

TYLL ENGINEERING & CONSULTING PC

NYS/NYC CERTIFIED WBE

February 7, 2025

Ms. Marlen Salazar New York State Department of Environmental Conservation Division of Environmental Remediation 47-40 21st Street Long Island City, NY, 11101

Re: Response to Comments

Former Getty Service Station No. 00564

NYSDEC BCP No. C224176 1103-1107 DeKalb Avenue Periodic Review Report

(November 2023 – November 2024)

Dear Ms. Salazar:

Tyll Engineering and Consulting PC (TEC) and GZA GeoEnvironmental of New York (GZA) is pleased to provide this Response to Comments Letter for the above-referenced property (Site). This letter is in response to your comments provided in the New York State Department of Environmental Conservation (NYSDEC) comment letter, dated January 9, 2025. Please find the revised Periodic Review Report (PRR) enclosed.

1. <u>Comment:</u> "Bookmarks: Please provide bookmarks in the PDF for each major section (e.g., sections I – VII) to help with navigation."

Completed.

2. Comment: "Appendices: Please include the title of the appendix on each appendix cover page."

Completed.

- 3. Comment: "Il Site Overview:
 - a. **Site Location:** incorrectly states that the 7-story mixed-use building to the north of the Site (1080 Broadway) has tax lot number 4. The correct tax lot number is 7. Please revise.
 - b. **Site Chronology:** describes chemical oxidant injections in Paragraph 5. For ease of reference, copy Figure 5a (chemical injection well locations) from the December 2019 FER to the PRR and make reference to it in this paragraph."

Revised as requested.

- 4. Comment: "III. Remedy Performance, Effectiveness & Protectiveness:
 - a. SVE System Sampling: make reference to Table 4 for SVE influent and effluent results. Also state present day SVE influent VOC concentrations during this reporting period as a range (i.e., 126.55 ug/m3 – 1970.00 ug/m3)

b. **SSDS:** Provide the name and model number of each SSDS fan if known. Also modify section VI. Operations & Maintenance Plan Compliance Report, A. Components of the O&M Plan, 2. Sub-Slab Depressurization System to include this information."

The requested information has been added. The name and model number of the SSDS fans are not known at this time. The Final Engineering Report (FER) states that the soil vapor extraction wells are equipped with a 1.5-horsepower (hp) EN454 Rotron Regenerative blower. However, the specifics of the SSDS blowers/fans are not provided in the FER, Site Management Plan (SMP), or prior PRRs. We determined that the SSDS fans, gauges, and alarms were installed in March 2020.

5. Comment: "IV. IC/EC Plan Compliance Report:

- a. **A1. IC Requirements and Compliance, 3. Corrective Measures:** please note that investigation into Spill No. 2406683 is ongoing and the results of which will be summarized in the next reporting period.
- b. **A2. EC Requirements and Compliance, 1. EC Controls, Composite Cover System:** make reference to Figure 2 containing the as-built of the composite cover system."

The Sections have been updated, as requested.

6. Comment: "V. Monitoring Plan Compliance Report:

a. **A. Components of the Monitoring Plan:** is missing mention of other components of the monitoring plan, including the annual inspection of the cover system and quarterly monitoring of components of the SVE system (i.e., blower, carbon drums, and plumbing)."

b. **B. Summary of Monitoring Completed During Reporting Period:**

- i. Please explain why groundwater monitoring results for Q4 2023 and Q1 2024 are unavailable. Provide the data if available.
- ii. In Paragraph 4, only include the dates of SVE sample collections within the PRR certifying period (i.e., November 2023 November 2024)."

The above requested Sections have been revised. Groundwater samples were collected in January, June, and September 2024 during the reporting period. No groundwater sample was collected within the second quarter of the reporting period (March 2024 – May 2024) by the previous environmental consultant due to scheduling issues. As such, groundwater data was reported during three of the four quarterly groundwater monitoring events within the reporting period.

7. <u>Comment:</u> "VI. Operations & Maintenance Plan Compliance Report, 2. Monitoring Well Network System: provide the exact date of NYSDEC approval to discontinue monitoring of MW-1401 (i.e. the date of the 2022 – 2023 PRR approval on April 15, 2024)."

At this time, we do not have the correspondence and/or approval letter from the NYSDEC as the correspondence was conducted with a prior environmental consultant. According to the PRR, dated March 2024, in Section V.E., the NYSDEC has approved the discontinuation of sampling at MW-1401, however, has requested the installation of a new monitoring well north of MW-1402 in order to

confirm that the plume is being properly monitored. A new monitoring well (MW-1404) was installed on October 25, 2024, as requested by the NYSDEC and was sampled in December 2024.

8. Comment: "Table 4 – SVE Vapor Analytical Results:

- a. Key: This table is missing a key explaining what the various qualifiers represent (e.g. U, J, and D). Please provide one.
- b. Total VOCs: As was done for the influent results, provide a total count of PVOCs, CVOCs, and VOCs for the effluent column.
- c. Influent/Effluent Results: are the influent and effluent results switched? The effluent results are greater in magnitude than the influent results."

Table 4 has been updated. There has been a reduction in VOCs between the influent and effluent samples in each sampling event, with the exception of the June 2024 SVE samples. Based upon the laboratory analytical results, CVOCs and total VOCs were at higher concentrations in the SVE effluent samples, higher than the influent samples. This was primarily due to the spike in concentrations of chloroform and Freon 11 in the June 2024 effluent sample. Chloroform and Freon 11 were also detected at higher concentrations in the September 2024 effluent sample. We recommend changing out the carbon in order to mitigate the concentrations of VOCs in effluent samples and prevent future breakthroughs.

9. <u>Comment:</u> "Figure 2: Please arrange the figures in numerical order for ease of reference, i.e. there is no need to distinguish between GZA figures and AMC Engineering figures."

Updated.

10. <u>Comment:</u> "Quarterly Groundwater Sampling: The NYSDEC requests that quarterly groundwater sampling results be submitted quarterly to the department upon receipt and validation of the data as well as a brief cover letter summarizing the data for record-keeping beginning with Q4 2024's groundwater data."

We will submit quarterly groundwater data and associated cover letter for Q4 2024's groundwater data. In addition, quarterly groundwater sampling results, in the form of a memo, will be provided to the NYSDEC on a quarterly basis.

11. <u>Comment:</u> "Appendix A & Appendix E: The first two pages of Appendix A and Appendix E are identical. Their content is very similar, i.e. they're both quarterly site inspection summaries. It may make more sense to simply combine the two appendices to avoid redundancy."

The Appendices have been updated to include all inspection forms in Appendix A.

Should you have any questions about our proposal, please contact Karen Tyll at (631) 629-5373 or karen@tyllengineering.com, Victoria Whelan at (631) 793-8821 or Victoria.Whelan@gza.com, or Mark Hutson at (646) 929-8955 or Mark.Hutson@gza.com.

Very truly yours,

TYLL ENGINEERING AND CONSULTING, PC

Karen G. Tyll, P.E.

President

GZA GEOENVIRONMENTAL OF NEW YORK

Mark Hutson, P.G.

Senior Project Manager

Moul Hetes

Victoria Whelan, P.G.
Vice President

Brownfield Cleanup Program Periodic Review Report

Reporting Period: November 2023 to November 2024

Former Getty Service Station No. 00564 1103-1107 Dekalb Avenue Brooklyn, New York 11221

Site No.: C224176

Prepared for

ABC NY 45 North Station Plaza – Suite 315 Great Neck, New York 11021

Submitted to:

New York State Department of Environmental Conservation

Prepared by

Tyll Engineering and Consulting PC. & GZA GeoEnvironmental of New York

December 2024

Revised February 2025

Table of Contents

Certification	
I. EXECUTIVE SUMMARY	1
II. SITE OVERVIEW	3
A. Site Location	3
B. Site Chronology	3
III. REMEDY PERFORMANCE, EFFECTIVENESS & PROTECTIVENESS	5
IV. IC / EC PLAN COMPLIANCE REPORT	
A1. IC Requirements and Compliance	
1. IC Controls	
2. Status of each IC	9
3. Corrective Measures	
4. IC Conclusions and Recommendations	10
A2. EC Requirements and Compliance	10
1. EC Controls	10
2. Status of each EC	
3. Corrective Measures	
4. EC Conclusions and Recommendations	
V. MONITORING PLAN COMPLIANCE REPORT	
A. Components of the Monitoring Plan	
B. Summary of Monitoring Completed During Reporting Period	
C. Comparisons with Remedial Objectives	
D. Monitoring Deficiencies	13
E. Conclusions and Recommendations	14
VI. OPERATIONS & MAINTENANCE PLAN COMPLIANCE REPORT	15
A. Components of the O&M Plan	15
B. Summary of O&M Completed During Reporting Period	16
C. Evaluation of Remedial Systems	1′
D. O&M Deficiencies	17
E. Conclusions and Recommendations for Improvements	17
VII. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS	
A. Compliance with the SMP	
B. Performance and Effectiveness of Remedy	17
C Future PRR Submittals	18

TABLES

Table 1 - Groundwater Analytical Results – MW1401 (Not Sampled During this Reporting Period)

Table 2 - Groundwater Analytical Results – MW1402

Table 3 - Groundwater Analytical Results – MW1403

Table 4 - Soil Vapor Analytical Results – SVE Influent and Effluent

Table 5 - QA/QC Analytical Results

GRAPHS

Graph 1 - MW1401

Graph 2 - MW1402

Graph 3 - MW1403

Graph 4 - SVE Influent

FIGURES

GZA Figures

Figure 1 - Site Location Map

Figure 2 - Site Cover

Figure 3 - Soil Vapor Extraction Layout

Figure 4 - Monitoring Well Network

Figure 5 - Original Monitoring Well / Injection Well Locations

APPENDICES

Appendix A - Quarterly Site Inspection Summary: Checklists, SVE Forms, and Photolog

Appendix B - Laboratory Reports – Groundwater Sampling

Appendix C - Laboratory Reports – SVE Sampling

Appendix D - Groundwater Purge Logs

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation

625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

10/8/2024

Moris Yeroshalmi 1107D LLC 45 N. Station Plaza, Suite 315 Great Neck, NY 11021 Moris@abcNY.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: Former Getty Service Station No. 00564

Site No.: C224176

Site Address: 1103-1107 DEKALB AVENUE

Brooklyn, NY 11221

Dear Moris Yeroshalmi:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **December 15, 2024**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Marlen Salazar, the Project Manager, at 718-482-7129 or marlen.salazar@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation One Hunters Point Plaza 47-40 21st Street Long Island City, NY 11101

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

ec: w/ enclosures

Marlen Salazar, Project Manager

Cris-Sandra Maycock, Chief, Region 2 Section A

Jane O'Connell, Hazardous Waste Remediation Supervisor, Region 2

Tyll Engineering and Consulting PC - Karen G. Tyll, P.E. - karen@tyllengineering.com

GZA - Victoria Whelan, CPG - victoria.whelan@gza.com

GZA - Mark Hutson - Mark.Hutson@gza.com

The following parcel owner did not receive an ec:

1107D LLC - Parcel Owner

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	te No.	Site Det C224176	tails	Box 1	
Sit	te Name Fo	rmer Getty Service Station No. 005	564		
Cit Co	e Address: :y/Town: Bro ounty: Kings e Acreage:	ooklyn	o Code: 11221		
Re	porting Peri	od: November 15, 2023 to Novembe	er 15, 2024		
				YES	NO
1.	Is the infor	mation above correct?		X	
	If NO, inclu	ıde handwritten above or on a separa	ate sheet.		
2.		or all of the site property been sold, s nendment during this Reporting Perio			X
3.		peen any change of use at the site du RR 375-1.11(d))?	uring this Reporting Period		X
4.		ederal, state, and/or local permits (e.e. property during this Reporting Perio			X
			nclude documentation or evidence bmitted with this certification form.		
5.	Is the site	currently undergoing development?			X
				Box 2	
				YES	NO
6.		ent site use consistent with the use(s) Residential, Commercial, and Indust	•	X	
7.	Are all ICs	in place and functioning as designed	₫? 🔻		
	IF T	HE ANSWER TO EITHER QUESTION DO NOT COMPLETE THE REST OF	6 OR 7 IS NO, sign and date below a THIS FORM. Otherwise continue.	and	
A	Corrective M	easures Work Plan must be submitt	ted along with this form to address th	nese issı	ues.
		ner, Remedial Party or Designated Re	epresentative Date		

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C224176 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u> **1600-28** 1107D LLC

> Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

O&M Plan IC/EC Plan

All ECs must be maintained as specified in the SMP;

- . The use of Groundwater is prohibited without necessary treatment as determined by NYSDOH or NYCDOH:
- . The potential for soil vapor intrusion must be assessed for any buildings developed on the site;
- . The Site shall not be used for Residential (single family housing) purposes
- . Quarterly monitoring of groundwater

Box 4

Description of Engineering Controls

Parcel Engineering Control

1600-28

Groundwater Treatment System Air Sparging/Soil Vapor Extraction

Monitoring Wells Vapor Mitigation Cover System

- Additional groundwater treatment as needed
- Soil Vapor extraction System
- Cover system consisting of the redevelopment 14-inch thick concrete cellar slab and 8-inch slab on the first floor
- Sub-slab Depressurization System Piping (active)

	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the Engineering Control certification; 	tion of,	and
	 b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and general engineering practices; and the information presented is accurate and compete. 	ally acc	epted
		YES	NO
		X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all c following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	artmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect $\mathfrak p$ the environment;	oublic h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	the	
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	n the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	ues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C224176

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

IMoris Yeroshalmy print name	at 45n stattion plz suite 315 Great Neck NY 11021 print business address
am certifying as remedial Party	(Owner or Remedial Party)
for the Site named in the Site Details S	ection of this form.
Signature of Owner, Remedial Party, or Rendering Certification	r Designated Representative Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Karen Tyll, PE I	Tyll Engineering and Consulting PC 169 Commack Rd, Suite H173, Commack, NY 11725 at
print name	print business address
am certifying as a Professional Engineer	for the
Kandyll	GA/
	12/13/2024
Signature of Professional Engineer, for t Remedial Party, Rendering Certification	· · · · · · · · · · · · · · · · · · ·

Enclosure 3 Periodic Review Report (PRR) General Guidance

I. Executive Summary: (1/2-page or less)

- A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
- B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.

C. Compliance

- 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
- 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.

D. Recommendations

- 1. recommend whether any changes to the SMP are needed
- 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
- 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.

B. IC/EC Certification

1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

I. EXECUTIVE SUMMARY

Tyll Engineering and Consulting PC (TEC) and GZA GeoEnvironmental of New York (GZA) have prepared this Periodic Review Report (PRR) for the reporting period of November 2023 to November 2024 (reporting period), for the property located at 1103-1107 DeKalb Avenue in Brooklyn, New York 11221 under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with the Brownfield Cleanup Agreement (BCA) #C224176-05-13.

Pre-injection groundwater sampling (aka baseline sampling) from three (3) onsite monitoring wells was completed on August 17, 2016, to determine the total VOC concentrations prior to treatment. Results concluded that several petroleum related VOCs were detected above their respective AWQS in all three monitoring wells. Total BTEX concentrations ranged from 450 μ g/L (MW1401) to 4,279 μ g/L (MW1402).

The first round of chemical injections (pre-excavation) was performed in September 2016. A second round of injections (post-excavation) was performed in May 2017. During excavation activities, two of the onsite monitoring wells (MW1401 and MW1403) were destroyed. They were replaced/reinstalled in November 2017. As part of the reinstallation, MW1401 was relocated to a position south of MW1403, at the NYSDEC's request.

Based on the total VOC data demonstrating acceptable reduction for VOCs and given that groundwater is at 42 ft below grade surface, the DEC approved the abandonment of MW-1401. In addition, groundwater samples were not collected from MW-1401 during the reporting period of this Periodic Review Report. The DEC also requested the installation of an additional monitoring well (MW-1404) north of MW-1402 on-site at an equal distance as between MW-1402 and MW-1403 to confirm that the plume is being properly monitored (see **Figure 5**). As requested, groundwater monitoring well MW-1404 was installed to the north of MW-1402 on October 25, 2024. Groundwater monitoring well MW-1404 will be sampled in December 2024 and results will be presented to the NYSDEC and included in the next Periodic Review Report.

The quarterly groundwater sampling program began in March 2018. During this reporting period (11/2023 to 11/2024), the groundwater VOC concentrations in MW 1402 and MW1403 continue to show an overall declining trend. The groundwater total VOC concentration in MW1402, which has historically showed the most significant concentrations of contamination, has decreased during this period from 2,066.70 μ g/L to 408.15 μ g/L throughout this monitoring period.

The soil vapor extraction (SVE) system was started on December 11, 2017. Initial concentrations in the influent air stream reported a total PVOC concentration of 162,139.11 $\mu g/m_3$, a total CVOC concentration of 3,592.66 $\mu g/m_3$ and a total VOC concentration of 165,731.70. A significant and steady decrease of total VOC concentrations have continued over time. The current results demonstrate a 98.81% reduction in total VOCs since December 2017 (Total VOCs concentrations in September 2024 – 1970.00 $\mu g/m_3$.

As the remedy was being implemented, it was determined that a Track 2 cleanup could not be achieved. On May 15, 2019, the NYSDEC issued an Explanation of Significant Difference (ESD) to document the changes to the selected remedy (Track 2) to achieve a Track 4 restricted-residential remedy. The changes included:

- Installation and maintenance of a site cover system to prevent exposure to remaining contaminated soil;
- Installation of a sub-slab depressurization system (SSDS) piping beneath the building slab to mitigate against soil vapor intrusion into the on-site building. The SSDS would be activated, if necessary, pending the results of indoor air sampling performed at the site following the completion of system installation, or upon determination that the SVE system is no longer needed to remediate remaining VOCs in soil above the water table. Provisions for activating the SSDS are documented in the Site Management Plan.

During this reporting period, it was determined that the three (3) SSDS effluent pipes in an outdoor roof area that are outfitted with SSDS fans and supplied with power. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. Following this report, EBC recommended to the NYSDEC that the system be turned off and only turned on in the future when the SVE system was taken out of commission after allowing soil vapors to reach asymptotic concentrations in compliance with remedial guidelines. It appears that after the repair of the SVE blower in 2021, the SSDS was unintentionally left running by EBC and has been running to date.

After discussion with the NYSDEC (after discovery), it was decided that the SSDS will be left in operation, and an investigation into the efficiency of the SSDS system in depressurizing the soil vapor below the slab of the building will be performed. Based on the (future) results of the SSDS investigation and pre-carbon SVE system soil vapor data, the NYSDEC may grant permission to turn off the SVE and leave the SSDS system operating as the sole method of vapor mitigation during the next reporting period.

II. SITE OVERVIEW

A. Site Location

The Site is located at 1103-1107 DeKalb Avenue in the Borough of Brooklyn (Kings County), New York (see **Figure 1** - Location Map), and is identified as Section 1900 Block 1600 and Lot 28 on the New York City Tax Map. The Site an approximately 0.218-acre area located on the northeast corner of DeKalb Avenue and Malcolm X Boulevard. The Site is bounded by a 7-story mixed use building (Block 1600, Lot 7 – 1080 Broadway) to the north, a 2-story mixed use apartment building with a first floor store (Block 1600, Lot 10 – 1086 Broadway) and a 3-story mixed-use apartment building with a first floor store (Block 1600, Lot 27 – 1009 DeKalb Avenue) to the east, DeKalb Avenue to the south, and Malcolm X Boulevard to the west. The Site is now developed with an 8-story mixed use building. The building has a partial below grade (11 ft) basement level with storage, mechanical rooms, and retail/commercial space.

B. Site Chronology

The Remedial Action for the Site was performed in accordance with the remedy selected by the NYSDEC in the Interim Remedial Measures Work Plan dated March 2012 (revised June 2012) and Remedial Action Work Plan dated August 2014. The selected remedy achieved a Track 4 Cleanup and included the following items:

- Removal of four (4) 550-gallon underground storage tanks (USTs) and associated petroleum contaminated soil from the former UST area in the south-west area of the Site;
- Excavation and off-Site disposal of soil / fill as necessary to construct the basement levels and foundation of the new buildings; screening for indications of contamination (by visual means, odor, and monitoring with PID) of all excavated soil during any intrusive Site work;
- Injection of a chemical oxidant solution to address petroleum VOCs in groundwater and residual petroleum VOC contamination in soil at and below the water table;
- Installation of three (3) monitoring wells and the collection of post-injection groundwater samples to evaluate the performance of the remedy with respect to attainment of groundwater standards;
- Installation of a soil vapor extraction (SVE) system and sub slab depressurization system (SSDS) piping on the Site; and
- Construction of a composite cover system consisting of the concrete building slabs and concrete and / or asphalt sidewalks and parking areas;

The SVE system consists of two (2), 2-inch diameter soil vapor extraction wells:

- 1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and
- 2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard in the vicinity of the southern petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55ft below sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well

screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap (knock out drum) located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017. On March 9, 2022, the SVE blower was inspected and was found to be inoperable. The blower was brought for servicing but was unable to be repaired. A new blower was installed in August 2022. The blower was operating as intended during the September 2022 inspection.

Analysis of influent and effluent air sample procured during the January 9, 2023 site inspection showed that carbon breakthrough had occurred within the SVE system. The carbon drums associated with the system were last replaced in March 2023.

In-situ chemical oxidation (ISCO) was implemented to remediate dissolved phase VOCs in groundwater. A chemical oxidant, sodium persulfate, was injected into the subsurface via 10 injection wells located in an approximately 3,600-square foot area where gasoline-related compounds were at elevated concentrations in groundwater, including within the former UST tank field, the former dispenser island, and the gasoline UST grave. Location of chemical injection wells and injection radius are shown on **Figure 5**. Chemical oxidant injections performed at the Site consisted of injecting a 10 to 30% solution of sodium persulfate activated with chelated iron into the ten permanent injection wells. No chemical oxidant injections were performed during the reporting period of this Periodic Review Report.

The SSDS on site consists of three (3) separate loops comprised of 4" slotted PVC below the slab with 4" solid PVC risers above the roofline completed with electric blowers for vapor removal. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. Following this report, EBC recommended to the NYSDEC that the system be turned off and only turned on in the future when the SVE system was taken out of commission after allowing soil vapors to reach asymptotic concentrations in compliance with remedial guidelines. It appears that after the repair of the SVE blower in 2021, the SSDS was left in operation and has been running to date.

III. REMEDY PERFORMANCE, EFFECTIVENESS & PROTECTIVENESS

Remedial Action at the Site performed previously under Remedial Action Work Plan, included the following:

- removal of four (4) 550-gallon USTs;
- removal of historic fill and petroleum contaminated soil from around three UST areas;
- injection of chemical oxidants though 1-inch PVC injection wells;
- installation of an SVE system;
- installation SSDS piping; and
- installation of a site cover system;

No chemical oxidant injections were performed during the reporting period of this Periodic Review Report.

Groundwater

Petroleum-related VOCs (PVOCs) only include compounds associated with gasoline contamination. Total VOCs include all compounds identified in the EPA Method 8260 List. The highest concentrations of PVOCs and total VOCs in groundwater were reported in down-gradient monitoring well MW1402.

The analytical results have been plotted on graphs to show the change of contaminant levels over time, as shown in **Graphs 1-3** (representing MW1401, MW1402, and MW1403, respectively).

<u>MW1401</u>

Monitoring wells MW1401, MW1402, and MW1403 were installed on the sidewalk along Malcolm X Boulevard, immediately downgradient of the former petroleum source areas.

The total VOC concentration has decreased from 239.74 $\mu g/L$ in December 2017 to 8.20 $\mu g/L$ in September 2023.

The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (43 μ g/L in December 2017), chloroform (40 μ g/L in August 2020), ethylbenzene (27 μ g/L in September 2018), and n-Propylbenzene (50 μ g/L in December 2017). The concentration of each of these compounds has since been reduced to compliant conditions outlined in TOGS 1.1.1 WQ/GA Table 1.

One compound (Trichloroethene - 6 μ g/L) remains above its applicable Standards and Guidance Values (SGVs) of 5 μ g/L in September 2023, but has shown to be steadily declining since the start of the remedial process.

Based on the VOC data demonstrating asymptotic reduction for VOCs and given that groundwater is at 42 ft below grade surface, the DEC approved the abandonment of MW-1401 and groundwater samples were not collected from MW-1401 during the reporting period of this Periodic Review Report. However, since MW-1401 also acts as a SVE extraction well, it will not be abandoned

until the SVE system is shut down. The DEC also requested the installation of an additional monitoring well (MW-1404) north of MW-1402 on site (see below).

MW1402

The total VOC concentration started at $8,978~\mu g/L$ in August 2016 and has decreased to $408.15~\mu g/L$ in September 2024.

The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (2900 μ g/L in August 2016), 1,3,5-trimethylbenzene (460 μ g/L in August 2016), ethylbenzene (1700 μ g/L in September 2018), m&p-Xylenes (2500 μ g/L in August 2016), and naphthalene (540 μ g/L in August 2016). Each of these compounds has been shown to have declined since the start of the remedial process.

MW1403

Although the total VOC concentration initially increased from 735.70 μ g/L in August 2016 to 2,220 μ g/L in November 2016, the total VOC concentration has decreased to 4.95 μ g/L in September 2024.

The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (240 μ g/L in November 2016), m&p-Xylenes (960 μ g/L in November 2016), and o-Xylene (350 μ g/L) in November 2016). Each of these compounds has been shown to have declined since the start of the remedial process.

MW-1404

The NYSDEC requested the installation of a new monitoring well north of MW-1402 at an equal distance as between MW-1402 and MW-1403 to confirm that the plume is being properly monitored. As requested, groundwater monitoring well MW-1404 was installed to the north of MW1402 on October 25, 2024. Groundwater monitoring well MW-1404 will be sampled in December 2024 and results will be presented in the next Periodic Review Report.

SVE System

The SVE system consists of two (2) 2-inch diameter soil vapor extraction wells:

- 1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and
- 2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard in the vicinity of the southern, petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55ft below sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017 and continues to operate.

SVE System Sampling

In accordance with the approved Site Management Plan (SMP), the influent and effluent (aka precarbon and post-carbon) streams of the SVE system require quarterly sampling. The SVE system was started on December 11, 2017. Initial concentrations in the influent air stream reported a total PVOC concentration of 162,139.11 micrograms per cubic meter (μ g/m³), a total CVOC concentration of 3,592.66 μ g/m³ and a total VOC concentration of 165,731.77 μ g/m³. A significant and steady decrease of total VOC concentrations have continued over time. The January, June, and September 2024 influent analytical results reported total PVOC concentrations ranging from 3.56 μ g/m³ – 8.00 μ g/m³, total CVOC concentrations ranging from 53.19 μ g/m³ – 2,539.80 μ g/m³, and total VOC concentrations ranging from 126.55 μ g/m³ - 2,948.76 μ g/m³. The current results demonstrate a 98.81% reduction in total VOCs since December 2017. The January, June, and September 2024 SVE influent and effluent analytical results are summarized in **Table 4**. The layout of the SVE system is shown in **Figure 3**.

Sub Slab Depressurization System

The Decision Document required that all future buildings constructed on the Site be evaluated for the potential for soil vapor intrusion (SVI). The developer installed the sub-slab depressurization system (SSDS) piping beneath the new building cellar slab in the event that an SSDS system is required. The horizontal sub-slab piping consists of fabric wrapped, perforated schedule 40, 4-inch PVC pipe connected to a 6-inch steel riser pipe. Three (3) SSDS loops were installed within porous granular material. The loops provide the correct coverage in accordance with USEPA SSDS design specifications, which recommend a separate vent loop for every 4,000 ft² of slab area. The loops are each outfitted with a collection point and riser pipe which extends to the roof. Each SSDS

¹ Soil Vapor Extraction (SVE) influent and effluent air samples were not collected during the second quarter (March 2024 – May 2024) by the former consultant. As such, data is not available for the second quarter of 2024.

includes an SSDS fan to comply with the required vacuum pressure necessary for each loop. The three (3) legs are inspected quarterly to make sure that there is vacuum maintained within the SSDS piping. Vacuum was observed at the three loop gauges during each inspection. Review of documentation by the NYSDEC found an indoor air monitoring report completed by EBC dated 2021 showing that effluent testing and indoor air testing was completed on the system during a downtime event of the SVE blower. As previously mentioned, after the repair of the SVE blower in 2021, the SSDS was left in operation by EBC and has been running to date.

After discussion with the NYSDEC, it was decided that the SSDS will be left in operation, and a SVIinvestigation into the efficiency of the SSDS system in depressurizing the soil vapor under the slab of the building will be performed. Based on the results of the SSDS investigation and precarbon SVE system soil vapor data, the NYSDEC may grant permission to turn off the SVE and leave the SSDS system as the sole form of vapor mitigation during the next monitoring period.

IV. IC / EC PLAN COMPLIANCE REPORT

A1. IC Requirements and Compliance

1. IC Controls

A series of Institutional Controls (ICs), required under the Site Management Plan, were placed on the property in the form of an Environmental Easement which was recorded with the NYC Department of Finance, Office of the City Register (NYSDOF-OCR). The recorded ICs are as follows:

- implement, maintain and monitor Engineering Control systems;
- prevent future exposure to residual contamination by controlling disturbances of the subsurface contamination; and
- limit the use and development of the Site to restricted residential uses only.

Adherence to these Institutional Controls on the Site (Controlled Property) is required under the Environmental Easement and will be implemented under the Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement by the Grantor and the Grantor's successors and assigns with all elements of the SMP;
- All Engineering Controls must be operated and maintained as specified in the SMP;
- A composite cover system consisting of concrete covered sidewalks, and concrete building slabs must be inspected, certified, and maintained as required in the SMP;
- A soil vapor mitigation system consisting of a soil vapor extraction system must be inspected, certified, operated, and maintained as required in the SMP;
- Groundwater treatment consisting of a series of injection and monitoring wells must be inspected, certified, operated, and maintained as required in the SMP;
- All Engineering Controls on the Controlled Property must be inspected and certified at a frequency and in a manner defined in the SMP;

- Groundwater, soil vapor, and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site Management for the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- On-Site environmental monitoring devices, including but not limited to, groundwater monitoring wells and soil vapor probes, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP; and
- Engineering Controls may not be discontinued without an amendment or the extinguishment of this Environmental Easement.

Site restrictions include:

The property may be used for: restricted-residential, commercial, and industrial uses. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the New York City Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.

- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- Vegetable gardens and farming on the Site are prohibited.

2. Status of each IC

An inquiry was made with the NYCDOF-OCR (Office of the City Registrar) to confirm that the Environmental Easement, as described above, remains in place and has not been changed, revised, or modified. It was confirmed that the Easement is recorded in the NYCDOF database via ACRIS.

3. Corrective Measures

No deficiencies in the ICs were noted for the current reporting period; therefore, no corrective measures were required. However, a spill (NYSDEC Spill No. 24-06683) was reported at the Site on October 25, 2024, due to discoloration, odor, and elevated PID readings that were observed

during the installation of groundwater monitoring well MW-1404. Investigation into the spill is ongoing, and results will be summarized in the next reporting period.

4. IC Conclusions and Recommendations

It is recommended that the Institutional Controls remain in place.

A2. EC Requirements and Compliance

1. EC Controls

Composite Cover System

Exposure to remaining contamination in soil / fill at the Site is prevented by a composite cover system placed over the Site. This cover system is comprised of 14-inch thick concrete building slab with a 20 mil vapor barrier, and an 8-inch concrete building slab at the rear of the building (first floor). **Figure 2** shows the as-built design of the composite cover system at the Site.

Soil Vapor Extraction System

The SVE system consists of two (2), 2-inch diameter soil vapor extraction wells:

- 1. VE-1 installed within the former tank field area source area, immediately above the groundwater interface (approximately 46 feet below grade); and
- 2. VE-2 (identified as MW1401) installed within the sidewalk on Malcolm X Boulevard in the vicinity of the southern petroleum hotspot;

Extraction well VE-1 consists of 20-feet of 0.010 screened section set immediately above the groundwater table, and riser pipe that extends to the new building's cellar floor. Extraction well VE-2 (MW1401) consists of 25-feet of 0.010 screened section set to approximately 55 ft below sidewalk grade. No. 00 morie gravel pack was placed to approximately 5 feet above each well screen, followed by a hydrated bentonite seal. The SVE wells are connected, via 2-inch diameter schedule 40 PVC pipe, to a 1.5-hp EN454 Rotron regenerative blower with a particulate filter and vapor trap located in the cellar of the new building. Soil vapor removed from the extraction wells by the blower, passes through two (2) vapor-phase granular activated carbon vessels prior to discharge at the roof. The SVE system was started on December 11, 2017.

Sub Slab Depressurization Piping

The Decision Document required that all future buildings constructed on the Site be evaluated for the potential for soil vapor intrusion (SVI). The developer elected to install a sub-slab depressurization system (SSDS) piping beneath the new building cellar slab in the event that an SSDS system will be required. The horizontal sub-slab piping consists of fabric wrapped, perforated schedule 40, 4-inch PVC pipe connected to a 6-inch steel riser pipe. Three (3) SSDS loops were installed within porous granular material. The loops provide the correct coverage in accordance with USEPA SSDS design specifications, which recommend a separate vent loop for every 4,000 ft² of slab area. The loops are each outfitted with a collection point and riser pipe which extends to the roof. Each SSDS includes an SSDS fan to comply with the required vacuum pressure necessary for each loop. The three (3) legs are inspected quarterly to make sure that there

is vacuum maintained under the slab. Vacuum was observed at the three loop gauges during each inspection. During this reporting period, it was recommended by the NYSDEC that the three (3) blowers continue to run. An investigation to confirm the SSDS alone will prevent the potential for soil vapor intrusion is anticipated to be completed during the upcoming reporting period.

2. Status of each EC

Composite Cover System

On June 25, 2024, and September 24, 2024, Site-wide inspections were performed, which included inspection for evidence of cracking or construction in the concrete slab installed above the vapor barrier (see **Figure 2**). No new cracks or new slab penetrations were observed throughout the visible areas of the building slab. Copies of the Annual Checklists are attached as **Appendix A**.

Soil Vapor Extraction System and SSDS System

Between November 2023 and November 2024, the system was functioning continuously. Copies of the Annual Checklists are attached as **Appendix A**.

3. Corrective Measures

The carbon drums associated with the SVE system were found to be effective in the removal of VOCs between November 2023 and November 2024.

4. EC Conclusions and Recommendations

Based on the analytical results of the SVE system influent samples between November 2023 and November 2024, the site has reached asymptotic reduction of VOCs. Several elevated VOC concentrations are still present on the site such as tetrachloroethene (PCE) in Soil Vapor (2,350 ug/m³ in January 2024) and trichloroethene (TCE) in water and soil vapor (2.5 ug/L in groundwater from MW-1403 and 90.2 ug/m³ in soil vapor in January 2024), however, the petroleum related compounds associated with the site's former use as a gas station have been reduced to asymptotic levels below at or below their associated SGVs.

A soil vapor intrusion investigation was requested by the NYSDEC to evaluate if the SSDS alone will prevent the potential for soil vapor intrusion. GZA prepared and issued a Soil Vapor Intrusion Work Plan, dated October 17, 2024 to the NYSDEC for approval. The soil vapor intrusion study is anticipated to be conducted during the next reporting period.

The NYSDEC has indicated that they will consider removing the SVE system from service and utilizing the SSDS as the sole form of vapor mitigation pending the results of the aforementioned soil vapor intrusion study.

Based on the VOC data demonstrating asymptotic reduction for VOCs, and given that groundwater is at 42 ft below grade surface, the DEC has approved the abandonment of MW-1401. The DEC requested the installation of an additional monitoring well (MW-1404) north of MW-1402 on site, which was installed on October 25, 2024. Groundwater monitoring on site is to continue for the next monitoring period.

It is recommended that all ECs, composite cover system, and SSDS remain in place, unless otherwise specified by the NYSDEC.

V. MONITORING PLAN COMPLIANCE REPORT

A. Components of the Monitoring Plan

The Monitoring Plan within the Site Management Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4 - Monitoring and Sampling Plan of the SMP, dated December 2019, prepared by AMC Engineering, PLLC.

Site cover inspections will be conducted and documented annually. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. Unscheduled inspections may take place when a suspected failure of the Site Cover System has been reported or an emergency occurs that is deemed likely to affect the operation of the system.

The Site Cover System components to be inspected include, but are not limited to, the components included below.

Cover Component	Inspection	Inspection	
	Parameter	Schedule	
Concrete Slab Covering the Site	Inspect for damage,	Annual	
(min 14-inch thick concrete slab under cellar level, 8-	and determine if		
inch thick under rear first floor area)	repair/replacement is		
	required.		

Monitoring of the SVE system will be performed on a quarterly basis. Modification to the frequency or sampling requirements will require approval from the NYSDEC. A visual inspection of the complete SVE system will be conducted during each monitoring event and groundwater sampling event. Unscheduled inspections and/or sampling may take place when a suspected failure of the SVE system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. SVE system components to be monitored include, but are not limited to, the components included below:

SVE System Component	Monitoring	Operating	Monitoring
	Parameter	Range	Schedule
Regenerative Blower	Flow Rate	TBD100-140	Quarterly
		CFM	
Activated Carbon Drums	Expiration date,	Replace when	Quarterly
	damage, labeling,	breakthrough	
	PID readings (at inlet,	is noted based	
	mid-carbon	on PID	

	and outlet)	readings	
Plumbing	Cracks, damage,	-	Quarterly
	labeling		

Quarterly sampling of groundwater from the on-site monitoring well network is required. Sampling is to be conducted in accordance with the previously approved Site Management Plan, and groundwater samples are to be analyzed for volatile organic compounds via EPA Method 8260. SVE discharge samples are to be collected from the SVE effluent on a quarterly basis.

B. Summary of Monitoring Completed During Reporting Period

Groundwater quality was monitored during this reporting period by the sampling of the two off-Site monitoring wells (MW-1402 and MW-1403) in January 2024, June 2024, and September 2024. Groundwater samples were not collected during the second quarter of 2024 by the previous environmental consultant. As such, groundwater analytical data for the second quarter is not provided during this reporting period.

Prior to sampling each monitoring well, depth to bottom and depth to water measurements were collected utilizing a decontaminated electronic water level measuring device. A total of approximately 3-5 well casing volumes were removed from each monitoring well utilizing a check valve equipped with disposable polyethylene tubing. Groundwater samples were then collected in pre-cleaned, laboratory supplied glassware, stored in a cooler with ice and submitted for analysis to York Analytical Laboratories (York) of 120 Research Drive Stratford, Connecticut, a New York State ELAP certified environmental laboratory (ELAP Certification Nos. 10854 and 12058) for laboratory analysis of volatile organic compounds (VOCs) via EPA method 8260.

Groundwater sample results were compared to the water quality standards specified in New York State 6NYCRR Part 703.5 Class GA Groundwater Quality Standards (GQS). Analytical data for the groundwater samples for this reporting period are summarized in **Table 1** and **Table 2**. Copies of the laboratory analytical reports are included in **Appendix B.** The total PVOCs, total CVOCs and total VOC concentrations are shown on **Graphs 1-3** for visual comparison.

During this PRR reporting period, SVE system samples were collected on 1/25/24, 6/25/24, and 9/24/24. Prior to sampling, the SVE discharge was field screened with a photo-ionization detector (PID) at the pre-carbon, mid-carbon, and post-carbon locations. A copy of the SVE monitoring forms is attached in **Appendix A**. Soil vapor samples were collected in 1-L tedlar bags at the pre-carbon and post-carbon locations and were submitted for analysis to York of Stratford, Connecticut, a New York State ELAP certified environmental laboratory (ELAP Certification Nos. 10854 and 12058) for laboratory analysis of volatile organic compounds (VOCs) via EPA method TO-15.

Analytical data for the soil vapor samples for this reporting period are summarized in **Table 4**. A copy of the laboratory analytical reports is included in **Appendix C**. The PVOC, CVOC and total VOC concentrations are presented in **Graph 4** attached, for visual comparison. Soil vapor analytical data from the fourth quarter of 2023 and the first quarter of 2024 were not available to TEC or GZA at the time of issuance of this PRR.

C. Comparisons with Remedial Objectives

As shown in **Tables 1-2** and **Graphs 1-2**, the highest concentrations of total VOCs in groundwater were reported in MW-1402. The analytes with the greatest concentrations consisted of 1,2,4-trimethylbenzene (2,900 μ g/L in August 2016), 1,3,5-trimethylbenzene (460 μ g/L in August 2016), ethylbenzene (1,700 μ g/L in September 2018), m&p-xylenes (2,500 μ g/L in August 2016), and naphthalene (540 μ g/L in August 2016).

During this reporting period, the groundwater VOC concentrations in MW-1402 and MW1403 show an overall declining trend. The groundwater VOC concentration in MW-1402, which has historically showed the most significant concentrations of contamination, has decreased from 2,066.70 µg/L to 408.15 µg/L throughout this monitoring period.

D. Monitoring Deficiencies

At this time, all corrective measures have been completed, and all onsite ECs are operating as intended.

E. Conclusions and Recommendations

The highest total VOC concentrations throughout the reporting period were reported within the downgradient monitoring well MW-1402 (2,066.70 $\mu g/L$). MW-1403 had reportedly low total VOC concentrations (less than 10 $\mu g/L$). GZA recommends the monitoring of MW-1402 and MW-1403 be continued.

The NYSDEC has approved the discontinuation of sampling at MW-1401, however, they also requested the installation of a new monitoring well north of MW-1402 at an equal distance as between MW-1402 and MW-1403 to confirm that the plume is being properly monitored. An addendum will be added to the SMP to adjust to this change. A new monitoring well (MW-1404) was installed on October 25, 2024, and is anticipated to be sampled during the fourth quarter of 2024.

Based on the analytical results of the SVE system influent samples between December 2017 and September 2024, the soil vapor on site has reached an asymptotic reduction of VOCs. It is recommended that the SVE system continue to operate in conjunction with the other EC/IC controls including the SSDS system pending the results of the soil vapor intrusion study, to be conducted during the next reporting period. Upon receipt of the soil vapor/indoor air analytical results from the SVI study, it will be determined if further mitigation is warranted or if the SVE system can be turned off.

VI. OPERATIONS & MAINTENANCE PLAN COMPLIANCE REPORT

A. Components of the O&M Plan

The Operation and Maintenance provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the Site.

1. Soil Vapor Extraction System

The system is currently installed and operating. If the blower fails, the unit will be replaced with a new/rebuilt 1.5-hp regenerative blower as soon as possible. Following installation of the new or rebuilt 1.5-hp regenerative blower, the following items will be inspected to ensure proper operation:

- 1) Check all exposed/visible SVE piping for evidence of damage, cracks, or leaks;
- 2) Turn system on and off to ensure the audible alarm is functioning properly;
- 3) Record vacuum readings and pressure readings (on the discharge piping prior to carbon drums).

The system testing described above will be conducted if, in the course of the SVE system lifetime, the system goes down or significant changes are made to the system and the system must be restarted. The regenerative blower was last replaced in August 2022.

2. Sub-Slab Depressurization System (SSDS)

The SSDS is currently installed and operating. If the fan fails, the unit will be replaced with a new fan and the following items will be inspected to ensure proper operation:

- 1) Check all exposed/visible SSDS piping for evidence of damage, cracks, or leaks;
- 2) Turn system on and off to ensure the audible alarm is functioning properly;
- 3) Record vacuum readings and pressure readings (at the three legs of the SSDS).

The system testing described above will be conducted if, in the course of the SSDS system lifetime, the system goes down or significant changes are made to the system and the system must be restarted.

3. Monitoring Well Maintenance

If biofouling or silt accumulation is discovered in the on-Site and/or off-Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan) if an event renders the wells unusable. In addition, monitoring well caps and covers will be replaced and repaired, if required.

4. Reporting

A checklist is to be completed during each routine maintenance event which is scheduled to be on an annual basis. Checklists / forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist / form or on an attached sheet [see Appendix A]); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist / form).

During each non-routine maintenance event, a form is to be completed that includes, but is not limited to, the following information:

- Date:
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities:
- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and,
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

5. Contingency Plan

The SVE system is designed to run 24/7 with no maintenance. Periodic inspections were and will be performed to assure that the system was continuing to operate properly.

B. Summary of O&M Completed During Reporting Period

1. SVE System

Between November 2023 and November 2024, quarterly O&M activities were conducted on the SVE system. Quarterly O&M activities conducted between November 2023 and June 2024 were conducted by a former consultant. The documentation relating to the former consultant's quarterly O&M activities were not available to GZA at the time of issuance of this PRR. The SVE system remained on throughout the reporting period of this Periodic Review Report.

2. Monitoring Well Network System

The NYSDEC approved the recommendation to stop monitoring well MW-1401 following several rounds of sampling compliant with state regulations.

A new monitoring well (MW-1404) was installed on October 25, 2024, as requested by the NYSDEC and will be sampled in December 2024. No problems were encountered during sampling throughout the monitoring period. However, a spill (NYSDEC Spill No. 24-06683) was reported at the Site on October 25, 2024, due to discoloration, a hydrocarbon odor and elevated PID readings that were observed during the installation of groundwater monitoring well MW-1404.

C. Evaluation of Remedial Systems

1. Soil Vapor Extraction System

The SVE system has been effective in remediating the soil vapor at the site. Based on the analytical results of the SVE influent samples, the site has reached asymptotic reduction for subsurface soil vapors.

D. O&M Deficiencies

In the current reporting period, there were no deficiencies to the O&M plan.

E. Conclusions and Recommendations for Improvements

The SVE system has been effective in treating the soil in the tank field and petroleum hotspot areas. It has been recommended that the SSDS will be left in operation, pending an investigation into the efficiency of the system to maintain negative pressure under the slab of the building and prevent the potential for soil vapor intrusion. Based on the results of the investigation and precarbon SVE system soil vapor data, it is hopeful that the NYSDEC will grant permission to turn off the SVE and leave the SSDS system as the sole form of vapor mitigation.

VII. OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

A. Compliance with the SMP

All requirements of the SMP were implemented during this PRR reporting period. In order to implement all of the SMP requirements, the following items were completed:

- Groundwater samples were collected from the on-Site monitoring wells in June 2024 and September 2024. Data from additional groundwater sampling events conducted during the reporting period by previous consultant was not available to GZA at the time of the issuance of this report.
- The concrete slab was inspected and the checklist was completed.
- The soil vapor extraction system was inspected to ensure proper operation and inspection checklist was completed.
- The ICs / ECs were inspected and the ICs were certified by the remedial engineer.

B. Performance and Effectiveness of Remedy

The VOC concentrations in groundwater show an overall declining trend across all the monitoring points.

The highest VOC concentrations were reported within the downgradient monitoring well MW-1402 which showed a decrease in total VOCs between the September 2016 and September 2024 sampling events from $\sim 9000 \, \mu \text{g/L}$ to $\sim 408 \, \mu \text{g/L}$.

MW-1403 has reportedly low total VOC concentrations (less than 10 μg/L).

Based on the analytical results of the SVE system influent samples between November 2023 and November 2024, the site has reached asymptotic reduction of VOCs. Several elevated VOC concentrations are still present on the site such as PCE in Soil Vapor (2,350 ug/m³ in January 2024) and trichloroethene (TCE) in water and soil vapor (2.5 ug/L in groundwater from MW-1403 and 90.2 ug/m³ in soil vapor in January 2024), however, the petroleum related compounds associated with the site's former use as a gas station have been reduced to asymptotic levels below at or below their associated SGVs.

A soil vapor intrusion investigation was requested by the NYSDEC to evaluate if the SSDS alone will prevent the potential for soil vapor intrusion. GZA prepared and issued a Soil Vapor Intrusion Work Plan, dated October 17, 2024 to the NYSDEC for approval. The soil vapor intrusion study is anticipated to be conducted during the next reporting period.

C. Future PRR Submittals

The next PRR submittal will reflect the PRR reporting period of November 2024 to November 2025. In addition, groundwater monitoring analytical results will be provided to the NYSDEC on a quarterly basis.

Table 1 Groundwater Analytical Results - MW-1401

(Not Sampled November 2023 - November 2024) 1103-1107 Dekalb Avenue, Brooklyn, NY

	November 2022 - N	022 - November 2023					
				MW-	-1401		
			d Water 2023		d Water /2023		l Water 2023
Volatiles By SW8260C	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5 5	ND ND	U	ND ND	U	ND ND	U
1,1,2,2-Tetrachloroethane	5	ND ND	U	ND ND	U	ND ND	U
1,1,2-Trichloroethane	1	ND	U	ND	U	ND	U
1,1-Dichloroethane	5	ND	U	ND	U	ND	U
1,1-Dichloroethene 1,1-Dichloropropene	5	ND ND	U	ND ND	U	ND ND	U
1,2,3-Trichlorobenzene	3	ND	U	ND	U	ND	U
1,2,3-Trichloropropane	0.04	ND	U	ND	U	ND	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5	ND ND	U	ND ND	U	ND ND	U
1,2-Dibromo-3-chloropropane	0.04	ND	U	ND ND	U	ND	U
1,2-Dibromoethane	0.0006	ND	U	ND	U	ND	U
1,2-Dichlorobenzene 1,2-Dichloroethane	0.6	ND	U	ND ND	U	ND	U
1,2-Dichloropethane 1,2-Dichloropropane	1	ND ND	U	ND ND	U	ND ND	U
1,3,5-Trimethylbenzene	5	ND	U	ND	U	ND	U
1,3-Dichlorobenzene	3	ND	U	ND	U	ND	U
1,3-Dichloropropane 1.4-Dichlorobenzene	5	ND ND	U	ND ND	U	ND ND	U
2,2-Dichloropropane	5	ND	U	ND	U	ND	U
2-Chlorotoluene	5	ND	U	ND	U	ND	U
2-Hexanone 2-Isopropyltoluene	50 5	ND ND	U	ND ND	U	ND ND	U
4-Chlorotoluene	5	ND	U	ND ND	U	ND	U
4-Methyl-2-pentanone		ND	U	ND	U	ND	U
Acetone	50	ND	U	ND	U	ND	U
Acrylonitrile Benzene	5	ND ND	U	ND ND	U	ND ND	U
Bromobenzene	1	ND	U	ND	U	ND	U
Bromochloromethane	5	ND	U	ND	U	ND	U
Bromodichloromethane Bromoform	5 50	ND ND	U	ND ND	U	ND ND	U
Bromomethane	50	ND	U	ND	U	ND	U
Carbon Disulfide	5	ND	U	ND	U	ND	U
Carbon tetrachloride Chlorobenzene	5	ND ND	U	ND ND	U	ND ND	U
Chloroethane	5	ND	U	ND ND	U	ND	U
Chloroform	5	1.3		ND	U	1.2	
Chloromethane cis-1,2-Dichloroethene	7 5	ND ND	U	ND ND	J	ND ND	U
cis-1,3-Dichloropropene	5	ND	U	ND ND	J	ND ND	U
Dibromochloromethane	0.4	ND	U	ND	U	ND	U
Dibromomethane	50	ND	U	ND	U	ND	U
Dichlorodifluoromethane Ethylbenzene	5	ND ND	U	ND ND	U	ND ND	U
Hexachlorobutadiene	5	ND	U	ND	U	ND	U
Isopropylbenzene	0.5	ND	U	ND	U	ND	U
m&p-Xylene Methyl ethyl ketone	5	ND ND	U	ND ND	U	ND ND	U
Methyl t-butyl ether (MTBE)	50	ND	U	ND ND	U	ND ND	U
Methylene chloride		ND	U	ND	U	ND	U
Naphthalene n-Butylbenzene	5 10	ND ND	U	ND ND	U	ND ND	U
n-Propylbenzene	5	ND	U	ND ND	U	ND ND	U
o-Xylene	5	ND	U	ND	U	ND	U
p-Isopropyltoluene	5	ND ND	U	ND ND	U	ND ND	U
sec-Butylbenzene Styrene	5	ND ND	U	ND ND	U	ND ND	U
tert-Butylbenzene	5	ND	U	ND	U	ND	U
Tetrachloroethene	5	2.2	, .	ND	U	1	,,
Tetrahydrofuran (THF) Toluene	5 50	ND ND	U	1.9 ND	U	ND ND	U
Total Xylenes	5	ND	U	ND ND	U	ND ND	U
trans-1,2-Dichloroethene	5	ND	U	ND	U	ND	U
trans-1,3-Dichloropropene	0.4	ND ND	U	ND ND	U	ND ND	U U
trans-1,4-dichloro-2-butene Trichloroethene	5	7.8	U	6.5	U	МD 6	U
Trichlorofluoromethane	5	ND	U	ND	U	ND	U
Trichlorotrifluoroethane	5	ND	U	ND ND	U	ND	U
Vinyl chloride PVOCs	2	ND 0.	00	ND 0.	U 00	ND 0.	U 00
Total VOCs			.30		40	ļ	20
Table Notes:						•	

Table Notes:

---: No guidance value.

ug/L: Micrograms per Liter.

U: Not detected at the reported detection limit (RL) for the sample.

Qual: Qualifier.

Exceeds TOGS 1.1.1 Groundwater Standard

Table 2

Groundwater Analytical Results - MW-1402

1103-1107 Dekalb Avenue, Brooklyn, NY November 2023 - November 2024

		ember 2024 MW-1402					
			d Water /2024	Ground Water 6/25/2024		Ground 9/24/	
VOA, 8260 LOW MASTER (ug/L)	TOGS 1.1.1 WQ/GA Table 1	Result	Qual	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane	5	1.0	U	2.16	U	0.216	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5	2.0 0.5	U	2.66 2.56	U	0.266 0.256	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	1.0	U	2.86	U	0.286	U
1,1,2-Trichloroethane	1	2.0	U	2.49	U	0.249	U
1,1-Dichloroethane 1,1-Dichloroethylene	5	2.0 1.0	U	2.72 3.27	U	0.272 0.327	U
1,1-Dichloropropylene	5	1.0	U	3.14	U	0.314	U
1,2,3-Trichlorobenzene	5	1.0	U	2.22	U	0.222	U
1,2,3-Trichloropropane	0.04	1.0	U	2.73	U	0.273	U
1,2,4,5-Tetramethylbenzene 1.2.4-Trichlorobenzene	 5	NT 1.0	U	24.1 1.38	D U	8.900 0.138	U
1,2,4-Trimethylbenzene	5	210	U	522	D	72	D
1,2-Dibromo-3-chloropropane	0.04	1.0	U	4.32	U	0.432	U
1,2-Dibromoethane	0.0006	1.0	U	2.15	U	0.215	U
1,2-Dichlorobenzene 1,2-Dichloroethane	3 0.6	2.0 1.0	U	2.7 3.77	U	0.270 0.377	U
1,2-Dichloropropane	1	1.0	U	3.27	U	0.327	U
1,3,5-Trimethylbenzene	5	39		37	D	8.31	
1,3-Dichlorobenzene	3	1.0	U	2.83	U	0.283	U
1,3-Dichloropropane 1,4-Dichlorobenzene	5	1.0	U	2.6 3.11	U	0.260 0.311	U
1,4-Dictioropenzene 1,4-Dioxane	0.35	100	U	353	U	35.3	U
2,2-Dichloropropane	5	1.0	U	4.66	U	0.466	U
2-Butanone	50	5.0	U	4.21	U	1.650	
2-Chlorotoluene 2-Hexanone	5 50	1.0	U	3.76 3.2	U	0.376	U
2-Hexanone 2-Isopropyltoluene	50	5.0 1.1	U	3.2	U	0.320 NT	U
4-Chlorotoluene	5	1.0	U	3.11	U	0.311	U
4-Methyl-2-pentanone		2.5	U	3.65	U	0.365	U
Acetone	50	5.0	U	22.2	D	3.850	
Acrolein Acrylonitrile		NT 1.0	U	4.47 4.22	U	0.447 0.422	U
Benzene	1	0.63	J	2.79	U	0.422	U
Bromobenzene	5	1.0	U	3.67	U	0.367	U
Bromochloromethane	5	1.0	U	3.54	U	0.354	U
Bromodichloromethane Bromoform	50 50	1.0	U	2.45 1.63	U	0.245 0.163	U
Bromomethane	5	2.0	U	1.19	U	0.103	U
Carbon disulfide		1.0	U	3.62	U	0.362	U
Carbon tetrachloride	5	1.0	U	2.04	U	0.204	U
Chlorobenzene Chloroethane	5	2.0	U	2.84 4.48	U	0.284 0.448	U
Chloroform	7	1.0	U	2.43	U	0.448	U
Chloromethane	5	2.0	U	3.72	U	0.372	U
cis-1,2-Dichloroethylene	5	10.0		14.5	D	2.410	
cis-1,3-Dichloropropylene	0.4	0.4 9.4	U	2.62 25.2	U D	0.262 9.910	U
Cyclohexane Dibromochloromethane	50	1.0	U	1.46	U	0.146	U
Dibromomethane		1.0	U	2.03	U	0.203	U
Dichlorodifluoromethane	5	1.0	U	4.51	U	0.451	U
Diisopropyl ether (DIPE)	 5	NT 250		4.66 442	U D	0.466 60	U D
Ethyl Benzene Ethyl tert-butyl ether (ETBE)		NT		4.79	U	0.479	U
Hexachlorobutadiene	0.5	0.4	U	2.41	U	0.241	U
odomethane		NT		4.77	U	0.477	U
Sopropylbenzene	5	50.0	11	60.2	D	21.6	
Methyl acetate Methyl Methacrylate		2.5 NT	U	4.42 20.2	U D	0.442 0.415	U
Methyl tert-butyl ether (MTBE)	10	1.0	U	2.44	U	0.413	U
Methylcyclohexane		17.0		9.4	D	3.440	-
Methylene chloride	5	3.0	U	3.97	U	0.397	U
Naphthalene n-Butylbenzene	10 5	44.0 3.3		86.2 4.4	BD JD	21.5 2.130	
n-Propylbenzene	5	91.0		117	D	45.8	
o-Xylene	5	1.8		2.61	U	0.290	J
p- & m- Xylenes p-Diethylbenzene		260 NT		284	D D	56.40 5.970	
p-Dietnylbenzene p-Ethyltoluene		NT NT		83.8	D	21.40	
p-Isopropyltoluene	5	0.74	J	3.77	U	0.460	J
sec-Butylbenzene	5	5.8		6.4	D	2.820	
Styrene	5	1.0	U	2.55	U	0.255	U
tert-Amyl alcohol (TAA) tert-Amyl methyl ether (TAME)		NT NT		41.6 5.11	U	4.160 0.511	U
tert-Butyl alcohol (TBA)		NT		6.08	U	0.608	U
ert-Butylbenzene	5	1.0	U	3.67	U	0.367	U
Tetrachloroethylene	5	1.0	U	2.39	U	0.239	U
Fetrahydrofuran Foluene	 5	2.5 5.8	U	4.85 8.1	U D	0.485 1.330	U
rans-1,2-Dichloroethylene	5	1.0	U	2.79	U	0.279	U
rans-1,3-Dichloropropylene	0.4	0.4	U	2.29	U	0.229	U
rans-1,4-dichloro-2-butene		5.0	U	2.83	U	0.283	U
Frichloroethylene	5	3.7		2.49	U	0.860	17
Trichlorofluoromethane Vinyl acetate	5	NT 1.0	U	3.37 4.77	U	0.337 0.477	U
vinyi acetate Vinyl Chloride	2	1.0	U	4.77	U	0.477	U
Kylenes, Total	5	261.8		284	D	56.7	
PVOCs			1.37		9.00		.96
Total VOCs		127	5.07	204	1.50	408	.15

Table Notes:

^{---:} No guidance value.

ug/L: Micrograms per Liter.
U: Not detected at the reported detection limit (RL) for the sample.

D: The reported concentration is the result of a diluted analysis

NT: Analyte not targeted

Qual: Qualifier.

Table 3

Groundwater Analytical Results - MW-1403

1103-1107 Dekalb Avenue, Brooklyn, NY

		MW-1403					
			l Water /2024	Ground Water 6/25/2024		Ground Water 9/24/2024	
VOA, 8260 LOW MASTER (ug/L)	TOGS 1.1.1 WQ/GA	- 1					
I,1,1,2-Tetrachloroethane	Table 1	Result 1.0	Qual U	Result 0.216	Qual U	Result 0.216	Qual U
I,1,1-Trichloroethane	5	2.0	U	0.266	U	0.266	U
I,1,2,2-Tetrachloroethane	5	1.0	U	0.256	U	0.256	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	1.0	U	0.286	U	0.286	U
1,1,2-Trichloroethane	1	1.0	U	0.249	U	0.249	U
I,1-Dichloroethane	5	2.0	U	0.272	U	0.272	U
1,1-Dichloroethylene 1,1-Dichloropropylene	5	1.0	U	0.327 0.314	U	0.327 0.314	U
I,2,3-Trichlorobenzene	5	1.0	U	0.222	U	0.222	U
L,2,3-Trichloropropane	0.04	1.0	U	0.273	U	0.273	U
1,2,4,5-Tetramethylbenzene		NT		0.255	U	0.290	J
1,2,4-Trichlorobenzene	5	0.75	U	0.138	U	0.138	U
1,2,4-Trimethylbenzene	5	1.0	J	0.310	U	0.310	U
I,2-Dibromo-3-chloropropane	0.04 0.0006	1.0	U	0.432 0.215	U	0.432 0.215	U
1,2-Dichlorobenzene	3	1.0	U	0.213	U	0.213	U
1,2-Dichloroethane	0.6	0.6	U	0.377	U	0.377	U
I,2-Dichloropropane	1	1.0	U	0.327	U	0.327	U
1,3,5-Trimethylbenzene	5	1.0	U	0.347	U	0.347	U
1,3-Dichlorobenzene	3	2.0	U	0.283	U	0.283	U
1,3-Dichloropropane	5	1.0	U	0.260	U	0.260	U
L.4-Dichlorobenzene	3	2.0	U	0.311	U	0.311	U
1,4-Dioxane 2,2-Dichloropropane	0.35	1.0	U	35.3 0.466	U	35.3 0.466	U
2,2-Dichloropropane 2-Butanone	50	5.0	U	1.300	J	0.466	U
2-Chlorotoluene	5	1.0	U	0.376	U	0.421	U
2-Hexanone	50	5.0	U	0.320	U	0.320	U
2-Isopropyltoluene		0.31	J	NT		NT	
4-Chlorotoluene	5	1.0	U	0.311	U	0.311	U
4-Methyl-2-pentanone		2.5	U	0.365	U	0.365	U
Acetone	50	25.0	U	4.270		1.340	U
Acrolein Acrylonitrile		NT 1.0	U	0.447 0.422	U	0.447 0.422	U
Benzene	1	0.7	U	0.422	U	0.422	U
Bromobenzene	5	1.0	Ü	0.367	U	0.367	U
Bromochloromethane	5	1.0	U	0.354	U	0.354	U
Bromodichloromethane	50	0.5	U	0.245	U	0.245	U
Bromoform	50	1.0	U	0.163	U	0.163	U
Bromomethane	5	2.0	U	0.119	U	0.119	U
Carbon disulfide		5.0	U	0.362	U	0.362	U
Carbon tetrachloride Chlorobenzene	5	1.0	U	0.204 0.284	U	0.204 0.284	U
Chloroethane	5	2.0	U	0.284	U	0.284	U
Chloroform	7	2.0	U	0.590		0.243	U
Chloromethane	5	1.0	U	0.372	U	0.372	U
cis-1,2-Dichloroethylene	5	2.1		0.294	U	0.294	U
cis-1,3-Dichloropropylene	0.4	0.4	U	0.262	U	0.262	U
Cyclohexane		3.3	J	1.400		1.790	
Dibromochloromethane Dibromomethane	50	1.0	U	0.146 0.203	U	0.146 0.203	U
Dichlorodifluoromethane	5	1.0	U	0.203	U	0.203	U
Diisopropyl ether (DIPE)		NT	Ŭ	0.466	U	0.466	U
Ethyl Benzene	5	2.1		0.290	U	0.290	U
Ethyl tert-butyl ether (ETBE)		NT		0.479	U	0.479	U
Hexachlorobutadiene	0.5	0.4	U	0.241	U	0.241	U
lodomethane		NT		0.477	U	0.477	U
sopropylbenzene Mathylacotato	5	6.0	11	0.405	U	0.405	U
Methyl acetate Methyl Methacrylate		2.5 NT	U	0.442 0.415	U	0.442 0.415	U
Methyl tert-butyl ether (MTBE)	10	1.0	U	0.415	U	0.415	U
Methylcyclohexane		2.0	U	0.477	U	0.477	U
Methylene chloride	5	1.0	U	0.397	U	0.397	U
Naphthalene	10	1.0	U	0.290	JB	0.212	U
n-Butylbenzene	5	1.2		0.399	U	0.399	U
n-Propylbenzene p-Xylene	5	4.9	U	0.384	U	0.384	U
o- Xylene o- & m- Xylenes		1.0 0.4	J	0.261 0.578	U	0.261 0.578	U
o-Diethylbenzene		NT	,	0.378	U	0.378	U
p-Ethyltoluene		NT		0.200	U	0.200	U
p-lsopropyltoluene	5	0.25	J	0.377	U	0.377	U
sec-Butylbenzene	5	3.7		0.444	U	1.600	
Styrene	5	1.0	U	0.255	U	0.255	U
tert-Amyl alcohol (TAA)		NT NT		4.160	U	4.160 0.511	U
ert-Amyl methyl ether (TAME) ert-Butyl alcohol (TBA)		NT NT		0.511 0.608	U	0.511	U
ert-Butylbenzene	5	1.0	U	0.367	U	0.808	U
Fetrachloroethylene	5	0.43	J	0.370	J	0.360	J
Fetrahydrofuran		2.5	U	0.485	U	0.485	U
Toluene	5	1.0	U	0.346	U	0.346	U
rans-1,2-Dichloroethylene	5	1.0	U	0.279	U	0.279	U
rans-1,3-Dichloropropylene	0.4	0.4	U	0.229	U	0.229	U
rans-1,4-dichloro-2-butene		5.0	U	0.283	U	0.283	U
Trichloroethylene Trichlorofluoromethane	5	2.5 1.0	U	0.930 0.337	U	0.910 0.337	U
/inyl acetate		NT		0.337	U	0.337	U
/inyl Chloride	2	1.0	U	0.469	U	0.469	U
Kylenes, Total	5	1.0	U	0.839	U	0.839	U
PVOCs			.21	1.	69	3.0	58
Total VOCs		28	.19	9.	15	4.9	95

Table Notes:

^{---:} No guidance value.

ug/L: Micrograms per Liter.
U: Not detected at the reported detection limit (RL) for the sample.

D: The reported concentration is the result of a diluted analysis

NT: Analyte not targeted

Qual: Qualifier.

Table 4

SVE Vapor Anaytical Results - SVE Influent and Effluent 1103-1107 Dekalb Avenue, Brooklyn, NY

November 2023 - November 2024

_				2023 - Nov	ember 2024							
		1/25	/2024			6/25,	/2024			9/24	/2024	
1									1			
	INFLU	ENT	EFFLU	ENT	INFLUE	NT	EFFLUE	ENT	INFLU	NT	EFFLU	ENT
Volatiles By TO-15 (μg/m3)	Docult	Qual	Result	Qual	Result	Oual	Docult	Qual	Result	Qual	Result	Qual
1,1,1,2-Tetrachloroethane	Result 5	U	10	U	0.69	Qual U	Result 3.4	U	6.90	U	6.9	U
1,1,1-Trichloroethane	5	U	9.98	U	0.55	U	2.7	U	5.50	U	5.5	U
1,1,2,2-Tetrachloroethane	5	U	10	U	0.69	U	3.4	U	6.90	U	6.9	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	5	U	10	U	0.77	U	25	D	7.70	U	38	D
1,1,2-Trichloroethane	5	U	9.98	U	0.55	U	2.7	U	5.50	U	5.5	U
1,1-Dichloroethane	5.02	U	9.99	U	0.4	U	2	U	4	U	4	U
1,1-Dichloroethylene	4.99	U	9.99	U	0.099	U	0.5	U	0.99	U	0.99	U
1,2,4-Trichlorobenzene	NT 5.04		NT 10		0.74		3.7	U	7.40	U	7.4	U
1,2,4-Trimethylbenzene 1,2-Dibromoethane	5.01	U	10 9.98	U	0.49 0.77	U	2.5 3.8	U	4.90 7.70	U	4.9 7.7	U
1,2-Dichlorobenzene	NT	-	NT	0	0.6	U	3.8	U	6	U	6	U
1,2-Dichloroethane	5.02	U	9.99	U	0.4	U	2	U	4	U	4	U
1,2-Dichloropropane	4.99	U	10	U	0.46	U	2.3	U	4.60	U	4.6	U
1,2-Dichlorotetrafluoroethane	5	U	9.99	U	0.7	U	3.5	U	7	U	7	U
1,3,5-Trimethylbenzene	5.01	U	10	U	0.49	U	2.5	U	4.90	U	4.9	U
1,3-Butadiene	5	U	9.99	U	0.66	U	3.3	U	6.60	U	6.6	U
1,3-Dichlorobenzene	NT	ļ	NT		0.6	U	3	U	6	U	6	U
1,3-Dichloropropane	NT	ļ	NT		0.46	U	2.3	U	4.60	U	4.6	U
1,4-Dichlorobenzene 1,4-Dioxane	NT 5.01	U	NT 10	U	0.6	U	3.6	U	6 7.20	U	6 7.2	U
2,2,4-Trimethylpentane	5.01 NT	J	NT NT	J	0.72		1.2	U	2.30	J	2.3	U
2-Butanone	5.01	U	9.99	U	1.9		2.4	D	2.90	U ,	2.9	U
2-Hexanone	4.99	U	9.99	U	0.82	U	4.1	U	8.20	U	8.2	U
3-Chloropropene	NT		NT		1.6	U	7.8	U	16	U	16	U
4-Isopropyltoluene	5	U	9.98	U	NT		NT		NT		NT	
4-Methyl-2-pentanone	4.99	U	9.99	U	2.5		7.2	D	4.10	U	4.1	U
Acetone	22.8		13.1		20		23	D	20	D	16	D
Acrylonitrile	5.01	U	10	U	0.22	U	1.1	U	2.20	U	2.2	U
Benzene	5.01 NT	U	9.99 NT	U	0.38	U	1.6 2.6	U	3.20	U	3.2 5.2	U
Benzyl chloride Bromodichloromethane	5	U	9.98	U	0.52	U	3.3	U	5.20 6.70	U	6.7	U
Bromoform	5	U	10	U	1	U	5.2	U	10	U	10	U
Bromomethane	5.01	Ü	10	Ü	0.39	Ü	1.9	Ü	3.90	U	3.9	U
Carbon disulfide	5.01	U	9.99	U	4.5		5.4	D	3.10	U	3.1	D
Carbon tetrachloride	1.24	U	2.5	U	0.38		0.79	U	1.60	U	1.9	D
Chlorobenzene	5.01	U	9.98	U	0.46	U	2.3	U	4.60	U	4.6	U
Chloroethane	5.01	U	10	U	0.26	U	1.3	U	2.60	U	2.6	U
Chloroform	93.7		71.7		4.6		600	D	21	D	980	D
Chloromethane	4.99	U	10	U	0.64		1	U	2.10	U	2.1	U
cis-1,2-Dichloroethylene	4.99 4.99	U	9.99 9.98	U	0.099 0.45	U	4.2 2.3	D U	0.99	U	3.2 4.5	D U
cis-1,3-Dichloropropylene Cyclohexane	4.99	U	10	U	0.43	U	1.7	U	4.50 3.40	U	3.4	U
Dibromochloromethane	5	U	9.96	U	0.85	U	4.3	U	8.50	U	8.5	U
Dichlorodifluoromethane	4.99	Ü	9.98	Ü	2.4		3	D	4.90	U	4.9	Ü
Ethanol	367		262		NT		NT		NT		NT	
Ethyl acetate	5.01	U	10	U	36		34	D	7.20	U	7.2	U
Ethyl Benzene	4.99	U	9.98	U	0.43	U	2.2	U	4.30	U	4.3	U
Hexachlorobutadiene	5	U	10	U	1.1	U	5.3	U	11	U	11	U
Isopropanol	13.3	ļ	10	U	3.6		6.3	D	11	D	12	D
Isopropylbenzene	5.01	U	10 NT	U	NT 0.41		NT		NT 4.10		NT 4.1	12
Methyl Methacrylate Methyl tert-butyl ether (MTBE)	NT 5.01	U	NT 10	U	0.41	U	1.8	U	4.10 3.60	U	4.1 3.6	U
Methylene chloride	5.01	U	10	U	0.69	U	3.5	U	6.90	U	6.9	D
Naphthalene	NT	T -	NT		1	U	5.2	U	10	U	10	U
n-Heptane	5	U	9.99	U	0.41	Ü	2	U	4.10	U	4.1	U
n-Hexane	5	U	10	U	0.95		1.8	U	3.50	U	3.5	U
n-Butylbenzene	5	U	9.98	U	NT		NT		NT		NT	
o-Xylene	4.99	U	9.98	U	0.43	U	2.2	U	4.30	U	4.3	U
p- & m- Xylenes	5.86		9.98	U	0.87	U	4.3	U	8.70	U	8.7	U
p-Ethyltoluene Propylene	5.01	U	10 9.99	U	0.49 1.3	U	2.5	U D	4.90	U U	4.9 1.7	U
Propylene sec-Butylbenzene	5.01	U	9.99	U	NT		NT	U	1.70 NT	U	NT	U
Styrene	NT		9.96 NT	,	0.43	U	2.1	U	4.30	U	4.3	U
Tetrachloroethylene	2,350	1	847		39		3.4	U	1,900	D	6.8	U
Tetrahydrofuran	5.01	U	9.99	U	2.9		2.9	U	5.90	U	5.9	U
Toluene	5.01	U	10	U	2		2.3	D	5.70	D	3.8	U
trans-1,2-Dichloroethylene	4.99	U	9.99	U	0.4	U	2	U	4	U	4	U
trans-1,3-Dichloropropylene	NT		NT		0.45	U	2.3	U	4.50	U	4.5	U
Trichloroethylene	90.20	<u> </u>	2.5		0.21		0.67	U	10	D	1.3	U
Trichlorofluoromethane (Freon 11)	5.9	 	9.99 NT		1.4		140	D	5.60	U	230	D U
Vinyl acetate Vinyl bromide	NT NT	}	NT NT		0.92	U	1.8 2.2	U	3.50 4.40	U	3.5 4.4	U
Vinyl Chloride	1.25	U	2.5	U	0.44	U	0.64	U	1.30	U	1.3	U
Total PVOCs	5.86		0.00		3.56		2.30		8.00		0.00	
Total CVOCs	2539.80		931.19		53.19		747.20		1931.00		1260.00	
Total VOCs	2948.76		1206.29		126.55		855.00		1970.00		1291.10	

TABLE NOTES:

- D: result is from an analysis that required a dilution
- U: analyte not detected at or above the level indicate:
 J: analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) data is estimated

ug/m³: micrograms per cubic meter Qual: Qualifier

NT: Analyte was not a target for the sample

Detail A

ıre No.	Site Name:	FORMER GETTY SERVICE STATION
2	Site Address:	1103-1107 DEKALB AVENUE, BROOKLYN, NY
	Drawing Title:	Engineering Control - Site Cover

DEKALB AVENUE

GENERAL NOTES

- BASE MAP DEVELOPED FROM DRAWING TITLED "ENGINEERING CONTROLS - SVE SYSTEM" PREPARED BY "AMC ENGINEERING, PLLC", ORIGINAL SCALE 1" = 25', DATED OCTOBER 17, 2019.
- 2. EXPLORATION LOCATIONS SHOWN ARE BASED ON TAPE MEASUREMENTS FROM TOPOGRAPHICAL FEATURES. THE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.
- ELEVATIONS ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

LEGEND

APPROXIMATE SITE BOUNDARY

MW1400

APPROXIMATE MONITORING WELL LOCATION

SVE1

APPROXIMATE VAPOR EXTRACTION WELL

11-07 DEKALB AVENUE, BROOKLYN, NY

SOIL VAPOR EXTRACTION LAYOUT

PREPARED BY:		PREPARED FOR:	
Engine	DEnvironmental of NY eers and Scientists www.gza.com	ABC	CNY
PROJ MGR: MH	REVIEWED BY: MH	CHECKED BY: VW	FIGURE
DESIGNED BY: SG	DRAWN BY: SG	SCALE: 1" = 20'	2
DATE: DECEMBER 2024	PROJECT NO. 41.0163281.00	REVISION NO.	3 SHEET NO. 1 OF 1

GENERAL NOTES

- 1. BASE MAP DEVELOPED FROM DRAWING TITLED "ENGINEERING CONTROLS - SVE SYSTEM" PREPARED BY "AMC ENGINEERING, PLLC", ORIGINAL SCALE 1" = 25', DATED OCTOBER 17,
- 2. EXPLORATION LOCATIONS SHOWN ARE BASED ON TAPE MEASUREMENTS FROM TOPOGRAPHICAL FEATURES. THE LOCATIONS SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED.
- 3. ELEVATIONS ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).

LEGEND

APPROXIMATE SITE BOUNDARY

MW1400

APPROXIMATE MONITORING WELL LOCATION

INFERRED GROUNDWATER FLOW DIRECTION

ISSUE/DESCRIPTION JNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZ GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA"

11-07 DEKALB AVENUE, BROOKLYN, NY

MONITORING WELL NETWORK

PREPARED BY:		PREPARED FOR:	
Engine	Environmental of NY ers and Scientists ww.gza.com	ABC	CNY
PROJ MGR: MH	REVIEWED BY: MH	CHECKED BY: VW	FIGURE
DESIGNED BY: SG	DRAWN BY: SG	SCALE: 1" = 20'	4
DATE:		REVISION NO.	4
DECEMBER 2024	41.0163281.00	-	SHEET NO. 1 OF 1

MALCOLM X BOULEVARD

MWx

lack

Performance Monitoring Well Location

Chemical Injection Well / Inj. Radius

MALCOLM X BOULEVARD

AMC Engineeting, PLLC
18-36 42nd Street
Astoria, NY 11105

Figure	No.
5	

Site Name:	FORMER GETTY SERVICE STATION
Site Address:	1103-1107 DEKALB AVENUE, BROOKLYN, NY

Drawing Date: 9/30/19 Drawing Title: ORIGINAL MONITORING WELL / INJECTION WELL LOCATIONS

SITE INSPECTION CHECKLIST

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

Date: <u>6/25/14</u> Time:	12:20		6	
Inspector Name/Organization:	Gennedy Thom	ias Cancell	vier: Preferred	Environmental
Visual Inspection of Building's	Concrete Slab			
Building Interior	Inspect concrete slab for	cracks, perforati	ons, patching	
Describe General Condition of sl	ab	<u> </u>	od	
Describe and Cracks or New Per	netrations	no	one	
Describe any patching			n <u>e</u>	

Visual Inspection of Sidewalks	/Paved Areas			
Building Exterior	Inspect concrete slab for	cracks perforation	ons patching	
Describe General Condition of sla	10 Table 1 (10 1 10 10 10 10 10 10 10 10 10 10 10 10	Go	ood	
Describe and Cracks or New Per	netrations	nor	ne.	
Describe any patching		701	Ç	
Repairs Needed and / or Mainten	ance at this time?			22
None				-
	<i>b</i> /) <i>o</i>			
Signature: MANGHIM	ng aughtice	Date:	6/25/24	

Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY **SVE SYSTEM INSPECTION FORM**

	1.	
ıa	TA	3.

Time:

12:25

Weather: 84' Sunny
Inspector: Kinnedia Thomas-Cancellieri

Sy	stem Parameters
Extraction Point	Vacuum (iwc)
Influent Vacuum	-4
Sample Ports	PID (PPM)
Before Carbon	170.0
Between Carbon	40.0
After Carbon	23.9

Inspection:	Yes / No	Comments
Blower Operating?	Yes	
Spare Carbon Drums?	No	
System Integrity?	Yes - Good	

Other Comments AND/OR ACTIONS TAKEN:
Influent Sample Collected @ 12:35
Influent Sample Collected @ 12:35 Effluent Sample Collected @ 12:3X

Client: ABC NY

Site: 1107 Dekalb Avenue, Brooklyn, NY 11221

Site Inspection Checklist - Cover System

Weather: 60-70s, Cloudy, Wind: 9-11 mph from E

Inspector: Yunmee Han

Time: 14:10, 9/24/2024 Visual Inspection of the Concrete Slab of the Building **Building Interior** Good Describe General Condition of Slab None Describe any cracks/penetration None Describe any patching Visual Inspection of Sidewalks/Paved Areas **Building Exterior** Good Describe General Condition of Slab None Describe any cracks/penetration None Describe any patching Additional comments regarding repairs needed and/or maintenance at this time: None Signature Gunmes Han Date: 9/24/2024

Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY SVE SYSTEM INSPECTION FORM

Date:	1/25/24_	Weather: Rain, 496
Time:	10:10	Weather: Rain, 496 Inspector: Chris Zweier
Sys	tem Parameters]
Extraction Point	Vacuum (iwc)	-
Influent Vacuum	-17	
Sample Ports	PID (PPM)	
Before Carbon	72.1	
Between Carbon	WWW 4.3	/ pa
After Carbon	1.	
Inspection:	Yes / No	Comments
Blower Operating?	Yes	
Spare Carbon Drums?	No	
System Integrity?	Good	
Other Comments AND/C	DR ACTIONS TAKEN:	
Influent sample	collected @ 10:10	
	le collected @ 10:13	

SITE INSPECTION CHECKLIST

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

Date: 1/25/24 Time:	0 10
Inspector Name/Organization: Twis Zweer Re	terred Environmental
Visual Inspection of Building's Concrete Slab	
Building Interior Inspect concrete slab for cracks,	perforations patching
- ·	
Describe General Condition of slab	good
Describe and Cracks or New Penetrations	none
Describe any patching	none
Visual Inspection of Sidewalks/Paved Areas	
Building Exterior Inspect concrete slab for cracks,	perforations, patching
,	
Describe General Condition of slab	gu.o.d.
Describe and Cracks or New Penetrations	none
Describe any sately is a	
Describe any patching	None.
Repairs Needed and / or Maintenance at this time?	
All mantenerse neded	
Blow is on for SSDS - uparte	FER
Signature:	Date: 1/25/25

FIELD OBSERVATION LOG GROUNDWATER SAMPLING RECORD

WELL ID: Mu SAMPLERS: YI)-1403)-1403 1 TC			Time On-site: 08:50	_	Time Off-site:
Depth of well (fro Initial static water	m top of ca level (from	sing) top of casing)		53.12 42.24	Time:	
Purging Method Airlift Bailer Submersible Pump Peri-Pomp Check valve		Centrifugal Pos. Displ. Disposable Bladder Pump (Low Flow)	<u>2i</u>	n. casing:	on: ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	gallor gallor
volume of water remove	ved: gal.	>3 volumes:	yes	no	purged dry? yes	no
Volume of Purge Water (in ml)	рН	Temp (°C)	Spec. Cond. (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
1500	6.77	21.82	2.86	21.5	0.94	- 211
WHEN 3000	6.73	21-06	2-82	21.8	0.07	201
4500	6.68	20,99	2.62	21.8	0.35	119
6000	6.65	20-94	2.42	28.0	0.00	28.2
7500	6.79	20.93	2.19	31.5	8.54	62
9000	6.76	20.63	2.69	35.8	8 43	59
10500	6.71	20.92	2.58	33.6	8-21	48
, Teflon bail Pos. Disp. Disposable Dedicated Other: D	steel bailer er Pump e bailer		s: TCL VOCs TCL SVOCs , Target Analyte Alkalinity	OCCUPATION AND ADDRESS OF THE PARTY OF THE P	03 Othe	er
Observations Weather/Temperate Sample description Free Product Sheen	n: <u>(</u> (lea ? yes	Sunny no X no ×	describe			

MS/MSD collected

Final Depth 42.22

FIELD OBSERVATION LOG GROUNDWATER SAMPLING RECORD

Bailer		1-140 <u>9</u> 1-140 <u>9</u> 14 TC			Time On-site: 10:38	<u> </u>	Time Off-site:
Airlift							
Sampling Time of Sample Collection: Nethod: Sampling Time of Sample Collection: Sampling Time of Sample Dedicated pump Sampling Disposable bailer Dedicated pump Dedicated pum	Airlift Bailer Submersible Pump Peri pump Check Valve	F	Pos. Displ. Disposable Bladder Pump	_ 2 ii 3 ii 4 i	n. casing: n. casing: n. casing:	ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	gallon gallon
Volume of Purge Volume of Purge Volume of Purge Water (in ml) Volume of Purge Water (in ml) Volume of Purge Volume of Purg			>3 volumes:	yes	no	purged dry? yes	no
	Volume of Purge	pH	Temp (°C)				ORP (mv)
3000 7.15 23.02 0.604 74.5 5.20 - 86 14	1500	7.74	22.88	0.610	74,2	5.96	-85
	3000 4 4500	7.15	20,94	0.604	75,0	4.88	- 88
Sampling Time of Sample Collection: Method: Stainless steel bailer Teflon bailer Pos. Disp. Pump Disposable bailer Dedicated pump Analyses: TCL VOCs 602 503 Other TCL SVOCs Target Analyte List Metals Alkalinity Dedicated pump	7500	7.18	20.68	0,633	61.4	4,55	-90
Method: Analyses: Stainless steel bailer TCL VOCs 602 503 Other Teflon bailer TCL SVOCs Pos. Disp. Pump Target Analyte List Metals Disposable bailer Alkalinity Dedicated pump							
	Time of Sample Method:	s steel bailer ailer sp. Pump ble bailer	11:22 Analyse	TCL VOCs TCL SVOCs Target Analyte		503 Oth	er
Odor? yes x no describe 3 haht a aspline odel	Teflon by Pos. Disposa Dedicate Other: Observations Weather/Tempe Sample descript Free Produ	Disposable Bladder Purr (Low Flow) rature:	Sunny ax no X	describe	hight alasoline		

SITE INSPECTION CHECKLIST

Site Inspection Checklist - Cover System 1107 DeKalb Avenue Brooklyn, NY

Date: <u>6/25/14</u> Time:	12:20		6	
Inspector Name/Organization:	Gennedy Thom	ias Cancell	vier: Preferred	Environmental
Visual Inspection of Building's	Concrete Slab			
Building Interior	Inspect concrete slab for	cracks, perforati	ons, patching	
Describe General Condition of sl	ab	<u> </u>	od	
Describe and Cracks or New Per	netrations	no	one	
Describe any patching			n <u>e</u>	

Visual Inspection of Sidewalks	/Paved Areas			
Building Exterior	Inspect concrete slab for	cracks perforation	ons patching	
Describe General Condition of sla	10 Table 1 (10 1 10 10 10 10 10 10 10 10 10 10 10 10	Go	ood	
Describe and Cracks or New Per	netrations	nor	ne.	
Describe any patching		701	Ç	
Repairs Needed and / or Mainten	ance at this time?			22
None				-
	<i>b</i> /) <i>o</i>			
Signature: MANGHIM	ng aughtice	Date:	6/25/24	

Former Getty Service Station #00564 1103-1107 Dekalb Avenue, Brooklyn, NY **SVE SYSTEM INSPECTION FORM**

	1.	
ıa	TA	3.

Time:

12:25

Weather: 84' Sunny
Inspector: Kinnedia Thomas-Cancellieri

Sy	stem Parameters
Extraction Point	Vacuum (iwc)
Influent Vacuum	-4
Sample Ports	PID (PPM)
Before Carbon	170.0
Between Carbon	40.0
After Carbon	23.9

Inspection:	Yes / No	Comments
Blower Operating?	Yes	
Spare Carbon Drums?	No	
System Integrity?	Yes - Good	

Other Comments AND/OR ACTIONS TAKEN:
Influent Sample Collected @ 12:35
Influent Sample Collected @ 12:35 Effluent Sample Collected @ 12:3X

Client: ABC NY

Site: 1107 Dekalb Avenue, Brooklyn, NY 11221

Site Inspection Checklist - Cover System

Weather: 60-70s, Cloudy, Wind: 9-11 mph from E

Inspector: Yunmee Han

Time: 14:10, 9/24/2024 Visual Inspection of the Concrete Slab of the Building **Building Interior** Good Describe General Condition of Slab None Describe any cracks/penetration None Describe any patching Visual Inspection of Sidewalks/Paved Areas **Building Exterior** Good Describe General Condition of Slab None Describe any cracks/penetration None Describe any patching Additional comments regarding repairs needed and/or maintenance at this time: None Signature Gunmes Han Date: 9/24/2024

Client Name:

ABC NY

Subject Property Location:

1107 Dekalb Avenue, Brooklyn, NY

Project No. 41.0163281.00

Photo No.

Date: 6/25/24

Direction Photo Taken:

East

Description:

SVE System - Influent

Photo No.

ำ...

Date: 6/25/24

Direction Photo Taken:

North

Description:

SVE System - Effluent

Client Name:

ABC NY

Subject Property Location:

434 Riverdale Avenue, Brooklyn, NY

Project No. 41.0163368.00

Photo No.

Date: 6/25/24

Direction Photo Taken:

East

Description:

SVE vacuum gauge

Photo No.

4

Date: 6/25/24

Direction Photo Taken:

South

Description:

SVE system gauge

Client Name:

ABC NY

Subject Property Location:

Project No. 41.0163281.00

Photo No.

Date: 9/24/24

Direction Photo Taken:

North

Description:

Collection of SVE soil vapor sample.

Photo No.

6

Date: 9/24/24

Direction Photo Taken:

Southwest

Description:

Groundwater sampling during September 2024.

Client Name:

ABC NY

Subject Property Location: 1107 Dekalb Avenue, Brooklyn, NY

Project No. 41.0163281.00

Photo No.

Date: 10/25/24

Direction Photo Taken:East

Description:

Installation of new groundwater monitoring well MW-1404.

Photo No. Date: 8 10/25/24

Direction Photo Taken:

Northeast

Description:

Installation of MW-1404 with flush mount cover.

APPENDIX B – LABORATORY REPORTS: GROUNDWATER

Tuesday, February 06, 2024

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1107 DEKALB AVENUE

SDG ID: GCP96008

Sample ID#s: CP96008 - CP96011

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

February 06, 2024

SDG I.D.: GCP96008

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus forms.

Version 2: Complete report with QC and forms.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

February 06, 2024

SDG I.D.: GCP96008

Project ID: 1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1402	CP96008	GROUND WATER
MW-1403	CP96009	GROUND WATER
INFLUENT	CP96010	TEDLAR BAG
EFFLUENT	CP96011	TEDLAR BAG

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: 01/25/24 Matrix: 9:52 Received by: Location Code: **PREFRDNY** В 01/26/24 16:35

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCP96008

Phoenix ID: CP96008

1107 DEKALB AVENUE Project ID:

Client ID: MW-1402

P.O.#:

Parameter	Result	RL/ PQL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								_
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1,1-Trichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1-Dichloropropene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,2,4-Trimethylbenzene	210	10	2.5	ug/L	10	01/27/24	МН	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloroethane	ND	0.60	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3,5-Trimethylbenzene	39	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Hexanone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D
2-Isopropyltoluene	1.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
4-Methyl-2-pentanone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D

Client ID: MW-1402

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Acetone	ND	25	2.5	ug/L	1	01/27/24	МН	SW8260D	
Acrylonitrile	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Benzene	0.63	J 0.70	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromobenzene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromodichloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	В
Carbon Disulfide	ND	5.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,2-Dichloroethene	10	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromochloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Ethylbenzene	250	10	2.5	ug/L	10	01/27/24	MH	SW8260D	
Hexachlorobutadiene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Isopropylbenzene	50	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
m&p-Xylene	260	10	2.5	ug/L	10	01/27/24	MH	SW8260D	
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methylene chloride	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
Naphthalene	44	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
n-Butylbenzene	3.3	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
n-Propylbenzene	91	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
o-Xylene	1.8	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
p-Isopropyltoluene	0.74	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
sec-Butylbenzene	5.8	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrachloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D	1
Toluene	5.8	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Total Xylenes	261.8	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Trichloroethene	3.7	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %	
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %	
% Dibromofluoromethane	100			%	1	01/27/24	МН	70 - 130 %	

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96008

Client ID: MW-1402

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	103			%	1	01/27/24	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Bromofluorobenzene (10x)	94			%	10	01/27/24	MH	70 - 130 %
% Dibromofluoromethane (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Toluene-d8 (10x)	103			%	10	01/27/24	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100	50	ug/l	1	01/27/24	МН	SW8260D
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,4-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Hexanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
Acetone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D
Benzene	0.63	J 0.70	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromodichloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromomethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D B
Carbon Disulfide	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroform	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloromethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,2-Dichloroethene	10	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Cyclohexane	9.4	5.0	0.50	ug/L	1	01/27/24	MH	SW8260D
Dibromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Ethylbenzene	250	10	2.5	ug/L	10	01/27/24	МН	SW8260D
Isopropylbenzene	50	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
m&p-Xylene	260	10	2.5	ug/L	10	01/27/24	МН	SW8260D
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Methylacetate	ND	2.5	2.5	ug/L	1	01/27/24	МН	SW8260D
Methylcyclohexane	17	2.0	0.50	ug/L	1	01/27/24	МН	SW8260D

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96008

Client ID: MW-1402

		ppbv	LOD/					
Parameter	Result	RL	MDL	Units	Dilution	Date/Time	Ву	Reference
Methylene chloride	ND	3.0	1.0	ug/L	1	01/27/24	МН	SW8260D
o-Xylene	1.8	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Tetrachloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Toluene	5.8	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Total Xylenes	261.8	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichloroethene	3.7	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %
% Dibromofluoromethane	100			%	1	01/27/24	MH	70 - 130 %
% Toluene-d8	103			%	1	01/27/24	MH	70 - 130 %
% 1,2-dichlorobenzene-d4 (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Bromofluorobenzene (10x)	94			%	10	01/27/24	MH	70 - 130 %
% Dibromofluoromethane (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Toluene-d8 (10x)	103			%	10	01/27/24	MH	70 - 130 %
Volatile Library Search Top 10	Completed					01/29/24	МН	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GCP96008

Phoenix ID: CP96009

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:01/25/249:09Location Code:PREFRDNYReceived by:B01/26/2416:35

Laboratory Data

LOD/

Rush Request: Standard Analyzed by: see "By" below

RL/

1107 DEKALB AVENUE

Client ID: MW-1403

P.O.#:

Project ID:

Parameter Result **PQL** MDL Units Dilution Date/Time Βv Reference **Volatiles** 1,1,1,2-Tetrachloroethane ND 1.0 0.25 ug/L 1 01/27/24 МН SW8260D ND 1.0 ug/L 01/27/24 SW8260D 1,1,1-Trichloroethane 0.25 1 MH ND 0.50 0.25 ug/L 01/27/24 МН SW8260D 1,1,2,2-Tetrachloroethane ND 01/27/24 SW8260D 1,1,2-Trichloroethane 1.0 0.25 ug/L 1 MH SW8260D ND 1.0 0.25 ug/L 1 01/27/24 MH 1,1-Dichloroethane ND 0.25 01/27/24 SW8260D 1,1-Dichloroethene 1 0 ug/L 1 MH ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,1-Dichloropropene 01/27/24 SW8260D 1,2,3-Trichlorobenzene ND 1.0 0.25 ug/L 1 MH 1,2,3-Trichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,2,4-Trichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 0.75 1.0 0.25 1 01/27/24 SW8260D ug/L MH 1,2,4-Trimethylbenzene ND ug/L 1 01/27/24 SW8260D 1,2-Dibromo-3-chloropropane 1.0 0.50 MH ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,2-Dibromoethane ND 1.0 0.25 ug/L 01/27/24 SW8260D 1,2-Dichlorobenzene 1 MH ND 0.60 0.25 ug/L 1 01/27/24 MH SW8260D 1,2-Dichloroethane ND 1.0 0.25 ug/L 01/27/24 SW8260D 1 MH 1,2-Dichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,3,5-Trimethylbenzene ND 1.0 0.25 1 01/27/24 МН SW8260D ug/L 1,3-Dichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,3-Dichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,4-Dichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D ND 5.0 1 01/27/24 2-Hexanone 2.5 ug/L MH SW8260D 0.31 1.0 1 01/27/24 SW8260D 2-Isopropyltoluene J 0.25 ug/L MH ND 1.0 0.25 ug/L 1 01/27/24 МН SW8260D 4-Chlorotoluene ND 5.0 2.5 ug/L 1 01/27/24 MH SW8260D 4-Methyl-2-pentanone

Client ID: MW-1403

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Acetone	ND	25	2.5	ug/L	1	01/27/24	МН	SW8260D	
Acrylonitrile	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Benzene	ND	0.70	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromodichloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	В
Carbon Disulfide	ND	5.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,2-Dichloroethene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromochloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Ethylbenzene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Hexachlorobutadiene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Isopropylbenzene	6.0	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
m&p-Xylene	0.40	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methylene chloride	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
Naphthalene	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
n-Butylbenzene	1.2	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
n-Propylbenzene	4.9	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
o-Xylene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
p-Isopropyltoluene	0.25	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
sec-Butylbenzene	3.7	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrachloroethene	0.43	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D	1
Toluene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Total Xylenes	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Trichloroethene	2.5	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %	
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %	
% Dibromofluoromethane	101			%	1	01/27/24	МН	70 - 130 %	

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96009

Client ID: MW-1403

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	102			%	1	01/27/24	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100	50	ug/l	1	01/27/24	МН	SW8260D
				. J .				
Volatiles				,		2.1.(27.(2.1		0
1,1,1-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,4-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Hexanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
Acetone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D
Benzene	ND	0.70	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromodichloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromomethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D B
Carbon Disulfide	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroform	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloromethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,2-Dichloroethene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Cyclohexane	3.3	J 5.0	0.50	ug/L	1	01/27/24	MH	SW8260D
Dibromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Ethylbenzene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Isopropylbenzene	6.0	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
m&p-Xylene	0.40	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Methylacetate	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
Methylcyclohexane	ND	2.0	0.50	ug/L	1	01/27/24	MH	SW8260D
Methylene chloride	ND	3.0	1.0	ug/L	1	01/27/24	MH	SW8260D
o-Xylene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Tetrachloroethene	0.43	J 1.0	0.25	ug/L	1	01/27/24	МН	SW8260D

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96009

Client ID: MW-1403

		ppbv	LOD/					
Parameter	Result	RL	MDL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	2.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Total Xylenes	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichloroethene	2.5	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %
% Dibromofluoromethane	101			%	1	01/27/24	MH	70 - 130 %
% Toluene-d8	102			%	1	01/27/24	МН	70 - 130 %
Volatile Library Search Top 10	Completed					01/29/24	МН	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

ebruáry 06. 2024

Reviewed and Released by: Rashmi Makol, Project Manager

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample InformationCustody InformationDateTimeMatrix:TEDLAR BAGCollected by:01/25/2410:10Location Code:PREFRDNYReceived by:B01/26/2416:35

Rush Request: Standard Analyzed by: see "By" below

vdaa

LOD/

ua/m3

P.O.#:

Project ID:

Laboratory Data

SDG ID: GCP96008
Phoenix ID: CP96010

ua/m3 LOD/

-

vdaa

1107 DEKALB AVENUE

Client ID: INFLUENT

Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.729	0.729	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	0.917	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,2,2-Tetrachloroethane	ND	0.729	0.729	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,2-Trichloroethane	ND	0.917	0.917	ND	5.00	5.00	01/29/24	KCA	5	1
1,1-Dichloroethane	ND	1.24	1.24	ND	5.02	5.02	01/29/24	KCA	5	1
1,1-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
1,2,4-Trimethylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
1,2-Dibromoethane(EDB)	ND	0.651	0.651	ND	5.00	5.00	01/29/24	KCA	5	1
1,2-Dichloroethane	ND	1.24	1.24	ND	5.02	5.02	01/29/24	KCA	5	1
1,2-dichloropropane	ND	1.08	1.08	ND	4.99	4.99	01/29/24	KCA	5	1
1,2-Dichlorotetrafluoroethane	ND	0.716	0.716	ND	5.00	5.00	01/29/24	KCA	5	1
1,3,5-Trimethylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
1,3-Butadiene	ND	2.26	2.26	ND	5.00	5.00	01/29/24	KCA	5	1
1,4-Dioxane	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
2-Hexanone(MBK)	ND	1.22	1.22	ND	4.99	4.99	01/29/24	KCA	5	1
4-Ethyltoluene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
4-Isopropyltoluene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	1.22	ND	4.99	4.99	01/29/24	KCA	5	1
Acetone	9.59	2.11	2.11	22.8	5.01	5.01	01/29/24	KCA	5	1
Acrylonitrile	ND	2.31	2.31	ND	5.01	5.01	01/29/24	KCA	5	1
Benzene	ND	1.57	1.57	ND	5.01	5.01	01/29/24	KCA	5	1
Bromodichloromethane	ND	0.747	0.747	ND	5.00	5.00	01/29/24	KCA	5	1
Bromoform	ND	0.484	0.484	ND	5.00	5.00	01/29/24	KCA	5	1
Bromomethane	ND	1.29	1.29	ND	5.01	5.01	01/29/24	KCA	5	1
Carbon Disulfide	ND	1.61	1.61	ND	5.01	5.01	01/29/24	KCA	5	1
Carbon Tetrachloride	ND	0.198	0.198	ND	1.24	1.24	01/29/24	KCA	5	1

Client ID. INFLOENT	ppbv	ppbv	LOD/	ug/m3		3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	1.09	1.09	ND	5.01	5.01	01/29/24	KCA	5	1
Chloroethane	ND	1.90	1.90	ND	5.01	5.01	01/29/24	KCA	5	1
Chloroform	19.2	1.02	1.02	93.7	4.98	4.98	01/29/24	KCA	5	1
Chloromethane	ND	2.42	2.42	ND	4.99	4.99	01/29/24	KCA	5	1
Cis-1,2-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
cis-1,3-Dichloropropene	ND	1.10	1.10	ND	4.99	4.99	01/29/24	KCA	5	1
Cyclohexane	ND	1.45	1.45	ND	4.99	4.99	01/29/24	KCA	5	1
Dibromochloromethane	ND	0.587	0.587	ND	5.00	5.00	01/29/24	KCA	5	1
Dichlorodifluoromethane	ND	1.01	1.01	ND	4.99	4.99	01/29/24	KCA	5	1
Ethanol	195	2.66	2.66	367	5.01	5.01	01/29/24	KCA	5	1
Ethyl acetate	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
Ethylbenzene	ND	1.15	1.15	ND	4.99	4.99	01/29/24	KCA	5	1
Heptane	ND	1.22	1.22	ND	5.00	5.00	01/29/24	KCA	5	1
Hexachlorobutadiene	ND	0.469	0.469	ND	5.00	5.00	01/29/24	KCA	5	1
Hexane	ND	1.42	1.42	ND	5.00	5.00	01/29/24	KCA	5	1
Isopropylalcohol	5.40	2.04	2.04	13.3	5.01	5.01	01/29/24	KCA	5	1
Isopropylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
m,p-Xylene	1.35	1.15	1.15	5.86	4.99	4.99	01/29/24	KCA	5	1
Methyl Ethyl Ketone	ND	1.70	1.70	ND	5.01	5.01	01/29/24	KCA	5	1
Methyl tert-butyl ether(MTBE)	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
Methylene Chloride	ND	1.44	1.44	ND	5.00	5.00	01/29/24	KCA	5	1
n-Butylbenzene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
o-Xylene	ND	1.15	1.15	ND	4.99	4.99	01/29/24	KCA	5	1
Propylene	ND	2.91	2.91	ND	5.01	5.01	01/29/24	KCA	5	1
sec-Butylbenzene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
Tetrachloroethene	347	0.369	0.369	2350	2.50	2.50	01/30/24	KCA	10	1
Tetrahydrofuran	ND	1.70	1.70	ND	5.01	5.01	01/29/24	KCA	5	1
Toluene	ND	1.33	1.33	ND	5.01	5.01	01/29/24	KCA	5	1
Trans-1,2-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
Trichloroethene	16.8	0.233	0.233	90.2	1.25	1.25	01/29/24	KCA	5	1
Trichlorofluoromethane	1.05	0.891	0.891	5.90	5.00	5.00	01/29/24	KCA	5	1
Trichlorotrifluoroethane	ND	0.653	0.653	ND	5.00	5.00	01/29/24	KCA	5	1
Vinyl Chloride	ND	0.489	0.489	ND	1.25	1.25	01/29/24	KCA	5	1
QA/QC Surrogates/Internals										
% Bromofluorobenzene (5x)	103	%	%	103	%	%	01/29/24	KCA	5	
% IS-1,4-Difluorobenzene (5x)	85	%	%	85	%	%	01/29/24	KCA	5	
% IS-Bromochloromethane (5x)	110	%	%	110	%	%	01/29/24	KCA	5	
% IS-Chlorobenzene-d5 (5x)	84	%	%	84	%	%	01/29/24	KCA	5	
% Bromofluorobenzene (10x)	97	%	%	97	%	%	01/30/24	KCA	10	
% IS-1,4-Difluorobenzene (10x)	99	%	%	99	%	%	01/30/24	KCA	10	
% IS-Bromochloromethane (10x)	99	%	%	99	%	%	01/30/24	KCA	10	
% IS-Chlorobenzene-d5 (10x)	102	%	%	102	%	%	01/30/24	KCA	10	
75 13 GINGIOSCHZENE-GG (10X)	.02	70	,0		70	,0	3 ., 3 3/L 1			

Phoenix I.D.: CP96010

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96010

Client ID: INFLUENT

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample Information Custody Information Date <u>Time</u> **TEDLAR BAG** Collected by: 01/25/24 10:13 Matrix: Received by: Location Code: **PREFRDNY** В 01/26/24 16:35

Rush Request: Standard Analyzed by: see "By" below

1107 DEKALB AVENUE

Project ID: Client ID: **EFFLUENT**

P.O.#:

Laboratory Data SDG ID: GCP96008 Phoenix ID: CP96011

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL		Ву	Dilution
Volatiles (TO15)									
1,1,1,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10
1.1.1-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10

Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,1-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,2,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,2-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10	1
1,1-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	01/29/24	KCA	10	1
1,1-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
1,2,4-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dibromoethane(EDB)	ND	1.30	1.30	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-dichloropropane	ND	2.17	2.17	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dichlorotetrafluoroethane	ND	1.43	1.43	ND	10.0	10.0	01/29/24	KCA	10	1
1,3,5-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
1,3-Butadiene	ND	4.52	4.52	ND	10.0	10.0	01/29/24	KCA	10	1
1,4-Dioxane	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
2-Hexanone(MBK)	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
4-Ethyltoluene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
4-Isopropyltoluene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
4-Methyl-2-pentanone(MIBK)	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
Acetone	5.51	4.21	4.21	13.1	10.0	10.0	01/29/24	KCA	10	1
Acrylonitrile	ND	4.61	4.61	ND	10.0	10.0	01/29/24	KCA	10	1
Benzene	ND	3.13	3.13	ND	10.0	10.0	01/29/24	KCA	10	1
Bromodichloromethane	ND	1.49	1.49	ND	10.0	10.0	01/29/24	KCA	10	1
Bromoform	ND	0.968	0.968	ND	10.0	10.0	01/29/24	KCA	10	1
Bromomethane	ND	2.58	2.58	ND	10.0	10.0	01/29/24	KCA	10	1
Carbon Disulfide	ND	3.21	3.21	ND	10.0	10.0	01/29/24	KCA	10	1
Carbon Tetrachloride	ND	0.397	0.397	ND	2.50	2.50	01/29/24	KCA	10	1

Client ID. EFFLOENT		_		, -						
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	2.17	2.17	ND	10.0	10.0	01/29/24	KCA	10	1
Chloroethane	ND	3.79	3.79	ND	10.0	10.0	01/29/24	KCA	10	1
Chloroform	14.7	2.05	2.05	71.7	10.0	10.0	01/29/24	KCA	10	1
Chloromethane	ND	4.85	4.85	ND	10.0	10.0	01/29/24	KCA	10	1
Cis-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
cis-1,3-Dichloropropene	ND	2.20	2.20	ND	10.0	10.0	01/29/24	KCA	10	1
Cyclohexane	ND	2.91	2.91	ND	10.0	10.0	01/29/24	KCA	10	1
Dibromochloromethane	ND	1.17	1.17	ND	10.0	10.0	01/29/24	KCA	10	1
Dichlorodifluoromethane	ND	2.02	2.02	ND	10.0	10.0	01/29/24	KCA	10	1
Ethanol	139	5.31	5.31	262	10.0	10.0	01/29/24	KCA	10	1
Ethyl acetate	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
Ethylbenzene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Heptane	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
Hexachlorobutadiene	ND	0.938	0.938	ND	10.0	10.0	01/29/24	KCA	10	1
Hexane	ND	2.84	2.84	ND	10.0	10.0	01/29/24	KCA	10	1
Isopropylalcohol	ND	4.07	4.07	ND	10.0	10.0	01/29/24	KCA	10	1
Isopropylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
m,p-Xylene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Methyl Ethyl Ketone	ND	3.39	3.39	ND	10.0	10.0	01/29/24	KCA	10	1
Methyl tert-butyl ether(MTBE)	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
Methylene Chloride	ND	2.88	2.88	ND	10.0	10.0	01/29/24	KCA	10	1
n-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
o-Xylene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Propylene	ND	5.81	5.81	ND	10.0	10.0	01/29/24	KCA	10	1
sec-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
Tetrachloroethene	125	0.369	0.369	847	2.50	2.50	01/29/24	KCA	10	1
Tetrahydrofuran	ND	3.39	3.39	ND	10.0	10.0	01/29/24	KCA	10	1
Toluene	ND	2.66	2.66	ND	10.0	10.0	01/29/24	KCA	10	1
Trans-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
Trichloroethene	3.16	0.466	0.466	17.0	2.50	2.50	01/29/24	KCA	10	1
Trichlorofluoromethane	3.22	1.78	1.78	18.1	10.0	10.0	01/29/24	KCA	10	1
Trichlorotrifluoroethane	ND	1.31	1.31	ND	10.0	10.0	01/29/24	KCA	10	1
Vinyl Chloride	ND	0.979	0.979	ND	2.50	2.50	01/29/24	KCA	10	1
QA/QC Surrogates/Internals										
% Bromofluorobenzene (10x)	99	%	%	99	%	%	01/29/24	KCA	10	
% IS-1,4-Difluorobenzene (10x)	87	%	%	87	%	%	01/29/24	KCA	10	
% IS-Bromochloromethane (10x)	101	%	%	101	%	%	01/29/24	KCA	10	
% IS-Chlorobenzene-d5 (10x)	82	%	%	82	%	%	01/29/24	KCA	10	

Phoenix I.D.: CP96011

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96011

Client ID: EFFLUENT

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT ID

MW-1402

nvironmental Labs	Client:	PREFRDNY		
Case No.:	SAS No.:		SDG No.:	GCP9600
ROUND WATER		Lab Sample ID:	CP96008	
5 (g/m	nL) <u>mL</u>	Lab File ID:	0126_58.D	
		Date Received:	01/26/24	
100		Date Analyzed:	01/27/24	
RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	_	1
5000(uL)		Soil Aliquot Vol (uL		n.a.
11	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L		
COMPOUND N	NAME	RT	EST. CONC.	Q
Butane		1.169	28	JN
Butane, 2-methyl-		1.378	60	JN
Pentane, 2-methyl-		1.875	44	JN
Pentane, 3-methyl-		1.985	28	JN
	Case No.: ROUND WATER 5 (g/m 100 RTX-VMS 5000 (uL) 11 COMPOUND N Butane Butane, 2-methyl- Pentane, 2-methyl-	Case No.: SAS No.: ROUND WATER 5 (g/mL) mL 100 ID: 0.18(mm) 5000 (uL) CONCENTRATION UNITS: (ug/L or ug/KG) 11 (ug/L or ug/KG) COMPOUND NAME Butane Butane, 2-methyl-Pentane, 2-methyl-Pentane, 2-methyl-	Case No.: SAS No.: ROUND WATER Lab Sample ID: 5 (g/mL) mL Lab File ID: Date Received: Date Analyzed: RTX-VMS ID: 0.18(mm) Dilution Factor: 5000 (uL) Soil Aliquot Vol (uL CONCENTRATION UNITS: ug/L 11 (ug/L or ug/KG) ug/L COMPOUND NAME RT Butane 1.169 Butane, 2-methyl- 1.378 Pentane, 2-methyl- 1.875	Case No.: SAS No.: SDG No.: ROUND WATER Lab Sample ID: CP96008 5 (g/mL) mL Lab File ID: 0126_58.D Date Received: 01/26/24 01/26/24 100 Date Analyzed: 01/27/24 RTX-VMS ID: 0.18(mm) Dilution Factor: 5000 (uL) Soil Aliquot Vol (uL): 11 (ug/L or ug/KG) ug/L COMPOUND NAME RT EST. CONC. Butane 1.169 28 Butane, 2-methyl- 1.378 60 Pentane, 2-methyl- 1.875 44

O/ (O I TOWNDER	CONTROLLE IV TWE		201.00110.	~
000106-97-8	Butane	1.169	28	JN
000078-78-4	Butane, 2-methyl-	1.378	60	JN
000107-83-5	Pentane, 2-methyl-	1.875	44	JN
000096-14-0	Pentane, 3-methyl-	1.985	28	JN
000096-37-7	Cyclopentane, methyl-	2.383	30	JN
	unknown	2.926	24	J
000611-14-3	Benzene, 1-ethyl-2-methyl-	5.934	50	JN
	Benzene, 1-ethyl-2-methyl- Isomer	6.143	34	JN
526-73-8	1,2,3-Trimethylbenzene	6.582	58	Q
000767-58-8	Indan, 1-methyl-	7.100	21	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	7.639	34	JN
	+		1	
	+		1	

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT ID

MW-1403

Lab Name: Phoenix Er	nvironmental Labs	- Client:	PREFRDNY	_	
Lab Code: Phoenix	Case No.:	SAS No.:	:	SDG No.:	GCP9600
Matrix:(soil/water) G	ROUND WATER		Lab Sample ID:	CP96009	
Sample wt/vol:	5 (g/mL)	<u>mL</u>	Lab File ID:	0126_59.D	
Level: (low/med)			Date Received:	01/26/24	
% Moisture: not dec.	100		Date Analyzed:	01/27/24	
GC Column:	RTX-VMS ID:	<u>0.18(mm)</u>	Dilution Factor:	-	1
Purge Volume:	5000(uL)		Soil Aliquot Vol (ul	_):	n.a.
Number TICs found:	10	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-		1.378	13	JN
	unknown		1.875	15	J
000096-14-0	Pentane, 3-methyl-		1.985	8.8	JN
	unknown		2.351	8	J
000096-37-7	Cyclopentane, methyl-		2.377	8	JN
000590-73-8	Hexane, 2,2-dimethyl-		2.926	20	JN
000565-75-3	Pentane, 2,3,4-trimethyl-		3.549	9.1	JN
000560-21-4	Pentane, 2,3,3-trimethyl-		3.622	12	JN
000767-58-8	Indan, 1-methyl-		7.100	4.1	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-meth	ıyl-	7.634	4.6	JN
					-
	+				
				<u> </u>	
	<u> </u>			<u> </u>	1
					†

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

SDG I.D.: GCP96008

QA/QC Report

February 06, 2024

QA/QC Data

Danamakan	Blank	Blk	LCS	LCSD	LCS RPD	MS %	MSD	MS	% Rec Limits	% RPD
Parameter			%	%	RPD	70	%	RPD	LIIIIIIS	Limits
QA/QC Batch 716050 (ug/L),	-	le No: CP94162 (CP96008, CF	96009)							
Volatiles - Ground Wate	<u>r</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	116	104	10.9				70 - 130	30
1,1,1-Trichloroethane	ND	1.0	102	96	6.1				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	117	104	11.8				70 - 130	30
1,1,2-Trichloroethane	ND	1.0	113	104	8.3				70 - 130	30
1,1-Dichloroethane	ND	1.0	109	100	8.6				70 - 130	30
1,1-Dichloroethene	ND	1.0	105	97	7.9				70 - 130	30
1,1-Dichloropropene	ND	1.0	111	99	11.4				70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	123	110	11.2				70 - 130	30
1,2,3-Trichloropropane	ND	1.0	111	96	14.5				70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	125	111	11.9				70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	119	107	10.6				70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	105	93	12.1				70 - 130	30
1,2-Dibromoethane	ND	1.0	116	102	12.8				70 - 130	30
1,2-Dichlorobenzene	ND	1.0	122	109	11.3				70 - 130	30
1,2-Dichloroethane	ND	1.0	106	95	10.9				70 - 130	30
1,2-Dichloropropane	ND	1.0	114	104	9.2				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	121	108	11.4				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	123	109	12.1				70 - 130	30
1,3-Dichloropropane	ND	1.0	116	104	10.9				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	123	111	10.3				70 - 130	30
1,4-dioxane	ND	100	123	105	15.8				40 - 160	20
2,2-Dichloropropane	ND	1.0	102	94	8.2				70 - 130	30
2-Chlorotoluene	ND	1.0	120	111	7.8				70 - 130	30
2-Hexanone	ND	5.0	102	87	15.9				70 - 130	30
2-Isopropyltoluene	ND	1.0	126	112	11.8				70 - 130	30
4-Chlorotoluene	ND	1.0	123	110	11.2				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	99	91	8.4				70 - 130	30
Acetone	ND	5.0	126	102	21.1				70 - 130	30
Acrylonitrile	ND	5.0	106	103	2.9				70 - 130	30
Benzene	ND	0.70	120	108	10.5				70 - 130	30
Bromobenzene	ND	1.0	124	112	10.3				70 - 130	30
Bromochloromethane	ND	1.0	108	100	7.7					
Bromodichloromethane	ND	0.50	108	100	7.7				70 - 130	30
Bromoform	ND ND	1.0	108	92	12.2				70 - 130 70 - 130	30
Bromomethane	0.46 J	1.0	94	92 94	0.0					30
									70 - 130	30
Carbon Disulfide	ND	1.0	106	98	7.8				70 - 130	30
Carbon tetrachloride	ND	1.0	96 125	91	5.3				70 - 130	30
Chlorobenzene	ND	1.0	125	112	11.0				70 - 130	30
Chloroethane	ND	1.0	99	94	5.2				70 - 130	30
Chloroform	ND	1.0	109	99	9.6				70 - 130	30
Chloromethane	ND	1.0	99	91	8.4				70 - 130	30

QA/QC Data

SDG I.D.: GCP96008 % % Blk **LCSD** LCS **RPD** LCS MS **MSD** MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter cis-1,2-Dichloroethene ND 1.0 113 110 2.7 70 - 130 30 cis-1,3-Dichloropropene ND 0.40 114 101 12.1 70 - 130 30 Cyclohexane ND 5.0 95 90 5.4 70 - 130 30 Dibromochloromethane ND 0.50 111 99 11.4 70 - 130 30 Dibromomethane ND 1.0 109 99 9.6 70 - 130 30 Dichlorodifluoromethane ND 1.0 80 74 7.8 70 - 130 30 ND 1.0 124 111 11.1 70 - 130 30 Ethylbenzene ND 122 103 16.9 70 - 130 Hexachlorobutadiene 0.40 30 Isopropylbenzene ND 7.9 70 - 130 30 1.0 119 110 m&p-Xylene ND 1.0 125 112 11.0 70 - 130 30 Methyl ethyl ketone ND 5.0 108 103 4.7 70 - 130 30 Methyl t-butyl ether (MTBE) ND 1.0 104 95 9.0 70 - 130 30 Methylacetate ND 2.5 92 85 7.9 70 - 130 30 Methylcyclohexane ND 1.0 98 86 13.0 70 - 130 30 Methylene chloride ND 1.0 108 99 8.7 70 - 130 30 Naphthalene ND 1.0 114 100 13.1 70 - 130 30 ND n-Butylbenzene 1.0 121 107 12.3 70 - 130 30 n-Propylbenzene ND 1.0 127 113 11.7 70 - 130 30 ND 1.0 121 111 o-Xylene 8.6 70 - 130 30 p-Isopropyltoluene ND 1.0 124 108 13.8 70 - 130 30 sec-Butylbenzene ND 1.0 110 123 11.2 70 - 130 30 Styrene ND 1.0 121 113 6.8 70 - 130 30 tert-Butylbenzene ND 1.0 122 109 11.3 70 - 130 30 Tetrachloroethene ND 110 7.0 1.0 118 70 - 130 30 Tetrahydrofuran (THF) ND 2.5 112 101 10.3 70 - 130 30 ND Toluene 1.0 120 111 7.8 70 - 130 30 trans-1,2-Dichloroethene ND 1.0 104 70 - 130 111 6.5 30 trans-1,3-Dichloropropene ND 0.40 96 105 9.0 70 - 130 30 trans-1,4-dichloro-2-butene ND 5.0 108 95 12.8 70 - 130 30 Trichloroethene ND 1.0 119 109 8.8 70 - 130 30 Trichlorofluoromethane ND 1.0 98 92 6.3 70 - 130 30 Trichlorotrifluoroethane ND 98 92 1.0 6.3 70 - 130 30 Vinyl chloride ND 1.0 102 97 5.0 70 - 130 30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

%

%

%

%

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 716038 (ug/L), QC Sample No: CP94756 (CP96008 (10X))

104

95

104

101

Volatiles - Ground Water

% 1,2-dichlorobenzene-d4

% Dibromofluoromethane

% Bromofluorobenzene

% Toluene-d8

Comment:

Volutios Ordana vvator										
1,2,4-Trimethylbenzene	ND	1.0	111	91	19.8	92	85	7.9	70 - 130	30
Ethylbenzene	ND	1.0	119	98	19.4	102	96	6.1	70 - 130	30
m&p-Xylene	ND	1.0	120	99	19.2	103	96	7.0	70 - 130	30
% 1,2-dichlorobenzene-d4	102	%	106	102	3.8	104	103	1.0	70 - 130	30
% Bromofluorobenzene	95	%	97	98	1.0	98	99	1.0	70 - 130	30
% Dibromofluoromethane	102	%	102	103	1.0	100	101	1.0	70 - 130	30
% Toluene-d8	103	%	104	103	1.0	102	104	1.9	70 - 130	30

104

98

98

103

103

98

102

103

1.0

0.0

4.0

0.0

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

70 - 130

70 - 130

70 - 130

70 - 130

30

30

30

30

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

SDG I.D.: GCP96008

QA/QC Report

February 06, 2024

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %		Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 716149 (ppbv),	QC Sam	ple No: (CP95646	(CP960	10 (5X)	, CP9	5011 (10	X))					
Volatiles		•		`	` ,		`	, ,					
1,1,1,2-Tetrachloroethane	ND	0.500	ND	3.43	93		ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.500	ND	2.73	114		ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.010	ND	0.07	88		ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.020	ND	0.11	103		ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.150	ND	0.61	108		ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.200	ND	0.79	108		ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.500	ND	2.46	105		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.010	ND	0.08	97		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.020	ND	0.08	110		ND	0.15	ND	0.038	NC	70 - 130	25
1,2-dichloropropane	ND	0.020	ND	0.09	92		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.500	ND	3.49	114		ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.500	ND	2.46	95		ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.500	ND	1.11	108		ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.130	ND	0.47	83		ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.500	ND	2.05	100		ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.500	ND	2.46	106		ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.500	ND	2.74	98		ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.500	ND	2.05	103		ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.750	ND	1.78	99		3.09	2.97	1.30	1.25	NC	70 - 130	25
Acrylonitrile	ND	0.500	ND	1.08	90		ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.200	ND	0.64	108		ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.020	ND	0.13	101		ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.150	ND	1.55	99		ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.140	ND	0.54	105		ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.500	ND	1.56	113		ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.086	ND	0.54	114		ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	0.200	ND	0.92	90		ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.500	ND	1.32	107		ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.200	ND	0.98	105		ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.500	ND	1.03	104		ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.200	ND	0.79	117		ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.100	ND	0.45	104		ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.500	ND	1.72	99		ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.020	ND	0.17	102		ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.500	ND	2.47	114		ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	0.750	ND	1.41	101		2.69	6.95	1.43	3.69	NC	70 - 130	25
Ethyl acetate	ND	0.500	ND	1.80	95		ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.500	ND	2.17	98		ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.500	ND	2.05	100		ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.010	ND	0.11	97		ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.450	ND	1.59	95		ND	ND	ND	ND	NC	70 - 130	25
HONGIIC	NU	0.430	ND	1.37	75		ND	שויו	שויו	שויו	140	70 - 130	20

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Isopropylalcohol	ND	0.750	ND	1.84	121	ND	ND	ND	ND	NC	70 - 130	25
Isopropylbenzene	ND	0.500	ND	2.46	96	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	1.00	ND	4.34	102	ND	ND	ND	ND	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.450	ND	1.33	113	ND	ND	ND	ND	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.500	ND	1.80	115	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	3.00	ND	10.4	100	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.500	ND	2.74	96	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.500	ND	2.17	102	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	0.500	ND	0.86	103	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.500	ND	2.74	96	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.100	ND	0.68	107	ND	ND	ND	ND	NC	70 - 130	25
Tetrahydrofuran	ND	0.500	ND	1.47	103	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.500	ND	1.88	103	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.200	ND	0.79	112	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.050	ND	0.27	100	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.500	ND	2.81	113	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.500	ND	3.83	115	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.100	ND	0.26	108	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	101	%	101	%	99	110	102	110	102	NC	70 - 130	25
% IS-1,4-Difluorobenzene	116	%	116	%	103	81	81	81	81	NC	60 - 140	25
% IS-Bromochloromethane	127	%	127	%	102	106	105	106	105	NC	60 - 140	25
% IS-Chlorobenzene-d5	109	%	109	%	117	79	78	79	78	NC	60 - 140	25
QA/QC Batch 716344 (ppbv), Q	C Sam	ple No: (CP97046	(CP960	10 (10X))							
<u>Volatiles</u>												
Tetrachloroethene	ND	0.037	ND	0.25	100	0.26	0.26	0.039	0.039	NC	70 - 130	25
% Bromofluorobenzene	96	%	96	%	100	105	104	105	104	NC	70 - 130	25
% IS-1,4-Difluorobenzene	100	%	100	%	107	100	95	100	95	NC	60 - 140	25
% IS-Bromochloromethane	102	%	102	%	101	99	96	99	96	NC	60 - 140	25
% IS-Chlorobenzene-d5	101	%	101	%	109	99	97	99	97	NC	60 - 140	25

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCP96008

February 06, 2024

Tuesday, February 06, 2024

Sample Criteria Exceedances Report GCP96008 - PREFRDNY

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Labo	ratory Name:	Prioe	IIIX EIIVIIOIII	mental Labs	i, inc.	Client:		Preier	rea Envir	onmenta	ii Services
Proje	ect Location:	1107	DEKALB A	VENUE		Project	t Number:				
Labo	ratory Sampl	e ID(s)	: CP96008	, CP96009,	CP960	010, CP9	96011				
Sam	pling Date(s):	1/25/	2024								
DKQ	P Methods U	sed									
13	311/1312	010	6020	7000	_ 7	196	7470/74	471	8081	E	ΞPH
<u> </u>	082 🗌 8	151	✓ 8260	8270	E	TPH	9010/9	012	☐ VPH	V	ГО15
1.	For each analy specified QA/Q any criteria falli of Known Qual	C perfor	rmance criter ide of accepta	ria followed, i able guideline	ncluding	g the requ	uirement to e	explain	✓ Yes	□No	
1a.	Were the meth met?	od spec	ified handling	g, preservatio	n, and h	holding ti	me requirem	ents	✓ Yes	□No	
1b.	EPH Method: V Section 11.3 of				vithout s	significan	t modification	ns (see	☐ Yes	□No	✓ NA
2.	Were all sampl described on th						stent with tha	it	✓ Yes	□No	
3.	Were samples	receive	d at an appro	priate tempe	rature (4	4±2° C)?			✓ Yes	□No	□NA
4.	Were all QA/Qe achieved?	C perfor	mance criteri	a specified ir	the NJ	IDEP DK	QP standard	s	✓ Yes	□ No	
5a.	Were reporting communicated						ody or		□ Yes	✓ No	
5b.	Were these rep	orting li	mits met?						□ Yes	□No	✓ NA
6.	For each analy results reported presented in the	d for all o	constituents i	identified in th	he meth	od-speci			✓ Yes	□ No	
7.	Are project-spe set?	cific ma	trix spikes ar	nd/or laborato	ry dupli	icates inc	luded in this	data	□ Yes	✓ No	
Note:	For all question provided in an requirements for	attached	narrative. If t	he answer to	(with the	e exception n #1, #1A,	on of question or #1B is "N	n #7), add o", the da	litional info ita package	ormation s does not	hould be meet the
and	e undersigne belief and ba tained in this	sed up	on my pers	sonal inqui	ry of th	nose res	sponsible f	or provi	iding the	-	_
Aut	horized	_					Date:	Tuesda	ıy, Februa	ary 06, 20	024
	nature:	Ro	iuwa	wakol	,	Prin	nted Name:	Rashm	i Makol		
							Position:	Project	Manager		

Apr 2014

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

AIRSIM

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

CHEM20 01/29/24-1

Jamie Litchfield, Chemist 01/29/24

CP96010 (5X), CP96011 (10X)

Initial Calibration Evaluation (CHEM20/20_AIR_0124):

100% of target compounds met criteria.

The following compounds had %RSDs >30%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification #1 (CHEM20/0128_02-20_AIR_0124):

Internal standard areas were within 60 to 140% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM39 01/30/24-1

Jamie Litchfield, Chemist 01/30/24

CP96010 (10X)

Initial Calibration Evaluation (CHEM39/39_AIR_0112):

100% of target compounds met criteria.

The following compounds had %RSDs >30%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification #1 (CHEM39/0130_02-39_AIR_0112):

Internal standard areas were within 60 to 140% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 716149 (CP95646)

CP96010(5X), CP96011(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Batch 716344 (CP97046)

CP96010(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

VOA Narration

Instrument:

CHEM23 01/26/24-2 Michael Hahn, Chemist 01/26/24

CP96008 (1X), CP96009 (1X)

Initial Calibration Evaluation (CHEM23/VOA23_011624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,4-dioxane 21% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.191 (0.2),

Bromodichloromethane 0.290 (0.3), Ethylbenzene 0.333 (0.4)

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM23/0126_33-VOA23_011624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.386 (0.4)

CHEM23 01/27/24-1 Michael Hahn, Chemist 01/27/24

CP96008 (10X)

Initial Calibration Evaluation (CHEM23/VOA23_011624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.333 (0.4)

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM23/0127_03-VOA23_011624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.328 (0.4)

QC (Batch Specific):

Batch 716038 (CP94756) CHEM23 1/27/2024-1

CP96008(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 716050 (CP94162) CHEM23 1/26/2024-2

CP96008(1X), CP96009(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

VOA Narration

QC (Batch Specific):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

February 06, 2024

SDG I.D.: GCP96008

The samples in this delivery group were received at 2.0° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

				LN/VN	/PA CHAIN	NY/NJ/PA CHAIN OF CUSTODY RECORD	RECORD		Terror Osc	Pg of
				587 East	Middle Tumpike.	587 East Middle Tumnike. P.O. Box 370 Manchester. CT 06040	ster. CT 06040	7	Contact Options:	ons:
Environmenta	Environmental Laboratories, Inc.		<u></u>	nail: Makrine	Nolan, makrina	Email: Makrina Nolan, makrina@phoenixlabs.com	Fax (860) 645-0823			
ı,					Alleni Serv			Email	b scholar Charmen	hearing and
	round trovis	nwente	Sowie	43	Project:	1107	ايِ		Project P.O:	
Address:	SUCK.	Aron >	₹ Ş		Report to:	りないに	eter @ preternedenvion	CAV.Com	This section MUSI	MUST be
1	Merricle, NY				Invoice to:	12	Schaph		completed with	Na.
					QUOTE#:				The state of the s	
	Client Sample - Information - Identification	Identification								
Sampler's Signature		λ	Date:	1/25/14	Analysis	September 19 Septe		SERVE		1400
Matrix Code: DW=Drinking Water RW=Raw Water SE	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SI =Studie S=Seil SR=Sediment SI =Studie S=Sediment SI = Studie S	e Water WW=\	Waste Water		To the state of th	To Secretary Contraction of the Secretary Con		S. S		
B=Bulk L=Liquid			2		MA AN TO	1 (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(\$°	GIR SE	NA THOO THE	
PHOENIX USE ONLY SAMPLE#	Customer Sample Identification	Sample n Matrix	Date Sampled	Time Sampled	N Comon		\$5,105 S	\$7/40 MS 10	100.7 TO 100.00	Mod eliebes
90019/	MW-1402	30	1/25/24		XX			ev		
90009	MW-1403	Bu	1/52/1		XX			3		
Grato Grato	Influent	Air	1/25/24	10:10		X				Teollar
96011	Effluent	Air	42/51/1	(0:13		 X				Tedlar
,										
Relinguished by:	Accepted by			Date		Time: Turnaround:	- CN	N N	&	
			6	1	71 W/2	10ay*	Res. Criteria			Clean Fill Limits
	o la			11/2	2001/2/10	25 0 3 0 ms.*	Non-Res. Criteria	375800		PA-GW
	-			,			Cleanup Criteria	Unrestricted Soil 375SCO		Reg Fill Limits
Comments, Special F		•	Data Format:	¥		X) Standard	soil screen Criteria	Residential Soil		PA Soil Restricted
20 20 20 20 20 20 20 20 20 20 20 20 20 2	مرد دور ساده		Phoenix Std Rept	c Std Report	EQUIS AT Hazsite EDD	APPLIES	☐ GW Criteria	Residential Restricted Soil	□ 	PA Soil non-restricted
			∑ Z.		NY EZ EDD (ASP)	Data Package:	Deliv *	Commercial Soil 375SCO		State Samples Collected?
*MS/MSD are considered : with the prices quoted.	*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	in accordance	GIS/Key	,	Other]	Subpart 5 DW	DW	1. TA
						ı				

Technical Report

prepared for:

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Report Date: 06/28/2024

Client Project ID: 41.0163281.02 1107 Dekalb Avenue

York Project (SDG) No.: 24F1678

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 06/28/2024

Client Project ID: 41.0163281.02 1107 Dekalb Avenue

York Project (SDG) No.: 24F1678

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 25, 2024 and listed below. The project was identified as your project: 41.0163281.02 1107 Dekalb Avenue.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24F1678-01	MW-1403	Ground Water	06/25/2024	06/25/2024
24F1678-02	MW-1402	Ground Water	06/25/2024	06/25/2024
24F1678-03	MW-00X	Ground Water	06/25/2024	06/25/2024

General Notes for York Project (SDG) No.: 24F1678

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Oh I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 06/28/2024

Client Sample ID: MW-1403 York Sample ID: 24F1678-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24F167841.0163281.02 1107 Dekalb AvenueGround WaterJune 25, 2024 9:55 am06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B							<u>-</u>				
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.256	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.314	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005	BMT
37-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 17:52	BMT
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PF	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 4 of 30

Client Sample ID: MW-1403

York Sample ID: 24

Date/Time

24F1678-01

York Project (SDG) No. 24F1678

<u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water Collection Date/Time
June 25, 2024 9:55 am

Date/Time

Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Metho	d: EPA 5030B					
CAS No.	Parameter	Result	Flag	Units	Reported to LOD/MDL LOQ	Dil

CAS No	o. Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	e Method	Prepared	Analyzed	Analyst
123-91-1	1,4-Dioxane	ND		ug/L	35.3	80.0	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
594-20-7	2,2-Dichloropropane	ND		ug/L	0.466	0.500	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 17:52 2058,NJDEP-CT005,F	BMT PADEP-68-04
78-93-3	2-Butanone	1.30		ug/L	0.421	0.500	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
95-49-8	2-Chlorotoluene	ND		ug/L	0.376	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 854,NELAC-NY1205	BMT 58,NJDEP-CT
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 854,NELAC-NY1205	BMT 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 854,NELAC-NY1205	BMT 58,NJDEP-CT
67-64-1	Acetone	4.27	CAL-E,	ug/L	1.34	2.00	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
			CCVE, ICVE					Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
107-02-8	Acrolein	ND	CCVE	ug/L	0.447	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 9854,NELAC-NY1205	BMT 58,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 854,NELAC-NY1205	BMT 58,NJDEP-CT
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
108-86-1	Bromobenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 17:52 2058,NJDEP-CT005,F	BMT PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 17:52 2058,NJDEP-CT005,F	BMT PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 854,NELAC-NY1205	BMT 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE	ug/L	0.119	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT
67-66-3	Chloroform	0.590		ug/L	0.243	0.500	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10		BMT 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY1205	BMT 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 30

Client Sample ID: MW-1403

York Sample ID: 24F1678-01

York Project (SDG) No. Client Project ID

Matrix

Collection Date/Time

Date Received

24F1678 41.0163281.02 1107 Dekalb Avenue

Ground Water

June 25, 2024 9:55 am

06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B	CHSIVE			204 111	100001		Sun	1910 1 1000			
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
110-82-7	Cyclohexane	1.40		ug/L	0.491	0.500	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
								Certifications:	NELAC-N	Y10854,NELAC-NY	12058,NJDEP-CT005	,PADEP-68-0
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY1	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	0.451	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	0.466	0.800	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	0.479	0.800	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005	BMT
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	0.241	0.500	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
74-88-4	* Iodomethane	ND	CCVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 17:52	BMT
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
80-62-6	Methyl Methacrylate	ND		ug/L	0.415	0.500	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005	BMT
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,	BMT PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
91-20-3	Naphthalene	0.290	В	ug/L	0.212	2.00	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
								Certifications:	NELAC-N	Y10854,NELAC-NY	12058,NJDEP-CT005	,PADEP-68-0
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY1	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY1	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY1	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND		ug/L	0.341	0.500	1	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 17:52	BMT
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 17:52	BMT
								cerumeations:				

ClientServices@

Client Sample ID: MW-1403 **York Sample ID:**

24F1678-01

York Project (SDG) No. 24F1678

Client Project ID 41.0163281.02 1107 Dekalb Avenue

Matrix Ground Water

Collection Date/Time June 25, 2024 9:55 am Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Volatiic	Organics	<u> </u>	v Cum	DI CHCHSIV
				_

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	4.16	8.00	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	0.511	0.800	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
127-18-4	Tetrachloroethylene	0.370	QL-02,	ug/L	0.239	0.500	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
			ICVE					Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
109-99-9	* Tetrahydrofuran	ND	CCVE	ug/L	0.485	0.500	1	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 17:52	BMT
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
79-01-6	Trichloroethylene	0.930		ug/L	0.249	0.500	1	EPA 8260D		06/26/2024 08:00	06/26/2024 17:52	BMT
								Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-05-4	Vinyl acetate	ND	CCVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 Y10854,NELAC-NY1	06/26/2024 17:52 2058,NJDEP-CT005,I	BMT PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.839	1.50	1	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 17:52 0854,NELAC-NY120	BMT 58,NJDEP-CT
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	101 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	93.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 7 of 30

Client Sample ID: MW-1402 **York Sample ID:**

24F1678-02

York Project (SDG) No. 24F1678

Client Project ID 41.0163281.02 1107 Dekalb Avenue

Matrix Ground Water

Collection Date/Time June 25, 2024 11:22 am Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B										
CAS N	Jo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.16	5.00	10	EPA 8260D Certifications: CTI	06/26/2024 08:00 DOH-PH-0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.66	5.00	10	EPA 8260D Certifications: CTI	06/26/2024 08:00 DOH-PH-0723,NELAC-NY10	06/26/2024 16:33 9854,NELAC-NY120	BMT 58,NJDEP-CT
79-34-5	1.1.2.2-Tetrachloroethane	ND		ug/L	2.56	5.00	10	EPA 8260D	06/26/2024 08:00	06/26/2024 16:33	BMT

71-55-6	1,1,1-Trichloroethane	ND	ug/L	2.66	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND	ug/L	2.56	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	ug/L	2.86	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND	ug/L	2.49	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND	ug/L	2.72	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND	ug/L	3.27	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
563-58-6	1,1-Dichloropropylene	ND	ug/L	3.14	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005
87-61-6	1,2,3-Trichlorobenzene	ND	ug/L	2.22	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND	ug/L	2.73	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	24.1	ug/L	2.55	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00
120-82-1	1,2,4-Trichlorobenzene	ND	ug/L	1.38	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	522	ug/L	3.10	5.00	10	EPA 8260D	06/26/2024 08:00
							Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND	ug/L	4.32	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND	ug/L	2.15	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND	ug/L	2.70	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND	ug/L	3.77	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND	ug/L	3.27	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	37.0	ug/L	3.47	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	ug/L	2.83	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND	ug/L	2.60	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	ug/L	3.11	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT
123-91-1	1,4-Dioxane	ND	ug/L	353	800	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 BMT NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 30

Client Sample ID: MW-1402

York Sample ID:

24F1678-02

York Project (SDG) No. 24F1678

<u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water Collection Date/Time
June 25, 2024 11:22 am

Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed An	nalyst
594-20-7	2,2-Dichloropropane	ND		ug/L	4.66	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADE	BMT EP-68-04
78-93-3	2-Butanone	ND		ug/L	4.21	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
95-49-8	2-Chlorotoluene	ND		ug/L	3.76	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 E CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
591-78-6	2-Hexanone	ND		ug/L	3.20	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJI	BMT DEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	3.11	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 E CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	3.65	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
67-64-1	Acetone	22.2	CAL-E,	ug/L	13.4	20.0	10	EPA 8260D	06/26/2024 08:00 06/26/2024 16:33 B	BMT
			CCVE, ICVE					Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJ	JDEP-C
107-02-8	Acrolein	ND	CCVE	ug/L	4.47	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 E CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJI	BMT DEP-CT
107-13-1	Acrylonitrile	ND		ug/L	4.22	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
71-43-2	Benzene	ND		ug/L	2.79	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJI	BMT DEP-CT
108-86-1	Bromobenzene	ND		ug/L	3.67	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEI	BMT EP-68-04
74-97-5	Bromochloromethane	ND		ug/L	3.54	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEI	BMT EP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	2.45	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
75-25-2	Bromoform	ND		ug/L	1.63	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
74-83-9	Bromomethane	ND	CCVE	ug/L	1.19	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
75-15-0	Carbon disulfide	ND		ug/L	3.62	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJD	BMT DEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	2.04	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJD	BMT DEP-CT
108-90-7	Chlorobenzene	ND		ug/L	2.84	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
75-00-3	Chloroethane	ND		ug/L	4.48	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
67-66-3	Chloroform	ND		ug/L	2.43	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 B CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
74-87-3	Chloromethane	ND		ug/L	3.72	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 16:33 E CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	BMT DEP-CT
156-59-2	cis-1,2-Dichloroethylene	14.5		ug/L	2.94	5.00	10	EPA 8260D	06/26/2024 08:00 06/26/2024 16:33 B	BMT
-	,	-110		0	=			Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJ	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.62	5.00	10	EPA 8260D Certifications:		BMT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 30

Client Sample ID: MW-1402

York Sample ID:

24F1678-02

York Project (SDG) No. 24F1678

<u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water <u>Collection Date/Time</u> June 25, 2024 11:22 am <u>Date Received</u> 06/25/2024

Sample Notes:

 Volatile Organics, 8260 - Low Comprehensive
 Log-in Notes:
 Sample Prepared by Method: EPA 5030B

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
110-82-7	Cyclohexane	25.2		ug/L	4.91	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	NELAC-NY	/10854,NELAC-NY1	2058,NJDEP-CT005,	PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	1.46	5.00	10	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 9854,NELAC-NY120	BMT 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	2.03	5.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND		ug/L	4.51	5.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	4.66	8.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
100-41-4	Ethyl Benzene	442		ug/L	2.90	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	4.79	8.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005	BMT
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	2.41	5.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
74-88-4	* Iodomethane	ND	CCVE	ug/L	4.77	5.00	10	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 16:33	BMT
98-82-8	Isopropylbenzene	60.2		ug/L	4.05	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	4.42	5.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
80-62-6	Methyl Methacrylate	20.2		ug/L	4.15	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	NELAC-NY	/10854,NELAC-NY1	2058,NJDEP-CT005	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.44	5.00	10	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
108-87-2	Methylcyclohexane	9.40		ug/L	4.77	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	NELAC-NY	710854,NELAC-NY1	2058,NJDEP-CT005,	PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	3.97	20.0	10	EPA 8260D Certifications:	CTDOH-PH	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
91-20-3	Naphthalene	86.2	В	ug/L	2.12	20.0	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	NELAC-NY	710854,NELAC-NY1	2058,NJDEP-CT005,	PADEP-68-04
104-51-8	n-Butylbenzene	4.40		ug/L	3.99	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
103-65-1	n-Propylbenzene	117		ug/L	3.84	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10		
95-47-6	o-Xylene	ND		ug/L	2.61	5.00	10	EPA 8260D Certifications:	СТDOH-PH	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 9854,NELAC-NY120	BMT 58,PADEP-68-
179601-23-1	p- & m- Xylenes	284		ug/L	5.78	10.0	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	I-0723,NELAC-NY10	0854,NELAC-NY120	58,PADEP-68
105-05-5	* p-Diethylbenzene	20.4		ug/L	3.41	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:				
522-96-8	* p-Ethyltoluene	83.8		ug/L	2.00	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
99-87-6	p-Isopropyltoluene	ND		ug/L	3.77	5.00	10	Certifications:	omp our no	06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	-0723,NELAC-NY10	0034,NELAC-NY 1205	06,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 10 of 30

Client Sample ID: MW-1402 **York Sample ID:**

24F1678-02

York Project (SDG) No. 24F1678

Client Project ID 41.0163281.02 1107 Dekalb Avenue

Matrix Ground Water

Collection Date/Time June 25, 2024 11:22 am Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	6.40		ug/L	4.44	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	2.55	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	41.6	80.0	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	5.11	8.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	6.08	10.0	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	3.67	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	2.39	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
109-99-9	* Tetrahydrofuran	ND	CCVE	ug/L	4.85	5.00	10	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 16:33	BMT
108-88-3	Toluene	8.10		ug/L	3.46	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.79	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.29	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	2.83	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	2.49	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
75-69-4	Trichlorofluoromethane	ND		ug/L	3.37	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
108-05-4	Vinyl acetate	ND	CCVE	ug/L	4.77	5.00	10	EPA 8260D Certifications:	NELAC-NY	06/26/2024 08:00 10854,NELAC-NY12	06/26/2024 16:33 2058,NJDEP-CT005,I	BMT PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	4.69	5.00	10	EPA 8260D Certifications:	CTDOH-PH-	06/26/2024 08:00 -0723,NELAC-NY10	06/26/2024 16:33 854,NELAC-NY120	BMT 58,NJDEP-CT
1330-20-7	Xylenes, Total	284		ug/L	8.39	15.0	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:33	BMT
								Certifications:	CTDOH-PH	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-C
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	96.8 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	91.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	96.1 %			79-122							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 11 of 30

Client Sample ID: MW-00X

York Sample ID:

24F1678-03

York Project (SDG) No. 24F1678 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water Collection Date/Time
June 25, 2024 11:22 am

Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	lo. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M		te/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	2.16	5.00	10	EPA 8260D Certifications:		i/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	2.66	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	2.56	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	2.86	5.00	10	EPA 8260D Certifications:		i/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND		ug/L	2.49	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	2.72	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	3.27	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY1205	BMT 58,NJDEP-CT
563-58-6	1,1-Dichloropropylene	ND		ug/L	3.14	5.00	10	EPA 8260D Certifications:		i/2024 08:00 NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005	BMT
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	2.22	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	2.73	5.00	10	EPA 8260D Certifications:		/2024 08:00 NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	13.7		ug/L	2.55	5.00	10	EPA 8260D Certifications:	06/26	/2024 08:00	06/26/2024 16:59	BMT
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	1.38	5.00	10	EPA 8260D Certifications:		i/2024 08:00 NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	316		ug/L	3.10	5.00	10	EPA 8260D Certifications:		i/2024 08:00 NELAC-NY1	06/26/2024 16:59 0854,NELAC-NY120	BMT 58.NJDEP-C
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	4.32	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
106-93-4	1,2-Dibromoethane	ND		ug/L	2.15	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	2.70	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
107-06-2	1,2-Dichloroethane	ND		ug/L	3.77	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
78-87-5	1,2-Dichloropropane	ND		ug/L	3.27	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
108-67-8	1,3,5-Trimethylbenzene	22.4		ug/L	3.47	5.00	10	EPA 8260D Certifications:	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY120	BMT
541-73-1	1,3-Dichlorobenzene	ND		ug/L	2.83	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
142-28-9	1,3-Dichloropropane	ND		ug/L	2.60	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT
106-46-7	1,4-Dichlorobenzene	ND		ug/L	3.11	5.00	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 0854,NELAC-NY1205	BMT
123-91-1	1,4-Dioxane	ND		ug/L	353	800	10	EPA 8260D	06/26	/2024 08:00	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 12 of 30

Client Sample ID: MW-00X

York Sample ID: 24

24F1678-03

York Project (SDG) No. 24F1678

<u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water Collection Date/Time
June 25, 2024 11:22 am

Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared	l by Me	thod: EPA	4 5030B
-----------------	---------	-----------	---------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference		Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	4.66	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 54,NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,	BMT PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	4.21	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
95-49-8	2-Chlorotoluene	ND		ug/L	3.76	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
591-78-6	2-Hexanone	ND		ug/L	3.20	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	3.11	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	3.65	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
67-64-1	Acetone	20.3	CAL-E,	ug/L	13.4	20.0	10	EPA 8260D	06	6/26/2024 08:00	06/26/2024 16:59	BMT
			CCVE, ICVE					Certifications:	CTDOH-PH-07	23,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
107-02-8	Acrolein	ND	CCVE	ug/L	4.47	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	4.22	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
71-43-2	Benzene	ND		ug/L	2.79	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-86-1	Bromobenzene	ND		ug/L	3.67	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 54,NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,	BMT PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	3.54	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 54,NELAC-NY1	06/26/2024 16:59 2058,NJDEP-CT005,	BMT PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	2.45	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	1.63	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
74-83-9	Bromomethane	ND	CCVE	ug/L	1.19	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	3.62	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	2.04	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	2.84	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	4.48	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	2.43	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	3.72	5.00	10	EPA 8260D Certifications:		6/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	7.90		ug/L	2.94	5.00	10	EPA 8260D	06	6/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-PH-07	23,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	2.62	5.00	10	EPA 8260D Certifications:		5/26/2024 08:00 23,NELAC-NY10	06/26/2024 16:59 0854,NELAC-NY120	BMT 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 13 of 30

Client Sample ID: MW-00X **York Sample ID:**

24F1678-03

York Project (SDG) No. 24F1678

Client Project ID 41.0163281.02 1107 Dekalb Avenue

Matrix Ground Water

Collection Date/Time June 25, 2024 11:22 am Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/T Method Prepared Analy	
110-82-7	Cyclohexane	21.7		ug/L	4.91	5.00	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:	NELAC-NY10854,NELAC-NY12058,NJDEP	-CT005,PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	1.46	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC-	
74-95-3	Dibromomethane	ND		ug/L	2.03	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
75-71-8	Dichlorodifluoromethane	ND		ug/L	4.51	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	4.66	8.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
100-41-4	Ethyl Benzene	267		ug/L	2.90	5.00	10	EPA 8260D	06/26/2024 08:00	16:59 BMT
								Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC	-NY12058,NJDEP-C
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	4.79	8.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
87-68-3	Hexachlorobutadiene	ND	CCVE	ug/L	2.41	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
74-88-4	* Iodomethane	ND	CCVE	ug/L	4.77	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024	16:59 BMT
98-82-8	Isopropylbenzene	38.8		ug/L	4.05	5.00	10	EPA 8260D	06/26/2024 08:00	16:59 BMT
								Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC	-NY12058,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	4.42	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
80-62-6	Methyl Methacrylate	ND		ug/L	4.15	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 NELAC-NY10854,NELAC-NY12058,NJDEP-	
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	2.44	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC	
108-87-2	Methylcyclohexane	5.40		ug/L	4.77	5.00	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:	NELAC-NY10854,NELAC-NY12058,NJDEP	-CT005,PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	3.97	20.0	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC-	
91-20-3	Naphthalene	53.8	В	ug/L	2.12	20.0	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:	NELAC-NY10854,NELAC-NY12058,NJDEP	-CT005,PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	3.99	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC	
103-65-1	n-Propylbenzene	72.1		ug/L	3.84	5.00	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC	-NY12058,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	2.61	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC	
179601-23-1	p- & m- Xylenes	165		ug/L	5.78	10.0	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:	CTDOH-PH-0723,NELAC-NY10854,NELAC	-NY12058,PADEP-68
105-05-5	* p-Diethylbenzene	12.5		ug/L	3.41	5.00	10	EPA 8260D	06/26/2024 08:00 06/26/2024	16:59 BMT
								Certifications:		
622-96-8	* p-Ethyltoluene	51.2		ug/L	2.00	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024	16:59 BMT
99-87-6	p-Isopropyltoluene	ND		ug/L	3.77	5.00	10	EPA 8260D Certifications:	06/26/2024 08:00 06/26/2024 CTDOH-PH-0723,NELAC-NY10854,NELAC-	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 14 of 30

Client Sample ID: MW-00X

York Sample ID: 2

24F1678-03

York Project (SDG) No. 24F1678

<u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Ground Water Collection Date/Time
June 25, 2024 11:22 am

Date Received 06/25/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	4.80		ug/L	4.44	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	2.55	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 854,NELAC-NY1205	BMT 8,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	41.6	80.0	10	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	5.11	8.00	10	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	6.08	10.0	10	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	3.67	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 9854,NELAC-NY1205	BMT 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	2.39	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 9854,NELAC-NY1205	BMT 58,NJDEP-CT
109-99-9	* Tetrahydrofuran	ND	CCVE	ug/L	4.85	5.00	10	EPA 8260D Certifications:		06/26/2024 08:00	06/26/2024 16:59	BMT
108-88-3	Toluene	4.80		ug/L	3.46	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	2.79	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 9854,NELAC-NY1205	BMT 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	2.29	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 9854,NELAC-NY1205	BMT 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	3.00		ug/L	2.83	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
79-01-6	Trichloroethylene	2.50		ug/L	2.49	5.00	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	3.37	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 854,NELAC-NY1205	BMT 8,NJDEP-CT
108-05-4	Vinyl acetate	ND	CCVE	ug/L	4.77	5.00	10	EPA 8260D Certifications:	NELAC-N	06/26/2024 08:00 Y10854,NELAC-NY12	06/26/2024 16:59 2058,NJDEP-CT005,F	BMT PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	4.69	5.00	10	EPA 8260D Certifications:	CTDOH-PI	06/26/2024 08:00 H-0723,NELAC-NY10	06/26/2024 16:59 854,NELAC-NY1205	BMT 8,NJDEP-CT
1330-20-7	Xylenes, Total	165		ug/L	8.39	15.0	10	EPA 8260D		06/26/2024 08:00	06/26/2024 16:59	BMT
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
	Surrogate Recoveries	Result		Acce	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	94.6 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	93.6 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 15 of 30

Analytical Batch Summary

Batch ID: BF41760	Preparation Method:	EPA 5030B	Prepared By:	FO
YORK Sample ID	Client Sample ID	Preparation Date		
24F1678-01	MW-1403	06/26/24		
24F1678-02	MW-1402	06/26/24		
24F1678-03	MW-00X	06/26/24		
BF41760-BLK1	Blank	06/26/24		
BF41760-BS1	LCS	06/26/24		
BF41760-BSD1	LCS Dup	06/26/24		
BF41760-MS1	Matrix Spike	06/26/24		
BF41760-MSD1	Matrix Spike Dup	06/26/24		

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF41760 - EPA 5030B											
Blank (BF41760-BLK1)							Prep	ared & Analy	zed: 06/26/	2024	
1,1,1,2-Tetrachloroethane	ND	0.500	ug/L								
1,1,1-Trichloroethane	ND	0.500	"								
1,1,2,2-Tetrachloroethane	ND	0.500	"								
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"								
113)		*****									
1,1,2-Trichloroethane	ND	0.500	"								
1,1-Dichloroethane	ND	0.500	"								
1,1-Dichloroethylene	ND	0.500	"								
1,1-Dichloropropylene	ND	0.500	"								
1,2,3-Trichlorobenzene	ND	0.500	"								
1,2,3-Trichloropropane	ND	0.500	"								
1,2,4,5-Tetramethylbenzene	ND	0.500	"								
1,2,4-Trichlorobenzene	ND	0.500	"								
1,2,4-Trimethylbenzene	ND	0.500	"								
1,2-Dibromo-3-chloropropane	ND	0.500	"								
1,2-Dibromoethane	ND	0.500	"								
1,2-Dichlorobenzene	ND	0.500	"								
1,2-Dichloroethane	ND	0.500	"								
1,2-Dichloropropane	ND	0.500	"								
1,3,5-Trimethylbenzene	ND	0.500	"								
1,3-Dichlorobenzene	ND	0.500	"								
1,3-Dichloropropane	ND	0.500	"								
1,4-Dichlorobenzene	ND	0.500	"								
1,4-Dioxane	ND	80.0	"								
2,2-Dichloropropane	ND	0.500	"								
2-Butanone	ND	0.500	"								
2-Chlorotoluene	ND	0.500	"								
2-Hexanone	ND	0.500	"								
4-Chlorotoluene	ND ND	0.500	"								
4-Methyl-2-pentanone	ND	0.500	"								
Acetone	ND ND	2.00	"								
Acrolein	ND ND	0.500	"								
Acrylonitrile	ND ND		,,								
Benzene	ND ND	0.500	,,								
Bromobenzene		0.500	,,								
Bromochloromethane	ND	0.500	,,								
	ND	0.500	"								
Bromodichloromethane	ND	0.500	,,								
Bromoform	ND	0.500	,,								
Bromomethane	ND	0.500									
Carbon disulfide	ND	0.500	"								
Carbon tetrachloride	ND	0.500	"								
Chlorobenzene	ND	0.500	"								
Chloroethane	ND	0.500	"								
Chloroform	ND	0.500	"								
Chloromethane	ND	0.500	"								
cis-1,2-Dichloroethylene	ND	0.500	"								
cis-1,3-Dichloropropylene	ND	0.500	"								
Cyclohexane	ND	0.500	"								
Dibromochloromethane	ND	0.500	"								
Dibromomethane	ND	0.500	"								

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 8
www.YORKLAB.com (203) 325-1371 FAX (20

132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices@ Page 17 of 30

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

bichloredifluorenethane ND	Batch BF41760 - EPA 5030B						
hisopropyl ether (DPE) ND 0.800 " thyl Benzene ND 0.500 " thyl Benzene ND 0.500 " thyl Benzene ND 0.500 " tescachlorobutadiene ND 0.500 " tescachlorobutadiene ND 0.500 " tescachlorobutadiene ND 0.500 " testly acetate ND 0.500	Blank (BF41760-BLK1)						Prepared & Analyzed: 06/26/2024
thyl Benzene	Dichlorodifluoromethane	ND	0.500	ug/L			
thy terr-butyl ether (ETBE) ND 0.800 "	Diisopropyl ether (DIPE)	ND	0.800	"			
Include ND	Ethyl Benzene	ND	0.500	"			
Solution	Ethyl tert-butyl ether (ETBE)	ND	0.800	"			
Copposition ND	Hexachlorobutadiene	ND	0.500	"			
fethyl acetate ND 0.500 " fethyl Methacylate ND 0.500 " fethyl fert-buyl ether (MTBE) ND 0.500 " fethylyce-Johcxane ND 0.500 " fethylyce-Johcxane ND 0.500 " Buylbenzene ND 0.500 " Buylbenzene ND 0.500 " Propylbenzene ND 0.500 " Zylene ND 0.500 " Zylene ND 0.500 " Eithylloluene ND 0.500 " Eyene ND 0.500 " Tri-Amyl alcohol (TAA) ND 0.500 "	Iodomethane	ND	0.500	"			
fethyl Methacrylate ND 0.500 " fethyl Lerb-Huyl cher (MTBE) ND 0.500 " fethylenc chloride ND 0.500 " fethylenc chloride ND 0.500 " Batuylbenzene ND 0.500 " -Propylbenzene ND 0.500 " -Propylbenzene ND 0.500 " -Sylene ND 0.500 " -Diethylbenzene ND 0.500 " -Diethylbenzene ND 0.500 " -Diethylbenzene ND 0.500 " -Diethylbenzene ND 0.500 " -Eithylolune ND 0.500 "	Isopropylbenzene	ND	0.500	"			
Mathy tert-buty ether (MTBE) ND 0.500 " Celtiyleycohexane ND 0.500	Methyl acetate	ND	0.500	"			
Methylcyclohexane ND 0.500 " fethylence chloride ND 2.00 " Butylbenzene ND 0.500 " Butylbenzene ND 0.500 " Propylbenzene ND 0.500 " ** & m. Xylenes ND 0.500 " ** & m. Xylenes ND 0.500 " ** Lithylobuene ND 0.500 " ** Isopropyltoluene ND 0.500 " **It-Amyl alcohol (TAA) ND 0.800 " **It-Butyl alcohol (TBA) ND 0.800 " **It-Butyl benzene ND	Methyl Methacrylate	ND	0.500	"			
fethylene chloride ND 2.00 " aphthalene 0.240 2.00 " Bully Ibrazene ND 0.500 " Propylbenzene ND 0.500 " Xylene ND 0.500 " - &m- Xylenes ND 0.500 " - Ethylloluene ND 0.500 " - Ethylloluene ND 0.500 " - Sopropylloluene ND 0.500 " - Styrene ND 0.500 " - Styrene ND 0.500 " - Tr-Amyl alcohol (TAA) ND 8.00 " - Tr-Bulyl alcohol (TBA) ND 0.500 " - Tr-Bulyl alcohol (TAB) ND 0.500 " </td <td>Methyl tert-butyl ether (MTBE)</td> <td>ND</td> <td>0.500</td> <td>"</td> <td></td> <td></td> <td></td>	Methyl tert-butyl ether (MTBE)	ND	0.500	"			
Aphthalene	Methylcyclohexane	ND	0.500	"			
Bulylbenzene	Methylene chloride	ND	2.00	"			
Propylbenzene	Naphthalene	0.240	2.00	"			
ND 0.500 "	n-Butylbenzene	ND	0.500	"			
- K. m- Xylenes ND 1.00 " - Diethylbenzene ND 0.500 " - Ethyltoluene ND 0.500 " - Ethyltoluene ND 0.500 " - Isopropyloluene ND 0.500 " - Isopropyloluene ND 0.500 " - Ityrene ND 0.500 " - Ityrene ND 0.500 " - Ityrene ND 0.500 " - Ith-Amyl alcohol (TAA) ND 8.00 " - Ith-Butyl alcohol (TBA) ND 1.00 " - Ith-Butyl enzene ND 0.500 " - Ith-Butyl enzene ND 0.500 " - Ith-Butylenzene ND 0.500 " - Ith-	n-Propylbenzene	ND	0.500	"			
Diethylbenzene ND	o-Xylene	ND	0.500	"			
Diethylbenzene ND	p- & m- Xylenes	ND	1.00	"			
Suppossibility Supp	p-Diethylbenzene	ND	0.500	"			
Suppossibility Supp	p-Ethyltoluene	ND	0.500	"			
ND 0.500 "	p-Isopropyltoluene		0.500	"			
ret-Amyl alcohol (TAA) ND 8.00 " ret-Amyl alcohol (TAME) ND 0.800 " ret-Butyl alcohol (TBA) ND 0.500 " ret-Butylbenzene ND 0.500 " ret-Butylben	sec-Butylbenzene	ND	0.500	"			
ND 0.800 "	Styrene		0.500	"			
ret-Butyl alcohol (TBA) ND 1.00 " ret-Butylbenzene ND 0.500 " retrachloroethylene ND 0.500 " retrachloroethylene ND 0.500 " retrahydrofuran ND 0.500 " rans-1,2-Dichloroethylene ND 0.500 " rans-1,3-Dichloropropylene ND 0.500 " rans-1,4-dichloro-2-butene ND 0.500 " richloroethylene ND 0.500 " richloroethylene ND 0.500 " richlorofluoromethane ND 0.500 " richlorofl	tert-Amyl alcohol (TAA)	ND	8.00	"			
retrably benzene ND 0.500 " eterachloroethylene ND 0.500 " ete	tert-Amyl methyl ether (TAME)	ND	0.800	"			
ND 0.500	tert-Butyl alcohol (TBA)	ND	1.00	"			
ND	tert-Butylbenzene		0.500	"			
ND 0.500 "	Tetrachloroethylene	ND	0.500	"			
ans-1,2-Dichloroethylene ND 0.500 " ans-1,3-Dichloropropylene ND 0.500 " richloroethylene ND 0.500 " richloroethylene ND 0.500 " richlorofluoromethane ND 0.500 " richlorofluoromethane ND 0.500 " rinyl acetate ND 0.500 " rinyl Chloride ND 0.500 " rivyl Chloride ND 0.500 " rivylenes, Total ND 0.500 " rivylenes,	Tetrahydrofuran	ND	0.500	"			
ND 0.500 "	Toluene	ND	0.500	"			
ND 0.500 "	trans-1,2-Dichloroethylene	ND	0.500	"			
richloroethylene ND 0.500 " richlorofluoromethane ND 0.500 " rinyl acetate ND 0.500 " rinyl Chloride ND 0.500 " rylenes, Total ND 1.50 " rurrogate: SURR: 1,2-Dichloroethane-d4 10.3 " 10.0 103 69-130 turrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	trans-1,3-Dichloropropylene			"			
richloroethylene ND 0.500 " richlorofluoromethane ND 0.500 " rinyl acetate ND 0.500 " rinyl Chloride ND 0.500 " rinyl acetate ND	trans-1,4-dichloro-2-butene	ND	0.500	"			
richlorofluoromethane ND 0.500 " Tinyl acetate ND 0.500 " Tinyl Chloride ND 0.500 " Tylenes, Total ND 1.50 " **Iurrogate: SURR: 1,2-Dichloroethane-d4 10.3 " 10.0 103 69-130 ** **Iurrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	Trichloroethylene		0.500	"			
Finyl acetate ND 0.500 " Finyl Chloride ND 0.500 " Eylenes, Total ND 1.50 " surrogate: SURR: 1,2-Dichloroethane-d4 10.3 " 10.0 103 69-130 surrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	Trichlorofluoromethane	ND		"			
Finyl Chloride ND 0.500 " Sylenes, Total ND 1.50 " surrogate: SURR: 1,2-Dichloroethane-d4 10.3 " 10.0 103 69-130 surrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	Vinyl acetate			"			
Kylenes, Total ND 1.50 " surrogate: SURR: 1,2-Dichloroethane-d4 10.3 " 10.0 103 69-130 surrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	Vinyl Chloride			"			
urrogate: SURR: Toluene-d8 9.16 " 10.0 91.6 81-117	Xylenes, Total			"			
10.0 11.0 11.17	Surrogate: SURR: 1,2-Dichloroethane-d4	10.3		"	10.0	103	69-130
	Surrogate: SURR: Toluene-d8	9.16		"	10.0	91.6	81-117
urrogate: SURR: p-Bromofluorobenzene 9.92 " 10.0 99.2 79-122	Surrogate: SURR: p-Bromofluorobenzene	9.92		"	10.0	99.2	79-122

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 18 of 30

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF41760 - EPA 5030B										
LCS (BF41760-BS1)						Prep	pared & Analy	zed: 06/26/	2024	
1,1,1,2-Tetrachloroethane	9.36	ug/L	10.0		93.6	82-126				
1,1,1-Trichloroethane	10.3	"	10.0		103	78-136				
1,1,2,2-Tetrachloroethane	8.92	"	10.0		89.2	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.9	"	10.0		109	54-165				
113) 1,1,2-Trichloroethane	9.05	"	10.0		00.5	92 122				
1,1-Dichloroethane	9.03 10.1	"	10.0 10.0		90.5 101	82-123 82-129				
1,1-Dichloroethylene	10.8	"	10.0		101	68-138				
1,1-Dichloropropylene	10.4	"	10.0		108	83-133				
1,2,3-Trichlorobenzene	11.4	"	10.0		114	76-136				
1,2,3-Trichloropropane	9.15	"	10.0		91.5	77-128				
1,2,4,5-Tetramethylbenzene	9.41	"	10.0		94.1	85-140				
1,2,4-Trichlorobenzene	9.68	"	10.0		96.8	76-137				
1,2,4-Trimethylbenzene	9.55	"	10.0		95.5	82-132				
1,2-Dibromo-3-chloropropane	9.49	"	10.0		94.9	45-147				
1,2-Dibromoethane	9.23	"	10.0		92.3	83-124				
1,2-Dichlorobenzene	9.18	"	10.0		91.8	79-123				
1,2-Dichloroethane	10.6	"	10.0		106	73-132				
1,2-Dichloropropane	9.17	"	10.0		91.7	78-132				
1,3,5-Trimethylbenzene	9.51	"	10.0		95.1	80-131				
1,3-Dichlorobenzene	9.21	"	10.0		92.1	86-122				
1,3-Dichloropropane	9.00	"	10.0		90.0	81-125				
1,4-Dichlorobenzene	9.11	"	10.0		91.1	85-124				
1,4-Dioxane	193	"	210		92.1	10-349				
2,2-Dichloropropane	9.54	"	10.0		95.4	56-150				
2-Butanone	9.65	"	10.0		96.5	49-152				
2-Chlorotoluene	9.06	"	10.0		90.6	79-130				
2-Hexanone	7.81	"	10.0		78.1	51-146				
4-Chlorotoluene	9.44	"	10.0		94.4	79-128				
4-Methyl-2-pentanone	8.31	"	10.0		83.1	57-145				
Acetone	11.2	"	10.0		112	14-150				
Acrolein	6.84	"	10.0		68.4	10-153				
Acrylonitrile	10.7	"	10.0		107	51-150				
Benzene	10.8	"	10.0		108	85-126				
Bromobenzene	9.20	"	10.0		92.0	78-129				
Bromochloromethane	10.0	"	10.0		100	77-128				
Bromodichloromethane	9.30	"	10.0		93.0	79-128				
Bromoform	8.96	"	10.0		89.6	78-133				
Bromomethane	7.96	"	10.0		79.6	43-168				
Carbon disulfide	10.7	"	10.0		107	68-146				
Carbon tetrachloride	10.5	"	10.0		105	77-141				
Chlorobenzene	9.45	"	10.0		94.5	88-120				
Chloroethane	10.8	"	10.0		108	65-136				
Chloroform	10.4	"	10.0		104	82-128				
Chloromethane	10.7	"	10.0		107	43-155				
cis-1,2-Dichloroethylene	10.2	"	10.0		102	83-129				
cis-1,3-Dichloropropylene	8.69	"	10.0		86.9	80-131				
Cyclohexane	9.65	"	10.0		96.5	63-149				
Dibromochloromethane	9.15	"	10.0		91.5	80-130				
Dibromomethane	9.29	"	10.0		92.9	72-134				
Dichlorodifluoromethane	15.3	"	10.0		153	44-144	High Bias			

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 19 of 30

(203) 325-1371

FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BF41760-BS1)					Prepared & Analyzed: 06/26/2024
Diisopropyl ether (DIPE)	9.88	ug/L	10.0	98.8	70-130
Ethyl Benzene	9.66	"	10.0	96.6	80-131
Ethyl tert-butyl ether (ETBE)	9.85	"	10.0	98.5	70-130
Hexachlorobutadiene	8.46	"	10.0	84.6	67-146
odomethane	8.50	"	10.0	85.0	70-130
sopropylbenzene	9.20	"	10.0	92.0	76-140
Methyl acetate	9.94	"	10.0	99.4	51-139
Methyl Methacrylate	9.01	"	10.0	90.1	72-132
Methyl tert-butyl ether (MTBE)	9.70	"	10.0	97.0	76-135
Methylcyclohexane	8.67	"	10.0	86.7	72-143
Methylene chloride	9.33	"	10.0	93.3	55-137
Vaphthalene	10.4	"	10.0	104	70-147
n-Butylbenzene	9.84	"	10.0	98.4	79-132
n-Propylbenzene	9.16	"	10.0	91.6	78-133
-Xylene	9.49	"	10.0	94.9	78-130
- & m- Xylenes	19.2	"	20.0	95.8	77-133
-Diethylbenzene	9.70	"	10.0	97.0	84-134
-Ethyltoluene	9.36	"	10.0	93.6	88-129
o-Isopropyltoluene	9.38	"	10.0	93.8	81-136
ec-Butylbenzene	9.18	"	10.0	91.8	79-137
Styrene	9.73	"	10.0	97.3	67-132
ert-Amyl alcohol (TAA)	98.0	"	100	98.0	70-130
ert-Amyl methyl ether (TAME)	9.70	"	10.0	97.0	70-130
ert-Butyl alcohol (TBA)	53.5	"	50.0	107	25-162
ert-Butylbenzene	9.02	"	10.0	90.2	77-138
Tetrachloroethylene	5.24	"	10.0	52.4	82-131 Low Bias
Tetrahydrofuran	10.2	"	10.0	102	36-166
Coluene	9.56	"	10.0	95.6	80-127
rans-1,2-Dichloroethylene	10.5	"	10.0	105	80-132
rans-1,3-Dichloropropylene	8.94	"	10.0	89.4	78-131
rans-1,4-dichloro-2-butene	8.72	"	10.0	87.2	63-141
Crichloroethylene	9.22	"	10.0	92.2	82-128
Trichlorofluoromethane	10.9	"	10.0	109	67-139
Vinyl acetate	9.48	"	10.0	94.8	21-90 High Bias
Vinyl Chloride	11.2	"	10.0	112	58-145
Surrogate: SURR: 1,2-Dichloroethane-d4	9.82	"	10.0	98.2	69-130
				· · · · ·	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 Page 20 of 30 ClientServices@

10.0

10.0

9.28

10.1

92.8

101

81-117

79-122

www.YORKLAB.com

Surrogate: SURR: Toluene-d8 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BF41760 - EPA 5030B								
LCS Dup (BF41760-BSD1)					Pre	pared & Analy	zed: 06/26/2	2024
1,1,1,2-Tetrachloroethane	9.98	ug/L	10.0	99.8	82-126		6.41	30
1,1,1-Trichloroethane	11.2	"	10.0	112	78-136		8.20	30
1,1,2,2-Tetrachloroethane	10.0	"	10.0	100	76-129		11.7	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.8	"	10.0	118	54-165		8.35	30
113)							10.0	20
1,1,2-Trichloroethane	10.1	"	10.0	101	82-123		10.9	30
1,1-Dichloroethane	11.0	"	10.0	110	82-129		8.64	30
1,1-Dichloroethylene	11.8	"	10.0	118	68-138		9.20	30
1,1-Dichloropropylene	11.4	"	10.0	114	83-133	II:-1. D:	9.38	30
1,2,3-Trichloropenzene	14.0	"	10.0	140	76-136	High Bias	20.2	30
1,2,3-Trichloropropane	10.2	"	10.0	102	77-128		10.7	30
1,2,4,5-Tetramethylbenzene	9.74	"	10.0	97.4	85-140		3.45	30
1,2,4-Trichlorobenzene	10.9	"	10.0	109	76-137		11.7	30
1,2,4-Trimethylbenzene	9.62	"	10.0	96.2	82-132		0.730	30
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	11.0	"	10.0	110	45-147		15.1	30 30
	10.4	"	10.0	104	83-124		11.7	
1,2-Dichlorobenzene	9.72	"	10.0	97.2	79-123		5.71	30
1,2-Dichloroethane	12.0	"	10.0	120	73-132		13.0	30
1,2-Dichloropropane	9.78	"	10.0	97.8	78-126		6.44	30
1,3,5-Trimethylbenzene	9.34	"	10.0	93.4	80-131		1.80	30
1,3-Dichlorobenzene	9.43	"	10.0	94.3	86-122		2.36	30
1,3-Dichloropropane	10.1	"	10.0	101	81-125		11.7	30
1,4-Dichlorobenzene	9.45	"	10.0	94.5	85-124		3.66	30
1,4-Dioxane	237	"	210	113	10-349		20.0	30
2,2-Dichloropropane	10.3	"	10.0	103	56-150		7.37	30
2-Butanone	11.7	"	10.0	117	49-152		18.9	30
2-Chlorotoluene 2-Hexanone	9.03	"	10.0	90.3	79-130		0.332	30 30
2-riexanone 4-Chlorotoluene	9.69	"	10.0	96.9	51-146		21.5	
	9.47	"	10.0	94.7	79-128		0.317	30
4-Methyl-2-pentanone	10.1		10.0	101	57-145		19.5	30 30
Acetone	10.8		10.0	108	14-150		3.90	
Acrolein	7.60	"	10.0	76.0	10-153		10.5	30
Acrylonitrile	13.2	"	10.0	132	51-150		20.5	30
Benzene Bromobenzene	11.6	"	10.0	116	85-126		6.51	30
Bromochloromethane	9.41		10.0	94.1	78-129		2.26 11.8	30 30
Bromodichloromethane	11.3		10.0	113	77-128			30
Bromoform	10.1		10.0	101	79-128		8.15 12.4	30
	10.1	"	10.0	101	78-133			
Bromomethane	9.06	"	10.0	90.6	43-168		12.9	30
Carbon disulfide	11.6		10.0	116	68-146		7.44	30 30
Carbon tetrachloride	11.4		10.0	114	77-141		8.06	
Chlorostone	9.98	"	10.0	99.8	88-120		5.46	30
Chloroform	11.6	"	10.0	116	65-136		6.61	30
Chlorographer	11.3	"	10.0	113	82-128		8.21	30
Chloromethane	11.4	"	10.0	114	43-155		6.42	30
cis-1,2-Dichloroethylene	11.0	"	10.0	110	83-129		7.74	30
cis-1,3-Dichloropropylene	9.55	"	10.0	95.5	80-131		9.43	30
Cyclohexane	10.6	"	10.0	106	63-149		9.38	30
Dibromochloromethane	10.2	"	10.0	102	80-130		11.3	30
Dibromomethane	10.3		10.0	103	72-134	III I D'	9.92	30
Dichlorodifluoromethane	16.1	"	10.0	161	44-144	High Bias	5.28	30

RICHMOND HILL, NY 11418 120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE Page 21 of 30 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Dispersion of LOPE 11.0 11.0 11.0 11.0 11.0 10.1 10.0 10.1 10.0 10.1 11.0 1	LCS Dup (BF41760-BSD1)					Prepared & A	nalyzed: 06/26/	2024	
Enyl ter-buyl cher (ETBE)	Diisopropyl ether (DIPE)	11.0	ug/L	10.0	110	70-130	11.1	30	
Reachlorobutadiene	Ethyl Benzene	10.1	"	10.0	101	80-131	4.45	30	
Indomethane	Ethyl tert-butyl ether (ETBE)	11.5	"	10.0	115	70-130	15.8	30	
Sopropylbenzene	Hexachlorobutadiene	8.85	"	10.0	88.5	67-146	4.51	30	
Methyl acetate 12.4 " 10.0	Iodomethane	9.95	"	10.0	99.5	70-130	15.7	30	
Methyl Methacrylate	Isopropylbenzene	9.11	"	10.0	91.1	76-140	0.983	30	
Methyle terf- buryl ether (MTBE)	Methyl acetate	12.4	"	10.0	124	51-139	22.4	30	
Methyleyclokxane 9.16 " 10.0 91.6 72-143 5.50 30 Methylene chloride 10.2 " 10.0 102 55-137 9.30 30 Aphthalene 12.5 " 10.0 125 70-147 12.8 30 n-Butylbenzene 9.90 " 10.0 99.0 79-132 0.608 30 Cxylene 10.0 10.0 91.3 78-133 0.328 30 Cxylene 10.0 10.0 91.3 78-133 0.533 30 P.Ethylkone 20.1 " 10.0 97.4 84-134 0.412 30 P-Ethylkoluene 9.74 " 10.0 97.4 84-134 0.412 30 P-Ethylkoluene 9.51 " 10.0 97.4 84-134 0.412 30 P-Ethylkoluene 9.51 " 10.0 97.3 81-136 1.38 30 Styrene 10.0 10.0<	Methyl Methacrylate	10.5	"	10.0	105	72-132	15.7	30	
Methylene chloride	Methyl tert-butyl ether (MTBE)	11.8	"	10.0	118	76-135	19.4	30	
Naphthalene 12.5 " 10.0 125 " 70.14" 17.8	Methylcyclohexane	9.16	"	10.0	91.6	72-143	5.50	30	
n-Butylbenzene 9,90 " 10.0 99.0 79.132	Methylene chloride	10.2	"	10.0	102	55-137	9.30	30	
n-Propylenzene 9,13 " 10.0 91.3 78.13	Naphthalene	12.5	"	10.0	125	70-147	17.8	30	
o-Xylene 10.0 10.0 10.0 78-130 5.33 30 p-& m Xylenes 20.1 20.0 100 77-133 4.59 30 p-Ethylothezene 9.74 10.0 97.4 84-134 0.412 30 p-Ethylothezene 9.42 10.0 95.1 81-136 1.38 30 p-Isopropylothene 9.51 10.0 95.1 81-136 1.38 30 see-Butlybenzene 9.28 10.0 92.8 79-137 1.08 30 Styrene 10.4 10.0 10.0 67-132 6.85 30 tert-Amyl achol (TAA) 130 10.0 10 67-132 6.85 30 tert-Amyl methyl ether (TAME) 11.6 10.0 10.0 116 70-130 17.9 30 Non-dir. tert-Butyl benzene 8.99 10.0 10.0 147 25-162 31.5 30 Non-dir. tert-Butyl benzene 5.49 10.0 10.	n-Butylbenzene	9.90	"	10.0	99.0	79-132	0.608	30	
p- & m- Xylenes 20.1 " 20.0 100 77-133 4.59 30 p-Diethylbenzene 9.74 " 10.0 97.4 84-134 0.412 30 p-Ethylbenzene 9.42 " 10.0 95.2 88-129 0.639 30 p-Isopropylbulene 9.51 " 10.0 95.1 81-136 1.38 30 Styrene 10.4 " 10.0 104 67-132 6.85 30 tert-Amyl alcohol (TAA) 130 " 10.0 130 70-130 28.3 30 tert-Buryl methyl ether (TAME) 11.6 " 50.0 117 75-162 31.5 30 Non-diet tert-Buryl benzene 8.99 " 10.0 89.9 77-138 0.333 30 Non-diet tert-Burylbenzene 8.99 " 10.0 89.9 77-138 0.333 30 Non-diet Tetrachloroethylene 5.49 " 10.0 120 36-166 16.3 30 Non-diet Tubense 1.0	n-Propylbenzene	9.13	"	10.0	91.3	78-133	0.328	30	
p-Diethylbenzene 9.74 " 10.0 97.4 84-13" 0.412 30 p-Ethyltoluene 9.42 " 10.0 97.4 84-13" 0.412 30 p-Ethyltoluene 9.51 " 10.0 95.1 81-136 1.38 30 sec-Butylbenzene 9.51 " 10.0 92.8 79-137 1.08 30 Sec-Butylbenzene 9.28 " 10.0 92.8 79-137 1.08 30 Sec-Butylbenzene 10.4 " 10.0 114 67-132 6.685 30 Set-HAMyl alcohol (TAA) 130 " 100 130 70-130 28.3 30 Set-HAMyl alcohol (TAA) 130 " 100 130 70-130 28.3 30 Set-HAMyl alcohol (TAA) 130 " 100 130 70-130 17.9 30 Set-HAMyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butylbenzene 8.99 " 10.0 89.9 77-138 0.333 30 Set-HAMyl alcohol (TBA) 12.0 " 10.0 12.0 36-166 1.0 33.0 Set-HAMyl alcohol (TBA) 12.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 12.0 36-166 1.0 Set-HAMyl alcohol (TBA) 13.0 " 10.0 Set-HAMYL alcohol (TBA) 13.0	o-Xylene	10.0	"	10.0	100	78-130	5.33	30	
p-Ethyltoluene 9.42 " 10.0 94.2 88-129 0.639 30 p-Isopropyltoluene 9.51 " 10.0 95.1 81-136 1.38 30 sec-Butylbenzene 9.28 " 10.0 92.8 79-137 1.08 30 Styrene 10.4 " 10.0 104 67-132 6.85 30 tert-Amyl alcohol (TAA) 130 " 10.0 116 70-130 28.3 30 tert-Amyl methyl ether (TAME) 11.6 " 10.0 116 70-130 28.3 30 Non-dir. tert-Butyl alcohol (TBA) 33.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butyl benzene 8.99 " 10.0 89.9 77-138 0.333 30 Tetrachylorethylene 5.49 " 10.0 89.9 77-138 Low Bias 4.66 30 Tetrachylorethylene 10.0 " 10.0	p- & m- Xylenes	20.1	"	20.0	100	77-133	4.59	30	
P-Isopropyltoluene	p-Diethylbenzene	9.74	"	10.0	97.4	84-134	0.412	30	
sec-Butylbenzene 9.28 " 10.0 92.8 79-137 1.08 30 Styrene 10.4 " 10.0 104 67-132 6.85 30 tert-Amyl alcohol (TAA) 130 " 100 130 70-130 28.3 30 tert-Amyl methyl ether (TAME) 11.6 " 10.0 116 70-130 17.9 30 Non-dir. tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butyl alcohol (TBA) 8.99 " 10.0 89.9 77-138 0.333 30 Non-dir. tert-Butyl benzene 8.99 " 10.0 54.9 82-131 Low Bias 4.66 30 Non-dir. tert-Butylbenzene 8.99 " 10.0 54.9 82-131 Low Bias 4.66 30 Non-dir. tertarbylbenzene 10.0 10.0 10.0 80-127 4.70 30 4.70	p-Ethyltoluene	9.42	"	10.0	94.2	88-129	0.639	30	
Styrene 10.4 " 10.0 104 67-132 6.85 30 tert-Amyl alcohol (TAA) 130 " 100 130 70-130 28.3 30 tert-Amyl methyl ether (TAME) 11.6 " 10.0 116 70-130 17.9 30 tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butyl benzene 8.99 " 10.0 89.9 77-138 0.333 30 Non-dir. Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Tetrahydrofuran 12.0 " 10.0 10 80-127 4.70 30 Toluene 11.4 " 10.0 10 80-127 4.70 30 trans-1,2-Dichloroethylene 9.97 " 10.0 <td< td=""><td>p-Isopropyltoluene</td><td>9.51</td><td>"</td><td>10.0</td><td>95.1</td><td>81-136</td><td>1.38</td><td>30</td><td></td></td<>	p-Isopropyltoluene	9.51	"	10.0	95.1	81-136	1.38	30	
tert-Amyl alcohol (TAA) 130 " 100 130 70-130 28.3 30 tert-Amyl methyl ether (TAME) 11.6 " 10.0 116 70-130 17.9 30 tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir tert-Butyl benzene 8.99 " 10.0 89.9 77-138 0.333 30 Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrakyldrofuran 12.0 " 10.0 120 36-166 16.3 30 Tollane 11.4 " 10.0 110 80-127 4.70 30 Trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 Trans-1,2-Dichloroethylene 9.97 " 10.0 99.7 78-131 10.9 30 Trans-1,4-dichloro-2-butene 9.58 " 10.0 99.7 78-131 10.9 30 Trans-1,4-dichloro-2-butene 9.58 " 10.0 99.7 82-128 4.76 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichloroethylene 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Trichlorofundene 12.0 " 10.0 98.8 21-90 High Bias 4.13 30 Trichlorodethylene 12.0 " 10.0 120 58-145 6.89 30 Trichlorodethylene 12.0 " 10.0 12.0 " 12.0 58-145 6.89 30 Trichlorodethylene 12.0 " 10.0 12.0 " 12.0 58-145 6.89 30 Trichlorodethylene 12.0 " 12.0 " 12.0 58-145 6.89 30 Trichlorodethylene 12.0 " 12.0 " 12.0 58-145 6.89 30 Trichlorodethylene 12.0 " 12.0 " 12.0 Tric	sec-Butylbenzene	9.28	"	10.0	92.8	79-137	1.08	30	
tert-Amyl methyl ether (TAME) 11.6 " 10.0 116 70-130 17.9 30 tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butylbenzene 8.99 " 10.0 89.9 77-138 0.333 30 Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Tetrahydrofuran 10.0 " 10.0 100 80-127 4.70 30 Trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 Trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 Trans-1,4-dichloro-2-butene 9.58 " 10.0 99.7 78-131 10.9 30 Trans-1,4-dichloro-2-butene 9.67 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 11.8 " 10.0 118 67-139 8.35 30 Trichlorofuoromethane 11.8 " 10.0 118 67-139 8.35 30 Trichlorofuoromethane 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Trichlorofuoromethane 12.0 " 10.0 98.8 21-90 High Bias 4.13 30 Trichlorofuoromethane 12.0 " 10.0 120 58-145 6.89 30 Trichlorofuoromethane 12.0 " 10.0 "	Styrene	10.4	"	10.0	104	67-132	6.85	30	
tert-Butyl alcohol (TBA) 73.5 " 50.0 147 25-162 31.5 30 Non-dir. tert-Butylbenzene 8.99 " 10.0 89.9 77-138 0.333 30 Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Tetrahydrofuran 10.0 " 10.0 100 80-127 4.70 30 Trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 Trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 Trans-1,4-dichloro-2-butene 9.58 " 10.0 99.7 78-131 10.9 30 Trichloroethylene 9.67 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.7 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0 " 10.0 120 58-145 6.89 30 Vinyl Chloride 10.0 " 10.0	tert-Amyl alcohol (TAA)	130	"	100	130	70-130	28.3	30	
tert-Butylbenzene 8.99 " 10.0 89.9 77-138 0.333 30 Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Toluene 10.0 " 10.0 100 80-127 4.70 30 trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 10.0 10.7 69-130	tert-Amyl methyl ether (TAME)	11.6	"	10.0	116	70-130	17.9	30	
Tetrachloroethylene 5.49 " 10.0 54.9 82-131 Low Bias 4.66 30 Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Toluene 10.0 " 10.0 100 80-127 4.70 30 trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 96.7 82-128 4.76 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 100	tert-Butyl alcohol (TBA)	73.5	"	50.0	147	25-162	31.5	30	Non-dir.
Tetrahydrofuran 12.0 " 10.0 120 36-166 16.3 30 Toluene 10.0 " 10.0 100 80-127 4.70 30 trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 100 69-130 8-145 6.89 30	tert-Butylbenzene	8.99	"	10.0	89.9	77-138	0.333	30	
Toluene 10.0 " 10.0 100 80-127 4.70 30 trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Tetrachloroethylene	5.49	"	10.0	54.9	82-131 Low B	as 4.66	30	
trans-1,2-Dichloroethylene 11.4 " 10.0 114 80-132 8.21 30 trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Tetrahydrofuran	12.0	"	10.0	120	36-166	16.3	30	
trans-1,3-Dichloropropylene 9.97 " 10.0 99.7 78-131 10.9 30 trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Toluene	10.0	"	10.0	100	80-127	4.70	30	
trans-1,4-dichloro-2-butene 9.58 " 10.0 95.8 63-141 9.40 30 Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	trans-1,2-Dichloroethylene	11.4	"	10.0	114	80-132	8.21	30	
Trichloroethylene 9.67 " 10.0 96.7 82-128 4.76 30 Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	trans-1,3-Dichloropropylene	9.97	"	10.0	99.7	78-131	10.9	30	
Trichlorofluoromethane 11.8 " 10.0 118 67-139 8.35 30 Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	trans-1,4-dichloro-2-butene	9.58	"	10.0	95.8	63-141	9.40	30	
Vinyl acetate 9.88 " 10.0 98.8 21-90 High Bias 4.13 30 Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Trichloroethylene	9.67	"	10.0	96.7	82-128	4.76	30	
Vinyl Chloride 12.0 " 10.0 120 58-145 6.89 30 Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Trichlorofluoromethane	11.8	"	10.0	118	67-139	8.35	30	
Surrogate: SURR: 1,2-Dichloroethane-d4 10.7 " 10.0 107 69-130	Vinyl acetate	9.88	"	10.0	98.8	21-90 High B	ias 4.13	30	
Surroguie. SURK. 1,2-Dictioroeinane-u4 10.7 10.0 107 09-150	Vinyl Chloride	12.0	"	10.0	120	58-145	6.89	30	
Surrogate: SURR: Toluene-d8 9.12 " 10.0 91.2 81-117	Surrogate: SURR: 1,2-Dichloroethane-d4	10.7	"	10.0	107	69-130			
	Surrogate: SURR: Toluene-d8	9.12	"	10.0	91.2	81-117			

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

10.0

97.6

FAX (203) 357-0166

79-122

Page 22 of 30

ClientServices@

www.YORKLAB.com (203) 325-1371

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

9.76

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	REA:	1760 .	. FPA	5030R

Matrix Spike (BF41760-MS1)	*Source sample: 24F167	8-01 (MW-1403)	Prepared & Analyzed: 06/26/2024				
,1,1,2-Tetrachloroethane	11.8	ug/L	10.0	0.00	118	45-161	
,1,1-Trichloroethane	14.6	"	10.0	0.00	146	70-146	
,1,2,2-Tetrachloroethane	10.8	"	10.0	0.00	108	74-121	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	15.4	"	10.0	0.00	154	21-217	
13)							
,1,2-Trichloroethane	11.0	"	10.0	0.00	110	59-146	
,1-Dichloroethane	13.5	"	10.0	0.00	135	54-146	
,1-Dichloroethylene	15.3	"	10.0	0.00	153	44-165	II' I D'
,1-Dichloropropylene	14.8	"	10.0	0.00	148	82-134	High Bias
,2,3-Trichlorobenzene	11.2	"	10.0	0.00	112	40-161	
,2,3-Trichloropropane	11.0	"	10.0	0.00	110	74-127	
,2,4,5-Tetramethylbenzene	11.2	"	10.0	0.00	112	27-190	
,2,4-Trichlorobenzene	10.5	"	10.0	0.00	105	41-161	
,2,4-Trimethylbenzene	11.7	"	10.0	0.00	117	72-129	
,2-Dibromo-3-chloropropane	10.9	"	10.0	0.00	109	31-151	
,2-Dibromoethane	11.0	"	10.0	0.00	110	75-125	
,2-Dichlorobenzene	10.9	"	10.0	0.00	109	63-122	п. т. р.
,2-Dichloroethane	13.4	"	10.0	0.00	134	68-131	High Bias
,2-Dichloropropane	11.6	"	10.0	0.00	116	77-121	
3,5-Trimethylbenzene	11.8	"	10.0	0.00	118	69-126	
3-Dichlorobenzene	11.2	"	10.0	0.00	112	74-119	
3-Dichloropropane	10.9	"	10.0	0.00	109	77-119	
4-Dichlorobenzene	11.0	"	10.0	0.00	110	70-124	
4-Dioxane	210	"	210	0.00	100	10-310	
2-Dichloropropane	13.5	"	10.0	0.00	135	10-160	
Butanone	11.8	"	10.0	1.30	105	10-193	
Chlorotoluene	11.4	"	10.0	0.00	114	70-126	
Hexanone	9.09	"	10.0	0.00	90.9	53-133	
Chlorotoluene	11.6	"	10.0	0.00	116	69-124	
Methyl-2-pentanone	9.95	"	10.0	0.00	99.5	38-150	
cetone	9.26	"	10.0	4.27	49.9	13-149	
crolein	14.1	"	10.0	0.00	141	10-195	
crylonitrile	12.5	"	10.0	0.00	125	37-165	
enzene	14.5	"	10.0	0.00	145	38-155	
romobenzene	11.1	"	10.0	0.00	111	72-122	II. I D.
romochloromethane	12.5	"	10.0	0.00	125	75-121	High Bias
romodichloromethane	11.9	"	10.0	0.00	119	70-129	
romoform	10.6	"	10.0	0.00	106	66-136	
romomethane	11.2	"	10.0	0.00	112	30-158	
arbon disulfide	15.0	"	10.0	0.00	150	10-138	High Bias
arbon tetrachloride	14.7	"	10.0	0.00	147	71-146	High Bias
hlorobenzene	12.1	"	10.0	0.00	121	81-117	High Bias
nloroethane	14.7	"	10.0	0.00	147	51-145	High Bias
hloroform	14.6	"	10.0	0.590	140	80-124	High Bias
nloromethane	14.2	"	10.0	0.00	142	16-163	
s-1,2-Dichloroethylene	14.0	"	10.0	0.260	138	76-125	High Bias
s-1,3-Dichloropropylene	10.9	"	10.0	0.00	109	58-131	
yclohexane	15.9	"	10.0	1.40	145	70-130	High Bias
Dibromochloromethane	11.2	"	10.0	0.00	112	71-129	
ibromomethane	11.2	"	10.0	0.00	112	76-120	
Dichlorodifluoromethane	19.8	"	10.0	0.00	198	30-147	High Bias

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 23 of 30

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RF41	1760	- FPA	5030B

Matrix Spike (BF41760-MS1)	*Source sample: 24F1678	8-01 (MW-1403)				Prep	Prepared & Analyzed: 06/26/2024					
Diisopropyl ether (DIPE)	12.5	ug/L	10.0	0.00	125	70-130						
Ethyl Benzene	12.8	"	10.0	0.00	128	72-128						
Ethyl tert-butyl ether (ETBE)	12.2	"	10.0	0.00	122	70-130						
Hexachlorobutadiene	9.91	"	10.0	0.00	99.1	34-166						
odomethane	12.0	"	10.0	0.00	120	70-130						
sopropylbenzene	12.4	"	10.0	0.260	121	66-139						
Methyl acetate	12.8	"	10.0	0.00	128	10-200						
Methyl Methacrylate	11.4	"	10.0	0.00	114	68-124						
Methyl tert-butyl ether (MTBE)	11.9	"	10.0	0.00	119	75-128						
Methylcyclohexane	11.8	"	10.0	0.00	118	70-130						
Methylene chloride	11.9	"	10.0	0.00	119	57-128						
Naphthalene	10.4	"	10.0	0.290	101	39-158						
-Butylbenzene	12.4	"	10.0	0.00	124	61-138						
-Propylbenzene	12.0	"	10.0	0.00	120	66-134						
-Xylene	12.3	"	10.0	0.00	123	69-126						
- & m- Xylenes	25.0	"	20.0	0.00	125	67-130						
-Diethylbenzene	12.6	"	10.0	0.270	124	52-150						
-Ethyltoluene	12.0	"	10.0	0.00	120	76-127						
-Isopropyltoluene	11.9	"	10.0	0.00	119	64-137						
ec-Butylbenzene	12.4	"	10.0	0.360	121	53-155						
Styrene	12.0	"	10.0	0.00	120	69-125						
ert-Amyl alcohol (TAA)	118	"	100	0.00	118	70-130						
ert-Amyl methyl ether (TAME)	12.0	"	10.0	0.00	120	70-130						
ert-Butyl alcohol (TBA)	67.6	"	50.0	0.00	135	10-130	High Bias					
ert-Butylbenzene	11.4	"	10.0	0.00	114	65-139						
Tetrachloroethylene	7.78	"	10.0	0.370	74.1	64-139						
Petrahydrofuran	2.49	"	10.0	0.00	24.9	10-188						
Coluene	12.6	"	10.0	0.00	126	76-123	High Bias					
rans-1,2-Dichloroethylene	14.3	"	10.0	0.00	143	79-131	High Bias					
rans-1,3-Dichloropropylene	10.8	"	10.0	0.00	108	55-130						
rans-1,4-dichloro-2-butene	10.3	"	10.0	0.00	103	25-155						
richloroethylene	13.3	"	10.0	0.930	124	53-145						
richlorofluoromethane	15.4	"	10.0	0.00	154	61-142	High Bias					
/inyl acetate	15.5	"	10.0	0.00	155	10-87	High Bias					
Vinyl Chloride	15.2	"	10.0	0.00	152	31-165						
Surrogate: SURR: 1,2-Dichloroethane-d4	9.91	"	10.0		99.1	69-130						
Gurrogate: SURR: Toluene-d8	9.20	"	10.0		92.0	81-117						
Surrogate: SURR: p-Bromofluorobenzene	9.95	"	10.0		99.5	79-122						

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 2

Page 24 of 30

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit U	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF41760 - EPA 5030B											
Matrix Spike Dup (BF41760-MSD1)	*Source sample: 24l	F1678-01 (MW-1	1403)				Pre	pared & Analy:	zed: 06/26/	2024	
1,1,1,2-Tetrachloroethane	13.2	ι	ug/L	10.0	0.00	132	45-161		10.8	30	
1,1,1-Trichloroethane	16.4		"	10.0	0.00	164	70-146	High Bias	12.1	30	
1,1,2,2-Tetrachloroethane	12.3		"	10.0	0.00	123	74-121	High Bias	12.9	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	16.9		"	10.0	0.00	169	21-217		9.47	30	
1,1,2-Trichloroethane	12.4		"	10.0	0.00	124	59-146		12.7	30	
1,1-Dichloroethane	15.5		"	10.0	0.00	155	54-146	High Bias	13.4	30	
1,1-Dichloroethylene	17.2		"	10.0	0.00	172	44-165	High Bias	11.5	30	
1,1-Dichloropropylene	16.0		"	10.0	0.00	160	82-134	High Bias	8.05	30	
1,2,3-Trichlorobenzene	12.7		"	10.0	0.00	127	40-161		13.2	30	
1,2,3-Trichloropropane	12.2		"	10.0	0.00	122	74-127		9.92	30	
1,2,4,5-Tetramethylbenzene	11.5		"	10.0	0.00	115	27-190		3.09	30	
1,2,4-Trichlorobenzene	11.0		"	10.0	0.00	110	41-161		4.00	30	
1,2,4-Trimethylbenzene	12.2		"	10.0	0.00	122	72-129		4.51	30	
1,2-Dibromo-3-chloropropane	12.3		"	10.0	0.00	123	31-151		11.9	30	
1,2-Dibromoethane	12.8		"	10.0	0.00	128	75-125	High Bias	14.7	30	
1,2-Dichlorobenzene	11.6		"	10.0	0.00	116	63-122		6.38	30	
1,2-Dichloroethane	15.2		"	10.0	0.00	152	68-131	High Bias	12.5	30	
1,2-Dichloropropane	13.3		"	10.0	0.00	133	77-121	High Bias	14.4	30	
1,3,5-Trimethylbenzene	12.4		"	10.0	0.00	124	69-126		4.95	30	
1,3-Dichlorobenzene	11.7		"	10.0	0.00	117	74-119		4.72	30	
1,3-Dichloropropane	12.5		"	10.0	0.00	125	77-119	High Bias	13.3	30	
1,4-Dichlorobenzene	11.5		"	10.0	0.00	115	70-124	Ü	4.98	30	
1,4-Dioxane	110		"	210	0.00	52.3	10-310		62.7	30	Non-dir.
2,2-Dichloropropane	15.4		"	10.0	0.00	154	10-160		13.0	30	
2-Butanone	14.3		"	10.0	1.30	130	10-193		18.9	30	
2-Chlorotoluene	12.1		"	10.0	0.00	121	70-126		5.28	30	
2-Hexanone	9.93		"	10.0	0.00	99.3	53-133		8.83	30	
4-Chlorotoluene	12.2		"	10.0	0.00	122	69-124		4.94	30	
4-Methyl-2-pentanone	11.5		"	10.0	0.00	115	38-150		14.1	30	
Acetone	10.2		"	10.0	4.27	59.0	13-149		9.37	30	
Acrolein	17.1		"	10.0	0.00	171	10-195		19.5	30	
Acrylonitrile	13.2		"	10.0	0.00	132	37-165		5.91	30	
Benzene	16.4		,,	10.0	0.00	164	38-155	High Bias	12.0	30	
Bromobenzene	12.3		"	10.0	0.00	123	72-122	High Bias	9.99	30	
Bromochloromethane	14.4		,,	10.0	0.00	144	75-121	High Bias	14.2	30	
Bromodichloromethane	13.6		,,	10.0	0.00	136	70-121	High Bias	13.2	30	
Bromoform	11.9		,,	10.0		119		mgn Dias	11.7	30	
Bromomethane			,,		0.00		66-136	High Bias	35.4	30	Non-dir.
Carbon disulfide	16.0 16.4		,,	10.0	0.00	160	30-158 10-138	High Bias	8.72	30	Non-un.
Carbon tetrachloride			,,	10.0	0.00	164		High Bias	11.0	30	
Chlorobenzene	16.4		,,	10.0	0.00	164	71-146	High Bias	9.29	30	
Chloroethane	13.3		,,	10.0	0.00	133	81-117	_			
	16.4			10.0	0.00	164	51-145	High Bias	11.3	30	
Chlorographono	16.7		"	10.0	0.590	161	80-124	High Bias	13.5	30	
Chloromethane	15.8			10.0	0.00	158	16-163	High Diss	10.7	30	
cis-1,2-Dichloroethylene	16.0			10.0	0.260	158	76-125	High Bias	13.3	30	
cis-1,3-Dichloropropylene	12.6			10.0	0.00	126	58-131	III I D'	14.5	30	
Cyclohexane	16.8		"	10.0	1.40	154	70-130	High Bias	5.44	30	
Dibromochloromethane	12.7		"	10.0	0.00	127	71-129		13.0	30	
Dibromomethane	12.8		"	10.0	0.00	128	76-120	High Bias	12.9	30	
Dichlorodifluoromethane	20.6		"	10.0	0.00	206	30-147	High Bias	3.91	30	

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 25 of 30

York Analytical Laboratories, Inc. - Stratford

		Reporting			Source* %R					RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RF417	760 - El	PA 5030B

Matrix Spike Dup (BF41760-MSD1)	*Source sample: 24F1678	3-01 (MW-1403)				Prepared & Analyzed: 06/26/2024						
Diisopropyl ether (DIPE)	14.6	ug/L	10.0	0.00	146	70-130	High Bias	15.5	30			
Ethyl Benzene	13.8	"	10.0	0.00	138	72-128	High Bias	7.21	30			
Ethyl tert-butyl ether (ETBE)	14.5	"	10.0	0.00	145	70-130	High Bias	16.7	30			
Hexachlorobutadiene	9.96	"	10.0	0.00	99.6	34-166		0.503	30			
Iodomethane	15.5	"	10.0	0.00	155	70-130	High Bias	25.8	30			
Isopropylbenzene	13.2	"	10.0	0.260	129	66-139		6.18	30			
Methyl acetate	16.5	"	10.0	0.00	165	10-200		24.9	30			
Methyl Methacrylate	12.7	"	10.0	0.00	127	68-124	High Bias	11.0	30			
Methyl tert-butyl ether (MTBE)	14.1	"	10.0	0.00	141	75-128	High Bias	16.7	30			
Methylcyclohexane	11.7	"	10.0	0.00	117	70-130		0.766	30			
Methylene chloride	13.8	"	10.0	0.00	138	57-128	High Bias	15.5	30			
Naphthalene	12.0	"	10.0	0.290	118	39-158		14.9	30			
n-Butylbenzene	12.1	"	10.0	0.00	121	61-138		1.88	30			
n-Propylbenzene	12.3	"	10.0	0.00	123	66-134		2.64	30			
o-Xylene	13.4	"	10.0	0.00	134	69-126	High Bias	8.65	30			
p- & m- Xylenes	26.8	"	20.0	0.00	134	67-130	High Bias	7.10	30			
p-Diethylbenzene	12.4	"	10.0	0.270	121	52-150		2.08	30			
p-Ethyltoluene	12.4	"	10.0	0.00	124	76-127		3.44	30			
p-Isopropyltoluene	12.0	"	10.0	0.00	120	64-137		0.838	30			
sec-Butylbenzene	12.6	"	10.0	0.360	123	53-155		1.60	30			
Styrene	13.2	"	10.0	0.00	132	69-125	High Bias	9.75	30			
tert-Amyl alcohol (TAA)	137	"	100	0.00	137	70-130	High Bias	14.8	30			
tert-Amyl methyl ether (TAME)	13.9	"	10.0	0.00	139	70-130	High Bias	15.0	30			
tert-Butyl alcohol (TBA)	80.3	"	50.0	0.00	161	10-130	High Bias	17.2	30			
tert-Butylbenzene	12.1	"	10.0	0.00	121	65-139		6.03	30			
Tetrachloroethylene	8.03	"	10.0	0.370	76.6	64-139		3.16	30			
Tetrahydrofuran	13.4	"	10.0	0.00	134	10-188		137	30	Non-dir.		
Toluene	14.0	"	10.0	0.00	140	76-123	High Bias	10.5	30			
trans-1,2-Dichloroethylene	16.2	"	10.0	0.00	162	79-131	High Bias	12.7	30			
trans-1,3-Dichloropropylene	12.5	"	10.0	0.00	125	55-130		14.2	30			
trans-1,4-dichloro-2-butene	11.6	"	10.0	0.00	116	25-155		12.1	30			
Trichloroethylene	14.9	"	10.0	0.930	140	53-145		11.5	30			
Trichlorofluoromethane	16.9	"	10.0	0.00	169	61-142	High Bias	9.47	30			
Vinyl acetate	17.8	"	10.0	0.00	178	10-87	High Bias	14.0	30			
Vinyl Chloride	16.9	"	10.0	0.00	169	31-165	High Bias	11.2	30			
Surrogate: SURR: 1,2-Dichloroethane-d4	9.95	"	10.0		99.5	69-130						
Surrogate: SURR: Toluene-d8	9.20	"	10.0		92.0	81-117						
Surrogate: SURR: p-Bromofluorobenzene	10.1	"	10.0		101	79-122						

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 26 of 30

ClientServices@

www.YORKLAB.com (203) 325-1371

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
24F1678-01	MW-1403	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F1678-02	MW-1402	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24F1678-03	MW-00X	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Sample and Data Qualifiers Relating to This Work Order

QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
CCVE	The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
CAL-E	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)
В	Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to site and the processor of

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

STRATFORD, CT 06615

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 28 of 30

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 29 of 30

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This legal document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

00 YORK Project Number 3

Summary (Results Only) **Turn-Around Time** Report Type (circle) Regulatory Comparative NJDEP SRP Haz Site PFAS Standard 7-10 Day **EDD Type** (circle) Compared to the following Regulation(s): (please fill in) NK ASP B Package COC Complete: ON COC Received ON Appropriate Sample Volumes Y / N Appropriate Sample Containers Y / N Cooler Temperature Confirmed: Y / N Samples Submitted within Holding Times: ON Corrective Action Form Required: Y (N) Lab Sample Receiving Checklist (to be completed by the receiving laboratory only) Circle Y / N 1945 of EQUIS (standard NYSDEC EQuIS RUSH - Three Day Standard (6-9 Day) RUSH - Next Day RUSH - Four Day RUSH - Two Day RUSH - Five Day Standard Excel Field Filtered QA Report NJ Reduced Lab Filtered Preservation Confirmed: V / N Page NJ DKQP G/C CT RCP NJ Full CMDP 6/25/24 Grab or Comp. Other: (please specify) Samples Collected From Custody Seals: Y / (1) Containers Intact; 2 N COC/Labels Agree 773 Analyses Requested 120 Research Drive Stratford, CT 06615 132-02 89th Ave Queens, NY 11418 56 Church Hill Rd. #2 Newtown, CT 06470 2161 Whitesville Rd Toms River, NJ 08755 clientservices@yorklab.com C PA 01 1530 2772 5 a ž Z Date/Iffine 124 h رد 3 (project No. 41.0163281.00) Cher: Date/Time Details Avenue Ammonium Acetate YOUR Project Name / Number (please list number of containers) $Na_2S_2O_3$ (sodium thio.) Preservative PO Number NaOH (sodium hydroxide) H₂SO₄ (sulfuric acid) Samples iced/chilled at time of lab pickup? circle Yes or No HNO₃ (nitric acid) 1101 MeOH (methanol) HCI (hydrochloric acid) W 29th Street, 10th FI Matrix S C S S mark.hutson 6gza.com RIC Matrix Codes DW - drinking water S - soil/solid/sludge Dir GW - groundwater SW - surface water Other WW - wastewater Company 22A Geolan romanta 332-208-2260 2:35 Contact: Mark Hutson Time 04:48 12:37 10-0 Invoice To: 6125124 6725124 MK2/9 125/24 6/25/24 6125/24 Date Samples will not be logged in and the turn-around-time clock will not Please print clearly and legibly. All information must be complete. Samples Collected by: (print AND sign your name) MW-00X 包 1403 - MSD egin until any questions by YORK are resolved. Geochimontal N mark huten Oga . am 104 W 29th street, loth A MWS-1403 Disaland MW - 1403 -1402 332-208-2260 of them Yunmee Han contact: Mark Hutson TH WANT Tan Report To: mples Relinquished by / Company Sample Identification 35 33 のか unmee Comments ompany: Page 30 of 30

125 PS

COR

Date/Time

amples Relinquished by / Company

Technical Report

prepared for:

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Report Date: 09/30/2024

Client Project ID: 41.0163281.00York Project (SDG) No.: 24I1449

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 09/30/2024 Client Project ID: 41.0163281.00 York Project (SDG) No.: 24I1449

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 24, 2024 and listed below. The project was identified as your project: 41.0163281.00.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24I1449-01	MW-1402	Ground Water	09/24/2024	09/24/2024
24I1449-02	MW-1403	Ground Water	09/24/2024	09/24/2024
24I1449-03	9.24.2024_Duplicate	Ground Water	09/24/2024	09/24/2024
24I1449-04	Trip Blank	Ground Water	09/24/2024	09/24/2024

General Notes for York Project (SDG) No.: 24I1449

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Oh I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 09/30/2024

Client Sample ID: MW-1402 York Sample ID: 24I1449-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24I144941.0163281.00Ground WaterSeptember 24, 20241:00 pm09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA 5030B Data/Time Data/Time												
CAS No.	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
30-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
9-34-5	1,1,2,2-Tetrachloroethane	ND	CCVE	ug/L	0.256	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
9-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
5-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
5-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
53-58-6	1,1-Dichloropropylene	ND		ug/L	0.314	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005	FO
7-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,F	FO PADEP-68-0
5-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,F	FO PADEP-68-0
-93-2	* 1,2,4,5-Tetramethylbenzene	8.90	QL-02	ug/L	0.255	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 04:05	FO
20-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,F	FO PADEP-68-0
-63-6	1,2,4-Trimethylbenzene	72.0	QL-02	ug/L	3.10	5.00	10	EPA 8260D		09/27/2024 02:00	09/28/2024 00:53	FO
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-0
5-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
06-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
5-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
07-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
3-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
8-67-8	1,3,5-Trimethylbenzene	8.31		ug/L	0.347	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-PI	H-0723,NELAC-NY10	0854,NELAC-NY120	58,NJDEP-0
11-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.283	0.500	1	EPA 8260D Certifications:	СТДОН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY1205	FO 58,NJDEP-C
12-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,F	FO PADEP-68-0
06-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.311	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 4 of 40

Log-in Notes:

Client Sample ID: MW-1402

<u>York Sample ID:</u> 24I1449-01

York Project (SDG) No. 24I1449 Client Project ID 41.0163281.00

Matrix Ground Water <u>Collection Date/Time</u> September 24, 2024 1:00 pm

Sample Notes:

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

Sample Prepar	ed by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260D Certifications: N	IELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-04
594-20-7	2,2-Dichloropropane	ND		ug/L	0.466	0.500	1	EPA 8260D Certifications: N	IELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-04
78-93-3	2-Butanone	1.65		ug/L	0.421	0.500	1	EPA 8260D Certifications: C	СТDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 04:05 0854,NELAC-NY120	FO 058,NJDEP-C'
95-49-8	2-Chlorotoluene	ND		ug/L	0.376	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 854,NELAC-NY120:	FO
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
67-64-1	Acetone	3.85	ICVE, QL-02	ug/L	1.34	2.00	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 0854,NELAC-NY120	FO
107-02-8	Acrolein	ND	CCVE	ug/L	0.447	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 854,NELAC-NY120:	FO
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 854,NELAC-NY120:	FO
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 854,NELAC-NY120:	FO
108-86-1	Bromobenzene	ND		ug/L	0.367	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05 2058,NJDEP-CT005,I	FO
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260D Certifications: N	IELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260D Certifications: C	TDOH-PH-	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-CT
156-59-2	cis-1,2-Dichloroethylene	2.41		ug/L	0.294	0.500	1	EPA 8260D Certifications: C	СТДОН-РН	09/26/2024 02:00	09/27/2024 04:05 0854,NELAC-NY120	FO 058,NJDEP-C
										,		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 40

Log-in Notes:

Client Sample ID: MW-1402

York Sample ID: 24I1449-01

York Project (SDG) No. 24I1449

Client Project ID 41.0163281.00 Matrix Ground Water <u>Collection Date/Time</u> September 24, 2024 1:00 pm

Sample Notes:

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-C
110-82-7	Cyclohexane	9.91		ug/L	0.491	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	NELAC-N	IY10854,NELAC-NY1	2058,NJDEP-CT005	,PADEP-68-0
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120	FO 58,NJDEP-C
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-0
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.451	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-0
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	0.466	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-0
00-41-4	Ethyl Benzene	60.0		ug/L	2.90	5.00	10	EPA 8260D		09/27/2024 02:00	09/28/2024 00:53	FO
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	0.479	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005	FO
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-0
74-88-4	* Iodomethane	ND	ICVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 04:05	FO
98-82-8	Isopropylbenzene	21.6		ug/L	0.405	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-I	PH-0723,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,I	FO PADEP-68-0-
80-62-6	Methyl Methacrylate	ND		ug/L	0.415	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005	FO
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-C
108-87-2	Methylcyclohexane	3.44		ug/L	0.477	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	NELAC-N	IY10854,NELAC-NY1	2058,NJDEP-CT005	,PADEP-68-0
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 04:05 854,NELAC-NY120:	FO 58,NJDEP-C
91-20-3	Naphthalene	21.5		ug/L	0.212	2.00	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	NELAC-N	IY10854,NELAC-NY1	2058,NJDEP-CT005	,PADEP-68-0
104-51-8	n-Butylbenzene	2.13		ug/L	0.399	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
103-65-1	n-Propylbenzene	45.8		ug/L	0.384	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1)58,NJDEP-C
05-47-6	o-Xylene	0.290		ug/L	0.261	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-F	PH-0723,NELAC-NY1		
79601-23-1	p- & m- Xylenes	56.4		ug/L	0.578	1.00	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:	CTDOH-F	H-0723,NELAC-NY1		
05-05-5	* p-Diethylbenzene	5.97	QL-02	ug/L	0.341	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
	* P4 k l			-				Certifications:				
622-96-8	* p-Ethyltoluene	21.4		ug/L	0.200	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications:				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 6 of 40

Log-in Notes:

Client Sample ID: MW-1402

York Sample ID:

24I1449-01

York Project (SDG) No. 24I1449

Client Project ID 41.0163281.00

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> September 24, 2024 1:00 pm

Sample Notes:

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

Sample Prepar	red by Method: EPA 5030B											
CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference Mo	ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
99-87-6	p-Isopropyltoluene	0.460		ug/L	0.377	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C	TDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
135-98-8	sec-Butylbenzene	2.82		ug/L	0.444	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C	TDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications: C7	TDOU DU	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05	FO
75-85-4) ID		/T	4.16	8.00	1	EPA 8260D	IDOII-FII	09/26/2024 02:00	09/27/2024 04:05	FO
/3-83-4	tert-Amyl alcohol (TAA)	ND		ug/L	4.10	8.00	1		ELAC-NY	10854,NELAC-NY12		
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	0.511	0.800	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
	, , ,							Certifications: NI	ELAC-NY	10854,NELAC-NY12	2058,NJDEP-CT005,l	PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
									ELAC-NY	10854,NELAC-NY12		
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications: CT	ТООН-РН	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05	FO 58 NIDEP-CT
127-18-4	Tatus ah laus athydau a	ND	ICVE,	ug/L	0.239	0.500	1	EPA 8260D	I DOII I II	09/26/2024 02:00	09/27/2024 04:05	FO
127-10-4	Tetrachloroethylene	ND	QL-02	ug/L	0.237	0.500	1		TDOH-PH	-0723,NELAC-NY10		
109-99-9	* Tetrahydrofuran	ND		ug/L	0.485	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
	,							Certifications:				
108-88-3	Toluene	1.33		ug/L	0.346	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C	TDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications: C7	TDOU DU	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05	FO NIDER CT
10061.02.6	10.75) ID			0.229	0.500	1		троп-гп			
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.300	1	EPA 8260D Certifications: CT	TDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/27/2024 04:05 0854,NELAC-NY120:	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	0.283	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C7	TDOH-PH	-0723,NELAC-NY10	0854,NELAC-NY120:	58,NJDEP-CT
79-01-6	Trichloroethylene	0.860		ug/L	0.249	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C	TDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
				_					I DOH-PH	-0723,NELAC-NY10		
108-05-4	Vinyl acetate	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications: NI	ELAC-NY	09/26/2024 02:00 10854,NELAC-NY12	09/27/2024 04:05 2058,NJDEP-CT005,J	FO PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
75 01 1	Vinyi Cinoriae	ND		ug/ 2					TDOH-PH	-0723,NELAC-NY10		
1330-20-7	Xylenes, Total	56.7		ug/L	0.839	1.50	1	EPA 8260D		09/26/2024 02:00	09/27/2024 04:05	FO
								Certifications: C	TDOH-PI	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
	Surrogate Recoveries	Result		Acco	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	106 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	97.0 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	98.1 %			79-122							

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 40

Log-in Notes:

Client Sample ID: MW-1403

<u>York Sample ID:</u> 24I1449-02

York Project (SDG) No. 24I1449 Client Project ID 41.0163281.00

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Notes:

Sample Prepared	d by Method: EPA 5030B											
CAS No	-	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
79-34-5	1,1,2,2-Tetrachloroethane	ND	CCVE	ug/L	0.256	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.314	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005	FO
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	0.290	QL-02	ug/L	0.255	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:09	FO
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09	FO
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260D Certifications:	CTDOH-PF	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260D Certifications:		09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 8 of 40

Client Sample ID: MW-1403

<u>York Sample ID:</u> 24I1449-02

 York Project (SDG) No.
 Client Project ID

 24I1449
 41.0163281.00

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepar	red by Method: EPA 5030B											
CAS N		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	0.466	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 /10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
95-49-8	2-Chlorotoluene	ND		ug/L	0.376	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
106-43-4	4-Chlorotoluene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
107-02-8	Acrolein	ND	CCVE	ug/L	0.447	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
108-86-1	Bromobenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 /10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 /10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,	FO PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-C
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/27/2024 03:09 854,NELAC-NY120	FO 58,NJDEP-C

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 9 of 40

Client Sample ID: MW-1403

York Sample ID: 24I1449-02

York Project (SDG) No. 24I1449

Client Project ID 41.0163281.00

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	d by Method:	EPA 5030B

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed An	alyst
110-82-7	Cyclohexane	1.79		ug/L	0.491	0.500	1	EPA 8260D	09/26/2024 02:00	FO
124 49 1	D" 11 4	ND		110/I	0.146	0.500	1	Certifications: EPA 8260D	NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADE 09/26/2024 02:00 09/27/2024 03:09	
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	Certifications:	09/26/2024 02:00 09/27/2024 03:09 T	FO DEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.451	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	0.466	0.800	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	0.479	0.800	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005	FO
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
74-88-4	* Iodomethane	ND	ICVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00	FO
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 TCTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
80-62-6	Methyl Methacrylate	ND		ug/L	0.415	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005	FO
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 NELAC-NY10854,NELAC-NY12058,NJDEP-CT005,PADEF	FO P-68-04
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 TCTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 TTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJE	FO DEP-CT
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 TCTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,PAI	FO DEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,PAI	FO DEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.341	0.500	1	EPA 8260D Certifications:		FO
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00	FO
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	09/26/2024 02:00 09/27/2024 03:09 CTDOH-PH-0723.NELAC-NY10854.NELAC-NY12058.NJE	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 10 of 40

Client Sample ID: MW-1403

Sample Prepared by Method: EPA 5030B

York Sample ID: 24I1449-02

 York Project (SDG) No.
 Client Project ID

 24I1449
 41.0163281.00

 $\begin{tabular}{lll} \underline{Matrix} & \underline{Collection\ Date/Time} \\ Ground\ Water & September\ 24,\ 2024 & 1:55\ pm \end{tabular}$

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	1.60		ug/L	0.444	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:09	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120)58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	4.16	8.00	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,I	FO PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	0.511	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,I	FO PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,1	FO PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
127-18-4	Tetrachloroethylene	0.360	ICVE,	ug/L	0.239	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:09	FO
	•		QL-02					Certifications:	CTDOH-P	H-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
109-99-9	* Tetrahydrofuran	ND		ug/L	0.485	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:09	FO
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
79-01-6	Trichloroethylene	0.910		ug/L	0.249	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:09	FO
								Certifications:	CTDOH-P	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-CT
108-05-4	Vinyl acetate	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:09 2058,NJDEP-CT005,I	FO PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120	FO 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.839	1.50	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:09 0854,NELAC-NY120:	FO 58,NJDEP-CT
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	102 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.2 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	102 %			79-122							

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@

Page 11 of 40

Client Sample ID: 9.24.2024_Duplicate **York Sample ID:** 24I1449-03

Collection Date/Time

Sample Notes:

York Project (SDG) No. Client Project ID 24I1449 41.0163281.00

Ground Water September 24, 2024 2:00 pm

Log-in Notes:

Matrix

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

Sample Prepare	ed by Method: EPA 5030B											
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference M	1ethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260D Certifications: C	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 854,NELAC-NY120:	FO 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260D Certifications: C	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 854,NELAC-NY120:	FO 58,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND	CCVE	ug/L	0.256	0.500	1	EPA 8260D Certifications: C	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 854,NELAC-NY120:	FO 58,NJDEP-CT
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260D		09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37	FO
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260D Certifications: C	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 854,NELAC-NY120:	FO 58,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260D	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 854,NELAC-NY120:	FO 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260D		09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37	FO
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.314	0.500	1	EPA 8260D		09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 03:37	FO
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260D		09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 03:37	FO PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260D		09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 03:37	FO
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.255	0.500	1	EPA 8260D Certifications:	VEE/IC-IV	09/26/2024 02:00	09/27/2024 03:37	FO
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260D	JELAC N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 03:37	FO
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260D		H-0723,NELAC-NY10 09/26/2024 02:00	09/27/2024 03:37	FO
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260D		H-0723,NELAC-NY10 09/26/2024 02:00	09/27/2024 03:37	FO
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260D		H-0723,NELAC-NY10 09/26/2024 02:00	09/27/2024 03:37	FO
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	Certifications: CEPA 8260D	CTDOH-P	H-0723,NELAC-NY10 09/26/2024 02:00	854,NELAC-NY120: 09/27/2024 03:37	58,NJDEP-CT FO
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	Certifications: C	CTDOH-P	H-0723,NELAC-NY10 09/26/2024 02:00	854,NELAC-NY120: 09/27/2024 03:37	58,NJDEP-CT FO
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	Certifications: C	CTDOH-P	H-0723,NELAC-NY10 09/26/2024 02:00	854,NELAC-NY120: 09/27/2024 03:37	58,NJDEP-CT FO
541-73-1	1,3-Dichlorobenzene	ND	QL-02		0.283	0.500	1	Certifications: C	CTDOH-P	H-0723,NELAC-NY10 09/26/2024 02:00	854,NELAC-NY120: 09/27/2024 03:37	58,NJDEP-CT FO
142-28-9			QL-02		0.260	0.500	1		CTDOH-P	H-0723,NELAC-NY10 09/26/2024 02:00		
	1,3-Dichloropropane	ND	01.02	ug/L				Certifications: N	NELAC-N	Y10854,NELAC-NY12	2058,NJDEP-CT005,l	PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02		0.311	0.500	1		CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	854,NELAC-NY120:	
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260D Certifications: N	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/27/2024 03:37 2058,NJDEP-CT005,I	FO PADEP-68-04

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE (203) 325-1371 www.YORKLAB.com

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 12 of 40

Client Sample ID: 9.24.2024_Duplicate

York Sample ID: 24I1449-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24I144941.0163281.00Ground WaterSeptember 24, 2024 2:00 pm09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	0.466	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 /10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005	
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
95-49-8	2-Chlorotoluene	ND		ug/L	0.376	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
106-43-4	4-Chlorotoluene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
107-02-8	Acrolein	ND	CCVE	ug/L	0.447	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
108-86-1	Bromobenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 (10854,NELAC-NY1	09/27/2024 03:37	FO
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 /10854,NELAC-NY1	09/27/2024 03:37	FO
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY1	09/27/2024 03:37	FO
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	Certifications: EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
74-87-3	Chloromethane	ND		ug/L	0.372	0.500	1	Certifications: EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	Certifications: EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	Certifications: EPA 8260D Certifications:		I-0723,NELAC-NY1 09/26/2024 02:00 I-0723,NELAC-NY1	09/27/2024 03:37	FO

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 13 of 40

Client Sample ID: 9.24.2024_Duplicate

York Sample ID: 24I1449-03

<u>York Project (SDG) No.</u> <u>Client Project ID</u> 24I1449 41.0163281.00

Ground Water

Matrix

<u>Collection Date/Time</u> September 24, 2024 2:00 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

	ed by Method: EPA 5030B	<u>ciisive</u>			204	1000		Sun	picitote			
CAS No		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
110-82-7	Cyclohexane	1.21		ug/L	0.491	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
								Certifications:	NELAC-N	Y10854,NELAC-NY		
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.451	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	0.466	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260D Certifications:	CTDOH-PF	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	0.479	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005	FO
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
74-88-4	* Iodomethane	ND	ICVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:37	FO
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
80-62-6	Methyl Methacrylate	ND		ug/L	0.415	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005	FO
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,	FO PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.341	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:37	FO
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:37	FO
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 14 of 40

Client Sample ID: 9.24.2024_Duplicate

York Sample ID: 24I1449-03

Date Received

York Project (SDG) No. Client Project ID Matrix Collection Date/Time

24I1449 41.0163281.00 Ground Water September 24, 2024 2:00 pm 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

Log-in Notes:

Sample Notes:

CAS N	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	1.06		ug/L	0.444	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
								Certifications:	CTDOH-I	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	4.16	8.00	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,I	FO PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	0.511	0.800	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,I	FO PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,I	FO PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.239	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
109-99-9	* Tetrahydrofuran	ND		ug/L	0.485	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/27/2024 03:37	FO
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
79-01-6	Trichloroethylene	0.770		ug/L	0.249	0.500	1	EPA 8260D		09/26/2024 02:00	09/27/2024 03:37	FO
								Certifications:	CTDOH-I	PH-0723,NELAC-NY1	0854,NELAC-NY120	58,NJDEP-C
75-69-4	Trichlorofluoromethane	ND		ug/L	0.337	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
108-05-4	Vinyl acetate	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/27/2024 03:37 2058,NJDEP-CT005,I	FO PADEP-68-04
75-01-4	Vinyl Chloride	ND		ug/L	0.469	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
1330-20-7	Xylenes, Total	ND		ug/L	0.839	1.50	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY10	09/27/2024 03:37 0854,NELAC-NY120	FO 58,NJDEP-CT
	Surrogate Recoveries	Result		Acc	eptance Rang	e						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	101 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	98.7 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	101 %			79-122							

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 15 of 40

Client Sample ID: Trip Blank

York Sample ID: 24I1449-04

York Project (SDG) No. 24I1449 Client Project ID 41.0163281.00

Matrix Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOO	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.216	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.266	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
79-34-5	1,1,2,2-Tetrachloroethane	ND	CCVE	ug/L	0.256	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-C
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.286	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.249	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
75-34-3	1,1-Dichloroethane	ND		ug/L	0.272	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
563-58-6	1,1-Dichloropropylene	ND		ug/L	0.314	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005	FO
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.222	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,F	FO PADEP-68-04
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.273	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,F	FO PADEP-68-04
95-93-2	* 1,2,4,5-Tetramethylbenzene	ND	QL-02	ug/L	0.255	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/26/2024 21:58	FO
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.138	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,F	FO PADEP-68-04
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.310	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.432	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
106-93-4	1,2-Dibromoethane	ND		ug/L	0.215	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.270	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
107-06-2	1,2-Dichloroethane	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
78-87-5	1,2-Dichloropropane	ND		ug/L	0.327	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.347	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
541-73-1	1,3-Dichlorobenzene	ND	QL-02	ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
142-28-9	1,3-Dichloropropane	ND		ug/L	0.260	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,F	FO PADEP-68-04
106-46-7	1,4-Dichlorobenzene	ND	QL-02	ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY1205	FO 58,NJDEP-CT
123-91-1	1,4-Dioxane	ND	CCVE	ug/L	35.3	80.0	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,F	FO PADEP-68-04

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 16 of 40

Client Sample ID: Trip Blank

<u>York Sample ID:</u> 24I1449-04

 York Project (SDG) No.
 Client Project ID

 24I1449
 41.0163281.00

Matrix Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA 5030B									D / "P"	D 4 /E*	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
594-20-7	2,2-Dichloropropane	ND		ug/L	0.466	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
78-93-3	2-Butanone	ND		ug/L	0.421	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
95-49-8	2-Chlorotoluene	ND		ug/L	0.376	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-C
591-78-6	2-Hexanone	ND		ug/L	0.320	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
106-43-4	4-Chlorotoluene	ND		ug/L	0.311	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.365	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
67-64-1	Acetone	ND		ug/L	1.34	2.00	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
107-02-8	Acrolein	ND	CCVE	ug/L	0.447	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
107-13-1	Acrylonitrile	ND		ug/L	0.422	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
71-43-2	Benzene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
108-86-1	Bromobenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
74-97-5	Bromochloromethane	ND		ug/L	0.354	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 Y10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
75-27-4	Bromodichloromethane	ND		ug/L	0.245	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
75-25-2	Bromoform	ND		ug/L	0.163	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
74-83-9	Bromomethane	ND		ug/L	0.119	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
75-15-0	Carbon disulfide	ND		ug/L	0.362	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
56-23-5	Carbon tetrachloride	ND		ug/L	0.204	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
108-90-7	Chlorobenzene	ND		ug/L	0.284	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
75-00-3	Chloroethane	ND		ug/L	0.448	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
67-66-3	Chloroform	ND		ug/L	0.243	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
74-87-3	Chloromethane	1.51		ug/L	0.372	0.500	1	EPA 8260D Certifications:	CTDOH-P	09/26/2024 02:00 H-0723,NELAC-NY1	09/26/2024 21:58 0854,NELAC-NY120	FO 058,NJDEP-C
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.294	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58	FO
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.262	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58	FO
										-,	,	,

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 17 of 40

Sample Information

Log-in Notes:

Client Sample ID: Trip Blank

<u>York Sample ID:</u> 24I1449-04

York Project (SDG) No. 24I1449 Client Project ID 41.0163281.00

<u>Matrix</u> Ground Water <u>Collection Date/Time</u> September 24, 2024 1:55 pm

Sample Notes:

Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Sample Prepared by Method: EPA 5030B

CAS No	o. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
110-82-7	Cyclohexane	ND		ug/L	0.491	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 /10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
124-48-1	Dibromochloromethane	ND		ug/L	0.146	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58	FO
74-95-3	Dibromomethane	ND		ug/L	0.203	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 /10854,NELAC-NY12	09/26/2024 21:58	FO
75-71-8	Dichlorodifluoromethane	ND	CCVE	ug/L	0.451	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 /10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
108-20-3	Diisopropyl ether (DIPE)	ND		ug/L	0.466	0.800	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 /10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
100-41-4	Ethyl Benzene	ND		ug/L	0.290	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58	FO
637-92-3	Ethyl tert-butyl ether (ETBE)	ND		ug/L	0.479	0.800	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 710854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005	FO
87-68-3	Hexachlorobutadiene	ND		ug/L	0.241	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 710854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
74-88-4	* Iodomethane	ND	ICVE	ug/L	0.477	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/26/2024 21:58	FO
98-82-8	Isopropylbenzene	ND		ug/L	0.405	0.500	1	EPA 8260D Certifications:	СТДОН-РІ	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-C
79-20-9	Methyl acetate	ND		ug/L	0.442	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 710854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
80-62-6	Methyl Methacrylate	ND		ug/L	0.415	0.500	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 710854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005	FO
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.244	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58 854,NELAC-NY120	FO 58,NJDEP-C
108-87-2	Methylcyclohexane	ND		ug/L	0.477	0.500	1	EPA 8260D Certifications:	NELAC-N	09/26/2024 02:00 / 10854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
75-09-2	Methylene chloride	ND		ug/L	0.397	2.00	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-C
91-20-3	Naphthalene	ND		ug/L	0.212	2.00	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 710854,NELAC-NY12	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
104-51-8	n-Butylbenzene	ND		ug/L	0.399	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58 9854,NELAC-NY120	FO 58,NJDEP-C
103-65-1	n-Propylbenzene	ND		ug/L	0.384	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58 9854,NELAC-NY120	FO 58,NJDEP-C
95-47-6	o-Xylene	ND		ug/L	0.261	0.500	1	EPA 8260D Certifications:	СТДОН-РІ	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,PADEP-68
179601-23-1	p- & m- Xylenes	ND		ug/L	0.578	1.00	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 H-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,PADEP-68
105-05-5	* p-Diethylbenzene	ND	QL-02	ug/L	0.341	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/26/2024 21:58	FO
622-96-8	* p-Ethyltoluene	ND		ug/L	0.200	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/26/2024 21:58	FO
99-87-6	p-Isopropyltoluene	ND		ug/L	0.377	0.500	1	EPA 8260D Certifications:	CTDOH-PI	09/26/2024 02:00 I-0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-C

Sample Information

Client Sample ID: Trip Blank

<u>York Sample ID:</u> 24I1449-04

York Project (SDG) No. 24I1449 Client Project ID 41.0163281.00

Matrix Ground Water

Certifications:

EPA 8260D

Certifications:

EPA 8260D

Certifications:

EPA 8260D

Certifications:

EPA 8260D

Certifications:

<u>Collection Date/Time</u> September 24, 2024 1:55 pm Date Received 09/24/2024

Volatile Organics, 8260 - Low Comprehensive

Log-in Notes:

Sample Notes:

Sample Prepa	ared by Method: EPA 5030B											
CAS	No. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
135-98-8	sec-Butylbenzene	ND		ug/L	0.444	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120:	FO 58,NJDEP-CT
100-42-5	Styrene	ND		ug/L	0.255	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
75-85-4	tert-Amyl alcohol (TAA)	ND		ug/L	4.16	8.00	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
994-05-8	tert-Amyl methyl ether (TAME)	ND		ug/L	0.511	0.800	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
75-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.608	1.00	1	EPA 8260D Certifications:	NELAC-NY	09/26/2024 02:00 10854,NELAC-NY1	09/26/2024 21:58 2058,NJDEP-CT005,I	FO PADEP-68-04
98-06-6	tert-Butylbenzene	ND		ug/L	0.367	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
127-18-4	Tetrachloroethylene	ND	ICVE, QL-02	ug/L	0.239	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120	FO 58,NJDEP-CT
109-99-9	* Tetrahydrofuran	ND		ug/L	0.485	0.500	1	EPA 8260D Certifications:		09/26/2024 02:00	09/26/2024 21:58	FO
108-88-3	Toluene	ND		ug/L	0.346	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120:	FO 58,NJDEP-CT
156-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.279	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120:	FO 58,NJDEP-CT
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.229	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120:	FO 58,NJDEP-CT
110-57-6	trans-1,4-dichloro-2-butene	ND		ug/L	0.283	0.500	1	EPA 8260D Certifications:	CTDOH-PH	09/26/2024 02:00 -0723,NELAC-NY10	09/26/2024 21:58 0854,NELAC-NY120:	FO 58,NJDEP-CT
79-01-6	Trichloroethylene	ND		ug/L	0.249	0.500	1	EPA 8260D		09/26/2024 02:00	09/26/2024 21:58	FO

0.337

0.477

0.469

ug/L

ug/L

ug/L

0.500

0.500

0.500

1.50

1330-20-7	Xylenes, Total	ND	ug/L 0.839
	Surrogate Recoveries	Result	Acceptance Range
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	99.6 %	69-130
2037-26-5	Surrogate: SURR: Toluene-d8	98.0 %	81-117
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	102 %	79-122

ND

ND

ND

120 RESEARCH DRIVE
www.YORKLAB.com

75-69-4

108-05-4

75-01-4

Trichlorofluoromethane

Vinyl acetate

Vinyl Chloride

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

09/26/2024 02:00 09/26/2024 21:58

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

09/26/2024 02:00 09/26/2024 21:58

NELAC-NY10854, NELAC-NY12058, NJDEP-CT005, PADEP-68-04

CTDOH-PH-0723, NELAC-NY10854, NELAC-NY12058, NJDEP-CT

09/26/2024 02:00 09/26/2024 21:58

CTDOH-PH-0723,NELAC-NY10854,NELAC-NY12058,NJDEP-CT

09/26/2024 21:58

09/26/2024 02:00

FO

FO

FO

ClientServices@

Page 19 of 40

Analytical Batch Summary

Batch ID: BI41686	Preparation Method:	EPA 5030B	Prepared By:	FO
YORK Sample ID	Client Sample ID	Preparation Date		
24I1449-01	MW-1402	09/26/24		
24I1449-02	MW-1403	09/26/24		
24I1449-03	9.24.2024_Duplicate	09/26/24		
24I1449-04	Trip Blank	09/26/24		
BI41686-BLK1	Blank	09/26/24		
BI41686-BS1	LCS	09/26/24		
BI41686-BSD1	LCS Dup	09/26/24		
BI41686-MS1	Matrix Spike	09/26/24		
BI41686-MSD1	Matrix Spike Dup	09/26/24		
Batch ID: BI41780	Preparation Method:	EPA 5030B	Prepared By:	FO
YORK Sample ID	Client Sample ID	Preparation Date		
24I1449-01RE1	MW-1402	09/27/24		
BI41780-BLK1	Blank	09/27/24		
BI41780-BS1	LCS	09/27/24		
BI41780-BSD1	LCS Dup	09/27/24		

ClientServices@

Page 20 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

ank (BI41686-BLK1)				Prepared & Analyzed: 09/
,1,2-Tetrachloroethane	ND	0.500	ug/L	110pared & 111ar) 25dr (97.20)
,1-Trichloroethane	ND	0.500	ug/L	
,2,2-Tetrachloroethane	ND	0.500	"	
2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"	
7 11101110110 1,2,2 1111110110011111110 (110011	ND	0.500		
2-Trichloroethane	ND	0.500	"	
Dichloroethane	ND	0.500	"	
Dichloroethylene	ND	0.500	"	
Dichloropropylene	ND	0.500	"	
-Trichlorobenzene	ND	0.500	"	
-Trichloropropane	ND	0.500	"	
5.5-Tetramethylbenzene	ND	0.500	"	
-Trichlorobenzene	ND	0.500	"	
1-Trimethylbenzene	ND	0.500	"	
Dibromo-3-chloropropane	ND	0.500	"	
Dibromoethane	ND	0.500	"	
Dichlorobenzene	ND	0.500	"	
Dichloroethane	ND	0.500	"	
Dichloropropane	ND	0.500	"	
Trimethylbenzene	ND	0.500	"	
ichlorobenzene	ND	0.500	"	
ichloropropane	ND	0.500	"	
ichlorobenzene	ND	0.500	"	
ioxane	ND	80.0	"	
chloropropane	ND	0.500	"	
nnone	ND	0.500	"	
orotoluene	ND	0.500	"	
anone	ND	0.500	"	
lorotoluene	ND	0.500	"	
thyl-2-pentanone	ND	0.500	"	
one	ND	2.00	"	
lein	ND	0.500	"	
onitrile	ND	0.500	"	
ene	ND	0.500	"	
obenzene	ND	0.500	"	
ochloromethane	ND	0.500	"	
odichloromethane	ND	0.500	"	
oform	ND	0.500	m .	
omethane	ND	0.500	"	
on disulfide	ND	0.500	"	
on tetrachloride	ND	0.500	"	
obenzene	ND	0.500	m .	
roethane	ND	0.500	m .	
oform	ND	0.500	"	
romethane	ND	0.500	m .	
2-Dichloroethylene	ND	0.500	"	
3-Dichloropropylene	ND	0.500	"	
phexane	ND	0.500	"	
omochloromethane	ND	0.500	"	
omomethane	ND	0.500	"	

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 21 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI41686 - EPA 5030B						
Blank (BI41686-BLK1)						Prepared & Analyzed: 09/26/2024
Dichlorodifluoromethane	ND	0.500	ug/L			
Diisopropyl ether (DIPE)	ND	0.800	"			
Ethyl Benzene	ND	0.500	"			
Ethyl tert-butyl ether (ETBE)	ND	0.800	"			
Hexachlorobutadiene	ND	0.500	"			
Iodomethane	ND	0.500	"			
Isopropylbenzene	ND	0.500	"			
Methyl acetate	ND	0.500	"			
Methyl Methacrylate	ND	0.500	"			
Methyl tert-butyl ether (MTBE)	ND	0.500	"			
Methylcyclohexane	ND	0.500	"			
Methylene chloride	ND	2.00	"			
Naphthalene	ND	2.00	"			
n-Butylbenzene	ND	0.500	"			
n-Propylbenzene	ND	0.500	"			
o-Xylene	ND	0.500	"			
p- & m- Xylenes	ND	1.00	"			
p-Diethylbenzene	ND	0.500	"			
p-Ethyltoluene	ND	0.500	"			
p-Isopropyltoluene	ND	0.500	"			
sec-Butylbenzene	ND	0.500	"			
Styrene	ND	0.500	"			
tert-Amyl alcohol (TAA)	ND	8.00	"			
tert-Amyl methyl ether (TAME)	ND	0.800	"			
tert-Butyl alcohol (TBA)	ND	1.00	"			
tert-Butylbenzene	ND	0.500	"			
Tetrachloroethylene	ND	0.500	"			
Tetrahydrofuran	ND	0.500	"			
Toluene	ND	0.500	"			
trans-1,2-Dichloroethylene	ND	0.500	"			
trans-1,3-Dichloropropylene	ND	0.500	"			
trans-1,4-dichloro-2-butene	ND	0.500	"			
Trichloroethylene	ND	0.500	"			
Trichlorofluoromethane	ND	0.500	"			
Vinyl acetate	ND	0.500	"			
Vinyl Chloride	ND	0.500	"			
Xylenes, Total	ND	1.50	"			
Surrogate: SURR: 1,2-Dichloroethane-d4	9.85		"	10.0	98.5	69-130
Surrogate: SURR: Toluene-d8	9.80		"	10.0	98.0	81-117
Surrogate: SURR: p-Bromofluorobenzene	10.0		"	10.0	100	79-122

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 22 of 40

www.YORKLAB.com

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit Unit	s Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI41686 - EPA 5030B										
LCS (BI41686-BS1)						Prej	pared & Analy	zed: 09/26/	2024	
1,1,1,2-Tetrachloroethane	9.19	ug/I	10.0		91.9	82-126				
1,1,1-Trichloroethane	9.50	"	10.0		95.0	78-136				
1,1,2,2-Tetrachloroethane	10.1	"	10.0		101	76-129				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.59	"	10.0		95.9	54-165				
113) 1,1,2-Trichloroethane	8.97	"	10.0		89.7	82-123				
1,1-Dichloroethane	9.18	"	10.0		91.8	82-129				
1,1-Dichloroethylene	9.69	,,	10.0		96.9	68-138				
1,1-Dichloropropylene	9.60	,,	10.0		96.0	83-133				
1,2,3-Trichlorobenzene	8.55	,,	10.0		85.5	76-136				
1,2,3-Trichloropropane	9.04	"	10.0		90.4	77-128				
1,2,4,5-Tetramethylbenzene	8.24	,,	10.0		82.4	85-140	Low Bias			
1,2,4-Trichlorobenzene	8.77	,,	10.0		87.7	76-137	Low Dias			
1,2,4-Trimethylbenzene	9.09	,,								
1,2-Dibromo-3-chloropropane	9.09 9.05		10.0 10.0		90.9 90.5	82-132 45-147				
1,2-Dibromoethane		,,								
1,2-Dichlorobenzene	9.25 8.83	,,	10.0		92.5	83-124				
1,2-Dichloroethane			10.0		88.3	79-123				
	9.41		10.0		94.1	73-132				
1,2-Dichloropropane	9.00		10.0		90.0	78-126				
1,3,5-Trimethylbenzene	8.94		10.0		89.4	80-131				
1,3-Dichlorobenzene	8.73	"	10.0		87.3	86-122				
1,3-Dichloropropane	8.93		10.0		89.3	81-125				
1,4-Dichlorobenzene	8.73	"	10.0		87.3	85-124				
1,4-Dioxane	195	"	210		93.0	10-349				
2,2-Dichloropropane	9.31		10.0		93.1	56-150				
2-Butanone	9.65		10.0		96.5	49-152				
2-Chlorotoluene	8.85	"	10.0		88.5	79-130				
2-Hexanone	8.16	"	10.0		81.6	51-146				
4-Chlorotoluene	8.85	"	10.0		88.5	79-128				
4-Methyl-2-pentanone	8.71	"	10.0		87.1	57-145				
Acetone	22.4	"	10.0		224	14-150	High Bias			
Acrolein	10.7	"	10.0		107	10-153				
Acrylonitrile	9.76	"	10.0		97.6	51-150				
Benzene	9.85	"	10.0		98.5	85-126				
Bromobenzene	8.86	"	10.0		88.6	78-129				
Bromochloromethane	9.32	"	10.0		93.2	77-128				
Bromodichloromethane	9.01	"	10.0		90.1	79-128				
Bromoform	9.48	"	10.0		94.8	78-133				
Bromomethane	12.1	"	10.0		121	43-168				
Carbon disulfide	11.2	"	10.0		112	68-146				
Carbon tetrachloride	9.97	"	10.0		99.7	77-141				
Chlorobenzene	9.05	"	10.0		90.5	88-120				
Chloroethane	10.1	"	10.0		101	65-136				
Chloroform	9.27	"	10.0		92.7	82-128				
Chloromethane	10.9	"	10.0		109	43-155				
cis-1,2-Dichloroethylene	9.29	"	10.0		92.9	83-129				
cis-1,3-Dichloropropylene	8.88	"	10.0		88.8	80-131				
Cyclohexane	10.4	"	10.0		104	63-149				
Dibromochloromethane	9.34	"	10.0		93.4	80-130				
Dibromomethane										
Dioromomethane	8.96	"	10.0		89.6	72-134				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 23 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS (BI41686-BS1)					Prepared & Analyzed: 09/26/2024
Diisopropyl ether (DIPE)	9.48	ug/L	10.0	94.8	70-130
Ethyl Benzene	9.34	"	10.0	93.4	80-131
Ethyl tert-butyl ether (ETBE)	9.43	"	10.0	94.3	70-130
Hexachlorobutadiene	8.36	"	10.0	83.6	67-146
odomethane	8.67	"	10.0	86.7	70-130
opropylbenzene	9.02	"	10.0	90.2	76-140
ethyl acetate	7.64	"	10.0	76.4	51-139
ethyl Methacrylate	9.40	"	10.0	94.0	72-132
ethyl tert-butyl ether (MTBE)	8.87	"	10.0	88.7	76-135
ethylcyclohexane	8.88	"	10.0	88.8	72-143
ethylene chloride	11.1	"	10.0	111	55-137
aphthalene	8.74	"	10.0	87.4	70-147
Butylbenzene	8.63	"	10.0	86.3	79-132
Propylbenzene	9.49	"	10.0	94.9	78-133
Kylene	9.00	"	10.0	90.0	78-130
& m- Xylenes	19.1	"	20.0	95.4	77-133
Diethylbenzene	8.48	"	10.0	84.8	84-134
thyltoluene	9.19	"	10.0	91.9	88-129
sopropyltoluene	8.93	"	10.0	89.3	81-136
e-Butylbenzene	8.71	"	10.0	87.1	79-137
rene	9.18	"	10.0	91.8	67-132
t-Amyl alcohol (TAA)	100	"	100	100	70-130
t-Amyl methyl ether (TAME)	9.52	"	10.0	95.2	70-130
-Butyl alcohol (TBA)	54.7	"	50.0	109	25-162
t-Butylbenzene	8.64	"	10.0	86.4	77-138
trachloroethylene	4.77	"	10.0	47.7	82-131 Low Bias
rahydrofuran	9.67	"	10.0	96.7	36-166
uene	9.27	"	10.0	92.7	80-127
ns-1,2-Dichloroethylene	9.53	"	10.0	95.3	80-132
ns-1,3-Dichloropropylene	8.99	"	10.0	89.9	78-131
ns-1,4-dichloro-2-butene	8.57	"	10.0	85.7	63-141
chloroethylene	9.90	"	10.0	99.0	82-128
chlorofluoromethane	10.2	"	10.0	102	67-139
nyl acetate	27.6	"	10.0	276	21-90 High Bias
nyl Chloride	10.9	"	10.0	109	58-145
rrogate: SURR: 1,2-Dichloroethane-d4	10.0	"	10.0	100	69-130
rrogate: SURR: Toluene-d8	9.69	"	10.0	96.9	81-117
GUDD D A I	0.01	"	10.0	00.	#0.100

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 Page 24 of 40 ClientServices@

10.0

99.1

79-122

www.YORKLAB.com (203) 325-1371

9.91

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS Dup (BI41686-BSD1)					Prep	pared & Analy	zed: 09/26/2	.024
,1,2-Tetrachloroethane	9.00	ug/L	10.0	90.0	82-126		2.09	30
,1-Trichloroethane	9.19	"	10.0	91.9	78-136		3.32	30
,2,2-Tetrachloroethane	9.86	"	10.0	98.6	76-129		2.80	30
1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.21	"	10.0	92.1	54-165		4.04	30
,2-Trichloroethane	8.72	"	10.0	87.2	82-123		2.83	30
-Dichloroethane	8.91	"	10.0	89.1	82-129		2.99	30
-Dichloroethylene	9.34	"	10.0	93.4	68-138		3.68	30
-Dichloropropylene	9.24	"	10.0	92.4	83-133		3.82	30
2,3-Trichlorobenzene	8.25	"	10.0	82.5	76-136		3.57	30
2,3-Trichloropropane	8.87	"	10.0	88.7	77-128		1.90	30
2,4,5-Tetramethylbenzene	8.06	"	10.0	80.6	85-140	Low Bias	2.21	30
,4-Trichlorobenzene	8.46	"	10.0	84.6	76-137		3.60	30
,4-Trimethylbenzene	8.86	"	10.0	88.6	82-132		2.56	30
2-Dibromo-3-chloropropane	8.62	"	10.0	86.2	45-147		4.87	30
-Dibromoethane	8.97	"	10.0	89.7	83-124		3.07	30
2-Dichlorobenzene	8.68	"	10.0	86.8	79-123		1.71	30
-Dichloroethane	9.09	"	10.0	90.9	73-132		3.46	30
2-Dichloropropane	8.89	"	10.0	88.9	78-126		1.23	30
,5-Trimethylbenzene	8.79	"	10.0	87.9	80-131		1.69	30
3-Dichlorobenzene	8.56	"	10.0	85.6	86-122	Low Bias	1.97	30
-Dichloropropane	8.79	"	10.0	87.9	81-125		1.58	30
-Dichlorobenzene	8.47	"	10.0	84.7	85-124	Low Bias	3.02	30
-Dioxane	195	"	210	93.0	10-349		0.0410	30
-Dichloropropane	8.88	"	10.0	88.8	56-150		4.73	30
utanone	9.28	"	10.0	92.8	49-152		3.91	30
hlorotoluene	8.61	"	10.0	86.1	79-130		2.75	30
exanone	7.96	"	10.0	79.6	51-146		2.48	30
nlorotoluene	8.61	"	10.0	86.1	79-128		2.75	30
Iethyl-2-pentanone	8.50	"	10.0	85.0	57-145		2.44	30
tone	22.0	"	10.0	220	14-150	High Bias	1.94	30
rolein	10.6	"	10.0	106	10-153	Ü	1.22	30
rylonitrile	9.77	"	10.0	97.7	51-150		0.102	30
nzene	9.55	"	10.0	95.5	85-126		3.09	30
omobenzene	8.69	"	10.0	86.9	78-129		1.94	30
omochloromethane	9.05	"	10.0	90.5	77-128		2.94	30
omodichloromethane	8.85	"	10.0	88.5	79-128		1.79	30
omoform	9.31	"	10.0	93.1	78-133		1.81	30
omomethane	13.8	"	10.0	138	43-168		12.7	30
rbon disulfide	10.7	"	10.0	107	68-146		3.93	30
rbon tetrachloride	9.58	"	10.0	95.8	77-141		3.99	30
lorobenzene	8.84	"	10.0	88.4	88-120		2.35	30
oroethane	9.77	"	10.0	97.7	65-136		3.22	30
loroform	9.02	"	10.0	90.2	82-128		2.73	30
oromethane	11.1	"	10.0	111	43-155		1.81	30
-1,2-Dichloroethylene	9.02	"	10.0	90.2	83-129		2.95	30
1,3-Dichloropropylene	8.66	"	10.0	86.6	80-131		2.51	30
clohexane	10.0	"	10.0	100	63-149		3.83	30
promochloromethane	9.09	"	10.0	90.9	80-130		2.71	30
promomethane	9.09 8.72	"	10.0	90.9 87.2	72-134		2.71	30
chlorodifluoromethane	13.0	,,	10.0	130	44-144		5.18	30

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 25 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI41686 - EPA 5030B											
Y COOR ON THE COOR DODA'S							D.	10.4.1	1 00/06	/2024	

LCS Dup (BI41686-BSD1)					Prepared & An	alvzed: 09/26/	2024
Diisopropyl ether (DIPE)	9.32	ug/L	10.0	93.2	70-130	1.70	30
Ethyl Benzene	9.11	"	10.0	91.1	80-131	2.49	30
Ethyl tert-butyl ether (ETBE)	9.22	"	10.0	92.2	70-130	2.25	30
Hexachlorobutadiene	8.26	"	10.0	82.6	67-146	1.20	30
odomethane	7.60	"	10.0	76.0	70-130	13.2	30
sopropylbenzene	8.76	"	10.0	87.6	76-140	2.92	30
Methyl acetate	7.54	"	10.0	75.4	51-139	1.32	30
Methyl Methacrylate	9.15	"	10.0	91.5	72-132	2.70	30
Methyl tert-butyl ether (MTBE)	8.62	"	10.0	86.2	76-135	2.86	30
Methylcyclohexane	8.51	"	10.0	85.1	72-143	4.26	30
Methylene chloride	11.5	"	10.0	115	55-137	3.55	30
aphthalene	8.52	"	10.0	85.2	70-147	2.55	30
-Butylbenzene	8.33	"	10.0	83.3	79-132	3.54	30
-Propylbenzene	9.21	"	10.0	92.1	78-133	2.99	30
-Xylene	8.82	"	10.0	88.2	78-130	2.02	30
- & m- Xylenes	18.6	"	20.0	93.1	77-133	2.44	30
-Diethylbenzene	8.16	"	10.0	81.6	84-134 Low Bias	3.85	30
Ethyltoluene	8.97	"	10.0	89.7	88-129	2.42	30
-Isopropyltoluene	8.63	"	10.0	86.3	81-136	3.42	30
ec-Butylbenzene	8.46	"	10.0	84.6	79-137	2.91	30
tyrene	8.94	"	10.0	89.4	67-132	2.65	30
ert-Amyl alcohol (TAA)	97.0	"	100	97.0	70-130	3.55	30
ert-Amyl methyl ether (TAME)	9.31	"	10.0	93.1	70-130	2.23	30
ert-Butyl alcohol (TBA)	53.2	"	50.0	106	25-162	2.78	30
ert-Butylbenzene	8.48	"	10.0	84.8	77-138	1.87	30
etrachloroethylene	4.59	"	10.0	45.9	82-131 Low Bias	3.85	30
etrahydrofuran	9.45	"	10.0	94.5	36-166	2.30	30
oluene	9.10	"	10.0	91.0	80-127	1.85	30
ans-1,2-Dichloroethylene	9.15	"	10.0	91.5	80-132	4.07	30
rans-1,3-Dichloropropylene	8.79	"	10.0	87.9	78-131	2.25	30
rans-1,4-dichloro-2-butene	8.37	"	10.0	83.7	63-141	2.36	30
richloroethylene	9.70	"	10.0	97.0	82-128	2.04	30
richlorofluoromethane	9.79	"	10.0	97.9	67-139	4.30	30
inyl acetate	27.0	"	10.0	270	21-90 High Bia	2.20	30
inyl Chloride	10.4	"	10.0	104	58-145	4.13	30
urrogate: SURR: 1,2-Dichloroethane-d4	9.75	"	10.0	97.5	69-130		
urrogate: SURR: Toluene-d8	9.78	"	10.0	97.8	81-117		
urrogate: SURR: p-Bromofluorobenzene	9.92	"	10.0	99.2	79-122		

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@

Page 26 of 40

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI41686 - EPA 5030B											
Matrix Spike (BI41686-MS1)	*Source sample: 24l	11449-01 (MW	7-1402)				Prej	pared: 09/26/2	024 Analyz	zed: 09/27/2	2024
1,1,1,2-Tetrachloroethane	11.6		ug/L	10.0	0.00	116	45-161				
1,1,1-Trichloroethane	11.6		"	10.0	0.00	116	70-146				
1,1,2,2-Tetrachloroethane	11.6		"	10.0	0.00	116	74-121				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.2		"	10.0	0.00	112	21-217				
113)											
1,1,2-Trichloroethane	10.4		"	10.0	0.00	104	59-146				
1,1-Dichloroethane	10.9		"	10.0	0.00	109	54-146				
1,1-Dichloroethylene	11.6		"	10.0	0.00	116	44-165				
1,1-Dichloropropylene	11.7		"	10.0	0.00	117	82-134				
1,2,3-Trichlorobenzene	8.64		"	10.0	0.00	86.4	40-161				
1,2,3-Trichloropropane	10.7		"	10.0	0.00	107	74-127				
1,2,4,5-Tetramethylbenzene	14.6		"	10.0	8.90	57.1	27-190				
1,2,4-Trichlorobenzene	9.30		"	10.0	0.00	93.0	41-161				
1,2,4-Trimethylbenzene	84.3		"	10.0	122	NR	72-129	Low Bias			
1,2-Dibromo-3-chloropropane	9.96		"	10.0	0.00	99.6	31-151				
1,2-Dibromoethane	10.6		"	10.0	0.00	106	75-125				
1,2-Dichlorobenzene	10.1		"	10.0	0.00	101	63-122				
1,2-Dichloroethane	10.8		"	10.0	0.00	108	68-131				
1,2-Dichloropropane	10.7		"	10.0	0.00	107	77-121				
1,3,5-Trimethylbenzene	15.4		"	10.0	8.31	70.6	69-126				
1,3-Dichlorobenzene	10.1		"	10.0	0.00	101	74-119				
1,3-Dichloropropane	10.3		"	10.0	0.00	103	77-119				
1,4-Dichlorobenzene	10.1		"	10.0	0.00	101	70-124				
1,4-Dioxane	216		"	210	0.00	103	10-310				
2,2-Dichloropropane	8.80		"	10.0	0.00	88.0	10-160				
2-Butanone	11.4		"	10.0	1.65	98.0	10-193				
2-Chlorotoluene	10.3		"	10.0	0.00	103	70-126				
2-Hexanone	9.25		"	10.0	0.00	92.5	53-133				
4-Chlorotoluene	10.3		"	10.0	0.00	103	69-124				
4-Methyl-2-pentanone	10.1		"	10.0	0.00	101	38-150				
Acetone	27.1		"	10.0	3.85	232	13-149	High Bias			
Acrolein	16.0		"	10.0	0.00	160	10-195				
Acrylonitrile	10.5		"	10.0	0.00	105	37-165				
Benzene	11.8		"	10.0	0.00	118	38-155				
Bromobenzene	10.3		"	10.0	0.00	103	72-122				
Bromochloromethane	10.9		"	10.0	0.00	109	75-121				
Bromodichloromethane	10.7		"	10.0	0.00	107	70-129				
Bromoform	10.9		"	10.0	0.00	109	66-136				
Bromomethane	13.2		"	10.0	0.00	132	30-158				
Carbon disulfide	13.3		"	10.0	0.00	133	10-138				
Carbon tetrachloride	12.2		"	10.0	0.00	122	71-146				
Chlorobenzene	10.7		"	10.0	0.00	107	81-117				
Chloroethane	12.0		"	10.0	0.00	120	51-145				
Chloroform	11.0		"	10.0	0.00	110	80-124				
Chloromethane	12.9		"	10.0	0.00	129	16-163				
cis-1,2-Dichloroethylene	12.2		"	10.0	2.41	98.0	76-125				
cis-1,3-Dichloropropylene	10.0		"	10.0	0.00	100	58-131				
Cyclohexane	16.1		"	10.0	9.91	61.6	70-130	Low Bias			
Dibromochloromethane	10.8		"	10.0	0.00	108	71-129				
Dibromomethane	10.3		"	10.0	0.00	103	76-120				
Dichlorodifluoromethane	13.8		"	10.0	0.00	138	30-147				

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 27 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Matrix Spike (BI41686-MS1)	*Source sample: 24I1449	-01 (MW-1402)				Pre	pared: 09/26/2024 Analyzed: 09/27/202
Diisopropyl ether (DIPE)	10.9	ug/L	10.0	0.00	109	70-130	
Ethyl Benzene	68.7	"	10.0	97.9	NR	72-128	Low Bias
Ethyl tert-butyl ether (ETBE)	10.6	"	10.0	0.00	106	70-130	
Hexachlorobutadiene	8.62	"	10.0	0.00	86.2	34-166	
lodomethane	12.4	"	10.0	0.00	124	70-130	
Isopropylbenzene	23.4	"	10.0	21.6	17.2	66-139	Low Bias
Methyl acetate	47.0	"	10.0	0.00	470	10-200	High Bias
Methyl Methacrylate	12.8	"	10.0	0.00	128	68-124	High Bias
Methyl tert-butyl ether (MTBE)	9.91	"	10.0	0.00	99.1	75-128	
Methylcyclohexane	11.8	"	10.0	3.44	83.3	70-130	
Methylene chloride	11.8	"	10.0	0.00	118	57-128	
Naphthalene	24.2	"	10.0	21.5	26.8	39-158	Low Bias
n-Butylbenzene	10.6	"	10.0	2.13	85.1	61-138	
n-Propylbenzene	37.4	"	10.0	45.8	NR	66-134	Low Bias
o-Xylene	10.8	"	10.0	0.290	106	69-126	
o- & m- Xylenes	47.1	"	20.0	56.4	NR	67-130	Low Bias
p-Diethylbenzene	12.5	"	10.0	5.97	65.2	52-150	
p-Ethyltoluene	23.0	"	10.0	21.4	15.4	76-127	Low Bias
p-Isopropyltoluene	10.5	"	10.0	0.460	100	64-137	
sec-Butylbenzene	11.6	"	10.0	2.82	88.3	53-155	
Styrene	10.8	"	10.0	0.00	108	69-125	
ert-Amyl alcohol (TAA)	110	"	100	0.00	110	70-130	
ert-Amyl methyl ether (TAME)	10.7	"	10.0	0.00	107	70-130	
tert-Butyl alcohol (TBA)	59.2	"	50.0	0.00	118	10-130	
ert-Butylbenzene	10.3	"	10.0	0.00	103	65-139	
Tetrachloroethylene	5.89	"	10.0	0.200	56.9	64-139	Low Bias
Tetrahydrofuran	10.6	"	10.0	0.00	106	10-188	
Toluene	11.7	"	10.0	1.33	103	76-123	
rans-1,2-Dichloroethylene	11.4	"	10.0	0.00	114	79-131	
rans-1,3-Dichloropropylene	10.2	"	10.0	0.00	102	55-130	
rans-1,4-dichloro-2-butene	10.4	"	10.0	0.00	104	25-155	
Trichloroethylene	12.5	"	10.0	0.860	116	53-145	
Frichlorofluoromethane	12.2	"	10.0	0.00	122	61-142	
Vinyl acetate	31.7	"	10.0	0.00	317	10-87	High Bias
Vinyl Chloride	12.6	"	10.0	0.00	126	31-165	-

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 Page 28 of 40 ClientServices@

10.0

10.0

10.0

98.7

97.6

99.5

69-130

81-117

79-122

www.YORKLAB.com

Surrogate: SURR: 1,2-Dichloroethane-d4

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

Surrogate: SURR: Toluene-d8

9.87

9.76

9.95

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI41686 - EPA 5030B											
Matrix Spike Dup (BI41686-MSD1)	*Source sample: 24I	1449-01 (MV	V-1402)				Pre	pared: 09/26/2	024 Analyz	ed: 09/27/	2024
1,1,1,2-Tetrachloroethane	11.4	,	ug/L	10.0	0.00	114	45-161		2.00	30	
1,1,1-Trichloroethane	11.4		"	10.0	0.00	114	70-146		1.75	30	
1,1,2,2-Tetrachloroethane	11.4		"	10.0	0.00	114	74-121		1.39	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.0		"	10.0	0.00	110	21-217		2.25	30	
113)											
1,1,2-Trichloroethane	9.98		"	10.0	0.00	99.8	59-146		4.31	30	
1,1-Dichloroethane	10.7		"	10.0	0.00	107	54-146		1.95	30	
1,1-Dichloroethylene	11.4		"	10.0	0.00	114	44-165		1.73	30	
1,1-Dichloropropylene	11.4		"	10.0	0.00	114	82-134		2.25	30	
1,2,3-Trichlorobenzene	9.03		"	10.0	0.00	90.3	40-161		4.41	30	
1,2,3-Trichloropropane	10.5		"	10.0	0.00	105	74-127		1.79	30	
1,2,4,5-Tetramethylbenzene	15.3		"	10.0	8.90	64.4	27-190		4.87	30	
1,2,4-Trichlorobenzene	9.30		"	10.0	0.00	93.0	41-161		0.00	30	
1,2,4-Trimethylbenzene	56.8		"	10.0	122	NR	72-129	Low Bias	39.0	30	Non-dir.
1,2-Dibromo-3-chloropropane	10.1		"	10.0	0.00	101	31-151		0.999	30	
1,2-Dibromoethane	10.3		"	10.0	0.00	103	75-125		2.20	30	
1,2-Dichlorobenzene	9.92		"	10.0	0.00	99.2	63-122		1.40	30	
1,2-Dichloroethane	10.6		"	10.0	0.00	106	68-131		2.52	30	
1,2-Dichloropropane	10.4		"	10.0	0.00	104	77-121		1.99	30	
1,3,5-Trimethylbenzene	13.0		"	10.0	8.31	46.9	69-126	Low Bias	16.7	30	
1,3-Dichlorobenzene	9.82		"	10.0	0.00	98.2	74-119		3.01	30	
1,3-Dichloropropane	10.2		"	10.0	0.00	102	77-119		1.17	30	
1,4-Dichlorobenzene	9.86		"	10.0	0.00	98.6	70-124		2.01	30	
1,4-Dioxane	218		"	210	0.00	104	10-310		1.10	30	
2,2-Dichloropropane	8.69		"	10.0	0.00	86.9	10-160		1.26	30	
2-Butanone	11.8		"	10.0	1.65	101	10-193		2.84	30	
2-Chlorotoluene	9.99		"	10.0	0.00	99.9	70-126		3.15	30	
2-Hexanone	9.08		"	10.0	0.00	90.8	53-133		1.85	30	
4-Chlorotoluene	9.99		"	10.0	0.00	99.9	69-124		3.15	30	
4-Methyl-2-pentanone	9.86		"	10.0	0.00	98.6	38-150		2.50	30	
Acetone	27.6		"	10.0	3.85	237	13-149	High Bias	1.76	30	
Acrolein	17.2		"	10.0	0.00	172	10-195		7.00	30	
Acrylonitrile	10.3		"	10.0	0.00	103	37-165		2.50	30	
Benzene	11.5		,,	10.0	0.00	115	38-155		2.06	30	
Bromobenzene	10.1		"	10.0	0.00	101	72-122		2.35	30	
Bromochloromethane	10.5		"	10.0	0.00	105	75-121		3.37	30	
Bromodichloromethane	10.4		,,	10.0	0.00	103	70-121		3.60	30	
Bromoform			,,						1.85	30	
Bromomethane	10.7		,,	10.0	0.00	107	66-136 30-158		14.6	30	
Carbon disulfide	15.3 13.0		,,	10.0 10.0	0.00	153 130	10-138		2.36	30	
Carbon tetrachloride			,,	10.0					1.82	30	
Chlorobenzene	12.0		,,		0.00	120	71-146		2.17	30	
	10.5		"	10.0	0.00	105	81-117				
Chloroform	11.9		"	10.0	0.00	119	51-145		0.502	30	
Chlorographene	10.9		"	10.0	0.00	109	80-124		1.28	30	
Chloromethane	13.6		"	10.0	0.00	136	16-163		5.50	30	
cis-1,2-Dichloroethylene	12.2		"	10.0	2.41	97.7	76-125		0.246	30	
cis-1,3-Dichloropropylene	9.90			10.0	0.00	99.0	58-131	I D'	1.20	30	
Cyclohexane	15.8		"	10.0	9.91	58.9	70-130	Low Bias	1.69	30	
Dibromochloromethane	10.6		"	10.0	0.00	106	71-129		1.40	30	
Dibromomethane	10.1		"	10.0	0.00	101	76-120		1.95	30	
Dichlorodifluoromethane	13.7		"	10.0	0.00	137	30-147		0.800	30	

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RIC

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 Clie

RICHMOND HILL, NY 11418

ClientServices@ Page 29 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BI41686	- EPA	5030R

Matrix Spike Dup (BI41686-MSD1)	*Source sample: 24I1449	-01 (MW-1402)				Pre	pared: 09/26/2	024 Analyze	ed: 09/27/202
Diisopropyl ether (DIPE)	10.7	ug/L	10.0	0.00	107	70-130		1.86	30
Ethyl Benzene	55.7	"	10.0	97.9	NR	72-128	Low Bias	21.0	30
Ethyl tert-butyl ether (ETBE)	10.5	"	10.0	0.00	105	70-130		1.42	30
Hexachlorobutadiene	8.90	"	10.0	0.00	89.0	34-166		3.20	30
odomethane	11.6	"	10.0	0.00	116	70-130		6.69	30
sopropylbenzene	24.7	"	10.0	21.6	31.0	66-139	Low Bias	5.74	30
Methyl acetate	44.5	"	10.0	0.00	445	10-200	High Bias	5.40	30
Methyl Methacrylate	12.7	"	10.0	0.00	127	68-124	High Bias	1.10	30
Methyl tert-butyl ether (MTBE)	9.76	"	10.0	0.00	97.6	75-128		1.53	30
Methylcyclohexane	11.3	"	10.0	3.44	78.2	70-130		4.43	30
Methylene chloride	11.6	"	10.0	0.00	116	57-128		1.37	30
Naphthalene	21.7	"	10.0	21.5	1.90	39-158	Low Bias	10.9	30
n-Butylbenzene	10.7	"	10.0	2.13	85.8	61-138		0.656	30
n-Propylbenzene	40.0	"	10.0	45.8	NR	66-134	Low Bias	6.90	30
-Xylene	10.6	"	10.0	0.290	103	69-126		2.71	30
o- & m- Xylenes	38.2	"	20.0	56.4	NR	67-130	Low Bias	20.9	30
-Diethylbenzene	11.8	"	10.0	5.97	58.5	52-150		5.51	30
p-Ethyltoluene	17.9	"	10.0	21.4	NR	76-127	Low Bias	25.0	30
p-Isopropyltoluene	10.1	"	10.0	0.460	96.8	64-137		3.11	30
ec-Butylbenzene	12.2	"	10.0	2.82	94.3	53-155		5.02	30
Styrene	10.6	"	10.0	0.00	106	69-125		1.87	30
ert-Amyl alcohol (TAA)	109	"	100	0.00	109	70-130		0.192	30
ert-Amyl methyl ether (TAME)	10.6	"	10.0	0.00	106	70-130		1.50	30
ert-Butyl alcohol (TBA)	59.8	"	50.0	0.00	120	10-130		0.941	30
ert-Butylbenzene	10.0	"	10.0	0.00	100	65-139		2.17	30
Tetrachloroethylene	5.87	"	10.0	0.200	56.7	64-139	Low Bias	0.340	30
Tetrahydrofuran	10.9	"	10.0	0.00	109	10-188		1.95	30
Toluene	11.2	"	10.0	1.33	99.1	76-123		3.67	30
rans-1,2-Dichloroethylene	11.2	"	10.0	0.00	112	79-131		2.03	30
rans-1,3-Dichloropropylene	9.88	"	10.0	0.00	98.8	55-130		2.70	30
rans-1,4-dichloro-2-butene	10.2	"	10.0	0.00	102	25-155		2.72	30
richloroethylene	12.2	"	10.0	0.860	114	53-145		1.86	30
richlorofluoromethane	11.8	"	10.0	0.00	118	61-142		2.75	30
/inyl acetate	33.2	"	10.0	0.00	332	10-87	High Bias	4.81	30
Vinyl Chloride	12.3	"	10.0	0.00	123	31-165		2.57	30
Surrogate: SURR: 1,2-Dichloroethane-d4	9.89	"	10.0		98.9	69-130			
Surrogate: SURR: Toluene-d8	9.73	"	10.0		97.3	81-117			
Surrogate: SURR: p-Bromofluorobenzene	9.96	"	10.0		99.6	79-122			

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

FAX (203) 357-0166

Page 30 of 40

ClientServices@

www.YORKLAB.com (203) 325-1371

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Blank (BI41780-BLK1)				Prepared: 09/27/2024 Analyzed: 09/28/2
,1,1,2-Tetrachloroethane	ND	0.500	ug/L	
,1,1-Trichloroethane	ND	0.500	"	
,1,2,2-Tetrachloroethane	ND	0.500	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.500	"	
13)				
1,2-Trichloroethane	ND	0.500	"	
1-Dichloroethane	ND	0.500	"	
1-Dichloroethylene	ND	0.500	"	
1-Dichloropropylene	ND	0.500	"	
2,3-Trichlorobenzene	ND	0.500	"	
2,3-Trichloropropane	ND	0.500	"	
2,4,5-Tetramethylbenzene	ND	0.500	"	
2,4-Trichlorobenzene	ND	0.500	"	
2,4-Trimethylbenzene	ND	0.500	"	
2-Dibromo-3-chloropropane	ND	0.500	"	
2-Dibromoethane	ND	0.500	"	
2-Dichlorobenzene	ND	0.500	"	
2-Dichloroethane	ND	0.500	"	
2-Dichloropropane	ND	0.500	"	
3,5-Trimethylbenzene	ND	0.500	"	
3-Dichlorobenzene	ND	0.500	"	
3-Dichloropropane	ND	0.500	"	
4-Dichlorobenzene	ND	0.500	"	
4-Dioxane	ND	80.0	"	
-Dichloropropane	ND	0.500	"	
Butanone	ND	0.500	"	
Chlorotoluene	ND	0.500	"	
Hexanone	ND	0.500	"	
Chlorotoluene	ND	0.500	"	
Methyl-2-pentanone	ND	0.500	"	
eetone	ND	2.00	"	
rolein	ND	0.500	"	
erylonitrile	ND	0.500	"	
nzene	ND	0.500	"	
omobenzene	ND	0.500	"	
omochloromethane	ND	0.500	"	
omodichloromethane	ND	0.500	"	
omoform	ND	0.500	"	
omomethane	ND	0.500	"	
rbon disulfide	ND ND	0.500	"	
urbon tetrachloride	ND ND	0.500	"	
nlorobenzene	ND ND	0.500	"	
lloroethane	ND ND	0.500	"	
noroemane nloroform			"	
loromethane	ND ND	0.500	"	
orometnane -1,2-Dichloroethylene		0.500	"	
-1,3-Dichloropropylene	ND	0.500	"	
	ND	0.500	"	
clohexane	ND	0.500		
bromochloromethane	ND	0.500	"	
bromomethane chlorodifluoromethane	ND ND	0.500 0.500	"	

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 31 of 40

FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Batch BI41780 - EPA 5030B						
Blank (BI41780-BLK1)						Prepared: 09/27/2024 Analyzed: 09/28/2024
Diisopropyl ether (DIPE)	ND	0.800	ug/L			
Ethyl Benzene	ND	0.500	"			
Ethyl tert-butyl ether (ETBE)	ND	0.800	"			
Hexachlorobutadiene	ND	0.500	"			
odomethane	ND	0.500	"			
sopropylbenzene	ND	0.500	"			
Methyl acetate	ND	0.500	"			
Methyl Methacrylate	ND	0.500	"			
Methyl tert-butyl ether (MTBE)	ND	0.500	"			
1ethylcyclohexane	ND	0.500	"			
Methylene chloride	ND	2.00	"			
Naphthalene	ND	2.00	"			
-Butylbenzene	ND	0.500	"			
-Propylbenzene	ND	0.500	"			
-Xylene	ND	0.500	"			
- & m- Xylenes	ND	1.00	"			
-Diethylbenzene	ND	0.500	"			
-Ethyltoluene	ND	0.500	"			
-Isopropyltoluene	ND	0.500	"			
ec-Butylbenzene	ND	0.500	"			
tyrene	ND	0.500	"			
ert-Amyl alcohol (TAA)	ND	8.00	"			
ert-Amyl methyl ether (TAME)	ND	0.800	"			
ert-Butyl alcohol (TBA)	ND	1.00	"			
ert-Butylbenzene	ND	0.500	"			
etrachloroethylene	ND	0.500	"			
etrahydrofuran	ND	0.500	"			
Toluene	ND	0.500	"			
rans-1,2-Dichloroethylene	ND	0.500	"			
rans-1,3-Dichloropropylene	ND	0.500	"			
rans-1,4-dichloro-2-butene	ND	0.500	"			
richloroethylene	ND	0.500	"			
richlorofluoromethane	ND	0.500	"			
'inyl acetate	ND	0.500	"			
'inyl Chloride	ND	0.500	"			
Kylenes, Total	ND	1.50	"			
urrogate: SURR: 1,2-Dichloroethane-d4	10.0		"	10.0	100	69-130
Surrogate: SURR: Toluene-d8	9.73		"	10.0	97.3	81-117
Surrogate: SURR: p-Bromofluorobenzene	9.99		"	10.0	99.9	79-122

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371

RICHMOND HILL, NY 11418

FAX (203) 357-0166

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BI41780 - EPA 5030B											
LCS (BI41780-BS1)							Pre	pared & Analy:	zed: 09/27/	2024	
1,1,1,2-Tetrachloroethane	8.52		ug/L	10.0		85.2	82-126				
1,1,1-Trichloroethane	8.79		"	10.0		87.9	78-136				
1,1,2,2-Tetrachloroethane	7.30		"	10.0		73.0	76-129	Low Bias			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	8.47		"	10.0		84.7	54-165				
113)											
1,1,2-Trichloroethane	8.43		"	10.0		84.3	82-123				
1,1-Dichloroethane	8.62		"	10.0		86.2	82-129				
1,1-Dichloroethylene	8.99		"	10.0		89.9	68-138				
1,1-Dichloropropylene	8.68		"	10.0		86.8	83-133				
1,2,3-Trichlorobenzene	7.68		"	10.0		76.8	76-136				
1,2,3-Trichloropropane	8.13		"	10.0		81.3	77-128				
1,2,4,5-Tetramethylbenzene	7.84		"	10.0		78.4	85-140	Low Bias			
1,2,4-Trichlorobenzene	7.84		"	10.0		78.4	76-137				
1,2,4-Trimethylbenzene	8.16		"	10.0		81.6	82-132	Low Bias			
1,2-Dibromo-3-chloropropane	8.09		"	10.0		80.9	45-147				
1,2-Dibromoethane	8.39		"	10.0		83.9	83-124				
1,2-Dichlorobenzene	8.07		"	10.0		80.7	79-123				
1,2-Dichloroethane	8.78		"	10.0		87.8	73-132				
1,2-Dichloropropane	8.24			10.0		82.4	78-126	T D'			
1,3,5-Trimethylbenzene	7.98		"	10.0		79.8	80-131	Low Bias			
1,3-Dichlorobenzene	7.87		"	10.0		78.7	86-122	Low Bias			
1,3-Dichloropropane	8.20		"	10.0		82.0	81-125	T D'			
1,4-Dichlorobenzene	7.83		"	10.0		78.3	85-124	Low Bias			
1,4-Dioxane	177		,,	210		84.2	10-349				
2,2-Dichloropropane 2-Butanone	7.75		,,	10.0		77.5	56-150				
2-Chlorotoluene	8.79		,,	10.0		87.9	49-152				
2-Chiorotolidene 2-Hexanone	7.90		,,	10.0		79.0	79-130				
4-Chlorotoluene	7.63		,,	10.0 10.0		76.3	51-146				
4-Cinorotolicie 4-Methyl-2-pentanone	7.90 7.95		,,	10.0		79.0 79.5	79-128 57-145				
Acetone	23.0		,,	10.0		230	14-150	High Bias			
Acrolein	10.3		,,	10.0		103	10-153	High Dias			
Acrylonitrile	8.74		,,	10.0		87.4	51-150				
Benzene	9.14		,,	10.0		91.4	85-126				
Bromobenzene	8.10		"	10.0		81.0	78-129				
Bromochloromethane	8.68		"	10.0		86.8	77-128				
Bromodichloromethane	8.39		"	10.0		83.9	79-128				
Bromoform	8.61		"	10.0		86.1	78-133				
Bromomethane	16.4		"	10.0		164	43-168				
Carbon disulfide	10.1		"	10.0		101	68-146				
Carbon tetrachloride	9.23		"	10.0		92.3	77-141				
Chlorobenzene	8.32		"	10.0		83.2	88-120	Low Bias			
Chloroethane	10.6		"	10.0		106	65-136				
Chloroform	8.71		"	10.0		87.1	82-128				
Chloromethane	13.2		"	10.0		132	43-155				
cis-1,2-Dichloroethylene	8.54		"	10.0		85.4	83-129				
cis-1,3-Dichloropropylene	8.03		"	10.0		80.3	80-131				
Cyclohexane	9.57		"	10.0		95.7	63-149				
Dibromochloromethane	8.61		"	10.0		86.1	80-130				
Dibromomethane	8.23		"	10.0		82.3	72-134				
Dichlorodifluoromethane	14.4		"	10.0		144	44-144				
	= :::										

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

ClientServices@ Page 33 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS (BI41780-BS1)					Prep	pared & Analyzed: 09/27/2024
iisopropyl ether (DIPE)	9.18	ug/L	10.0	91.8	70-130	
thyl Benzene	8.49	"	10.0	84.9	80-131	
thyl tert-butyl ether (ETBE)	8.98	"	10.0	89.8	70-130	
exachlorobutadiene	7.22	"	10.0	72.2	67-146	
domethane	10.7	"	10.0	107	70-130	
opropylbenzene	7.99	"	10.0	79.9	76-140	
lethyl acetate	7.72	"	10.0	77.2	51-139	
lethyl Methacrylate	8.32	"	10.0	83.2	72-132	
lethyl tert-butyl ether (MTBE)	8.40	"	10.0	84.0	76-135	
lethylcyclohexane	7.87	"	10.0	78.7	72-143	
lethylene chloride	9.70	"	10.0	97.0	55-137	
aphthalene	7.72	"	10.0	77.2	70-147	
Butylbenzene	7.52	"	10.0	75.2	79-132	Low Bias
Propylbenzene	8.32	"	10.0	83.2	78-133	
Xylene	8.24	"	10.0	82.4	78-130	
& m- Xylenes	17.3	"	20.0	86.4	77-133	
Diethylbenzene	7.72	"	10.0	77.2	84-134	Low Bias
Ethyltoluene	8.55	"	10.0	85.5	88-129	Low Bias
Isopropyltoluene	7.78	"	10.0	77.8	81-136	Low Bias
c-Butylbenzene	7.62	"	10.0	76.2	79-137	Low Bias
tyrene	8.46	"	10.0	84.6	67-132	
rt-Amyl alcohol (TAA)	90.5	"	100	90.5	70-130	
rt-Amyl methyl ether (TAME)	8.96	"	10.0	89.6	70-130	
rt-Butyl alcohol (TBA)	49.2	"	50.0	98.3	25-162	
rt-Butylbenzene	7.73	"	10.0	77.3	77-138	
etrachloroethylene	4.26	"	10.0	42.6	82-131	Low Bias
etrahydrofuran	8.50	"	10.0	85.0	36-166	
bluene	8.52	"	10.0	85.2	80-127	
ans-1,2-Dichloroethylene	8.78	"	10.0	87.8	80-132	
ans-1,3-Dichloropropylene	8.09	"	10.0	80.9	78-131	
ans-1,4-dichloro-2-butene	7.76	"	10.0	77.6	63-141	
richloroethylene	10.6	"	10.0	106	82-128	
richlorofluoromethane	10.2	"	10.0	102	67-139	
inyl acetate	34.3	"	10.0	343	21-90	High Bias
inyl Chloride	10.5	"	10.0	105	58-145	
urrogate: SURR: 1,2-Dichloroethane-d4	9.79	"	10.0	97.9	69-130	
	9.70	"	10.0	97.0	81-117	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 FAX (203) 357-0166 Page 34 of 40 ClientServices@

10.0

98.3

79-122

9.83

www.YORKLAB.com (203) 325-1371

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

CS Dup (BI41780-BSD1)					Prep	pared & Analy	zed: 09/27/2	2024
1,1,2-Tetrachloroethane	8.72	ug/L	10.0	87.2	82-126		2.32	30
1,1-Trichloroethane	9.14	"	10.0	91.4	78-136		3.90	30
1,2,2-Tetrachloroethane	7.31	"	10.0	73.1	76-129	Low Bias	0.137	30
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	8.76	"	10.0	87.6	54-165		3.37	30
1,2-Trichloroethane	8.37	"	10.0	83.7	82-123		0.714	30
I-Dichloroethane	8.80	"	10.0	88.0	82-129		2.07	30
I-Dichloroethylene	9.28	"	10.0	92.8	68-138		3.17	30
I-Dichloropropylene	9.02	"	10.0	90.2	83-133		3.84	30
2,3-Trichlorobenzene	7.91	"	10.0	79.1	76-136		2.95	30
2,3-Trichloropropane	8.35	"	10.0	83.5	77-128		2.67	30
2,4,5-Tetramethylbenzene	8.06	"	10.0	80.6	85-140	Low Bias	2.77	30
2,4-Trichlorobenzene	8.02	"	10.0	80.2	76-137		2.27	30
2,4-Trimethylbenzene	8.40	"	10.0	84.0	82-132		2.90	30
2-Dibromo-3-chloropropane	8.11	"	10.0	81.1	45-147		0.247	30
2-Dibromoethane	8.54	"	10.0	85.4	83-124		1.77	30
2-Dichlorobenzene	8.24	"	10.0	82.4	79-123		2.08	30
2-Dichloroethane	8.94	"	10.0	89.4	73-132		1.81	30
2-Dichloropropane	8.57	"	10.0	85.7	78-126		3.93	30
3,5-Trimethylbenzene	8.27	"	10.0	82.7	80-131		3.57	30
3-Dichlorobenzene	8.14	"	10.0	81.4	86-122	Low Bias	3.37	30
3-Dichloropropane	8.37	"	10.0	83.7	81-125		2.05	30
4-Dichlorobenzene	8.07	"	10.0	80.7	85-124	Low Bias	3.02	30
-Dioxane	184	"	210	87.4	10-349		3.75	30
-Dichloropropane	7.86	"	10.0	78.6	56-150		1.41	30
Butanone	9.06	"	10.0	90.6	49-152		3.03	30
Chlorotoluene	8.19	"	10.0	81.9	79-130		3.60	30
Hexanone	7.77	"	10.0	77.7	51-146		1.82	30
Chlorotoluene	8.19	,,	10.0	81.9	79-128		3.60	30
Methyl-2-pentanone	8.15	,,	10.0	81.5	57-145		2.48	30
eetone	23.3	,,	10.0	233	14-150	High Bias	1.55	30
crolein	10.2	,,	10.0	102	10-153	Tingii Dias	1.37	30
crylonitrile	9.25	,,	10.0	92.5	51-150		5.67	30
enzene	9.40	,,	10.0	94.0	85-126		2.80	30
omobenzene	8.30	,,	10.0	83.0	78-129		2.44	30
omochloromethane	8.86	,,	10.0	88.6	77-128		2.05	30
omodichloromethane	8.62	,,	10.0	86.2	79-128		2.70	30
omoform	8.81	"	10.0	88.1	78-133		2.30	30
omomethane	17.6	,,	10.0	176	43-168	High Bias	6.81	30
urbon disulfide	10.4	"	10.0	104	68-146	Tingii Dias	3.52	30
urbon tetrachloride	9.54	"	10.0	95.4	77-141		3.30	30
llorobenzene	9.54 8.54	"	10.0	95.4 85.4	88-120	Low Bias	2.61	30
nloroethane	10.8	"	10.0	108	65-136	Lon Dias	1.87	30
nloroform	8.85	"	10.0	88.5	82-128		1.59	30
loromethane	13.2	"	10.0	132	43-155		0.152	30
-1,2-Dichloroethylene	8.77	"	10.0	87.7	83-129		2.66	30
-1,3-Dichloropropylene	8.23	"	10.0		80-131		2.46	30
velohexane		"		82.3			4.89	30
bromochloromethane	10.0	"	10.0	100	63-149			
	8.82	"	10.0	88.2	80-130		2.41	30
bromomethane chlorodifluoromethane	8.42 15.0	"	10.0 10.0	84.2 150	72-134 44-144	High Bias	2.28 4.29	30 30

120 RESEARCH DRIVE STRATFORD, CT 06615

132-02 89th AVENUE RICHMOND HILL, NY 11418

www.YORKLAB.com (203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 35 of 40

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Ana	yte Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

LCS Dup (BI41780-BSD1)					Prepar	red & Analyz	zed: 09/27/2	2024
Diisopropyl ether (DIPE)	9.41	ug/L	10.0	94.1	70-130		2.47	30
Ethyl Benzene	8.78	"	10.0	87.8	80-131		3.36	30
Ethyl tert-butyl ether (ETBE)	9.21	"	10.0	92.1	70-130		2.53	30
Hexachlorobutadiene	7.60	"	10.0	76.0	67-146		5.13	30
Iodomethane	11.1	"	10.0	111	70-130		4.04	30
Isopropylbenzene	8.30	"	10.0	83.0	76-140		3.81	30
Methyl acetate	7.60	"	10.0	76.0	51-139		1.57	30
Methyl Methacrylate	8.49	"	10.0	84.9	72-132		2.02	30
Methyl tert-butyl ether (MTBE)	8.61	"	10.0	86.1	76-135		2.47	30
Methylcyclohexane	8.12	"	10.0	81.2	72-143		3.13	30
Methylene chloride	9.85	"	10.0	98.5	55-137		1.53	30
Naphthalene	7.89	"	10.0	78.9	70-147		2.18	30
n-Butylbenzene	7.74	"	10.0	77.4	79-132	Low Bias	2.88	30
n-Propylbenzene	8.65	"	10.0	86.5	78-133		3.89	30
o-Xylene	8.50	"	10.0	85.0	78-130		3.11	30
o- & m- Xylenes	17.8	"	20.0	89.0	77-133		2.91	30
p-Diethylbenzene	7.95	"	10.0	79.5	84-134	Low Bias	2.94	30
-Ethyltoluene	8.85	"	10.0	88.5	88-129		3.45	30
o-Isopropyltoluene	8.06	"	10.0	80.6	81-136	Low Bias	3.54	30
sec-Butylbenzene	7.88	"	10.0	78.8	79-137	Low Bias	3.35	30
Styrene	8.71	"	10.0	87.1	67-132		2.91	30
ert-Amyl alcohol (TAA)	92.9	"	100	92.9	70-130		2.57	30
ert-Amyl methyl ether (TAME)	9.19	"	10.0	91.9	70-130		2.53	30
ert-Butyl alcohol (TBA)	50.3	"	50.0	101	25-162		2.35	30
ert-Butylbenzene	8.03	"	10.0	80.3	77-138		3.81	30
Tetrachloroethylene	4.37	"	10.0	43.7	82-131	Low Bias	2.55	30
Tetrahydrofuran	8.83	"	10.0	88.3	36-166		3.81	30
Гoluene	8.76	"	10.0	87.6	80-127		2.78	30
rans-1,2-Dichloroethylene	9.01	"	10.0	90.1	80-132		2.59	30
rans-1,3-Dichloropropylene	8.33	"	10.0	83.3	78-131		2.92	30
rans-1,4-dichloro-2-butene	7.96	"	10.0	79.6	63-141		2.54	30
Trichloroethylene	11.1	"	10.0	111	82-128		4.41	30
Trichlorofluoromethane	10.6	"	10.0	106	67-139		2.98	30
Vinyl acetate	34.7	"	10.0	347	21-90	High Bias	0.985	30
Vinyl Chloride	10.6	"	10.0	106	58-145		1.13	30
Surrogate: SURR: 1,2-Dichloroethane-d4	9.76	"	10.0	97.6	69-130			
Surrogate: SURR: Toluene-d8	9.71	"	10.0	97.1	81-117			

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

10.0

98.5

FAX (203) 357-0166

79-122

Page 36 of 40

ClientServices@

9.85

www.YORKLAB.com (203) 325-1371

 $Surrogate: SURR: p\hbox{-} Bromofluor obenzene$

Volatile Analysis Sample Containers

Lab ID	Client Sample ID	Volatile Sample Container
24I1449-01	MW-1402	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24I1449-02	MW-1403	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24I1449-03	9.24.2024_Duplicate	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C
24I1449-04	Trip Blank	40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

Page 37 of 40

Sample and Data Qualifiers Relating to This Work Order

QL-02	This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference
	method has certain limitations with respect to analytes of this nature.

ICVE20 The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 20% of expected value).

ICVE The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).

CCVE The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

STRATFORD, CT 06615

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 38 of 40

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 39 of 40

www.YORKLAB.com

Field Chain-of-Custody Record

YORK Project Number

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This legal document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

Report To:		Invoice To:		YOU	R Pro	ect N	ame /	YOUR Project Name / Number	er			Sa	mples (Samples Collected From	d From		Turn	Turn-Around Time	Time
Company: G2A Geoemi minertal	Company: GLA	Jesservin montes of	je						đ		×	>	C		Other: (please specify)	ise specify)	RUS	RUSH - Next Day	L
Address: Address: Address: Address: Address: Address:	Address:	200 200	F	2	2000	01632810	00				2		PA				RUSF	RUSH - Two Day	
31.	ים ובד מסלמל,	110, 12, 127,031	_	5		:					+5	,	Inalyse	Analyses Requested	ested		RUSF	RUSH - Three Day	_
Phone: 212 -484-8140		594-8140		The state of	1	PO Number	mper	Ellicon State		11	70			100			RUSH	RUSH - Four Day	
Contact: Mark Hutsen	Mark	Hutson) !!	2)(00	2000	6			1000 P	nzi						RUSH	RUSH - Five Day	1
,			F.	5	000	,	2			/	37 -						Standa	Standard (6-9 Day)	7
Mark. Hurtson Ogza-com	Vare, Hatson Ogo. com	gra.con	T		۵	Preservative	ative			! ,	7-					The second	PFAS S	PFAS Standard 7-10 Day	Day
Please print clearly and legibly. All information must be complete. Samples will not be loaged in and the turn-around-time clock will not	on must be complete.	Matrix Codes	6) (ple	ise list	numbe	r of col	(please list number of containers)	3)	1	21		•				Rep	Report Type (circle)	circle)
begin until any questions by YORK are resolved.	ved.	S - soil/solid/sludge							i i		5						QA Report	port	
		GW - groundwater					droxi		ate	7(1-						-	Summary (Results Only)	Only)
		DW - drinking water	pe			-			jəɔ/	1/(CT						COL	NY ASP B Package	ge
		SW - surface water) IVE		-		-		/ wi	(peonp	
		WW - wastewater									7.67							QP	
Samples Collected by: (print AND sign your name) Sample Identification	sign your name) Date		ıdur	VeO	ONH)S ^z ł	-	uzin	шш	BS styee:	20						G NJ Full		
	Official	200		+	-	+	+	_	+	0	1	+	1	-	+		2000	L	
1407	11/4/11	0061	3		7					>								EDD Type (circle)	cle)
7		13 to GE	C		3					>							EDIMS	EQuilS (standard)	
MW-1402-MSD		(315 GW	7		5					>							B 1	MYSDEC EQUIS	1
MW-1403		1355 GW	2		3)	,						NJDE	NJDEP SRP Haz Site	Site
19.24-2024- Pupilicate		1400 Caw	7		h					7		1					Standa	Standard Excel	
+NT		AN OCH!	#	+							1	SE					CMDP		
FCP	\		_								7	STE STE				300	Other		
																	Regul	Regulatory Comparative	rative
																	Compare	Compared to the following	ving
											Ld.							Regulation(s): (please fill in)	(ni
																	I NYSI	NYSDEC part 375	375
							+			+							T		
						21											Field Filtered	fered	-
																	Lab Filtered	ered	
<u>Comments:</u>						2	Cust	Lab Samp Custody Seals: Y COC Completer Cooler Temperatur	Sample Is: X	Lab Sample Receiv Custody Seals: VN Conf COC Complete(Y) TO COC Cooler Temperature Confirmed	Containers Intage COC Received:	lag: Y N	be cor COC/I ppropriate	completed by COC/Labels Agreed ropriate Sample Voluitted within Holding T	Checklist (to be completed by the reconstruction of the completed by the reconstruction of the complete by the complete of the	eiving lab Preservat N Approprie	eiving laboratory only) Circle Y / Preservation Confirmed: (/ N N Appropriate Sample Containers Y) N Corrective Advisor Form Beautings:	Lab Sample Receiving Checklist (to be completed by the receiving laboratory only) Circle Y / N ly Seals: Yr N Containers Infag. Y/ N COCLabels Agree Y/ N Preservation Confirmed: Y/ N COC Receiver Y/ N Appropriate Sample Volumes Y/ N Temperature Confirmed Y/ N Samples Submitted within Holding Times Y/ N Corrective Action Form Beautiful A	7 (
1. Samples Relinquished by / Company	Date/Time	1. Samples Regarded by Company Company Co	1. Samples Received by / Company	Company	0	To the state of th		1	Date/Tirrle	hick	1 (2. Samp	les Relinquish	2. Samples Relinquished by / Company		Date/Time	Mellow	1 /2 LO	1 5
- 2	Date/Time	3. Samples	3. Samples Relinquished by /	/ Company				7	Date/Time	3		3. Samp	les Received	3. Samples Received by / Company	1	Date/Time	107)	N ONO	2
	Date/Time	4. Samples	4. Samples Received by / Company	ompany					Date/Time			Samples	Received in LAB by	I AB by	C	Date/Tim		a Color	out there
of ·												X	1	113	2	700	70:10	7) C
			And the state of t	The Street of th	Contractoristics	-	A THE STREET,	AND PROPERTY OF THE PERSON	-	SCHEMENSON MACHINES CONTRA	AND DESCRIPTION OF THE PERSONS ASSESSMENT	111	1 was	1	111	12	100	67/	egrees C

Tuesday, February 06, 2024

Attn: Mr. William J. Schlageter Preferred Environmental Services 323 Merrick Avenue North Merrick, New York 11566

Project ID: 1107 DEKALB AVENUE

SDG ID: GCP96008

Sample ID#s: CP96008 - CP96011

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

February 06, 2024

SDG I.D.: GCP96008

Any compound that is not detected above the MDL/LOD is reported as ND on the report and is reported in the electronic deliverables (EDD) as <RL or U at the RL per state and EPA guidance.

Version 1: Analysis results minus forms.

Version 2: Complete report with QC and forms.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

February 06, 2024

SDG I.D.: GCP96008

Project ID: 1107 DEKALB AVENUE

Client Id	Lab Id	Matrix
MW-1402	CP96008	GROUND WATER
MW-1403	CP96009	GROUND WATER
INFLUENT	CP96010	TEDLAR BAG
EFFLUENT	CP96011	TEDLAR BAG

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:01/25/249:52Location Code:PREFRDNYReceived by:B01/26/2416:35

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

RL/

LOD/

SDG ID: GCP96008

Phoenix ID: CP96008

Project ID: 1107 DEKALB AVENUE

Client ID: MW-1402

P.O.#:

Parameter	Result	PQL	MDL	Units	Dilution	Date/Time	Ву	Reference
Volatiles								_
1,1,1,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,1,1-Trichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2-Trichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
•	ND	1.0	0.25	ug/L ug/L		01/27/24	МН	SW8260D SW8260D
1,1-Dichloroethene		1.0	0.25	_	1	01/27/24	МН	SW8260D SW8260D
1,1-Dichloropropene	ND	-		ug/L	1			
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,3-Trichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,4-Trimethylbenzene	210	10	2.5	ug/L	10	01/27/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloroethane	ND	0.60	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3,5-Trimethylbenzene	39	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,4-Dichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Chlorotoluene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
2-Hexanone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D
2-Isopropyltoluene	1.1	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D 1
4-Chlorotoluene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
4-Methyl-2-pentanone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D

Client ID: MW-1402

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Acetone	ND	25	2.5	ug/L	1	01/27/24	МН	SW8260D	
Acrylonitrile	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Benzene	0.63	J 0.70	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromodichloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	В
Carbon Disulfide	ND	5.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,2-Dichloroethene	10	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromochloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Ethylbenzene	250	10	2.5	ug/L	10	01/27/24	MH	SW8260D	
Hexachlorobutadiene	ND	0.40	0.25	ug/L	1	01/27/24	МН	SW8260D	
Isopropylbenzene	50	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
m&p-Xylene	260	10	2.5	ug/L	10	01/27/24	МН	SW8260D	
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Methylene chloride	ND	1.0	1.0	ug/L	1	01/27/24	МН	SW8260D	
Naphthalene	44	1.0	1.0	ug/L	1	01/27/24	МН	SW8260D	
n-Butylbenzene	3.3	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
n-Propylbenzene	91	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
o-Xylene	1.8	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
p-Isopropyltoluene	0.74	J 1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
sec-Butylbenzene	5.8	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Tetrachloroethene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	2.5	ug/L	1	01/27/24	МН	SW8260D	1
Toluene	5.8	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Total Xylenes	261.8	1.0	1.0	ug/L	1	01/27/24	МН	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	МН	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D	
Trichloroethene	3.7	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
QA/QC Surrogates	_	-	-	· 3· =					
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	МН	70 - 130 %	
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %	
% Dibromofluoromethane	100			%	1	01/27/24	MH	70 - 130 %	
z.s. ss.idoromodiano				,-	-		•••••		

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96008

Client ID: MW-1402

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	103			%	1	01/27/24	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Bromofluorobenzene (10x)	94			%	10	01/27/24	MH	70 - 130 %
% Dibromofluoromethane (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Toluene-d8 (10x)	103			%	10	01/27/24	МН	70 - 130 %
1,4-dioxane								
1,4-dioxane	ND	100	50	ug/l	1	01/27/24	МН	SW8260D
<u>Volatiles</u>								
1,1,1-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1,2-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
1,3-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	МН	SW8260D
1,4-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
2-Hexanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D
Acetone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D
Benzene	0.63	J 0.70	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromodichloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Bromomethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D B
Carbon Disulfide	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloroform	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Chloromethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,2-Dichloroethene	10	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Cyclohexane	9.4	5.0	0.50	ug/L	1	01/27/24	MH	SW8260D
Dibromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Ethylbenzene	250	10	2.5	ug/L	10	01/27/24	МН	SW8260D
Isopropylbenzene	50	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
m&p-Xylene	260	10	2.5	ug/L	10	01/27/24	МН	SW8260D
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Methylacetate	ND	2.5	2.5	ug/L	1	01/27/24	МН	SW8260D
Methylcyclohexane	17	2.0	0.50	ug/L	1	01/27/24	МН	SW8260D

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96008

Client ID: MW-1402

		ppbv	LOD/					
Parameter	Result	RL	MDL	Units	Dilution	Date/Time	Ву	Reference
Methylene chloride	ND	3.0	1.0	ug/L	1	01/27/24	МН	SW8260D
o-Xylene	1.8	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Tetrachloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Toluene	5.8	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Total Xylenes	261.8	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichloroethene	3.7	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %
% Dibromofluoromethane	100			%	1	01/27/24	MH	70 - 130 %
% Toluene-d8	103			%	1	01/27/24	MH	70 - 130 %
% 1,2-dichlorobenzene-d4 (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Bromofluorobenzene (10x)	94			%	10	01/27/24	MH	70 - 130 %
% Dibromofluoromethane (10x)	102			%	10	01/27/24	MH	70 - 130 %
% Toluene-d8 (10x)	103			%	10	01/27/24	MH	70 - 130 %
Volatile Library Search Top 10	Completed					01/29/24	МН	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG ID: GCP96008

Phoenix ID: CP96009

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:01/25/249:09Location Code:PREFRDNYReceived by:B01/26/2416:35

Laboratory Data

LOD/

Rush Request: Standard Analyzed by: see "By" below

RL/

1107 DEKALB AVENUE

Client ID: MW-1403

P.O.#:

Project ID:

Parameter Result **PQL** MDL Units Dilution Date/Time Βv Reference **Volatiles** 1,1,1,2-Tetrachloroethane ND 1.0 0.25 ug/L 1 01/27/24 МН SW8260D ND 1.0 ug/L 01/27/24 SW8260D 1,1,1-Trichloroethane 0.25 1 MH ND 0.50 0.25 ug/L 01/27/24 МН SW8260D 1,1,2,2-Tetrachloroethane ND 01/27/24 SW8260D 1,1,2-Trichloroethane 1.0 0.25 ug/L 1 MH SW8260D ND 1.0 0.25 ug/L 1 01/27/24 MH 1,1-Dichloroethane ND 0.25 01/27/24 SW8260D 1,1-Dichloroethene 1 0 ug/L 1 MH ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,1-Dichloropropene 01/27/24 SW8260D 1,2,3-Trichlorobenzene ND 1.0 0.25 ug/L 1 MH 1,2,3-Trichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,2,4-Trichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 0.75 1.0 0.25 1 01/27/24 SW8260D ug/L MH 1,2,4-Trimethylbenzene ND ug/L 1 01/27/24 SW8260D 1,2-Dibromo-3-chloropropane 1.0 0.50 MH ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,2-Dibromoethane ND 1.0 0.25 ug/L 01/27/24 SW8260D 1,2-Dichlorobenzene 1 MH ND 0.60 0.25 ug/L 1 01/27/24 MH SW8260D 1,2-Dichloroethane ND 1.0 0.25 ug/L 01/27/24 SW8260D 1 MH 1,2-Dichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,3,5-Trimethylbenzene ND 1.0 0.25 1 01/27/24 МН SW8260D ug/L 1,3-Dichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,3-Dichloropropane ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 1,4-Dichlorobenzene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D 2,2-Dichloropropane 2-Chlorotoluene ND 1.0 0.25 ug/L 1 01/27/24 MH SW8260D ND 5.0 1 01/27/24 2-Hexanone 2.5 ug/L MH SW8260D 0.31 1.0 1 01/27/24 SW8260D 2-Isopropyltoluene J 0.25 ug/L MH ND 1.0 0.25 ug/L 1 01/27/24 МН SW8260D 4-Chlorotoluene ND 5.0 2.5 ug/L 1 01/27/24 MH SW8260D 4-Methyl-2-pentanone

Client ID: MW-1403

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
Acetone	ND	25	2.5	ug/L	1	01/27/24	МН	SW8260D	
Acrylonitrile	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Benzene	ND	0.70	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromodichloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	В
Carbon Disulfide	ND	5.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,2-Dichloroethene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromochloromethane	ND	0.50	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dibromomethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Ethylbenzene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Hexachlorobutadiene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Isopropylbenzene	6.0	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
m&p-Xylene	0.40	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methylene chloride	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
Naphthalene	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
n-Butylbenzene	1.2	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
n-Propylbenzene	4.9	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
o-Xylene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
p-Isopropyltoluene	0.25	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
sec-Butylbenzene	3.7	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
tert-Butylbenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrachloroethene	0.43	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Tetrahydrofuran (THF)	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D	1
Toluene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Total Xylenes	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D	
trans-1,2-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
trans-1,4-dichloro-2-butene	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Trichloroethene	2.5	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
QA/QC Surrogates									
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %	
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %	
% Dibromofluoromethane	101			%	1	01/27/24	МН	70 - 130 %	

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96009

Client ID: MW-1403

Parameter	Result	ppbv RL	LOD/ MDL	Units	Dilution	Date/Time	Ву	Reference	
% Toluene-d8	102			%	1	01/27/24	МН	70 - 130 %	
1,4-dioxane									
1,4-dioxane	ND	100	50	ug/l	1	01/27/24	МН	SW8260D	
Volatiles									
1,1,1-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
1,1,2,2-Tetrachloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,1,2-Trichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,1-Dichloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,1-Dichloroethene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2,3-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2,4-Trichlorobenzene	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2-Dibromo-3-chloropropane	ND	1.0	0.50	ug/L	1	01/27/24	MH	SW8260D	
1,2-Dibromoethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2-Dichloroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,2-Dichloropropane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,3-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
1,4-Dichlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
2-Hexanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D	
4-Methyl-2-pentanone	ND	2.5	2.5	ug/L	1	01/27/24	MH	SW8260D	
Acetone	ND	5.0	2.5	ug/L	1	01/27/24	МН	SW8260D	
Benzene	ND	0.70	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromodichloromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromoform	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Bromomethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	В
Carbon Disulfide	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Carbon tetrachloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chlorobenzene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloroform	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Chloromethane	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,2-Dichloroethene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
cis-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D	
Cyclohexane	3.3	J 5.0	0.50	ug/L	1	01/27/24	МН	SW8260D	
Dibromochloromethane	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Dichlorodifluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Ethylbenzene	2.1	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Isopropylbenzene	6.0	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
m&p-Xylene	0.40	J 1.0	0.25	ug/L	1	01/27/24	MH	SW8260D	
Methyl ethyl ketone	ND	5.0	2.5	ug/L	1	01/27/24	MH	SW8260D	
Methyl t-butyl ether (MTBE)	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Methylacetate	ND	2.5	2.5	ug/L	1	01/27/24	МН	SW8260D	
Methylcyclohexane	ND	2.0	0.50	ug/L	1	01/27/24	МН	SW8260D	
Methylene chloride	ND	3.0	1.0	ug/L	1	01/27/24	МН	SW8260D	
o-Xylene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Styrene	ND	1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	
Tetrachloroethene	0.43	J 1.0	0.25	ug/L	1	01/27/24	МН	SW8260D	

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96009

Client ID: MW-1403

		ppbv	LOD/					
Parameter	Result	RL	MDL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	2.0	0.25	ug/L	1	01/27/24	МН	SW8260D
Total Xylenes	ND	1.0	1.0	ug/L	1	01/27/24	MH	SW8260D
trans-1,2-Dichloroethene	ND	2.0	0.25	ug/L	1	01/27/24	MH	SW8260D
trans-1,3-Dichloropropene	ND	0.40	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichloroethene	2.5	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorofluoromethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Trichlorotrifluoroethane	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
Vinyl chloride	ND	1.0	0.25	ug/L	1	01/27/24	MH	SW8260D
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	102			%	1	01/27/24	MH	70 - 130 %
% Bromofluorobenzene	96			%	1	01/27/24	MH	70 - 130 %
% Dibromofluoromethane	101			%	1	01/27/24	MH	70 - 130 %
% Toluene-d8	102			%	1	01/27/24	МН	70 - 130 %
Volatile Library Search Top 10	Completed					01/29/24	МН	

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low J=Estimated Below RL LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

ebruáry 06. 2024

Reviewed and Released by: Rashmi Makol, Project Manager

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample InformationCustody InformationDateTimeMatrix:TEDLAR BAGCollected by:01/25/2410:10Location Code:PREFRDNYReceived by:B01/26/2416:35

Rush Request: Standard Analyzed by: see "By" below

vdaa

LOD/

ua/m3

P.O.#:

Project ID:

Laboratory Data

SDG ID: GCP96008
Phoenix ID: CP96010

ua/m3 LOD/

-

vdaa

1107 DEKALB AVENUE

Client ID: INFLUENT

Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.729	0.729	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,1-Trichloroethane	ND	0.917	0.917	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,2,2-Tetrachloroethane	ND	0.729	0.729	ND	5.00	5.00	01/29/24	KCA	5	1
1,1,2-Trichloroethane	ND	0.917	0.917	ND	5.00	5.00	01/29/24	KCA	5	1
1,1-Dichloroethane	ND	1.24	1.24	ND	5.02	5.02	01/29/24	KCA	5	1
1,1-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
1,2,4-Trimethylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
1,2-Dibromoethane(EDB)	ND	0.651	0.651	ND	5.00	5.00	01/29/24	KCA	5	1
1,2-Dichloroethane	ND	1.24	1.24	ND	5.02	5.02	01/29/24	KCA	5	1
1,2-dichloropropane	ND	1.08	1.08	ND	4.99	4.99	01/29/24	KCA	5	1
1,2-Dichlorotetrafluoroethane	ND	0.716	0.716	ND	5.00	5.00	01/29/24	KCA	5	1
1,3,5-Trimethylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
1,3-Butadiene	ND	2.26	2.26	ND	5.00	5.00	01/29/24	KCA	5	1
1,4-Dioxane	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
2-Hexanone(MBK)	ND	1.22	1.22	ND	4.99	4.99	01/29/24	KCA	5	1
4-Ethyltoluene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
4-Isopropyltoluene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
4-Methyl-2-pentanone(MIBK)	ND	1.22	1.22	ND	4.99	4.99	01/29/24	KCA	5	1
Acetone	9.59	2.11	2.11	22.8	5.01	5.01	01/29/24	KCA	5	1
Acrylonitrile	ND	2.31	2.31	ND	5.01	5.01	01/29/24	KCA	5	1
Benzene	ND	1.57	1.57	ND	5.01	5.01	01/29/24	KCA	5	1
Bromodichloromethane	ND	0.747	0.747	ND	5.00	5.00	01/29/24	KCA	5	1
Bromoform	ND	0.484	0.484	ND	5.00	5.00	01/29/24	KCA	5	1
Bromomethane	ND	1.29	1.29	ND	5.01	5.01	01/29/24	KCA	5	1
Carbon Disulfide	ND	1.61	1.61	ND	5.01	5.01	01/29/24	KCA	5	1
Carbon Tetrachloride	ND	0.198	0.198	ND	1.24	1.24	01/29/24	KCA	5	1

Client ID. INFLOENT	ppbv	ppbv	LOD/	ug/m3		3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	1.09	1.09	ND	5.01	5.01	01/29/24	KCA	5	1
Chloroethane	ND	1.90	1.90	ND	5.01	5.01	01/29/24	KCA	5	1
Chloroform	19.2	1.02	1.02	93.7	4.98	4.98	01/29/24	KCA	5	1
Chloromethane	ND	2.42	2.42	ND	4.99	4.99	01/29/24	KCA	5	1
Cis-1,2-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
cis-1,3-Dichloropropene	ND	1.10	1.10	ND	4.99	4.99	01/29/24	KCA	5	1
Cyclohexane	ND	1.45	1.45	ND	4.99	4.99	01/29/24	KCA	5	1
Dibromochloromethane	ND	0.587	0.587	ND	5.00	5.00	01/29/24	KCA	5	1
Dichlorodifluoromethane	ND	1.01	1.01	ND	4.99	4.99	01/29/24	KCA	5	1
Ethanol	195	2.66	2.66	367	5.01	5.01	01/29/24	KCA	5	1
Ethyl acetate	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
Ethylbenzene	ND	1.15	1.15	ND	4.99	4.99	01/29/24	KCA	5	1
Heptane	ND	1.22	1.22	ND	5.00	5.00	01/29/24	KCA	5	1
Hexachlorobutadiene	ND	0.469	0.469	ND	5.00	5.00	01/29/24	KCA	5	1
Hexane	ND	1.42	1.42	ND	5.00	5.00	01/29/24	KCA	5	1
Isopropylalcohol	5.40	2.04	2.04	13.3	5.01	5.01	01/29/24	KCA	5	1
Isopropylbenzene	ND	1.02	1.02	ND	5.01	5.01	01/29/24	KCA	5	1
m,p-Xylene	1.35	1.15	1.15	5.86	4.99	4.99	01/29/24	KCA	5	1
Methyl Ethyl Ketone	ND	1.70	1.70	ND	5.01	5.01	01/29/24	KCA	5	1
Methyl tert-butyl ether(MTBE)	ND	1.39	1.39	ND	5.01	5.01	01/29/24	KCA	5	1
Methylene Chloride	ND	1.44	1.44	ND	5.00	5.00	01/29/24	KCA	5	1
n-Butylbenzene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
o-Xylene	ND	1.15	1.15	ND	4.99	4.99	01/29/24	KCA	5	1
Propylene	ND	2.91	2.91	ND	5.01	5.01	01/29/24	KCA	5	1
sec-Butylbenzene	ND	0.911	0.911	ND	5.00	5.00	01/29/24	KCA	5	1
Tetrachloroethene	347	0.369	0.369	2350	2.50	2.50	01/30/24	KCA	10	1
Tetrahydrofuran	ND	1.70	1.70	ND	5.01	5.01	01/29/24	KCA	5	1
Toluene	ND	1.33	1.33	ND	5.01	5.01	01/29/24	KCA	5	1
Trans-1,2-Dichloroethene	ND	1.26	1.26	ND	4.99	4.99	01/29/24	KCA	5	1
Trichloroethene	16.8	0.233	0.233	90.2	1.25	1.25	01/29/24	KCA	5	1
Trichlorofluoromethane	1.05	0.891	0.891	5.90	5.00	5.00	01/29/24	KCA	5	1
Trichlorotrifluoroethane	ND	0.653	0.653	ND	5.00	5.00	01/29/24	KCA	5	1
Vinyl Chloride	ND	0.489	0.489	ND	1.25	1.25	01/29/24	KCA	5	1
QA/QC Surrogates/Internals										
% Bromofluorobenzene (5x)	103	%	%	103	%	%	01/29/24	KCA	5	
% IS-1,4-Difluorobenzene (5x)	85	%	%	85	%	%	01/29/24	KCA	5	
% IS-Bromochloromethane (5x)	110	%	%	110	%	%	01/29/24	KCA	5	
% IS-Chlorobenzene-d5 (5x)	84	%	%	84	%	%	01/29/24	KCA	5	
% Bromofluorobenzene (10x)	97	%	%	97	%	%	01/30/24	KCA	10	
% IS-1,4-Difluorobenzene (10x)	99	%	%	99	%	%	01/30/24	KCA	10	
% IS-Bromochloromethane (10x)	99	%	%	99	%	%	01/30/24	KCA	10	
% IS-Chlorobenzene-d5 (10x)	102	%	%	102	%	%	01/30/24	KCA	10	
75 13 GINGIOSCHZENE-GG (10X)	.02	70	,0		70	,0	3 ., 3 3/L 1			

Phoenix I.D.: CP96010

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96010

Client ID: INFLUENT

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 06, 2024

FOR: Attn: Mr. William J. Schlageter

Preferred Environmental Services

323 Merrick Avenue

North Merrick, New York 11566

Sample Information Custody Information Date <u>Time</u> **TEDLAR BAG** Collected by: 01/25/24 10:13 Matrix: Received by: Location Code: **PREFRDNY** В 01/26/24 16:35

Rush Request: Standard Analyzed by: see "By" below

1107 DEKALB AVENUE

Project ID: Client ID: **EFFLUENT**

P.O.#:

Laboratory Data SDG ID: GCP96008 Phoenix ID: CP96011

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL		Ву	Dilution
Volatiles (TO15)									
1,1,1,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10
1.1.1-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10

Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,1-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,2,2-Tetrachloroethane	ND	1.46	1.46	ND	10.0	10.0	01/29/24	KCA	10	1
1,1,2-Trichloroethane	ND	1.83	1.83	ND	10.0	10.0	01/29/24	KCA	10	1
1,1-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	01/29/24	KCA	10	1
1,1-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
1,2,4-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dibromoethane(EDB)	ND	1.30	1.30	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dichloroethane	ND	2.47	2.47	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-dichloropropane	ND	2.17	2.17	ND	10.0	10.0	01/29/24	KCA	10	1
1,2-Dichlorotetrafluoroethane	ND	1.43	1.43	ND	10.0	10.0	01/29/24	KCA	10	1
1,3,5-Trimethylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
1,3-Butadiene	ND	4.52	4.52	ND	10.0	10.0	01/29/24	KCA	10	1
1,4-Dioxane	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
2-Hexanone(MBK)	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
4-Ethyltoluene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
4-Isopropyltoluene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
4-Methyl-2-pentanone(MIBK)	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
Acetone	5.51	4.21	4.21	13.1	10.0	10.0	01/29/24	KCA	10	1
Acrylonitrile	ND	4.61	4.61	ND	10.0	10.0	01/29/24	KCA	10	1
Benzene	ND	3.13	3.13	ND	10.0	10.0	01/29/24	KCA	10	1
Bromodichloromethane	ND	1.49	1.49	ND	10.0	10.0	01/29/24	KCA	10	1
Bromoform	ND	0.968	0.968	ND	10.0	10.0	01/29/24	KCA	10	1
Bromomethane	ND	2.58	2.58	ND	10.0	10.0	01/29/24	KCA	10	1
Carbon Disulfide	ND	3.21	3.21	ND	10.0	10.0	01/29/24	KCA	10	1
Carbon Tetrachloride	ND	0.397	0.397	ND	2.50	2.50	01/29/24	KCA	10	1

Client ID. EFFLOENT		_		, -						
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Chlorobenzene	ND	2.17	2.17	ND	10.0	10.0	01/29/24	KCA	10	1
Chloroethane	ND	3.79	3.79	ND	10.0	10.0	01/29/24	KCA	10	1
Chloroform	14.7	2.05	2.05	71.7	10.0	10.0	01/29/24	KCA	10	1
Chloromethane	ND	4.85	4.85	ND	10.0	10.0	01/29/24	KCA	10	1
Cis-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
cis-1,3-Dichloropropene	ND	2.20	2.20	ND	10.0	10.0	01/29/24	KCA	10	1
Cyclohexane	ND	2.91	2.91	ND	10.0	10.0	01/29/24	KCA	10	1
Dibromochloromethane	ND	1.17	1.17	ND	10.0	10.0	01/29/24	KCA	10	1
Dichlorodifluoromethane	ND	2.02	2.02	ND	10.0	10.0	01/29/24	KCA	10	1
Ethanol	139	5.31	5.31	262	10.0	10.0	01/29/24	KCA	10	1
Ethyl acetate	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
Ethylbenzene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Heptane	ND	2.44	2.44	ND	10.0	10.0	01/29/24	KCA	10	1
Hexachlorobutadiene	ND	0.938	0.938	ND	10.0	10.0	01/29/24	KCA	10	1
Hexane	ND	2.84	2.84	ND	10.0	10.0	01/29/24	KCA	10	1
Isopropylalcohol	ND	4.07	4.07	ND	10.0	10.0	01/29/24	KCA	10	1
Isopropylbenzene	ND	2.04	2.04	ND	10.0	10.0	01/29/24	KCA	10	1
m,p-Xylene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Methyl Ethyl Ketone	ND	3.39	3.39	ND	10.0	10.0	01/29/24	KCA	10	1
Methyl tert-butyl ether(MTBE)	ND	2.78	2.78	ND	10.0	10.0	01/29/24	KCA	10	1
Methylene Chloride	ND	2.88	2.88	ND	10.0	10.0	01/29/24	KCA	10	1
n-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
o-Xylene	ND	2.30	2.30	ND	10.0	10.0	01/29/24	KCA	10	1
Propylene	ND	5.81	5.81	ND	10.0	10.0	01/29/24	KCA	10	1
sec-Butylbenzene	ND	1.82	1.82	ND	10.0	10.0	01/29/24	KCA	10	1
Tetrachloroethene	125	0.369	0.369	847	2.50	2.50	01/29/24	KCA	10	1
Tetrahydrofuran	ND	3.39	3.39	ND	10.0	10.0	01/29/24	KCA	10	1
Toluene	ND	2.66	2.66	ND	10.0	10.0	01/29/24	KCA	10	1
Trans-1,2-Dichloroethene	ND	2.52	2.52	ND	10.0	10.0	01/29/24	KCA	10	1
Trichloroethene	3.16	0.466	0.466	17.0	2.50	2.50	01/29/24	KCA	10	1
Trichlorofluoromethane	3.22	1.78	1.78	18.1	10.0	10.0	01/29/24	KCA	10	1
Trichlorotrifluoroethane	ND	1.31	1.31	ND	10.0	10.0	01/29/24	KCA	10	1
Vinyl Chloride	ND	0.979	0.979	ND	2.50	2.50	01/29/24	KCA	10	1
QA/QC Surrogates/Internals										
% Bromofluorobenzene (10x)	99	%	%	99	%	%	01/29/24	KCA	10	
% IS-1,4-Difluorobenzene (10x)	87	%	%	87	%	%	01/29/24	KCA	10	
% IS-Bromochloromethane (10x)	101	%	%	101	%	%	01/29/24	KCA	10	
% IS-Chlorobenzene-d5 (10x)	82	%	%	82	%	%	01/29/24	KCA	10	

Phoenix I.D.: CP96011

Project ID: 1107 DEKALB AVENUE Phoenix I.D.: CP96011

Client ID: EFFLUENT

ppbv ppbv LOD/ ug/m3 ug/m3LOD/
Parameter Result RL MDL Result RL MDL Date/Time By Dilution

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

This sample was collected using a Tedlar airbag, possible low bias.

1 = not certified by NY NELAC. NY NELAC does not offer certification for samples received in Tedlar bags for EPA TO-15 The specified sampling device for EPA TO15 is a summa canister.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

February 06, 2024

Reviewed and Released by: Rashmi Makol, Project Manager

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT ID

MW-1402

nvironmental Labs	Client:	PREFRDNY		
Case No.:	SAS No.:		SDG No.:	GCP9600
ROUND WATER		Lab Sample ID:	CP96008	
5 (g/m	nL) <u>mL</u>	Lab File ID:	0126_58.D	
		Date Received:	01/26/24	
100		Date Analyzed:	01/27/24	
RTX-VMS	ID: <u>0.18(mm)</u>	Dilution Factor:	_	1
5000(uL)		Soil Aliquot Vol (uL		n.a.
11	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L		
COMPOUND N	NAME	RT	EST. CONC.	Q
Butane		1.169	28	JN
Butane, 2-methyl-		1.378	60	JN
Pentane, 2-methyl-		1.875	44	JN
Pentane, 3-methyl-		1.985	28	JN
	Case No.: ROUND WATER 5 (g/m 100 RTX-VMS 5000 (uL) 11 COMPOUND N Butane Butane, 2-methyl- Pentane, 2-methyl-	Case No.: SAS No.: ROUND WATER 5 (g/mL) mL 100 ID: 0.18(mm) 5000 (uL) CONCENTRATION UNITS: (ug/L or ug/KG) 11 (ug/L or ug/KG) COMPOUND NAME Butane Butane, 2-methyl-Pentane, 2-methyl-Pentane, 2-methyl-	Case No.: SAS No.: ROUND WATER Lab Sample ID: 5 (g/mL) mL Lab File ID: Date Received: Date Analyzed: RTX-VMS ID: 0.18(mm) Dilution Factor: 5000 (uL) Soil Aliquot Vol (uL CONCENTRATION UNITS: ug/L 11 (ug/L or ug/KG) ug/L COMPOUND NAME RT Butane 1.169 Butane, 2-methyl- 1.378 Pentane, 2-methyl- 1.875	Case No.: SAS No.: SDG No.: ROUND WATER Lab Sample ID: CP96008 5 (g/mL) mL Lab File ID: 0126_58.D Date Received: 01/26/24 01/26/24 100 Date Analyzed: 01/27/24 RTX-VMS ID: 0.18(mm) Dilution Factor: 5000 (uL) Soil Aliquot Vol (uL): 11 (ug/L or ug/KG) ug/L COMPOUND NAME RT EST. CONC. Butane 1.169 28 Butane, 2-methyl- 1.378 60 Pentane, 2-methyl- 1.875 44

O/ (O I TOWNDER	CONTROLLE IV TWE		201.00110.	~
000106-97-8	Butane	1.169	28	JN
000078-78-4	Butane, 2-methyl-	1.378	60	JN
000107-83-5	Pentane, 2-methyl-	1.875	44	JN
000096-14-0	Pentane, 3-methyl-	1.985	28	JN
000096-37-7	Cyclopentane, methyl-	2.383	30	JN
	unknown	2.926	24	J
000611-14-3	Benzene, 1-ethyl-2-methyl-	5.934	50	JN
	Benzene, 1-ethyl-2-methyl- Isomer	6.143	34	JN
526-73-8	1,2,3-Trimethylbenzene	6.582	58	Q
000767-58-8	Indan, 1-methyl-	7.100	21	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-methyl-	7.639	34	JN
	+		1	
	+		1	

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT ID

MW-1403

Lab Name: Phoenix Er	nvironmental Labs	- Client:	PREFRDNY	_	
Lab Code: Phoenix	Case No.:	SAS No.:	:	SDG No.:	GCP9600
Matrix:(soil/water) G	ROUND WATER		Lab Sample ID:	CP96009	
Sample wt/vol:	5 (g/mL)	<u>mL</u>	Lab File ID:	0126_59.D	
Level: (low/med)			Date Received:	01/26/24	
% Moisture: not dec.	100		Date Analyzed:	01/27/24	
GC Column:	RTX-VMS ID:	<u>0.18(mm)</u>	Dilution Factor:	_	1
Purge Volume:	5000(uL)		Soil Aliquot Vol (ul	_):	n.a.
Number TICs found:	10	CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	COMPOUND NA	ME	RT	EST. CONC.	Q
000078-78-4	Butane, 2-methyl-		1.378	13	JN
	unknown		1.875	15	J
000096-14-0	Pentane, 3-methyl-		1.985	8.8	JN
	unknown		2.351	8	J
000096-37-7	Cyclopentane, methyl-		2.377	8	JN
000590-73-8	Hexane, 2,2-dimethyl-		2.926	20	JN
000565-75-3	Pentane, 2,3,4-trimethyl-		3.549	9.1	JN
000560-21-4	Pentane, 2,3,3-trimethyl-		3.622	12	JN
000767-58-8	Indan, 1-methyl-		7.100	4.1	JN
000824-22-6	1H-Indene, 2,3-dihydro-4-meth	ıyl-	7.634	4.6	JN
					-
	+				
				<u> </u>	
	<u> </u>			<u> </u>	1
					†

FORM I VOA-TIC

J - Used when estimating a concentration for TIC where a 1:1 response is assumed or when the result indicates the presence of a compound that meets the indentification criteria, but the results is less than the quantitation limit, but greater than zero.

N - The concentration is based on the response of the nearest internal. This flag is used on the TIC form for all compounds identified

Q - For TICS, this compound was quantitated using a calibration curve. This compound is part of the instrument method, but not part of the client target list.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

SDG I.D.: GCP96008

QA/QC Report

February 06, 2024

QA/QC Data

Danamakan	Blank	Blk	LCS	LCSD	LCS RPD	MS %	MSD	MS	% Rec Limits	% RPD
Parameter			%	%	RPD	70	%	RPD	LIIIIIIS	Limits
QA/QC Batch 716050 (ug/L),	-	le No: CP94162 (CP96008, CF	96009)							
Volatiles - Ground Wate	<u>r</u>									
1,1,1,2-Tetrachloroethane	ND	1.0	116	104	10.9				70 - 130	30
1,1,1-Trichloroethane	ND	1.0	102	96	6.1				70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	117	104	11.8				70 - 130	30
1,1,2-Trichloroethane	ND	1.0	113	104	8.3				70 - 130	30
1,1-Dichloroethane	ND	1.0	109	100	8.6				70 - 130	30
1,1-Dichloroethene	ND	1.0	105	97	7.9				70 - 130	30
1,1-Dichloropropene	ND	1.0	111	99	11.4				70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	123	110	11.2				70 - 130	30
1,2,3-Trichloropropane	ND	1.0	111	96	14.5				70 - 130	30
1,2,4-Trichlorobenzene	ND	1.0	125	111	11.9				70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	119	107	10.6				70 - 130	30
1,2-Dibromo-3-chloropropane	ND	1.0	105	93	12.1				70 - 130	30
1,2-Dibromoethane	ND	1.0	116	102	12.8				70 - 130	30
1,2-Dichlorobenzene	ND	1.0	122	109	11.3				70 - 130	30
1,2-Dichloroethane	ND	1.0	106	95	10.9				70 - 130	30
1,2-Dichloropropane	ND	1.0	114	104	9.2				70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	121	108	11.4				70 - 130	30
1,3-Dichlorobenzene	ND	1.0	123	109	12.1				70 - 130	30
1,3-Dichloropropane	ND	1.0	116	104	10.9				70 - 130	30
1,4-Dichlorobenzene	ND	1.0	123	111	10.3				70 - 130	30
1,4-dioxane	ND	100	123	105	15.8				40 - 160	20
2,2-Dichloropropane	ND	1.0	102	94	8.2				70 - 130	30
2-Chlorotoluene	ND	1.0	120	111	7.8				70 - 130	30
2-Hexanone	ND	5.0	102	87	15.9				70 - 130	30
2-Isopropyltoluene	ND	1.0	126	112	11.8				70 - 130	30
4-Chlorotoluene	ND	1.0	123	110	11.2				70 - 130	30
4-Methyl-2-pentanone	ND	5.0	99	91	8.4				70 - 130	30
Acetone	ND	5.0	126	102	21.1				70 - 130	30
Acrylonitrile	ND	5.0	106	103	2.9				70 - 130	30
Benzene	ND	0.70	120	108	10.5				70 - 130	30
Bromobenzene	ND	1.0	124	112	10.3				70 - 130	30
Bromochloromethane	ND	1.0	108	100	7.7					
Bromodichloromethane	ND	0.50	108	100	7.7				70 - 130	30
Bromoform	ND ND	1.0	108	92	12.2				70 - 130 70 - 130	30
Bromomethane	0.46 J	1.0	94	92 94	0.0					30
									70 - 130	30
Carbon Disulfide	ND	1.0	106	98	7.8				70 - 130	30
Carbon tetrachloride	ND	1.0	96	91	5.3				70 - 130	30
Chlorobenzene	ND	1.0	125	112	11.0				70 - 130	30
Chloroethane	ND	1.0	99	94	5.2				70 - 130	30
Chloroform	ND	1.0	109	99	9.6				70 - 130	30
Chloromethane	ND	1.0	99	91	8.4				70 - 130	30

QA/QC Data

SDG I.D.: GCP96008 % % Blk **LCSD** LCS **RPD** LCS MS **MSD** MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter cis-1,2-Dichloroethene ND 1.0 113 110 2.7 70 - 130 30 cis-1,3-Dichloropropene ND 0.40 114 101 12.1 70 - 130 30 Cyclohexane ND 5.0 95 90 5.4 70 - 130 30 Dibromochloromethane ND 0.50 111 99 11.4 70 - 130 30 Dibromomethane ND 1.0 109 99 9.6 70 - 130 30 Dichlorodifluoromethane ND 1.0 80 74 7.8 70 - 130 30 ND 1.0 124 111 11.1 70 - 130 30 Ethylbenzene ND 122 103 16.9 70 - 130 Hexachlorobutadiene 0.40 30 Isopropylbenzene ND 7.9 70 - 130 30 1.0 119 110 m&p-Xylene ND 1.0 125 112 11.0 70 - 130 30 Methyl ethyl ketone ND 5.0 108 103 4.7 70 - 130 30 Methyl t-butyl ether (MTBE) ND 1.0 104 95 9.0 70 - 130 30 Methylacetate ND 2.5 92 85 7.9 70 - 130 30 Methylcyclohexane ND 1.0 98 86 13.0 70 - 130 30 Methylene chloride ND 1.0 108 99 8.7 70 - 130 30 Naphthalene ND 1.0 114 100 13.1 70 - 130 30 ND n-Butylbenzene 1.0 121 107 12.3 70 - 130 30 n-Propylbenzene ND 1.0 127 113 11.7 70 - 130 30 ND 1.0 121 111 o-Xylene 8.6 70 - 130 30 p-Isopropyltoluene ND 1.0 124 108 13.8 70 - 130 30 sec-Butylbenzene ND 1.0 110 123 11.2 70 - 130 30 Styrene ND 1.0 121 113 6.8 70 - 130 30 tert-Butylbenzene ND 1.0 122 109 11.3 70 - 130 30 Tetrachloroethene ND 110 7.0 1.0 118 70 - 130 30 Tetrahydrofuran (THF) ND 2.5 112 101 10.3 70 - 130 30 ND Toluene 1.0 120 111 7.8 70 - 130 30 trans-1,2-Dichloroethene ND 1.0 104 70 - 130 111 6.5 30 trans-1,3-Dichloropropene ND 0.40 96 105 9.0 70 - 130 30 trans-1,4-dichloro-2-butene ND 5.0 108 95 12.8 70 - 130 30 Trichloroethene ND 1.0 119 109 8.8 70 - 130 30 Trichlorofluoromethane ND 1.0 98 92 6.3 70 - 130 30 Trichlorotrifluoroethane ND 98 92 1.0 6.3 70 - 130 30 Vinyl chloride ND 1.0 102 97 5.0 70 - 130 30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

%

%

%

%

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 716038 (ug/L), QC Sample No: CP94756 (CP96008 (10X))

104

95

104

101

Volatiles - Ground Water

% 1,2-dichlorobenzene-d4

% Dibromofluoromethane

% Bromofluorobenzene

% Toluene-d8

Comment:

Volutios Ordana vvator										
1,2,4-Trimethylbenzene	ND	1.0	111	91	19.8	92	85	7.9	70 - 130	30
Ethylbenzene	ND	1.0	119	98	19.4	102	96	6.1	70 - 130	30
m&p-Xylene	ND	1.0	120	99	19.2	103	96	7.0	70 - 130	30
% 1,2-dichlorobenzene-d4	102	%	106	102	3.8	104	103	1.0	70 - 130	30
% Bromofluorobenzene	95	%	97	98	1.0	98	99	1.0	70 - 130	30
% Dibromofluoromethane	102	%	102	103	1.0	100	101	1.0	70 - 130	30
% Toluene-d8	103	%	104	103	1.0	102	104	1.9	70 - 130	30

104

98

98

103

103

98

102

103

1.0

0.0

4.0

0.0

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

70 - 130

70 - 130

70 - 130

70 - 130

30

30

30

30

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102

SDG I.D.: GCP96008

QA/QC Report

February 06, 2024

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %		Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 716149 (ppbv),	QC Sam	ple No: (CP95646	(CP960	10 (5X)	, CP9	5011 (10	X))					
Volatiles		•		`	` ,		`	, ,					
1,1,1,2-Tetrachloroethane	ND	0.500	ND	3.43	93		ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.500	ND	2.73	114		ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.010	ND	0.07	88		ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.020	ND	0.11	103		ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.150	ND	0.61	108		ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.200	ND	0.79	108		ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.500	ND	2.46	105		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.010	ND	0.08	97		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.020	ND	0.08	110		ND	0.15	ND	0.038	NC	70 - 130	25
1,2-dichloropropane	ND	0.020	ND	0.09	92		ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.500	ND	3.49	114		ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.500	ND	2.46	95		ND	ND	ND	ND	NC	70 - 130	25
1,3-Butadiene	ND	0.500	ND	1.11	108		ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.130	ND	0.47	83		ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.500	ND	2.05	100		ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.500	ND	2.46	106		ND	ND	ND	ND	NC	70 - 130	25
4-Isopropyltoluene	ND	0.500	ND	2.74	98		ND	ND	ND	ND	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.500	ND	2.05	103		ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.750	ND	1.78	99		3.09	2.97	1.30	1.25	NC	70 - 130	25
Acrylonitrile	ND	0.500	ND	1.08	90		ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.200	ND	0.64	108		ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.020	ND	0.13	101		ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.150	ND	1.55	99		ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.140	ND	0.54	105		ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.500	ND	1.56	113		ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.086	ND	0.54	114		ND	ND	ND	ND	NC	70 - 130	25
Chlorobenzene	ND	0.200	ND	0.92	90		ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.500	ND	1.32	107		ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.200	ND	0.98	105		ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.500	ND	1.03	104		ND	ND	ND	ND	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.200	ND	0.79	117		ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.100	ND	0.45	104		ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.500	ND	1.72	99		ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.020	ND	0.17	102		ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.500	ND	2.47	114		ND	ND	ND	ND	NC	70 - 130	25
Ethanol	ND	0.750	ND	1.41	101		2.69	6.95	1.43	3.69	NC	70 - 130	25
Ethyl acetate	ND	0.500	ND	1.80	95		ND	ND	ND	ND	NC	70 - 130	25
Ethylbenzene	ND	0.500	ND	2.17	98		ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.500	ND	2.05	100		ND	ND	ND	ND	NC	70 - 130	25
Hexachlorobutadiene	ND	0.010	ND	0.11	97		ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.450	ND	1.59	95		ND	ND	ND	ND	NC	70 - 130	25
HONGIIC	NU	0.430	ND	1.37	75		ND	שויו	שויו	שויו	140	70 - 130	20

QA/QC Data

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Isopropylalcohol	ND	0.750	ND	1.84	121	ND	ND	ND	ND	NC	70 - 130	25
Isopropylbenzene	ND	0.500	ND	2.46	96	ND	ND	ND	ND	NC	70 - 130	25
m,p-Xylene	ND	1.00	ND	4.34	102	ND	ND	ND	ND	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.450	ND	1.33	113	ND	ND	ND	ND	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.500	ND	1.80	115	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	3.00	ND	10.4	100	ND	ND	ND	ND	NC	70 - 130	25
n-Butylbenzene	ND	0.500	ND	2.74	96	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.500	ND	2.17	102	ND	ND	ND	ND	NC	70 - 130	25
Propylene	ND	0.500	ND	0.86	103	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.500	ND	2.74	96	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.100	ND	0.68	107	ND	ND	ND	ND	NC	70 - 130	25
Tetrahydrofuran	ND	0.500	ND	1.47	103	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.500	ND	1.88	103	ND	ND	ND	ND	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.200	ND	0.79	112	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.050	ND	0.27	100	ND	ND	ND	ND	NC	70 - 130	25
Trichlorofluoromethane	ND	0.500	ND	2.81	113	ND	ND	ND	ND	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.500	ND	3.83	115	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.100	ND	0.26	108	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	101	%	101	%	99	110	102	110	102	NC	70 - 130	25
% IS-1,4-Difluorobenzene	116	%	116	%	103	81	81	81	81	NC	60 - 140	25
% IS-Bromochloromethane	127	%	127	%	102	106	105	106	105	NC	60 - 140	25
% IS-Chlorobenzene-d5	109	%	109	%	117	79	78	79	78	NC	60 - 140	25
QA/QC Batch 716344 (ppbv), Q	C Sam	ple No: (CP97046	(CP960	10 (10X))							
<u>Volatiles</u>												
Tetrachloroethene	ND	0.037	ND	0.25	100	0.26	0.26	0.039	0.039	NC	70 - 130	25
% Bromofluorobenzene	96	%	96	%	100	105	104	105	104	NC	70 - 130	25
% IS-1,4-Difluorobenzene	100	%	100	%	107	100	95	100	95	NC	60 - 140	25
% IS-Bromochloromethane	102	%	102	%	101	99	96	99	96	NC	60 - 140	25
% IS-Chlorobenzene-d5	101	%	101	%	109	99	97	99	97	NC	60 - 140	25

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCP96008

February 06, 2024

Tuesday, February 06, 2024

Sample Criteria Exceedances Report GCP96008 - PREFRDNY

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

DATA OF KNOWN QUALITY CONFORMANCE/NON-CONFORMANCE SUMMARY QUESTIONNAIRE

Laboratory Name: Priderix Environmental Labs, inc. Client: Preferred									rea Envir	onmenta	ii Services
Proje	ect Location:	1107	DEKALB A	VENUE		Project	t Number:				
Labo	ratory Sampl	e ID(s)	: CP96008	, CP96009,	CP960	010, CP9	96011				
Sam	pling Date(s):	1/25/	2024								
DKQ	P Methods U	sed									
13	311/1312	010	6020	7000	_ 7	196	7470/74	471	8081	E	ΞPH
<u> </u>	082 🗌 8	151	✓ 8260	8270	E	TPH	9010/9	012	☐ VPH	v	ГО15
1.	For each analy specified QA/Q any criteria falli of Known Qual	C perfor	rmance criter ide of accepta	ria followed, i able guideline	ncluding	g the requ	uirement to e	explain	✓ Yes	□No	
1a.	Were the meth met?	od spec	ified handling	g, preservatio	n, and h	holding ti	me requirem	ents	✓ Yes	□No	
1b.	EPH Method: V Section 11.3 of				vithout s	significan	t modification	ns (see	☐ Yes	□ No	✓ NA
2.	Were all sampl described on th						stent with tha	it	✓ Yes	□No	
3.	Were samples	receive	d at an appro	priate tempe	rature (4	4±2° C)?			✓ Yes	□No	□NA
4.	Were all QA/Qe achieved?	C perfor	mance criteri	a specified ir	the NJ	IDEP DK	QP standard	s	✓ Yes	□ No	
5a.	Were reporting communicated						ody or		□ Yes	✓ No	
5b.	Were these rep	orting li	mits met?						☐ Yes	□No	✓ NA
6.	For each analy results reported presented in the	d for all o	constituents i	identified in th	he meth	od-speci			✓ Yes	□ No	
7.	Are project-spe set?	cific ma	trix spikes ar	nd/or laborato	ry dupli	icates inc	luded in this	data	□ Yes	✓ No	
Note:	For all question provided in an requirements for	attached	narrative. If t	he answer to	(with the	e exception n #1, #1A,	on of question or #1B is "N	n #7), add o", the da	litional info ita package	ormation s does not	hould be meet the
and	e undersigne belief and ba tained in this	sed up	on my pers	sonal inqui	ry of th	nose res	sponsible f	or provi	iding the	-	_
Aut	horized	_					Date:	Tuesda	ıy, Februa	ary 06, 20	024
	nature:	Ro	iuwa	wakol	,	Prin	nted Name:	Rashm	i Makol		
							Position:	Project	Manager		

Apr 2014

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

AIRSIM

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

CHEM20 01/29/24-1

Jamie Litchfield, Chemist 01/29/24

CP96010 (5X), CP96011 (10X)

Initial Calibration Evaluation (CHEM20/20_AIR_0124):

100% of target compounds met criteria.

The following compounds had %RSDs >30%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification #1 (CHEM20/0128_02-20_AIR_0124):

Internal standard areas were within 60 to 140% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM39 01/30/24-1

Jamie Litchfield, Chemist 01/30/24

CP96010 (10X)

Initial Calibration Evaluation (CHEM39/39_AIR_0112):

100% of target compounds met criteria.

The following compounds had %RSDs >30%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification #1 (CHEM39/0130_02-39_AIR_0112):

Internal standard areas were within 60 to 140% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 716149 (CP95646)

CP96010(5X), CP96011(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Batch 716344 (CP97046)

CP96010(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

VOA Narration

Instrument:

CHEM23 01/26/24-2 Michael Hahn, Chemist 01/26/24

CP96008 (1X), CP96009 (1X)

Initial Calibration Evaluation (CHEM23/VOA23_011624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,4-dioxane 21% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,1,2-Trichloroethane 0.191 (0.2),

Bromodichloromethane 0.290 (0.3), Ethylbenzene 0.333 (0.4)

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM23/0126_33-VOA23_011624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.386 (0.4)

CHEM23 01/27/24-1 Michael Hahn, Chemist 01/27/24

CP96008 (10X)

Initial Calibration Evaluation (CHEM23/VOA23_011624):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.333 (0.4)

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM23/0127_03-VOA23_011624):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: Ethylbenzene 0.328 (0.4)

QC (Batch Specific):

Batch 716038 (CP94756) CHEM23 1/27/2024-1

CP96008(10X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 716050 (CP94162) CHEM23 1/26/2024-2

CP96008(1X), CP96009(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NJDKQP Certification Report

February 06, 2024 SDG I.D.: GCP96008

VOA Narration

QC (Batch Specific):

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

February 06, 2024

SDG I.D.: GCP96008

The samples in this delivery group were received at 2.0° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

				LN/VN	/PA CHAIN	NY/NJ/PA CHAIN OF CUSTODY RECORD	RECORD		Terror Osc	Pg of
				587 East	Middle Tumpike.	587 East Middle Tumnike. P.O. Box 370 Manchester. CT 06040	ster. CT 06040	7	Contact Options:	ons:
Environmenta	Environmental Laboratories, Inc.		<u></u>	nail: Makrine	Nolan, makrina	Email: Makrina Nolan, makrina@phoenixlabs.com	Fax (860) 645-0823			
ı,					Alleni Serv			Email	b scholar Charmen	hearing and
	round trovis	nwente	Sowie	43	Project:	1107	ايِ		Project P.O:	
Address:	SUCK.	Aron >	₹ S		Report to:	りないに	eter @ preternedenvion	CAV.Com	This section MUSI	MUST be
1	Merricle, NY				Invoice to:	12	Schaph		completed with	Na.
					QUOTE#:				The state of the s	
	Client Sample - Information - Identification	Identification								
Sampler's Signature		λ	Date:	1/25/14	Analysis	September 19 Septe		SERVE		1400
Matrix Code: DW=Drinking Water RW=Raw Water SE	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SI =Studie S=Seil SR=Sediment SI =Studie S=Sediment SI = Studie S	e Water WW=\	Waste Water		To the state of th	To Selection of the sel		S. S		
B=Bulk L=Liquid			2		MA AN TO	1 (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	(\$°	GIR SE	NA THOO THE	
PHOENIX USE ONLY SAMPLE#	Customer Sample Identification	Sample n Matrix	Date Sampled	Time Sampled	N Comon		\$5,105 S	\$7/40 MS 10	100.7 TO 100.00	Mod eliebes
90019/	MW-1402	30	1/25/24		XX			ev		
90009	MW-1403	Bu	1/52/1		XX			3		
Grato Grato	Influent	Air	1/25/24	10:10		X				Teollar
96011	Effluent	Air	42/51/1	(0:13		 X				Tedlar
,										
Relinguished by:	Accepted by			Date		Time: Turnaround:	- CN	N N	&	
			6	1	71 W/2	10ay*	Res. Criteria			Clean Fill Limits
	o la			11/2	2001/2/10	25 0 3 0 ms.*	Non-Res. Criteria	375800		PA-GW
	-			,			Cleanup Criteria	Unrestricted Soil 375SCO		Reg Fill Limits
Comments, Special F		•	Data Format:	¥		X) Standard	soil screen Criteria	Residential Soil		PA Soil Restricted
20 20 20 20 20 20 20 20 20 20 20 20 20 2	مرد دور ساده		Phoenix Std Rep	c Std Report	EQUIS AT Hazsite EDD	APPLIES	☐ GW Criteria	Residential Restricted Soil	□ 	PA Soil non-restricted
			∑ Z.		NY EZ EDD (ASP)	Data Package:	Deliv *	Commercial Soil 375SCO		State Samples Collected?
*MS/MSD are considered : with the prices quoted.	*MS/MSD are considered site samples and will be billed as such in accordance with the prices quoted.	in accordance	GIS/Key	,	Other]	Subpart 5 DW	DW	1. TA
						ı				

Technical Report

prepared for:

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Report Date: 06/28/2024

Client Project ID: 41.0163281.02 1107 Dekalb Avenue

York Project (SDG) No.: 24F1675

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600

Report Date: 06/28/2024

Client Project ID: 41.0163281.02 1107 Dekalb Avenue

York Project (SDG) No.: 24F1675

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on June 25, 2024 and listed below. The project was identified as your project: 41.0163281.02 1107 Dekalb Avenue.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24F1675-01	Influent	Air	06/25/2024	06/25/2024
24F1675-02	Effluent	Air	06/25/2024	06/25/2024

General Notes for York Project (SDG) No.: 24F1675

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Oh I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 06/28/2024

Client Sample ID: York Sample ID: 24F1675-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received24F167541.0163281.02 1107 Dekalb AvenueAirJune 25, 2024 12:35 pm06/25/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:

Sample Notes:

CAS No	o. Parameter	Result	Flag	Units	Reported to	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications:		06/27/2024 12:00	06/27/2024 22:32	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.69	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	0.77	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.55	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.40	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.099	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
120-82-1	1,2,4-Trichlorobenzene	0.74	CAL-E, TO-LCS -L, ICVE	-	0.74	1	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 22:32	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	0.49	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	0.77	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.40	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.70	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	0.49	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
106-99-0	1,3-Butadiene	ND		ug/m³	0.66	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.46	1	EPA TO-15 Certifications:		06/27/2024 12:00	06/27/2024 22:32	YR
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.60	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
123-91-1	1,4-Dioxane	ND		ug/m³	0.72	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 /12058,NJDEP-NY037	06/27/2024 22:32	YR
540-84-1	* 2,2,4-Trimethylpentane	0.23		ug/m³	0.23	1	EPA TO-15 Certifications:		06/27/2024 12:00	06/27/2024 22:32	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 18

Client Sample ID: Influent

York Sample ID:

24F1675-01

York Project (SDG) No. 24F1675 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Air <u>Collection Date/Time</u> June 25, 2024 12:35 pm Date Received 06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

107-05-1 3-Chlo	xanone ropropene hyl-2-pentanone ne	1.9 ND ND 2.5 20	ug/m³ ug/m³ ug/m³ ug/m³ ug/m³	0.29 0.82 1.6 0.41	1 1 1 1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037 06/27/2024 12:00 06/27/2024 22:3 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR 2 YR 2 YR
107-05-1 3-Chlo 108-10-1 4-Met 67-64-1 Aceto 107-13-1 Acrylo	ropropene hyl-2-pentanone ne nitrile	ND 2.5 20	ug/m³ ug/m³ ug/m³	1.6 0.41	1	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR 2 YR
107-05-1 3-Chlo 108-10-1 4-Met 67-64-1 Aceto 107-13-1 Acrylo	ropropene hyl-2-pentanone ne nitrile	ND 2.5 20	ug/m³ ug/m³ ug/m³	1.6 0.41	1	Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR 2 YR
108-10-1 4-Met 67-64-1 Aceto 107-13-1 Acrylo	nyl-2-pentanone ne	2.5	ug/m³	0.41	1	Certifications: EPA TO-15 Certifications:	NELAC-NY12058,NJDEP-NY037 06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
67-64-1 Aceto 107-13-1 Acrylo	ne nitrile	20	ug/m³			Certifications:	NELAC-NY12058,NJDEP-NY037	
107-13-1 Acrylo	nitrile		-	0.48	1			,
107-13-1 Acrylo	nitrile		-	0.48	1	EPA TO 15	0.000,0004.10.00	
_		ND	ug/m³			LIA 10-13	06/27/2024 12:00 06/27/2024 22:3	2 YR
_		ND	ug/m³			Certifications:	NELAC-NY12058,NJDEP-NY037	
71-43-2 Benze	ne			0.22	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
		0.38	ug/m³	0.32	1	EPA TO-15	06/27/2024 12:00 06/27/2024 22:3	2 YR
			-			Certifications:	NELAC-NY12058,NJDEP-NY037	
100-44-7 Benzy	chloride	ND	ug/m³	0.52	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
75-27-4 Bromo	dichloromethane	ND	ug/m³	0.67	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
75-25-2 Bromo	form	ND	ug/m³	1.0	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
74-83-9 Bromo	methane	ND	ug/m³	0.39	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
75-15-0 Carbo	n disulfide	4.5	ug/m³	0.31	1	EPA TO-15	06/27/2024 12:00 06/27/2024 22:3	2 YR
						Certifications:	NELAC-NY12058,NJDEP-NY037	
56-23-5 Carbo	n tetrachloride	0.38	ug/m³	0.16	1	EPA TO-15	06/27/2024 12:00	2 YR
						Certifications:	NELAC-NY12058,NJDEP-NY037	
108-90-7 Chloro	benzene	ND	ug/m³	0.46	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
75-00-3 Chloro	ethane	ND	ug/m³	0.26	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
67-66-3 Chlor	oform	4.6	ug/m³	0.49	1	EPA TO-15	06/27/2024 12:00	2 YR
						Certifications:	NELAC-NY12058,NJDEP-NY037	
74-87-3 Chlor	omethane	0.64	ug/m³	0.21	1	EPA TO-15	06/27/2024 12:00	2 YR
						Certifications:	NELAC-NY12058,NJDEP-NY037	
156-59-2 cis-1,2	-Dichloroethylene	ND	ug/m³	0.099	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
10061-01-5 cis-1,3	-Dichloropropylene	ND	ug/m³	0.45	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
110-82-7 Cyclo	nexane	ND	ug/m³	0.34	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
124-48-1 Dibroi	nochloromethane	ND	ug/m³	0.85	1	EPA TO-15 Certifications:	06/27/2024 12:00 06/27/2024 22:3 NELAC-NY12058,NJDEP-NY037	2 YR
75-71-8 Dichle	rodifluoromethane	2.4	ug/m³	0.49	1	EPA TO-15	06/27/2024 12:00 06/27/2024 22:3	2 YR
						Certifications:	NELAC-NY12058,NJDEP-NY037	
141-78-6 * Eth	l acetate	36	ug/m^3	0.72	1	EPA TO-15	06/27/2024 12:00	2 YR
						Certifications:		

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 5 of 18

Client Sample ID: Influent

York Sample ID:

24F1675-01

York Project (SDG) No. 24F1675 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Air <u>Collection Date/Time</u> June 25, 2024 12:35 pm Date Received 06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepare	ed by Method: EPA TO15 PREP							D 4 /T	D / /T'	
CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Met	Date/Time nod Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	ND		ug/m^3	0.43	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
87-68-3	Hexachlorobutadiene	ND	TO-LCS -L, ICVE	ug/m³	1.1	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
67-63-0	Isopropanol	3.6		ug/m³	0.49	1	EPA TO-15 Certifications: NEI	06/27/2024 12:00 AC-NY12058,NJDEP-NY0	06/27/2024 22:32 37	YR
80-62-6	Methyl Methacrylate	ND		ug/m³	0.41	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m^3	0.36	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
75-09-2	Methylene chloride	ND		ug/m³	0.69	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
91-20-3	* Naphthalene	ND	ICVE	ug/m³	1.0	1	EPA TO-15 Certifications: NJD	06/27/2024 12:00 EP-NY037	06/27/2024 22:32	YR
142-82-5	n-Heptane	ND		ug/m³	0.41	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
110-54-3	n-Hexane	0.95		ug/m³	0.35	1	EPA TO-15 Certifications: NEI	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 37	YR
95-47-6	o-Xylene	ND		ug/m³	0.43	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
179601-23-1	p- & m- Xylenes	ND		ug/m³	0.87	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
622-96-8	* p-Ethyltoluene	ND		ug/m³	0.49	1	EPA TO-15 Certifications:	06/27/2024 12:00	06/27/2024 22:32	YR
115-07-1	* Propylene	1.3		ug/m³	0.17	1	EPA TO-15 Certifications:	06/27/2024 12:00	06/27/2024 22:32	YR
100-42-5	Styrene	ND		ug/m^3	0.43	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
127-18-4	Tetrachloroethylene	39		ug/m³	0.68	1	EPA TO-15 Certifications: NEI	06/27/2024 12:00 AC-NY12058,NJDEP-NY0	06/27/2024 22:32 37	YR
109-99-9	* Tetrahydrofuran	2.9		ug/m^3	0.59	1	EPA TO-15 Certifications:	06/27/2024 12:00	06/27/2024 22:32	YR
108-88-3	Toluene	2.0		ug/m^3	0.38	1	EPA TO-15 Certifications: NEI	06/27/2024 12:00 AC-NY12058,NJDEP-NY0	06/27/2024 22:32 37	YR
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m^3	0.40	1	EPA TO-15	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32	YR
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.45	1	EPA TO-15 Certifications: NEL	06/27/2024 12:00 AC-NY12058,NJDEP-NY03	06/27/2024 22:32 7	YR
79-01-6	Trichloroethylene	0.21		ug/m³	0.13	1	EPA TO-15	06/27/2024 12:00 AC-NY12058,NJDEP-NY0	06/27/2024 22:32	YR
75-69-4	Trichlorofluoromethane (Freon 11)	1.4		ug/m³	0.56	1	EPA TO-15	06/27/2024 12:00	06/27/2024 22:32	YR
108-05-4	Vinyl acetate	0.92		ug/m³	0.35	1	EPA TO-15	.AC-NY12058,NJDEP-NY0: 06/27/2024 12:00 .AC-NY12058,NJDEP-NY0:	06/27/2024 22:32	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 6 of 18

Client Sample ID: Influent

York Sample ID:

24F1675-01

York Project (SDG) No. 24F1675 Client Project ID
41.0163281.02 1107 Dekalb Avenue

Matrix Air Collection Date/Time
June 25, 2024 12:35 pm

Date Received 06/25/2024

Volatile Organics, EPA TO15 Full List

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS N	۱o.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
593-60-2	Vinyl bromide]	ND		ug/m³	0.44	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 712058,NJDEP-NY037	06/27/2024 22:32	YR
75-01-4	Vinyl Chloride	1	ND		ug/m³	0.13	1	EPA TO-15 Certifications:	NELAC-NY	06/27/2024 12:00 (12058.NJDEP-NY037	06/27/2024 22:32	YR

Log-in Notes:

Sample Information

Client Sample ID: Effluent

York Sample ID:

24F1675-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

24F1675

41.0163281.02 1107 Dekalb Avenue

Air

June 25, 2024 12:37 pm

06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

1 1	ed by Method: EPA TO15 PREP				Reported to				Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	3.4	5	EPA TO-15 Certifications:		06/27/2024 12:00	06/27/2024 23:20	YR
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	2.7	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	3.4	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	25		ug/m³	3.8	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
	(Freon 113)						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	2.7	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
75-34-3	1,1-Dichloroethane	ND		ug/m³	2.0	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.50	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
120-82-1	1,2,4-Trichlorobenzene	ND	CAL-E, ICVE, TO-LCS -L	-	3.7	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	2.5	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
106-93-4	1,2-Dibromoethane	ND		ug/m³	3.8	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	3.0	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
107-06-2	1,2-Dichloroethane	ND		ug/m³	2.0	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR
78-87-5	1,2-Dichloropropane	ND		ug/m³	2.3	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY037	06/27/2024 23:20	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 18

Client Sample ID: Effluent

York Sample ID: 24F1675-02

York Project (SDG) No. 24F1675 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Air <u>Collection Date/Time</u> June 25, 2024 12:37 pm Date Received 06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag Units	Reported to	Dilution	Reference	Method Date/Time Prepared	Date/Time Analyzed	Analyst
76-14-2	1,2-Dichlorotetrafluoroethane	ND	ug/m³	3.5	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
108-67-8	1,3,5-Trimethylbenzene	ND	ug/m³	2.5	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
106-99-0	1,3-Butadiene	ND	ug/m³	3.3	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
541-73-1	1,3-Dichlorobenzene	ND	ug/m³	3.0	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
142-28-9	* 1,3-Dichloropropane	ND	ug/m^3	2.3	5	EPA TO-15 Certifications:	06/27/2024 12:0	0 06/27/2024 23:20	YR
106-46-7	1,4-Dichlorobenzene	ND	ug/m^3	3.0	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
123-91-1	1,4-Dioxane	ND	ug/m^3	3.6	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
540-84-1	* 2,2,4-Trimethylpentane	ND	ug/m^3	1.2	5	EPA TO-15 Certifications:	06/27/2024 12:0	0 06/27/2024 23:20	YR
78-93-3	2-Butanone	2.4	ug/m³	1.5	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-N		YR
591-78-6	* 2-Hexanone	ND	ug/m³	4.1	5	EPA TO-15 Certifications:	06/27/2024 12:0		YR
107-05-1	3-Chloropropene	ND	ug/m^3	7.8	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
108-10-1	4-Methyl-2-pentanone	7.2	ug/m³	2.0	5	EPA TO-15	06/27/2024 12:0	0 06/27/2024 23:20	YR
67.64.1	Acatoma	22	/ 3	2.4	_	Certifications:	NELAC-NY12058,NJDEP-N		370
67-64-1	Acetone	23	ug/m³	2.4	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-N		YR
107-13-1	Acrylonitrile	ND	ug/m^3	1.1	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY	0 06/27/2024 23:20	YR
71-43-2	Benzene	ND	ug/m^3	1.6	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
100-44-7	Benzyl chloride	ND	ug/m³	2.6	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
75-27-4	Bromodichloromethane	ND	ug/m³	3.3	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
75-25-2	Bromoform	ND	ug/m³	5.2	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
74-83-9	Bromomethane	ND	ug/m^3	1.9	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
75-15-0	Carbon disulfide	5.4	ug/m³	1.6	5	EPA TO-15	06/27/2024 12:0	0 06/27/2024 23:20	YR
						Certifications:	NELAC-NY12058,NJDEP-N		
56-23-5	Carbon tetrachloride	ND	ug/m³	0.79	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
108-90-7	Chlorobenzene	ND	ug/m³	2.3	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR
75-00-3	Chloroethane	ND	ug/m^3	1.3	5	EPA TO-15 Certifications:	06/27/2024 12:0 NELAC-NY12058,NJDEP-NY		YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 8 of 18

Client Sample ID: Effluent

York Sample ID: 24F1675-02

York Project (SDG) No. 24F1675 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Air <u>Collection Date/Time</u> June 25, 2024 12:37 pm Date Received 06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

	ed by Method: EPA TO15 PREP				Reported to)			Date/Time	Date/Time	
CAS No	o. Parameter	Result	Flag	Units	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
67-66-3	Chloroform	600		ug/m^3	2.4	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
							Certifications:	NELAC-N	IY12058,NJDEP-NY03		
74-87-3	Chloromethane	ND		ug/m³	1.0	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03'	06/27/2024 23:20 7	YR
156-59-2	cis-1,2-Dichloroethylene	4.2		ug/m³	0.50	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
							Certifications:	NELAC-N	IY12058,NJDEP-NY03	37	
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	2.3	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03'	06/27/2024 23:20 7	YR
110-82-7	Cyclohexane	ND		ug/m³	1.7	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
	,						Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
124-48-1	Dibromochloromethane	ND		ug/m³	4.3	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20 7	YR
75-71-8	Dichlorodifluoromethane	3.0		ug/m³	2.5	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
							Certifications:	NELAC-N	IY12058,NJDEP-NY03	37	
141-78-6	* Ethyl acetate	34		ug/m^3	3.6	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
						_	Certifications:				
100-41-4	Ethyl Benzene	ND		ug/m³	2.2	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20 7	YR
87-68-3	Hexachlorobutadiene	ND	ICVE,	ug/m³	5.3	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
			TO-LCS				Certifications:	NELAC-N	Y12058,NJDEP-NY03	7	
67-63-0	Isopropanol	6.3	L	ug/m³	2.5	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
							Certifications:	NELAC-N	IY12058,NJDEP-NY03	37	
80-62-6	Methyl Methacrylate	ND		ug/m^3	2.0	5	EPA TO-15 Certifications:	NEL AC N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20	YR
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	1.8	5	EPA TO-15	NELAC-N	06/27/2024 12:00	06/27/2024 23:20	YR
103.0	wiemyr tert-outyr ether (wrrbL)	ND		ug	1.0	J	Certifications:	NELAC-N	Y12058,NJDEP-NY03		
75-09-2	Methylene chloride	ND		ug/m^3	3.5	5	EPA TO-15 Certifications:	NEL AC N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20	YR
91-20-3	* Naphthalene	ND	ICVE	ug/m³	5.2	5	EPA TO-15	NELAC-N	06/27/2024 12:00	06/27/2024 23:20	YR
,1 <u>2</u> 0 3	raphinalene	ND	ICVL	ug			Certifications:	NJDEP-NY			
142-82-5	n-Heptane	ND		ug/m^3	2.0	5	EPA TO-15 Certifications:	NEL AC N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20	YR
110-54-3	n-Hexane	ND		ug/m³	1.8	5	EPA TO-15	NELAC-N	06/27/2024 12:00	06/27/2024 23:20	YR
110 54 5	n-readic	ND		ug/m	1.0	J	Certifications:	NELAC-N	Y12058,NJDEP-NY03		110
95-47-6	o-Xylene	ND		ug/m^3	2.2	5	EPA TO-15	NEL AC N	06/27/2024 12:00	06/27/2024 23:20	YR
179601-23-1	p- & m- Xylenes	ND		ug/m³	4.3	5	Certifications: EPA TO-15	NELAC-N	Y12058,NJDEP-NY03' 06/27/2024 12:00	06/27/2024 23:20	YR
177001 23 1	p- & III- Aylenes	ND		ug/m	1.5	J	Certifications:	NELAC-N	Y12058,NJDEP-NY03		110
622-96-8	* p-Ethyltoluene	ND		ug/m³	2.5	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
115-07-1	* Propylene	2.2		ug/m³	0.86	5	Certifications: EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
	** v	2.2		6	0.00	5	Certifications:				
100-42-5	Styrene	ND		ug/m³	2.1	5	EPA TO-15		06/27/2024 12:00	06/27/2024 23:20	YR
125.10.4					2.	-	Certifications:	NELAC-N	Y12058,NJDEP-NY03		
127-18-4	Tetrachloroethylene	ND		ug/m³	3.4	5	EPA TO-15 Certifications:	NELAC-N	06/27/2024 12:00 Y12058,NJDEP-NY03	06/27/2024 23:20 7	YR
120 RES	SEARCH DRIVE	STRATFORD, CT	06615		132	-02 89th <i>A</i>	AVENUE		RICHMOND HIL	L. NY 11418	

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

F

FAX (203) 357-0166

ClientServices@ Page

Page 9 of 18

Client Sample ID: Effluent

York Sample ID: 24F1675-02

York Project (SDG) No. 24F1675 <u>Client Project ID</u> 41.0163281.02 1107 Dekalb Avenue Matrix Air <u>Collection Date/Time</u> June 25, 2024 12:37 pm <u>Date Received</u> 06/25/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes:

Sample Prepared by Method: EPA TO15 PREP

CAS No	o. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference I	Date/Time Method Prepared	Date/Time Analyzed	Analyst
109-99-9	* Tetrahydrofuran	ND	ug/m³	2.9	5	EPA TO-15 Certifications:	06/27/2024 12:00	06/27/2024 23:20	YR
108-88-3	Toluene	2.3	ug/m³	1.9	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 37	YR
156-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	2.0	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	2.3	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR
79-01-6	Trichloroethylene	ND	ug/m³	0.67	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR
75-69-4	Trichlorofluoromethane (Freon 11)	140	ug/m³	2.8	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 37	YR
108-05-4	Vinyl acetate	ND	ug/m³	1.8	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR
593-60-2	Vinyl bromide	ND	ug/m³	2.2	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR
75-01-4	Vinyl Chloride	ND	ug/m³	0.64	5	EPA TO-15 Certifications:	06/27/2024 12:00 NELAC-NY12058,NJDEP-NY03	06/27/2024 23:20 7	YR

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 18

Analytical Batch Summary

Batch ID: BF41996	Preparation Method:	EPA TO15 PREP	Prepared By:	YR
YORK Sample ID	Client Sample ID	Preparation Date		
24F1675-01	Influent	06/27/24		
24F1675-02	Effluent	06/27/24		
BF41996-BLK1	Blank	06/27/24		
BF41996-BS1	LCS	06/27/24		

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BF41996 -	EPA	TO15	PREP

Slank (BF41996-BLK1)				Prepared & Analyzed: 06/27/20
1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
1,1-Trichloroethane	ND	0.55	"	
1,2,2-Tetrachloroethane	ND	0.69	"	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
13)				
1,2-Trichloroethane	ND	0.55	"	
1-Dichloroethane	ND	0.40	"	
1-Dichloroethylene	ND	0.099	"	
2,4-Trichlorobenzene	ND	0.74	"	
2,4-Trimethylbenzene	ND	0.49	"	
2-Dibromoethane	ND	0.77	"	
2-Dichlorobenzene	ND	0.60	"	
2-Dichloroethane	ND	0.40	"	
2-Dichloropropane	ND	0.46	"	
2-Dichlorotetrafluoroethane	ND	0.70	"	
3,5-Trimethylbenzene	ND	0.49	"	
3-Butadiene	ND	0.66	"	
3-Dichlorobenzene	ND	0.60	"	
3-Dichloropropane	ND	0.46	"	
-Dichlorobenzene	ND	0.60	"	
-Dioxane	ND	0.72	"	
,4-Trimethylpentane	ND	0.23	"	
Butanone	ND	0.29	"	
Iexanone	ND	0.82	"	
Chloropropene	ND	1.6	"	
lethyl-2-pentanone	ND	0.41	"	
etone	ND	0.48	"	
rylonitrile	ND	0.22	"	
nzene	ND	0.32	"	
nzyl chloride	ND	0.52	"	
omodichloromethane	ND	0.67	"	
omoform	ND	1.0	"	
omomethane	ND	0.39	"	
rbon disulfide	ND	0.31	"	
rbon tetrachloride	ND	0.16	"	
lorobenzene	ND ND	0.16	"	
lloroethane	ND ND	0.46	"	
loroform	ND ND	0.26	"	
loromethane	ND ND	0.49	"	
-1,2-Dichloroethylene			"	
-1,3-Dichloropropylene	ND	0.099	"	
clohexane	ND	0.45	"	
bromochloromethane	ND	0.34		
bromochloromethane chlorodifluoromethane	ND	0.85	"	
	ND	0.49	"	
hyl acetate	ND	0.72	"	
hyl Benzene	ND	0.43	"	
exachlorobutadiene	ND	1.1	"	
opropanol	ND	0.49	"	
ethyl Methacrylate	ND	0.41	"	
lethyl tert-butyl ether (MTBE)	ND	0.36	"	

120 RESEARCH DRIVE

STRATFORD, CT 06615

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 12 of 18

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag
Batch BF41996 - EPA TO15 PREP											
Blank (BF41996-BLK1)							Prep	pared & Anal	yzed: 06/27/	2024	
Methylene chloride	ND	0.69	ug/m³		<u> </u>			<u> </u>		<u> </u>	
Naphthalene	ND	1.0	"								
n-Heptane	ND	0.41	"								
n-Hexane	ND	0.35	"								
o-Xylene	ND	0.43	"								
p- & m- Xylenes	ND	0.87	"								
p-Ethyltoluene	ND	0.49	"								
Propylene	ND	0.17	"								
Styrene	ND	0.43	"								
Tetrachloroethylene	ND	0.68	"								
Tetrahydrofuran	ND	0.59	"								
Toluene	ND	0.38	"								
trans-1,2-Dichloroethylene	ND	0.40	"								
trans-1,3-Dichloropropylene	ND	0.45	"								
Trichloroethylene	ND	0.13	"								
Trichlorofluoromethane (Freon 11)	ND	0.56	"								
Vinyl acetate	ND	0.35	"								
Vinyl bromide	ND	0.44	"								
Vinyl Chloride	ND	0.13	"								
LCS (BF41996-BS1)							Prep	ared & Anal	yzed: 06/27/	2024	
1,1,1,2-Tetrachloroethane	8.56		ppbv	10.0		85.6	70-130				
1,1,1-Trichloroethane	8.71		"	10.0		87.1	70-130				
1,1,2,2-Tetrachloroethane	8.70		"	10.0		87.0	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	8.75		"	10.0		87.5	70-130				
1,1,2-Trichloroethane	8.38		"	10.0		83.8	70-130				
1,1-Dichloroethane	8.42		"	10.0		84.2	70-130				
1,1-Dichloroethylene	8.21		"	10.0		82.1	70-130				
1,2,4-Trichlorobenzene	6.82		"	10.0		68.2	70-130	Low Bias			
1,2,4-Trimethylbenzene	9.57		"	10.0		95.7	70-130				
1,2-Dibromoethane	8.27		"	10.0		82.7	70-130				
1,2-Dichlorobenzene	8.66		"	10.0		86.6	70-130				
1,2-Dichloroethane	8.70		"	10.0		87.0	70-130				
1,2-Dichloropropane	8.22		"	10.0		82.2	70-130				
1,2-Dichlorotetrafluoroethane	9.23		"	10.0		92.3	70-130				
1,3,5-Trimethylbenzene	9.38		"	10.0		93.8	70-130				
1,3-Butadiene	9.99		"	10.0		99.9	70-130				
1,3-Dichlorobenzene	8.77		"	10.0		87.7	70-130				
1,3-Dichloropropane	8.15		"	10.0		81.5	70-130				
1,4-Dichlorobenzene	8.49		"	10.0		84.9	70-130				
1.4 Diamana	0.00			400			-0.400				

120 RESEARCH DRIVE www.YORKLAB.com

1,4-Dioxane

2-Butanone

2-Hexanone

Acetone

Benzene

Acrylonitrile

Benzyl chloride

3-Chloropropene

4-Methyl-2-pentanone

Bromodichloromethane

2,2,4-Trimethylpentane

8.36 STRATFORD, CT 06615

(203) 325-1371

8.02

8.97

8.38

8.99

8.87

8.30

9.69

9.59

8.34

8.45

132-02 89th AVENUE

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

RICHMOND HILL, NY 11418

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

70-130

80.2

89.7

83.8

89.9

88.7

83.0

96.9

95.9

83.4

84.5

83.6

FAX (203) 357-0166

ClientServices@ Page 13 of 18

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	RF41996.	- FPA T	O15	PRFP

LCS (BF41996-BS1)					Prepared & Analyzed: 06/27/2024
Bromoform	9.30	ppbv	10.0	93.0	70-130
Bromomethane	9.10	"	10.0	91.0	70-130
Carbon disulfide	8.38	"	10.0	83.8	70-130
Carbon tetrachloride	8.80	"	10.0	88.0	70-130
Chlorobenzene	8.46	"	10.0	84.6	70-130
Chloroethane	9.09	"	10.0	90.9	70-130
Chloroform	8.58	"	10.0	85.8	70-130
Chloromethane	10.6	"	10.0	106	70-130
cis-1,2-Dichloroethylene	9.09	"	10.0	90.9	70-130
cis-1,3-Dichloropropylene	8.50	"	10.0	85.0	70-130
Cyclohexane	8.68	"	10.0	86.8	70-130
Dibromochloromethane	8.66	"	10.0	86.6	70-130
Dichlorodifluoromethane	9.61	"	10.0	96.1	70-130
Ethyl acetate	9.15	"	10.0	91.5	70-130
Ethyl Benzene	8.65	"	10.0	86.5	70-130
Hexachlorobutadiene	6.72	"	10.0	67.2	70-130 Low Bias
Isopropanol	8.11	"	10.0	81.1	70-130
Methyl Methacrylate	8.48	"	10.0	84.8	70-130
Methyl tert-butyl ether (MTBE)	8.95	"	10.0	89.5	70-130
Methylene chloride	8.20	"	10.0	82.0	70-130
Naphthalene	7.55	"	10.0	75.5	70-130
n-Heptane	9.07	"	10.0	90.7	70-130
n-Hexane	8.92	"	10.0	89.2	70-130
o-Xylene	8.87	"	10.0	88.7	70-130
p- & m- Xylenes	18.0	"	20.0	90.0	70-130
p-Ethyltoluene	9.95	"	10.0	99.5	70-130
Propylene	9.09	"	10.0	90.9	70-130
Styrene	9.70	"	10.0	97.0	70-130
Tetrachloroethylene	8.34	"	10.0	83.4	70-130
Tetrahydrofuran	8.63	"	10.0	86.3	70-130
Toluene	7.88	"	10.0	78.8	70-130
trans-1,2-Dichloroethylene	8.72	"	10.0	87.2	70-130
trans-1,3-Dichloropropylene	8.61	"	10.0	86.1	70-130
Trichloroethylene	7.34	"	10.0	73.4	70-130
Trichlorofluoromethane (Freon 11)	8.92	"	10.0	89.2	70-130
Vinyl acetate	7.02	"	10.0	70.2	70-130
Vinyl bromide	9.18	"	10.0	91.8	70-130
Vinyl Chloride	11.5	"	10.0	115	70-130

120 RESEARCH DRIVE STRATFORD, CT 06615 ■ 132-02 89th AVENUE RICHMOND HILL, NY 11418

120 RESEARCH DRIVE STRATFORD, CT 06615 www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-LCS-L The result reported for this compound may be biased low due to its behavior in the analysis batch LCS where it recovered less 70%

of the expected value.

ICVE The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery

exceeded 30% of expected value).

CAL-E The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration (average Rf>20%)

Definitions and Other Explanations

* Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.

ND NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)

RL REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.

LOQ LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest

point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon

NELAC 2009 Standards and applies to all analyses.

LOD LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect.

This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99%

confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200

series methods

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the

LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile

target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias

conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

120 RESEARCH DRIVE

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

STRATFORD, CT 06615

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 16 of 18

132-02 89th AVENUE

RICHMOND HILL, NY 11418

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE RICHMOND HILL, NY 11418 www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 17 of 18

Field Chain-of-Custody Record

York Analytical Laboratories, Inc. (YORK)'s Standard Terms & Conditions are listed on the back side of this document. This legal document serves as your written authorization for YORK to proceed with the analyses requested below. Your signature binds you to YORK's Standard Terms & Conditions.

YORK Project Number

Summary (Results Only) Regulatory Comparative Report Type (circle) NJDEP SRP Haz Site **Turn-Around Time** Compared to the following **EDD Type** (circle) PFAS Standard 7-10 Day Regulation(s): (please fill in) COC Complete: Y N COC Received Y / N Appropriate Sample Volumes: Y N Appropriate Sample Containers: Y / N Coc Received Y / N Samples Submitted within Holding Times: Y / N Corrective Action Form Required: Y / N Lab Sample Receiving Checklist (to be completed by the receiving laboratory only) Circle Y / N NY ASP B Package EQUIS (standard) NYSDEC EQuIS 56:71 Page of RUSH - Three Day Standard (6-9 Day) RUSH - Next Day Standard Excel RUSH - Four Day RUSH - Two Day RUSH - Five Day Field Filtered Preservation Confirmed: N. N. Lab Filtered NJ Reduced QA Report である NJ DKOP GIC CT RCP NJ Full CMDP Other: 6 251 24 Grab or Comp. 22 Other: (please specify) * Containers Intact; V / N COC/Labels Agree; Y / N Samples Collected From 800-306-YORK Analyses Requested clientservices@yorklab.com PA ե 01 er. Norma Ls. assa 60 132-02 89th Ave Queens, NY 11418 56 Church Hill Rd. #2 Newtown, CT 06470 2161 Whitesville Rd Toms River, NJ 08755 Z 3 125 107 3 5 Date(Time Custody Seals: Y V IN Ofher: (project No. 41.0163281.00) 中間 Ammonium Acetate Dekallo Avenue YOUR Project Name / Number (please list number of containers) Lrizma (.oirt muibos) ¿Oscalum thio.) Preservative PO Number NaOH (sodium hydroxide) illed at time of lab pickup? circle Yes or No H₂SO₄ (sulfuric acid) HNO₃ (nitric acid) 1107 MeOH (methanol) Samples Received by / Company HCI (hydrochloric acid) > Unpreserved 3 3 W 29th Stack, 10th FI Matrix 3 mark-hutson Ogza-com Matrix Codes Die DW - drinking water S - soil/solid/sludge SW - surface water GW - groundwater Other WW - wastewater company 17th Geodan Formerach 11:22 12:35 332-208-2260 55:00 Time エネなが 10-0i Invoice To: Ý 613512H 42824 612512F 672512F 1215270 P(35/24 Date Samples will not be logged in and the turn-around-time clock will not Date/Time ontact: Mark Please print clearly and legibly. All information must be complete Samples Collected by: (print AND sign your name) さ 120 Research Drive Stratford, CT 06615 CRM-6041begin until any questions by YORK are resolved. NA GZA Geognimental mark-hutsen Ogsa. am 104 W 29th Street, 10th FI M(N-1403 D. LOKAIR MW - 1403 -14-02 372-208-2260 さんだける に在るとか T ST Mark Hutson l'unmee Han Report To: les Relinquished by / Company es Relinquished by / Company eceived by / Compan Sample Identification SIN 33 5000 Comments: Page 18 of 18

Technical Report

prepared for:

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Report Date: 09/26/2024

Client Project ID: 41.0163281.00York Project (SDG) No.: 24I1450

Stratford, CT Laboratory IDs: NY:10854, NJ: CT005, PA: 68-0440, CT: PH-0723

Richmond Hill, NY Laboratory IDs: NY:12058, NJ: NY037, CT: PH-0721, NH: 2097, EPA: NY01600 Report Date: 09/26/2024 Client Project ID: 41.0163281.00 York Project (SDG) No.: 24I1450

GZA GeoEnvironmental, Inc. - NYC

104 West 29th Street, 10th Floor New York NY, 10001 Attention: Mark Hutson

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on September 24, 2024 and listed below. The project was identified as your project: 41.0163281.00.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
24I1450-01	INF	Vapor Extraction	09/24/2024	09/24/2024
24I1450-02	EFF	Vapor Extraction	09/24/2024	09/24/2024

General Notes for York Project (SDG) No.: 24I1450

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.

Oh I most

- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854, NJ Cert No. CT005, PA Cert No. 68-04440, CT Cert No. PH-0723; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058, NJ Cert No. NY037, CT Cert No. PH-0721, NH Cert No. 2097, EPA Cert No. NY01600.

Approved By:

Cassie L. Mosher Laboratory Manager **Date:** 09/26/2024

Client Sample ID: INF York Sample ID: 24I1450-01

York Project (SDG) No. Client Project ID Collection Date/Time Date Received Matrix 24I1450 41.0163281.00 Vapor Extraction September 24, 2024 2:30 pm 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Notes: TO-TD **Log-in Notes:** Sample Prepared by Method: EPA TO15 PREP

CAS No	. Parameter	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/25/2024 23:51	DRP
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
75-34-3	1,1-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	7.4	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
106-93-4	1,2-Dibromoethane	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
107-06-2	1,2-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
78-87-5	1,2-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	7.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
106-99-0	1,3-Butadiene	ND		ug/m³	6.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/25/2024 23:51	DRP
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
123-91-1	1,4-Dioxane	ND	ICVE	ug/m³	7.2	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP
540-84-1	* 2,2,4-Trimethylpentane	ND		ug/m³	2.3	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/25/2024 23:51	DRP
78-93-3	2-Butanone	ND		ug/m³	2.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/25/2024 23:51	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 4 of 18

Client Sample ID: INF

York Sample ID:

24I1450-01

York Project (SDG) No. 24I1450

Client Project ID 41.0163281.00 <u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 24, 2024 2:30 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes: TO-TD
LOC III I TOTES	Sample Hotes.

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Time Date/ Method Prepared Anal	
591-78-6	* 2-Hexanone	ND		ug/m³	8.2	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202	24 23:51 DRP
107-05-1	3-Chloropropene	ND		ug/m³	16	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	4.1	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
67-64-1	Acetone	20		ug/m³	4.8	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
107-13-1	Acrylonitrile	ND		ug/m³	2.2	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
71-43-2	Benzene	ND		ug/m³	3.2	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
100-44-7	Benzyl chloride	ND		ug/m³	5.2	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
75-27-4	Bromodichloromethane	ND		ug/m³	6.7	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
75-25-2	Bromoform	ND	TO-CC V, TO-LCS -L		10	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
74-83-9	Bromomethane	ND	-L	ug/m³	3.9	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
75-15-0	Carbon disulfide	ND		ug/m³	3.1	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
56-23-5	Carbon tetrachloride	ND		ug/m³	1.6	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
108-90-7	Chlorobenzene	ND		ug/m³	4.6	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
75-00-3	Chloroethane	ND		ug/m³	2.6	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
67-66-3	Chloroform	21		ug/m³	4.9	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
74-87-3	Chloromethane	ND		ug/m³	2.1	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
156-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	4.5	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
110-82-7	Cyclohexane	ND		ug/m³	3.4	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
124-48-1	Dibromochloromethane	ND		ug/m³	8.5	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
75-71-8	Dichlorodifluoromethane	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202 NELAC-NY12058,NJDEP-NY037	24 23:51 DRP
141-78-6	* Ethyl acetate	ND		ug/m³	7.2	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/202	24 23:51 DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@ Page 5 of 18

Client Sample ID: INF

York Sample ID:

24I1450-01

York Project (SDG) No. 24I1450

Client Project ID 41.0163281.00

<u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 24, 2024 2:30 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes: 10-11
---------------	---------------------

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Time Date/Time Method Prepared Analyzed Analyzed Analyzed	Analyst
100-41-4	Ethyl Benzene	ND		ug/m³	4.3	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
87-68-3	Hexachlorobutadiene	ND		ug/m³	11	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
67-63-0	Isopropanol	11		ug/m³	4.9	10	EPA TO-15		DRP
							Certifications:	NELAC-NY12058,NJDEP-NY037	
80-62-6	Methyl Methacrylate	ND		ug/m³	4.1	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	3.6	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
75-09-2	Methylene chloride	ND		ug/m³	6.9	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
91-20-3	* Naphthalene	ND		ug/m³	10	10	EPA TO-15 Certifications:	09/25/2024 10:00	DRP
142-82-5	n-Heptane	ND		ug/m³	4.1	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
110-54-3	n-Hexane	ND		ug/m³	3.5	10	EPA TO-15 Certifications:		DRP
95-47-6	o-Xylene	ND		ug/m³	4.3	10	EPA TO-15 Certifications:		DRP
179601-23-1	p- & m- Xylenes	ND		ug/m³	8.7	10	EPA TO-15 Certifications:		DRP
622-96-8	* p-Ethyltoluene	ND		ug/m³	4.9	10	EPA TO-15 Certifications:		DRP
115-07-1	* Propylene	ND		ug/m³	1.7	10	EPA TO-15 Certifications:	09/25/2024 10:00	DRP
100-42-5	Styrene	ND		ug/m³	4.3	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
127-18-4	Tetrachloroethylene	1900		ug/m³	6.8	10	EPA TO-15	09/25/2024 10:00 09/25/2024 23:51	DRP
	·	-, , ,					Certifications:	NELAC-NY12058,NJDEP-NY037	
109-99-9	* Tetrahydrofuran	ND		ug/m³	5.9	10	EPA TO-15 Certifications:	09/25/2024 10:00	DRP
108-88-3	Toluene	5.7		ug/m³	3.8	10	EPA TO-15	09/25/2024 10:00 09/25/2024 23:51	DRP
				-			Certifications:	NELAC-NY12058,NJDEP-NY037	
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	4.5	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
79-01-6	Trichloroethylene	10		ug/m³	1.3	10	EPA TO-15		DRP
		10		-9	1.5	10	Certifications:	NELAC-NY12058,NJDEP-NY037	
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	5.6	10	EPA TO-15 Certifications:	09/25/2024 10:00 09/25/2024 23:51 NELAC-NY12058,NJDEP-NY037	DRP
108-05-4	Vinyl acetate	ND		ug/m³	3.5	10	EPA TO-15 Certifications:		DRP
593-60-2	Vinyl bromide	ND		ug/m³	4.4	10	EPA TO-15		DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@

Page 6 of 18

Client Sample ID: INF **York Sample ID:**

24I1450-01

York Project (SDG) No. 24I1450

Client Project ID 41.0163281.00

Matrix Vapor Extraction

Collection Date/Time September 24, 2024 2:30 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes: TO-TD

Sample Prepared by Method: EPA TO15 PREP

CAS I	No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride		ND		ug/m³	1.3	10	EPA TO-15		09/25/2024 10:00	09/25/2024 23:51	DRP
	-							Certifications:	NELAC-NY	12058,NJDEP-NY037		

Sample Information

Client Sample ID:

York Sample ID:

24I1450-02

York Project (SDG) No.

Client Project ID

Matrix

Collection Date/Time

Date Received

24I1450

41.0163281.00

Vapor Extraction September 24, 2024 2:35 pm

09/24/2024

Volatile Organics, EPA TO15 Full List

Log-in Notes:

Sample Notes: TO-TD

CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/26/2024 01:18	DRP
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 712058,NJDEP-NY037	09/26/2024 01:18	DRP
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	6.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	38		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-N	09/25/2024 10:00 Y12058,NJDEP-NY037	09/26/2024 01:18	DRP
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	5.5	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-34-3	1,1-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.99	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	7.4	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
95-63-6	1,2,4-Trimethylbenzene	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
106-93-4	1,2-Dibromoethane	ND		ug/m³	7.7	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
107-06-2	1,2-Dichloroethane	ND		ug/m³	4.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
78-87-5	1,2-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	7.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	4.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices@ Page 7 of 18

Client Sample ID: EFF **York Sample ID:** 24I1450-02

York Project (SDG) No. 24I1450

Client Project ID 41.0163281.00

Matrix Vapor Extraction

Collection Date/Time September 24, 2024 2:35 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes: TO-TD
Penarted to	Date/Time

CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
106-99-0	1,3-Butadiene	ND		ug/m³	6.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	4.6	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/26/2024 01:18	DRP
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	6.0	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
123-91-1	1,4-Dioxane	ND	ICVE	ug/m³	7.2	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
540-84-1	* 2,2,4-Trimethylpentane	ND		ug/m³	2.3	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/26/2024 01:18	DRP
78-93-3	2-Butanone	ND		ug/m³	2.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
591-78-6	* 2-Hexanone	ND		ug/m³	8.2	10	EPA TO-15 Certifications:		09/25/2024 10:00	09/26/2024 01:18	DRP
107-05-1	3-Chloropropene	ND		ug/m³	16	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
108-10-1	4-Methyl-2-pentanone	ND		ug/m³	4.1	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
57-64-1	Acetone	16		ug/m³	4.8	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 712058,NJDEP-NY037	09/26/2024 01:18	DRP
107-13-1	Acrylonitrile	ND		ug/m³	2.2	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
71-43-2	Benzene	ND		ug/m³	3.2	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
100-44-7	Benzyl chloride	ND		ug/m³	5.2	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-27-4	Bromodichloromethane	ND		ug/m³	6.7	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-25-2	Bromoform	ND	TO-CC V, TO-LCS -L	ug/m³	10	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
74-83-9	Bromomethane	ND		ug/m³	3.9	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-15-0	Carbon disulfide	3.1		ug/m³	3.1	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 /12058,NJDEP-NY037	09/26/2024 01:18	DRP
6-23-5	Carbon tetrachloride	1.9	то-сс	μσ/m³	1.6	10	EPA TO-15	NEE/IC-IVI	09/25/2024 10:00	09/26/2024 01:18	DRP
20 2		1.7	V, TO-LCS -H	ug	1.0	10	Certifications:	NELAC-NY	712058,NJDEP-NY037		<i>D</i> ia
108-90-7	Chlorobenzene	ND		ug/m³	4.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-00-3	Chloroethane	ND		ug/m³	2.6	10	EPA TO-15 Certifications:	NELAC-NY	09/25/2024 10:00 12058,NJDEP-NY037	09/26/2024 01:18	DRP
67-66-3	Chloroform	980		ug/m³	4.9	10	EPA TO-15		09/25/2024 10:00	09/26/2024 01:18	DRP
							Certifications:	NELAC-NY	/12058,NJDEP-NY037	•	
120 RES	SEARCH DRIVE	STRATFORD, CT	06615		132-	-02 89th A	VENUE	R	RICHMOND HILL	, NY 11418	
									_		

www.YORKLAB.com

(203) 325-1371

FAX (203) 357-0166

ClientServices@ Page 8 of 18

Client Sample ID: EFF

York Sample ID: 24I1450-02

York Project (SDG) No. 24I1450 Client Project ID 41.0163281.00

<u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 24, 2024 2:35 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes: Sample	e Notes: TO-TD
----------------------	----------------

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Date/Tim Method Prepare		Analyst
74-87-3	Chloromethane	ND	ι	ug/m³	2.1	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
156-59-2	cis-1,2-Dichloroethylene	3.2	ι	ug/m³	0.99	10	EPA TO-15 Certifications:	09/25/2024 10		DRP
10061-01-5	cis-1,3-Dichloropropylene	ND	ι	ug/m³	4.5	10	EPA TO-15 Certifications:	NELAC-NY12058,NJDEP- 09/25/2024 10 NELAC-NY12058,NJDEP-N	00 09/26/2024 01:18	DRP
110-82-7	Cyclohexane	ND	ı	ug/m³	3.4	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
124-48-1	Dibromochloromethane	ND	ι	ıg/m³	8.5	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
75-71-8	Dichlorodifluoromethane	ND	ì	ıg/m³	4.9	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
141-78-6	* Ethyl acetate	ND	i	ug/m³	7.2	10	EPA TO-15 Certifications:	09/25/2024 10	00 09/26/2024 01:18	DRP
100-41-4	Ethyl Benzene	ND	ι	ıg/m³	4.3	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
87-68-3	Hexachlorobutadiene	ND	ι	ıg/m³	11	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
67-63-0	Isopropanol	12	ι	ug/m³	4.9	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-		DRP
80-62-6	Methyl Methacrylate	ND	ı	ug/m³	4.1	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N	00 09/26/2024 01:18	DRP
1634-04-4	Methyl tert-butyl ether (MTBE)	ND	ì	ıg/m³	3.6	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
75-09-2	Methylene chloride	6.9	ι	ug/m³	6.9	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-		DRP
91-20-3	* Naphthalene	ND	ι	ug/m³	10	10	EPA TO-15 Certifications:	09/25/2024 10 NJDEP-NY037		DRP
142-82-5	n-Heptane	ND	ı	ıg/m³	4.1	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
110-54-3	n-Hexane	ND	ι	ug/m³	3.5	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
95-47-6	o-Xylene	ND	ι	ug/m³	4.3	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
179601-23-1	p- & m- Xylenes	ND	ι	ug/m³	8.7	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
622-96-8	* p-Ethyltoluene	ND	ı	ıg/m³	4.9	10	EPA TO-15 Certifications:	09/25/2024 10	09/26/2024 01:18	DRP
115-07-1	* Propylene	ND	ι	ug/m³	1.7	10	EPA TO-15 Certifications:	09/25/2024 10	09/26/2024 01:18	DRP
100-42-5	Styrene	ND	ι	ug/m³	4.3	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
127-18-4	Tetrachloroethylene	ND	i	ıg/m³	6.8	10	EPA TO-15 Certifications:	09/25/2024 10 NELAC-NY12058,NJDEP-N		DRP
109-99-9	* Tetrahydrofuran	ND	ι	ug/m³	5.9	10	EPA TO-15 Certifications:	09/25/2024 10		DRP

120 RESEARCH DRIVE www.YORKLAB.com

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 9 of 18

Client Sample ID: EFF

<u>York Sample ID:</u> 24I1450-02

York Project (SDG) No. 24I1450 Client Project ID 41.0163281.00

<u>Matrix</u> Vapor Extraction <u>Collection Date/Time</u> September 24, 2024 2:35 pm Date Received 09/24/2024

Volatile Organics, EPA TO15 Full List

Sample Prepared by Method: EPA TO15 PREP

Log-in Notes:	Sample Notes: TO-TI

CAS No). Parameter	Result	Flag Units	Reported to LOQ Dilutio	n Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	ND	ug/m³	3.8 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
156-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	4.0 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	4.5 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
79-01-6	Trichloroethylene	ND	ug/m³	1.3 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-69-4	Trichlorofluoromethane (Freon 11)	230	TO-LCS ug/m³ -H	5.6 10	EPA TO-15 Certifications: NELAC-	09/25/2024 10:00 NY12058,NJDEP-NY03	09/26/2024 01:18 7	DRP
108-05-4	Vinyl acetate	ND	ug/m³	3.5 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
593-60-2	Vinyl bromide	ND	ug/m³	4.4 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP
75-01-4	Vinyl Chloride	ND	ug/m³	1.3 10	EPA TO-15 Certifications: NELAC-1	09/25/2024 10:00 NY12058,NJDEP-NY037	09/26/2024 01:18	DRP

120 RESEARCH DRIVE
www.YORKLAB.com

STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices@

Page 10 of 18

Analytical Batch Summary

Batch ID:	BI41702	Preparation Method:	EPA TO15 PREP	Prepared By:	YR

YORK Sample ID	Client Sample ID	Preparation Date	
24I1450-01	INF	09/25/24	
24I1450-02	EFF	09/25/24	
BI41702-BLK1	Blank	09/25/24	
BI41702-BS1	LCS	09/25/24	

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch	BI41702 -	EPA	TO15	PREP

Blank (BI41702-BLK1)				Prepared & Analyzed: 09/2
,1,1,2-Tetrachloroethane	ND	0.69	ug/m³	
,1,1-Trichloroethane	ND	0.55	"	
,1,2,2-Tetrachloroethane	ND	0.69	"	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.77	"	
113)				
,1,2-Trichloroethane	ND	0.55	"	
,1-Dichloroethane	ND	0.40	"	
,1-Dichloroethylene	ND	0.099	"	
,2,4-Trichlorobenzene	ND	0.74	"	
,2,4-Trimethylbenzene	ND	0.49	"	
,2-Dibromoethane	ND	0.77	"	
,2-Dichlorobenzene	ND	0.60	"	
,2-Dichloroethane	ND	0.40	"	
,2-Dichloropropane	ND	0.46	"	
,2-Dichlorotetrafluoroethane	ND	0.70	"	
,3,5-Trimethylbenzene	ND	0.49	"	
,3-Butadiene	ND	0.66	"	
3-Dichlorobenzene	ND	0.60	"	
3-Dichloropropane	ND	0.46	"	
4-Dichlorobenzene	ND	0.60	"	
4-Dioxane	ND	0.72	"	
2,4-Trimethylpentane	ND	0.23	"	
Butanone	ND	0.29	"	
Hexanone	ND	0.82	"	
Chloropropene	ND	1.6	"	
Methyl-2-pentanone	ND	0.41	"	
eetone	ND	0.48	"	
crylonitrile	ND	0.22	"	
enzene	ND	0.32	"	
enzyl chloride	ND	0.52	"	
romodichloromethane	ND	0.67	"	
romoform	ND	1.0	"	
romomethane	ND	0.39	"	
arbon disulfide	ND	0.31	"	
arbon tetrachloride	ND	0.16	"	
hlorobenzene	ND	0.46	"	
hloroethane	ND	0.26	"	
hloroform	ND	0.49	"	
hloromethane	ND	0.21	"	
s-1,2-Dichloroethylene	ND	0.099	"	
s-1,3-Dichloropropylene	ND	0.45	"	
yclohexane	ND	0.34	"	
ibromochloromethane	ND	0.85	"	
ichlorodifluoromethane	ND	0.49	"	
thyl acetate	ND	0.72	"	
thyl Benzene	ND	0.43	"	
Hexachlorobutadiene	ND	1.1	"	
sopropanol	ND	0.49	"	
Methyl Methacrylate	ND	0.41	"	
Methyl tert-butyl ether (MTBE)	ND	0.36	"	

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 12 of 18

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

Analyte	Result	Reporting Limit	Units	Spike Level	Source* Result	%REC	%REC Limits	Flag	RPD	RPD Limit	Flag
	resur	- Dillit	Cinto	Level	resur	701626	Emmo	11115			1 1115
Batch BI41702 - EPA TO15 PREP											
Blank (BI41702-BLK1)							Prep	pared & Analy	zed: 09/25/	2024	
Methylene chloride	ND	0.69	ug/m³								
Naphthalene	ND	1.0	"								
n-Heptane	ND	0.41	"								
n-Hexane	ND	0.35	"								
o-Xylene	ND	0.43	"								
p- & m- Xylenes	ND	0.87	"								
p-Ethyltoluene	ND	0.49	"								
Propylene	ND	0.17	"								
Styrene	ND	0.43	"								
Tetrachloroethylene	ND	0.68	"								
Tetrahydrofuran	ND	0.59	"								
Toluene	ND	0.38	"								
trans-1,2-Dichloroethylene	ND	0.40	"								
trans-1,3-Dichloropropylene	ND	0.45	"								
Trichloroethylene	ND	0.13	"								
Trichlorofluoromethane (Freon 11)	ND	0.56	"								
Vinyl acetate	ND	0.35	"								
Vinyl bromide	ND	0.44	"								
Vinyl Chloride	ND	0.13	"								
LCS (BI41702-BS1)							Prep	pared & Analy	zed: 09/25/	2024	
1,1,1,2-Tetrachloroethane	10.5		ppbv	10.0		105	70-130				
1,1,1-Trichloroethane	13.1		"	10.0		131	70-130	High Bias			
1,1,2,2-Tetrachloroethane	8.60		"	10.0		86.0	70-130	Ü			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.70		"	10.0		97.0	70-130				
113) 1,1,2-Trichloroethane	9.24			10.0		92.4	70-130				
1,1-Dichloroethane	9.26		"	10.0		92.6	70-130				
1,1-Dichloroethylene	10.3		"	10.0		103	70-130				
1,2,4-Trichlorobenzene	9.42		"	10.0		94.2	70-130				
1,2,4-Trimethylbenzene	10.4			10.0		104	70-130				
1,2-Dibromoethane	9.99		"	10.0		99.9	70-130				
1,2-Dichlorobenzene	10.4			10.0		104	70-130				
1,2-Dichloroethane	10.6		,,	10.0		106	70-130				
1,2-Dichloropropane	8.29		,,	10.0		82.9	70-130				
1,2-Dichlorotetrafluoroethane	11.5		,,	10.0		115	70-130				
1,3,5-Trimethylbenzene	10.2		,,	10.0		102	70-130				
1,3-Butadiene	8.78		,,	10.0		87.8	70-130				
1,3-Dichlorobenzene	10.3		,,	10.0		103	70-130				
1,3-Dichloropropane	9.03		,,	10.0		90.3	70-130				
1,4-Dichlorobenzene			,,								
1,4-Dioxane	10.6 8.63		,,	10.0 10.0		106	70-130 70-130				
2,2,4-Trimethylpentane	9.09		,,			86.3					
			,,	10.0		90.9	70-130				
2-Butanone 2-Hexanone	8.96		,,	10.0		89.6	70-130				
2-Hexanone 3-Chloropropene	9.79		,,	10.0		97.9	70-130				
• •	8.70		"	10.0		87.0	70-130				
4-Methyl-2-pentanone	9.20			10.0		92.0	70-130				
Acetone	9.14		"	10.0		91.4	70-130				
Acrylonitrile	8.65		"	10.0		86.5	70-130				
Benzene	8.17		"	10.0		81.7	70-130				
Benzyl chloride	8.87		"	10.0		88.7	70-130				
Bromodichloromethane	10.4		"	10.0		104	70-130				

120 RESEARCH DRIVE

STRATFORD, CT 06615

(203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 13 of 18

Volatile Organic Compounds in Air by GC/MS - Quality Control Data

York Analytical Laboratories, Inc. - Stratford

		Reporting		Spike	Source*		%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	Flag	RPD	Limit	Flag

Ratch RI41702 - EPA TO15 PREP

LCS (BI41702-BS1)					Pre	pared & Analyzed: 09/25/2024
Bromoform	2.86	ppbv	10.0	28.6	70-130	Low Bias
Bromomethane	8.52	"	10.0	85.2	70-130	
Carbon disulfide	8.03	"	10.0	80.3	70-130	
Carbon tetrachloride	14.2	"	10.0	142	70-130	High Bias
Chlorobenzene	8.84	"	10.0	88.4	70-130	
Chloroethane	8.06	"	10.0	80.6	70-130	
Chloroform	10.8	"	10.0	108	70-130	
Chloromethane	8.25	"	10.0	82.5	70-130	
cis-1,2-Dichloroethylene	9.36	"	10.0	93.6	70-130	
cis-1,3-Dichloropropylene	9.30	"	10.0	93.0	70-130	
Cyclohexane	9.17	"	10.0	91.7	70-130	
Dibromochloromethane	8.15	"	10.0	81.5	70-130	
Dichlorodifluoromethane	12.4	"	10.0	124	70-130	
Ethyl acetate	9.18	"	10.0	91.8	70-130	
Ethyl Benzene	9.18	"	10.0	91.8	70-130	
Hexachlorobutadiene	12.8	"	10.0	128	70-130	
Isopropanol	9.11	"	10.0	91.1	70-130	
Methyl Methacrylate	8.47	"	10.0	84.7	70-130	
Methyl tert-butyl ether (MTBE)	10.2	"	10.0	102	70-130	
Methylene chloride	8.18	"	10.0	81.8	70-130	
Naphthalene	11.7	"	10.0	117	70-130	
n-Heptane	8.90	"	10.0	89.0	70-130	
n-Hexane	9.04	"	10.0	90.4	70-130	
o-Xylene	9.83	"	10.0	98.3	70-130	
p- & m- Xylenes	19.2	"	20.0	96.1	70-130	
p-Ethyltoluene	9.76	"	10.0	97.6	70-130	
Propylene	8.73	"	10.0	87.3	70-130	
Styrene	9.42	"	10.0	94.2	70-130	
Tetrachloroethylene	10.9	"	10.0	109	70-130	
Tetrahydrofuran	8.59	"	10.0	85.9	70-130	
Toluene	8.93	"	10.0	89.3	70-130	
trans-1,2-Dichloroethylene	9.83	"	10.0	98.3	70-130	
trans-1,3-Dichloropropylene	10.3	"	10.0	103	70-130	
Trichloroethylene	9.82	"	10.0	98.2	70-130	
Trichlorofluoromethane (Freon 11)	13.6	"	10.0	136	70-130	High Bias
Vinyl acetate	9.07	"	10.0	90.7	70-130	
Vinyl bromide	8.93	"	10.0	89.3	70-130	
Vinyl Chloride	8.08	"	10.0	80.8	70-130	

120 RESEARCH DRIVE STRATFORD, CT 06615 132-02 89th AVENUE www.YORKLAB.com (203) 325-1371

RICHMOND HILL, NY 11418

FAX (203) 357-0166

ClientServices@ Page 14 of 18

STRATFORD, CT 06615 120 RESEARCH DRIVE www.YORKLAB.com (203) 325-1371

Sample and Data Qualifiers Relating to This Work Order

TO-TD	The sample was received in a tedlar bag which is not compliant with EPA TO-15 requirements.
TO-LCS-L	The result reported for this compound may be biased low due to its behavior in the analysis batch LCS where it recovered less 70% of the expected value.
TO-LCS-H	The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater than 130% of the expected value.
TO-CCV	The value reported is ESTIMATED for this compound due to its behavior during continuing calibration verification (>30% Difference from initial calibration).
ICVE	The value reported is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value).
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

STRATFORD, CT 06615

120 RESEARCH DRIVE

www.YORKLAB.com (203) 325-1371 FAX (203) 357-0166 ClientServices@ Page 16 of 18

132-02 89th AVENUE

RICHMOND HILL, NY 11418

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

 120 RESEARCH DRIVE
 STRATFORD, CT 06615
 ■ 132-02 89th AVENUE
 RICHMOND HILL, NY 11418

 www.YORKLAB.com
 (203) 325-1371
 FAX (203) 357-0166
 ClientServices@
 Page 17 of 18

York Analytical Laboratories, Inc.

Stratford, CT 06615

120 Research Drive 132-02 89th Ave Queens, NY 11418

Field Chain-of-Custody Record - AIR

YORK Proje	ect No.	
24I1	1450	

clientservices@yorklab.com

NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document.

YORK Project No.
2411450

ARALYTICAL LABORATORIES INC	orklab.com	This document serves a	signature binds you to YORK's Standard Terms & Conditi				Tour	Page of	1
YOUR, Information	Report	то:		Invoice To:		YOUR F	Project Number	Turn-Around Tin	ne
Company GZA GEOGINITION MENTS	Company: GZA GO	new Insmeda	Company: G2A (Terminoni	mental	41016	3281.00	RUSH - Next Day	
104 W295t, P (0, 1/1000)	Address:	Livi	Address:					RUSH - Two Day	
	104 W294, F) 10	NY 10001	104 Wzas	+, H 10, 1	M 1000/	YOUR	RUSH - Three Day		
212-594-8140		8140		4-8140		0.	RUSH - Four Day		
Contact: Mark Hutson	Contact: Mark Huf	Son		Hutson		41.016	3281.00	Standard (5-7 Day)	1
Mark. Hutson (992a. cum	E-mail: Mark. Hutso	n (992a. com	E-mail: Mark. H	utson 6	gza. com	YOUR PO#:			
Please print clearly and legibly. All information mus not be logged in and the turn-around-time clock with	st be complete. Samples will Il not begin until any	Air Matrix Codes	Samples From			D Type (circle sel	ections)	YORK Reg. Com	197.5
questions by YORK are resolved.	1	AI - Indoor Ambient Air	New York	Summary Rep	oort CT RC	P	Standard Excel EDD	Compared to the following Regulation(s): (please fill in	ing
Yunnee Han		AO - Outdoor Amb. Air	New Jersey	QA Report	CT RC	P DQA/DUE	EQuIS (Standard)	NYSDEL	
Samples Collected by print your name a	above and sign below)	AE - Vapor Extraction Well/	Connecticut	NY ASP A Pac	ckage NJDEF	Reduced Deliv. (NYSDEC EQUIS	Part 375	
Yunnee Han		Process Gas/Effluent	Pennsylvania	NY ASP B Pag	ckage NJDKC	QP .	NJDEP SRP HazSite	101313	
volvee PUM		AS - Soil Vapor/Sub-Slab	Other	Other:					
Certified Canisters: Batch	Individual		Please enter the foll		RED Field Data		Reporting Units: ug/m³	_ ppbv ppmv	
Sample Identification	Date/Time Sampled	Air Matrix	Canister Vacuum Before Sampling (in Hg) A	Canister Vacuum After Sampling (in Hg)	Canister ID	Flow Cont. ID	Analysis	Requested	
INF	9124124 1430	AE	£	- Tedl	ar Dag _		TO-1:	5	
EFF	9124/24 1435	AE		- Tedla	n Bas-	\longrightarrow	To-1	5	
					0				
Comments:					D	etection Limits F	Required	Sampling Media	
					≤ 1 ug/m	NYSDE	C V1 Limits	6 Liter Canister	
					Routine S	-	other	Tedlar Bag	
,	Date/Time	Samples Received by / Compar	ny	Date/Time	11111	Samples Relinquished by	1/7	Date/Time	
Yunnee Hun / GZA	9/24/24 16/1	floor	Much	8/24/2	1 61	1con	Man	18438/7	
Samples Received by / Company	Date/Time	Samples Relinquished by / Con	npany	Date/Time		Samples Received by / C	ompany	Date/Time	
Samples Relinquished by / Company	Date/Time	Samples Received by / Compar	ny	Date/Time		Samples Received in LAE	by	Date/Time	
						1/1	9/24/24	18500	

WELL ID: MW-1402

CLIENT: PROJECT NO: 41.0163281.00

SITE: 1107 Dekalb Avenue DATE: 6/25/2024

WEATHER: 80-90s, Sunny SAMPLER(S): Yunmee Han (GZA) and Kennedy Thomas (Preferred)

COLUMN OF WATER IN WELL:

= Depth to Bottom (ft) - Static Water Level (ft)

 \bullet = 52.41 - 42.83

Water Column (T) = 9.58 (ft)

TOTAL VOLUME PURGED:

Design = $\frac{N/A}{}$ (gallons) Actual = $\frac{2.4}{}$ (gallons)

PURGE RATE: 0.08 (gal / min)

PURGE METHOD: Peri Pump + Check Valve + Low Flow

GALLONS OF WATER PER WELL VOLUME:

Well Volume = Water Column (T) (ft) x Multiplier

 $= 9.58 \times 0.041$

Well Volume (V) =0.39(Gallons)

well diameter	multiplier
1 (x)	0.041
1.5	0.092
2	0.163
4	0.653
6	1 469

SCREENED INTERVAL: Approx. 45 ft bgs

WATER QUALITY:

Time	Elapsed Time	Purged Volume (gal)	Depth to Water (ft)	pH (SU)	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp (°C)	Notes	
10:52		0	42.83	7.24	0.690	93.4	6.53	25.04	Start Purging	
10:57		0.4	42.83	7.15	0.610	74.2	5.98	22.88	Almost clear, little bit of orange	sludge
11:02		0.8	42.83	7.15	0.604	74.5	5.20	22.02		
11:07		1.2	42.83	7.17	0.614	75.0	4.88	20.94		
11:12		1.6	42.83	7.18	0.622	67.7	4.85	20.90		
11:17		2.0	42.83	7.18	0.633	61.7	4.55	20.68		
11:22		2.4	42.83	7.18	0.633	56.9	4.32	20.68	Sample collected @11:22 am	

UNITS:

gal. - gallons mS/cm - millisiemens per centimeter ft. - feet NTU -nephelometric turbidity units SU - standard units mg/l -milligrams per liter

°C - degrees Celsius

NOTES AND OBSERVATIONS:

Duplicate: MW-00X collected & MW-1402 collected @11:22 am

Groundwater depth after purging: 42 ft 83

Slight gasoline odor, but no sheen was observed

WELL ID: MW-1403

CLIENT: PROJECT NO: 41.016328.00

SITE: 1107 Dekalb Avenue DATE: 6.25.2024

WEATHER: 80-90s, Sunny SAMPLER(S): Yunmee Han (GZA) and Kennedy Thomas (Preferred)

COLUMN OF WATER IN WELL:

= Depth to Bottom (ft) - Static Water Level (ft)

= 53.12- 42.24

Water Column (T) = 10.88 (ft)

TOTAL VOLUME PURGED:

Design = N/A (gallons) Actual = 2.8 (gallons)

PURGE RATE: 0.08 (gal / min)
PURGE METHOD:Peri Pump + Check Valve + Low Flow

GALLONS OF WATER PER WELL VOLUME:

Well Volume = Water Column (T) (ft) x Multiplier

 $= 10.88 \times 0.163$

Well Volume (V) =1.78(Gallons)

well diameter	multiplier
1	0.041
1.5	0.092
2 (x)	0.163
4	0.653
6	1.469

SCREENED INTERVAL: Approx. 46 ft bgs

WATER QUALITY:

Time	Elapsed Time	Purged Volume (gal)	Depth to Water (ft)	pH (SU)	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp (°C)	Notes
0925		0.4	42.24	6.77	2.86	21.5	0.94	21.82	Almost clear
0930		0.8	42.22	6.73	2.82	21.8	0.07	21.06	
0935		1.2	42.22	6.68	2.62	21.8	0.35	20.99	
0940		1.6	42.22	6.65	2.42	28	0.00	20.94	
0945		2.0	42.22	6.79	2.79	31.5	8.54	20.93	
0950		2.4	42.22	6.76	2.69	35.8	8.43	20.63	
0955		2.8	42.22	6.71	2.58	33.6	8.21	20.92	Sampled @0955

UNITS:

gal. - gallons ft. - feet SU - standard units

NTU -nephelometric turbidity units mg/l -milligrams per liter

mS/cm - millisiemens per centimeter

⁰C - degrees Celsius

NOTES AND OBSERVATIONS:

MS/MSD & MW-1403 collected at 0955 am

Groundwater depth after purging 42ft 22

WELL ID: MW-1402

CLIENT: ABC NY PROJECT NO: 41.0163281.00

SITE:1107 Dekalb Avenue, Brooklyn, NY 11211 Date: 9/24/2024

WEATHER: 60-70's, Cloudy SAMPLER(S): YH and MDL

COLUMN OF WATER IN WELL:

T = Depth to Bottom (ft) - Static Water Level (ft)

52.89

9.79 (ft) Water Column (T) =

TOTAL VOLUME PURGED:

Design = 1.20 (gallons) 0.75 1 (gallons) Actual =

PURGE RATE: Variable (mL / min)

PURGE METHOD: Peristaltic Pump, Low Flow Sampling

GALLONS OF WATER PER WELL VOLUME:

Well Volume = Water Column (T) (ft) x Multiplier

0.041 9.79

Well Volume (V) = 0.40 (Gallons)

well diameter	multiplier
1	0.041
1.5	0.092
2	0.163
4	0.653
6	1.469

SCREENED INTERVAL: approximately 40 to 50 ft bgs

WATER QUALITY:

Time	Elapsed Time (Mins)	Purged Volume (gal)	Depth to Water (ft)	pH (SU)	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp (°C)	ORP	Notes
11:40	0									Start purging (Horiba leaking)
12:00	0									Start purging (2nd attempt)
12:15	5	~0.1	43.31	6.96	0.604	428	3.38	22.32	-47	Orange
12:20	10	~0.2	43.5	6.86	0.615	376	3.6	22.18	-53	Slight Orange
12:25	15	~0.4	44.01	5.73	0.477	255	5.25	19.28	2	Slight Orange
12:30	20	~0.5	43.92	6.64	0.586	229	9.34	21.63	6	Almost clear
12:35	25	~0.6	43.78	6.51	0.605	213	5.03	20.46	-66	Almost clear
12:40	30	~0.7	43.81	5.91	0.271	206	5.25	22.38	-32	Almost clear
12:45	35	~0.7	43.69	6.02	0.350	197	3.47	22.96	-27	Almost clear
12:50	40	~0.75	43.59	6.74	0.580	194	3.06	22.61	-66	Almost clear
12:55	45	~0.75	43.44	6.69	0.561	77	3.21	23	-55	Clear -> Sample here

UNITS:

gal. - gallons mS/cm - millisiemens per centimeter NTU -nephelometric turbidity units ft. - feet

SU - standard units mg/I -milligrams per liter ⁰C - degrees Celsius **ORP - Oxygen Reduction Potential NOTES AND OBSERVATIONS:** bgs - below ground surface

NA - not applicable

1. Purged volume was estimated.

PID reading: 0.0 ppm/ Slight Petroleum Odor

MW-1402 collected @13:00, MS collected @ 13:10 & MSD collected @13:15

WELL ID: MW-1403

CLIENT: ABC NY PROJECT NO: 41.0163281.00

SITE:1107 Dekalb Avenue, Brooklyn, NY 11211 Date: 9/24/2024

WEATHER: 60-70's, Cloudy SAMPLER(S): YH and MDL

COLUMN OF WATER IN WELL:

T = Depth to Bottom (ft) - Static Water Level (ft)

= 53.71 - 43 Water Column (T) = 10.06 (ft)

TOTAL VOLUME PURGED:

Design = $\frac{4.92}{1}$ (gallons) Actual = $\frac{4.92}{1}$ (gallons)

PURGE RATE: Variable (mL / min)

PURGE METHOD: Peristaltic Pump, Low Flow Sampling

GALLONS OF WATER PER WELL VOLUME:

Well Volume = Water Column (T) (ft) x Multiplier

= 10.06 x 0.163 Well Volume (V) = 1.64 (Gallons)

well diameter	multiplier
1	0.041
1.5	0.092
2	0.163
4	0.653
6	1.469

SCREENED INTERVAL: approximately 40 to 50 ft bgs

WATER QUALITY:

Time	Elapsed Time (Mins)	Purged Volume (gal)	Depth to Water (ft)	pH (SU)	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp (°C)	ORP	Notes
13:30	0									Start purging
13:35	5	~0.1	44.03	6.18	1.54	29.5	9.57	22.64	-14	Clear
13:40	10	~0.2	43.97	7.01	1.56	27.1	9.24	22.89	124	Clear
13:45	15	~0.25	43.81	7.02	1.56	23.2	9.11	22.94	127	Clear
13:50	20	~0.4	43.68	7.00	1.61	13.1	9.46	21.93	125	Clear -> sampled here
	-									

UNITS:

gal. - gallons mS/cm - millisiemens per centimeter ft. - feet NTU -nephelometric turbidity units

SU - standard units mg/l -milligrams per liter
ORP - Oxygen Reduction Potential
OC - degrees Celsius
NOTES AND OBSERVATIONS: bgs - below ground surface

NA - not applicable

1. Purged volume was estimated.

PID reading: 0.0 ppm

MW-1403 collected @13:55 & 9.24.2024_Duplicate collected @ 14:00