REMEDIAL INVESTIGATION REPORT

for

215 NORTH 10TH STREET BROOKLYN, NEW YORK NYSDEC BCP NO.: C224229

Prepared For:

215 N 10 Partners LLC 148 Madison Avenue, 16th Floor New York, New York 10016

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, New York 10001

> October 1, 2018 Langan Project No. 170482201

CERTIFICATION

I, Jason J. Hayes, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

2018 lason J. Haves P.F

TABLE OF CONTENTS

LIST C	OF ACRONYMS	6
1.0	INTRODUCTION	1
2.0	SITE PHYSICAL CHARACTERISTICS	1
2.1	Site Description	1
2	.1.1 Description of Surrounding Properties	
	1.2 Topography	
2	1.3 Surface Water and Drainage	3
	1.4 Wetlands	
2.2	Geology and Hydrogeology	
	2.1 Regional and Site Geology	
2. 3.0	2.2 Regional and Site Hydrogeology	
3.1	Historical Site and Surrounding Properties Use	
3.2	Proposed Redevelopment Plan	
3.3	Previous Environmental Reports	
3.4	Areas of Concern for Investigation	8
4.0	FIELD INVESTIGATION1	0
4.1	Utility Mark-out1	0
4.2	Geophysical Investigation1	0
4.3	Soil Investigation1	0
4	.3.1 Investigation Methodology1	0
4	3.2 Sampling Methodology	1
4.4	Groundwater Investigation1	2
	4.1 Monitoring Well Installation and Development1	
	4.2 Groundwater Sampling	
4.5	Quality Assurance/Quality Control Sampling1	
4.6	Data Validation1	
4. 7	6.1 Data Usability Summary Report Preparation1 Field Equipment Decontamination1	
4.8	Investigation-Derived Waste Management1	
4.9	Community Air Monitoring Program	
5.0	FIELD OBSERVATIONS AND ANALYTICAL RESULTS1	
5.1	Geophysical Investigation Findings1	6
5.2	Geology and Hydrogeology1	6
	2.1 Historic Fill	
	2.2 Native Soil Layers	
	2.3 Bedrock	
5	.2.4 Hydrogeology1	0

5.3	Soil Findings	17
5.	3.1 Field Observations	17
5.	3.2 Analytical Results	17
5.4	Groundwater Findings	20
5.	4.1 Field Observations	20
5.	4.2 Analytical Results	
5.5	QA/QC Sample Results	23
5.6	Data Usability	23
5.7	Evaluation of Potential Areas of Concern	23
5.	7.1 AOC-1: Historic Fill	23
5.	7.2 AOC-2: Petroleum-Related Impacts in Soil and Groundwater	25
	7.3 AOC-3: CVOCs in Soil, Groundwater, and Soil Vapor	
	7.4 AOC-4: Potential Underground Storage Tank (UST):	
6.0	QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	28
6.1	Current Conditions	28
6.2	Proposed Conditions	28
6.3	Conceptual Site Model	28
6	3.1 Potential Sources of Contamination	
	3.2 Exposure Media	
6.	3.3 Receptor Populations	29
6.4	Potential Exposure Pathways – On-Site	30
6.	4.1 Current Conditions	30
	4.2 Construction/Remediation Condition	
6.5	Potential Exposure Pathways – Off-Site	30
6.6	Evaluation of Human Health Exposure	32
6.	6.1 Current Conditions	32
	6.2 Construction/Remediation Activities	
	6.3 Proposed Future Conditions	
	6.4 Human Health Exposure Assessment Conclusions	
7.0	NATURE AND EXTENT OF CONTAMINATION	36
7.1	Soil Contamination	36
	1.1 Historic Fill Material	
	1.2 Petroleum-Contaminated Material	
	1.3 CVOC-Contaminated Material	
7.2	Groundwater Contamination	
	2.1 Petroleum-Contaminated Groundwater	
	2.2 CVOC-Contaminated Groundwater	
7.3	2.3 Regional Groundwater Quality Soil Vapor Contamination	
_	CONCLUSIONS	
8.0		
9.0	REFERENCES	41

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Plan
- Figure 3 Surrounding Land Use and Sensitive Receptors
- Figure 4 Historical Site and Surrounding Uses Map
- Figure 5 Sample Location Plan
- Figure 6 Groundwater Contour Map
- Figure 7 Subsurface Profile
- Figure 8 Soil Sample Results Summary Map
- Figure 9 Groundwater Results Summary Map
- Figure 10 Soil Vapor Results Summary Map

TABLES

- Table 1Sample Analysis Summary
- Table 2Soil Boring and Monitoring Well Construction Summary
- Table 3Groundwater Elevation Summary
- Table 4ASoil Sample Results Summary
- Table 4B
 Soil Sample Results Summary Delineation of NAPL
- Table 5Groundwater Results Summary
- Table 6Soil Vapor Results Summary
- Table 7 QA/QC Results Summary

APPENDICES

- Appendix A Previous Environmental Reports
- Appendix B Photograph Log
- Appendix C NOVA Geophysical Engineering Survey Report
- Appendix D Soil Boring Logs
- Appendix E Monitoring Well Construction and Groundwater Sampling Logs
- Appendix F Community Air Monitoring Program Summary Data
- Appendix G Data Usability Summary Report
- Appendix H Laboratory Data Reports
- Appendix I Completed Fish and Wildlife Resources Impact Analysis Decision Key

LIST OF ACRONYMS

AOCArea of ConcernAWQSAmbient Water Quality Standards and Guidance ValuesBCABrownfield Cleanup AgreementBCPBrownfield Cleanup ProgramBgsBelow grade surfaceBTEXBenzene, Toluene, Ethlylbenzene, and XylenesCAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved OxygenDUSRData Usability Summary Report
BCABrownfield Cleanup AgreementBCPBrownfield Cleanup ProgramBgsBelow grade surfaceBTEXBenzene, Toluene, Ethlylbenzene, and XylenesCAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
BCPBrownfield Cleanup ProgramBgsBelow grade surfaceBTEXBenzene, Toluene, Ethlylbenzene, and XylenesCAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
BgsBelow grade surfaceBTEXBenzene, Toluene, Ethlylbenzene, and XylenesCAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
BTEXBenzene, Toluene, Ethlylbenzene, and XylenesCAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
CAMPCommunity Air Monitoring ProgramCOCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
COCContaminant of ConcernCVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
CVOCChlorinated Volatile Organic CompoundDERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
DERDivision of Environmental RemediationDNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
DNAPLDense Non-Aqueous Phase LiquidDODissolved Oxygen
DO Dissolved Oxygen
10
DUSB Data Usability Summary Report
EDR Environmental Data Resources
ELAP Environmental Laboratory Approval Program
EPA United Stated Environmental Protection Agency
ESA Environmental Site Assessment
ESI Environmental Site Investigation
FWRIA Fish and Wildlife Resources Impact Analysis
GPR Ground Penetrating Radar
HASP Health and Safety Plan
ID Inside Diameter
IDW Investigation Derived Waste
IRM Interim Remedial Measure
IRMWP Interim Remedial Measure Work Plan
LNAPL Light Non-Aqueous Phase Liquid
MS/MSD Matrix Spike/Matrix Spike Duplicate
MTBE Methyl tert butyl ether
NAVD88 North American Vertical Datum of 1988
NYCRR New York City Rules and Regulations
NYSDOH New York State Department of Health
NYSDEC New York State Department of Environmental Conservation
NTU Nephelometric Turbidity Units
OD Outside Diameter
ORP Oxidation-Reduction Potential
PCB Polychlorinated Biphenyls
PCE Tetrachloroethene
PID Photoionization Detector
PPE Personal Protective Equipment

Acronym	Definition		
Ppm	Parts per million		
PVC	Polyvinyl Chloride		
QA/QC	Quality Assurance/Quality Control		
RAWP	Remedial Action Work Plan		
RCRA	Resource Conservation and Recovery Act		
RI	Remedial Investigation		
RURR	Restricted Use Restricted-Residential Use		
SCO	Soil Cleanup Objective		
SMDS	Sub-Membrane Depressurization System		
SVOC	Semivolatile Organic Compound		
TAL	Target Analyte List		
TCE	Trichloroethene		
TCL	Target Compound List		
TCLP	Toxicity Characteristic Leaching Procedure		
TOGS	Technical and Operational Guidance Series		
UN/DOT	United Nations/Department of Transportation		
USGS	United States Geological Survey		
UST	Underground Storage Tank		
UU	Unrestricted Use		
VOC	Volatile Organic Compound		

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of 215 N 10 Partner LLC (the Volunteer) for the property located at 215 North 10th Street in the Williamsburg neighborhood of Brooklyn, New York (the "site"). The Volunteer entered into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) to remediate the site in conjunction with new development, pursuant to a Brownfield Cleanup Agreement (BCA), dated February 23, 2018, for Site No. C224229. The site is also listed with an 'E' designation (E-138) for hazardous materials, resulting from a City Environmental Quality Review (CEQR) during the May 2005 Greenpoint-Williamsburg rezoning (CEQR #04DCP003K). Satisfaction of the 'E'-Designation requirements is subject to review and approval by the New York City Mayor's Office of Environmental Remediation (NYCOER).

This RIR presents environmental data and findings from a remedial investigation (RI) that was implemented by Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. (Langan) between November 20 and 29, 2017. The objective of the RI was to supplement existing environmental data and determine, to the extent possible, the nature and extent of contamination in soil, soil vapor, and groundwater. Information presented in this RIR will be used to evaluate appropriate remedial action alternatives.

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The 18,000-square-foot site is located at 215 North 10th Street in the Williamsburg neighborhood of Brooklyn, New York and is identified as Brooklyn Borough Tax Map Block 2299, Lot 21. The site is improved with two single-story industrial buildings and two one-story structures, all of which are vacant. The exterior portions contain an asphalt-paved alley on the west and vegetation-covered areas on the east that were formerly used for parking. The site is bounded by North 10th Street to the south, Roebling Street to the east, and a multi-story residential apartment building to the north that wraps around to the west. A Site Location Map and Site Plan are provided as Figure 1 and Figure 2, respectively.

2.1.1 Description of Surrounding Properties

The site is located in an urban area primarily characterized by residential, commercial, and light industrial properties. Surrounding property usage is summarized in the following table:

Direction	Block	Lot	Adjoining Properties	Surrounding Properties
North	2299	9	Warehouse 11 Condominium (214 North 11 th Street)	Multiple-story mixed- use residential and
North	2299	1	Finailly Inc. Fushimi, NYC Pet, Apartments (475 Driggs Street)	commercial buildings
South 2307		1	250 N 10 th Apartments (250 N 10 th Street)	Multiple-story residential building
East	2300	1	Roebling View North (15 Roebling Street)	Multiple-story residential building
		8	Trans Boro Fuel Oil Co.	
		9	Montrose Equipment Sales (202 North 10 th Street)	Mixed-use commercial,
West	/est 2306	15	The Driggs North (220 N 10 th Street)	residential and industrial buildings
		18	Under Construction (28 Roebling Street)	

Land use within a half mile of the site is urbanized and includes mixed-use buildings, subway tunnels, park land, and school facilities. The nearest ecological receptor is the East River, located about 3,000 feet west of the site. Sensitive receptors located within a half-mile of the site are listed in the following table:

Number	Name (Approximate distance from Site)	Address
1	Northside Catholic Academy St. Vincent (approximately 0.2 miles southwest)	10 Wither Street Brooklyn, NY 11211
2	Williamsburg High School for Architecture and Design (approximately 0.3 miles south)	257 North 6 th Street Brooklyn, NY 11211
3	Conselyea Preparatory School (approximately 0.3 miles south)	208 North 5 th Street Brooklyn, NY 11211
4	PS 17 Henry D. Woodworth (approximately 0.3 miles south)	208 North 5 th Street Brooklyn, NY 11211

Name (Approximate distance from Site)		Address
5	Williamsburg Northside Preschool	152 North 5 th Street
	(approximately 0.3 miles south)	Brooklyn, NY 11211
6	Automotive High School	50 Bedford Avenue
0	(approximately 0.4 miles north)	Brooklyn, NY 11211
7	Brooklyn Preparatory High School	257 North 6 th Street
/	(approximately 0.4 miles south)	Brooklyn, NY 11122
8	P.S. 132 The Conselyea School	320 Manhattan Avenue
0	(approximately 0.45 miles southeast)	Brooklyn, NY 11211
9	School Settlement Association	120 Jackson Street
3	(approximately 0.5 miles east)	Brooklyn, NY 11211

A map showing the surrounding land uses with descriptions of the adjoining properties is included as Figure 3.

2.1.2 Topography

According to a United States Geological Survey (USGS) 7.5 minute Topographic Quadrangle Map for Brooklyn, NY, the site elevation ranges from about 7.75 to 9 feet as referenced to the North American Vertical Datum of 1988 (NAVD88) and gradually slopes downward to the east.

2.1.3 Surface Water and Drainage

The eastern portion of the site has a limited area of pervious soil and overgrown vegetation, which allows for rainwater infiltration during storm events. The central and western portions of the site are improved with either buildings or asphalt lots. Runoff from this area typically drains through stormwater connections or catch basins into city sewers.

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panels 3604970202F and 3604970204F, dated 5 September 2007 show that the site is in Zone AE with a base flood el 10 feet NGVD29 (about el 8.9 feet NAVD88). Zone AE is defined as a special flood hazard area and is subject to inundation by the 1 percent annual chance flood.

2.1.4 Wetlands

Potential wetlands on or near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands. There are no mapped wetlands located on or near the site.

2.2 Geology and Hydrogeology

2.2.1 Regional and Site Geology

The surficial geology of Brooklyn was influenced by the last glacial advance and retreat across New York City. As the glaciers advanced south, soil and rock were scraped from the surface and deposited at the limit of the ice advance as a wall of soil and rock called the *terminal moraine*. The site is north of the terminal moraine, in the *ground moraine*, which is an area of low relief where extensive till (heterogeneous mixtures of clay, silt, sand, gravel and boulders ranging widely in size and shape) typically accumulated during the advance, or retreat of the glacier.

The site is underlain by the Hartland formation bedrock consisting of granite, schist and amphibolite. Bedrock is generally over 100 feet below grade in this area of Brooklyn.

According to the preliminary site investigation conducted by Langan on October 20 2017, the subsurface strata consists of historic fill material characterized by loose, brown, medium sand with varying amounts of coarse sand, silt, fine gravel, coal, slag, glass, ceramic, coal ash, wood, brick and concrete fragments. The fill layer extended to depths ranging from about 7.5 to 11 feet below grade surface (bgs). The fill layer was underlain by native soil characterized by loose, brown, medium sand with varying amounts of silt and fine gravel, and localized soft dark grey peat.

2.2.2 Regional and Site Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeological network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks. The majority of runoff drains to the city sewers, which connect to one of the several wastewater treatment plants servicing the city.

Groundwater in this part of New York City is not used as a potable water source. Potable water provided to the City of New York is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

Based on previous investigations, groundwater depth is expected at about 6 to 7 feet bgs and appears to flow west towards the East River.

3.0 SITE BACKGROUND

3.1 Historical Site and Surrounding Properties Use

The site and surrounding area have been developed since the early 1900s and are located in an urban setting historically characterized by industrial and commercial development. Historical uses of the property have included a dry color (powdered pigment) and paint storage facility, varnish research works, chemical warehouse, office building, and a commercial bike repair. The majority of the site uses have been warehousing and storage.

Based on historical database listings, the site formerly contained three underground storage tanks (USTs). The following tanks associated with the site have been registered, removed from site, and closed:

- Tank 1 5,000-gallon hydrochloric acid UST (closed in 1992)
- Tank 2 12,000-gallon ammonium hydroxide UST (closed in 1992)
- Tank 3 2,000-gallon nitric acid UST (closed in 1991)

The 1942 Sanborn Map identified one benzene tank and two gasoline tanks on site. There is inconsistent reporting throughout the previous reports regarding the number of tanks and their contents; however, no documentation regarding the current status of these tanks was available for review.

NYSDEC Spill No. 1505078 was reported on August 11, 2015, when an unknown quantity of petroleum was identified in a centrally-located monitoring well during Environmental Business Consultants' (EBC) Phase II Environmental Site Investigation. The NYSDEC closed the spill on September 21, 2015.

Adjoining properties were historically used for residential, commercial, and industrial operations. Historical uses of the site and surrounding properties are shown in Figure 4.

3.2 Proposed Redevelopment Plan

The proposed development plan consists of a seven-story mixed-use commercial and residential building with cellar-level parking, ground-level retail space, and an elevated rear yard in the northwest part of the second floor. The proposed end-use of the development is consistent with existing zoning regulations. As currently conceived, the building would cover the entire 18,000-square-foot lot and would require excavation to about 18.5 feet bgs for construction of the building foundation. Support of excavation and dewatering are anticipated to facilitate construction of foundation elements. Remediation would occur prior to and concurrently with redevelopment and would be completed in accordance with an approved Remedial Action Work Plan (RAWP) and site-specific Construction Health and Safety Plan (CHASP).

3.3 **Previous Environmental Reports**

Environmental reports prepared for the site include the following:

- 2015 Phase I Environmental Site Assessment Screening, prepared by EBC
- July 23, 2015 Phase II Subsurface Investigation Data Summary, prepared by EBC
- February 8, 2017 Remedial Investigation Work Plan, prepared by EBC
- October 20, 2017 Preliminary Site Investigation, performed by Langan

Reports are summarized below and available reports are included in Appendix A.

July 23, 2015 Phase II Subsurface Investigation Data Summary, prepared by EBC

The Phase II was completed in July 2015 and consisted of the following:

- A ground-penetrating radar (GPR) survey
- Advancement and sampling of 11 soil borings
- Collection of 4 groundwater samples
- Collection of 6 soil vapor samples

The Phase II findings and conclusions are as follows:

- <u>GPR survey</u>: A GPR survey was conducted in the suspect tank areas identified on the 1942 Sanborn Maps (south-western portion of the site) and in the proposed rear yard areas (northern portion of the site). No anomalies associated with tanks were observed.
- <u>Soil</u>: Trichloroethene (TCE) and tetrachloroethene (PCE) were identified in shallow and deep borings above Unrestricted Use (UU) and Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCOs) with maximum concentrations of 220 milligrams per kilogram (mg/kg) and 9.4 mg/kg, respectively. SVOCS, including benzo(a)anthracene, benzo(a)pyrene, and chrysene (maximum concentrations ranging from 5 to 6.2 mg/kg), were detected above RURR SCOs primarily in shallow soils, and two deep soil locations on the east side of the site. Concentrations of arsenic (max 234 mg/kg), lead (max 8,530 mg/kg), and mercury (max 28.8 mg/kg) were detected above RURR SCOs across the site in shallow and deep soil intervals.
- <u>Groundwater</u>: Groundwater was encountered about 6 to 7 feet bgs and was identified to flow toward the west. TCE, cis-1,2-dichloroethene, and vinyl chloride were detected in groundwater within the central and northeast portions of the site above NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA drinking water at maximum concentrations of 240 micrograms per liter (µg/L), 30 µg/L, and 15 µg/L, respectively. A black liquid, most closely resembling No. 6 fuel oil, was identified while groundwater sampling at monitoring well MW03, located in the central part of the site. The sample

from MW03 contained naphthalene above TOGS Class GA SGVs at a maximum concentration of 31 $\mu\text{g/L}.$

<u>Soil Vapor</u>: TCE (up to 243,000 micrograms per cubic meter [μg/m³]), PCE (up to 7,730 μg/m³), carbon tetrachloride (up to 6,350 μg/m³), and 1,1,1-trichloroethane (up to 6,000 μg/m³) were detected in soil vapor samples collected from about 6 feet below sidewalk grade.

August 2015 Phase I Environmental Site Assessment (ESA) Screening, prepared by EBC

The Phase I ESA report identified the following Recognized Environmental Conditions (REC) for the site:

- The site was used for manufacturing and industrial operations, including the following:
 - A dry color (powdered pigment) and paint storage facility circa 1905 to 1916.
 - A varnish research works (1942 and 1951), which is associated with the use of chlorinated solvents that have potential for release to the environment.
 - A chemical warehouse until at least 1965 when it is then described as an office.
- The 1942 Sanborn Map identified one benzene tank and two gasoline tanks on site. There is inconsistent reporting throughout the text regarding the number of tanks and their contents; however, no documentation regarding the current status of these tanks, or documentation regarding soil and groundwater quality was identified during this assessment.

Although not identified as RECs in the report text, the following concerns were also identified.

- Based on database listings, the site formerly contained three USTs:
 - Tank 1 5,000-gallon hydrochloric acid UST (closed in 1992)
 - Tank 2 12,000-gallon ammonium hydroxide UST (closed in 1992)
 - Tank 3 2,000-gallon nitric acid UST (closed in 1991)
- The site is listed with an E-designation (E-138) for Hazardous Materials following the May 2005 Greenpoint-Williamsburg Contextual Rezoning action (CEQR #04DCP003K).

February 8, 2017 Remedial Investigation Work Plan, prepared by EBC

A Remedial Investigation Work Plan (RIWP) was prepared for Atlas Alley LLC on February 8, 2017 under the NYS BCP and approved by NYSDEC on May 1, 2017. The Volunteer for BCP Site No C224229 implemented the approved RIWP, which consisted of the following:

• Installation of 11 soil borings to about 15 feet bgs to delineate the extent of soil impacts and to obtain information on soil quality with respect to Track 1 UU SCOs; and

• Installation of 3 groundwater monitoring wells to about 15 feet bgs and sampling from two existing wells (MW3 and MW4) to assess groundwater quality and to delineate the extent of previously detected VOCs, SVOCs, and metals concentrations.

October 20, 2017 Preliminary Site Investigation, performed by Langan

A Preliminary Site Investigation was completed in October 2017 to support conceptual design of the future building. Five soil borings were advanced up to 20 feet bgs and two soil samples were collected from each boring. The Preliminary Site Investigation findings and conclusions are as follows:

- Historic fill was identified to depths between 8 and 11 feet bgs. Sand, peat, and organic clay were identified underlying the historic fill. Petroleum-like contamination (i.e., staining, sheen, odor, and photoionization detector [PID] measurements above background) was observed at LB01, which is in proximity to MW03 where No. 6 fuel oil was reportedly identified during EBC's 2015 Phase II.
- TCE, benzene, cis-1,2-dichloroethene and methylene chloride were identified in soil borings above UU SCOs with maximum concentrations of 7.1 mg/kg, 0.78 mg/kg, 9.37 mg/kg and 0.16 mg/kg, respectively. SVOCS, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene (up to 3.7 mg/kg) were detected above RURR SCOs across the site. Concentrations of arsenic (max 55 mg/kg), lead (max 752 mg/kg), and mercury (max 1.4 mg/kg) were detected above RURR SCOs. Soil boring LB05, located in the south-central portion of the site, contained petroleum-related VOCs at concentrations above UU SCOs. In general, target compounds were detected above RURR SCOs at depths up to 12 feet bgs throughout the site.

A separate report was not prepared for the October 2017 site investigation and the findings and results are discussed in this RIR.

3.4 Areas of Concern for Investigation

The following areas of concern (AOCs) represent portions of the site that required further investigation and were developed based on site observations, the site development history, and the findings of the previous environmental reports. The AOCs that were investigated include the following:

 <u>AOC 1 – Historic Fill</u>: AOC 1 represent a layer of historic fill of unknown origin identified between ground surface to about 11 feet bgs. According to EBC's Phase II and Langan's Preliminary Site Investigation, historic fill is generally characterized as loose, brown, medium sand with varying amounts of black gravel, coal, slag, glass, wood, organics, red and brown clay, black to brown silt, and brick and concrete fragments. Contaminants associated with historic fill were identified in surface soil samples, including concentrations of SVOCs and metals above UU and RURR SCOs.

- 2. <u>AOC 2 –Petroleum-Related Impacts in Soil and Groundwater</u>: EBC's Phase II ESI identified petroleum-related impacts to soil, groundwater, and soil vapor, concentrated around the east-central portion of the site. Petroleum-related VOCs, including BTEX¹, naphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethlybenzene, were identified in soil and groundwater. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. Impacts are potentially associated with historic site use or off-site sources migrating onto the site.
- 3. <u>AOC 3 Chlorinated VOCs (CVOC) in Soil, Groundwater, and Soil Vapor</u>: CVOC impacts have been detected in soil, groundwater, and soil vapor at concentrations exceeding UU and RURR SCOs. Soil impacts were identified between about 5 and 12 feet bgs in nine of the eleven previous borings, primarily within the east-central portion of the site. Two groundwater samples collected from the east-central portion of the site contained CVOCs at concentrations up to one to two orders of magnitude above their respective TOGS Class GA SGVs. Total CVOC concentrations in soil vapor ranged from 858.74 μg/m³ in sample SG-6 to 263,934 μg/m³ in sample SG-4. Impacts are potentially associated with historic site use or historic and current use of the surrounding properties.
- 4. <u>AOC 4 Potential Underground Storage Tank (UST)</u>: AOC 4 represents the locations of potential USTs in the western portion of the site that were identified on the 1942 Sanborn Map; the tanks were no longer shown on the subsequent 1951 Sanborn Map. One soil and one groundwater sample were collected in the vicinity of the suspected USTs during EBC's Phase II ESI and the analytical results identified the presence of petroleum-related compounds in both media.

¹ BTEX: A group of petroleum-related compounds consisting of benzene, toluene, ethylbenzene and total xylenes.

4.0 FIELD INVESTIGATION

The purpose of the RI was to further delineate the nature and extent of impacts in accordance with DER-10-3.1 to formulate a conceptual site model and an effective strategy for site remediation. The Volunteer implemented the NYSDEC-approved RIWP between November 20 and 29, 2017 in accordance with Title 6 of the New York Codes, Rules, and Regulations (6 NYCRR) Part 375, the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), and the NYSDEC Draft BCP Guide (May 2004). A photograph log documenting this investigation is included as Appendix B.

The RI consisted of the following:

- Geophysical survey to identify subsurface anomalies consistent with utilities, substructures, physical obstructions, and USTs, and to pre-clear soil boring locations;
- Advancement of 12 soil borings (16B1 through 16B12), and collection of 35 soil samples, including two field duplicates, and two matrix spike/matrix spike duplicate (MS/MSD) quality assurance/quality control (QA/QC) samples;
- Installation of 3 groundwater monitoring wells and collection of 7 groundwater samples from two existing monitoring wells and three newly installed wells, including one duplicate and one MS/MSD QA/QC samples;
- Implementation of a Community Air Monitoring Program (CAMP); and
- Survey of site monitoring wells for location and elevation relative to NAVD88.

A summary of the samples is provided as Table 1. Sample locations are shown on Figure 5. Each component of the RI is further described in the following sections.

4.1 Utility Mark-out

Prior to beginning of the field investigation, the New York One Call Center was contacted for Code 753 utility mark-outs.

4.2 Geophysical Investigation

A geophysical investigation was implemented by NOVA Geophysical & Environmental, Inc. of Douglaston, New York. The survey used ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities and substructures in the vicinity of each boring location. Borings were relocated as necessary to avoid subsurface utilities and other subsurface impediments. A copy of the geophysical survey report is included in Appendix C.

4.3 Soil Investigation

4.3.1 Investigation Methodology

A total of 12 soil borings (16B1 through 16B12) were advanced by AARCO Environmental Services Corp. (AARCO) between November 20 and 21, 2017. Boring locations were selected

to provide sufficient site coverage and to evaluate the AOCs listed in Section 3.4. A direct-push Geoprobe[®] 6610 DT was used to advance borings to 12 to 15 feet bgs, as summarized below:

- Borings 16B1, 16B2, 16B3 and 16B8 were advanced to about 15 feet bgs to characterize deeper soil which was not previously sampled;
- Borings 16B4, 16B5, and 16B6 were advanced to about 15 feet bgs to further characterize petroleum and chlorinated VOC contamination;
- Boring 16B7 was advanced to about 15 feet bgs to characterize deeper soil in the former benzene UST and gasoline UST area;
- Borings 16B9 through 16B11 were advanced to about 12 feet bgs to characterize nonaqueous phase liquid (NAPL) previously observed in MW3; and
- Boring 16B12 was advanced to about 12 feet bgs to characterize the extent of petroleum-related impacts.

Soil samples were collected continuously from surface grade to the final depth of each environmental boring into 4-foot-long Macro-Core[®] samplers equipped with acetate liners. Recovered soil was screened for visual, olfactory, and instrumental evidence of environmental impacts and was visually classified for soil type, grain size, color, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a PID equipped with a 10.6 electron volt (eV) lamp. Boring logs documenting these observations are included in Appendix D. Following sample collection, all borings were backfilled with clean soil cuttings.

4.3.2 Sampling Methodology

A total of 35 soil samples (including QA/QC samples) were collected for laboratory analysis in general accordance with the RIWP. Soil sample collection was generally biased toward the intervals with the greatest evidence of environmental impacts (i.e., PID readings above background, staining, chemical/petroleum-like odors). One to four samples were collected at each boring (except for 16B12) to evaluate the AOCs discussed in section 3.4. The table below identifies the borings associated with each AOC.

AOC	Associated Soil Boring
AOC 1 – Historic Fill	16B1 through 16B11
AOC 2 – Petroleum-Related Impacts	16B9, 16B10, 16B11, 16B12
AOC 3 – Chlorinated Solvents	16B4, 16B5, 16B6
AOC 4 – Potential USTs	16B7

Grab samples submitted for VOC analysis were collected directly from the Geoprobe[®] acetate liner via laboratory-supplied Terra Core[®] soil sample kits. The sample containers were labeled, placed in a laboratory-supplied cooler, and packed with ice (to maintain a temperature of 4

±2°C). The samples were relinquished, under standard chain-of-custody protocol, to a courier for delivery to Alpha Analytical Laboratories (Alpha), a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory in Westborough, Massachusetts.

Soil samples collected from soil borings 16B1 through 16B8 were analyzed for Target Compound List (TCL)/NYSDEC Part 375 List VOCs + tentatively identified compounds (TICs) by United States Environmental Protection Agency (EPA) Method 8260C, TCL/Part 375 SVOCs + TICs by EPA Method 8270D, and TAL/Part 375 metals by EPA Method 6010C. Samples collected from soil borings 16B9 through 16B11 were analyzed for Total Extractable Petroleum Hydrocarbons (EPH) and Part 375/Priority Pollutants Plus 40 (VOCs, SVOCs, pesticides, herbicides, polychlorinated biphenyls [PCBs], and metals). A sample analysis summary is provided as Table 1.

4.4 Groundwater Investigation

Groundwater monitoring wells were installed and sampled to characterize groundwater conditions and to investigate potential impacts to groundwater associated with the identified AOCs.

4.4.1 Monitoring Well Installation and Development

Three locations in the southeastern corner were drilled to 15 feet bgs and converted into groundwater monitoring wells. The wells were installed with 1-inch diameter schedule 40 prepack well screens set to straddle the groundwater table. The screens were set between 5 to 15 feet bgs and solid PVC risers were installed above the screens to extend the well to grade. The annulus of each well was filled with No. 2 sand to about 1 foot above the top of the screen. Hydrated bentonite well seals were installed above the filter sand. Following installation, each well was developed by purging at least 3 well volumes with a check valve. Purged groundwater was stored in one labeled 55-gallon drum and staged on-site pending disposal. The top of casing for each monitoring well was surveyed by Langan on December 29, 2017. Monitoring well construction details are presented in Table 2 and well construction logs are included in Appendix E.

4.4.2 Groundwater Sampling

Monitoring wells were sampled one week after development in accordance with the EPA's low-flow groundwater sampling procedure to allow for collection of a representative sample ("Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells," EQASOP-GW 001, January 19, 2010). Prior to sample collection, synoptic water level and total volatile headspace measurements were collected from RIWP monitoring wells on November 29, 2017. Groundwater elevations are presented in Table 3. A groundwater contour map is presented as Figure 7.

Following the gauging event, groundwater was purged from each well until groundwater parameters (pH, conductivity, turbidity, dissolved oxygen (DO), temperature, turbidity, and oxidation-reduction potential [ORP]) had stabilized. At least three well casing volumes were purged from each well before samples were collected using a peristaltic pump and dedicated polyethylene tubing.

Seven groundwater samples were collected (one from each of the three newly installed wells [16MW1, 16MW2, and 16MW3], one from existing wells MW3 and MW4, plus one duplicate, and one MS/MSD). Samples were collected into laboratory-supplied glassware and delivered via courier service to Alpha for analysis of TCL/Part 375 VOCs + TICS by EPA Method 8260C, TCL/Part 375 SVOCs + TICS by EPA method 8270D, and TAL/Part 375 metals (total and dissolved) by EPA methods 6010C. Groundwater sampling logs are included in Appendix E.

4.5 Quality Assurance/Quality Control Sampling

Trip blanks, field duplicate samples, and MS/MSD samples were collected and submitted for laboratory analysis for QA/QC purposes; these samples are detailed in Table 1. Matrix-specific QA/QC samples that were collected for the RI are summarized below:

Soil QA/QC Samples

- Two field duplicate samples;
- Two MS/MSD samples; and
- Three trip blanks.

Groundwater QA/QC Samples

- One field duplicate samples;
- One MS/MSD samples; and
- One trip blank.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes.

Field duplicate samples were collected to assess the precision of the analytical methods relative to the sample matrix. The duplicates were collected from the same material as the primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

Trip blank samples were collected to assess the potential for contamination of the sample containers and samples during transport from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) that is prepared and sealed by the laboratory when the empty sample containers are shipped to the field, and then unsealed and analyzed for VOCs by the laboratory when the sample shipment is received from the field.

4.6 Data Validation

Analytical data was validated by a Langan validator in accordance with EPA and NYSDEC validation protocols. Copies of the data usability summary reports (DUSRs) and the data validator's credentials are provided in Appendix G.

4.6.1 Data Usability Summary Report Preparation

A DUSR was prepared for each sampling matrix. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For the soil and groundwater samples, the following items were assessed:

- Hold times
- Sample preservation
- Sample extraction and digestion
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- MS/MSD recoveries
- Field duplicate, trip blank, and field blank sample results

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the EPA's guidelines and best professional judgment:

- "U" The analyte was analyzed for but was not detected at a level greater than or equal to the reporting limit (RL) or the sample concentration or the sample concentration for results impacted by blank contamination.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "R" The sample results are not useable due to quality of the data generated because certain criteria were not met. The analyte may and may not be present in the sample.

After data validation activities were complete, validated data was used to prepare the tables and figures included in this report.

4.7 Field Equipment Decontamination

Down-hole drilling equipment was decontaminated between each boring. Down-hole drilling equipment was rinsed with an Alconox[®]-based solution. Decontamination wastewater was placed into 55-gallon drums for disposal.

4.8 Investigation-Derived Waste Management

Investigation derived waste (IDW) generated during the RI was properly handled and containerized. Groundwater from monitoring well development and purging, and decontamination water were placed into UN/DOT-approved 55-gallon steel drums with sealed tops. Drill cuttings exhibiting no evidence of chemical or petroleum impacts were used to backfill soil borings. One groundwater drum was staged in a secured area on-site pending transport by a licensed waste hauler for disposal at an approved facility.

4.9 Community Air Monitoring Program

A Community Air Monitoring Plan (CAMP) was implemented during each day of environmental drilling, on November 20 and 21, 2017. The CAMP was developed to monitor potential exposure to off-site receptors, including residences and businesses, from potential airborne contaminant releases during intrusive field activities. The CAMP consisted of real-time monitoring for VOCs and particulates (i.e., dust) at upwind and downwind locations to the works.

<u>Instruments</u>

Continuous dust and VOC monitoring was conducted using one upwind and one downwind monitoring station at the site perimeter. Each monitoring station included a TSI DustTrak II aerosol monitor for measuring particulates with an aerodynamic diameter less than 10 micrometers (PM10), and a MiniRAE[®] 3000 PID for measuring total VOCs. The work zone and site perimeter were visually monitored for fugitive dust emissions.

Action Levels

Action levels used to monitor community and visitor exposure were set forth in the CAMP included in the CHASP (Appendix D in the RAWP) and are summarized as:

- Particulate Action Level: 100 micrograms of dust per cubic meter of air (µg/m3) above background for a 15-minute average
- VOC Action Level: 25 parts per million (ppm) for instantaneous readings above background or 5 ppm above background for a 15-minute average.

Aerosol monitors and PIDs recorded measurements on a continuous basis during remediation and construction activities. Fifteen-minute running averages were calculated from the recorded data, and averages were compared to the action levels specified above. CAMP summary data is included as Appendix F.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

5.1 Geophysical Investigation Findings

The majority of identified anomalies were consistent with utilities (i.e. electric, gas, sewer line and water line). One large anomaly, consistent with a potential UST, was identified in the northwestern corner of the site. Historical records also indicate that there may be USTs in the western portion of the site. A copy of the November 2017 geophysical report is included in Appendix C.

5.2 Geology and Hydrogeology

Provided below is a description of the geologic and hydrogeologic observations made during the RI. A groundwater contour map is included as Figure 6, cross-sectional diagrams showing inferred soil profiles are shown on Figure 7, and soil boring logs are provided in Appendix D.

5.2.1 Historic Fill

The site is underlain by a layer of historic fill ranging in depth from about 6 feet bgs (16B5) to 11.5 feet bgs (16B8) and predominately consisting of brown fine- to medium-grained sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, wood, organics, coal fragments and slag. An about 1.5-foot void was encountered underneath the northern building slab during advancement of soil boring 16B2. The void was also observed in three exploratory offsets, spaced about 5 feet around the original boring location.

5.2.2 Native Soil Layers

The fill layer is underlain by olive, fine-grained silty sand and grey organic clay with varying amounts of gravel, organics, and shells. Underlying the silty sand is an interval of soft, grey clay with varying amounts of organics and shells. This stratigraphy was generally consistent across the site.

5.2.3 Bedrock

The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock underlying the site is part of the Hartland Formation. Bedrock was not encountered during this RI. A November 2017 geotechnical investigation, which included advancement of soil borings to 100 feet bgs, did not encounter bedrock.

5.2.4 Hydrogeology

Synoptic groundwater level measurements were collected on November 29, 2017 from five monitoring wells (MW3, MW4, 16MW1, 16MW2, and 16MW3), and on January 2, 2018 from seven wells (MW1, MW2, MW3, MW4, 16MW1, 16MW2, and 16MW3). Water level ranged between about el. 0.76 and el. 2.78 NAVD88. Based on the well gauging results, groundwater

appears to flow west towards the East River. A map showing groundwater contours and the inferred flow direction is provided as Figure 6. Groundwater elevations are shown in Table 3.

5.3 Soil Findings

5.3.1 Field Observations

Petroleum-like impacts, evidenced by odors, staining, and/or PID readings above background levels were observed at similar depths in six of the twelve soil borings. The depth intervals at which petroleum impacts were apparent with the highest recorded PID readings are provided in the following table:

Soil Boring ID	Depth Interval of Observed Impacts (feet bgs)	Ма	x PID Reading (ppm)	Soil Boring Location
16B1	7 to 13	103.7	(7 to 8 feet bgs)	Central
16B2	11 to 12	16.1	(11 to 12 feet	North-central
16B3	7 to 8	634.1	(7 to 8 feet bgs)	Northeast
16B7	7 to 8	388.2	(7 to 8 feet bgs)	Southwest
16B9	7 to 10.5	61.5	(10 to 11 feet	Central
16B10	7 to 8	54.6	(7 to 8 feet bgs)	Central

5.3.2 Analytical Results

A summary of laboratory detections for soil samples collected during the RI with comparisons to NYSDEC Part 375 UU SCOs and RURR SCOs is provided in Tables 4A and 4B. Laboratory analytical data reports are included in Appendix H. Soil sample results that exceed UU and RURR SCOs for samples collected during previous environmental investigation and the RI are shown on Figure 8.

The following sections present a summary of concentrations that exceeded their respective UU and/or RURR SCOs, organized by analytical parameter set:

VOCs

Petroleum-related and chlorinated VOCs were detected in soil at concentrations above 6 NYCRR Part 375 UU SCOs at depths ranging from 0 to 8 feet bgs and in localized areas up to 12 feet bgs. VOC concentrations above RURR SCOs were identified up to 8 feet bgs in three soil samples located within the northern portion of the site (16B1, 16B3, and 16B8). The table below provides a summary of low and high range VOC concentrations that were detected above their respective 6 NYCRR Part 375 UU SCOs. VOC concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat S(UU and RURR SCOs	
	Low	High	
1,2,4-Trimethylbenzene	6.2 mg/kg in	8.7 mg/kg in	UU: 3.6 mg/kg
	16B3_7-8	16B1_7-8	RURR: 52 mg/kg
2-Butanone	0.78 mg/kg in 16B3_0-2	1.4 mg/kg in 16B3_7-8 and 16B8_5.5-6.5	UU: 0.12 mg/kg RURR: 100 mg/kg
Acetone*	0.051 mg/kg in	0.23 mg/kg in	UU: 0.05 mg/kg
	16B4_11-12	16B3_0-2	RURR: 100 mg/kg
cis-1,2-Dichloroethene	0.26 mg/kg in	16 mg/kg in	UU: 0.25 mg/kg
	16B8_11-12	16B3_7-8	RURR:100 mg/kg
Naphthalene	13 mg/kg in 16B1_7-8		UU: 12 mg/kg RURR: 100 mg/kg
Tetrachloroethene	2.3 mg/kg in	5.7 mg/kg in	UU: 1.3 mg/kg
	16B8_0-2	16B5_4.5-5	RURR: 19 mg/kg
trans-1,2-Dichloroethene	1.1 mg/kg in 16B3_7-8		UU: 0.19 mg/kg RURR: 100 mg/kg
Trichloroethene	0.51 mg/kg in	30 mg/kg in	UU: 0.47 mg/kg
	16B10_7-8	16B1_0-2	RURR: 21 mg/kg
Vinyl chloride	0.57 mg/kg in	1.6 mg/kg in	UU: 0.02 mg/kg
	16B10_7-8	16B3_7-8	RURR: 0.9 mg/kg
Xylenes, Total	0.49 mg/kg in	7.2 mg/kg in	UU: 0.26 mg/kg
	16B8_0-2	16B3_0-2	RURR: 100 mg/kg

*Acetone is a common laboratory contaminant and therefore, its presence in soil results is not likely representative of site conditions.

SVOCs

Nine SVOCs were detected in soil at concentrations above 6 NYCRR Part 375 UU at depths ranging from 0 to 8 feet bgs throughout the site and in one location (16B8) at a depth up to 15 feet bgs. SVOCs in soil detected at concentrations above RURR SCOs were identified up to at least 8 feet bgs in borings 16B2 and 16B3, and up to 15 feet bgs in boring 16B8. The table below provides a summary of low and high range SVOC concentrations that were detected above their respective 6 NYCRR Part 375 UU SCOs. SVOC concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat SC	UU and RURR SCOs	
	Low	High	
3-Methylphenol/	0.38 mg/kg in	2.7 mg/kg in	UU: 0.33 mg/kg
4-Methylphenol	16B8_11-12	16B10_7-8	RURR: 100 mg/kg
Benzo(a)anthracene	1.2 mg/kg in 16B1_0-2 and SODUP02_112119	5.4 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(a)pyrene	1.1 mg/kg in SODUP02_112117	5.1 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR:1 mg/kg
Benzo(b)fluoranthene	1.1 mg/kg in 16B6_3-4 and 16B8_11-12	6.5 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(k)fluoranthene	1.3 mg/kg in 16B3_7-8	2.1 mg/kg in 16B2_7-8	UU: 0.8 mg/kg RURR: 3.9 mg/kg
Chrysene	1.2 mg/kg in 16B1_0-2, 16B1_7-8 and SODUP02_112117*	5.3 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 3.9 mg/kg
Dibenzo(a,h)anthracene	0.35 mg/kg in 16B8_14-15	0.69 mg/kg in 16B2_7-8	UU: 0.33 mg/kg RURR: 0.33 mg/kg
Indeno(1,2,3-cd)pyrene	0.51 mg/kg in 16B3_0-2	3.2 mg/kg in 16B2_7-8	UU: 0.5 mg/kg RURR: 0.5 mg/kg
Phenol	0.44 mg/kg in 16B10_7-8		UU: 0.33 mg/kg RURR: 100 mg/kg

*SUDUP02_112117 is a duplicate of the parent sample 16B4_3-4.

Pesticides, Herbicides, and PCBs

Per the approved RIWP, only soil samples collected from borings 16B9 through 16B11 were analyzed for pesticides, herbicides, and PCBs. Herbicides and PCBs were not detected. One pesticide, 4,4'-DDT, was detected above 6 NYCRR UU, but below RURR SCOs in the 7- to 8-foot interval of soil boring 16B10.

A site-wide waste characterization will be completed to classify soil prior to excavation for foundation construction and will include analysis of pesticides, herbicides, and PCBs.

Metals

Metals were detected at concentrations above their respective 6 NYCRR Part 375 UU and RURR SCOs in all sampled soil borings, and extending up to 15 feet in borings 16B4 and 16B8. Borings 16B4 and 16B8 also contained metals at concentrations above Part 375 RURR SCOs up to 15 feet bgs. The highest concentrations appear to be located within the historic fill layer and generally begin to diminish with depth. The following table provides a summary of low and

high range metal concentrations that were detected above their respective Part 375 UU SCOs. Metals concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat SC	UU and RURR SCOs	
	Low	High	
Arsenic	19.2 mg/kg in	117 mg/kg in	UU: 0.33 mg/kg
Alsenic	16B1_7-8	16B9_10-11	RURR: 100 mg/kg
Barium	370 mg/kg in	672 mg/kg in	UU: 350 mg/kg
Danum	SODUP02_112117*	16B3_0-2	RURR: 400 mg/kg
Cadmium	2.66 mg/kg in	37.2 mg/kg in	UU: 2.5 mg/kg
Caurnan	16B2_13-14	16B1_7-8	RURR: 4.3 mg/kg
		1.5 mg/kg in	
Chromium, Hexavalent	1.2 mg/kg in	SODUP01_112017	UU: 1 mg/kg
	16B9_10-11	(duplicate of	RURR: 110 mg/kg
		16B5_12-13)	
Chromium, Trivalent	34 mg/kg in	2,400 mg/kg in	UU: 30 mg/kg
	16B8_14-15	16B7_6.5-7.5	RURR:180 mg/kg
Copper	51.7 mg/kg in	1,250 mg/kg in	UU: 50 mg/kg
Сорреі	16B4_3-4	16B3_7-8	RURR: 270 mg/kg
Lead	96.2 mg/kg in	9,410 mg/kg in	UU: 63 mg/kg
Leau	16B4_11-12	16B9_10-11	RURR: 400 mg/kg
Mercury	0.45 mg/kg in	160 mg/kg in	UU: 0.18 mg/kg
INECULY	16B5_12-13	16B3_7-8	RURR: 0.81mg/kg
Nickel	32 mg/kg in	295 mg/kg in	UU: 30 mg/kg
NICKEI	16B6_3-4	16B1_7-8	RURR: 310 mg/kg
Selenium	0.21 mg/kg in	6.7 mg/kg in	UU: 3.9 mg/kg
Selettiutti	16B8_5.5-6.5	16B1_7-8	RURR: 180 mg/kg
Silver	3.69 mg/kg in	57.8 mg/kg in	UU: 2 mg/kg
Silver	16B8_11-12	16B5_4.5-5	RURR: 180 mg/kg
Zinc	126 mg/kg in	7,990 mg/kg in	UU: 109 mg/kg
	16B2_11-12	16B2_7-8	RURR: 1000 mg/kg

*SODUP02_112117 is a duplicate of the parent sample 16B4_3-4.

5.4 Groundwater Findings

5.4.1 Field Observations

All monitoring wells sampled during the RI were first gauged for the presence of free product (i.e., light, non-aqueous phase liquid (LNAPL) with an oil-water interface probe. Free product was not detected; however, petroleum-like odors were observed in purged groundwater generated from MW3. Monitoring well headspace PID measurements ranged from 0.0 to 4.8 ppm (highest reading in 16MW2) during sampling.

Existing monitoring well MW4, from EBC's Phase II ESI, was found without a cover, damaged, and covered with overgrown vegetation. After removing the surface vegetation and cave-in debris, groundwater was detected within the monitoring well.

5.4.2 Analytical Results

A summary of the groundwater sample laboratory detections compared to TOGS Class GA SGVs is presented in Tables 5. Groundwater sample locations and results that exceed their respective TOGS Class GA SGVs are presented on Figure 9. Laboratory analytical data reports are included in Appendix H.

The following is a summary of groundwater sample results from the RI that exceed the TOGS SGVs organized by analytical parameter set:

VOCs

Four VOCs were detected in groundwater at concentrations above their respective TOGS Class GA SGVs throughout the site. The following table provides low and high range concentrations of VOCs detected above their respective TOGS Class GA SGVs.

Parameter	Range of Concentrations Detected above TOGS Class GA SGV		TOGS Class GA SGV
	Low	High	
cis-1,2-Dichloroethene	8.6 µg/L in 16MW3	40 µg/L in MW4	5 µg/L
Naphthalene	17 μg/L in 16MW1		10 µg/L
Trichloroethene	5.5 µg/L in GWDUP01	21 µg/L in 16MW3	5 µg/L
Vinyl chloride	4 μg/L in MW4	5.1 µg/L in MW3	2 µg/L

*GWDUP01 is a duplicate of the parent sample from monitoring well 16MW2.

SVOCs

Groundwater samples collected from 16MW1, 16MW2 and 16MW3 contained one or more SVOCs at concentrations above their respective TOGS Class GA SGVs. The following table provides low and high range concentrations of SVOCs detected above their respective TOGS Class GA SGVs.

Parameter	Range of Concentrations Detected above TOGS Class GA SGV		TOGS Class GA SGV
	Low	High	
Benzo(a)anthracene	0.03 µg/L in 16MW1	0.45 µg/L in 16MW3	0.002 µg/L
Benzo(a)pyrene	0.41 μg/L in 16MW3		0.002 µg/L
Benzo(b)fluoranthene	0.02 µg/L in 16MW1	0.6 µg/L in 16MW3	0.002 µg/L
Benzo(k)fluoranthene	0.2 µg/L in 16MW3		0.002 µg/L
Bis(2-chloroethyl)ether	2 μg/L in MW3, MW4, 16MW1, 16MW2, and		1 µg/L

Parameter	Range of Concentrations Detected above TOGS Class GA SGV		TOGS Class GA SGV
	Low	High	
	16MW3		
Chrysene	0.05 µg/L in16MW2	0.48 µg/L in 16MW3	0.002 µg/L
Hexachlorocyclopentadiene	20 μg/L in MW3, MW4, 16MW1, 16MW2, and 16MW3		5 µg/L
Indeno(1,2,3-cd)pyrene	0.39 µg/L in 16MW3		0.002 µg/L

Total Metals

Eight total metals were detected in groundwater at concentrations above their respective TOGS Class GA SGVs. The following table provides low and high range concentrations of metals detected above their respective TOGS Class GA SGVs:

Parameter	Range of Concentrations Detected above TOGS Class GA SGV		TOGS Class GA SGV
	Low	High	
Arsenic	120.6 µg/L in MW4		25 µg/L
Iron	2,760 µg/L in 16MW1	26,100 µg/L in MW4	300 µg/L
Lead	53.44 µg/L in 16MW3	359 µg/L in GWDUP01*	25 µg/L
Manganese	346.8 µg/L in MW4	576.8 µg/L in 16MW1	300 µg/L
Mercury	7.3 µg/L in 16MW2	20.05 µg/L in GWDUP01*	0.7 µg/L
Nickel	136.9 µg/L in 16MW3		100 µg/L
Sodium	25,200 µg/L in 16MW3	69,700 μg/L in GWDUP01*	20,000 µg/L
Zinc	3,294 µg/L in 16MW3		20,000 µg/L

*GWDUP01 is a duplicate of the parent sample from monitoring well 16MW2.

Dissolved Metals

Six dissolved metals were detected in groundwater at concentrations above their respective TOGS Class GA SGVs across the site. The following table provides low and high range concentrations of dissolved metals detected above their respective TOGS Class GA SGVs:

Parameter	Range of Concentration Class	TOGS Class GA SGV	
	Low	High	
Arsenic	112.1 µg/L in MW4		25 µg/L
Iron	2,830 µg/L in 16MW1	20,400 µg/L in MW4	300 µg/L

Manganese	338.2 µg/L in MW4	569.2 µg/L in 16MW1	300 µg/L
Nickel	135.6 μg/L in 16MW3		100 µg/L
Sodium	23,400 µg/L in 16MW3	62,500 µg/L in GWDUP01	20,000 µg/L
Zinc	3,236 μg/L in 16MW3		20,000 µg/L

5.5 QA/QC Sample Results

Duplicate and trip blank samples collected during the RI are detailed in Table 1 and MS/MSD sample results are summarized in the laboratory reports. Duplicate and MS/MSD samples were collected at a frequency of 1 per 20 primary samples. QA/QC samples results were also evaluated as part of data validation. Analytical results for trip blank samples are summarized in Table 7.

5.6 Data Usability

Category B laboratory reports for all the collected soil and groundwater samples were provided by Alpha and were forwarded to Langan's data validator. Copies of the DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

Major deficiencies were identified include:

• 2-chloroethylvinyl ether was submitted to the laboratory as preserved; however, it is an acid-labile compound that will not recover in the presence of hydrochloric acid. The associated trip blank sample results were qualified as "R" for unusable.

With the exception of 2-chloroethylvinyl ether, the data was determined to be acceptable and usable as qualified.

5.7 Evaluation of Potential Areas of Concern

The goal of the RI was to evaluate the AOCs described in Section 3.4. This section discusses the results of the RI with respect to the AOCs.

5.7.1 AOC-1: Historic Fill

Historic fill was identified in all borings extending to depths from 6 feet bgs (16B2) to about 11.5 feet bgs (16B8). Contaminants typically associated with historic fill in soil and groundwater include SVOCs, pesticides, PCBs, and metals.

Findings Summary

Soil

Historic fill generally consisted of brown, fine to medium sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, organics, wood, coal fragments, and slag. Thirteen samples were collected from the historic fill layer. Sample results from historic fill are summarized as follows:

• VOCs (2-butanone acetone, cis-1,2,-dichloroethene, naphthalene, PCE, TCE, trans-1,2dichloroethene, vinyl chloride and total xylenes) were detected at concentrations exceeding their respective UU and/or RURR SCOs across eight soil borings (16B1, 16B3, 16B4, 16B5, 16B6, 16B7, 16B8 and 16B10). With the exception of acetone, these detections are likely related to releases associated with the historical use of petroleum products and chlorinated solvents at the site or at surrounding sites or the general quality of the fill placed at the site. Acetone is a common laboratory contaminant and is likely not representative of the soil conditions.

- SVOCs were detected at concentrations exceeding their respective UU SCOs (3-methylphenol/4-methylphenol, benzo(k)fluoranthene, and phenol) and RURR SCOs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene) across soil borings 16B1, 16B3, 16B4, 16B5, 16B6, 16B7, 16B8 and 16B10.
- Metals were detected at concentrations exceeding their respective UU SCOs (arsenic, barium, cadmium, hexavalent and trivalent chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) and RURR SCOs (arsenic, barium, cadmium, trivalent chromium, copper, lead, and mercury) across samples collected from the historic fill layer.
- The pesticide 4,4'-DDT was detected above UU SCOs in one sample (16B10_7-8).
- Total PCBs and herbicides were not detected above UU SCOs in any samples.

Groundwater

Several SVOCs were detected a concentrations above TOGS Class GA SGVs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-chloroethyl)ether chrysene, hexachlorocyclopentadiene, and indeno(1,2,3-cd)pyrene. Total and dissolved arsenic was detected at a concentration exceeding its TOGS Class GA SGV in the groundwater sample collected from MW4 (maximum of 120.6 µg/L in MW4_112917). Other detected metals, including iron, manganese, nickel, sodium and zinc, are considered naturally occurring elements.

Soil Vapor

Historic fill does not appear to have contributed to soil vapor contamination at the site.

<u>Conclusions</u>

Historic fill was identified across the site from surface grade to depths up to about 11.5 feet bgs. VOCs, SVOCs, and metals were detected above both UU and RURR SCOs in the historic fill. Petroleum-related and chlorinated VOCs were detected in soil samples collected from the east-central portion of the site and the detected concentrations are likely due to the historical use of petroleum products and chlorinated solvents at the site or at surrounding sites or the general quality of the fill placed at the site. Similar compounds detected in soil were also reflected in the groundwater at concentrations above TOGS Class GA SGVs.

5.7.2 AOC-2: Petroleum-Related Impacts in Soil and Groundwater

Petroleum-related impacts were detected in soil at concentrations exceeding UU and/or RURR SCOs during EBC's 2015 Phase II ESI. Similar soil conditions were identified from 0 to 8 feet in three of the eleven RI borings. Two groundwater samples from EBCs Phase II contained petroleum-related VOCs at concentrations about one to two orders of magnitude above their respective TOGS Class GA SGVs.

Findings Summary

Soil

Two petroleum-related VOCs, naphthalene and total xylenes, were detected at concentrations exceeding UU SCOs in three soil borings (16B1, 16B3, and 16B8), generally located in the central portion of the site. Several borings, including 16B1, 16B2, 16B3, and 16B7, contained elevated PID readings, staining, and petroleum-like odors. Additionally, gross impacts were observed in soil boring 16B1 consisting of product and/or stained soil with petroleum-like odors from about 7 to 13.5 feet bgs.

Groundwater

Analytical results identified petroleum-related impacts to groundwater in the central and eastern portions of the site. Naphthalene was detected above its TOGS Class GA SGV in monitoring wells MW3 and 16MW1 during EBC's 2015 Phase II ESI and Langan's 2017 RI, respectively. Sample MW3 exhibited the maximum naphthalene concentration of 31 μ g/L, followed by 16MW1_11297 with a concentration of 17 μ g/L.

Conclusions

Based on the analytical results and field observations, petroleum-related impacts are localized to the shallow subsurface (less than 15 feet bgs), typically around the groundwater interface and in groundwater primarily in the central and eastern portions of the site. Target compound concentrations in groundwater are highest in wells that are hydraulically up-gradient to the historical on-site USTs, suggesting that contamination is potentially due to the historical use of petroleum products at the site or from off-site sources migrating onto the site. In general, impacts were not observed to extend into the organic clay layer with the exception of soil boring 16B1. Impacts were not observed at the termination of boring 16B1 (15 feet bgs).

5.7.3 AOC-3: CVOCs in Soil, Groundwater, and Soil Vapor

CVOC impacts were detected at concentrations in soil exceeding UU and/or RURR SCOs, in groundwater exceeding TOGS Class GA SGVs, and in soil vapor above the NYSDOH Decision Matrices for recommended "mitigation" during EBC's Phase II ESI. Similar soil impacts were identified in seven of the eleven RI borings.

Findings Summary

Soil

TCE and vinyl chloride were detected in soil at concentrations exceeding RURR SCOs at borings 16B1, 16B2, and 16B8, located in the central portion of the site. TCE and cis-1,2-dichloroethene were detected at concentrations above UU SCOs in RI borings 16B3, 16B5, 16B6, 16B8, and 16B10.

Groundwater

Analytical results from the RI identified CVOC impacts to groundwater in the central and eastern portion of the site. Four of the five groundwater samples contained CVOCs at concentrations that were one to two orders of magnitude above their respective TOGS Class GA SGVs. Concentrations of TCE, cis-1,2-dichloroethene, and vinyl chloride exceeding their respective TOGS Class GA SGVs were found in samples collected from MW3, MW4, 16MW1, 16MW2 and 16MW3. Maximum RI concentrations of TCE ($21\mu g/L$) and cis-1,2-dichloroethene (40 $\mu g/L$) were detected in monitoring wells 16M3 and MW4, respectively. These compounds were also detected during EBC's Phase II ESI at 170 $\mu g/L$ and 30 $\mu g/L$, respectively.

Soil Vapor

According EBC's Phase II ESI, total CVOC concentrations in soil vapor samples ranged from 206 μ g/m³ at SG-6, located in the south-central portion of the site, to 261,616 μ g/m³ at SG-4, located in the central portion of the site. Soil vapor sample locations and analytical results are shown on Figure 10.

<u>Conclusions</u>

Based on analytical results from previous environmental investigations and the RI, concentrations of CVOCs in soil are primarily in the historic fill layer located in the central and eastern portions of the site. When comparing groundwater data from the 2015 Phase II to the 2017 RI, CVOCs appear to be following the reductive dechlorination pathway, as concentrations of TCE have decreased while cis-1,2-dichloroethene increased between sampling events. Impacts to soil vapor are present at concentrations that will require mitigation according to NYSDOH guidance.

5.7.4 AOC-4: Potential Underground Storage Tank (UST):

Potential gasoline and other chemical USTs were identified in the western portion of the site by the 1942 Certified Sanborn Map. The USTs were no long depicted on the subsequent 1951 Sanborn Map and closure records were not available for review. A soil vapor sample collected during EBC's 2015 Phase II ESI indicated the presence of petroleum-related VOCs in the western portion of the site.

Findings Summary

Geophysical Survey

The geophysical survey identified a large anomaly, potentially consistent with a UST, in the northwestern portion of the site. The location of this UST was not shown on available Sanborn Maps and there are no known records documenting its contents or closure.

Soil

PID readings up to 388.2 ppm and odors were observed during the RI in boring 16B7 from about 6.5 to 7.5 feet bgs, in the vicinity of the USTs identified on the 1942 Sanborn Map. Samples collected in this area from soil borings B6 and B10 during EBC's Phase II ESI exhibited concentrations of petroleum-related VOCs exceeding UU SCOs.

Groundwater

A groundwater sample collected from MW2 during EBC's Phase II ESI detected the presence of methyl tert-butyl ether (MTBE), but at a concentration below its TOGS Class GA SGV. Naphthalene was detected in up-gradient wells at concentrations that exceed TOGS Class GA SGVs suggesting that contamination is due to the historical use of petroleum products at the site or from off-site sources migrating onto the site.

Conclusions

The geophysical survey conducted during this RI identified an anomaly consistent with a potential UST in the northwestern portion of the site, where no tanks were shown on available Sanborn Maps. The 1942 Sanborn Map identified three USTs in the southwestern corner of the site, which were reported closed. EBC's 2015 Phase II ESI identified petroleum impacts in the surrounding soil; however soil; however, analytical results from the 2017 RI did not identify similar petroleum-related impacts to soil or groundwater media in the vicinity of the potential USTs. Petroleum impacts appear to be localized in the east-central portion of the site.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site. A completed copy of the DER-10 Appendix 3C decision key is included as Appendix I.

6.1 Current Conditions

The site is currently improved with two single-story industrial buildings and two smaller onestory structures, which are surrounding by asphalt on the west and vegetation-covered areas on the east. One of the single-story buildings was formerly occupied by Brooklyn Moto Club and Brooklyn Moto Service LLC as a motorcycle repair shop but at the time of this report all site buildings are vacant.

6.2 **Proposed Conditions**

The conceptual development plan consists of a new seven-story mixed-use commercial and residential building with cellar-level parking, ground-level retail space, and an elevated rear yard in the northwest part of the second floor. Soil excavation to about 18.5 feet bgs and dewatering is anticipated to facilitate foundation construction.

6.3 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the RI and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways, as discussed below.

6.3.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include historic fill, petroleum bulk storage, and historical use of the site and surrounding properties. The site-wide presence of historic fill has been established as a source of SVOCs, pesticides, and metals in soil. Historical petroleum bulk storage has been established as a potential source of petroleum-related VOCs and SVOCs in soil, groundwater, and soil vapor. Historical site uses as an automobile repair facility and varnish factory have been established as a potential source of CVOC impacts to soil, groundwater, and soil vapor. The use of adjacent and surrounding properties for industrial and commercial uses is a potential source for petroleum and CVOC contamination. Prior to site

development, there exists the potential for groundwater and soil vapor to migrate off-site and to affect the adjacent property. The following air sampling program will be implemented during the 45-day RAWP public comment period:

- The volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjacent building to the west is a ventilated parking garage and soil vapor intrusion is not a concern.
- The volunteer commits to collecting three sidewalk soil vapor samples to evaluate offsite soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

6.3.2 Exposure Media

Impacted media include soil, groundwater, and soil vapor. Analytical data from the RI and previous investigations indicates the historic fill material across the site contains SVOCs, pesticides, and metals. Groundwater impacts include VOCs, SVOCs, and metals. Soil vapor is impacted with both petroleum-related and CVOCs.

6.3.3 Receptor Populations

The site is currently vacant with restricted access to authorized guests and the project development team. Prior to site development, there exists the potential for groundwater and soil vapor to migrate offsite and potentially to affect the adjacent property. As discussed above, the volunteer commits to contacting owners of the adjacent residential building to the north to gain access and, where feasible, conduct sub-slab soil vapor and indoor air sampling. In addition, three sidewalk soil vapor samples will be collected to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

During site development human receptors are limited to construction and remediation workers, authorized guests visiting the site and the public adjacent to the site. Upon completion of removal of impacted soils to below the groundwater table, post-excavation sampling will be used to determine whether there is remaining risk of site-related soil vapor contamination beyond the site boundaries. If it is determined that there is a risk of impacts beyond the site boundaries, a risk assessment will be undertaken to define such risks. Such evaluation will take into consideration the removal of site soil to below the groundwater table and installation of the lowest-level slab below the groundwater table. Under future conditions, receptors will

include the new and renovated building occupants, workers, and visitors to the residential property, including children.

6.4 **Potential Exposure Pathways – On-Site**

6.4.1 Current Conditions

Soil at the site has been shown to be contaminated. The site surface cover is composed of concrete (building slab), asphalt parking, and vegetation. There is a potential exposure pathway in vegetated areas or if the site surface cover is penetrated (e.g., during site investigation when borings or test pit excavation are performed). The potential pathway is through dermal absorption, inhalation and ingestion.

Groundwater at the site has been shown to be contaminated. Groundwater in this area of New York City is not used as a potable water source. There is a potential exposure pathway during groundwater sampling associated with site investigation. The potential pathway is through dermal absorption, inhalation and ingestion. Activity is limited to trained investigation personnel.

Soil vapor at the site has been shown to be contaminated. There is a potential exposure pathway during soil vapor sampling associated with site investigation and intrusion through potential cracks in the building slab. The potential pathway is through inhalation.

6.4.2 Construction/Remediation Condition

Construction and remediation activities will be performed in accordance with a HASP and CAMP. The implementation of these programs, as well as vapor and dust suppression techniques, limit the exposure pathways presented by potential dermal absorption, ingestion, and inhalation.

6.5 **Potential Exposure Pathways – Off-Site**

Contaminated soil has the potential to be transported off-site by wind in the form of dust or on the tires of vehicles or equipment leaving the site during development and create an exposure risk to the public adjacent to the site. Groundwater is anticipated to flow west, and groundwater samples collected from wells on the southern and most western side of the site indicate volatile contaminants are not migrating off site. Metal impacts to groundwater are considered a regional problem and are not considered a localized concern.

Prior to site development, there exists the potential for soil vapor intrusion into neighboring buildings. However, exposure is expected to be limited by the following:

- The west-adjoining building is an open-air parking garage with natural air ventilation. The open ventilated parking garage prevents the potential for a soil vapor intrusion issue.
- The north-adjoining building was observed during the 2017 Geotechnical Engineering Study to have a waterproofed foundation that extended below the groundwater table. A

foundation set below the groundwater table blocks the migrations or accumulation of soil vapor, which prevents the potential for a soil vapor intrusion issue.

Further, the volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjoining building to the west is a ventilated parking garage and soil vapor intrusion is not a concern. In addition, three sidewalk soil vapor samples will collected to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

The potential off-site migration of site contaminants is not expected to result in a complete exposure pathway for construction and remediation, or future conditions for the following reasons:

- The site is located in an urban area and predominantly covered with continuous, relatively impervious surface covering (i.e. buildings, and concrete slabs and asphalt)
- During site remediation and construction, the following protective measures will be implemented:
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.
- Based on the conceptual development plan, foundation excavation is anticipated to remove all on-site impacted media, thereby eliminating all sources of site contamination and achieving a Track 1 cleanup for unrestricted use. In this scenario, exposure pathways will have been eliminated and the need for future control will not be necessary. If a Track 1 cleanup is not practicable, the development will include a site capping system.
- Accumulation of soil vapor beneath the building will be limited by the building foundation, which will extend into the groundwater table and include a continuous sitewide waterproofing system installed below the slab and along the vertical subgrade foundation sidewalls. The northwestern portion of the building cellar will likely be used

as parking with a ventilation system in accordance with the NYC Building and Mechanical Codes.

6.6 Evaluation of Human Health Exposure

Based upon the CSM and review of environmental data, complete on-site exposure pathways appear to be present, in the absence of protective measures and remediation. The complete exposure pathways indicate there is a risk of exposure to humans from site contaminants via exposure to soil, groundwater, and soil vapor for current and construction conditions.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the site is provided below.

6.6.1 Current Conditions

Contaminant sources include 1) historic fill with varying levels of SVOCs, pesticides, and metals contamination; 2) historical petroleum bulk storage with petroleum-impacted soil, groundwater and soil vapor; and 3) historical site uses that may contribute to releases of CVOCs impacting soil, groundwater, and soil vapor and 4) historical uses of adjacent and surrounding sites that may contribute to the releases of CVOCs and petroleum-related contaminants in groundwater and soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), contaminated groundwater flow (dermal contact), and volatilization of contaminants from the soil and groundwater matrices to the soil vapor phase (inhalation).

Under current conditions, the likelihood of exposure to humans is limited, as site access is restricted to authorized workers and guests. The majority of the site contains impervious covers (i.e., buildings, concrete, asphalt) and pervious areas are covered by overgrown vegetation, which have potential to control dust being generated. Exposure to contaminants in soil and groundwater via dermal contact or ingestion during investigation is minimized, as these activities would occur under a HASP/CHASP with CAMP to limit exposure to site workers and the community. In addition, groundwater is not used as potable water supply in Brooklyn.

6.6.2 Construction/Remediation Activities

During development and remediation, points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that could be encountered during excavation and/or dewatering operations. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of organic vapors arising from contaminated soil and groundwater (specifically in the area of petroleum and CVOC impacts), and inhalation of dust arising from

contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to prevent off-site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

6.6.3 Proposed Future Conditions

The proposed future conditions may include a Track 1 cleanup for unrestricted use (i.e., removal of all source and site contaminants), which would eliminate all on-site pathways of exposure to contaminants. If a Track 1 cleanup is not practicable, residual contaminants may remain on site and exposure pathways would be minimized through the use of engineering and institutional controls. In the event that the proposed building foundation is constructed below the water table, the airspace between groundwater and the bottom of foundation where contaminants in soil or groundwater could volatile into the vapor phase would be eliminated. In this scenario, points of exposure include future intrusive soil and groundwater handling for upgrades or modifications to the property.

6.6.4 Human Health Exposure Assessment Conclusions

1. Under current conditions, there is a marginal risk for human exposure to site contaminants. The primary exposure pathways are for dermal contact, ingestion, and inhalation of soil, soil vapor, or groundwater by site investigation workers. The exposure risks can be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures outlined in the site-specific HASP and CAMP during investigation activities.

Prior to site development, there exists the potential for soil vapor intrusion into neighboring buildings. However, exposure is expected to be limited by the following:

- The west-adjoining building is an open-air parking garage with natural air ventilation. The open ventilated parking garage prevents the potential for a soil vapor intrusion issue.
- The north-adjoining building was observed during the 2017 Geotechnical Engineering Study to have a waterproofed foundation that extended below the groundwater table. A foundation set below the groundwater table blocks the migration or accumulation of soil vapor, which prevents the potential for a soil vapor intrusion issue.

The following air sampling program will be implemented during the 45-day RAWP public comment period:

- The volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjoining building to the west is a ventilated parking garage and soil vapor intrusion is not a concern.
- The volunteer commits to collecting three sidewalk soil vapor samples to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.
- 2. In the absence of a HASP and CAMP, there is a moderate risk of exposure during construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion and inhalation of contaminated soil, groundwater or soil vapor by construction workers.
 - b. Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the site.

These exposure risks can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression and site security measures outlined in a site-specific HASP.

- 3. The existence of a complete exposure pathway for site contaminants to human receptors during proposed future conditions is unlikely, as a large quantity of soil will be excavated and transported to an off-site disposal facility and any residual soil remaining will be capped with an impermeable foundation cover. Residual contamination would be managed in accordance with a Site Management Plan that would be prepared, if necessary, following site development.
- 4. Regional groundwater is not used as a potable water source in Brooklyn so exposure to regional groundwater contaminants is unlikely.
- 5. Construction of the proposed development will include excavation and off-site disposal of contaminated media to about 18.5 feet bgs, terminating within a native organics layer. Residual contamination will be limited following construction. Implementation of a dewatering treatment system is expected in combination with the support of excavation (SOE) system to install the building's foundation below the static groundwater table. Soil vapor contamination originating from groundwater is anticipated to be removed through the dewatering and treatment system. Reducing, and possibly

eliminating, on-site sources of soil vapor contamination through construction means will limit or prevent exposure to off-site receptor populations.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater, and soil vapor contamination as derived from a combination of field observations and analytical data that were discussed in Section 5.0 and from previous investigations.

7.1 Soil Contamination

The following discussion is divided by the following contaminant classifications:

- 1. Historic Fill
- 2. Petroleum-Impacted Material
- 3. CVOC-Impacted Material

7.1.1 Historic Fill Material

Contaminants related to historic fill material at the site include SVOCs, pesticides, and metals. Historic fill exists across the site, extending from surface grade to depths ranging from about 6 to 11.5 feet bgs. Eleven soil samples collected from the historic fill layer contained concentrations of SVOCs (including 3-methylphenol/4-methylphenol, phenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene,), metals (including arsenic, cadmium, trivalent chromium, copper, silver, nickel, selenium, zinc, lead, and mercury), and pesticides (4,4'-DDE, 4,4'-DDT, dieldrin) exceeding their respective UU and, in some cases, RURR SCOs.

7.1.2 Petroleum-Contaminated Material

Petroleum impacts to soil (evident by PID readings above background, odors, and staining) at depths ranging from 7 to 13.5 feet bgs were observed during the RI in borings 16B1, 16B2, 16B3 and 16B7 and during the Preliminary Site Investigation in borings LB01 and LB02. These impacts generally correspond with the observed groundwater interface. The maximum PID reading, 634.1 ppm, was recorded in 16B3 from 7 to 8 feet bgs. Soil boring 16B1, located up gradient to the potential USTs, contained gross staining and product from about 7 to 13.5 feet bgs. Analytical results for soil samples collected from 16B1, 16B3, 16B8, LB02 and LB05 exhibited concentrations of petroleum-related VOCs, including 1,2,4-trimethlybenzene, benzene, naphthalene, and total xylenes, exceeding UU SCOs in surficial samples and samples collected around the groundwater table. Soil boring logs from the Preliminary Investigation Report are included in Appendix A.

7.1.3 CVOC-Contaminated Material

Concentrations of CVOCs in excess of their respective UU SCOs were identified in surficial soil samples and samples collected around the groundwater interface from RI borings 16B1, 16B2, 16B3, 16B5, 16B6, 16B8, and 16B10, and previous borings B1, B2, B3, B4, B5, B6, B8, B10, and B11. The samples exhibiting concentrations of TCE exceeding UU SCOs were collected

from the northwest, west-central and eastern portions of the site. The highest concentrations of TCE and its degradation byproducts (vinyl chloride, 1,2-DCE) were detected up to 8 feet bgs generally in the north and eastern portions of the site. CVOCs were detected at a maximum depth of about 12 feet bgs across the site, consistent with the approximate start of the clay stratigraphy. Therefore, it is likely that the clay layer is acting as a vertical barrier to potential vertical migration of CVOCs. The presence of CVOCs in soil are likely due to a release during site historical operations.

7.2 Groundwater Contamination

The discussion is divided by the following contaminant classifications:

- 1. Petroleum-Contaminated Groundwater
- 2. CVOC-Contaminated Groundwater
- 3. Regional Groundwater Quality

7.2.1 Petroleum-Contaminated Groundwater

Analytical results for samples collected from wells MW3 and 16MW1 in the central portion of the site exhibited concentrations of petroleum-related VOCs, including 1,2,4-trimethylbenzene, and naphthalene, exceeding their respective TOGS Class GA SGVs. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. A black liquid or non-aqueous phase liquid (NAPL), was not observed when the same well was sampled during the 2017 RI. According the analytical results, petroleum contamination in groundwater appears localized to the central and eastern portions of the site in the vicinity of wells MW3 and 16MW1, likely due to a release in this area or an off-site source migrating on-to the site.

7.2.2 CVOC-Contaminated Groundwater

Analytical results revealed CVOC impacts to groundwater localized in the central and eastern portions of the site. Concentrations of CVOCs, including 1,1-dichloroethane, cis-1,2-dichloroethene, TCE, and vinyl chloride exceeding their respective TOGS Class GA SGVs, were found in samples collected from wells MW3, MW4, 16MW1, 16MW2 and 16MW3. When comparing groundwater analytical data from the 2015 Phase II to the 2017 RI, concentrations of TCE has decreased, while concentrations of breakdown daughter products 1,1-dichloroethane and vinyl chloride have increased. This shift from parent to daughter products suggests that CVOCs in groundwater are following the reductive dechlorination pathway.

7.2.3 Regional Groundwater Quality

Metals concentrations detected above TOGS Class GA SGVs include eight total metals (arsenic, iron, lead, manganese, mercury, nickel, sodium, and zinc) and six dissolved metals (arsenic, iron, manganese, nickel, sodium, and zinc). With the exception of arsenic, the concentrations detected are attributed to regional groundwater contamination and are not considered a

localized concern. The presence of arsenic at a concentration above its TOGS Class GA SGV may be the result of historical site uses as manufacturing or due to the quality of the historic fill.

7.3 Soil Vapor Contamination

A total of 43 VOCs, including petroleum-related and chlorinated VOCs, were detected in soil vapor samples across the site. Total CVOC concentrations in soil vapor ranged from 178.6 μ g/m³ in SG-6 to 259,057 μ g/m³ in SG-4. Total BTEX concentrations in soil vapor samples ranged from 93.8 μ g/m³ in SG-5 to 374.8 μ g/m³ in SG-2. The highest concentrations of CVOCs and BTEX compounds were detected in the central and eastern portions of the site, which is consistent with the locations of petroleum- and CVOC-contaminated groundwater.

8.0 CONCLUSIONS

The RI was implemented between November 20 and 29, 2017. The findings summarized herein are based on both qualitative data (field observations and instrumental readings), and laboratory analytical results of soil, groundwater, and soil vapor samples collected during the RI and previous investigations. Findings and conclusions are as follows:

- <u>Stratigraphy</u>: A historic fill layer was observed from surface grade to depths ranging from about 6 feet bgs in 16B5 to 11.5 feet bgs in 16B8 and consisted of brown, fine- to medium-grained sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, wood, coal fragments and slag. The fill layer is underlain by native soils typically consisting of fine silty sands. A clay layer was observed beginning at about 11 feet bgs and extending to at least to about 20 feet bgs. Based on findings from the geotechnical exploration, bedrock was not encountered within 100 feet of site grades.
- 2. <u>Hydrogeology:</u> Groundwater was encountered at about 6 to 6.5 feet bgs and is interpreted to flow west towards to East River.
- 3. <u>Historic Fill Quality:</u> Fill contains SVOCs, metals, and pesticides at concentrations above UU and/or RURR SCOs. VOCs were also identified within the historic fill, but are associated with potential chemical releases from historical uses of the site and surrounding sites.
- 4. <u>Petroleum-Impacted Soil, Groundwater and Soil Vapor</u>:
 - a. Field observations identified petroleum impacts, evidenced by odors, staining, and PID readings above background levels, in soil to depths of about 13.5 feet bgs in the central and eastern portions of the site. Product, staining, and/or odors were observed in boring 16B1 from 7 to 13.5 feet bgs, terminating within the clay layer. Petroleum-related constituents were detected at concentrations above UU and, in some areas, above RURR SCOs in soil samples collected from depths to about 12 feet bgs (B3).
 - b. Petroleum-related VOCs were detected in groundwater at concentrations exceeding TOGS Class GA SGVs at wells located in the central and eastern portions of the site, which are up-gradient to the USTs identified on the 1942 Sanborn Map and by the GPR survey. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. NAPL or other free product was not observed in any of the sampled wells during the 2017 RI.
 - c. Petroleum-related constituents (including BTEX) were identified in soil vapor samples collected throughout the site.

- d. The presence of petroleum-related VOCs and SVOCs in soil is attributed to potential releases associated with the former auto repair facilities and historical USTs. The petroleum-related contamination in groundwater and soil vapor may be attributed to a combination of releases from site operations and adjacent and surrounding properties.
- 5. <u>CVOC-Impacted Soil, Groundwater and Soil Vapor</u>: Analytical data revealed concentrations of CVOCs in soil exceeding UU SCOs generally to depths of about 8 feet bgs and up to a maximum depth of about 12 feet bgs. CVOCs were also identified in groundwater samples at concentrations that exceed TOGS Class GA SGVs in the central and eastern portions of the site. CVOC impacts were identified in soil vapor samples collected across the site, with the highest concentrations located in the central and eastern portions of the site. The presence of CVOCs in soil, groundwater and soil vapor is likely a combination of releases from historical site uses as a repair facility and chemical warehouse or an off-site source.

Sufficient analytical data were gathered during the RI, together with previous studies, to establish site-specific soil cleanup levels and to develop a remedy for the site. The final remedy will be described and evaluated in a RAWP to be prepared in accordance with NYS BCP guidelines. The remedy will address historic fill impacted with SVOCs pesticides and metals; petroleum- and CVOC-impacted soil, groundwater and soil vapor; potential soil vapor intrusion conditions; and a contingency plan for the removal and closure of unknown USTs.

9.0 **REFERENCES**

- 1. Busciolano, Ronald. 2002. "Water-Table and Potentiometric-Surface Altitudes of the Upper Glacial, Magothy, and Lloyd Aquifers on Long Island, New York, in March-April 2000, with a Summary of Hydrogeologic Conditions."
- New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006 and applicable revisions (March 2017).
- 3. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004.
- 4. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010.
- 5. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998.
- United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010.
- 7. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006.
- 8. Environmental Business Consultant (EBC) Phase I Screening Summary, dated August 2015
- 9. EBC Phase II Investigation Data Summary, dated July 23, 2015
- 10. EBC Remedial Investigation Work Plan, February 8, 2017
- 11. Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology, D.P.C. Preliminary Site Investigation, dated October 20, 2017

Tables

- Table 1Sample Analysis Summary
- Table 2Soil Boring and Monitoring Well Construction Summary
- Table 3Groundwater Elevation Summary
- Table 4ASoil Sample Results Summary
- Table 4B
 Soil Sample Results Summary Delineation of NAPL
- Table 5Groundwater Results Summary
- Table 6Soil Vapor Results Summary
- Table 7QA/QC Results Summary

LANGAN

REMEDIAL INVESTIGATION REPORT

for

215 NORTH 10TH STREET BROOKLYN, NEW YORK NYSDEC BCP NO.: C224229

Prepared For:

215 N 10 Partners LLC 148 Madison Avenue, 16th Floor New York, New York 10016

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. 21 Penn Plaza, 360 West 31st Street, 8th Floor New York, New York 10001

> October 1, 2018 Langan Project No. 170482201

CERTIFICATION

I, Jason J. Hayes, certify that I am currently a Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Jason J. Hayes, P.E.

TABLE OF CONTENTS

LIST C	OF ACRONYMS	6
1.0	INTRODUCTION	1
2.0	SITE PHYSICAL CHARACTERISTICS	1
2.1	Site Description	1
2	.1.1 Description of Surrounding Properties	
	1.2 Topography	
2	1.3 Surface Water and Drainage	3
	1.4 Wetlands	
2.2	Geology and Hydrogeology	
	2.1 Regional and Site Geology	
∠ 3.0	2.2 Regional and Site Hydrogeology	
3.1	Historical Site and Surrounding Properties Use	
3.2	Proposed Redevelopment Plan	
3.3	Previous Environmental Reports	
3.4	Areas of Concern for Investigation	
4.0	FIELD INVESTIGATION1	-
4.1	Utility Mark-out1	
4.2	Geophysical Investigation1	
4.3	Soil Investigation1	0
	.3.1 Investigation Methodology1	
	3.2 Sampling Methodology	
4.4	Groundwater Investigation1	
	.4.1 Monitoring Well Installation and Development	
4.5	Quality Assurance/Quality Control Sampling1	
4.6	Data Validation	
	.6.1 Data Usability Summary Report Preparation	
4.7	Field Equipment Decontamination1	
4.8	Investigation-Derived Waste Management1	5
4.9	Community Air Monitoring Program1	5
5.0	FIELD OBSERVATIONS AND ANALYTICAL RESULTS1	6
5.1	Geophysical Investigation Findings1	6
5.2	Geology and Hydrogeology1	
-	2.1 Historic Fill	
	2.2 Native Soil Layers	
	2.3 Bedrock	
5	.2.4 Hydrogeology1	6

5.3	Soil Findings	17
5.	3.1 Field Observations	17
5.	3.2 Analytical Results	17
5.4	Groundwater Findings	20
5.	4.1 Field Observations	20
	4.2 Analytical Results	
5.5	QA/QC Sample Results	
5.6	Data Usability	23
5.7	Evaluation of Potential Areas of Concern	23
	7.1 AOC-1: Historic Fill	
	7.2 AOC-2: Petroleum-Related Impacts in Soil and Groundwater	
	7.3 AOC-3: CVOCs in Soil, Groundwater, and Soil Vapor	
	7.4 AOC-4: Potential Underground Storage Tank (UST):	
6.0	QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	28
6.1	Current Conditions	28
6.2	Proposed Conditions	28
6.3	Conceptual Site Model	28
6.	3.1 Potential Sources of Contamination	28
	3.2 Exposure Media	
	3.3 Receptor Populations	
6.4		
	4.1 Current Conditions	
	4.2 Construction/Remediation Condition	
6.5	Potential Exposure Pathways – Off-Site	
6.6	Evaluation of Human Health Exposure	
	6.1 Current Conditions	
	6.2 Construction/Remediation Activities	
	6.4 Human Health Exposure Assessment Conclusions	
7.0	NATURE AND EXTENT OF CONTAMINATION	
7.1	Soil Contamination	
	1.1 Historic Fill Material1.2 Petroleum-Contaminated Material	
	1.3 CVOC-Contaminated Material	
7.2	Groundwater Contamination	
7.	2.1 Petroleum-Contaminated Groundwater	
	2.2 CVOC-Contaminated Groundwater	
	2.3 Regional Groundwater Quality	
7.3	Soil Vapor Contamination	38
8.0	CONCLUSIONS	39
9.0	REFERENCES	41

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Layout Plan
- Figure 3 Surrounding Land Use and Sensitive Receptors
- Figure 4 Historical Site and Surrounding Uses Map
- Figure 5 Sample Location Plan
- Figure 6 Groundwater Contour Map
- Figure 7 Subsurface Profile
- Figure 8 Soil Sample Results Summary Map
- Figure 9 Groundwater Results Summary Map
- Figure 10 Soil Vapor Results Summary Map

TABLES

- Table 1Sample Analysis Summary
- Table 2Soil Boring and Monitoring Well Construction Summary
- Table 3Groundwater Elevation Summary
- Table 4ASoil Sample Results Summary
- Table 4B
 Soil Sample Results Summary Delineation of NAPL
- Table 5Groundwater Results Summary
- Table 6Soil Vapor Results Summary
- Table 7 QA/QC Results Summary

APPENDICES

- Appendix A Previous Environmental Reports
- Appendix B Photograph Log
- Appendix C NOVA Geophysical Engineering Survey Report
- Appendix D Soil Boring Logs
- Appendix E Monitoring Well Construction and Groundwater Sampling Logs
- Appendix F Community Air Monitoring Program Summary Data
- Appendix G Data Usability Summary Report
- Appendix H Laboratory Data Reports
- Appendix I Completed Fish and Wildlife Resources Impact Analysis Decision Key

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AWQS	Ambient Water Quality Standards and Guidance Values
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
Bgs	Below grade surface
BTEX	Benzene, Toluene, Ethlylbenzene, and Xylenes
CAMP	Community Air Monitoring Program
COC	Contaminant of Concern
CVOC	Chlorinated Volatile Organic Compound
DER	Division of Environmental Remediation
DNAPL	Dense Non-Aqueous Phase Liquid
DO	Dissolved Oxygen
DUSR	Data Usability Summary Report
EDR	Environmental Data Resources
ELAP	Environmental Laboratory Approval Program
EPA	United Stated Environmental Protection Agency
ESA	Environmental Site Assessment
ESI	Environmental Site Investigation
FWRIA	Fish and Wildlife Resources Impact Analysis
GPR	Ground Penetrating Radar
HASP	Health and Safety Plan
ID	Inside Diameter
IDW	Investigation Derived Waste
IRM	Interim Remedial Measure
IRMWP	Interim Remedial Measure Work Plan
LNAPL	Light Non-Aqueous Phase Liquid
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MTBE	Methyl tert butyl ether
NAVD88	North American Vertical Datum of 1988
NYCRR	New York City Rules and Regulations
NYSDOH	New York State Department of Health
NYSDEC	New York State Department of Environmental Conservation
NTU	Nephelometric Turbidity Units
OD	Outside Diameter
ORP	Oxidation-Reduction Potential
PCB	Polychlorinated Biphenyls
PCE	Tetrachloroethene
PID	Photoionization Detector
PPE	Personal Protective Equipment

Acronym	Definition
Ppm	Parts per million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
RURR	Restricted Use Restricted-Residential Use
SCO	Soil Cleanup Objective
SMDS	Sub-Membrane Depressurization System
SVOC	Semivolatile Organic Compound
TAL	Target Analyte List
TCE	Trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TOGS	Technical and Operational Guidance Series
UN/DOT	United Nations/Department of Transportation
USGS	United States Geological Survey
UST	Underground Storage Tank
UU	Unrestricted Use
VOC	Volatile Organic Compound

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of 215 N 10 Partner LLC (the Volunteer) for the property located at 215 North 10th Street in the Williamsburg neighborhood of Brooklyn, New York (the "site"). The Volunteer entered into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) to remediate the site in conjunction with new development, pursuant to a Brownfield Cleanup Agreement (BCA), dated February 23, 2018, for Site No. C224229. The site is also listed with an 'E' designation (E-138) for hazardous materials, resulting from a City Environmental Quality Review (CEQR) during the May 2005 Greenpoint-Williamsburg rezoning (CEQR #04DCP003K). Satisfaction of the 'E'-Designation requirements is subject to review and approval by the New York City Mayor's Office of Environmental Remediation (NYCOER).

This RIR presents environmental data and findings from a remedial investigation (RI) that was implemented by Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. (Langan) between November 20 and 29, 2017. The objective of the RI was to supplement existing environmental data and determine, to the extent possible, the nature and extent of contamination in soil, soil vapor, and groundwater. Information presented in this RIR will be used to evaluate appropriate remedial action alternatives.

2.0 SITE PHYSICAL CHARACTERISTICS

2.1 Site Description

The 18,000-square-foot site is located at 215 North 10th Street in the Williamsburg neighborhood of Brooklyn, New York and is identified as Brooklyn Borough Tax Map Block 2299, Lot 21. The site is improved with two single-story industrial buildings and two one-story structures, all of which are vacant. The exterior portions contain an asphalt-paved alley on the west and vegetation-covered areas on the east that were formerly used for parking. The site is bounded by North 10th Street to the south, Roebling Street to the east, and a multi-story residential apartment building to the north that wraps around to the west. A Site Location Map and Site Plan are provided as Figure 1 and Figure 2, respectively.

2.1.1 Description of Surrounding Properties

The site is located in an urban area primarily characterized by residential, commercial, and light industrial properties. Surrounding property usage is summarized in the following table:

Direction	Block	Lot	Adjoining Properties	Surrounding Properties
North	2299	9	Warehouse 11 Condominium (214 North 11 th Street)	Multiple-story mixed- use residential and commercial buildings
North		1	Finailly Inc. Fushimi, NYC Pet, Apartments (475 Driggs Street)	
South	South 2307 1 250 N 10 th Apartments (250 N 10 th Street)		Multiple-story residential building	
East	2300	1	Roebling View North (15 Roebling Street)	Multiple-story residential building
	2306	8	Trans Boro Fuel Oil Co.	
		9	Montrose Equipment Sales (202 North 10 th Street)	Mixed-use commercial,
West		15	The Driggs North (220 N 10 th Street)	residential and industrial buildings
		18	Under Construction (28 Roebling Street)	

Land use within a half mile of the site is urbanized and includes mixed-use buildings, subway tunnels, park land, and school facilities. The nearest ecological receptor is the East River, located about 3,000 feet west of the site. Sensitive receptors located within a half-mile of the site are listed in the following table:

Number	Name (Approximate distance from Site)	Address
1	Northside Catholic Academy St. Vincent (approximately 0.2 miles southwest)	10 Wither Street Brooklyn, NY 11211
2	Williamsburg High School for Architecture and Design (approximately 0.3 miles south)	257 North 6 th Street Brooklyn, NY 11211
3	Conselyea Preparatory School (approximately 0.3 miles south)	208 North 5 th Street Brooklyn, NY 11211
4	PS 17 Henry D. Woodworth (approximately 0.3 miles south)	208 North 5 th Street Brooklyn, NY 11211

Number	Name (Approximate distance from Site)	Address
5	Williamsburg Northside Preschool	152 North 5 th Street
	(approximately 0.3 miles south)	Brooklyn, NY 11211
6	Automotive High School	50 Bedford Avenue
0	(approximately 0.4 miles north)	Brooklyn, NY 11211
7	Brooklyn Preparatory High School	257 North 6 th Street
/	(approximately 0.4 miles south)	Brooklyn, NY 11122
8	P.S. 132 The Conselyea School	320 Manhattan Avenue
0	(approximately 0.45 miles southeast)	Brooklyn, NY 11211
9	School Settlement Association	120 Jackson Street
3	(approximately 0.5 miles east)	Brooklyn, NY 11211

A map showing the surrounding land uses with descriptions of the adjoining properties is included as Figure 3.

2.1.2 Topography

According to a United States Geological Survey (USGS) 7.5 minute Topographic Quadrangle Map for Brooklyn, NY, the site elevation ranges from about 7.75 to 9 feet as referenced to the North American Vertical Datum of 1988 (NAVD88) and gradually slopes downward to the east.

2.1.3 Surface Water and Drainage

The eastern portion of the site has a limited area of pervious soil and overgrown vegetation, which allows for rainwater infiltration during storm events. The central and western portions of the site are improved with either buildings or asphalt lots. Runoff from this area typically drains through stormwater connections or catch basins into city sewers.

The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panels 3604970202F and 3604970204F, dated 5 September 2007 show that the site is in Zone AE with a base flood el 10 feet NGVD29 (about el 8.9 feet NAVD88). Zone AE is defined as a special flood hazard area and is subject to inundation by the 1 percent annual chance flood.

2.1.4 Wetlands

Potential wetlands on or near the site were evaluated by reviewing the National Wetlands Inventory and NYSDEC regulated wetlands. There are no mapped wetlands located on or near the site.

2.2 Geology and Hydrogeology

2.2.1 Regional and Site Geology

The surficial geology of Brooklyn was influenced by the last glacial advance and retreat across New York City. As the glaciers advanced south, soil and rock were scraped from the surface and deposited at the limit of the ice advance as a wall of soil and rock called the *terminal moraine*. The site is north of the terminal moraine, in the *ground moraine*, which is an area of low relief where extensive till (heterogeneous mixtures of clay, silt, sand, gravel and boulders ranging widely in size and shape) typically accumulated during the advance, or retreat of the glacier.

The site is underlain by the Hartland formation bedrock consisting of granite, schist and amphibolite. Bedrock is generally over 100 feet below grade in this area of Brooklyn.

According to the preliminary site investigation conducted by Langan on October 20 2017, the subsurface strata consists of historic fill material characterized by loose, brown, medium sand with varying amounts of coarse sand, silt, fine gravel, coal, slag, glass, ceramic, coal ash, wood, brick and concrete fragments. The fill layer extended to depths ranging from about 7.5 to 11 feet below grade surface (bgs). The fill layer was underlain by native soil characterized by loose, brown, medium sand with varying amounts of silt and fine gravel, and localized soft dark grey peat.

2.2.2 Regional and Site Hydrogeology

Groundwater flow is typically topographically influenced, as shallow groundwater tends to originate in areas of topographic highs and flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeological network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks. The majority of runoff drains to the city sewers, which connect to one of the several wastewater treatment plants servicing the city.

Groundwater in this part of New York City is not used as a potable water source. Potable water provided to the City of New York is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

Based on previous investigations, groundwater depth is expected at about 6 to 7 feet bgs and appears to flow west towards the East River.

3.0 SITE BACKGROUND

3.1 Historical Site and Surrounding Properties Use

The site and surrounding area have been developed since the early 1900s and are located in an urban setting historically characterized by industrial and commercial development. Historical uses of the property have included a dry color (powdered pigment) and paint storage facility, varnish research works, chemical warehouse, office building, and a commercial bike repair. The majority of the site uses have been warehousing and storage.

Based on historical database listings, the site formerly contained three underground storage tanks (USTs). The following tanks associated with the site have been registered, removed from site, and closed:

- Tank 1 5,000-gallon hydrochloric acid UST (closed in 1992)
- Tank 2 12,000-gallon ammonium hydroxide UST (closed in 1992)
- Tank 3 2,000-gallon nitric acid UST (closed in 1991)

The 1942 Sanborn Map identified one benzene tank and two gasoline tanks on site. There is inconsistent reporting throughout the previous reports regarding the number of tanks and their contents; however, no documentation regarding the current status of these tanks was available for review.

NYSDEC Spill No. 1505078 was reported on August 11, 2015, when an unknown quantity of petroleum was identified in a centrally-located monitoring well during Environmental Business Consultants' (EBC) Phase II Environmental Site Investigation. The NYSDEC closed the spill on September 21, 2015.

Adjoining properties were historically used for residential, commercial, and industrial operations. Historical uses of the site and surrounding properties are shown in Figure 4.

3.2 Proposed Redevelopment Plan

The proposed development plan consists of a seven-story mixed-use commercial and residential building with cellar-level parking, ground-level retail space, and an elevated rear yard in the northwest part of the second floor. The proposed end-use of the development is consistent with existing zoning regulations. As currently conceived, the building would cover the entire 18,000-square-foot lot and would require excavation to about 18.5 feet bgs for construction of the building foundation. Support of excavation and dewatering are anticipated to facilitate construction of foundation elements. Remediation would occur prior to and concurrently with redevelopment and would be completed in accordance with an approved Remedial Action Work Plan (RAWP) and site-specific Construction Health and Safety Plan (CHASP).

3.3 **Previous Environmental Reports**

Environmental reports prepared for the site include the following:

- 2015 Phase I Environmental Site Assessment Screening, prepared by EBC
- July 23, 2015 Phase II Subsurface Investigation Data Summary, prepared by EBC
- February 8, 2017 Remedial Investigation Work Plan, prepared by EBC
- October 20, 2017 Preliminary Site Investigation, performed by Langan

Reports are summarized below and available reports are included in Appendix A.

July 23, 2015 Phase II Subsurface Investigation Data Summary, prepared by EBC

The Phase II was completed in July 2015 and consisted of the following:

- A ground-penetrating radar (GPR) survey
- Advancement and sampling of 11 soil borings
- Collection of 4 groundwater samples
- Collection of 6 soil vapor samples

The Phase II findings and conclusions are as follows:

- <u>GPR survey</u>: A GPR survey was conducted in the suspect tank areas identified on the 1942 Sanborn Maps (south-western portion of the site) and in the proposed rear yard areas (northern portion of the site). No anomalies associated with tanks were observed.
- <u>Soil</u>: Trichloroethene (TCE) and tetrachloroethene (PCE) were identified in shallow and deep borings above Unrestricted Use (UU) and Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCOs) with maximum concentrations of 220 milligrams per kilogram (mg/kg) and 9.4 mg/kg, respectively. SVOCS, including benzo(a)anthracene, benzo(a)pyrene, and chrysene (maximum concentrations ranging from 5 to 6.2 mg/kg), were detected above RURR SCOs primarily in shallow soils, and two deep soil locations on the east side of the site. Concentrations of arsenic (max 234 mg/kg), lead (max 8,530 mg/kg), and mercury (max 28.8 mg/kg) were detected above RURR SCOs across the site in shallow and deep soil intervals.
- <u>Groundwater</u>: Groundwater was encountered about 6 to 7 feet bgs and was identified to flow toward the west. TCE, cis-1,2-dichloroethene, and vinyl chloride were detected in groundwater within the central and northeast portions of the site above NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA drinking water at maximum concentrations of 240 micrograms per liter (µg/L), 30 µg/L, and 15 µg/L, respectively. A black liquid, most closely resembling No. 6 fuel oil, was identified while groundwater sampling at monitoring well MW03, located in the central part of the site. The sample

from MW03 contained naphthalene above TOGS Class GA SGVs at a maximum concentration of 31 $\mu\text{g/L}.$

<u>Soil Vapor</u>: TCE (up to 243,000 micrograms per cubic meter [µg/m³]), PCE (up to 7,730 µg/m³), carbon tetrachloride (up to 6,350 µg/m³), and 1,1,1-trichloroethane (up to 6,000 µg/m³) were detected in soil vapor samples collected from about 6 feet below sidewalk grade.

August 2015 Phase I Environmental Site Assessment (ESA) Screening, prepared by EBC

The Phase I ESA report identified the following Recognized Environmental Conditions (REC) for the site:

- The site was used for manufacturing and industrial operations, including the following:
 - A dry color (powdered pigment) and paint storage facility circa 1905 to 1916.
 - A varnish research works (1942 and 1951), which is associated with the use of chlorinated solvents that have potential for release to the environment.
 - A chemical warehouse until at least 1965 when it is then described as an office.
- The 1942 Sanborn Map identified one benzene tank and two gasoline tanks on site. There is inconsistent reporting throughout the text regarding the number of tanks and their contents; however, no documentation regarding the current status of these tanks, or documentation regarding soil and groundwater quality was identified during this assessment.

Although not identified as RECs in the report text, the following concerns were also identified.

- Based on database listings, the site formerly contained three USTs:
 - Tank 1 5,000-gallon hydrochloric acid UST (closed in 1992)
 - Tank 2 12,000-gallon ammonium hydroxide UST (closed in 1992)
 - Tank 3 2,000-gallon nitric acid UST (closed in 1991)
- The site is listed with an E-designation (E-138) for Hazardous Materials following the May 2005 Greenpoint-Williamsburg Contextual Rezoning action (CEQR #04DCP003K).

February 8, 2017 Remedial Investigation Work Plan, prepared by EBC

A Remedial Investigation Work Plan (RIWP) was prepared for Atlas Alley LLC on February 8, 2017 under the NYS BCP and approved by NYSDEC on May 1, 2017. The Volunteer for BCP Site No C224229 implemented the approved RIWP, which consisted of the following:

• Installation of 11 soil borings to about 15 feet bgs to delineate the extent of soil impacts and to obtain information on soil quality with respect to Track 1 UU SCOs; and

• Installation of 3 groundwater monitoring wells to about 15 feet bgs and sampling from two existing wells (MW3 and MW4) to assess groundwater quality and to delineate the extent of previously detected VOCs, SVOCs, and metals concentrations.

October 20, 2017 Preliminary Site Investigation, performed by Langan

A Preliminary Site Investigation was completed in October 2017 to support conceptual design of the future building. Five soil borings were advanced up to 20 feet bgs and two soil samples were collected from each boring. The Preliminary Site Investigation findings and conclusions are as follows:

- Historic fill was identified to depths between 8 and 11 feet bgs. Sand, peat, and organic clay were identified underlying the historic fill. Petroleum-like contamination (i.e., staining, sheen, odor, and photoionization detector [PID] measurements above background) was observed at LB01, which is in proximity to MW03 where No. 6 fuel oil was reportedly identified during EBC's 2015 Phase II.
- TCE, benzene, cis-1,2-dichloroethene and methylene chloride were identified in soil borings above UU SCOs with maximum concentrations of 7.1 mg/kg, 0.78 mg/kg, 9.37 mg/kg and 0.16 mg/kg, respectively. SVOCS, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene (up to 3.7 mg/kg) were detected above RURR SCOs across the site. Concentrations of arsenic (max 55 mg/kg), lead (max 752 mg/kg), and mercury (max 1.4 mg/kg) were detected above RURR SCOs. Soil boring LB05, located in the south-central portion of the site, contained petroleum-related VOCs at concentrations above UU SCOs. In general, target compounds were detected above RURR SCOs at depths up to 12 feet bgs throughout the site.

A separate report was not prepared for the October 2017 site investigation and the findings and results are discussed in this RIR.

3.4 Areas of Concern for Investigation

The following areas of concern (AOCs) represent portions of the site that required further investigation and were developed based on site observations, the site development history, and the findings of the previous environmental reports. The AOCs that were investigated include the following:

 <u>AOC 1 – Historic Fill</u>: AOC 1 represent a layer of historic fill of unknown origin identified between ground surface to about 11 feet bgs. According to EBC's Phase II and Langan's Preliminary Site Investigation, historic fill is generally characterized as loose, brown, medium sand with varying amounts of black gravel, coal, slag, glass, wood, organics, red and brown clay, black to brown silt, and brick and concrete fragments. Contaminants associated with historic fill were identified in surface soil samples, including concentrations of SVOCs and metals above UU and RURR SCOs.

- 2. <u>AOC 2 –Petroleum-Related Impacts in Soil and Groundwater</u>: EBC's Phase II ESI identified petroleum-related impacts to soil, groundwater, and soil vapor, concentrated around the east-central portion of the site. Petroleum-related VOCs, including BTEX¹, naphthalene, 1,2,4-trimethylbenzene, and 1,3,5-trimethlybenzene, were identified in soil and groundwater. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. Impacts are potentially associated with historic site use or off-site sources migrating onto the site.
- 3. <u>AOC 3 Chlorinated VOCs (CVOC) in Soil, Groundwater, and Soil Vapor</u>: CVOC impacts have been detected in soil, groundwater, and soil vapor at concentrations exceeding UU and RURR SCOs. Soil impacts were identified between about 5 and 12 feet bgs in nine of the eleven previous borings, primarily within the east-central portion of the site. Two groundwater samples collected from the east-central portion of the site contained CVOCs at concentrations up to one to two orders of magnitude above their respective TOGS Class GA SGVs. Total CVOC concentrations in soil vapor ranged from 858.74 μg/m³ in sample SG-6 to 263,934 μg/m³ in sample SG-4. Impacts are potentially associated with historic site use or historic and current use of the surrounding properties.
- 4. <u>AOC 4 Potential Underground Storage Tank (UST)</u>: AOC 4 represents the locations of potential USTs in the western portion of the site that were identified on the 1942 Sanborn Map; the tanks were no longer shown on the subsequent 1951 Sanborn Map. One soil and one groundwater sample were collected in the vicinity of the suspected USTs during EBC's Phase II ESI and the analytical results identified the presence of petroleum-related compounds in both media.

¹ BTEX: A group of petroleum-related compounds consisting of benzene, toluene, ethylbenzene and total xylenes.

4.0 FIELD INVESTIGATION

The purpose of the RI was to further delineate the nature and extent of impacts in accordance with DER-10-3.1 to formulate a conceptual site model and an effective strategy for site remediation. The Volunteer implemented the NYSDEC-approved RIWP between November 20 and 29, 2017 in accordance with Title 6 of the New York Codes, Rules, and Regulations (6 NYCRR) Part 375, the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (May 2010), and the NYSDEC Draft BCP Guide (May 2004). A photograph log documenting this investigation is included as Appendix B.

The RI consisted of the following:

- Geophysical survey to identify subsurface anomalies consistent with utilities, substructures, physical obstructions, and USTs, and to pre-clear soil boring locations;
- Advancement of 12 soil borings (16B1 through 16B12), and collection of 35 soil samples, including two field duplicates, and two matrix spike/matrix spike duplicate (MS/MSD) quality assurance/quality control (QA/QC) samples;
- Installation of 3 groundwater monitoring wells and collection of 7 groundwater samples from two existing monitoring wells and three newly installed wells, including one duplicate and one MS/MSD QA/QC samples;
- Implementation of a Community Air Monitoring Program (CAMP); and
- Survey of site monitoring wells for location and elevation relative to NAVD88.

A summary of the samples is provided as Table 1. Sample locations are shown on Figure 5. Each component of the RI is further described in the following sections.

4.1 Utility Mark-out

Prior to beginning of the field investigation, the New York One Call Center was contacted for Code 753 utility mark-outs.

4.2 Geophysical Investigation

A geophysical investigation was implemented by NOVA Geophysical & Environmental, Inc. of Douglaston, New York. The survey used ground-penetrating radar (GPR) to identify potential USTs and locate buried utilities and substructures in the vicinity of each boring location. Borings were relocated as necessary to avoid subsurface utilities and other subsurface impediments. A copy of the geophysical survey report is included in Appendix C.

4.3 Soil Investigation

4.3.1 Investigation Methodology

A total of 12 soil borings (16B1 through 16B12) were advanced by AARCO Environmental Services Corp. (AARCO) between November 20 and 21, 2017. Boring locations were selected

to provide sufficient site coverage and to evaluate the AOCs listed in Section 3.4. A direct-push Geoprobe[®] 6610 DT was used to advance borings to 12 to 15 feet bgs, as summarized below:

- Borings 16B1, 16B2, 16B3 and 16B8 were advanced to about 15 feet bgs to characterize deeper soil which was not previously sampled;
- Borings 16B4, 16B5, and 16B6 were advanced to about 15 feet bgs to further characterize petroleum and chlorinated VOC contamination;
- Boring 16B7 was advanced to about 15 feet bgs to characterize deeper soil in the former benzene UST and gasoline UST area;
- Borings 16B9 through 16B11 were advanced to about 12 feet bgs to characterize nonaqueous phase liquid (NAPL) previously observed in MW3; and
- Boring 16B12 was advanced to about 12 feet bgs to characterize the extent of petroleum-related impacts.

Soil samples were collected continuously from surface grade to the final depth of each environmental boring into 4-foot-long Macro-Core[®] samplers equipped with acetate liners. Recovered soil was screened for visual, olfactory, and instrumental evidence of environmental impacts and was visually classified for soil type, grain size, color, texture, and moisture content. Instrument screening for the presence of VOCs was performed with a PID equipped with a 10.6 electron volt (eV) lamp. Boring logs documenting these observations are included in Appendix D. Following sample collection, all borings were backfilled with clean soil cuttings.

4.3.2 Sampling Methodology

A total of 35 soil samples (including QA/QC samples) were collected for laboratory analysis in general accordance with the RIWP. Soil sample collection was generally biased toward the intervals with the greatest evidence of environmental impacts (i.e., PID readings above background, staining, chemical/petroleum-like odors). One to four samples were collected at each boring (except for 16B12) to evaluate the AOCs discussed in section 3.4. The table below identifies the borings associated with each AOC.

AOC	Associated Soil Boring
AOC 1 – Historic Fill	16B1 through 16B11
AOC 2 – Petroleum-Related Impacts	16B9, 16B10, 16B11, 16B12
AOC 3 – Chlorinated Solvents	16B4, 16B5, 16B6
AOC 4 – Potential USTs	16B7

Grab samples submitted for VOC analysis were collected directly from the Geoprobe[®] acetate liner via laboratory-supplied Terra Core[®] soil sample kits. The sample containers were labeled, placed in a laboratory-supplied cooler, and packed with ice (to maintain a temperature of 4

±2°C). The samples were relinquished, under standard chain-of-custody protocol, to a courier for delivery to Alpha Analytical Laboratories (Alpha), a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory in Westborough, Massachusetts.

Soil samples collected from soil borings 16B1 through 16B8 were analyzed for Target Compound List (TCL)/NYSDEC Part 375 List VOCs + tentatively identified compounds (TICs) by United States Environmental Protection Agency (EPA) Method 8260C, TCL/Part 375 SVOCs + TICs by EPA Method 8270D, and TAL/Part 375 metals by EPA Method 6010C. Samples collected from soil borings 16B9 through 16B11 were analyzed for Total Extractable Petroleum Hydrocarbons (EPH) and Part 375/Priority Pollutants Plus 40 (VOCs, SVOCs, pesticides, herbicides, polychlorinated biphenyls [PCBs], and metals). A sample analysis summary is provided as Table 1.

4.4 Groundwater Investigation

Groundwater monitoring wells were installed and sampled to characterize groundwater conditions and to investigate potential impacts to groundwater associated with the identified AOCs.

4.4.1 Monitoring Well Installation and Development

Three locations in the southeastern corner were drilled to 15 feet bgs and converted into groundwater monitoring wells. The wells were installed with 1-inch diameter schedule 40 prepack well screens set to straddle the groundwater table. The screens were set between 5 to 15 feet bgs and solid PVC risers were installed above the screens to extend the well to grade. The annulus of each well was filled with No. 2 sand to about 1 foot above the top of the screen. Hydrated bentonite well seals were installed above the filter sand. Following installation, each well was developed by purging at least 3 well volumes with a check valve. Purged groundwater was stored in one labeled 55-gallon drum and staged on-site pending disposal. The top of casing for each monitoring well was surveyed by Langan on December 29, 2017. Monitoring well construction details are presented in Table 2 and well construction logs are included in Appendix E.

4.4.2 Groundwater Sampling

Monitoring wells were sampled one week after development in accordance with the EPA's low-flow groundwater sampling procedure to allow for collection of a representative sample ("Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells," EQASOP-GW 001, January 19, 2010). Prior to sample collection, synoptic water level and total volatile headspace measurements were collected from RIWP monitoring wells on November 29, 2017. Groundwater elevations are presented in Table 3. A groundwater contour map is presented as Figure 7.

Following the gauging event, groundwater was purged from each well until groundwater parameters (pH, conductivity, turbidity, dissolved oxygen (DO), temperature, turbidity, and oxidation-reduction potential [ORP]) had stabilized. At least three well casing volumes were purged from each well before samples were collected using a peristaltic pump and dedicated polyethylene tubing.

Seven groundwater samples were collected (one from each of the three newly installed wells [16MW1, 16MW2, and 16MW3], one from existing wells MW3 and MW4, plus one duplicate, and one MS/MSD). Samples were collected into laboratory-supplied glassware and delivered via courier service to Alpha for analysis of TCL/Part 375 VOCs + TICS by EPA Method 8260C, TCL/Part 375 SVOCs + TICS by EPA method 8270D, and TAL/Part 375 metals (total and dissolved) by EPA methods 6010C. Groundwater sampling logs are included in Appendix E.

4.5 Quality Assurance/Quality Control Sampling

Trip blanks, field duplicate samples, and MS/MSD samples were collected and submitted for laboratory analysis for QA/QC purposes; these samples are detailed in Table 1. Matrix-specific QA/QC samples that were collected for the RI are summarized below:

Soil QA/QC Samples

- Two field duplicate samples;
- Two MS/MSD samples; and
- Three trip blanks.

Groundwater QA/QC Samples

- One field duplicate samples;
- One MS/MSD samples; and
- One trip blank.

MS/MSD samples were collected to assess the effect of the sample matrix on the recovery of target compounds or target analytes.

Field duplicate samples were collected to assess the precision of the analytical methods relative to the sample matrix. The duplicates were collected from the same material as the primary sample by splitting the volume of homogenized sample collected in the field into two sample containers.

Trip blank samples were collected to assess the potential for contamination of the sample containers and samples during transport from the laboratory, to the field, and back to the laboratory for analysis. Trip blanks contain about 40 milliliters of acidic water (doped with hydrochloric acid) that is prepared and sealed by the laboratory when the empty sample containers are shipped to the field, and then unsealed and analyzed for VOCs by the laboratory when the sample shipment is received from the field.

4.6 Data Validation

Analytical data was validated by a Langan validator in accordance with EPA and NYSDEC validation protocols. Copies of the data usability summary reports (DUSRs) and the data validator's credentials are provided in Appendix G.

4.6.1 Data Usability Summary Report Preparation

A DUSR was prepared for each sampling matrix. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For the soil and groundwater samples, the following items were assessed:

- Hold times
- Sample preservation
- Sample extraction and digestion
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- MS/MSD recoveries
- Field duplicate, trip blank, and field blank sample results

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the EPA's guidelines and best professional judgment:

- "U" The analyte was analyzed for but was not detected at a level greater than or equal to the reporting limit (RL) or the sample concentration or the sample concentration for results impacted by blank contamination.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "R" The sample results are not useable due to quality of the data generated because certain criteria were not met. The analyte may and may not be present in the sample.

After data validation activities were complete, validated data was used to prepare the tables and figures included in this report.

4.7 Field Equipment Decontamination

Down-hole drilling equipment was decontaminated between each boring. Down-hole drilling equipment was rinsed with an Alconox[®]-based solution. Decontamination wastewater was placed into 55-gallon drums for disposal.

4.8 Investigation-Derived Waste Management

Investigation derived waste (IDW) generated during the RI was properly handled and containerized. Groundwater from monitoring well development and purging, and decontamination water were placed into UN/DOT-approved 55-gallon steel drums with sealed tops. Drill cuttings exhibiting no evidence of chemical or petroleum impacts were used to backfill soil borings. One groundwater drum was staged in a secured area on-site pending transport by a licensed waste hauler for disposal at an approved facility.

4.9 Community Air Monitoring Program

A Community Air Monitoring Plan (CAMP) was implemented during each day of environmental drilling, on November 20 and 21, 2017. The CAMP was developed to monitor potential exposure to off-site receptors, including residences and businesses, from potential airborne contaminant releases during intrusive field activities. The CAMP consisted of real-time monitoring for VOCs and particulates (i.e., dust) at upwind and downwind locations to the works.

<u>Instruments</u>

Continuous dust and VOC monitoring was conducted using one upwind and one downwind monitoring station at the site perimeter. Each monitoring station included a TSI DustTrak II aerosol monitor for measuring particulates with an aerodynamic diameter less than 10 micrometers (PM10), and a MiniRAE[®] 3000 PID for measuring total VOCs. The work zone and site perimeter were visually monitored for fugitive dust emissions.

Action Levels

Action levels used to monitor community and visitor exposure were set forth in the CAMP included in the CHASP (Appendix D in the RAWP) and are summarized as:

- Particulate Action Level: 100 micrograms of dust per cubic meter of air (µg/m3) above background for a 15-minute average
- VOC Action Level: 25 parts per million (ppm) for instantaneous readings above background or 5 ppm above background for a 15-minute average.

Aerosol monitors and PIDs recorded measurements on a continuous basis during remediation and construction activities. Fifteen-minute running averages were calculated from the recorded data, and averages were compared to the action levels specified above. CAMP summary data is included as Appendix F.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

5.1 Geophysical Investigation Findings

The majority of identified anomalies were consistent with utilities (i.e. electric, gas, sewer line and water line). One large anomaly, consistent with a potential UST, was identified in the northwestern corner of the site. Historical records also indicate that there may be USTs in the western portion of the site. A copy of the November 2017 geophysical report is included in Appendix C.

5.2 Geology and Hydrogeology

Provided below is a description of the geologic and hydrogeologic observations made during the RI. A groundwater contour map is included as Figure 6, cross-sectional diagrams showing inferred soil profiles are shown on Figure 7, and soil boring logs are provided in Appendix D.

5.2.1 Historic Fill

The site is underlain by a layer of historic fill ranging in depth from about 6 feet bgs (16B5) to 11.5 feet bgs (16B8) and predominately consisting of brown fine- to medium-grained sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, wood, organics, coal fragments and slag. An about 1.5-foot void was encountered underneath the northern building slab during advancement of soil boring 16B2. The void was also observed in three exploratory offsets, spaced about 5 feet around the original boring location.

5.2.2 Native Soil Layers

The fill layer is underlain by olive, fine-grained silty sand and grey organic clay with varying amounts of gravel, organics, and shells. Underlying the silty sand is an interval of soft, grey clay with varying amounts of organics and shells. This stratigraphy was generally consistent across the site.

5.2.3 Bedrock

The USGS "Bedrock and Engineering Geologic Maps of New York County and Parts Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey" indicates that the bedrock underlying the site is part of the Hartland Formation. Bedrock was not encountered during this RI. A November 2017 geotechnical investigation, which included advancement of soil borings to 100 feet bgs, did not encounter bedrock.

5.2.4 Hydrogeology

Synoptic groundwater level measurements were collected on November 29, 2017 from five monitoring wells (MW3, MW4, 16MW1, 16MW2, and 16MW3), and on January 2, 2018 from seven wells (MW1, MW2, MW3, MW4, 16MW1, 16MW2, and 16MW3). Water level ranged between about el. 0.76 and el. 2.78 NAVD88. Based on the well gauging results, groundwater

appears to flow west towards the East River. A map showing groundwater contours and the inferred flow direction is provided as Figure 6. Groundwater elevations are shown in Table 3.

5.3 Soil Findings

5.3.1 Field Observations

Petroleum-like impacts, evidenced by odors, staining, and/or PID readings above background levels were observed at similar depths in six of the twelve soil borings. The depth intervals at which petroleum impacts were apparent with the highest recorded PID readings are provided in the following table:

Soil Boring ID	Depth Interval of Observed Impacts (feet bgs)	Ма	x PID Reading (ppm)	Soil Boring Location
16B1	7 to 13	103.7	(7 to 8 feet bgs)	Central
16B2	11 to 12	16.1	(11 to 12 feet	North-central
16B3	7 to 8	634.1	(7 to 8 feet bgs)	Northeast
16B7	7 to 8	388.2	(7 to 8 feet bgs)	Southwest
16B9	7 to 10.5	61.5	(10 to 11 feet	Central
16B10	7 to 8	54.6	(7 to 8 feet bgs)	Central

5.3.2 Analytical Results

A summary of laboratory detections for soil samples collected during the RI with comparisons to NYSDEC Part 375 UU SCOs and RURR SCOs is provided in Tables 4A and 4B. Laboratory analytical data reports are included in Appendix H. Soil sample results that exceed UU and RURR SCOs for samples collected during previous environmental investigation and the RI are shown on Figure 8.

The following sections present a summary of concentrations that exceeded their respective UU and/or RURR SCOs, organized by analytical parameter set:

VOCs

Petroleum-related and chlorinated VOCs were detected in soil at concentrations above 6 NYCRR Part 375 UU SCOs at depths ranging from 0 to 8 feet bgs and in localized areas up to 12 feet bgs. VOC concentrations above RURR SCOs were identified up to 8 feet bgs in three soil samples located within the northern portion of the site (16B1, 16B3, and 16B8). The table below provides a summary of low and high range VOC concentrations that were detected above their respective 6 NYCRR Part 375 UU SCOs. VOC concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat SC	UU and RURR SCOs	
	Low High		
1,2,4-Trimethylbenzene	6.2 mg/kg in	8.7 mg/kg in	UU: 3.6 mg/kg
	16B3_7-8	16B1_7-8	RURR: 52 mg/kg
2-Butanone	0.78 mg/kg in 16B3_0-2	1.4 mg/kg in 16B3_7-8 and 16B8_5.5-6.5	UU: 0.12 mg/kg RURR: 100 mg/kg
Acetone*	0.051 mg/kg in	0.23 mg/kg in	UU: 0.05 mg/kg
	16B4_11-12	16B3_0-2	RURR: 100 mg/kg
cis-1,2-Dichloroethene	0.26 mg/kg in	16 mg/kg in	UU: 0.25 mg/kg
	16B8_11-12	16B3_7-8	RURR:100 mg/kg
Naphthalene	13 mg/kg ii	UU: 12 mg/kg RURR: 100 mg/kg	
Tetrachloroethene	2.3 mg/kg in	5.7 mg/kg in	UU: 1.3 mg/kg
	16B8_0-2	16B5_4.5-5	RURR: 19 mg/kg
trans-1,2-Dichloroethene	1.1 mg/kg in 16B3_7-8		UU: 0.19 mg/kg RURR: 100 mg/kg
Trichloroethene	0.51 mg/kg in	30 mg/kg in	UU: 0.47 mg/kg
	16B10_7-8	16B1_0-2	RURR: 21 mg/kg
Vinyl chloride	0.57 mg/kg in	1.6 mg/kg in	UU: 0.02 mg/kg
	16B10_7-8	16B3_7-8	RURR: 0.9 mg/kg
Xylenes, Total	0.49 mg/kg in	7.2 mg/kg in	UU: 0.26 mg/kg
	16B8_0-2	16B3_0-2	RURR: 100 mg/kg

*Acetone is a common laboratory contaminant and therefore, its presence in soil results is not likely representative of site conditions.

SVOCs

Nine SVOCs were detected in soil at concentrations above 6 NYCRR Part 375 UU at depths ranging from 0 to 8 feet bgs throughout the site and in one location (16B8) at a depth up to 15 feet bgs. SVOCs in soil detected at concentrations above RURR SCOs were identified up to at least 8 feet bgs in borings 16B2 and 16B3, and up to 15 feet bgs in boring 16B8. The table below provides a summary of low and high range SVOC concentrations that were detected above their respective 6 NYCRR Part 375 UU SCOs. SVOC concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat SC	UU and RURR SCOs	
	Low High		
3-Methylphenol/	0.38 mg/kg in	2.7 mg/kg in	UU: 0.33 mg/kg
4-Methylphenol	16B8_11-12	16B10_7-8	RURR: 100 mg/kg
Benzo(a)anthracene	1.2 mg/kg in 16B1_0-2 and SODUP02_112119	5.4 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(a)pyrene	1.1 mg/kg in SODUP02_112117		
Benzo(b)fluoranthene	1.1 mg/kg in 16B6_3-4 and 16B8_11-12	6.5 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 1 mg/kg
Benzo(k)fluoranthene	1.3 mg/kg in 16B3_7-8	2.1 mg/kg in 16B2_7-8	UU: 0.8 mg/kg RURR: 3.9 mg/kg
Chrysene	1.2 mg/kg in 16B1_0-2, 16B1_7-8 and SODUP02_112117*	5.3 mg/kg in 16B2_7-8	UU: 1 mg/kg RURR: 3.9 mg/kg
Dibenzo(a,h)anthracene	0.35 mg/kg in 16B8_14-15	0.69 mg/kg in 16B2_7-8	UU: 0.33 mg/kg RURR: 0.33 mg/kg
Indeno(1,2,3-cd)pyrene	0.51 mg/kg in3.2 mg/kg in16B3_0-216B2_7-8		UU: 0.5 mg/kg RURR: 0.5 mg/kg
Phenol 0.44 mg/kg in 10		n 16B10_7-8	UU: 0.33 mg/kg RURR: 100 mg/kg

*SUDUP02_112117 is a duplicate of the parent sample 16B4_3-4.

Pesticides, Herbicides, and PCBs

Per the approved RIWP, only soil samples collected from borings 16B9 through 16B11 were analyzed for pesticides, herbicides, and PCBs. Herbicides and PCBs were not detected. One pesticide, 4,4'-DDT, was detected above 6 NYCRR UU, but below RURR SCOs in the 7- to 8-foot interval of soil boring 16B10.

A site-wide waste characterization will be completed to classify soil prior to excavation for foundation construction and will include analysis of pesticides, herbicides, and PCBs.

Metals

Metals were detected at concentrations above their respective 6 NYCRR Part 375 UU and RURR SCOs in all sampled soil borings, and extending up to 15 feet in borings 16B4 and 16B8. Borings 16B4 and 16B8 also contained metals at concentrations above Part 375 RURR SCOs up to 15 feet bgs. The highest concentrations appear to be located within the historic fill layer and generally begin to diminish with depth. The following table provides a summary of low and

high range metal concentrations that were detected above their respective Part 375 UU SCOs. Metals concentrations that were also detected above RURR SCOs are shown in bold.

Parameter	Range of Concentrat SC	UU and RURR SCOs	
	Low	High	
Arsenic	19.2 mg/kg in	117 mg/kg in	UU: 0.33 mg/kg
Alsenic	16B1_7-8	16B9_10-11	RURR: 100 mg/kg
Barium	370 mg/kg in	672 mg/kg in	UU: 350 mg/kg
Danum	SODUP02_112117*	16B3_0-2	RURR: 400 mg/kg
Cadmium	2.66 mg/kg in	37.2 mg/kg in	UU: 2.5 mg/kg
Caurnium	16B2_13-14	16B1_7-8	RURR: 4.3 mg/kg
		1.5 mg/kg in	
Chromium, Hexavalent	1.2 mg/kg in	SODUP01_112017	UU: 1 mg/kg
	16B9_10-11	(duplicate of	RURR: 110 mg/kg
		16B5_12-13)	
Chromium, Trivalent	34 mg/kg in	2,400 mg/kg in	UU: 30 mg/kg
	16B8_14-15	16B7_6.5-7.5	RURR:180 mg/kg
Copper	51.7 mg/kg in	1,250 mg/kg in	UU: 50 mg/kg
Сорреі	16B4_3-4	16B3_7-8	RURR: 270 mg/kg
Lead	96.2 mg/kg in	9,410 mg/kg in	UU: 63 mg/kg
Leau	16B4_11-12	16B9_10-11	RURR: 400 mg/kg
Mercury	0.45 mg/kg in	160 mg/kg in	UU: 0.18 mg/kg
INECULY	16B5_12-13	16B3_7-8	RURR: 0.81mg/kg
Nickel	32 mg/kg in	295 mg/kg in	UU: 30 mg/kg
NICKEI	16B6_3-4	16B1_7-8	RURR: 310 mg/kg
Selenium	0.21 mg/kg in	6.7 mg/kg in	UU: 3.9 mg/kg
Selettiutti	16B8_5.5-6.5	16B1_7-8	RURR: 180 mg/kg
Silver	3.69 mg/kg in	57.8 mg/kg in	UU: 2 mg/kg
Silver	16B8_11-12	16B5_4.5-5	RURR: 180 mg/kg
Zinc	126 mg/kg in	7,990 mg/kg in	UU: 109 mg/kg
	16B2_11-12	16B2_7-8	RURR: 1000 mg/kg

*SODUP02_112117 is a duplicate of the parent sample 16B4_3-4.

5.4 Groundwater Findings

5.4.1 Field Observations

All monitoring wells sampled during the RI were first gauged for the presence of free product (i.e., light, non-aqueous phase liquid (LNAPL) with an oil-water interface probe. Free product was not detected; however, petroleum-like odors were observed in purged groundwater generated from MW3. Monitoring well headspace PID measurements ranged from 0.0 to 4.8 ppm (highest reading in 16MW2) during sampling.

Existing monitoring well MW4, from EBC's Phase II ESI, was found without a cover, damaged, and covered with overgrown vegetation. After removing the surface vegetation and cave-in debris, groundwater was detected within the monitoring well.

5.4.2 Analytical Results

A summary of the groundwater sample laboratory detections compared to TOGS Class GA SGVs is presented in Tables 5. Groundwater sample locations and results that exceed their respective TOGS Class GA SGVs are presented on Figure 9. Laboratory analytical data reports are included in Appendix H.

The following is a summary of groundwater sample results from the RI that exceed the TOGS SGVs organized by analytical parameter set:

VOCs

Four VOCs were detected in groundwater at concentrations above their respective TOGS Class GA SGVs throughout the site. The following table provides low and high range concentrations of VOCs detected above their respective TOGS Class GA SGVs.

Parameter	Range of Concentration Class	TOGS Class GA SGV	
	Low	High	
cis-1,2-Dichloroethene	8.6 µg/L in 16MW3	40 µg/L in MW4	5 µg/L
Naphthalene	17 µg/L	10 µg/L	
Trichloroethene	5.5 µg/L in GWDUP01	21 µg/L in 16MW3	5 µg/L
Vinyl chloride	4 μg/L in MW4	5.1 µg/L in MW3	2 µg/L

*GWDUP01 is a duplicate of the parent sample from monitoring well 16MW2.

SVOCs

Groundwater samples collected from 16MW1, 16MW2 and 16MW3 contained one or more SVOCs at concentrations above their respective TOGS Class GA SGVs. The following table provides low and high range concentrations of SVOCs detected above their respective TOGS Class GA SGVs.

Parameter	Range of Concentration Class	TOGS Class GA SGV	
	Low	High	
Benzo(a)anthracene	0.03 µg/L in 16MW1	0.45 µg/L in 16MW3	0.002 µg/L
Benzo(a)pyrene	0.41 µg/L	0.002 µg/L	
Benzo(b)fluoranthene	0.02 µg/L in 16MW1	0.002 µg/L	
Benzo(k)fluoranthene	0.2 µg/L	0.002 µg/L	
Bis(2-chloroethyl)ether	2 µg/L in MW3, MW4	, 16MW1, 16MW2, and	1 µg/L

Parameter	Range of Concentration Class	TOGS Class GA SGV	
	Low	High	
	16MW3		
Chrysene	0.05 µg/L in16MW2	0.48 µg/L in 16MW3	0.002 µg/L
Hexachlorocyclopentadiene	20 μg/L in MW3, MW4, 16MW1, 16MW2, and 16MW3		5 µg/L
Indeno(1,2,3-cd)pyrene	0.39 µg/L	. in 16MW3	0.002 µg/L

Total Metals

Eight total metals were detected in groundwater at concentrations above their respective TOGS Class GA SGVs. The following table provides low and high range concentrations of metals detected above their respective TOGS Class GA SGVs:

Parameter	Range of Concentratio Class	TOGS Class GA SGV	
	Low		
Arsenic	120.6 µg	25 µg/L	
Iron	2,760 μg/L in 16MW1 26,100 μg/L in MW4		300 µg/L
Lead	53.44 μg/L in 16MW3 359 μg/L in GWDUP01		25 µg/L
Manganese	346.8 µg/L in MW4	576.8 µg/L in 16MW1	300 µg/L
Mercury	7.3 μg/L in 16MW2 20.05 μg/L in GWDUP01*		0.7 µg/L
Nickel	136.9 µg/	100 µg/L	
Sodium	25,200 μg/L in 16MW3 69,700 μg/L in GWDUP01*		20,000 µg/L
Zinc	3,294 µg/	20,000 µg/L	

*GWDUP01 is a duplicate of the parent sample from monitoring well 16MW2.

Dissolved Metals

Six dissolved metals were detected in groundwater at concentrations above their respective TOGS Class GA SGVs across the site. The following table provides low and high range concentrations of dissolved metals detected above their respective TOGS Class GA SGVs:

Parameter	Parameter Range of Concentrations Detected above TOGS Class GA SGV			
	Low			
Arsenic	112.1 µg/L in MW4		25 µg/L	
Iron	2,830 µg/L in 16MW1	300 µg/L		

Manganese	338.2 µg/L in MW4	38.2 μg/L in MW4 569.2 μg/L in 16MW1	
Nickel	135.6 µg/l	100 µg/L	
Sodium	23,400 µg/L in 16MW3	20,000 µg/L	
Zinc	3,236 µg/l	20,000 µg/L	

5.5 QA/QC Sample Results

Duplicate and trip blank samples collected during the RI are detailed in Table 1 and MS/MSD sample results are summarized in the laboratory reports. Duplicate and MS/MSD samples were collected at a frequency of 1 per 20 primary samples. QA/QC samples results were also evaluated as part of data validation. Analytical results for trip blank samples are summarized in Table 7.

5.6 Data Usability

Category B laboratory reports for all the collected soil and groundwater samples were provided by Alpha and were forwarded to Langan's data validator. Copies of the DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

Major deficiencies were identified include:

• 2-chloroethylvinyl ether was submitted to the laboratory as preserved; however, it is an acid-labile compound that will not recover in the presence of hydrochloric acid. The associated trip blank sample results were qualified as "R" for unusable.

With the exception of 2-chloroethylvinyl ether, the data was determined to be acceptable and usable as qualified.

5.7 Evaluation of Potential Areas of Concern

The goal of the RI was to evaluate the AOCs described in Section 3.4. This section discusses the results of the RI with respect to the AOCs.

5.7.1 AOC-1: Historic Fill

Historic fill was identified in all borings extending to depths from 6 feet bgs (16B2) to about 11.5 feet bgs (16B8). Contaminants typically associated with historic fill in soil and groundwater include SVOCs, pesticides, PCBs, and metals.

Findings Summary

Soil

Historic fill generally consisted of brown, fine to medium sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, organics, wood, coal fragments, and slag. Thirteen samples were collected from the historic fill layer. Sample results from historic fill are summarized as follows:

• VOCs (2-butanone acetone, cis-1,2,-dichloroethene, naphthalene, PCE, TCE, trans-1,2dichloroethene, vinyl chloride and total xylenes) were detected at concentrations exceeding their respective UU and/or RURR SCOs across eight soil borings (16B1, 16B3, 16B4, 16B5, 16B6, 16B7, 16B8 and 16B10). With the exception of acetone, these detections are likely related to releases associated with the historical use of petroleum products and chlorinated solvents at the site or at surrounding sites or the general quality of the fill placed at the site. Acetone is a common laboratory contaminant and is likely not representative of the soil conditions.

- SVOCs were detected at concentrations exceeding their respective UU SCOs (3-methylphenol/4-methylphenol, benzo(k)fluoranthene, and phenol) and RURR SCOs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene) across soil borings 16B1, 16B3, 16B4, 16B5, 16B6, 16B7, 16B8 and 16B10.
- Metals were detected at concentrations exceeding their respective UU SCOs (arsenic, barium, cadmium, hexavalent and trivalent chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) and RURR SCOs (arsenic, barium, cadmium, trivalent chromium, copper, lead, and mercury) across samples collected from the historic fill layer.
- The pesticide 4,4'-DDT was detected above UU SCOs in one sample (16B10_7-8).
- Total PCBs and herbicides were not detected above UU SCOs in any samples.

Groundwater

Several SVOCs were detected a concentrations above TOGS Class GA SGVs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, bis(2-chloroethyl)ether chrysene, hexachlorocyclopentadiene, and indeno(1,2,3-cd)pyrene. Total and dissolved arsenic was detected at a concentration exceeding its TOGS Class GA SGV in the groundwater sample collected from MW4 (maximum of 120.6 µg/L in MW4_112917). Other detected metals, including iron, manganese, nickel, sodium and zinc, are considered naturally occurring elements.

Soil Vapor

Historic fill does not appear to have contributed to soil vapor contamination at the site.

<u>Conclusions</u>

Historic fill was identified across the site from surface grade to depths up to about 11.5 feet bgs. VOCs, SVOCs, and metals were detected above both UU and RURR SCOs in the historic fill. Petroleum-related and chlorinated VOCs were detected in soil samples collected from the east-central portion of the site and the detected concentrations are likely due to the historical use of petroleum products and chlorinated solvents at the site or at surrounding sites or the general quality of the fill placed at the site. Similar compounds detected in soil were also reflected in the groundwater at concentrations above TOGS Class GA SGVs.

5.7.2 AOC-2: Petroleum-Related Impacts in Soil and Groundwater

Petroleum-related impacts were detected in soil at concentrations exceeding UU and/or RURR SCOs during EBC's 2015 Phase II ESI. Similar soil conditions were identified from 0 to 8 feet in three of the eleven RI borings. Two groundwater samples from EBCs Phase II contained petroleum-related VOCs at concentrations about one to two orders of magnitude above their respective TOGS Class GA SGVs.

Findings Summary

Soil

Two petroleum-related VOCs, naphthalene and total xylenes, were detected at concentrations exceeding UU SCOs in three soil borings (16B1, 16B3, and 16B8), generally located in the central portion of the site. Several borings, including 16B1, 16B2, 16B3, and 16B7, contained elevated PID readings, staining, and petroleum-like odors. Additionally, gross impacts were observed in soil boring 16B1 consisting of product and/or stained soil with petroleum-like odors from about 7 to 13.5 feet bgs.

Groundwater

Analytical results identified petroleum-related impacts to groundwater in the central and eastern portions of the site. Naphthalene was detected above its TOGS Class GA SGV in monitoring wells MW3 and 16MW1 during EBC's 2015 Phase II ESI and Langan's 2017 RI, respectively. Sample MW3 exhibited the maximum naphthalene concentration of 31 μ g/L, followed by 16MW1_11297 with a concentration of 17 μ g/L.

Conclusions

Based on the analytical results and field observations, petroleum-related impacts are localized to the shallow subsurface (less than 15 feet bgs), typically around the groundwater interface and in groundwater primarily in the central and eastern portions of the site. Target compound concentrations in groundwater are highest in wells that are hydraulically up-gradient to the historical on-site USTs, suggesting that contamination is potentially due to the historical use of petroleum products at the site or from off-site sources migrating onto the site. In general, impacts were not observed to extend into the organic clay layer with the exception of soil boring 16B1. Impacts were not observed at the termination of boring 16B1 (15 feet bgs).

5.7.3 AOC-3: CVOCs in Soil, Groundwater, and Soil Vapor

CVOC impacts were detected at concentrations in soil exceeding UU and/or RURR SCOs, in groundwater exceeding TOGS Class GA SGVs, and in soil vapor above the NYSDOH Decision Matrices for recommended "mitigation" during EBC's Phase II ESI. Similar soil impacts were identified in seven of the eleven RI borings.

Findings Summary

Soil

TCE and vinyl chloride were detected in soil at concentrations exceeding RURR SCOs at borings 16B1, 16B2, and 16B8, located in the central portion of the site. TCE and cis-1,2-dichloroethene were detected at concentrations above UU SCOs in RI borings 16B3, 16B5, 16B6, 16B8, and 16B10.

Groundwater

Analytical results from the RI identified CVOC impacts to groundwater in the central and eastern portion of the site. Four of the five groundwater samples contained CVOCs at concentrations that were one to two orders of magnitude above their respective TOGS Class GA SGVs. Concentrations of TCE, cis-1,2-dichloroethene, and vinyl chloride exceeding their respective TOGS Class GA SGVs were found in samples collected from MW3, MW4, 16MW1, 16MW2 and 16MW3. Maximum RI concentrations of TCE ($21\mu g/L$) and cis-1,2-dichloroethene (40 $\mu g/L$) were detected in monitoring wells 16M3 and MW4, respectively. These compounds were also detected during EBC's Phase II ESI at 170 $\mu g/L$ and 30 $\mu g/L$, respectively.

Soil Vapor

According EBC's Phase II ESI, total CVOC concentrations in soil vapor samples ranged from 206 μ g/m³ at SG-6, located in the south-central portion of the site, to 261,616 μ g/m³ at SG-4, located in the central portion of the site. Soil vapor sample locations and analytical results are shown on Figure 10.

<u>Conclusions</u>

Based on analytical results from previous environmental investigations and the RI, concentrations of CVOCs in soil are primarily in the historic fill layer located in the central and eastern portions of the site. When comparing groundwater data from the 2015 Phase II to the 2017 RI, CVOCs appear to be following the reductive dechlorination pathway, as concentrations of TCE have decreased while cis-1,2-dichloroethene increased between sampling events. Impacts to soil vapor are present at concentrations that will require mitigation according to NYSDOH guidance.

5.7.4 AOC-4: Potential Underground Storage Tank (UST):

Potential gasoline and other chemical USTs were identified in the western portion of the site by the 1942 Certified Sanborn Map. The USTs were no long depicted on the subsequent 1951 Sanborn Map and closure records were not available for review. A soil vapor sample collected during EBC's 2015 Phase II ESI indicated the presence of petroleum-related VOCs in the western portion of the site.

Findings Summary

Geophysical Survey

The geophysical survey identified a large anomaly, potentially consistent with a UST, in the northwestern portion of the site. The location of this UST was not shown on available Sanborn Maps and there are no known records documenting its contents or closure.

Soil

PID readings up to 388.2 ppm and odors were observed during the RI in boring 16B7 from about 6.5 to 7.5 feet bgs, in the vicinity of the USTs identified on the 1942 Sanborn Map. Samples collected in this area from soil borings B6 and B10 during EBC's Phase II ESI exhibited concentrations of petroleum-related VOCs exceeding UU SCOs.

Groundwater

A groundwater sample collected from MW2 during EBC's Phase II ESI detected the presence of methyl tert-butyl ether (MTBE), but at a concentration below its TOGS Class GA SGV. Naphthalene was detected in up-gradient wells at concentrations that exceed TOGS Class GA SGVs suggesting that contamination is due to the historical use of petroleum products at the site or from off-site sources migrating onto the site.

Conclusions

The geophysical survey conducted during this RI identified an anomaly consistent with a potential UST in the northwestern portion of the site, where no tanks were shown on available Sanborn Maps. The 1942 Sanborn Map identified three USTs in the southwestern corner of the site, which were reported closed. EBC's 2015 Phase II ESI identified petroleum impacts in the surrounding soil; however soil; however, analytical results from the 2017 RI did not identify similar petroleum-related impacts to soil or groundwater media in the vicinity of the potential USTs. Petroleum impacts appear to be localized in the east-central portion of the site.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, there was no need to prepare an FWRIA for the site. A completed copy of the DER-10 Appendix 3C decision key is included as Appendix I.

6.1 Current Conditions

The site is currently improved with two single-story industrial buildings and two smaller onestory structures, which are surrounding by asphalt on the west and vegetation-covered areas on the east. One of the single-story buildings was formerly occupied by Brooklyn Moto Club and Brooklyn Moto Service LLC as a motorcycle repair shop but at the time of this report all site buildings are vacant.

6.2 **Proposed Conditions**

The conceptual development plan consists of a new seven-story mixed-use commercial and residential building with cellar-level parking, ground-level retail space, and an elevated rear yard in the northwest part of the second floor. Soil excavation to about 18.5 feet bgs and dewatering is anticipated to facilitate foundation construction.

6.3 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the RI and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways, as discussed below.

6.3.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include historic fill, petroleum bulk storage, and historical use of the site and surrounding properties. The site-wide presence of historic fill has been established as a source of SVOCs, pesticides, and metals in soil. Historical petroleum bulk storage has been established as a potential source of petroleum-related VOCs and SVOCs in soil, groundwater, and soil vapor. Historical site uses as an automobile repair facility and varnish factory have been established as a potential source of CVOC impacts to soil, groundwater, and soil vapor. The use of adjacent and surrounding properties for industrial and commercial uses is a potential source for petroleum and CVOC contamination. Prior to site

development, there exists the potential for groundwater and soil vapor to migrate off-site and to affect the adjacent property. The following air sampling program will be implemented during the 45-day RAWP public comment period:

- The volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjacent building to the west is a ventilated parking garage and soil vapor intrusion is not a concern.
- The volunteer commits to collecting three sidewalk soil vapor samples to evaluate offsite soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

6.3.2 Exposure Media

Impacted media include soil, groundwater, and soil vapor. Analytical data from the RI and previous investigations indicates the historic fill material across the site contains SVOCs, pesticides, and metals. Groundwater impacts include VOCs, SVOCs, and metals. Soil vapor is impacted with both petroleum-related and CVOCs.

6.3.3 Receptor Populations

The site is currently vacant with restricted access to authorized guests and the project development team. Prior to site development, there exists the potential for groundwater and soil vapor to migrate offsite and potentially to affect the adjacent property. As discussed above, the volunteer commits to contacting owners of the adjacent residential building to the north to gain access and, where feasible, conduct sub-slab soil vapor and indoor air sampling. In addition, three sidewalk soil vapor samples will be collected to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

During site development human receptors are limited to construction and remediation workers, authorized guests visiting the site and the public adjacent to the site. Upon completion of removal of impacted soils to below the groundwater table, post-excavation sampling will be used to determine whether there is remaining risk of site-related soil vapor contamination beyond the site boundaries. If it is determined that there is a risk of impacts beyond the site boundaries, a risk assessment will be undertaken to define such risks. Such evaluation will take into consideration the removal of site soil to below the groundwater table and installation of the lowest-level slab below the groundwater table. Under future conditions, receptors will

include the new and renovated building occupants, workers, and visitors to the residential property, including children.

6.4 Potential Exposure Pathways – On-Site

6.4.1 Current Conditions

Soil at the site has been shown to be contaminated. The site surface cover is composed of concrete (building slab), asphalt parking, and vegetation. There is a potential exposure pathway in vegetated areas or if the site surface cover is penetrated (e.g., during site investigation when borings or test pit excavation are performed). The potential pathway is through dermal absorption, inhalation and ingestion.

Groundwater at the site has been shown to be contaminated. Groundwater in this area of New York City is not used as a potable water source. There is a potential exposure pathway during groundwater sampling associated with site investigation. The potential pathway is through dermal absorption, inhalation and ingestion. Activity is limited to trained investigation personnel.

Soil vapor at the site has been shown to be contaminated. There is a potential exposure pathway during soil vapor sampling associated with site investigation and intrusion through potential cracks in the building slab. The potential pathway is through inhalation.

6.4.2 Construction/Remediation Condition

Construction and remediation activities will be performed in accordance with a HASP and CAMP. The implementation of these programs, as well as vapor and dust suppression techniques, limit the exposure pathways presented by potential dermal absorption, ingestion, and inhalation.

6.5 **Potential Exposure Pathways – Off-Site**

Contaminated soil has the potential to be transported off-site by wind in the form of dust or on the tires of vehicles or equipment leaving the site during development and create an exposure risk to the public adjacent to the site. Groundwater is anticipated to flow west, and groundwater samples collected from wells on the southern and most western side of the site indicate volatile contaminants are not migrating off site. Metal impacts to groundwater are considered a regional problem and are not considered a localized concern.

Prior to site development, there exists the potential for soil vapor intrusion into neighboring buildings. However, exposure is expected to be limited by the following:

- The west-adjoining building is an open-air parking garage with natural air ventilation. The open ventilated parking garage prevents the potential for a soil vapor intrusion issue.
- The north-adjoining building was observed during the 2017 Geotechnical Engineering Study to have a waterproofed foundation that extended below the groundwater table. A

foundation set below the groundwater table blocks the migrations or accumulation of soil vapor, which prevents the potential for a soil vapor intrusion issue.

Further, the volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjoining building to the west is a ventilated parking garage and soil vapor intrusion is not a concern. In addition, three sidewalk soil vapor samples will collected to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.

The potential off-site migration of site contaminants is not expected to result in a complete exposure pathway for construction and remediation, or future conditions for the following reasons:

- The site is located in an urban area and predominantly covered with continuous, relatively impervious surface covering (i.e. buildings, and concrete slabs and asphalt)
- During site remediation and construction, the following protective measures will be implemented:
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the site to prevent tracking material off-site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-site migration of soil.
- Based on the conceptual development plan, foundation excavation is anticipated to remove all on-site impacted media, thereby eliminating all sources of site contamination and achieving a Track 1 cleanup for unrestricted use. In this scenario, exposure pathways will have been eliminated and the need for future control will not be necessary. If a Track 1 cleanup is not practicable, the development will include a site capping system.
- Accumulation of soil vapor beneath the building will be limited by the building foundation, which will extend into the groundwater table and include a continuous sitewide waterproofing system installed below the slab and along the vertical subgrade foundation sidewalls. The northwestern portion of the building cellar will likely be used

as parking with a ventilation system in accordance with the NYC Building and Mechanical Codes.

6.6 Evaluation of Human Health Exposure

Based upon the CSM and review of environmental data, complete on-site exposure pathways appear to be present, in the absence of protective measures and remediation. The complete exposure pathways indicate there is a risk of exposure to humans from site contaminants via exposure to soil, groundwater, and soil vapor for current and construction conditions.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the site is provided below.

6.6.1 Current Conditions

Contaminant sources include 1) historic fill with varying levels of SVOCs, pesticides, and metals contamination; 2) historical petroleum bulk storage with petroleum-impacted soil, groundwater and soil vapor; and 3) historical site uses that may contribute to releases of CVOCs impacting soil, groundwater, and soil vapor and 4) historical uses of adjacent and surrounding sites that may contribute to the releases of CVOCs and petroleum-related contaminants in groundwater and soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), contaminated groundwater flow (dermal contact), and volatilization of contaminants from the soil and groundwater matrices to the soil vapor phase (inhalation).

Under current conditions, the likelihood of exposure to humans is limited, as site access is restricted to authorized workers and guests. The majority of the site contains impervious covers (i.e., buildings, concrete, asphalt) and pervious areas are covered by overgrown vegetation, which have potential to control dust being generated. Exposure to contaminants in soil and groundwater via dermal contact or ingestion during investigation is minimized, as these activities would occur under a HASP/CHASP with CAMP to limit exposure to site workers and the community. In addition, groundwater is not used as potable water supply in Brooklyn.

6.6.2 Construction/Remediation Activities

During development and remediation, points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that could be encountered during excavation and/or dewatering operations. Routes of exposure include ingestion and dermal absorption of contaminated soil and groundwater, inhalation of organic vapors arising from contaminated soil and groundwater (specifically in the area of petroleum and CVOC impacts), and inhalation of dust arising from

contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the site to prevent off-site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

6.6.3 Proposed Future Conditions

The proposed future conditions may include a Track 1 cleanup for unrestricted use (i.e., removal of all source and site contaminants), which would eliminate all on-site pathways of exposure to contaminants. If a Track 1 cleanup is not practicable, residual contaminants may remain on site and exposure pathways would be minimized through the use of engineering and institutional controls. In the event that the proposed building foundation is constructed below the water table, the airspace between groundwater and the bottom of foundation where contaminants in soil or groundwater could volatile into the vapor phase would be eliminated. In this scenario, points of exposure include future intrusive soil and groundwater handling for upgrades or modifications to the property.

6.6.4 Human Health Exposure Assessment Conclusions

1. Under current conditions, there is a marginal risk for human exposure to site contaminants. The primary exposure pathways are for dermal contact, ingestion, and inhalation of soil, soil vapor, or groundwater by site investigation workers. The exposure risks can be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures outlined in the site-specific HASP and CAMP during investigation activities.

Prior to site development, there exists the potential for soil vapor intrusion into neighboring buildings. However, exposure is expected to be limited by the following:

- The west-adjoining building is an open-air parking garage with natural air ventilation. The open ventilated parking garage prevents the potential for a soil vapor intrusion issue.
- The north-adjoining building was observed during the 2017 Geotechnical Engineering Study to have a waterproofed foundation that extended below the groundwater table. A foundation set below the groundwater table blocks the migration or accumulation of soil vapor, which prevents the potential for a soil vapor intrusion issue.

The following air sampling program will be implemented during the 45-day RAWP public comment period:

- The volunteer commits to contacting owners of the adjacent residential building to the north (214 North 11th Street) to request access and, where feasible, to conduct sub-slab soil vapor and indoor air sampling (three paired indoor air and sub-slab vapor samples). Sub-slab soil vapor sampling would not be feasible if the bottom of the building slab is at or below the water table. If the slab is below the water table and the adjoining building owner allows sampling, three indoor air samples will be collected. The adjoining building to the west is a ventilated parking garage and soil vapor intrusion is not a concern.
- The volunteer commits to collecting three sidewalk soil vapor samples to evaluate off-site soil vapor; one in the Roebling Street sidewalk, one in the sidewalk at the intersection of Roebling Street and North 10th Street, and one in the North 10th Street sidewalk.
- 2. In the absence of a HASP and CAMP, there is a moderate risk of exposure during construction and remediation activities. The primary exposure pathways are:
 - a. Dermal contact, ingestion and inhalation of contaminated soil, groundwater or soil vapor by construction workers.
 - b. Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the site.

These exposure risks can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression and site security measures outlined in a site-specific HASP.

- 3. The existence of a complete exposure pathway for site contaminants to human receptors during proposed future conditions is unlikely, as a large quantity of soil will be excavated and transported to an off-site disposal facility and any residual soil remaining will be capped with an impermeable foundation cover. Residual contamination would be managed in accordance with a Site Management Plan that would be prepared, if necessary, following site development.
- 4. Regional groundwater is not used as a potable water source in Brooklyn so exposure to regional groundwater contaminants is unlikely.
- 5. Construction of the proposed development will include excavation and off-site disposal of contaminated media to about 18.5 feet bgs, terminating within a native organics layer. Residual contamination will be limited following construction. Implementation of a dewatering treatment system is expected in combination with the support of excavation (SOE) system to install the building's foundation below the static groundwater table. Soil vapor contamination originating from groundwater is anticipated to be removed through the dewatering and treatment system. Reducing, and possibly

eliminating, on-site sources of soil vapor contamination through construction means will limit or prevent exposure to off-site receptor populations.

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater, and soil vapor contamination as derived from a combination of field observations and analytical data that were discussed in Section 5.0 and from previous investigations.

7.1 Soil Contamination

The following discussion is divided by the following contaminant classifications:

- 1. Historic Fill
- 2. Petroleum-Impacted Material
- 3. CVOC-Impacted Material

7.1.1 Historic Fill Material

Contaminants related to historic fill material at the site include SVOCs, pesticides, and metals. Historic fill exists across the site, extending from surface grade to depths ranging from about 6 to 11.5 feet bgs. Eleven soil samples collected from the historic fill layer contained concentrations of SVOCs (including 3-methylphenol/4-methylphenol, phenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene,), metals (including arsenic, cadmium, trivalent chromium, copper, silver, nickel, selenium, zinc, lead, and mercury), and pesticides (4,4'-DDE, 4,4'-DDT, dieldrin) exceeding their respective UU and, in some cases, RURR SCOs.

7.1.2 Petroleum-Contaminated Material

Petroleum impacts to soil (evident by PID readings above background, odors, and staining) at depths ranging from 7 to 13.5 feet bgs were observed during the RI in borings 16B1, 16B2, 16B3 and 16B7 and during the Preliminary Site Investigation in borings LB01 and LB02. These impacts generally correspond with the observed groundwater interface. The maximum PID reading, 634.1 ppm, was recorded in 16B3 from 7 to 8 feet bgs. Soil boring 16B1, located up gradient to the potential USTs, contained gross staining and product from about 7 to 13.5 feet bgs. Analytical results for soil samples collected from 16B1, 16B3, 16B8, LB02 and LB05 exhibited concentrations of petroleum-related VOCs, including 1,2,4-trimethlybenzene, benzene, naphthalene, and total xylenes, exceeding UU SCOs in surficial samples and samples collected around the groundwater table. Soil boring logs from the Preliminary Investigation Report are included in Appendix A.

7.1.3 CVOC-Contaminated Material

Concentrations of CVOCs in excess of their respective UU SCOs were identified in surficial soil samples and samples collected around the groundwater interface from RI borings 16B1, 16B2, 16B3, 16B5, 16B6, 16B8, and 16B10, and previous borings B1, B2, B3, B4, B5, B6, B8, B10, and B11. The samples exhibiting concentrations of TCE exceeding UU SCOs were collected

from the northwest, west-central and eastern portions of the site. The highest concentrations of TCE and its degradation byproducts (vinyl chloride, 1,2-DCE) were detected up to 8 feet bgs generally in the north and eastern portions of the site. CVOCs were detected at a maximum depth of about 12 feet bgs across the site, consistent with the approximate start of the clay stratigraphy. Therefore, it is likely that the clay layer is acting as a vertical barrier to potential vertical migration of CVOCs. The presence of CVOCs in soil are likely due to a release during site historical operations.

7.2 Groundwater Contamination

The discussion is divided by the following contaminant classifications:

- 1. Petroleum-Contaminated Groundwater
- 2. CVOC-Contaminated Groundwater
- 3. Regional Groundwater Quality

7.2.1 Petroleum-Contaminated Groundwater

Analytical results for samples collected from wells MW3 and 16MW1 in the central portion of the site exhibited concentrations of petroleum-related VOCs, including 1,2,4-trimethylbenzene, and naphthalene, exceeding their respective TOGS Class GA SGVs. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. A black liquid or non-aqueous phase liquid (NAPL), was not observed when the same well was sampled during the 2017 RI. According the analytical results, petroleum contamination in groundwater appears localized to the central and eastern portions of the site in the vicinity of wells MW3 and 16MW1, likely due to a release in this area or an off-site source migrating on-to the site.

7.2.2 CVOC-Contaminated Groundwater

Analytical results revealed CVOC impacts to groundwater localized in the central and eastern portions of the site. Concentrations of CVOCs, including 1,1-dichloroethane, cis-1,2-dichloroethene, TCE, and vinyl chloride exceeding their respective TOGS Class GA SGVs, were found in samples collected from wells MW3, MW4, 16MW1, 16MW2 and 16MW3. When comparing groundwater analytical data from the 2015 Phase II to the 2017 RI, concentrations of TCE has decreased, while concentrations of breakdown daughter products 1,1-dichloroethane and vinyl chloride have increased. This shift from parent to daughter products suggests that CVOCs in groundwater are following the reductive dechlorination pathway.

7.2.3 Regional Groundwater Quality

Metals concentrations detected above TOGS Class GA SGVs include eight total metals (arsenic, iron, lead, manganese, mercury, nickel, sodium, and zinc) and six dissolved metals (arsenic, iron, manganese, nickel, sodium, and zinc). With the exception of arsenic, the concentrations detected are attributed to regional groundwater contamination and are not considered a

localized concern. The presence of arsenic at a concentration above its TOGS Class GA SGV may be the result of historical site uses as manufacturing or due to the quality of the historic fill.

7.3 Soil Vapor Contamination

A total of 43 VOCs, including petroleum-related and chlorinated VOCs, were detected in soil vapor samples across the site. Total CVOC concentrations in soil vapor ranged from 178.6 μ g/m³ in SG-6 to 259,057 μ g/m³ in SG-4. Total BTEX concentrations in soil vapor samples ranged from 93.8 μ g/m³ in SG-5 to 374.8 μ g/m³ in SG-2. The highest concentrations of CVOCs and BTEX compounds were detected in the central and eastern portions of the site, which is consistent with the locations of petroleum- and CVOC-contaminated groundwater.

8.0 CONCLUSIONS

The RI was implemented between November 20 and 29, 2017. The findings summarized herein are based on both qualitative data (field observations and instrumental readings), and laboratory analytical results of soil, groundwater, and soil vapor samples collected during the RI and previous investigations. Findings and conclusions are as follows:

- <u>Stratigraphy</u>: A historic fill layer was observed from surface grade to depths ranging from about 6 feet bgs in 16B5 to 11.5 feet bgs in 16B8 and consisted of brown, fine- to medium-grained sand with varying amounts of gravel, brick, concrete, asphalt, silt, glass, wood, coal fragments and slag. The fill layer is underlain by native soils typically consisting of fine silty sands. A clay layer was observed beginning at about 11 feet bgs and extending to at least to about 20 feet bgs. Based on findings from the geotechnical exploration, bedrock was not encountered within 100 feet of site grades.
- 2. <u>Hydrogeology:</u> Groundwater was encountered at about 6 to 6.5 feet bgs and is interpreted to flow west towards to East River.
- 3. <u>Historic Fill Quality:</u> Fill contains SVOCs, metals, and pesticides at concentrations above UU and/or RURR SCOs. VOCs were also identified within the historic fill, but are associated with potential chemical releases from historical uses of the site and surrounding sites.
- 4. <u>Petroleum-Impacted Soil, Groundwater and Soil Vapor</u>:
 - a. Field observations identified petroleum impacts, evidenced by odors, staining, and PID readings above background levels, in soil to depths of about 13.5 feet bgs in the central and eastern portions of the site. Product, staining, and/or odors were observed in boring 16B1 from 7 to 13.5 feet bgs, terminating within the clay layer. Petroleum-related constituents were detected at concentrations above UU and, in some areas, above RURR SCOs in soil samples collected from depths to about 12 feet bgs (B3).
 - b. Petroleum-related VOCs were detected in groundwater at concentrations exceeding TOGS Class GA SGVs at wells located in the central and eastern portions of the site, which are up-gradient to the USTs identified on the 1942 Sanborn Map and by the GPR survey. During the EBC Phase II ESI, a black liquid was encountered in monitoring well MW3. EBC collected a sample for identification and determined the liquid most closely resembled No. 6 fuel oil. NAPL or other free product was not observed in any of the sampled wells during the 2017 RI.
 - c. Petroleum-related constituents (including BTEX) were identified in soil vapor samples collected throughout the site.

- d. The presence of petroleum-related VOCs and SVOCs in soil is attributed to potential releases associated with the former auto repair facilities and historical USTs. The petroleum-related contamination in groundwater and soil vapor may be attributed to a combination of releases from site operations and adjacent and surrounding properties.
- 5. <u>CVOC-Impacted Soil, Groundwater and Soil Vapor</u>: Analytical data revealed concentrations of CVOCs in soil exceeding UU SCOs generally to depths of about 8 feet bgs and up to a maximum depth of about 12 feet bgs. CVOCs were also identified in groundwater samples at concentrations that exceed TOGS Class GA SGVs in the central and eastern portions of the site. CVOC impacts were identified in soil vapor samples collected across the site, with the highest concentrations located in the central and eastern portions of the site. The presence of CVOCs in soil, groundwater and soil vapor is likely a combination of releases from historical site uses as a repair facility and chemical warehouse or an off-site source.

Sufficient analytical data were gathered during the RI, together with previous studies, to establish site-specific soil cleanup levels and to develop a remedy for the site. The final remedy will be described and evaluated in a RAWP to be prepared in accordance with NYS BCP guidelines. The remedy will address historic fill impacted with SVOCs pesticides and metals; petroleum- and CVOC-impacted soil, groundwater and soil vapor; potential soil vapor intrusion conditions; and a contingency plan for the removal and closure of unknown USTs.

9.0 REFERENCES

- 1. Busciolano, Ronald. 2002. "Water-Table and Potentiometric-Surface Altitudes of the Upper Glacial, Magothy, and Lloyd Aquifers on Long Island, New York, in March-April 2000, with a Summary of Hydrogeologic Conditions."
- New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, dated October 2006 and applicable revisions (March 2017).
- 3. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, dated May 2004.
- New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010.
- 5. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) dated June 1998.
- United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010.
- 7. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006.
- 8. Environmental Business Consultant (EBC) Phase I Screening Summary, dated August 2015
- 9. EBC Phase II Investigation Data Summary, dated July 23, 2015
- 10. EBC Remedial Investigation Work Plan, February 8, 2017
- 11. Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology, D.P.C. Preliminary Site Investigation, dated October 20, 2017

Table 1 Sample Analysis Summary **Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Boring Location	Sample Name	Sample Depth (feet bgs)	Target Sample Interval	Sample Date	Sample Time	Laboratory Analysis
			Soil			
	16B1_0-2	0 to 2	0-2 foot Interval	11/20/2017	10:35	
16B1	16B1_7-8	7 to 8	Highest PID	11/20/2017	11:00	
	16B1_11-12	11 to 12	10-15 foot Interval	11/20/2017	11:10	
	16B1_14-15	14 to 15	Deepest/Clean Interval	11/20/2017	11:20	
	16B2_7-8	7 to 8	0-2 foot Interval	11/20/2017	9:30	
16B2	16B2_11-12	11 to 12	10-15 foot Interval	11/20/2017	9:35	
1002	16B2_13-14	13 to 14	Highest PID	11/20/2017	10:05	
	16B2_14-15	14 to 15	Clean, Vertical Delineation	11/20/2017	10:10	
	16B3_0-2	0 to 2	0-2 foot Interval	11/21/2017	12:25	
16B3	16B3_7-8	7 to 8	High PID	11/21/2017	12:40	
	16B3_10.5-11.5	10.5 to 11.5	Clean, Vertical Delineation	11/21/2017	12:45	
	16B8_0-2	0 to 2	0-2 foot Interval	11/20/2017	13:55	
16B8	16B8_5.5-6.5	5.5 to 6.5	3-5 foot Interval	11/20/2017	13:30	TCL/Part 375 VOCs + TICs (Method 8260C) TCL/Part 375 SVOCs + TICs (Method 8270D)
1000	16B8_11-12	11 to 12	10-15 foot Interval	11/20/2017	14:00	TAL/Part 375 Metals (Method 6010C)
	16B8_14-15	14 to 15	Deepest Interval	11/20/2017	14:05	
	16B4_3-4	3 to 4	3-5 foot Interval	11/21/2017	13:20	
16B4	16B4_11-12	11 to 12	10-15 foot Interval	11/21/2017	13:25	
	16B4_14.5-15	14.5 to 15	Deepest Interval	11/21/2017	13:35	
	16B5_4.5-5	4.5 to 5	3-5 foot Interval	11/20/2017	12:50	
16B5	16B5_12-13	12 to 13	10-15 foot Interval	11/20/2017	12:55	
	16B5_14-15	14 to 15	Deepest Interval	11/20/2017	13:00	
	16B6_3-4	3 to 4	3-5 foot Interval	11/21/2017	13:50	
16B6	16B6_10-11	10 to 11	10-15 foot Interval	11/21/2017	14:15	
	16B6_14.5-15	14.5 to 15	Deepest Interval	11/21/2017	14:30	
	16B7_6.5-7.5	6.5 to 7.5	Highest PID	11/20/2017	14:30	
16B7	16B7_11-12	11 to 12	Impacts, interval directly below	11/20/2017	14:50	
16B9	16B9_10-11	10 to 11	Highest PID	11/20/2017	11:35	
16B10	16B10_7-8	7 to 8	Highest PID	11/20/2017	12:05	EPH TCL/TAL/ Full Part 375 (TICs for VOCs and SVOCs),
16B11	16B11_7-8	7 to 8	Highest PID	11/20/2017	13:10	hexavalent chromium, cyanide, and Priority Pollutant + 40
			Groundwater			
16MW1	16MW1_112917	NA	LNAPL Recovery	11/29/2017	15:35	
16MW2	16MW2_112917	NA	LNAPL Recovery	11/29/2017	14:30	TCL/Part 375 VOCs + TICs (Method 8260C)
16MW3	16MW3_112917	NA	LNAPL Recovery	11/29/2017	13:05	TCL/Part 375 SVOCs + TICs (Method 8270D)
MW3	MW3_112917	NA	LNAPL Recovery	11/29/2017	11:25	TAL/Part 375 Metals (Method 6010C) TAL/Part 375 Dissolved Metals (Method 6010C)
MW4	MW4_112917	NA	LNAPL Recovery	11/29/2017	16:45	
			Quality Assurance/Quali	ity Control		
16B5	SODUP01_112017	12 to 13	16B5_12-13 Duplicate	11/20/2017	-	
16B4	SODUP02_112117	3 to 4	16B4_3-4 Duplidate	11/21/2017	-	TCL/Part 375 VOCs + TICs (Method 8260C)
16B3	SOMS/MSD_112017	0 to 2	16B3_0-2	11/21/2017	1230	TCL/Part 375 SVOCs + TICs (Method 8270D) TAL/Part 375 Metals (Method 6010C)
16B6	SOMS/MSD_112117	3 to 4	16B6_3-4	11/21/2017	1355	TAL/Lat 375 Wetas (Wethou 6010C)
16MW2	GWDUP01_112917	NA	16MW2 Duplicate	11/29/2017	-	TCL/Part 375 VOCs + TICs (Method 8260C) TCL/Part 375 SVOCs + TICs (Method 8270D)
MW3	GWMS/MSD_112917	NA	MW3	11/29/2017	11:30	TAL/Part 375 Metals (Method 6010C) TAL/Part 375 Dissolved Metals (Method 6010C)
Trip Blank	TB01_112017	NA	Day 1: Cooler #1	11/20/2017	15:30	
Trip Blank	TB02_112017	NA	Day 1: Cooler #2	11/20/2017	15:35	
Trip Blank	TB03_112117	NA	Day 2: Cooler #1	11/21/2017	15:15	VOCs EPA Method 8260B
Trip Blank	TB04_112917	NA	Day 3: Cooler #1	111/29/2017	14:15	
Trip Blank	TB05_112917	NA	Day 3: Cooler #2	11/29/2017	14:20	

Inp Diaris Notes: 1. TCL = Target Compound List 2. TAL = Target Analyte List 3. TICE = Tentatively Identified Compound TICE = Tentatively Identified Compound

4. VOC = Volatile Organic Compound

5. SVOC = Semivolatile Organic Compound 6. EPH = Extractable Petroleum Hydrocarbon

7. EPA = Environmental Protection Agency

8. bgs = below grade surface 9. NA = Not Applicable 10. QA/QC = Quality Assurance/Quality Control

11. SODUP01_112017 is a duplicate of the parent sample 1685_12-13 12. SODUP02_11217 is a duplicate of the parent sample 1684_3-4 13. GWDUP01_112917 is a duplicate of the parent sample MW3_112917

Table 2 Monitoring Well Construction Summary Remedial Investigation Report 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Location Identification Number	Date of Completion/ Construction	Well Status	Total Depth (feet bgs)	Diameter (inches)	Approximate Top of PVC Casing Elevation (NAVD88)	Screened Interval (feet bgs)	Construction Material
16MW1	11/21/2017				8.57		1"-diameter Pre-Pack
16MW2	11/21/2017	Permanent	15	1	8.04	5 to 15	PVC
16MW3	11/21/2017				7.74		FVC

Notes:

1. N/A = Not Applicable

2. PVC = Polyvinyl Chloride

3. bgs = below grade surface

4. NAVD88 = North American Vertical Datum of 1988

Table 3 **Groundwater Elevation Summary Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Well ID	Screened Interval (feet bgs)	Total Depth (feet bgs)	Top of Casing Elevation (NAVD88)	-	n top of PVC Casing bgs)	Elevation of Water Level (NAVD88)		
				11/29/2017	1/2/2018	11/29/2017	1/2/2018	
MW-1	5 to 15	15	8.78	6	6.99	2.78	1.79	
MW-2	5 to 15	15	9.2	-	7.6	-	1.60	
MW-3	5 to 15	15	7.98	6.39	6.9	1.59	1.08	
MW-4	5 to 15	15	8.59	6.66	6.88	1.93	1.71	
16MW1	5 to 15	15	8.57	6.81	6.85	1.76	1.72	
16MW2	5 to 15	15	8.04	6.42	6.75	1.62	1.29	
16MW3	5 to 15	15	7.74	6.03	6.98	1.71	0.76	

Notes:

Elevations are referenced to North American Vertical Datum of 1988 (NAVD88).
 PVC = polyvinyl chloride

3. bgs = below grade surface

Table 4A Soil Sample Results Summary **Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Location Sample ID Sampling Date Lab Sample ID Sampling Depth (feet bgs)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	16B1_0-2 11/20/2017 L1742789-12 0 to 2	16B 16B1_7-8 11/20/2017 L1742789-16 7 to 8	81 16B1_11-12 11/20/2017 L1742789-15 11 to 12	11/20/2017 L1742789-11	11/20/2017 L1742789-20	1682_11-12 11/20/2017 L1742789-10 11 to 12	B2 16B2_13-14 11/20/2017 L1742789-14 13 to 14	16B2_14-15 11/20/2017 L1742789-19 14 to 15	16B3_0-2 11/21/2017 L1743026-01 0 to 2	16B3 16B3_7-8 11/21/2017 L1743026-02 7 to 8	16B3_10.5-11.5 11/21/2017 L1743026-03 10.5 to 11.5		16 SODUP02_11211 11/21/2017 L1743026-11 3 to 4	11/21/2017	11/21/2017 L1743026-07	11/20/2017 L1742789-22	11/20/2017 L1742789-13	16B5 SODUP01_112017 11/20/2017 L1742789-18 12 to 13	11/20/2017			11/21/2017 L1743026-10	11/20/2017 L1742789-05			L1742789-01	38 16B8_11-12 16E 11/20/2017 11/ L1742789-03 L17 11 to 12 14	/20/2017 742789-04
VOCs (mg/kg) 1,1,1-Trichloroethane	0.68	100	0.17 U	0.28 U	0.0011 U	J 0.002 U	0.079 U	0.0011 U	0.0011 U	0.0015 U	0.035 J	0.14 U	0.06 U	0.0016 U	0.11	J 0.00095 U	U 0.00098 U	0.099 U	0.002 U	0.002 U	J 0.0019 U	0.09 U	0.0009 U	0.001 U	0.0012	J 0.00089 U	0.11 U	0.14 U	0.11 U 0.0	00086 U
1,1-Dichloroethane	0.27	26	0.25 U	0.42 U	0.0017 U	J 0.0031 U	0.12 U	0.0016 U	0.0016 U	0.0022 U	0.12 U	0.23	0.09 U	0.0024 U	0.17 U	J 0.0014 U	U 0.0015 U	0.15 U	0.003 U	0.0031 U	J 0.0028 U	0.13 U	0.0013 U	0.0015 U	0.0017 U	0.0013 U	0.17 U	0.21 U		.0013 U
1,1-Dichloroethene 1,2,3-Trichloropropane	0.33	100	0.17 U	0.11 J 2.8 U	0.0021	0.002 U J 0.02 U	0.079 U 0.79 U	0.0011 U 0.011 U	0.0011 U	0.0015 U 0.015 U	0.078 U 0.021 J	0.14 U 1.4 U	0.06 U 0.6 U	0.0016 U 0.016 U	0.11 U	J 0.00095 U J 0.0095 U	U 0.00098 U U 0.0098 U	0.099 U 0.99 U	0.002 U 0.02 U	0.002 U 0.02 U	J 0.0019 U J 0.019 U	0.09 U 0.9 U	0.0009 U 0.009 U	0.001 U 0.01 U	0.0012	J 0.00089 U J 0.0089 U	0.11 U	0.14 U 1.4 U		00086 U .0086 U
1,2,4,5-Tetramethylbenzene	~	~	0.67 U	4.8	0.062	0.0082 U	0.32 U	0.00019 J	0.00028 J	0.0059 U	0.021 J	0.4 J	0.24 U	0.0064 U	0.46 U	J 0.0038 U	U 0.0039 U	0.4 U	0.002 U	0.002 U	J 0.0075 U	0.36 U	0.0036 U	0.0041 U	0.0012 J	0.0036 U	0.44 U	0.56 U		.0034 U
1,2,4-Trimethylbenzene	3.6	52	0.84 U	8.7	0.11	0.01 U	0.4 U	0.0054 U	0.0054 U	0.0003 J	0.56	6.2	0.3 U	0.008 U	0.57 l	J 0.0048 U	U 0.0049 U	0.027 J	0.01 U	0.00062 J	0.0093 U	0.041 J	0.0045 U	0.0052 U	0.0058 U	J 0.0044 U	0.55 U	0.7 U		00022 J
1,2-Dibromo-3-chloropropane 1,3,5-Trimethylbenzene		~ 52	0.84 U 0.84 U	1.4 U 2.8	0.0057 U 0.04	J 0.01 U 0.01 U	0.4 U 0.4 U	0.0054 U 0.0054 U	0.0054 U 0.0054 U	0.0074 U 0.0074 U	0.39 UJ 0.38 J	0.73 U. 0.15 J	0.3 U.	J 0.008 UJ	0.57 U 0.57 U	0.0048 L	JJ 0.0049 UJ U 0.0049 U	0.5 U 0.024 J	0.01 U 0.01 U	0.01 U 0.00039 J	J 0.0093 U J 0.0093 U	0.45 U 0.02 J	0.0045 UJ 0.0045 U	0.0052 U. 0.0052 U	J 0.0058 U 0.0058 U	J 0.0044 U J 0.0044 U	0.55 U 0.55 U	0.7 UJ	0.56 U 0.1	.0043 U .0002 J
2-Butanone	0.12	100	1.7 U	2.8 U	0.011 L	J 0.02 U	0.79 U	0.0068 J	0.011	0.015 U	0.78 UJ	1.4 U.	0.6 U.	J 0.016 UJ	1.1 L	0.0095 L	JJ 0.0034 J	0.99 U	0.02 U	0.02 U	J 0.019 U	0.9 U	0.0043 J	0.02 J	0.0075 J	0.0089 U	1.1 U	1.4 UJ	1.1 U 0.0	.0086 U
Acetone	0.05	100	1.7 U	2.8 U	0.033	0.045	0.79 U	0.038	0.048	0.05	0.23 J	1.4 U	0.6 U	0.01 J	1.1 U	0.051	0.039	0.99 U	0.037	0.046	0.043	0.9 U	0.033	0.1	0.032	0.0097	1.1 U	1.4 U	1.1 U 0.	0.014
Acrolein Bromodichloromethane	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.2 U 0.17 U	0.28 U	0.028 L 0.0011 L	J 0.051 U J 0.002 U	0.079 U	0.027 U 0.0011 U	0.027 U 0.0011 U	0.037 U 0.0015 U	0.078 UJ	3.6 U 0.14 U.	1.5 U 0.06 U.	0.04 U J 0.0016 UJ	2.9 U 0.11 U	U 0.024 U U 0.00095 U	U 0.024 U JJ 0.00098 UJ	2.5 U 0.099 U	0.05 U 0.002 U	0.051 U 0.002 U	J 0.047 U J 0.0019 U	2.2 U 0.09 U	0.022 U 0.0009 UJ	0.026 U 0.001 U	0.029 U. J 0.0012 U	J 0.022 U J 0.00089 U	2.8 U 0.11 U	3.5 U 0.14 UJ	2.8 U U. 0.11 U 0.0	00086 U
Bromoform	~	~	0.67 UJ	J 1.1 U.	J 0.0046 U	J 0.0082 U	0.32 U	0.0044 U	0.0043 U	0.0059 U	0.31 UJ	0.58 U.	0.24 U.	J 0.0064 UJ	0.46 U	L 0.0038 L	JJ 0.0039 UJ	0.4 UJ	J 0.0081 U	0.0082 U	J 0.0075 U	0.36 U	0.0036 UJ	0.0041 U.	J 0.0046 U	J 0.0036 U	0.44 U.	0.56 UJ		.0034 U
Bromomethane Carbon disulfide	~	~	0.34 U 1.7 UJ	0.56 U	0.0023 U J 0.0032 J	J 0.0041 U J 0.011 J	0.16 U 0.79 UJ	0.0022 U	0.0022 U 0.0022 J	0.003 U	0.16 U 0.78 UJ	0.29 U 1.4 U.	0.12 U	0.0032 U J 0.016 UJ	0.06	J 0.0019 U J 0.0095 U	U 0.002 U JJ 0.0098 UJ	0.2 U	0.004 U J 0.014 J	0.0041 U 0.013 J	J 0.0037 U J 0.01 J	0.18 U 0.9 U	0.0018 U 0.009 UJ	0.0021 U	0.0023 U J 0.012 U	J 0.0018 U J 0.0089 U	0.22 U	0.28 U 1.4 UJ	0.22 U 0.0 1.1 UJ 0.0	.0017 U .0012 J
Carbon tetrachloride	0.76	2.4	0.17 U	2.8 U. 0.28 U	0.00043	J 0.002 U	0.079 U	0.0012 J 0.0011 U	0.0022 J	0.013 J 0.0015 U	0.078 U	0.14 U	0.6 U. 0.06 U	0.0016 U	1.1 U 0.11 U	J 0.00095 U	U 0.00098 U	0.99 UJ 0.099 U	0.002 U	0.002 U	J 0.0019 U	0.09 U	0.0009 U	0.01 U. 0.001 U	0.012 U	0.00089 U	1.1 U. 0.11 U	0.14 U	0.11 U 0.0	0012 J
cis-1,2-Dichloroethene	0.25	100	0.12 J	1.1	0.056	0.002 U	0.15	0.0011 U	0.0011 U	0.0015 U	0.078 U	16	0.06 U	0.0089 J	0.63	J 0.00095 l	U 0.00064 J	1.3	0.0017 J	0.002 U	J 0.0019 U	0.09 U	0.0009 U	0.001 U	0.0012 U	J 0.00089 U	0.78	0.39	0.26 0.0	00086 U
Cyclohexane	~	~	3.4 U 0.17 UJ	0.46 J 0.28 U	0.014	J 0.041 U	1.6 U 0.079 UJ	0.022 U 0.0011 U	0.022 U 0.0011 U	0.03 U	1.6 U 0.078 UJ	2.9 U 0.14 U.	1.2 U 0.06 U.	0.032 U J 0.0016 UJ	2.3 U 0.11 U	U 0.019 U U 0.00095 U	U 0.02 U JJ 0.00098 UJ	2 U	0.04 U	0.041 U	J 0.037 U	1.8 U 0.09 U	0.018 U 0.0009 UJ	0.021 U 0.001 U	0.023 U 0.0012 U	J 0.018 U	2.2 U 0.11 U.	2.8 U	2.2 U 0. 0.11 UJ 0.0	0.017 U
Dibromochloromethane Ethylbenzene	ĩ	41 41	0.17 U	0.43	0.0052	0.00042 J	0.079 U	0.0011 U	0.0011 U	0.00027 J	0.078 03	0.14 0.	0.06 U	0.0016 U	0.11 0	J 0.00095 U	U 0.00098 U	0.099 UJ 0.099 U	0.00038 J	0.002 U	J 0.00039 J	0.09 U	0.0009 U	0.001 U	0.0012 U	0.00019 J	0.038 J	0.14 UJ 0.14 U		00088 U
Isopropylbenzene	~	~	0.17 U	0.57	0.0095	0.002 U	0.079 U	0.0011 U	0.0011 U	0.0015 U	0.22	0.51	0.06 U	0.0016 U	0.11 U	J 0.00095 U	U 0.00098 U	0.099 U	0.002 U	0.002 U	J 0.0019 U	0.09 U	0.0009 U	0.001 U	0.0012 U	J 0.00089 U	0.11 U	0.14 U		00086 U
Methyl Acetate Methyl cyclohexane	ĩ	~	3.4 U 0.24 J	5.6 U 1.9	0.023 U 0.048	J 0.041 U 0.0082 U	0.12 J 0.32 U	0.022 U 0.0044 U	0.022 U 0.0007 J	0.03 U 0.0059 U	0.28 J	2.9 U 0.096 J	1.2 U 0.24 U	0.032 U 0.0064 U	2.3 U 0.46 U	J 0.019 l J 0.0038 l	U 0.02 U U 0.0039 U	2 U 0.4 U	0.04 U 0.0081 U	0.041 U 0.0082 U	J 0.037 U J 0.0075 U	1.8 U 0.36 U	0.018 U 0.0036 U	0.021 U 0.0041 U	0.023 U 0.0046 U	J 0.018 U J 0.0036 U	2.2 U 0.26 J	2.8 U 0.56 U	2.2 U 0. 0.13 J 0.0	0.017 U .0034 U
Methyl tert butyl ether	~ 0.93	100	0.24 J 0.34 U	0.56 U	0.0023 L	J 0.0041 U	0.16 U	0.0022 U	0.0022 U	0.0039 U	0.018 J	0.096 J	0.12 U	0.0032 U	0.23 U	J 0.0038 U	U 0.002 U	0.4 U	0.004 U	0.0041 U	J 0.0037 U	0.015 J	0.0038 U	0.0041 U	0.0048	J 0.0018 U	0.26 J	0.28 U	0.22 U 0.0	.0017 U
Naphthalene	12	100	0.024 J	13	0.11	0.01 U	0.15 J	0.0054 U	0.0054 U	0.0074 U	0.089 J	0.12 J	0.76	0.008 UJ	1.3 .	J 0.0048 U	U 0.0049 U	0.056 J	0.01 U	0.00089 J	0.0093 U	0.038 J	0.0045 U	0.0052 U	0.0058 U	J 0.0044 U	0.55 U	0.7 U	0.023 J 0.0	00045 J
n-Butylbenzene n-Propylbenzene	12 3.9	100 100	0.17 U 0.17 U	1 0.76	0.013 0.011	0.002 U 0.002 U	0.079 U 0.079 U	0.0011 U 0.0011 U	0.0011 U 0.0011 U	0.0015 U 0.0015 U	0.078 U 0.098	0.28 0.94	0.06 U 0.06 U	0.0016 U 0.0016 U	0.11 U	J 0.00095 U J 0.00095 U	U 0.00098 U U 0.00098 U	0.099 U 0.099 U	0.002 U 0.002 U	0.002 U 0.002 U	J 0.0019 U J 0.0019 U	0.09 U 0.09 U	0.0009 U 0.0009 U	0.001 U 0.001 U	0.0012 U 0.0012 U	J 0.00089 U J 0.00089 U	0.11 U 0.11 U	0.14 U 0.14 U		00086 U 00086 U
o-Xylene	~	~	0.34 U	1.3	0.011	0.002 U 0.0041 U	0.079 U 0.16 U	0.0022 U	0.0022 U	0.0015 U	2.7	0.94 0.13 J	0.06 U	0.0016 U	0.23	J 0.00095 l	U 0.002 U	0.099 U 0.2 U	0.002 U	0.002 U	J 0.0037 U	0.09 U 0.18 U	0.0009 U 0.0018 U	0.001 U	0.0012 0	J 0.0018 U	0.11 U	0.14 U 0.28 U		.0017 U
p/m-Xylene	~	~	0.34 U	1.3	0.017	0.0041 U	0.16 U	0.0022 U	0.0022 U	0.003 U	4.5	2	0.12 U	0.0032 U	0.23 l	J 0.0019 l	U 0.002 U	0.2 U	0.004 U	0.0041 U	J 0.0037 U	0.034 J	0.0018 U	0.0021 U	0.0023 U	J 0.0018 U	0.37	0.28 U	0.1 J 0.0	.0017 U
p-Diethylbenzene p-Ethyltoluene	ĩ	~	0.67 U	6.2 3.7	0.085 0.053	0.0082 U 0.0082 U	0.32 U 0.32 U	0.0044 U 0.0044 U	0.0043 U 0.0043 U	0.0059 U 0.00035 J	0.31 U 0.42	0.58 U 0.37 J	0.24 U 0.24 U	0.0064 U 0.0064 U	0.46 U 0.46 U	J 0.0038 U J 0.0038 U	U 0.0039 U U 0.0039 U	0.4 U 0.4 U	0.0081 U 0.0081 U	0.0082 U 0.00057 J	J 0.0075 U 0.0075 U	0.36 U 0.034 J	0.0036 U 0.0036 U	0.0041 U 0.0041 U	0.0046 U 0.0046 U	J 0.0036 U J 0.00022 J	0.44 U 0.44 U	0.56 U 0.56 U	0.44 U 0.1	.0034 U 00022 J
p-Isopropyltoluene	~	~	0.17 U	0.97	0.053	0.0082 U	0.079 U	0.0011 U	0.0043 U	0.00035 J	0.42 0.025 J	0.37 J 0.044 J	0.24 U	0.0016 U	0.21	J 0.00095 U	U 0.00098 U	0.099 U	0.002 U	0.0057 J	J 0.0019 U	0.034 J	0.0038 U	0.0041 U	0.0048	J 0.00089 U	0.44 U	0.14 U	0.11 U 0.0	00086 U
sec-Butylbenzene	11	100	0.17 U	0.87	0.013	0.002 U	0.079 U	0.0011 U	0.0011 U	0.0015 U	0.078 U	0.61	0.06 U	0.0016 U	0.11 l	J 0.00095 U	U 0.00098 U	0.099 U	0.002 U	0.002 U	J 0.0019 U	0.09 U	0.0009 U	0.001 U	0.00057 J	0.00089 U	0.11 U	0.14 U	0.11 U 0.0	00086 U
tert-Butylbenzene Tetrachloroethene	5.9 1.3	100 19	0.84 U 0.84	0.19 J 0.28 U	0.0032 .	J 0.01 U 0.002 U	0.4 U 0.083	0.0054 U 0.0011 U	0.0054 U 0.0011 U	0.0074 U 0.0015 U	0.39 U 0.36	0.17 J 0.14 U	0.3 U 0.06 U	0.008 U 0.022 J	0.57 U 0.87 .	J 0.0048 U J 0.00095 U	U 0.0049 U U 0.00048 J	0.5 U 5.7	0.01 U 0.0008 J	0.01 U	J 0.0093 U J 0.0019 U	0.45 U 0.79	0.0045 U 0.0009 U	0.0052 U 0.001 U	0.0024 J	0.0044 U 0.00089 U	0.55 U 2.3	0.7 U 0.36	0.56 U 0.0 0.23 0.0	.0043 U 00086 U
Toluene	0.7	100	0.25 U	0.087 J	0.00082	J 0.0031 U	0.083 0.051 J	0.0016 U	0.0016 U	0.0015 U	0.36 0.11 J	0.058 J	0.09 U	0.0024 U	0.87 0.17 0.17	J 0.0014 U	U 0.0015 U	0.66	0.000 U	0.0002 U	0.0019 U	0.058 J	0.0013 U	0.0015 U	0.0012	0.00018 J	0.17 U	0.36 0.21 U		.0002 J
trans-1,2-Dichloroethene	0.19	100	0.25 U	0.42 U	0.0008	J 0.0031 U	0.12 U	0.0016 U	0.0016 U	0.0022 U	0.12 U	1.1	0.09 U	0.0024 U	0.17 l	J 0.0014 U	U 0.0015 U	0.073 J	0.003 U	0.0031 U	J 0.0028 U	0.13 U	0.0013 U	0.0015 U	0.0017 U	J 0.0013 U	0.17 U	0.21 U		.0013 U
Trichloroethene Vinyl chloride	0.47 0.02	21 0.9	30	0.34 0.56 U	0.14 0.011	0.002 U 0.0041 U	5.5 0.16 U	0.0011 U 0.0022 U	0.0011 U 0.0022 U	0.0015 U 0.003 U	0.45 0.16 U	9.6 1.6	0.06 U 0.12 U	0.049 J 0.0032 U	4.6 . 0.23 U	J 0.00095 l J 0.0019 l	U 0.00095 J	13 0.2 U	0.0022 0.001 J	0.0011 J	J 0.0019 U J 0.0037 U	3.1 0.18 U	0.0009 U 0.0018 U	0.001 U 0.0021 U	0.0012 U 0.0023 U	J 0.00046 J J 0.0018 U	29	15 0.28 U	15 0.0 0.22 U 0.0	.0085
Xylenes, Total	0.26	100	0.34 U	2.6	0.038	0.0041 U	0.16 U	0.0022 U	0.0022 U	0.003 U	7.2	2.1 J	0.12 U	0.0032 U	0.23 0	J 0.0019 U	U 0.002 U	0.2 U	0.001 J	0.0041 U	J 0.0037 U	0.034 J	0.0018 U	0.0021 U	0.0023	0.0018 U	0.22 U	0.28 U	0.1 J 0.0	.0017 U
SVOCs (mg/kg)																			1											
2-Methylnaphthalene 3-Methylphenol/4-Methylphenol	~ 0.33	100	0.072 J	20	0.52 0.5	0.36 U	0.26 0.1 J	0.27 U 0.14 J	0.26 0.1 J	0.33 U	0.98 0.042 J	0.18 J 0.95	0.099 J 0.28	0.28 U	0.065	0.23	U 0.049 J U 0.18 J	0.06 J 0.043 J	0.35 U 0.42 U	0.37 U 0.44 U	J 0.33 U J 0.39 U	0.25 U 0.051 J	0.23 U 0.079 J	0.09 J 0.14 J	0.081 J	0.24 U 0.29 U	0.036 J 0.26 U	0.051 J 0.14 J	0.051 J 0. 0.38 0	0.094 J 0.03 J
4-Chloroaniline	~	~	0.18 U	1.3 U	0.22 L	J 0.3 U	0.21 U	0.23 U	0.21 U	0.28 U	0.19 UJ	0.23 U	0.19 U	0.24 UJ	0.22 U	J 0.19 U	U 0.2 U	0.2 U	0.42 U	0.31 U	J 0.27 U	0.031 J	0.19 U	0.14 J	0.21	J 0.2 U	0.18 U	0.3 U	0.25 U 0	0.19 U
Acenaphthene	20	100	0.29	1 U	0.15	J 0.24 U	0.89	0.04 J	0.28	0.22 U	0.061 J	0.18	0.29	0.041 J	0.26	J 0.15 l	U 0.15 J	0.076 J	0.24 U	0.25 U	J 0.22 U	0.17 U	0.15 U	0.18	0.055 J	0.16 U	0.018 J	0.04 J		0.16
Acenaphthylene Acetophenone	100	100	0.035 J	1 U	0.077	J 0.24 U J 0.3 U	0.44 0.21 U	0.18 U 0.23 U	0.2 0.21 U	0.22 U 0.28 U	0.077 J	0.24	0.052 J 0.19 U	0.19 U 0.24 U	0.046	0.15 U 0.19 U	U 0.16 U	0.16 0.076 J	0.24 U 0.29 U	0.25 U 0.31 U	J 0.22 U J 0.27 U	0.18	0.15 U 0.19 U	0.054 J	0.035 J	0.16 U 0.2 U	0.056 J 0.17 J	0.14 J		0.26 0.18 J
Anthracene	100	~ 100	0.52	2.6	0.33	0.18 U	1.8	0.046 J	0.65	0.17 U	0.23	0.75	0.5	0.082 J	0.55	0.04	J 0.32	0.71	0.18 U	0.18 U	J 0.16 U	0.12	0.11 U	0.37	0.12	0.12 U	0.12	0.31		0.77
Benzaldehyde	~	~	0.24 U	1.7 U	0.085	J 0.4 U	0.28 U	0.3 U	0.28 U	0.37 U	0.26 U	0.3 U	0.26 U	0.084 J	0.22	0.25 U	U 0.26 U	0.63	0.39 U	0.41 U	J 0.36 U	0.28 U	0.25 U	0.26 U	0.28 U	J 0.26 U	0.24 U	0.4 U	0.33 U C	0.25 U
Benzo(a)anthracene Benzo(a)pyrene	1	1	1.2	0.91 0.69 J	0.96 0.87	0.18 U 0.24 U	5.4 5.1	0.078 J 0.083 J	0.68 0.62	0.17 U 0.22 U	0.68 0.66	3 3.3	0.85 0.73	0.25 J 0.25 J	1.2 1.1	J 0.17 J 0.19	0.42 0.32	1.4 1.2	0.18 U 0.24 U	0.18 U 0.25 U	J 0.16 U J 0.22 U	0.95 0.94	0.063 J 0.064 J	0.62 0.56	0.33 0.58	0.12 U 0.16 U	0.31 0.29	1.4 1.3		2 2.1
Benzo(b)fluoranthene	1	1	1.3	0.41 J	0.85	0.18 U	6.5	0.077 J	0.71	0.17 U	0.89	4	0.87	0.25 J	1.5	J 0.23	0.39	1.5	0.18 U	0.18 U	J 0.16 U	1.1	0.073 J	0.68	0.64	0.12 U	0.38	1.6		2.6
Benzo(ghi)perylene	100	100	0.52	1 U	0.52	0.24 U	2.8	0.054 J	0.33	0.22 U	0.54	1.8	0.36	0.14 J	0.69	J 0.095 .	J 0.13 J	0.59	0.24 U	0.25 U	J 0.22 U	0.49	0.039 J	0.27	0.52	0.16 U	0.18	0.66	0.56	1.3
Benzo(k)fluoranthene Benzoic Acid	0.8	3.9	0.45 0.59 U	0.78 U 4.2 U	0.3	0.18 U J 0.98 U	2.1 0.7 UJ	0.14 U 0.74 U	0.26 0.68 U	0.17 U 0.9 UJ	0.26 0.63 UJ	1.3 0.75 U.	0.35 0.63 U.	0.12 J J 0.76 UJ	0.42	0.073 . 0.62 L	J 0.15 JJ 0.64 UJ	0.48 0.65 UJ	0.18 U J 0.95 U	0.18 U	J 0.16 U J 0.88 U	0.42 0.68 UJ	0.11 U 0.62 UJ	0.21 0.65 U.	0.22 J 0.68 U	0.12 U 0.65 U	0.12 0.58 U	0.62 0.98 U		0.78 0.61 U
Biphenyl	~	~	0.42 U	2 J	0.078	J 0.69 U	0.096 J	0.52 U	0.48 U	0.63 U	0.03 03 0.2 J	0.058 J	0.44 U	0.54 U	0.51 U	J 0.44 U	U 0.45 U	0.46 U	0.67 U	0.7 U	J 0.62 U	0.48 U	0.44 U	0.46 U	0.48	J 0.46 U	0.41 U	0.69 U	0.57 U C	0.43 U
Bis(2-ethylhexyl)phthalate	~	~	0.18 U	1.3 U	0.22 L	J 0.3 U	0.21 U	0.23 U	0.21 U	0.28 U	0.19 U	0.23 U	0.19 U	0.24 U	0.22 l	J 0.19 U	U 0.2 U	0.2 U	0.29 U	0.31 U	J 0.27 U	0.12 J	0.19 U	0.2 U	0.21 U	J 0.2 U	0.29	0.3 U		0.19
Carbazole	~ 1	~	0.27	1.3 U 1.2	0.11	J 0.3 U 0.18 U	0.87 5.3	0.23 U 0.079 J	0.21 U 0.81	0.28 U 0.17 U	0.074 J	0.27	0.25	0.051 J	0.27	0.029	J 0.13 J	0.13 J	0.29 U 0.18 U	0.31 U 0.18 U	J 0.27 U J 0.16 U	0.044 J	0.19 U 0.059 J	0.17 J	0.21 U	J 0.2 U	0.047 J	0.12 J		0.4
Chrysene Dibenzo(a,h)anthracene	0.33	3.9 0.33	1.2 0.15	0.78 U	0.17	0.18 U	0.69	0.14 U	0.092 J	0.17 U	0.74 0.13	0.54	0.8 0.1 J	0.26 J 0.036 J	1.2 . 0.18 .	J 0.16 J 0.035 .	0.37 J 0.052 J	1.3 0.17	0.18 U	0.18 U	J 0.16 U	0.88 0.15	0.059 J	0.57 0.082 J	0.35 0.12	0.12 U	0.33 0.05 J	1.3 0.19		1.9 0.35
Dibenzofuran	7	59	0.22	1.7	0.13	J 0.3 U	0.58	0.023 J	0.26	0.28 U	0.078 J	0.19 J	0.2	0.03 J	0.2	J 0.19 l	U 0.1 J	0.14 J	0.29 U	0.31 U	J 0.27 U	0.022 J	0.19 U	0.14 J	0.091 J	0.2 U	0.026 J	0.068 J	0.067 J C	0.16 J
Di-n-butylphthalate Fluoranthene	100	100	0.18 U 2.6	1.3 U 1.3	0.22 L 1.4	J 0.3 U 0.18 U	0.21 U	0.23 U 0.12 J	0.21 U 1.5	0.28 U 0.17 U	0.19 U 1.3	0.23 U 4.6	0.19 U 2.1	0.24 U 0.53 J	0.22 U 2.9 J	J 0.19 U J 0.24	U 0.2 U 0.85	0.2 U 2.8	0.29 U 0.18 U	0.31 U 0.18 U	J 0.27 U J 0.16 U	0.21 U 1.6	0.19 U 0.11	0.2 U 1.2	0.21 U 0.12 U	J 0.2 U J 0.12 U	0.049 J 0.7	0.3 U 2.7		0.056 J 4.6
Fluoranthene	30	100	0.23	1.3 1.3 U	0.25	0.18 U	0.86	0.12 J 0.037 J	0.42	0.17 U 0.28 U	0.067 J	4.6 0.29	0.32	0.53 J 0.041 J	0.26	0.19 0	U.85	2.8 0.17 J	0.18 U	0.31 U	J 0.27 U	0.025 J	0.19 U	0.21	0.059 J	0.12 U	0.7 0.034 J	0.047 J		4.6 0.21
Hexachloroethane	~	~	0.15 U	1 U	0.17 L	J 0.24 U	0.17 U	0.18 U	0.17 U	0.22 U	0.062 J	0.18 U	0.15 U	0.19 U	0.18 l	J 0.15 l	U 0.16 U	0.16 U	0.24 U	0.25 U	J 0.22 U	0.17 U	0.15 U	0.16 U	0.17 U	J 0.16 U	0.14 U	0.24 U	0.2 U 0	0.15 U
Indeno(1,2,3-cd)pyrene Naphthalene	0.5	0.5 100	0.59 0.11 J	1 U 3.8	0.4 0.25	0.24 U 0.3 U	3.2 0.56	0.046 J 0.23 U	0.34 0.24	0.22 U 0.28 U	0.52	2 0.53	0.42 0.22	0.16 J 0.042 J	0.76 . 0.16 .	J 0.11 . J 0.19 U	J 0.16 ∪ 0.074 J	0.69 0.13 J	0.24 U 0.29 U	0.25 U 0.31 U	J 0.22 U J 0.27 U	0.57 0.082 J	0.042 J 0.19 U	0.31 0.17 J	0.55 0.83	0.16 U 0.2 U	0.19 0.032 J	0.77 0.13 J		1.4 0.17 J
Phenanthrene	12	100	2.8	3.8 8.1	1.2	0.3 U	12	0.23 U	1.6	0.28 U 0.17 U	0.92	2.2	2	0.042 J 0.43 J	3	J 0.19 (0.98	2.2 J	0.18 U	0.18 U	J 0.16 U	0.082 J 0.27	0.19 U	0.17 J	0.83	0.12 U	0.032 J 0.55	1.3 J		3.1 J
Phenol	0.33	100	0.18 U	1.3 U	0.065	J 0.3 Ŭ	0.21 U	0.23 Ú	0.21 U	0.28 U	0.19 U	0.33	0.19 U	0.24 U	0.22 l	J 0.19 U	U 0.2 U	0.2 U	0.29 U	0.31 U	J 0.27 U	0.21 U	0.19 U	0.031 J	0.21 U	J 0.2 U	0.18 U	0.3 U	0.25 U C	0.19 U
Pyrene Total Metals (mg/kg)	100	100	2.2	6.1	1.4	0.18 U	12	0.13 J	1.6	0.17 U	1.4	4.2	1.6	0.46 J	2.4	0.21	0.69	2.3	0.18 U	0.18 U	U 0.16 U	1.5	0.099 J	1	0.38	0.12 U	0.6	2.4	1.8	3.9
Total Metals (mg/kg) Aluminum, Total	~	~	1130	12600	3910	12000	7440	3530	3000	12200	2450	2320	6800	4090	6500	7320	2940	1190	10700	13000	11700	3700	4460	5580	5020	6250	937	5270 J		5850
Antimony, Total	~	~	0.761 J	6.29 U	5.03 U	J 7.14 U	4.87 U	5.45 U	4.95 U	6.57 U	3.84 J	9.79	4.62 U	5.73 U	15 .	J 4.61 U	U 4.78 U	10.2	6.73 U	7.2 U	J 6.55 U	2.98 J	4.66 U	4.84 U	2.04 J	4.69 U	4.27 U	3.58 J	1.23 J 4	4.39 U
Arsenic, Total Barium, Total	13 350	16 400	5.26 76.4	19.2 128	6.14	10.9 21.6	30.8 182	35.9 112	20.6 150	8.62 21.4	20.8 672	86 99.3	2.28 35.3	9.39 J 219	19.8 370	J 4.99 63.9	27.7 177	31.9 292	8.31 28.9	11 35.1	9.46 21.2	32.1 J 207	95.4 99.5	7.78 53.8	6.95 87.1	23.1	4.62 69.5	28.9 J 175 J		9.82 149
Beryllium, Total	7.2	72	0.135 J	0.629	122 0.161	J 0.514 J	0.244 J	0.152 J	0.347 J	21.4 0.499 J	672 0.301 J	99.3 0.15 J	0.24 J	0.435 J	0.571	0.387	J 0.162 J	0.048 J	28.9 0.444 J	0.547 J	J 0.485 J	0.28 J	0.233 J	53.8 0.29 J	2.27	69 0.253 J	09.5 0.034 J	0.146 J		149).272 J
Cadmium, Total	2.5	4.3	0.304 J	37.2	0.844	J 1.76	7.99	1.1	2.66	1.51	9.17 J	18	0.61 J	0.516 J	1.09	0.82	J 2.34	1.93	1.39	1.8	1.57	3.3 J	2.24	0.958 J	0.586 J	0.872 J	0.196 J	7.86 J	1.3 1	1.06
Calcium, Total	~	110	506 0.9 U	13900	5060	2070	6640 1 U.J	8120 1.1 U	16900	1700	4130 0.95 UJ	21700	985	3660	4850	1960	11100	2590	4640	2940 1.5 U	2760 J 1.3 U	10600 1 U.I	5660	5690 0.97 U	15400	6040	1020	33300 J		9710
Chromium, Hexavalent Chromium, Trivalent	30	110	12	1.3 U 13	13	J 1 J 25 J	1 UJ 15	1.1 U	7.8	1.3 U 24	0.95 UJ 22	1.1 U 10	0.94 U 14	1.2 U 16	1.1 U 26	J 0.94 U 17	U 0.97 U 16	0.98 U 74	1.4 U 23	1.5 U. 28	24 J	1 UJ 74	0.93 U 15	0.97 U 15	2400	0.98 U 69	0.88 U 7.3	1.5 U 95		0.91 U 34
Chromium, Total	~	~	12.5	12.9	13.3	26.2	14.9	11.8	7.75	24.5	21.5 J	10.1 J	14 J	15.9 J	26.2	J 17.3 .	J 16.5 J	73.9	23	28	23.7	73.7 J	14.7 J	15 J	2400	69.2	7.3	95	67.1 3	33.6
Cobalt, Total	~ FO	270	2.11	12.2	5.02	9.91	42.5	6.08	6.6	10.1	5.83	30.5	6	16.2	8.1	6.94	12.4	2.41	9.12	11.2	9.61	9.59 J	8.4	5.5	8.03	8.26	4.18	4.76		6.52
Copper, Total Cyanide, Total	50 27	270 27	118 0.4 J	53.7 1.5 U.	41.6 J 1.4 J	14.8 J 1.8 U.	646 J 1.2 UJ	44.7 1.3 UJ	64.2 1.2 UJ	14.1 1.6 UJ	321 2.5 J	1250 1.3 J	18.2 1.1 U.	51.7 J J 1.3 UJ	195 . 1.6 .	J 23.6 J 1.1 L	74.5 JJ 0.3 J	298 0.98 J	23.7 1.6 UJ	31.5 1.8 U	14.1 J 1.6 UJ	342 23 J	499 0.67 J	71 1.1 J	162 2.5 J	48.2 1.2 UJ	24.1 0.52 J	1030 J 0.96 J		93.9 0.29 J
Iron, Total	~	~	5490	28500	13900	30400	69000	19600	27100	27200	23300 J	345000 J	11300 J	5780 J	10100	J 15000 .	J 34600 J	24600	24800	30800	28200	39400 J	34300 J	13900 J	9250	17000	3370	42700	15400 12	2500
Lead, Total	63	400	158	659	426	14.6	272	295	666	13.8	1640 J	1340 J	46.7 J	1010 J	5630	96.2	J 417 J	1630	32	43.2	13.9	698 J	671 J	238 J	348	140	45.3	487	193 3	300
Magnesium, Total Manganese, Total	1600	2000	130 55.2	805 207	1360 251	5570 381	1620 370	1280 375	1380 558	5370 346	455 J 221	1130 J 804	2230 J 148	351 J 164	508 . 106	J 1860 . 278	J 1400 J 338	179 35.1	4760 299	5640 376	5270 338	1730 J 259	2060 J 249	2820 J 186	551 48.7	1690 189	90.1 23.1	1020 J 247 J	2520 1 104 1	1950 159
Mercury, Total	0.18	0.81	1.5	1.5	3.8	0.04 J	1.3	3/5	2.1	0.04 J	1.7	804 160	0.62	1.9 J	4.9	J 0.14	2.1	28	0.45	0.65	0.06 J	259	6.8	0.58	48.7	0.58	68	247 J		3.7
Nickel, Total	30	310	5	295	12.2	20.4	60.9	11.4	44	21.2	23.4	60.8	9.83	21.2	16	11.5	63.5	39.6	26.7	35.5	19.6	32	47	12.3	17.2	11.8	7.01	161 J	28.1 1	19.2
Potassium, Total	~~~~	100	124 J	859	625	2490	584	632	332	2410	331	63.7 J	613	428	546	748	361	438	2150	2520	2340	744 J	634	1040	272	685	276	1380 J		1010
Selenium, Total Silver, Total	3.9 2	180 180	0.516 J 0.846 U	6.7 1.26 U	0.543	J 0.4 J J 1.43 U	0.75 J 0.974 U	0.436 J 1.09 U	0.674 J 0.991 U	2.63 U 1.31 U	1.9 0.274 J	2.15 U 0.645 J	1.85 U 0.924 U	1.01 J 0.481 J	1.76 . 0.83 .	J 1.84 U J 0.922 U	U 1.38 J U 0.955 U	3.51 57.8	2.69 U 1.35 U	2.88 U 1.44 U	J 2.62 U J 1.31 U	1.42 J 1 U	0.821 J 1.89	0.3 J 0.968 U	3.77 0.993 U	0.675 J	0.735 J 0.854 U	4.21 20.7 J).676 J 1.42
Sodium, Total	~	~	32.6 J	384	183	J 1900	49.2 J	174 J	219	1300	94.9 J	216	65 J	186 J	256	99.5	J 169 J	100 J	1130	1330	1400	157 J	383	1320	178 J	75.4 J	72.9 J	352 J		444
Thallium, Total	~	~	1.69 U	2.52 U	2.01 L	J 2.86 U	1.95 U	2.18 U	1.98 U	2.63 U	1.83 U	1.84 J	1.85 U	2.29 U	2.15 l	J 1.84 l	U 1.91 U	1.9 U	2.69 U	2.88 U	J 2.62 U	2 UJ	1.87 U	1.94 U	1.99 U	J 1.88 U	1.71 U	2.92 U	2.34 U 1	1.76 U
Vanadium, Total Zinc, Total	109	10000	6.67 32.7	31.4 1520	19 92.4	31.3 68.9	25.6 7990	16.3 126	26.5 304	28.8 65.4	12.6 2020 J	20.8 632 J	22.1 35.6 J	20.9 1320 J	34.2 2240	27.9	17.1 J 1130 J	20 648	27.4 91.6	32 133	28.4 62.4	28.6 J 427 J	25.4 354 J	18.8 118 J	8.71 323	21.8 70.6	11.6 25.6	30.4 J 949 J		20.7 214
Zinc, Total General Chemistry (%)	109	10000	32.1	1520	32.4	00.9	/990	120	304	00.4	2020 J	032 J	30.0 J	1320 J	2240	40 .	J 1130 J	046	91.0	133	02.4	42 /	354 J	l IIÕ J	323	70.0	20.0	343 J	203 2	2 14
Solids, Total	~	~	89.1	63.4	76.7	54.3	77.4	71.8		59.3	84.2	71.6	85.5	69.5	72.4	84.7	82.3	81.3	56.3	52.8	60.8	79.3	85.6	82.2	78.6	81.5	90.8	54.2	65.5	88
Notes:										Qualifers:																				

Solius, Tuter Motes: 1. Soli sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 New York Codes, Rules, and Regulations (6NYCRR) Part 375 Urnestricted Use, and Restricted Use Restricted-Residential Soli Cleanup Objectives (SCOs). 2. Only detected compounds are shown in the table. 3. Concentrations above Unrestricted Use SCOs are bolded. 4. Concentrations above Restricted Use Restricted-Residential SCOs are bolded and shaded.

Qualifers: J = Analyte detected at or above the method detection limit but below the reporting limit - data is estimated U = Analyte not detected at or above the level indicated UJ = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

SODUP01_112017 is a duplicate of the parent sample 16B5_12-13.
 SODUP02_112117 is a duplicate of the parent sample 16B6_3-4.
 mg/kg = miligrams per kilogram
 ~ = No criteria exists for this analyte.
 bgs = below grade surface
 UOCS = volatile organic compounds
 SVOCs = semivolatile organic compounds

Table 4B **Soil Sample Results Summary - NAPL Delineation Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Location Sample ID	NYSDEC Part 375	NYSDEC Part 375	16B9 16B9_10-11	16B10 16B10 7-8	16B11 16B11 7-8
Sampling Date	Unrestricted Use	Restricted Use	11/20/2017	11/20/2017	11/20/2017
Lab Sample ID	SCOs	Restricted- Residential SCOs	L1742789-17	L1742789-21	L1742789-07
Sample Depth (feet bgs)		nesidential 0003	10 to 11	7 to 8	7 to 8
VOCs (mg/kg) 1,1-Dichloroethane	0.27	26	0.15 U	0.037 J	0.00059 J
1,2,4,5-Tetramethylbenzene	~	~	0.15 J	0.12 J	0.0045 U
2-Butanone	0.12	100	1 U	0.76 U	0.0072 J
Acetone Bromoform	0.05	100	1 U	0.2 J 0.3 U	0.036 0.0045 U
Carbon disulfide	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.4 UJ 1 UJ		0.0045 U 0.0013 J
cis-1,2-Dichloroethene	0.25	100	0.069 J	8.7	0.0057
Dibromochloromethane	~	~	0.1 UJ		0.0011 U
Ethylbenzene	1	41	0.1 U	0.076 U	0.00024 J 0.0011 U
Isopropylbenzene Methyl Acetate	~ ~	~ ~	0.1 U 0.46 J	0.017 J 0.25 J	0.022 U
Methyl cyclohexane	~	~	0.098 J	0.037 J	0.0045 U
Naphthalene	12	100	0.09 J	0.046 J	0.0056 U
n-Butylbenzene	12 3.9	100	0.025 J 0.1 U	0.025 J 0.023 J	0.0011 U 0.0011 U
n-Propylbenzene p-lsopropyltoluene	3.9	100	0.1 U 0.057 J	0.023 J 0.17	0.0011 U 0.0011 U
sec-Butylbenzene	11	100	0.039 J	0.032 J	0.0011 U
Tetrachloroethene	1.3	19	0.18	0.076 U	0.0011 U
Toluene trans-1,2-Dichloroethene	0.7	100 100	0.15 U 0.15 U	0.027 J 0.068 J	0.0017 U
trans-1,2-Dichloroethene Trichloroethene	0.19 0.47	21	0.46	0.068 J 0.51	0.0017 U 0.0011 U
Vinyl chloride	0.02	0.9	0.2 U	0.59	0.014
SVOCs (mg/kg)					0.037
2-Methylnaphthalene 3-Methylphenol/4-Methylphenol	~ 0.33	~ 100	0.12 J 0.094 J	1.4 2.7	0.077 J 0.16 J
3-Methylphenol/4-Methylphenol Acenaphthene	20	100	0.094 J 0.031 J	2.7 3.1	0.16 J 0.1 J
Acenaphthylene	100	100	0.057 J	0.11 J	0.031 J
Anthracene	100	100	0.12 J	0.5	0.31
Benzaldehyde	ĩ	ĩ	0.091 J 0.36	0.3 J 0.44	0.26 U 0.57
Benzo(a)anthracene Benzo(a)pyrene	1	1	0.32	0.38	0.48
Benzo(b)fluoranthene	1	1	0.41	0.49	0.6
Benzo(ghi)perylene	100	100	0.18 J	0.23	0.27
Benzo(k)fluoranthene Biphenyl	0.8	3.9 ~	0.14 0.54 U	0.17 0.18 J	0.22 0.45 U
Bis(2-ethylhexyl)phthalate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~	0.24 U	0.18 J	0.45 U
Carbazole	~	~	0.071 J	0.19 J	0.12 J
Chrysene	1	3.9	0.37	0.46	0.54
Dibenzo(a,h)anthracene Dibenzofuran	0.33 7	0.33 59	0.055 J 0.066 J	0.061 J 0.39	0.068 J 0.12 J
Fluoranthene	100	100	0.83	1.2	1.4
Fluorene	30	100	0.073 J	1.6	0.17 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.2	0.24	0.3
Naphthalene Phenanthrene	12 100	100 100	0.18 J 0.64	5.4 1.6	0.14 J 1.4
Phenol	0.33	100	0.24 U	0.44	0.2 U
Pyrene	100	100	0.69	1	1.1
Herbicides (mg/kg)	-				
Total Herbicides	~	~	ND	ND	ND
PCBs (mg/kg) PCBs, Total	0.1	1	ND	ND	ND
Pesticides (mg/kg)					
4,4'-DDT	0.0033	7.9	0.00431 U	0.00469	0.00351 U
Total Metals (mg/kg) Aluminum, Total	~	~	3530	3480	3740
Antimony, Total	~	~	4.04 J	5.69 U	4.72 U
Arsenic, Total	13	16	117	91.2	33.9
Barium, Total	350	400	172	170 0.239 J	175
Beryllium, Total Cadmium, Total	7.2	72 4.3	0.228 J 1.42	0.239 J 1 J	0.245 J 1.28
Calcium, Total	~	~	15800	10000	5960
Chromium, Hexavalent	1	110	1.2 UJ		0.96 UJ
Chromium, Trivalent	30	180	10	7	15
Chromium, Total Cobalt, Total	~ ~	~ ~	10.4 6.07	7.01 3.36	15.1 6.14
Copper, Total	50	270	49.5	24.1	439
Cyanide, Total	27	27	1.4 UJ		1.1 J
Iron, Total	~	~	17800	8840	18300
Lead, Total Magnesium, Total	63 ~	400	9410 540	509 989	828 824
Manganese, Total	1600	2000	159	197	411
Mercury, Total	0.18	0.81	3.4	2.7	9.6
Nickel, Total	30	310	13	6.53	30.6
Potassium, Total Selenium, Total	~ 3.9	~ 180	409 3.08	523 1.21 J	471 0.943 J
Silver, Total	2	180	1.78	0.41 J	1.13
Sodium, Total	~	~	303	373	185 J
Vanadium, Total	~	~	15.3	15.3	20
Zinc, Total EPH (mg/kg)	109	10000	391	537	552
Total EPH	~	~	230	278	1220
General Chemistry (%)					
Solids, Total	~	~	68.9	69.2	83

and shaded. 5. mg/kg = milligrams per kilogram 6. - = No criteria exists for this analyte. 7. bgs = below grade surface 8. ND = Not Detected 9. NAPL = Non-Aqueous Phase Liquid 10. VOCS = volsitie organic compounds 11. SVOCS = semivolatile organic compounds 12. PCBs = polycholrinated biphenyls 13. EPH = Extractable Petroleum Hydrocarbons

 $\label{eq:J} J = Analyte detected at or above the method detection limit but below the reporting limit - data is estimated$

Qualifers:

 $\mathsf{U}=\mathsf{Analyte}\ \mathsf{not}\ \mathsf{detected}\ \mathsf{at}\ \mathsf{or}\ \mathsf{above}\ \mathsf{the}\ \mathsf{level}$

indicated

UJ = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

Table 5 **Groundwater Sample Results Summary Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Location	NYSDEC	MW3 1129	17	MW4 1129	17	16MW1 11	2917	16MW2 11291	7	GWDUP01_11	2917	16MW3 112	917
Sampling Date	TOGS	11/29/201	7	11/29/201	7	11/29/20	17	11/29/2017	í	11/29/201	7	11/29/201	7
Lab Sample ID VOCs (µg/L)	SGVs	L1743740-0	01	L1743740-	06	L1743740	-04	L1743740-03		L1743740-0	5	L1743740-0)2
1,1-Dichloroethane	5	2.5	U	2.2	J	2.5	U	2.5	U	2.5	U	1.6	J
1,2,4,5-Tetramethylbenzene	5	2.6		2	U	2	U		\cup	2	U	2	U
1,2,4-Trimethylbenzene	5	1.5	J	2.5	U	1.5	J		U	2.5	U	2.5	U
1,3,5-Trimethylbenzene 2-Chloroethylvinyl ether	5	0.77 10	J R	2.5 10	U R	2.5 10	U R		∪ R	2.5 10	U R	2.5 10	U R
Acetone	50	5	U	5	U	5	U		Ü	5	U	2.4	J
Benzene	1	0.21	J	0.5	Ū	0.5	Ũ		Ű	0.5	Ū	0.93	-
Bromomethane	5	2.5	UJ	2.5	UJ	2.5	UJ		UJ	2.5	UJ	2.5	UJ
Carbon tetrachloride	5	0.5	UJ	0.5 40	UJ	0.5	UJ		UJ	0.5 0.73	UJ	0.5 8.6	UJ
cis-1,2-Dichloroethene Cyclohexane	5	2.8 0.96	J	10	U	2.5 10	U		U	10	J	8.0 10	U
Freon-113	5	2.5	ŰJ	2.5	UJ	2.5	ŰIJ		ŬJ	2.5	UJ	2.5	ŰJ
Methyl cyclohexane	~	1.3	J	10	U	10	U		\cup	10	U	10	U
Naphthalene	10	7.8		2.5	U	17			U	0.72	J	0.73	J
o-Xylene	5	0.93	J	2.5	U	2.5	U		U	2.5	U	2.5	U
p-Ethyltoluene Tert-Butyl Alcohol	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.98 10	J UJ	2 10	UJ	2 10	UUJ		UJ	2 10	UJ	2 10	UJ
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U		U	0.23	J	2.7	00
trans-1,2-Dichloroethene	5	2.3	J	2.5	Ū	2.5	Ũ		Ŭ	2.5	Ū	2.5	U
Trichloroethene	5	0.5	U	6.8		0.5	U	4.5		5.5		21	
Trichlorofluoromethane	5	2.5	UJ	2.5	UJ	2.5	UJ		UJ	2.5	UJ	2.5	UJ
Vinyl chloride Xylenes, Total	2 5	5.1 0.93	J	4 2.5	U	1 2.5	U U		U	1 2.5	UU	0.19 2.5	J
SVOCs (µg/L)	5	0.93	J	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
2,6-Dinitrotoluene	5	5	UJ	5	UJ	5	UJ	5	UJ	5	U	5	UJ
2-Methylnaphthalene	~	2.8		0.1	U	7.9		0.1	\cup	0.1	U	0.11	
2-Nitroaniline	5	5	UJ	5	UJ	5	UJ		UJ	5	U	5	UJ
2-Nitrophenol	~	10	UJ	10	UJ	10	UJ		UJ	10	U	10	UJ
Acenaphthene Acenaphthylene	20	0.84 0.26		0.1	UU	0.84 0.08	J		J	0.04	J	0.36 0.06	J
Anthracene	~ 50	0.26		0.1	U	0.08	J	0.04	J	0.05	J	0.08	J
Benzo(a)anthracene	0.002	0.1	U	0.1	U	0.03	J		J	0.04	J	0.45	
Benzo(a)pyrene	0.002	0.1	U	0.1	U	0.1	U		U	0.1	U	0.41	
Benzo(b)fluoranthene	0.002	0.1	U	0.1	U	0.02	J		J	0.04	J	0.6	
Benzo(ghi)perylene Benzo(k)fluoranthene	~ 0.002	0.1	UU	0.1	UU	0.1	UU		U	0.1	U	0.39	
Benzoic Acid	0.002	50	Ŭ	50	U	14	J		U	50	U	50	- U
Biphenyl	~	2	Ŭ	2	Ŭ	1.1	J		Ŭ	2	Ŭ	2	Ŭ
Bis(2-chloroethyl)ether	1	2	UJ	2	UJ	2	UJ	2	UJ	2	U	2	UJ
Caprolactam	~	10	UJ	10	UJ	10	UJ		UJ	10	U	10	UJ
Chrysene	0.002	0.1	U	0.1	U	0.1	UU		J	0.1	U	0.48	
Dibenzo(a,h)anthracene Dibenzofuran	~	0.68	U J	2	U	2	U		U U	0.1 2	U	0.1	J
Fluoranthene	50	0.1	Ŭ	0.1	Ŭ	0.26	0	0.1	0	0.07	J	1	0
Fluorene	50	1.1		0.05	J	0.43			\cup	0.1	U	0.25	
Hexachlorocyclopentadiene	5	20	UJ	20	UJ	20	UJ		UJ	20	UJ	20	UJ
Indeno(1,2,3-cd)pyrene	0.002	0.1	U	0.1	U	0.1 9.5	U		UU	0.1	U	0.39	
Naphthalene Phenanthrene	10 50	3.8 0.28		0.04	U J	9.5 2.5		0.09	J	0.07	J	0.33 1.1	
Pyrene	50	0.12		0.1	Ŭ	0.21		0.09	J	0.06	J	0.92	
Total Metals (µg/L)													
Aluminum, Total	~	12.6		74.2		28.5			J	1920	J	364	
Arsenic, Total	25	10.32		120.6		5.87		4.54	J	9.16	J	4.77	
Barium, Total Beryllium, Total	1000 3	157.5 0.5	U	192.4 0.5	U	248 0.5	U	263.2 0.5	U	317.9 0.15	J	136 0.5	U
Cadmium, Total	5	0.2	U	1.58	0	0.2	U	0.1	J	0.24	5	0.75	0
Calcium, Total	~	114000	0	126000		216000	0	264000	Ŭ	261000		184000	
Chromium, Total	50	0.6	J	0.67	J	0.97	J	4	J	9.98	J	2.22	
Cobalt, Total	~~~	0.5	U	0.81		0.8		1.79	J	3.25	J	9.98	
Copper, Total	200	1.71	U	41.2 5	U	1.04		24.38 7	J	45.86	J	15.37	U
Cyanide, Total Iron, Total	200 300	20300	0	ہ 26100	0	8 2760		6070		6 9620		3680	0
Lead, Total	25	0.34	J	14.92		3.5			J	359	J	53.44	
Magnesium, Total	35000	4840	Ĵ	12200	J	17800	J	20000	Ĵ	21300	J	8410	
Manganese, Total	300	495.6		346.8		576.8		553.8	. 1	572.6		538	
Mercury, Total	0.7	1	U	1	U	1	U		J	20.05	J	0.7 136.9	J
Nickel, Total Potassium, Total	100	3.26 7560		36.83 18800		6.75 20200		8.3 17800		11.19 18900	l	136.9	
Silver, Total	50	0.4	U	0.4	U	0.4	U	0.33	J	0.31	J	0.4	U
Sodium, Total	20000	14300		40100		58600		60600		69700		25200	
Thallium, Total	0.5	0.5	U	0.5	U	0.5	U		J	0.5	U	0.45	J
Vanadium, Total	~ 2000	5 10	U U	5	U	5	U J	3.97	J	9.12 102.1	l	2.13 3294	J
Zinc, Total Dissolved Metals (µg/L)	2000	10	U	378.3		4.59	J	48.6		102.1		3294	
Aluminum, Dissolved	~	10	1	9.62	J	5.42	J	7.17	J	4.61	J	8.47	J
Antimony, Dissolved	3	0.76	J	4	U	4	U	4	U	0.65	J	0.97	J
Arsenic, Dissolved	25	9.94		112.1		5.84		1.45		1.64	l	3.28	
Barium, Dissolved Cadmium, Dissolved	1000	145.2	U	184.5		246.8	U	209.6	U	205.3	U	76.89	
Calcium, Dissolved	5	0.2 107000	U	0.34 126000		0.2 213000	U	0.2 246000	0	0.2 246000	U	0.41 180000	
Chromium, Dissolved	~ 50	0.001	U	0.001	U	0.001	U	240000	J	0.001	U	0.001	U
Cobalt, Dissolved	~	0.5	U	0.81	-	0.83		1.02		0.99		9.32	-
Copper, Dissolved	200	1	U	1.4		1	U	1	U	1	U	1.47	
Iron, Dissolved	300	18600		20400		2830		4030		4120		3040	
Lead, Dissolved Magnesium, Dissolved	25 35000	4520	U	0.64 12100	J	1 17300	U	19400	U	1 19600	U	1.28 7980	J
Manganese, Dissolved	35000	4520 467.9		338.2		569.2		506		496		483.5	J
Nickel, Dissolved	100	3.23		34.5		7		2.81	ľ	2.68		135.6	
Potassium, Dissolved	~	7150		19300		20200		17200		17200	_ [10400	
Sodium, Dissolved	20000	13500	J	40400		57200		61700]	62500		23400	
Zinc, Dissolved	2000	10	U	285.2		10	U	10	U	10	U	3236	
Notes:	sults are compa						Qualif	ers:					

 Notes:

 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA - Drinking Water.

 2. Only detected compounds are shown in the table.

 3. Concentrations detected above Class GA SGVs are bolded and shaded.

 4. (SWDUPC) 112917 is a duplicate of the parent sample 16MW2_112917

 5. upd, = micrograms per Liter

b. model = micrograms per citer
c. ~= Criterion does not exist.
7. VOCs = volatile organic compounds
8. SVOCs = semivolatile organic compounds

J = Analyte detected at or above the method detection limit but below the reporting limit; therefore data is estimated U = Analyte not detected at or above the level indicated

 $\label{eq:UJ} UJ = The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.$

R = The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Table 6 Soil Vapor Sample Results Summary Remedial Investigation Report 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

VOCs (µg/m³) 1,1,1,2-Tetrachloroethane 29.5 1,1,2-Trichloroethane 1.00 1,1,2-Trichloroethane 1.00 1,1,2-Trichloroethane 736 1,1-Dichloroethane 736 1,1-Dichloroethane 1,310 1,2,4-Trichlorobenzene 1.00 1,3-Dichlorobenzene 3.96 1,3-Dichlorobenzene 20.8 1,4-Dichlorobenzene 20.8 1,4-Dichlorobenzene 20.8 1,4-Dichlorobenzene 1.00 1,3-Dichlorobenzene 1.00 1,4-Dichlorobenzene 1.00 4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone 1.00 Acetone 6,430 Acetone 1.00 Bromodichloromethane 1.00 Bromodichloromethane 1.00 Carbon Tetrachloride 0.25 Chlorobenzene 1.00 Chlorobenzene 1.00 Carbon Tetrachloride 1.00 Chlorobenzene 1.00 <th></th> <th>0. 6224229</th> <th></th> <th></th> <th></th>		0. 6224229			
WOCs (µg/m²) 1,1,1-Trichloroethane < 1.00 1,1,2-Tetrachloroethane < 1.00 1,1,2-Trichloroethane < 1.00 1,1,2-Trichloroethane < 1.00 1,1-Dichloroethane 736 1,1-Dichloroethane 736 1,1-Dichloroethane 736 1,1-Dichloroethane 1,310 1,2-4-Trichlorobenzene 1.36 1,3-Butadiene < 1.00 1,3-Dichlorobenzene 20.8 1,4-Dichorobenzene 20.8 1,4-Dichlorobenzene 1.00 1,4-Dichlorobenzene < 1.00 2.Hexanone < 1.00 4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone < 1.00 Acetone 6,430 Acrylonitrile < 1.00 Bromoform < 1.00 Bromomethane < 1.00 Carbon Disulfide 97.7 Carbon Tetrachloride < 0.25 Chlorobenzene < 1.00 Chloroethane < 1.00	SG-2	SG-3	SG-4	SG-5	SG-6
VOCs (µg/m³) 1,1,2-Tetrachloroethane < 1.00 1,1,2-Tetrachloroethane 29.5 1,1,2-Trichloroethane < 1.00 1,1,2-Trichloroethane < 1.00 1,1-Dichloroethane 736 1,1-Dichloroethane 736 1,1-Dichloroethane 1.310 1,2-Trimethylbenzene 1.36 1,3,5-Trimethylbenzene 3.96 1,3-Dichlorobenzene < 1.00 1,3-Dichlorobenzene < 1.00 1,4-Dichorobenzene < 1.00 1,4-Dichlorobenzene < 1.00 1,4-Dichlorobenzene < 1.00 2-Hexanone < 1.00 4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone < 1.00 Acctone 6,430 Acrylonitrile < 1.00 Bromoform < 1.00 Bromoform < 1.00 Bromoform < 1.00 Carbon Disulfide 97.7 Carbon Tetrachloride < 1.00 Cyclohexane < 1.00 <	/28/2015	7/28/2015	7/28/2015	7/28/2015	7/28/2015
1,1,1,2-Tetrachloroethane < 1.00					
1,1,1-Trichloroethane 29.5 1,1,2,2-Tetrachloroethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,1,2-Trichloroethane < 1.00	6,000	1.42	205	78.5	154
1,1,2-Trichloroethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,1-Dichloroethane 736 1,1-Dichloroethane 1,310 1,2-4-Trichlorobenzene 1.00 1,3-5-Trimethylbenzene 13.6 1,3-5-Trimethylbenzene 20.8 1,4-Dichlorobenzene 20.8 1,4-Dichlorobenzene 20.8 1,4-Dichlorobenzene 20.8 1,4-Dichlorobenzene 21.00 2-Hexanone 21.00 2-Hexanone 21.00 2-Hexanone 21.00 4-Setoroe 6,430 Acetone 6,430 Acetone 21.00 Benzene 101 Benzene 101 Bromoform 21.00 Bromoform 21.00 Carbon Disulfide 97.7 Carbon Tetrachloride 2.025 Chloroethane 21.00 Chloroethane 21.00 Chloroethane 1.00 Cyclohexane 21.00 Cyclohexane 21.00 Cyclohexane 21.00 Cyclohexane 21.00 Dibromochloromethane 1.00 Ethyl A	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,1-Dichloroethene 1,310 1,2,4-Trichlorobenzene 3.06 1,3,5-Trimethylbenzene 3.96 1,3-Butadiene <1.00	2,340	32.2	5.82	< 1.00	< 1.00
1,2,4-Trichlorobenzene < 1.00	1,180	< 1.00	1,240	< 1.00	< 1.00
1,2,4-Trimethylbenzene 13.6 1,3,5-Trimethylbenzene 3.96 1,3-Butadiene <1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1,3,5-Trimethylbenzene 3.96 1,3-Dichlorobenzene 20.8 1,4-Dichlorobenzene 21.00 1,4-Dicklorobenzene 21.00 1,4-Dicklorobenzene 21.00 1,4-Dicklorobenzene 21.00 1,4-Dicklorobenzene 21.00 2-Hexanone 21.00 4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone 4.00 Acetone 6,430 Acrylonitrile <1.00	17.4	9.04	17.1	15.2	13
1,3-Dichlorobenzene 20.8 1,4-Dichlorobenzene < 1.00	5.45	13.8	5.31	4.39	3.92
1.4-Dichlorobenzene < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
1.4-Dioxane < 1.00	26.4	6.67	27.6	8.05	3.4
2-Hexanone < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
4-Ethyltoluene 3.33 4-Isopropyltoluene 4.12 4-Methyl-2-pentanone < 1.00	68.4	< 1.00	< 1.00	238	9.95
4-Isopropyltoluene 4.12 4-Methyl-2-pentanone < 1.00	3.04	7.96	3.27	3.72	3.11
4-Methyl-2-pentanone < 1.00	< 1.00	2.89	< 1.00	3.62	3.34
Acetone 6,430 Acrylonitrile < 1.00	< 1.00	< 1.00	3.5	< 1.00	1.78
Acrylonitrile < 1.00	2,230	2,210	1,470	3,490	153
Benzene 101 Benzyl Chloride < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Benzyl Chloride < 1.00	18.6	20.3	22.9	5.3	5.4
Bromodichloromethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bromoform < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Bromomethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Carbon Disulfide 97.7 Carbon Tetrachloride < 0.25	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Carbon Tetrachloride < 0.25	17.1	10	101	18.1	< 1.00
Chlorobenzene < 1.00	0.8	0.28	6,350	6.66	0.31
Chloroethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Chloroform < 1.00	11	25.9	< 1.00	< 1.00	< 1.00
Chloromethane < 1.00	162	1.21	1,950	26.8	< 1.00
cis-1,2-Dichloroethene 11,000 1 cis-1,3-Dichloropropene < 1.00	< 1.00	< 1.00	1.7	< 1.00	< 1.00
cis-1,3-Dichloropropene < 1.00	0,500	40.8	6,260	21.8	< 1.00
Cyclohexane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Dibromochloromethane < 1.00	10.9	344	< 1.00	< 1.00	2.07
Dichlorodifluromethane < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Ethyl Acetate < 1.00	1.2	< 1.00	1.56	3.86	1.4
Ethylbenzene 13 Heptane 1,120 Hexachlorobutadiene < 1.00	322	260	241	239	169
Heptane 1,120 Hexachlorobutadiene < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Heptane 1,120 Hexachlorobutadiene < 1.00	14	11.8	12.6	10.8	11.8
Hexachlorobutadiene < 1.00	16.5	311	12.1	41.8	7.58
Isopropylalcohol56Isopropylbenzene1.04Xylene (m&p)41Methyl Ethyl Ketone383MTBE< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Isopropylalcohol 56 Isopropylbenzene 1.04 Xylene (m&p) 41 Methyl Ethyl Ketone 383 MTBE < 1.00	23.7	609	22.8	42.6	7.01
Isopropylbenzene 1.04 Xylene (m&p) 41 Methyl Ethyl Ketone 383 MTBE < 1.00	53.1	52.3	28.3	244	13.6
Xylene (m&p) 41 Methyl Ethyl Ketone 383 MTBE < 1.00	1.14	2.84	1.18	< 1.00	< 1.00
Methyl Ethyl Ketone 383 MTBE < 1.00	43.4	38.8	40.8	35.5	37.1
MTBE < 1.00	436	492	245	1,100	84.9
Methylene Chloride 219 n-Butylbenzene 2.44 Xylene (o) 19 Propylene < 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
n-Butylbenzene 2.44 Xylene (o) 19 Propylene < 1.00	43.4	6.28	64.2	7.19	4.17
Xylene (o) 19 Propylene < 1.00	< 1.00	< 1.00	< 1.00	1.73	1.22
Propylene< 1.00sec-Butylbenzene< 1.00	17.8	17.2	16.7	13.9	14.4
sec-Butylbenzene < 1.00	< 1.00	< 1.00	< 1.00	125	< 1.00
Styrene< 1.00Tetrachloroethene7,730Tetrahydrofuran< 1.00	< 1.00	4.22	< 1.00	< 1.00	< 1.00
Tetrachloroethene 7,730 Tetrahydrofuran < 1.00	2.28	< 1.00	2.15	1.8	1.79
Tetrahydrofuran< 1.00Toluene58trans-1,2-Dichloroethene2,710trans-1,3-Dichloropropene< 1.00	109	203	1,790	87.4	77.3
Toluene58trans-1,2-Dichloroethene2,710trans-1,3-Dichloropropene< 1.00	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
trans-1,2-Dichloroethene 2,710 trans-1,3-Dichloropropene 2,980 1	281	35.7	34.9	28.3	36.9
trans-1,3-Dichloropropene < 1.00 Trichloroethene 2,980 1	666	22	539	3.53	< 1.00
Trichloroethene 2,980 1	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
	83,000	119	243,000	26,500	24.6
Trichlorofluoromethane 2.27	4.63	2.23	3.71	30.2	5.1
Trichlorotrifluoroethane 1.8	1.38	2.28	2.54	1.4	7.59
Vinyl Chloride 1,650	544	77.9	212	< 0.25	< 0.25
	8,171.62	4,994.02	263,869.54	32,438.15	821.84

1. Soil vapor analytical results shown in the data table are referenced

from EBC's July 2015 Environmental Site Investigation.

2. Results detected below the reporting limit are shown in grey.

3. μ g/m³ = microgram per cubic meter

4. VOCs = Volatile Organic Compounds

Table 7 Quality Assurance/Quality Control Sample Results Summary **Remedial Investigation Report** 215 North 10th Street, Brooklyn, New York Langan Project No. 170482201 BCP Site No. C224229

Location	TB01_112		TB02_112		TB03_112		TB04_112		TB05_112	
Sampling Date Lab Sample ID	11/20/20 L1742789		11/20/20 L1742789		11/21/20 L1743026		11/29/20 L1743740		11/29/20 L1743740	
Sample Type	Soil Trip E	Blank	Soil Trip B	lank	Soil Trip B	lank	GW Trip B	lank	GW Trip E	Blank
VOCs (µg/L) 1,1,1,2-Tetrachloroethane	2.5		2 E		2.5		2.5		2.5	
1,1,1,2-1etrachioroethane	2.5	U	2.5 2.5	U	2.5	U	2.5	UU	2.5	l
1.1.2.2-Tetrachloroethane	0.5	U	0.5	U	0.5	U	0.5	U	0.5	L
1,1,2-Trichloroethane	1.5	Ŭ	1.5	Ŭ	1.5	Ŭ	1.5	Ŭ	1.5	l
1,1-Dichloroethane	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
1,1-Dichloroethene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	L
1,1-Dichloropropene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,2,3-Trichlorobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,2,3-Trichloropropane	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,2,4,5-Tetramethylbenzene	2	U	2	U	2	U	2	U	2	L
1,2,4-Trichlorobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,2,4-Trimethylbenzene	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U U	2.5 2.5	UU	2.5 2.5	L
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	2.5	UU	2.5	U	2.5	U	2.5	U	2.5	l
1,2-Dichlorobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,2-Dichloroethane	0.5	Ŭ	0.5	Ŭ	0.5	Ŭ	0.5	Ŭ	0.5	ί
1,2-Dichloropropane	1	Ũ	1	Ŭ	1	Ŭ	1	Ū	1	i
1,3,5-Trimethylbenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,3-Dichlorobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
1,3-Dichloropropane	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
1,3-Dichloropropene, Total	0.5	U	0.5	U	0.5	U	0.5	U	0.5	L
,4-Dichlorobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
1,4-Dioxane	250	U	250	U	250	U	250	U	250	l
2,2-Dichloropropane	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
2-Butanone	5	U	5	U	5	U	5	∪ R	5	L
2-Chloroethylvinyl ether 2-Hexanone	10 5	UJ	10 5	UJ	10 5	R U	10 5	н U	10 5	F
4-Methyl-2-pentanone	5	U	5	U	5	U	5	U	5	l
Acetone	5	U	5	U	5	U	5	U	5	L
Acrolein	5	Ŭ	5	Ŭ	5	Ŭ	5	Ŭ	5	l
Acrylonitrile	5	Ū	5	Ŭ	5	Ŭ	5	Ū	5	Ū
Benzene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	L
Bromobenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
Bromochloromethane	2.5	U	2.5	U	2.5	U	2.5	U	2.5	L
Bromodichloromethane	0.5	U	0.5	U	0.5	U	0.5	U	0.5	L
Bromoform	2	U	2	U	2	U	2	U	2	L
Bromomethane	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	U
Carbon disulfide	5	U	5	U	5	U	5	U	5	L
Carbon tetrachloride Chlorobenzene	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U U	0.5 2.5	UJ	0.5 2.5	U. L
Chloroethane	2.5	UJ	2.5	ŰJ	2.5	U	2.5	U	2.5	l
Chloroform	2.5	U	2.5	U	2.5	U	2.5	U	2.5	ί
Chloromethane	2.5	Ŭ	2.5	U	2.5	Ŭ	2.5	Ŭ	2.5	ί
cis-1,2-Dichloroethene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
cis-1,3-Dichloropropene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	l
Cyclohexane	10	U	10	U	10	U	10	U	10	l
Dibromochloromethane	0.5	U	0.5	U	0.5	U	0.5	U	0.5	l
Dibromomethane	5	U	5	U	5	U	5	U	5	l
Dichlorodifluoromethane	5 2.5	U	5	U	5 2.5	U	5	U	5 2.5	l
Ethyl ether	2.5	U	2.5 2.5	U U	2.5	U U	2.5 2.5	UU	2.5	l
Ethylbenzene Freon-113	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	Ľ
Hexachlorobutadiene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	l
sopropylbenzene	2.5	Ŭ	2.5	U	2.5	U	2.5	Ŭ	2.5	i
Methyl Acetate	2	U	2	U	2	U	2	U	2	
Vlethyl cyclohexane	10	U	10	U	10	U	10	U	10	
lethyl tert butyl ether	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
Nethylene chloride	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
laphthalene	2.5	U	2.5	UJ	2.5	UJ	2.5	U	2.5	
-Butylbenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
-Propylbenzene -Chlorotoluene	2.5 2.5	U U	2.5 2.5	U U	2.5 2.5	U U	2.5 2.5	UU	2.5 2.5	1
-Chlorotoluene -Xylene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
/m-Xylene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
-Chlorotoluene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	i
-Diethylbenzene	2.0	U	2.5	U	2.5	U	2.0	U	2.0	
-Ethyltoluene	2	U	2	U	2	U	2	U	2	
-Isopropyltoluene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
ec-Butylbenzene	2.5	Ŭ	2.5	U	2.5	Ŭ	2.5	Ŭ	2.5	
tyrene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
ert-Butyl Alcohol	10	U	10	U	10	U	10	UJ	10	ι
ert-Butylbenzene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
etrachloroethene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
oluene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
ans-1,2-Dichloroethene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
ans-1,3-Dichloropropene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
ans-1,4-Dichloro-2-butene	2.5	U	2.5	U	2.5	U	2.5	U	2.5	
richloroethene	0.5	U	0.5	U	0.5	U	0.5	U	0.5	
richlorofluoromethane	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	ι
/inyl acetate	5	U	5 1	U U	5 1	U U	5 1	UU	5 1	l
/inyl chloride	1									

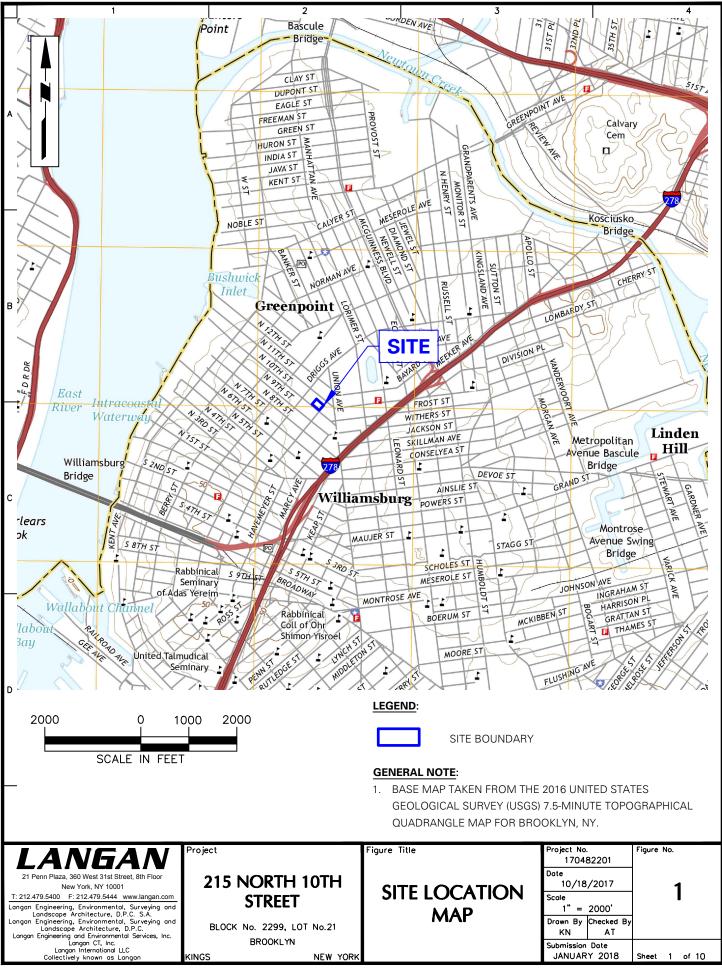
Notes: 1. Only detected compounds are show in the table. 2. GW = Groundwater

μg/L = microgram per liter
 VOCs = volatile organic compounds

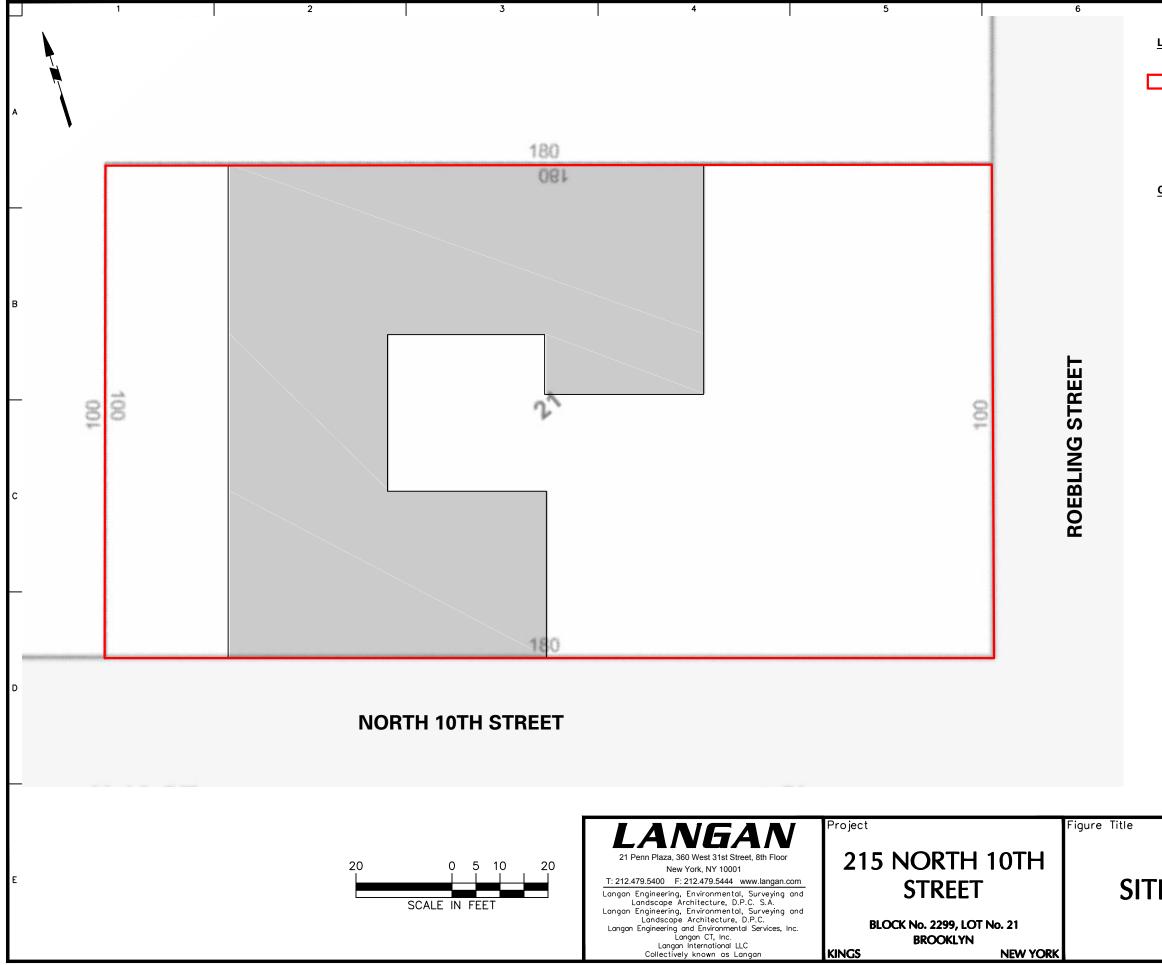
Qualifers:

 $\mathsf{J}=\mathsf{Analyte}$ detected at or above the method detection limit but below the reporting limist; therefore the data is estimated

U = Analyte not detected at or above the level indicated UJ = Validator Qualifier - The analyte was not detected at a level greater than or


equal to the reporting limit (RL); however, the reported RL is approximate and

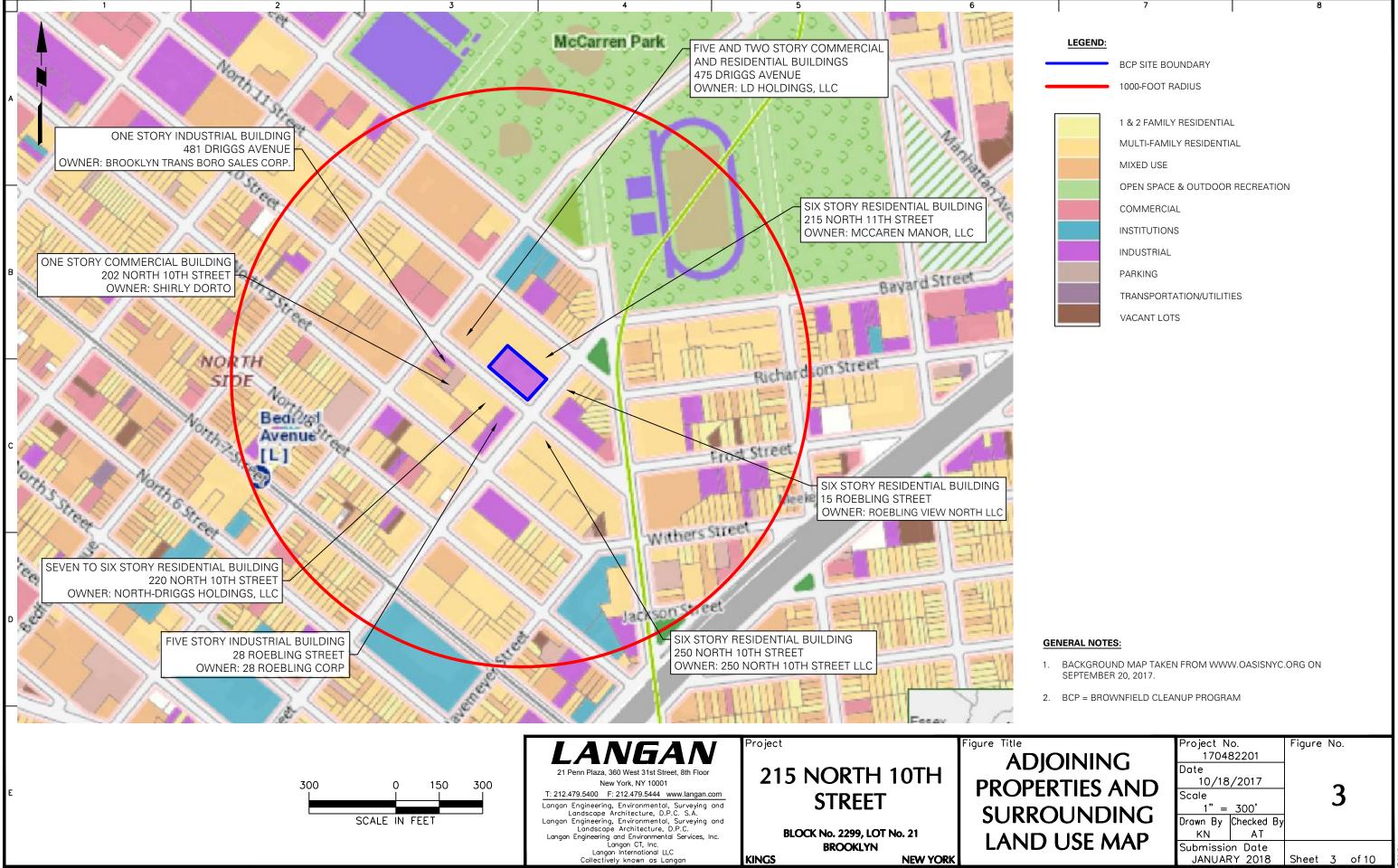
may be inaccurate or imprecise. ${\sf R}={\sf Validator}$ Qualifier - The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.


Figures

- Figure 1 Site Location Map
- Figure 2 Site Layout Plan
- Figure 3 Surrounding Land Use and Sensitive Receptors
- Figure 4 Historical Site and Surrounding Uses Map
- Figure 5 Sample Location Plan
- Figure 6 Groundwater Contour Map
- Figure 7 Subsurface Profile
- Figure 8 Soil Sample Results Summary Map
- Figure 9 Groundwater Results Summary Map
- Figure 10 Soil Vapor Results Summary Map

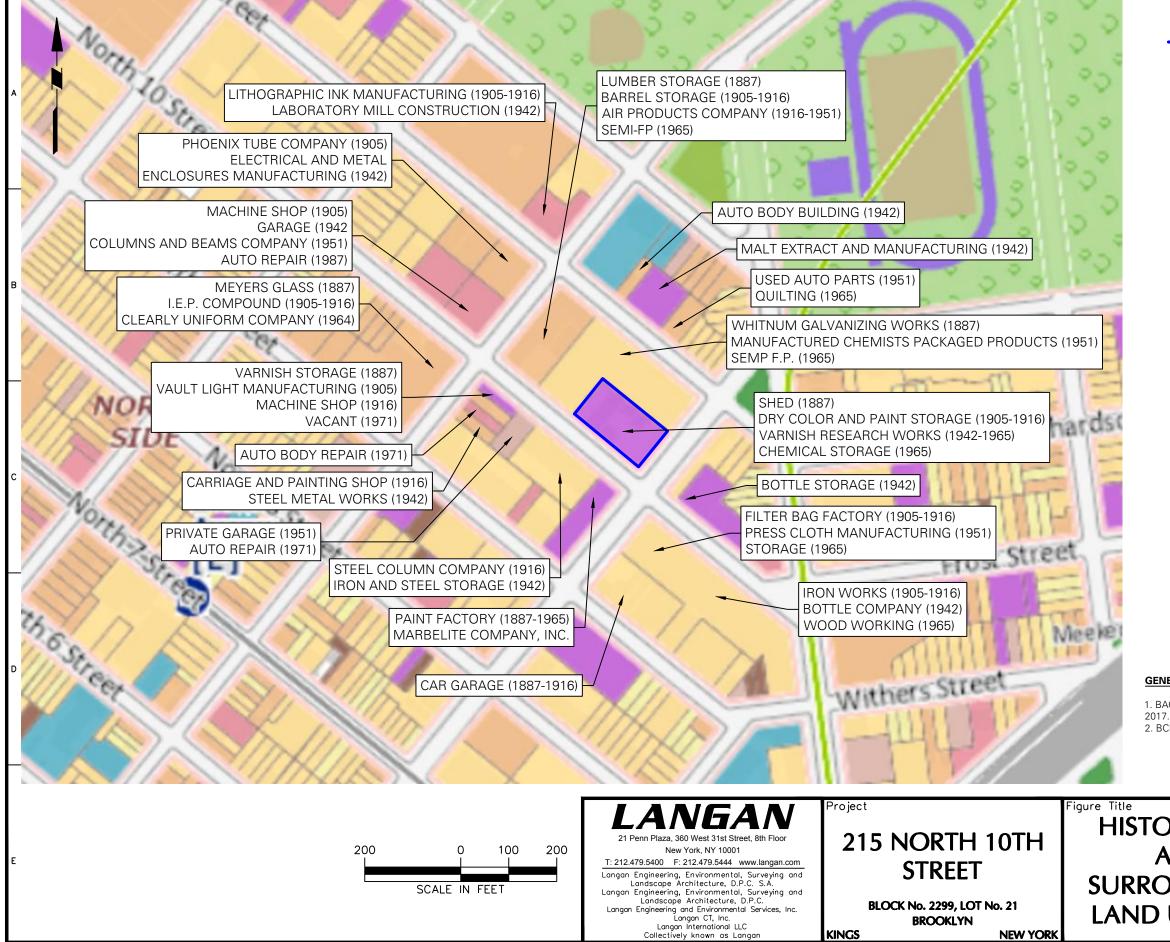
LANGAN

Filename: \\Langan.com\data\\YC\data2\\70482201\Cadd Data - 170482201\SheetFiles\Environmental\BCP-RIR\Figure 1 - Site Location Map.dwg Date: 12/26/2017 Time: 12.00 User: knagotko Style Table. Langan.stb Layout: ANSIA-BP


Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 170482201\SheetFiles\Environmental\BCP-RIR\Figure 2 - Site Plan.dwg Date: 12/26/2017 Time: 11:56 User: knagotko Style Table: Langan.stb Layout: ANSIB-BL

	7		8	
LEGEN	<u>):</u>			
	APPROXIMATE BCP S	ITE BOUNDARY		
	APPROXIMATE BUILD	DING BOUNDARIES		

GENERAL NOTES:


- 1. BASE MAP TAKEN FROM HTTP://GIS.NYC.GOV/TAXMAP/MAP.HTM
- 2. BCP = BROWNFIELD CLEANUP PROGRAM

	Project N 1704	o. 82201	Figure	No.	
	Date 12/26	/2017		~	
E PLAN	Scale 1"=	20'		2	
	Drawn By KN	Checked By AT			
	Submissic JANUAF	on Date XY 2018	Sheet	2	of 10

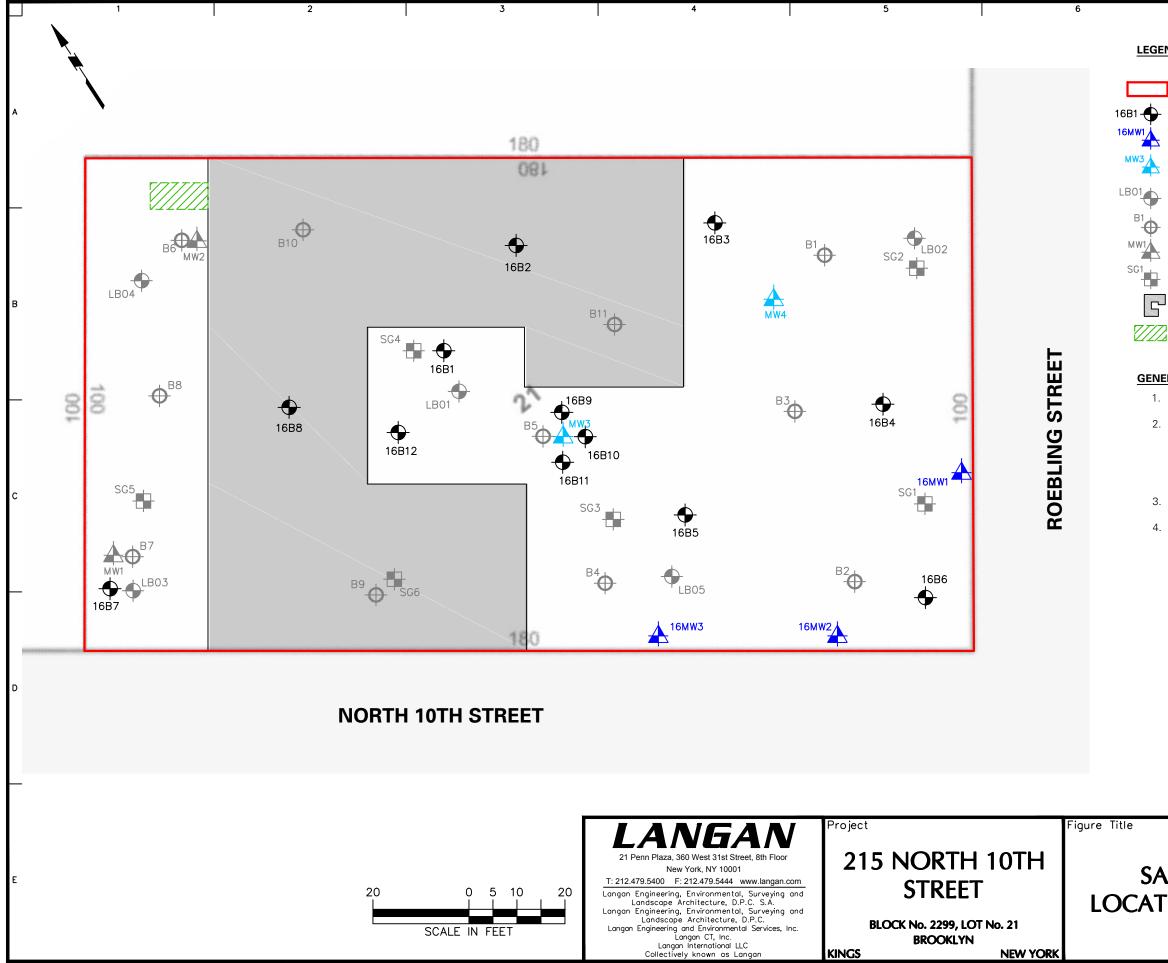
	7	8	
LEGEND:			
	BCP SITE BOUNDARY		
	1000-FOOT RADIUS		
	1 & 2 FAMILY RESIDENTIAL		
	MULTI-FAMILY RESIDENTIAL		
	MIXED USE		
	OPEN SPACE & OUTDOOR RECREATION		
1	COMMERCIAL		
	INSTITUTIONS		
	INDUSTRIAL		
	PARKING		
	TRANSPORTATION/UTILITIES		
	VACANT LOTS		

ANSIB-BI

Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 170482201\SheetFiles\Environmental\BCP-RIR\Figure 4 - Historic Site and Surrounding Land Uses Map.dwg Date: 1/22/2018 Time: 17:48 User: knagotko Style Table: Langan.stb Layout: ANSIB-BL

LEGEND:	

BCP SITE BOUNDARY


				1
				I
				I
				I
				I
				I
				I
-				
				I
1				
1.				
				i
				I
				I
1.0				
				I
				l
				I
100				i
				Ī
				I
Sec. 1				I
17				
				I
	_	_	_	J

1 & 2 FAMILY RESIDENTIAL MULTI-FAMILY RESIDENTIAL MIXED USE **OPEN SPACE & OUTDOOR RECREATION** COMMERCIAL INSTITUTIONS INDUSTRIAL PARKING TRANSPORTATION/UTILITIES VACANT LOTS

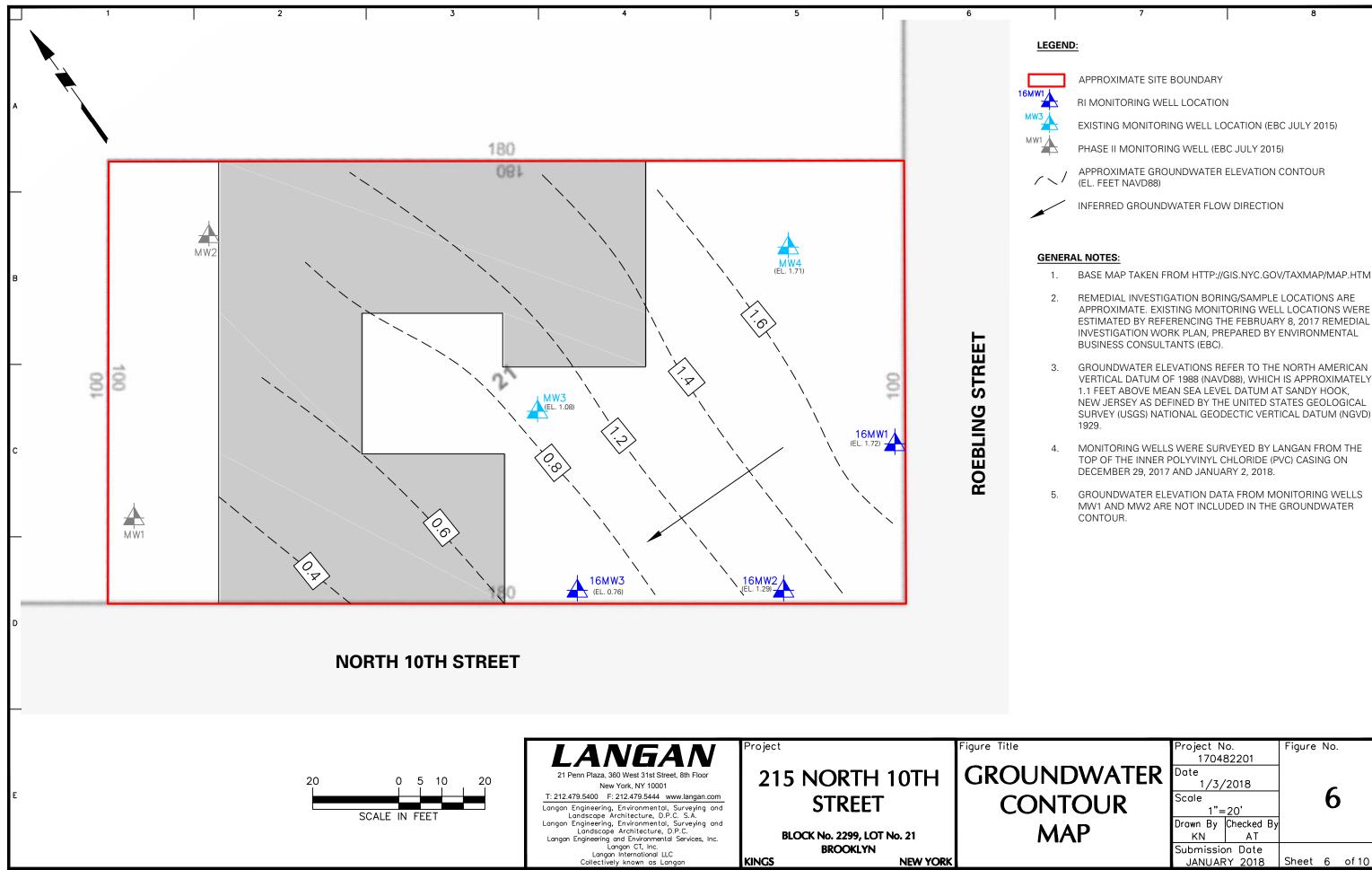
GENERAL NOTES:

1. BACKGROUND MAP TAKEN FROM WWW.OASISNYC.ORG ON SEPTEMBER 20, 2. BCP = BROWNFIELD CLEANUP PROGRAM

	-				
	Project N		Figure	No.	
ORIC SITE	-	82201			
	Date 10/18	/2017			
AND	Scale	/2017		Δ	
OUNDING	1" = 200'				
JUNDING	Drawn By	Checked By			
) USE MAP	KN	AT			
	Submissic JANUA	on Date RY 2018	Sheet	4	of 10

Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 170482201\SheetFiles\Environmental\BCP-RIR\Figures 5-8 - Sample Location and Results Map.dwg Date: 1/23/2018 Time: 15:26 User: atashji Style Table: Langan.stb Layout: Fig 5 - Sample Location

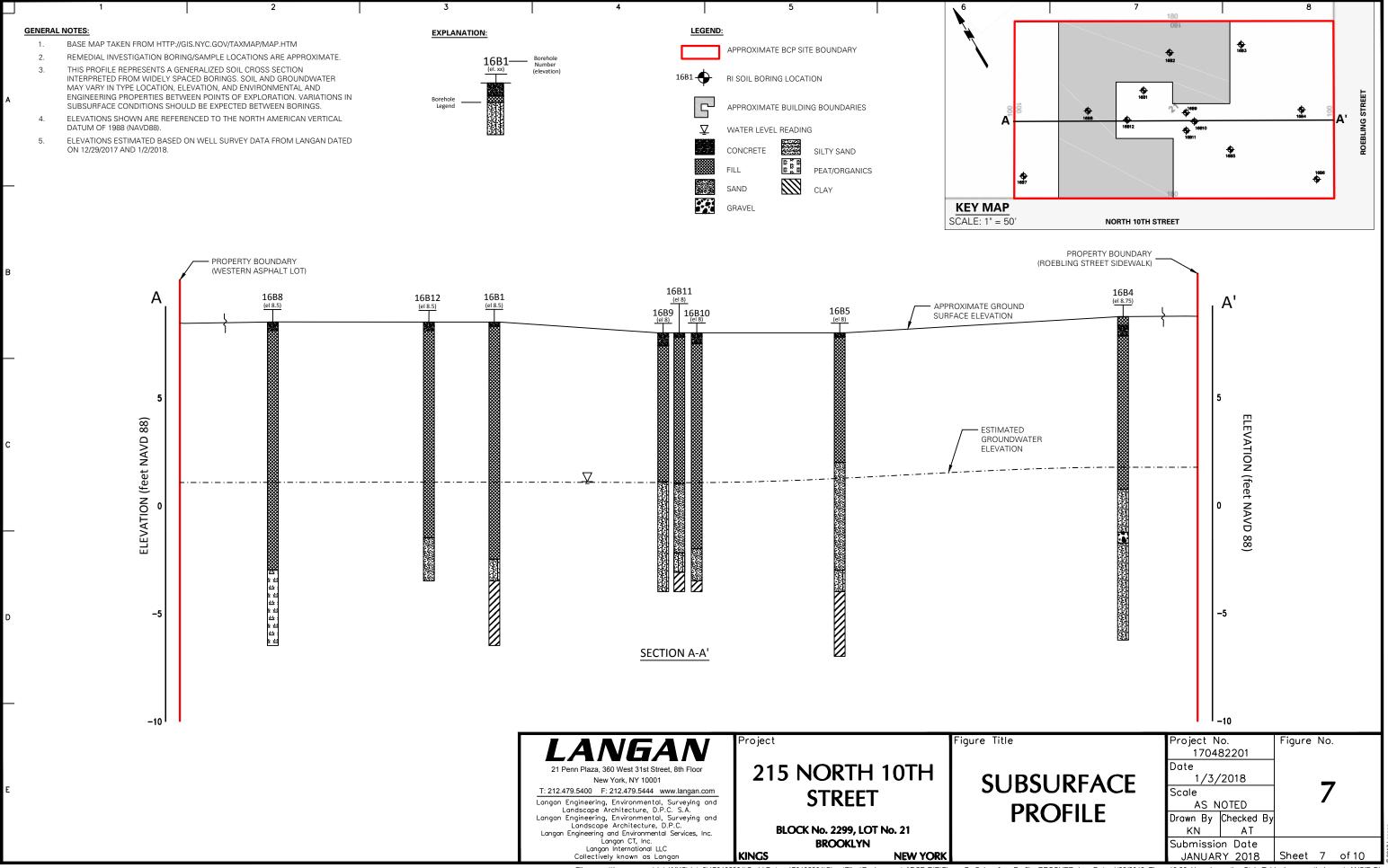
	7 8
GEN	<u>D:</u>
	APPROXIMATE BCP SITE BOUNDARY
\$ -	RI SOIL BORING LOCATION
	RI MONITORING WELL LOCATION
	EXISTING MONITORING WELL LOCATION (EBC JULY 2015)
	PRELIMINARY SITE INVESTIGATION BORING LOCATION (LANGAN OCTOBER 2017)
₽	PHASE II SOIL BORING LOCATION (EBC JULY 2015)
	PHASE II MONITORING WELL (EBC JULY 2015)
	PHASE II SOIL VAPOR SAMPLE LOCATION (EBC JULY 2015)

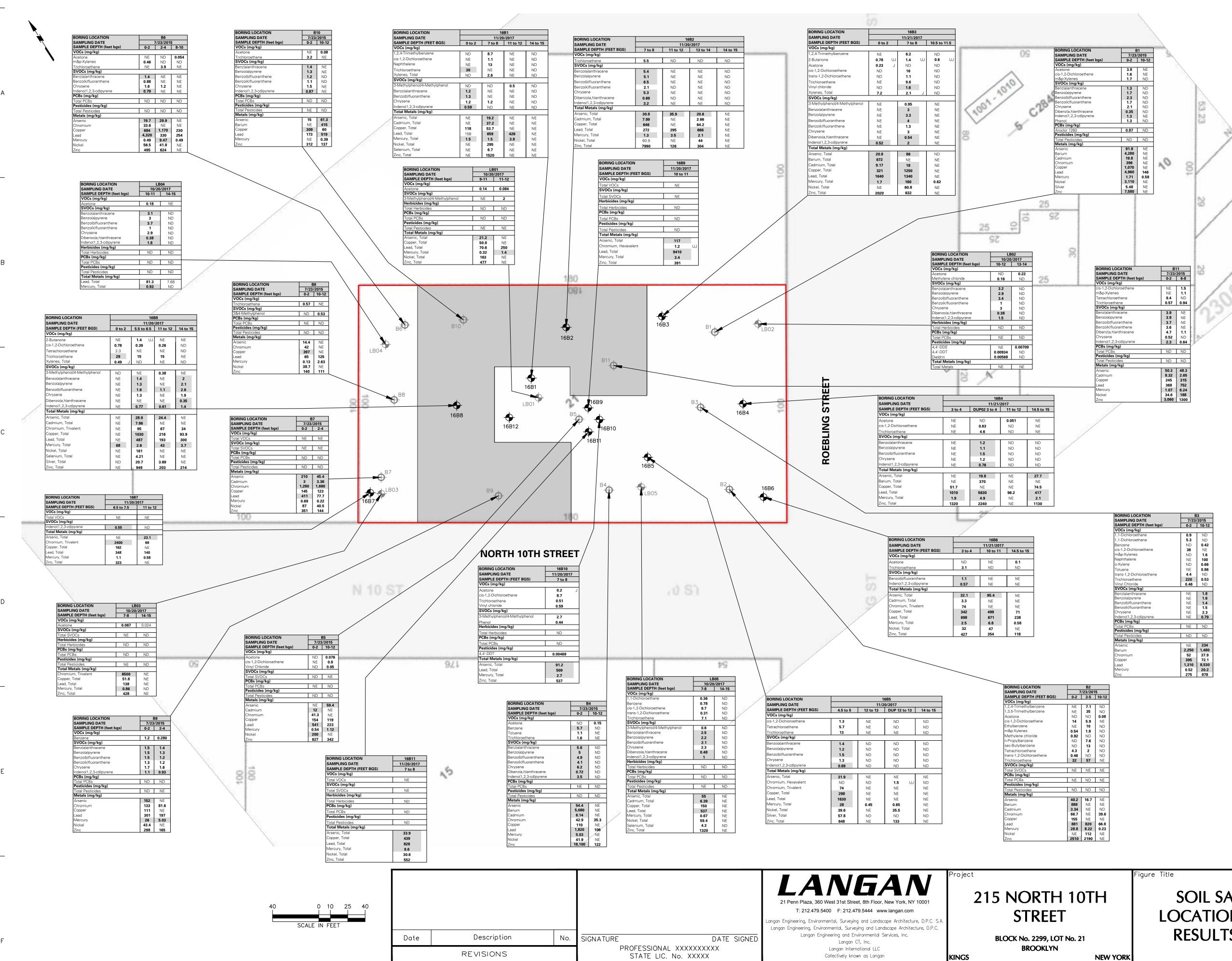

- APPROXIMATE BUILDING BOUNDARIES
- POTENTIAL UNDERGROUND STORAGE TANK

GENERAL NOTES:

- BASE MAP TAKEN FROM HTTP://GIS.NYC.GOV/TAXMAP/MAP.HTM 1.
- REMEDIAL INVESTIGATION BORING/SAMPLE LOCATIONS ARE APPROXIMATE. PREVIOUS SAMPLE LOCATIONS WERE ESTIMATED BY REFERENCING THE FEBRUARY 8, 2017 REMEDIAL INVESTIGATION WORK PLAN, PREPARED BY ENVIRONMENTAL BUSINESS CONSULTANTS (EBC)
- 3. RI = REMEDIAL INVESTIGATION
- 4. BCP = BROWNFIELD CLEANUP PROGRAM

	Project N	0.	Figure	No.		-
	1704	_				
	Date 11/30/2017					
AMPLE	Scale		5			
TION MAP	1" = 20'			0		
	Drawn By	Checked By				
	KN	AT				
	Submissic JANUAR		Sheet	5	of 10	


Map


Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 170482201\SheetFiles\Environmental\BCP-RIR\Figure 6 - Groundwater Contour Map.dwg Date: 1/22/2018 Time: 18:23 User: knagotko Style Table: Langan.stb Layout: ANSIB-BL

- BASE MAP TAKEN FROM HTTP://GIS.NYC.GOV/TAXMAP/MAP.HTM
- APPROXIMATE. EXISTING MONITORING WELL LOCATIONS WERE ESTIMATED BY REFERENCING THE FEBRUARY 8, 2017 REMEDIAL
- VERTICAL DATUM OF 1988 (NAVD88), WHICH IS APPROXIMATELY NEW JERSEY AS DEFINED BY THE UNITED STATES GEOLOGICAL SURVEY (USGS) NATIONAL GEODECTIC VERTICAL DATUM (NGVD)

	Project N 1704	o. 82201	Figure	No.	
NDWATER	Date 1/3/	2018			
NTOUR	Scale 1"=20'			6	1
	Drawn By	Checked By			
MAP	KN	AT			
	Submissic		_		
	JANUAF	<u>2018 2018 </u>	Sheet	6	of 10

Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 170482201\SheetFiles\Environmenta\\BCP-RIR\Figure 7 - Subsurface Profile_RECOVER.dwg Date: 1/22/2018 Time: 18:26 User: knagotko Style Table: Langan.stb Layout: ANSIB-BL

Filename: \\Langan.com\data\NYC\data2\170482201\Cadd Data - 17048

RI SOIL BORING LOCATION

OCTOBER 2017)

APPROXIMATE BCP SITE BOUNDARY

PRELIMINARY SITE INVESTIGATION BORING LOCATION (LANGAN

BASE MAP TAKEN FROM HTTP://GIS.NYC.GOV/TAXMAP/MAP.HTM

ESTIMATED BY REFERENCING THE FEBRUARY 8, 2017 REMEDIAL

SOIL SAMPLE RESULTS ARE COMPARED TO TITLE 6 OF THE NEW

YORK CODES, RULES, AND REGULATIONS (6 NYCRR) PART 375

RESTRICTED-RESIDENTIAL (RURR) SOIL CLEANUP OBJECTIVES

INVESTIGATION WORK PLAN, PREPARED BY ENVIRONMENTAL

REMEDIAL INVESTIGATION BORING/SAMPLE LOCATIONS ARE

APPROXIMATE. PREVIOUS SAMPLE LOCATIONS WERE

UNRESTRICTED USE (UU) AND RESTRICTED USE

PHASE II SOIL BORING LOCATION (EBC JULY 2015)

APPROXIMATE BUILDING BOUNDARIES

BUSINESS CONSULTANTS (EBC)

LEGEND:

16B1 - - - -

LB01

 \oplus

1

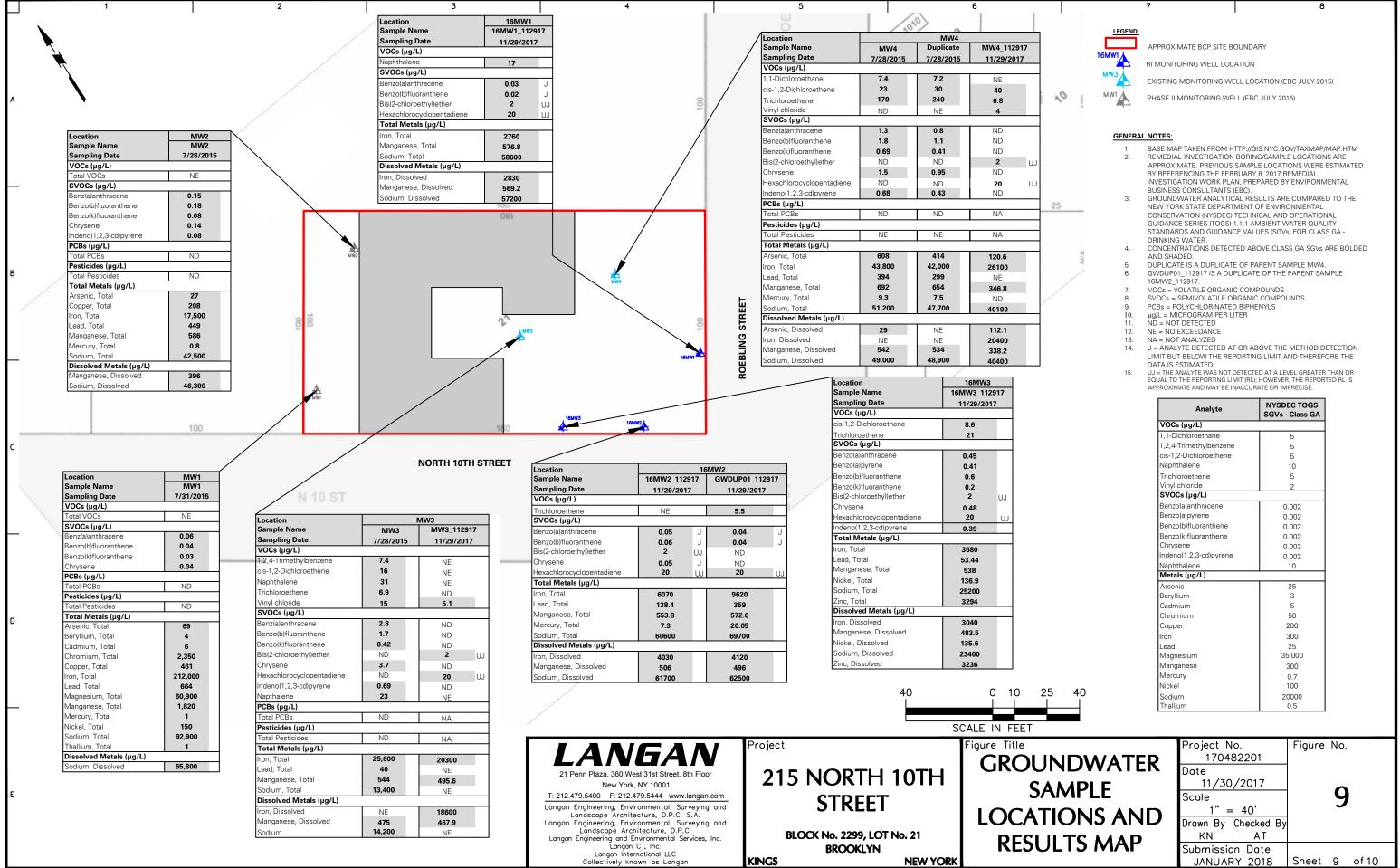
3.

GENERAL NOTES:

ġ

PROIECT

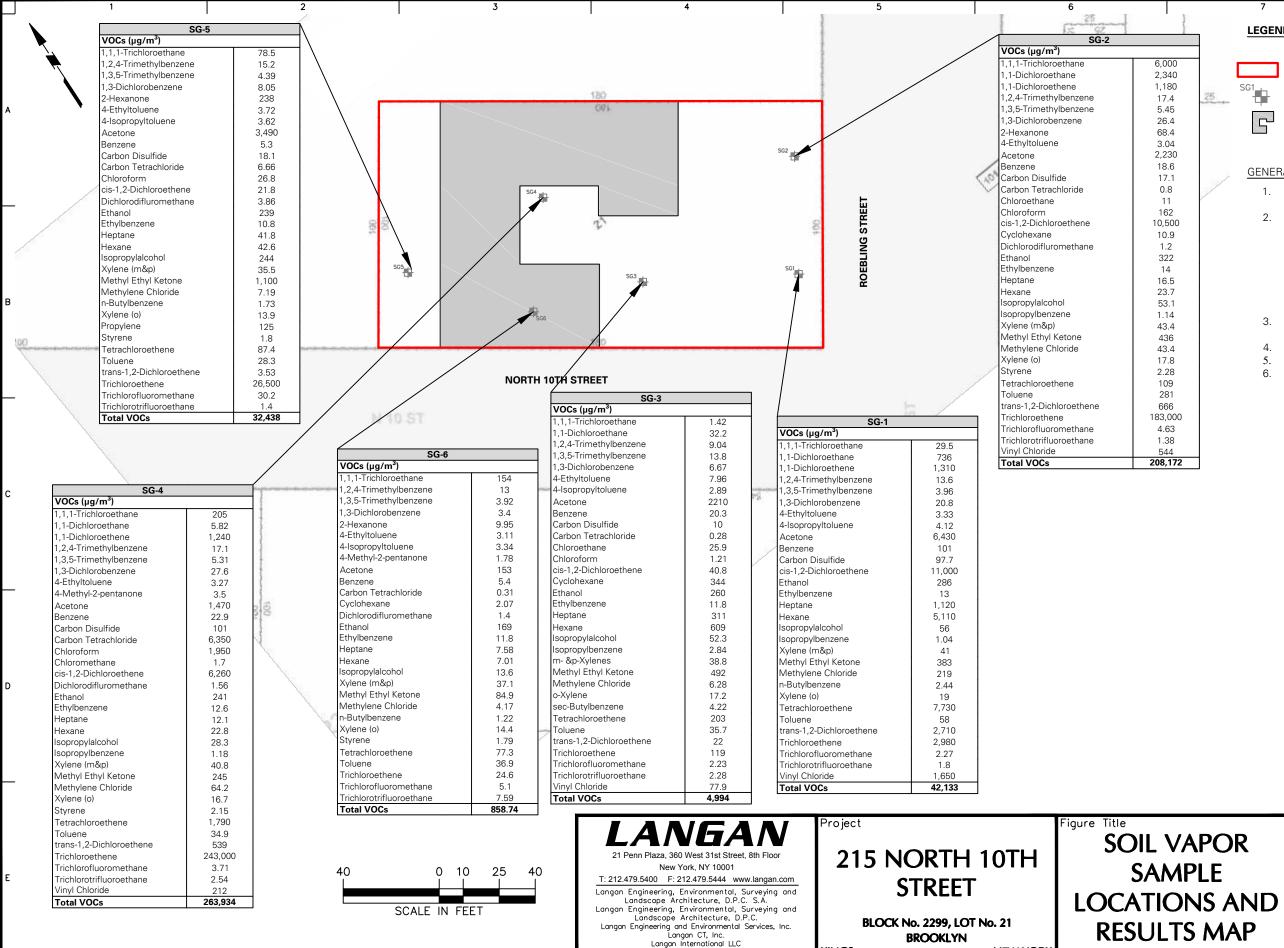
ONLY RESULTS ABOVE UU SCOs ARE SHOWN. RESULTS EXCEEDING UU SCOs ARE BOLD. RESULTS EXCEEDING RURR SCOs ARE BOLDED AND SHADED. SODUP01 IS A DUPLICATE OF THE PARENT SAMPLE 16B5_12-13 SODUP02 IS A DUPLICATE OF THE PARENT SAMPLE 16B4 3-4 SOIL BORING 16B12 WAS ADVANCED TO EXPLORE THE EXTENT OF PETROLEUM IMPACTS. NO SAMPLES WERE COLLECTED


- FROM THIS BORING. BCP = BROWNFIELD CLEANUP PROGRAM 10.
- VOCs = VOLATILE ORGANIC COMPOUNDS 11
- 12. SVOCs = SEMIVOLATILE ORGANICS COMPOUNDS PCBs = POLYCHLORINATED BIPHENYLS
- 13. 14. ND = NOT DETECTED

(SCOs).

- 15. NE = NO EXCEEDANCE
- 16. bgs = BELOW GRADE SURFACE
- mg/kg = MILLIGRAM PER KILOGRAM 17.
- J = ANALYTE DETECTED AT OR ABOVE THE METHOD DETECTION 18. LIMIT BUT BELOW THE REPORTING LIMIT 19. UJ = VALIDATOR QUALIFIER - THE ANALYTE WAS NOT DETECTED
- AT A LEVEL GREATER THAN OR EQUAL TO THE REPORTING LIMIT (RL); HOWEVER, THE REPORTED RL IS APPROXIMATE AND MAY BE INACCURATE OR IMPRECISE.

BORING LOCATION	E	B3			
SAMPLING DATE	7/23	/2015			
SAMPLE DEPTH (feet bgs)	0-2	10-12			
VOCs (mg/kg)					
1,1-Dichloroethane	0.9	ND			
1,1-Dichloroethene	5.3	ND			
Benzene	ND	0.42			
cis-1,2-Dichloroethene	36	NE			
m&p-Xylenes	ND	1.6			
Naphthalene	NE	100			
o-Xylene	ND	0.66			
Toluene	NE	0.86			
trans-1,2-Dichloroethene	4.4	ND			
Trichloroethene	220	0.53			
Vinyl Chloride	0.46	ND			
SVOCs (mg/kg)					
Benz(a)anthracene	NE	1.8			
Benzo(a)pyrene	NE	1.6			
Benzo(b)fluoranthene	NE	1.4			
Benzo(k)fluoranthene	NE	1.5			
Chrysene	NE	2.3			
Indeno(1,2,3-cd)pyrene	NE	0.79			
PCBs (mg/kg)					
Total PCBs	NE	ND			
Pesticides (mg/kg)					
Total Pesticides	ND	ND			
Metals (mg/kg)		004			
Arsenic	NE	234			
Barium	2,250	1,480			
Chromium	52	37.9			
Copper	395	72.1			
Lead	1,310	8,530			
Mercury	0.52	20.2			
Zinc	275	878			


Figure Title	Project No.		Figure No	Э.
	1704	82201		
SOIL SAMPLE	Date 1 2/5/	2017		0
LOCATIONS AND	Scale 1" =	• 40'		8
RESULTS MAP	Drawn By	Checked By		
	KN	AT		
	Submission [Date		
RK	JANUA	RY 2018	Sheet	8 of 10
201\SheetFiles\Environmental\BCP-RIR\Figure 8 - Sample Location and Results Map.dwg Date: 4/24/2018 Time: 15:16 User: atashji Style Table: Langan.stb Layout: Fig 8 - Soil Tag Map				

LEGEND
16MW1
MW3
MW1

Analyte	NYSDEC TOGS SGVs - Class GA
VOCs (µg/L)	
1,1-Dichloroethane	5
1,2,4-Trimethylbenzene	5
cis-1,2-Dichloroethene	5
Naphthalene	10
Trichloroethene	5
Vinyl chloride	2
SVOCs (µg/L)	
Benzo(a)anthracene	0.002
Benzo(a)pyrene	0.002
Benzo(b)fluoranthene	0.002
Benzo(k)fluoranthene	0.002
Chrysene	0.002
Indeno(1,2,3-cd)pyrene	0.002
Naphthalene	10
Metals (µg/L)	
Arsenic	25
Beryllium	3
Cadmium	5
Chromium	50
Copper	200
Iron	300
Lead	25
Magnesium	35,000
Manganese	300
Mercury	0.7
Nickel	100
Sodium	20000
Thallium	0.5

Filename: C:\Users\atashji\Documents\Figures 5-8 - Sample Location and Results Map_revised.dwg Date: 2/28/2018 Time: 14:33 User: atashji Style Table: Langan.stb Layout: Fig 9 - Gw Tag Map

NEW YORK

KINGS

Collectively known as Langan

1	7	8
1	LEGEND	<u>-</u>
6,000 2,340 1,180 17.4 5.45 26.4 68.4 3.04	25 SG1	APPROXIMATE BCP SITE BOUNDARY PHASE II SOIL VAPOR LOCATION (EBC JULY 2015) APPROXIMATE BUILDING BOUNDARIES
2,230 18.6 17.1 0.8 11 162 10,500 10.9 1.2 322 14 16.5 23.7 53.1 1.14 43.4 43.4 43.4 43.4 43.4 43.4 43.4 43.6 10.9 281 666 183,000 4.63 1.38 544 208,172	GENERA 1. 2. 3. 4. 5. 6.	L NOTES: BASE MAP TAKEN FROM HTTP://GIS.NYC.GOV/TAXMAP/MAP.HTM REMEDIAL INVESTIGATION SOIL VAPOR SAMPLE LOCATIONS ARE APPROXIMATE. PREVIOUS SAMPLE LOCATIONS WERE ESTIMATED BY REFERENCING THE AUGUST 2015 PHASE II ENVIRONMENTAL SITE ASSESSMENT, PREPARED BY ENVIRONMENTAL BUSINESS CONSULTANTS (EBC). OLY DETECTED CONCENTRATIONS ARE SHOWN. BCP = BROWNFIELD CLEANUP PROGRAM µg/m ³ = MICROGRAMS PER CUBIC METER VOCs = VOLATILE ORGANIC COMPOUNDS
	POR	Project No. 170482201 Date 11/30/2017
		Scale
1 I()N	IS AND	$\frac{1"=40'}{Prove Ry (Chapted Ry)}$

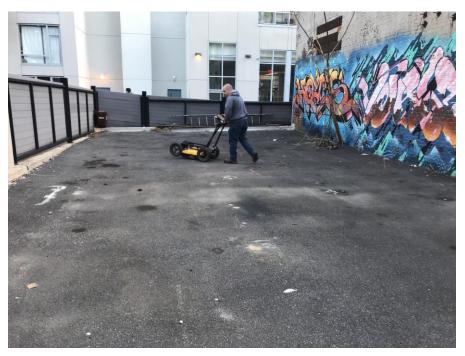
 KN
 AT

 Submission Date
 JANUARY 2018

 Sheet 10 of 10

 and Results Map.dwg Date: 1/22/2018
 Time: 18:13

 User: knagotko. Style Table: Langan stb. Layout: Fig 10 - SV Tag Map


Drawn By Checked By

Appendix A

Previous Environmental Reports

Appendix B

Photograph Log

Photo 1, 11/20/2017: NOVA performing a ground-penetrating radar survey over the the potential underground storage tank location, facing northeast.

Photo 2, 11/20/2017: Soil recovery from soil boring 16B2, facing down.

Photo 3, 11/20/2017: Soil recovery and product observed within soil boring 16B1 (8 to 12 feet bgs), facing down.

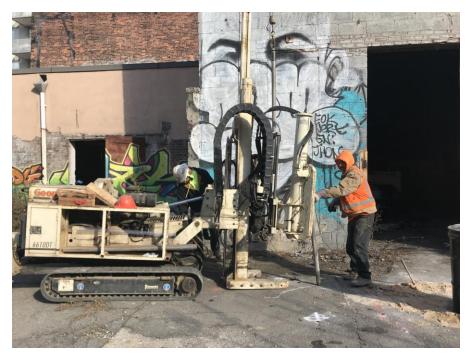


Photo 4, 11/20/2017: AARCO advancing soil boring 16B9 using a Geoprobe 6610DT, facing northeast.

Photo 5, 11/20/2017: View of soil recovery from soil boring 16B11, facing down.

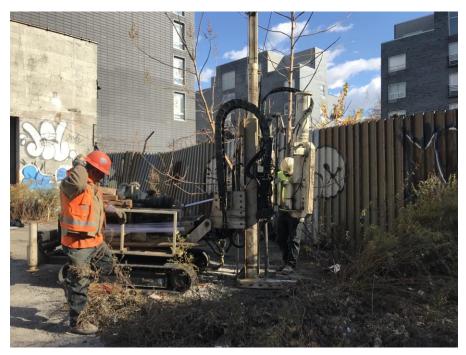


Photo 6, 11/20/2017: AARCO advancing soil boring 16B5 using a Geoprobe 6610DT, facing east.

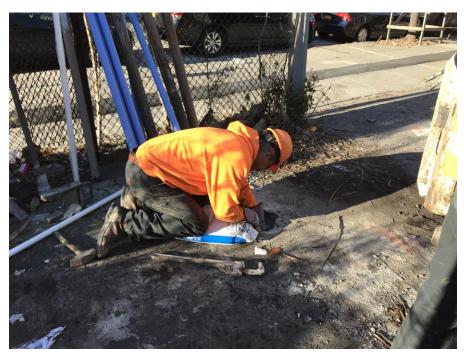


Photo 7, 11/21/2017: AARCO installing groundwater monitoring well 16MW3, facing west.

Photo 8, 11/21/2017: AARCO developing groundwater monitoring well 16MW3, facing northwest.

Photo 9, 11/21/2017: Downwind air monitoring station, facing east.

Photo 10, 11/21/2017: Clay interval observed at about 15' bgs within soil boring 16MW2, facing down.

Photo 11, 11/21/2017: Soil recovery from soil boring 16B3 (0 to 8 feet bgs), facing down.

Photo 12, 11/21/2017: AARCO advancing soil boring 16B4 using a Geoprobe 6610DT, facing south.

Photo 13, 11/21/2017: Soil recovery from soil boring 16B12, facing down.

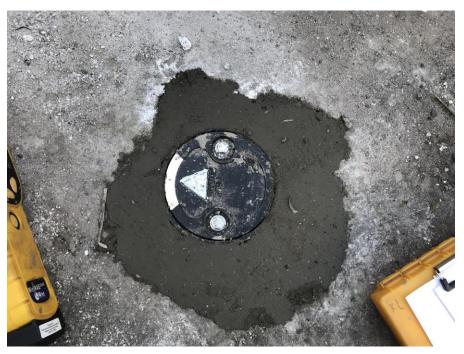


Photo 14, 3/12/2017: Finished manhole cover for monitoring well 16MW3.

Photo 15, 11/29/2017: Groundwater sampling at monitoring well 16MW2, facing down.

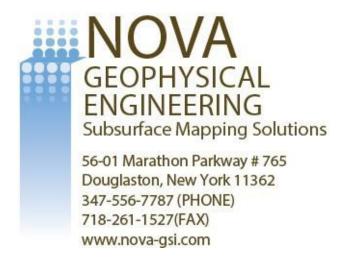
Photo 16, 11/29/2017: Drummed purge groundwater staged onsite pending disposal, facing south.

Appendix C

NOVA Geophysical Engineering Survey Report

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Property 215 North 10th Street Brooklyn, New York 11211


NOVA PROJECT NUMBER 17-0485

DATED November 27, 2017

PREPARED FOR: LANGAN

21 Penn Plaza 360 W 31st Street, 8th Floor New York, New York 10001

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACEMAPPING SOLUTIONS 56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

November 27, 2017

Albert Tashji, P.E., LEED GA Project Engineer *LANGAN* 21 Penn Plaza 360 W 31st Street, 8th Floor New York, New York 10001 Direct: 212.479.5508

Re: Geophysical Engineering Survey (GES) Report
 Commercial Property
 215 North 10th Street
 Brooklyn, New York 11211

Dear Mr. Tashji:

Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project site: Commercial Property, 215 North 10th Street, Brooklyn, New York (the "Site"). Please see attached Site Location and Geophysical Survey maps for more details.

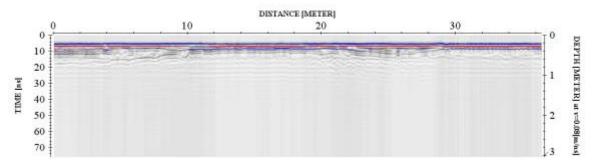
INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

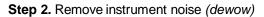
NOVA performed a Geophysical engineering surveys (GES) consisting of a Ground Penetrating Radar (GPR) survey at the site. The purpose of this survey is to locate and identify USTs, anomalies, utilities and other substructures and to clear and mark proposed environmental boring areas on November 20, 2017.

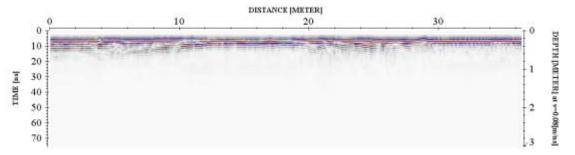
The equipment selected for this investigation was a Noggin 250 MHz ground penetrating radar (GPR) shielded antenna and 3M DYANTL (EM).

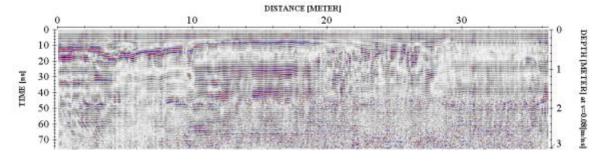
A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

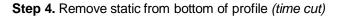
GEOPHYSICAL METHODS

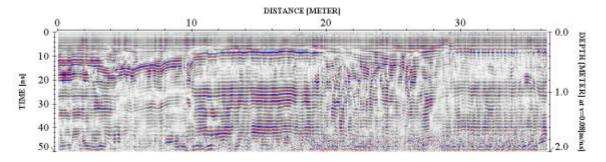

The project site was screened using the GPR to search the entire area and inspected for reflections, which could be indicative of major anomalies and substructures.

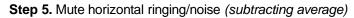

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of dirt/gravel, concrete and asphalt surfaces.

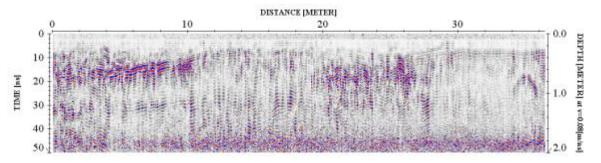

DATA PROCESSING


In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described at this section.









Step 3. Correct for attenuation losses (energy decay function)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.

PHYSICAL SETTINGS

Nova observed following physical conditions at the time of the survey:

The weather: Clear Skies

Temp: 35 Degrees (F).

Surface: Dirt/gravel, concrete surfaces and asphalt

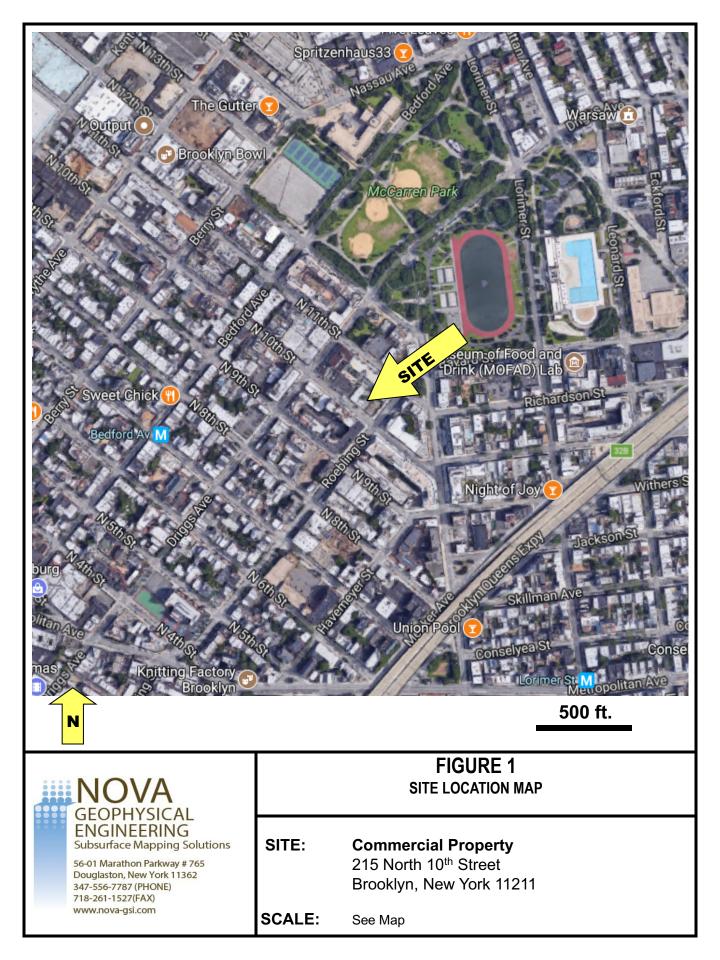
Geophysical Noise Level (GNL): Geophysical Noise Level (GNL) was medium to high at the site. The noise was a result of the site being located in an urban environment, a heavy concrete slab and debris/thick vegetation.

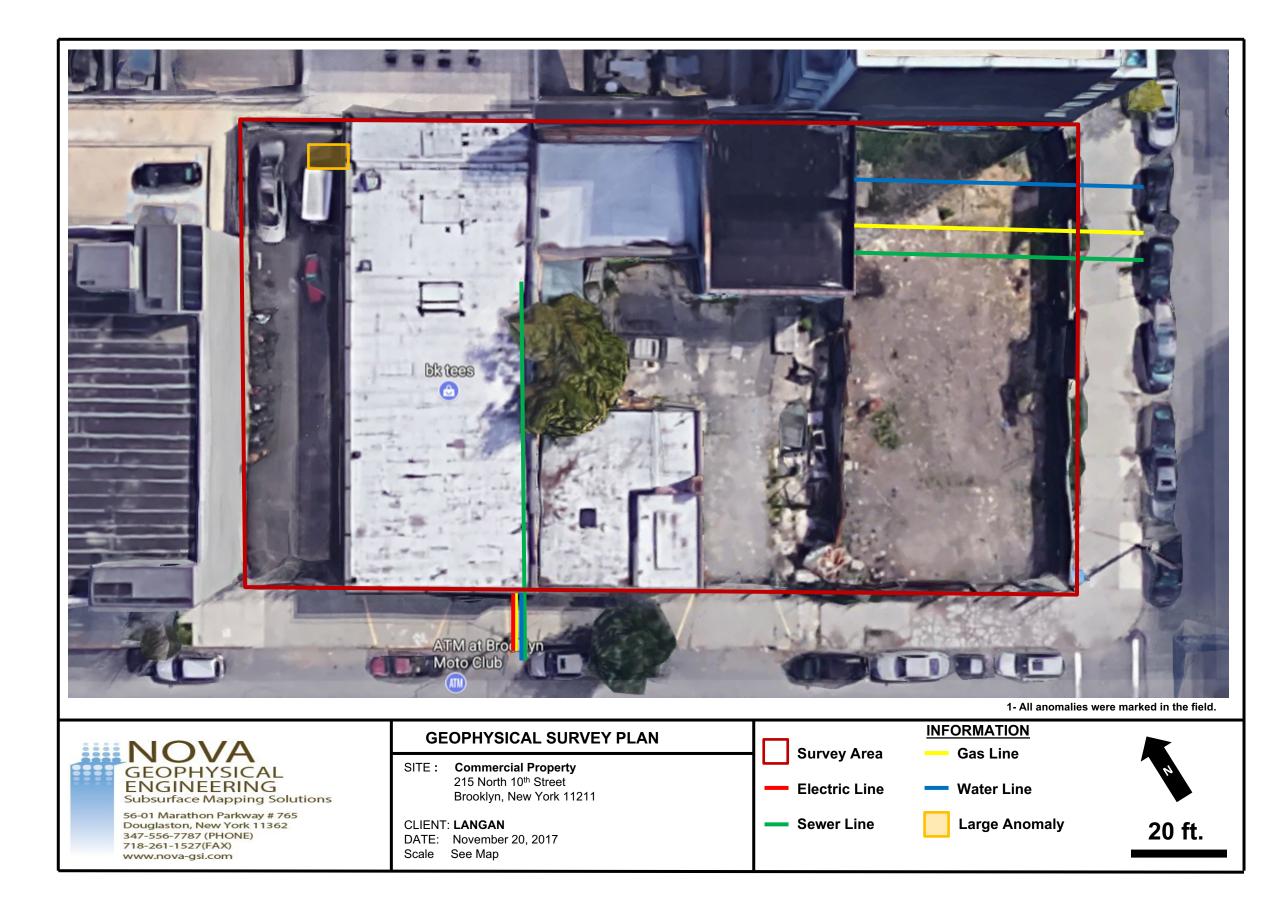
RESULTS

The results of the geophysical engineering survey (GES) identified following at the project Site:

- GES survey identified scattered anomalies located throughout the project site. Based on their rates and proximity, these anomalies were inconsistent with any USTs. These areas were indicated on the on-site markout.
- Several utilities (sewer, gas, water and electric) were located on the site. These utilities were marked out both at the site and on the survey map (subsurface only).
- A large anomaly, potentially consistent with a UST, was located on the site. This is indicated both on-site and on the survey map.
- Geophysical Survey Plan portrays the areas investigated during the geophysical survey.

If you have any questions please do not hesitate to contact the undersigned. Sincerely,


NOVA Geophysical Services


1. 62.02

Levent Eskicakit, P.G., E.P. Project Engineer

Attachments: Figure 1 Site Location Map Geophysical Survey Plan Geophysical Images

GEOPHYSICAL IMAGES Commercial Property 215 North 10th Street Brooklyn, New York 11211 November 20th, 2017

GEOPHYSICAL IMAGES Commercial Property 215 North 10th Street Brooklyn, New York 11211 November 20th, 2017

GEOPHYSICAL IMAGES Commercial Property 215 North 10th Street Brooklyn, New York 11211 November 20th, 2017

Appendix D

Soil Boring Logs

	_	NG	LUg		Boring			16				Sheet	1	of	· 1		
Project						Pr	oject No.			170	40000	4					
ocation		215 North 10th St	reet			Ele	evation ar	nd Da	atum	170	48220 ⁻	I					
		Brooklyn, New Yo	ork							8.5	NAVD	88					
Drilling C	ompar	ny				Da	ate Starte	b					Date	Finished			
Drilling Ed	auinm		nental Services, Inc				mpletion	Dont	'n	11	/20/17		Dook	Donth		11/20/17	
rilling E	quipm		Ŧ				ompletion	Dept	n		1E f4		ROCK	Depth		NIA	
ize and	Туре	Geoprobe 6610 D of Bit	/1							Dist	15 ft urbed		Un	disturbed		NA Core	
		2-inch O.D. Direct	t Push			N	umber of S	Samp	bles			4			NA		NA
Casing D	lamete	er (in) NA			Casing Depth (ft) NA	w	ater Leve	l (ft.)		First ▽		7		mpletion	NA	24 HR.	NA
asing H	lamme		Weight (lbs)	NA	Drop (in) NA	Dr	illing Fore	man						_			
Sampler			ot long Maaraaara						Т	im K	elly						
ampler l	Hamm	or	Weight (lbs)		Drop (in)	- Fie	eld Engine	eer									
		NA	0 ()	NA	NA			1	K		agotko mple Da			1			
MATERIAL SYMBOL	Elev.		Osmala Dasa				Depth	Ē	m			PI	D	1	-	narks	
SYM	(ft)		Sample Descr	iption			Scale	Number	Type	(in)	Penetr. resist BL/6in	Rea (pp	ding			Depth of C ng Resistan	
- -	+8.5	R1a (0-2") CON	ICRETE SLAB				<u> </u>	Z			ш —	(PP		1		-	
>>>>>		R1b (2-18") Loc	se, dark brown, me				E					3.	6	-			Let 36
		gravel, trace co	al fragments, brick	fragmer	nts (dry) [FILL]		- 1 -		ш			2.	4		10 ·	· · · ·	÷ #
							E	1	MACROCORE	œ		2.	1	-	4	× .	
			ose, reddish-brown		AND, trace coal		- 2 -	2	ROC	20/48	NA			-0	L	- ²	
		fragments, brick	k fragments (dry) [F	ILLJ				1	MAC					*	1	· ·	1 a
							- 3 -	1						NORTH 1	Oth STREET		
							E	-						1035	Collec	ct 16B1_	0-2
							- 4 -	-									
								1									
		R2a (0-13") Loc	ose, dark greyish br	own, me	edium SAND,		- 5 -	1	щ			0.	7				
		trace fine grave	I, trace organics, br	ick frag	ments (dry)				MACROCORE	œ		29	.7				
		[FILL] P2b (13-10") L c	oose, light brown, fir		D trace silt brick	k	- 6 -	22	ROO	40/48	NA	30	.1				
		fragments (dry)	[FILL]					1	MAC			60	.5				
		R2c (19-33") Lo	ose, dark grey, me	dium SA	AND, some fine	<u> </u>	- 7 -	1				103	3.7			ct 16B1_	
		gravel, trace co R2d (33-40") L	al fragments (moist	() [FILL]	some fine sand			-				84	.2			troleum-	like
>>>>>		some fine grave	el, trace silt, trace c	oal fragi	ments (moist)	,	- 8 -	-						odors	s, staini	ing	
		[FILL]		-			E	1									
							- 9 -		ш								
>>>>>							E :	-	SOR	œ							
							- 10 -	8	ROC	10/48	NA						
							E		MACROCO								
	-2.5		e, dark grey, silty S	SAND. tr	ace fine gravel		- 11 -					46	.8	1110	Collec	ct 16B1_	11-12
		(moist)	-,	, -				1				57	.2			troleum-	like
///	-3.5		grey, CLAY, trace	organic	s, trace shells		- 12 -	-						odors	s, staini	ing	
		(moist)	0,00	0				-	ш			57	.5			troleum-l	
							- 13 -	1.	MACROCOR	9		55	.1	odors	from a	about 0-2	20"
							E	2	ROC	36/36	NA	34	.2				
							- 14 -	1	MAC			10		1120	Collec	ct 16B1_	14-15
	-6 5							1				1.	1				
	-0.5		End of Boring				- 15 -	-						Fnd	of borin	ig at abo	out 15'
								1						bgs. I	Backfill	ed borin	ig using
							- 16 -	1								uttings to	
								1									
							- 17 -	1									
							E	1									
							- 18 -	1									
							E]									
							- 19 -	1									
							H .							1			

Project		NGA			LUG		oring			10	B2			Sheet	1	of	1
roject		215 North 10th Stre	et				jeer No.			170	48220	1					
Location						Ele	vation ar	nd Da	atum	0.5							
Drilling C		Brooklyn, New York	<u> </u>			Da	te Starte	d		8.5	NAVE		Date F	Finished			
Drilling E	au in ma	AARCO Environme	ntal Services, Ind	.			mpletion	Dant		11	/20/17		Deale	Donth	1	1/20/17	
Drilling E		Geoprobe 6610 DT					npietion	Dept	.[1]		15 ft		Rock	Depth		NA	
Size and			Juch			Nu	mber of \$	Samp	oles	Dist	urbed	4	Un	disturbed	NA	Core	NA
Casing D	iamete	r (in)	- 1311	(Casing Depth (ft)	Wa	ter Leve	l (ft.)		Firs				mpletion		24 HR.	
Casing H	lamme		Weight (lbs)	NA	Drop (in) NA		lling Fore	• •		$ \underline{\nabla}$	-	7.5		_	NA	Ā	NA
Sampler		2-inch I.D. by 4-foot			NA				Т	im K	elly						
Sampler			Weight (lbs)	NA	Drop (in) NA	Fie	ld Engine	eer	к	ïm N	lagotko	n					
ЧЧ.				101	101	-				Sa	mple D				Ron	narks	
MATERIAL SYMBOL	Elev. (ft)		Sample Desc	ription			Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PI Read	ding		ng Fluid, [Depth of Ca	
2	+8.5	R1a (0-4") CONC	RETE SLAB				_ 0 _	Ż		æ	<u>с - п</u>	(pp	m)				
	+7.5	R1b (4-12") Loose		CRETE			_ 1 _					2.			, r	100	Let 38
									ORE	~		2.	9		1	•	
		+/- 1.5' VOID					_ 2 -	Έ	MACROCORE	14/48	NA				· [÷	
****	+6.0							-	MAC	、				* -	15		1
							- 3 -							NORTH 1	0th STREET		
							- 4 -	-						Three	e additio	nal expl	oratorv
														boring	gs were	advanc oil borin	ed
							- 5 -		RE					to ver	ify void		y 1062
	+2.5						- 6 -	R2	MACROCORE	2/48	NA						
		R2a (0-6") Loose, sand, trace fine g		_		AACR	1										
		fragments (moist) R2b (6-12") Loose	ND some silt	∇	- 7 -		~			0.7		0930: Collect 16B2_7-8			7-8		
			trace fine gravel (wet) [FILL]								4		4	_			
							- 8 -										
							- 9 -		ш								
							- 10	- 	COR	48							
•••••		R3a (0-13") Loose some silt, trace cl	e, grey, fine SAN	D, some	e fine gravel,		- 10 -	8	MACROCORE	22/48	NA	11					
n i	-2.5	- R3b (13-22") Loos	-	-			- 11 -		Ŵ			12 16		0935	Collec	t 16B2 -	11-12
		fine sand (moist)			e gravel, trace		-					10	.4		leum-lik	e odors	
							- 12 -	1							0		
 - - -	-4.3	R4a (0-16") Loose	e, dark greyish ol	ive, silty	SAND, some		- 13 -		ORE	6		9.	6			t 16B2_ [^] en on w	
		fine gravel (wet)	- *					2	MACROCORE	28/36	NA	7.			ng, peti	oleum-li	
	-5.5	R4b (16-28") Soft	, grey, CLAY, tra	ce orgai	nics (moist)		- 14 -	1	MAC			3.	3	Orgar	nic -like		
	-6.5						- 15 -	1						1010:	Collec	t 16B2_^	14-15
		Er	nd of Boring				_									g at ~15' ffsets co	
							- 16 -							be ba	ckfilled	due to v	/oids.
							- 17 -									nks were ocations	
							- 18 -	1									
							40										
							- 19 -	1									
							20	1						1			

		NGA			Log		Boring			16	B3			Sheet	1	of	1
Project		215 North 10th Stree	t			Pro	oject No	-		170	48220	1					
Location						Ele	evation a	and Da	atum								
Drilling C	compar	Brooklyn, New York				Da	ite Start	ed		8.6	NAVE		Date F	Finished			
		AARCO Environment	tal Services, Inc.							11	/21/17				11/	21/17	
Drilling E	quipme	ent Geoprobe 6610 DT				Co	mpletio	n Dep	th		15 ft		Rock	Depth		NA	
Size and	Туре о	of Bit				Nu	imber of	Sam	oles	Dist	urbed		Un	disturbed N/		Core	NIA
Casing D	Diamete	. ,	1511	(Casing Depth (ft)	w	ater Lev	el (ft)		Firs	ţ	4	-	mpletion	2	24 HR.	NA
Casing H	łamme	NA ^r NA	Weight (lbs)	NA	Drop (in) NA		illing For	• • •			-	6.5		N/	4	Ţ	NA
Sampler		2-inch I.D. by 4-foot-l	ong Macrocore	INA	NA				Т	īm K	elly						
Sampler	Hamm		Weight (lbs)	NA	Drop (in) NA	_ FI6	Field Engineer				lagotko	C					
, Z_Z	E levi		1				Dauth			Sa	mple Da	ata		F	Rema	arks	
MATERIAL SYMBOL	Elev. (ft) +8.6		Sample Descri				Depth Scale		Type	Recov.	Penetr. resist BL/6in	PID Reading (ppm)		(Drilling Fl Fluid Loss, E	uid, De	pth of Ca	sing, e, etc.)
		R1 (0-32") Loose, or sand, trace organic					Ē	-				0.0)				Let 36
		gravel, brick and co	oncrete fragments	, s (dry)	[FILL]		- 1	-	Ш			0.0)	17	1000	*	×
							2	<u>-</u> - - -	OCOF	32/48	NA	0.3 0.4		· .		ž.	1 ± §
								1	MACROCORE	32		0.9		*	15		· · ·
							- 3	-	_					NORTH 10th STRE	EET		
							4	-						1225: Co 1230: Co		16B3_0)-2
		R2a (0-17") Loose,	dark grevish bro	wn. m	edium SAND.		Ē	-				1.2	2	SOMS_1	6B3_	0-2	
		some coal fragmen (dry) [FILL]					5	-	RE			1.8		1235: Co SOMSD_		3_0-2	
		R2b (17-24") Loose	e, brown, medium	n SAN	D, trace fine		6	R2	OCOF	42/48	NA	1.4 1.6					
		sand, trace coal fra (dry) [FILL]				$^{\mathbf{s}}\Sigma$	-	1	MACROCORE	42		3.5					
		R2c (24-29") Loose trace silt, trace orga	anics (moist) [FIL	.L]	-		- 7	-				634.		1240: Co			
		R2d (29-42") Loose gravel, trace organi	e, black, fine SAN ics (moist) [FILL]	ND, tra	ce silt, trace fine		8	-				457. 10.8		Petroleur staining	II-IIKe	ouors	DIACK
		0					E	-									
							9		RE								
	-1.4						- 10	33	MACROCORE	24/48	NA	65.2	2	Black sta	inina		
	-1.9	R3a (0-6") Loose, b	et)		•		Ē	-	MACF	5		9.1		petroleun	n-like	odors	
		R3b (6-24") Loose, (moist)	olive, silty SAND	D, trace	e fine gravel		- 11	-				3.4		1245: Co 16B3_10		.5	
	-3.4						- 12	-				9.6 1.2					
							E	-	ш								
							- 13		CORI	g							
		NO RECOVERY					- 14	- ¥	MACROCORE	0/36	NA						
							E		Ŵ								
		Fn	d of Boring				15	-						End of bo	orina :	at ~15'	bas.
							- 16	-						Backfilled soil cuttin	d borii	ng usin	ig clean
							Ē	=							.95 10	9.000	
							- 17	-									
							- 18	Ē									
							Ē	-									
							- 19										
							⊧	-									

_		\mathbf{H}	NGA	1/V		Log		oring			16	B4			Sheet	1	of	1	
F	roject		215 North 10th Stree	et			Pro	ject No.			170	48220	1						
L	ocation						Ele	vation a	nd Da	atum									
┢	Drilling C	Compa	Brooklyn, New York				Dat	te Starte	d		8.7	5 NAV		Date Finished					
ľ	, mining C	ompa	AARCO Environmen	tal Services. Inc.					ŭ		11	/21/17			moneu	11/	21/17		
	rilling E	quipm					Cor	mpletion	Dept	h			F	Rock I	Depth				
		T	Geoprobe 6610 DT								D:-+	15 ft		1.1-	diata sub a d		NA		
	lize and	• •	2-inch O.D. Direct Pr	ush			Nur	mber of	Samp	les	Dist	urbed	4	Un	disturbed N		Core	NA	
C	Casing D	Diamet	er (in) NA		C	asing Depth (ft) NA	Wa	ter Leve	l (ft.)		Firs	t	6.5	Co	mpletion		24 HR. V	NA	
C	Casing H	lamme		Weight (lbs)	NA	Drop (in) NA	Dril	lling Fore	eman		<u> </u>	-	0.5				<u> </u>	11/3	
	Sampler		2-inch I.D. by 4-foot-				-			Т	im K	elly							
5	ampler	Hamm		Weight (lbs)	NA	Drop (in) NA	_ Fiel	ld Engin	eer	ĸ	im N	lagotko	~						
AN I	7					NA NA						mple Da							
ANG	MATERIAL SYMBOL	Elev. (ft)		Sample Descrip	otion			Depth Scale	Number	Type		Penetr. resist BL/6in	PID Readi	na	(Drilling F	Rema	oth of Cas	ing,	
1- <u>6</u> 0	MA No. No.	+8.8						- 0 -	Nur	ŕ	Ee.	BL	(ppm		Fluid Loss, I	Drilling F	Resistance	, etc.)	
Report: Log - LANGAN XE::S:XXI	$\underset{b}{}{}$	+8.4	R1a (0-4") Loose, ∖ sand, some organi	dark brown, medi ics (drv) [FILL]	um SA	ND, some fine	A						0.0					Let 36	
Rep		+7.9	R1b (4-9") CONCF	RETE				- 1 -	-				0.0		12	1 Decument	4	1 ⁷	
¥.			R1c (9-29") Loose SAND, some fine s				ł	_	1_	MACROCORE	ᅇ		0.0				3.	* * 3	
1:28 XX			fragments, concret				ł	- 2 -	Ε	CRO	28/48	NA	0.0		× -		1.		
1/4/2018 10:01:28 AM								- 3 -	-	MA			0.0		*	25.		· -	
2018 XXX															1320: Cc		601 2	1 and	
4 4 X							ł	_ 4 -	_						Collect S				
ч К							ł	_											
ΞĚ								_ 5 -	-	щ									
STR							F		R2	COF	24/48	NIA							
H E E E			R2a (0-10) Loose, sand, some fine gr	dark grey, mediu	m SAN	D, some fine	∇	- 6 -		MACROCORE	24/	NA	0.4 1.4						
NTLOGS\215 NORTH 10TH STREET.GPJ XXXXXXXXXXXXXXXXXXXXXXXX			-		-			- 7 -	-	M			1.4						
ÖZ X			R2b (10-24") Loos fragments, trace fi	ne gravel (moist)	E, Som	e siit, trace coar		_	-				0.4						
S/215		+0.8		, olive, silty SAND), trace	fine gravel (wet)	; — [- 8 -	-										
EOG				-			F		-				0.3						
							F	- 9 - -	-	RE			0.1 0.1						
		-1.3					[10 -	R3	socc	48/48	NA	0.1						
		-1.8	R3b (23-27") Loos R3c (27-48") Loos			SAND 2-inch		-	-	MACROCOR	4		0.2						
			red gravel bed laye				F	- 11 -	-	~			0.3		1325: Co	llect 1	6B4_1	1-12	
NEN.							F	- 10	-				0.1						
DATA								- 12 -	-										
ŰNG							F	_ 13 -	-	ORE									
								-	2	MACROCORI	6/36	NA							
NGI NGI						c .		14 -	-	MACI					1335: Co	llect 1	6B4_1	4.5-15	
201/E		-6.3	R4 (0-6") Loose, d (wet)	ark grey, slity SA	ND, SOI	ne fine gravel	Ē	-	-				0.5						
0482		-0.3	· · · ·	nd of Boring				- 15 -	1						End of b	oring a	at ~15'	ogs.	
V2/17				0			ł	_ 16 -	1						Backfille soil cuttir			g clean	
DAT							ļ		1							.93 10	grade.		
NYC							ŀ	17 -	1										
ATA/							ļ	-	-										
DWC								- 18 - -											
NLANGAN.COM/DATAINYC/DATA2/170482201/ENGINEERING DATA/ENVIRONMENTAL/G								- 19 -											
ANG/							ł		1										
₹Ľ								20	-										

	A					Log		oring			16	B5			Sheet	1	of	1
Project		215 Nortl	h 10th Stree	et			Pro	oject No.			170	48220 [.]	1					
Location				-			Ele	vation a	nd Da	tum								
Drilling C	Compa		, New York				Da	te Starte	d		8 N	IAVD8	8	Date F	Finished			
Drilling E	auina		Environmer	tal Services, Inc.				mpletion	Dont	h	11	/20/17		Pock	Depth	11/2	20/17	
	quipii		e 6610 DT					Inpletion	Depi			15 ft		TUCK	Берш		NA	
Size and	І Туре	of Bit	D. Direct P	ush			Nu	mber of s	Samp	les	Dist	urbed	4	Un	disturbed NA		ore	NA
Casing D	g Diameter (in) NA			(Casing Depth (ft) NA	Wa	Water Level (ft.)			Firs	t	8	Co	mpletion	2	4 HR. V	NA	
Casing F	lamme			Weight (lbs)	NA	Drop (in) NA	Dri	lling Fore	man		<u> </u>	-	0				<u> </u>	
Sampler			D. by 4-foot-	long Macrocore			Fie	ld Engine	er	Т	im K	elly						
Sampler	Hamn	ner	NA	Weight (lbs)	NA	Drop (in) NA		- 3		K		lagotko						
BOL	Elev.			Osmala Dasar				Depth	ē	0	_	mple Da	ata PID)		emai	-	
MATERIAL SYMBOL	(ft) +8.0			Sample Descri	ption			Scale	Number	Type	Reco (in)	Penetr. resist BL/6in	Readi (ppn	ing	(Drilling Flu Fluid Loss, Dr	id, Dep illing R	th of Cas esistance	sing, e, etc.)
	+7.8	🕂 R1a (0-	,	RETE SLAB brown, medium S		como fino cond		_ 0 _					2.3		·			1.1.10
		trace a	sphalt, brick	(dry)	[FILL]			_ 1 -		ш			0.9		12 2	occurren 1 Bary	۵.	• #
		R1d (1	1-19") Loos	, tan, medium SA e, brown, mediur	n SAN	D, some fine		- 2 -	۲	DCOR	19/48	NA	2.3		÷	÷ •		· • §
		sand, b	orick and co	ncrete fragments	(dry) [FILLJ				MACROCORE	19,				*	25	-0 1	×
								- 3 -		2					NORTH 10th STREE	T		
								4 -										
								_										
		R2a (0	-12") Loose	, light brown, me	dium S	AND, trace fine		_ 5 -		붠			4.8		1250: Coll	ect 1	6B5_4	.5-5
	+2.0		race fine gra	avel, brick and co	oncrete	fragments (dry)	/	- 6 -	R2	OCOF	32/48	NA	3.4 2.7					
			2-32") Loos ce fine grav	e, dark greyish b	rown, f	ine SAND, some	-			MACROCORE	33		2.7					
			ee me grat					_ 7 -					1.7					
	1						Ā	- 8 -	-				1.0					
								- 9 -		RE								
								_ 10 -	R3	MACROCORI	11/48	NA						
	-3.0							- 11		MAC								
		R3 (0-1 gravel	I1") Loose, (wet)	dark greyish olive	e, silty	SAND, some fine	;	- 11 -					1.3 1.4					
///	-4.0	Ŭ	. ,	ey, CLAY, trace of	organic	s, trace shells		12 -	-						1255: Coll	ect 1	6B5_1	2-13
		(moist)						- 13 -		RE			1.6 1.6		and Collect SC	DUF	01_11	2017
									2	MACROCORE	36/36	NA	1.6					
								- 14 -		MAC	m		1.6		1300: Coll	ect 1	6B5_1	4-15
	-7.0							15 -	-				1.6	,				
			En	d of Boring				_							End of bo Backfilled			
								- 16 -							soil cutting			-
								17										
								_										
								_ 18 - _										
								_ 19 -										
									1									

Project		NG			209		Boring roject No.				B6			Sheet	1	of	1	
-		215 North 10th St	reet							-	48220	1						
ocation		Brooklyn, New Yo	rk			E	evation ar	nd Da	atum		IAVD8	8						
Drilling C	Compan	y				Da	ate Starte	d		010	AVDO	0	Date F	e Finished				
Drilling E		AARCO Environm	ental Services,	Inc.			ompletion	Den	'n	11	/21/17		11/21/17 Rock Depth					
Similig E	• •	Geoprobe 6610 D	т				Simplotion	Dop			15 ft	:	NA					
Size and		f Bit 2-inch O.D. Direct	Push			Nu	umber of S	Samp	oles	Dist	urbed	4	Undisturbed			Core	NA	
Casing D	Diamete				Casing Depth (ft) NA	w	ater Leve	l (ft.)		Firs		6.5	Co	mpletion		24 HR. 	NA	
Casing H			Weight (lbs)	NA	Drop (in) NA	Dr	rilling Fore	eman		<u> </u>	-	0.5		<u> </u>		<u> </u>		
Sampler		2-inch I.D. by 4-fo	ot-long Macroco			- Fi	eld Engine	er	Т	īm K	elly							
Sampler			Weight (lbs)	NA	Drop (in) NA				k	(im N	lagotko	0						
RIAL	Elev.						Depth	e					D	-	Rema	arks		
MATERIAL SYMBOL	(ft) +8.0		Sample De	scription			Scale	Number	Type	Recov.	Penetr. resist BL/6in	Rea (pp	ding	(Drilling Fluid Loss	Fluid, De , Drilling I	pth of Casi Resistance	ing, , etc.)	
****	+8.0	R1a (0-11") Loo	se, brown, medi	um SANE), some fine sand	,	<u> </u>							-				
		some fine grave concrete fragme	ents (dry) [FILL]		0		- 1 -					0. 0.		17	1 0000 186		Let 30	
		R2b (11-17") Lo fragments, conc	crete fragments	drv) [FILL	.]				MACROCORE	œ		0.	3		4	Ξ.		
		R1c (17-21") Lo coal fragments	ose, reddish-ora (drv) [FII 1	inge, med	ium SAND, some	•	2 -	5	CRO	29/48	NA	0.	3	*				
		R1d (21-29") Lo	ose, olive, fine S	SAND, tra	ce fine gravel,		- 3 -		MA					BOEANLK	15.			
			organics, trace v		או) נרובבן									1350: C		16B6 3-	-4	
							- 4 -							1355: C SOMS	ollect	_		
							- 5 -							1400: Ū	ollect	-		
							E		ORE	_				SOMSE	_16B6	5_3-4		
							- 6 -	22	MACROCORE	19/48	NA	1.	5					
		R2 (0-19") Loos				-14			MAC	~			_					
		sand, trace glas [FILL]	s, brick and con	crete frag	ments (moist)							1. 1.						
							- 8 -	_					•					
							9 -		RE									
	-2.0						- 10 -	32	SOCC	24/48	NA	0.	0	1415: C	ollect	16B6 1(<u>)-11</u>	
		(moist)	ise, unve, inte Si	, נומכ	e nine glavel		E	1	MACROCORE	5		0.			5.000			
							- 11 -					0.						
		R3b (20-24") Lo gravel (moist)	ose, grey, fine S	SAND, trad	ce silt, trace fine		- 12 -	-				0.	1					
		9.9.01 (110101)					E -		μ									
							- 13 -	- -	MACROCORE	90								
							- 14 -	8	ACRC	6/36	NA							
	-6.2	R4 (0-6") Loose	, olive, silty SAN	ID, trace f	ine gravel (moist))	Ē		Ψ,			2.	0	1420: C	ollect	16B6 14	4.5-15	
	-7.0		End of Boring	1			- 15 -							-				
		•		,			- 16 -							Backfill soil cutt	ed bori	ng using	g clear	
															ແມ່ງຈະເດ	graue.		
							- 17 -											
							- 18 -											
							- 19 -											
							E E	-										

215 North 10th Street 170482201 Location 170482201 Brooklyn, New York 9 NAVD88 Date Started Date Finished 0 Date Started Date Finished Orilling Company Date Started Date Finished Orilling Equipment Completion Depth Rock Depth Geoprobe 6610 DT Completion Depth Disturbed Undisturbed Core NA 24 HR. Size and Type of Bit Disturbed Undisturbed Core A NA NA NA Casing Depth (ft) Vater Level (ft.) Y Completion 24 HR. NA Vertor (ft.) Y NA Y Casing Depth (ft) Vertor (ft.) Y NA Y Casing Depth (ft) Vertor (ft.) Y Y NA Y <td co<="" th=""><th>Project</th><th></th><th>NG</th><th></th><th></th><th>LOG</th><th></th><th>Boring</th><th></th><th></th><th>10</th><th>B7</th><th></th><th></th><th>Sheet</th><th>1</th><th>of</th><th>1</th></td>	<th>Project</th> <th></th> <th>NG</th> <th></th> <th></th> <th>LOG</th> <th></th> <th>Boring</th> <th></th> <th></th> <th>10</th> <th>B7</th> <th></th> <th></th> <th>Sheet</th> <th>1</th> <th>of</th> <th>1</th>	Project		NG			LOG		Boring			10	B7			Sheet	1	of	1
Bendolyn, New York Develop and Datam ARCO Environmental Services, Inc. 0ate Started 0ate Finished ARCO Environmental Services, Inc. 0ate Started 0ate Started Dillog Equipment Completion Depth 1120/17 Record Public Casing Depth (th) NA Areno Environmental Services, Inc. Interference Billing Equipment Completion Depth Billing Forman Completion Depth Areno Environmental Services, Inc. Interference Areno I.D. Direct Push Na Areno I.D. by 4-footAreno Macrocore Na Areno I.D. by 4-footAreno Macrocore Na Margine Parmer Na Margine Parmer Na Margine Instant, Ince organics Interference Areno Environmental Research, Trace organics, Drick and concrete Fragments, Ince organics, Drick and concrete Fragments, Ince Service, Inc. Interference Areno Environmental (dry) (FiLl) File (1-0°) Loose, dark brown, medium, SAND, some file sand, Ince Creal Fragments, Ince Service Fragments, Ince Creal F	lojeci		215 North 10th Stre	et			FI	ojeci no.			170	48220	1						
Date Stated Date Stated Date Stated ARCO Environmental Services. Inc. 1120/17 Corplete Gitto Deph 1120/17 Bit Archo D. Direct Push Corplete Gitto Deph 2-inch D. D. Direct Push Nameer of Samples 2-inch D. D. Direct Push Nameer of Samples 2-inch D. D. Direct Push Nameer of Samples 2-inch D. D. Vectoring Beam (Beb) NA 2-inch D. D. y 4-footneng Macrocore Tim Kelly Sampler Hearner NA Weight (Beb) NA 2-inch D. D. y 4-footneng Macrocore Tim Kelly Sampler Hearner NA 4a Weight (Beb) 4a Sample Description 4b Sample Description 5c Sample Description 5c Sample Description 5c Sa	Location						Ele	evation ar	nd Da	atum									
ARCO Environmental Services, Inc. 11/2017 11/2017 Geoprobe 6610 DT NA Size and Type 058 Delatived And Amage Diameter Competion Depin NA NA Competion Depin NA Name of Sengues Delatived 4 Ordebring NA Wather of Sengues Delatived 4 Ordebring NA Wather of Sengues Delatived 4 Ordebring NA NA Daring Focus The NA Samplet Zande Harmmer NA Weight (bb) NA Drop (m) NA Samplet Samplet Description The Kely Ream Arris The Kely Samplet Samplet Description Drop (m) NA Samplet Description Drop (m) NA Samplet Ison Samplet Description Drop (m) NA Samplet Description Drop (m) NA Samplet Ison Samplet Description Drop (m) NA Samplet Description Delative Samplet Description Description Samplet Ison Samplet Description Drop (m) NA Samplet Description Description Samplet Description Samplet Ison Samplet Description Drop (m) NA Samplet Description Description Description	Drilling C	`omnai		K			Da	to Starto	4		9 N	IAVD8	8	Data	Finished				
Billing Equipment Completion Depth Rock Depth Bills are Type of Bit 2-inch O.D. Direct Push Indiauted M. Core 2-inch O.D. Direct Push NA Completion Depth First Completion A 2-inch O.D. Direct Push Completion Depth First Completion A 2-inch O.D. Market Push 2-inch I.D. by 4-foot-long Macroacre NA Water Lavel (r.) First Completion A 2-inch O.D. Market Push amplet 2-inch I.D. by 4-foot-long Macroacre Tim Kelly Tim Kelly First Completion A 2-inch O.D. Direct Push amplet 2-inch I.D. by 4-foot-long Macroacre NA Market Push Tim Kelly First Completion Completion 3 R1a (0-57) ASPHAIT. Trace organics First Rice Goron Completion Read trace fire gravel, trace organics, brick and concrete fragments (driv) [FILL] First Rice Goron Completion Read trace fire gravel, trace coal fragments, brick and concrete fragments (driv) [FILL] Petroleum-like odors 4 R2a (0-10°) Losse, dark brown, medium SAND, some fine gravel, trace coal fragments, brick and concrete fragments (driv) [FILL] R2a (0-10°) Losse, dark brown, medium SAND, some fine gravel, trace coal fragments, brick and concrete fragments (driv) [FILL] R2a (0-10°) Losse, dark brown, medium SAND, some silt, trace coal fragments (driv) [FILL] R2a (0-10°) Losse, dark brown, medium SAND, trace dravel (driv) firet Rice Read trace fire gravel, trace fire gravel,	Drining C	ompai	-	ental Services Inc							11	/20/17		Date	i illished	1	1/20/17		
Size and Type of Bit 2-inch O.D. Direct Push 2-inch O.D. by 4-foot-long Macrocore ampler Hemmer NA Weight (bbs) NA Dorp (in) NA 2-inch O.D. by 4-foot-long Macrocore 1-10 1	Drilling E	quipm					Co	mpletion	Dept	h				Rock	Depth				
2-inch O.D. Direct Push Casing Depth (h) NA Pair (2) Competition A A NA NA A<	-	.									Dist				and the d				
Based Diameter (in) NA Casing Depth (it) NA Water Level (it) First First To The First To the First To Firsto To Firs	size and	туре		^D ush			Nu	Imber of S	Samp	les	Dist	urbea	4	Un	aisturbea		Core	NA	
Date Weight (bs) NA Drop (in) Drilling Foreman Tim Keily ampler Hammer NA Weight (bs) NA Drop (in) NA Tim Keily ampler Hammer NA Weight (bs) NA Drop (in) NA Tim Keily ampler Hammer NA Weight (bs) NA Drop (in) NA Tim Keily ampler Hammer NA Weight (bs) NA Drop (in) NA Field Engineer add R1a (0-57) ASPHALT, trace organics Tim (ci (s)) Field Engineer Field Engineer Field Engineer Field Engineer add R1a (0-57) ASPHALT, trace organics, brick and concrete fragments, trace fine gravel, trace asphalt, trace coal fragments, trace fine gravel, trace shells, brick and concrete fragments (div) [FILL] 0.5 388.2 Petroleum-like odors R2a (0-107) Loose, dark brown, medium SAND, some fine sand, trace coal fragments, trace shells, brick and concrete fragments (moist) [FILL] 7 388.2 10.4 49 49 49 49.7 1430: Coalect 1687_6.5.7.5 4.3 R2b (10-227) Loose, dark brown, fine SAND, trace organics (moist) 10 11 11 14 14 14 14	Casing D	Diamet	er (in)				w	ater Leve	l (ft.)				7						
Bampler 2-inch LD. by 4-foot-long Macrocore Tim Kelly sampler Hammor NA Weight (Bs) NA Drop (in) NA get in the integrate Hammor Sample Description Image integrate Hammor Kim Nagotko get in the integrate Hammor R1a (0-5') ASPHALT, trace organics Depting Flat integrate Hammor Image integrate Hammor Depting Flat integrate Hammor Image integrate Hammor Remarks get in the integrate Hammor R1a (0-5') ASPHALT, trace organics Image integrate Hammor Depting Flat integrate Hammor Image integrate Hammor Image integrate Hammor Remarks get in the integrate Hammor R1a (0-5') ASPHALT, trace organics, brick and concrete fragments (most) (FILL) Image integrate Hammor Image integra	Casing H	lamme		Weight (lbs)		Dron (in)					<u> </u>	-	1		<u> </u>	NA	<u> </u>	NA	
Jample Hammer NA Weight (fbs) NA Drop (m) NA Kim Nagotio	Sampler				NA	NA		-		Т	ïm K	elly							
NA Destring the stand transformation of the stand transf	Sampler	Hamm	or	t-long Macrocore Weight (lbs)		Drop (in)	Fie	eld Engine	er										
Bigs Earn Sample Description Depth Sample Description Depth Remarks Control Fuel Control F			NA		NA	NA		I	1	K									
Pila R1a (0-5") ASPHALT, trace organics 0 2 0 0 2 0 0 2 0	ABOL			Sample Desc	rintion				ber	φ									
Ha (0-17°) ASPHALT trace organics 0<	SYN			Sample Desc	πρασπ				Numt	Typ	Rec(Pené resi: BL/6	Rea (pp						
 R16 (5-9°) CONCRETE SLAB R16 (5-9°) CONCRETE SLAB R16 (5-9°) Conce, dark brown, treddish-brown, medium SAND, some fine sand, trace fine gravel, trace organics, brick and concrete fragments, trace coal fragments, trace coal fragments, trace coal fragments (most) [FIL1] R2a (0-10°) Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (most) [FIL1] R2b (10-25°) Loose, dark brown, fine SAND, trace dark gravel, trace shells, brick and concrete fragments (most) [FIL1] R3b (14-29°) Loose, dark grave, fine SAND, some silt, trace day (wet) R3b (14-29°) Loose, gravish-olive, silty SAND (wet) Rab (14-29°) Loose gravish-olive, silty SAND (wet) Rab (14-29°) Loose gravish-olive, silty SAND, trace clay (wet) End of Boring End of Boring 			. ,	-	ics									_					
RX (U-Sov) (Lobse, dark brown, medium SAND, some fine gravel, trace organics, brick and concrete fragments (roits) (FILL) 2 2 2 2 2 2 3 4		1							1							a r .	tany 1	Let 36	
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FIL1] R2b (10-25") Loose, dark brown, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FIL1] R5b (14-29") Loose, dark grey, fine SAND, some silt, trace clay (wet) -15 R3b (14-29") Loose greyish-olive, silty SAND (wet) -15 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -22 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -23 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -24 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -25 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -26 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -29 R4b (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, Stat			SAND, some fine	e, dark brown to i sand, trace fine	reddish- gravel, f	brown, medium trace asphalt,		E' :		ORE						0	3		
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FIL1] R2b (10-25") Loose, dark brown, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FIL1] R5b (14-29") Loose, dark grey, fine SAND, some silt, trace clay (wet) -15 R3b (14-29") Loose greyish-olive, silty SAND (wet) -15 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -22 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -23 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -24 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -25 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -26 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -27 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -28 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -29 R4b (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, State (17-27") Soft, grey, Stat			trace coal fragme	ents, trace organio	cs, brick	and concrete		- 2 -	돈	SOCC	0/48	NA				*	<u>.</u>		
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FIL1] R2b (10-25") Loose, dark brown, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FIL1] 0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace day (wet) 15 R3b (14-29") Loose, greyish-olive, silty SAND (wet) 15 R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) 16 R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) 10 R4b (17-27") Soft, grey, CLAY, trace organics (moist) 10 R4b (17-27") Soft, grey, CLAY, trace organics (moist) 10 R4			iragments (dry) [r	-ILLJ				-	1	MACF	ŝ				* *	10		· ,	
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FILL] R2b (10-25") Loose, dark brown, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FILL] 								- 3 -							NORTH 10	Oth STREET			
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FILL] R2b (10-25") Loose, dark brown, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FILL] 																			
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FILL] 6 6 6 6 15.5 388.2 1430: Collect 16B7_6.5-7.5 R2b (10-25") Loose, dark grey, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FILL] 7 9 49.7 1430: Collect 16B7_6.5-7.5 0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 10 6 6 6 6 7 8 49.7 1.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 10 6 6 6 6 7 10 100.4 1.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 10 6 7 10 11 11.1 1450: Collect 16B7_11-12 1.5 R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) 13 14 14 19 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- 4 -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								- 4 -											
R2a (0-10") Loose, dark brown, medium SAND, some fine sand, trace fine gravel, trace coal fragments, brick and concrete fragments (moist) [FILL] 6 6 6 15.5 388.2 1430: Collect 16B7_6.5-7.5 R2b (10-25") Loose, dark grey, fine SAND, trace organics, trace coal fragments, trace shells, brick fragments (moist) [FILL] 7 9 49.7 1430: Collect 16B7_6.5-7.5 -0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 9 10 52 NA 3.3 -1.5 R3b (14-29") Loose, greyish-olive, silty SAND (wet) 11 11 1.1 1.4 1.1 -5.2 R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) 13 14 18 19 19 19 19 19 19 10 52 NA 1.8 14 14 14 14 14 14 14 14 16 1.9 19								- 5 -											
R2D (10-25°) Loose, dark brown, fine SAND, frace organics, trace oshells, brick fragments (moist) [FILL] 0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 9 9 9 10 8 49.7 1.5 R3b (14-29") Loose, greyish-olive, silty SAND (wet) 10 11 11 14 14 1450: Collect 16B7_6.5-7.5 8 9 9 9 9 11 11 14 14 14 14 14 1450: Collect 16B7_6.5-7.5 R4a (0-17") Loose greyish-olive, silty SAND (wet) 11 11 11 14 14 14 14 14 1450: Collect 16B7_11-12 5.2 R4b (17-27") Soft, grey, CLAY, trace organics (moist) 15 15 16 19 19 19 19 19 19 16 17 18								E		ORE									
R2D (10-25°) Loose, dark brown, fine SAND, frace organics, trace oshells, brick fragments (moist) [FILL] 0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 9 9 9 10 8 49.7 1.5 R3b (14-29") Loose, greyish-olive, silty SAND (wet) 10 11 11 14 14 1450: Collect 16B7_6.5-7.5 8 9 9 9 9 11 11 14 14 14 14 14 1450: Collect 16B7_6.5-7.5 R4a (0-17") Loose greyish-olive, silty SAND (wet) 11 11 11 14 14 14 14 14 1450: Collect 16B7_11-12 5.2 R4b (17-27") Soft, grey, CLAY, trace organics (moist) 15 15 16 19 19 19 19 19 19 16 17 18								6 -	22	ROCC	4/48	NA							
R2D (10-25°) Loose, dark brown, fine SAND, frace organics, trace oshells, brick fragments (moist) [FILL] 0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace clay (wet) 9 9 9 10 8 49.7 1.5 R3b (14-29") Loose, greyish-olive, silty SAND (wet) 10 11 11 14 14 1450: Collect 16B7_6.5-7.5 8 9 9 9 9 11 11 14 14 14 14 14 1450: Collect 16B7_6.5-7.5 R4a (0-17") Loose greyish-olive, silty SAND (wet) 11 11 11 14 14 14 14 14 1450: Collect 16B7_11-12 5.2 R4b (17-27") Soft, grey, CLAY, trace organics (moist) 15 15 16 19 19 19 19 19 19 16 17 18			concrete fragmer	nts (moist) [FILL]	•			-		MACI	2		15	.5	Petrol	leum-lił	e odors		
 fragments (moist) [FILL] 			R2b (10-25") Loo organics. trace co	se, dark brown, fi pal fragments. tra	ine SAN	ID, trace ls. brick	<u> </u>	- 7 -					388	3.2	1430:	Collec	t 16B7_0	6.5-7.5	
$ \frac{105}{110} = \frac{100}{110} = \frac{100}{110} = \frac{100}{100} =$						-,													
-0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace -10 E B -10 -11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 8 -</td> <td>-</td> <td></td> <td></td> <td></td> <td>49</td> <td>.7</td> <td></td> <td></td> <td></td> <td></td>								- 8 -	-				49	.7					
-0.5 R3a (0-14") Loose, dark grey, fine SAND, some silt, trace -10 E B -10 -11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 9 -</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								- 9 -	-										
$\frac{11}{12} = \frac{11}{12} = \frac{11}{11} = 11$		-0.5		o dark grov fino					1	ORE	_								
$\frac{11}{12} = \frac{11}{12} = \frac{11}{11} = 11$				c, daik giey, iille	UNID,	some sit, trace		- 10 -	R R	ROC	39/48	NA	3.	3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i i i i i i	-1.5		se, greyish-olive,	silty SA	AND (wet)			1	MAC			3.	4					
R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) -5.2 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -6.0 End of Boring 16 17 18 18 18 18 18 16 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19			· · · · ·	, , , , , ,	,			- 11 -	1						1450:	Collec	t 16B7_	11-12	
R4a (0-17") Loose greyish-olive, silty SAND, trace clay (wet) -5.2 R4b (17-27") Soft, grey, CLAY, trace organics (moist) -6.0 End of Boring 16 17 18 18								- 12					1.	1					
R4b (17-27°) Soft, grey, CLAY, trace organics (moist) -6.0 15 End of Boring 16 17 18 18 18]							
R4b (17-27°) Soft, grey, CLAY, trace organics (moist) -6.0 15 End of Boring 16 17 18 18 18			B4a (0.17") Laga	o grovich olivo, o		ID trace alow		- 13 -		ORE	6								
R4b (17-27°) Soft, grey, CLAY, trace organics (moist) 1.9 6.0 15 End of Boring 16 17 18 18 18				e greyisri-olive, s		iD, trace clay			2	ROC	1/3	NA	1.	8					
End of Boring 15 16 16 17 18 18 18 15 15 15 15 15		-5.2				nice (moint)		- 14 -		MAC									
End of Boring - 16 - - 17 - - 18 - - 19 - - 18 -	//	-60	11-27) 3011	u, grey, o∟Ar, ila	ue orga				1				1.	9					
- 16 - soil cuttings to grade.			E	nd of Boring				- 15 -							End o	of boring	g at ~15'	bgs.	
				2				- 16 -	1						Backf	filled bo	ring usir	ng clear	
								Ē	1								grade	•	
								- 17 -	1										
								È	1										
								- 18 -	1										
								- 10 -	1										
								- 19 -	1										

of ²
1/20/17
NA
Core
24 HR.
⊥ NA
narks
Depth of Casing, g Resistance, etc.)
ig Resistance, etc.)
Let 36
they 1 1
3
+ 1609 0 0
t 16B8_0-2
t 16B8_5.5-6.5
odor t 16B8_11-12
—
t 16B8_14-15
g at ~15' bgs. bring using clea
to grade.
)(

Project				4 <i>N</i>		LOGI		Boring				B9			Sheet	1	of	1
		215 No	rth 10th Stree	et								48220	1					
ocation		Brookly	n, New York				Ele	evation a	nd Da	atum		AVD8	8					
Drilling C	ompa	ny					Da	ate Starte	ed					Date I	Finished			
Drilling E	quipm) Environmer	ntal Services, Inc			Co	mpletion	Dept	h	11	/20/17		Rock	Depth	1	1/20/17	
		Geopro	be 6610 DT					•			1	12 ft					NA	
Size and		2-inch (D.D. Direct P	ush			Nu	imber of	Samp	oles		urbed	3		disturbed	NA	Core	NA
Casing D		NA				Casing Depth (ft) NA	w	ater Leve	el (ft.)		Firs	t 7 	7		mpletion	NA	24 HR.	NA
Casing H	lamme	^{er} NA		Weight (lbs)	NA	Drop (in) NA	Dr	illing For	eman		im k	(ally						
Sampler			.D. by 4-foot	long Macrocore Weight (lbs)		Drop (in)	Fie	eld Engin	eer	1	īm K	keny						
Sampler	Hamn	her	NA	vveight (ibs)	NA	Drop (in) NA		1	_	k		ample D			1			
MATERIAL SYMBOL	Elev. (ft) +8.0			Sample Descr	iption			Depth Scale	Number	Type		Penetr. resist BL/6in		ling	(Drill Fluid Lo	ing Fluid, I	Depth of Ca g Resistanc	sing, æ, etc.)
5 d P 4 0 0	+7.4	R1 (0	-6") CONCR	ETE SLAB				- 0 -	-				1.0					
								- 1 -	-				1.0			a	tany 1	± 1 ²⁴
									<u>-</u> - - -	MACROCORE	48					4	×	
								2 -	5	ACRC	6/48	NA			*	19		٠., ⁻
								- 3 -	-	Z					NORTH 1	10th STREET		
								- 4 -	-									
								5 -	-	붠								
		R2a (0-12") Loose	, grey, fine SANI	D, trace	e glass, trace fine		6 -	22	MACROCORE	26/48	NA	0.8	8				
	+1.1	grave	l (moist) [FIL	Ĺ]	,	0		Ļ	1	MACR	26		31.					
	• • • •		12-26") Loos fine gravel (v	e, black, silty SA	ND, tra	ace organics,	- <u>-</u>	<u>+</u> 7 - -					52. 17.		Petro		ke odors,	, black
		1000						8 -	-				17.	.9	Stann	ing		
								- 9 -		JRE								
			0.40"	deals was ""		haaa 6		- 10 -	28	MACROCORE	20/48	NA	61.	.5		oow she		
		R3a ((wet)	u-10") Loose	e, uark grey, silty	SAND,	trace fine gravel		- - 11 -		MAC			37. 14.		petro staini		e odors,	black
		R3b ((10-20") Loos	e, dark greyish b	rown, s	silty SAND (moist))	ŧ''	-				9.0			0	t 16B9_1	10-11
	-4.0		Er	nd of Boring				- 12 -	-						-		g at ~12'	
			_,					- 13 -	-						Back	filled bo	ring usin to grade.	ig clear
																		-
								- 14 - -	-									
								- 15 -										
								È 40										
								- 16 -										
								- 17 -	-									
								- 18 -										
								- 19 -	-									
								ا 20 –	1									

L	A	NGA	1 ()		Log	of E	Boring	3		16	B10			Sheet	1	of	1
Project							roject N	·									
Location		215 North 10th Stree	et			FI	evation	and D	atum		48220	1					
LUCALION	I	Brooklyn, New York					evalion		aturi		NAVD8	8					
Drilling C	-	ıy				Da	ate Sta	ted				[Date I	Finished			
Drilling E		AARCO Environmen	tal Services, Inc.			C	ompleti	on Der	oth	11	/20/17		Rock	Depth	11/:	20/17	
g _	-40.6	Geoprobe 6610 DT					ompion				12 ft			Dopui		NA	
Size and	І Туре о	of Bit 2-inch O.D. Direct Pi	ush			N	umber o	of Sam	ples	Dist	turbed	3	Un	idisturbed		Core	NA
Casing [Diamete	er (in)	4311	(Casing Depth (ft)	w	/ater Le	vel (ft)	Firs			-	mpletion	2	4 HR.	
Casing H	Hamme	NA	Weight (lbs)		Drop (in)		rilling Fo	•	, ,			7		N/	4	<u> </u>	NA
Sampler				NA	NA	_			٦	⊺im k	Kelly						
Sampler	Hamm	2-inch I.D. by 4-foot-	Weight (lbs)		Drop (in) NA	_ Fi	eld Eng	ineer		() h	1 41 -	_					
		NA NA		NA	NA				r		ample D						
Report: Log - LANGAN	Elev. (ft)		Sample Descri	ption			Dept Scal		Type	. cov.	Penetr. resist BL/6in	PID Readi		(Drilling FI		oth of Cas	
- Go MA	+8.0						+ 0		ŕ	, Be	BLa	(ppm	n)	Fluid Loss, [Drilling R	Resistance	e, etc.)
	+7.5	R1a (0-5") CONCF R1b (5-18") Loose		wn me	dium SAND		Ę	-				0.1		r			Let 36
		trace fine sand, tra	ace silt, trace coal	l fragm	ents, trace fine		- 1	-	ш			3.2		ō	timey	±	· ···
≹₩₩		gravel, brick and c	oncrete tragment	s (ary)	[FILL]		2	- 2	MACROCORE	18/48	NA	2.4		· · ·		×	· • 5
14/2018 10:01:14 AM									ACRO	18				*	15	-0 t	•
₽₩₩							- 3	-	Σ					NORTH 10th STR	ET	_	
	₹						- -	-									
- 100000							- 4	-									
							- 5	_									
							Ē	-	ORE	œ							
¥ XXXX		R2a (0-6") Loose,			e fine gravel, bri	ck	- 6		MACROCORE	24/48	NA	3.6					
MLOGS/215 NORTH 107H STREET GPJ		and concrete fragr R2b (6-21") Loose			e silt_trace	\sum	Ē,	_	MAG			2.7					
<u>É</u>		organics, trace cla	y, trace coal fragi	ments	(moist) [FILL]	_	` E '	-				28.9 54.6		Petroleur staining	n-like	odors,	black
	₹	R2c (21-24") Loos trace organics (mo		ND, SOI	ne fine gravel,		- 8	+	_					1205: Čo	llect 1	6B10_	7-8
ë 🔆 🔆							-					9.8					
		R3a (0-15") Loose brick fragments (w		SAND,	trace fine grave	l,	- 9	-	RE			7.8					
	-2.0						- 10		MACROCORE	38/48	NA	8.0 6.3					
		R3b (15-24") Loos organics, trace fine		ND, SC	ome silt, trace		-	-	ACR	38		5.8					
		R3c (24-36") Loos trace organics, trace					- 11	-	~			5.3					
	-3.5	R3d (36-38") Soft,	grey, CLAY, trac	e orga	nics (moist)			-									
DAT		En	nd of Boring				+ 12 E	-						End of bo			
SNG							- 13	-						Backfilled soil cuttin			g clean
							E	-							0	0	
ENG							- 14										
2201							- 15	-									
17048							Ę										
TA2							- 16	-									
CUDA							- 47	-									
ANA							- 17										
ADA1							- 18										
CON							E										
							- 19										
							<u>E</u> 20	_									

L	A	NGA	4 /V		Log	of E	Boring			16	B11		S	Sheet	1		of	1
Project			-4			Pro	oject No.			470	40000	4						
Location		215 North 10th Stree	<u>et</u>			Ele	evation ar	nd Da	atum	170	48220	1						
Drilling C		Brooklyn, New York				Da	ite Starte	4		8 N	IAVD8		ate Fir	hebod				
Drining C		AARCO Environmer	ntal Services, Inc.					u		11	/20/17			IISHEU		11/20	/17	
Drilling E			`			Co	mpletion	Dept	h				ock De	epth				
Size and		Geoprobe 6610 DT				NL				Dist	12 ft urbed		Undi	sturbed		Cor	NA re	
Casing [2-inch O.D. Direct P	ush	Cas	ing Depth (ft)	-	Imber of S			Firs	t	3	Com	pletion	NA	24 1	HR	NA
		NA			NA		ater Leve	• •		$ \overline{\Sigma} $	-	7	Ţ	plotion	NA	Ī		NA
Casing H	lamme	^r NA	Weight (lbs)	NA	Drop (in) NA		illing Fore	eman	т	ïm K	ellv							
Sampler		2-inch I.D. by 4-foot-	-long Macrocore Weight (lbs)		Drop (in)	Fie	eld Engine	eer	<u> </u>		lony							
Sampler	Hamm	er NA		NA	NA		1	1	K		lagotko Imple D							
MATERIAL SYMBOL	Elev. (ft) +8.0		Sample Descrip	ption			Depth Scale	Number	Type		Penetr. resist BL/6in	PID Readin (ppm)		(Drilli Fluid Lo	Rei ng Fluid, oss, Drilli	mark Depthing Resi	of Casi	ng, , etc.)
	+7.8	R1a (0-2") CONCE					0 -											
		R1b (2-16") Loose trace fine gravel, t				,	- 1 -					2.2 5.4			, r	tilley 1		Let 36
		-	-		-		E		MACROCORE	œ								
							2 -	5	CRO	16/48	NA					ľ	×.	-8
							- 3 -		MA				3	BOEAALK				· -
														NORTH 1	Oth STREET			
							- 4 -	-										
							- 5 -											
									ORE									
		R2a (0-12") Loose	a dark grev to blac	k fine SA	AND trace		- 6 -	22	MACROCORE	23/48	NA	1.0						
	+1.0	organics, trace fin	e gravel, trace coa	al fragme	nts (moist)	∇			MAC			1.7						
	+1.0	R2b (12-23") Loos					- 7 -					0.5 1.8		1310:	Colle	ct 16E	311_7	7-8
		fine gravel, imbede sand (wet)	ded with quater-ine	ch lenses	of black fine		- 8 -	1				1.0						
		Sund (Wet)																
							- 9 -		Æ									
							- 10 -	R R	OCOF	15/48	NA							
· [·] ·] ·	-2.2	R3a (0-12") Loose	, dark grey, silty S	SAND, so	me fine gravel	I			MACROCORE	15		1.5						
	-3.1	(moist) R3b (12-15") Soft,	GREV CLAY trace	organice	s trace shells		- 11 -		2			1.5						
	-4.0	(moist)	groy, oerr, adoc	e organio			- 12 -					1.6						
		Er	nd of Boring					-							of borin			
							- 13 -								uttings			clean
															-	•		
							- 14 -	1										
							- 15 -											
								-										
							- 16 -											
							- 17 -											
							ŧ":											
							- 18 -	1										
							- 19 -											
							E 20 -	-			[

L	A	NGA	4/V		Log	of E	Boring			16	B12			Sheet	1	of	1
Project						Pr	oject No.										
Location		215 North 10th Stre	et			Ele	evation ar	nd Da	atum		48220	1					
Drilling (<u>`omno</u>	Brooklyn, New York					ate Starte	4		8.5	NAVE		Data [inished			
Drining C	опра	AARCO Environme	ntal Services. Inc.			Da		J		11	/21/17		Jaler	IIIISHeu	1	1/21/17	
Drilling E	quipm		,			Co	mpletion	Dept	h				Rock I	Depth			
Size and	Type	Geoprobe 6610 DT								Dist	15 ft urbed		Un	disturbed		NA Core	
	,,	2-inch O.D. Direct P	'ush		Desire Death (ft)	Nu	Imber of S	Samp	oles			3			NA		NA
Casing [NA			Casing Depth (ft)		ater Leve			Firs 	ļ -	7		mpletion	NA	24 HR. 	NA
Casing H		^{er} NA	Weight (lbs)	NA	Drop (in) NA	Dr	illing Fore	man		im k	ally						
Sampler		2-inch I.D. by 4-foot				Fie	eld Engine	er	I	ïm K	lelly						
Sampler	Hamm	ner NA	Weight (lbs)	NA	Drop (in) NA				K		lagotk			·			
BOL	Elev.						Depth	e	0		imple Da	ata PID	,	-		arks	
MATERIAL SYMBOL	(ft) +8.5		Sample Descri	iption			Scale	Number	Type	Reco (in)	Penetr. resist BL/6in	Readi (ppn	ng			epth of Ca Resistan	
	+8.1	R1a (0-4") CONC					<u> </u>	-									
		R1b (4-20") Loose trace asphalt, trace					- 1 -	1				2.0 1.1		12	τ.	tany 1	Let 36
\otimes		fragments (dry) [F R1c (20-23") Loos	FILL]						ORE	<u>س</u>		0.8				· ·	
		some fine sand, tr	race fine gravel (d	lry) [FIL	L]		2 -	۲	MACROCORE	36/48	NA	0.8				<u> </u>	
		R1d (23-36") Loos sand, trace glass,	se, dark brown, m trace ashpalt. bri	edium S ck and	SAND, some fine concrete	Э		1	MAC			0.8		* -	15		۰ <u>ـ</u>
		fragments (dry) [F	ILL]				- 3 -					0.4		NORTH 10th	STREET		
							- 4 -	-									
							E :										
		R2a (0-12") Loose					- 5 -		щ			3.2					
		sand, trace glass, fragments (dry) [F		brick a	nd concrete		6 -	R2	DCOF	36/48	NA	2.7					
		R2b (12-36") Loos	se, black, medium					L L L	MACROCORE	36/		3.1 2.1					
		sand, trace coal fr (moist) [FILL]	agments, trace si	lit, trace	e fine gravei	$\overline{\Delta}$	7 -		Ň			1.5					
												1.1					
							- 8 -	-									
							- 9 -										
									ORE								
	-1.5		black fine SANC	some	silt_trace_fine		- 10 -	8	MACROCOF	24/48	NA	1.0	1				
		gravel (moist)		, oome					MAC			1.2					
							- 11 -					1.3					
	-3.5						- 12 -					1.1					
							- 13 -	1									
		No Recovery															
1							- 14 -	1									
							- 15 -	1						End of	horing	1 at ~15	' has
		Er	nd of Boring				E							Backfill	ed bo	, ring usir	ng clean
							- 16 -							soil cut	ungs t	o grade	
							- 17 -										
							- 18 -										
							È										
							- 19 -										
							÷	1									

Appendix E

Monitoring Well Construction and Groundwater Sampling Logs

LANGAN

WELL CONSTRUCTION SUMMARY

Well No. 16MW1

PROJECT	PROJECT NO.	
215 North 10th Street	170482201	
LOCATION	ELEVATION AND DATUM	
Brooklyn, New York	8.6 feet NAVD88	
DRILLING AGENCY	DATE STARTED	DATE FINISHED
AARCO Environmental Services, Inc.	11/21/2017	11/21/2017
DRILLING EQUIPMENT	DRILLER	
Geoprobe 6610DT	Tim Kelly	
SIZE AND TYPE OF BIT	INSPECTOR	
2-inch diameter Direct Push	Kim Nagotko	

METHOD OF INSTALLATION

AARCO advanced 16MW1 using a Geoprobe 6610 DT to about 15' bgs for installation of the well components. The well consists of a 1-inch diameter pre-pack PVC screened from about 5 to 15' bgs with a PVC riser to grade. No. 2 Morrie sand was backfilled around the screen, followed by a 2-foot bentonite cap and clean soil cuttings to grade. AARCO finished the well with a flush-mount cover and cement patch.

METHOD OF WELL DEVELOPMENT

AARCO used a check valuve to purge groundwater until clear. About 4 gallons of groundwater were purged and placed in a 55-gallon drum for future off-site disposal.

TYPE OF CASING		DIAMETER		TYPE OF	F BACKFI	ILL MA	ATERIAL			
Pre-pack			1	Clean	n soil c	cuttii	ngs			
TYPE OF SCREEN		DIAMETER		TYPE OF	F SEAL N	/IATER	IAL			
Pre-pack			1	Hydra	ated B	Bento	onite C	Chips		
BOREHOLE DIAME	TER				F FILTER					
			2	Morri	e No.	2 Sa	and			
TOP OF CASING	ELEVATION	D	EPTH (ft)		WELL	DETAIL	_S			DEPTH
									SUMMARY SOIL	(FT)
	8.0		0.6						CLASSIFICATION	
TOP OF SEAL	ELEVATION	D	EPTH (ft)						See boring log	
	7.6		1	Cover						0
TOP OF FILTER	ELEVATION	D	EPTH (ft)							
	5.6		3							
TOP OF SCREEN	ELEVATION	D	EPTH (ft)	1						
	3.6		5						Fill	
BOTTOM OF BORIN	NG ELEVATION	D	EPTH (ft)							
	-6.4		15							
SCREEN LENGTH				1						
			10							1
SLOT SIZE				1			s	eal		3
			0.01							5
GROUN	IDWATER ELE	VATIONS		1						
ELEVATION	DATE	DEPTH TO WATER		1						
2.01	11/21/2017		6.59						Sand	7
ELEVATION	DATE	DEPTH TO WATER		PVC						
1.62	1/2/2018		6.98	Screen						
ELEVATION	DATE	DEPTH TO WATER		1						
							Sa	nd		
ELEVATION	DATE	DEPTH TO WATER				•	Pa	ick		
ELEVATION	DATE	DEPTH TO WATER								
]						15
ELEVATION	DATE	DEPTH TO WATER								
	LANGAN En	gineering, Envi	ronmenta	l, Surv	eying	and	Lands	cape	Architecture, D.P.C	<u>,</u>
		za, 360 West 3						-		
R	-	,								

WELL CONSTRUCTION SUMMARY

Well No. 16MW2

PROJECT	PROJECT NO.	
215 North 10th Street	170482201	
LOCATION	ELEVATION AND DATUM	
Brooklyn, New York	8.0 feet NAVD88	
DRILLING AGENCY	DATE STARTED	DATE FINISHED
AARCO Environmental Services, Inc.	11/21/2017	11/21/2017
DRILLING EQUIPMENT	DRILLER	
Geoprobe 6610DT	Tim Kelly	
SIZE AND TYPE OF BIT	INSPECTOR	
2-inch diameter Direct Push	Kim Nagotko	

METHOD OF INSTALLATION

AARCO advanced 16MW2 using a Geoprobe 6610 DT to about 15' bgs for installation of the well components. The well consists of a 1-inch diameter pre-pack PVC screened from about 5 to 15' bgs with a PVC riser to grade. No. 2 Morrie sand was backfilled around the screen, followed by a 2-foot bentonite cap and clean soil cuttings to grade. AARCO finished the well with a flush-mount cover and cement patch.

METHOD OF WELL DEVELOPMENT

AARCO used a check valuve to purge groundwater until clear. About 4 gallons of groundwater were purged and placed in a 55-gallon drum for future off-site disposal.

TYPE OF CASING		DIAMETER		TYPE OI	FBACK	FILL MA	ATERIAL			
Pre-pack			1	Clear	n Soil	Cutt	ings			
TYPE OF SCREEN		DIAMETER		TYPE OI	F SEAL	MATER	RIAL			
Pre-pack			1	Hydra	ated l	Bento	onite C	hips		
BOREHOLE DIAME	TER			TYPE OI						
			2	Morri	ie No	. 2 S	and			
TOP OF CASING	ELEVATION	D	EPTH (ft)		WELI	L DETAII	LS			DEPTH
									SUMMARY SOIL	(FT)
	7.4		0.6						CLASSIFICATION	
TOP OF SEAL	ELEVATION	D	EPTH (ft)						See boring log	
	7.0		1	Cover						0
TOP OF FILTER	ELEVATION	D	EPTH (ft)	1]			
	5.0		3							
TOP OF SCREEN	ELEVATION	D	EPTH (ft)	1						
	3.0		5						Fill	
BOTTOM OF BORIN	NG ELEVATION	D	EPTH (ft)							
	-7.0		15							
SCREEN LENGTH										
			10							1
SLOT SIZE				1			↓ s	eal		3
			0.01							5
GROUN	IDWATER ELE	VATIONS		1						
ELEVATION	DATE	DEPTH TO WATER		1						
1.86	11/21/2017		6.14							
ELEVATION	DATE	DEPTH TO WATER		PVC					Sand	10.5
1.25	1/2/2018		6.75	Screen						
ELEVATION	DATE	DEPTH TO WATER								
							Sa	nd		
ELEVATION	DATE	DEPTH TO WATER					Pa	ck	Clay	12
ELEVATION	DATE	DEPTH TO WATER								
]						15
ELEVATION	DATE	DEPTH TO WATER								
	LANGAN En	gineering, Envi	ronmenta	l, Surv	eying	g and	Lands	cape	Architecture, D.P.C	
	21 Penn Pla	za, 360 West 3	31st Stree	t, 8th	Floor	r, Nev	w York	-		

WELL CONSTRUCTION SUMMARY

Well No. 16MW3

PROJECT	PROJECT NO.	
215 North 10th Street	170482201	
LOCATION	ELEVATION AND DATUM	
Brooklyn, New York	7.7 feet NAVD88	
DRILLING AGENCY	DATE STARTED	DATE FINISHED
AARCO Environmental Services, Inc.	11/21/2017	11/21/2017
DRILLING EQUIPMENT	DRILLER	
Geoprobe 6610DT	Tim Kelly	
SIZE AND TYPE OF BIT	INSPECTOR	
2-inch diameter Direct Push	Kim Nagotko	

METHOD OF INSTALLATION

AARCO advanced 16MW3 using a Geoprobe 6610 DT to about 15' bgs for installation of the well components. The well consists of a 1-inch diameter pre-pack PVC screened from about 5 to 15' bgs with a PVC riser to grade. No. 2 Morrie sand was backfilled around the screen, followed by a 2-foot bentonite cap and clean soil cuttings to grade. AARCO finished the well with a flush-mount cover and cement patch.

METHOD OF WELL DEVELOPMENT

AARCO used a check valuve to purge groundwater until clear. About 4 gallons of groundwater were purged and placed in a 55-gallon drum for future off-site disposal.

TYPE OF CASING		DIAMETER		TYPE OF	BACKFI	LL MA	TERIAL			
Pre-pack			1	Clean	soil c	uttir	ngs			
TYPE OF SCREEN		DIAMETER			SEAL M					
Pre-pack			1	Hydra	ated B	ento	onite	Chips	3	
BOREHOLE DIAMET	rer				FILTER					
			2	Morri	e No.	2 Sa	and			
TOP OF CASING	ELEVATION	D	EPTH (ft)		WELL D	DETAIL	.S			DEPTH
									SUMMARY SOIL	(FT)
	7.1		0.6						CLASSIFICATION	
TOP OF SEAL	ELEVATION	C	EPTH (ft)						See boring log	
	6.7		1	Cover	_					0
TOP OF FILTER	ELEVATION	D	EPTH (ft)							
	4.7		3							
TOP OF SCREEN	ELEVATION	D	EPTH (ft)						Fill	
	2.7		5							
BOTTOM OF BORIN	IG ELEVATION	D	EPTH (ft)	1						
	-7.3		15							
SCREEN LENGTH				1						
			10							1
SLOT SIZE							←	Seal		3
			0.01							5
GROUN	DWATER ELE	VATIONS								
ELEVATION	DATE	DEPTH TO WATER								
1.58	11/21/2017		6.12							
ELEVATION	DATE	DEPTH TO WATER		PVC						
1.65	1/2/2018		6.05	Screen						
ELEVATION	DATE	DEPTH TO WATER		1						
							S	and		
ELEVATION	DATE	DEPTH TO WATER		1		+	F	ack		
ELEVATION	DATE	DEPTH TO WATER								
						-				15
ELEVATION	DATE	DEPTH TO WATER					I			
	LANGAN En	gineering, Envi	ronmenta	l, Surv	eying	and	Land	scape	Architecture, D.P.C	
	21 Penn Pla	za, 360 West 3	31st Stree	t, 8th	Floor,	Nev	<i>N</i> Yor	k		

045 1				NI V/ I		1.0.10		40.7	<u>`</u>
2151									
	170482201	Pump Make/Model	Solinist F	Peri. Pump	Well Permit #:	N/A	Well Diameter:	1.00	
k	lim Nagotko	Weather:	40-50	, Sunny	Pump Intake Depth (ft):	10.00	Well Screen Interval:	5 to 1	5
		Beelsmound BID Beedings			Depth to Water Before		Comula Na i		
	Horiba	Background FID Reading:	(0.0	Pump Installation:	6.13	Sample No.:	MW3_11	2917
	C294688	PID Beneath Inner Cap:	(0.0	Tubing Diameter	1/4-inch	Sample Date:	11/29/2017	
							Sample Time:	11:25	ō
		ST	ABILIZATION =	3 successive rea	dings within limits				
PH	CONDUCTIVITY	DO	ORP	TURBIDITY	TEMP	DTW	Q	NOTES	a b <i>c</i>
su	uS/cm	mg/l	mv	ntu	deg c	ft	(L/min)		Cumulative
		ů		(+/- 10%)	Ũ	Drawdown <			Discharge
(+/- 0.1)	(+/- 3%)	(+/- 10%) above 0.5 mg/l	(+/- 10mV)	above 5 NTU	(+/- 3%)	0.33 ft	<0.5 L/min (0.13 gpm)	color, odor etc.	Volume
				P	RE-PURGE				
6.64	0.74	1.73	-37.00	4.60	16.54	6.13	0.5	Petroleum-like odor	
6.43	0.73	0.86	-40.00	4.70	16.56	6.13	0.5	clear discharge	
6.34	0.73	0.02	-59.00	4.80	16.78	6.13	0.5		
6.33	0.72	0.00	-72.00	5.30	16.91	6.13	0.5		
6.30	0.73	0.00	-87.00	4.80	17.04	6.13	0.5		
6.28	0.73	0.00	-93.00	4.50	17.09	6.13	0.5		
6.25	0.73	0.00	-96.00	4.80	17.00	0.10	0.5		~6 gallons
	PH su (+/- 0.1) 6.64 6.43 6.34 6.34 6.30 6.30 6.28	C294688 PH CONDUCTIVITY su uS/cm (+/- 0.1) (+/- 3%) 6.64 0.74 6.43 0.73 6.34 0.73 6.33 0.72 6.30 0.73 6.28 0.73	170482201 Pump Make/Model Kim Nagotko Kim Nagotko Weather: Horiba Background PID Reading: C294688 PID Beneath Inner Cap: PH CONDUCTIVITY uS/cm DO mg/l (+/- 0.1) (+/- 3%) (+/- 10%) above 0.5 mg/l 6.64 0.74 1.73 6.43 0.73 0.86 6.34 0.72 0.00 6.30 0.73 0.00 6.28 0.73 0.00	170482201 Pump Make/Model Solinist f Kim Nagotko Weather: 40-50 Horiba Background PID Reading: (C294688 PID Beneath Inner Cap: (PH CONDUCTIVITY DO ORP su uS/cm mg/l mv (+/- 0.1) (+/- 3%) (+/- 10%) above 0.5 mg/l (+/- 10mV) 6.64 0.74 1.73 -37.00 6.43 0.73 0.86 -40.00 6.33 0.72 0.00 -72.00 6.33 0.73 0.00 -87.00 6.32 0.73 0.00 -93.00	170482201 Pump Make/Model Solinist Peri. Pump Kim Nagotko Weather: 40-50, Sunny Horiba Background PID Reading: 0.0 C294688 PID Beneath Inner Cap: 0.0 STABILIZATION = 3 successive rea PH CONDUCTIVITY DO ORP TURBIDITY su uS/cm mg/l mv ntu (+/- 0.1) (+/- 3%) (+/- 10%) above 0.5 mg/l (+/- 10mV) above 5 NTU 6.64 0.74 1.73 -37.00 4.60 6.43 0.73 0.02 -59.00 4.80 6.33 0.72 0.00 -72.00 5.30 6.33 0.73 0.00 -87.00 4.80 6.32 0.73 0.00 -93.00 4.50	170482201 Pump Make/Model Solinist Peri. Pump Well Permit #: Kim Nagotko Weather: 40-50, Sunny Pump Intake Depth (ft): Depth to Water Before Pump Installation: Horiba Background PID Reading: 0.0 Tubing Diameter C294688 PID Beneath Inner Cap: 0.0 Tubing Diameter FH CONDUCTIVITY DO ORP TURBIDITY TEMP su uS/cm mg/l mv ntu deg c (+/- 0.1) (+/- 3%) (+/- 10%) above 0.5 mg/l (+/- 10mV) above 5 NTU (+/- 3%) E6.64 0.74 1.73 -37.00 4.60 16.54 6.33 0.72 0.00 -72.00 5.30 16.91 6.33 0.73 0.00 -87.00 4.80 17.04 6.28 0.73 0.00 -93.00 4.50 17.09	170482201 Pump Make/Model Solinist Peri. Pump Well Permit # N/A Kim Nagotko Weather: 40-50, Sunny Pump Intake Depth (ft): 10.00 Horiba Background PID Reading: 0.0 Depth to Water Before Pump Installation: 6.13 C294688 PID Beneath Inner Cap: 0.0 Tubing Diameter 1/4-inch FH CONDUCTIVITY DO ORP TURBIDITY TEMP DTW su uS/cm mg/l mv ntu deg c ft (+/- 0.1) (+/- 10%) above 0.5 mg/l (+/- 10mV) above 5 NTU (+/- 3%) 0.33 ft 6.64 0.74 1.73 -37.00 4.60 16.54 6.13 6.43 0.73 0.86 -40.00 4.70 16.56 6.13 6.33 0.72 0.00 -72.00 5.30 16.91 6.13 6.33 0.73 0.00 -87.00 4.80 17.04 6.13 6.28 0.73 0.00	170482201 Pump Make/Model Solinist Peri. Pump Well Permit #: N/A Well Diameter: Kim Nagotko Weather: 40-50, Sunny Pump Intake Depth (ft): 10.00 Well Screen Interval: Horiba Background PID Reading: 0.0 Depth to Water Before 6.13 Sample No.: C294688 PID Beneath Inner Cap: 0.0 Tubing Diameter 1/4-inch Sample Date: Somple Time: Statist Peri. Pump Tubing Diameter 1/4-inch Sample Date: FH CONDUCTIVITY DO ORP TURBIDITY TEMP DTW Q su uS/cm mg/l mv ntu deg c ft (L/min) (+/- 0.1) (+/- 10%) above 0.5 mg/l (+/- 10mV) above 5 NTU (+/- 3%) 0.33 ft <0.5 L/min (0.13 gpm)	170482201 Pump Make/Model Solinist Peri. Pump Well Permit #: N/A Well Diameter: 1.00 Kim Nagotko Weather: 40-50, Sunny Pump Intake Depth (ft): 10.00 Well Screen Interval: 5 to 1 Horiba Background PID Reading: 0.0 Depth to Water Before Pump Installation: 6.13 Sample No.: MW3_111 C294688 PID Beneath Inner Cap: 0.0 Tubing Diameter 1/4-inch Sample Date: 11/29/2 Sample Time: 11/29/2 For Market Model MV MU Medge ft (L/min) MW3_11 C294688 PID Beneath Inner Cap: 0.0 TURBIDITY TEMP DTW Sample Date: 11/29/2 Sample Time: 11/29/2

Notes Cont.

Following samples collected: 1125: MW3_112917 1130: GWMS_MW3_112917 1135: GWMSD_MW3_112917

LANGAN

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jessey • New York • Virginia • California • Pennsykania • Connecticut • Florida • Abu Dhabi • Athens • Deha • Dubai • Istanbul

Project:	215 1	North 10th Street	Site Location:	Brooklyn	New York	Well No:	MW4	Well Depth:	12.1	6
		170482201				Well Permit #:	N/A	Well Diameter:	12.1	-
Project Number:			Pump Make/Model		Peri. Pump		1			
Personnel:		Kim Nagotko	Weather:	40-50	, Sunny	Pump Intake Depth (ft):	10.00	Well Screen Interval:	5 to '	15
Water Quality Device Model		Horiba	Background PID Reading:	().0	Depth to Water Before Pump Installation:	6.66	Sample No.:	MW4 11	2917
Pine Number		C294688	PID Beneath Inner Cap:).0	Tubing Diameter	1/4-inch	Sample Date:	11/29/2	
						· · · · · · · · · · · · · · · · · · ·	.,	Sample Time:		
			STABILIZATION = 3 successive readings within limits					•		
	PH	CONDUCTIVITY	DO	ORP	TURBIDITY	TEMP	DTW	Q	NOTES	
	su	uS/cm	mg/l	mv	ntu	deg c	ft	(L/min)		Cumulative
	54	40/011	iiig/i		(+/- 10%)	ucgi	Drawdown <	(2,)		Discharge
TIME	(+/- 0.1)	(+/- 3%)	(+/- 10%) above 0.5 mg/l	(+/- 10mV)	above 5 NTU	(+/- 3%)	0.33 ft	<0.5 L/min (0.13 gpm)	color, odor etc.	Volume
	(+/- 0.1)	(+/- 3%)	(+/- 10/0/ above 0.5 mg/1	(+/- 10mv)			0.55 11	<0.5 E/min (0.15 gpm)		
15:35						RE-PURGE				
15:40	6.36	1.36	5.11	-109.00	264.00	15.55	6.66	0.4	brown	
15:45	6.38	1.14	5.73	-100.00	968.00	16.05	6.66	0.4		
15:50	6.21	1.07	7.41	-86.00	1000.00	16.09	6.66	0.4		
15:55	6.23	1.11	9.42	-83.00	1000.00	16.00	6.66	0.4		
16:00	6.26	1.11	9.55	-80.00	1000.00	15.94	6.66	0.4		
16:05	6.27	1.13	9.74	-78.00	946.00	15.87	6.66	0.4		
16:10	6.27	1.13	9.90	-76.00	814.00	15.79	6.66	0.4		
16:15	6.26	1.10	9.90	-74.00	341.00	15.75	6.66	0.4		
16:20	6.27	1.15	9.95	-74.00	335.00	15.73	6.66	0.4		
16:25	6.27	1.13	9.95	-73.00	157.00	15.70	6.66	0.4		
16:30	6.28	1.13	9.95	-71.00	86.30	15.72	6.66	0.4		
16:35	6.29	1.12	9.97	-70.00	43.20	15.73	6.66	0.4		
16:40	6.28	1.14	9.99	-70.00	27.10	15.72	6.66	0.4		~5 gallons

LANGAN ENGINEERING & ENVIRONMENTAL SERVICES

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

New Jersey • New York • Virginia • California • Pennsylvania • Cannecticut • Florida • Abu Dhabi • Athens • Doha • Dubai • Istanbul

Project:	215 1	North 10th Street	Site Location:	Brooklyn	, New York	Well No:	16mw1	Well Depth:	15.0	0
	2131									
Project Number:		170482201	Pump Make/Model		Peri. Pump	Well Permit #:	N/A	Well Diameter:		
Personnel:		Kim Nagotko	Weather:	40-50	, Sunny	Pump Intake Depth (ft):	10.00	Well Screen Interval:	5 to 1	15
Water Quality Device			Background PID Reading:			Depth to Water Before		Sample No.:		
Model		Horiba	Buokground Fib ficuality.	(0.0	Pump Installation:	6.82	oumpie no	16MW1_1	12917
Pine Number		C294688	PID Beneath Inner Cap:	(0.7	Tubing Diameter	1/4-inch	Sample Date:	11/29/2	2017
								Sample Time:	15:3	5
	STABILIZATION = 3 successive readings within limits						•			
	PH	CONDUCTIVITY	DO	ORP	TURBIDITY	TEMP	DTW	Q	NOTES	
	su	uS/cm	mg/l	mv	ntu	deg c	ft	(L/min)		Cumulative
			3		(+/- 10%)		Drawdown <	. ,		Discharge
TIME	(+/- 0.1)	(+/- 3%)	(+/- 10%) above 0.5 mg/l	(+/- 10mV)	above 5 NTU	(+/- 3%)	0.33 ft	<0.5 L/min (0.13 gpm)	color, odor etc.	Volume
14:40	(17 011)			(17 101117)		RE-PURGE				
	0.10	0.04	0.50	00.00			0.00	0.4	link marite data	
14:45	6.10	0.64	9.50	-99.00	1000.00	15.12	6.82	0.4	light grey to clear	
14:50	6.13	2.26	0.00	-81.00	1000.00	15.64	6.82	0.4		
14:55	6.23	1.83	0.00	-85.00	274.00	15.91	6.82	0.4		
15:00	6.26	1.67	0.00	-88.00	92.30	15.95	6.82	0.4		
15:05	6.27	1.63	0.00	-91.00	42.90	15.96	6.82	0.4		
15:10	6.27	1.60	0.00	-93.00	22.50	15.97	6.82	0.4		
15:15	6.28	1.58	0.00	-96.00	11.00	15.97	6.82	0.4		
15:20	6.28	1.57	0.00	-99.00	7.20	15.95	6.82	0.4		
15:25	6.29	1.56	0.00	-100.00	4.50	15.91	6.82	0.4		
15:30	6.29	1.56	0.00	-102.00	4.30	15.90	6.82	0.4		
15:35	6.29	1.56	0.00	-103.00	2.30	15.90	6.82	0.4		~ 6 gallons

LANGAN ENGINEERING & ENVIRONMENTAL SERVICES

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey • New York • Virginia • California • Pennsykania • Connecticut • Florida • Abu Dhabi • Athens • Deha • Dubai • Istanbul

Project:	2151	North 10th Street	Site Location:	Brooklyn	, New York	Well No:	16MW2	Well Depth:	15.0	0
Project Number:	2101	170482201	Pump Make/Model		Peri. Pump	Well Permit #:	N/A	Well Diameter:	1.00	-
Personnel:		Kim Nagotko	Weather:		, Sunny	Pump Intake Depth (ft):	10.00	Well Screen Interval:	5 to 1	
Water Quality Device		Kinn Nagotiko		40.00	, ounny	Depth to Water Before	10.00			0
Model		Horiba	Background PID Reading:	(0.0	Pump Installation:	6.35	Sample No.:	16MW2_1	12917
Pine Number		C294688	PID Beneath Inner Cap:		4.8	Tubing Diameter	1/4-inch	Sample Date:	11/29/2	
	•							Sample Time:	14:3	0
			ST	ABILIZATION =	3 successive rea	dings within limits		•		
	PH	CONDUCTIVITY	DO	ORP	TURBIDITY	TEMP	DTW	٥	NOTES	Course de tractione
	su	uS/cm	mg/l	mv	ntu	deg c	ft	(L/min)		Cumulative
			3		(+/- 10%)		Drawdown <	. ,		Discharge
TIME	(+/- 0.1)	(+/- 3%)	(+/- 10%) above 0.5 mg/l	(+/- 10mV)	above 5 NTU	(+/- 3%)	0.33 ft	<0.5 L/min (0.13 gpm)	color, odor etc.	Volume
13:10		•	• • • •		F	RE-PURGE		•	•	
13:15	5.35	4.22	2.22	-33.00	92.30	15.54	6.35	0.4	clear to light grey	l
13:20	6.02	1.89	2.03	-64.00	65.20	15.64	6.35	0.4		l
13:25	6.04	1.89	2.03	-67.00	55.60	15.70	6.35	0.4		l
13:30	6.05	1.97	1.98	-70.00	56.80	15.79	6.35	0.4		1
13:35				Purg	ing haulted due to	o site access issues with CP				
13:40	6.06	3.47	7.80	-58.00	1000.00	15.51	6.35	0.4		1
13:45	6.09	2.97	6.61	-78.00	1000.00	15.68	6.35	0.4		1
13:50	6.20	1.80	8.11	-78.00	1000.00	15.68	6.35	0.4		1
13:55	6.19	1.78	7.81	-78.00	346.00	15.73	6.35	0.4		l
14:00	6.21	1.76	7.33	-79.00	222.00	15.72	6.35	0.4		l
14:05	6.21	1.75	6.94	-80.00	113.00	15.76	6.35	0.4		1
14:10	6.21	1.76	6.86	-80.00	73.20	15.75	6.35	0.4		1
14:15	6.22	1.75	6.84	-79.00	44.60	15.75	6.35	0.4		l
14:20	6.20	1.73	5.83	-80.00	22.20	15.75	6.35	0.4		ł
14:25	6.20	1.74	5.87	-80.00	15.90	15.75	6.35	0.4		
14:30	6.21	1.74	5.55	-80.00	8.70	15.75	6.35	0.4		~6 gallons
									Notes Cont.:	L
									Following samples of	
									1430: 16MW2_1129	<i>/</i> 1/
									GWDUP01_112917	I

LANGAN ENGINEERING & ENVIRONMENTAL SERVICES

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey • New York • Virginia • California • Pennsylvania • Connecticut • Florida • Abu Dhabi • Athens • Doha • Dubai • Istanbul

Project:	215 1	North 10th Street	Site Location:	Brooklyn	New York	Well No:	16MW3	Well Depth:	15.0	0
	2131	170482201	Pump Make/Model	, ,	Peri. Pump	Well Permit #:	N/A	Well Diameter:	1.00	
Project Number:										
Personnel:		Kim Nagotko	Weather:	40-50	, Sunny	Pump Intake Depth (ft):	10.00	Well Screen Interval:	5 to 1	15
Water Quality Device			Background PID Reading:	~		Depth to Water Before	F 00	Sample No.:	4.01.41.4/0	40047
Model		Horiba			0.0	Pump Installation:	5.88		16MW3_1	
Pine Number		C294688	PID Beneath Inner Cap:	().1	Tubing Diameter	1/4-inch	Sample Date:	11/29/2	
								Sample Time:	13:0	5
			ST	ABILIZATION =	3 successive rea	dings within limits				
	PH	CONDUCTIVITY	DO	ORP	TURBIDITY	TEMP	DTW	٥	NOTES	Cumulative
	su	uS/cm	mg/l	mv	ntu	deg c	ft	(L/min)		
			-		(+/- 10%)	-	Drawdown <			Discharge
TIME	(+/- 0.1)	(+/- 3%)	(+/- 10%) above 0.5 mg/l	(+/- 10mV)	above 5 NTU	(+/- 3%)	0.33 ft	<0.5 L/min (0.13 gpm)	color, odor etc.	Volume
12:00		•	•		P	RE-PURGE		•		•
12:05	6.05	2.13	4.99	-83.00	304.00	16.72	5.88	0.5	clear	
12:10	6.18	1.17	0.63	-70.00	130.00	16.55	5.88	0.5		
12:15	6.09	1.06	0.00	-59.00	69.70	16.34	5.88	0.5		
12:20	6.02	1.06	0.00	-53.00	40.40	16.34	5.88	0.5		
12:25	5.96	1.96	0.00	-48.00	57.30	16.43	5.88	0.5		
12:30	5.91	1.05	0.00	-44.00	62.10	16.29	5.88	0.5		
12:35	5.88	1.05	0.00	-41.00	37.80	16.11	5.88	0.5		
12:40	5.86	1.05	0.00	-40.00	38.30	16.04	5.88	0.5		
12:45	5.84	1.07	0.00	-38.00	34.00	15.98	5.88	0.5		
12:50	5.82	1.06	0.00	-36.00	32.30	15.94	5.88	0.5		
12:55	5.82	1.08	0.00	-36.00	27.90	15.89	5.88	0.5		
13:00	5.82	1.08	0.00	-35.00	26.70	15.87	5.88	0.5		
13:05	5.82	1.08	0.00	-35.00	25.40	15.86	5.88	0.5		~ 6.5 gallons

LANGAN ENGINEERING & ENVIRONMENTAL SERVICES

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com

New Jersey • New York • Virginia • California • Pennsylvania • Connecticut • Florida • Abu Dhabi • Athens • Doha • Dubai • Istanbul

Appendix F

Community Air Monitoring Program Summary Data

LANGAN

215 North 10th Street 170482201 CAMP Data Summary

Date: 11/20/2017 Observer: Kim Nagotko

Particulate Monitoring								
	Upwind	Downwind						
Minimum 15min Average	0.006	0.008						
Maximum 15min Average	0.012	0.021						
High Intervals "exceedances"	N/A	0						
Minimum 1min Reading	0.005	0.007						
Maximum 1min Reading	0.014	0.036						

Organic Vapor Monitoring								
	Upwind	Downwind						
Minimum 15min Average	0.0	0.0						
Maximum 15min Average	0.3	0.0						
High Intervals "exceedances"	N/A	0.0						
Minimum 1min Reading	0.0	0.0						
Maximum 1min Reading	0.7	0.0						

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Number	of Instances Where	Downwind Particulate		•	+ .150 mg/m^3 =	0
		Number of Compara				347
		PAR	TICULATE I			
	Upwind			Downwind	1	Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limi
8:32	0.012		8:32			
8:33	0.011		8:33			
8:34	0.011		8:34			
8:35	0.010		8:35			
8:36 8:37	0.010		8:36 8:37			
8:38	0.010		8:38			
8:39	0.010		8:39			
8:40	0.010		8:40	0.016		
8:41	0.011		8:41	0.014		
8:42	0.011		8:42	0.014		
8:43	0.011		8:43	0.015		
8:44	0.011		8:44	0.014		
8:45	0.011		8:45	0.014		
8:46	0.011		8:46	0.017	0.015	
8:47	0.012		8:47	0.015	0.015	
8:48 8:49	0.011		8:48 8:49	0.016	0.015	
8:50	0.011	0.011	8:50	0.016	0.015	
8:51	0.012	0.011	8:51	0.017	0.015	-
8:52	0.011	0.011	8:52	0.017	0.016	-
8:53	0.011	0.011	8:53	0.018	0.016	-
8:54	0.012	0.011	8:54	0.016	0.016	-
8:55	0.012	0.011	8:55	0.018	0.016	-
8:56	0.011	0.011	8:56	0.020	0.016	-
8:57	0.012	0.011	8:57	0.023	0.017	-
8:58	0.012	0.011	8:58	0.017	0.017	-
8:59	0.012	0.011	8:59	0.016	0.017	-
9:00	0.011	0.011	9:00	0.017	0.017	-
9:01 9:02	0.012	0.012 0.012	9:01 9:02	0.017	0.017 0.018	-
9:02	0.012	0.012	9:03	0.023	0.018	-
9:04	0.011	0.012	9:04	0.036	0.019	-
9:05	0.011	0.012	9:05	0.029	0.020	-
9:06	0.012	0.012	9:06	0.020	0.020	-
9:07	0.012	0.012	9:07	0.019	0.020	-
9:08	0.013	0.012	9:08	0.019	0.021	-
9:09	0.013	0.012	9:09	0.018	0.021	-
9:10	0.013	0.012	9:10	0.017	0.021	-
9:11	0.013	0.012	9:11	0.017	0.020	-
9:12 9:13	0.013 0.012	0.012 0.012	9:12 9:13	0.016	0.020	-
9:13	0.012	0.012	9:13	0.014	0.020	-
9:14	0.013	0.012	9:14	0.013	0.020	-
9:16	0.013	0.012	9:16	0.014	0.019	-
9:17	0.012	0.012	9:17	0.014	0.019	-
9:18	0.010	0.012	9:18	0.015	0.018	-
9:19	0.010	0.012	9:19	0.014	0.017	-
9:20	0.011	0.012	9:20	0.014	0.016	-
9:21	0.012	0.012	9:21	0.014	0.015	-
9:22	0.012	0.012	9:22	0.013	0.015	-
9:23	0.012	0.012	9:23	0.014	0.015	-
9:24	0.011	0.012	9:24	0.014	0.014	-
9:25 9:26	0.011 0.011	0.012 0.012	9:25 9:26	0.014	0.014	-
9:26	0.011	0.012	9:26	0.014	0.014	-
9:28	0.011	0.012	9:28	0.014	0.014	-
9:29	0.012	0.011	9:29	0.015	0.014	-
9:30	0.012	0.011	9:30	0.015	0.014	-
9:31	0.012	0.011	9:31	0.014	0.014	-
9:32	0.012	0.011	9:32	0.014	0.014	-
9:33	0.012	0.011	9:33	0.015	0.014	-

	Upwind	PAF	TICULATE D	ATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
9:34	0.012	0.012	9:34	0.016	0.014	-
9:35	0.012	0.012	9:35	0.015	0.014	-
9:36	0.013	0.012	9:36	0.016	0.014	-
9:37	0.012	0.012	9:37	0.015	0.015	-
9:38	0.012	0.012	9:38	0.015	0.015	-
9:39 9:40	0.013	0.012	9:39 9:40	0.016	0.015	-
9:41	0.013	0.012	9:41	0.015	0.015	-
9:42	0.012	0.012	9:42	0.015	0.015	-
9:43	0.013	0.012	9:43	0.014	0.015	-
9:44	0.012	0.012	9:44	0.012	0.015	-
9:45	0.012	0.012	9:45	0.012	0.015	-
9:46	0.012	0.012	9:46	0.013	0.015	-
9:47	0.011	0.012	9:47	0.013	0.014	-
9:48	0.011	0.012	9:48	0.013	0.014	-
9:49	0.010	0.012	9:49	0.013	0.014	-
9:50	0.011	0.012	9:50	0.013	0.014	-
9:51 9:52	0.011 0.012	0.012	9:51 9:52	0.013	0.014	-
9:53	0.012	0.012	9:53	0.012	0.013	-
9:54	0.012	0.012	9:54	0.012	0.013	-
9:55	0.012	0.012	9:55	0.010	0.013	-
9:56	0.012	0.012	9:56	0.010	0.012	-
9:57	0.011	0.012	9:57	0.010	0.012	-
9:58	0.011	0.011	9:58	0.011	0.012	-
9:59	0.010	0.011	9:59	0.012	0.012	-
10:00	0.010	0.011	10:00	0.012	0.012	-
10:01	0.010	0.011	10:01	0.013	0.012	-
10:02	0.011	0.011	10:02	0.011	0.012	-
10:03	0.011	0.011	10:03	0.011	0.012	-
10:04 10:05	0.011 0.010	0.011 0.011	10:04 10:05	0.012	0.012	-
10:05	0.010	0.011	10:05	0.014	0.012	-
10:07	0.010	0.011	10:00	0.012	0.012	-
10:08	0.010	0.011	10:08	0.012	0.012	-
10:09	0.010	0.011	10:09	0.011	0.011	-
10:10	0.009	0.010	10:10	0.011	0.012	-
10:11	0.009	0.010	10:11	0.011	0.012	-
10:12	0.009	0.010	10:12	0.012	0.012	-
10:13	0.009	0.010	10:13	0.013	0.012	-
10:14	0.009	0.010	10:14	0.013	0.012	-
10:15	0.009	0.010	10:15	0.013	0.012	-
10:16	0.009	0.010	10:16	0.012	0.012	-
10:17 10:18	0.009	0.010	10:17 10:18	0.011	0.012	-
10:18	0.009	0.009	10:18	0.012	0.012	-
10:19	0.009	0.009	10:19	0.010	0.012	-
10:20	0.009	0.009	10:20	0.010	0.012	-
10:22	0.009	0.009	10:22	0.010	0.011	-
10:23	0.009	0.009	10:23	0.011	0.011	-
10:24	0.008	0.009	10:24	0.010	0.011	-
10:25	0.008	0.009	10:25	0.009	0.011	-
10:26	0.008	0.009	10:26	0.010	0.011	-
10:27	0.008	0.009	10:27	0.010	0.011	-
10:28	0.008	0.009	10:28	0.009	0.011	-
10:29	0.008	0.009	10:29	0.009	0.010	-
10:30	0.008	0.009	10:30	0.010	0.010	-
10:31 10:32	0.008 0.008	0.008	10:31 10:32	0.009	0.010 0.010	-
10:32	0.008	0.008	10:32	0.010	0.010	-
10:33	0.008	0.008	10:33	0.011	0.010	-
10:34	0.009	0.008	10:35	0.010	0.010	-
10:36	0.009	0.008	10:36	0.009	0.010	-
10:37	0.009	0.008	10:37	0.009	0.010	-
10:38	0.010	0.008	10:38	0.010	0.010	-

	Upwind	10	TICULATE D	Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
10:39	0.009	0.008	10:39	0.010	0.010	-
10:40	0.008	0.008	10:40	0.010	0.010	-
10:41	0.008	0.008	10:41	0.010	0.010	-
10:42	0.009	0.008	10:42	0.011	0.010	-
10:43 10:44	0.009	0.009 0.009	10:43 10:44	0.010	0.010	-
10:44	0.009	0.009	10:44	0.010	0.010	-
10:46	0.010	0.009	10:46	0.010	0.010	-
10:47	0.010	0.009	10:47	0.011	0.010	-
10:48	0.009	0.009	10:48	0.010	0.010	-
10:49	0.009	0.009	10:49	0.010	0.010	-
10:50	0.009	0.009	10:50	0.010	0.010	-
10:51	0.009	0.009	10:51	0.011	0.010	-
10:52	0.009	0.009	10:52	0.010	0.010	-
10:53	0.009	0.009	10:53	0.010	0.010	-
10:54	0.009	0.009	10:54	0.010	0.010	-
10:55 10:56	0.010	0.009 0.009	10:55 10:56	0.010	0.010	-
10:56	0.009	0.009	10:56	0.010	0.010	-
10:57	0.009	0.009	10:57	0.013	0.010	-
10:59	0.009	0.009	10:59	0.011	0.011	-
11:00	0.009	0.009	11:00	0.012	0.011	-
11:01	0.009	0.009	11:01	0.014	0.011	-
11:02	0.010	0.009	11:02	0.012	0.011	-
11:03	0.010	0.009	11:03	0.012	0.011	-
11:04	0.010	0.009	11:04	0.012	0.011	-
11:05	0.009	0.009	11:05	0.011	0.011	-
11:06	0.009	0.009	11:06	0.012	0.011	-
11:07	0.008	0.009	11:07	0.012	0.012	-
11:08	0.009	0.009	11:08	0.011	0.012	-
11:09 11:10	0.009	0.009	11:09	0.011	0.012	-
11:10	0.010	0.009	11:10 11:11	0.011	0.012	-
11:12	0.010	0.009	11:12	0.013	0.012	-
11:12	0.009	0.009	11:12	0.010	0.012	-
11:14	0.009	0.009	11:14	0.011	0.012	-
11:15	0.010	0.009	11:15	0.011	0.012	-
11:16	0.010	0.009	11:16	0.010	0.012	-
11:17	0.011	0.010	11:17	0.010	0.011	-
11:18	0.009	0.009	11:18	0.010	0.011	-
11:19	0.010	0.009	11:19	0.013	0.011	-
11:20	0.008	0.009	11:20	0.012	0.011	-
11:21	0.008	0.009	11:21	0.013	0.011 0.012	-
11:22 11:23	0.009	0.009 0.009	11:22 11:23	0.013	0.012	-
11:23	0.009	0.009	11:24	0.012	0.012	-
11:25	0.009	0.009	11:24	0.012	0.012	-
11:26	0.008	0.009	11:26	0.012	0.012	-
11:27	0.008	0.009	11:27	0.012	0.011	-
11:28	0.007	0.009	11:28	0.011	0.011	-
11:29	0.008	0.009	11:29	0.010	0.011	-
11:30	0.007	0.009	11:30	0.013	0.012	-
11:31	0.007	0.008	11:31	0.012	0.012	-
11:32	0.007	0.008	11:32	0.010	0.012	-
11:33	0.008	0.008	11:33	0.010	0.012	-
11:34	0.007	0.008	11:34	0.010	0.011	-
11:35 11:36	0.007	0.008	11:35 11:36	0.014 0.013	0.012	-
11:36	0.007	0.008	11:36	0.013	0.012	-
11:38	0.007	0.007	11:37	0.014	0.012	-
11:39	0.007	0.007	11:39	0.012	0.012	-
11:40	0.007	0.007	11:40	0.013	0.012	-
11:41	0.006	0.007	11:41	0.011	0.012	-
11:42	0.007	0.007	11:42	0.012	0.012	-
11:43	0.007	0.007	11:43	0.011	0.012	-

	Upwind	FAD	TICULATE D	Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit
11:44	0.007	0.007	11:44	0.012	0.012	-
11:45	0.006	0.007	11:45	0.012	0.012	-
11:46	0.006	0.007	11:46	0.011	0.012	-
11:47	0.006	0.007	11:47	0.013	0.012	-
11:48	0.006	0.007	11:48 11:49	0.013	0.012	-
11:49 11:50	0.006	0.007	11:49	0.011 0.010	0.012	-
11:51	0.000	0.006	11:51	0.010	0.012	-
11:52	0.007	0.007	11:52	0.010	0.012	-
11:53	0.007	0.007	11:53	0.010	0.011	-
11:54	0.006	0.006	11:54	0.010	0.011	-
11:55	0.006	0.006	11:55	0.012	0.011	-
11:56	0.006	0.006	11:56	0.011	0.011	-
11:57	0.006	0.006	11:57	0.010	0.011	-
11:58	0.008	0.006	11:58	0.009	0.011	-
11:59	0.007	0.006	11:59	0.010	0.011	-
12:00	0.007	0.006	12:00	0.011	0.011	-
12:01 12:02	0.007	0.007 0.007	12:01 12:02	0.010	0.011 0.010	-
12:02	0.006	0.007	12:02	0.009	0.010	-
12:00	0.007	0.007	12:04	0.010	0.010	-
12:05	0.007	0.007	12:04	0.009	0.010	-
12:06	0.007	0.007	12:06	0.010	0.010	-
12:07	0.006	0.007	12:07	0.010	0.010	-
12:08	0.006	0.007	12:08	0.010	0.010	-
12:09	0.007	0.007	12:09	0.010	0.010	-
12:10	0.007	0.007	12:10	0.009	0.010	-
12:11	0.007	0.007	12:11	0.010	0.010	-
12:12	0.006	0.007	12:12	0.010	0.010	-
12:13	0.006	0.007	12:13	0.009	0.010	-
12:14 12:15	0.006	0.007	12:14	0.012	0.010	-
12:15	0.006	0.006	12:15 12:16	0.010	0.010	-
12:10	0.006	0.006	12:10	0.003	0.010	-
12:17	0.007	0.006	12:17	0.011	0.010	-
12:19	0.008	0.007	12:19	0.010	0.010	-
12:20	0.006	0.006	12:20	0.010	0.010	-
12:21	0.007	0.006	12:21	0.011	0.010	-
12:22	0.007	0.007	12:22	0.009	0.010	-
12:23	0.007	0.007	12:23	0.009	0.010	-
12:24	0.007	0.007	12:24	0.009	0.010	-
12:25	0.006	0.007	12:25	0.010	0.010	-
12:26 12:27	0.006	0.006	12:26	0.009	0.010	-
12:27	0.005	0.006	12:27 12:28	0.009	0.010	-
12:20	0.005	0.006	12:28	0.009	0.010	-
12:30	0.005	0.006	12:30	0.000	0.010	-
12:31	0.006	0.006	12:31	0.009	0.010	-
12:32	0.005	0.006	12:32	0.010	0.010	-
12:33	0.006	0.006	12:33	0.008	0.009	-
12:34	0.006	0.006	12:34	0.009	0.009	-
12:35	0.006	0.006	12:35	0.009	0.009	-
12:36	0.006	0.006	12:36	0.009	0.009	-
12:37	0.005	0.006	12:37	0.011	0.009	-
12:38	0.006	0.006	12:38	0.010	0.009	-
12:39 12:40	0.006	0.006	12:39	0.009	0.009	-
12:40	0.006	0.006	12:40 12:41	0.009	0.009	-
12:41	0.008	0.006	12:41	0.010	0.009	-
12:42	0.006	0.006	12:42	0.010	0.010	-
12:44	0.007	0.006	12:44	0.011	0.010	-
12:45	0.007	0.006	12:45	0.012	0.010	-
12:46	0.007	0.006	12:46	0.009	0.010	-
12:47	0.008	0.006	12:47	0.010	0.010	-
12:48	0.007	0.007	12:48	0.011	0.010	-

	Upwind	PAR		DATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit
12:49	0.008	0.007	12:49	0.010	0.010	-
12:50	0.007	0.007	12:50	0.010	0.010	-
12:51	0.007	0.007	12:51	0.011	0.010	-
12:52	0.008	0.007	12:52	0.010	0.010	-
12:53 12:54	0.008	0.007	12:53 12:54	0.008	0.010	-
12:55	0.008	0.007	12:54	0.008	0.010	-
12:56	0.007	0.007	12:56	0.008	0.010	-
12:57	0.007	0.007	12:57	0.008	0.010	-
12:58	0.006	0.007	12:58	0.007	0.009	-
12:59	0.006	0.007	12:59	0.008	0.009	-
13:00	0.006	0.007	13:00	0.008	0.009	-
13:01	0.006	0.007	13:01	0.008	0.009	-
13:02	0.006	0.007	13:02	0.008	0.009	-
13:03	0.006	0.007	13:03	0.009	0.009	-
13:04	0.006	0.007	13:04	0.010	0.009	-
13:05 13:06	0.005 0.005	0.007 0.007	13:05 13:06	0.009	0.009 0.008	-
13:06	0.005	0.007	13:06	0.009	0.008	-
13:07	0.005	0.006	13:07	0.010	0.009	-
13:09	0.006	0.006	13:09	0.010	0.009	-
13:10	0.006	0.006	13:10	0.009	0.009	-
13:11	0.006	0.006	13:11	0.008	0.009	-
13:12	0.007	0.006	13:12	0.009	0.009	-
13:13	0.007	0.006	13:13	0.008	0.009	-
13:14	0.006	0.006	13:14	0.008	0.009	-
13:15	0.005	0.006	13:15	0.008	0.009	-
13:16	0.005	0.006	13:16	0.009	0.009	-
13:17	0.005	0.006	13:17	0.009	0.009	-
13:18 13:19	0.005	0.006	13:18 13:19	0.009	0.009	-
13:19	0.005	0.006	13:19	0.010	0.009	-
13:20	0.005	0.006	13:20	0.010	0.009	-
13:22	0.005	0.006	13:22	0.011	0.009	-
13:23	0.005	0.006	13:23	0.012	0.009	-
13:24	0.006	0.006	13:24	0.011	0.009	-
13:25	0.006	0.006	13:25	0.010	0.009	-
13:26	0.007	0.006	13:26	0.010	0.010	-
13:27	0.008	0.006	13:27	0.010	0.010	-
13:28	0.007	0.006	13:28	0.012	0.010	-
13:29	0.007	0.006	13:29	0.013	0.010	-
13:30	0.006	0.006	13:30	0.012	0.011	-
13:31 13:32	0.006	0.006 0.006	13:31 13:32	0.011	0.011	-
13:32	0.008	0.008	13:32	0.011	0.011	-
13:34	0.009	0.007	13:34	0.011	0.011	-
13:35	0.008	0.007	13:35	0.011	0.011	-
13:36	0.007	0.007	13:36	0.012	0.011	-
13:37	0.007	0.007	13:37	0.014	0.011	-
13:38	0.006	0.007	13:38	0.012	0.011	-
13:39	0.007	0.007	13:39	0.012	0.011	-
13:40	0.008	0.007	13:40	0.013	0.012	-
13:41	0.007	0.007	13:41	0.011	0.012	-
13:42	0.009	0.007	13:42	0.011	0.012	-
13:43 13:44	0.008	0.008	13:43 13:44	0.010	0.012	-
13:44	0.007	0.008	13:44	0.009	0.011	-
13:45	0.007	0.008	13:45	0.009	0.011	-
13:40	0.006	0.008	13:40	0.010	0.011	-
13:48	0.005	0.007	13:48	0.010	0.011	-
13:49	0.007	0.007	13:49	0.010	0.011	-
13:50	0.006	0.007	13:50	0.010	0.011	-
13:51	0.006	0.007	13:51	0.010	0.011	-
13:52	0.007	0.007	13:52	0.011	0.011	-
13:53	0.006	0.007	13:53	0.011	0.011	-

	PARTICULATE DATA								
	Upwind			Downwind		Exceeds			
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
13:54	0.006	0.007	13:54	0.010	0.010	-			
13:55	0.005	0.007	13:55	0.011	0.010	-			
13:56	0.006	0.007	13:56	0.010	0.010	-			
13:57	0.008	0.006	13:57	0.011	0.010	-			
13:58	0.006	0.006	13:58	0.011	0.010	-			
13:59	0.006	0.006	13:59	0.014	0.011	-			
14:00	0.006	0.006	14:00	0.012	0.011	-			
14:01	0.009	0.006	14:01	0.012	0.011	-			
14:02	0.014	0.007	14:02	0.013	0.011	-			
14:03	0.007	0.007	14:03	0.012	0.011	-			
14:04	0.007	0.007	14:04	0.012	0.011	-			
14:05	0.007	0.007	14:05	0.011	0.011	-			
14:06	0.007	0.007	14:06	0.012	0.012	-			
14:07	0.008	0.007	14:07	0.011	0.012	-			
14:08	0.007	0.007	14:08	0.011	0.012	-			
14:09	0.008	0.007	14:09	0.011	0.012	-			
14:10	0.009	0.008	14:10	0.011	0.012	-			
14:11	0.010	0.008	14:11	0.011	0.012	-			
14:12	0.009	0.008	14:12	0.011	0.012	-			
14:13	0.010	0.008	14:13	0.011	0.012	-			
14:14	0.007	0.008	14:14	0.011	0.011	-			
14:15	0.007	0.008	14:15	0.012	0.011	-			
14:16	0.006	0.008	14:16	0.012	0.011	-			
14:17	0.006	0.008	14:17	0.012	0.011	-			
14:18	0.007	0.008	14:18	0.012	0.011	-			
14:19	0.008	0.008	14:19	0.012	0.011	-			
14:20	0.009	0.008	14:20	0.010	0.011	-			
14:21	0.009	0.008	14:21	0.010	0.011	-			
14:22	0.008	0.008	14:22	0.010	0.011	-			
14:23	0.008	0.008	14:23	0.010	0.011	-			
14:24	0.008	0.008	14:24	0.010	0.011	-			
14:25	0.008	0.008	14:25	0.010	0.011	-			
14:26	0.010	0.008	14:26	0.010	0.011	-			
14:27	0.007	0.008	14:27	0.010	0.011	-			
14:28	0.007	0.008	14:28	0.011	0.011	-			
14:29	0.007	0.008	14:29	0.013	0.011	-			
14:30	0.007	0.008	14:30	0.012	0.011	-			
14:31	0.008	0.008	14:31	0.009	0.011	-			
14:32	0.008	0.008	14:32	0.011	0.011	-			
14:33	0.008	0.008	14:33	0.009	0.010	-			
14:34	0.010	0.008	14:34	0.009	0.010	-			
14:35	0.007	0.008	14:35	0.010	0.010	-			
14:36	0.007	0.008	14:36	0.009	0.010	-			
14:37	0.007	0.008	14:37						

	Number of Insta	Mone nces Where Downwind	day, November : VOCs Exceeds I		· –	0
	Number of insta	Number of Compar			1 =	299
			PID DATA	, _		233
	Upwind		TID DATA	Downwind		T
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC Alarm Limits
8:49	0.0		8:49			
8:50	0.0		8:50			
8:51	0.1		8:51			
8:52	0.3		8:52			
8:53	0.4		8:53			
8:54	0.3		8:54			
8:55	0.2		8:55			
8:56	0.1		8:56			
8:57	0.1	ļ	8:57			
8:58	0.0	<u> </u>	8:58			
8:59	0.0	<u> </u>	8:59			
9:00	0.1	┼───┣	9:00			
9:01	0.2	<u> </u>	9:01			
9:02	0.5	<u> </u>	9:02			
9:03 9:04	0.7	0.2	9:03 9:04			
9:04	0.5	0.2	9:04			+
9:05	0.4	0.3	9:05	0.0	0.0	_
9:06	0.1	0.3			0.0	
9:07	0.1	0.2	9:07	0.0		-
9:08	0.0	0.2	9:08 9:09	0.0	0.0	-
9:09	0.0	0.2	9:09	0.0	0.0	-
9:10	0.0	0.2	9:10	0.0	0.0	-
9:11	0.0	0.2	9:12	0.0	0.0	-
9:12	0.0	0.2	9:13	0.0	0.0	
9:14	0.2	0.2	9:14	0.0	0.0	-
9:15	0.0	0.2	9:15	0.0	0.0	-
9:16	0.1	0.2	9:16	0.0	0.0	-
9:17	0.3	0.2	9:17	0.0	0.0	_
9:18	0.4	0.2	9:18	0.0	0.0	_
9:19	0.3	0.2	9:19	0.0	0.0	-
9:20	0.2	0.2	9:20	0.0	0.0	_
9:21	0.1	0.2	9:21	0.0	0.0	-
9:22	0.1	0.2	9:22	0.0	0.0	-
9:23	0.0	0.2	9:23	0.0	0.0	-
9:24	0.0	0.2	9:24	0.0	0.0	-
9:25	0.1	0.2	9:25	0.0	0.0	-
9:26	0.2	0.1	9:26	0.0	0.0	-
9:27	0.5	0.2	9:27	0.0	0.0	-
9:28	0.7	0.2	9:28	0.0	0.0	-
9:29	0.5	0.2	9:29	0.0	0.0	-
9:30	0.4	0.3	9:30	0.0	0.0	-
9:31	0.1	0.3	9:31	0.0	0.0	-
9:32	0.1	0.2	9:32	0.0	0.0	-
9:33	0.1	0.2	9:33	0.0	0.0	-
9:34	0.0	0.2	9:34	0.0	0.0	-
9:35	0.0	0.2	9:35	0.0	0.0	-
9:36	0.7	0.2	9:36	0.0	0.0	-
9:37	0.0	0.2	9:37	0.0	0.0	-
9:38	0.2	0.2	9:38	0.0	0.0	-

	Upwind		PID DATA	1		
				Downwind		Exceeds VOCs
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
9:39	0.0	0.2	9:39	0.0	0.0	-
9:40	0.0	0.2	9:40	0.0	0.0	-
9:41	0.1	0.2	9:41	0.0	0.0	-
9:42	0.3	0.2	9:42	0.0	0.0	-
9:43	0.4	0.2	9:43	0.0	0.0	-
9:44	0.3	0.2	9:44	0.0	0.0	-
9:45	0.2	0.2	9:45	0.0	0.0	-
9:46	0.1	0.2	9:46	0.0	0.0	-
9:47	0.1	0.2	9:47	0.0	0.0	-
9:48	0.0	0.2	9:48	0.0	0.0	-
9:49	0.0	0.2	9:49	0.0	0.0	-
9:50	0.1	0.2	9:50	0.0	0.0	-
9:51	0.2	0.1	9:51	0.0	0.0	-
9:52	0.5	0.2	9:52	0.0	0.0	-
9:53	0.7	0.2	9:53	0.0	0.0	-
9:54	0.5	0.2	9:54	0.0	0.0	-
9:55	0.4	0.3	9:55	0.0	0.0	-
9:56	0.1	0.3	9:56	0.0	0.0	-
9:57	0.1	0.2	9:57	0.0	0.0	-
9:58	0.1	0.2	9:58	0.0	0.0	-
9:59	0.0	0.2	9:59	0.0	0.0	-
10:00	0.0	0.2	10:00	0.0	0.0	-
10:01	0.7	0.2	10:01	0.0	0.0	-
10:02	0.0	0.2	10:02	0.0	0.0	-
10:03	0.2	0.2	10:03	0.0	0.0	-
10:04	0.3	0.3	10:04	0.0	0.0	-
10:05	0.3	0.3	10:05	0.0	0.0	-
10:06	0.3	0.3	10:06	0.0	0.0	-
10:07	0.3	0.3	10:07	0.0	0.0	-
10:08	0.3	0.2	10:08	0.0	0.0	-
10:09	0.3	0.2	10:09	0.0	0.0	-
10:10	0.3	0.2	10:10	0.0	0.0	_
10:11	0.3	0.2	10:11	0.0	0.0	_
10:12	0.3	0.2	10:12	0.0	0.0	_
10:13	0.3	0.2	10:13	0.0	0.0	_
10:14	0.3	0.3	10:14	0.0	0.0	_
10:15	0.3	0.3	10:15	0.0	0.0	-
10:16	0.3	0.3	10:16	0.0	0.0	_
10:17	0.3	0.3	10:17	0.0	0.0	-
10:18	0.0	0.3	10:18	0.0	0.0	_
10:19	0.0	0.2	10:19	0.0	0.0	_
10:20	0.0	0.2	10:20	0.0	0.0	-
10:21	0.0	0.2	10:21	0.0	0.0	-
10:22	0.0	0.2	10:22	0.0	0.0	-
10:22	0.0	0.2	10:22	0.0	0.0	-
10:24	0.0	0.2	10:24	0.0	0.0	-
10:25	0.0	0.1	10:24	0.0	0.0	-
10:26	0.0	0.1	10:26	0.0	0.0	_
10:20	0.0	0.1	10:20	0.0	0.0	-
10:27	0.0	0.1	10:27	0.0	0.0	
10:28	0.0	0.1	10:28	0.0	0.0	-
10:29	0.0	0.0	10:29	0.0	0.0	-
10:30	0.0	0.0	10:30	0.0	0.0	

PID DATA							
Upwind				Downwind		Exceeds VOCs	
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits	
10:32	0.0	0.0	10:32	0.0	0.0	-	
10:33	0.0	0.0	10:33	0.0	0.0	-	
10:34	0.0	0.0	10:34	0.0	0.0	-	
10:35	0.0	0.0	10:35	0.0	0.0	-	
10:36	0.0	0.0	10:36	0.0	0.0	-	
10:37	0.0	0.0	10:37	0.0	0.0	-	
10:38	0.0	0.0	10:38	0.0	0.0	-	
10:39	0.0	0.0	10:39	0.0	0.0	-	
10:40	0.0	0.0	10:40	0.0	0.0	-	
10:41	0.0	0.0	10:41	0.0	0.0	-	
10:42	0.0	0.0	10:42	0.0	0.0	-	
10:43	0.0	0.0	10:43	0.0	0.0	-	
10:44	0.0	0.0	10:44	0.0	0.0	-	
10:45	0.0	0.0	10:45	0.0	0.0	-	
10:46	0.0	0.0	10:46	0.0	0.0	-	
10:47	0.0	0.0	10:47	0.0	0.0	-	
10:48	0.0	0.0	10:48	0.0	0.0	-	
10:49	0.0	0.0	10:49	0.0	0.0	-	
10:50	0.0	0.0	10:50	0.0	0.0	-	
10:51	0.0	0.0	10:51	0.0	0.0	-	
10:52	0.0	0.0	10:52	0.0	0.0	-	
10:53	0.0	0.0	10:53	0.0	0.0	-	
10:54	0.0	0.0	10:54	0.0	0.0	-	
10:55	0.0	0.0	10:55	0.0	0.0	-	
10:56	0.0	0.0	10:56	0.0	0.0	-	
10:57	0.0	0.0	10:57	0.0	0.0	-	
10:58	0.0	0.0	10:58	0.0	0.0	-	
10:59	0.0	0.0	10:59	0.0	0.0	-	
11:00	0.0	0.0	11:00	0.0	0.0	-	
11:01	0.0	0.0	11:01	0.0	0.0	-	
11:02	0.0	0.0	11:02	0.0	0.0	-	
11:03	0.0	0.0	11:03	0.0	0.0	-	
11:04	0.0	0.0	11:04	0.0	0.0	-	
11:05	0.0	0.0	11:05	0.0	0.0	-	
11:06	0.0	0.0	11:06	0.0	0.0	-	
11:07	0.1	0.0	11:07	0.0	0.0	-	
11:08	0.3	0.0	11:08	0.0	0.0	-	
11:09	0.4	0.1	11:09	0.0	0.0	-	
11:10	0.3	0.1	11:10	0.0	0.0	-	
11:11	0.2	0.1	11:11	0.0	0.0	-	
11:12	0.1	0.1	11:12	0.0	0.0	-	
11:13	0.1	0.1	11:13	0.0	0.0	-	
11:14	0.0	0.1	11:14	0.0	0.0	-	
11:15	0.0	0.1	11:15	0.0	0.0	-	
11:16	0.1	0.1	11:16	0.0	0.0	-	
11:17	0.2	0.1	11:17	0.0	0.0	-	
11:18	0.5	0.2	11:18	0.0	0.0	-	
11:19	0.7	0.2	11:19	0.0	0.0	-	
11:20	0.5	0.2	11:20	0.0	0.0	-	
11:21	0.4	0.3	11:21	0.0	0.0	-	
11:22	0.1	0.3	11:22	0.0	0.0	-	
11:23	0.1	0.2	11:23	0.0	0.0	-	
11:24	0.1	0.2	11:24	0.0	0.0	-	

	Upwind		PID DATA	1		
				Downwind	15-Minute	Exceeds VOC
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	Average	Alarm Limits
11:25	0.0	0.2	11:25	0.0	0.0	-
11:26	0.0	0.2	11:26	0.0	0.0	-
11:27	0.7	0.2	11:27	0.0	0.0	-
11:28	0.0	0.2	11:28	0.0	0.0	-
11:29	0.2	0.2	11:29	0.0	0.0	-
11:30	0.3	0.3	11:30	0.0	0.0	-
11:31	0.3	0.3	11:31	0.0	0.0	-
11:32	0.3	0.3	11:32	0.0	0.0	-
11:33	0.3	0.3	11:33	0.0	0.0	-
11:34	0.3	0.2	11:34	0.0	0.0	-
11:35	0.3	0.2	11:35	0.0	0.0	-
11:36	0.3	0.2	11:36	0.0	0.0	-
11:37	0.3	0.2	11:37	0.0	0.0	-
11:38	0.3	0.2	11:38	0.0	0.0	-
11:39	0.3	0.2	11:39	0.0	0.0	-
11:40	0.3	0.3	11:40	0.0	0.0	-
11:41	0.3	0.3	11:41	0.0	0.0	-
11:42	0.3	0.3	11:42	0.0	0.0	-
11:43	0.3	0.3	11:43	0.0	0.0	-
11:44	0.3	0.3	11:44	0.0	0.0	_
11:45	0.3	0.3	11:45	0.0	0.0	_
11:46	0.3	0.3	11:46	0.0	0.0	_
11:47	0.3	0.3	11:47	0.0	0.0	_
11:48	0.3	0.3	11:48	0.0	0.0	_
11:49	0.3	0.3	11:49	0.0	0.0	_
11:50	0.3	0.3	11:50	0.0	0.0	-
11:51	0.3	0.3	11:51	0.0	0.0	_
11:52	0.3	0.3	11:52	0.0	0.0	-
11:53	0.3	0.3	11:53	0.0	0.0	-
11:54	0.3	0.3	11:54	0.0	0.0	-
11:55	0.3	0.3	11:55	0.0	0.0	
11:56	0.3	0.3	11:56	0.0	0.0	-
11:57	0.3	0.3	11:57	0.0	0.0	
11:58	0.3	0.3	11:58	0.0	0.0	-
11:59	0.3	0.3	11:59	0.0	0.0	-
12:00	0.3	0.3	12:00	0.0	0.0	-
12:00	0.3	0.3	12:00	0.0	0.0	
12:02	0.5	0.3	12:01	0.0	0.0	
12:02	0.4	0.3	12:02	0.0	0.0	
12:03	0.4	0.3	12:03	0.0	0.0	-
12:04	0.1	0.3	12:04	0.0	0.0	-
12:05	0.1	0.3	12:05	0.0	0.0	-
12:00	0.0	0.3	12:07	0.0	0.0	-
12:07	0.0	0.3	12:07	0.0	0.0	
12:08	0.0	0.3	12:08	0.0	0.0	-
12:09	0.4	0.2	12:09	0.0	0.0	
12:10	0.1	0.2	12:10	0.0	0.0	-
				-		
12:12	0.3	0.2	12:12	0.0	0.0	-
12:13	0.3	0.2	12:13	0.0	0.0	-
12:14	0.3	0.2	12:14	0.0	0.0	-
12:15	0.3	0.2	12:15	0.0	0.0	-
12:16	0.3	0.2	12:16	0.0	0.0	-

	Upwind		PID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOC Alarm Limits
12:18	0.3	0.2	12:18	0.0	0.0	_
12:19	0.3	0.2	12:19	0.0	0.0	_
12:20	0.3	0.2	12:20	0.0	0.0	_
12:21	0.3	0.3	12:21	0.0	0.0	-
12:22	0.3	0.3	12:22	0.0	0.0	-
12:23	0.3	0.3	12:23	0.0	0.0	_
12:24	0.3	0.3	12:24	0.0	0.0	_
12:25	0.5	0.3	12:25	0.0	0.0	_
12:26	0.4	0.3	12:26	0.0	0.0	_
12:27	0.1	0.3	12:27	0.0	0.0	_
12:28	0.1	0.3	12:28	0.0	0.0	-
12:29	0.1	0.3	12:29	0.0	0.0	_
12:30	0.0	0.3	12:30	0.0	0.0	-
12:31	0.0	0.3	12:31	0.0	0.0	-
12:32	0.0	0.3	12:32	0.0	0.0	-
12:33	0.1	0.2	12:33	0.0	0.0	
12:34	0.1	0.2	12:34	0.0	0.0	-
12:35	0.3	0.2	12:35	0.0	0.0	-
12:36	0.3	0.2	12:36	0.0	0.0	-
12:37	0.3	0.2	12:30	0.0	0.0	-
12:37	0.3	0.2	12:37	0.0	0.0	-
12:39	0.3	0.2	12:39	0.0	0.0	
12:39	0.3	0.2	12:39	0.0	0.0	-
12:40	0.3	0.2	12:40	0.0	0.0	
12:41	0.3	0.2	12:41	0.0	0.0	-
12:42	0.3	0.2	12:42	0.0	0.0	-
12:43			12:43	0.0	0.0	-
12:44	0.3	0.3	12:44	0.0	0.0	-
12:45	0.3	0.3			0.0	-
-			12:46	0.0		
12:47	0.3	0.3	12:47	0.0	0.0	-
12:48	0.5	0.3	12:48	0.0	0.0	-
12:49	0.4	0.3	12:49	0.0	0.0	-
12:50	0.1	0.3	12:50	0.0	0.0	-
12:51	0.1	0.3	12:51	0.0	0.0	-
12:52	0.1	0.3	12:52	0.0	0.0	-
12:53	0.0	0.3	12:53	0.0	0.0	-
12:54	0.0	0.3	12:54	0.0	0.0	-
12:55	0.4	0.3	12:55	0.0	0.0	-
12:56	0.1	0.2	12:56	0.0	0.0	-
12:57	0.1	0.2	12:57	0.0	0.0	-
12:58	0.3	0.2	12:58	0.0	0.0	-
12:59	0.3	0.2	12:59	0.0	0.0	-
13:00	0.3	0.2	13:00	0.0	0.0	-
13:01	0.3	0.2	13:01	0.0	0.0	-
13:02	0.3	0.2	13:02	0.0	0.0	-
13:03	0.3	0.2	13:03	0.0	0.0	-
13:04	0.3	0.2	13:04	0.0	0.0	-
13:05	0.3	0.2	13:05	0.0	0.0	-
13:06	0.3	0.2	13:06	0.0	0.0	-
13:07	0.3	0.3	13:07	0.0	0.0	-
13:08	0.3	0.3	13:08	0.0	0.0	-
13:09	0.3	0.3	13:09	0.0	0.0	-
13:10	0.3	0.3	13:10	0.0	0.0	-

	Upwind		PID DATA			
				Downwind	15-Minute	Exceeds VOC
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	Average	Alarm Limits
13:11	0.5	0.3	13:11	0.0	0.0	-
13:12	0.4	0.3	13:12	0.0	0.0	-
13:13	0.1	0.3	13:13	0.0	0.0	-
13:14	0.1	0.3	13:14	0.0	0.0	-
13:15	0.1	0.3	13:15	0.0	0.0	-
13:16	0.0	0.3	13:16	0.0	0.0	-
13:17	0.0	0.3	13:17	0.0	0.0	-
13:18	0.4	0.3	13:18	0.0	0.0	-
13:19	0.1	0.2	13:19	0.0	0.0	-
13:20	0.1	0.2	13:20	0.0	0.0	-
13:21	0.1	0.2	13:21	0.0	0.0	-
13:22	0.0	0.2	13:22	0.0	0.0	-
13:23	0.0	0.2	13:23	0.0	0.0	-
13:24	0.4	0.2	13:24	0.0	0.0	-
13:25	0.1	0.2	13:25	0.0	0.0	-
13:26	0.1	0.1	13:26	0.0	0.0	-
13:27	0.1	0.1	13:27	0.0	0.0	-
13:28	0.0	0.1	13:28	0.0	0.0	-
13:29	0.0	0.1	13:29	0.0	0.0	-
13:30	0.4	0.1	13:30	0.0	0.0	-
13:31	0.1	0.1	13:31	0.0	0.0	-
13:32	0.1	0.1	13:32	0.0	0.0	-
13:33	0.1	0.1	13:33	0.0	0.0	-
13:34	0.0	0.1	13:34	0.0	0.0	-
13:35	0.0	0.1	13:35	0.0	0.0	-
13:36	0.4	0.1	13:36	0.0	0.0	-
13:37	0.1	0.1	13:37	0.0	0.0	-
13:38	0.1	0.1	13:38	0.0	0.0	_
13:39	0.1	0.1	13:39	0.0	0.0	_
13:40	0.0	0.1	13:40	0.0	0.0	_
13:41	0.0	0.1	13:41	0.0	0.0	_
13:42	0.4	0.1	13:42	0.0	0.0	_
13:43	0.1	0.1	13:43	0.0	0.0	-
13:44	0.1	0.1	13:44	0.0	0.0	_
13:45	0.1	0.1	13:45	0.0	0.0	_
13:46	0.0	0.1	13:46	0.0	0.0	_
13:47	0.0	0.1	13:40	0.0	0.0	-
13:48	0.4	0.1	13:48	0.0	0.0	-
13:49	0.1	0.1	13:49	0.0	0.0	-
13:50	0.1	0.1	13:50	0.0	0.0	-
13:51	0.1	0.1	13:51	0.0	0.0	-
13:52	0.1	0.1	13:52	0.0	0.0	-
13:53	0.1	0.1	13:53	0.0	0.0	-
13:54	0.0	0.1	13:54	0.0	0.0	-
13:55	0.0	0.1	13:55	0.0	0.0	-
13:56	0.4	0.1	13:56	0.0	0.0	-
13:57	0.4	0.1	13:57	0.0	0.0	-
13:58	0.1	0.1	13:58	0.0	0.0	-
13:59	0.1	0.1	13:59	0.0	0.0	-
14:00	0.0	0.1	14:00	0.0	0.0	-
14:00	0.0	0.1	14:00	0.0	0.0	-
14:01	0.0	0.1	14:01	0.0	0.0	-
14:02	0.4	0.1	14:02	0.0	0.0	-

			PID DATA			
	Upwind					
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
14:04	0.1	0.1	14:04	0.0	0.0	-
14:05			14:05	0.0	0.0	
14:06			14:06	0.0	0.0	
14:07			14:07	0.0	0.0	
14:08			14:08	0.0	0.0	
14:09			14:09	0.0	0.0	
14:10			14:10	0.0	0.0	
14:11			14:11	0.0	0.0	
14:12			14:12	0.0	0.0	
14:13			14:13	0.0	0.0	
14:14			14:14	0.0	0.0	
14:15			14:15	0.0	0.0	
14:16			14:16	0.0	0.0	
14:17			14:17	0.0	0.0	
14:18			14:18	0.0	0.0	
14:19			14:19	0.0	0.0	
14:20			14:20	0.0	0.0	
14:21			14:21	0.0	0.0	
14:22			14:22	0.0	0.0	
14:23			14:23	0.0	0.0	
14:24			14:24	0.0	0.0	
14:25			14:25	0.0	0.0	
14:26			14:26	0.0	0.0	
14:27			14:27	0.0	0.0	
14:28			14:28	0.0	0.0	
14:29			14:29	0.0	0.0	
14:30			14:30	0.0	0.0	
14:31			14:31	0.0	0.0	
14:32			14:32	0.0	0.0	
14:33			14:33	0.0	0.0	
14:34			14:34	0.0	0.0	
14:35			14:35	0.0	0.0	
14:36			14:36	0.0	0.0	
14:37			14:37	0.0	0.0	
14:38			14:38	0.0	0.0	
14:39			14:39	0.0	0.0	
14:40			14:40	0.0	0.0	
14:41			14:41	0.0	0.0	
14:42			14:42	0.0	0.0	
14:43			14:43	0.0	0.0	
14:44			14:44	0.0	0.0	
14:45			14:45	0.0	0.0	
14:46			14:46	0.0	0.0	

215 North 10th Street 170482201 CAMP Data Summary

Date: 11/21/2017 Observer: Kim Nagotko

Particulate Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.017	0.011					
Maximum 15min Average	0.030	0.027					
(15min >1.5 + Upwind level)	N/A	0					
Minimum 1min Reading	0.015	0.010					
Maximum 1min Reading	0.031	0.051					

Organic Vapor Monitoring							
	Upwind	Downwind					
Minimum 15min Average	0.0	0.0					
Maximum 15min Average	0.0	0.9					
(15min >5+Upwind level)	N/A	0.0					
Minimum 1min Reading	0.0	0.0					
Maximum 1min Reading	0.1	1.5					

All reported particulate concentrations are in mg/m3 or milligrams per cubic meter and all reported organic vapor concentrations are in ppm or parts per million, unless specified otherwise.

Number of Instances Where Downwind Particulates Exceeds Upwind Particulate + .150 mg/m^3 =							
		Number of Compara	able Data Po	oints =		404	
PARTICULATE DATA							
	Upwind Downwind						
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulat Alarm Limi	
7:23	0.026		7:23				
7:24	0.025		7:24	0.029			
7:25	0.025		7:25	0.021			
7:26	0.025		7:26	0.022			
7:27	0.026		7:27	0.021			
7:28	0.025		7:28	0.022			
7:29	0.026		7:29	0.021			
7:30	0.026		7:30	0.021			
7:31	0.027		7:31	0.021			
7:32	0.028		7:32	0.021			
7:33	0.029		7:33	0.042			
7:34	0.029		7:34	0.029			
7:35	0.028		7:35	0.030			
7:36	0.029		7:36	0.022			
7:37	0.030		7:37	0.030	0.025		
7:38	0.029		7:38	0.031	0.026		
7:39	0.028		7:39	0.025	0.025		
7:40	0.028		7:40	0.023	0.025		
7:41	0.028	0.028	7:41	0.022	0.025	-	
7:42	0.029	0.028	7:42	0.026	0.026	-	
7:43	0.029	0.028	7:43	0.034	0.027	-	
7:44	0.030	0.028	7:44 7:45	0.022	0.027	-	
7:45 7:46	0.030	0.029 0.029	7:45	0.022	0.027	-	
7:40	0.030	0.029	7:40	0.023	0.027	-	
7:48	0.030	0.029	7:47	0.023	0.027	-	
7:49	0.030	0.029	7:40	0.023	0.025		
7:50	0.029	0.029	7:50	0.023	0.025	-	
7:51	0.030	0.029	7:51	0.023	0.025	-	
7:52	0.029	0.029	7:52	0.023	0.024	-	
7:53	0.031	0.029	7:53	0.023	0.024	-	
7:54	0.030	0.030	7:54	0.024	0.024	-	
7:55	0.030	0.030	7:55	0.023	0.024	-	
7:56	0.028	0.030	7:56	0.024	0.024	-	
7:57	0.028	0.030	7:57	0.023	0.024	-	
7:58	0.029	0.030	7:58	0.024	0.023	-	
7:59	0.029	0.030	7:59	0.025	0.023	-	
8:00	0.029	0.030	8:00	0.025	0.023	-	
8:01	0.030	0.030	8:01	0.024	0.024	-	
8:02	0.030	0.030	8:02	0.023	0.024	-	
8:03	0.029	0.029	8:03	0.024	0.024	-	
8:04	0.030	0.029	8:04	0.024	0.024	-	
8:05	0.029	0.029	8:05	0.024	0.024	-	
8:06	0.030	0.029	8:06	0.024	0.024	-	
8:07	0.029	0.029	8:07	0.024	0.024	-	
8:08 8:09	0.030	0.029 0.029	8:08	0.024	0.024	-	
8:09	0.030	0.029	8:09 8:10	0.023	0.024	-	
8:11	0.030	0.029	8:10	0.023	0.024	-	
8:12	0.030	0.029	8:12	0.023	0.024	-	
8:13	0.030	0.030	8:13	0.023	0.024	-	
8:14	0.029	0.030	8:14	0.023	0.024	-	
8:15	0.029	0.030	8:15	0.024	0.024	-	
8:16	0.027	0.029	8:16	0.023	0.023	-	
8:17	0.027	0.029	8:17	0.023	0.023	-	
8:18	0.027	0.029	8:18	0.023	0.023	-	
8:19	0.026	0.029	8:19	0.024	0.023	-	
8:20	0.028	0.029	8:20	0.024	0.023	-	
8:21	0.026	0.029	8:21	0.023	0.023	-	
8:22	0.026	0.028	8:22	0.023	0.023	-	
8:23	0.027	0.028	8:23	0.023	0.023	-	
8:24	0.027	0.028	8:24	0.023	0.023	-	

PARTICULATE DATA Upwind Downwind						Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit
8:25	0.027	0.028	8:25	0.023	0.023	-
8:26	0.027	0.028	8:26	0.023	0.023	-
8:27	0.026	0.027	8:27	0.022	0.023	-
8:28	0.026	0.027	8:28	0.023	0.023	-
8:29 8:30	0.027	0.027 0.027	8:29 8:30	0.022	0.023	-
8:31	0.027	0.027	8:31	0.022	0.023	-
8:32	0.027	0.027	8:32	0.022	0.023	-
8:33	0.028	0.027	8:33	0.022	0.023	-
8:34	0.027	0.027	8:34	0.022	0.023	-
8:35	0.028	0.027	8:35	0.023	0.023	-
8:36	0.027	0.027	8:36	0.023	0.023	-
8:37	0.029	0.027	8:37	0.023	0.023	-
8:38	0.029	0.027	8:38	0.023	0.023	-
8:39	0.028	0.027	8:39	0.023	0.023	-
8:40	0.027	0.027	8:40	0.022	0.023	-
8:41 8:42	0.029	0.028	8:41 8:42	0.023	0.023	-
8:42	0.029	0.028 0.028	8:42	0.023	0.023	-
8:44	0.023	0.028	8:44	0.023	0.023	-
8:45	0.027	0.028	8:45	0.022	0.023	-
8:46	0.028	0.028	8:46	0.022	0.023	-
8:47	0.028	0.028	8:47	0.022	0.023	-
8:48	0.027	0.028	8:48	0.022	0.023	-
8:49	0.027	0.028	8:49	0.022	0.023	-
8:50	0.026	0.028	8:50	0.022	0.022	-
8:51	0.026	0.028	8:51	0.021	0.022	-
8:52	0.026	0.028	8:52	0.022	0.022	-
8:53	0.027	0.027	8:53	0.022	0.022	-
8:54	0.026	0.027	8:54	0.022	0.022	-
8:55 8:56	0.025	0.027 0.027	8:55 8:56	0.022	0.022	-
8:57	0.020	0.027	8:57	0.021	0.022	
8:58	0.026	0.027	8:58	0.022	0.022	-
8:59	0.026	0.026	8:59	0.022	0.022	-
9:00	0.026	0.026	9:00	0.022	0.022	-
9:01	0.025	0.026	9:01	0.022	0.022	-
9:02	0.025	0.026	9:02	0.022	0.022	-
9:03	0.027	0.026	9:03	0.022	0.022	-
9:04	0.026	0.026	9:04	0.022	0.022	-
9:05	0.027	0.026	9:05	0.022	0.022	-
9:06	0.029	0.026	9:06	0.022	0.022	-
9:07 9:08	0.028	0.026 0.026	9:07 9:08	0.021	0.022	-
9:08	0.028	0.026	9:08	0.021	0.022	-
9:10	0.027	0.027	9:10	0.022	0.022	-
9:11	0.027	0.027	9:11	0.022	0.022	-
9:12	0.027	0.027	9:12	0.021	0.022	-
9:13	0.027	0.027	9:13	0.021	0.022	-
9:14	0.028	0.027	9:14	0.021	0.022	-
9:15	0.026	0.027	9:15	0.021	0.022	-
9:16	0.027	0.027	9:16	0.020	0.021	-
9:17	0.027	0.027	9:17	0.021	0.021	-
9:18	0.030	0.027	9:18	0.022	0.021	-
9:19 9:20	0.025	0.027 0.027	9:19	0.022	0.021	-
9:20	0.025	0.027	9:20 9:21	0.021	0.021	-
9:21	0.025	0.027	9:21	0.021	0.021	-
9:22	0.025	0.027	9:22	0.021	0.021	-
9:24	0.020	0.026	9:24	0.020	0.021	-
9:25	0.023	0.026	9:25	0.020	0.021	-
9:26	0.025	0.026	9:26	0.020	0.021	-
9:27	0.026	0.026	9:27	0.020	0.021	-
9:28	0.027	0.026	9:28	0.020	0.021	-
9:29	0.026	0.026	9:29	0.020	0.021	-

	PARTICULATE DATA Upwind Downwind					
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Exceeds Particulate Alarm Limits
9:30	0.025	0.026	9:30	0.020	0.021	-
9:31	0.025	0.026	9:31	0.020	0.021	-
9:32	0.025	0.025	9:32	0.020	0.021	-
9:33	0.024	0.025	9:33	0.021	0.020	-
9:34	0.024	0.025	9:34	0.020	0.020	-
9:35 9:36	0.025	0.025	9:35 9:36	0.020	0.020	-
9:37	0.024	0.025	9:37	0.020	0.020	-
9:38	0.024	0.025	9:38	0.021	0.020	-
9:39	0.023	0.025	9:39	0.020	0.020	-
9:40	0.023	0.025	9:40	0.021	0.020	-
9:41	0.023	0.025	9:41	0.021	0.020	-
9:42	0.023	0.024	9:42	0.021	0.020	-
9:43	0.024	0.024	9:43	0.021	0.020	-
9:44	0.024	0.024	9:44	0.021	0.020	-
9:45	0.025	0.024	9:45	0.020	0.020	-
9:46	0.026	0.024	9:46	0.020	0.020	-
9:47 9:48	0.024	0.024	9:47 9:48	0.019	0.020	-
9:48	0.025	0.024	9:48	0.020	0.020	-
9:50	0.023	0.024	9:50	0.020	0.020	
9:51	0.023	0.024	9:51	0.020	0.020	-
9:52	0.023	0.024	9:52	0.020	0.020	-
9:53	0.022	0.024	9:53	0.020	0.020	-
9:54	0.023	0.024	9:54	0.019	0.020	-
9:55	0.023	0.024	9:55	0.020	0.020	-
9:56	0.023	0.024	9:56	0.020	0.020	-
9:57	0.023	0.024	9:57	0.020	0.020	-
9:58	0.024	0.024	9:58	0.019	0.020	-
9:59	0.024	0.024	9:59	0.019	0.020	-
10:00	0.025	0.024	10:00	0.019	0.020	-
10:01	0.024	0.024	10:01	0.019	0.020	-
10:02 10:03	0.025	0.024	10:02 10:03	0.019	0.020	-
10:03	0.023	0.024	10:03	0.019	0.020	-
10:05	0.022	0.023	10:04	0.020	0.020	-
10:06	0.022	0.023	10:06	0.020	0.020	-
10:07	0.022	0.023	10:07	0.020	0.020	-
10:08	0.021	0.023	10:08	0.019	0.019	-
10:09	0.021	0.023	10:09	0.018	0.019	-
10:10	0.021	0.023	10:10	0.019	0.019	-
10:11	0.021	0.023	10:11	0.018	0.019	-
10:12	0.020	0.022	10:12	0.019	0.019	-
10:13	0.021	0.022	10:13	0.018	0.019	-
10:14	0.020	0.022	10:14	0.018	0.019	-
10:15 10:16	0.021 0.023	0.022	10:15 10:16	0.018	0.019 0.019	-
10:10	0.023	0.022	10:10	0.018	0.019	-
10:17	0.020	0.022	10:17	0.018	0.019	-
10:10	0.021	0.022	10:19	0.017	0.019	-
10:20	0.022	0.022	10:20	0.018	0.018	-
10:21	0.020	0.021	10:21	0.020	0.018	-
10:22	0.019	0.021	10:22	0.020	0.018	-
10:23	0.020	0.021	10:23	0.017	0.018	-
10:24	0.020	0.021	10:24	0.017	0.018	-
10:25	0.020	0.021	10:25	0.017	0.018	-
10:26	0.020	0.021	10:26	0.017	0.018	-
10:27	0.020	0.021	10:27	0.017	0.018	-
10:28	0.020	0.021	10:28	0.017	0.018	-
10:29 10:30	0.020	0.021 0.021	10:29 10:30	0.017	0.018	-
10:30	0.020	0.021	10:30	0.017	0.018	-
10:31	0.021	0.021	10:31	0.017	0.018	-
10:32	0.022	0.020	10:32	0.017	0.017	-
10:34	0.020	0.020	10:34	0.017	0.017	-

	Upwind	PARTICULATE DATA Downwind				
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Exceeds Particulate Alarm Limit
10:35	0.022	0.020	10:35	0.017	0.017	-
10:36	0.021	0.020	10:36	0.017	0.017	-
10:37	0.021	0.021	10:37	0.017	0.017	-
10:38	0.020	0.021	10:38	0.017	0.017	-
10:39 10:40	0.021	0.021 0.021	10:39 10:40	0.017	0.017	-
10:40	0.021	0.021	10:40	0.017	0.017	-
10:41	0.020	0.021	10:42	0.018	0.017	-
10:43	0.020	0.021	10:43	0.017	0.017	-
10:44	0.020	0.021	10:44	0.017	0.017	-
10:45	0.020	0.021	10:45	0.018	0.017	-
10:46	0.020	0.021	10:46	0.017	0.017	-
10:47	0.023	0.021	10:47	0.017	0.017	-
10:48	0.021	0.021	10:48	0.017	0.017	-
10:49	0.019	0.021	10:49	0.017	0.017	-
10:50	0.019	0.020	10:50	0.016	0.017	-
10:51 10:52	0.019 0.018	0.020 0.020	10:51 10:52	0.017	0.017	-
10:52	0.018	0.020	10:52	0.017	0.017	-
10:53	0.010	0.020	10:53	0.017	0.017	-
10:55	0.018	0.019	10:55	0.015	0.017	-
10:56	0.017	0.019	10:56	0.015	0.017	-
10:57	0.018	0.019	10:57	0.015	0.017	-
10:58	0.018	0.019	10:58	0.015	0.016	-
10:59	0.018	0.019	10:59	0.014	0.016	-
11:00	0.017	0.019	11:00	0.014	0.016	-
11:01	0.017	0.018	11:01	0.015	0.016	-
11:02	0.018	0.018	11:02	0.015	0.016	-
11:03	0.017	0.018	11:03	0.015	0.016	-
11:04 11:05	0.017 0.019	0.018 0.018	11:04 11:05	0.015	0.015	-
11:05	0.019	0.018	11:06	0.015	0.015	-
11:07	0.019	0.018	11:07	0.015	0.015	
11:08	0.017	0.018	11:08	0.015	0.015	-
11:09	0.019	0.018	11:09	0.015	0.015	-
11:10	0.017	0.018	11:10	0.016	0.015	-
11:11	0.018	0.018	11:11	0.015	0.015	-
11:12	0.017	0.018	11:12	0.015	0.015	-
11:13	0.017	0.018	11:13	0.015	0.015	-
11:14	0.017	0.018	11:14	0.015	0.015	-
11:15	0.017	0.018	11:15	0.016	0.015	-
11:16 11:17	0.016	0.018 0.017	11:16 11:17	0.014	0.015	-
11:17	0.016	0.017	11:17	0.014	0.015	-
11:19	0.016	0.017	11:19	0.014	0.015	-
11:20	0.016	0.017	11:20	0.014	0.015	-
11:21	0.017	0.017	11:21	0.013	0.015	-
11:22	0.017	0.017	11:22	0.013	0.015	-
11:23	0.021	0.017	11:23	0.013	0.014	-
11:24	0.018	0.017	11:24	0.013	0.014	-
11:25	0.017	0.017	11:25	0.014	0.014	-
11:26	0.017	0.017	11:26	0.014	0.014	-
11:27	0.017	0.017	11:27	0.014	0.014	-
11:28 11:29	0.018 0.018	0.017 0.017	11:28 11:29	0.014	0.014	-
11:29	0.018	0.017	11:29	0.014	0.014	-
11:30	0.018	0.017	11:31	0.014	0.014	-
11:32	0.020	0.018	11:32	0.014	0.014	-
11:33	0.021	0.018	11:33	0.014	0.014	-
11:34	0.021	0.018	11:34	0.014	0.014	-
11:35	0.020	0.019	11:35	0.015	0.014	-
11:36	0.020	0.019	11:36	0.015	0.014	-
11:37	0.019	0.019	11:37	0.017	0.014	-
11:38	0.021	0.019	11:38	0.017	0.014	-

	Upwind		Exceeds			
Time	PM 10 (mg/m^3)	15-Minute Average	Time	Downwind PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits
11:40	0.025	0.020	11:40	0.016	0.015	-
11:41	0.022	0.020	11:41	0.015	0.015	-
11:42	0.018	0.021	11:42	0.015	0.015	-
11:43	0.018	0.021	11:43	0.014	0.015	-
11:44	0.018	0.021	11:44	0.018	0.015	-
11:45 11:46	0.016	0.020	11:45	0.023	0.016	-
11:40	0.017	0.020 0.020	11:46 11:47	0.021	0.016	-
11:48	0.017	0.020	11:48	0.015	0.010	-
11:49	0.019	0.020	11:49	0.016	0.017	-
11:50	0.018	0.019	11:50	0.015	0.017	-
11:51	0.018	0.019	11:51	0.015	0.017	-
11:52	0.020	0.019	11:52	0.014	0.016	-
11:53	0.023	0.020	11:53	0.014	0.016	-
11:54	0.020	0.019	11:54	0.015	0.016	-
11:55	0.020	0.019	11:55	0.015	0.016	-
11:56	0.019	0.019	11:56	0.014	0.016	-
11:57	0.019	0.019	11:57	0.015	0.016	-
11:58 11:59	0.018	0.019 0.019	11:58 11:59	0.016	0.016	-
12:00	0.018	0.019	12:00	0.017	0.015	-
12:00	0.018	0.019	12:00	0.014	0.015	_
12:02	0.018	0.019	12:01	0.013	0.015	-
12:03	0.018	0.019	12:03	0.013	0.015	-
12:04	0.020	0.019	12:04	0.013	0.014	-
12:05	0.019	0.019	12:05	0.013	0.014	-
12:06	0.019	0.019	12:06	0.013	0.014	-
12:07	0.025	0.019	12:07	0.013	0.014	-
12:08	0.027	0.020	12:08	0.014	0.014	-
12:09	0.023	0.020	12:09	0.013	0.014	-
12:10	0.021	0.020	12:10	0.013	0.014	-
12:11	0.019	0.020	12:11	0.013	0.014	-
12:12	0.020	0.020 0.020	12:12	0.017 0.014	0.014	-
12:13 12:14	0.019	0.020	12:13 12:14	0.014	0.014	-
12:14	0.013	0.020	12:14	0.014	0.014	-
12:16	0.020	0.021	12:16	0.013	0.013	-
12:17	0.021	0.021	12:17	0.013	0.013	-
12:18	0.019	0.021	12:18	0.013	0.013	-
12:19	0.020	0.021	12:19	0.013	0.013	-
12:20	0.020	0.021	12:20	0.014	0.014	-
12:21	0.021	0.021	12:21	0.014	0.014	-
12:22	0.019	0.021	12:22	0.013	0.014	-
12:23	0.022	0.020	12:23	0.014	0.014	-
12:24	0.019	0.020	12:24	0.014	0.014	-
12:25 12:26	0.022	0.020 0.020	12:25 12:26	0.013 0.014	0.014	-
12:20	0.022	0.020	12:26	0.014	0.014	-
12:27	0.020	0.020	12:28	0.014	0.014	-
12:29	0.017	0.020	12:29	0.014	0.014	-
12:30	0.019	0.020	12:30	0.014	0.014	-
12:31	0.017	0.020	12:31	0.014	0.014	-
12:32	0.028	0.020	12:32	0.014	0.014	-
12:33	0.019	0.020	12:33	0.013	0.014	-
12:34	0.021	0.020	12:34	0.012	0.014	-
12:35	0.017	0.020	12:35	0.011	0.013	-
12:36	0.016	0.020	12:36	0.012	0.013	-
12:37	0.016	0.020	12:37	0.012	0.013	-
12:38	0.018	0.019	12:38	0.011	0.013	-
12:39 12:40	0.018	0.019 0.019	12:39 12:40	0.011 0.011	0.013 0.013	-
12:40	0.019	0.019	12:40	0.011	0.013	-
12:41	0.020	0.019	12:41	0.012	0.013	-
12:42	0.018	0.019	12:42	0.011	0.012	-
12:44	0.018	0.019	12:44	0.012	0.012	-

	Upwind	PAF		DATA Downwind		Exceeds
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limit
12:45	0.018	0.019	12:45	0.013	0.012	-
12:46	0.018	0.019	12:46	0.014	0.012	-
12:47	0.019	0.018	12:47	0.013	0.012	-
12:48	0.016	0.018	12:48	0.013	0.012	-
12:49 12:50	0.017 0.018	0.018 0.018	12:49 12:50	0.013	0.012	-
12:50	0.018	0.018	12:50	0.012	0.012	-
12:52	0.019	0.018	12:52	0.011	0.012	-
12:53	0.021	0.018	12:53	0.010	0.012	-
12:54	0.018	0.018	12:54	0.010	0.012	-
12:55	0.017	0.018	12:55	0.010	0.012	-
12:56	0.017	0.018	12:56	0.011	0.012	-
12:57	0.018	0.018	12:57	0.011	0.012	-
12:58	0.018	0.018	12:58	0.011	0.012	-
12:59	0.017	0.018	12:59	0.011	0.012	-
13:00	0.017	0.018	13:00	0.012	0.012	-
13:01	0.017	0.018	13:01	0.011	0.011	-
13:02 13:03	0.016	0.018 0.018	13:02 13:03	0.011 0.010	0.011 0.011	-
13:03	0.018	0.018	13:03	0.010	0.011	-
13:05	0.019	0.018	13:05	0.010	0.011	-
13:06	0.021	0.018	13:06	0.010	0.011	-
13:07	0.022	0.018	13:07	0.011	0.011	-
13:08	0.022	0.018	13:08	0.011	0.011	-
13:09	0.019	0.018	13:09	0.013	0.011	-
13:10	0.018	0.019	13:10	0.013	0.011	-
13:11	0.017	0.019	13:11	0.013	0.011	-
13:12	0.018	0.019	13:12	0.015	0.012	-
13:13	0.019	0.019	13:13	0.015	0.012	-
13:14 13:15	0.018	0.019 0.019	13:14 13:15	0.012	0.012	-
13:15	0.018	0.019	13:15	0.011	0.012	-
13:10	0.017	0.019	13:17	0.010	0.012	-
13:18	0.020	0.019	13:18	0.013	0.012	-
13:19	0.019	0.019	13:19	0.011	0.012	-
13:20	0.020	0.019	13:20	0.012	0.012	-
13:21	0.019	0.019	13:21	0.012	0.012	-
13:22	0.020	0.019	13:22	0.012	0.012	-
13:23	0.020	0.019	13:23	0.012	0.012	-
13:24	0.019	0.019	13:24	0.012	0.012	-
13:25	0.019	0.019	13:25	0.012	0.012	-
13:26	0.017	0.019	13:26	0.011	0.012	-
13:27 13:28	0.018	0.019 0.019	13:27 13:28	0.012	0.012	-
13:20	0.019	0.019	13:28	0.012	0.012	-
13:30	0.017	0.019	13:30	0.013	0.012	-
13:31	0.017	0.019	13:31	0.013	0.012	-
13:32	0.017	0.019	13:32	0.012	0.012	-
13:33	0.016	0.018	13:33	0.012	0.012	-
13:34	0.015	0.018	13:34	0.012	0.012	-
13:35	0.016	0.018	13:35	0.012	0.012	-
13:36	0.017	0.018	13:36	0.011	0.012	-
13:37	0.017	0.017	13:37	0.011	0.012	-
13:38	0.019	0.017 0.017	13:38	0.011	0.012	-
13:39 13:40	0.016 0.015	0.017	13:39 13:40	0.010	0.012	-
13:40	0.015	0.017	13:40	0.011	0.012	-
13:41	0.010	0.017	13:41	0.011	0.012	-
13:43	0.017	0.017	13:43	0.011	0.012	-
13:44	0.016	0.016	13:44	0.010	0.011	-
13:45	0.018	0.017	13:45	0.010	0.011	-
13:46	0.017	0.017	13:46	0.010	0.011	-
13:47	0.016	0.016	13:47	0.010	0.011	-
13:48	0.016	0.016	13:48	0.010	0.011	-
13:49	0.016	0.017	13:49	0.010	0.011	-

	PARTICULATE DATA								
	Upwind			Downwind		Exceeds			
Time	PM 10 (mg/m^3)	15-Minute Average	Time	PM 10 (mg/m^3)	15-Minute Average	Particulate Alarm Limits			
13:50	0.015	0.016	13:50	0.010	0.010	-			
13:51	0.017	0.016	13:51	0.010	0.010	-			
13:52	0.022	0.017	13:52	0.010	0.010	-			
13:53	0.021	0.017	13:53	0.010	0.010	-			
13:54	0.017	0.017	13:54	0.010	0.010	-			
13:55	0.015	0.017	13:55	0.010	0.010	-			
13:56	0.017	0.017	13:56	0.010	0.010	-			
13:57	0.018	0.017	13:57	0.015	0.010	-			
13:58	0.015	0.017	13:58	0.013	0.011	-			
13:59	0.015	0.017	13:59	0.011	0.011	-			
14:00	0.015	0.017	14:00	0.010	0.011	-			
14:01	0.017	0.017	14:01	0.010	0.011	-			
14:02	0.016	0.017	14:02	0.009	0.011	-			
14:03	0.015	0.017	14:03	0.009	0.010	-			
14:04	0.015	0.017	14:04	0.010	0.010	-			
14:05	0.019	0.017	14:05	0.011	0.011	-			
14:06	0.017	0.017	14:06	0.010	0.011	-			
14:07	0.019	0.017	14:07	0.011	0.011				
14:08	0.016	0.016	14:08	0.010	0.011	-			
14:09	0.016	0.016	14:09	0.010	0.011	-			
14:10	0.010	0.016	14:10	0.010	0.011	-			
14:10	0.017	0.018	14:10	0.011	0.011	-			
14:11	0.019	0.017	14:12			-			
14:12	0.020	0.017	14:12	0.012	0.011 0.011	-			
14:14	0.024	0.018	14:14	0.010	0.010	-			
14:15	0.021	0.018	14:15	0.012	0.011	-			
14:16	0.020	0.018	14:16	0.012	0.011	-			
14:17	0.022	0.019	14:17	0.013	0.011	-			
14:18	0.018	0.019	14:18	0.013	0.011	-			
14:19	0.017	0.019	14:19	0.012	0.011	-			
14:20	0.018	0.019	14:20	0.014	0.012	-			
14:21	0.022	0.019	14:21	0.051	0.014	-			
14:22	0.021	0.019	14:22	0.014	0.015	-			
14:23	0.018	0.019	14:23	0.012	0.015	-			
14:24	0.027	0.020	14:24	0.012	0.015	-			
14:25			14:25	0.011	0.015				
14:26			14:26	0.013	0.015				
14:27			14:27	0.013	0.015				
14:28			14:28	0.013	0.015				
14:29			14:29	0.014	0.015				
14:30			14:30	0.024	0.016				
14:31			14:31	0.046	0.018				
14:32			14:32	0.011	0.018				
14:33			14:33	0.011	0.018				
14:34			14:34	0.010	0.018				
14:35			14:35	0.010	0.018				
14:36			14:36	0.010	0.015				
14:37			14:37	0.009	0.015				
14:38			14:38	0.010	0.014				
14:39			14:39	0.013	0.015				
14:40			14:40	0.013	0.015				
14:41			14:41	0.011	0.015				
14:42			14:42	0.010	0.014				

	Number of Insta	nces Where Downwind		21, 2017 Jpwind VOCs + 5ppm) =	0
	ivamber of mata	Number of Compar			. –	385
			PID DATA	5 -		305
	Upwind		TID DATA	Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
7:40	0.0		7:40			
7:41	0.0		7:41			
7:42	0.0		7:42			
7:43	0.0		7:43			
7:44	0.0		7:44			
7:45	0.0		7:45			
7:46	0.0		7:46			
7:47	0.1		7:47			
7:48	0.0		7:48			
7:49	0.0		7:49	0.0		
7:50	0.0		7:50	0.0		
7:51	0.0		7:51	0.0		
7:52	0.0		7:52	0.0		
7:53	0.0		7:53	0.0		
7:54	0.0		7:54	0.0		
7:55	0.0	0.0	7:55	0.0		
7:56	0.0	0.0	7:56	0.1		
7:57	0.0	0.0	7:57	0.0	0.0	-
7:58	0.0	0.0	7:58	0.1	0.0	-
7:59	0.0	0.0	7:59	0.0	0.0	-
8:00	0.0	0.0	8:00	0.1	0.0	-
8:01	0.0	0.0	8:01	0.1	0.0	-
8:02	0.0	0.0	8:02	0.2	0.0	-
8:03	0.0	0.0	8:03	0.4	0.1	-
8:04	0.0	0.0	8:04	0.3	0.1	-
8:05	0.0	0.0	8:05	0.8	0.1	-
8:06	0.0	0.0	8:06	1.0	0.2	-
8:07	0.1	0.0	8:07	1.0	0.3	-
8:08	0.0	0.0	8:08	1.0	0.3	-
8:09	0.0	0.0	8:09	1.3	0.4	-
8:10	0.0	0.0	8:10	1.5	0.5	-
8:11	0.0	0.0	8:11	1.3	0.6	-
8:12	0.0	0.0	8:12	1.1	0.7	-
8:13	0.0	0.0	8:13	1.4	0.8	-
8:14	0.0	0.0	8:14	1.2	0.8	-
8:15	0.0	0.0	8:15	0.0	0.8	=
8:16	0.0	0.0	8:16	1.5	0.9	-
8:17	0.1	0.0	8:17	0.0	0.9	-
8:18	0.0	0.0	8:18	0.5	0.9	-
8:19	0.0	0.0	8:19	0.0	0.9	-
8:20	0.0	0.0	8:20	0.0	0.9	-
8:21	0.0	0.0	8:21	0.0	0.8	-
8:22	0.0	0.0	8:22	0.0	0.7	-
8:23	0.0	0.0	8:23	0.0	0.7	-
8:24	0.0	0.0	8:24	0.0	0.6	-
8:25	0.0	0.0	8:25	0.0	0.5	-
8:26	0.0	0.0	8:26	0.1	0.4	-
8:27	0.0	0.0	8:27	0.0	0.3	-
8:28	0.0	0.0	8:28	0.1	0.2	-

PID DATA						
	Upwind			Downwind		Europe de Moore
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
8:30	0.0	0.0	8:30	0.1	0.2	-
8:31	0.0	0.0	8:31	0.1	0.1	-
8:32	0.0	0.0	8:32	0.2	0.1	-
8:33	0.0	0.0	8:33	0.4	0.1	-
8:34	0.0	0.0	8:34	0.3	0.1	-
8:35	0.0	0.0	8:35	0.3	0.1	-
8:36	0.0	0.0	8:36	0.3	0.1	-
8:37	0.1	0.0	8:37	0.3	0.1	-
8:38	0.0	0.0	8:38	0.3	0.2	-
8:39	0.0	0.0	8:39	0.3	0.2	-
8:40	0.0	0.0	8:40	0.4	0.2	-
8:41	0.0	0.0	8:41	0.4	0.2	-
8:42	0.0	0.0	8:42	0.4	0.3	-
8:43	0.0	0.0	8:43	0.4	0.3	-
8:44	0.0	0.0	8:44	0.0	0.3	-
8:45	0.0	0.0	8:45	0.5	0.3	-
8:46	0.0	0.0	8:46	0.0	0.3	-
8:47	0.1	0.0	8:47	0.0	0.3	-
8:48	0.0	0.0	8:48	0.0	0.3	-
8:49	0.0	0.0	8:49	0.0	0.2	-
8:50	0.0	0.0	8:50	0.0	0.2	-
8:51	0.0	0.0	8:51	0.0	0.2	-
8:52	0.0	0.0	8:52	0.0	0.2	-
8:53	0.0	0.0	8:53	0.1	0.2	-
8:54	0.0	0.0	8:54	0.0	0.1	-
8:55	0.0	0.0	8:55	0.1	0.1	-
8:56	0.0	0.0	8:56	0.0	0.1	-
8:57	0.0	0.0	8:57	0.1	0.1	-
8:58	0.0	0.0	8:58	0.1	0.1	-
8:59	0.0	0.0	8:59	0.2	0.1	-
9:00	0.0	0.0	9:00	0.4	0.1	_
9:01	0.0	0.0	9:01	0.3	0.1	_
9:02	0.0	0.0	9:02	0.3	0.1	_
9:03	0.0	0.0	9:03	0.3	0.1	_
9:04	0.0	0.0	9:04	0.3	0.1	_
9:05	0.0	0.0	9:05	0.3	0.2	_
9:06	0.0	0.0	9:06	0.3	0.2	_
9:07	0.1	0.0	9:07	0.0	0.2	_
9:08	0.0	0.0	9:08	0.5	0.2	_
9:09	0.0	0.0	9:09	0.0	0.2	_
9:10	0.0	0.0	9:10	0.0	0.2	_
9:11	0.0	0.0	9:11	0.0	0.2	-
9:12	0.0	0.0	9:12	0.0	0.2	-
9:12	0.0	0.0	9:12	0.0	0.2	-
9:13	0.0	0.0	9:13	0.0	0.2	-
9:15	0.0	0.0	9:15	0.0	0.2	-
9:16	0.0	0.0	9:16	0.0	0.1	-
9:17	0.0	0.0	9:17	0.0	0.1	-
9:17	0.0	0.0	9:17	0.0	0.1	-
		0.0			0.1	-
9:19 9:20	0.0	0.0	9:19 9:20	0.0	0.1	
						-
9:21	0.0	0.0	9:21 9:22	0.1	0.1	-

PID DATA Downwind						
	Upwind			Downwind		Exceeds VOCs
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
9:23	0.0	0.0	9:23	0.4	0.1	-
9:24	0.0	0.0	9:24	0.3	0.1	-
9:25	0.0	0.0	9:25	0.3	0.1	-
9:26	0.0	0.0	9:26	0.3	0.1	-
9:27	0.0	0.0	9:27	0.3	0.1	-
9:28	0.0	0.0	9:28	0.3	0.2	-
9:29	0.0	0.0	9:29	0.3	0.2	-
9:30	0.0	0.0	9:30	0.0	0.2	-
9:31	0.0	0.0	9:31	0.5	0.2	-
9:32	0.0	0.0	9:32	0.0	0.2	-
9:33	0.0	0.0	9:33	0.0	0.2	-
9:34	0.0	0.0	9:34	0.0	0.2	-
9:35	0.0	0.0	9:35	0.0	0.2	-
9:36	0.0	0.0	9:36	0.0	0.2	-
9:37	0.1	0.0	9:37	0.0	0.2	-
9:38	0.0	0.0	9:38	0.0	0.2	-
9:39	0.0	0.0	9:39	0.1	0.1	-
9:40	0.0	0.0	9:40	0.0	0.1	-
9:41	0.0	0.0	9:41	0.1	0.1	-
9:42	0.0	0.0	9:42	0.0	0.1	_
9:43	0.0	0.0	9:43	0.1	0.1	_
9:44	0.0	0.0	9:44	0.1	0.1	_
9:45	0.0	0.0	9:45	0.2	0.1	_
9:46	0.0	0.0	9:46	0.4	0.1	_
9:47	0.1	0.0	9:47	0.3	0.1	_
9:48	0.0	0.0	9:48	0.3	0.1	_
9:49	0.0	0.0	9:49	0.3	0.1	_
9:50	0.0	0.0	9:50	0.3	0.1	_
9:51	0.0	0.0	9:51	0.3	0.2	_
9:52	0.0	0.0	9:52	0.3	0.2	_
9:53	0.0	0.0	9:53	0.3	0.2	_
9:54	0.0	0.0	9:54	0.3	0.2	_
9:55	0.0	0.0	9:55	0.3	0.2	_
9:56	0.0	0.0	9:56	0.3	0.2	_
9:57	0.0	0.0	9:57	0.3	0.3	_
9:58	0.0	0.0	9:58	0.0	0.3	-
9:59	0.0	0.0	9:59	0.5	0.3	-
10:00	0.0	0.0	10:00	0.0	0.3	-
10:00	0.0	0.0	10:00	0.0	0.2	-
10:02	0.0	0.0	10:02	0.0	0.2	_
10:02	0.0	0.0	10:02	0.0	0.2	_
10:00	0.0	0.0	10:04	0.0	0.2	_
10:05	0.0	0.0	10:05	0.0	0.2	_
10:06	0.0	0.0	10:06	0.0	0.2	-
10:07	0.0	0.0	10:07	0.1	0.1	_
10:07	0.0	0.0	10:07	0.0	0.1	-
10:09	0.0	0.0	10:09	0.0	0.1	-
10:10	0.0	0.0	10:00	0.0	0.1	-
10:10	0.0	0.0	10:10	0.0	0.1	_
10:11	0.0	0.0	10:11	0.1	0.1	-
10:12	0.0	0.0	10:12	0.1	0.1	
		0.0		0.2		-
10:14 10:15	0.0	0.0	10:14 10:15	0.4	0.1	-

PID DATA Upwind Downwind						
	Upwind			Downwind		Exceeds VOCs
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
10:16	0.0	0.0	10:16	0.3	0.1	-
10:17	0.1	0.0	10:17	0.3	0.1	-
10:18	0.0	0.0	10:18	0.3	0.1	-
10:19	0.0	0.0	10:19	0.3	0.2	-
10:20	0.0	0.0	10:20	0.0	0.2	-
10:21	0.0	0.0	10:21	0.5	0.2	-
10:22	0.0	0.0	10:22	0.0	0.2	-
10:23	0.0	0.0	10:23	0.0	0.2	-
10:24	0.0	0.0	10:24	0.0	0.2	-
10:25	0.0	0.0	10:25	0.0	0.2	-
10:26	0.0	0.0	10:26	0.0	0.2	-
10:27	0.0	0.0	10:27	0.0	0.2	-
10:28	0.0	0.0	10:28	0.0	0.2	-
10:29	0.0	0.0	10:29	0.1	0.1	-
10:30	0.0	0.0	10:30	0.0	0.1	-
10:31	0.0	0.0	10:31	0.1	0.1	-
10:32	0.0	0.0	10:32	0.0	0.1	-
10:33	0.0	0.0	10:33	0.1	0.1	-
10:34	0.0	0.0	10:34	0.1	0.1	-
10:35	0.0	0.0	10:35	0.2	0.1	-
10:36	0.0	0.0	10:36	0.4	0.1	-
10:37	0.1	0.0	10:37	0.3	0.1	-
10:38	0.0	0.0	10:38	0.3	0.1	-
10:39	0.0	0.0	10:39	0.3	0.1	-
10:40	0.0	0.0	10:40	0.3	0.1	-
10:41	0.0	0.0	10:41	0.3	0.2	-
10:42	0.0	0.0	10:42	0.0	0.2	-
10:43	0.0	0.0	10:43	0.5	0.2	-
10:44	0.0	0.0	10:44	0.0	0.2	-
10:45	0.0	0.0	10:45	0.0	0.2	-
10:46	0.0	0.0	10:46	0.0	0.2	_
10:47	0.1	0.0	10:47	0.0	0.2	_
10:48	0.0	0.0	10:48	0.0	0.2	_
10:49	0.0	0.0	10:49	0.0	0.2	_
10:50	0.0	0.0	10:50	0.0	0.2	_
10:51	0.0	0.0	10:51	0.1	0.1	_
10:52	0.0	0.0	10:52	0.0	0.1	_
10:53	0.0	0.0	10:53	0.1	0.1	_
10:54	0.0	0.0	10:54	0.0	0.1	-
10:55	0.0	0.0	10:55	0.1	0.1	_
10:56	0.0	0.0	10:56	0.1	0.1	_
10:57	0.0	0.0	10:57	0.2	0.1	_
10:58	0.0	0.0	10:58	0.4	0.1	_
10:59	0.0	0.0	10:59	0.0	0.1	-
11:00	0.0	0.0	11:00	0.1	0.1	-
11:01	0.0	0.0	11:01	0.0	0.1	-
11:02	0.0	0.0	11:02	0.1	0.1	-
11:03	0.0	0.0	11:03	0.1	0.1	-
11:04	0.0	0.0	11:04	0.1	0.1	-
11:04	0.0	0.0	11:04	0.2	0.1	-
11:06	0.0	0.0	11:06	0.4	0.1	-
11:07	0.0	0.0	11:07	0.3	0.1	-
11:08	0.0	0.0	11:08	0.3	0.2	-

			PID DATA								
	Upwind			Downwind		Exceeds VOCs					
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits					
11:09	0.0	0.0	11:09	0.3	0.2	-					
11:10	0.0	0.0	11:10	0.3	0.2	-					
11:11	0.0	0.0	11:11	0.0	0.2	-					
11:12	0.0	0.0	11:12	0.5	0.2	-					
11:13	0.0	0.0	11:13	0.0	0.2	-					
11:14	0.0	0.0	11:14	0.0	0.2	-					
11:15	0.0	0.0	11:15	0.0	0.2	-					
11:16	0.0	0.0	11:16	0.0	0.2	-					
11:17	0.0	0.0	11:17	0.0	0.2	-					
11:18	0.0	0.0	11:18	0.0	0.2	-					
11:19	0.0	0.0	11:19	0.0	0.2	-					
11:20	0.0	0.0	11:20	0.1	0.1	-					
11:21	0.0	0.0	11:21	0.0	0.1	-					
11:22	0.0	0.0	11:22	0.1	0.1	-					
11:23	0.0	0.0	11:23	0.0	0.1	-					
11:24	0.0	0.0	11:24	0.1	0.1	-					
11:25	0.0	0.0	11:25	0.1	0.1	-					
11:26	0.0	0.0	11:26	0.2	0.1	-					
11:27	0.0	0.0	11:27	0.4	0.1	-					
11:28	0.0	0.0	11:28	0.3	0.1	-					
11:29	0.0	0.0	11:29	0.3	0.1	-					
11:30	0.0	0.0	11:30	0.3	0.1	-					
11:31	0.0	0.0	11:31	0.3	0.1	-					
11:32	0.0	0.0	11:32	0.3	0.2	-					
11:33	0.0	0.0	11:33	0.0	0.2	-					
11:34	0.0	0.0	11:34	0.5	0.2	-					
11:35	0.0	0.0	11:35	0.0	0.2	-					
11:36	0.0	0.0	11:36	0.0	0.2	-					
11:37	0.0	0.0	11:37	0.0	0.2	-					
11:38	0.0	0.0	11:38	0.0	0.2	-					
11:39	0.0	0.0	11:39	0.0	0.2	-					
11:40	0.0	0.0	11:40	0.0	0.2	-					
11:41	0.0	0.0	11:41	0.0	0.2	-					
11:42	0.0	0.0	11:42	0.1	0.1	-					
11:43	0.0	0.0	11:43	0.0	0.1	_					
11:44	0.0	0.0	11:44	0.1	0.1	-					
11:45	0.0	0.0	11:45	0.1	0.1	_					
11:46	0.0	0.0	11:46	0.2	0.1	_					
11:47	0.0	0.0	11:47	0.4	0.1	_					
11:48	0.0	0.0	11:48	0.3	0.1	_					
11:49	0.0	0.0	11:49	0.3	0.1	_					
11:50	0.0	0.0	11:50	0.3	0.1	_					
11:51	0.0	0.0	11:51	0.3	0.1	_					
11:52	0.0	0.0	11:52	0.3	0.2	-					
11:53	0.0	0.0	11:53	0.0	0.2	-					
11:54	0.0	0.0	11:54	0.5	0.2	-					
11:55	0.0	0.0	11:55	0.0	0.2	_					
11:56	0.0	0.0	11:56	0.0	0.2	-					
11:57	0.0	0.0	11:57	0.0	0.2						
11:58	0.0	0.0	11:58	0.0	0.2	-					
11:59	0.0	0.0	11:59	0.0	0.2	-					
12:00	0.0	0.0	12:00	0.0	0.2	-					
12:00	0.0	0.0	12:00	0.0	0.2	-					

	l lassa da d		PID DATA	Decembra		1
	Upwind			Downwind		Exceeds VOCs
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
12:02	0.0	0.0	12:02	0.1	0.1	-
12:03	0.0	0.0	12:03	0.0	0.1	-
12:04	0.0	0.0	12:04	0.1	0.1	-
12:05	0.0	0.0	12:05	0.0	0.1	-
12:06	0.0	0.0	12:06	0.1	0.1	-
12:07	0.0	0.0	12:07	0.1	0.1	-
12:08	0.0	0.0	12:08	0.2	0.1	-
12:09	0.0	0.0	12:09	0.4	0.1	-
12:10	0.0	0.0	12:10	0.3	0.1	-
12:11	0.0	0.0	12:11	0.3	0.1	-
12:12	0.0	0.0	12:12	0.3	0.1	-
12:13	0.0	0.0	12:13	0.3	0.1	-
12:14	0.0	0.0	12:14	0.3	0.2	-
12:15	0.0	0.0	12:15	0.0	0.2	-
12:16	0.0	0.0	12:16	0.5	0.2	-
12:17	0.0	0.0	12:17	0.0	0.2	-
12:18	0.0	0.0	12:18	0.0	0.2	-
12:19	0.0	0.0	12:19	0.0	0.2	-
12:20	0.0	0.0	12:20	0.0	0.2	-
12:21	0.0	0.0	12:21	0.0	0.2	-
12:22	0.0	0.0	12:22	0.0	0.2	-
12:23	0.0	0.0	12:23	0.0	0.2	-
12:24	0.0	0.0	12:24	0.1	0.1	-
12:25	0.0	0.0	12:25	0.0	0.1	-
12:26	0.0	0.0	12:26	0.1	0.1	-
12:27	0.0	0.0	12:27	0.1	0.1	-
12:28	0.0	0.0	12:28	0.2	0.1	-
12:29	0.0	0.0	12:29	0.4	0.1	-
12:30	0.0	0.0	12:30	0.3	0.1	-
12:31	0.0	0.0	12:31	0.3	0.1	-
12:32	0.0	0.0	12:32	0.3	0.1	-
12:33	0.0	0.0	12:33	0.3	0.1	-
12:34	0.0	0.0	12:34	0.3	0.2	-
12:35	0.0	0.0	12:35	0.0	0.2	-
12:36	0.0	0.0	12:36	0.5	0.2	_
12:37	0.0	0.0	12:37	0.0	0.2	-
12:38	0.0	0.0	12:38	0.0	0.2	_
12:39	0.0	0.0	12:39	0.0	0.2	-
12:40	0.0	0.0	12:40	0.0	0.2	_
12:41	0.0	0.0	12:41	0.0	0.2	_
12:42	0.0	0.0	12:42	0.0	0.2	_
12:43	0.0	0.0	12:43	0.0	0.2	_
12:44	0.0	0.0	12:44	0.1	0.1	_
12:45	0.0	0.0	12:45	0.0	0.1	-
12:46	0.0	0.0	12:46	0.1	0.1	-
12:47	0.0	0.0	12:47	0.0	0.1	-
12:48	0.0	0.0	12:48	0.1	0.1	_
12:49	0.0	0.0	12:49	0.1	0.1	-
12:49	0.0	0.0	12:40	0.2	0.1	-
12:50	0.0	0.0	12:50	0.2	0.1	-
12:52	0.0	0.0	12:52	0.4	0.1	-
12:52	0.0	0.0	12:52	0.3	0.1	-
12:54	0.0	0.0	12:53	0.3	0.1	-

PID DATA Upwind Downwind						
	Upwind			Downwind		Exceeds VOC
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Alarm Limits
12:55	0.0	0.0	12:55	0.3	0.1	-
12:56	0.0	0.0	12:56	0.3	0.2	-
12:57	0.0	0.0	12:57	0.0	0.2	-
12:58	0.0	0.0	12:58	0.5	0.2	-
12:59	0.0	0.0	12:59	0.0	0.2	-
13:00	0.0	0.0	13:00	0.0	0.2	-
13:01	0.0	0.0	13:01	0.0	0.2	-
13:02	0.0	0.0	13:02	0.0	0.2	-
13:03	0.0	0.0	13:03	0.0	0.2	-
13:04	0.0	0.0	13:04	0.0	0.2	-
13:05	0.0	0.0	13:05	0.0	0.2	-
13:06	0.0	0.0	13:06	0.1	0.1	-
13:07	0.0	0.0	13:07	0.0	0.1	-
13:08	0.0	0.0	13:08	0.1	0.1	-
13:09	0.0	0.0	13:09	0.1	0.1	-
13:10	0.0	0.0	13:10	0.2	0.1	-
13:11	0.0	0.0	13:11	0.4	0.1	-
13:12	0.0	0.0	13:12	0.3	0.1	-
13:13	0.0	0.0	13:13	0.3	0.1	-
13:14	0.0	0.0	13:14	0.3	0.1	-
13:15	0.0	0.0	13:15	0.3	0.1	-
13:16	0.0	0.0	13:16	0.3	0.2	-
13:17	0.0	0.0	13:17	0.0	0.2	-
13:18	0.0	0.0	13:18	0.5	0.2	-
13:19	0.0	0.0	13:19	0.0	0.2	-
13:20	0.0	0.0	13:20	0.0	0.2	-
13:21	0.0	0.0	13:21	0.0	0.2	-
13:22	0.0	0.0	13:22	0.0	0.2	_
13:23	0.0	0.0	13:23	0.0	0.2	-
13:24	0.0	0.0	13:24	0.0	0.2	-
13:25	0.0	0.0	13:25	0.0	0.2	_
13:26	0.0	0.0	13:26	0.1	0.1	_
13:27	0.0	0.0	13:27	0.0	0.1	_
13:28	0.0	0.0	13:28	0.1	0.1	_
13:29	0.0	0.0	13:29	0.0	0.1	_
13:30	0.0	0.0	13:30	0.1	0.1	_
13:31	0.0	0.0	13:31	0.1	0.1	_
13:32	0.0	0.0	13:32	0.2	0.1	-
13:33	0.0	0.0	13:33	0.4	0.1	_
13:34	0.0	0.0	13:34	0.3	0.1	_
13:35	0.0	0.0	13:35	0.3	0.1	_
13:36	0.0	0.0	13:36	0.3	0.1	_
13:37	0.0	0.0	13:37	0.3	0.1	_
13:38	0.0	0.0	13:38	0.3	0.2	_
13:39	0.0	0.0	13:39	0.0	0.2	_
13:40	0.0	0.0	13:40	0.5	0.2	-
13:41	0.0	0.0	13:41	0.0	0.2	-
13:42	0.0	0.0	13:42	0.0	0.2	-
13:42	0.0	0.0	13:42	0.0	0.2	-
13:43	0.0	0.0	13:44	0.0	0.2	-
13:44	0.0	0.0	13:44	0.0	0.2	-
13:45	0.0	0.0	13:45	0.0	0.2	-
13:40	0.0	0.0	13:40	0.0	0.2	-

			PID DATA			
	Upwind			Downwind		
Time	VOC (ppm)	15-Minute Average	Time	VOC (ppm)	15-Minute Average	Exceeds VOCs Alarm Limits
13:48	0.0	0.0	13:48	0.1	0.1	-
13:49	0.0	0.0	13:49	0.0	0.1	-
13:50	0.0	0.0	13:50	0.1	0.1	-
13:51	0.0	0.0	13:51	0.1	0.1	-
13:52	0.0	0.0	13:52	0.2	0.1	-
13:53	0.0	0.0	13:53	0.4	0.1	-
13:54	0.0	0.0	13:54	0.3	0.1	-
13:55	0.0	0.0	13:55	0.3	0.1	-
13:56	0.0	0.0	13:56	0.3	0.1	-
13:57	0.0	0.0	13:57	0.3	0.1	-
13:58	0.0	0.0	13:58	0.3	0.2	-
13:59	0.0	0.0	13:59	0.0	0.2	-
14:00	0.0	0.0	14:00	0.5	0.2	-
14:01	0.0	0.0	14:01	0.0	0.2	-
14:02	0.0	0.0	14:02	0.0	0.2	-
14:03	0.0	0.0	14:03	0.0	0.2	-
14:04	0.0	0.0	14:04	0.0	0.2	-
14:05	0.0	0.0	14:05	0.0	0.2	-
14:06	0.0	0.0	14:06	0.0	0.2	-
14:07	0.0	0.0	14:07	0.0	0.2	-
14:08	0.0	0.0	14:08	0.1	0.1	-
14:09	0.0	0.0	14:09	0.0	0.1	-
14:10	0.0	0.0	14:10	0.1	0.1	-
14:11	0.0	0.0	14:11	0.0	0.1	-
14:12	0.0	0.0	14:12	0.1	0.1	-
14:13	0.0	0.0	14:13	0.1	0.1	-
14:14	0.0	0.0	14:14	0.2	0.1	-
14:15	0.0	0.0	14:15	0.4	0.1	-
14:16	0.0	0.0	14:16	0.3	0.1	-
14:17	0.0	0.0	14:17	0.3	0.1	-
14:18	0.0	0.0	14:18	0.3	0.1	-
14:19	0.0	0.0	14:19	0.3	0.1	-
14:20	0.0	0.0	14:20	0.3	0.2	-
14:21	0.0	0.0	14:21	0.0	0.2	-
14:22			14:22	0.5	0.2	
14:23			14:23	0.0	0.2	
14:24			14:24	0.0	0.2	
14:25			14:25	0.0	0.2	
14:26			14:26	0.0	0.2	
14:27			14:27	0.0	0.2	
14:28			14:28	0.0	0.2	

Appendix G

Data Usability Summary Report

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Kimberly Nagotko, Staff Geologist

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: January 11, 2018

Re: Data Usability Summary Report For 215 North 10th Street Brooklyn, New York Soil Samples Collected November 2017 Langan Project No.: 170482201

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected on November 20 and 21, 2017 by Langan Engineering and Environmental Services ("Langan") at 215 N. 10th Street located in Brooklyn, New York. The samples were analyzed by Alpha Analytical located in Westborough, MA (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, PCBs, herbicides, metals including mercury, hexavalent chromium, cyanide and percent solids using the analytical methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- Pesticides by SW-846 Method 8081B
- PCBs by SW-846 Method 8082A
- Herbicides by SW-846 Method 8151A
- Metals by SW-846 Method 6010C
- Mercury (Hg) by SW-846 Method 7471B
- Hexavalent chromium (CrVI) by SW-846 Method 7196A
- Cyanide (CN) by SW-846 9010C/9012B
- Percent solids by SM2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1743026	L1743026-01	16B3_0-2	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-02	16B3_7-8	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-03	16B3_10.5-11.5	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-04	16B3_10-10.5	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-05	16B4_3-4	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-06	16B4_11-12	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-07	16B4_14.5-15	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-08	16B6_3-4	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-09	16B6_10-11	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-10	16B6_14.5-15	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-11	SODUP02_112117	11/21/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1743026	L1743026-12	TB03_112117	11/21/17	VOCs
L1742789	L1742789-01	16B8_5.5-6.5	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-02	16B8_0-2	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-03	16B8_11-12	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-04	16B8_14-15	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-05	16B7_6.5-7.5	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-06	16B7_11-12	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-07	16B11_7-8	11/20/17	VOCs, SVOCs, PCBs, Pesticides, Herbicides, TPH, Metals, Hg, CrVI, CN, %S

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 3 of 21

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1742789	L1742789-08	16B5_14-15	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-09	16B10_11-12	11/20/17	VOCs, SVOCs, PCBs, Pesticides, Herbicides, TPH, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-10	16B2_11-12	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-11	16B1_14-15	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-12	16B1_0-2	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-13	16B5_12-13	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-14	16B2_13-14	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-15	16B1_11-12	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-16	16B1_7-8	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-17	16B9_10-11	11/20/17	VOCs, SVOCs, PCBs, Pesticides, Herbicides, TPH, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-18	SODUP01_112017	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-19	16B2_14-15	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-20	16B2_7-8	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-21	16B10_7-8	11/20/17	VOCs, SVOCs, PCBs, Pesticides, Herbicides, TPH, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-22	16B5_4.5-5	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-23	16B1_4.5-5.5	11/20/17	VOCs, SVOCs, Metals, Hg, CrVI, CN, %S
L1742789	L1742789-24	TB01_112017	11/20/17	VOCs
L1742789	L1742789-25	TB02_112017	11/20/17	VOCs

VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34a, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (June 2015, Revision 0), USEPA Region II SOP HW-37A, "PCB Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP HW-17, "Validating Chlorinated Herbicides" (USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3C, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3C, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes evaluation of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction, sample digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, CRDL standards, ICP interference check samples, serial dilutions, matrix spike/spike duplicate recoveries, interference check samples, laboratory duplicates, field duplicates, trip blanks, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items subject to review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B3_0-2	6010C	CADMIUM, TOTAL	7440-43-9	J
16B3_0-2	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B3_0-2	6010C	IRON, TOTAL	7439-89-6	J
16B3_0-2	6010C	LEAD, TOTAL	7439-92-1	J
16B3_0-2	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B3_0-2	6010C	ZINC, TOTAL	7440-66-6	J
16B3_0-2	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	UJ
16B3_0-2	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B3_0-2	SW8260C	2-BUTANONE	78-93-3	UJ
16B3_0-2	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B3_0-2	SW8260C	BROMOFORM	75-25-2	UJ
16B3_0-2	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B3_0-2	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B3_0-2	SW8270D	4-CHLOROANILINE	106-47-8	UJ
16B3_0-2	SW8270D	BENZOIC ACID	65-85-0	UJ
16B3_0-2	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B3_7-8	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B3_7-8	6010C	IRON, TOTAL	7439-89-6	J
16B3_7-8	6010C	LEAD, TOTAL	7439-92-1	J
16B3_7-8	6010C	MAGNESIUM, TOTAL	7439-95-4	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 6 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B3_7-8	6010C	ZINC, TOTAL	7440-66-6	J
16B3_7-8	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B3_7-8	SW8260C	2-BUTANONE	78-93-3	UJ
16B3_7-8	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B3_7-8	SW8260C	BROMOFORM	75-25-2	UJ
16B3_7-8	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B3_7-8	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B3_7-8	SW8270D	BENZOIC ACID	65-85-0	UJ
16B3_7-8	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B3_10.5-11.5	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B3_10.5-11.5	6010C	IRON, TOTAL	7439-89-6	J
16B3_10.5-11.5	6010C	LEAD, TOTAL	7439-92-1	J
16B3_10.5-11.5	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B3_10.5-11.5	6010C	ZINC, TOTAL	7440-66-6	J
16B3_10.5-11.5	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B3_10.5-11.5	SW8260C	2-BUTANONE	78-93-3	UJ
16B3_10.5-11.5	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B3_10.5-11.5	SW8260C	BROMOFORM	75-25-2	UJ
16B3_10.5-11.5	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B3_10.5-11.5	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B3_10.5-11.5	SW8270D	BENZOIC ACID	65-85-0	UJ
16B3_10.5-11.5	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B4_3-4	6010C	ARSENIC, TOTAL	7440-38-2	J
16B4_3-4	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B4_3-4	6010C	COPPER, TOTAL	7440-50-8	J
16B4_3-4	6010C	IRON, TOTAL	7439-89-6	J
16B4_3-4	6010C	LEAD, TOTAL	7439-92-1	J
16B4_3-4	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B4_3-4	6010C	ZINC, TOTAL	7440-66-6	J
16B4_3-4	SW7471B	MERCURY, TOTAL	7439-97-6	J
16B4_3-4	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B4_3-4	SW8260C	2-BUTANONE	78-93-3	UJ

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 7 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B4_3-4	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B4_3-4	SW8260C	BROMOFORM	75-25-2	UJ
16B4_3-4	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B4_3-4	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B4_3-4	SW8260C	NAPHTHALENE	91-20-3	UJ
16B4_3-4	SW8260C	TETRACHLOROETHENE	127-18-4	J
16B4_3-4	SW8260C	TRICHLOROETHENE	79-01-6	J
16B4_3-4	SW8260C	CIS-1,2-DICHLOROETHENE	156-59-2	J
16B4_3-4	SW8270D	4-CHLOROANILINE	106-47-8	UJ
16B4_3-4	SW8270D	ACENAPHTHENE	83-32-9	J
16B4_3-4	SW8270D	ANTHRACENE	120-12-7	J
16B4_3-4	SW8270D	BENZO(A)ANTHRACENE	56-55-3	J
16B4_3-4	SW8270D	BENZO(A)PYRENE	50-32-8	J
16B4_3-4	SW8270D	BENZO(B)FLUORANTHENE	205-99-2	J
16B4_3-4	SW8270D	BENZO(GHI)PERYLENE	191-24-2	J
16B4_3-4	SW8270D	BENZO(K)FLUORANTHENE	207-08-9	J
16B4_3-4	SW8270D	BENZOIC ACID	65-85-0	UJ
16B4_3-4	SW8270D	CHRYSENE	218-01-9	J
16B4_3-4	SW8270D	DIBENZO(A,H)ANTHRACENE	53-70-3	J
16B4_3-4	SW8270D	FLUORANTHENE	206-44-0	J
16B4_3-4	SW8270D	INDENO(1,2,3-CD)PYRENE	193-39-5	J
16B4_3-4	SW8270D	PHENANTHRENE	85-01-8	J
16B4_3-4	SW8270D	PYRENE	129-00-0	J
16B4_3-4	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B4_11-12	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B4_11-12	6010C	IRON, TOTAL	7439-89-6	J
16B4_11-12	6010C	LEAD, TOTAL	7439-92-1	J
16B4_11-12	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B4_11-12	6010C	ZINC, TOTAL	7440-66-6	J
16B4_11-12	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	IJ
16B4_11-12	SW8260C	2-BUTANONE	78-93-3	UJ
16B4_11-12	SW8260C	BROMODICHLOROMETHANE	75-27-4	IJ

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 8 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B4_11-12	SW8260C	BROMOFORM	75-25-2	IJ
16B4_11-12	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B4_11-12	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B4_11-12	SW8270D	BENZOIC ACID	65-85-0	UJ
16B4_11-12	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B4_14.5-15	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B4_14.5-15	6010C	IRON, TOTAL	7439-89-6	J
16B4_14.5-15	6010C	LEAD, TOTAL	7439-92-1	J
16B4_14.5-15	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B4_14.5-15	6010C	ZINC, TOTAL	7440-66-6	J
16B4_14.5-15	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B4_14.5-15	SW8260C	2-BUTANONE	78-93-3	J
16B4_14.5-15	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B4_14.5-15	SW8260C	BROMOFORM	75-25-2	UJ
16B4_14.5-15	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B4_14.5-15	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B4_14.5-15	SW8270D	BENZOIC ACID	65-85-0	UJ
16B4_14.5-15	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B6_3-4	6010C	ARSENIC, TOTAL	7440-38-2	J
16B6_3-4	6010C	CADMIUM, TOTAL	7440-43-9	J
16B6_3-4	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B6_3-4	6010C	COBALT, TOTAL	7440-48-4	J
16B6_3-4	6010C	IRON, TOTAL	7439-89-6	J
16B6_3-4	6010C	LEAD, TOTAL	7439-92-1	J
16B6_3-4	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B6_3-4	6010C	POTASSIUM, TOTAL	9/7/7440	J
16B6_3-4	6010C	THALLIUM, TOTAL	7440-28-0	UJ
16B6_3-4	6010C	VANADIUM, TOTAL	7440-62-2	J
16B6_3-4	6010C	ZINC, TOTAL	7440-66-6	J
16B6_3-4	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	UJ
16B6_3-4	SW8270D	BENZOIC ACID	65-85-0	UJ
16B6_3-4	SW9012B	CYANIDE, TOTAL	57-12-5	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 9 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B6_10-11	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B6_10-11	6010C	IRON, TOTAL	7439-89-6	J
16B6_10-11	6010C	LEAD, TOTAL	7439-92-1	J
16B6_10-11	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B6_10-11	6010C	ZINC, TOTAL	7440-66-6	J
16B6_10-11	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B6_10-11	SW8260C	2-BUTANONE	78-93-3	J
16B6_10-11	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B6_10-11	SW8260C	BROMOFORM	75-25-2	IJ
16B6_10-11	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B6_10-11	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B6_10-11	SW8270D	BENZOIC ACID	65-85-0	UJ
16B6_10-11	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B6_14.5-15	6010C	CHROMIUM, TOTAL	7440-47-3	J
16B6_14.5-15	6010C	IRON, TOTAL	7439-89-6	J
16B6_14.5-15	6010C	LEAD, TOTAL	7439-92-1	J
16B6_14.5-15	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B6_14.5-15	6010C	ZINC, TOTAL	7440-66-6	J
16B6_14.5-15	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B6_14.5-15	SW8260C	2-BUTANONE	78-93-3	J
16B6_14.5-15	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B6_14.5-15	SW8260C	BROMOFORM	75-25-2	UJ
16B6_14.5-15	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B6_14.5-15	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B6_14.5-15	SW8270D	BENZOIC ACID	65-85-0	UJ
16B6_14.5-15	SW9012B	CYANIDE, TOTAL	57-12-5	J
SODUP02_112117	6010C	ANTIMONY, TOTAL	7440-36-0	J
SODUP02_112117	6010C	ARSENIC, TOTAL	7440-38-2	J
SODUP02_112117	6010C	CHROMIUM, TOTAL	7440-47-3	J
SODUP02_112117	6010C	COPPER, TOTAL	7440-50-8	J
SODUP02_112117	6010C	IRON, TOTAL	7439-89-6	J
SODUP02_112117	6010C	LEAD, TOTAL	7439-92-1	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 10 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
SODUP02_112117	6010C	MAGNESIUM, TOTAL	7439-95-4	J
SODUP02_112117	6010C	ZINC, TOTAL	7440-66-6	J
SODUP02_112117	SW7471B	MERCURY, TOTAL	7439-97-6	J
SODUP02_112117	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
SODUP02_112117	SW8260C	BROMOFORM	75-25-2	UJ
SODUP02_112117	SW8260C	CARBON DISULFIDE	75-15-0	UJ
SODUP02_112117	SW8260C	NAPHTHALENE	91-20-3	J
SODUP02_112117	SW8260C	TETRACHLOROETHENE	127-18-4	J
SODUP02_112117	SW8260C	TRICHLOROETHENE	79-01-6	J
SODUP02_112117	SW8260C	CIS-1,2-DICHLOROETHENE	156-59-2	J
SODUP02_112117	SW8260C	P-ISOPROPYLTOLUENE	99-87-6	J
SODUP02_112117	SW8270D	ACENAPHTHENE	83-32-9	J
SODUP02_112117	SW8270D	ANTHRACENE	120-12-7	J
SODUP02_112117	SW8270D	BENZO(A)ANTHRACENE	56-55-3	J
SODUP02_112117	SW8270D	BENZO(A)PYRENE	50-32-8	J
SODUP02_112117	SW8270D	BENZO(B)FLUORANTHENE	205-99-2	J
SODUP02_112117	SW8270D	BENZO(GHI)PERYLENE	191-24-2	J
SODUP02_112117	SW8270D	BENZO(K)FLUORANTHENE	207-08-9	J
SODUP02_112117	SW8270D	CHRYSENE	218-01-9	J
SODUP02_112117	SW8270D	DIBENZO(A,H)ANTHRACENE	53-70-3	J
SODUP02_112117	SW8270D	FLUORANTHENE	206-44-0	J
SODUP02_112117	SW8270D	INDENO(1,2,3-CD)PYRENE	193-39-5	J
SODUP02_112117	SW8270D	PHENANTHRENE	85-01-8	J
SODUP02_112117	SW8270D	PYRENE	129-00-0	J
SODUP02_112117	SW9012B	CYANIDE, TOTAL	57-12-5	J
TB03_112117	SW8260C	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	U (2)
TB03_112117	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
TB03_112117	SW8260C	NAPHTHALENE	91-20-3	IJ
16B8_5.5-6.5	6010C	ALUMINUM, TOTAL	7429-90-5	J
16B8_5.5-6.5	6010C	ARSENIC, TOTAL	7440-38-2	J
16B8_5.5-6.5	6010C	BARIUM, TOTAL	7440-39-3	J
16B8_5.5-6.5	6010C	CADMIUM, TOTAL	7440-43-9	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 11 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B8_5.5-6.5	6010C	CALCIUM, TOTAL	7440-70-2	J
16B8_5.5-6.5	6010C	COPPER, TOTAL	7440-50-8	J
16B8_5.5-6.5	6010C	MAGNESIUM, TOTAL	7439-95-4	J
16B8_5.5-6.5	6010C	MANGANESE, TOTAL	7439-96-5	J
16B8_5.5-6.5	6010C	NICKEL, TOTAL	7440-02-0	J
16B8_5.5-6.5	6010C	POTASSIUM, TOTAL	9/7/7440	J
16B8_5.5-6.5	6010C	SILVER, TOTAL	7440-22-4	J
16B8_5.5-6.5	6010C	SODIUM, TOTAL	7440-23-5	J
16B8_5.5-6.5	6010C	VANADIUM, TOTAL	7440-62-2	J
16B8_5.5-6.5	6010C	ZINC, TOTAL	7440-66-6	J
16B8_5.5-6.5	SW7471B	MERCURY, TOTAL	7439-97-6	J
16B8_5.5-6.5	SW8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UJ
16B8_5.5-6.5	SW8260C	2-BUTANONE	78-93-3	UJ
16B8_5.5-6.5	SW8260C	BROMODICHLOROMETHANE	75-27-4	UJ
16B8_5.5-6.5	SW8260C	BROMOFORM	75-25-2	UJ
16B8_5.5-6.5	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B8_5.5-6.5	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B8_5.5-6.5	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B8_0-2	SW8260C	BROMOFORM	75-25-2	IJ
16B8_0-2	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B8_0-2	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B8_0-2	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B8_11-12	SW8260C	BROMOFORM	75-25-2	IJ
16B8_11-12	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B8_11-12	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B8_11-12	SW9012B	CYANIDE, TOTAL	57-12-5	IJ
16B8_14-15	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B7_6.5-7.5	SW8260C	ACROLEIN	107-02-8	UJ
16B7_6.5-7.5	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B7_11-12	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B11_7-8	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	UJ
16B11_7-8	SW9012B	CYANIDE, TOTAL	57-12-5	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 12 of 21

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B5_14-15	SW9012B	CYANIDE, TOTAL	57-12-5	IJ
16B2_11-12	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B1_14-15	SW9012B	CYANIDE, TOTAL	57-12-5	IJ
16B1_0-2	SW8260C	BROMOFORM	75-25-2	IJ
16B1_0-2	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B1_0-2	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B1_0-2	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B5_12-13	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B2_13-14	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B1_11-12	SW8270D	PHENOL	108-95-2	J
16B1_11-12	SW9012B	CYANIDE, TOTAL	57-12-5	J
16B1_7-8	SW8260C	BROMOFORM	75-25-2	IJ
16B1_7-8	SW8260C	CARBON DISULFIDE	75-15-0	IJ
16B1_7-8	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	IJ
16B1_7-8	SW9012B	CYANIDE, TOTAL	57-12-5	IJ
16B9_10-11	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	IJ
16B9_10-11	SW8260C	BROMOFORM	75-25-2	UJ
16B9_10-11	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B9_10-11	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B9_10-11	SW8270D	BENZOIC ACID	65-85-0	UJ
16B9_10-11	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
SODUP01_112017	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	UJ
SODUP01_112017	SW8270D	BENZOIC ACID	65-85-0	UJ
SODUP01_112017	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B2_14-15	SW8270D	BENZOIC ACID	65-85-0	UJ
16B2_14-15	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B2_7-8	SW8260C	BROMOFORM	75-25-2	UJ
16B2_7-8	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B2_7-8	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B2_7-8	SW8270D	BENZOIC ACID	65-85-0	IJ
16B2_7-8	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B10_7-8	SW7196A	CHROMIUM, HEXAVALENT	18540-29-9	UJ

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16B10_7-8	SW8260C	BROMOFORM	75-25-2	UJ
16B10_7-8	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B10_7-8	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B10_7-8	SW8270D	BENZOIC ACID	65-85-0	UJ
16B10_7-8	SW9012B	CYANIDE, TOTAL	57-12-5	UJ
16B5_4.5-5	SW8260C	BROMOFORM	75-25-2	UJ
16B5_4.5-5	SW8260C	CARBON DISULFIDE	75-15-0	UJ
16B5_4.5-5	SW8260C	DIBROMOCHLOROMETHANE	124-48-1	UJ
16B5_4.5-5	SW8270D	BENZOIC ACID	65-85-0	UJ
16B5_4.5-5	SW9012B	CYANIDE, TOTAL	57-12-5	J
TB01_112017	SW8260C	1,2,4,5-TETRAMETHYLBENZENE	95-93-2	U (2)
TB01_112017	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	UJ
TB01_112017	SW8260C	CHLOROETHANE	75-00-3	UJ
TB01_112017	SW8260C	NAPHTHALENE	91-20-3	U (2.5)
TB02_112017	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	UJ
TB02_112017	SW8260C	CHLOROETHANE	75-00-3	UJ
TB02_112017	SW8260C	NAPHTHALENE	91-20-3	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The section below describes the major deficiencies that were identified.

VOCs by USEPA Method 8260C:

2-Chloroethylvinyl ether was submitted to the laboratory as preserved. 2-Chloroethylvinyl ether is an acid-labile compound that will not recover in the presence of hydrochloric acid. The associated trip blank sample results are qualified as "R".

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method 8260C:

Method blank sample WG1067184-5 displayed positive detections for naphthalene and 1,2,4,5-tetramethylbenzene. The associated positive trip blank sample results are qualified as "U" at the reporting limit.

LCS/LCSD WG1066730-3/4 displayed recoveries less than the lower control limit for dibromochloromethane at 60% and 59%, bromodichloromethane at 68% and 66%, bromoform at 50% and 50%, carbon disulfide at 43% an 43%, 2-butanone at 61% and 64%, and 1,2-dibromo-3-chloropropane at 66% and 67%. The associated sample results are qualified as estimated.

LCS/LCSD WG1066890-3/4 displayed recoveries less than the lower control limit for dibromochloromethane at 60% and 59%, bromodichloromethane at 68% and 66%, bromoform at 50% and 50%, carbon disulfide at 43% an 43%, 2-butanone at 61% and 64%, and 1,2-dibromo-3-chloropropane at 66% and 67%. The associated sample results are qualified as estimated.

LCS/LCSD WG1066890-8/9 displayed recoveries less than the lower control limit for bromoform at 65% and 64%, respectively. The associated sample result is gualified as "UJ."

LCS/LCSD WG1067184-3/4 displayed a recovery less than the lower control limit for naphthalene at 63%. The associated sample result is qualified as "UJ."

The continuing calibration analyzed on 11/28/17 displayed %Ds greater than the control limit for carbon disulfide at 57.1%, bromodichloromethane at 32.1%, and bromoform at 49.8%. The associated sample results are qualified as "UJ."

LCS/LCSD WG1066657-3/4 displayed recoveries less than the lower control limit for carbon disulfide (51% and 48%), dibromochloromethane (68% and 68%), and bromoform (58% and 57%). The associated sample results were non-detect and are qualified as "UJ."

LCS/LCSD WG1066890-3/4 displayed recoveries less than the lower control limit for 1,2dibromo-3-chloropropane at 66% and 67%, carbon disulfide at 43% and 43%, 2-butanone at 61% and 64%, dibromochloromethane at 60% and 59%, bromodichloromethane at 68% and 66%, and bromoform at 50% and 50%. The associated sample results were non-detect and are qualified as "UJ."

LCS/LCSD WG1067196-3/4 displayed recoveries less than the lower control limit for 2-CEVE at 39% and 26%, and naphthalene at 68%. The 2-CEVE LCS/LCSD RPD was greater than the control limit at 40%. The associated sample results are qualified as "UJ." The LCS/LCSD also displayed recoveries greater than the upper control limit for chloromethane, vinyl chloride and chloroethane. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD WG1070220-3/4 displayed recoveries less than the lower control limit for acrolein at 55% and 55%. The associated sample result was non-detect and is qualified as "UJ."

Method blank sample WG1067196-5 displayed positive detections for naphthalene at 0.76 ug/L and 1,2,4,5-tetramethylbenzene at 0.55 ug/L. The associated positive trip blank sample results are qualified as "U" at the reporting limit.

The continuing calibration analyzed on VOA105 on 11/28/17 displayed a %D greater than the control limit for chloroethane at 33.8%. The associated sample results are qualified as "UJ."

SVOCs by USEPA Method 8270D:

LCS/LCSD WG1066213-2/3 displayed recoveries outside of control limits for 4-chloroaniline at 40% and 38%, 4-nitrophenol at 120% and 116%, phenol at 95% and 92%, benzoic acid at 0% and 0%, and caprolactam at 152% and 145%. The associated non-detect sample results for benzoic acid and 4-chloroaniline are qualified as "UJ."

LCS/LCSD WG1066267-2/3 displayed recoveries outside of control limits for benzoic acid at 0% and 0%, and phenol at 92%. The associated sample results for benzoic acid are qualified as "UJ."

LCS/LCSD WG1066103-2/3 displayed recoveries greater than the upper control limits for pchloro-m-cresol (112% and 105%), 4-nitrophenol (133% and 128%), phenol (104% and 103%), and caprolactam (175% and 163%). The associated positive sample results are qualified as "J."

LCS/LCSD WG1066132-2/3 did not recover for benzoic acid. The associated sample results are qualified as "UJ."

Metals by USEPA Method 6010C:

ICP serial dilution sample 16B3_0-2 displayed %Ds greater than the control limit for iron and zinc at 13% and 13%, respectively. The associated sample results are qualified as "J."

IANGAN

ICP serial dilution sample 16B3_3-4 displayed %Ds greater than the control limit for chromium, iron, magnesium, and zinc at 11%, 17%, 16%, and 11%, respectively. The associated sample results are qualified as "J."

Laboratory duplicate sample WG1069894-4 displayed a RPD greater than the control limit for lead at 29%. The associated sample results are qualified as estimated.

MS/MSD sample 16B3_0-2 displayed recoveries outside of control limits for cadmium at 26% and 37%, and magnesium at 73%. The associated sample results are qualified as estimated.

MS/MSD sample 16B6_3-4 displayed recoveries outside of control limits for arsenic, cadmium, chromium, cobalt, magnesium, potassium thallium and vanadium. The associated sample results are qualified as estimated.

Laboratory duplicate sample 16B8_5.5-6.5 displayed RPDs greater than the control limit for aluminum (21%), barium (44%), cadmium (64%), calcium (123%), copper (67%), magnesium (33%), manganese (33%), nickel (46%), silver (52%), sodium (36%), vanadium (26%), and zinc (45%). The associated sample results are qualified as "J."

MS/SD sample 16B_5.5-6.5 displayed recoveries outside of control limits for arsenic (128%), barium (128%), cadmium (199%), manganese (379%), nickel (221%), and potassium (132%). The associated sample results are gualified as "J."

Mercury by USEPA Method 7471A:

The laboratory duplicate RPD for sample 16B8_5.5-6.5 was greater than the control limit (i.e., 20%) at 26%. The associated sample results are qualified as estimated.

Cyanide by USEPA Method 9012B:

MS/MSD sample 16B6_3-4 displayed a recovery less than the lower control limit at 57%. The associated sample results are qualified as estimated.

LCS/LCSD WG1066789-2/3 displayed a recovery less than the lower control limit at 73%. The associated sample results are qualified as estimated.

LCS/LCSD WG1069408-2/3 displayed a recovery less than the lower control limit at 70%. The associated sample results are qualified as estimated.

LCS/LCSD WG1065183-2/3 displayed a recovery less than the lower control limit at 75%. The associated sample results are qualified as estimated.

LCS/LCSD WG1066111-2/3 displayed a recovery less than the lower control limit at 77%. The associated sample results are qualified as estimated.

LCS/LCSD WG1066112-2/3 displayed a recovery less than the lower control limit at 76%. The associated sample results are qualified as estimated.

LCS/LCSD WG1069408-2/3 displayed a recovery less than the lower control limit at 70%. The associated sample results are qualified as estimated.

Sample 16B7_6.5-7.5 was analyzed outside of the method required holding time. The associated sample result is qualified as "UJ."

Hexavalent Chromium by USEPA Method 7196A:

MS/MSD sample 16B6_3-4 did not recover for CrVI. The associated sample result is qualified as "UJ."

MS/MSD sample 16B3_0-2 displayed recoveries less than the lower control limit at 10% and 56%. In addition, the MS/MSD RPD was greater than the control limit at 125%. The associated sample result is qualified as "UJ."

MS sample 16B10_7-8 did not recover for CrVI. The associated sample result is qualified as "UJ."

MS sample SODUP01_112017 displayed a recovery less than the lower control limit at 7%. The associated sample result is qualified as "UJ."

LCS WG1065483-2 displayed a recovery less than the lower control limit at 79%. The associated sample results are qualified as "UJ."

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by USEPA Method 8260C:

Sample 16B3_7-8 displayed a surrogate recovery greater than the upper control limit for 4bromofluorobenzene at 201%. The remaining three volatile surrogates recovered within control; qualification is not necessary.

LCS/LCSD WG1066956-3/4 displayed a recovery greater than the upper control limit for 1,4dioxane at 137%. The associated sample result was non-detect; no qualification is required.

LCS/LCSD WG1067184-3/4 displayed recoveries and RPDs outside of control limits for 2-CEVE. The trip blank sample result was previously rejected; no further action is necessary. In addition, the LCS/LCSD RPD for 1,2,3-trichlorobenzene was greater than the control limit. The associated sample result was non-detect; qualification is not necessary.

MS/MSD sample 16B6_3-4 displayed recoveries outside of control limits for trichlorofluoromethane at 41% and 38%, bromomethane at 54%, chloroethane at 45% and 46%, acrylonitrile at 136% and 136%, and TBA at 135% and 141%. Data is not qualified on the basis of MS/MSD recoveries alone.

MS/MSD sample 16B3_0-2 displayed recoveries outside of control limits for chloromethane at 132% and 136%, and chloroethane at 27% and 27%. Data is not qualified on the basis of MS/MSD recoveries alone.

Sample 16B1_11-12 displayed a recovery greater than the upper control limit for 4bromofluorobenzene at 144%. The remaining three volatile surrogates recovered within control; qualification is not necessary.

LCSD WG1066654-4 displayed a recovery greater than the upper control limit for TBA. The associated sample results were non-detect; qualification is not required.

Trip blank samples TB01_112017 and TB02_112017 displayed positive detections for unknown TICs. Data is not qualified on the basis of TIC contamination.

Method blank sample WG1066657-5 displayed positive detections for an unknown TIC and hexamethylcyclotrisiloxane in the TIC scan. Method blank WG1067196-5 displayed a positive detection for an unknown TIC. Data is not qualified on the basis of TIC contamination.

Method blank sample WG1070220-5 displayed a positive detection for bromomethane. The associated sample results were non-detect; gualification is not required.

The continuing calibration analyzed on VOA110 displayed %Ds greater than the control limit for bromodichloromethane, bromoform and carbon disulfide. The associated sample results were previously qualified on the basis of LCS/LCSD recoveries; no further action is necessary.

SVOCs by USEPA Method 8270D:

MS/MSD sample 16B3_0-2 did not recover (i.e., 0%) for benzidine, 3,3'-dichlorobenzidine, hexachlorocyclopentadiene, 4,6-dinitro-o-cresol, 2,4-dinitrophenol, and benzoic acid. In addition, the recoveries were outside of control limits for caprolactam at 140% and 140%, 4-nitroanilne at 18% and 33%, 3-nitroaniline at 22%, 4-chloroaniline at 19% and 22%, and pyrene at 32%. The MS/MSD RPDs for fluoranthene (55%), pyrene (51%), 3-nitroaniline (57%), and 4-nitroaniline (58%) were greater than the control limit (i.e., 50%). Data is not qualified on the basis of MS/MSD recoveries or RPDs alone.

MS/MSD sample 16B3_3-4 did not recover for benzidine, hexachlorocyclopentadiene, 2,4dinitrophenol, and benzoic acid. In addition, the recoveries were outside of control limits for 3,3'-dichlorobenzidine at 16% and 26%, fluoranthene at 6% and 0%, B(a)A at 27% and 27%, B(a)P at 34%, B(b)F at 24% and 30%, chrysene at 25% and 31%, pyrene at 6% and 0%, 4chloroaniline at 25% and 36%, and 4,6-dinitro-o-cresol at 0% and 6%. Data is not qualified on the basis of MS/MSD recoveries or RPDs alone.

Sample 16B1_7-8 displayed a surrogate recovery greater than the upper control limit for base/neutral extractable nitrobenzene-d5 at 125%. The remaining two base/neutral surrogates recovered within control; qualification is not necessary.

EPH by NJDEP EPH:

MS sample WG1066148-4 displayed a recovery greater than the upper control limit for total EPH at 192%. The spiked volume did not originate from the site; qualification is not necessary.

LANGAN

Pesticides by SW-846 Method 8081B:

Sample 16B11_7-8 displayed a surrogate recovery greater than the upper control limit at 1694%. The associated sample results were non-detect; qualification is not necessary.

PCBs by SW-846 Method 8082A:

Sample 16B11_7-8 displayed a surrogate recovery less than the lower control limit for TCX on the secondary chromatography column at 29%. The sample results were reported from the primary column; qualification is not necessary.

Metals by USEPA Method 6010C:

Preparation blank sample WG1069894-1 displayed a positive detection for iron at 0.54 mg/kg. The associated sample results were orders of magnitude greater than the blank amount; qualification is not necessary.

Mercury by USEPA Method 7471A:

Sample 16B8_5.5-6.5 did not recover for mercury. The sample concentration was greater than 4X the spiked amount; qualification is not required.

MS sample WG1069466-3 displayed a recovery greater than the upper control limit at 138%. The spiked volume did not originate from the site; qualification is not necessary.

COMMENTS:

Two field duplicate and parent sample pairs (SODUP01_112017 from 16B5_12-13, and SODUP02_112117 from 16B4_3-4) were analyzed for the analytical parameters listed in the sample summary. The sample results meet the precision criteria if results greater than five times the reporting limit (RL) exhibit an RPD less than or equal to fifty percent. If the result is less than five times the RL, the absolute difference between the two results must be less than 2X the RL. The following analytes did not meet the precision criteria:

- SODUP01_112017 from 16B5_12-13: none.
- SODUP02_112117 and 16B4_3-4: anthracene, PCE, pyrene, cis-1,2-DCE, B(ghi)P, Indeno(123-cd)pyrene, B(b)F, fluoranthene, B(k)F, chrysene, B(a)P, Dibzeno(a,h)anthracene, B(a)A, iron, lead, mercury, antimony, arsenic, copper, TCE, acenaphthene, phenanthrene, naphthalene (as VOC), p-isopropyltoluene.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All laboratory data packages met ASP Category B requirements and all sample holding times were met.

All data are considered usable, as qualified, with the exception of 2-CEVE results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 99%.

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Kimberly Nagotko, Staff Geologist

From: Emily Strake, Langan Senior Project Chemist/Risk Assessor

Date: January 11, 2018

Re: Data Usability Summary Report For 215 North 10th Street Brooklyn, New York Groundwater Samples Collected November 2017 Langan Project No.: 170482201

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected on November 29, 2017 by Langan Engineering and Environmental Services ("Langan") at 215 N. 10th Street located in Brooklyn, New York. The samples were analyzed by Alpha Analytical located in Westborough, MA (NYSDOH ELAP registration # 11148) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals including mercury, and cyanide using the analytical methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D & 8270D Selective Ion Monitoring (SIM)
- Metals by SW-846 Method 6020A
- Mercury (Hg) by SW-846 Method 7470A
- Cyanide (CN) by SW-846 9010C/9012B

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1743740	L1743740-01	MW3_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN
L1743740	L1743740-02	16MW3_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN
L1743740	L1743740-03	16MW2_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN
L1743740	L1743740-04	16MW1_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
L1743740	L1743740-05	GWDUP01_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN
L1743740-06	L1743740-06	MW4_112917	11/29/17	VOCs, SVOCs, Metals, Hg, CN
L1743740-08	L1743740-08	TB04_112917	11/29/17	VOCs
L1743740-08	L1743740-08	TB05_112917	11/29/17	VOCs

VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34a, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes evaluation of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction, sample digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, CRDL standards, ICP interference check samples, serial dilutions, matrix spike/spike duplicate recoveries, interference check samples, laboratory duplicates, field duplicates, trip blanks, target compound identification and quantification, chromatograms, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items subject to review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
MW3_112917	6020A	ANTIMONY, TOTAL	7440-36-0	U (0.004)
MW3_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	U (0.001)
MW3_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
MW3_112917	6020A	SODIUM, DISSOLVED	7440-23-5	J
MW3_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
MW3_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
MW3_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
MW3_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	IJ
MW3_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
MW3_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ
MW3_112917	SW8270D	2,6-DINITROTOLUENE	606-20-2	UJ
MW3_112917	SW8270D	2-NITROANILINE	88-74-4	UJ
MW3_112917	SW8270D	2-NITROPHENOL	88-75-5	UJ
MW3_112917	SW8270D	BIS(2-CHLOROETHYL)ETHER	111-44-4	UJ
MW3_112917	SW8270D	BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	U (3)
MW3_112917	SW8270D	CAPROLACTAM	105-60-2	UJ
MW3_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
16MW3_112917	6020A	ANTIMONY, TOTAL	7440-36-0	U (0.004)

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 4 of 10

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16MW3_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	U (0.001)
16MW3_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
16MW3_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
16MW3_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
16MW3_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
16MW3_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	IJ
16MW3_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	IJ
16MW3_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ
16MW3_112917	SW8270D	2,6-DINITROTOLUENE	606-20-2	UJ
16MW3_112917	SW8270D	2-NITROANILINE	88-74-4	UJ
16MW3_112917	SW8270D	2-NITROPHENOL	88-75-5	UJ
16MW3_112917	SW8270D	BIS(2-CHLOROETHYL)ETHER	111-44-4	UJ
16MW3_112917	SW8270D	BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	U (3)
16MW3_112917	SW8270D	CAPROLACTAM	105-60-2	UJ
16MW3_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
16MW2_112917	6020A	ALUMINUM, TOTAL	7429-90-5	J
16MW2_112917	6020A	ANTIMONY, TOTAL	7440-36-0	U (0.004)
16MW2_112917	6020A	ARSENIC, TOTAL	7440-38-2	J
16MW2_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	J
16MW2_112917	6020A	CHROMIUM, TOTAL	7440-47-3	J
16MW2_112917	6020A	COBALT, TOTAL	7440-48-4	J
16MW2_112917	6020A	COPPER, TOTAL	7440-50-8	J
16MW2_112917	6020A	LEAD, TOTAL	7439-92-1	J
16MW2_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
16MW2_112917	SW7470A	MERCURY, TOTAL	7439-97-6	J
16MW2_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
16MW2_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
16MW2_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
16MW2_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	IJ
16MW2_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
16MW2_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 5 of 10

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
16MW2_112917	SW8270D	2,6-DINITROTOLUENE	606-20-2	UJ
16MW2_112917	SW8270D	2-NITROANILINE	88-74-4	UJ
16MW2_112917	SW8270D	2-NITROPHENOL	88-75-5	UJ
16MW2_112917	SW8270D	BIS(2-CHLOROETHYL)ETHER	111-44-4	UJ
16MW2_112917	SW8270D	BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	U (3)
16MW2_112917	SW8270D	CAPROLACTAM	105-60-2	UJ
16MW2_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
16MW1_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	U (0.001)
16MW1_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
16MW1_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
16MW1_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
16MW1_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
16MW1_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	UJ
16MW1_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
16MW1_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	IJ
16MW1_112917	SW8270D	2,6-DINITROTOLUENE	606-20-2	IJ
16MW1_112917	SW8270D	2-NITROANILINE	88-74-4	IJ
16MW1_112917	SW8270D	2-NITROPHENOL	88-75-5	UJ
16MW1_112917	SW8270D	BENZOIC ACID	65-85-0	J
16MW1_112917	SW8270D	BIPHENYL	92-52-4	J
16MW1_112917	SW8270D	BIS(2-CHLOROETHYL)ETHER	111-44-4	UJ
16MW1_112917	SW8270D	CAPROLACTAM	105-60-2	UJ
16MW1_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
GWDUP01_112917	6020A	ALUMINUM, TOTAL	7429-90-5	J
GWDUP01_112917	6020A	ANTIMONY, TOTAL	7440-36-0	U (0.004)
GWDUP01_112917	6020A	ARSENIC, TOTAL	7440-38-2	J
GWDUP01_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	U (0.001)
GWDUP01_112917	6020A	CHROMIUM, TOTAL	7440-47-3	J
GWDUP01_112917	6020A	COBALT, TOTAL	7440-48-4	J
GWDUP01_112917	6020A	COPPER, TOTAL	7440-50-8	J
GWDUP01_112917	6020A	LEAD, TOTAL	7439-92-1	J

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 6 of 10

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
GWDUP01_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
GWDUP01_112917	SW7470A	MERCURY, TOTAL	7439-97-6	J
GWDUP01_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
GWDUP01_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
GWDUP01_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
GWDUP01_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	UJ
GWDUP01_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
GWDUP01_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ
GWDUP01_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
MW4_112917	6020A	CHROMIUM, DISSOLVED	7440-47-3	U (0.001)
MW4_112917	6020A	MAGNESIUM, TOTAL	7439-95-4	J
MW4_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
MW4_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
MW4_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
MW4_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	IJ
MW4_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
MW4_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ
MW4_112917	SW8270D	2,6-DINITROTOLUENE	606-20-2	UJ
MW4_112917	SW8270D	2-NITROANILINE	88-74-4	UJ
MW4_112917	SW8270D	2-NITROPHENOL	88-75-5	UJ
MW4_112917	SW8270D	BIS(2-CHLOROETHYL)ETHER	111-44-4	UJ
MW4_112917	SW8270D	BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7	U (3)
MW4_112917	SW8270D	CAPROLACTAM	105-60-2	UJ
MW4_112917	SW8270D	HEXACHLOROCYCLOPENTADIENE	77-47-4	UJ
TB04_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
TB04_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
TB04_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	IJ
TB04_112917	SW8260C	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	76-13-1	UJ
TB04_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	IJ
TB04_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	IJ

Project Sample ID	Analysis	Analyte	CAS No.	Validator Qualifier
TB05_112917	SW8260C	2-CHLOROETHYLVINYL ETHER	110-75-8	R
TB05_112917	SW8260C	BROMOMETHANE	74-83-9	UJ
TB05_112917	SW8260C	CARBON TETRACHLORIDE	56-23-5	UJ
		1,1,2-TRICHLORO-1,2,2-		
TB05_112917	SW8260C	TRIFLUOROETHANE	76-13-1	UJ
TB05_112917	SW8260C	TERT-BUTYL ALCOHOL	75-65-0	UJ
TB05_112917	SW8260C	TRICHLOROFLUOROMETHANE	75-69-4	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The section below describes the major deficiencies that were identified.

VOCs by USEPA Method 8260C:

2-Chloroethylvinyl ether was submitted to the laboratory as preserved. 2-Chloroethylvinyl ether is an acid-labile compound that will not recover in the presence of hydrochloric acid. The associated sample results are qualified as "R".

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method 8260C:

LCS/LCSD WG1068796-3/4 displayed recoveries greater than the upper control limit for TBA at 152% and 162%. The associated sample results were non-detect; qualification is not necessary. The LCS/LCSD also displayed recoveries less than the lower control limit for Freon-113 at 68% and 68%. The associated sample results were non-detect and are qualified as "UJ."

The continuing calibration analyzed on 12/4/17 at 08:35 displayed %Ds greater than the control limit for carbon tetrachloride at 25.6%, Freon-113 at 31.7%, trichlorofluoromethane at 30.8%, and bromomethane at 36.1%. The associated sample results are qualified as estimated.

SVOCs by USEPA Method 8270D:

LCS/LCSD WG1068326-2/3 displayed recoveries less than the lower control limit for hexachlorocyclopentadiene at 35% and 32%. The associated sample results were non-detect and are qualified as "UJ."

Sample 16MW1_112917 displayed a recovery greater than the upper control limit for surrogate 2,4,6-tribromophenol at 125%. The associated positive detections for acid-extractable compounds are qualified as "J."

Method blank sample WG1068326-1 displayed a positive detection for DEHP at 2.1 μ g/L. The associated positive detections are qualified as "U" at the reporting limit.

The continuing calibration analyzed on 12/3/17 at 16:32 displayed %Ds greater than the control limit for bis(2-chloroethyl)ether at 27.9%, 2-nitrophenol at 22.9%, 2-nitroaniline at 25.3%, 2,6-dinitrotoluene at 23.4%, and caprolactam at 64.7%. The associated sample results are qualified as estimated.

Metals by USEPA Method 6020A:

Preparation blank sample WG1068406-1 displayed positive detections for dissolved chromium and sodium at 0.00025 mg/L and 0.0721 mg/L, respectively. The associated sample results are qualified as "U" at the reporting limit.

Preparation blank sample WG1068128-1 displayed a positive detection for total antimony at 0.00047 mg/L. The associated positive detections are qualified as "U" at the reporting limit.

MS sample MW3_112917 displayed a recovery greater than the upper control limit at 127%. The associated positive detection is qualified as "J."

ICP serial dilution sample MW3_112917 displayed a %D greater than the control limit at 11%. The associated positive sample results are qualified as "J."

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by USEPA Method 8260C:

MS/MSD sample MW3_112917 displayed recoveries outside of control limits for 2-CEVE, TBA, acetone, 2-butanone, and 1,4-dioxane. In addition, the MS/MSD RPDs were greater than the control limit for 1,4-dioxane, TBA and bromomethane. Data is not qualified on the basis of MS/MSD recoveries or RPDs alone.

SVOCs by USEPA Method 8270D:

MS/MSD sample MW3_112917 displayed recoveries outside of control limits for benzidine, 3,3'-dichlorobenzidene, hexachlorocyclopentadiene, and 4-nitrophenol. Data is not qualified on the basis of MS/MSD recoveries or RPDs alone.

SVOCs by USEPA Method 8270D SIM:

MS/MSD sample MW3_112917 displayed recoveries outside of control limits for hexachloroethane at 38% and 35%. Data is not qualified on the basis of MS/MSD recoveries alone.

COMMENTS:

One field duplicate and parent sample pair (GWDUP01_112917 and 16MW2_112917) was analyzed for the analytical parameters listed in the sample summary. The sample results meet the precision criteria if results greater than five times the reporting limit (RL) exhibit an RPD less than or equal to thirty percent. If the result is less than five times the RL, the absolute difference between the two results must be less than the RL. The following analytes did not meet the precision criteria: total aluminum, lead, mercury, arsenic, chromium, cobalt and copper, and dissolved chromium.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All laboratory data packages met ASP Category B requirements and all sample holding times were met.

All data are considered usable, as qualified, with the exception of 2-CEVE results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 99%.

Data Usability Summary Report For 215 N. 10⁻ Street Brooklyn, New York Langan Project No.: 170482201 January 11, 2018 Page 10 of 10

Signed:

Emily Strake, CEP Senior Project Chemist/Risk Assessor

Appendix H

Laboratory Data Reports

Appendix I

Completed Fish and Wildlife Resources Impact Analysis Decision Key

	Appendix 3C Fish and Wildlife Resources Impact Analysis Decision Key	If YES Go to:	If NO Go to:
1.	Is the site or area of concern a discharge or spill event?	(3)	2
2.	Is the site or area of concern a point source of contamination to the groundwater which will be prevented from discharging to surface water? Soil contamination is not widespread, or if widespread, is confined under buildings and paved areas.	13	3
3.	Is the site and all adjacent property a developed area with buildings, paved surfaces and little or no vegetation?	4	9
4.	Does the site contain habitat of an endangered, threatened or special concern species?	Section 3.10.1	5
5.	Has the contamination gone off-site?	6	14
6.	Is there any discharge or erosion of contamination to surface water or the potential for discharge or erosion of contamination?	7	14
7.	Are the site contaminants PCBs, pesticides or other persistent, bioaccumulable substances?	Section 3.10.1	8
8.	Does contamination exist at concentrations that could exceed ecological impact SCGs or be toxic to aquatic life if discharged to surface water?	Section 3.10.1	14
9.	Does the site or any adjacent or downgradient property contain any of the following resources?i.Any endangered, threatened or special concern species or rare plants or their habitatii.Any DEC designated significant habitats or rare NYS Ecological Communitiesiii.Tidal or freshwater wetlandsiv.Stream, creek or riverv.Pond, lake, lagoonvi.Drainage ditch or channelvii.Other surface water featureviii.Other marine or freshwater habitatix.Forestx.Grassland or grassy fieldxi.Parkland or woodlandxii.Shrubby areaxiii.Urban wildlife habitatxiv.Other terrestrial habitat	11	10
10.	Is the lack of resources due to the contamination?	3.10.1	14
11.	Is the contamination a localized source which has not migrated and will not migrate from the source to impact any on-site or off-site resources?	14	12
12.	Does the site have widespread surface soil contamination that is not confined under and around buildings or paved areas?	Section 3.10.1	12
13.	Does the contamination at the site or area of concern have the potential to migrate to, erode into or otherwise impact any on-site or off-site habitat of endangered, threatened or special concern species or other fish and wildlife resource? (See #9 for list of potential resources. Contact DEC for information regarding endangered species.)	Section 3.10.1	14
14.	No Fish and Wildlife Resources Impact Analysis needed.		