ND	1.0	114	114	0.0	115	116	0.9	70 - 130	30	
1,1-Dichloroethene	ND	1.0	116	114	1.7	115	113	1.8	70 - 130	30	
1,1-Dichloropropene	ND	1.0	109	107	1.9	108	108	0.0	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	96	95	1.0	94	99	5.2	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	104	103	1.0	107	109	1.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	98	101	3.0	95	100	5.1	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	106	108	1.9	107	110	2.8	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	95	95	0.0	97	103	6.0	70 - 130	30	
1,2-Dibromoethane	ND	1.0	101	102	1.0	104	105	1.0	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	102	104	1.9	103	105	1.9	70 - 130	30	
1,2-Dichloroethane	ND	1.0	106	106	0.0	108	111	2.7	70 - 130	30	
1,2-Dichloropropane	ND	1.0	105	106	0.9	106	107	0.9	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	108	109	0.9	108	111	2.7	70 - 130	30	
1.3-Dichlorobenzene	ND	1.0	102	103	1.0	101	105	3.9	70 - 130	30	
1.3-Dichloropropane	ND	1.0	104	104	0.0	107	108	0.9	70 - 130	30	
1.4-Dichlorobenzene	ND	1.0	100	102	2.0	100	103	3.0	70 - 130	30	
1,4-dioxane	ND	100	107	111	3.7	98	112	13.3	70 - 130	30	
2,2-Dichloropropane	ND	1.0	106	104	1.9	81	82	1.2	70 - 130	30	
2-Chlorotoluene	ND	1.0	104	106	1.9	105	107	1.9	70 - 130	30	
2-Hexanone	ND	5.0	100	100	0.0	108	110	1.8	70 - 130	30	
2-Isopropyltoluene	ND	1.0	107	109	1.9	108	111	2.7	70 - 130	30	
4-Chlorotoluene	ND	1.0	104	104	0.0	104	105	1.0	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	102	100	2.0	108	113	4.5	70 - 130	30	
Acetone	ND	5.0	112	106	5.5	126	131	3.9	70 - 130	30	m
Acrylonitrile	ND	5.0	104	101	2.9	110	112	1.8	70 - 130	30	
Benzene	ND	0.70	105	105	0.0	105	106	0.9	70 - 130	30	
Bromobenzene	ND	1.0	101	102	1.0	102	103	1.0	70 - 130	30	
Bromochloromethane	ND	1.0	107	105	1.9	109	112	2.7	70 - 130	30	
Bromodichloromethane	ND	0.50	104	104	0.0	102	106	3.8	70 - 130	30	
Bromoform	ND	1.0	95	97	2.1	94	98	4.2	70 - 130	30	
Bromomethane	ND	1.0	111	116	4.4	76	85	11.2	70 - 130	30	
Carbon Disulfide	ND	1.0	116	114	1.7	113	113	0.0	70 - 130	30	
Carbon tetrachloride	ND	1.0	108	103	4.7	96	97	1.0	70 - 130	30	
Chlorobenzene	ND	1.0	104	105	1.0	107	107	0.0	70 - 130	30	
Chloroethane	ND	1.0	105	106	0.9	111	103	7.5	70 - 130	30	
Chloroform	ND	1.0	107	111	3.7	112	111	0.9	70 - 130	30	
Chloromethane	ND	1.0	110	112	1.8	117	116	0.9	70 - 130	30	

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blank	Blk RL	L	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
cis-1,2-Dichloroethene	ND	1.0		108	110	1.8	115	114	0.9	70 - 130	30
cis-1,3-Dichloropropene	ND	0.40		101	102	1.0	95	98	3.1	70 - 130	30
Dibromochloromethane	ND	0.50		100	103	3.0	100	103	3.0	70 - 130	30
Dibromomethane	ND	1.0		101	101	0.0	104	104	0.0	70 - 130	30
Dichlorodifluoromethane	ND	1.0		103	105	1.9	109	105	3.7	70 - 130	30
Ethylbenzene	ND	1.0		105	106	0.9	105	107	1.9	70 - 130	30
Hexachlorobutadiene	ND	0.40		96	99	3.1	91	96	5.3	70 - 130	30
Isopropylbenzene	ND	1.0		105	107	1.9	106	107	0.9	70 - 130	30
m&p-Xylene	ND	1.0		106	107	0.9	107	107	0.0	70 - 130	30
Methyl ethyl ketone	ND	5.0		108	104	3.8	114	115	0.9	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0		112	108	3.6	115	114	0.9	70 - 130	30
Methylene chloride	ND	1.0		108	106	1.9	108	106	1.9	70 - 130	30
Naphthalene	ND	1.0		97	98	1.0	97	103	6.0	70 - 130	30
n-Butylbenzene	ND	1.0		108	109	0.9	106	110	3.7	70 - 130	30
n-Propylbenzene	ND	1.0		107	107	0.0	107	108	0.9	70 - 130	30
o-Xylene	ND	1.0		103	105	1.9	105	105	0.0	70 - 130	30
p-Isopropyltoluene	ND	1.0		106	109	2.8	107	109	1.9	70 - 130	30
sec-Butylbenzene	ND	1.0		107	109	1.9	108	110	1.8	70 - 130	30
Styrene	ND	1.0		105	103	1.9	107	107	0.0	70 - 130	30
tert-Butylbenzene	ND	1.0		105	107	1.9	107	109	1.9	70 - 130	30
Tetrachloroethene	ND	1.0		101	102	1.0	121	108	11.4	70 - 130	30
Tetrahydrofuran (THF)	ND	2.5		103	102	1.0	116	118	1.7	70 - 130	30
Toluene	ND	1.0		104	105	1.0	104	105	1.0	70 - 130	30
trans-1,2-Dichloroethene	ND	1.0		118	116	1.7	118	116	1.7	70 - 130	30
trans-1,3-Dichloropropene	ND	0.40		100	100	0.0	91	95	4.3	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0		93	93	0.0	71	76	6.8	70 - 130	30
Trichloroethene	ND	1.0		104	104	0.0	106	105	0.9	70 - 130	30
Trichlorofluoromethane	ND	1.0		123	124	0.8	129	126	2.4	70 - 130	30
Trichlorotrifluoroethane	ND	1.0		123	122	0.8	122	121	0.8	70 - 130	30
Vinyl chloride	ND	1.0		110	112	1.8	117	114	2.6	70 - 130	30
% 1,2-dichlorobenzene-d4	99	%		101	100	1.0	99	100	1.0	70 - 130	30
% Bromofluorobenzene	98	%		101	101	0.0	100	100	0.0	70 - 130	30
% Dibromofluoromethane	96	%		107	96	10.8	98	97	1.0	70 - 130	30
% Toluene-d8	100	%		101	100	1.0	100	100	0.0	70 - 130	30
Comment:											

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 696364 (ug/L), QC Sample No: CO92547 (CO91342 (10X))

Volatiles - Ground Water

1,2,4-Trimethylbenzene	ND	1.0	105	105	0.0	105	108	2.8	70 - 130	30
Ethylbenzene	ND	1.0	103	105	1.9	104	106	1.9	70 - 130	30
m&p-Xylene	ND	1.0	103	106	2.9	104	107	2.8	70 - 130	30
% 1,2-dichlorobenzene-d4	101	%	99	100	1.0	101	100	1.0	70 - 130	30
% Bromofluorobenzene	98	%	100	101	1.0	100	101	1.0	70 - 130	30
% Dibromofluoromethane	97	%	97	96	1.0	97	96	1.0	70 - 130	30
% Toluene-d8	100	%	101	100	1.0	101	101	0.0	70 - 130	30
Comment:										

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.
			<u>QA/QC D</u>	<u>ata</u>			SDG I.D.: GCO91340					
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %		Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 696156 (ppbv), Q	C Sam	ple No: (CO90264	(CO913	343 (5X,	, 30X) ,	CO913	44 (5X))					
Volatiles														
1.1.1.2-Tetrachloroethane	ND	0.150	ND	1.03	106		ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.180	ND	0.98	104		ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	111		ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.180	ND	0.98	103		ND	ND	ND	ND	NC	70 - 130	25	
1.1-Dichloroethane	ND	0.250	ND	1.01	104		ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.050	ND	0.20	108		ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	107		2.51	2.45	0.511	0.499	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	104		ND	ND	ND	ND	NC	70 - 130	25	
1.2-Dichloroethane	ND	0.250	ND	1.01	102		ND	ND	ND	ND	NC	70 - 130	25	
1.2-dichloropropane	ND	0.220	ND	1.02	107		ND	ND	ND	ND	NC	70 - 130	25	
1.2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	115		ND	ND	ND	ND	NC	70 - 130	25	
1.3.5-Trimethylbenzene	ND	0.200	ND	0.98	103		ND	ND	ND	ND	NC	70 - 130	25	
1.3-Butadiene	ND	0.450	ND	0.99	110		3.12	3.12	1.41	1.41	NC	70 - 130	25	
1.4-Dioxane	ND	0.280	ND	1.01	103		ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.240	ND	0.98	108		1.67	2.03	0.409	0.496	NC	70 - 130	25	
4-Ethyltoluene	ND	0.200	ND	0.98	107		1.82	1.69	0.371	0.343	NC	70 - 130	25	
4-Isopropyltoluene	ND	0.180	ND	0.99	99		ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	108		1.32	1.35	0.322	0.329	NC	70 - 130	25	
Acetone	ND	0.420	ND	1.00	109		971	931	409	392	4.2	70 - 130	25	
Acrylonitrile	ND	0.460	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.310	ND	0.99	105		3.17	3.09	0.993	0.967	NC	70 - 130	25	
Bromodichloromethane	ND	0.150	ND	1.00	110		ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.097	ND	1.00	116		ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.260	ND	1.01	106		ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.320	ND	1.00	84		7.16	7.06	2.30	2.27	1.3	70 - 130	25	
Carbon Tetrachloride	ND	0.032	ND	0.20	111		0.25	0.23	0.039	0.036	NC	70 - 130	25	
Chlorobenzene	ND	0.220	ND	1.01	97		ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.380	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.200	ND	0.98	106		2.95	2.71	0.605	0.556	NC	70 - 130	25	
Chloromethane	ND	0.480	ND	0.99	109		ND	ND	ND	ND	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.050	ND	0.20	105		0.52	0.56	0.130	0.142	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.290	ND	1.00	97		ND	ND	ND	ND	NC	70 - 130	25	
Dibromochloromethane	ND	0.120	ND	1.02	111		ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.200	ND	0.99	108		2.13	2.36	0.430	0.478	NC	70 - 130	25	
Ethanol	ND	0.530	ND	1.00	169		433 E	422	230 E	224	2.6	70 - 130	25	Т
Ethyl acetate	ND	0.280	ND	1.01	78		5.26	4.90	1.46	1.36	NC	70 - 130	25	
Ethylbenzene	ND	0.230	ND	1.00	101		ND	ND	ND	ND	NC	70 - 130	25	
Heptane	ND	0.240	ND	0.98	104		3.33	3.17	0.812	0.773	NC	70 - 130	25	
Hexachlorobutadiene	ND	0.094	ND	1.00	120		ND	ND	ND	ND	NC	70 - 130	25	
Hexane	ND	0.280	ND	0.99	106		5.11	5.11	1.45	1.45	0.0	70 - 130	25	

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Isopropylalcohol	ND	0.410	ND	1.01	117	116 E	116	47.1 E	47.3	0.4	70 - 130	25	
Isopropylbenzene	ND	0.200	ND	0.98	100	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	0.230	ND	1.00	106	2.35	2.46	0.542	0.566	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	0.340	ND	1.00	107	11.9	11.6	4.03	3.93	2.5	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	102	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	0.860	ND	2.99	108	24.5	29.0	7.07	8.34	16.5	70 - 130	25	
n-Butylbenzene	ND	0.180	ND	0.99	107	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	0.230	ND	1.00	102	1.08	1.01	0.248	0.233	NC	70 - 130	25	
Propylene	ND	0.580	ND	1.00	102	46.1	49.2	26.8	28.6	6.5	70 - 130	25	
sec-Butylbenzene	ND	0.180	ND	0.99	103	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.037	ND	0.25	98	53.4	51.5	7.88	7.60	3.6	70 - 130	25	
Tetrahydrofuran	ND	0.340	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	0.270	ND	1.02	106	5.05	5.01	1.34	1.33	NC	70 - 130	25	
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	101	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.037	ND	0.20	97	5.01	4.79	0.932	0.891	4.5	70 - 130	25	
Trichlorofluoromethane	ND	0.180	ND	1.01	103	1.25	1.29	0.223	0.230	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.078	ND	0.20	113	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	97	%	97	%	95	102	102	102	102	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	105	%	105	%	104	102	105	102	105	NC	60 - 140	25	
% IS-Bromochloromethane	106	%	106	%	106	100	104	100	104	NC	60 - 140	25	
% IS-Chlorobenzene-d5	102	%	102	%	115	107	110	107	110	NC	60 - 140	25	

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 20, 2023

Wednesday Criteria:	, September 20, 2 None	2023	Sample Criteria E	Sample Criteria Exceedances Report GC091340 - PREFRDNY							
State:	NY	Phoenix Analyte	Criteria	Result	RI	Criteria	RL Criteria	Analysis			
*** No Data	to Display ***		Onona	Room		Ontena	Ontena	Onito			

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

September 20, 2023

SDG I.D.: GCO91340

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM39 09/07/23-1: CO91343, CO91344

The following Continuing Calibration compounds did not meet % deviation criteria: Ethanol 47%H (30%) The following Continuing Calibration compounds did not meet Maximum % deviation criteria: Ethanol 47%H (30%)

VOA Narration

<u>CHEM23 09/07/23-1:</u> CO91340, CO91341, CO91342

The following Initial Calibration compounds did not meet RSD% criteria: Bromoform 25% (20%), Chloroethane 26% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: Acetone 0.083 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

NY Temperature Narration

September 20, 2023

SDG I.D.: GCO91340

The samples in this delivery group were received at 1.0°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Cooler Yes No	Bottle Quantities.	PA Pa PA Clean Fill Limits PA-GW PA-GW PA-GW PA-GW PA-Soil Restricted PA-Soil non-restricted State Samples Collected?
Coolar Ten Ten Fax: Email: Email:	100000 10000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 1000000 100000000	N N N
CORD CT 06040 -0823	Bichlagen Color	Impact to GW Soil Impact to GW Soil Impact to GW Soil Impact to GW Soil Impact to GW Soil Soil screen Impact to GW Soil Soil screen
CUSTODY RE の、370, Manchester 血 Fax (860) 645 (860) 645-8726	1 1011 - Solution	Turmaround: 1 Turmaround: 1 Turmaround: 1 1 1
A CHAIN OF (dle Tumpike, P.O. B nfo@phoenixlabs.co	Project: Report to: Invoice to: QUOTE # : Request	Equils NV EZ EDD (ASP
NY/NJ/P 587 East Mic Email: j		<i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i>
	we No	
ZNIX S	Merrical Environ Merrical, Mr Merrical, Mr Merrical, Mr Merrical Sudge Second Mr Customer Sudge Second Mr Customer Sample Sidentification Mr Mr 1402 Mr Mr Mr Mr Mr Mr Mr Mr Mr Mr	Pluch A. Accepted by: Accepted by:
PHOP Environment	Address: Add	CUI344 E

Bobbi Aloisa

From:	Christopher Zweier <czweier@preferredenv.com></czweier@preferredenv.com>
Sent:	Monday, September 18, 2023 9:15 AM
То:	Bobbi Aloisa
Cc:	Bill Schlageter; Victoria Whelan
Subject:	Corrections needed on reports
Attachments:	lists for phoenix.pdf; 4.23 report.pdf; 9.23 report.pdf; 1.23 report.pdf

Good Morning Bobbi,

I think last year I had you guys correct some reports for me for our project "Dekalb Avenue" due to them having an incomplete VOC list. I'm running across the same problem this year writing our report. The list provided excludes a significant amount of PVOCs. I've attached a table showing the list provided and the list we need each report corrected to. Can you correct the reports as well as the EDDs to have the proper list? The following reports require corrections:

1

GCN20371 GCN74070 GCO91340

Also is there a name for this list that we should request on our COCs to avoid this in the future?

Please reach out with any questions.

Thanks,

Christopher P. Zweier Project Manager, Environmental Scientist

PREFERRED ENVIRONMENTAL SERVICES NYS, NYC, PANY/NJ, New York City School Construction Authority-certified WBE 323 Merrick Avenue North Merrick, New York 11566 work: 516 546 1100 cell: 516 729 3293 fax: 516 213 8156

list provided Volatiles By SW8260C 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene В Cyclohexane Dibromochloromethane В Dichlorodifluoromethane в Ethylbenzene В Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Trichlorotrifluoroethane m Vinyl chloride N N N N N

1,1,1,2-Tetrachloroethane
1 1-Dichloropropene
1 1 1 Trichloroothone
1,1,1-Inchioroethane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1 1-Dichloroethene
1,2,3-Trichlorobenzene
1,2,3-Trichloropropane
1,2,4-Trichlorobenzene
1.2.4-Trimethylbenzene
1.3 Dibromo 3 chloropropano
1,2-Dibromo-3-cmoropropane
1,2-Dibromoethane
1,2-Dichlorobenzene
1,2-Dichloroethane
1 2-Dichloropropane
1,3-Dichlorobenzene
1,3-Dichloropropane
1,4-Dichlorobenzene
2 2-Dichloropropage
2-Chiorotoluene
2-Hexanone
2-Isopropyltoluene
4-Chlorotoluene
4 Mothyl 2 pontanana
4-metriyi-z-pentanone
Acetone
Acrolein
Acrylonitrile
Bonzona
Belizene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bronnerenn
Bromometnane
Carbon Disulfide
Carbon tetrachloride
Chlorobenzene
Chloroothana
Chloroform
Chloromethane
cis-1,2-Dichloroethene
cis-1,2-Dichloroethene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane FlwUhenzene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Humochlorokuta di za
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ethyl ethor Methyl t-hyl ethore (MTRE)
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzel Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE)
cis-1,2-Dichloroothene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE)
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromchloromethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylactate Methylcyclohexane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl acthate Methylacetate Methylacetane Methylene chloride
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride Maphthalene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromchloromethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylactate Methylcetate Methylcene Methylene chloride Naphthalene Pubulkozene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzelte Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl acthate Methylacetate Methylacetate Methylacetate N
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Methylenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyleutate Methyleutate Methyleutate Methylene Meth
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcelohexane Methylene chloride Naphthalene n-Butylbenzene n-Ptopylbenzene o-Xylene
cis-1,2-Dichloroothene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Methyloenzene Methyl ethyl ketone Methyl ethyl ketone Methyl actate Methyl actate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylene chloride Naphthalene n-Bropylbenzene o-Xylene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl chouryl ether (MTBE) Methyleckate Methylyleckate Methylyleckate Methylylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcactate Methylene chloride Naphthalene n-Butylbenzene n-Ptopylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Churene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Mexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl actate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Methylacetate Naphthalene n-Bropylbenzene o-Xylene sec-Butylbenzene Styrene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methylicul ether (MTBE) Methylacetate Methylicul ether (MTBE) Methylene chloride Naphthalene n-Butylbenzene n-Butylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylciclohexane Methylcylohexane Methylene chloride Naphtalene n-Butylbenzene n-Propylbenzene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Methyloenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl acthare Methylacetate Methylacetate Methylacetate Methylace chloride Naphthalene n-Bropylbenzene o-Xylene g-Soprogyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetracholoroethene Styrene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromonethane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ethore Methyl ethyl ketone Methyl ethyl ether (MTBE) Methylacetate Methylcyclohexane Methylcyclohexane Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tetrachloroethene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylciclohexane Methylcylcohexane Methylene chloride Naphtalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tetrachloroetnene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Methyl-thylketone Methyl ethyl ketone Methyl-thutyl ether (MTBE) Methyleuthyl ketone Methylcyclohexane Methylcyclohexane Methyleuthyl ethor (MTBE) Methyleuthylether Methyleuthylether Methylene chloride Naphthalene n-Brutylbenzene n-Propylbenzene sc-Butylbenzene Styrene tert-Butylbenzene Styrene Tetrachloroethene Tetrahydrofuran (THF) Toluene Total Xylenes
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromothlane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methylcclohexane Methylcecate Methylcecate Methylene chloride Naphthalene n-Butylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene O-Xylene Tetrachloroethene Tetrahydrofuran (THF) Toluene Total Xylenes trans-1,2-Dichloroethene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylzetate Methylzetate Methylzelohexane Methylzelohexane Methylzene Methylzene Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropylkoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tetnas-1,3-Dichloroetnene trans-1,3-Dichloroetnene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methylexi ether (MTBE) Methylacetate Methylexi ether (MTBE) Methylexi ether (MTBE) Methylexi ether (MTBE) Methylexi ether Methylexi ether Methyl
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromothloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene sec-Butylbenzene o-Xylene Tetrachloroethene Tetrachloroethene Tetrahydrofuran (THF) Toluene Total Xylenes trans-1,2-Dichloroothene trans-1,2-Dichloroo-2-butene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcylohexane Methylcylohexane Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Styrene tert-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene trans-1,2-Dichloroepene trans-1,2-Dichloroopene trans-1,4-dichloro-2-butene Trichloroethene
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromomethane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ether (MTBE) Methylacetate Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylene chloride Naphthalene n-Butylbenzene n-Butylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tetr-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene Trichlorofluoromethane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromodhluoromethane Ethylbenzene Methyloenobutadiene isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylceclohexane Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene Tetras-1,3-Dichloropropene trans-1,2-Dichloroethene trans-1,2-Dichlorooptane Trichlorotifluoroethane
cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methyleclohexane Methylcylohexane Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropylkoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tetras-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloroothene Trichloroethene Trichloroethene Trichloroethane Trichloroethane

list needed

analyte not present on list provided

Appendix C

Wednesday, September 20, 2023

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1107 DEKALB AVENUE SDG ID: GCN20371 Sample ID#s: CN20371 - CN20377

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

SDG Comments

September 20, 2023

SDG I.D.: GCN20371

Version 2: Per client request VOA compound list was revised.

Sample Id Cross Reference

September 20, 2023

SDG I.D.: GCN20371

Project ID: 1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1401	CN20371	GROUND WATER
MW-1402	CN20372	GROUND WATER
MW-1403	CN20373	GROUND WATER
MW-140X	CN20374	GROUND WATER
TRIP BLANK-2	CN20375	GROUND WATER
INFLUENT	CN20376	TEDLAR BAG
EFFLUENT	CN20377	TEDLAR BAG

Time

12:30

16:36

Analysis Report

Sample Information

FOR: Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

North Merrick, New York 11566Custody InformationDateCollected by:01/09/23

SW

Matrix:TEDLAR BAGLocation Code:PREFRDNYRush Request:StandardP.O.#:

Laboratory	/ Data
Analyzed by:	see "By" below

Received by:

SDG ID: GCN20371

Phoenix ID: CN20376

01/10/23

Project ID:	1107 DEKALB AVENUE
Client ID:	INFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	By	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	1.46	ND	10.0	01/11/23	KCA	10	1
1,1,1-Trichloroethane	ND	1.83	ND	10.0	01/11/23	KCA	10	1
1,1,2,2-Tetrachloroethane	ND	1.46	ND	10.0	01/11/23	KCA	10	1
1,1,2-Trichloroethane	ND	1.83	ND	10.0	01/11/23	KCA	10	1
1,1-Dichloroethane	ND	2.47	ND	10.0	01/11/23	KCA	10	1
1,1-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
1,2,4-Trimethylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
1,2-Dibromoethane(EDB)	ND	1.30	ND	10.0	01/11/23	KCA	10	1
1,2-Dichloroethane	ND	2.47	ND	10.0	01/11/23	KCA	10	1
1,2-dichloropropane	ND	2.17	ND	10.0	01/11/23	KCA	10	1
1,2-Dichlorotetrafluoroethane	ND	1.43	ND	10.0	01/11/23	KCA	10	1
1,3,5-Trimethylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
1,3-Butadiene	ND	4.52	ND	10.0	01/11/23	KCA	10	1
1,4-Dioxane	ND	2.78	ND	10.0	01/11/23	KCA	10	1
2-Hexanone(MBK)	ND	2.44	ND	10.0	01/11/23	KCA	10	1
4-Ethyltoluene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
4-Isopropyltoluene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
4-Methyl-2-pentanone(MIBK)	ND	2.44	ND	10.0	01/11/23	KCA	10	1
Acetone	21.3	4.21	50.6	10.0	01/11/23	KCA	10	1
Acrylonitrile	ND	4.61	ND	10.0	01/11/23	KCA	10	1
Benzene	ND	3.13	ND	10.0	01/11/23	KCA	10	1
Bromodichloromethane	ND	1.49	ND	10.0	01/11/23	KCA	10	1
Bromoform	ND	0.968	ND	10.0	01/11/23	KCA	10	1
Bromomethane	ND	2.58	ND	10.0	01/11/23	KCA	10	1
Carbon Disulfide	ND	3.21	ND	10.0	01/11/23	KCA	10	1
Carbon Tetrachloride	ND	0.397	ND	2.50	01/11/23	KCA	10	1

Project ID: 1107 DEKALB AVENUE

Client ID: INFLUENT

Parameter	ppb∨ Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	2.17	ND	10.0	01/11/23	KCA	10	1
Chloroethane	ND	3.79	ND	10.0	01/11/23	KCA	10	1
Chloroform	22.8	2.05	111	10.0	01/11/23	KCA	10	1
Chloromethane	ND	4.85	ND	10.0	01/11/23	KCA	10	1
Cis-1,2-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
cis-1,3-Dichloropropene	ND	2.20	ND	10.0	01/11/23	KCA	10	1
Cyclohexane	ND	2.91	ND	10.0	01/11/23	KCA	10	1
Dibromochloromethane	ND	1.17	ND	10.0	01/11/23	KCA	10	1
Dichlorodifluoromethane	ND	2.02	ND	10.0	01/11/23	KCA	10	1
Ethanol	72.7	5.31	137	10.0	01/11/23	KCA	10	1
Ethyl acetate	ND	2.78	ND	10.0	01/11/23	KCA	10	1
Ethylbenzene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Heptane	ND	2.44	ND	10.0	01/11/23	KCA	10	1
Hexachlorobutadiene	ND	0.938	ND	10.0	01/11/23	KCA	10	1
Hexane	ND	2.84	ND	10.0	01/11/23	KCA	10	1
Isopropylalcohol	ND	4.07	ND	10.0	01/11/23	KCA	10	1
Isopropylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
m,p-Xylene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Methyl Ethyl Ketone	ND	3.39	ND	10.0	01/11/23	KCA	10	1
Methyl tert-butyl ether(MTBE)	ND	2.78	ND	10.0	01/11/23	KCA	10	1
Methylene Chloride	ND	2.88	ND	10.0	01/11/23	KCA	10	1
n-Butylbenzene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
o-Xylene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Propylene	ND	5.81	ND	10.0	01/11/23	KCA	10	1
sec-Butylbenzene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
Tetrachloroethene	593	0.738	4020	5.00	01/11/23	KCA	20	1
Tetrahydrofuran	ND	3.39	ND	10.0	01/11/23	KCA	10	1
Toluene	ND	2.66	ND	10.0	01/11/23	KCA	10	1
Trans-1,2-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
Trichloroethene	25.4	0.466	136	2.50	01/11/23	KCA	10	1
Trichlorofluoromethane	ND	1.78	ND	10.0	01/11/23	KCA	10	1
Trichlorotrifluoroethane	ND	1.31	ND	10.0	01/11/23	KCA	10	1
Vinyl Chloride	ND	0.979	ND	2.50	01/11/23	KCA	10	1
QA/QC Surrogates/Internals								
% Bromofluorobenzene (10x)	109	%	109	%	01/11/23	KCA	10	
% IS-1,4-Difluorobenzene (10x)	97	%	97	%	01/11/23	KCA	10	
% IS-Bromochloromethane (10x)	99	%	99	%	01/11/23	KCA	10	
% IS-Chlorobenzene-d5 (10x)	95	%	95	%	01/11/23	KCA	10	
% Bromofluorobenzene (20x)	105	%	105	%	01/11/23	KCA	20	
% IS-1,4-Difluorobenzene (20x)	92	%	92	%	01/11/23	KCA	20	
% IS-Bromochloromethane (20x)	92	%	92	%	01/11/23	KCA	20	
% IS-Chlorobenzene-d5 (20x)	90	%	90	%	01/11/23	KCA	20	

Project ID: 1107 DEKALB AVENUE

Client ID: INFLUENT

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Analyzed by:

Laboratory Data

Analysis Report

Sample Information

Location Code:

Rush Request:

Matrix:

P.O.#:

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

September 20, 2023

Custody Information Date Time **TEDLAR BAG** Collected by: 01/09/23 12:35 Received by: PREFRDNY SW 01/10/23 16:36

see "By" below

SDG ID: GCN20371

Phoenix ID: CN20377

Project ID:	1107 DEKALB AVENUE
Client ID:	EFFLUENT

EFFLUENT

Standard

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	1.46	ND	10.0	01/11/23	KCA	10	1
1,1,1-Trichloroethane	ND	1.83	ND	10.0	01/11/23	KCA	10	1
1,1,2,2-Tetrachloroethane	ND	1.46	ND	10.0	01/11/23	KCA	10	1
1,1,2-Trichloroethane	ND	1.83	ND	10.0	01/11/23	KCA	10	1
1,1-Dichloroethane	ND	2.47	ND	10.0	01/11/23	KCA	10	1
1,1-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
1,2,4-Trimethylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
1,2-Dibromoethane(EDB)	ND	1.30	ND	10.0	01/11/23	KCA	10	1
1,2-Dichloroethane	ND	2.47	ND	10.0	01/11/23	KCA	10	1
1,2-dichloropropane	ND	2.17	ND	10.0	01/11/23	KCA	10	1
1,2-Dichlorotetrafluoroethane	ND	1.43	ND	10.0	01/11/23	KCA	10	1
1,3,5-Trimethylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
1,3-Butadiene	ND	4.52	ND	10.0	01/11/23	KCA	10	1
1,4-Dioxane	ND	2.78	ND	10.0	01/11/23	KCA	10	1
2-Hexanone(MBK)	ND	2.44	ND	10.0	01/11/23	KCA	10	1
4-Ethyltoluene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
4-Isopropyltoluene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
4-Methyl-2-pentanone(MIBK)	ND	2.44	ND	10.0	01/11/23	KCA	10	1
Acetone	110	4.21	261	10.0	01/11/23	KCA	10	1
Acrylonitrile	ND	4.61	ND	10.0	01/11/23	KCA	10	1
Benzene	ND	3.13	ND	10.0	01/11/23	KCA	10	1
Bromodichloromethane	ND	1.49	ND	10.0	01/11/23	KCA	10	1
Bromoform	ND	0.968	ND	10.0	01/11/23	KCA	10	1
Bromomethane	ND	2.58	ND	10.0	01/11/23	KCA	10	1
Carbon Disulfide	ND	3.21	ND	10.0	01/11/23	KCA	10	1
Carbon Tetrachloride	ND	0.397	ND	2.50	01/11/23	KCA	10	1

Project ID: 1107 DEKALB AVENUE Client ID: EFFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	2.17	ND	10.0	01/11/23	KCA	10	1
Chloroethane	ND	3.79	ND	10.0	01/11/23	KCA	10	1
Chloroform	24.7	2.05	121	10.0	01/11/23	KCA	10	1
Chloromethane	ND	4.85	ND	10.0	01/11/23	KCA	10	1
Cis-1,2-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
cis-1,3-Dichloropropene	ND	2.20	ND	10.0	01/11/23	KCA	10	1
Cyclohexane	ND	2.91	ND	10.0	01/11/23	KCA	10	1
Dibromochloromethane	ND	1.17	ND	10.0	01/11/23	KCA	10	1
Dichlorodifluoromethane	ND	2.02	ND	10.0	01/11/23	KCA	10	1
Ethanol	29.8	5.31	56.1	10.0	01/11/23	KCA	10	1
Ethyl acetate	ND	2.78	ND	10.0	01/11/23	KCA	10	1
Ethylbenzene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Heptane	ND	2.44	ND	10.0	01/11/23	KCA	10	1
Hexachlorobutadiene	ND	0.938	ND	10.0	01/11/23	KCA	10	1
Hexane	5.24	2.84	18.5	10.0	01/11/23	KCA	10	1
Isopropylalcohol	ND	4.07	ND	10.0	01/11/23	KCA	10	1
Isopropylbenzene	ND	2.04	ND	10.0	01/11/23	KCA	10	1
m,p-Xylene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Methyl Ethyl Ketone	ND	3.39	ND	10.0	01/11/23	KCA	10	1
Methyl tert-butyl ether(MTBE)	ND	2.78	ND	10.0	01/11/23	KCA	10	1
Methylene Chloride	ND	2.88	ND	10.0	01/11/23	KCA	10	1
n-Butylbenzene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
o-Xylene	ND	2.30	ND	10.0	01/11/23	KCA	10	1
Propylene	ND	5.81	ND	10.0	01/11/23	KCA	10	1
sec-Butylbenzene	ND	1.82	ND	10.0	01/11/23	KCA	10	1
Tetrachloroethene	375	0.369	2540	2.50	01/11/23	KCA	10	1
Tetrahydrofuran	ND	3.39	ND	10.0	01/11/23	KCA	10	1
Toluene	ND	2.66	ND	10.0	01/11/23	KCA	10	1
Trans-1,2-Dichloroethene	ND	2.52	ND	10.0	01/11/23	KCA	10	1
Trichloroethene	21.9	0.466	118	2.50	01/11/23	KCA	10	1
Trichlorofluoromethane	ND	1.78	ND	10.0	01/11/23	KCA	10	1
Trichlorotrifluoroethane	ND	1.31	ND	10.0	01/11/23	KCA	10	1
Vinyl Chloride	ND	0.979	ND	2.50	01/11/23	KCA	10	1
QA/QC Surrogates/Internals								
% Bromofluorobenzene (10x)	107	%	107	%	01/11/23	KCA	10	
% IS-1,4-Difluorobenzene (10x)	97	%	97	%	01/11/23	KCA	10	
% IS-Bromochloromethane (10x)	98	%	98	%	01/11/23	KCA	10	
% IS-Chlorobenzene-d5 (10x)	96	%	96	%	01/11/23	KCA	10	

Project ID: 1107 DEKALB AVENUE

Client ID: EFFLUENT

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

					ID
VOI	LATILE ORGANICS ANALYS TENTATIVELY IDENTIFIED	SIS DATA SHEET COMPOUNDS		MW-14	01
Lab Name: Phoenix Er	vironmental Labs	Client:	PREFRDNY		
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20371	
Sample wt/vol:	(g/mL)	<u>mL</u>	Lab File ID:	0111_19.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/11/23	
GC Column:	RTX-VMS ID:	<u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	<u>25000</u> (uL)		Soil Aliquot Vol (uL	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L		
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found:

21

TENTATIVELY IDENTIFIED COMPOUNDS					02
Lab Name: Phoenix Er	nvironmental Labs		Client: PREFRDNY	-	
Lab Code: Phoenix	Case No.:		SAS No.:	SDG No.:	GCN2037
Matrix:(soil/water) G	ROUND WATER		Lab Sample ID:	CN20372	
Sample wt/vol:	25	(g/mL) <u>mL</u>	Lab File ID:	0113_43.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/14/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	5
Purge Volume:	(uL)		Soil Aliquot Vol (ul	_):	n.a.
		CONCENTRATION	NUNITS:		

(ug/L or ug/KG)

ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000106-97-8	Butane	1.200	38	JN
000078-78-4	Butane, 2-methyl-	1.431	67	JN
000109-66-0	Pentane	1.546	22	JN
	unknown	2.058	39	J
	unknown	2.074	31	J
000096-14-0	Pentane, 3-methyl-	2.215	31	JN
000096-37-7	Cyclopentane, methyl-	2.770	42	JN
000590-73-8	Hexane, 2,2-dimethyl-	3.549	33	JN
103-65-1	n-Propylbenzene	7.168	100	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.247	110	JN
108-67-8	1,3,5-Trimethylbenzene	7.309	74	Q
	Benzene, 1-ethyl-2-methyl- Isomer	7.451	69	JN
95-63-6	1,2,4-Trimethylbenzene	7.576	330	Q
135-98-8	sec-Butylbenzene	7.644	6	Q
000496-11-7	Indane	7.932	110	JN
104-51-8	n-Butylbenzene	7.999	5	Q
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	8.151	23	JN
000767-58-8	Indan, 1-methyl-	8.261	30	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.575	25	JN
	1H-Indene, 2,3-dihydro-4-methyl- Isomer	8.669	41	JN
91-20-3	Naphthalene	9.066	100	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TENTATIVELY IDENTIFIED COMPOUNDS				MW-1403	
Lab Name: Phoenix Er	nvironmental Labs		Client: PREFRDNY	·	
Lab Code: Phoenix	Case No.:		SAS No.:	SDG No.:	GCN2037
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20373	
Sample wt/vol:	25	(g/mL) <u>mL</u>	Lab File ID:	0111_20.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/11/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	(uL)		Soil Aliquot Vol (uL	.):	n.a.
		CONCENTRATION	UNITS:		

Number TICs found:

20

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-	1.431	6.5	JN
000079-29-8	Butane, 2,3-dimethyl-	2.053	7.3	JN
000096-14-0	Pentane, 3-methyl-	2.215	3.9	JN
000108-08-7	Pentane, 2,4-dimethyl-	2.743	2.5	JN
000096-37-7	Cyclopentane, methyl-	2.769	6.8	JN
	unknown	3.476	2.7	J
000590-73-8	Hexane, 2,2-dimethyl-	3.549	21	JN
000565-75-3	Pentane, 2,3,4-trimethyl-	4.380	11	JN
	unknown	4.475	14	J
	unknown	4.767	4.3	J
103-65-1	n-Propylbenzene	7.168	2.7	Q
108-67-8	1,3,5-Trimethylbenzene	7.309	0.58	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.451	4	JN
95-63-6	1,2,4-Trimethylbenzene	7.57	0.98	Q
135-98-8	sec-Butylbenzene	7.644	2.5	Q
	unknown	7.926	4.6	J
104-51-8	n-Butylbenzene	7.994	0.97	Q
000767-58-8	Indan, 1-methyl-	8.261	3.8	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.669	2.9	JN
017059-48-2	1H-Indene, 2,3-dihydro-1,6-dimethyl-	8.905	2.6	JN

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

TENTATIVELY IDENTIFIED COMPOUNDS				MW-14	0X	
Lab Name: Phoenix Er	nvironmental Labs		Client:	PREFRDNY	-	
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) G	ROUND WATER			Lab Sample ID:	CN20374	
Sample wt/vol:	25	(g/mL) <u>mL</u>		Lab File ID:	0113_44.D	
Level: (low/med)				Date Received:	01/10/23	
% Moisture: not dec.	100			Date Analyzed:	01/14/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	-	5
Purge Volume:	(uL)			Soil Aliquot Vol (ul	_):	n.a.
		CONCENTRATIO	N UNITS:			

Number TICs found:

21

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	unknown	1.201	41	J
000078-78-4	Butane, 2-methyl-	1.431	74	JN
000109-66-0	Pentane	1.546	24	JN
000107-83-5	Pentane, 2-methyl-	2.058	43	JN
	unknown	2.074	33	J
000096-14-0	Pentane, 3-methyl-	2.215	33	JN
000096-37-7	Cyclopentane, methyl-	2.770	45	JN
000590-73-8	Hexane, 2,2-dimethyl-	3.549	33	JN
103-65-1	n-Propylbenzene	7.168	110	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	7.247	120	JN
108-67-8	1,3,5-Trimethylbenzene	7.309	77	Q
	Benzene, 1-ethyl-2-methyl- Isomer	7.451	71	JN
95-63-6	1,2,4-Trimethylbenzene	7.576	340	Q
135-98-8	sec-Butylbenzene	7.644	6.4	Q
104-51-8	n-Butylbenzene	7.999	5.4	Q
001758-88-9	Benzene, 2-ethyl-1,4-dimethyl-	8.152	25	JN
000527-84-4	Benzene, 1-methyl-2-(1-methylethyl	8.199	23	JN
000767-58-8	Indan, 1-methyl-	8.261	32	JN
098640-29-0	3a,6-Methano-3aH-indene, 2,3,6,7-t	8.575	27	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	8.669	44	JN
91-20-3	Naphthalene	9.066	110	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

	CLIENT ID				
	LATILE ORGANICS ANAL TENTATIVELY IDENTIFIEI	COMPOUNDS		TRIP BLA	NK-2
Lab Name: Phoenix En	vironmental Labs	Client:	PREFRDNY	-	
Lab Code: Phoenix	Case No.:	SAS No.:		SDG No.:	GCN2037
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CN20375	
Sample wt/vol:	25(g/m	L) <u>mL</u>	Lab File ID:	0111_08.D	
Level: (low/med)			Date Received:	01/10/23	
% Moisture: not dec.	100		Date Analyzed:	01/11/23	
GC Column:	RTX-VMS	D: <u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	<u>25000</u> (uL)		Soil Aliquot Vol (ul	_):	n.a.
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	COMPOUND N	AME	RT	EST. CONC.	Q
	1		1	1	

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

QA/QC Report

September 20, 2023

QA/QC Data

SDG I.	D.: (GCN	12037	1

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 659856 (ug/L)	, QC Sampl	le No: CN20371 (CN20371)									
Volatiles - Ground Wat	er										
1,1,1,2-Tetrachloroethane	ND	1.0	105	107	1.9	105	112	6.5	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	97	100	3.0	103	110	6.6	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	103	101	2.0	97	102	5.0	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	109	106	2.8	106	112	5.5	70 - 130	30	
1,1-Dichloroethane	ND	1.0	99	102	3.0	102	108	5.7	70 - 130	30	
1,1-Dichloroethene	ND	1.0	96	99	3.1	107	113	5.5	70 - 130	30	
1,1-Dichloropropene	ND	1.0	100	106	5.8	108	116	7.1	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	111	108	2.7	106	114	7.3	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	104	104	0.0	100	104	3.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	108	108	0.0	107	116	8.1	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	106	111	4.6	110	117	6.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	98	103	5.0	100	107	6.8	70 - 130	30	
1,2-Dibromoethane	ND	1.0	107	107	0.0	104	111	6.5	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	99	102	3.0	100	106	5.8	70 - 130	30	
1,2-Dichloroethane	ND	1.0	100	101	1.0	99	106	6.8	70 - 130	30	
1,2-Dichloropropane	ND	1.0	101	103	2.0	104	111	6.5	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	108	111	2.7	111	119	7.0	70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	102	105	2.9	102	109	6.6	70 - 130	30	
1,3-Dichloropropane	ND	1.0	106	107	0.9	103	113	9.3	70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	100	102	2.0	100	108	7.7	70 - 130	30	
1,4-dioxane	ND	100	103	104	1.0	92	104	12.2	70 - 130	30	
2,2-Dichloropropane	ND	1.0	95	98	3.1	89	95	6.5	70 - 130	30	
2-Chlorotoluene	ND	1.0	105	110	4.7	109	117	7.1	70 - 130	30	
2-Hexanone	ND	5.0	103	94	9.1	99	103	4.0	70 - 130	30	
2-Isopropyltoluene	ND	1.0	104	109	4.7	108	116	7.1	70 - 130	30	
4-Chlorotoluene	ND	1.0	105	109	3.7	107	114	6.3	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	104	99	4.9	103	106	2.9	70 - 130	30	
Acetone	ND	5.0	91	94	3.2	103	101	2.0	70 - 130	30	
Acrylonitrile	ND	5.0	103	101	2.0	99	107	7.8	70 - 130	30	
Benzene	ND	0.70	98	102	4.0	103	111	7.5	70 - 130	30	
Bromobenzene	ND	1.0	102	106	3.8	103	110	6.6	70 - 130	30	
Bromochloromethane	ND	1.0	102	103	1.0	103	109	5.7	70 - 130	30	
Bromodichloromethane	ND	0.50	102	101	1.0	101	108	6.7	70 - 130	30	
Bromoform	ND	1.0	101	99	2.0	93	103	10.2	70 - 130	30	
Bromomethane	ND	1.0	115	123	6.7	107	135	23.1	70 - 130	30	m
Carbon Disulfide	ND	1.0	89	92	3.3	96	104	8.0	70 - 130	30	
Carbon tetrachloride	ND	1.0	98	100	2.0	106	111	4.6	70 - 130	30	
Chlorobenzene	ND	1.0	100	103	3.0	102	110	7.5	70 - 130	30	
Chloroethane	ND	1.0	99	104	4.9	107	114	6.3	70 - 130	30	
Chloroform	ND	1.0	97	107	9.8	108	104	3.8	70 - 130	30	
Chloromethane	ND	1.0	82	84	2.4	93	99	6.3	70 - 130	30	

QA/QC Data

SDG I.D.: GCN20371

		DIK	1.05		1.05	MC	MCD	MC	% Dec	% חחח
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits
cis-1,2-Dichloroethene	ND	1.0	97	99	2.0	104	106	1.9	70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	104	0.0	100	110	9.5	70 - 130	30
Dibromochloromethane	ND	0.50	104	105	1.0	103	109	5.7	70 - 130	30
Dibromomethane	ND	1.0	106	105	0.9	103	111	7.5	70 - 130	30
Dichlorodifluoromethane	ND	1.0	75	77	2.6	103	108	4.7	70 - 130	30
Ethylbenzene	ND	1.0	107	110	2.8	110	119	7.9	70 - 130	30
Hexachlorobutadiene	ND	0.40	99	103	4.0	103	114	10.1	70 - 130	30
Isopropylbenzene	ND	1.0	108	114	5.4	114	122	6.8	70 - 130	30
m&p-Xylene	ND	1.0	108	112	3.6	111	120	7.8	70 - 130	30
Methyl ethyl ketone	ND	5.0	91	92	1.1	89	93	4.4	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	100	96	4.1	96	101	5.1	70 - 130	30
Methylene chloride	ND	1.0	96	96	0.0	96	103	7.0	70 - 130	30
Naphthalene	ND	1.0	113	112	0.9	113	119	5.2	70 - 130	30
n-Butylbenzene	ND	1.0	111	114	2.7	114	122	6.8	70 - 130	30
n-Propylbenzene	ND	1.0	106	111	4.6	111	119	7.0	70 - 130	30
o-Xylene	ND	1.0	108	113	4.5	111	119	7.0	70 - 130	30
p-Isopropyltoluene	ND	1.0	110	114	3.6	114	122	6.8	70 - 130	30
sec-Butylbenzene	ND	1.0	107	113	5.5	112	121	7.7	70 - 130	30
Styrene	ND	1.0	113	115	1.8	112	121	7.7	70 - 130	30
tert-Butylbenzene	ND	1.0	108	113	4.5	113	121	6.8	70 - 130	30
Tetrachloroethene	ND	1.0	100	104	3.9	108	117	8.0	70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	96	91	5.3	88	92	4.4	70 - 130	30
Toluene	ND	1.0	104	107	2.8	108	115	6.3	70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	98	100	2.0	103	109	5.7	70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	105	105	0.0	101	108	6.7	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	91	93	2.2	79	84	6.1	70 - 130	30
Trichloroethene	ND	1.0	103	105	1.9	110	120	8.7	70 - 130	30
Trichlorofluoromethane	ND	1.0	96	98	2.1	107	114	6.3	70 - 130	30
Trichlorotrifluoroethane	ND	1.0	88	89	1.1	97	103	6.0	70 - 130	30
Vinyl chloride	ND	1.0	97	100	3.0	111	119	7.0	70 - 130	30
% 1,2-dichlorobenzene-d4	103	%	101	101	0.0	100	98	2.0	70 - 130	30
% Bromofluorobenzene	91	%	102	101	1.0	101	101	0.0	70 - 130	30
% Dibromofluoromethane	97	%	95	94	1.1	95	93	2.1	70 - 130	30
% Toluene-d8	101	%	99	99	0.0	100	100	0.0	70 - 130	30
Comment:										

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 659737 (ug/L), QC Sample No: CN20375 (CN20372 (20X) , CN20373, CN20374 (20X) , CN20375)

Volatiles	- Ground	Water
VUIALIES		vvalei

1,1,1,2-Tetrachloroethane	ND	1.0	105	107	1.9	70 -	130	30
1,1,1-Trichloroethane	ND	1.0	97	100	3.0	70 -	130	30
1,1,2,2-Tetrachloroethane	ND	0.50	103	101	2.0	70 -	130	30
1,1,2-Trichloroethane	ND	1.0	109	106	2.8	70 -	130	30
1,1-Dichloroethane	ND	1.0	99	102	3.0	70 -	130	30
1,1-Dichloroethene	ND	1.0	96	99	3.1	70 -	130	30
1,1-Dichloropropene	ND	1.0	100	106	5.8	70 -	130	30
1,2,3-Trichlorobenzene	ND	1.0	111	108	2.7	70 -	130	30
1,2,3-Trichloropropane	ND	1.0	104	104	0.0	70 -	130	30
1,2,4-Trichlorobenzene	ND	1.0	108	108	0.0	70 -	130	30
1,2,4-Trimethylbenzene	ND	1.0	106	111	4.6	70 -	130	30
1,2-Dibromo-3-chloropropane	ND	1.0	98	103	5.0	70 -	130	30
1,2-Dibromoethane	ND	1.0	107	107	0.0	70 -	130	30

<u>QA/QC Data</u>

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
1,2-Dichlorobenzene	ND	1.0	99	102	3.0				70 - 130	30
1,2-Dichloroethane	ND	1.0	100	101	1.0				70 - 130	30
1,2-Dichloropropane	ND	1.0	101	103	2.0				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	108	111	2.7				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	102	105	2.9				70 - 130	30
1,3-Dichloropropane	ND	1.0	106	107	0.9				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	100	102	2.0				70 - 130	30
1,4-dioxane	ND	100	103	104	1.0				70 - 130	30
2,2-Dichloropropane	ND	1.0	95	98	3.1				70 - 130	30
2-Chlorotoluene	ND	1.0	105	110	4.7				70 - 130	30
2-Hexanone	ND	5.0	103	94	9.1				70 - 130	30
2-Isopropyltoluene	ND	1.0	104	109	4.7				70 - 130	30
4-Chlorotoluene	ND	1.0	105	109	3.7				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	104	99	4.9				70 - 130	30
Acetone	ND	5.0	91	94	3.2				70 - 130	30
Acrylonitrile	ND	5.0	103	101	2.0				70 - 130	30
Benzene	ND	0.70	98	102	4.0				70 - 130	30
Bromobenzene	ND	1.0	102	106	3.8				70 - 130	30
Bromochloromethane	ND	1.0	102	103	1.0				70 - 130	30
Bromodichloromethane	ND	0.50	102	101	1.0				70 - 130	30
Bromoform	ND	1.0	101	99	2.0				70 - 130	30
Bromomethane	ND	1.0	115	123	6.7				70 - 130	30
Carbon Disulfide	ND	1.0	89	92	3.3				70 - 130	30
Carbon tetrachloride	ND	1.0	98	100	2.0				70 - 130	30
Chlorobenzene	ND	1.0	100	103	3.0				70 - 130	30
Chloroethane	ND	1.0	99	104	4.9				70 - 130	30
Chloroform	ND	1.0	97	107	9.8				70 - 130	30
Chloromethane	ND	1.0	82	84	2.4				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	97	99	2.0				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	104	0.0				70 - 130	30
Dibromochloromethane	ND	0.50	104	105	1.0				70 - 130	30
Dibromomethane	ND	1.0	106	105	0.9				70 - 130	30
Dichlorodifluoromethane	ND	1.0	75	77	2.6				70 - 130	30
Ethylbenzene	ND	1.0	107	110	2.8				70 - 130	30
Hexachlorobutadiene	ND	0.40	99	103	4.0				70 - 130	30
Isopropylbenzene	ND	1.0	108	114	5.4				70 - 130	30
m&p-Xylene	ND	1.0	108	112	3.6				70 - 130	30
Methyl ethyl ketone	ND	5.0	91	92	1.1				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	100	96	4.1				70 - 130	30
Methylene chloride	ND	1.0	96	96	0.0				70 - 130	30
Naphthalene	ND	1.0	113	112	0.9				70 - 130	30
n-Butylbenzene	ND	1.0	111	114	2.7				70 - 130	30
n-Propylbenzene	ND	1.0	106	111	4.6				70 - 130	30
o-Xylene	ND	1.0	108	113	4.5				70 - 130	30
p-Isopropyltoluene	ND	1.0	110	114	3.6				70 - 130	30
sec-Butylbenzene	ND	1.0	107	113	5.5				70 - 130	30
Styrene	ND	1.0	113	115	1.8				70 - 130	30
tert-Butylbenzene	ND	1.0	108	113	4.5				70 - 130	30
Tetrachloroethene	ND	1.0	100	104	3.9				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	96	91	5.3				70 - 130	30
Toluene	ND	1.0	104	107	2.8				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	98	100	2.0				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	105	105	0.0				70 - 130	30

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
trans-1,4-dichloro-2-butene	ND	5.0	91	93	2.2				70 - 130	30	
Trichloroethene	ND	1.0	103	105	1.9				70 - 130	30	
Trichlorofluoromethane	ND	1.0	96	98	2.1				70 - 130	30	
Trichlorotrifluoroethane	ND	1.0	88	89	1.1				70 - 130	30	
Vinyl chloride	ND	1.0	97	100	3.0				70 - 130	30	
% 1,2-dichlorobenzene-d4	103	%	101	101	0.0				70 - 130	30	
% Bromofluorobenzene	91	%	102	101	1.0				70 - 130	30	
% Dibromofluoromethane	97	%	95	94	1.1				70 - 130	30	
% Toluene-d8	101	%	99	99	0.0				70 - 130	30	

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 660084 (ug/L), QC Sample No: CN23824 (CN20372 (5X) , CN20374 (5X))

Volatiles - Ground Water

1 1 1 2-Tetrachloroethane	ND	10	104	10/	0.0	70 - 130	30
1 1 1-Trichloroethane	ND	1.0	85	85	0.0	70 - 130	30
1 1 2 2-Tetrachloroethane	ND	0.50	101	104	2.9	70 - 130	30
1.1.2-Trichloroethane	ND	1.0	106	111	4.6	70 - 130	30
1.1-Dichloroethane	ND	1.0	88	88	0.0	70 - 130	30
1.1-Dichloroethene	ND	1.0	86	86	0.0	70 - 130	30
1.1-Dichloropropene	ND	1.0	89	89	0.0	70 - 130	30
1.2.3-Trichlorobenzene	ND	1.0	107	109	1.9	70 - 130	30
1,2,3-Trichloropropane	ND	1.0	99	102	3.0	70 - 130	30
1.2.4-Trichlorobenzene	ND	1.0	106	108	1.9	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	99	99	0.0	70 - 130	30
1,2-Dibromoethane	ND	1.0	106	110	3.7	70 - 130	30
1,2-Dichlorobenzene	ND	1.0	99	98	1.0	70 - 130	30
1,2-Dichloroethane	ND	1.0	97	100	3.0	70 - 130	30
1,2-Dichloropropane	ND	1.0	102	104	1.9	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	103	102	1.0	70 - 130	30
1,3-Dichlorobenzene	ND	1.0	100	100	0.0	70 - 130	30
1,3-Dichloropropane	ND	1.0	107	108	0.9	70 - 130	30
1,4-Dichlorobenzene	ND	1.0	99	98	1.0	70 - 130	30
1,4-dioxane	ND	100	99	102	3.0	70 - 130	30
2,2-Dichloropropane	ND	1.0	84	83	1.2	70 - 130	30
2-Chlorotoluene	ND	1.0	104	103	1.0	70 - 130	30
2-Hexanone	ND	5.0	99	102	3.0	70 - 130	30
2-Isopropyltoluene	ND	1.0	100	99	1.0	70 - 130	30
4-Chlorotoluene	ND	1.0	105	103	1.9	70 - 130	30
4-Methyl-2-pentanone	ND	5.0	101	107	5.8	70 - 130	30
Acetone	ND	5.0	83	93	11.4	70 - 130	30
Acrylonitrile	ND	5.0	91	94	3.2	70 - 130	30
Benzene	ND	0.70	101	96	5.1	70 - 130	30
Bromobenzene	ND	1.0	103	103	0.0	70 - 130	30
Bromochloromethane	ND	1.0	92	96	4.3	70 - 130	30
Bromodichloromethane	ND	0.50	98	99	1.0	70 - 130	30
Bromoform	ND	1.0	98	98	0.0	70 - 130	30
Bromomethane	ND	1.0	107	99	7.8	70 - 130	30
Carbon Disulfide	ND	1.0	80	79	1.3	70 - 130	30
Carbon tetrachloride	ND	1.0	86	86	0.0	70 - 130	30
Chlorobenzene	ND	1.0	101	100	1.0	70 - 130	30

QA/QC Data

SDG I.D.: GCN20371

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits
Chloroethane	ND	1.0	89	87	2.3				70 - 130	30
Chloroform	ND	1.0	88	89	1.1				70 - 130	30
Chloromethane	ND	1.0	87	87	0.0				70 - 130	30
cis-1,2-Dichloroethene	ND	1.0	91	92	1.1				70 - 130	30
cis-1,3-Dichloropropene	ND	0.40	104	105	1.0				70 - 130	30
Dibromochloromethane	ND	0.50	103	104	1.0				70 - 130	30
Dibromomethane	ND	1.0	104	108	3.8				70 - 130	30
Dichlorodifluoromethane	ND	1.0	81	82	1.2				70 - 130	30
Hexachlorobutadiene	ND	0.40	91	92	1.1				70 - 130	30
Isopropylbenzene	ND	1.0	104	102	1.9				70 - 130	30
Methyl ethyl ketone	ND	5.0	91	88	3.4				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	91	94	3.2				70 - 130	30
Methylene chloride	ND	1.0	87	88	1.1				70 - 130	30
Naphthalene	ND	1.0	110	116	5.3				70 - 130	30
n-Butylbenzene	ND	1.0	103	102	1.0				70 - 130	30
n-Propylbenzene	ND	1.0	102	99	3.0				70 - 130	30
o-Xylene	ND	1.0	108	107	0.9				70 - 130	30
p-Isopropyltoluene	ND	1.0	102	101	1.0				70 - 130	30
sec-Butylbenzene	ND	1.0	100	99	1.0				70 - 130	30
Styrene	ND	1.0	113	111	1.8				70 - 130	30
tert-Butylbenzene	ND	1.0	102	100	2.0				70 - 130	30
Tetrachloroethene	ND	1.0	98	97	1.0				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	86	93	7.8				70 - 130	30
Toluene	ND	1.0	102	103	1.0				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	87	86	1.2				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	101	106	4.8				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	85	90	5.7				70 - 130	30
Trichloroethene	ND	1.0	100	99	1.0				70 - 130	30
Trichlorofluoromethane	ND	1.0	83	84	1.2				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	75	76	1.3				70 - 130	30
Vinyl chloride	ND	1.0	91	90	1.1				70 - 130	30
% 1,2-dichlorobenzene-d4	105	%	99	100	1.0				70 - 130	30
% Bromofluorobenzene	92	%	102	102	0.0				70 - 130	30
% Dibromofluoromethane	89	%	85	88	3.5				70 - 130	30
% Toluene-d8	100	%	98	99	1.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

QA/QC Data

SDG I.D.: GCN20371

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 659655 (ppbv), Q	C Sam	ple No:	CN20377	(CN203	76 (10X, 20X)	, CN203	377 (10	X))				
Volatiles												
1,1,1,2-Tetrachloroethane	ND	1.50	ND	10.3	98	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	1.80	ND	9.8	101	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	1.50	ND	10.3	104	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	1.80	ND	9.8	103	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	2.50	ND	10.1	102	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	2.50	ND	9.9	102	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	2.00	ND	9.8	106	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	1.30	ND	10.0	107	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	2.50	ND	10.1	101	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	2.20	ND	10.2	100	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	1.40	ND	9.8	98	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	2.00	ND	9.8	103	ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	4.50	ND	9.9	97	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	2.80	ND	10.1	105	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	2.40	ND	9.8	107	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	2.00	ND	9.8	111	ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	1.80	ND	9.9	91	ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	2.40	ND	9.8	104	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	4.20	ND	10.0	92	261	249	110	105	4.7	70 - 130	25
Acrylonitrile	ND	4.60	ND	10.0	76	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	3.10	ND	9.9	101	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	1.50	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.970	ND	10.0	127	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	2.60	ND	10.1	98	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	3.20	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.400	ND	2.51	109	ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	2.20	ND	10.1	106	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	3.80	ND	10.0	95	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	2.00	ND	9.8	105	121	122	24.7	25.0	1.2	70 - 130	25
Chloromethane	ND	4.80	ND	9.9	93	ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	2.50	ND	9.9	102	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	2.20	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	2.90	ND	10.0	100	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	1.20	ND	10.2	115	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	2.00	ND	9.9	101	ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	5.30	ND	10.0	129	56.1	58.0	29.8	30.8	3.3	70 - 130	25
Ethyl acetate	ND	2.80	ND	10.1	84	ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	2.30	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	2.40	ND	9.8	102	ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.940	ND	10.0	87	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	2.80	ND	9.9	104	18.5	16.5	5.24	4.68	NC	70 - 130	25

QA/QC Data

SDG I.D.: GCN20371

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Samp Resu ug/m	e Sample t Dup 3 ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Isopropylalcohol	ND	4.10	ND	10.1	99	ND	ND	ND	ND	NC	70 - 130	25	
Isopropylbenzene	ND	2.00	ND	9.8	89	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	2.30	ND	10.0	111	ND	ND	ND	ND	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	3.40	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	2.80	ND	10.1	103	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	2.90	ND	10.1	103	ND	ND	ND	ND	NC	70 - 130	25	
n-Butylbenzene	ND	1.80	ND	9.9	92	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	2.30	ND	10.0	105	ND	ND	ND	ND	NC	70 - 130	25	
Propylene	ND	5.80	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
sec-Butylbenzene	ND	1.80	ND	9.9	92	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.370	ND	2.51	104	2540	2620	375	386	2.9	70 - 130	25	
Tetrahydrofuran	ND	3.40	ND	10.0	102	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	2.70	ND	10.2	104	ND	ND	ND	ND	NC	70 - 130	25	
Trans-1,2-Dichloroethene	ND	2.50	ND	9.9	103	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.470	ND	2.52	102	118	118	21.9	22.0	0.5	70 - 130	25	
Trichlorofluoromethane	ND	1.80	ND	10.1	97	ND	ND	ND	ND	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	1.30	ND	10.0	104	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.980	ND	2.50	100	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	101		101		103	107	110	107	110	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	115	%	115	%	105	97	89	97	89	NC	60 - 140	25	
% IS-Bromochloromethane	115	%	115	%	105	98	91	98	91	NC	60 - 140	25	
% IS-Chlorobenzene-d5	111	%	111	%	114	96	89	96	89	NC	60 - 140	25	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shille

Phyllis Shiller, Laboratory Director September 20, 2023

Wednesday, September 20, 2023 Criteria: None		Sample Criteria E	Sample Criteria Exceedances Report GCN20371 - PREFRDNY							
State: SampNo	NY Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units		
*** No Data	to Display ***									

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

September 20, 2023

SDG I.D.: GCN20371

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM20 01/11/23-1: CN20376, CN20377

The following Continuing Calibration compounds did not meet % deviation criteria: Ethanol 34%H (30%) The following Continuing Calibration compounds did not meet Maximum % deviation criteria: Ethanol 34%H (30%)

VOA Narration

<u>CHEM17 01/11/23-1:</u> CN20372, CN20373, CN20374, CN20375

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.033 (0.05), Acetone 0.024 (0.05), Acrylonitrile 0.034 (0.05), Methyl ethyl ketone 0.037 (0.05), Tetrahydrofuran (THF) 0.023 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 01/11/23-3: CN20371

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.030 (0.05), 2-Hexanone 0.033 (0.05), Acetone 0.024 (0.05), Acrylonitrile 0.034 (0.05), Methyl ethyl ketone 0.037 (0.05), Tetrahydrofuran (THF) 0.023 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

CHEM17 01/13/23-2: CN20372, CN20374

Analysis Comments

September 20, 2023

SDG I.D.: GCN20371

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments. EPA method 8260D Table 4 supports this approach.

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 21% (20%), 2-Hexanone 21% (20%), Naphthalene 31% (20%), Styrene 21% (20%), trans-1,4-dichloro-2-butene 24% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.1), 4-Methyl-2-pentanone 0.050 (0.1), Acetone 0.025 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.078 (0.1), Methyl ethyl ketone 0.038 (0.1), Tetrahydrofuran (THF) 0.024 (0.05)

The following Initial Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

The following Continuing Calibration compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.032 (0.05), 2-Hexanone 0.039 (0.05), Acetone 0.028 (0.05), Acrylonitrile 0.035 (0.05), Methyl ethyl ketone 0.041 (0.05), Tetrahydrofuran (THF) 0.024 (0.05) The following Continuing Calibration compounds did not meet minimum response factors: 1,2-Dibromo-3-chloropropane 0.028 (0.05), 2-Hexanone 0.034 (0.05), Acetone 0.025 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.038 (0.05), Tetrahydrofuran (THF) 0.024 (0.05)

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

NY Temperature Narration

September 20, 2023

SDG I.D.: GCN20371

The samples in this delivery group were received at 2.7°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

{.	I				ьег-111 Веч 10/2021
Cooler: Yes No	O: section MUST be npleted with le Quantities.				PA Clean Fill Limits PA-GW Reg Fill Limits PA Soil Restricted PA Soil non-restricted State Samples Collected?
Coolant: Term Phone: Con Fax: Email: Esc.	Project P.		20 20 20 20 20 20 20 20 20 20 20 20 20 2	λ	NY TOGS GW CP-51 SOIL 375SC0 Unrestricted Soil 375SC0 Residential Restricted Soil 375SC0 375SC0 a375SC0 Commercial Soil Industrial Soil Industrial Soil Industrial Soil Industrial Soil
RECORD ter, CT 06040 45-0823	call Avenue etr Cpreterredon		37 1183		NJ Res. Criteria Non-Res. Criteria Impact to GW soil screen Criteria Soil screen Criteria div. * Other ASP B) *
OF CUSTODY F OF CUSTODY F -0. Box 370, Manchest bs.com Fax (860) 6 ces (860) 645-8726	1107 De 1107 D	a a the initial straight			EDD APPLIES BACkage:
NJ/PA CHAIN ast Middle Turnpike, F Email: info@phoenixia Client Servi	Project: Report to Invoice tr	Analysis Request		×× · · · · · · · · · · · · · · · · · ·	Image Time atte: Time (lo[23 Q. G /lo[23 Q. G 0ot □ NJ Hazsite1 NV EZ EDC Other
NY / 587 E	1 Serves Nom Nerrick	cation 1/5/23 	Image: Complex Sampled Sample	× 21	Data Format:
X States Inc.	ed Enviorment Ernek Avenue Fork 11566	ble - Information - Identifi Mater SW=Surface Wi SL=Sludge S=Soil SD=:	mer Sample Samp Intification Matrix HO2 (46 HO2 (46 HOX (40) HOX (40)	ent Air	Accepted by: ZM Ruull analy ^{ji} S on
<u>HOENI</u> onmental Labor	mer: Prek.~ ess: <u>323 m</u> <u>Nev 1</u>	Client Samt Client Samt adde: king Water GW=Groui king Water SE=Sediment B=Bulk L=Liquid	USE ONLY Custo ULE # Iden ULE # Iden UL	aladice SL	shed by: a. Special Requirement in ms/ms/d
P Envir	Custc Addr	Sampler's Signature <u>Matrix Co</u> DW=Drin RW=Raw OIL=Oil	PHOENX SAMF	203	Relinquit Relinquit Relinquit
Bobbi Aloisa

From:	Christopher Zweier <czweier@preferredenv.com></czweier@preferredenv.com>
Sent:	Monday, September 18, 2023 9:15 AM
То:	Bobbi Aloisa
Cc:	Bill Schlageter; Victoria Whelan
Subject:	Corrections needed on reports
Attachments:	lists for phoenix.pdf; 4.23 report.pdf; 9.23 report.pdf; 1.23 report.pdf

Good Morning Bobbi,

I think last year I had you guys correct some reports for me for our project "Dekalb Avenue" due to them having an incomplete VOC list. I'm running across the same problem this year writing our report. The list provided excludes a significant amount of PVOCs. I've attached a table showing the list provided and the list we need each report corrected to. Can you correct the reports as well as the EDDs to have the proper list? The following reports require corrections:

1

GCN20371 GCN74070 GCO91340

Also is there a name for this list that we should request on our COCs to avoid this in the future?

Please reach out with any questions.

Thanks,

Christopher P. Zweier Project Manager, Environmental Scientist

PREFERRED ENVIRONMENTAL SERVICES NYS, NYC, PANY/NJ, New York City School Construction Authority-certified WBE 323 Merrick Avenue North Merrick, New York 11566 work: 516 546 1100 cell: 516 729 3293 fax: 516 213 8156

list provided Volatiles By SW8260C Volatiles By SW8260C 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1.2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1.2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dichlorodifluoromethane Ethylbenzene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Trichlorotrifluoroethane Vinyl chloride

,1,1,2-Tetrachloroetha ,1-Dichloropropene 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane ,1,2-Trichloroethane 1,1-Dichloroethane L,1-Dichloroethene 1,2,3-Trichlorobenzene 2,3-Trichloropropane 1,2,4-Trichlorobenzene ,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane -Trimethylbenzen 1,3-Dichlorobenzene 3-Dichloropropane 1,4-Dichlorobenzene ,2-Dichloroprop nane -Chlorotoluene -Hexanone -Isopropyltoluene Chlorotoluene 4-Methyl-2-pentanone Acetone crolein crylonitrile Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene is-1,3-Dichloropropene Cyclohexane Dibromochloromethane ibromomethane Dichlorodifluoromethane Ethylbenzene lexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) /lethylacetate Methylcyclohexane Methylene chloride laphthalene -Butvlbenzene <mark>i-Propylbenzene</mark> o-Xylene -Isopropyltoluene ec-Butylbenzene Styrene ert-Butylbenzene Tetrachloroethene etrahydrofuran (THF) Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene rans-1,4-dichloro-2-butene [richloroethene] Trichlorofluoromethane Trichlorotrifluoroethane Vinyl chloride

list needed

analyte not present on list provided

Page 43 of 43

Wednesday, September 20, 2023

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1103-1107 DEKALB AVENUE SDG ID: GCO91340 Sample ID#s: CO91340 - CO91344

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

September 20, 2023

SDG I.D.: GCO91340

Version 2: Per client request VOA compound list was revised.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

September 20, 2023

SDG I.D.: GCO91340

Project ID: 1103-1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1401	CO91340	GROUND WATER
MW-1403	CO91341	GROUND WATER
MW-1402	CO91342	GROUND WATER
INFLUENT	CO91343	TEDLAR BAG
EFFLUENT	CO91344	TEDLAR BAG

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

10:24

Analysis Report

September 20, 2023

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

Sample Information

TEDLAR BAG Matrix: Location Code: PREFRDNY Rush Request: Standard P.O.#:

Collected by:	
Received by:	
Analyzed by:	

CP see "By" below 09/06/23 16:10 SDG ID: GCO91340

Date

09/05/23

Laboratory Data

Custody Information

Phoenix ID: CO91343

1103-1107 DEKALB AVENUE Project ID: Client ID:

INFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	09/07/23	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	09/07/23	KCA	5	1
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	09/07/23	KCA	5	1
1,1,2-Trichloroethane	ND	0.917	ND	5.00	09/07/23	KCA	5	1
1,1-Dichloroethane	ND	1.24	ND	5.02	09/07/23	KCA	5	1
1,1-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
1,2,4-Trimethylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	09/07/23	KCA	5	1
1,2-Dichloroethane	ND	1.24	ND	5.02	09/07/23	KCA	5	1
1,2-dichloropropane	ND	1.08	ND	4.99	09/07/23	KCA	5	1
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	09/07/23	KCA	5	1
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
1,3-Butadiene	ND	2.26	ND	5.00	09/07/23	KCA	5	1
1,4-Dioxane	ND	1.39	ND	5.01	09/07/23	KCA	5	1
2-Hexanone(MBK)	ND	1.22	ND	4.99	09/07/23	KCA	5	1
4-Ethyltoluene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
4-Methyl-2-pentanone(MIBK)	1.46	1.22	5.98	4.99	09/07/23	KCA	5	1
Acetone	9.15	2.11	21.7	5.01	09/07/23	KCA	5	1
Acrylonitrile	ND	2.31	ND	5.01	09/07/23	KCA	5	1
Benzene	ND	1.57	ND	5.01	09/07/23	KCA	5	1
Bromodichloromethane	ND	0.747	ND	5.00	09/07/23	KCA	5	1
Bromoform	ND	0.484	ND	5.00	09/07/23	KCA	5	1
Bromomethane	ND	1.29	ND	5.01	09/07/23	KCA	5	1
Carbon Disulfide	ND	1.61	ND	5.01	09/07/23	KCA	5	1
Carbon Tetrachloride	ND	0.198	ND	1.24	09/07/23	KCA	5	1

Project ID: 1103-1107 DEKALB AVENUE Client ID: INFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	1.09	ND	5.01	09/07/23	KCA	5	1
Chloroethane	ND	1.90	ND	5.01	09/07/23	KCA	5	1
Chloroform	28.3	1.02	138	4.98	09/07/23	KCA	5	1
Chloromethane	ND	2.42	ND	4.99	09/07/23	KCA	5	1
Cis-1,2-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	09/07/23	KCA	5	1
Cyclohexane	ND	1.45	ND	4.99	09/07/23	KCA	5	1
Dibromochloromethane	ND	0.587	ND	5.00	09/07/23	KCA	5	1
Dichlorodifluoromethane	ND	1.01	ND	4.99	09/07/23	KCA	5	1
Ethanol	218	15.9	411	29.9	09/08/23	KCA	30	1
Ethyl acetate	ND	1.39	ND	5.01	09/07/23	KCA	5	1
Ethylbenzene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Heptane	ND	1.22	ND	5.00	09/07/23	KCA	5	1
Hexachlorobutadiene	ND	0.469	ND	5.00	09/07/23	KCA	5	1
Hexane	ND	1.42	ND	5.00	09/07/23	KCA	5	1
Isopropylalcohol	8.18	2.04	20.1	5.01	09/07/23	KCA	5	1
Isopropylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
m,p-Xylene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Methyl Ethyl Ketone	ND	1.70	ND	5.01	09/07/23	KCA	5	1
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	09/07/23	KCA	5	1
Methylene Chloride	ND	1.44	ND	5.00	09/07/23	KCA	5	1
n-Butylbenzene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
o-Xylene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Propylene	ND	2.91	ND	5.01	09/07/23	KCA	5	1
sec-Butylbenzene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
Tetrachloroethene	349	1.11	2370	7.52	09/08/23	KCA	30	1
Tetrahydrofuran	ND	1.70	ND	5.01	09/07/23	KCA	5	1
Toluene	1.62	1.33	6.10	5.01	09/07/23	KCA	5	1
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
Trichloroethene	19.5	0.233	105	1.25	09/07/23	KCA	5	1
Trichlorofluoromethane	1.40	0.891	7.86	5.00	09/07/23	KCA	5	1
Trichlorotrifluoroethane	ND	0.653	ND	5.00	09/07/23	KCA	5	1
Vinyl Chloride	ND	0.489	ND	1.25	09/07/23	KCA	5	1
QA/QC Surrogates/Internals								
% Bromofluorobenzene (5x)	98	%	98	%	09/07/23	KCA	5	
% IS-1,4-Difluorobenzene (5x)	95	%	95	%	09/07/23	KCA	5	
% IS-Bromochloromethane (5x)	95	%	95	%	09/07/23	KCA	5	
% IS-Chlorobenzene-d5 (5x)	95	%	95	%	09/07/23	KCA	5	
% Bromofluorobenzene (30x)	96	%	96	%	09/08/23	KCA	30	
% IS-1,4-Difluorobenzene (30x)	90	%	90	%	09/08/23	KCA	30	
% IS-Bromochloromethane (30x)	89	%	89	%	09/08/23	KCA	30	
% IS-Chlorobenzene-d5 (30x)	90	%	90	%	09/08/23	KCA	30	

Project ID: 1103-1107 DEKALB AVENUE Client ID: INFLUENT

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

10:27

Analysis Report

September 20, 2023

FOR: Attn: Mr. William J. Schlageter **Preferred Environmental Services** 323 Merrick Avenue North Merrick, New York 11566

Sample Information

TEDLAR BAG Matrix: Location Code: PREFRDNY Rush Request: Standard P.O.#:

Custody Inform	nation
Collected by:	
Received by:	CP
Analyzed by:	SPA

see "By" below

CP

09/06/23 16:10

Date

09/05/23

Laboratory Data

SDG ID: GCO91340 Phoenix ID: CO91344

1103-1107 DEKALB AVENUE Project ID:

Client ID: EFFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.729	ND	5.00	09/07/23	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	ND	5.00	09/07/23	KCA	5	1
1,1,2,2-Tetrachloroethane	ND	0.729	ND	5.00	09/07/23	KCA	5	1
1,1,2-Trichloroethane	ND	0.917	ND	5.00	09/07/23	KCA	5	1
1,1-Dichloroethane	ND	1.24	ND	5.02	09/07/23	KCA	5	1
1,1-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
1,2,4-Trimethylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
1,2-Dibromoethane(EDB)	ND	0.651	ND	5.00	09/07/23	KCA	5	1
1,2-Dichloroethane	ND	1.24	ND	5.02	09/07/23	KCA	5	1
1,2-dichloropropane	ND	1.08	ND	4.99	09/07/23	KCA	5	1
1,2-Dichlorotetrafluoroethane	ND	0.716	ND	5.00	09/07/23	KCA	5	1
1,3,5-Trimethylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
1,3-Butadiene	ND	2.26	ND	5.00	09/07/23	KCA	5	1
1,4-Dioxane	ND	1.39	ND	5.01	09/07/23	KCA	5	1
2-Hexanone(MBK)	ND	1.22	ND	4.99	09/07/23	KCA	5	1
4-Ethyltoluene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
4-Isopropyltoluene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	ND	4.99	09/07/23	KCA	5	1
Acetone	4.48	2.11	10.6	5.01	09/07/23	KCA	5	1
Acrylonitrile	ND	2.31	ND	5.01	09/07/23	KCA	5	1
Benzene	ND	1.57	ND	5.01	09/07/23	KCA	5	1
Bromodichloromethane	ND	0.747	ND	5.00	09/07/23	KCA	5	1
Bromoform	ND	0.484	ND	5.00	09/07/23	KCA	5	1
Bromomethane	ND	1.29	ND	5.01	09/07/23	KCA	5	1
Carbon Disulfide	ND	1.61	ND	5.01	09/07/23	KCA	5	1
Carbon Tetrachloride	ND	0.198	ND	1.24	09/07/23	KCA	5	1

Project ID: 1103-1107 DEKALB AVENUE Client ID: EFFLUENT

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	1.09	ND	5.01	09/07/23	KCA	5	1
Chloroethane	ND	1.90	ND	5.01	09/07/23	KCA	5	1
Chloroform	ND	1.02	ND	4.98	09/07/23	KCA	5	1
Chloromethane	ND	2.42	ND	4.99	09/07/23	KCA	5	1
Cis-1,2-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
cis-1,3-Dichloropropene	ND	1.10	ND	4.99	09/07/23	KCA	5	1
Cyclohexane	ND	1.45	ND	4.99	09/07/23	KCA	5	1
Dibromochloromethane	ND	0.587	ND	5.00	09/07/23	KCA	5	1
Dichlorodifluoromethane	ND	1.01	ND	4.99	09/07/23	KCA	5	1
Ethanol	233	E 2.66	439	5.01	09/07/23	KCA	5	1
Ethyl acetate	ND	1.39	ND	5.01	09/07/23	KCA	5	1
Ethylbenzene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Heptane	ND	1.22	ND	5.00	09/07/23	KCA	5	1
Hexachlorobutadiene	ND	0.469	ND	5.00	09/07/23	KCA	5	1
Hexane	ND	1.42	ND	5.00	09/07/23	KCA	5	1
Isopropylalcohol	3.33	2.04	8.18	5.01	09/07/23	KCA	5	1
Isopropylbenzene	ND	1.02	ND	5.01	09/07/23	KCA	5	1
m,p-Xylene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Methyl Ethyl Ketone	ND	1.70	ND	5.01	09/07/23	KCA	5	1
Methyl tert-butyl ether(MTBE)	ND	1.39	ND	5.01	09/07/23	KCA	5	1
Methylene Chloride	ND	1.44	ND	5.00	09/07/23	KCA	5	1
n-Butylbenzene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
o-Xylene	ND	1.15	ND	4.99	09/07/23	KCA	5	1
Propylene	ND	2.91	ND	5.01	09/07/23	KCA	5	1
sec-Butylbenzene	ND	0.911	ND	5.00	09/07/23	KCA	5	1
Tetrachloroethene	ND	0.184	ND	1.25	09/07/23	KCA	5	1
Tetrahydrofuran	ND	1.70	ND	5.01	09/07/23	KCA	5	1
Toluene	ND	1.33	ND	5.01	09/07/23	KCA	5	1
Trans-1,2-Dichloroethene	ND	1.26	ND	4.99	09/07/23	KCA	5	1
Trichloroethene	ND	0.233	ND	1.25	09/07/23	KCA	5	1
Trichlorofluoromethane	1.29	0.891	7.24	5.00	09/07/23	KCA	5	1
Trichlorotrifluoroethane	ND	0.653	ND	5.00	09/07/23	KCA	5	1
Vinyl Chloride	ND	0.489	ND	1.25	09/07/23	KCA	5	1
QA/QC Surrogates/Internals								
% Bromofluorobenzene (5x)	98	%	98	%	09/07/23	KCA	5	
% IS-1,4-Difluorobenzene (5x)	93	%	93	%	09/07/23	KCA	5	
% IS-Bromochloromethane (5x)	93	%	93	%	09/07/23	KCA	5	
% IS-Chlorobenzene-d5 (5x)	92	%	92	%	09/07/23	KCA	5	

Project ID: 1103-1107 DEKALB AVENUE

Client ID: EFFLUENT

	ppbv	ppbv	ug/m3	ug/m3			
Parameter	Result	RL	Result	RL	Date/Time	Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

E = Estimated value quantitated above calibration range for this compound.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 20, 2023 Reviewed and Released by: Rashmi Makol, Project Manager

	1E					
VOI T	LATILE ORGANICS ANA TENTATIVELY IDENTIFI	ALYSIS DATA SHEET ED COMPOUNDS	OMPOUNDS			
Lab Name: Phoenix En	vironmental Labs	Client	PREFRDNY			
Lab Code: Phoenix	Case No.:	SAS No.	:	SDG No.:	GCO9134	
Matrix:(soil/water) GF	ROUND WATER		Lab Sample ID:	CO91340		
Sample wt/vol:	<u> 5 (g</u> /	'mL) <u>mL</u>	Lab File ID:	0907_25.D		
Level: (low/med)			Date Received:	09/06/23		
% Moisture: not dec.	100		Date Analyzed:	09/07/23		
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	-	1	
Purge Volume:	<u> </u>		Soil Aliquot Vol (uL	_):	n.a.	
Number TICs found:	0	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-		
CAS NUMBER	COMPOUND	NAME	RT	EST. CONC.	Q	
			1			

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: Phoenix Er	nvironmental Labs		Client:	PREFRDNY	-	
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCO9134
Matrix:(soil/water) GF	ROUND WATER			Lab Sample ID:	CO91341	
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:	0907_26.D	
Level: (low/med)				Date Received:	09/06/23	
% Moisture: not dec.	100			Date Analyzed:	09/07/23	
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	-	1
Purge Volume:	<u> 5000 </u> (uL)			Soil Aliquot Vol (ul	L):	n.a.
		CONCENTRATION	UNITS:			

Number TICs found:

9

(ug/L or ug/KG) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-	1.446	3.7	JN
	unknown	1.933	9.4	J
000096-14-0	Pentane, 3-methyl-	2.043	5	JN
000108-08-7	Pentane, 2,4-dimethyl-	2.404	8	JN
000096-37-7	Cyclopentane, methyl-	2.430	3.6	JN
	unknown	2.921	3	J
000540-84-1	Pentane, 2,2,4-trimethyl-	2.968	26	JN
000565-75-3	Pentane, 2,3,4-trimethyl-	3.580	12	JN
135-98-8	sec-Butylbenzene	6.368	3	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

MW-1403

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found:

17

	TENTATIVELY IDENTIFIED COMPOUNDS								
Lab Name: Phoenix E	nvironmental Labs		Client:	PREFRDNY	-				
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCO9134			
Matrix:(soil/water) G	ROUND WATER			Lab Sample ID:	CO91342				
Sample wt/vol:	5	(g/mL) <u>mL</u>		Lab File ID:	0907_27.D				
Level: (low/med)				Date Received:	09/06/23				
% Moisture: not dec.	100			Date Analyzed:	09/07/23				
GC Column:	RTX-VMS	ID: <u>0.18(mm)</u>		Dilution Factor:	-	1			
Purge Volume:	<u> 5000 (uL)</u>			Soil Aliquot Vol (ul	L):	n.a.			
		CONCENTRATIO	ON UNITS:						

(ug/L or ug/KG)

ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
000106-97-8	Butane	1.242	36	JN
000078-78-4	Butane, 2-methyl-	1.452	27	JN
000107-83-5	Pentane, 2-methyl-	1.938	35	JN
000096-14-0	Pentane, 3-methyl-	2.043	20	JN
000096-37-7	Cyclopentane, methyl-	2.430	27	JN
103-65-1	n-Propylbenzene	5.876	82	Q
000620-14-4	Benzene, 1-ethyl-3-methyl-	5.955	55	JN
108-67-8	1,3,5-Trimethylbenzene	6.012	40	Q
000611-14-3	Benzene, 1-ethyl-2-methyl-	6.159	37	JN
95-63-6	1,2,4-Trimethylbenzene	6.289	230	Q
135-98-8	sec-Butylbenzene	6.362	5.1	Q
526-73-8	1,2,3-Trimethylbenzene	6.598	59	Q
104-51-8	n-Butylbenzene	6.776	3.5	Q
000767-58-8	Indan, 1-methyl-	7.116	21	JN
000874-35-1	1H-Indene, 2,3-dihydro-5-methyl-	7.524	17	JN
	Indan, 1-methyl- Isomer	7.649	33	JN
91-20-3	Naphthalene	8.167	44	Q

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

CLIENT ID

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Report

September 20, 2023

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 696120 (ug/L), Q	C Samp	le No: CO90274 (CO9	91340, CO91341,	CO9134	42)						
Volatiles - Ground Water											
1.1.1.2-Tetrachloroethane	ND	1.0	100	102	2.0	97	100	3.0	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	109	108	0.9	107	106	0.9	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	103	103	0.0	109	111	1.8	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	102	101	1.0	104	107	2.8	70 - 130	30	
1,1-Dichloroethane	ND	1.0	114	114	0.0	115	116	0.9	70 - 130	30	
1,1-Dichloroethene	ND	1.0	116	114	1.7	115	113	1.8	70 - 130	30	
1,1-Dichloropropene	ND	1.0	109	107	1.9	108	108	0.0	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	96	95	1.0	94	99	5.2	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	104	103	1.0	107	109	1.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	98	101	3.0	95	100	5.1	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	106	108	1.9	107	110	2.8	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	95	95	0.0	97	103	6.0	70 - 130	30	
1,2-Dibromoethane	ND	1.0	101	102	1.0	104	105	1.0	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	102	104	1.9	103	105	1.9	70 - 130	30	
1,2-Dichloroethane	ND	1.0	106	106	0.0	108	111	2.7	70 - 130	30	
1,2-Dichloropropane	ND	1.0	105	106	0.9	106	107	0.9	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	108	109	0.9	108	111	2.7	70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	102	103	1.0	101	105	3.9	70 - 130	30	
1,3-Dichloropropane	ND	1.0	104	104	0.0	107	108	0.9	70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	100	102	2.0	100	103	3.0	70 - 130	30	
1,4-dioxane	ND	100	107	111	3.7	98	112	13.3	70 - 130	30	
2,2-Dichloropropane	ND	1.0	106	104	1.9	81	82	1.2	70 - 130	30	
2-Chlorotoluene	ND	1.0	104	106	1.9	105	107	1.9	70 - 130	30	
2-Hexanone	ND	5.0	100	100	0.0	108	110	1.8	70 - 130	30	
2-Isopropyltoluene	ND	1.0	107	109	1.9	108	111	2.7	70 - 130	30	
4-Chlorotoluene	ND	1.0	104	104	0.0	104	105	1.0	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	102	100	2.0	108	113	4.5	70 - 130	30	
Acetone	ND	5.0	112	106	5.5	126	131	3.9	70 - 130	30	m
Acrylonitrile	ND	5.0	104	101	2.9	110	112	1.8	70 - 130	30	
Benzene	ND	0.70	105	105	0.0	105	106	0.9	70 - 130	30	
Bromobenzene	ND	1.0	101	102	1.0	102	103	1.0	70 - 130	30	
Bromochloromethane	ND	1.0	107	105	1.9	109	112	2.7	70 - 130	30	
Bromodichloromethane	ND	0.50	104	104	0.0	102	106	3.8	70 - 130	30	
Bromoform	ND	1.0	95	97	2.1	94	98	4.2	70 - 130	30	
Bromomethane	ND	1.0	111	116	4.4	76	85	11.2	70 - 130	30	
Carbon Disulfide	ND	1.0	116	114	1.7	113	113	0.0	70 - 130	30	
Carbon tetrachloride	ND	1.0	108	103	4.7	96	97	1.0	70 - 130	30	
Chlorobenzene	ND	1.0	104	105	1.0	107	107	0.0	70 - 130	30	
Chloroethane	ND	1.0	105	106	0.9	111	103	7.5	70 - 130	30	
Chloroform	ND	1.0	107	111	3.7	112	111	0.9	70 - 130	30	
Chloromethane	ND	1.0	110	112	1.8	117	116	0.9	70 - 130	30	

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blank	Blk RL	l	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
cis-1,2-Dichloroethene	ND	1.0		108	110	1.8	115	114	0.9	70 - 130	30
cis-1,3-Dichloropropene	ND	0.40		101	102	1.0	95	98	3.1	70 - 130	30
Dibromochloromethane	ND	0.50		100	103	3.0	100	103	3.0	70 - 130	30
Dibromomethane	ND	1.0		101	101	0.0	104	104	0.0	70 - 130	30
Dichlorodifluoromethane	ND	1.0		103	105	1.9	109	105	3.7	70 - 130	30
Ethylbenzene	ND	1.0		105	106	0.9	105	107	1.9	70 - 130	30
Hexachlorobutadiene	ND	0.40		96	99	3.1	91	96	5.3	70 - 130	30
Isopropylbenzene	ND	1.0		105	107	1.9	106	107	0.9	70 - 130	30
m&p-Xylene	ND	1.0		106	107	0.9	107	107	0.0	70 - 130	30
Methyl ethyl ketone	ND	5.0		108	104	3.8	114	115	0.9	70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0		112	108	3.6	115	114	0.9	70 - 130	30
Methylene chloride	ND	1.0		108	106	1.9	108	106	1.9	70 - 130	30
Naphthalene	ND	1.0		97	98	1.0	97	103	6.0	70 - 130	30
n-Butylbenzene	ND	1.0		108	109	0.9	106	110	3.7	70 - 130	30
n-Propylbenzene	ND	1.0		107	107	0.0	107	108	0.9	70 - 130	30
o-Xylene	ND	1.0		103	105	1.9	105	105	0.0	70 - 130	30
p-Isopropyltoluene	ND	1.0		106	109	2.8	107	109	1.9	70 - 130	30
sec-Butylbenzene	ND	1.0		107	109	1.9	108	110	1.8	70 - 130	30
Styrene	ND	1.0		105	103	1.9	107	107	0.0	70 - 130	30
tert-Butylbenzene	ND	1.0		105	107	1.9	107	109	1.9	70 - 130	30
Tetrachloroethene	ND	1.0		101	102	1.0	121	108	11.4	70 - 130	30
Tetrahydrofuran (THF)	ND	2.5		103	102	1.0	116	118	1.7	70 - 130	30
Toluene	ND	1.0		104	105	1.0	104	105	1.0	70 - 130	30
trans-1,2-Dichloroethene	ND	1.0		118	116	1.7	118	116	1.7	70 - 130	30
trans-1,3-Dichloropropene	ND	0.40		100	100	0.0	91	95	4.3	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0		93	93	0.0	71	76	6.8	70 - 130	30
Trichloroethene	ND	1.0		104	104	0.0	106	105	0.9	70 - 130	30
Trichlorofluoromethane	ND	1.0		123	124	0.8	129	126	2.4	70 - 130	30
Trichlorotrifluoroethane	ND	1.0		123	122	0.8	122	121	0.8	70 - 130	30
Vinyl chloride	ND	1.0		110	112	1.8	117	114	2.6	70 - 130	30
% 1,2-dichlorobenzene-d4	99	%		101	100	1.0	99	100	1.0	70 - 130	30
% Bromofluorobenzene	98	%		101	101	0.0	100	100	0.0	70 - 130	30
% Dibromofluoromethane	96	%		107	96	10.8	98	97	1.0	70 - 130	30
% Toluene-d8	100	%		101	100	1.0	100	100	0.0	70 - 130	30
Comment:											

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 696364 (ug/L), QC Sample No: CO92547 (CO91342 (10X))

Volatiles - Ground Water

1,2,4-Trimethylbenzene	ND	1.0	105	105	0.0	105	108	2.8	70 - 130	30
Ethylbenzene	ND	1.0	103	105	1.9	104	106	1.9	70 - 130	30
m&p-Xylene	ND	1.0	103	106	2.9	104	107	2.8	70 - 130	30
% 1,2-dichlorobenzene-d4	101	%	99	100	1.0	101	100	1.0	70 - 130	30
% Bromofluorobenzene	98	%	100	101	1.0	100	101	1.0	70 - 130	30
% Dibromofluoromethane	97	%	97	96	1.0	97	96	1.0	70 - 130	30
% Toluene-d8	100	%	101	100	1.0	101	101	0.0	70 - 130	30
Comment:										

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

		<u>QA/QC Data</u>				SDG I.D.: GCO91340						
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %		Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 696156 (ppbv), Q	C Sam	ple No: (CO90264	(CO913	343 (5X,	, 30X) ,	CO913	44 (5X))					
Volatiles														
1.1.1.2-Tetrachloroethane	ND	0.150	ND	1.03	106		ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.180	ND	0.98	104		ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	111		ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.180	ND	0.98	103		ND	ND	ND	ND	NC	70 - 130	25	
1.1-Dichloroethane	ND	0.250	ND	1.01	104		ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.050	ND	0.20	108		ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	107		2.51	2.45	0.511	0.499	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	104		ND	ND	ND	ND	NC	70 - 130	25	
1.2-Dichloroethane	ND	0.250	ND	1.01	102		ND	ND	ND	ND	NC	70 - 130	25	
1.2-dichloropropane	ND	0.220	ND	1.02	107		ND	ND	ND	ND	NC	70 - 130	25	
1.2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	115		ND	ND	ND	ND	NC	70 - 130	25	
1.3.5-Trimethylbenzene	ND	0.200	ND	0.98	103		ND	ND	ND	ND	NC	70 - 130	25	
1.3-Butadiene	ND	0.450	ND	0.99	110		3.12	3.12	1.41	1.41	NC	70 - 130	25	
1.4-Dioxane	ND	0.280	ND	1.01	103		ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.240	ND	0.98	108		1.67	2.03	0.409	0.496	NC	70 - 130	25	
4-Ethyltoluene	ND	0.200	ND	0.98	107		1.82	1.69	0.371	0.343	NC	70 - 130	25	
4-Isopropyltoluene	ND	0.180	ND	0.99	99		ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	108		1.32	1.35	0.322	0.329	NC	70 - 130	25	
Acetone	ND	0.420	ND	1.00	109		971	931	409	392	4.2	70 - 130	25	
Acrylonitrile	ND	0.460	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.310	ND	0.99	105		3.17	3.09	0.993	0.967	NC	70 - 130	25	
Bromodichloromethane	ND	0.150	ND	1.00	110		ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.097	ND	1.00	116		ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.260	ND	1.01	106		ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.320	ND	1.00	84		7.16	7.06	2.30	2.27	1.3	70 - 130	25	
Carbon Tetrachloride	ND	0.032	ND	0.20	111		0.25	0.23	0.039	0.036	NC	70 - 130	25	
Chlorobenzene	ND	0.220	ND	1.01	97		ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.380	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.200	ND	0.98	106		2.95	2.71	0.605	0.556	NC	70 - 130	25	
Chloromethane	ND	0.480	ND	0.99	109		ND	ND	ND	ND	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.050	ND	0.20	105		0.52	0.56	0.130	0.142	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	112		ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.290	ND	1.00	97		ND	ND	ND	ND	NC	70 - 130	25	
Dibromochloromethane	ND	0.120	ND	1.02	111		ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.200	ND	0.99	108		2.13	2.36	0.430	0.478	NC	70 - 130	25	
Ethanol	ND	0.530	ND	1.00	169		433 E	422	230 E	224	2.6	70 - 130	25	Т
Ethyl acetate	ND	0.280	ND	1.01	78		5.26	4.90	1.46	1.36	NC	70 - 130	25	
Ethylbenzene	ND	0.230	ND	1.00	101		ND	ND	ND	ND	NC	70 - 130	25	
Heptane	ND	0.240	ND	0.98	104		3.33	3.17	0.812	0.773	NC	70 - 130	25	
Hexachlorobutadiene	ND	0.094	ND	1.00	120		ND	ND	ND	ND	NC	70 - 130	25	
Hexane	ND	0.280	ND	0.99	106		5.11	5.11	1.45	1.45	0.0	70 - 130	25	

QA/QC Data

SDG I.D.: GCO91340

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Isopropylalcohol	ND	0.410	ND	1.01	117	116 E	116	47.1 E	47.3	0.4	70 - 130	25	
Isopropylbenzene	ND	0.200	ND	0.98	100	ND	ND	ND	ND	NC	70 - 130	25	
m,p-Xylene	ND	0.230	ND	1.00	106	2.35	2.46	0.542	0.566	NC	70 - 130	25	
Methyl Ethyl Ketone	ND	0.340	ND	1.00	107	11.9	11.6	4.03	3.93	2.5	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	102	ND	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	0.860	ND	2.99	108	24.5	29.0	7.07	8.34	16.5	70 - 130	25	
n-Butylbenzene	ND	0.180	ND	0.99	107	ND	ND	ND	ND	NC	70 - 130	25	
o-Xylene	ND	0.230	ND	1.00	102	1.08	1.01	0.248	0.233	NC	70 - 130	25	
Propylene	ND	0.580	ND	1.00	102	46.1	49.2	26.8	28.6	6.5	70 - 130	25	
sec-Butylbenzene	ND	0.180	ND	0.99	103	ND	ND	ND	ND	NC	70 - 130	25	
Tetrachloroethene	ND	0.037	ND	0.25	98	53.4	51.5	7.88	7.60	3.6	70 - 130	25	
Tetrahydrofuran	ND	0.340	ND	1.00	113	ND	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	0.270	ND	1.02	106	5.05	5.01	1.34	1.33	NC	70 - 130	25	
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	101	ND	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.037	ND	0.20	97	5.01	4.79	0.932	0.891	4.5	70 - 130	25	
Trichlorofluoromethane	ND	0.180	ND	1.01	103	1.25	1.29	0.223	0.230	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	104	ND	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.078	ND	0.20	113	ND	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	97	%	97	%	95	102	102	102	102	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	105	%	105	%	104	102	105	102	105	NC	60 - 140	25	
% IS-Bromochloromethane	106	%	106	%	106	100	104	100	104	NC	60 - 140	25	
% IS-Chlorobenzene-d5	102	%	102	%	115	107	110	107	110	NC	60 - 140	25	

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 20, 2023

Wednesday, September 20, 2023 Criteria: None			Sample Criteria E	xceedances Report				
State:	NY	Phoenix Analyte	Criteria	Result	RI	Criteria	RL Criteria	Analysis
*** No Data	to Display ***	Theomy Analyte	Onona	Room		Ontena	Ontena	Onito

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

September 20, 2023

SDG I.D.: GCO91340

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

AIRSIM

CHEM39 09/07/23-1: CO91343, CO91344

The following Continuing Calibration compounds did not meet % deviation criteria: Ethanol 47%H (30%) The following Continuing Calibration compounds did not meet Maximum % deviation criteria: Ethanol 47%H (30%)

VOA Narration

<u>CHEM23 09/07/23-1:</u> CO91340, CO91341, CO91342

The following Initial Calibration compounds did not meet RSD% criteria: Bromoform 25% (20%), Chloroethane 26% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Initial Calibration compounds did not meet recommended response factors: Acetone 0.083 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

September 20, 2023

SDG I.D.: GCO91340

The samples in this delivery group were received at 1.0°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Cooler Yes No No No No No Cooler Yes No	Bottle Quantities.	PA Pa PA Clean Fill Limits PA-GW PA-GW PA-GW PA-GW PA-Soil Restricted PA-Soil non-restricted State Samples Collected?
Coolar Ten Ten Fax: Email: Email:	100000 10000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000	N N N
CORD CT 06040 -0823	Bichlagen Color	Impact to GW Soil Impact to GW Soil Impact to GW Soil Impact to GW Soil Impact to GW Soil Soil screen
CUSTODY RE の、370, Manchester 血 Fax (860) 645 (860) 645-8726	1 1011 - Solution	Turmaround: 1 Turmaround: 1 Turmaround: 1 1 1
A CHAIN OF (dle Tumpike, P.O. B nfo@phoenixlabs.co	Project: Report to: Invoice to: QUOTE # : Request	Equils NV EZ EDD (ASP
NY/NJ/P 587 East Mic Email: j		<i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i> <i>1.0:21</i>
	we No	
ZNIX S	Merrical Convicen- S Merrical Convicen- Merrical Merrical Aven- Merrical Mater SW=Surfact admert SL=Sludge S=Soil 5 uid Customer Sample Si Identification M MW- 140 2 0 MW- 140 2 0	Pluch A. Accepted by: Accepted by:
PHOP Environment	Address: 32 Address: 32 Signature Clig Signature Selection DW=Drinking Water Gl RW=Raw Water SE=Se OIL=0il B=Bulk L=Liq OIL=0il B=Bulk L=Liq	CUI344 E

Bobbi Aloisa

From:	Christopher Zweier <czweier@preferredenv.com></czweier@preferredenv.com>
Sent:	Monday, September 18, 2023 9:15 AM
То:	Bobbi Aloisa
Cc:	Bill Schlageter; Victoria Whelan
Subject:	Corrections needed on reports
Attachments:	lists for phoenix.pdf; 4.23 report.pdf; 9.23 report.pdf; 1.23 report.pdf

Good Morning Bobbi,

I think last year I had you guys correct some reports for me for our project "Dekalb Avenue" due to them having an incomplete VOC list. I'm running across the same problem this year writing our report. The list provided excludes a significant amount of PVOCs. I've attached a table showing the list provided and the list we need each report corrected to. Can you correct the reports as well as the EDDs to have the proper list? The following reports require corrections:

1

GCN20371 GCN74070 GCO91340

Also is there a name for this list that we should request on our COCs to avoid this in the future?

Please reach out with any questions.

Thanks,

Christopher P. Zweier Project Manager, Environmental Scientist

PREFERRED ENVIRONMENTAL SERVICES NYS, NYC, PANY/NJ, New York City School Construction Authority-certified WBE 323 Merrick Avenue North Merrick, New York 11566 work: 516 546 1100 cell: 516 729 3293 fax: 516 213 8156

list provided Volatiles By SW8260C 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone 4-Methyl-2-pentanone Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene В Cyclohexane Dibromochloromethane В Dichlorodifluoromethane в Ethylbenzene В Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Trichlorotrifluoroethane m Vinyl chloride N N N N N

1,1,1,2-Tetrachloroethane
1 1-Dichloropropene
1 1 1 Trichlorgethang
1,1,1-Inchioroeurane
1,1,2,2-Tetrachloroethane
1,1,2-Trichloroethane
1,1-Dichloroethane
1 1-Dichloroethene
1,2,3-Trichlorobenzene
1,2,3-Trichloropropane
1,2,4-Trichlorobenzene
1.2.4-Trimethylbenzene
1.2 Dibromo 2 chloropropano
1,2-Dibromo-3-chioropropane
1,2-Dibromoethane
1,2-Dichlorobenzene
1,2-Dichloroethane
1 2-Dichloropropane
1.2 E Trim ethyllhene en e
1,5,5-Thmethylbenzene
1,3-Dichlorobenzene
1,3-Dichloropropane
1.4-Dichlorobenzene
2 2 Dichloropropaga
2,2-Dichloropropane
2-Chlorotoluene
2-Hexanone
2-Isopropyltoluene
A-Chlorotoluene
A Mathul 2
4-iviethyl-2-pentanone
Acetone
Acrolein
Acrylonitrile
Densene
Benzene
Bromobenzene
Bromochloromethane
Bromodichloromethane
Bromoform
Bromomethane
Carbon Disulfide
Carbon tetrachloride
Chlorobenzene
(ploroethane
enoroethane
Chloroform
Chloroform Chloromethane
Chloroform Chloromethane cis-1 2-Dichloroethene
Chloroform Chloromethane cis-1,2-Dichloroethene
Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene
Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane
Chloroform Chloroform cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane
Chloroform Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibrommethane
Chloroform Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane
Chloroform Chloroform Chloromethane cis-1,2-Dichloropethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane
Chloroform Chloroform Chloroform cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibrommethane Dichlorodifluoromethane Ethylbenzene
Chloroform Chloroform Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene
Chloroform Chloroform Chloromethane cis-1,2-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene
Chloroform Chloroform Chloroform Cis-1,2-Dichloroptoethene cis-1,3-Dichloroptopene Cyclohexane Dibromochloromethane Dibromomethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xviene
Chloroform Chloroform Chloromethane cis-1,2-Dichloropropene Cyclohexane Dibromochloromethane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene
Chloroform Chloroform Chloroform Cis-1,2-Dichloropthene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone
Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloroptopene Cyclohexane Dibromochloromethane Dibromomethane Dibromomethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ther (MTBE)
Chloroform Chloroform Chloroform Chloroothene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketne Methyl t-butyl ether (MTBE)
Chloroform Chloroform Chloroform Chloropethene cis-1,2-Dichloropethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcolohexane
Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropropene Cyclohexane Dibromoethane Dibromoethane Dibromoethane Dichlorodifluoromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl actate Methylacetate Methylcyclohexane
Chloroform Chloroform Chloroform Chlorom Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylactate Methylcyclohexane Methylene chloride
Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropthene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylacetate Methylcyclohexane Methylene chloride Naphthalene
Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropropene Cyclohexane Dibromoethane Dibromoethane Dibromoethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride Mapthalene n-Butylbenzene
Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride Naphtalene n-Butylbenzene -Propylbenzene
Chloroform Chloroform Chloroform Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylacetate Methylacetate Methylene chloride Naphthalene n-Bropylbenzene o-Xylene
Chloroform Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropropene Cyclohexane Dibromoethane Dibromoethane Dibromoethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl uthyl ketone Methyl uthyl ketone Methylacetate Methylacetate Methylogelohexane Methylene chloride Naphthalene n-Butylbenzene o-Xylene
Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Sopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcateta Methylcateta Methylcateta Methylene chloride Naphtalene n-Butylbenzene n-Propylbenzene o-Xylene
Chloroform Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropethene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl acetate Methylacetate Methylacetate Methylace chloride Naphthalene n-Bropylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene
Chloroform Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ethore Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylene chloride Naphthalene n-Brutylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene
Chloroform Chloroform Chloroform Chlorom Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Stopropylbenzene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcolohexane Methylechloride Naphtalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl acetate Methylacetate Methylacetate Methylene chloride Naphthalene n-Bropylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Styrene
Chloroform Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Stopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylecoloexane Methylecoloexane Methylecoloexane Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene
Chloroform Chloroform Chloroform Chloroform Chloroform Cis-1,2-Dichloropthene cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methylacetate Methylacetate Methylene chloride Naphthalene n-Bropylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene
Chloroform Chloroform Chloroform Chloroform Chloroform Cyclohexane Dibromochloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylcyclohexane Methylcectate Methylene chloride Naphtalene n-Butylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene O-Xylene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methyletylchexane Methylclohexane Methylechoride Naphthalene n-Propylbenzene o-Xylene p-Isopropylkoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tetrachloroethene Tetrachloroethene
Chloroform Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ethore Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl churyl ether (MTBE) Methylacetate Methylene chloride Naphthalene n-Butylbenzene n-Butylbenzene sec-Butylbenzene Styrene tert-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Total Xylenes trans-1,2-Dichloroethene
Chloroform Chloroform Chloroform Chloroform Chloromethane Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methyl chutyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride Naphthalene n-Butylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene o-Xylene Ethrachloroethene Tetrachloroethene Tetrachloroethene Tetrahydrofuran (THF) Toluene Total Xylenes trans-1,2-Dichloroethene trans-1,2-Dichloroethene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Methorobutadiene Isopropylbenzene m&p-Xylene Methyl t-butyl ether (MTBE) Methyl t-butyl ether (MTBE) Methyl t-butyl ether (MTBE) Methylcolaexane Methyl t-butyl ether (MTBE) Methylcolaexane Methylcolaexane Methylcolaexane Methylcolaexane Methylene chloride Naphthalene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene Tetrachloroethene trans-1,2-Dichlorootpene trans-1,3-Dichloroopene trans-1,3-Dichloroopene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ether Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ether Methylcclohexane Methylcclohexane Methylcecate Methylene chloride Naphthalene n-Propylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Trichloroothene trans-1,2-Dichloroothene trans-1,2-Dichloroothene trans-1,4-dichloro-2-butene Tichloroothene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloroforpopene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene m&p-Xylene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methylacetate Methylcateta Methylcateta Methylene chloride Naphthalene n-Butylbenzene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene o-Xylene Tetrachloroethene Tetrachloroethene Tetrachloroethene trans-1,3-Dichloropropene trans-1,3-Dichlorop-z-butene Trichlorofuoromethane
Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Chloroform Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Methylenzene Methyl ethyl ketone Methyl t-butyl ether (MTBE) Methyl t-butyl ether (MTBE) Methylacetate Methylcyclohexane Methylene chloride Naphthalene n-Puropylbenzene m-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Styrene Tetrachloroethene Tetrachloroethene trans-1,2-Dichlorooptene trans-1,3-Dichlorooptene trans-1,3-Dichlorooptene Trichloroethene Trichloroethene Trichloroethene
Chloroform Chloroform Chloroform Chloroform Chloroform Chloropropene Cyclohexane Dibromochloromethane Dibromochloromethane Ethylbenzene Hexachlorobutadiene Isopropylbenzene Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl ethyl ketone Methyl cetate Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylcyclohexane Methylkene chloride Naphthalene n-Propylbenzene o-Xylene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Styrene tert-Butylbenzene Tetrachloroethene Tetrachloroethene Tatars-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,4-dichloro-2-butene Trichloroethene Trichloroethene

list needed

analyte not present on list provided

<u>Appendix D</u>

SITE 1107 D	ekalb	Avenue	[DATE 1/9/23		
SAMPLE ID: WELL ID: SAMPLERS: CZ	1403			Time On-site: /: /o (to		Time Off-site:
Denth of well (fr	om ton of ca	sing)		C) 41		(1'25
Initial static wate	er level (from	top of casing)	ন '	3 44	Time:	11.9
		,				(), ()
Purging Method		0	V We	Il Volume Calculat	ion:	
Bailer –		Pos Displ	<u>\</u> <u>21</u>		_ft. of water $\times 0.16 =$	gallons
Submersible		Disposable	3 ii 4 ii	n casing.	_ft. of water $x 0.36 =$	gallons
Pump	•	Bladder Pump (Low Flow)			_1. 01 water x 0.00 -	gaions
volume of water rom	avad:					
	gal.	>3 volumes:	yes	no <u>X</u>	purged dry? yes	no 🗡
Field Tests						
Volume of Purge	pН	Temp (°C)	Spec. Cond.	Turbidity (NTUs)	Dissolved	ORP (mv)
VVater (in ml)	5 01	11	(ms/cm)		Oxygen (mg/l)	
Oml	1.01	16.07	0.928	313	0.00	85
200 ml/mm	1.85	16.61	0.340	445	0.06	-26
W 11	7.89	10.36	0.7194	152	0.00	-14
11 64	7.71	16.16	0.0	104	0.00	-3/
K 11	1.20	16.67	0.243	77	0.00	- 30
			0.012		0.00	- ,0
			_			
		5			· · · · ·	
Sampling Time of Sample	Collection:	12:00 12	;05			
Method: Stainless Teflon b Pos. Dis Disposed	s steel bailer ailer p. Pump	Analyse	es: TCL VOCs TCL SVOCs Target Analyte	602	503 Oth	er
Disposal Dedicate	ed pump					
Other.	Bladder Pul	mp 🗹 Keri	bruck			
Observations						
Weather/Temper	rature:		л ¹⁶ 1.		4	
Sample descripti	on:					
Free Produ	ct? yes	no	describe			
Shee	n / yes	no	describe			-
Out	yes	10	describe			

Comments:

SITE 1107 Dek	alb Aven	we.	D	$ATE \frac{1/4}{2}$	3	
SAMPLE ID: WELL ID: SAMPLERS: CZ MT	1401		10:0 (0:0 S	Fime On-site: ວັ	19 1 1	Time Off-site:
Depth of well (from Initial static water le	top of casing) vel (from top o	of casing)	U8 43.	.96	Time: Time:	10:10 0:10
Purging Method Airlift Bailer Submersible Pump	_ Cent _ Pos. _ Dispo _ Blado (Low	rifugal <u>2</u> Displ osable der Pump Flow)	Well 2 in. 3 in. 4 in.	Volume Calculation	on: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	gallons gallons gallons
volume of water remove ga	d: I. >	3 volumes: ye	es	no <u>X</u>	purged dry? yes _	no
Field Tests	рН Т	emp (°C)	Spec. Cond.	Turbidity (NTUs)	Dissolved	ORP (mv)
Onl	0. 74 10	ch l		202	Oxygen (mg/l)	104
2000 . 1	5 10	06	0.276	193	4.12	
vi l l	17 15	. 8 4	0.380	95.6	0.0	141
h 6	.74 15	99	0.381	20.3	0.0	154
14 6	,75 11	.13	0.382	0.0	0.0	161
11	0.76 11	19 1	0.301	0.0	0.0	163
	. 82 (1	1.14 7	1.276	2.6	0.6	167
Sampling	llection: 10	185				
Method: Stainless st Teflon baile Pos. Disp. F Disposable Dedicated p Other: Dis Bla	reel bailer Pump bailer bump sposable adder Pump ow Flow)	Analyses:	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602 8	503 Ot	ner
Observations Weather/Temperatu Sample description: Free Product?	ure:		describe	· · · · · · · · · · · · · · · · · · ·		
Sheen? Odor?	yes yes		describe describe			
Comments:						
Commenta.	MS/	M50	Sameles	obtained		
	U	+0 pm	heads	pare		1

	SAMPLE ID: M WELL ID: M SAMPLERS: C	W 1402 W 1402 Z IT			Time On-site:		Time Off-site:
	Depth of well (Initial static wa	(from top of ca ater level (from	sing) top of casing)		2.41	Time:	
	Purging Method Airlift Bailer Submersible Pump		Centrifugal Pos. Displ. Disposable Bladder Pump (Low Flow)	X 2 3 4	ell Volume Calcul in. casing: in. casing: in. casing:	ation: ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	gallon gallon gallor
	volume of water re	moved: gal.	>3 volumes:	yes	no 🔨 .	purged dry? yes	X
	Field Tests Volume of Purge Water (in ml)	pН	Temp (°C)	Spec. Cond. (ms/cm)	Turbidity (NTUs	b) Dissolved Oxygen (mg/l)	ORP (mv)
	Oml	6-50	13.37	0.177	68.8	3.49	-5
	200 ml/mm	6.41	19.43	0. (62	21.4	2.39	- 54
		6.67	15.11	0.158	0.0	0.00	- 69
ъX		6.44	15.15	0.158	0.0	0.00	-58
		1					
		1					
		N. C.			1		
	Sampling Time of Samp Method: Stainle Teflon Pos. D Dispos Dedica Other:	le Collection: ess steel bailer bailer Disp. Pump sable bailer ated pump Disposable Blacter Pu (Low Flow)	09'.58 Analyse	es: TCL VOCs TCL SVOCs Target Analy Alkalinity	602 te List Metals	_ 503 Oth	er
	Observations Weather/Temp Sample descri	perature:	1447 parts	1 cloudy		*	
	Free Proo Sh	duct? yes		describe	11 oct 1	Aac	
	C)dor? ves √	no	describe	Id ponolui m	0000	

0.0 ppm hand space

			F GROU	IELD OBSERV	ATION LOG MPLING RECORD			
	SITE	17 be	Kulb Alk	BOONIN	PATE	3/31/23		
	Sample ID: Well ID: Samplers:	MW-14 MW-14 MW-14 AG+J	102		Time On-site: 9:50		Time Off-site: 5 06 pM	-
	Depth of well (fr Initial static wate	om top of cas er level (from	sing) top of casing)		52.35 44.03	Time:	2:47	- -
	Purging Method Airlift Bailer Submersible Pump	<u>р-Х</u>	Centrifugal Pos. Displ. Disposable Bladder Pump Low Flow)	X2 ii 3 ii 4 i	ell Volume Calculati n. casing:32 n. casing: n. casing:	on: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	gallons gallons gallons	ſ
	volume of water remo	oved: gal.	>3 volumes:	yes	no <u>X</u>	purged dry? yes	no	
2:27	Volume of Purge Water (in ml)	pH 7.47 7.47	Temp (°C)	Spec. Cond. (ms/cm) (), []]	Turbidity (NTUs)	Dissolved Oxygen (mg/l) 3,57	ORP (mv) - アロ	
2:47 2:47 2:47 2:51 2:57	2,006 3,000 4,660 5,006	7.37 7.37 7.34 7.40	15.68 15.76 15.31 14.59	0.505 0.514 0.520 0.512	191 145 136 250160	1.22 0.56 0.38 9.00	-74 -72 -76 -72 -88	Momentarily A Lost E lund
3:07	7,000 7,000 9,000	7.30 7.29 7.29 7.29	15.61	$\begin{array}{c} 0.5 26 \\ 0.5 29 \\ 0.532 \\ 0.533 \\ 0.533 \end{array}$	142 16 07 95.2	4.25 1.01 0.61 8.05	-73 -77 -79 -80	1,000
22	Sampling 1/00 U Time of Sample	7.31 Collection:	16.04	0.538	63.8	2.48	-84	
	Method: Stainless Teflon ba Pos. Disp Disposat Dedicate X Other:	s steel bailer ailer p. Pump ble bailer d pump Disposable Blacker Pum Low Flow	Analyse 	s: TCL VOCs TCL SVOCs Target Analyte Alkalinity	602 5	03 Oth	er	
	Observations Weather/Temper Sample description Free Product Shee Odo	ature: on: ct? yes n? yes vr? yes	36- no <u>x</u> no <u>x</u>	describe describe describe	orty, 5-	6mph		-
	Comments: ML 3:27 12,000 3:32 13,000	pH . 7.33 16 7.31 16	$\frac{ms/cm}{0.10} = \frac{ms/cm}{0.54}$	NT 3 5 F4 47	U ₃ 00 1.8 2.6 5 2.3	0R1 4 - 1 9 1	2 86 86	

	SITE FORMER JCH	+ Service Station	1107 Del	WAYE AVE, Browly	" 3/3//23	
	SAMPLE ID:MW WELL ID:MW SAMPLERS:A5	1402 1402 + 20		Time On-site:	<i>4_11 / E/</i>	Time Off-site:
	Depth of well (from top Initial static water leve	o of casing) I (from top of casing)		52.2 7 44.66	Time:	10:15
	Purging Method Airlift Bailer Submersible Pump PCT Pump Volume of water removed:	Centrifugal Pos. Displ. Disposable <u>Bladder</u> Pump (Low Flow)		ell Volume Calcul n. casing: n. casing: n. casing:	ation: ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 = 7.6//	gallons gallons gallons
	Field Tests $\overline{Field Tests}$	>3 volumes:	yes	no	purged dry? yes _	no <u>X</u>
10:57- 11:02- 11:07- 11:50- 11:50- 11:55-	Volume of Purge Water (in ml) 0 ML 6.1 3000 ML 7.1 3000 ML 7.1 460 ML 7.1 460 ML 7.1 6000 ML 7.1 75 60 ML 7.1 12000 ML 7 1350 0 ML 7 Sampling Time of Sample Collect	H Temp (°C) $0d$ 13.41 00 $[5,33]$ $0d$ 15.62 $0d$ 15.62 $G9$ 15.62 10 15.62 10 15.62 10 15.62 11 14.59 11 14.59 11 14.59 14 15.72 16 15.72 16 15.72 16 15.72 16 15.72 16 15.72 16 15.72 16 15.72 16 15.72 17 15.72 18 15.72 16 15.72 16 15.72 16 15.72 16 15.92 16 15.92 16 15.92 16 15.92 17.92 15.92	$\begin{array}{c} \text{Spec. Cond.} \\ (ms/cm) \\ 0 \cdot 270 \\ 0 \cdot 170 \\ 0 \cdot 297 \end{array}$	Turbidity (NTUs 126 143 137 103 107 107 107 106 120 60.0 57.3 4P.2) Dissolved Oxygen (mg/l) 3.70 7.72 7.05 7.17 14.37 15.14 9.06 1.97 1.97 1.97	ORP (mv) 34 77 85 85 97 97 97 96 96 98
	Method: Stainless steel Teflon bailer Pos. Disp. Pum Disposable bail Dedicated pum X Other: Dispos PCC - A Blacted Low F	Analyse bailer p er p aable c Pump Tow	s: TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 Oth	ər
(Observations Weather/Temperature: Sample description: Free Product? yes Sheen? yes Odor? yes	36-65°F <u>(1646 Su</u> no X No X	() IV) describe describe describe describe	s- Griph		

Comments:

			F							
	SITE 1107	Pekal	h Ave. , R	Brooklyn, E	DATE $3/3$	1/23				
	SAMPLE ID: WELL ID: SAMPLERS:	W-1401 W-140	<u> </u>		Time On-site:		Time Off-site: ይ: የሆኖሉ			
	Depth of well (fro Initial static wate	om top of cas er level (from t	ing) top of casing)		48.81 44.0	Time:	5:53			
	Purging Method Airlift Bailer Submersible Pump Pert Pum		Centrifugal Pos. Displ. Disposable Bladder Pump Low Flow)	¥2 ir 3 ir 4 ir	ll Volume Calculatio n. casing: <u> </u>	on: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	0.76 gallons gallons gallons			
	volume of water remo	oved: gal.	>3 volumes:	yes	no <u>X</u>	purged dry? yes	No			
11-10	Field Tests Volume of Purge Water (in ml)	рН	Temp (°C)	Spec. Cond. (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)			
4.10	O.UAL	6.88	15.32	0.757	202	37.50	68			
4.15	1,500	6.78	16.18	0.760	266	22.46	88			
4:20	3,000	6.76	_ 16.41	0.765	247	21.03	99			
4:25	<u> </u>	6.72	16.68	0. 757	146	10.37	104			
4.50	- 6,000	6.76	16,95	0.757	175	9,82	08			
4.20		6.74	16.64	0.753	67	88,43	-103			
Ĩ				· · · · · · · · · · · · · · · · · · ·						
	Sampling Time of Sample Collection: 4:35									
	Method: Analyses: Stainless steel bailer TCL VOCs 602 503 Other Teflon bailer TCL SVOCs Target Analyte List Metals Target Analyte List Metals Disposable bailer Alkalinity Alkalinity									
	$\underline{\gamma}$ Other: $P(r; Pump_{\underline{x}})$	Disposable Bladder Pum (Low Flow)	ip ,							
	Ubservations Weather/Temper Sample description	ature:	55" - 5(F Cloudy	7, 5 - 6 m	ph				
	Shee	n? yes n? yes	$-\frac{10}{n0} \frac{\lambda}{\chi}$	describe						
	Comments:	. jog <u>k</u>								

· • •

. •

	SAMPLE ID: MU WELL ID: MU SAMPLERS: 10	-T-			Time On-site:		Time Off-site:
	Depth of well (fro	om top of cas	ing)	<u> </u>	49.12	Time:	820
	Initial static wate	r level (from t	op of casing)		43.86	Time: 0	820
	Purging Method Airlift Bailer Submersible	C	Centrifugal Pos. Displ. Disposable	We 	II Volume Calculati casing: <u>5,26</u> n. casing: n. casing:	on: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	0.8416 gallor gallor gallor
	cheek value	۲ B (۱	Bladder Pump Low Flow)				4
	volume of water remo	oved:					*
		gal.	>3 volumes:	yes	no	purged dry? yes	no
	Field Tests						
	Volume of Purge Water (in ml)	pН	Temp (°C)	Spec. Cond. (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
30	0	7.92	25.09	1.32	877	2.87	191
35	1300	5.78	23.76	1.30	413	1.99	221
40	3000	5.86	23.37	1.29	139	1.8]	214
45	4500	5.80	22.94	1.30	138	1, 54	213
8	0000	3.00	00110	1 + /	10	1.71	217
. 1		1.18					5
					8	.0	2
	Sampling Time of Sample Method:	Collection:	US50 Analyse	es:			
	Sampling Time of Sample Method: Stainles Teflon b Pos. Dis Disposa Dedicate	Collection: s steel bailer ailer p. Pump ble bailer ad pump	US50	TCL VOCs TCL SVOCs TCL SVOCs Target Analyte Alkalinity	602	503 Oth	ier
	Sampling Time of Sample Method: Stainles Teflon b Pos. Dis Disposa Dedicate Other:	Collection: s steel bailer ailer p. Pump ble bailer d pump Disposable Bladder Pum (Low Flow)	US50 Analyse	es: TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 Oth	ier
	Sampling Time of Sample Method: Stainles Teflon b Pos. Dis Disposa Dedicate Other: Observations Weather/Tempe Sample descript	Collection: s steel bailer ailer p. Pump ble bailer ad pump Disposable Bladder Pum (Low Flow) rature:	US50 Analyse	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602 e List Metals	503 Oth	er
	Sampling Time of Sample Method: Stainles Teflon b Pos. Dis Disposa Dedicate Other: Observations Weather/Tempe Sample descript Free Produ	Collection: s steel bailer ailer p. Pump ble bailer ed pump Disposable Bladder Pum (Low Flow) rature:	Analyse Analyse	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602 e List Metals	503 Oth	ier

2.3 ppm

WELL ID: MU	N 1403	,		Time On-site:		Time Off-site:
SAMPLERS:	1					
Depth of well (fr	om top of cas	sing)		52.71	Time:	0903
Initial static wate	er level (from	top of casing)		43.88	Time:	
Purging Method			We	II Volume Calculati	on:	1 Into SI
Airlift		Centrifugal	<u>2 ir</u>	n. casing: 5,85	_ft. of water x 0.16 =	1, MIL 0 gallo
Bailer		Pos. Displ.	3 ir	n. casing:	ft. of water x 0.36 =	gallo
Submersible		Disposable	4 ir	n. casing:	ft. of water x 0.65 =	gallo
Deri-Pump -	V	Bladder Pump		1.7		0
cheolisvalue	5	(Low Flow)				· · ·
volume of water rem	oved:		· · ·			
	gal.	>3 volumes:	yes	no	purged dry? yes	no
Field Tests						
Volume of Purge Water (in ml)	рН	Temp (°C)	Spec. Cond. (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Oml	6.39	24.44	1.10	80.1	2.33	133
1000 mc	6.23	24.30	1.04	43.1	1.00	50
2000ml	6.10	24.21	0.986	29.1	0.58	40
3000mL	6.06	24.16	0.470	700	0.56	38
yogent	6.06	2408	0.975	123	0.53	30
SUCONL	6.06	24.11	0-973	18.2	0.54	32
				-		
<u>.</u>	1.5					
			1			
Sampling						
Time of Sample	Collection:	9:30				
 A set of the set of		Analyse	201			
Method		/ analyou	50.		502 Oth	or
Method: Stainles	s steel bailer	r	TCL VOCs	602	000 011	
Method: Stainles	s steel bailer	r	TCL VOCs	602	505 Ou	
Method: Stainles Teflon b	s steel bailer bailer	۰ <u>م</u>	TCL VOCs TCL SVOCs	602	505 <u> </u>	
Method: Stainles Teflon b Pos. Dis	s steel bailer bailer sp. Pump		TCL VOCs TCL SVOCs Target Analyte	602 e List Metals		
Method: Stainles Teflon b Pos. Dis Dispose	s steel bailer bailer sp. Pump able bailer	r	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602 e List Metals	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat	s steel bailer bailer sp. Pump able bailer ed pump	r	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other:	s steel bailer bailer sp. Pump able bailer ed pump Disposable		TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other:	s steel bailer pailer sp. Pump able bailer ed pump Disposable Bladder Pu	mp	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other:	s steel bailer bailer sp. Pump ble bailer ed pump Disposable Bladder Pu (Low Flow)	mp	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other:	s steel bailer bailer sp. Pump able bailer ed pump Disposable Bladder Pu (Low Flow)	mp	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other: Observations	ss steel bailer pailer sp. Pump able bailer ed pump Disposable Bladder Pu (Low Flow)	mp 7 8°F	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	503 <u> </u>	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other: Observations Weather/Tempo Sample descrip	ss steel bailer bailer sp. Pump able bailer ed pump Disposable Bladder Pu (Low Flow) erature:	mp	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	Ui	
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other: Observations Weather/Temper Sample descrip	s steel bailer sp. Pump able bailer ed pump Disposable Bladder Pu (Low Flow) erature:	mp 7 8°F	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602		
Method: Stainles Teflon b Pos. Dis Disposa Dedicat Other: Observations Weather/Tempe Sample descrip Free Produ	s steel bailer sp. Pump able bailer ed pump Disposable Bladder Pu (Low Flow) erature: tion:(mp 78°F	TCL VOCs TCL SVOCs Target Analyte Alkalinity	602	UI	

1

0.0 ppm

.

FIELD OBSERVATION LOG

	11/12	Doll		NDWATER SAW	9/21	12	
	SITE (107)	Dela	ill the	[DATE <u>U7</u>	()	
	SAMPLE ID: MM WELL ID: MM SAMPLERS: C	1 1402 6 1462 2 -1			Time On-site:		Time Off-site:
	Depth of well (fr	om top of cas	ing)		52.43	Time:	
	Initial static wate	er level (from	top of casing)		44.31	Time:	0938
R	Purging Method Airlift Bailer Submersible Pump Check value		Centrifugal ^P os. Displ. Disposable Bladder Pump Low Flow)	2 ir 3 ir 4 ir ℓ/i	Il Volume Calculati n. casing: n. casing: n. casing: 1 casing	on: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	gallons gallons gallons
	volume of water rem	oved: gal.	>3 volumes:	yes	no	purged dry? yes	no
	Field Tests Volume of Purge	рН	Temp (°C)	Spec. Cond.	Turbidity (NTUs)	Dissolved	ORP (mv)
943	0	6.50	23.82	0.568	79.1	2,78	- 31
948	1500	6,29	23.41	0.471	40.8	0.84	2
953	3000	6.25	23.19	0.455	32.4	0,54	-17
950	<u>4400</u>	6.07	22.92	0.433	27.0	0.51	-19
00 /	0000	0.02			017-0		
							¥.,
	Sampling Time of Sample Method: Stainles Teflon b Pos. Di Disposa Dedicat Other:	Collection: as steel bailer bailer sp. Pump able bailer ed pump Disposable Bladder Pur (Low Flow)	<u>10:03</u> Analyse	es: TCL VOCs TCL SVOCs Target Analyt Alkalinity	602 e List Metals	503 Ott	1er
	Observations Weather/Tempe Sample descrip Free Prod She Od	erature: <u>P</u> tion: uct? yes en? yes dor? yes	no	describe describe describe	3°, wird	= Gmph N	
	Comments:						

0.2ppm

<u>Appendix E</u>
Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY SVE SYSTEM INSPECTION FORM

Date:

a 23

Weather: 45°F overcast

Time:

11:00

System Parameters		
Extraction Point	Vacuum (iwc)	
Influent Vacuum	10.147	
Sample Ports	PID (PPM)	
Before Carbon	3. Zppm	
Between Carbon	2.2 ppm	
After Carbon	1.31pm	

Inspection:	Yes / No	Comments
Blower Operating?	Yes	-
Spare Carbon Drums?	no spares	need replacment
System Integrity?	good	~

Other Comments AND/OR ACTIONS TAKEN:

(4)(3) in use old drums * system forctioning Vac pressure on blarer : - 17in sampled Influent 3 Effluent @ 12:30

Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY SVE SYSTEM INSPECTION FORM

Date:

Time:

9/5/13

10:20

Weather: Mostly Sunny 83° Inspector: CZ+KT

System Parameters	
Extraction Point	Vacuum (iwc)
Influent Vacuum	-15
Sample Ports	PID (PPM)
Before Carbon	2.1
Between Carbon	0.1
After Carbon	(J.D

Inspection:	Yes / No	Comments
Blower Operating?	Yes	
Spare Carbon Drums?	No	
System Integrity?	Yes	70

Other Comments AND/OR ACTIONS TAKEN:

Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY SVE SYSTEM INSPECTION FORM

Date:

30 23 11

Weather: 46°F Sunny

Time:

1:00

Inspector: (2 + KT (PE))

System Parameters		
Extraction Point	Vacuum (iwc)	
Influent Vacuum	8.62	
Sample Ports	PID (PPM)	
Before Carbon	17.3	
Between Carbon	0.0	
After Carbon	0.0	

Inspection:	Yes / No	Comments
Blower Operating?	Yes	
Spare Carbon Drums?	No	
System Integrity?	and condition	

Other Comments AND/OR ACTIONS TAKEN:

Knockout Drum replaced "130/23 - all other components good Carbon Dume replaced 3/23; blover placed 12/23 system fully functioning