19 Patchen Avenue

KINGS, NEW YORK

Final Engineering Report

NYSDEC Site Number: C224232

Prepared for:

Hudson BEC II LLC 19 Patchen GP LLC c/o The Hudson Companies 826 Broadway New York, NY 10003

Prepared by:

Matthew M. Carroll, P.E. & Tenen Environmental, LLC 121 West 27th Street, Suite 702 New York, NY 10001 (646) 606-2332

DECEMBER 2019

CERTIFICATIONS

I, Matthew M. Carroll, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Matthew M. Carroll, of 1085 Sackett Avenue, Bronx, NY 10461, am certifying as Owner's Designated Site Representative for the site.

091629

12/31/2019

Signature

NYS Professional Engineer #

Date

TABLE OF CONTENTS

CERTIFICATIONS	i
TABLE OF CONTENTS	ii
LIST OF ACRONYMS	iv
FINAL ENGINEERING REPORT	1
1.0 BACKGROUND AND SITE DESCRIPTION	1
2.0 SUMMARY OF SITE REMEDY	2
2.1 REMEDIAL ACTION OBJECTIVES	2
2.1.1 GROUNDWATER RAOS	2
2.1.2 Soil RAOs	2
2.1.3 SOIL VAPOR RAOS	
2.2 DESCRIPTION OF SELECTED REMEDY	
3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIA	L
CONTRACTS	4
3.1 INTERIM REMEDIAL MEASURES	4
4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	5
4.1 GOVERNING DOCUMENTS	5
4.1.1 SITE SPECIFIC HEALTH & SAFETY PLAN (HASP)	5
4.1.2 QUALITY ASSURANCE PROJECT PLAN (QAPP)	
4.1.3 SOIL/MATERIALS MANAGEMENT PLAN (S/MMP)	5
4.1.4 STORM-WATER POLLUTION PREVENTION PLAN (SWPPP)	5
4.1.5 COMMUNITY AIR MONITORING PLAN (CAMP)	
4.1.6 CONTRACTORS SITE OPERATIONS PLANS (SOPS)	
4.1.7 COMMUNITY PARTICIPATION PLAN	
4.2 REMEDIAL PROGRAM ELEMENTS	8
4.2.1 CONTRACTORS AND CONSULTANTS	
4.2.2 SITE PREPARATION	
4.2.3 GENERAL SITE CONTROLS	. 10
4.2.4 NUISANCE CONTROLS	
4.2.5 CAMP RESULTS	
4.2.6 Reporting	
4.3 CONTAMINATED MATERIALS REMOVAL	
4.3.1 EXCAVATION AND DISPOSAL OF SOIL/FILL AND INVESTIGATION DERIVED WAST	
	. 13
4.3.1.1 DISPOSAL DETAILS	
4.4 CONTAMINATION REMAINING AT THE SITE	
4.5 SOIL COVER SYSTEM	
4.6 OTHER ENGINEERING CONTROLS	
4.6.1 SUB-SLAB DEPRESSURIZATION SYSTEMS	
4.6.2 VAPOR BARRIERS	
4.6.3 CARBON FILTRATION OF INDOOR AIR	
4.7 INSTITUTIONAL CONTROLS	. 18

LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES

LIST OF ACRONYMS

Acronym	Definition
AGV	NYSDOH Air Guidance Value
AOC	area of concern
AS	air sparging
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
ECL	Environmental Conservation Law
BTEX	benzene, toluene, ethylbenzene and xylenes
САМР	Community Air Monitoring Program
C&D	construction and demolition
CDS	construction dewatering system
Class GA Standards	NYSDEC TOGS 1.1.1 Class GA Ambient Water Quality Standards and Guidance Values
CEQR	City Environmental Quality Review
CFR	Code of Federal Regulations
СРР	Citizen Participation Plan
COC	Certificate of Completion
cVOC	Chlorinated volatile organic compound
DCE	dichloroethene
DER-10	NYSDEC Division of Environmental Remediation (DER), DER-10 / Technical Guidance for Site Investigation and Remediation
DRO	diesel range organics
DOC	dissolved organic carbon
DUSR	Data Usability Summary Report
EC	engineering control
ESA	Environmental Site Assessment
EZ	exclusion zone
FB	field blanks
FER	Final Engineering Report
ft-bs	feet below building slab
ft-bg	feet below sidewalk grade
ft-msl	feet above mean sea level
GPM	Gallons per minute
HASP	Health and Safety Plan
HSA	Hollow Stem Auger
HSO	Health and Safety Officer
IC	institutional control
ISCO	in-situ chemical oxidation
IRM	Interim Remedial Measure

MW	monitoring well
NAVD	North American Vertical Datum of 1988
NGVD	National Geodetic Vertical Datum of 1929
NIOSH	National Institute for Occupational Safety and Health
NYCDEP	New York City Department of Environmental Protection
NYCDEP Limits	NYCDEP Limitations for Effluent to Sanitary or
	Combined Sewers
NYCDOB	New York City Department of Buildings
NYCDOT	New York City Department of Transportation
NYCRR	New York Codes, Rules and Regulations
NYSDEC	New York State Department of Environmental
	Conservation
NYSDOH	New York State Department of Health
NYSDOH-ELAP	NYSDOH Environmental Laboratory Approval Program
O&M Plan	Operations and Maintenance Plan
OSHA	Occupational Safety and Health Association
PCB	polychlorinated biphenyl
РСЕ	perchloroethene, aka tetrachloroethene
PID	photoionization detector
PGWSCOs	6 NYCRR 375-6.8(b) and CP-51 Protection of
	Groundwater Soil Cleanup Objectives
PP Metals	Priority Pollutant Metals
PPE	personal protective equipment
QA/QC	quality assurance / quality control
QAPP	Quality Assurance Project Plan
RAWP	Remedial Action Plan
RCNY	Rules of the City of New York
RAO	Remedial Action Objective
RE	Remedial Engineer
RI	remedial investigation
RSCOs	Recommended Soil Cleanup Objectives
RRUSCOs	6 NYCRR 375-6.8(b) and CP-51 Track 4 – Restricted-
	Residential Use Soil Cleanup Objectives
RUSCOs	6 NYCRR 375-6.8(b) and CP-51 Track 2 – Residential
CD	Use Soil Cleanup Objectives
SB	soil boring
SCGs	Standards, Criteria and Guidance
SV	soil vapor
SMP	Site Management Plan
SMMP	Soil/Material Management Plan
SSDS	sub-slab depressurization system
SVE	soil vapor extraction
SVOC	semi-volatile organic compound

TAL	Target Analyte List
TAGM 4046	NYSDEC Technical and Administrative Guidance
	Memorandum #4046
TB	trip blanks
TCE	trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TCLP Limits	USEPA Maximum Concentrations of Contaminants for
	the Toxicity Characteristic
TOC	total organic carbon
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
UST	underground storage tank
UUSCOs	6 NYCRR 375-6.8(a) Track 1 Unrestricted Use Soil
	Cleanup Objectives
VOC	volatile organic compound

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

19 Patchen LLC entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in September 2016, to investigate and remediate a 0.042-acre property located in Brooklyn, New York. In October 2017, 19 Patchen GP LLC and Hudson BEC II LLC were added to the BCA and 19 Patchen LLC was removed from the BCA. The property was remediated to restricted residential use and will be used for residential and commercial use.

The site is located in the County of Kings, New York and is identified as Block 1618 and Lot 8 on the New York City Tax Map # 17A. The site is situated on an approximately 0.042-acre area bounded by Van Buren Street to the north, a four-story residential building to the south, a residential garage to the east, and Patchen Avenue to the west (see Figure 1). The boundaries of the site are fully described in Appendix A: Survey Map, Metes and Bounds.

An electronic copy of this Final Engineering Report (FER) with all supporting documentation is included as Appendix B.

2.0 SUMMARY OF SITE REMEDY

2.1 Remedial Action Objectives

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater contamination.

2.1.3 Soil Vapor RAOs

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 Description of Selected Remedy

The site was remediated in accordance with the remedy selected by the NYSDEC in the RAWP dated December 27, 2019 and Interim Remedial Measures Work Plan (IRM Work Plan) dated March 2017.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

- Construction and maintenance of a soil cover system consisting of concrete slabs to prevent human exposure to remaining contaminated soil/fill remaining at the site;
- 2. Installation and maintenance of a vapor barrier;
- Installation and maintenance of active sub-slab depressurization systems (SSDSs) at the Site and the southern adjoining building;
- 4. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site;
- 5. Use of groundwater underlying the Controlled Property is prohibited without treatment rendering it safe for intended purpose;
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting; and,
- 7. Periodic certification of the institutional and engineering controls listed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

3.1 Interim Remedial Measures

The IRM Work Plan included the installation of an SSDS at the Site and also documented a proposed modification to the exhaust of the now-removed dry cleaner in order to meet local and state regulations. The IRM Work Plan was conditionally approved on March 8, 2017 and a final certified plan was submitted to NYSDEC on March 27, 2017.

The SSDS was installed and the dry cleaner exhaust was rerouted in the summer of 2017. The vapor barrier was installed in November 2017, following the completion of the SSDS. Sub-slab soil vapor and indoor air samples were collected approximately 30 days later, in December 2017, while the SSDS was active but the dry cleaner was not operating. Concentrations of PCE in the sub-slab soil vapor were much lower than prior results. In December 2017, confirmatory indoor air samples were collected and showed continued lower indoor air concentrations. Subsequent post-remedial indoor air sampling in February and March 2019 indicated that elevated levels remain in the indoor air following the re-starting of the dry cleaning operations (which were shut down prior to rerouting of the exhaust). Soil vapor and indoor air concentrations are included in Table 4 and Figures 6 through 9. As of August 2019, the dry cleaner is no longer in operation.

Based on the project schedule, an Interim Remedial Measure Construction Completion Report (IRM CCR) was not completed. The implementation of the IRM and the RAWP are included in this FER.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RAWP and IRM Work Plan for the 19 Patchen Avenue site (December 27, 2019 and March 2017, respectively). All deviations from the RAWP and IRM Work Plan are noted below.

4.1 Governing Documents

4.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix G of the RAWP approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

4.1.3 Soil/Materials Management Plan (S/MMP)

The SMMP was included as Appendix D of the RAWP and Appendix B of the IRM Work Plan, both approved by the NYSDEC. Soil and materials management on-Site was conducted in accordance with the SMMP. The main goal of the SMMP was to handle all potentially contaminated soil and manage activities associated with soil in a manner that prevents contamination from reaching the community, workers, future occupants and workers, and the environment. Contaminated soil was managed in a manner that ensures removal, transport, and disposal such that it fulfills applicable regulatory requirements.

4.1.4 Storm-Water Pollution Prevention Plan (SWPPP)

The development is less than one acre in area and a SWPPP was not required.

4.1.5 Community Air Monitoring Plan (CAMP)

On-site air monitoring was conducted consistent with the requirements of the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP) and the project HASP included as Appendix A of the RAWP and of the IRM Work Plan. The purpose of the CAMP was to protect downwind receptors from potential airborne contaminants released as a direct result of the Remedial Action and the IRM being performed at the Site. In accordance with the HASP and CAMP, continuous community air monitoring was implemented during all ground-intrusive sampling and remedial activities. The approved HASP includes action levels for two monitoring stations at the upwind and downwind perimeters of the exclusion zone.

Air monitoring stations were established at the upwind perimeter and downwind perimeter of the Site, with the locations determined on a daily basis. The downwind and upwind CAMP stations were equipped with a photoionization meter (PID) to measure volatile organics (VOCs), and a Mini-Rae dust monitor to measure for particulate emissions. Equipment was calibrated on a daily basis and was capable of calculating 15minute running average concentrations, which were compared to specified action levels. Due to the project schedule and excavation extent, the locations of the air monitoring equipment changed with the scope of excavation. In addition, fugitive dust migration was visually assessed during all work activities.

The following action levels for VOC monitoring were used:

If the outdoor air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeded 5 parts per million (ppm) above background for the 15-minute average, work activities were temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities resumed with continued monitoring.

If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persisted at levels in excess of 5 ppm over background but less than 25 ppm, work activities were halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities resumed provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, was below 5 ppm over background for the 15-minute average.

If the organic vapor level was above 25 ppm at the perimeter of the work area,

activities were shut down.

All 15-minute readings were recorded and made available for State (NYSDEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes were also recorded.

The following action levels for particulate level monitoring were used:

If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques were employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels did not exceed 150 mcg/m3 above the upwind level and provided that no visible dust is migrating from the work area.

If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m3 above the upwind level, work was stopped and a re-evaluation of activities was initiated. Work resumed provided that dust suppression measures and other controls were successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.

All readings were recorded and made available for State (NYSDEC and NYSDOH) personnel to review.

4.1.6 Contractors Site Operations Plans (SOPs)

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the IRM Work Plan and the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

4.1.7 Community Participation Plan

The Community Participation Plan (CPP) was included as Appendix H of the RAWP and Appendix C of the IRM Work Plan. The CPP enables citizens to participate more fully in decisions that affect their health, environment, and social well being.

A certification of mailing was sent by the Volunteer to the NYSDEC project manager following the distribution of all Fact Sheets and includes: (1) certification that the Fact Sheets were mailed, (2) the date they were mailed; (3) a copy of the Fact Sheet, and, (4) a list of recipients (contact list).

No changes were made to the approved Fact Sheets authorized for release by NYSDEC without written consent of the NYSDEC. No other information, such as brochures and flyers, was included with the Fact Sheet mailing.

Document repositories have been established at the following locations and contain all applicable project documents:

Brooklyn Public Library Dekalb Branch 790 Bushwick Avenue Brooklyn, NY 11221

Brooklyn Community Board #3 1360 Fulton Street Brooklyn, NY 11216

Once the NYSDEC approves the Final Engineering Report, a final Fact Sheet will be prepared and distributed to announce that (1) remediation has been completed; and (2) the Certificate of Completion (COC) has been issued.

4.2 Remedial Program Elements

4.2.1 Contractors and Consultants

The Remedial Engineer (RE) for this project was Matthew M. Carroll, P.E., a registered professional engineer (PE) licensed by the State of New York. The RE has certified in this FER that the remedial actions were observed by representatives under his supervision and the requirements set forth in the RAWP and any other relevant provisions of ECL 27-1419 have been achieved in conformance with that RAWP.

Matthew M. Carroll, P.E. served as the Engineer of Record and provided oversight for all remedial activities. NYSDEC was the lead agency, providing regulatory approval for all components of the remedy. The following parties completed various tasks as noted:

Environmental Consultant

Tenen Environmental, LLC

121 West 27th Street, Suite 702, New York, NY 10001

(646) 606-2332

Mary Manto, Technical Director: responsible for overall coordination and management of the project.

Mohamed Ahmed, Senior Geologist: responsible for quality assurance of sampling procedures and laboratory data.

Claire Zaccheo, Project Engineer: responsible for the day-to-day field monitoring activities, including SSDS installation, dust monitoring and PID monitoring. Post-remedial sampling activities and report preparation was performed by a Project Engineer from Tenen.

Analytical Laboratory

Alpha Analytical, Inc.

8 Walkup Drive, Westborough, MA

(800) 624-9220

Alpha Analytical performed sampling analysis related to the RI, pre-design investigations, soil vapor and indoor air samples and post-remedial groundwater monitoring. The laboratory is certified under the NYSDOH Environmental Laboratory Approval Program (ELAP) IDs 11148 and 11627 for solid and hazardous waste and air and emissions, respectively. NYSDEC Analytical Services Protocol (ASP) Category B deliverables were prepared by the laboratory.

Subcontractor Drilling and Disposal

Aquifer Drilling & Testing Inc. Company (ADT)

75 E 2nd Street

Mineola, NY 11501

ADT performed drilling related to implementation of the RI and pre-design investigations.

Cascade Technical Services

30 North Prospect Avenue

Lynbrook, NY 11563

Cascade performed drilling related to implementation of the RI and pre-design investigations. Cascade also provided disposal services for investigation-derived waste and soil generated during installation of SSDS pits at the Site.

Subcontractor Disposal

Clean Earth of Carteret, LLC

334 South Warminster Road

Hatboro, PA 19040

Clean Earth provided disposal services for investigation-derived waste and soil generated during installation of SSDS pits at an off-site location.

Data Validation L.A.B Validation Corp. 14 West Point Drive East Northport, NY 11731

Data validation was completed for all post-remedial indoor air and post-remedial groundwater samples.

Remedial Contractor Broadway Builders 826 Broadway, 11th Floor New York, NY 10003

Broadway Builders was the remedial contractor responsible for installation of the SSDS systems and vapor barriers.

Drum Disposal Facility Spring Grove Resource Recovery, Inc. 4879 Spring Grove Avenue Cincinnati, OH 45232

All drummed material was transported Spring Grove Resource Recovery. Contained-in Determinations were issued by NYSDEC in order for waste to be disposed as non-hazardous. Documentation is provided in Appendix D.

4.2.2 Site Preparation

Prior to initiating construction, the presence of utilities and easements on the Site was investigated by the Remedial Engineer. It was determined that no risk or impediment to the planned work under the RAWP was posed by utilities or easements on the Site.

A pre-construction meeting with NYSDEC was not required.

4.2.3 General Site Controls

Photographs were taken of all remedial activities and submitted to NYSDEC in digital (JPEG) format. Photos illustrated all remedial program elements and were of acceptable quality. Photos were included in the daily reports as needed and a Project Photo Log (Appendix H) is included in this FER. Job-site record keeping for all remedial work was appropriately documented. These records were maintained on-Site at all times during the project and were available for inspection by NYSDEC staff.

Provisions for sediment and erosion control were not required as all soil disturbances were completed within an existing building that was protected from stormwater.

4.2.4 Nuisance controls

Odor Control

All necessary means were employed to prevent on- and off-Site odor nuisances. At a minimum, procedures included limiting the area of open excavations.

Dust Control

Dust management during invasive on-Site work included, as necessary:

- Use of a dedicated water spray method at suitable supply and pressure for limited excavation; and,
- Identification of air intakes on adjoining residential properties.

This dust control plan was capable of controlling emissions of dust. If nuisance dust emissions were identified, work was halted and the source of dusts were identified and corrected. Work did not resume until all nuisance dust emissions were abated. No dust complaints were received during the remedial action. Implementation of all dust controls, including halt of work, was the responsibility of the RE.

Other Nuisances

Noise control was exercised during the remedial program. All remedial work conformed, at a minimum, to NYC noise control standards.

4.2.5 CAMP results

Data generated by CAMP equipment was tabulated and compared to action limits established for the Site.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix E.

4.2.6 Reporting

On-Site personnel maintained a daily field log, updated throughout the workday. The daily log recorded weather conditions and identified issues related to the CAMP and any health and safety concerns.

Daily reports were submitted to the NYSDEC Project Manager on a weekly basis and included the following:

- An update of progress made during the reporting week;
- Locations of work and quantities of material imported and exported from the Site;
- References to alpha-numeric map for Site activities;
- Photographs of remedial work activities;
- A summary of any and all complaints with relevant details (names, phone numbers);
- A summary of CAMP findings, including excursions; and,
- An explanation of notable Site conditions.
- Daily reporting was conducted during periods of active soil disturbances.
- Monthly reporting was conducted and submitted by the 10th day of the following month. Monthly reports included the following:
- Activities relative to the Site during the previous reporting period and those anticipated for the next reporting period, including a quantitative presentation of work performed (i.e., tons of material exported and imported, etc.);
- Photographs of the work completed during the reporting period;
- Description of approved activity modifications, including changes to work scope and/or schedule;
- Sampling results received following internal data review and validation, as applicable; and,

• An update of the remedial schedule including the percentage of project completion, unresolved delays encountered or anticipated that may affect the future schedule, and efforts made to mitigate such delays.

All daily and monthly reports are included in electronic format in Appendix G.

The digital photo log required by the RAWP is included in electronic format in Appendix H.

4.3 Contaminated Materials Removal

A minimal amount of material was removed from the Site and southern-adjoining property to facilitate installation of the SSDS pits.

4.3.1 Excavation and Disposal of Soil/Fill and Investigation Derived Waste

All soil/fill from installation of the sub-grade SSDS components and all investigation-derived waste was placed in 55-gallon drums, characterized and disposed off-site.

4.3.1.1 Disposal Details

On January 29, 2018, NYSDEC issued a contained-in determination for the nonhazardous disposal of eight drums, five with soil and three with groundwater. On April 26, 2019, NYSDEC issued a second contained-in determination for the hazardous disposal of one drum filled with soil. Characterization was based on RI data and drumspecific testing.

All drums were disposed at the Clean Harbors facility located at 4979 Spring Grove Avenue in Cincinnati, Ohio. Both sets of drums were transported by SJ Transportation (EPA ID: NJD071629976).

The soil from the test pits at the off-site building was bulked with other soil generated at this location and disposed at Clean Earth of Carteret, located at 24 Middlesex Avenue in Carteret, NJ. The material was transported by Rizzo Environmental (Hauler Permit: IA-997).

Table 2 shows the total quantities of each category of material removed from the site and the disposal locations. A summary of the samples collected to characterize the waste, and associated analytical results are summarized on Table 7.

Waste profiles prepared for the disposal facilities and acceptance letters from disposal facility owners are attached in Appendix E.

Manifests and bills of lading are included in electronic format in Appendix D.

4.4 Contamination Remaining at the Site

All soil samples collected below the cellar slab met the Part 375 Unrestricted Use soil cleanup objectives (SCOs). One shallow soil sample in the rear yard contained polyaromatic hydrocarbons (PAHs) and metals, including barium, lead, mercury and zinc, above the Unrestricted Use SCOs in samples collected from the rear yard of the Site. The PAHs, barium and lead also exceeded the Part 375 Restricted-Residential SCOs. A Track 4 remediation was achieved. This material remains below a concrete slab, which is part of the composite cover Engineering Control (see Section 4.5). These concentrations are delineated to below the Unrestricted Use SCOs at two feet below the slab.

Table 3 and Figure 4 summarize the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs. Figure 4 summarizes the results of all soil samples remaining at the site after completion of the remedial action that meet the SCOs for unrestricted use of the site.

As shown on Table 5 and Figure 5, groundwater samples during the RI indicated that PCE and 2-butanone were detected above the TOGS 1.1.1 Class GA Ambient Water Quality Standards and Guidance Values (Class GA Standards). Sampling completed in September 2018 indicated that the PCE remained in groundwater above the Class GA Standards. Sampling for emerging contaminants was also completed in September 2018. As shown on Table 6 and detailed in Appendix J, all perfluoroalkyl acid substances (PFAS) compounds were below the EPA Drinking Water Health Advisory level of 70 nanograms per liter (ng/L) and 1,4-dioxane was below the EPA Cancer Reference Concentration of 35 ng/L.

Table 4 and Figures 6 through 9 summarize the post-remedial soil vapor and indoor air concentrations. Following start-up of the SSDS, the soil vapor concentrations are generally low. Indoor air concentrations have decreased but require additional treatment in two locations (Unit 2A and the former dry cleaner space).

Since contaminated soil, groundwater and soil vapor remain beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.5 Soil Cover System

Exposure to remaining contamination in soil/fill at the site is prevented by a soil cover in the rear yard and cellar the site. This cover system is comprised of a minimum of three inches of concrete-covered sidewalks and concrete building slabs. Figures 10 and 12, in Appendix I, show the material and location of each cover type built at the Site, and Figure 11, also in Appendix I, shows the vertical extent of the cover system. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix A of the SMP.

4.6 Other Engineering Controls

Since remaining contaminated soil, groundwater and soil vapor exists beneath the site, Engineering Controls (EC) are required to protect human health and the environment. The site has the following primary Engineering Controls, as described in the following subsections.

4.6.1 Sub-Slab Depressurization Systems

To minimize the potential for vapor intrusion, active SSDSs were installed at the Site and the off-site building. The SSDSs will depressurize below the existing building slabs as compared to the building environment.

The SSDSs consist of suction pits installed beneath the building slabs that are connected to fans on the roof via cast iron (interior) and PVC (exterior) piping. To create the suction pits, the existing slabs were saw cut and the underlying soil was removed to a depth of at least 18 inches. The void spaces were lined with geotextile fabric and a layer of $\frac{3}{4}$ " clean stone aggregate.

The overall goal of the systems was to create a pressure differential of -0.02 inches per water column (in-wc) between the at-grade building and sub-slab environments; however, differential pressure readings above -0.004 in-wc are acceptable. An alarm system was installed that will notify the building management if a drop in pressure occurs, which indicates that the system is not operating as designed. The system has been designed in general accordance with the New York State Department of Health

(NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (NYSDOH Soil Vapor Guidance), including Section 4.2.2, *System-specific recommendations*. The exhaust locations are located on the highest point of the buildings' roofs and meets the requirements of the NYSDOH Soil Vapor Guidance, specifically Section 4.2.2 c (6), which reads:

To avoid entry of extracted subsurface vapors into the building, the vent pipe's exhaust is located 13 feet above the access roof level and at least 25 feet away from adjoining buildings and HVAC intakes.

A pre-design pilot test was completed at the Site and at the off-site building on February 7, 2017, to confirm the radius of influence (ROI) of the pressure field; all measurements were above 0.02 in-wc.

A blower test was performed at the Site on June 1, 2017, and at the off-site building on September 22, 2017 to size the blowers. Based on the sizing tests, blowers were selected to meet the design goals.

The SSDS design for the Site was approved in Tenen's IRM Work Plan dated March 2017. The SSDS design for the off-site location building was initially included in a Remedial Action Plan dated September 2015 and approved by the New York City Department of Environmental Protection (NYCDEP); the design was also included in Tenen's RAWP dated December 27, 2019.

The suction pits and piping were installed in the summer of 2017 and the final SSDS blowers were installed on October 2017. The systems were started up on November 1, 2017 and a monitoring point communication test was completed to ensure design goals were being met. Results of the communication test indicate that all soil vapor monitoring points pass the performance criteria. The SSDS layout design is shown in Figure 3. Photographs of the installation are included in Appendix H. As-built drawings are included in Appendix I.

Procedures for monitoring, operating and maintaining the SSDSs are provided in the Operation and Maintenance Plan in Section 4 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

4.6.2 Vapor Barriers

To minimize the potential for vapor intrusion, vapor barriers were installed at the Site and the off-site building. The vapor barriers will mitigate the potential for soil vapor to impact the indoor air environment.

The vapor barrier minimizes the potential for vapor intrusion by decreasing the permeability of the overall composite cover. A Land Science Technologies Retro Coat[™] (20-mil thick) vapor sealant was applied over a primer which covered the entire concrete slab of the building basements. The sealant has a vapor transmission rate (measured by ASTM Method E-96) of 0.03 perms. The sealant and primer were applied according to the manufacturer's specifications.

4.6.3 Carbon Filtration of Indoor Air

While not a required Engineering Control, a carbon filtration unit was installed in Unit 2A at the Site to address potential indoor air impacts. An additional carbon filtration unit will be installed in the dry cleaner space. Unit 2A and the dry cleaner space were selected based on historic indoor air concentrations. The filtration units, Airpura C600-DLX, are sized for the selected spaces and contain 26 pounds of granulated activate carbon (GAC) each.

Post remedial indoor air sampling was completed on October 1, 2019. Indoor air samples were collected in apartment Units 2A, 3A and the former dry cleaner space. Additionally, an outdoor sample was collected. Sample results showed an overall decrease in PCE in indoor air within the apartment units. The concentration of PCE ranged from 11.3 micrograms per cubic meter (ug/m3) in Unit 2A to 17 ug/m3 in Unit 3A. The concentration of PCE within the former dry cleaner unit was 1,590 ug/m3. These concentrations are detailed on Table 4 and shown on Figure 9.

Continued annual indoor air testing of all apartment units within the building, including the former dry cleaner space, will be completed during the heating season. All samples will be collected at breathing height in a six-liter Summa canister using 24-hour regulators and analyzed for VOCs using EPA Method TO-15. All samples will be collected in accordance with the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006.

The locations of the vapor barriers are shown on Figure 11, located in Appendix I. Photographs of the installation are included in Appendix H. Manufacturer's specifications are included in Appendix I.

4.7 Institutional Controls

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; (3) limit the use and development of the site to Restricted-Residential and Commercial uses only; and, (4) prohibition on potable use of groundwater, consistent with New York City code.

The environmental easement for the site was executed by the Department on August 14, 2018, and filed with the Kings County Clerk on August 14, 2018. The County Recording Identifier number for this filing is 2018000408040. A copy of the easement and proof of filing is provided in Appendix C.

LIST OF TABLES

Table 1 - Soil Cleanup Objectives (SCOs) for the Project

- Table 2 Liquid and Solid Waste Disposal Volumes and Facilities
- Table 3 Soils Exceeding Restricted Residential and Unrestricted Use SCOs After the Remedial Action
- Table 4 Post-Remedial Soil Vapor and Indoor Air Concentrations
- Table 5 Groundwater Exceeding Class GA AWQS
- Table 6 PFAS in Groundwater
- Table 7 Investigation Derived Waste (IDW) Characterization Data for Disposal

LIST OF FIGURES

- Figure 1 Project Site Location Map
- Figure 2 Site Layout Map
- Figure 3 SSDS Layout
- Figure 4 Exceedances of Restricted-Residential and Unrestricted Use SCO's in Soil (After Remedy)
- Figure 5 Remaining Contamination in Groundwater
- Figure 6 Sub-slab Soil Vapor Samples (December 2017)
- Figure 7A Indoor Air Samples, Cellar (December 2017)
- Figure 7B Indoor Air Samples, 1st and 2nd Floors (December 2017)

Figure 7C – Indoor Air Samples, 3rd and 4th Floors (December 2017)

Figure 8A – Indoor Air Samples, Cellar (February and March 2019)

Figure 8B – Indoor Air Samples, 1st and 2nd Floors (February and March 2019)

Figure 8C – Indoor Air Samples, 3rd and 4th Floors (February and March 2019)

Figure 9A – Indoor Air Samples, 1st and 2nd Floors (October 2019)

- Figure 9B Indoor Air Samples, 3rd and 4th Floors (October 2019)
- Figure 10 Site Wide Cover Type (in Appendix I)
- Figure 11 Extent of Vapor Barrier (in Appendix I)
- Figure 12 Extent of Composite Cover System (in Appendix I)

LIST OF APPENDICES

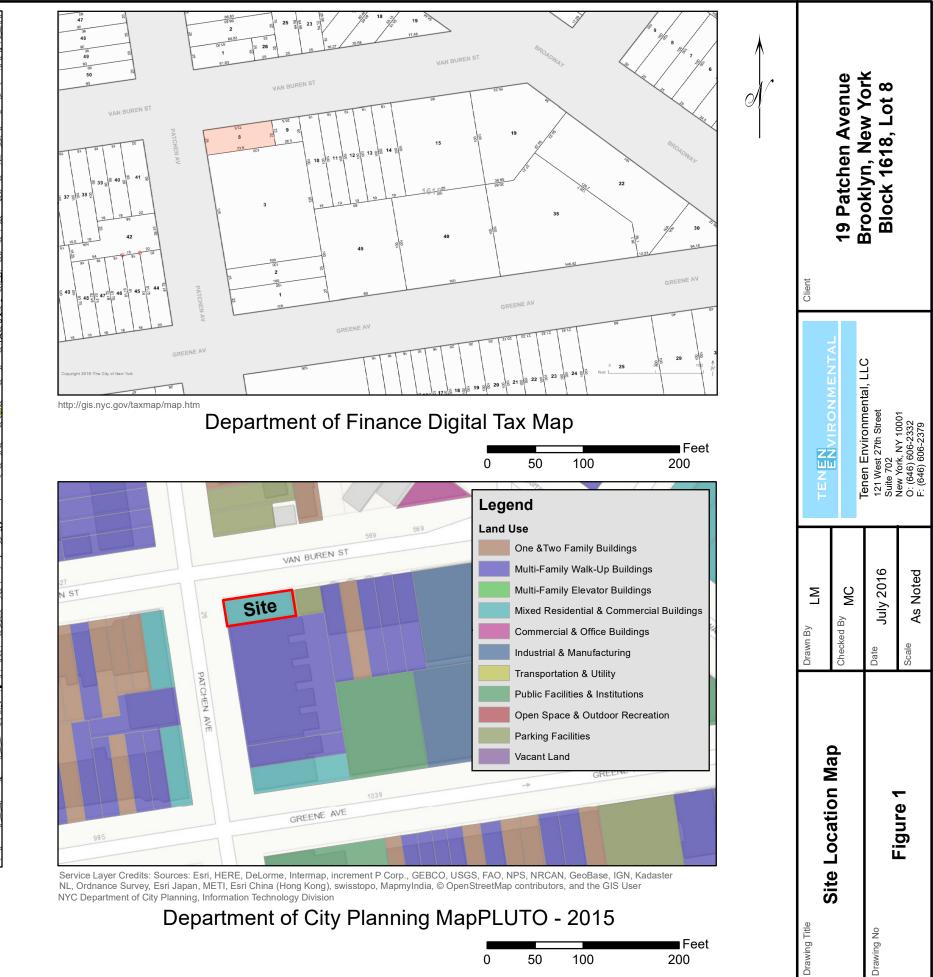
Appendix A - Survey Map, Metes and Bounds

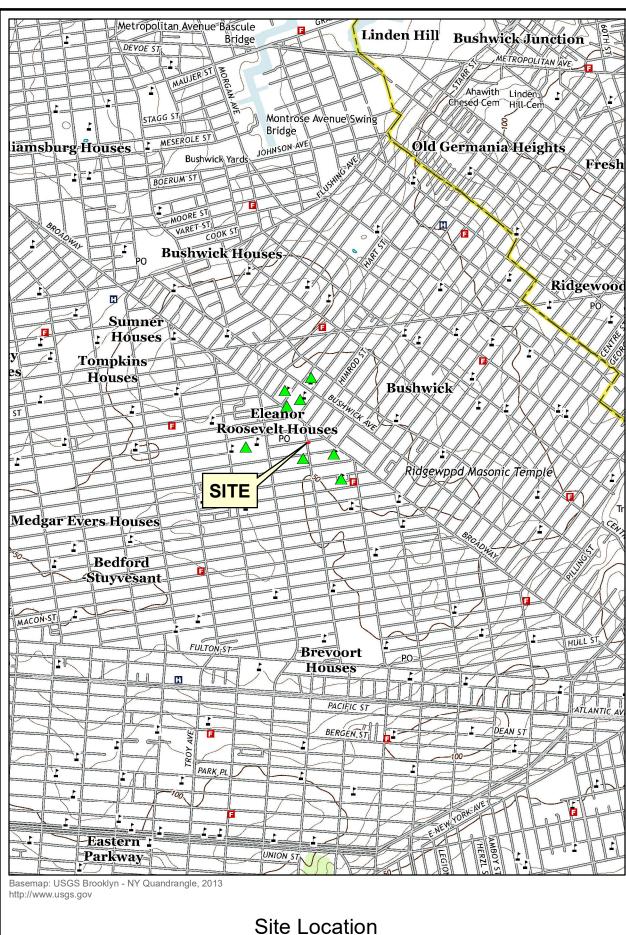
Appendix B – Digital Copy of the FER (CD)

Appendix C – Environmental Easement

Appendix D – Soil / Waste Characterization Documentation

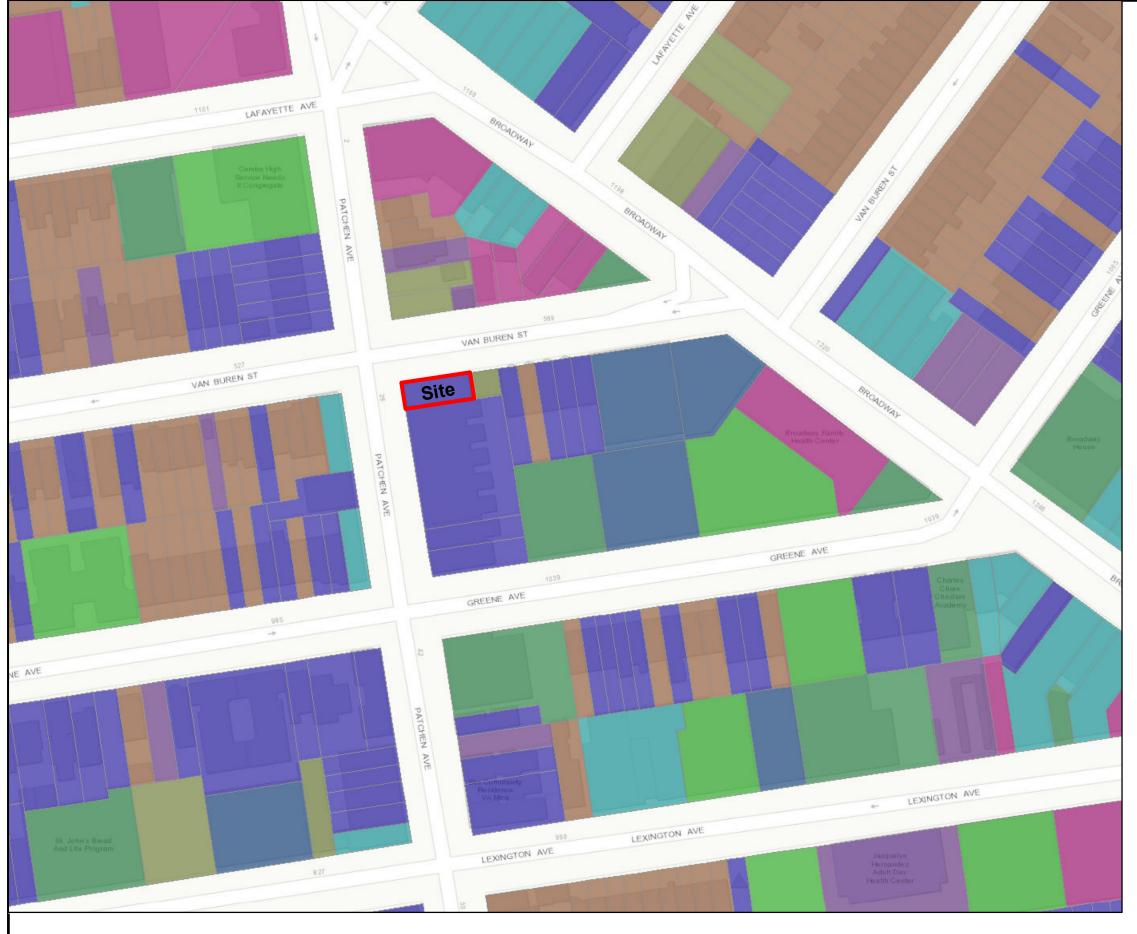
Appendix E – CAMP Field Data Sheets and Air Monitoring Data (Incl. CD)


Appendix F – Raw Analytical Laboratory Data (Incl. CD)


Appendix G – Daily and Monthly Reports (CD)

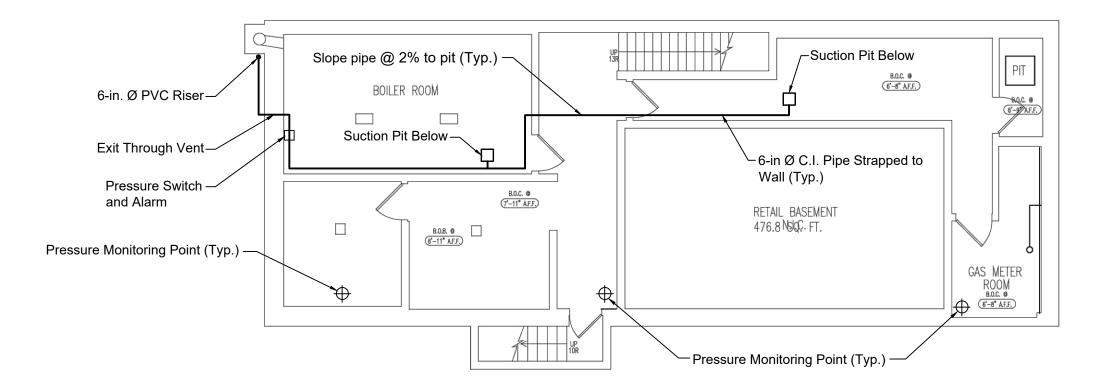
Appendix H – Project Photo Log (CD)

- Appendix I EC As-Built Drawings, Documentation, Drawings and Specifications
- Appendix J Emerging Contaminants Sampling

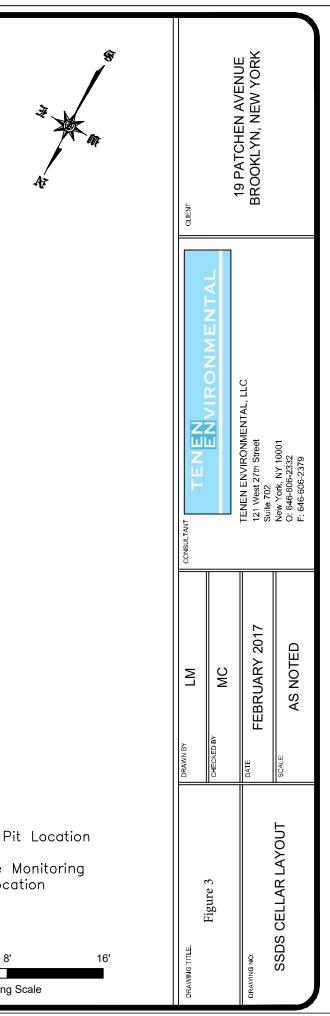

FIGURES

Sensitive Receptor \wedge

Feet 1,000 2,000 4,000 0


Service Layer Credits: Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, © OpenStreetMap contributors, and the GIS User Community NYC Department of City Planning, Information Technology Division

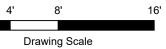
Department of City Planning MapPLUTO - 2018v1

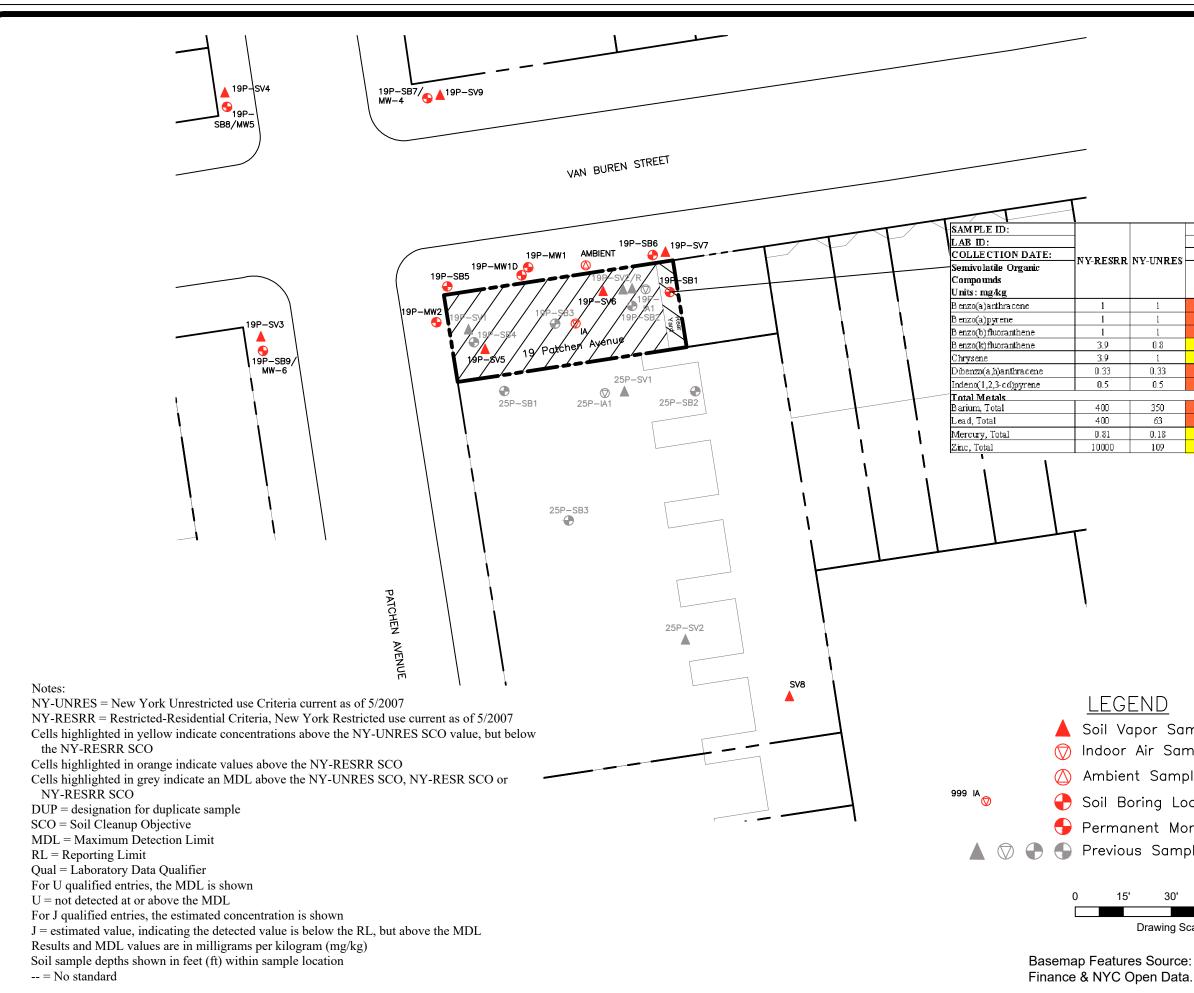


Legend Land Use One &Two Family Buildings Multi-Family Walk-Up Buildings Multi-Family Elevator Buildings Mixed Residential & Commercial Buildings Commercial & Office Buildings Industrial & Manufacturing Transportation & Utility Public Facilities & Institutions Open Space & Outdoor Recreation Parking Facilities Vacant Land Feet 50 100 200

Drawing Title	Site Levent	Drawn By LM	TENEN	Client
		Checked By CZ		19 Patchen Avenue
Drawing No		^{Date} November 2018	121 West 27th Street	Brooklyn, New York
	rigure z	^{Scale} As Noted	New York, NY 10001 O: (646) 606-2332 F: (646) 606-2379	

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-100.00, 6/28/15

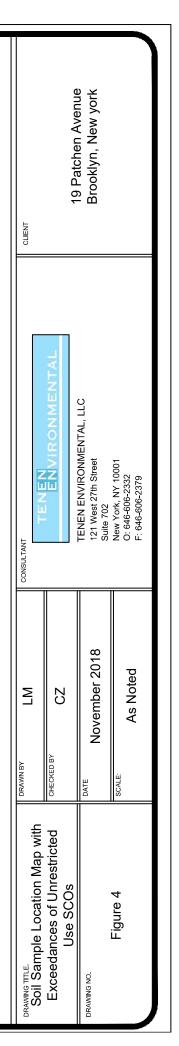


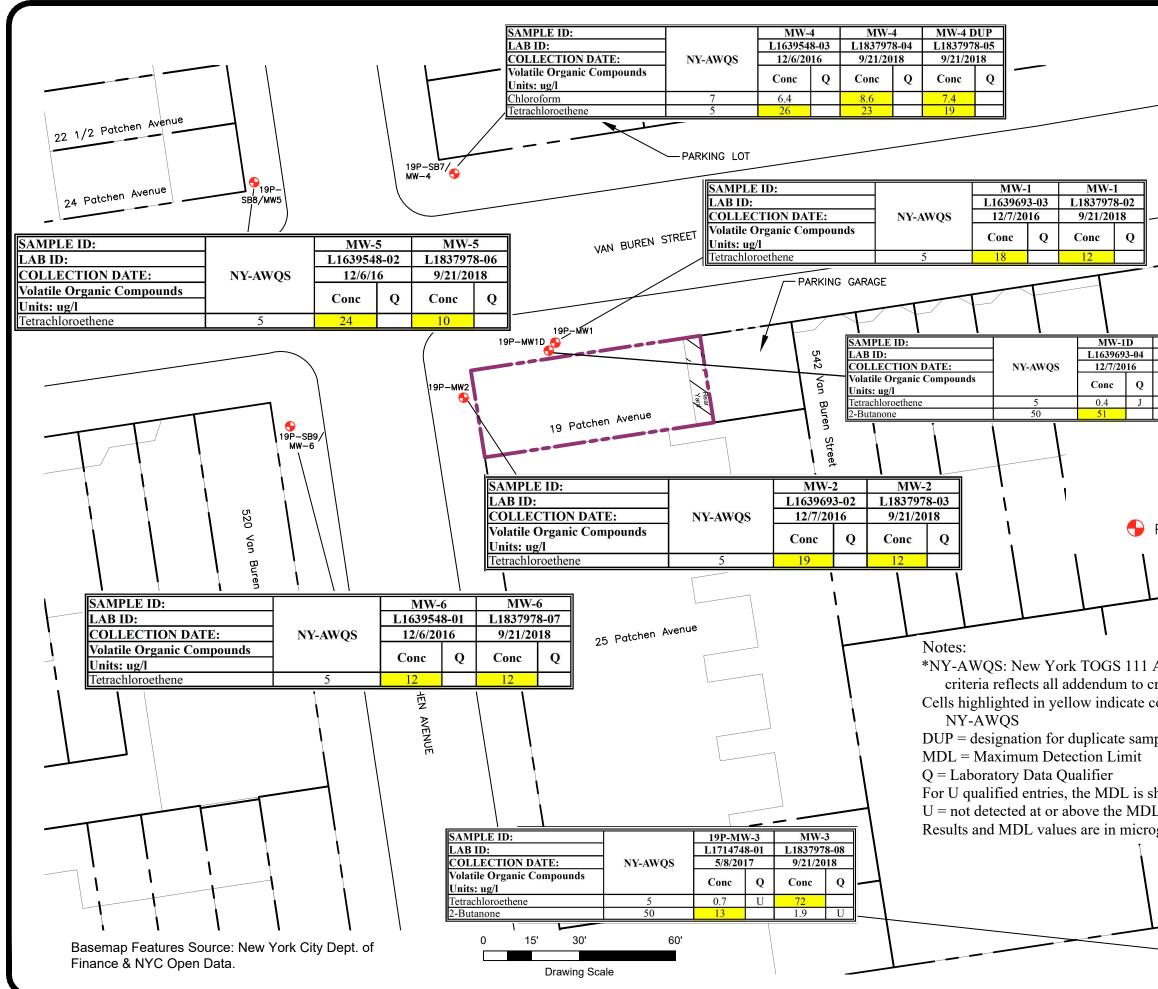

<u>LEGEND</u>

€

Suction Pit Location

Pressure Monitoring Point Location


	19P-SB-1	(0-2)
	L1638738	8-01
NVINDES	11/30/20	16
MI-UNKES		
	Conc	Q
1	3.5	
1	3.3	
1	4.2	
0.8	1.6	
1	3.8	
0.33	0.48	
0.5	2.3	
350	620	
63	750	
0.18	0.38	
109	700	
	1 1 0.8 1 0.33 0.5 350 63 0.18	Conc 1 3.5 1 3.3 1 4.2 0.8 1.6 1 3.8 0.33 0.48 0.5 2.3 350 620 63 750 0.18 0.38


Soil Vapor Sample Location 🕅 Indoor Air Sample Location Ambient Sample Location Soil Boring Location Permanent Monitoring Well Previous Sample Locations

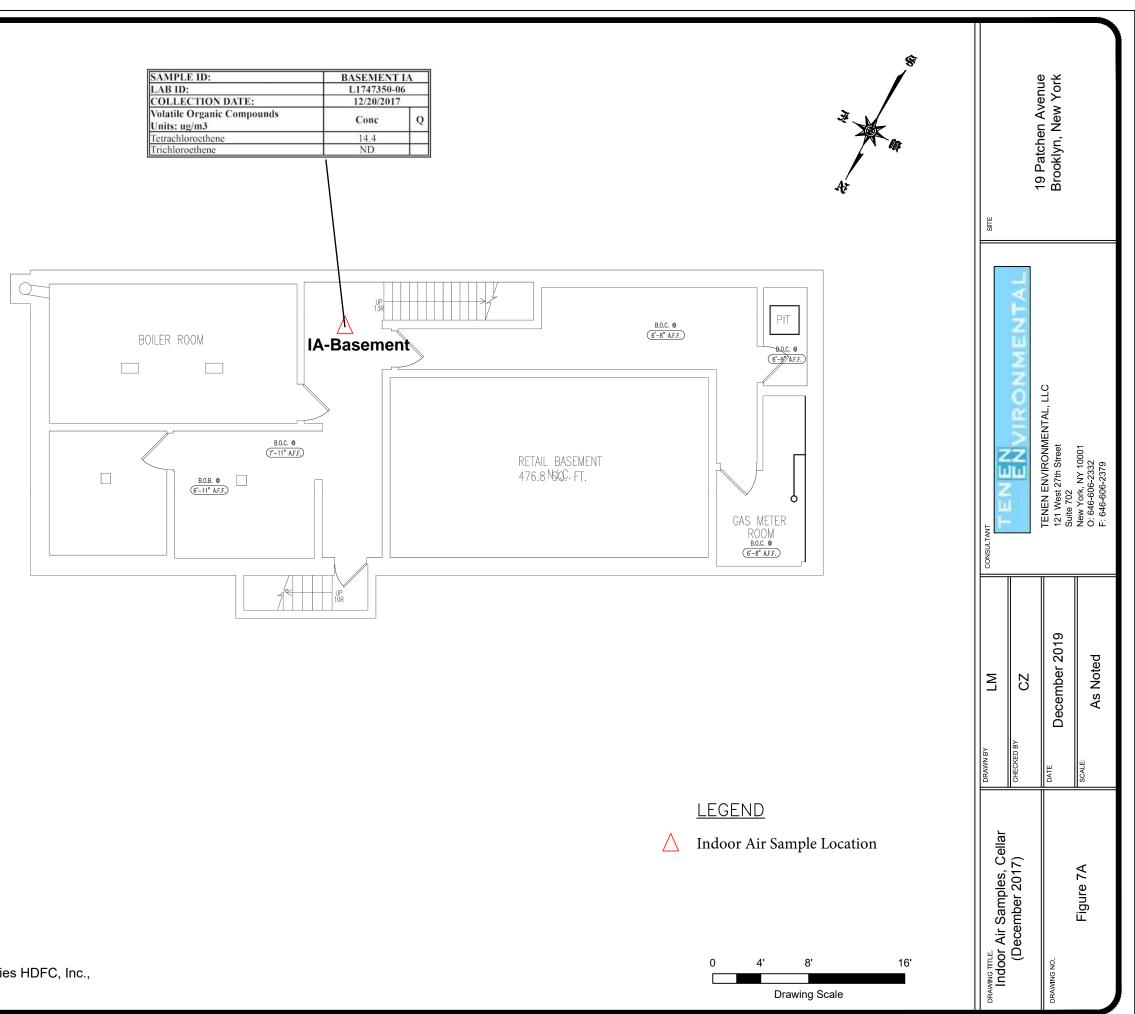
> 30' 60'

Drawing Scale

Basemap Features Source: New York City Dept. of

N W E S	clent 19 Patchen Avenue Brooklyn, New York	
MW-1D-DUP MW-1-D L1639693-05 L1837978-01 12/7/2016 9/21/2018 Conc Q Conc Q 0.3 J 0.18 U 49 1.9 U LEGEND Permanent Monitoring Well	CONSULTANT TENEN ENVIRON MENTAL TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702 New York. NY 10001 O: 646-606-2379 F: 646-606-2379	
Ambient Water Quality Standards criteria through June 2004. concentrations above the nple	DRAWN BY LM CHECKED BY CZ DATE August 2019 SCALE: As Noted	
shown DL ograms per liter (μg/L)	DRAWING TITLE. Remaining Groundwater Sample Exceedances DRAWING NO. Figure 5	

Notes:

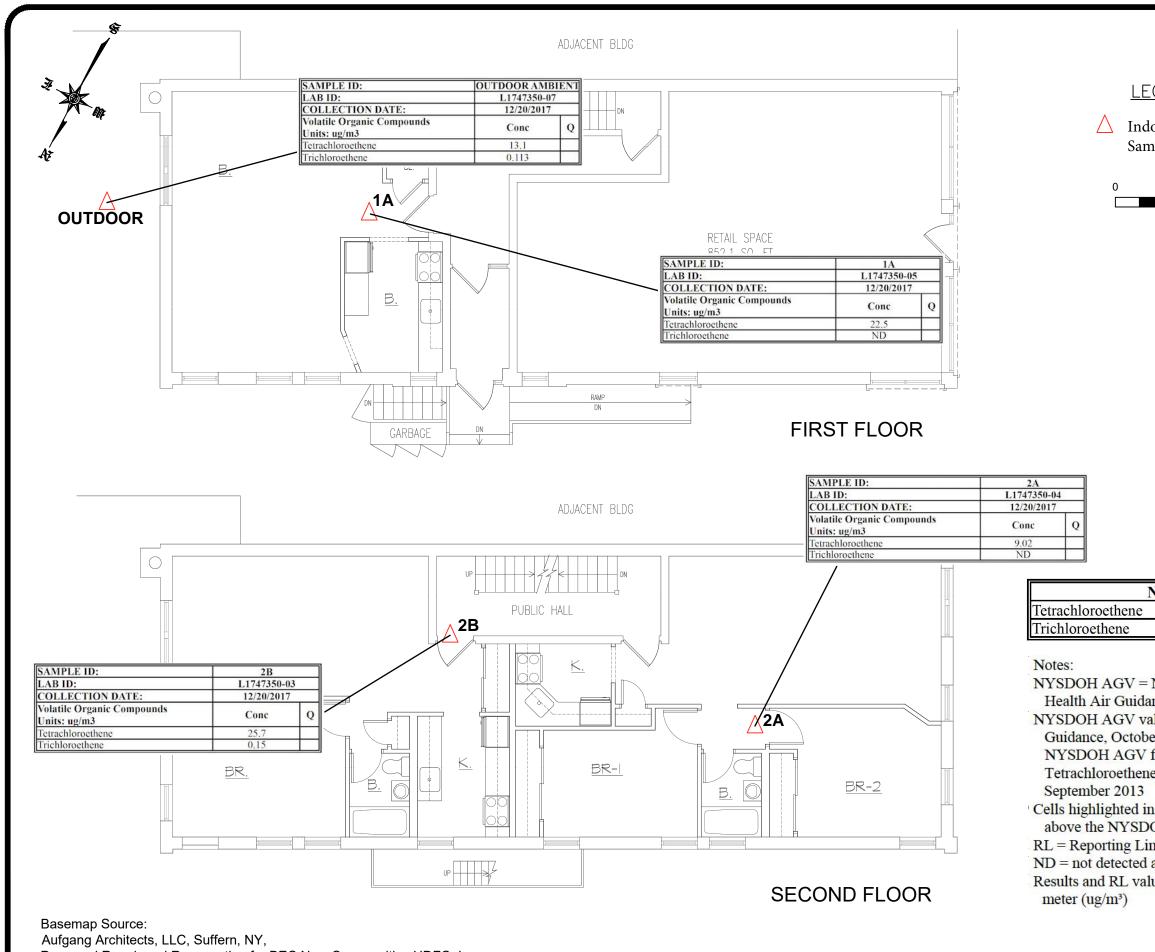

RL = Reporting Limit

Q = Laboratory Data Qualifier

ND = not detected at or above the RL

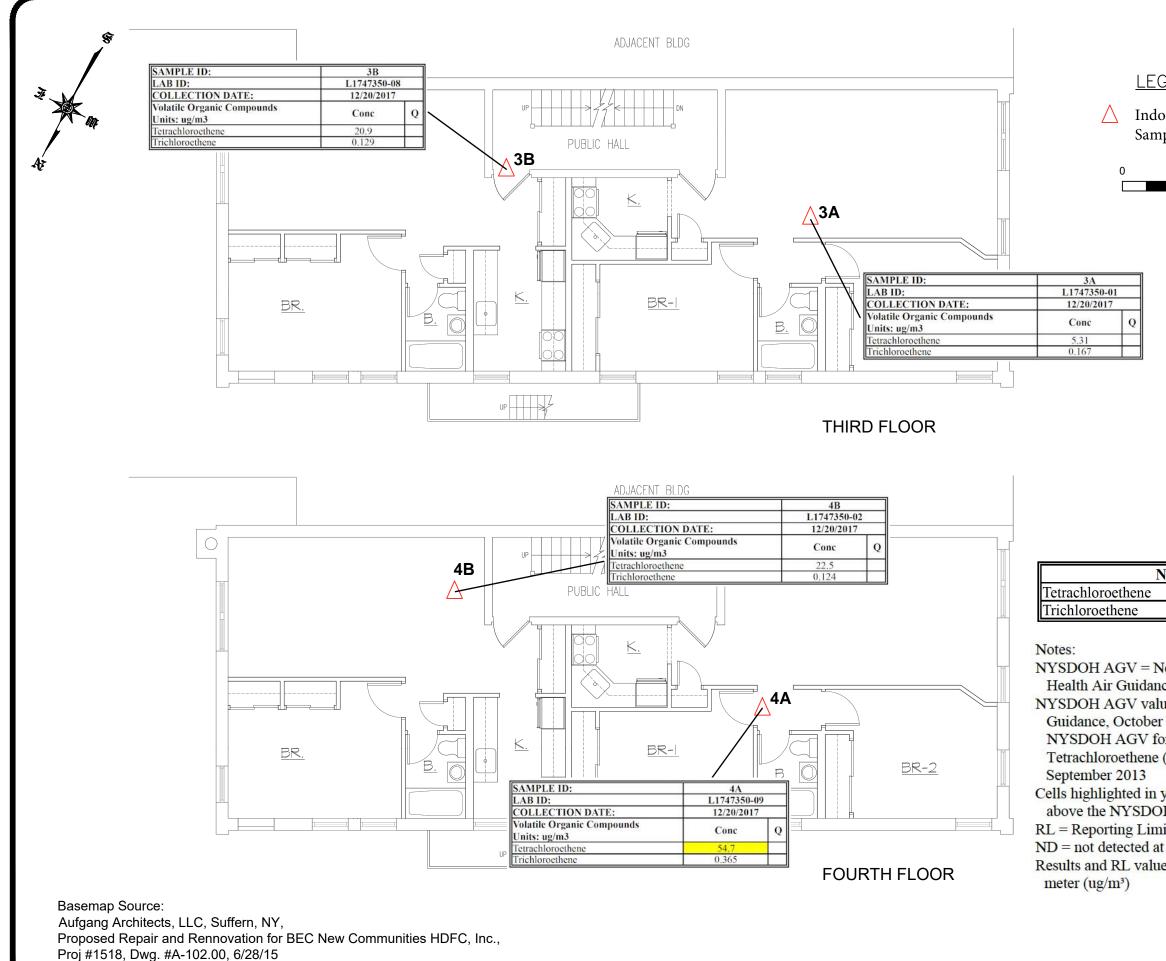
Results are in micrograms per cubic meter (ug/m³)

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-100.00, 6/28/15

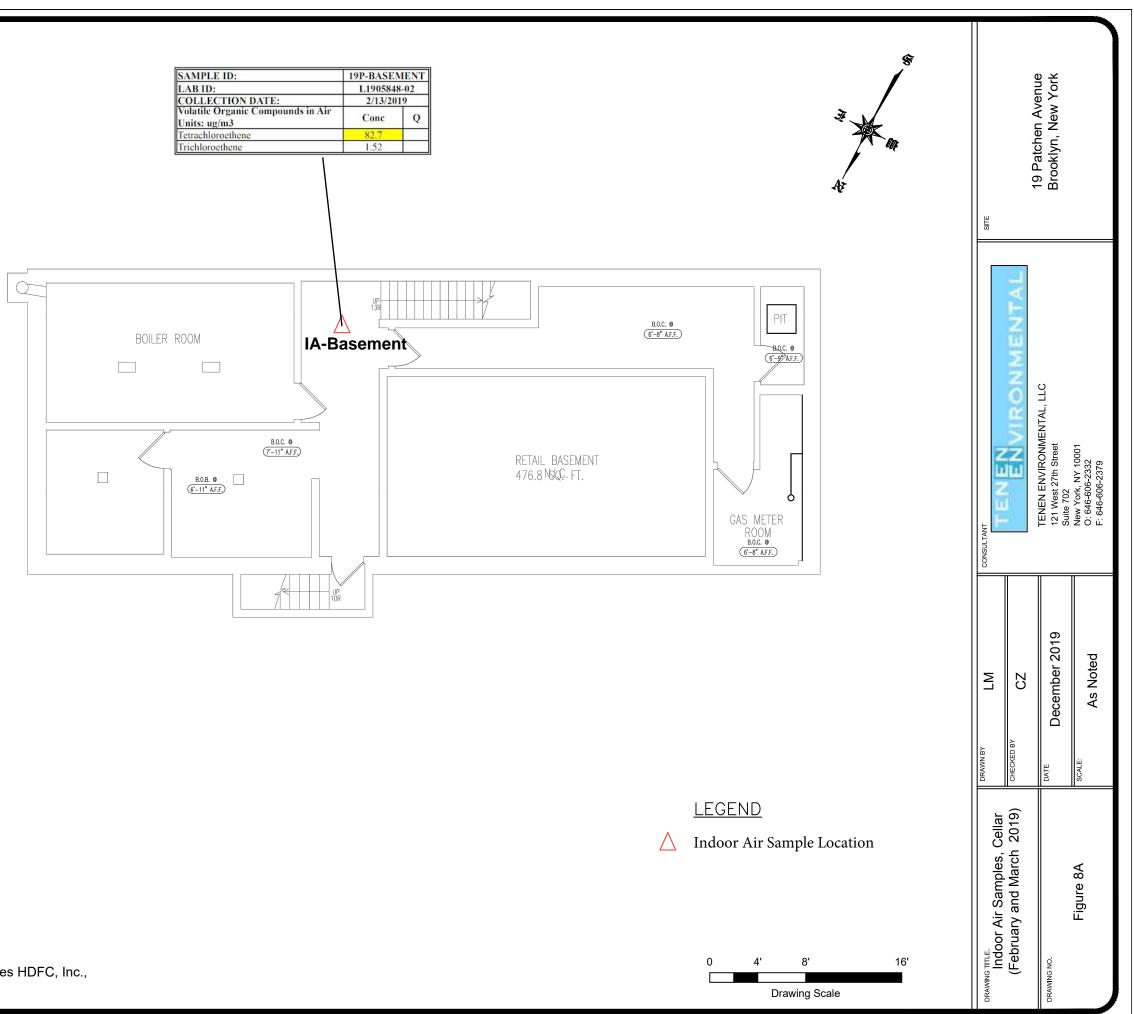


NYSDOH AGVs	
Tetrachloroethene	30
Trichloroethene	2

Notes:


NYSDOH AGV = New York State Department of Health Air Guidance Values NYSDOH AGV values from NYSDOH Soil Vapor Guidance, October 2006, except for the revised NYSDOH AGV for PCE from Fact Sheet: Tetrachloroethene (PERC) in Indoor & Outdoor Air, September 2013 Cells highlighted in yellow indicate concentrations above the NYSDOH AGV RL = Reporting Limit ND = not detected at or above the RLResults and RL values are in micrograms per cubic meter (ug/m^3)

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-100.00, 6/28/15

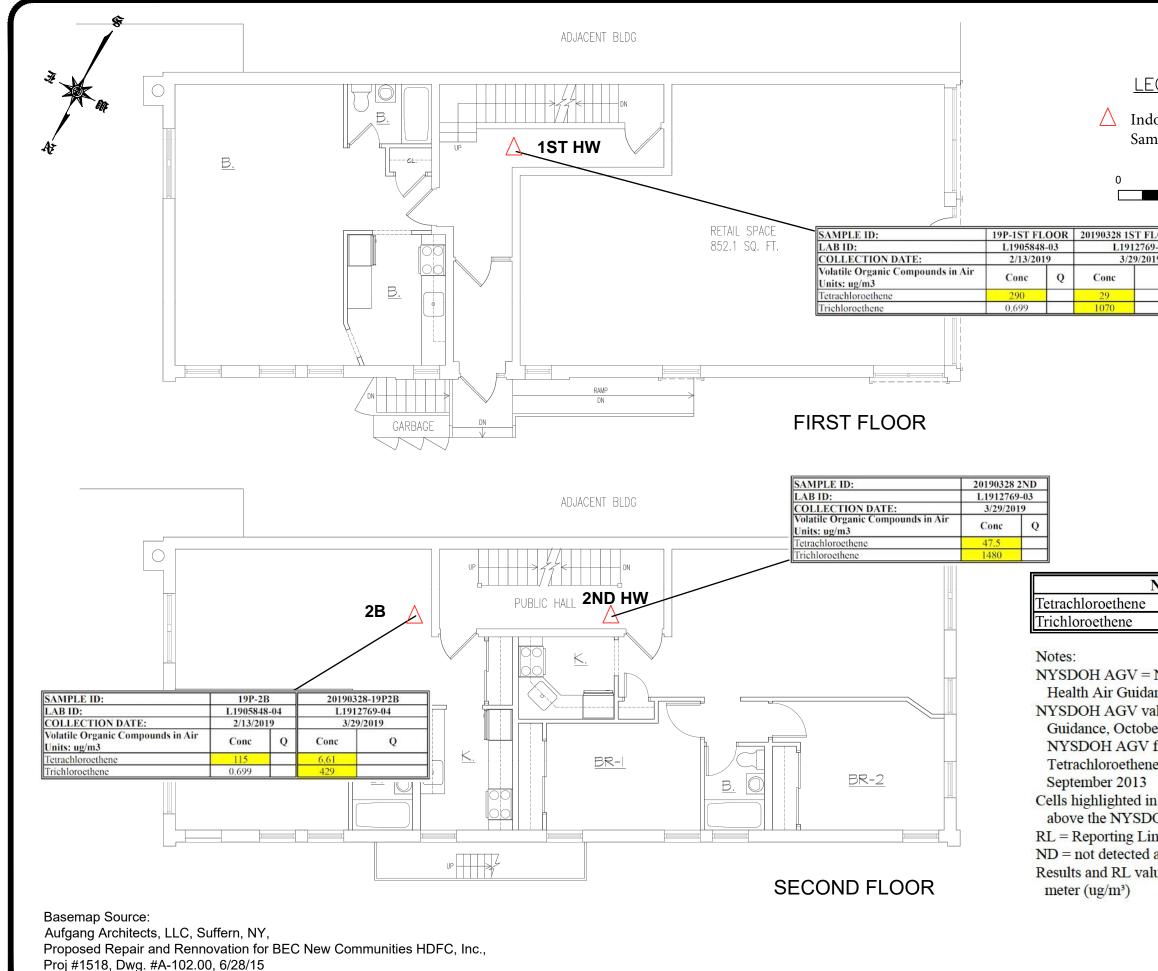


Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-102.00, 6/28/15

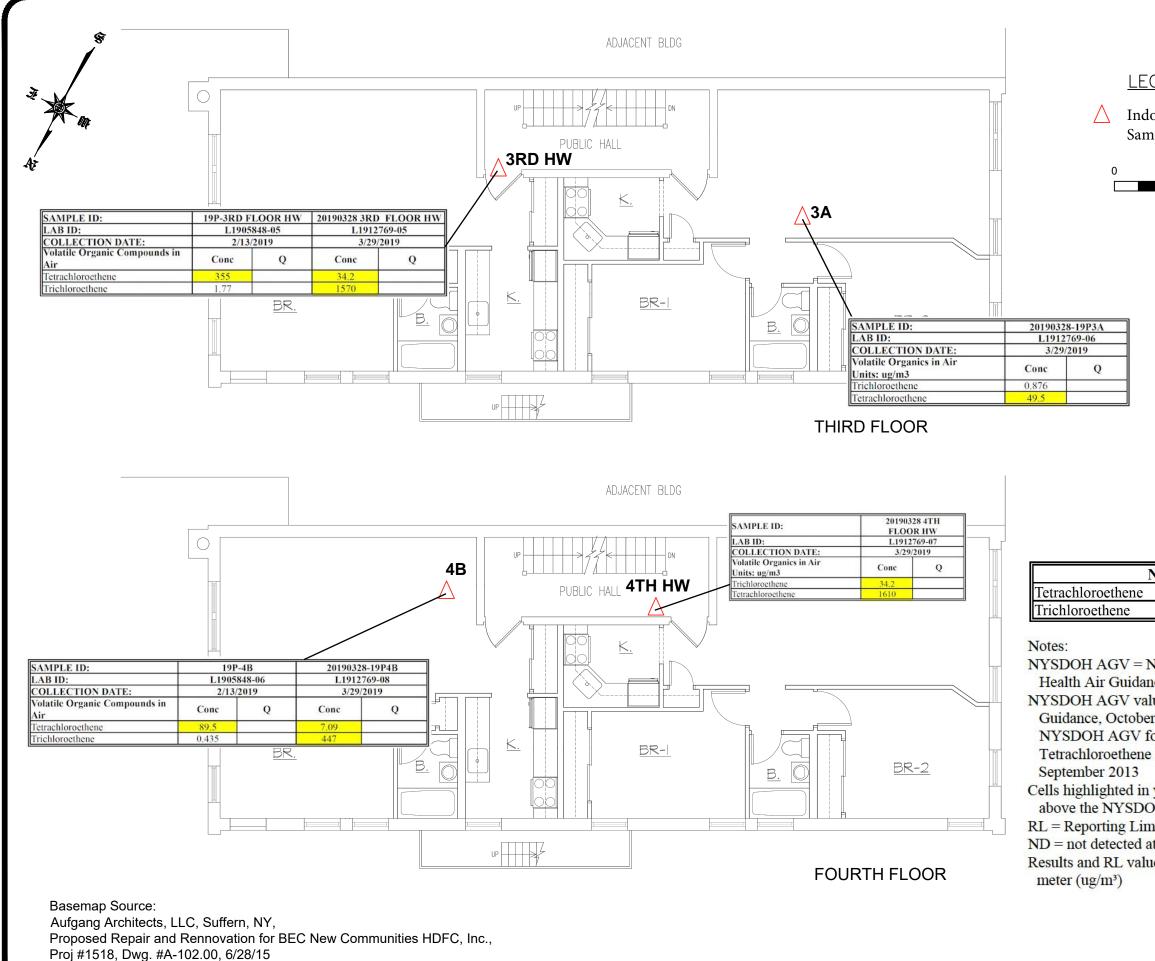
GEND loor Air and Outdoor Air nple Location 4' 8' 16' Drawing Scale	sıre 19 Patchen Avenue Brooklyn, New York	
NYSDOH AGVs	CONSULTANT CONSULTANT TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702 New York, NY 10001 O: 646-606-2379 F: 646-606-2379	
30 2 New York State Department of ance Values alues from NYSDOH Soil Vapor er 2006, except for the revised for PCE from Fact Sheet: te (PERC) in Indoor & Outdoor Air,	DRAWN BY LM CHECKED BY CZ Date December 2019 SCALE: As Noted	
n yellow indicate concentrations OH AGV mit at or above the RL lues are in micrograms per cubic	DRAWING TITLE. Indoor Air Samples, 1st and 2nd Floors (December 2017) DRAWING NO. Figure 7B	

GEND door Air and Outdoor Air mple Location 4' 8' 16' Drawing Scale	are 19 Patchen Avenue Brooklyn, New York
	CONSULTANT CONSULTANT TENEN ENVIRONMENTAL, LLC 121 West 27th Street Sulte 702 New York, NY 10001 0: 646-606-2379 F: 646-606-2379
NYSDOH AGVs 30 30 2 New York State Department of nce Values 30 alues from NYSDOH Soil Vapor 30 er 2006, except for the revised 30 for PCE from Fact Sheet: 30 e (PERC) in Indoor & Outdoor Air,	DRAWN BY LM CHECKED BY CZ Daff December 2019 SCALE: As Noted
n yellow indicate concentrations OH AGV mit at or above the RL ues are in micrograms per cubic	DRAWING TITLE. Indoor Air Samples, 3rd and 4th Floors (December 2017) DRAWING NO. Figure 7C

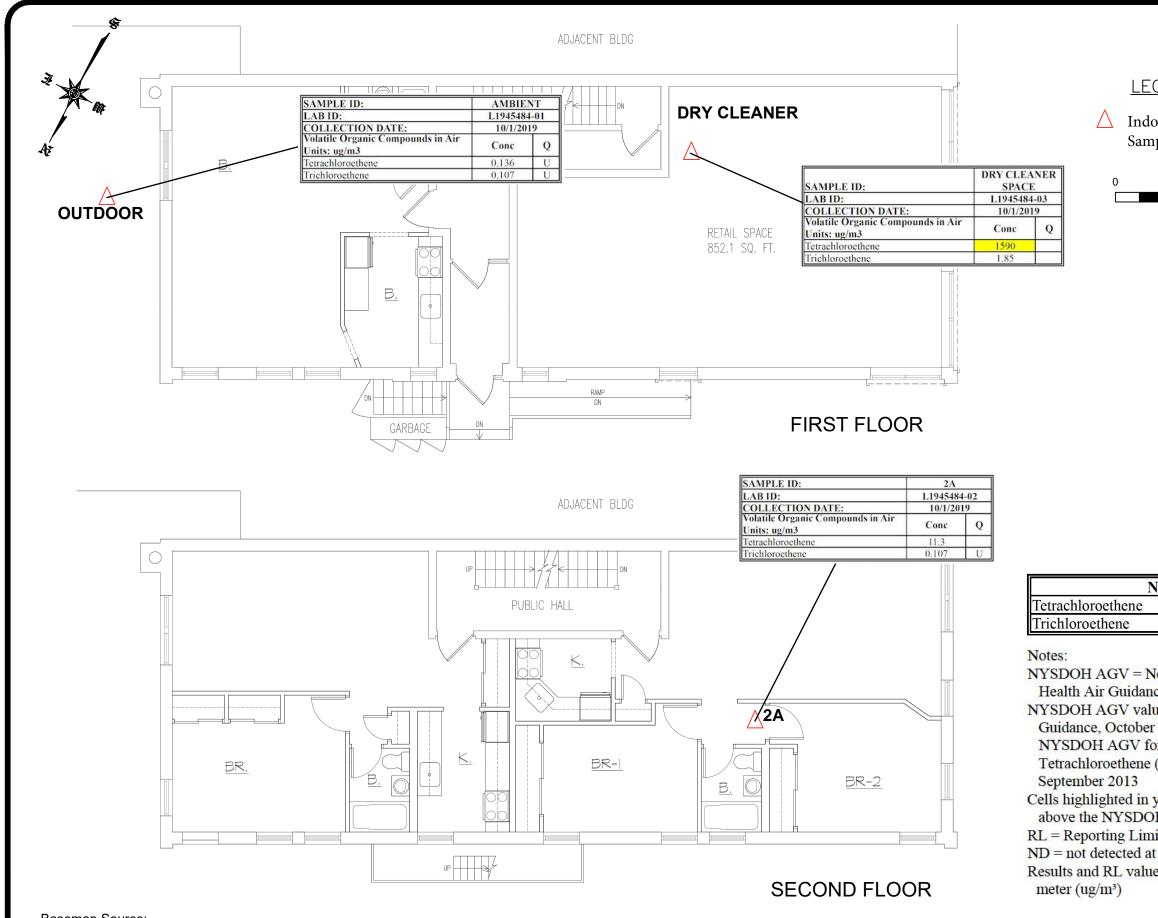
NYSDOH AGVs	
Tetrachloroethene	30
Trichloroethene	2


Notes:

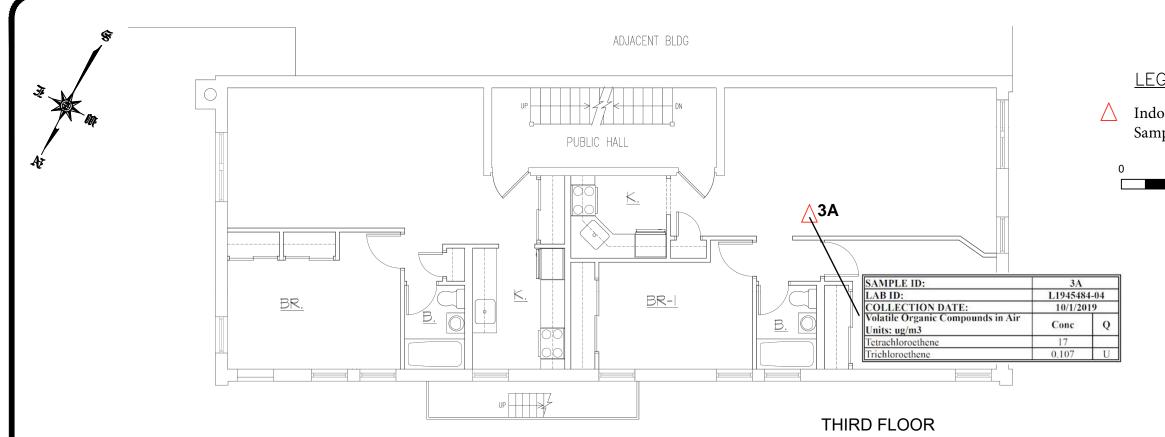
- NYSDOH AGV = New York State Department of Health Air Guidance Values
- NYSDOH AGV values from NYSDOH Soil Vapor Guidance, October 2006, except for the revised NYSDOH AGV for PCE from Fact Sheet: Tetrachloroethene (PERC) in Indoor & Outdoor Air, September 2013
- Cells highlighted in yellow indicate concentrations above the NYSDOH AGV


RL = Reporting Limit

- ND = not detected at or above the RL
- Results and RL values are in micrograms per cubic meter (ug/m³)


Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-100.00, 6/28/15

GEND oor Air and Outdoor Air nple Location 4' 8' 16' Drawing Scale	sıre 19 Patchen Avenue Brooklyn, New York	
LOOR HW 2-02 19 Q	CONSULTANT TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702 New X 10001 O: 646-606-2379 F: 646-606-2379	
NYSDOH AGVs 30 2 2 New York State Department of mce Values 30 alues from NYSDOH Soil Vapor er 2006, except for the revised for PCE from Fact Sheet: e (PERC) in Indoor & Outdoor Air,	DRAWN BY LM CHECKED BY CZ DATE December 2019 SCALE: As Noted	
n yellow indicate concentrations OH AGV mit at or above the RL ues are in micrograms per cubic	DRAWING TITLE. Indoor Air Samples, 1st and 2nd Floors (February and March 2019) DRAWING NO. Figure 8B	



GEND door Air and Outdoor Air mple Location 4' 8' 16' Drawing Scale	sır⊧ 19 Patchen Avenue Brooklyn, New York			
	CONSULTANT	ENVIRONMENTAL	TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702	New York, NY 10001 O: 646-606-2332 F: 646-606-2379
NYSDOH AGVs 30 2 2 New York State Department of mce Values 30 alues from NYSDOH Soil Vapor 30 er 2006, except for the revised 30 for PCE from Fact Sheet: 30 e (PERC) in Indoor & Outdoor Air,	DRAWN BY LM	онескер ву СД	December 2019	scale: As Noted
n yellow indicate concentrations OH AGV mit at or above the RL ues are in micrograms per cubic	DRAWING TITLE. Indoor Air Samples, 3rd	and 4th Floors February and March 2019)	DRAWING NO.	Figure 8C

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-102.00, 6/28/15

GEND oor Air and Outdoor Air nple Location 4' 8' 16' Drawing Scale	sır∈ 19 Patchen Avenue Brooklyn, New York
	CONSULTANT TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702 New York, NY 10001 0: 646-606-2379 F: 646-606-2379
NYSDOH AGVs 30 2 New York State Department of nce Values lues from NYSDOH Soil Vapor r 2006, except for the revised for PCE from Fact Sheet: e (PERC) in Indoor & Outdoor Air,	DRAWNBY LM CHECKED BY CZ DATE December 2019 SCALE: As Noted
yellow indicate concentrations DH AGV nit at or above the RL nes are in micrograms per cubic	DRAWING TITLE. Indoor Air Samples, 1st and 2nd Floors (October 2019) DRAWING NO. Figure 9A

LEGEND Indoor Air and Outdoor Air Sample Location 0 4' 8' 16' Drawing Scale	SITE	10 Datchen Avenue	Brooklyn, New York	
3A L1945484-04 10/1/2019 Conc Q 17 0.107 U	CONSULTANT	ENVIRONMENTAL	TENEN ENVIRONMENTAL, LLC 121 West 27th Street Suite 702	New York, NY 10001 O: 646-606-2332 F: 646-606-2379
NYSDOH AGVs				
Tetrachloroethene 30				
Trichloroethene2Notes:NYSDOH AGV = New York State Department of Health Air Guidance ValuesNYSDOH AGV values from NYSDOH Soil Vapor Guidance, October 2006, except for the revised NYSDOH AGV for PCE from Fact Sheet: Tetrachloroethene (PERC) in Indoor & Outdoor Air,	DRAWN BY LM	онескер ву СД	December 2019	scale: As Noted
September 2013 Cells highlighted in yellow indicate concentrations above the NYSDOH AGV RL = Reporting Limit ND = not detected at or above the RL Results and RL values are in micrograms per cubic meter (ug/m ³)	DRAWING TITLE. Indoor Air Samples,	3rd Floor (October 2019)	DRAWING NO.	Figure 9B

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-102.00, 6/28/15

TABLES

Table 1 - Soil Cleanup Objectives 19 Patchen Avenue - Brooklyn, NY

From Table 375-6.8(b) or CP51 Table 1: Restricted-Residential Use and Protection of Groundwater Soil Cleanup Objectives with highlighted site-specific SCOs.

Contaminant CAS Number		Restricted Residential			
Metals					
Arsenic	7440-38-2	16 ^f			
Barium	7440-39-3	620			
Beryllium	7440-41-7	72			
Cadmium	7440-43-9	4.3			
Chromium, hexavalenth	18540-29-9	110			
Chromium, trivalenth	16065-83-1	180			
Copper	7440-50-8	270			
Total Cyanide ^h		27			
Lead	7439-92-1	750			
Manganese	7439-96-5	2,000 ^f			
Total Mercury		0.81 ^j			
Nickel	7440-02-0	310			
Selenium	7782-49-2	180			
Silver	7440-22-4	180			
Zinc	7440-66-6	10,000 ^d			
PC	Bs/Pesticides				
2,4,5-TP Acid (Silvex)	93-72-1	100 ^a			
4,4'-DDE	72-55-9	8.9			
4,4'-DDT	50-29-3	7.9			
4,4'-DDD	72-54-8	13			
Aldrin	309-00-2	0.097			
alpha-BHC	319-84-6	0.48			
beta-BHC	319-85-7	0.36			
Chlordane (alpha)	5103-71-9	4.2			
delta-BHC	319-86-8	100 ^a			
Dibenzofuran	132-64-9	59			
Dieldrin	60-57-1	0.2			
Endosulfan I	959-98-8	24 ⁱ			
Endosulfan II	33213-65-9	24 ⁱ			
Endosulfan sulfate	1031-07-8	24 ⁱ			
Endrin	72-20-8	11			
Heptachlor	76-44-8	2.1			
Lindane	58-89-9	1.3			
Polychlorinated biphenyls	1336-36-3	1			

Contaminant	CAS Number	Restricted		
Contaminant	CAS Number	Residential		
Semivolatiles				
Acenaphthene	83-32-9	100 ^a		
Acenapthylene	208-96-8	100 ^a		
Anthracene	120-12-7	100 ^a		
Benz(a)anthracene	56-55-3	3.5		
Benzo(a)pyrene	50-32-8	3.5		
Benzo(b)fluoranthene	205-99-2	4.2		
Benzo(g,h,i)perylene	191-24-2	100 ^a		
Benzo(k)fluoranthene	207-08-9	3.9		
Chrysene	218-01-9	3.9		
Dibenz(a,h)anthracene	53-70-3	0.48		
Fluoranthene	206-44-0	100 ^a		
Fluorene	86-73-7	100 ^a		
Indeno(1,2,3-cd)pyrene	193-39-5	2.3		
m-Cresol	108-39-4	100 ^a		
Naphthalene	91-20-3	100 ^a		
o-Cresol	95-48-7	100ª		
p-Cresol	106-44-5	100 ^a		
Pentachlorophenol	87-86-5	6.7		
Phenanthrene	85-01-8	100 ^a		
Phenol	108-95-2	100 ^a		
Pyrene	129-00-0	100 ^a		

Contaminant	CAS Number	Restricted Residential	Protection of GW
	Volatiles		
1,1,1-Trichloroethane	71-55-6	100 ^a	0.68
1,1-Dichloroethane	75-34-3	26	0.2
1,1-Dichloroethene	75-35-4	100 ^a	0.3
1,2-Dichlorobenzene	95-50-1	100 ^a	1.
1,2-Dichloroethane	107-06-2	3.1	0.02
cis-1,2-Dichloroethene	156-59-2	100 ^a	0.2:
trans-1,2-Dichloroethene	156-60-5	100 ^a	0.1
1,3-Dichlorobenzene	541-73-1	49	2.4
1,4-Dichlorobenzene	106-46-7	13	1.
1,4-Dioxane	123-91-1	13	0.1
Acetone	67-64-1	100 ^b	0.0
Benzene	71-43-2	4.8	0.0
n-Butylbenzene	104-51-8	100 ^a	1:
Carbon tetrachloride	56-23-5	2.4	0.7
Chlorobenzene	108-90-7	100 ^a	1.
Chloroform	67-66-3	49	0.3
Ethylbenzene	100-41-4	41	
Hexachlorobenzene	118-74-1	1.2	
Methyl ethyl ketone	78-93-3	100 ^a	0.1
Methyl tert-butyl ether	1634-04-4	100 ^a	0.9
Methylene chloride	75-09-2	100 ^a	0.0
n-Propylbenzene	103-65-1	100 ^a	3.
sec-Butylbenzene	135-98-8	100 ^a	1
tert-Butylbenzene	98-06-6	100 ^a	5.
Tetrachloroethene	127-18-4	19	1.
Toluene	108-88-3	100 ^a	0.
Trichloroethene	79-01-6	21	
1,2,4-Trimethylbenzene	95-63-6	52	3.
1,3,5- Trimethylbenzene	108-67-8	52	8.
Vinyl chloride	75-01-4	0.9	0.0
Xylene (mixed)	1330-20-7	100 ^a	1.

Notes:

All soil cleanup objectives (SCOs) are in parts per million (ppm). NS=Not specified. Site-specific Track 4 SCOs are highlighted in yellow.

Protection of Groundwater SCOs are applicable to volatile organic compounds (VOCs) only.

Footnotes (designations are from Table in Part 375). See Technical Support Document (TSD).

a The SCOs for restricted-residential use were capped at a maximum value of 250 ppm.

b the SCOs for restricted-commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL),

the CRQL is used as the SCO value. f For constituents where the calculated SCO was lower than the rural soil background concentration as

determined by the Department and Department of Health rural soil survey, the rural soil background

concentration is used as the Track 2 SCO value for this use of the site.

i This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

Table 2 - Waste Disposal Quantities and Facility19 Patchen Avenue - Brooklyn, NY

Date	Material	Drums (55-gal)	Total Weight (lbs)	Facility
2/19/18	Soil + Groundwater	4	2,400	Spring Grove Resource Recovery Inc.
5/10/19	Soil	1	400	4879 Spring Grove Avenue Cincinnati, Ohio 45232

Table 3 - Soils Exceeding Restricted-Residential and Unrestricted Use SCOs After the Remedial Action19 Patchen Avenue - Brooklyn, NY

SAMPLE ID:			19P-SB-1(0-2)		
LAB ID:			L1638738-01		
COLLECTION DATE:	NY-RESRR	NY-UNRES	11/30/20	016	
Semivolatile Organic Compounds			Conc	Q	
Units: mg/kg			Conc	V	
Benzo(a)anthracene	1	1	3.5		
Benzo(a)pyrene	1	1	3.3		
Benzo(b)fluoranthene	1	1	4.2		
Benzo(k)fluoranthene	3.9	0.8	1.6		
Chrysene	3.9	1	3.8		
Dibenzo(a,h)anthracene	0.33	0.33	0.48		
Indeno(1,2,3-cd)pyrene	0.5	0.5	2.3		
Total Metals		-			
Barium, Total	400	350	620		
Lead, Total	400	63	750		
Mercury, Total	0.81	0.18	0.38		
Zinc, Total	10000	109	700		

Notes:

NY-UNRES = New York Unrestricted use Criteria current as of 5/2007

NY-RESRR = Restricted-Residential Criteria, New York Restricted use current as of 5/2007

Cells highlighted in yellow indicate concentrations above the NY-UNRES SCO value, but below the NY-RESRR SCO

Cells highlighted in orange indicate values above the NY-RESRR SCO

SCO = Soil Cleanup Objective

Q = Laboratory Data Qualifier

For U qualified entries, the MDL is shown

U = not detected at or above the MDL

Results values are in milligrams per kilogram (mg/kg)

Soil sample depths shown in feet (ft) within sample location

Table 4 – Post-Remedial Soil Vapor and Indoor Air Concentrations 19 Patchen Avenue - Brooklyn, NY

								-		Dec	ember 2017												February 2	2019		
LOCATION	PP-1		PP-2		PP-3		BASEMENT IA	14		2A	2B		3A		3B	4A	4B		OUTDOOR AMBI	ENT	19P-BASE	MENT	19P-1ST FL		19P-2B	
SAMPLING DATE	12/20/2017		12/20/201	7	12/20/2017	,	12/20/2017	12/20/20	17	12/20/2017	12/20/20	17	<u> </u>		<u>36</u> 12/20/2017	4A 12/20/2017	12/20/2017		12/20/2017	LINI	<u>19Р-БАЗЕ</u> 2/13/2		2/13/201		2/13/2019	
LAB SAMPLE ID	L1747261-01	1	L1747261-		L1747261-0	3	L1747350-06	L1747350)-05	L1747350-04	L1747350		L1747350-01		L1747350-08	L1747350-09	L1747350-02		L1747350-07		L190584	8-02	L1905848		L1905848-04	1
SAMPLE TYPE	SOIL_VAPO		SOIL_VAP		SOIL_VAPO		AIR	AIR	0.1	AIR	AIR	0.1	AIR	_	AIR	AIR	AIR		AIR	0 1	AIR		AIR	0.1	AIR	
1.1-Dichloroethane	Results	Qual U	Results 0.809	Qual U	Results 0.809	Qual U	Results Qual 0.809 U	Results 0.809	Qual U	Results Qua 0.809 U	1 Results 0.809	Qual U	Results Qu 0.809 L		Results Qual 0.809 U	Results Qual 0.809 U	-	ual U	Results 0.809	Qual U	Results 0.809	Qual	Results 0.809	Qual U		Qual U
1,1-Dichloroethene	1.26	U	0.793	U	0.793	U	0.079 U	0.079	Ŭ	0.079 U	0.079	U		J	0.079 U	0.079 U		Ŭ	0.079	U	0.079	Ŭ	0.079	Ŭ		U
1,1,1-Trichloroethane	1.74	U	1.09	U	1.09	U	0.109 U	0.109	U	0.109 U	0.109	U	0.109 L	-	0.109 U	0.109 U		U	0.109	U	0.109	U	0.109	U		U
1,1,2-Trichloroethane 1,1,2,2-Tetrachloroethane	1.74 2.18		<u>1.09</u> 1.37	U U	<u>1.09</u> 1.37	UU	<u>1.09 U</u> 1.37 U	1.09	U U	1.09 U 1.37 U	1.09	U U	<u>1.09 L</u> 1.37 L	-	1.09 U 1.37 U	1.09 U 1.37 U		U U	<u>1.09</u> 1.37	U U	1.09 1.37	U U	<u>1.09</u> 1.37	 		U U
1,2-Dibromoethane	2.44	υ	1.54	Ū	1.54	U	1.54 U	1.54	U	1.54 U	1.54	U	1.54 L	-	1.57 U	1.54 U		U	1.54	U	1.54	U	1.54	U		U
1,2-Dichlorobenzene	1.91	U	1.2	U	1.2	U	1.2 U	1.2	U	1.2 U	1.2	U	1.2 L	-	1.2 U	1.2 U		U	1.2	U	1.2	U	1.2	U		U
1,2-Dichloroethane 1,2-Dichloropropane	1.29 1.47		0.809	U U	0.809 0.924	UU	0.809 U 0.924 U	0.809	U U	0.809 U 0.924 U	0.809	U U	0.809 L 0.924 L	-	0.809 U 0.924 U	2.61 0.924 U		U U	0.809	U U	0.809	U U	0.809	U U		U U
1,2,4-Trichlorobenzene	2.36	υ	1.48	U	1.48	U	1.48 U		U	1.48 U	1.48	U	1.48 L	-	1.48 U	1.48 U		U	1.48	U	1.48	U U	1.48	U		U
1,2,4-Trimethylbenzene	1.56		0.983	U	0.983	U	0.983 U	0.983	U	0.983 U	0.983	U	0.983 L	J	0.983 U	0.983 U	0.983	U	0.983	U	0.983	U	0.983	U	0.983	U
1,3-Butadiene	0.704		0.442	<u>U</u>	0.442	UU	0.442 U 1.2 U	0.442	U U	0.442 U	0.442	U	0.442 L 1.2 L	-	0.442 U	0.442 U 1.2 U	0.772		0.442	U	0.442	U	0.442	<u> </u>		U U
1,3-Dichlorobenzene 1,3,5-Trimethylbenzene	1.91		0.983	U U	<u> </u>	U	<u>1.2 U</u> 0.983 U	1.2 0.983	U U	<u>1.2</u> U 0.983 U	0.983	U U	<u>1.2 L</u> 0.983 L	-	1.2 U 0.983 U	1.2 U 0.983 U		U U	<u> </u>	U U	1.2 0.983	U U	<u> </u>	U U		U
1,4-Dichlorobenzene	1.91	Ŭ	1.2	Ŭ	1.2	Ŭ	1.2 U	1.56	-	1170	2.8	-	11.1		64.3	112	56.1	-	1.2	Ŭ	1.2	Ŭ	1.2	Ŭ	2.04	
1,4-Dioxane	1.15	U	0.721	U	0.721	U	0.721 U	0.721	U	0.721 U	0.721	U	0.721 L		0.721 U	0.721 U		U	0.721	U	0.721	U	0.721	U		U
2-Butanone 2-Hexanone	73.1 1.3	U	<u>66.7</u> 0.82	U	<u>5.6</u> 0.82	U	<u>1.47 U</u> 0.82 U	1.47 0.82	U U	<u>1.47 U</u> 0.82 U	<u>1.47</u> 0.82	U U	<u>1.47 L</u> 0.82 L	-	<u>1.47 U</u> 0.82 U	3.21 0.82 U		U U	<u> </u>	U U	1.47 0.82	U U	<u>1.47</u> 0.82	U U		U U
2,2,4-Trimethylpentane	4.86		0.934	U	1.03		0.934 U	0.02	U	0.934 U	0.934	U	0.934 L		0.934 U	0.934 U		U	0.934	U	0.934	U	0.934	U		U
3-Chloropropene	0.995	U	0.626	U	0.626	U	0.626 U	0.626	U	0.626 U	0.626	U	0.626 L	-	0.626 U	0.626 U		U	0.626	U	0.626	U	0.626	U		U
4-Ethyltoluene 4-Methyl-2-pentanone	1.56 3.26		0.983	U U	0.983 2.05	UU	0.983 U 2.05 U	0.983	U U	0.983 U 2.05 U	0.983	U	0.983 L 2.05 L	-	0.983 U 2.05 U	0.983 U 2.05 U		U U	0.983	U U	0.983 2.05	U	0.983	U U		U U
Acetone	28.7		11.4		28		4.25	3.47		349	29.7		494	_	34.4	107	53.9	-	4.61	0	2.00	U U	3.37		17	-
Benzene	26.9		6.04		27.6		0.639 U	0.639	U	0.68	0.728			J	0.639 U	1.5	1.15		0.639	U	0.92		0.99		1.02	
Benzyl chloride	1.65		<u>1.04</u> 1.34	<u> </u>	1.04	<u>U</u>	<u>1.04 U</u> 1.34 U	1.04	U U	<u>1.04 U</u> 1.34 U	1.04	<u>U</u>		1	<u>1.04 U</u> 1.34 U	<u>1.04 U</u> 1.34 U		U U	<u> </u>	U U	1.04	<u> </u>	<u>1.04</u> 1.34	<u> </u>		U
Bromodichloromethane Bromoform	2.13 3.29		2.07	U U	<u>1.34</u> 2.07	UU	<u>1.34 U</u> 2.07 U	2.07	U U	2.07 U	2.07	U U			2.07 U	<u>1.34 U</u> 2.07 U		U	2.07	U	1.34 2.07	U U	2.07	U U		U U
Bromomethane	1.23	U	0.777	U	0.777	U	0.777 U	0.777	U	0.777 U	0.777	U	0.777 L	J	0.777 U	0.777 U	0.777	U	0.777	U	0.777	U	0.777	U	0.777	U
Carbon disulfide	0.99		0.623	<u> </u>	0.623	U	0.623 U	0.623	U	0.623 U	0.623	U	0.623 L	J	0.623 U	0.623 U		U	0.623	U	0.623	U	0.623	<u> </u>		U
Carbon tetrachloride Chlorobenzene	2 1.46		<u>1.26</u> 0.921	U U	<u>1.26</u> 0.921	UU	0.409 0.921 U	0.409	U	0.503 0.921 U	0.434	U	0.428 0.921 L	J	0.434 0.921 U	0.415 0.921 U	0.396	U	0.44 0.921	U	0.384	U	0.352	U	0.434	U
Chloroethane	0.839	U	0.528	U	0.528	U	0.528 U	0.528	U	0.528 U	0.528	U	0.528 L	J	0.528 U	0.528 U	0.528	U	0.528	U	0.528	U	0.528	U	0.528	U
Chloroform	1.55 0.657		0.977	U U	<u>1.6</u> 0.413		0.977 U 0.942	0.977	U	2.51 0.989	1.07		0.977 L 0.933	J	0.977 U 0.983	3.12 1.35	0.977	U	0.977	U	0.977	U	0.977	<u> </u>	2.01	
Chloromethane cis-1,2-Dichloroethene	1.26		0.413	<u> </u>	4.88	U	0.942 0.079 U	0.929	U	0.989 0.079 U	0.079	U	0.933 0.079 L	J	0.983 0.079 U	0.079 U	-	U	0.948	U	0.95	U	0.948	U		U
cis-1,3-Dichloropropene	1.44	Ŭ	0.908	Ŭ	0.908	U	0.908 U	0.908	Ŭ	0.908 U	0.908	Ŭ		Ĵ	0.908 U	0.908 U		Ŭ	0.908	Ŭ	0.908	Ŭ	0.908	Ŭ		Ŭ
Cyclohexane	1.09	<u> </u>	0.688	<u> </u>	0.885		0.688 U	0.688	U	0.688 U	0.688	U	0.688 L	-	0.688 U	0.688 U		U	0.688	U	0.688	U	0.688	<u> </u>		U
Dibromochloromethane Dichlorodifluoromethane	2.71 2.47	<u> </u>	<u>1.7</u> 2.4	<u> </u>	<u>1.7</u> 2.24	U	<u>1.7 U</u> 2.31	1.7 2.27	U	<u>1.7</u> U 2.36	2.33	U	<u>1.7 L</u> 2.18		<u>1.7 U</u> 2.4	<u>1.7</u> U 2.35	1.7 2.37	U	<u>1.7</u> 2.39	U	1.7 1.93	U	<u> </u>	<u> </u>	<u>1.7</u> 1.97	U
Ethanol	137		55.2		90.6		9.42 U	10.2		1160	196		835		164	37300	1480		9.42	U	9.42	U	11.6		239	
Ethyl Acetate	2.86	U	1.8	U	1.8	U	1.8 U	1.8	U	2.4	1.8	U	1.8 L		1.8 U	7.93		U	1.8	= C	1.8	U	1.8	U		U
Ethylbenzene Freon-113	1.38 2.44		0.869	U U	0.869	UU	0.869 U 1.53 U	0.869	U U	0.869 U 1.53 U	0.869	U U	0.869 L 1.53 L	-	0.869 U 1.53 U	0.869 U 1.53 U		U U	0.869	U U	0.869	U U	0.869	U U		U U
Freon-114	2.22	U	1.4	U	1.4	U	1.4 U	1.4	U	1.4 U	1.4	U	1.4 L	-	1.4 U	1.4 U	1.4	U	1.4	U	1.4	Ū	1.4	U	1.4	U
Heptane	3.41		0.943		20.1		0.82 U	0.82	U	0.82 U	0.82	U	0.82 L	-	0.82 U	0.82 U		U	0.82	= C	0.82	U	0.82	<u> </u>		U
Hexachlorobutadiene Isopropanol	3.39 11.1	<u> </u>	2.13	U	2.13 203	U	2.13 U 1.27	2.13	U U	2.13 U 9.09	2.13 693	U	2.13 L 17.7		2.13 U 25.6	2.13 U 29	2.13 43.5	U	<u>2.13</u> 1.31	U	2.13 1.66	U	<u>2.13</u> 1.95	<u> </u>	2.13 58	U
Methyl tert butyl ether	1.15	U	0.721	U	0.721	U	0.721 U	0.721	U	0.721 U	0.721	U	0.721 L	J	0.721 U	0.721 U		U	0.721	U	0.721	U	0.721	U		U
Methylene chloride	2.76	U	1.74	U	2.12		1.74 U		U	1.74 U		U		J	1.74 U			U	1.74	U	1.74	U	1.74	U		U
n-Hexane o-Xylene	7.72 1.38	U	0.73	U	0.821	U	0.705 U 0.869 U		U U	0.705 U 0.869 U		U U		J L	0.705 U 0.869 U			U U	0.705	U	0.705	U U	0.821	U		U U
p/m-Xylene	17		6.34		1.74	U	1.74 U		U	1.74 U		U		J	1.74 U			U	1.74	U	1.74	U	1.74	U		U
Styrene	1.35	U	0.852	U	0.852	U	0.852 U		U	0.852 U		U		J	0.852 U			U	0.852	U	0.852	U	0.852	U		U
Tertiary butyl Alcohol Tetrachloroethene	2.41 6.71	<u> </u>	<u>1.52</u> 7.59	<u> </u>	<u>1.52</u> 22	U	<u>1.52 U</u> 14.4	1.52 22.5	U	1.52 U 9.02	1.52 25.7	<u> </u>	<u>1.52 L</u> 5.31	J	1.52 U 20.9	77.6 54.7	2.1 22.5		<u>1.52</u> 13.1	U	1.52 82.7	U	1.52 290	<u> </u>	<u>1.52</u> 115	U
Tetrahydrofuran	2.34	U	1.47	U	1.47	U	14.4 1.47 U		U	1.47 U		U		J	1.47 U	1.47 U		U	1.47	U	1.47	U	1.47	U		U
Toluene	1.85		1.19	-	2.22	_	0.92	0.897		1.31	2.41		1.35		1.19	3.34	1.56		0.95	-	1.34		1.62		2.42	_
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	-		0.793	<u>U</u>	0.793	U	0.793 U		U	0.793 U		<u>U</u>		1	0.793 U	0.793 U		U	0.793	U	0.793	U	0.793	<u> </u>		U
Trichloroethene	1.44 1.71		0.908	U U	0.908 4.69	U	0.908 U 0.107 U		U U	0.908 U 0.107 U	0.908	U	0.908 L 0.167	J	0.908 U 0.129	0.908 U 0.365	0.908	U	0.908	U	0.908	U	0.908	<u> </u>	0.908	U
Trichlorofluoromethane	1.79	Ŭ	1.34	-	1.35		1.2	1.19	-	1.71	1.31		1.28		1.31	2.65	1.35		1.27		1.12	U	1.12	U		U
Vinyl bromide	1.39	U	0.874	U	0.874	U	0.874 U		U	0.874 U		U		J	0.874 U			U	0.874	U	0.874	U	0.874	U		U
Vinyl chloride	0.813	U	0.511	U	0.511	U	0.051 U	0.051	U	0.051 U	0.051	U	0.051 L	J	0.051 U	0.051 U	0.051	U	0.051	U	0.051	U	0.051	U	0.051	U

Notes: RL = Reporting Limit Q = Laboratory Data Qualifier For U qualified entries, the RL is shown U = not detected at or above the RL Results and RL values are in micrograms per cubic meter (ug/m3)

Table 4 – Post-Remedial Soil Vapor and Indoor Air Concentrations 19 Patchen Avenue - Brooklyn, NY

	Feb	oruary 2019, continu	ied				Marc	h 2019					Octobe	r 2019	
	100 100 EL 000 HU	100.40		20190328 1ST	20190328 2ND	2010022010 020	20190328 3RD	2010022010 824	20190328 4TH	2010022010 D4D	20100220 AMDUENT		24	DRY CLEANER	AMDIENT
LOCATION SAMPLING DATE	19P-3RD FLOOR HW 2/13/2019	/ 19P-4B 2/13/2019	AMBIENT 20190212 2/13/2019	FLOOR HW 3/29/2019	FLOOR HW 3/29/2019	2019032819 P2B 3/29/2019	FLOOR HW 3/29/2019	2019032819 P3A 3/29/2019	FLOOR HW 3/29/2019	2019032819 P4B 3/29/2019	20190328 AMBIENT 3/29/2019	2A 10/1/2019	3A 10/1/2019	SPACE 10/1/2019	AMBIENT 10/1/2019
LAB SAMPLE ID	L1905848-05	L1905848-06	L1905848-01	L1912769-02	L1912769-03	L1912769-04	L1912769-05	L1912769-06	L1912769-07	L1912769-08	L1912769-01	L1945484-02	L1945484-04	L1945484-03	L1945484-01
SAMPLE TYPE	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR
	Results Qual	`		Results Qual		Results Qual	Results Qual		Results Qual		Results Qual	Results Qual	Results Qual	Results Qual	Results Qual
1,1-Dichloroethane 1,1-Dichloroethene	0.809 U 0.079 U		0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U	0.809 U 0.079 U
1,1,1-Trichloroethane	0.109 U		0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U	0.109 U
1,1,2-Trichloroethane	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U	1.09 U
1,1,2,2-Tetrachloroethane	1.37 U		1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U	1.37 U
1,2-Dibromoethane 1,2-Dichlorobenzene	<u>1.54 U</u> 1.2 U	-	1.54 U 1.2 U	<u>1.54 U</u> 1.2 U	1.54 U 1.2 U	1.54 U 1.2 U	<u>1.54 U</u> 1.2 U	1.54 U 1.2 U	<u>1.54 U</u> 1.2 U	1.54 U 1.2 U	1.54 U 1.2 U	<u>1.54 U</u> 1.2 U	<u>1.54 U</u> 1.2 U	1.54 U 1.2 U	1.54 U 1.2 U
1,2-Dichloroethane	0.809 U		0.809 U	0.809 U	0.809 U	0.809 U	0.809 U	1.51	0.809 U	0.809 U	0.809 U	0.809 U	2.47	0.809 U	0.809 U
1,2-Dichloropropane	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U	0.924 U
1,2,4-Trichlorobenzene	1.48 U		1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U	1.48 U
1,2,4-Trimethylbenzene 1,3-Butadiene	0.983 U 0.442 U		0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.604	0.983 U 0.442 U	0.983 U 1.29	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U	0.983 U 0.442 U
1,3-Dichlorobenzene	1.2 U	-	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U		1.2 U	1.23 1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
1,3,5-Trimethylbenzene	0.983 U		0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U	0.983 U
1,4-Dichlorobenzene	84.2	10.9	1.2 U	2.7 0.721 U	25.7 0.721 U	21.6	90.8 0.721 U	7.27 0.721 U	70.9 0.721 U	24.4	1.2 U 0.721 U	66.7 0.721 U	2.2 0.721 U	3.01	1.2 U 0.721 U
1,4-Dioxane 2-Butanone	0.721 U 1.47 U	0.721 U 2.7	0.721 U 1.47 U	0.721 U 1.47 U	0.721 U 1.47 U	0.721 U 1.47 U	0.721 U 1.47 U	0.721 U 1.93	0.721 U 1.47 U	0.721 U 1.68	1.47 U	0.721 U 1.47 U	<u>0.721</u> U 1.47 U	0.721 U 1.47 U	1.47 U
2-Hexanone	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
2,2,4-Trimethylpentane	0.934 U		0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U	0.934 U
3-Chloropropene 4-Ethyltoluene	0.626 U 0.983 U		0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U	0.626 U 0.983 U
4-Methyl-2-pentanone	2.05 U		2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U	2.05 U
Acetone	52.7	37.3	2.38 U	7.06	21.5	25.2	43.7	24.7	40.9	30.2	3.4	13	24.9	6.53	3.87
Benzene Benzyl chloride	1.09 1.04 U	2.91 1.04 U	0.853 1.04 U	0.719 1.04 U	0.744 1.04 U	0.744 1.04 U	0.741 1.04 U	1.1 1.04 U	0.818 1.04 U	1.65 1.04 U	0.639 U 1.04 U	0.639 U 1.04 U	1.07 1.04 U	0.639 U 1.04 U	0.639 U 1.04 U
Bromodichloromethane	1.34 U		1.04 U	1.04 U	1.04 U	1.04 U	1.34 U	1.04 U	1.04 U	1.04 U	1.04 U	1.34 U	1.34 U	1.04 U	1.34 U
Bromoform	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U	2.07 U
Bromomethane	0.777 U		0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U	0.777 U
Carbon disulfide Carbon tetrachloride	0.623 U 0.396	0.623 U 0.346	0.623 U 0.34	0.623 U 0.528	0.626	0.623 U 0.51	0.623 U 0.522	0.623 U 0.554	0.623 U 0.585	0.623 U 0.51	0.623 U 0.541	0.623 U 0.447	0.623 U 0.44	0.623 U 0.484	0.623 U 0.44
Chlorobenzene	0.921 U		0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U	0.921 U
Chloroethane	0.528 U		0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U	0.528 U
Chloroform Chloromethane	0.977 U 1.14	1.11 2.62	0.977 U 0.95	0.977 U 1.19	0.977 U 1.21	1.89 1.36	0.977 U 1.32	0.977 U 1.8	0.977 U 1.32	0.977 U 2.23	0.977 U 1.11	<u>1.11</u> 1.17	0.977 U 1.9	0.977 U 1.06	0.977 U 1
cis-1,2-Dichloroethene	0.079 U		0.95 0.079 U	0.079 U	0.099	0.079 U	0.079 U	0.079 U	0.083	0.079 U	0.079 U	0.079 U	0.079 U	0.079 U	0.079 U
cis-1,3-Dichloropropene	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U
Cyclohexane	0.688 U 1.7 U		0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U	0.688 U 1.7 U
Dibromochloromethane Dichlorodifluoromethane	2	1.7 0	1.94	2.36	3.31	2.45	3.06	2.23	3.42	2.65	2.22	1.7 0	1.7 0	1.97	1.92
Ethanol	168	837	9.42 U	65	162	122	341	594	330	803	10.4	648	155	83.1	10.2
Ethyl Acetate	1.8 U		1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	1.8 U	3.82	1.8 U	27.2	1.8 U	1.8 U	1.8 U
Ethylbenzene Freon-113	0.869 U 1.53 U		0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U	0.869 U 1.53 U
Freon-114	1.60 U		1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.60 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Heptane	0.82 U		0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U	0.82 U
Hexachlorobutadiene Isopropanol	2.13 U 6.39	2.13 U 256	2.13 U 1.23 U	2.13 U 2.97	2.13 U 5.7	2.13 U 54.6	2.13 U 10.5	2.13 U 23.3	2.13 U 14.2	2.13 U 12.4	2.13 U 1.5	2.13 U 4.84	2.13 U 16.8	2.13 U 4.03	2.13 U 1.35
Methyl tert butyl ether	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U
Methylene chloride	1.74 U	1.74 U	1.74 U	1.74 U	1.74 U	1.74 U	3.72	25.2	3.34	1.74 U	1.74 U	1.74 U	4.55	1.74 U	1.74 U
n-Hexane	2.83 0.869 U	0.705 U 0.869 U	0.705 U	0.705 U	0.705 U 0.869 U	0.705 U 0.869 U	0.705 U	0.705 U	0.705 U		0.705 U	0.705 U	0.705 U	0.906 0.869 U	0.705 U 0.869 U
o-Xylene p/m-Xylene		0.869 U 2.22	0.869 U 1.74 U	0.869 U 1.74 U	0.869 U 1.74 U	0.869 U 1.74 U	0.869 U 1.74 U		0.869 U 1.74 U		0.869 U 1.74 U	0.869 U 1.74 U	0.869 U 1.74 U	0.869 U 1.74 U	1.74 U
Styrene	0.852 U	0.852	0.852 U	0.852 U	0.852 U	0.852 U	0.852 U		0.852 U		0.852 U	0.852 U	0.852 U	0.852 U	0.852 U
Tertiary butyl Alcohol		1.52 U	1.52 U		1.52 U	1.52 U	1.52 U		1.52 U		1.52 U	1.52 U	1.52 U	1.52 U	1.52 U
Tetrachloroethene Tetrahydrofuran		89.5 1.47 U	0.427 1.47 U	1070 1.47 U	1480 1.47 U	 1.47 U	1570 1.47 U	49.5 1.47 U	1610 1.47 U	 1.47 U	0.231 1.47 U	<u>11.3</u> 1.47 U	17 1.47 U	1590 1.47 U	0.136 U 1.47 U
Toluene	1.99	5.01	0.916	7.84	6.48	3	5.2	3.31	5.65	4.11	0.754 U	1.24	2.77	1.82	0.754 U
trans-1,2-Dichloroethene		0.793 U	0.793 U	0.793 U	0.793 U	0.793 U	0.793 U	0.793 U	0.793 U		0.793 U	0.793 U	0.793 U	0.793 U	0.793 U
trans-1,3-Dichloropropene Trichloroethene	0.908 U 1.77	0.908 U 0.435	0.908 U 0.107 U	0.908 U 29	0.908 U 47.5	0.908 U 6.61	0.908 U 34.2	0.908 U 0.876	0.908 U 34.2	0.908 U 7.09	0.908 U 0.107 U	0.908 U 0.107 U	0.908 U 0.107 U	0.908 U 1.85	0.908 U 0.107 U
Trichlorofluoromethane		1.12 U	1.12 U	1.26	1.2	1.12 U	1.2	1.13	1.15	1.17	1.12 U	1.12 U	1.12 U	1.85 1.12 U	1.12 U
Vinyl bromide	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U
Vinyl chloride	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U

Notes: RL = Reporting Limit Q = Laboratory Data Qualifier For U qualified entries, the RL is shown U = not detected at or above the RL Results and RL values are in micrograms per cubic meter (ug/m3)

Table 5 – Groundwater Exceeding Class GA AWQS 19 Patchen Avenue - Brooklyn, NY

SAMPLE ID:		MW-	1	MW-	1
LAB ID:		L163969	3-03	L183797	8-02
COLLECTION DATE:	NY-AWQS	12/7/20	16	9/21/20	18
Volatile Organic Compounds		Conc	0	Conc	0
Units: ug/l		Conc	V	Conc	V
Tetrachloroethene	5	18		12	

SAMPLE ID:		MW-1	D	MW-1D-	DUP	MW-1	-D
LAB ID:		L163969	3-04	L163969	3-05	L183797	8-01
COLLECTION DATE:	NY-AWQS	12/7/20	16	12/7/20	16	9/21/20	18
Volatile Organic Compounds		Conc	0	Conc	0	Conc	0
Units: ug/l		Cone	Q	Cone	V	Cone	Ų
Tetrachloroethene	5	0.4	J	0.3	J	0.18	U
2-Butanone	50	51		49		1.9	U

SAMPLE ID:		MW-	2	MW-	2
LAB ID:		L163969	3-02	L183797	8-03
COLLECTION DATE:	NY-AWQS	12/7/20	16	9/21/20	18
Volatile Organic Compounds	7	Conc	0	Conc	0
Units: ug/l		Conc	V	Conc	V
Tetrachloroethene	5	19		12	

SAMPLE ID:		19P-M	W-3	MW-	3
LAB ID:		L171474	8-01	L183797	8-08
COLLECTION DATE:	NY-AWQS	5/8/20	17	9/21/20	18
Volatile Organic Compounds Units: ug/l		Conc	Q	Conc	Q
Tetrachloroethene	5	0.7	U	72	
2-Butanone	50	13		10	II

SAMPLE ID:		MW-	4	MW-	4	MW-4 D	DUP
LAB ID:		L163954	8-03	L183797	8-04	L183797	8-05
COLLECTION DATE:	NY-AWQS	12/6/20	16	9/21/20	18	9/21/20	18
Volatile Organic Compounds	_	Conc	0	Conc	0	Conc	0
Units: ug/l		Conc	Ų	Conc	Ų	Conc	Ų
Chloroform	7	6.4		8.6		7.4	
Tetrachloroethene	5	26		23		19	

SAMPLE ID:		MW-	5	MW-	5
LAB ID:		L163954	8-02	L183797	8-06
COLLECTION DATE:	NY-AWQS	12/6/16		9/21/20	18
Volatile Organic Compounds	_	Cono	0	Como	
Units: ug/l		Conc	Q	Conc	V V
Tetrachloroethene	5	24		10	

SAMPLE ID:		MW-	6	MW-	6
LAB ID:		L163954	8-01	L183797	8-07
COLLECTION DATE:	NY-AWQS	12/6/20	16	9/21/20	18
Volatile Organic Compounds		Como	0	Conc	
Units: ug/l		Conc	Q	Conc	Q
Tetrachloroethene	5	12		12	

*NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. Cells highlighted in yellow indicate concentrations above the NY-AWQS

DUP = designation for duplicate sample

RL = Reporting limit

Q = Laboratory Data Qualifier

For U qualified entries, the MDL is shown

U = not detected at or above the MDL

For J qualified entries, the estimated concentration is shown

J = estimated value, indicating the detected value is below the RL, but above the MDL

Results are in micrograms per liter (µg/L)

Table 6 - Emerging Contaminant Sampling Results 19 Patchen Avenue - Brooklyn, NY

LAB ID: EPA- COLLECTION DATE: EPA- DWHS 1,4 DIOXANE BY 8270D-SIM DWHS DWHS 1,4-DIOXANE BY 8270D-SIM - - 1,4-DIOXANE DATED ALKYL ACIDS BY ISOTOPE DILUTION - - PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION - 0.07 Perfluoroptic assilonic Acid (PFBA) 0.07 0.07 Perfluoroptic assilonic Acid (PFBA) 0.07 0.07	Concentration 0.35	L1837978 9/21/201 Conc 0.0735		L1837978 9/21/201 Conc 0.0708		L1837978 9/21/201 Conc	8	L1837978- 9/21/201		L1837978 9/21/201		L1837978 9/21/201		L1837978 9/21/201		L1837978-	-08	L1837978	00
COLLECTION DATE: DWHS L4 DIOXANE BY 82700-SIM DWHS Units: ug/l - L4-DIOXANE - PERFLICORINATED ALKYLACIDS BY ISOTOPE DILUTION - Perfluctorobutancic Acid (PFPA) 0.07	Reference Concentration 0.35	Conc 0.0735	Q	Conc	Ĺ			9/21/201	8	9/21/201	8	9/21/201	8	0/21/201	0				.09
1,4 DIOXANE BY 8270D-SIM Units: ug/l 1,4-Dioxane PERFLUORINATED ALKYLACIDS BY ISOTOPE DILUTION Perfluorobutanoic Acid (PFBA) 0.07 Perfluoropentanoic Acid (PFPA) 0.07	Concentration 0.35	0.0735			Q	Conc										9/21/201	8	9/21/201	8
1.4-Dioxane PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION Perfluorobutanoic Acid (PFBA) 0.07 Perfluoropentanoic Acid (PFPA) 0.07	0.35	0.0735			ĮΫ.			0	~	C		C		C		6		0	
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION Perfluorobutanoic Acid (PFBA) 0.07 Perfluoropentanoic Acid (PFPA) 0.07			U	0.0708			Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q	Conc	Q
Perfluorobutanoic Acid (PFBA) 0.07 Perfluoropentanoic Acid (PFPeA) 0.07	-	0.00567			U	0.0735	U	0.0765	U	0.0735	U	0.0735	U	0.075	U	0.0694	U	-	-
Perfluoropentanoic Acid (PFPeA) 0.07	-	0.00567																	
		0.00367		0.00613		0.00776		0.00524		0.00464		0.00602		0.00863		0.00383		0.000127	U
Parfluorabutanasulfania Aaid (PEPS) 0.07		0.0102		0.0127		0.0242		0.00759		0.00696		0.00623		0.015		0.00652		0.000083	U
		0.00342		0.00333		0.00344		0.00261		0.00229		0.0035		0.00304		0.00142	J	0.000106	U
Perfluorohexanoic Acid (PFHxA) 0.07		0.0104		0.00957		0.016		0.00672		0.00655		0.00577		0.0125		0.00465		0.000122	U
Perfluoroheptanoic Acid (PFHpA) 0.07		0.0106		0.00763		0.0153		0.00548		0.00456		0.00653		0.012		0.00222		0.000089	U
Perfluorohexanesulfonic Acid (PFHxS) 0.07		0.00671	1	0.00433		0.00596		0.00225		0.00252		0.00312		0.00451		0.00097	J	0.000104	U
Perfluorooctanoic Acid (PFOA) 0.07		0.0457		0.0396		0.0804		0.041		0.039		0.061		0.0575		0.00762		0.000049	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) 0.07		0.0191		0.00018	U	0.000176	U	0.0103		0.012		0.00515		0.0066		0.00018	U	0.000187	U
Perfluoroheptanesulfonic Acid (PFHpS) 0.07		0.000144	U	0.000144	U	0.000141	U	0.000145	U	0.000476	J	0.000145	U	0.00014	U	0.000144	U	0.00015	U
Perfluorononanoic Acid (PFNA) 0.07		0.000093	U	0.00162	J	0.00144	J	0.000739	J	0.000816	J	0.000094	U	0.000848	J	0.00222		0.000097	U
Perfluorooctanesulfonic Acid (PFOS) 0.07		0.00455		0.0225		0.0418		0.0154		0.0151		0.011		0.0302		0.0171		0.00134	J
Perfluorodecanoic Acid (PFDA) 0.07		0.000176	U	0.000176	U	0.000173	U	0.000178	U	0.000178	U	0.000178	U	0.000172	U	0.000177	U	0.000184	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) 0.07		0.000269	U	0.000269	U	0.000264	U	0.000271	U	0.000272	U	0.000272	U	0.000263	U	0.00027	U	0.000281	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) 0.07		0.000232	U	0.000232	U	0.000228	U	0.00138	J	0.000234	U	0.000234	U	0.000227	U	0.000233	U	0.000242	U
Perfluoroundecanoic Acid (PFUnA) 0.07		0.000177	U	0.000177	U	0.000174	U	0.000178	U	0.000179	U	0.000179	U	0.000173	U	0.000178	U	0.000184	U
Perfluorodecanesulfonic Acid (PFDS) 0.07		0.000206	U	0.000206	U	0.000202	U	0.000207	U	0.000208	U	0.000208	U	0.000201	U	0.000207	U	0.000215	U
Perfluorooctanesulfonamide (FOSA) 0.07		0.00021	U	0.00021	U	0.000206	U	0.000212	U	0.000212	U	0.000212	U	0.000205	U	0.000211	U	0.000219	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA) 0.07		0.000345	U	0.000345	U	0.000339	U	0.000348	U	0.000349	U	0.000349	U	0.000338	U	0.000346	U	0.00036	U
Perfluorododecanoic Acid (PFDoA) 0.07		0.000085	U	0.000085	U	0.000083	U	0.000085	U	0.000086	U	0.000086	U	0.000083	U	0.000085	U	0.000088	U
Perfluorotridecanoic Acid (PFTrDA) 0.07		0.000084	U	0.000084	U	0.000082	U	0.000084	U	0.000085	U	0.000085	U	0.000082	U	0.000084	U	0.000087	U
Perfluorotetradecanoic Acid (PFTA) 0.07		0.000067	U	0.000067	U	0.000065	U	0.000067	U	0.000067	U	0.000067	U	0.000065	U	0.000067	U	0.00007	U
Notes:																			
EPA-DWHS - EPA Drinking Water Health Advisory																			
O - Laboratory Oualifier																			
J - Estimated Value																			
U - the MDL is shown																			
MDL - Method of Detection Limit																			
ug/l - Micrograms per liter																			

Table 7 – Investigation Derived Waste (IDW) Characterization Data for Disposal19 Patchen Avenue - Brooklyn, NY

LOCATION SAMPLING DATE		19PWC- 12/7/201		DRUM 4/16/201	
LAB SAMPLE ID		L1745037		L1915442	
SAMPLE TYPE		SOIL		SOIL	
	Units	Results	Qual	Results	Qua
General Chemistry Solids, Total	%	83.3		00 5	
pH (H)	SU	7.3		- 88.5	_
Cyanide, Reactive	mg/kg	10	U	-	
Sulfide, Reactive	mg/kg	10	U U	-	_
Ignitability of Solids		1 10			
Ignitability		NI	U	-	-
Extractable Petroleum Hydroca	bons				
Total EPH	mg/kg	290		-	-
Semivolatile Organics					
Acenaphthene	mg/kg	-	-	0.092	J
1,2,4-Trichlorobenzene	mg/kg	-	-	0.18	U
Hexachlorobenzene	mg/kg	-	-	0.11	<u> </u>
Bis(2-chloroethyl)ether	mg/kg	-	-	0.17	<u>U</u>
2-Chloronaphthalene	mg/kg	-	-	0.18	U U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	mg/kg mg/kg	-	-	0.18 0.18	U
1,4-Dichlorobenzene	mg/kg	-	-	0.18	U
3,3'-Dichlorobenzidine	mg/kg	-	-	0.18	U
2,4-Dinitrotoluene	mg/kg	-	-	0.18	<u> </u>
2,6-Dinitrotoluene	mg/kg			0.10	<u> </u>
Fluoranthene	mg/kg		_	2.5	
4-Chlorophenyl phenyl ether	mg/kg	_	-	0.18	U
4-Bromophenyl phenyl ether	mg/kg	-	-	0.18	<u> </u>
Bis(2-chloroisopropyl)ether	mg/kg	-	-	0.10	<u>U</u>
Bis(2-chloroethoxy)methane	mg/kg	-	_	0.22	<u> </u>
Hexachlorobutadiene	mg/kg	_	-	0.18	<u> </u>
Hexachlorocyclopentadiene	mg/kg	-	-	0.53	U
Hexachloroethane	mg/kg	-	-	0.15	Ū
Isophorone	mg/kg	-	-	0.17	Ū
Naphthalene	mg/kg	-		0.047	J
Nitrobenzene	mg/kg	-	-	0.17	U
NDPA/DPA	mg/kg	-	-	0.15	U
n-Nitrosodi-n-propylamine	mg/kg	-	-	0.18	U
Bis(2-ethylhexyl)phthalate	mg/kg	-	-	0.18	U
Butyl benzyl phthalate	mg/kg	-	-	0.18	U
Di-n-butylphthalate	mg/kg	-	-	0.18	U
Di-n-octylphthalate	mg/kg	-	-	0.18	U
Diethyl phthalate	mg/kg	-	-	0.18	U
Dimethyl phthalate	mg/kg	-	-	0.18	U
Benzo(a)anthracene	mg/kg	-	-	1.4	
Benzo(a)pyrene	mg/kg	-	-	1.2	
Benzo(b)fluoranthene	mg/kg	-	-	1.7	
Benzo(k)fluoranthene	mg/kg	-	-	0.5	
	mg/kg	-	-	1.5	
Acenaphthylene Anthracene	mg/kg mg/kg	-	-	0.14 0.25	J
Benzo(ghi)perylene	mg/kg	-	-	0.25	
Fluorene	mg/kg	-	-	0.099	J
Phenanthrene	mg/kg	-	-	1.6	
Dibenzo(a,h)anthracene	mg/kg	_		0.16	
Indeno(1,2,3-cd)pyrene	mg/kg	-	-	0.73	
Pyrene	mg/kg	_	-	2.3	
Biphenyl	mg/kg	_	-	0.42	U
4-Chloroaniline	mg/kg	_	-	0.18	Ū
2-Nitroaniline	mg/kg	-	-	0.18	Ū
3-Nitroaniline	mg/kg	_	-	0.18	Ū
4-Nitroaniline	mg/kg	-	-	0.18	Ū
Dibenzofuran	mg/kg	-	-	0.059	J
2-Methylnaphthalene	mg/kg	-	-	0.024	J
1,2,4,5-Tetrachlorobenzene	mg/kg	-		0.18	Ū
Acetophenone	mg/kg	-	-	0.18	U
2,4,6-Trichlorophenol	mg/kg	-	-	0.11	U
o-Chloro-m-cresol	mg/kg	-	-	0.18	U
2-Chlorophenol	mg/kg	-	-	0.18	U
2,4-Dichlorophenol	mg/kg	-	-	0.17	U
2,4-Dimethylphenol	mg/kg	-	-	0.18	U
2-Nitrophenol	mg/kg	-	-	0.4	U
1-Nitrophenol	mg/kg	-	-	0.26	U
2,4-Dinitrophenol	mg/kg	-	-	0.89	U
1,6-Dinitro-o-cresol	mg/kg	-	-	0.48	U
Pentachlorophenol	mg/kg	-	-	0.15	U
Phenol	mg/kg	-	-	0.18	<u> </u>
2-Methylphenol	mg/kg	-	-	0.18	<u>U</u>
3-Methylphenol/4-Methylphenol	mg/kg	-	-	0.27	<u>U</u>
2,4,5-Trichlorophenol	mg/kg	-	-	0.18	U U
Benzoic Acid	mg/kg			0.6 0.18	
Benzyl Alcohol Carbazole	mg/kg	-	-	0.18	<u>U</u> J
CLP Metals	mg/kg	-	-	U.17	J
Arsenic, TCLP	mg/l	1	U	_	
Barium, TCLP	mg/l	1.04		-	-
Cadmium, TCLP	mg/l	0.1	U	-	-
Chromium, TCLP	mg/l	0.1	- U	-	-
_ead, TCLP	mg/l	0.2	J	-	-
Vercury, TCLP	mg/l	0.104	U	-	-
Selenium, TCLP	mg/l	0.001	U	-	-
Selenium, TCLP Silver, TCLP	mg/l	0.5	U U	-	-
Fotal Metals	/I	0.1	0	-	-
Arsenic, Total	mg/kg	-	-	4.42	
Barium, Total	mg/kg	-		156	
Cadmium, Total	mg/kg	-	-	0.264	J
	1	1		10.4	5

Table 7 – Investigation Derived Waste (IDW) Characterization Data for Disposal19 Patchen Avenue - Brooklyn, NY

		1		075	
Lead, Total Mercury, Total	mg/kg mg/kg		-	275 0.243	
Selenium, Total	mg/kg	-	-	0.243	J
Silver, Total	mg/kg	_	-	0.448	Ū
Volatile Organics		!			
Methylene chloride	mg/kg	-	-	0.0061	U
1,1-Dichloroethane	mg/kg	-	-	0.0012	U
Chloroform	mg/kg	-	-	0.0018	U
Carbon tetrachloride	mg/kg	-	-	0.0012	U
1,2-Dichloropropane	mg/kg	-	-	0.0012	<u> </u>
Dibromochloromethane 1,1,2-Trichloroethane	mg/kg mg/kg	-	-	0.0012	U U
Tetrachloroethene	mg/kg	-	_	0.00093	0
Chlorobenzene	mg/kg	-	-	0.00061	U
Trichlorofluoromethane	mg/kg	-	-	0.0049	U
1,2-Dichloroethane	mg/kg	-	-	0.0012	U
1,1,1-Trichloroethane	mg/kg	-	-	0.00061	U
Bromodichloromethane	mg/kg	-	-	0.00061	<u> </u>
trans-1,3-Dichloropropene	mg/kg	-	-	0.0012	<u>U</u>
cis-1,3-Dichloropropene 1,3-Dichloropropene, Total	mg/kg mg/kg	-	-	0.00061	U U
1,1-Dichloropropene	mg/kg	-	-	0.00061	<u> </u>
Bromoform	mg/kg	_	-	0.0049	<u> </u>
1,1,2,2-Tetrachloroethane	mg/kg	-	-	0.00061	Ū
Benzene	mg/kg	-	-	0.00061	U
Toluene	mg/kg	-	-	0.0012	U
Ethylbenzene	mg/kg	-	-	0.0012	U
Chloromethane	mg/kg	-	-	0.0049	<u> </u>
Bromomethane	mg/kg	-	-	0.0024	<u>U</u>
Vinyl chloride Chloroethane	mg/kg mg/kg	-	-	0.0012	U U
1,1-Dichloroethene	mg/kg	-	-	0.0024	<u> </u>
trans-1,2-Dichloroethene	mg/kg	_	-	0.0012	<u> </u>
Trichloroethene	mg/kg	-	-	0.00061	U
1,2-Dichlorobenzene	mg/kg	-	-	0.0024	U
1,3-Dichlorobenzene	mg/kg	-	-	0.0024	U
1,4-Dichlorobenzene	mg/kg	-	-	0.0024	U
Methyl tert butyl ether	mg/kg	-	-	0.0024	<u> </u>
p/m-Xylene o-Xylene	mg/kg	-	-	0.0024	U U
Xylenes, Total	mg/kg mg/kg	-	-	0.0012	U
cis-1,2-Dichloroethene	mg/kg	-	_	0.0012	<u> </u>
1,2-Dichloroethene, Total	mg/kg	-	-	0.0012	U
Dibromomethane	mg/kg	-	-	0.0024	U
Styrene	mg/kg	-	-	0.0012	U
Dichlorodifluoromethane	mg/kg	-	-	0.012	U
Acetone	mg/kg	-	-	0.0058	J
Carbon disulfide	mg/kg	-	-	0.012	<u> </u>
2-Butanone Vinyl acetate	mg/kg mg/kg	-	-	0.012	U U
4-Methyl-2-pentanone	mg/kg	-	-	0.012	<u> </u>
1,2,3-Trichloropropane	mg/kg	_	-	0.0024	<u> </u>
2-Hexanone	mg/kg	-	-	0.012	U
Bromochloromethane	mg/kg	-	-	0.0024	U
2,2-Dichloropropane	mg/kg	-	-	0.0024	U
1,2-Dibromoethane	mg/kg	-	-	0.0012	U
1,3-Dichloropropane	mg/kg	-	-	0.0024	U
1,1,1,2-Tetrachloroethane	mg/kg	-	-	0.00061	U U
Bromobenzene n-Butylbenzene	mg/kg mg/kg	-	-	0.0024	
sec-Butylbenzene	mg/kg		-	0.0012	<u> </u>
tert-Butylbenzene	mg/kg	-	-	0.0024	U
o-Chlorotoluene	mg/kg	-	-	0.0024	U
p-Chlorotoluene	mg/kg	-	-	0.0024	U
1,2-Dibromo-3-chloropropane	mg/kg	-	-	0.0036	U
Hexachlorobutadiene	mg/kg	-	-	0.0049	U
Isopropylbenzene	mg/kg	-	-	0.0012	U
p-lsopropyltoluene Naphthalene	mg/kg mg/kg	-	-	0.0012	U U
Acrylonitrile	mg/kg	-	-	0.0049	U
n-Propylbenzene	mg/kg	-	-	0.0012	<u> </u>
1,2,3-Trichlorobenzene	mg/kg	-	-	0.0024	U
1,2,4-Trichlorobenzene	mg/kg	-	-	0.0024	U
1,3,5-Trimethylbenzene	mg/kg	-	-	0.0024	U
1,2,4-Trimethylbenzene	mg/kg	-	-	0.0024	<u> </u>
1,4-Dioxane	mg/kg	-	-	0.097	U
p-Diethylbenzene	mg/kg	-	-	0.0024	<u>U</u>

p-Dietriyiberizerie	IIIY/KY	-	-	0.0024	0
p-Ethyltoluene	mg/kg	-	-	0.0024	C
1,2,4,5-Tetramethylbenzene	mg/kg	-	-	0.0024	С
Ethyl ether	mg/kg	-	-	0.0024	U
trans-1,4-Dichloro-2-butene	mg/kg	-	-	0.0061	U

Notes:

TCLP = Toxicity Characteristic Leachate Procedure

MDL = Maximum Detection Limit

Qual = Laboratory Data Qualifier

For U qualified entries, the MDL is shown

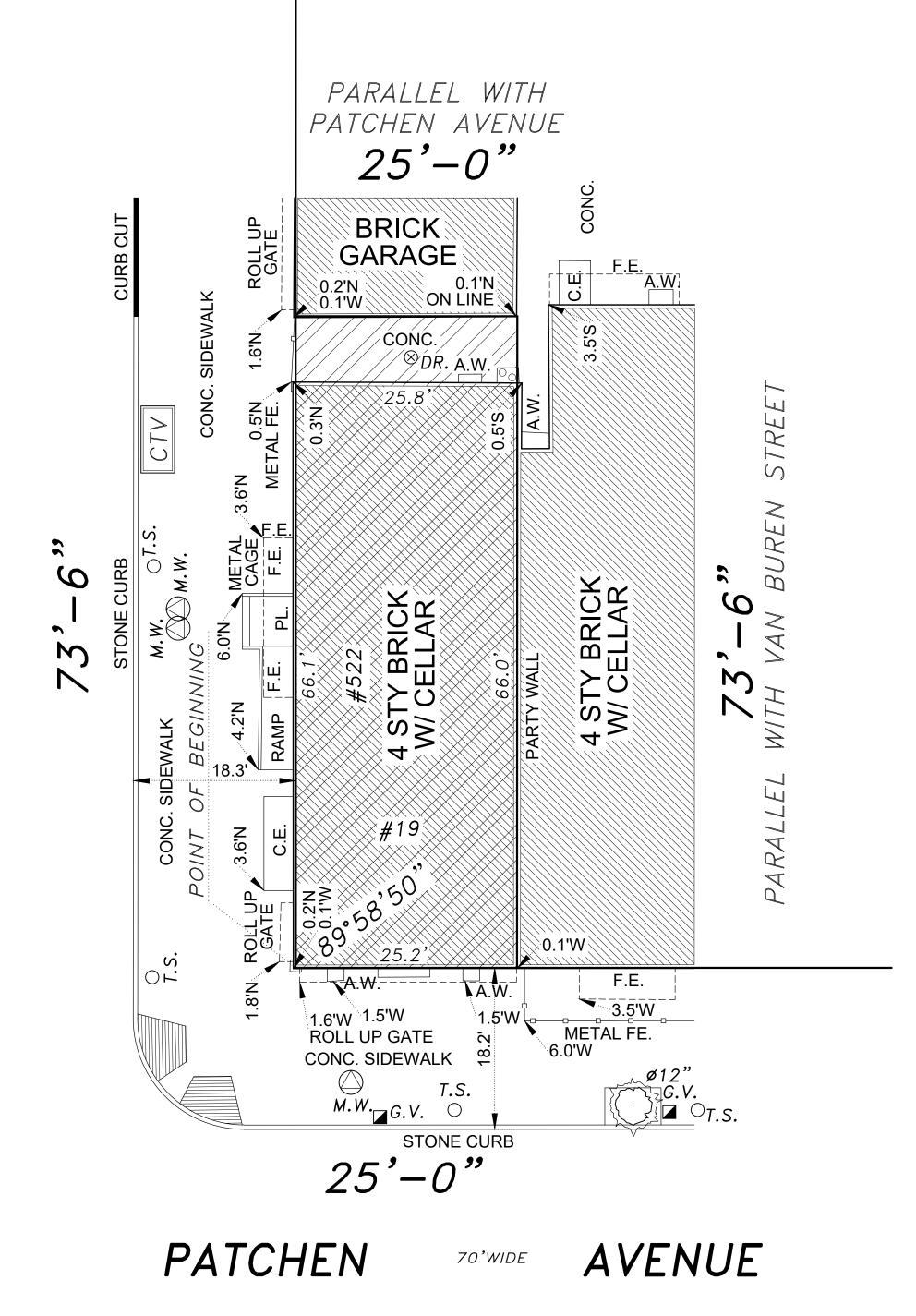
U = not detected at or above the MDL

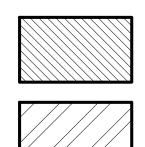
For J qualified entries, the estimated concentration is shown

J = estimated value, indicating the detected value is below the RL, but above the MDL

Results and MDL values are in milligrams per liter (mg/l)

-- = No standard


SU = Standard Units


mg/kg = milligrams per kilogram

NI = Not Igntable

APPENDIX A – Survey Map, Metes and Bounds

ЈОВ NO. В 1618-8-EN SURVEYED ON: MAY 18, 2018

- BUILDING FOOTPRINT

ENVIRONMENTAL EASEMENT

	ALL WRITTEN SURVEY SUPP					ETS NO	TED ON	I THIS	ні	CS	SC	AL	E -	 	 S	CA	LE	1:20
	1.52	25 m	3.0	5 m	4.5	7 m	6.1	0 m	7.6	52 m						1	5.24	meters
	2.5 f	7.5	ó f	12.	5 f	17.	5 f	. ~~	.5 f									
() 5	f	10) f	1	5 f	2) f	2	5 f							50	feet

<u>NOTE:</u>

RE

4

X

This property is subject to an environmental easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the New York Environmental Conservation Law. The engineering and institutional controls for this Easement are set forth in the Site Management Plan (SMP). A copy of the SMP must be obtained by any party with an interest in the property. The SMP can be obtained from NYS Department of Environmental Conservation, Division of Environmental Remediation, Site Control Section, 625 Broadway, Albany, NY 12233 or at derweb@dec.ny.gov

ENVIRONMENTAL EASEMENT DESCRIPTION

Section 3, Block 1618, Lot 8

inches to a point;

All that certain plot, piece or parcel of land with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at the corner formed by the intersection of the easterly side of Patchen Avenue (70 feet wide) with the southerly side of Van Buren Street (70 feet wide); RUNNING THENCE easterly along the southerly side of Van Buren Street, 73 feet 6

THENCE southerly parallel with Patchen Avenue, 25 feet to a point;

THENCE westerly parallel with Van Buren Street and part of distance through a party wall, 73 feet 6 inches to a point on the easterly side of Patchen Avenue;

THENCE northerly along the easterly side of Patchen Avenue, 25 feet to the southerly side of Van Buren Street at the point or place of BEGINNING.

LOT AREA = 1837.50 sq.ft. = 0.0422 acre

FENCE	WOOD FE.
UTILITY POLE	······································
PARKING METER	
OIL FILL	······@0.
MONITORING WELL	
TRAFFIC LIGHT	
LIGHT	
STREET LIGHT	
FIRE HYDRANT	
SIAMESE CONNECTION	
SHUT OFF VALVE	□ G.V ⊘ W.V □ W.
HANDICAPPED PARKING	&
EXISTING TREE	······
EXISTING TREE OF ARKING #12" DRAINS &	<i>DR.</i> ⊠ <i>D</i>
ROOF OVER × 43.15 T EXISTING ELEVATIONS × 42.93 F CEV ESTABLISHED CRADES × 42.93 F	TOP OF CURB
CURB AND CURB CUT	CURB CUT
OVERHEAD SERVICE	OH.S.W.
CABLE TV MANHOLE ······	CTV
MANHOLES ····· (E) ····· (T)	🕅 🕲 RIM_E INV.EL
CATCH BASIN	С.В.
FIRE ESCAPE	F.
PLATFORM	
BASEMENT ENTRANCE	В.
CELLAR ENTRANCE	C.
AIR WAY	A.V
BAY WINDOW	B.V
CONCRETE	CON
OVERHANG	
AIR CONDITION	A
METAL	
NORTH OF PROPERTY LINE	
SOUTH OF PROPERTY LINE	
EAST OF PROPERTY LINE.	
WEST OF PROPERTY LINE	

SUBSURFACE UTILITIES ARE NOT GUARANTEED BY SURVEYOR. HIGH CAUTION RECOMMENDED AND VERIFICATION WITH PROPER CITY AGENCIES, IS MANDATORY BEFORE COMMENCING ALL NEW WORK.

ALL SUBSURFACE AND OVERHEAD UTILITIES (AS TO SIZE , TYPE AND DEPTH) SHOWN ON THIS SURVEY ARE TAKEN FROM RECORDS OF GOVERNMENTAL AGENCIES AND UTILITY COMPANIES. UNLESS OTHERWISE NOTED AND SHOWN COVER OR DEPTH OF UTILITIES WHICH DERIVED FROM FIELD MEASUREMENTS SHOWN ON THIS SURVEY SHOULD BE

VERIFIED WITH PROPER AGENCY PRIOR TO CONSTRUCTION OF PROJECT. INVERT ELEVATIONS ARE DERIVED FROM CITY AGENCY RECORDS WHEN NOT AVAILABLE BY FIELD SURVEY AND NOTED AS "PER RECORD" ON THE SURVEY

ALL SUBSURFACE UTILITY AS TO LOCATION AND DEPTH, SHOULD BE RECHECKED AND LEGAL GRADES SHOULD BE VERIFIED WITH THE TOPOGRAPHICAL BUREAU, PREFERABLY IN WRITING BEFORE COMMENCING CONSTRUCTION.

THIS IS TO CERTIFY THAT THERE ARE NO STREAMS OR NATURAL WATER COURSES ON THE SURVEYED PROPERT EXCEPT AS SHOWN AND/OR DESCRIBED ON THIS SURVEY.

ALL OPERATIONS OF UNDERGROUND FACILITIES AND ALL EXCAVATORS ARE OBLIGATED TO COMPLY WITH ARTICLE 36 OF THE GENERAL BUSINESS LAW AND WITH PROVISIONS OF INDUSTRIAL CODE PART (RULE NO.35) BEFORE ANY EXCAVATION OR DEMOLITION IS COMMENCED. EVERY EXCAVATOR IS REQUIRED BY THESE LAWS TO GIVE ADVANCE NOTICE TO EVERY OPERATOR OF UNDERGROUND FACILITIES OF HIS INTENT TO PERFORM EXCAVATION OR DEMO-LITION WORK IN THE SPECIFIED AREA

ALL ELEVATIONS SHOWN REFER TO THE NAVD 1988 DATUM. TO OBTAIN: - NGVD 1929 DATUM - ADD 1.098 FEET - BROOKLYN BOROUGH DATUM - SUBTRACT 1.447 FEET

-UNDERGROUND UTILITIES NOTES-

UNDERGROUND, OVERHEAD AND GROUND LEVEL UTILITIES ARE NOT GUARANTEED AS TO ACCURACY, EXACT LOCATION, TYPE OR USE, ACTIVE OR INACTIVE. VERIFICATION IS MANDATORY WITH MUNICIPAL AGENCIES, PUBLIC AND PRIVATE UTILITY COMPANIES PRIOR TO TAKING TITLE AND OR DESIGN WORK. BOUNDARIES ARE NOT GUARANTEED UNLESS SO NOTED.

> PROFESSIONAL LAND SURVEYOR **RICHARD TOM** N.Y.S. L.L.S. 049844 7914 ROCKAWAY BEACH BLVD ROCKAWAY BEACH, NY 11693 TEL. 718-474-7700

UNAUTHORIZED ALTERATION OR ADDITION TO THIS SURVEY IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW. COPIES OF THIS SURVEY MAP NOT BEARING THE LAND SURVEYOR'S INKED SEAL OR EMBOSSED SEAL SHALL NOT BE CONSIDERED TO BE A VALID COPY. GUARANTEES OR CERTIFICATIONS INDICATED HEREON SHALL RUN ONLY TO THE PERSON FOR WHOM THE SURVEY IS PREPARED AND ON HIS BEHALF TO THE TITLE COMPANY, GOVERNMENTAL AGENCY AND LENDING INSTITUTION LISTED HEREON, AND TO THE ASSIGNEES OF THE LENDING INSTITUTION. GUARANTEES OR CERTIFICATIONS ARE NOT TRANSFERABLE TO ADDITIONAL INSTITUTIONS OR SUBSEQUENT OWNERS.

GUARANTEED TO: New York State Department of Environmental Conservation CITY: BROOKLYN COUNTY: KINGS BLOCK: 1618 LOT(S): 8 SECTION: 3 PROPERTY ADDRESS: 19 PATCHEN AVENUE a/k/a 522 VAN BUREN STREET

> **ENVIRONMENTAL EASEMENT SURVEY** PREPARED BY PERFECT POINT LAND SURVEYING RT <u>brooklyn - queens - manhattan - bronx</u> staten island - nassau phone: (718) 474-7700 fax: (718) 872-9699 info@ppsurveying.com www.ppsurveying.com

> > N.Y.S. L.L.S. 049844

APPENDIX B – Digital Copy of the FER (included on CD)

APPENDIX C – Environmental Easement

NYC DEPARTMENT OF OFFICE OF THE CITY R This page is part of the instrumer Register will rely on the informat by you on this page for purposes this instrument. The information will control for indexing purpose of any conflict with the rest of the	REGISTER nt. The City ation provided s of indexing on this page es in the event ne document.			00001002E8CEA						
			RSEMENT COVER F		1 OF 12					
Document ID: 2018121100560001Document Date: 09-10-2018Preparation Date: 12-11-2018Document Type: EASEMENTDocument Page Count: 10Image: Count Page Count: 10										
PRESENTER:			RETURN TO:							
ROYAL REGISTERED PROPERTYROYAL REGISTERED PROPERTYREPORTS(182450)MBREPORTS(182450)MB125 PARK AVENUE, SUITE 1610125 PARK AVENUE, SUITE 1610NEW YORK, NY 10017NEW YORK, NY 10017212-376-0900212-376-0900MBASALATAN@ROYALABSTRACT.COMMBASALATAN@ROYALABSTRACT.COM										
		PROPER	<u> </u> TV D A T A							
Borough Block	Lot	Unit A	ddress							
-				-						
BROOKLYN 1618	8 Entire	Lot IN TAL REAL ESTAT	9 PATCHEN AVENUE	2						
		CROSS REFE	RENCE DATA							
CRFN or Docum	entID	or Ye	ar Reel Pag	ge <i>or</i> File Number						
				, <u> </u>						
GRANTOR/SELLER: BEC CONTINUUM HOUSIN COMPANY INC 67 HANSON PLACE BROOKLYN, NY 11217		PMENT FUND	TIES GRANTEE/BUYER THE PEOPLE OF TH 625 BROADWAY ALBANY, NY 12233	: IE STATE OF NEW YORK						
X Additional Parties Liste	a on Continua									
		FEES A	ND TAXES							
Mortgage :			Filing Fee:							
Mortgage Amount:	\$	0.00		\$	0.00					
Taxable Mortgage Amount:	\$	0.00	NYC Real Property T	ransfer Tax:						
Exemption:			1	\$	0.00					
TAXES: County (Basic):	\$	0.00	NYS Real Estate Tran							
City (Additional):	\$	0.00		\$	0.00					
Spec (Additional):	\$	0.00	DECO							
TASF:	<u> </u>	0.00		RDED OR FILED IN THE OF						
			- OF]	THE CITY REGISTER OF T	HE					
MTA:	\$	0.00		CITY OF NEW YORK						
NYCTA:	\$	0.00	- Mithan - 1 A	Recorded/Filed 12-11-201	8 15:21					
Additional MRT:	\$	0.00		City Register File No.(CRFN):						
TOTAL:	\$	0.00		20180004	08040					
Recording Fee:	\$	EXEMPT		\wedge \sim						
Affidavit Fee:	\$	0.00	DATIST'	Ganette M fill						
				City Register Official Sign	ature					

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER		
	201812110056	0001002C8E6A
RECORDING AND	ENDORSEMENT COVER PAGE (CO	
Document ID: 2018121100560001 Document Type: EASEMENT	Document Date: 09-10-2018	Preparation Date: 12-11-2018
PARTIES GRANTOR/SELLER: 19 PATCHEN GP LCC 67 HANSON PLACE BROOKLYN, NY 11217		

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this $\underline{/a^{\prime\prime}}$ day of $\underline{...}$, 2012 between Owner(s) BEC Continuum Housing Development Fund Company, Inc., (the "Grantor Fee Owner") having an office at 67 Hanson Place, Brooklyn, New York 11217, County of Kings, State of New York, and 19 Patchen GP LCC, (the "Grantor Beneficial Owner), having an office at c/o BEC New Communities HDFC, Inc., 67 Hansen Place, Brooklyn, New York 11217, County of Kings, State of New York (collectively, the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 19 Patchen Avenue in the City of New York, County of Kings and State of New York, known and designated on the tax map of the New York City Department of Finance as tax map parcel number: Block 1618 Lot 8, being the same as that property conveyed to Grantor by deed dated June 30, 2017 and recorded in the City Register of the City of New York as CRFN # 2017000276596. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.0422 +/- acres, and is hereinafter more fully described in the Land Title Survey dated May 18, 2018 prepared by Richard Tom, L.L.S. of Perfect Point Land Surveying RT, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, Grantor Beneficial Owner, is the owner of the beneficial interest in the Controlled Property being the same as a portion of that beneficial interest conveyed to Grantor Beneficial Owner by means of a Declaration of Interest and Nominee Agreement dated June 30, 2017 and recorded in the recorded in the City Register of the City of New York as CRFN # 2017000276601; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C224232-05-16 as amended October 30, 2017, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without

necessary water quality treatment_as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

County: Kings Site No: C224232 Brownfield Cleanup Agreement Index : C224232-05-16 as amended October 30, 2017

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C224232 Office of General Counsel

NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor Fee Owner has caused this instrument to be signed in its name.

BEC Continuum Housing Development Fund Company, Inc.:

N By: Liburd Print Name: Title: Board Prest Jent Date: 8/14/18

Grantor's Acknowledgment

STATE OF NEW YORK

county of Kings) ss:

On the $\frac{19'}{100}$ day of $\frac{100}{100}$, in the year 20/8, before me, the undersigned, personally appeared $\frac{100}{100}$, $\frac{100}{100}$, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the/individual(s) acted, executed the instrument.

Notary Publi State of New

ELIZABETH SHOY Notary Public, State of New York No. 015H6137760 Qualified in Kings County anymission Expires December 5, 2021

1.44

IN WITNESS WHEREOF, Grantor Beneficial Owner has caused this instrument to be signed in its name.

19 Patchen GP LLC: Print Name: Title: hus

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF Kings) On the <u>M</u> day of <u>M</u> they in the year 20 <u>k</u>, before me, the undersigned, personally appeared <u>M</u> to <u>M</u> personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

otary Public - State of New York

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the day of day of stand, in the year 2010, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

State of New York Notary Publik

David J. Chiuseno Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

ALL that certain plot, piece or parcel of land with the buildings and improvements thereon erected, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at the corner formed by the intersection of the easterly side of Patchen Avenue (70 feet wide) with the southerly side of Van Buren Street (70 feet wide);

RUNNING THENCE easterly along the southerly side of Van Buren Street, 73 feet 6 inches to a point;

THENCE southerly parallel with Patchen Avenue, 25 feet to a point;

THENCE westerly parallel with Van Buren Street and part of a distance through a party wall, 73 feet 6 inches to a point on the easterly side of Patchen Avenue;

THENCE northerly along the easterly side of Patchen Avenue, 25 feet to the southerly side of Van Buren Street at the point or place of BEGINNING.

LOT AREA = 1837.50 sq. ft. = 0.0422 acre

B. 1618 L. 8 County of Kings

ISL H 5 Royal Registered Property Reports, Inc. 125 Park Avenue, Suite 1610 New York, N.Y 10017 (212) 376-0900

Pecard and Return TO: Sive Paget & Riesel P.C. 560 Lexington Ave., 15 th Floor New York, My 10022 Attn: Allison Sloto

APPENDIX D – Soil/Waste Characterization Documentation

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1591381

A. GENERAL INFORMATION GENERATOR EPA ID #/REGISTRATION #	NONEREQUIRED	GENERATOR NAME:	Tenen Environmental	
GENERATOR CODE (Assigned by Clean Harbors)	TE32542	CITY Brooklyn	STATE/PROVINCE NY ZIP/POSTAL CODE	11221
ADDRESS 19 Patchen Avenue			PHONE: (253) 334-9256	
CUSTOMER CODE (Assigned by Clean Harbors)	CA59174	CUSTOMER NAME:	Cascade Drilling	
ADDRESS 22722 29th Drive SE, Suite 228		CITY Bothell	STATE/PROVINCE WA ZIP/POSTAL CODE	98021

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Non-Hazardous Waste Liquid

PROCESS GENERATING WASTE: Investigation Derived Waste from environmental drilling operations. Former Dry Cleaning Site.
IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTIES (at 25C or 77F)

PHYSICAL STATE SOLID WITHOUT FREE LIQUID POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIDS LIQUID/SOLID MIXTURE % FREE LIQUID <u>90.00 - 100.00</u> % SETTLED SOLID <u>0.00 - 10.00</u> % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		% BT VOLOWIE (Approx.)	90.00 DLE 0.00 ITOM 10.00	VISCOSITY (If liquid present 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molassi	Brown
		ODOR NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) ✓ >= 130 (>54)	> 10,000 MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) V > 200 (>93)	TOTAL ORGANIC CARBON Carbon - 1% - 10%
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) > 1.2 (e.g. Methylene Chloride)	ASH ✓ < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0	Unknown 5,000-1	

CHEMICAL		MIN -	M	AX L	MOU
SOIL		0.0000000	10.00000	00	%
WATER		90.000000 1	00.00000	00	%
		ARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR	YES		NO
If yes, describe, including dimensions:					
DOES THIS WASTE CONTAIN ANY METALS IN POWDERED	OR OTHER FINEL	DIVIDED FORM?	YES		NO
DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WAS POTENTIALLY INFECTIOUS MATERIAL?		NG; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY IIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER	YES		NO
I acknowledge that this waste material is neither infectious based on my knowledge of the material. Select the answer		ny organism known to be a threat to human health. This certification is			
The waste was never exposed to potentially infectious mate	erial.		YES	1	NO
Chemical disinfection or some other form of sterilization has	s been applied to the	e waste.	YES	1	NO
ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN	HARBORS BATTER	Y PACKAGING REQUIREMENTS.	YES	1	NO
ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS	DOUBLE BAGGED	AND WETTED.	YES		NO
SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE.	G45	SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE.	W113		

Clean Harbors Profile No. CH1591381

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers. **REGULATED METALS** TOTAL UOM NOT APPLICABLE RCRA REGULATORY TCLF LEVEL (mg/l) mg/l ~ D004 ARSENIC 5.0 ~ D005 BARIUM 100.0 V D006 CADMIUN 1.0 V CHROMIUM D007 5.0 ~ D008 LEAD 5.0 ~ MERCURY D009 0.2 V D010 SELENIUM 1.0 ~ SILVER D011 5.0 **VOLATILE COMPOUNDS** OTHER CONSTITUENTS MAX UOM NOT D018 BENZENE APPLICABLE 0.5 D019 CARBON TETRACHLORIDE 0.5 BROMINE ~ 1 CHLORINE D021 CHLOROBENZENE 100.0 V FLUORINE D022 CHLOROFORM 6.0 1 D028 1,2-DICHLOROETHANE IODINE 0.5 V SULFUR 1.1-DICHLOROETHYLENE D029 0.7 V POTASSIUM D035 METHYL ETHYL KETONE 200.0 V SODIUM D039 TETRACHLOROETHYLENE 07 AMMONIA V D040 TRICHLOROETHYLENE 0.5 1 CYANIDE AMENABLE D043 VINYL CHLORIDE 0.2 V CYANIDE REACTIVE SEMI-VOLATILE COMPOUNDS 2 CYANIDE TOTAL D023 o-CRESOL 200.0 SULFIDE REACTIVE ~ m-CRESOL D024 200.0 D025 p-CRESOL 200.0 HOCS PCBs D026 CRESOL (TOTAL) 200.0 -NONE ✓ NONE 1.4-DICHLOROBENZENE 7.5 D027 < 1000 PPM < 50 PPM 2,4-DINITROTOLUENE D030 0.13 >= 1000 PPM =50 PPM D032 HEXACHLOROBENZENE 0.13 IF PCBS ARE PRESENT, IS THE WASTE REGULATED BY TSCA 40 HEXACHLOROBUTADIENE D033 0.5 CFR 761? D034 HEXACHLOROETHANE 3.0 D036 NITROBENZENE 2.0 YES ~ NO PENTACHLOROPHENOL D037 100.0 D038 PYRIDINE 5.0 D041 2,4,5-TRICHLOROPHENOL 400.0 D042 2,4,6-TRICHLOROPHENOL 2.0 PESTICIDES AND HERBICIDES D012 ENDRIN 0.02 LINDANE D013 0.4 D014 METHOXYCHLOR 10.0 TOXAPHENE D015 0.5 D016 2.4-D 10.0 D017 2,4,5-TP (SILVEX) 1.0 D020 CHLORDANE 0.03 D031 HEPTACHLOR (AND ITS EPOXIDE) 0.008 ADDITIONAL HAZARDS DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED? NO (If yes, explain) YES CHOOSE ALL THAT APPLY DEA REGULATED SUBSTANCES **EXPLOSIVE** FUMING **OSHA REGULATED CARCINOGENS** POLYMERIZABLE RADIOACTIVE ~ REACTIVE MATERIAL NONE OF THE ABOVE

Clean Harbors Profile No. CH1591381

F. REGULATORY STATUS

YES	~	NO	USEPA HAZARDOUS WASTE?								
YES	~	NO	DO ANY STATE WASTE CODES APPLY?								
	-		Texas Waste Code								
YES	~	NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?								
YES	~	NO	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?								
			LDR CATEGORY: Not subject to LDR								
YES	~	NO	IS THIS A UNIVERSAL WASTE?								
YES		NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS VERY SMALL QUANTITY GENERATOR (VSQG) OR A STATE EQUIVALENT DESIGNATION?								
YES		NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?								
YES	V	NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?								
YES		NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?								
YES	1	NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?								
YES		NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?								
YES		NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?								
YES	~	NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE ?								
YES		NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?								
1.22	-		Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)								
YES		NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?								
TES	YES		NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene								
	YES		NO Is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?								
	The	basis	e TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs) for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing								
	The Des	basis cribe t	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
	The Des TDG II	basis cribe t NFOR	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION								
OT/TDG	The Des TDG II	basis cribe t NFOR ER SH	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME:								
ot/tdg NO	The Des TDG II PROPE	basis cribe t NFOR ER SH T RE	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME: GULATED MATERIAL, (WATER, SOIL)								
NO TRANS	The Des TDG II PROPE	basis cribe t NFOR ER SH T REC	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME:								
NO TRANS	The Des TDG II PROPIE	basis cribe t NFOR ER SH T REC ATION	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS IFREQUENCY I ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER								
NO NO TRANSI	The Des TDG II PROPE N DO PORTA D SHIP	basis cribe t NFOR ER SH T REC ATION MENT	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS IT FREQUENCY ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER BULK LIQUID BULK SOLID BUL								
NO TRANSI TIMATEI 1-1 ORAGE	The Desi TDG II PROPE	basis cribe t NFOR ER SH T REC ATION MENT CONTAINE CITY:	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME: GULATED MATERIAL, (WATER, SOIL) IREQUIREMENTS IF FREQUENCY I ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER BULK LIQUID BULK SOLID RS/SHIPMENT GALLONS/SHIPMENT: 0 Min -0 Max GAL. SHIPMENT UOM: TON YARD								
1-1 DRAGE	The Desi TDG II PROPE N DO PORTA D SHIP CONT CONT CAPAC	basis cribe t NFOR ER SH T REC TAINON MENT CON TAINE CITY: E:	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
TRANSI IMATEI	The Desi TDG II PROPE	basis cribe t NFOR ER SH T REC TAINE CITY: E: TOTE T/	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
DT/TDG NO TRANSI TIMATEI 0RAGE 0NTAINE PO CU	The Desi TDG II PROPE N DO PORTA D SHIP CONT CAPAC R TYP RTABLE	basis cribe t NFOR ER SH T REC TAINE CITY: E: TOTE T/	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS I FREQUENCY ✓ ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER BULK LIQUID BULK LIQUID BULK LIQUID BULK SOLID SHIPMENT 10 ANK BOXICARTONICASE ✓ DRUM								
DT/TDG NO TRANSI TIMATEI DATAINA ORAGE DNTAINE PO CU OTI	The Des TDG II PROPE N DO PORTA D SHIP CONT CAPAC R TABLE BIC YARD HER:	basis cribe t NFOR ER SH T REC ATION MENT CITAINE CITY: E: TOTE T/ D BOX	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIIPPING NAME: GULATED MATERIAL, (WATER, SOIL) IREQUIREMENTS T FREQUENCY ♥ ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER ONTAINERIZED RS/SHIPMENT 10 ANK BOXICARTONICASE ♥ ORUM DRUM SIZE: 55								
DT/TDG NO TRANSI TIMATEI 1-1 DRAGE NTAINE PO CU OTI	The Design of th	basis cribe t NFOR ER SH T REC ATION MENT CATION CAINE CITY: E: TOTE T/ D BOX	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS T FREQUENCY I ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER ONTAINERIZED RS/SHIPMENT 10 ANK BOXICARTONICASE I ORUM DRUM SIZE: 55								
TRANSI TIMATEI 1-1 DRAGE NTAINE PO CU OT SPECIA COMME	The Desi TTDG III PROPE N DO PORTA O SHIP CONTI CAPAC R TYP RTABLE : BIC VARIC HER:	basis cribe t NFOR ER SH T REC ATION MENT CATION MENT CATION CATI	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS T FREQUENCY I ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER ONTAINERIZED RS/SHIPMENT 10 ANK BOXICARTONICASE I ORUM DRUM SIZE: 55								
DT/TDG NO TRANSI TIMATEI 1-1 ORAGE NTAINE PO CU OT SPECIA COMME	The Desi TTDG III PROPE N DO PORTA O SHIP CONTI CAPAC R TYP RTABLE : BIC VARIC HER:	basis cribe t NFOR ER SH T REC ATION MENT CATION MENT CATION CATI	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge : MATION IIPPING NAME: GULATED MATERIAL, (WATER, SOIL) REQUIREMENTS T FREQUENCY I ONE TIME WEEKLY MONTHLY QUARTERLY YEARLY OTHER ONTAINERIZED RS/SHIPMENT 10 ANK BOXICARTONICASE I ORUM DRUM SIZE: 55								
DT/TDG NO TRANSI TIMATEI 1-1 ORAGE NTAINE PO CU OTH SPECIA COMME NOS. No IN	The Desi TTDG II PROPE N DO D SHIP CONT CONT CONT CONT CAPAC CAPAC CAPAC CAPAC CAPAC CAPAC CAPAC CAPAC	basis cribe t NFOR ER SH T REC ATION PMENT PMENT PMENT CITY: E: TOTE T/ D BOX UEST R REQU	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
DT/TDG NO TRANSI TIMATEI 1-1 ORAGE NTAINE PO CU OTI SPECIA COMME NOS. No II	The Desi TTDG II PROPE N DO PORTA CONT CAPAC R TYP RTABLE : BIC VARIT HER: L REQ NITS OF Inclineral	basis cribe t NFOR ER SH T REC ATION MENT Q CC TAINE CITY: E: TOTE T/ D BOX UEST A REQU	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
OT/TDG NO TRANSI STIMATEI 1-1 TORAGE DNTAINE PO CU OTI SPECIA COMME NOS. No II ENERATO Coerlify that amples sub	The Design of th	basis cribe t NFOR ER SH T REG ATION MENT P C CATION CATIO	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing the knowledge :								
OT/TDG NO TRANSI STIMATEI 1-1 TORAGE DNTAINE PO CU OTI . SPECIA COMME ENERATO certify that amples sub	The Desi TTDG II PROPE N DO D SHIP CONT CAPAC R TYP RTABLE BIC VARI HER: L REQ I L REQ I L REQ I L REQ I L A REQ I L	basis cribe t NFOR ER SH T REC ATION MENT CITY: E: TOTE T/ D BOX UEST O BOX UEST NOR CITY: E: TOTE T/ D BOX RTIFIC.	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing he knowledge :								
In the second se	The Desi TTDG II PROPE N DO D SHIP CONT CAPAC R TYP RTABLE BIC VARI HER: L REQ I L REQ I L REQ I L REQ I L A REQ I L	basis cribe t NFOR ER SH T REC ATION MENT CITY: E: TOTE T/ D BOX UEST O BOX UEST NOR CITY: E: TOTE T/ D BOX RTIFIC.	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing he knowledge :								
OT/TDG NO TRANSI STIMATEI 1-1 TORAGE DNTAINE PO CU OTI . SPECIA COMME ENERATO certify that amples sub	The Desi TTDG II PROPE N DO D SHIP CONT CAPAC R TYP RTABLE BIC VARI HER: L REQ I L REQ I L REQ I L REQ I L A REQ I L	basis cribe t NFOR ER SH T REC ATION MENT CITY: E: TOTE T/ D BOX UEST O BOX UEST NOR CITY: E: TOTE T/ D BOX RTIFIC.	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing he knowledge :								

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1591255

A. GENERAL INFORMATION GENERATOR EPA ID #/REGISTRATION #	NONEREQUIRED	GENERATOR NAME:	Tenen Environmental	
GENERATOR CODE (Assigned by Clean Harbors)	TE32542	CITY Brooklyn	STATE/PROVINCE NY ZIP/POSTAL CODE	11221
ADDRESS 19 Patchen Avenue			PHONE: (253) 334-9256	
CUSTOMER CODE (Assigned by Clean Harbors)	CA59174	CUSTOMER NAME:	Cascade Drilling	
ADDRESS 22722 29th Drive SE, Suite 228	1	CITY Bothell	STATE/PROVINCE WA ZIP/POSTAL CODE	98021

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Non-Hazardous Waste Solid

PROCESS GENERATING WASTE: Investigation Derived Waste from environmental drilling operations. Former Dry Cleaner, IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTIES (at 25C or 77F)

PHYSICAL STATE SOLID WITHOUT FI POWDER MONOLITHIC SOLII LIQUID WITH NO SI LIQUID/SOLID MIXI	D DLIDS	% BY VOLUME (Approx.)	DLE 0.00 TTOM 0.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses)	COLOR <u>Brown</u>	
LIQUID/SOLID MIXTURE % FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		ODOR NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	> 10,000 MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) V > 200 (>93)	TOTAL ORGANIC CARBON	
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) > 1.2 (e.g. Methylene Chloride)	Ū.	Unknown	.6) 0 (4.6-11.6) 00 (11.6-23.2)	

D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, an MSDS Plaa CHEMICAL MIN MAX UOM **GRAVEL, DEBRIS** 0.0000000 5.0000000 % SOIL 95.0000000 100.0000000 % DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR YES V NO >12" LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR PIECES OF CONCRETE >3")? If yes, describe, including dimensions: DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM? YES NO NO DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER YES V NO POTENTIALLY INFECTIOUS MATERIAL? I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies: The waste was never exposed to potentially infectious material. YES NO Chemical disinfection or some other form of sterilization has been applied to the waste. YES NO I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS. YES NO I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED. YES NO SPECIFY THE SOURCE CODE ASSOCIATED WITH THE G45 SPECIEV THE FORM CODE ASSOCIATED WITH THE WASTE W301 WASTE.

Clean Harbors Profile No. CH1591255

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit lab.

approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers. NOT APPLICABLE RCRA **REGULATED METALS** REGULATORY TCLP TOTAL UOM LEVEL (mg/l) mg/l ~ D004 ARSENIC 5.0 V D005 BARIUM 100.0 D006 CADMIUN ~ 1.0 V D007 CHROMIUM 5.0 V 5.0 D008 LEAD D009 MERCURY 1 0.2 1 SELENIUM D010 1.0 D011 SILVER ~ 5.0 **VOLATILE COMPOUNDS** OTHER CONSTITUENTS MAX UOM NOT BENZENE APPLICABLE D018 0.5 0.5 BROMINE ~ CARBON TETRACHLORIDE D019 CHLORINE 2 CHLOROBENZENE D021 100.0 FLUORINE ~ CHLOROFORM D022 6.0 IODINE ~ 1 2-DICHLOBOETHANE 0.5 D028 SULFUR V D029 1,1-DICHLOROETHYLENE 0.7 1 POTASSIUM D035 METHYL ETHYL KETONE 200.0 ~ SODIUM 0.7 D039 TETRACHLOROETHYLENE AMMONIA 2 D040 TRICHLOROETHYLENE 0.5 V CYANIDE AMENABLI D043 VINYL CHLORIDE 0.2 ~ CYANIDE REACTIVE SEMI-VOLATILE COMPOUNDS 1 CYANIDE TOTAL D023 o-CRESOL 200.0 ~ SULFIDE REACTIVE m-CRESOL D024 200.0 D025 p-CRESOL 200.0 HOCs PCBs CRESOL (TOTAL) D026 200.0 V NONE ~ NONE 7.5 D027 1,4-DICHLOROBENZENE < 1000 PPM < 50 PPM D030 2,4-DINITROTOLUENE 0.13 >= 1000 PPM >=50 PPM D032 HEXACHLOROBENZENE 0.13 IF PCBS ARE PRESENT, IS THE HEXACHLOROBUTADIENE D033 0.5 WASTE REGULATED BY TSCA 40 CFR 761? D034 HEXACHLOROETHANE 3.0 D036 NITROBENZENE 2.0 YES ~ NO PENTACHLOROPHENOL D037 100.0 D038 PYRIDINE 5.0 D041 2.4.5-TRICHLOROPHENOL 400.0 D042 2,4,6-TRICHLOROPHENOL 2.0 PESTICIDES AND HERBICIDES ENDRIN D012 0.02 D013 LINDANE 0.4 METHOXYCHLOR D014 10.0 D015 TOXAPHENE 0.5 D016 2,4-D 10.0 D017 2,4,5-TP (SILVEX) 1.0 D020 CHLORDANE 0.03 D031 HEPTACHLOR (AND ITS EPOXIDE) 0.008 ADDITIONAL HAZARDS DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED? V NO YES (If yes, explain) CHOOSE ALL THAT APPLY DEA REGULATED SUBSTANCES EXPLOSIVE FUMING **OSHA REGULATED CARCINOGENS** POLYMERIZABLE 4 RADIOACTIVE **REACTIVE MATERIAL** NONE OF THE ABOVE

Clean Harbors Profile No. CH1591255

F. REGULATORY STATUS	

YES	~	NO	USEPA HAZARDOUS W	140750								
				VASTE?								
YES	-	NO	DO ANY STATE WASTE	E CODES APPLY?								
			exas Waste Code									
YES	~	NO	DO ANY CANADIAN PR	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?								
YES	~	NO	IS THIS WASTE PROHI	S THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?								
			LDR CATEGORY: VARIANCE INFO:	Not subject to LDR								
YES	~	NO	IS THIS A UNIVERSAL	WASTE?								
YES	~	NO	IS THE GENERATOR O	F THE WASTE CLASSIFIED AS VERY SMALL QUANTITY GENERAT	OR (VSQG) OR A STATE EQUIVALENT DESIGNATION?							
YES		NO	IS THIS MATERIAL GOI	ING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUC	CT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?							
YES		NO	DOES TREATMENT OF	THIS WASTE GENERATE A F006 OR F019 SLUDGE?								
YES	-	NO		M SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHI	BITION FOUND AT 40 CFR 268.3(C)?							
YES		NO		ONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?								
YES		NO		NTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?							
YES		NO	DOES THIS WASTE CO	NTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HA	AS A VAPOR PRESSURE > 77 KPA (11 2 PSIA)2							
YES	V	NO		JLATED (SUPERFUND) WASTE ?								
YES		NO		CT TO ONE OF THE FOLLOWING NESHAP RULES?	testes (school 000)							
			Hazardous Organio	c NESHAP (HON) rule (subpart G) Pharmaceuticals proc	duction (subpart GGG)							
YES		NO	IF THIS IS A US EPA HA	AZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZE	NE?							
	The	t is the	NO Is the generating e TAB quantity for your factor for this determination is: K	e stream come from a facility with one of the SIC codes listed under ben because the original source of the waste is from a chemical manufactun ng source of this waste stream a facility with Total Annual Benzene (TAE sility? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data	ring, coke by-product recovery, or petroleum refinery process?							
OT/TDG	Wha The Desi TDG II PROPE	t is the basis cribe t NFOR	NO Is the generating of the second se	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB cility? Megagram/year (1 Mg = 2,200 lbs)	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year?							
OT/TDG	Wha The Desi TDG II PROPE	t is the basis cribe t NFOR ER SH GULA	NO Is the generatin e TAB quantity for your fac for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB cility? Megagram/year (1 Mg = 2,200 lbs)	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year?							
NO TRANSI	Wha The Desi TDG II PROPE T REC	t is the basis cribe t NFOR ER SH GULA	NO Is the generating of the second se	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAE itily? Megagram/year (1 Mg = 2,200 lbs) Megagram/year (1 Mg = 2,200 lbs) nowledge of the Waste Or Test Data	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year? Knowledge Testing							
NO TRANSI	Wha The Desi TDG II PROPE T REC	t is the basis cribe t NFOR ER SH GULA	NO Is the generating of the provided statement of the set of the s	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAE itily? Megagram/year (1 Mg = 2,200 lbs) Megagram/year (1 Mg = 2,200 lbs) nowledge of the Waste Or Test Data	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year? Knowledge Testing							
NO NO TRANSI TIMATEI	Wha The Desi TDG II PROPE T REC PORTA D SHIP	t is the basis cribe t NFOR ER SH GULA	NO Is the generatin e TAB quantity for your factor for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAE islity? Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year? Knowledge Testing							
NO TRANSI TIMATEI 5-5 ORAGE	Wha The Desi TDG II PROPE T REC PORTA D SHIP CONT CONT	t is the basis cribe t NFOR ER SH BULA TION MENT CAINE CAINE	NO Is the generatin TAB quantity for your factor for this determination is: K he knowledge : MATION IPPING NAME: TED BY DOT REQUIREMENTS FREQUENCY V ONE DNTAINERIZED	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAE isility? Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/year (1 Mg = 2,200 lbs) mowledge of the Waste Or Test Data Megagram/ye	IER BULK SOLID SHIPMENT UOM: TON YARD							
TRANSI TRANSI TIMATEI 5-5 ORAGE ONTAINE	Wha The Desi TDG II PROPE T REC PORTA D SHIP CONT CONT	t is the basis cribe t NFOR ER SH GULA TION MENT C C AINE CITY: E:	NO Is the generatin TAB quantity for your factor for this determination is: K he knowledge : MATION IPPING NAME: TED BY DOT REQUIREMENTS FREQUENCY I ONE DNTAINERIZED RS/SHIPMENT 10	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year? Knowledge Testing							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE ONTAINE POI	Wha The Desi TOG II PROPE T REC PORTA O SHIP CONT CAPAC	It is the basis cribe t NFOR ER SH GULA TION MENT C CAINE CAINE CITY: E: roote t/	NO Is the generatin TAB quantity for your factor for this determination is: K he knowledge : MATION IPPING NAME: TED BY DOT REQUIREMENTS FREQUENCY I ONE DNTAINERIZED RS/SHIPMENT 10 NK BOXICARTONIC	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	IER BULK SOLID SHIPMENT UOM: TON YARD							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE (NTAINE) POI CUI	Wha The Desi TDG II PROPE T REC PORTA D SHIP CONT CONT CONT CONT CONT	It is the basis cribe t NFOR ER SH GULA TION MENT C CAINE CAINE CITY: E: roote t/	NO Is the generatin TAB quantity for your factor for this determination is: K he knowledge : MATION IPPING NAME: TED BY DOT REQUIREMENTS FREQUENCY I ONE DISTAINERIZED RS/SHIPMENT 10 NK BOXICARTONIC	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	IER BULK SOLID SHIPMENT UOM: TON YARD							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE ONTAINE POI CUI	What The Desident PROPE T REC PORTA CONTA	It is the basis cribe t NFOR ER SH GULA TION MENT CITY: E: CITY: E: TOTE T/ D BOX	NO Is the generatin a TAB quantity for your factor for this determination is: K he knowledge : MATION IPPING NAME: TED BY DOT REQUIREMENTS FREQUENCY V ONE DNTAINERIZED RS/SHIPMENT 10 NK BOXICARTONIC V DRUM	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	IER BULK SOLID SHIPMENT UOM: TON YARD							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE 0 NTAINE POI CUI	What The Desident of the Desident of the Desid	It is the basis cribe t NFOR ER SH GULA TION MENT CAINE CITY: E: TOTE T/ D BOX	NO Is the generatin e TAB quantity for your fact for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	HER BULK SOLID SHIPMENT UOM: TON YARD							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE O NTAINE POI CUI OTI SPECIA COMME	What The Desit TDG II PROPE T REC PORTA REC CONT CONTACAPAC CONT CONTACAPAC CAPAC CAPAC CAPAC CAPAC CAPAC CAPAC CAPAC	It is the basis cribe t NFOR ER SH GULA TION MENT CALLE CITY: E: rote t/ p Box	NO Is the generatin e TAB quantity for your fact for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	IER BULK SOLID SHIPMENT UOM: TON YARD							
DT/TDG I NO TRANSI TIMATEI 5-5 ORAGE 0 NTAINE POI CUI OTH SPECIA COMME NO. No In	What The Desi TTDG II PROPE T REC PORTA A CONT CONT CONT CONT CONT CONT CONT CONT	tt is thi basis cribe t NFOR ER SH GULA TION MENT CAINE CITY: E: core t/ p Box UEST REOL on.	NO Is the generatin a TAB quantity for your fac for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	IER BULK SOLID SHIPMENT UOM: TON YARD							
OT/TDG I NO TRANSI STIMATEI 5-5 ORAGE ONTAINE POI CUI OT SPECIA COMME NO. No In ENERATO certify that I imples sub	What The Desi TTDG II PPROPE T RECC PORTA RECONT CONT CONT CONT CONT CONT CONT CONT	It is thin basis cribe t NFOR ER SH GULA TTION MENT COLLAN	NO Is the generatin TAB quantity for your factor for this determination is: K he knowledge :	because the original source of the waste is from a chemical manufacturing source of this waste stream a facility with Total Annual Benzene (TAB islity? Megagram/year (1 Mg = 2,200 lbs) inowledge of the Waste Or Test Data TIME WEEKLY MONTHLY QUARTERLY YEARLY OTH BULK LIQUID GALLONS/SHIPMENT: 0 Min -0 Max GAL.	ring, coke by-product recovery, or petroleum refinery process? 3) >10 Mg/year? HER BULK SOLID SHIPMENT UOM: TON YARD SHIPMENT UOM: TON YARD TONS/YARDS/SHIPMENT: <u>0 Min - 0 Max</u>							

SC PPW 3/12/2019

WORK ORDER NOD31902381967

DOCUMENT NO.	0055128	STRAIGHT BILL OF LADING		007
TRANSPORTER 1	Clean Harbor	s Environmental Services, Inc.	VEHICLE ID #	5291
EPA ID #	MAD0393	322250	TRANS. 1 PHONE	(781) 792-5000
TRANSPORTER 2		sportestion	VEHICLE ID #	
EPA ID #	NJD6716	29976	TRANS. 2 PHONE	

Site Address :

19 Patchen Avenue Brooklyn,NY 11221

DESIGNATED	D FACILITY				SHIPPER			
Spring Grove Resource Recovery Inc.					Tenen Environmental			
FACILITY EPA ID #					SHIPPER EPA ID #			
	000816	629			NONEREQUIR	ED		
ADDRESS 4879	Spring Grove	Avenu	ie		ADDRESS 121 W 27th St			
CITY	nati		STATE	ZIP 45232	CITY New York	STATE 2	ZIP 10001	
CONTAINERS NO. & SIZE		нм		La Catrice	ON OF MATERIALS	TOTAL QUANTITY	UNIT WT/VOL	
1×55	DM		A. NOT R	EGULATED BY DOT	r. (Soil)	400	2	
			В.					
			C.					
			D.					
			E.					
			F.					
			G.					
-			H.					
SPECIAL HAN A.CH183270		RUCT	IONS EM	ERGENCY PHON		NERATOR: Tenen Envir	1	

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	PRINT Honjong Law	SIGN fle	DATE 10/19
TRANSPORTER 1	PRIME Hug M. Clark	Sign M Clark	STIOLIG
TRANSPORTER 2	PRINT JIMENEL	SIGA	DATE
RECEIVED BY	PRINT Andy MAKA	SIGN SAP	BATE/16/19
		00	. ,
CHI 107			

SC PPW 3/12/2019

WORK ORDER NOD31902381967

DOCUMENT NO.	0055128	STRAIGHT BILL OF LADING		007
TRANSPORTER 1	Clean Harbor	s Environmental Services, Inc.	VEHICLE ID #	5291
EPA ID #	MAD0393	322250	TRANS. 1 PHONE	(781) 792-5000
TRANSPORTER 2		sportestion	VEHICLE ID #	
EPA ID #	NJD6716	29976	TRANS. 2 PHONE	

Site Address :

19 Patchen Avenue Brooklyn,NY 11221

DESIGNATED	D FACILITY				SHIPPER			
Spring Grove Resource Recovery Inc.					Tenen Environmental			
FACILITY EPA ID #					SHIPPER EPA ID #			
	000816	629			NONEREQUIR	ED		
ADDRESS 4879	Spring Grove	Avenu	ie		ADDRESS 121 W 27th St			
CITY	nati		STATE	ZIP 45232	CITY New York	STATE 2	ZIP 10001	
CONTAINERS NO. & SIZE		нм		La Catrice	ON OF MATERIALS	TOTAL QUANTITY	UNIT WT/VOL	
1×55	DM		A. NOT R	EGULATED BY DOT	r. (Soil)	400	2	
			В.					
			C.					
			D.					
			E.					
			F.					
			G.					
-			H.					
SPECIAL HAN A.CH183270		RUCT	IONS EM	ERGENCY PHON		NERATOR: Tenen Envir	1	

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	PRINT Honjong Law	SIGN fle	DATE 10/19
TRANSPORTER 1	PRIME Hug M. Clark	Sign M Clark	STIOLIG
TRANSPORTER 2	PRINT JIMENEL	SIGA	DATE
RECEIVED BY	PRINT Andy MAKA	SIGN SAP	BATE/16/19
		00	. ,
CHI 107			

121 West 27th Street, 702 New York, NY 10001 (646) 606-2332

April 25, 2019

Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, 12th Floor Albany, New York 12233-7015

Attn: Henry Wilkie

Re: Contained-In Waste Determination 19 Patchen Avenue – Brooklyn, New York Site No. C224232

Dear Mr. Wilkie:

On behalf of the Participant, 19 Patchen, LLC, Tenen Environmental, LLC (Tenen) is requesting a determination that the soil removed during some minor trenching and excavation in the rear yard at the 19 Patchen Avenue project in Brooklyn, New York does not require management as hazardous waste under the "contained-in" criteria as outlined in Technical and Administrative Guidance Memorandum (TAGM) 3028. The Site is enrolled in the Brownfield Cleanup Program (BCP) as Site #C224232.

The Site is a rectangular-shaped parcel of 1,838 square-feet (0.0422 acres) with 25 feet of frontage along Patchen Avenue. The Site is occupied by a four-story mixed-use commercial and residential building with a basement. An active dry-cleaner occupies the ground floor commercial space. The current operator is Rodriguez Dry Cleaners (NYSDEC Dry Cleaning Facility #2-6104-01058). The Site is located in Brooklyn Community Board 3 and is generally identified on the New York City tax map as Kings County Block 1618, Lot 8.

One drum containing soil was filled during the trenching and excavation activities. One five-point composite sample was collected from the drummed soil. The following volatile organic compounds (VOCs) were detected in the drummed soil: PCE at a concentration of 0.00093 milligrams per kilogram (mg/kg). The following semivolatile organic compounds (SVOCs) were detected in the drummed soil: fluoranthene (max: 2.5 mg/kg), benzo(a)anthracene (max: 1.4 mg/kg), benzo(a)pyrene (max: 1.2 mg/kg), benzo(b)fluoranthene (max: 1.7 mg/kg), benzo(k)fluoranthene (max: 0.5 mg/kg), anthracene (max: 0.25 mg/kg), acenaphthylene (max: 0.14 mg/kg), benzo(ghi)perylene (max: 0.69 mg/kg), fluorine (max: 0.099 mg/kg), phenanthrene (max: 1.6 mg/kg), dibenzo(a,h)anthracene (max: 0.16 mg/kg), indeno(1,2,3-cd)pyrene (max: 0.73 mg/kg) and pyrene (max: 2.5 mg/kg). The following total metals were detected in the drummed soil: arsenic (max: 4.42 mg/kg), barium (max: 156 mg/kg), cadmium (max: 0.264 mg/kg), chromium (max: 10.4 mg/kg), lead (max: 275 mg/kg), mercury (max: 0.243 mg/kg) and selenium (max: 0.556 mg/kg). A table with all soil sampling results can be found in Attachment 1.

The drum contents are proposed for disposal at the Clean Harbors facility located at 4979 Spring Grove Avenue in Cincinnati, Ohio. The proposed waste material profile sheet can be found in Attachment 2.

Contained-In Waste Determination Request 19 Patchen Avenue – Brooklyn, NY BCP Site #C224232

Based on the above and attached, we request that you provide a contained-in determination that the currently-characterized material proposed for disposal at the Clean Harbors facility, as noted in the facility waste material profile, can be managed as non-hazardous waste. Please let us know if you need any additional information.

Sincerely, Tenen Environmental LLC

aufacched

Claire Zaccheo

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Bureau of Program Management 625 Broadway, 12th Floor, Albany, NY 12233-7012 P: (518) 402-9764 I F: (518) 402-9722 www.dec.ny.gov

January 29, 2018

Mr. Matthew Carroll, PE Project Manager Tenen Environmental, LLC 121 West 27th Street, Suite 702 New York City, NY 10001

Re: "Contained-In" Determination Request 19 Patchen Avenue Site NYSDEC Site No. C224232

Dear. Mr. Carroll:

We have completed our review of the soil and water sampling data (Lab ID: L1638173, L1638269, L1638645, L1638738, L1639548 and L1639693) submitted with your January 29, 2018 request for a "contained-in" determination for the referenced project.

Concentrations detected for individual VOCs, SVOCs, pesticides, PCBs and metals were all significantly less than their current NYSDEC "contained in" soil action levels and Land Disposal Restriction concentrations. Most of the individual VOCs were not detected above the detection limit.

Concentrations for tetrachloroethene (PCE), trichloroethene (TCE) and cis-1,2-Dichloroethene were detected was significantly less than its current "contained-in" soil action levels and Land Disposal Restriction concentrations. Therefore, five (5) 55-gallon drums containing soil cuttings; collected as part of a remedial investigation of the Site; do not have to be managed as hazardous waste and can be transported off-site to Clean Harbors facility, for final disposal as non-hazardous waste.

Water (well development water, purge water, well sampling and decon water) collecting during the well development and groundwater sampling activities met "contained-in" groundwater action levels and Land Disposal Restriction concentrations. Three (3) 55-gallon drums of water were generated during well development and groundwater sampling activities at the referenced project site do not have to be managed as hazardous waste and can be transported off-site to Clean Harbors facility, for final disposal as non-hazardous waste.

Department of Environmental Conservation Should you have any questions regarding the content of this letter, please do not hesitate to contact me at (518) 402-9611 or email me at henry.wilkie@dec.ny.gov.

Sincerely,

Henry Wilkie Assistance Engineer Resource Management Section

ecc: C. Whitfield, DER

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Bureau of Hazardous Waste and Radiation Management 625 Broadway, 9th Floor, Albany, New York 12233-7256 P: (518) 402-8651 | F: (518) 402-9024 www.dec.ny.gov

April 26, 2019

Ms. Claire Zaccheo Project Engineer Tenen Environmental

Re: Contained-In Waste Determination 19 Patchen Avenue – Brooklyn, New York Site No. C224232

Dear Ms. Zaccheo:

We have completed our review of the soil sampling data (Lab sample ID: L1915442-01) submitted with your April 25, 2019 request for a "contained-in" determination for the referenced project.

Concentrations detected for individual VOCs, SVOCs, and metals were all significantly less than their current NYSDEC "contained in" soil action levels and Land Disposal Restriction concentrations. Most of the individual VOCs were not detected above the detection limit.

Concentration for tetrachloroethene (PCE) was detected was significantly less than its current "contained-in" soil action levels and Land Disposal Restriction concentrations. Therefore, one (1) 55-gallon drums, containing soil was from the trenching and excavation activities as part of a remedial investigation of the Site; do not have to be managed as hazardous waste and can be transported off-site to Clean Harbors facility in Cincinnati, Ohio, for final disposal as non-hazardous waste.

Should you have any questions regarding the content of this letter, please do not hesitate to contact me at (518) 402-9611 or email me at henry.wilkie@dec.ny.gov.

Sincerely,

Henry Wilkie Assistant Environmental Engineer RCRA Permitting Section

ec: M. Mashhadi, DER

This Invoice is submitted on behalf of Clean Earth, Inc. located at 334 S. Warminster Road, Hatboro, PA 19040.

Clean Earth of Carteret, LLC Remit To: P.O. Box 95000-3755 Philadelphia, PA 19195-0001 Phone: 215-734-1400 Fax: 215-734-1423

Faster, smarter, greener solutions...

Invoice Number: PSI0103037

Invoice

PSI0103037 Invoice Date: 12/20/17 Order Number

> Page: 1

Sold To: BROADWAY BUILDERS 826 BROADWAY NEW YORK, NY 10003 Site Address: 25 Patchen Avenue 25 Patchen Avenue Brooklyn, NY 11221

Customer No.			Customer PO			Payment Terms		
	BWB127						Credit C	ard
	Sales Rep ID		Approval Number			Payment Due		
	JEN SCHROF		1730	71685		12/30/17		
Job No.	Description	Scale Date:	Ticket No.	Manifest No.	Quantity	Unit	Unit Price	Total Price
147507	Soil Treatment Type II	12/15/17	700000778000	1287658	4,11	Tons	35.00	143.85
147507	Transportation Fee	12/15/17			1	Load	1,250.00	1,250.00
147507	Env, Energy, and Ins Fee					N/C		

Amount Subject to Sales Tax 1,393.85	Amount Exempt from Sales Tax 0.00	Total Quantity; 4.11	Subtotal: Invoice Discount: Total Sales Tax:	1,393.85 0.00 123.70
			Total:	1,517.55

GLOBAL JOB NUMBER: 147507 FACILITY APPROVAL NUMBER: 173071685

Please Check One:

Clean Earth of Carteret 24 Middlesex Avenue Carteret, NJ 07008 Ph: 732-541-8909

Clean Earth of Philadelphia 3201 S. 61st Street Philadelphia, PA 19153 Ph: 215-724-5520

Clean Earth of Maryland 1469 Oak Ridge Place Hagerstown, MD 21740 Ph: 301-791-6220

Clean Earth of North Jersey 115 Jacobus Avenue Kearny, NJ 07032 Ph: 973-344-4004

Clean Earth of New Castle 94 Pyles Lane New Castle, DE 19720 Ph: 302-427-6633

Clean Earth of Southeast Pennsylvania 7 Steel Road East Morrisville, PA 19067 Ph: 215-428-1700

Clean Earth of Greater Washington
6250 Dower House Road
Upper Marlboro, MD 20772
Ph: 301-599-0939

Other_____

Non-Hazardous Material Manifest

(Type or Print Clearly)			
GENERATOR'S NAME & SITE AD		GROSS WEIGHT:	
25 PATChen Avenu	y e	Tons Yards	
25 PATChen Avenua 25 PAtchen Avenua	e BROCKlynni	/ TARE WEIGHT:	
1/221	/ /	Tons Yards	
GENERATOR'S PHONE:		NET WEIGHT:	
		Tons Yards	
DESCRIPTION OF MATERIAL/S	AMPLE ID AND LOCAT	ION	
Non-Ha	z Sa.		
· · · · · · · · · · · · · · · · · · ·			
GENERATOR'S CERTIFICATION	<u>N</u> – Incomplete and/or unsig	ned manifests will cause th	ne load to be delayed and/or rejected.
is not a hazardous waste as defined b CFR Part 172 or any applicable state for transportation according to all ap	by 40 CFR Part 261 or any a law, has been fully and acc plicable state and federal re	pplicable state law, is not a urately described above, c gulations.	CFR Part 260.10 or any applicable state law, a DOT hazardous substance as defined by 49 lassified, packaged and is in proper condition
Name: <u><u>HEK</u>(<u>N</u>) Signature: <u></u></u>	MUjka	Date and Time:	Intractor 13/17 12Ph
TRANSPORTER	- 		0.4A
	h. h. h.	Phone Number:	START - 12 Finish
Company: Kizco Envis Address: P(1) Day 383	3 How Kits WY		15 - 56236PC 104
	1 ARATTA	SW Haulers Permit #:	14-567
(Type or Prin		5 w Haulers I child π .	(applicable state permit #)
I hereby ce	rtify that the above named n	naterial was picked up at th	ne site listed above.
Driver Signature:	\sim	Date and Time:	12/15/17 12 P
DESTINATION	······································	en e	un and a substance and the second statements and the second second second second second second second second se
I hereby certify that the Driver Signature:	e above named material was which have above named materia	Date and Time: <u>1</u> has been accepted at the s	
Authorized Signature:	1030	Date and Time:	1211011
	FACI	LITY	#219

Clean Earth of Carteret 24 Middle ۸

		10000011000	-
24 Middlesex Avenue		Date	Time Scale
Carteret, NJ 07008	In:	12/15/2017	13:16:50 CECSCALE
Ph: 7325418909 Fax: 7325418105	Out:	12/15/2017	13:16:59
		Lbs.	Tns
Manifest: 1287658	Gross:	45960.00	
Vehicle ID: 07RIZZO75	Tare:	37740.00	18.87
	Net:	8220.00	4.11
Vehicle Permit:			
Customer: BROADWAY BUILDERS	Carrier:		
	Facility Approval#:	173071685	
Generator: 25 Patchen Avenue	Job Name:	25 Patchen A	venue
Gen Address: 826 Broadway	Job Address:	25 Patchen A	venue
New York, 07008 NY		Brooklyn, NY	11221
Contaminate Type	Quantity	Unit	
Soil Treatment Type II	4.1100	TONS	
Comment:			

Driver:

Facility: Gibson, Barry

Ticket: 700000778000

ANALYTICAL REPORT

Lab Number:	L1608891
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 303
	New York City, NY 10001
ATTN:	Matt Carroll
Phone:	(646) 606-2332
Project Name:	25 PATCHEN
Project Number:	25 PATCHEN
Report Date:	04/04/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04041618:27

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1608891-01	SS-1	SOIL	BROOKLYN, NY	03/28/16 14:35	03/28/16

Project Name:

Project Number:

25 PATCHEN

25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Metals

L1608891-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Standow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 04/04/16

ORGANICS

VOLATILES

			Serial_N	0:04041618:27
Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		SAMPLE RESULTS		
Lab ID:	L1608891-01		Date Collected:	03/28/16 14:35
Client ID:	SS-1		Date Received:	03/28/16
Sample Location:	BROOKLYN, NY		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	03/31/16 18:30			
Analyst:	BN			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylana chlorida	ND		ualka	12	1.3	1
Methylene chloride	ND		ug/kg		0.10	1
1,1-Dichloroethane			ug/kg	1.8		
Chloroform	ND		ug/kg	1.8	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.36	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.41	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.45	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.13	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.20	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
1,3-Dichloropropene, Total	ND		ug/kg	1.2	0.14	1
1,1-Dichloropropene	ND		ug/kg	5.8	0.16	1
Bromoform	ND		ug/kg	4.7	0.28	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.12	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.23	1
Ethylbenzene	ND		ug/kg	1.2	0.15	1
Chloromethane	ND		ug/kg	5.8	0.34	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.14	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.31	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.25	1
Trichloroethene	ND		ug/kg	1.2	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.18	1

		Serial_No:04041618:27					0:04041618:27
Project Name:	25 PATCHEN				Lab Nu	umber:	L1608891
Project Number:	25 PATCHEN				Report	Date:	04/04/16
	201 MICHEN	SAMP	LE RESULT	S			0-7/1-0
Lab ID:	L1608891-01				Date Co	llected:	03/28/16 14:35
Client ID:	SS-1				Date Re	ceived:	03/28/16
Sample Location:	BROOKLYN, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene		ND		ug/kg	5.8	0.16	1
1,4-Dichlorobenzene		ND		ug/kg	5.8	0.16	1
Methyl tert butyl ether		ND		ug/kg	2.3	0.10	1
p/m-Xylene		ND		ug/kg	2.3	0.23	1
o-Xylene		ND		ug/kg	2.3	0.20	1
Xylenes, Total		ND		ug/kg	2.3	0.20	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.20	1
1,2-Dichloroethene, Tota	al	ND		ug/kg ug/kg	1.2	0.17	1
Dibromomethane		ND		ug/kg	1.2	0.17	1
Styrene		ND		ug/kg	2.3	0.13	1
Dichlorodifluoromethane		ND		ug/kg	12	0.22	1
Acetone		ND		ug/kg	12	1.2	1
Carbon disulfide		ND		ug/kg	12	1.3	1
2-Butanone		ND		ug/kg	12	0.32	1
Vinyl acetate		ND		ug/kg	12	0.15	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
1,2,3-Trichloropropane		ND		ug/kg	12	0.19	1
2-Hexanone		ND		ug/kg	12	0.78	1
Bromochloromethane		ND		ug/kg	5.8	0.32	1
2,2-Dichloropropane		ND		ug/kg	5.8	0.26	1
1,2-Dibromoethane		ND		ug/kg	4.7	0.20	1
1,3-Dichloropropane		ND		ug/kg	5.8	0.17	1
1,1,1,2-Tetrachloroethan	le	ND		ug/kg	1.2	0.37	1
Bromobenzene		ND		ug/kg	5.8	0.24	1
n-Butylbenzene		ND		ug/kg	1.2	0.13	1
sec-Butylbenzene		ND		ug/kg	1.2	0.14	1
tert-Butylbenzene		ND		ug/kg	5.8	0.16	1
o-Chlorotoluene		ND		ug/kg	5.8	0.19	1
p-Chlorotoluene		ND		ug/kg	5.8	0.16	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	5.8	0.46	1
Hexachlorobutadiene		ND		ug/kg	5.8	0.27	1
Isopropylbenzene		ND		ug/kg	1.2	0.12	1
p-lsopropyltoluene		ND		ug/kg	1.2	0.15	1
Naphthalene		ND		ug/kg	5.8	0.16	1
Acrylonitrile		ND		ug/kg	12	0.60	1
n-Propylbenzene		ND		ug/kg	1.2	0.13	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.17	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.21	1
1,3,5-Trimethylbenzene		ND		ug/kg	5.8	0.17	1

						Serial_No	0:04041618:27
Project Name:	25 PATCHEN				Lab Nu	mber:	L1608891
Project Number:	25 PATCHEN				Report	Date:	04/04/16
		SAMP		5			
Lab ID:	L1608891-01				Date Co	llected:	03/28/16 14:35
Client ID:	SS-1				Date Re	ceived:	03/28/16
Sample Location:	BROOKLYN, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab							
1,2,4-Trimethylbenzene		ND		ug/kg	5.8	0.16	1
1,4-Dioxane		ND		ug/kg	120	17.	1
p-Diethylbenzene		ND		ug/kg	4.7	0.19	1
p-Ethyltoluene		ND		ug/kg	4.7	0.14	1
1,2,4,5-Tetramethylbenz	ene	ND		ug/kg	4.7	0.15	1
Ethyl ether		ND		ug/kg	5.8	0.30	1
trans-1,4-Dichloro-2-bute	ene	ND		ug/kg	5.8	0.46	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	97		70-130	

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8260C 03/31/16 09:00 BN

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	/estborough La	b for samp	le(s): 01	Batch:	WG879482-3
Methylene chloride	ND		ug/kg	10	1.1
1,1-Dichloroethane	ND		ug/kg	1.5	0.09
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.15
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.39
1,2-Dichloroethane	ND		ug/kg	1.0	0.11
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.17
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
1,3-Dichloropropene, Total	ND		ug/kg	1.0	0.12
1,1-Dichloropropene	ND		ug/kg	5.0	0.14
Bromoform	ND		ug/kg	4.0	0.24
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.10
Benzene	ND		ug/kg	1.0	0.12
Toluene	ND		ug/kg	1.5	0.19
Ethylbenzene	ND		ug/kg	1.0	0.13
Chloromethane	ND		ug/kg	5.0	0.29
Bromomethane	0.48	J	ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.12
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.26
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.12

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8
Analytical Date:	03/
Analyst:	BN

1,8260C 03/31/16 09:00 BN

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough La	ab for samp	le(s): 01	Batch:	WG879482-3
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.15
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.14
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.14
Methyl tert butyl ether	ND		ug/kg	2.0	0.08
p/m-Xylene	ND		ug/kg	2.0	0.20
o-Xylene	ND		ug/kg	2.0	0.17
Xylenes, Total	ND		ug/kg	2.0	0.17
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.14
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14
Dibromomethane	ND		ug/kg	10	0.16
Styrene	ND		ug/kg	2.0	0.40
Dichlorodifluoromethane	ND		ug/kg	10	0.19
Acetone	1.3	J	ug/kg	10	1.0
Carbon disulfide	ND		ug/kg	10	1.1
2-Butanone	ND		ug/kg	10	0.27
Vinyl acetate	ND		ug/kg	10	0.13
4-Methyl-2-pentanone	ND		ug/kg	10	0.24
1,2,3-Trichloropropane	ND		ug/kg	10	0.16
2-Hexanone	ND		ug/kg	10	0.67
Bromochloromethane	ND		ug/kg	5.0	0.28
2,2-Dichloropropane	ND		ug/kg	5.0	0.23
1,2-Dibromoethane	ND		ug/kg	4.0	0.17
1,3-Dichloropropane	ND		ug/kg	5.0	0.14
1,1,1,2-Tetrachloroethane	ND		ug/kg	1.0	0.32
Bromobenzene	ND		ug/kg	5.0	0.21
n-Butylbenzene	ND		ug/kg	1.0	0.11
sec-Butylbenzene	ND		ug/kg	1.0	0.12
tert-Butylbenzene	ND		ug/kg	5.0	0.14
o-Chlorotoluene	ND		ug/kg	5.0	0.16

Lab Number: L16 Report Date: 04/

L1608891 04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	03/31/16 09:00
Analyst:	BN

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	estborough La	b for samp	e(s): 01	Batch:	WG879482-3
p-Chlorotoluene	ND		ug/kg	5.0	0.13
1,2-Dibromo-3-chloropropane	ND		ug/kg	5.0	0.40
Hexachlorobutadiene	ND		ug/kg	5.0	0.23
Isopropylbenzene	ND		ug/kg	1.0	0.10
p-Isopropyltoluene	ND		ug/kg	1.0	0.12
Naphthalene	ND		ug/kg	5.0	0.14
Acrylonitrile	ND		ug/kg	10	0.51
n-Propylbenzene	ND		ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND		ug/kg	5.0	0.15
1,2,4-Trichlorobenzene	ND		ug/kg	5.0	0.18
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	0.14
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	0.14
1,4-Dioxane	ND		ug/kg	100	14.
p-Diethylbenzene	ND		ug/kg	4.0	0.16
p-Ethyltoluene	ND		ug/kg	4.0	0.12
1,2,4,5-Tetramethylbenzene	ND		ug/kg	4.0	0.13
Ethyl ether	ND		ug/kg	5.0	0.26
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0	0.39

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	98		70-130			
Toluene-d8	97		70-130			
4-Bromofluorobenzene	96		70-130			
Dibromofluoromethane	93		70-130			

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG8	379482-1	WG879482-2			
Methylene chloride	98		98		70-130	0	30	
1,1-Dichloroethane	96		94		70-130	2	30	
Chloroform	96		95		70-130	1	30	
Carbon tetrachloride	91		90		70-130	1	30	
1,2-Dichloropropane	96		96		70-130	0	30	
Dibromochloromethane	87		92		70-130	6	30	
2-Chloroethylvinyl ether	91		96		70-130	5	30	
1,1,2-Trichloroethane	97		97		70-130	0	30	
Tetrachloroethene	97		94		70-130	3	30	
Chlorobenzene	96		96		70-130	0	30	
Trichlorofluoromethane	117		108		70-139	8	30	
1,2-Dichloroethane	96		96		70-130	0	30	
1,1,1-Trichloroethane	93		92		70-130	1	30	
Bromodichloromethane	89		92		70-130	3	30	
trans-1,3-Dichloropropene	92		93		70-130	1	30	
cis-1,3-Dichloropropene	93		95		70-130	2	30	
1,1-Dichloropropene	98		94		70-130	4	30	
Bromoform	82		88		70-130	7	30	
1,1,2,2-Tetrachloroethane	92		94		70-130	2	30	
Benzene	96		94		70-130	2	30	
Toluene	94		93		70-130	1	30	

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s): 01	Batch: WG8	379482-1	WG879482-2		
Ethylbenzene	95		93		70-130	2	30
Chloromethane	103		97		52-130	6	30
Bromomethane	106		94		57-147	12	30
Vinyl chloride	100		94		67-130	6	30
Chloroethane	129		118		50-151	9	30
1,1-Dichloroethene	97		93		65-135	4	30
trans-1,2-Dichloroethene	95		93		70-130	2	30
Trichloroethene	96		95		70-130	1	30
1,2-Dichlorobenzene	95		97		70-130	2	30
1,3-Dichlorobenzene	96		96		70-130	0	30
1,4-Dichlorobenzene	97		97		70-130	0	30
Methyl tert butyl ether	94		95		66-130	1	30
p/m-Xylene	96		94		70-130	2	30
o-Xylene	96		96		70-130	0	30
cis-1,2-Dichloroethene	94		97		70-130	3	30
Dibromomethane	95		98		70-130	3	30
Styrene	97		98		70-130	1	30
Dichlorodifluoromethane	104		98		30-146	6	30
Acetone	98		96		54-140	2	30
Carbon disulfide	92		91		59-130	1	30
2-Butanone	90		93		70-130	3	30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD nits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 01	Batch: WG8	379482-1	WG879482-2		
Vinyl acetate	95		99		70-130	4	30
4-Methyl-2-pentanone	88		92		70-130	4	30
1,2,3-Trichloropropane	93		95		68-130	2	30
2-Hexanone	94		96		70-130	2	30
Bromochloromethane	100		101		70-130	1	30
2,2-Dichloropropane	92		93		70-130	1	30
1,2-Dibromoethane	94		96		70-130	2	30
1,3-Dichloropropane	96		98		69-130	2	30
1,1,1,2-Tetrachloroethane	91		92		70-130	1	30
Bromobenzene	96		97		70-130	1	30
n-Butylbenzene	98		96		70-130	2	30
sec-Butylbenzene	97		95		70-130	2	30
tert-Butylbenzene	96		94		70-130	2	30
o-Chlorotoluene	96		94		70-130	2	30
p-Chlorotoluene	96		94		70-130	2	30
1,2-Dibromo-3-chloropropane	80		87		68-130	8	30
Hexachlorobutadiene	93		93		67-130	0	30
Isopropylbenzene	96		94		70-130	2	30
p-Isopropyltoluene	98		96		70-130	2	30
Naphthalene	94		99		70-130	5	30
Acrylonitrile	95		97		70-130	2	30

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 01	Batch: WG	879482-1	WG879482-2			
Isopropyl Ether	98		98		66-130	0		30
tert-Butyl Alcohol	86		90		70-130	5		30
n-Propylbenzene	97		94		70-130	3		30
1,2,3-Trichlorobenzene	99		102		70-130	3		30
1,2,4-Trichlorobenzene	96		100		70-130	4		30
1,3,5-Trimethylbenzene	97		96		70-130	1		30
1,2,4-Trimethylbenzene	97		96		70-130	1		30
Methyl Acetate	94		96		51-146	2		30
Ethyl Acetate	95		92		70-130	3		30
Acrolein	94		97		70-130	3		30
Cyclohexane	105		99		59-142	6		30
1,4-Dioxane	99		105		65-136	6		30
1,1,2-Trichloro-1,2,2-Trifluoroethane	107		101		50-139	6		30
p-Diethylbenzene	98		96		70-130	2		30
p-Ethyltoluene	97		95		70-130	2		30
1,2,4,5-Tetramethylbenzene	97		98		70-130	1		30
Tetrahydrofuran	98		98		66-130	0		30
Ethyl ether	80		78		67-130	3		30
trans-1,4-Dichloro-2-butene	92		94		70-130	2		30
Methyl cyclohexane	102		97		70-130	5		30
Ethyl-Tert-Butyl-Ether	95		96		70-130	1		30

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	5
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	Batch: WC	G879482-1	WG879482-2			
Tertiary-Amyl Methyl Ether	93		95		70-130	2	30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		97		70-130	
Toluene-d8	98		98		70-130	
4-Bromofluorobenzene	97		96		70-130	
Dibromofluoromethane	98		99		70-130	

SEMIVOLATILES

			Serial_N	o:04041618:27
Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		SAMPLE RESULTS		
Lab ID:	L1608891-01		Date Collected:	03/28/16 14:35
Client ID:	SS-1		Date Received:	03/28/16
Sample Location:	BROOKLYN, NY		Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8270D		Extraction Date:	03/31/16 17:08
Analytical Date:	04/04/16 17:09			
Analyst:	RC			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Acenaphthene	340		ug/kg	150	20.	1
1,2,4-Trichlorobenzene	ND		ug/kg	190	22.	1
Hexachlorobenzene	ND		ug/kg	120	22.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1
2-Chloronaphthalene	ND		ug/kg	190	19.	1
1,2-Dichlorobenzene	ND		ug/kg	190	35.	1
1,3-Dichlorobenzene	ND		ug/kg	190	33.	1
1,4-Dichlorobenzene	ND		ug/kg	190	34.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1
2,4-Dinitrotoluene	ND		ug/kg	190	38.	1
2,6-Dinitrotoluene	ND		ug/kg	190	33.	1
Fluoranthene	6200		ug/kg	120	22.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	21.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	33.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	210	19.	1
Hexachlorobutadiene	ND		ug/kg	190	28.	1
Hexachlorocyclopentadiene	ND		ug/kg	550	170	1
Hexachloroethane	ND		ug/kg	150	31.	1
Isophorone	ND		ug/kg	170	25.	1
Naphthalene	230		ug/kg	190	24.	1
Nitrobenzene	ND		ug/kg	170	28.	1
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg	150	22.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	30.	1
Bis(2-Ethylhexyl)phthalate	340		ug/kg	190	67.	1
Butyl benzyl phthalate	ND		ug/kg	190	49.	1
Di-n-butylphthalate	ND		ug/kg	190	36.	1
Di-n-octylphthalate	ND		ug/kg	190	66.	1
Diethyl phthalate	ND		ug/kg	190	18.	1
Dimethyl phthalate	ND		ug/kg	190	40.	1

		Serial_No:04041618:27					
Project Name:	25 PATCHEN				Lab Nu	imber:	L1608891
Project Number:	25 PATCHEN				Report	Date:	04/04/16
		SAMP		S	•		
Lab ID:	L1608891-01				Date Co	llected:	03/28/16 14:35
Client ID:	SS-1				Date Re	ceived:	03/28/16
Sample Location:	BROOKLYN, NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orga	nics by GC/MS - Westbo	orough Lab					
Benzo(a)anthracene		3500		ug/kg	120	22.	1
Benzo(a)pyrene		3100		ug/kg	150	47.	1
Benzo(b)fluoranthene		4000		ug/kg	120	32.	1
Benzo(k)fluoranthene		1700		ug/kg	120	31.	1
Chrysene		3400		ug/kg	120	20.	1
Acenaphthylene		310		ug/kg	150	30.	1
Anthracene		1100		ug/kg	130	38.	1
Benzo(ghi)perylene		1900		ug/kg ug/kg	120	23.	1
Fluorene		420		ug/kg ug/kg	190	19.	1
Phenanthrene		420			190	23.	1
		560		ug/kg	120	23.	1
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)Pyrene		2200		ug/kg	120	22.	1
		5400		ug/kg	150	27. 19.	1
Pyrene				ug/kg			
Biphenyl		ND		ug/kg	440	45.	1
4-Chloroaniline		ND		ug/kg	190	35.	1
2-Nitroaniline		ND		ug/kg	190	37.	1
3-Nitroaniline		ND		ug/kg	190	36.	1
4-Nitroaniline		ND		ug/kg	190	80.	1
Dibenzofuran		200		ug/kg	190	18.	1
2-Methylnaphthalene		130	J	ug/kg	230	23.	1
1,2,4,5-Tetrachlorobenze	ene	ND		ug/kg	190	20.	1
Acetophenone		ND		ug/kg	190	24.	1
2,4,6-Trichlorophenol		ND		ug/kg	120	36.	1
P-Chloro-M-Cresol		ND		ug/kg	190	29.	1
2-Chlorophenol		ND		ug/kg	190	23.	1
2,4-Dichlorophenol		ND		ug/kg	170	31.	1
2,4-Dimethylphenol		ND		ug/kg	190	64.	1
2-Nitrophenol		ND		ug/kg	420	72.	1
4-Nitrophenol		ND		ug/kg	270	79.	1
2,4-Dinitrophenol		ND		ug/kg	930	90.	1
4,6-Dinitro-o-cresol		ND		ug/kg	500	93.	1
Pentachlorophenol		ND		ug/kg	150	42.	1
Phenol		ND		ug/kg	190	29.	1
2-Methylphenol		ND		ug/kg	190	30.	1
3-Methylphenol/4-Methy	Iphenol	ND		ug/kg	280	30.	1
2,4,5-Trichlorophenol		ND		ug/kg	190	37.	1
Benzoic Acid		ND		ug/kg	620	200	1
Benzyl Alcohol		ND		ug/kg	190	59.	1
Carbazole		470		ug/kg	190	19.	1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Location:	BROOKLYN, NY				Field Prep:		Not Specified
Client ID:	SS-1				Date Receiv	ved:	03/28/16
Lab ID:	L1608891-01				Date Collec	ted:	03/28/16 14:35
		SAMP		6			
Project Number:	25 PATCHEN				Report Da	ate:	04/04/16
Project Name:	25 PATCHEN				Lab Numl	ber:	L1608891
					Sei	rial_No	0:04041618:27

Semivolatile Organics by GC/MS - Westborough Lab

% Recovery	Qualifier	Acceptance Criteria
74		25-120
86		10-120
96		23-120
89		30-120
97		10-136
72		18-120
	74 86 96 89 97	74 86 96 89 97

Project Name:	25 PATCHEN	Lab Number:	L1608891
Project Number:	25 PATCHEN	Report Date:	04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 04/01/16 20:14 RC Extraction Method: EPA 3546 Extraction Date: 03/31/16 17:08

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG879252-1
Acenaphthene	ND		ug/kg		130	17.
Benzidine	ND		ug/kg		540	180
n-Nitrosodimethylamine	ND		ug/kg		320	31.
1,2,4-Trichlorobenzene	ND		ug/kg		160	18.
Hexachlorobenzene	ND		ug/kg		97	18.
Bis(2-chloroethyl)ether	ND		ug/kg		150	22.
2-Chloronaphthalene	ND		ug/kg		160	16.
1,2-Dichlorobenzene	ND		ug/kg		160	29.
1,3-Dichlorobenzene	ND		ug/kg		160	28.
1,4-Dichlorobenzene	ND		ug/kg		160	28.
3,3'-Dichlorobenzidine	ND		ug/kg		160	43.
2,4-Dinitrotoluene	ND		ug/kg		160	32.
2,6-Dinitrotoluene	ND		ug/kg		160	28.
Fluoranthene	ND		ug/kg		97	19.
4-Chlorophenyl phenyl ether	ND		ug/kg		160	17.
4-Bromophenyl phenyl ether	ND		ug/kg		160	25.
Azobenzene	ND		ug/kg		160	16.
Bis(2-chloroisopropyl)ether	ND		ug/kg		190	28.
Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.
Hexachlorobutadiene	ND		ug/kg		160	24.
Hexachlorocyclopentadiene	ND		ug/kg		460	150
Hexachloroethane	ND		ug/kg		130	26.
Isophorone	ND		ug/kg		150	21.
Naphthalene	ND		ug/kg		160	20.
Nitrobenzene	ND		ug/kg		150	24.
NitrosoDiPhenylAmine(NDPA)/DPA	ND		ug/kg		130	18.
n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.
Bis(2-Ethylhexyl)phthalate	ND		ug/kg		160	56.
Butyl benzyl phthalate	ND		ug/kg		160	41.

Project Name:	25 PATCHEN	Lab Number:	L1608891
Project Number:	25 PATCHEN	Report Date:	04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:
Analytical Date:
Analyst:

1,8270D 04/01/16 20:14 RC Extraction Method: EPA 3546 Extraction Date: 03/31/16 17:08

arameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/N	/IS - Westborougl	n Lab for s	ample(s):	01 Batch	: WG879252-1
Di-n-butylphthalate	ND		ug/kg	160	31.
Di-n-octylphthalate	ND		ug/kg	160	55.
Diethyl phthalate	ND		ug/kg	160	15.
Dimethyl phthalate	ND		ug/kg	160	34.
Benzo(a)anthracene	ND		ug/kg	97	18.
Benzo(a)pyrene	ND		ug/kg	130	40.
Benzo(b)fluoranthene	ND		ug/kg	97	27.
Benzo(k)fluoranthene	ND		ug/kg	97	26.
Chrysene	ND		ug/kg	97	17.
Acenaphthylene	ND		ug/kg	130	25.
Anthracene	ND		ug/kg	97	32.
Benzo(ghi)perylene	ND		ug/kg	130	19.
Fluorene	ND		ug/kg	160	16.
Phenanthrene	ND		ug/kg	97	20.
Dibenzo(a,h)anthracene	ND		ug/kg	97	19.
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	130	23.
Pyrene	ND		ug/kg	97	16.
Biphenyl	ND		ug/kg	370	38.
Aniline	ND		ug/kg	190	77.
4-Chloroaniline	ND		ug/kg	160	30.
2-Nitroaniline	ND		ug/kg	160	31.
3-Nitroaniline	ND		ug/kg	160	31.
4-Nitroaniline	ND		ug/kg	160	67.
Dibenzofuran	ND		ug/kg	160	15.
2-Methylnaphthalene	ND		ug/kg	190	20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	17.
Acetophenone	ND		ug/kg	160	20.
2,4,6-Trichlorophenol	ND		ug/kg	97	31.
P-Chloro-M-Cresol	ND		ug/kg	160	24.

Project Name:	25 PATCHEN	Lab Number:	L1608891
Project Number:	25 PATCHEN	Report Date:	04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 04/01/16 20:14 RC Extraction Method: EPA 3546 Extraction Date: 03/31/16 17:08

Parameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	6 - Westborougl	h Lab for sa	ample(s):	01	Batch:	WG879252-1
2-Chlorophenol	ND		ug/kg		160	19.
2,4-Dichlorophenol	ND		ug/kg		150	26.
2,4-Dimethylphenol	ND		ug/kg		160	54.
2-Nitrophenol	ND		ug/kg		350	61.
4-Nitrophenol	ND		ug/kg		230	66.
2,4-Dinitrophenol	ND		ug/kg		780	76.
4,6-Dinitro-o-cresol	ND		ug/kg		420	78.
Pentachlorophenol	ND		ug/kg		130	36.
Phenol	ND		ug/kg		160	24.
2-Methylphenol	ND		ug/kg		160	25.
3-Methylphenol/4-Methylphenol	ND		ug/kg		230	25.
2,4,5-Trichlorophenol	ND		ug/kg		160	31.
Benzoic Acid	ND		ug/kg		530	160
Benzyl Alcohol	ND		ug/kg		160	50.
Carbazole	ND		ug/kg		160	16.
Benzaldehyde	ND		ug/kg		210	44.
Caprolactam	ND		ug/kg		160	49.
Atrazine	ND		ug/kg		130	57.
2,3,4,6-Tetrachlorophenol	ND		ug/kg		160	33.
Pyridine	ND		ug/kg		650	62.
Parathion, ethyl	ND		ug/kg		160	100
1-Methylnaphthalene	ND		ug/kg		160	19.

Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 04/01/16 20:14 RC		Extraction Method: Extraction Date:	EPA 3546 03/31/16 17:08

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01	Batch:	WG879252-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	69	25-120
Phenol-d6	71	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	73	30-120
2,4,6-Tribromophenol	66	10-136
4-Terphenyl-d14	82	18-120

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
emivolatile Organics by GC/MS - Westborg	ough Lab Assoc	iated sample(s):	01 Batch:	WG879252-2	WG879252-3			
Acenaphthene	67		66		31-137	2	50	
Benzidine	78	Q	68	Q	10-66	14	50	
n-Nitrosodimethylamine	53		56		22-100	6	50	
1,2,4-Trichlorobenzene	68		70		38-107	3	50	
Hexachlorobenzene	84		82		40-140	2	50	
Bis(2-chloroethyl)ether	65		65		40-140	0	50	
2-Chloronaphthalene	79		77		40-140	3	50	
1,2-Dichlorobenzene	65		69		40-140	6	50	
1,3-Dichlorobenzene	61		65		40-140	6	50	
1,4-Dichlorobenzene	62		66		28-104	6	50	
3,3'-Dichlorobenzidine	72		67		40-140	7	50	
2,4-Dinitrotoluene	89		85		28-89	5	50	
2,6-Dinitrotoluene	93		87		40-140	7	50	
Fluoranthene	81		78		40-140	4	50	
4-Chlorophenyl phenyl ether	74		72		40-140	3	50	
4-Bromophenyl phenyl ether	82		78		40-140	5	50	
Azobenzene	73		71		40-140	3	50	
Bis(2-chloroisopropyl)ether	57		57		40-140	0	50	
Bis(2-chloroethoxy)methane	75		73		40-117	3	50	
Hexachlorobutadiene	72		75		40-140	4	50	
Hexachlorocyclopentadiene	88		90		40-140	2	50	

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Wes	tborough Lab Associa	ated sample(s):	01 Batch:	WG879252-2	WG879252-3			
Hexachloroethane	67		71		40-140	6		50
Isophorone	88		86		40-140	2		50
Naphthalene	66		66		40-140	0		50
Nitrobenzene	71		73		40-140	3		50
NitrosoDiPhenylAmine(NDPA)/DPA	80		76		36-157	5		50
n-Nitrosodi-n-propylamine	82		81		32-121	1		50
Bis(2-Ethylhexyl)phthalate	70		68		40-140	3		50
Butyl benzyl phthalate	85		81		40-140	5		50
Di-n-butylphthalate	84		80		40-140	5		50
Di-n-octylphthalate	76		74		40-140	3		50
Diethyl phthalate	83		79		40-140	5		50
Dimethyl phthalate	77		74		40-140	4		50
Benzo(a)anthracene	74		72		40-140	3		50
Benzo(a)pyrene	75		74		40-140	1		50
Benzo(b)fluoranthene	74		74		40-140	0		50
Benzo(k)fluoranthene	76		72		40-140	5		50
Chrysene	66		65		40-140	2		50
Acenaphthylene	88		86		40-140	2		50
Anthracene	74		72		40-140	3		50
Benzo(ghi)perylene	74		73		40-140	1		50
Fluorene	75		73		40-140	3		50

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - W	/estborough Lab Associa	ated sample(s):	01 Batch:	WG879252-2	WG879252-3			
Phenanthrene	67		65		40-140	3		50
Dibenzo(a,h)anthracene	80		79		40-140	1		50
Indeno(1,2,3-cd)Pyrene	82		82		40-140	0		50
Pyrene	78		76		35-142	3		50
Biphenyl	65		64		54-104	2		50
Aniline	60		57		40-140	5		50
4-Chloroaniline	78		76		40-140	3		50
2-Nitroaniline	90		89		47-134	1		50
3-Nitroaniline	62		56		26-129	10		50
4-Nitroaniline	77		71		41-125	8		50
Dibenzofuran	69		68		40-140	1		50
2-Methylnaphthalene	73		72		40-140	1		50
1,2,4,5-Tetrachlorobenzene	66		66		40-117	0		50
Acetophenone	76		78		14-144	3		50
2,4,6-Trichlorophenol	81		78		30-130	4		50
P-Chloro-M-Cresol	90		87		26-103	3		50
2-Chlorophenol	78		80		25-102	3		50
2,4-Dichlorophenol	82		82		30-130	0		50
2,4-Dimethylphenol	91		89		30-130	2		50
2-Nitrophenol	88		90		30-130	2		50
4-Nitrophenol	73		74		11-114	1		50

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - We	estborough Lab Associa	ated sample(s):	01 Batch:	WG879252-2 WG879252-3	3	
2,4-Dinitrophenol	79		73	4-130	8	50
4,6-Dinitro-o-cresol	93		88	10-130	6	50
Pentachlorophenol	72		70	17-109	3	50
Phenol	68		69	26-90	1	50
2-Methylphenol	80		80	30-130.	0	50
3-Methylphenol/4-Methylphenol	76		74	30-130	3	50
2,4,5-Trichlorophenol	93		87	30-130	7	50
Benzoic Acid	55		50	10-66	10	50
Benzyl Alcohol	77		75	40-140	3	50
Carbazole	79		76	54-128	4	50
Benzaldehyde	56		58	40-140	4	50
Caprolactam	81		77	15-130	5	50
Atrazine	90		86	40-140	5	50
2,3,4,6-Tetrachlorophenol	82		80	40-140	2	50
Pyridine	40		47	10-93	16	50
Parathion, ethyl	129		123	40-140	5	50
1-Methylnaphthalene	74		75	26-130	1	50

Project Name: 25 PATCHEN Project Number: 25 PATCHEN Lab Number: L1608891

Report Date: 04/04/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associa	ted sample(s): 01 Batch:	WG879252-2	WG879252-3				

LCS %Recovery	LCSD Qual %Recovery	Acceptance Qual Criteria
73	76	25-120
83	83	10-120
85	84	23-120
80	78	30-120
85	82	10-136
88	83	18-120
	%Recovery 73 83 85 80 85 85	%Recovery Qual %Recovery 73 76 83 83 85 84 80 78 85 82

PCBS

			Serial_No	0:04041618:27
Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		SAMPLE RESULTS		
Lab ID:	L1608891-01		Date Collected:	03/28/16 14:35
Client ID:	SS-1		Date Received:	03/28/16
Sample Location:	BROOKLYN, NY		Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8082A		Extraction Date:	03/31/16 02:29
Analytical Date:	04/01/16 18:16		Cleanup Method:	EPA 3665A
Analyst:	JW		Cleanup Date:	04/01/16
Percent Solids:	86%		Cleanup Method:	EPA 3660B
			Cleanup Date:	04/01/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - We	Polychlorinated Biphenyls by GC - Westborough Lab									
Arceler 1010	ND			20.4	2.04	4	٨			
Aroclor 1016	ND		ug/kg	38.4	3.04	1	A			
Aroclor 1221	ND		ug/kg	38.4	3.54	1	А			
Aroclor 1232	ND		ug/kg	38.4	4.50	1	А			
Aroclor 1242	ND		ug/kg	38.4	4.70	1	А			
Aroclor 1248	ND		ug/kg	38.4	3.24	1	А			
Aroclor 1254	ND		ug/kg	38.4	3.16	1	А			
Aroclor 1260	ND		ug/kg	38.4	2.93	1	А			
Aroclor 1262	ND		ug/kg	38.4	1.91	1	А			
Aroclor 1268	ND		ug/kg	38.4	5.57	1	А			
PCBs, Total	ND		ug/kg	38.4	1.91	1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	52		30-150	А
Decachlorobiphenyl	64		30-150	А
2,4,5,6-Tetrachloro-m-xylene	44		30-150	В
Decachlorobiphenyl	58		30-150	В

L1608891

04/04/16

Lab Number:

Report Date:

03/31/16

Project Name:	25 PATCHEN
Project Number:	25 PATCHEN

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8082A
Analytical Date:	03/31/16 10:16
Analyst:	BO

Extraction Method:	EPA 3546
Extraction Date:	03/31/16 02:29
Cleanup Method:	EPA 3665A
Cleanup Date:	03/31/16
Cleanup Method:	EPA 3660B
Cleanup Date:	03/31/16

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestborough	n Lab for sa	ample(s):	01 Bat	ch: WG878973-1	
Aroclor 1016	ND		ug/kg	31.8	2.52	А
Aroclor 1221	ND		ug/kg	31.8	2.94	А
Aroclor 1232	ND		ug/kg	31.8	3.73	А
Aroclor 1242	ND		ug/kg	31.8	3.90	А
Aroclor 1248	ND		ug/kg	31.8	2.69	А
Aroclor 1254	ND		ug/kg	31.8	2.62	А
Aroclor 1260	ND		ug/kg	31.8	2.43	А
Aroclor 1262	ND		ug/kg	31.8	1.58	А
Aroclor 1268	ND		ug/kg	31.8	4.62	А
PCBs, Total	ND		ug/kg	31.8	1.58	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80		30-150	A
Decachlorobiphenyl	82		30-150	А
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В
Decachlorobiphenyl	84		30-150	В

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual %F	Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by G0	C - Westborough Lab Associa	ited sample(s): 0	1 Batch:	WG878973-2	WG878973-3				
Aroclor 1016	93		93		40-140	0		50	А
Aroclor 1260	79		80		40-140	1		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	87		88		30-150	А
Decachlorobiphenyl	90		83		30-150	А
2,4,5,6-Tetrachloro-m-xylene	91		87		30-150	В
Decachlorobiphenyl	82		76		30-150	В

PESTICIDES

			Serial_N	0:04041618:27
Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		SAMPLE RESULTS		
Lab ID:	L1608891-01		Date Collected:	03/28/16 14:35
Client ID:	SS-1		Date Received:	03/28/16
Sample Location:	BROOKLYN, NY		Field Prep:	Not Specified
Matrix:	Soil		Extraction Metho	d:EPA 3546
Analytical Method:	1,8081B		Extraction Date:	04/01/16 08:44
Analytical Date:	04/02/16 13:33		Cleanup Method:	EPA 3620B
Analyst:	EC		Cleanup Date:	04/02/16
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - W	/estborough Lab						
Delta-BHC	ND		ug/kg	1.81	0.355	1	А
Lindane	ND		ug/kg	0.755	0.338	1	А
Alpha-BHC	ND		ug/kg	0.755	0.214	1	А
Beta-BHC	ND		ug/kg	1.81	0.687	1	А
Heptachlor	ND		ug/kg	0.906	0.406	1	А
Aldrin	ND		ug/kg	1.81	0.638	1	А
Heptachlor epoxide	1.12	J	ug/kg	3.40	1.02	1	А
Endrin	ND		ug/kg	0.755	0.310	1	А
Endrin aldehyde	ND		ug/kg	2.26	0.793	1	А
Endrin ketone	ND		ug/kg	1.81	0.467	1	А
Dieldrin	ND		ug/kg	1.13	0.566	1	А
4,4'-DDE	12.3		ug/kg	1.81	0.419	1	А
4,4'-DDD	ND		ug/kg	1.81	0.646	1	А
4,4'-DDT	45.5		ug/kg	3.40	1.46	1	А
Endosulfan I	ND		ug/kg	1.81	0.428	1	А
Endosulfan II	ND		ug/kg	1.81	0.606	1	А
Endosulfan sulfate	ND		ug/kg	0.755	0.359	1	А
Methoxychlor	ND		ug/kg	3.40	1.06	1	А
Toxaphene	ND		ug/kg	34.0	9.51	1	А
cis-Chlordane	4.53		ug/kg	2.26	0.631	1	В
trans-Chlordane	2.81	PI	ug/kg	2.26	0.598	1	А
Chlordane	31.6	PI	ug/kg	14.7	6.00	1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	85		30-150	В
2,4,5,6-Tetrachloro-m-xylene	72		30-150	А
Decachlorobiphenyl	103		30-150	А

Project Name:	25 PATCHEN	Lab Number:	L1608891
Project Number:	25 PATCHEN	Report Date:	04/04/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8081B 04/02/16 10:05 EC Extraction Method:EPA 3546Extraction Date:04/01/16 08:44Cleanup Method:EPA 3620BCleanup Date:04/02/16

arameter	Result	Qualifier	Units	I	RL	MDL	Column
organochlorine Pesticides b	y GC - Westboroug	gh Lab for s	sample(s):	01	Batch:	WG879421-1	
Delta-BHC	ND		ug/kg	1	.50	0.295	A
Lindane	ND		ug/kg	0.	627	0.280	А
Alpha-BHC	ND		ug/kg	0.	627	0.178	А
Beta-BHC	ND		ug/kg	1	.50	0.571	А
Heptachlor	ND		ug/kg	0.	753	0.338	А
Aldrin	ND		ug/kg	1	.50	0.530	А
Heptachlor epoxide	ND		ug/kg	2	.82	0.847	А
Endrin	ND		ug/kg	0.	627	0.257	А
Endrin aldehyde	ND		ug/kg	1	.88	0.659	А
Endrin ketone	ND		ug/kg	1	.50	0.388	А
Dieldrin	ND		ug/kg	0.	941	0.470	А
4,4'-DDE	ND		ug/kg	1	.50	0.348	А
4,4'-DDD	ND		ug/kg	1	.50	0.537	А
4,4'-DDT	ND		ug/kg	2	.82	1.21	А
Endosulfan I	ND		ug/kg	1	.50	0.356	А
Endosulfan II	ND		ug/kg	1	.50	0.503	А
Endosulfan sulfate	ND		ug/kg	0.	627	0.299	А
Methoxychlor	ND		ug/kg	2	.82	0.878	А
Toxaphene	ND		ug/kg	2	8.2	7.90	А
cis-Chlordane	ND		ug/kg	1	.88	0.524	А
trans-Chlordane	ND		ug/kg	1	.88	0.497	А
Chlordane	ND		ug/kg	1	2.2	4.99	А

Project Name:	25 PATCHEN		Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16
		Method Blank Analysis Batch Quality Control		

Batch Quality Control

Analytical Method:	1,8081B
Analytical Date:	04/02/16 10:05
Analyst:	EC

Extraction Method: EPA 3546 Extraction Date: 04/01/16 08:44 EPA 3620B Cleanup Method: Cleanup Date: 04/02/16

Parameter	Result	Qualifier	Units		RL	MDL	
Organochlorine Pesticides by GC -	Westborough	n Lab for s	ample(s):	01	Batch:	WG879421-1	

		•		
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	108		30-150	В
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А
Decachlorobiphenyl	78		30-150	А

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1608891 Report Date: 04/04/16

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits Column %Recovery Qual Parameter Qual Qual Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG879421-2 WG879421-3 Delta-BHC 86 85 30-150 30 А 1 Lindane 84 82 30-150 2 30 А Alpha-BHC 92 86 30-150 30 А 7 Beta-BHC 86 30 97 30-150 12 А Heptachlor 80 30-150 30 А 83 4 Aldrin 30 А 86 84 30-150 2 Heptachlor epoxide 89 83 30-150 7 30 А Endrin 95 89 30-150 30 А 7 Endrin aldehyde 30-150 30 А 84 72 15 Endrin ketone 30-150 30 84 78 7 А Dieldrin 86 30-150 30 А 89 3 4,4'-DDE 88 83 30-150 6 30 А 4,4'-DDD 85 30-150 30 А 91 7 4,4'-DDT 92 90 30-150 30 А 2 Endosulfan I 30-150 30 91 87 4 А Endosulfan II 92 30-150 30 А 96 4 Endosulfan sulfate 78 72 30-150 8 30 А Methoxychlor 102 92 30-150 10 30 А cis-Chlordane 30-150 30 А 87 83 5 trans-Chlordane 30-150 30 А 93 90 3

Lab Control Sample Analysis

Batch Quality Control

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

 Organochlorine Pesticides by GC - Westborough Lab Associated sample(s):
 01
 Batch:
 WG879421-2
 WG879421-3

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	Qual %Recovery		Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		66		30-150	В
Decachlorobiphenyl	99		95		30-150	В
2,4,5,6-Tetrachloro-m-xylene	75		72		30-150	А
Decachlorobiphenyl	98		85		30-150	А

METALS

Serial_No:04041618:27

								Serial	_N0:04041	018:27	
Project Name:	25 PA	TCHEN					Lab Nur	nber:	L16088	91	
Project Number:	25 PA	TCHEN					Report	Date:	04/04/1	6	
				SAMPL	E RES	ULTS					
Lab ID:	L1608	891-01					Date Co	llected:	03/28/1	6 14:35	
Client ID:	SS-1						Date Re	ceived:	03/28/1	6	
Sample Location:		OKLYN, NY	,				Field Pre	əp:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - West	oorough	Lab									
Aluminum, Total	6700		mg/kg	9.2	1.8	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Antimony, Total	5.7		mg/kg	4.6	0.74	2		03/29/16 22:09		1,6010C	AB
Arsenic, Total	11		mg/kg	0.92	0.18	2		03/29/16 22:09		1,6010C	AB
Barium, Total	250		mg/kg	0.92	0.28	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Beryllium, Total	0.33	J	mg/kg	0.46	0.09	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Cadmium, Total	2.1		mg/kg	0.92	0.07	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Calcium, Total	2900		mg/kg	9.2	2.8	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Chromium, Total	21		mg/kg	0.92	0.18	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Cobalt, Total	4.6		mg/kg	1.8	0.46	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Copper, Total	180		mg/kg	0.92	0.18	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Iron, Total	25000		mg/kg	4.6	1.8	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Lead, Total	540		mg/kg	4.6	0.18	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Magnesium, Total	1200		mg/kg	9.2	0.92	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Manganese, Total	370		mg/kg	0.92	0.18	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Mercury, Total	1.6		mg/kg	0.07	0.02	1	03/29/16 07:55	03/29/16 23:18	EPA 7471B	1,7471B	EA
Nickel, Total	14		mg/kg	2.3	0.37	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Potassium, Total	480		mg/kg	230	37.	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Selenium, Total	1.0	J	mg/kg	1.8	0.28	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Silver, Total	0.50	J	mg/kg	0.92	0.18	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Sodium, Total	61	J	mg/kg	180	28.	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Thallium, Total	ND		mg/kg	1.8	0.37	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB
Vanadium, Total	30		mg/kg	0.92	0.09	2	03/29/16 10:20	03/29/16 22:09	EPA 3050B	1,6010C	AB

0.65

2

03/29/16 10:20 03/29/16 22:09 EPA 3050B

4.6

mg/kg

1,6010C

AB

Zinc, Total

430

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westboro	ugh Lab	for sample(s	s): 01 E	Batch: W	G87822	2-1				
Mercury, Total	ND		mg/kg	0.08	0.02	1	03/29/16 07:55	03/29/16 18:17	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westb	orough Lab fo	r sample((s): 01 E	Batch: W	/G87829	95-1				
Aluminum, Total	ND		mg/kg	4.0	0.80	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Antimony, Total	ND		mg/kg	2.0	0.32	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Arsenic, Total	ND		mg/kg	0.40	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Barium, Total	ND		mg/kg	0.40	0.12	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Beryllium, Total	ND		mg/kg	0.20	0.04	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Cadmium, Total	ND		mg/kg	0.40	0.03	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Calcium, Total	ND		mg/kg	4.0	1.2	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Chromium, Total	ND		mg/kg	0.40	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Cobalt, Total	ND		mg/kg	0.80	0.20	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Copper, Total	0.10	J	mg/kg	0.40	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Iron, Total	ND		mg/kg	2.0	0.80	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Lead, Total	ND		mg/kg	2.0	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Magnesium, Total	ND		mg/kg	4.0	0.40	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Manganese, Total	ND		mg/kg	0.40	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Nickel, Total	ND		mg/kg	1.0	0.16	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Potassium, Total	ND		mg/kg	100	16.	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Selenium, Total	ND		mg/kg	0.80	0.12	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Silver, Total	ND		mg/kg	0.40	0.08	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Sodium, Total	ND		mg/kg	80	12.	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Thallium, Total	ND		mg/kg	0.80	0.16	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Vanadium, Total	ND		mg/kg	0.40	0.04	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB
Zinc, Total	ND		mg/kg	2.0	0.28	1	03/29/16 10:20	03/29/16 12:52	1,6010C	AB

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Lab Control Sample Analysis

Batch Quality Control

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Project Name:25 PATCHENProject Number:25 PATCHEN

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD Limits** Parameter Qual Qual Qual Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG878222-2 SRM Lot Number: D088-540 Mercury, Total 97 72-128 --

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

Parameter	LCS %Recover		CSD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab Associated s	ample(s): 01	Batch: WG878295-2	SRM Lot Nur	nber: D088-540		
Aluminum, Total	88		-	48-151	-	
Antimony, Total	206		-	1-208	-	
Arsenic, Total	105		-	79-121	-	
Barium, Total	99		-	83-117	-	
Beryllium, Total	103		-	83-117	-	
Cadmium, Total	103		-	83-117	-	
Calcium, Total	101		-	81-119	-	
Chromium, Total	101		-	80-120	-	
Cobalt, Total	111		-	84-115	-	
Copper, Total	98		-	81-118	-	
Iron, Total	116		-	45-155	-	
Lead, Total	98		-	81-117	-	
Magnesium, Total	91		-	76-124	-	
Manganese, Total	98		-	81-118	-	
Nickel, Total	105		-	83-117	-	
Potassium, Total	93		-	71-129	-	
Selenium, Total	97		-	78-122	-	
Silver, Total	103		-	75-124	-	
Sodium, Total	106		-	72-127	-	
Thallium, Total	105		-	80-120	-	
Vanadium, Total	107		-	78-122	-	

Lab Number: L1608891 Report Date: 04/04/16

Project Name: 25 PATCHEN Project Number: 25 PATCHEN

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Parameter Total Metals - Westborough Lab Associated sample(s): 01 Batch: WG878295-2 SRM Lot Number: D088-540 Zinc, Total 101 82-118 --

		Matrix Spike Analysis		
Project Name:	25 PATCHEN	Batch Quality Control	Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD Q	RPD ual Limits
Total Metals - Westborough Lat	o Associated	sample(s): 01	QC Ba	tch ID: WG878	222-4	QC Sam	ple: L1608886-1	4 Cli	ent ID: MS	Sample	
Mercury, Total	0.82	0.141	1.4	410	Q	-	-		80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name:25 PATCHENProject Number:25 PATCHEN

Lab Number: L1608891

Report Date: 04/04/16

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Westborough	h Lab Associated	sample(s): 01	QC Ba	atch ID: WG878	295-4	QC Sam	ple: L1608886-14	Client ID: MS	Sample	
Aluminum, Total	6500	170	5200	0	Q	-	-	75-125	-	20
Antimony, Total	3.0J	42.5	46	108		-	-	75-125	-	20
Arsenic, Total	7.0	10.2	18	108		-	-	75-125	-	20
Barium, Total	160	170	360	118		-	-	75-125	-	20
Beryllium, Total	0.26J	4.25	4.6	108		-	-	75-125	-	20
Cadmium, Total	0.64J	4.33	4.7	108		-	-	75-125	-	20
Calcium, Total	26000	850	52000	3060	Q	-	-	75-125	-	20
Chromium, Total	20.	17	33	76		-	-	75-125	-	20
Cobalt, Total	5.4	42.5	42	86		-	-	75-125	-	20
Copper, Total	120	21.2	140	94		-	-	75-125	-	20
Iron, Total	14000	85	12000	0	Q	-	-	75-125	-	20
Lead, Total	260	43.3	330	161	Q	-	-	75-125	-	20
Magnesium, Total	8800	850	8000	0	Q	-	-	75-125	-	20
Manganese, Total	220	42.5	240	47	Q	-	-	75-125	-	20
Nickel, Total	16.	42.5	52	85		-	-	75-125	-	20
Potassium, Total	850	850	1700	100		-	-	75-125	-	20
Selenium, Total	0.38J	10.2	10	98		-	-	75-125	-	20
Silver, Total	0.39J	25.5	27	106		-	-	75-125	-	20
Sodium, Total	230	850	1200	114		-	-	75-125	-	20
Thallium, Total	ND	10.2	8.6	84		-	-	75-125	-	20
Vanadium, Total	20.	42.5	60	94		-	-	75-125	-	20

		Matrix Spike Analysis Batch Quality Control		
Project Name:	25 PATCHEN	Batch Quality Control	Lab Number:	L1608891
Project Number:	25 PATCHEN		Report Date:	04/04/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Westborough	Lab Associated	sample(s): 0 ⁻	1 QC Ba	tch ID: WG878295-4	QC Sam	ple: L1608886-14	Client ID: MS Sample	
Zinc, Total	260	42.5	300	94	-	-	75-125 -	20

Project Name:	25 PATCHEN	L	ab Duplicate Analy Batch Quality Control		La	ab Numbe	r: L160889 [,]
Project Number:	25 PATCHEN				R	eport Date	e: 04/04/16
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

Total Metals - Westborough Lab Associated sample(s): 01	QC Batch ID: WG878222-3	QC Sample: L	_1608886-14 C	lient ID:	DUP Sample	
Mercury, Total	0.82	0.79	mg/kg	4		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 25 PATCHEN Project Number: 25 PATCHEN Lab Number:

L1608891 04/04/16 Report Date:

rameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
tal Metals - Westborough Lab Associated sample(s):	01 QC Batch ID: V	VG878295-3 QC Sample:	L1608886-14	Client ID:	DUP Sample
Aluminum, Total	6500	7200	mg/kg	10	20
Antimony, Total	3.0J	4.2J	mg/kg	NC	20
Arsenic, Total	7.0	7.4	mg/kg	6	20
Barium, Total	160	190	mg/kg	17	20
Beryllium, Total	0.26J	0.69	mg/kg	NC	20
Cadmium, Total	0.64J	0.66J	mg/kg	NC	20
Calcium, Total	26000	25000	mg/kg	4	20
Chromium, Total	20.	23	mg/kg	14	20
Cobalt, Total	5.4	6.2	mg/kg	14	20
Copper, Total	120	140	mg/kg	15	20
Iron, Total	14000	17000	mg/kg	19	20
Lead, Total	260	300	mg/kg	14	20
Magnesium, Total	8800	8100	mg/kg	8	20
Manganese, Total	220	220	mg/kg	0	20
Nickel, Total	16.	16	mg/kg	0	20
Potassium, Total	850	970	mg/kg	13	20
Selenium, Total	0.38J	0.61J	mg/kg	NC	20
Silver, Total	0.39J	0.36J	mg/kg	NC	20
Sodium, Total	230	540	mg/kg	81	Q 20

Lab Duplicate Analysis Batch Quality Control

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Westborough Lab Associated s	sample(s): 01 QC Batch ID:	WG878295-3 QC Sample:	L1608886-14	Client ID:	DUP Sample
Thallium, Total	ND	ND	mg/kg	NC	20
Vanadium, Total	20.	21	mg/kg	5	20
Zinc, Total	260	260	mg/kg	0	20

INORGANICS & MISCELLANEOUS

Lab Number: L1608891 Report Date: 04/04/16

Project Name:25 PATCHENProject Number:25 PATCHEN

SAMPLE RESULTS

Lab ID:	L1608891-01	Date Collected:	03/28/16 14:35
Client ID:	SS-1	Date Received:	03/28/16
Sample Location:	BROOKLYN, NY	Field Prep:	Not Specified
Matrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	85.6		%	0.100	NA	1	-	03/29/16 11:38	121,2540G	RI

Project Name:	25 PATCHEN	L	ab Duplicate Analy Batch Quality Control		Lab Number:	L1608891
Project Number:				Report Date:	04/04/16	

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG878348-1 QC	Sample: L1608	893-01 Clie	ent ID: DUP Sample
Solids, Total	85.0	84.6	%	0	20

Lab Number: L1608891 Report Date: 04/04/16

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

25 PATCHEN

Cooler Information Custody Seal

Project Number: 25 PATCHEN

Cooler

A

Project Name:

Container Information Temp							
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1608891-01A	Vial Large Septa unpreserved (4o	А	N/A	4.4	Y	Absent	NYTCL-8260(14)
L1608891-01A9	Vial MeOH preserved split	А	N/A	4.4	Y	Absent	NYTCL-8260(14)
L1608891-01B	Glass 250ml/8oz unpreserved	A	N/A	4.4	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),CO-TI(180),NYTCL- 8081(14),V-TI(180),FE- TI(180),HG-T(28),MG- TI(180),MN-TI(180),NYTCL- 8082(14),CA-TI(180),NYTCL- 8082(14),CA-TI(180),NA-TI(180)
L1608891-01C	Glass 60mL/2oz unpreserved	A	N/A	4.4	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),SB- TI(180),CO-TI(180),NYTCL- 8081(14),V-TI(180),NG- TI(180),HG-T(28),MG- TI(180),MN-TI(180),NYTCL- 8082(14),CA-TI(180),NYTCL- 8082(14),CA-TI(180),NA-TI(180)

Serial_No:04041618:27

L1608891

04/04/16

Project Name: 25 PATCHEN

Project Number: 25 PATCHEN

Report Date:

Lab Number:

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

GLOSSARY

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- NP Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
- STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
- TIC Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: DU Report with 'J' Qualifiers

Serial_No:04041618:27

Project Name:25 PATCHENProject Number:25 PATCHEN

Lab Number: L1608891

Report Date: 04/04/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:25 PATCHENProject Number:25 PATCHEN

 Lab Number:
 L1608891

 Report Date:
 04/04/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: <u>NPW</u>: Biphenyl; <u>SCM</u>: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

					_										Serial_No:04041618:27	
ALPHA	CHAIN C	OF CUS	STODY	PAGE		OF	Date	e Rec'd	in Lab	:3	28/1	6		AL	PHA Job #: [1608891	
WESTBORO, MA	MANSFIELD, MA	Project I	Information				Re	port In	forma	tion - C	Data De	livera	bles		ling Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Na	me: 25 7	Partche.	~			FAX			AIL			Øs	ame as Client info PO #:	
Client Informati	on	Project Loo	cation: Bro	oklyn	VV		-	ADEx			Delive					
Client: Tener	Environmental	Project #:	z5 Pe	tchen	+ .						nts/Rep	port Li	mits			
Address:		Project Ma	nager: Ne	the Ca	rol	\	State	/Fed F	Progran	7		Criteria		_		
		ALPHA Qu					-				-					4
Phone:		Turn-Are	ound Time				1	-						-		-
Fax:																
Email: Jos C G TT	silletenen - env.co-	Standard		SH (only confirm	ned if pre-app	proved!)		. /	./	11	/	11	/	1		
	ave been previously analyzed by Alph	Date Due.		Tin	ne:		0	28	/ /	0	11	/	/	/ /	SAMPLE HANDLING	9
	Specific Requirements/Cor	ninenis/Dete		5.			CL. O ANA	TAL D. 9082	TCL. Q.	0970					Filtration Done Not needed Lab to do Preservation Lab to do	
ALPHA Lab ID (Lab Use Only)	Sample ID	_	Collection Date		ample latrix	Sampler's Initials	LAN/	N.	Z	//		/ /	//	/ /	(Please specify below) Sample Specific Comments	
8891-01	55-1	3	128/16/14	35 3	>	AK	X	хy	2							
									_							_
	1			2	Contai	nor Tuno	XI									
		11	. 11			ner Type servative	AL	AA	-		_	-			Please print clearly, legibly and pletely. Samples can not be to	gged
DRM NO: 01-01 (rev. 14- Page 62 of 62	OCT-07)	Reinquish	ed By	2	Date/	Time 18:30 (0.25%)	Ro	t Ja	Receive		u	3	12e1	/Time	in and turnaround time clock w start until any ambiguities are r All samples submitted are subj Alpha's Terms and Conditions.	vill not resolv

Site Address :

19 Patchen Avenue Brooklyn,NY 11221

SC PPW 10/10/2017

WORK ORDER NO 31800670495

DOCUMENT NO. 9	13827 STRAIGHT BILL OF LADING	
TRANSPORTER 1 _	Clean Harbors Environmental Services, Inc.	VEHICLE ID #
EPA ID # _	MAD039322250	TRANS. 1 PHONE (781) 792-5000
TRANSPORTER 2 _	SJ Transportation	VEHICLE ID # 1240 - VId8
FPA ID #	NJD071629976	TRANS. 2 PHONE

DESIGNATED	FACILITY	urce Red	covery Inc.		SHIPPER Environmental		
FACILITY					SHIPPER EPAID #		
ADDRESS 4879 St	pring Grove	Avenue			ADDRESS 121 W 27th St		
CITY			STATE OH	ZIP 45232	CITY New York	STATE Z	21P 10001
CONTAINERS NO. & SIZE	TYPE	нм		DESCRIPTIC	ON OF MATERIALS	TOTAL QUANTITY	UNIT WT/VOL
			A. NOT REG	ULATED BY DOT	(soil) (16) ,		
4×55	DM		B. NON DOT	REGULATED MA	ATERIAL, (WATER, SOIL)	SOLE	P
11.9			C.				
			D.				
			E.				
			F.				
			G.				
			Н.				
SPECIAL HAN		1381	IONS EMER	RGENCY PHONE			nental

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	PRINT PAIRE TACIMON	SIGN MUD SICIN	DAJE 9/8
TRANSPORTER 1	MANUS GARCED.	SIGN Mary Spices	DATE 9 18
TRANSPORTER 2	PRINT Andreas	SIGN	DATE 2/13/18
RECEIVED BY	PRINT having Bongst	SIGN Ste	314/18

ANALYTICAL REPORT

Lab Number:	L1915442
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Matthew Carroll
Phone:	(646) 606-2332
Project Name:	19 PATCHEN AVE.
Project Number:	19 PATCHEN AVE
Report Date:	04/23/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial I	No:04231913:56
----------	----------------

04/16/19

04/16/19 10:05

Project Name: Project Number	19 PATCHEN AVE. 19 PATCHEN AVE			Lab Number: Report Date:	L1915442 04/23/19
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date

19 PATCHEN AVE., BROOKLYN, NY

SOIL

DRUM

L1915442-01

Lab Number: L1915442 Report Date: 04/23/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

 Lab Number:
 L1915442

 Report Date:
 04/23/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Date: 04/23/19

ORGANICS

VOLATILES

		Serial_N	o:04231913:56
Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19
	SAMPLE RESULTS		
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05
Client ID:	DRUM	Date Received:	04/16/19
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Analytical Method:	1,8260C		
Analytical Date:	04/21/19 11:31		
Analyst:	JC		
Percent Solids:	89%		

Parameter	Result	Qualifier Uni	ts RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	ow - Westborough Lab				
Methylene chloride	ND	ug/k	(g 6.1	2.8	1
1,1-Dichloroethane	ND	ug/k	-	0.18	1
Chloroform	ND	ug/k	-	0.17	1
Carbon tetrachloride	ND	ug/k	-	0.28	1
1,2-Dichloropropane	ND	ug/k		0.15	1
Dibromochloromethane	ND	ug/k	kg 1.2	0.17	1
1,1,2-Trichloroethane	ND	ug/k		0.32	1
Tetrachloroethene	0.93	ug/k	kg 0.61	0.24	1
Chlorobenzene	ND	ug/k	(g 0.61	0.15	1
Trichlorofluoromethane	ND	ug/k	(g 4.9	0.85	1
1,2-Dichloroethane	ND	ug/k	(g 1.2	0.31	1
1,1,1-Trichloroethane	ND	ug/k	(g 0.61	0.20	1
Bromodichloromethane	ND	ug/k	(g 0.61	0.13	1
trans-1,3-Dichloropropene	ND	ug/k	(g 1.2	0.33	1
cis-1,3-Dichloropropene	ND	ug/k	(g 0.61	0.19	1
1,3-Dichloropropene, Total	ND	ug/k	(g 0.61	0.19	1
1,1-Dichloropropene	ND	ug/k	(g 0.61	0.19	1
Bromoform	ND	ug/k	kg 4.9	0.30	1
1,1,2,2-Tetrachloroethane	ND	ug/k	(g 0.61	0.20	1
Benzene	ND	ug/k	(g 0.61	0.20	1
Toluene	ND	ug/k	kg 1.2	0.66	1
Ethylbenzene	ND	ug/k	kg 1.2	0.17	1
Chloromethane	ND	ug/k	kg 4.9	1.1	1
Bromomethane	ND	ug/k	kg 2.4	0.71	1
Vinyl chloride	ND	ug/k	kg 1.2	0.41	1
Chloroethane	ND	ug/k	kg 2.4	0.55	1
1,1-Dichloroethene	ND	ug/k	kg 1.2	0.29	1
trans-1,2-Dichloroethene	ND	ug/k	(g 1.8	0.17	1

		Serial_N	Serial_No:04231913:56			
Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442			
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19			
	SAMPLE RE	SULTS				
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05			
Client ID:	DRUM	Date Received:	04/16/19			
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified			

Sample Depth:

1.2-Dichlorobenzene ND ug/kg 2.4 0.18 1 1.3-Dichlorobenzene ND ug/kg 2.4 0.21 1 1.4-Dichlorobenzene ND ug/kg 2.4 0.21 1 Methyl tor buyl ether ND ug/kg 2.4 0.24 1 pm-Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.21 1 c-Xylene ND ug/kg 1.2 0.17 1 1.2-Dichloroethene ND ug/kg 2.4 0.29 1 1.2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dichoromethane ND ug/kg 1.2 1.1 1 Dichoromethane ND ug/kg 1.2 5.8 1 Dichoromethane ND ug/kg 1.2 1.6 1 Carbon disulfido ND ug/kg 2.4 0.15 1 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2-Dichlorobenzene ND ug/kg 2.4 0.18 1 1,3-Dichlorobenzene ND ug/kg 2.4 0.21 1 1,4-Dichlorobenzene ND ug/kg 2.4 0.21 1 Methyl (rt bu/) (rther ND ug/kg 2.4 0.24 1 p/m.Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.35 1 cist.2-Dichloroethene ND ug/kg 1.2 0.17 1 1.2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dichromethane ND ug/kg 1.2 0.17 1 Dichromethane ND ug/kg 1.2 0.17 1 Dichromethane ND ug/kg 1.2 1.1 1 Dichromethane ND ug/kg 1.2 1.1 1 Dichromethane ND ug/kg 1.2 1.6 1 Dichromethane ND ug/kg 2.4 0.15 1 </td <td>Volatile Organics by EPA 5035 Low</td> <td>/ - Westborough Lab</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organics by EPA 5035 Low	/ - Westborough Lab					
Jobchlorobenzene ND ug/kg 2.4 0.18 1 1,4-Dichlorobenzene ND ug/kg 2.4 0.21 1 Methyl tether ND ug/kg 2.4 0.24 1 Methyl tether ND ug/kg 2.4 0.68 1 Orber Schlene ND ug/kg 1.2 0.35 1 Sylenes, Total ND ug/kg 1.2 0.21 1 1.2-Dichlorothene ND ug/kg 1.2 0.24 0.29 1 Sylene ND ug/kg 1.2 0.24 0.29 1 Dichlorothenen ND ug/kg 1.2 0.24 0.29 1 Sylene ND ug/kg 1.2 0.24 1 1 Solohofustentene ND ug/kg 1.2 1.4 1 Solohofustentene ND ug/kg 1.2 1.4 1 Solohofustentene ND ug/kg	Trichloroethene	ND		ug/kg	0.61	0.17	1
Abbiliopanzone ND ug/kg 2.4 0.21 1 Mathyl tert bulyl ether ND ug/kg 2.4 0.24 1 pim-Xylene ND ug/kg 2.4 0.68 1 oxylene ND ug/kg 1.2 0.35 1 xylenes, Total ND ug/kg 1.2 0.35 1 1.2-Dehloroethene ND ug/kg 1.2 0.17 1 Dichorodifloroethene, Total ND ug/kg 1.2 0.24 0.29 1 Dichorodiflororoethene, Total ND ug/kg 1.2 0.24 0.29 1 Styrene ND ug/kg 1.2 0.24 0.29 1 Dichorodifloroethene, Total ND ug/kg 1.2 0.24 0.24 1 Styrene ND ug/kg 1.2 0.24 1 1 Dichorodifloroethene ND ug/kg 1.2 1.4 1 2.4 Latonto	1,2-Dichlorobenzene	ND		ug/kg	2.4	0.18	1
ND ug/kg 2.4 0.24 1 pim-Xylene ND ug/kg 2.4 0.68 1 c-Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.35 1 c-Xylene ND ug/kg 1.2 0.17 1 c-Xylene, Total ND ug/kg 1.2 0.17 1 c-Xylene, Total ND ug/kg 1.2 0.24 1 c-Xoton disulfido ND ug/kg 1.2 0.24 1 c-Acton disulfido ND ug/kg 1.2 2.5 1 c-Acton disulfido ND ug/kg 1.2 2.6 1 c-Acton disulfido ND ug/kg 1.2 1.6 1 1.2.3-Trichoropopane ND ug/kg 2.4 0.24 1 1.2.2-Dichoropropane	1,3-Dichlorobenzene	ND		ug/kg	2.4	0.18	1
ND ugkg 2.4 0.68 1 o-Xylene ND ug/kg 1.2 0.35 1 o-Xylene ND ug/kg 1.2 0.35 1 i-Xylene, Total ND ug/kg 1.2 0.35 1 i-12-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dichoroethene, Total ND ug/kg 1.2 0.24 1 Dichoroethene, Total ND ug/kg 1.2 0.24 1 Obtoroethene, Total ND ug/kg 1.2 0.24 1 Obtoroethene, Total ND ug/kg 1.2 0.5 1 Obtoroethene, Total ND ug/kg 1.2 0.5 1 Actence ND ug/kg 1.2 0.5 1 Carbon disulfide ND ug/kg 1.2 1.6 1 1,2.3-Trichoropropane ND ug/kg 2.4 0.15 1 1,	1,4-Dichlorobenzene	ND		ug/kg	2.4	0.21	1
Acylenes, Total ND ug/kg 1.2 0.35 1 Xylenes, Total ND ug/kg 1.2 0.35 1 cish L2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 L2-Dichloroethene, Total ND ug/kg 2.4 0.29 1 Dichloroethene, Total ND ug/kg 1.2 0.24 1 Dichloroethene, Total ND ug/kg 1.2 0.24 1 Dichloroethene ND ug/kg 1.2 0.24 1 Dichloroethene ND ug/kg 1.2 0.24 1 Strene ND ug/kg 1.2 5.5 1 Dichloroethane ND ug/kg 1.2 2.6 1 AtMethyl-2-pentanone ND ug/kg 2.4 0.25 1 1.2.3-Trichloropropane ND ug/kg 2.4 0.25 1 1.2.3-Trichloropropane ND ug/kg 2.4 0.2	Methyl tert butyl ether	ND		ug/kg	2.4	0.24	1
ND ug/kg 1.2 0.35 1 cis-12-Dichloroethene ND ug/kg 1.2 0.21 1 1,2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dicromethane ND ug/kg 1.2 0.24 1 Dicromethane ND ug/kg 1.2 0.24 1 Dicromethane ND ug/kg 1.2 0.24 1 Carbon disulfide ND ug/kg 1.2 5.8 1 Carbon disulfide ND ug/kg 1.2 2.6 1 Carbon disulfide ND ug/kg 1.2 2.6 1 Abertone ND ug/kg 1.2 2.6 1 L2-Stranone ND ug/kg 2.4 0.15 1 L2-Stranone ND ug/kg 2.4 0.25 1 L2-Dichoropropane ND ug/kg 2.4 0.24 1 L2-Dichoropropane	p/m-Xylene	ND		ug/kg	2.4	0.68	1
ND ug/kg 1.2 0.21 1 1.2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dibromenthane ND ug/kg 2.4 0.29 1 Styrene ND ug/kg 1.2 0.24 1 Dichlorodifluoromethane ND ug/kg 1.2 0.24 1 Acetone S.8 J ug/kg 1.2 5.5 1 Carbon disulfide ND ug/kg 1.2 2.5 1 Acetone ND ug/kg 1.2 2.6 1 2-Buanone ND ug/kg 1.2 2.6 1 2-Buanone ND ug/kg 2.4 0.15 1 2-Lastrichforopropane ND ug/kg 2.4 0.15 1 2-Lastrichforopropane ND ug/kg 2.4 0.25 1 2.2-Dichoropropane ND ug/kg 2.4 0.24 1 1.2-Dichoropropane ND ug/kg 2.4 0.24 1 1.2	o-Xylene	ND		ug/kg	1.2	0.35	1
1,2-Dichloroethene, Total ND ug/kg 1.2 0.17 1 Dibromomethane ND ug/kg 2.4 0.29 1 Styrene ND ug/kg 1.2 0.24 1 Styrene ND ug/kg 1.2 0.24 1 Styrene ND ug/kg 1.2 0.24 1 Carbon disulfide ND ug/kg 1.2 5.5 1 2-Butanone ND ug/kg 1.2 2.6 1 4-Methyl-2-pentanone ND ug/kg 1.2 1.6 1 1,2.3-Trichloropropane ND ug/kg 2.4 0.15 1 2.4-Exanone ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 0.4 0.25 1 1,2.2-Trichloropropane ND ug/kg 0.16 1 2.2-Dichloropropane ND ug/kg 0.11 0.16 1,1.2-Tetrachit	Xylenes, Total	ND		ug/kg	1.2	0.35	1
Dibromomethane ND ug/kg 2.4 0.29 1 Styrene ND ug/kg 1.2 0.24 1 Dichlorodifluoromethane ND ug/kg 12 1.1 1 Acetone 5.8 J ug/kg 12 5.8 1 Carbon oisulfide ND ug/kg 12 5.5 1 2-Butanone ND ug/kg 12 2.6 1 1/2-bettare ND ug/kg 12 1.6 1 1/2.3-Trichloropropane ND ug/kg 2.4 0.15 1 2.4-Bexanone ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 2.4 0.25 1 1.2-Dichloropropane ND ug/kg 1.2 0.34 1 1.1.1.1.2-Tetrachloroethane ND ug/kg 2.4 0.16 1 1.3-Dichloropropane ND ug/kg 1.2 0.16 <td< td=""><td>cis-1,2-Dichloroethene</td><td>ND</td><td></td><td>ug/kg</td><td>1.2</td><td>0.21</td><td>1</td></td<>	cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.21	1
ND Ug/kg 1.2 0.24 1 Dichlorodifluoromethane ND ug/kg 12 1.1 1 Acetone 5.8 J ug/kg 12 5.8 1 Carbon disulfide ND ug/kg 12 5.5 1 2-Butanone ND ug/kg 12 2.7 1 Vinyl acetate ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 2-Hexanone ND ug/kg 12 1.4 1 2-Hexanone ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 1.2 0.34 1 1.2-Dichloropropane ND ug/kg 1.2 0.44 1 1.2-Dichloropropane ND ug/kg 1.2 0.16 1 1.2-Dichloropropane ND ug/kg 2.4 0.18 1 1.1.	1,2-Dichloroethene, Total	ND		ug/kg	1.2	0.17	1
ND Ug/kg 12 1.1 1 Acetone 5.8 J ug/kg 12 5.8 1 Carbon disulfide ND ug/kg 12 5.5 1 2-Butanone ND ug/kg 12 2.7 1 Vinyl acetate ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 1.2.3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 2.4 0.24 1 1.2.3-Trichloropropane ND ug/kg 2.4 0.24 1 2.2-Dichloropropane ND ug/kg 2.4 0.24 1 1.3-Dichloropropane ND ug/kg 2.4 0.20 1 1.1.1.2-Tetrachloroethane ND ug/kg 2.4 0.16 1 <t< td=""><td>Dibromomethane</td><td>ND</td><td></td><td>ug/kg</td><td>2.4</td><td>0.29</td><td>1</td></t<>	Dibromomethane	ND		ug/kg	2.4	0.29	1
Acctone 5.8 J ug/kg 12 5.8 1 Carbon disulfide ND ug/kg 12 5.5 1 2-Butanone ND ug/kg 12 2.7 1 2-Butanone ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 1.2.3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 2.4 0.25 1 2-Joinchioropropane ND ug/kg 2.4 0.24 1 1.2.3-Dirohoropropane ND ug/kg 2.4 0.24 1 1.2.3-Dirohoropropane ND ug/kg 2.4 0.24 1 1.3-Dirohoropropane ND ug/kg 2.4 0.20 1 1.3-Dirohoropropane ND ug/kg 1.2 0.18 1 1.3-Dirohoropropane ND ug/kg 2.4 0.18	Styrene	ND		ug/kg	1.2	0.24	1
Carbon disulfide ND ug/kg 12 5.5 1 2-Butanone ND ug/kg 12 2.7 1 Vinyl acetate ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 1,2,3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 2.4 0.25 1 Bromochloromethane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,2-Dibromoethane ND ug/kg 0.61 0.16 1 1,3-Dichloropropane ND ug/kg 2.4 0.20 1 1,1,1-2-Tetrachloroethane ND ug/kg 1.2 0.16 1 1-10-Dibromo-3chloropropane ND ug/kg 2.4 0.18	Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Patheman ND ug/kg 12 2.7 1 Vinyl acetate ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 1,2.3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 2.4 0.24 1 2.2-Dichloropropane ND ug/kg 2.4 0.24 1 1.2-Dibromoethane ND ug/kg 2.4 0.24 1 1.2-Dibromoethane ND ug/kg 2.4 0.20 1 1.1-12-Istrachloroethane ND ug/kg 0.61 0.16 1 1.3-Dichoropropane ND ug/kg 2.4 0.20 1 1.1-12-Istrachloroethane ND ug/kg 1.2 0.18 1 1.1-12-Istrachloroethane ND ug/kg 2.4 0.13 <td>Acetone</td> <td>5.8</td> <td>J</td> <td>ug/kg</td> <td>12</td> <td>5.8</td> <td>1</td>	Acetone	5.8	J	ug/kg	12	5.8	1
ND ug/kg 12 2.6 1 4-Methyl-2-pentanone ND ug/kg 12 1.6 1 1,2,3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 2.4 0.25 1 2-Hexanone ND ug/kg 2.4 0.25 1 2-Joichloropropane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,2-Dibromoethane ND ug/kg 2.4 0.20 1 1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.2 0.20 1 n-Butylbenzene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1	Carbon disulfide	ND		ug/kg	12	5.5	1
ND ug/kg 12 1.6 1 1,2,3-Trichloropropane ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.4 0.25 1 2,2-Dichloropropane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 2.4 0.20 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 1 0.5 ND ug/kg 1.2 0.20 1 n-Butylbenzene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1	2-Butanone	ND		ug/kg	12	2.7	1
ND ug/kg 2.4 0.15 1 2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.4 0.25 1 2.2-Dichloropropane ND ug/kg 2.4 0.24 1 1.2-Dibromoethane ND ug/kg 2.4 0.24 1 1.3-Dichloropropane ND ug/kg 2.4 0.24 1 1.3-Dichloropropane ND ug/kg 2.4 0.20 1 1.1,1.2-Tetrachloroethane ND ug/kg 0.61 0.16 1 Bromobenzene ND ug/kg 2.4 0.18 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 2.4 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 <	Vinyl acetate	ND		ug/kg	12	2.6	1
2-Hexanone ND ug/kg 12 1.4 1 Bromochloromethane ND ug/kg 2.4 0.25 1 2,2-Dichloropropane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,3-Dichloropropane ND ug/kg 2.4 0.20 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 Bromochloromethane ND ug/kg 1.2 0.20 1 1,1,1,2-Tetrachloroethane ND ug/kg 2.4 0.18 1 Bromobenzene ND ug/kg 1.2 0.20 1 n-Butylbenzene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.9	4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1
Bromochloromethane ND ug/kg 2.4 0.25 1 2,2-Dichloropropane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,3-Dichloropropane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 neButylbenzene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 Isopropylbenzene ND ug/kg 1.2 <td>1,2,3-Trichloropropane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>2.4</td> <td>0.15</td> <td>1</td>	1,2,3-Trichloropropane	ND		ug/kg	2.4	0.15	1
2,2-Dichloropropane ND ug/kg 2.4 0.24 1 1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,3-Dichloropropane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 Bromobenzene ND ug/kg 1.2 0.20 1 n-Butylbenzene ND ug/kg 1.2 0.18 1 sec-Butylbenzene ND ug/kg 1.2 0.20 1 o-Chlorotoluene ND ug/kg 2.4 0.18 1 o-Chlorotoluene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 3.6 1.2 1 o-Storotoluene ND ug/kg 3.6 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 1.2 0.13	2-Hexanone	ND		ug/kg	12	1.4	1
1,2-Dibromoethane ND ug/kg 1.2 0.34 1 1,3-Dichloropropane ND ug/kg 2.4 0.20 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 Bromobenzene ND ug/kg 2.4 0.18 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 1.2 0.20 1 o-Chlorotoluene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 3.6 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.9 0.20 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 Isopropylbenzene ND ug/kg 1.2 0.13	Bromochloromethane	ND		ug/kg	2.4	0.25	1
ND ug/kg 2.4 0.20 1 1,3-Dichloropropane ND ug/kg 0.61 0.16 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.61 0.16 1 Bromobenzene ND ug/kg 2.4 0.18 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 1.2 0.18 1 oc-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 Isopropylbenzene ND ug/kg 1.2 0.13 1	2,2-Dichloropropane	ND		ug/kg	2.4	0.24	1
ND ug/kg 0.61 0.16 1 Bromobenzene ND ug/kg 2.4 0.18 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 1.2 0.18 1 sec-Butylbenzene ND ug/kg 1.2 0.18 1 o-Chlorotoluene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.23 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.4 0.13 1 Hexachlorobutadiene ND ug/kg 3.6 1.2 1 Isopropylbenzene ND ug/kg 4.9 0.20 1 p-Isopropyltoluene ND ug/kg 1.2 0.13 1 p-Isopropyltoluene ND ug/kg 1.2 0.13 1 ug/kg 1.2 0.13 1 1 1 ug/kg <td>1,2-Dibromoethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1.2</td> <td>0.34</td> <td>1</td>	1,2-Dibromoethane	ND		ug/kg	1.2	0.34	1
Bromobenzene ND ug/kg 2.4 0.18 1 n-Butylbenzene ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 1.2 0.18 1 tert-Butylbenzene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 o-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 Hexachlorobutadiene ND ug/kg 4.9 0.20 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 p-Isopropyltoluene ND ug/kg 1.2 0.13 1	1,3-Dichloropropane	ND		ug/kg	2.4	0.20	1
ND ug/kg 1.2 0.20 1 sec-Butylbenzene ND ug/kg 1.2 0.18 1 tert-Butylbenzene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.23 1 p-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 Hexachlorobutadiene ND ug/kg 4.9 0.20 1 Isopropyltoluene ND ug/kg 1.2 0.13 1 wathhalene ND ug/kg 1.2 0.13 1	1,1,1,2-Tetrachloroethane	ND		ug/kg	0.61	0.16	1
ND ug/kg 1.2 0.18 1 tert-Butylbenzene ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.23 1 p-Chlorotoluene ND ug/kg 2.4 0.13 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.6 1.2 1 Hexachlorobutadiene ND ug/kg 4.9 0.20 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 ND ug/kg 1.2 0.13 1 1 Hexachlorobutadiene ND ug/kg 1.2 0.13 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 p-Isopropyltoluene ND ug/kg 1.2 0.13 1 Naphthalene ND ug/kg 4.9 0.79 1	Bromobenzene	ND		ug/kg	2.4	0.18	1
ND ug/kg 2.4 0.14 1 o-Chlorotoluene ND ug/kg 2.4 0.23 1 p-Chlorotoluene ND ug/kg 2.4 0.13 1 p-Chlorotoluene ND ug/kg 3.6 1.2 1 1,2-Dibromo-3-chloropropane ND ug/kg 4.9 0.20 1 Hexachlorobutadiene ND ug/kg 1.2 0.13 1 Isopropylbenzene ND ug/kg 1.2 0.13 1 p-lsopropyltoluene ND ug/kg 1.2 0.13 1 Naphthalene ND ug/kg 1.2 0.13 1	n-Butylbenzene	ND		ug/kg	1.2	0.20	1
NDug/kg2.40.231p-ChlorotolueneNDug/kg2.40.1311,2-Dibromo-3-chloropropaneNDug/kg3.61.21HexachlorobutadieneNDug/kg4.90.201IsopropylbenzeneNDug/kg1.20.131p-IsopropyltolueneNDug/kg1.20.131NDug/kg1.20.1311sopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	sec-Butylbenzene	ND		ug/kg	1.2	0.18	1
P-ChlorotolueneNDug/kg2.40.1311,2-Dibromo-3-chloropropaneNDug/kg3.61.21HexachlorobutadieneNDug/kg4.90.201IsopropylbenzeneNDug/kg1.20.131p-IsopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	tert-Butylbenzene	ND		ug/kg	2.4	0.14	1
1,2-Dibromo-3-chloropropaneNDug/kg3.61.21HexachlorobutadieneNDug/kg4.90.201IsopropylbenzeneNDug/kg1.20.131p-IsopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	o-Chlorotoluene	ND		ug/kg	2.4	0.23	1
HexachlorobutadieneNDug/kg4.90.201IsopropylbenzeneNDug/kg1.20.131p-IsopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	p-Chlorotoluene	ND		ug/kg	2.4	0.13	1
IsopropylbenzeneNDug/kg1.20.131p-IsopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.6	1.2	1
P-IsopropyltolueneNDug/kg1.20.131NaphthaleneNDug/kg4.90.791	Hexachlorobutadiene	ND		ug/kg	4.9	0.20	1
Naphthalene ND ug/kg 4.9 0.79 1	Isopropylbenzene	ND		ug/kg	1.2	0.13	1
	p-Isopropyltoluene	ND		ug/kg	1.2	0.13	1
Acrylonitrile ND ug/kg 4.9 1.4 1	Naphthalene	ND		ug/kg	4.9	0.79	1
	Acrylonitrile	ND		ug/kg	4.9	1.4	1

		Serial_No:04231913:56			
Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442		
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19		
	SAMPLE RESULTS				
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05		
Client ID:	DRUM	Date Received:	04/16/19		
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified		

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by EPA 5035 Low - Westborough Lab									
n-Propylbenzene	ND		ug/kg	1.2	0.21	1			
1,2,3-Trichlorobenzene	ND		ug/kg	2.4	0.39	1			
1,2,4-Trichlorobenzene	ND		ug/kg	2.4	0.33	1			
1,3,5-Trimethylbenzene	ND		ug/kg	2.4	0.23	1			
1,2,4-Trimethylbenzene	ND		ug/kg	2.4	0.41	1			
1,4-Dioxane	ND		ug/kg	97	43.	1			
p-Diethylbenzene	ND		ug/kg	2.4	0.22	1			
p-Ethyltoluene	ND		ug/kg	2.4	0.47	1			
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.4	0.23	1			
Ethyl ether	ND		ug/kg	2.4	0.42	1			
trans-1,4-Dichloro-2-butene	ND		ug/kg	6.1	1.7	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	98	70-130	

Lab Number: L1915442 **Report Date:** 04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: ΜV

04/21/19 11:05

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Lo	ow - Westbord	ough Lab fo	r sample(s):	01	Batch:	WG1228784-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
1,1-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14

 Lab Number:
 L1915442

 Report Date:
 04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:04/21/19 11:05Analyst:MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 L	ow - Westbord	ough Lab fo	or sample(s):	01	Batch:	WG1228784-5
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
Xylenes, Total	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
1,2-Dichloroethene, Total	ND		ug/kg	1.0		0.14
Dibromomethane	ND		ug/kg	2.0		0.24
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
Vinyl acetate	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
1,2,3-Trichloropropane	ND		ug/kg	2.0		0.13
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0		0.20
2,2-Dichloropropane	ND		ug/kg	2.0		0.20
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
1,3-Dichloropropane	ND		ug/kg	2.0		0.17
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		0.13
Bromobenzene	ND		ug/kg	2.0		0.14
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
o-Chlorotoluene	ND		ug/kg	2.0		0.19

 Lab Number:
 L1915442

 Report Date:
 04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	04/21/19 11:05
Analyst:	MV

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	Low - Westbord	ough Lab foi	sample(s):	01	Batch:	WG1228784-5
p-Chlorotoluene	ND		ug/kg	2.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Hexachlorobutadiene	ND		ug/kg	4.0		0.17
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
Acrylonitrile	ND		ug/kg	4.0		1.2
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
1,4-Dioxane	ND		ug/kg	80		35.
p-Diethylbenzene	ND		ug/kg	2.0		0.18
p-Ethyltoluene	ND		ug/kg	2.0		0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0		0.19
Ethyl ether	ND		ug/kg	2.0		0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1.4

Surrogate	%Recovery Qualifie	Acceptance r Criteria
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	99	70-130

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1915442 Report Date: 04/23/19

Parameter	LCS %Recovery Q	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Wes	stborough Lab Associat	ed sample(s): 01 Batch	: WG1228784-3 WG12287	84-4	
Methylene chloride	96	98	70-130	2	30
1,1-Dichloroethane	102	107	70-130	5	30
Chloroform	94	98	70-130	4	30
Carbon tetrachloride	86	92	70-130	7	30
1,2-Dichloropropane	101	105	70-130	4	30
Dibromochloromethane	91	91	70-130	0	30
1,1,2-Trichloroethane	98	99	70-130	1	30
Tetrachloroethene	91	94	70-130	3	30
Chlorobenzene	90	94	70-130	4	30
Trichlorofluoromethane	78	83	70-139	6	30
1,2-Dichloroethane	106	109	70-130	3	30
1,1,1-Trichloroethane	91	96	70-130	5	30
Bromodichloromethane	95	98	70-130	3	30
trans-1,3-Dichloropropene	102	103	70-130	1	30
cis-1,3-Dichloropropene	97	99	70-130	2	30
1,1-Dichloropropene	96	101	70-130	5	30
Bromoform	84	87	70-130	4	30
1,1,2,2-Tetrachloroethane	96	96	70-130	0	30
Benzene	95	99	70-130	4	30
Toluene	93	95	70-130	2	30
Ethylbenzene	93	96	70-130	3	30
Chloromethane	123	134	Q 52-130	9	30
Bromomethane	73	82	57-147	12	30

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1915442 Report Date: 04/23/19

Horosethane 88 91 50-151 3 30 1,1-Dichlorosethene 91 98 65-135 7 30 trans-1,2-Dichlorosethene 91 95 70-130 4 30 Trichlorosethene 93 94 70-130 1 30 1,2-Dichlorosethene 93 94 70-130 1 30 1,2-Dichlorosethenzene 93 94 70-130 1 30 1,3-Dichlorosethenzene 93 94 70-130 1 30 1,4-Dichlorosethenzene 93 94 70-130 1 30 1,4-Dichlorosethenzene 94 95 70-130 1 30 Methyl tert bulyl ether 96 90 66-130 4 30 o-Xylene 92 95 70-130 3 30 30 o-Liorosifiluoromethane 96 96 70-130 2 30 30 Dichlorosifiluoromethane 96 96	Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Chloroethane 88 91 50-151 3 30 1,1-Dichloroethene 91 98 65-135 7 30 trans-1,2-Dichloroethene 91 95 70-130 4 30 Trichloroethene 93 94 70-130 1 30 1,2-Dichloroethenzene 93 94 70-130 1 30 1,3-Dichlorobenzene 93 94 70-130 1 30 1,3-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 94 95 70-130 3 30 0r/Mylen 92 95 70-130 3 30 0r/Mylen 91 95 70-130 4 30 0r/Mylen 91 95 70-130 4 30	Volatile Organics by EPA 5035 Low	- Westborough Lab Asso	ciated sample(s): 01 Bate	ch: WG1228784-3 WG12287	84-4	
1.1-Dichloroethene 91 98 66-135 7 93 trans-1,2-Dichloroethene 91 95 70-130 4 33 Trichloroethene 93 94 70-130 1 33 1,2-Dichloroethene 93 94 70-130 1 33 1,3-Dichlorobenzene 93 94 70-130 1 33 1,3-Dichlorobenzene 93 94 70-130 1 33 1,4-Dichlorobenzene 93 94 70-130 1 33 1,4-Dichlorobenzene 94 95 70-130 1 33 Methyl tert butyl ether 96 96 70-130 2 33 or-Xylene 92 95 70-130 2 33 or-Xylene 91 95 70-130 2 33 Dichorodifluoromethane 96 96 70-130 2 33 Dichlorodifluoromethane 108 1115 30-146 6 33	Vinyl chloride	103	110	67-130	7	30
trans-1.2-Dichloroethene 91 95 70-130 4 30 Trichloroethene 93 94 70-130 1 30 1.2-Dichloroethene 93 94 70-130 1 30 1.3-Dichloroethenzene 93 94 70-130 1 30 1.3-Dichlorobenzene 93 94 70-130 1 30 1.4-Dichlorobenzene 94 95 70-130 1 30 1.4-Dichlorobenzene 94 95 70-130 4 30 p/m-Xylene 92 95 70-130 3 30 o-Xylene 92 94 70-130 2 30 o-Xylene 92 94 70-130 2 30 o-Xylene 92 94 70-130 2 30 Dichorodifluoromethane 96 70-130 4 30 30 Dichorodifluoromethane 108 115 30-146 6 30	Chloroethane	88	91	50-151	3	30
Trichloroethene 93 94 70-130 1 30 1,2-Dichlorobenzene 93 94 70-130 1 30 1,3-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 94 95 70-130 1 30 Methyl tert buyl ether 96 100 66-130 4 30 p/m-Xylene 92 95 70-130 3 30 30 o-Xylene 92 94 70-130 4 30	1,1-Dichloroethene	91	98	65-135	7	30
1,2-Dichlorobenzene 93 94 70-130 1 30 1,3-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 94 95 70-130 1 30 Methyl tert butyl ether 96 100 66-130 4 30 p/m-Xylene 92 95 70-130 3 30 30 o-Xylene 92 94 70-130 4 30<	trans-1,2-Dichloroethene	91	95	70-130	4	30
1,3-Dichlorobenzene 93 94 70-130 1 30 1,4-Dichlorobenzene 94 95 70-130 1 30 Methyl tert butyl ether 96 100 66-130 4 30 p/m-Xylene 92 95 70-130 3 30 o-Xylene 92 94 70-130 2 30 o-Xylene 92 94 70-130 3 30 o-Xylene 92 94 70-130 2 30 o-Sylene 91 95 70-130 4 30 Dibromoethane 96 96 70-130 4 30 Styrene 91 93 70-130 2 30 Dichlorodifluoromethane 96 96 70-130 3 30 Acetone 118 113 54-140 4 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 3 30 1/2.3-Trichloropropane 9	Trichloroethene	93	94	70-130	1	30
1.4-Dichlorobenzene 94 95 70-130 1 30 Methyl tert butyl ether 96 100 66-130 4 30 p/m-Xylene 92 95 70-130 3 30 o-Xylene 92 94 70-130 2 30 o-Xylene 92 94 70-130 2 30 o-Sylene 91 95 70-130 4 30 Dibromomethane 96 96 70-130 4 30 Styrene 91 95 70-130 4 30 Dibromomethane 96 96 70-130 4 30 Styrene 91 93 70-130 2 30 Dichlorodifluoromethane 108 115 30-146 6 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 4 30 30 1,2.3-Trichloropro	1,2-Dichlorobenzene	93	94	70-130	1	30
Methyl tert butyl ether 96 100 66-130 4 30 p/m-Xylene 92 95 70-130 3 30 30 o-Xylene 92 94 70-130 2 30	1,3-Dichlorobenzene	93	94	70-130	1	30
p/m-Xylene 92 95 70-130 3 30 o-Xylene 92 94 70-130 2 30 o-Xylene 92 94 70-130 2 30 cis-1,2-Dichloroethene 91 95 70-130 4 30 Dibromomethane 96 96 70-130 0 30 30 Styrene 91 93 70-130 0 30	1,4-Dichlorobenzene	94	95	70-130	1	30
o-Xylene 92 94 70-130 2 30 cis-1,2-Dichloroethene 91 95 70-130 4 30 Dibromonethane 96 96 70-130 0 30 Styrene 91 93 70-130 0 30 Dibromorethane 91 93 70-130 2 30 Styrene 91 93 70-130 2 30 Dichlorodifluoromethane 108 115 30-146 6 30 Acetone 118 113 54-140 4 30 30 Carbon disulfide 92 98 59-130 6 30 30 2-Butanone 105 101 70-130 4 30 30 Vinyl acetate 117 120 70-130 4 30 30 1,2,3-Trichloropropane 98 98 68-130 0 30 30 1,2,3-Trichloropropane 103 100	Methyl tert butyl ether	96	100	66-130	4	30
cis-1,2-Dichloroethene 91 95 70-130 4 300 Dibromomethane 96 96 70-130 0 300 300 Styrene 91 93 70-130 0 300 3	p/m-Xylene	92	95	70-130	3	30
Dibromomethane 96 96 70-130 0 30 Styrene 91 93 70-130 2 30 Dichlorodifluoromethane 108 115 30-146 6 30 Acetone 118 113 54-140 4 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 68-130 0 30 30 2-Hexanone 103 100 70-130 3 30	o-Xylene	92	94	70-130	2	30
Styrene 91 93 70-130 2 30 Dichlorodifluoromethane 108 115 30-146 6 30 Acetone 118 113 54-140 4 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 4 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 68-130 0 30 30 2-Hexanone 103 100 70-130 3 30 30	cis-1,2-Dichloroethene	91	95	70-130	4	30
Dichlorodifluoromethane 108 115 30-146 6 30 Acetone 118 113 54-140 4 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 68-130 0 30 30 2-Hexanone 103 100 70-130 3 30	Dibromomethane	96	96	70-130	0	30
Acetone 118 113 54-140 4 30 Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	Styrene	91	93	70-130	2	30
Carbon disulfide 92 98 59-130 6 30 2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	Dichlorodifluoromethane	108	115	30-146	6	30
2-Butanone 105 101 70-130 4 30 Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	Acetone	118	113	54-140	4	30
Vinyl acetate 117 120 70-130 3 30 4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	Carbon disulfide	92	98	59-130	6	30
4-Methyl-2-pentanone 102 106 70-130 4 30 1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	2-Butanone	105	101	70-130	4	30
1,2,3-Trichloropropane 98 98 68-130 0 30 2-Hexanone 103 100 70-130 3 30	Vinyl acetate	117	120	70-130	3	30
2-Hexanone 103 100 70-130 3 30	4-Methyl-2-pentanone	102	106	70-130	4	30
	1,2,3-Trichloropropane	98	98	68-130	0	30
	2-Hexanone	103	100	70-130	3	30
Bromochloromethane 95 98 70-130 3 30	Bromochloromethane	95	98	70-130	3	30

Lab Control Sample Analysis

Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE Lab Number: L1915442 Report Date: 04/23/19

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics by EPA 5035 Low - Westborough Lab Associated sample(s): 01 Batch: WG1228784-3 WG1228784-4 2,2-Dichloropropane 99 70-130 30 94 5 96 1,2-Dibromoethane 96 70-130 0 30 1,3-Dichloropropane 99 101 69-130 2 30 1,1,1,2-Tetrachloroethane 89 92 70-130 3 30 Bromobenzene 90 70-130 30 91 1 n-Butylbenzene 97 100 70-130 3 30 sec-Butylbenzene 92 96 70-130 30 4 tert-Butylbenzene 89 94 70-130 5 30 o-Chlorotoluene 95 98 70-130 3 30 30 p-Chlorotoluene 95 99 70-130 4 2 1,2-Dibromo-3-chloropropane 85 83 68-130 30 Hexachlorobutadiene 87 93 67-130 7 30 Isopropylbenzene 92 96 70-130 4 30 96 70-130 30 p-Isopropyltoluene 92 4 Naphthalene 86 86 70-130 0 30 Acrylonitrile 110 103 70-130 7 30 n-Propylbenzene 94 98 70-130 30 4 1,2,3-Trichlorobenzene 70-130 30 89 91 2 1,2,4-Trichlorobenzene 92 70-130 30 91 1 1,3,5-Trimethylbenzene 93 96 70-130 3 30 1,2,4-Trimethylbenzene 94 96 70-130 2 30 1,4-Dioxane 65-136 2 30 97 95 p-Diethylbenzene 92 95 70-130 3 30

Lab Control Sample Analysis Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE

Lab Number: L1915442 Report Date: 04/23/19

Devementer	LCS %Recoverv	Qual	LCSD %Recoverv	Qual	%Recovery Limits	000	Qual	RPD Limits	
Parameter	%Recovery	Qual	/artecovery	Quai	Liiiits	RPD	Qual	LIIIIItS	
Volatile Organics by EPA 5035 Low - Westbe	prough Lab Asso	ociated sample	e(s): 01 Batch	: WG12287	84-3 WG122878	34-4			
p-Ethyltoluene	95		97		70-130	2		30	
p-Ethylioidene	90		97		70-130	2		30	
1,2,4,5-Tetramethylbenzene	89		91		70-130	2		30	
Ethyl ether	100		101		67-130	1		30	
trans-1,4-Dichloro-2-butene	109		108		70-130	1		30	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	111	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	103	103	70-130
Dibromofluoromethane	99	99	70-130

SEMIVOLATILES

		Serial_No	:04231913:56
Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19
	SAMPLE RESULTS		
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05
Client ID:	DRUM	Date Received:	04/16/19
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified
Sample Depth:		Extraction Method	· EPA 3546
Matrix:	Soil 1,8270D	Extraction Date:	04/21/19 08:09
Analytical Method: Analytical Date:	04/22/19 10:25		0 1/2 1/ 10 00:00
Analyst:	JG		
Percent Solids:	89%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	92	J	ug/kg	150	19.	1
1,2,4-Trichlorobenzene	ND		ug/kg	180	21.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
1,2-Dichlorobenzene	ND		ug/kg	180	33.	1
1,3-Dichlorobenzene	ND		ug/kg	180	32.	1
1,4-Dichlorobenzene	ND		ug/kg	180	32.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1
2,4-Dinitrotoluene	ND		ug/kg	180	37.	1
2,6-Dinitrotoluene	ND		ug/kg	180	32.	1
Fluoranthene	2500		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1
Hexachlorobutadiene	ND		ug/kg	180	27.	1
Hexachlorocyclopentadiene	ND		ug/kg	530	170	1
Hexachloroethane	ND		ug/kg	150	30.	1
Isophorone	ND		ug/kg	170	24.	1
Naphthalene	47	J	ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	170	27.	1
NDPA/DPA	ND		ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	64.	1
Butyl benzyl phthalate	ND		ug/kg	180	47.	1
Di-n-butylphthalate	ND		ug/kg	180	35.	1
Di-n-octylphthalate	ND		ug/kg	180	63.	1

					:	Serial_No	0:04231913:56	
Project Name:	19 PATCHEN AVE.				Lab Nu	imber:	L1915442	
Project Number:	19 PATCHEN AVE				Report	Date:	04/23/19	
		SAMPI		5				
Lab ID:	L1915442-01				Date Co	llected:	04/16/19 10:05	
Client ID:	DRUM				Date Re	ceived:	04/16/19	
Sample Location:	19 PATCHEN AVE., B	ROOKLYN,	NY		Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organ	ics by GC/MS - Westbord	ough Lab						
Diethyl phthalate		ND		ug/kg	180	17.	1	
		ND			180	39.	1	
Dimethyl phthalate		ND		ug/kg	180	39.	1	

J

J

ug/kg

110

150

110

110

110

150

110

150

180

110

110

150

110

420

180

180

180

180

21.

45.

31.

30.

19.

28.

36.

22.

18.

22.

21.

26.

18.

43.

34.

36.

35.

77.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1400

1200

1700

500

1500

140

250

690

99

1600

160

730

2300

ND

ND

ND

ND

ND

Dibenzofuran59J2-Methylnaphthalene24J1,2,4,5-TetrachlorobenzeneNDIAcetophenoneNDI2,4,6-TrichlorophenolNDIp-Chloro-m-cresolNDI2-ChlorophenolNDI				
1,2,4,5-TetrachlorobenzeneNDAcetophenoneND2,4,6-TrichlorophenolNDp-Chloro-m-cresolND	ug/kg	180	18.	1
Acetophenone ND 2,4,6-Trichlorophenol ND p-Chloro-m-cresol ND	ug/kg	220	22.	1
2,4,6-Trichlorophenol ND p-Chloro-m-cresol ND	ug/kg	180	19.	1
p-Chloro-m-cresol ND	ug/kg	180	23.	1
	ug/kg	110	35.	1
2-Chlorophenol ND	ug/kg	180	28.	1
	ug/kg	180	22.	1
2,4-Dichlorophenol ND	ug/kg	170	30.	1
2,4-Dimethylphenol ND	ug/kg	180	61.	1
2-Nitrophenol ND	ug/kg	400	70.	1
4-Nitrophenol ND	ug/kg	260	76.	1
2,4-Dinitrophenol ND	ug/kg	890	86.	1
4,6-Dinitro-o-cresol ND	ug/kg	480	89.	1
Pentachlorophenol ND	ug/kg	150	41.	1
Phenol ND	ug/kg	180	28.	1
2-Methylphenol ND	ug/kg	180	29.	1
3-Methylphenol/4-Methylphenol ND	ug/kg	270	29.	1

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(a)pyrene

Acenaphthylene

Benzo(ghi)perylene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Chrysene

Anthracene

Fluorene

Pyrene

Biphenyl

4-Chloroaniline

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Phenanthrene

		Serial_N	o:04231913:56
Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19
	SAMPLE RE	SULTS	
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05
Client ID:	DRUM	Date Received:	04/16/19
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Benzoic Acid	ND		ug/kg	600	190	1
Benzyl Alcohol	ND		ug/kg	180	57.	1
Carbazole	170	J	ug/kg	180	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	91	25-120	
Phenol-d6	94	10-120	
Nitrobenzene-d5	104	23-120	
2-Fluorobiphenyl	92	30-120	
2,4,6-Tribromophenol	109	10-136	
4-Terphenyl-d14	63	18-120	

Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 04/22/19 03:55 RC Extraction Method: EPA 3546 Extraction Date: 04/21/19 08:09

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	01 Batch:	WG1228671-1
Acenaphthene	ND	ug/kg	130	17.
1,2,4-Trichlorobenzene	ND	ug/kg	160	19.
Hexachlorobenzene	ND	ug/kg	98	18.
Bis(2-chloroethyl)ether	ND	ug/kg	150	22.
2-Chloronaphthalene	ND	ug/kg	160	16.
1,2-Dichlorobenzene	ND	ug/kg	160	29.
1,3-Dichlorobenzene	ND	ug/kg	160	28.
1,4-Dichlorobenzene	ND	ug/kg	160	28.
3,3'-Dichlorobenzidine	ND	ug/kg	160	43.
2,4-Dinitrotoluene	ND	ug/kg	160	33.
2,6-Dinitrotoluene	ND	ug/kg	160	28.
Fluoranthene	ND	ug/kg	98	19.
4-Chlorophenyl phenyl ether	ND	ug/kg	160	17.
4-Bromophenyl phenyl ether	ND	ug/kg	160	25.
Bis(2-chloroisopropyl)ether	ND	ug/kg	200	28.
Bis(2-chloroethoxy)methane	ND	ug/kg	180	16.
Hexachlorobutadiene	ND	ug/kg	160	24.
Hexachlorocyclopentadiene	ND	ug/kg	470	150
Hexachloroethane	ND	ug/kg	130	26.
Isophorone	ND	ug/kg	150	21.
Naphthalene	ND	ug/kg	160	20.
Nitrobenzene	ND	ug/kg	150	24.
NDPA/DPA	ND	ug/kg	130	18.
n-Nitrosodi-n-propylamine	ND	ug/kg	160	25.
Bis(2-ethylhexyl)phthalate	ND	ug/kg	160	56.
Butyl benzyl phthalate	ND	ug/kg	160	41.
Di-n-butylphthalate	ND	ug/kg	160	31.
Di-n-octylphthalate	ND	ug/kg	160	56.
Diethyl phthalate	ND	ug/kg	160	15.

Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 04/22/19 03:55 RC Extraction Method: EPA 3546 Extraction Date: 04/21/19 08:09

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for	sample(s):	01 Batch:	WG1228671-1
Dimethyl phthalate	47	J	ug/kg	160	34.
Benzo(a)anthracene	ND		ug/kg	98	18.
Benzo(a)pyrene	ND		ug/kg	130	40.
Benzo(b)fluoranthene	ND		ug/kg	98	27.
Benzo(k)fluoranthene	ND		ug/kg	98	26.
Chrysene	ND		ug/kg	98	17.
Acenaphthylene	ND		ug/kg	130	25.
Anthracene	ND		ug/kg	98	32.
Benzo(ghi)perylene	ND		ug/kg	130	19.
Fluorene	ND		ug/kg	160	16.
Phenanthrene	ND		ug/kg	98	20.
Dibenzo(a,h)anthracene	ND		ug/kg	98	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.
Pyrene	ND		ug/kg	98	16.
Biphenyl	ND		ug/kg	370	38.
4-Chloroaniline	ND		ug/kg	160	30.
2-Nitroaniline	ND		ug/kg	160	31.
3-Nitroaniline	ND		ug/kg	160	31.
4-Nitroaniline	ND		ug/kg	160	68.
Dibenzofuran	ND		ug/kg	160	15.
2-Methylnaphthalene	ND		ug/kg	200	20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160	17.
Acetophenone	ND		ug/kg	160	20.
2,4,6-Trichlorophenol	ND		ug/kg	98	31.
p-Chloro-m-cresol	ND		ug/kg	160	24.
2-Chlorophenol	ND		ug/kg	160	19.
2,4-Dichlorophenol	ND		ug/kg	150	26.
2,4-Dimethylphenol	ND		ug/kg	160	54.
2-Nitrophenol	ND		ug/kg	350	61.

Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19

Method Blank Analysis Batch Quality Control

Analytical Method:	1
Analytical Date:	0
Analyst:	R

1,8270D 04/22/19 03:55 RC Extraction Method: EPA 3546 Extraction Date: 04/21/19 08:09

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	- Westboroug	n Lab for sa	ample(s):	01 Ba	tch: WG1228671-1	
4-Nitrophenol	ND		ug/kg	230	67.	
2,4-Dinitrophenol	ND		ug/kg	780	76.	
4,6-Dinitro-o-cresol	ND		ug/kg	420	78.	
Pentachlorophenol	ND		ug/kg	130	36.	
Phenol	ND		ug/kg	160	25.	
2-Methylphenol	ND		ug/kg	160	25.	
3-Methylphenol/4-Methylphenol	ND		ug/kg	240	26.	
2,4,5-Trichlorophenol	ND		ug/kg	160	31.	
Benzoic Acid	ND		ug/kg	530	160	
Benzyl Alcohol	ND		ug/kg	160	50.	
Carbazole	ND		ug/kg	160	16.	

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
2-Fluorophenol	97	25-120
Phenol-d6	102	10-120
Nitrobenzene-d5	109	23-120
2-Fluorobiphenyl	103	30-120
2,4,6-Tribromophenol	123	10-136
4-Terphenyl-d14	102	18-120

Lab Control Sample Analysis

Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE Lab Number: L1915442 Report Date: 04/23/19

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1228671-2 WG1228671-3 Acenaphthene 102 96 31-137 6 50 1,2,4-Trichlorobenzene 85 93 38-107 9 50 Hexachlorobenzene 108 112 40-140 50 4 Bis(2-chloroethyl)ether 76 85 40-140 50 11 2-Chloronaphthalene 40-140 50 98 103 5 1,2-Dichlorobenzene 74 79 40-140 7 50 73 77 40-140 50 1.3-Dichlorobenzene 5 1,4-Dichlorobenzene 74 78 28-104 5 50 3,3'-Dichlorobenzidine 80 83 40-140 4 50 2,4-Dinitrotoluene 106 113 40-132 6 50 2,6-Dinitrotoluene 116 123 40-140 6 50 Fluoranthene 94 100 40-140 6 50 4-Chlorophenyl phenyl ether 105 111 40-140 6 50 40-140 50 4-Bromophenyl phenyl ether 109 113 4 Bis(2-chloroisopropyl)ether 90 102 40-140 13 50 Bis(2-chloroethoxy)methane 94 102 40-117 8 50 Hexachlorobutadiene 94 40-140 9 50 86 Hexachlorocyclopentadiene 82 40-140 50 71 14 40-140 Hexachloroethane 79 83 5 50 Isophorone 95 102 40-140 7 50 Naphthalene 83 91 40-140 9 50 98 109 40-140 11 50 Nitrobenzene NDPA/DPA 100 107 36-157 7 50

Lab Control Sample Analysis

Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE Lab Number: L1915442 Report Date: 04/23/19

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1228671-2 WG1228671-3 n-Nitrosodi-n-propylamine 106 32-121 10 96 50 Bis(2-ethylhexyl)phthalate 110 114 40-140 4 50 Butyl benzyl phthalate 97 102 40-140 50 5 Di-n-butylphthalate 93 98 40-140 50 5 Di-n-octylphthalate 40-140 50 111 115 4 Diethyl phthalate 103 108 40-140 5 50 Dimethyl phthalate 108 118 40-140 9 50 Benzo(a)anthracene 106 109 40-140 3 50 Benzo(a)pyrene 109 115 40-140 5 50 Benzo(b)fluoranthene 112 116 40-140 4 50 Benzo(k)fluoranthene 102 108 40-140 6 50 Chrysene 102 108 40-140 6 50 Acenaphthylene 103 110 40-140 7 50 92 40-140 50 Anthracene 88 4 Benzo(ghi)perylene 90 94 40-140 4 50 Fluorene 100 105 40-140 5 50 Phenanthrene 88 92 40-140 50 4 93 40-140 50 Dibenzo(a,h)anthracene 89 4 40-140 50 Indeno(1,2,3-cd)pyrene 90 95 5 Pyrene 95 100 35-142 5 50 Q Biphenyl 101 108 54-104 7 50 4-Chloroaniline 50 90 93 40-140 3 47-134 2-Nitroaniline 124 132 6 50

Lab Control Sample Analysis Batch Quality Control

Project Name: 19 PATCHEN AVE. Lab Number: L1915442

Project Number: 19 PATCHEN AVE Report Date: 04/23/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01 Batch:	WG1228671-	2 WG1228671-3			
3-Nitroaniline	102		107		26-129	5	50	
4-Nitroaniline	118		124		41-125	5	50	
Dibenzofuran	100		106		40-140	6	50	
2-Methylnaphthalene	90		95		40-140	5	50	
1,2,4,5-Tetrachlorobenzene	110		119	Q	40-117	8	50	
Acetophenone	84		92		14-144	9	50	
2,4,6-Trichlorophenol	116		123		30-130	6	50	
p-Chloro-m-cresol	112	Q	119	Q	26-103	6	50	
2-Chlorophenol	86		97		25-102	12	50	
2,4-Dichlorophenol	109		116		30-130	6	50	
2,4-Dimethylphenol	107		114		30-130	6	50	
2-Nitrophenol	120		136	Q	30-130	13	50	
4-Nitrophenol	146	Q	155	Q	11-114	6	50	
2,4-Dinitrophenol	133	Q	136	Q	4-130	2	50	
4,6-Dinitro-o-cresol	152	Q	164	Q	10-130	8	50	
Pentachlorophenol	105		111	Q	17-109	6	50	
Phenol	84		94	Q	26-90	11	50	
2-Methylphenol	93		103		30-130.	10	50	
3-Methylphenol/4-Methylphenol	105		113		30-130	7	50	
2,4,5-Trichlorophenol	123		130		30-130	6	50	
Benzoic Acid	88		90		10-110	2	50	
Benzyl Alcohol	100		109		40-140	9	50	
Carbazole	91		96		54-128	5	50	

Lab Control Sample Analysis Batch Quality Control

Project Name:19 PATCHEN AVE.Project Number:19 PATCHEN AVE

 Lab Number:
 L1915442

 Report Date:
 04/23/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associa	ated sample(s): 01 Batch:	WG1228671-2	WG1228671-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	87	96	25-120
Phenol-d6	98	107	10-120
Nitrobenzene-d5	99	107	23-120
2-Fluorobiphenyl	102	108	30-120
2,4,6-Tribromophenol	116	121	10-136
4-Terphenyl-d14	94	97	18-120

METALS

Serial_No:04231913:56

Project Name:	19 PATCHEN AVE.	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE	Report Date:	04/23/19
	SAMPLE RESULTS		
Lab ID:	L1915442-01	Date Collected:	04/16/19 10:05
Client ID:	DRUM	Date Received:	04/16/19
Sample Location:	19 PATCHEN AVE., BROOKLYN, NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 89%

Percent Solids:	89%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	4.42		mg/kg	0.448	0.093	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Barium, Total	156		mg/kg	0.448	0.078	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Cadmium, Total	0.264	J	mg/kg	0.448	0.044	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Chromium, Total	10.4		mg/kg	0.448	0.043	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Lead, Total	275		mg/kg	2.24	0.120	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Mercury, Total	0.243		mg/kg	0.072	0.015	1	04/18/19 06:30	0 04/18/19 11:00	EPA 7471B	1,7471B	GD
Selenium, Total	0.556	J	mg/kg	0.897	0.116	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB
Silver, Total	ND		mg/kg	0.448	0.127	1	04/17/19 21:04	4 04/20/19 03:36	EPA 3050B	1,6010D	AB

 Lab Number:
 L1915442

 Report Date:
 04/23/19

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sar	nple(s):	01 Batch	n: WG12	227471-	1				
Arsenic, Total	ND		mg/kg	0.400	0.083	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Barium, Total	ND		mg/kg	0.400	0.070	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.400	0.039	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Chromium, Total	0.040	J	mg/kg	0.400	0.038	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Lead, Total	ND		mg/kg	2.00	0.107	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Selenium, Total	ND		mg/kg	0.800	0.103	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB
Silver, Total	ND		mg/kg	0.400	0.113	1	04/17/19 21:04	04/19/19 23:24	1,6010D	AB

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	: WG12	227631-	1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	04/18/19 06:30	04/18/19 10:23	3 1,7471B	GD

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE

Lab Number: L1915442 Report Date: 04/23/19

arameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: W0	G1227471-2 SRM Lot N	umber: D101-540			
Arsenic, Total	86		83-117	-		
Barium, Total	84	-	83-118	-		
Cadmium, Total	89	-	83-117	-		
Chromium, Total	86	-	81-118	-		
Lead, Total	83	-	83-117	-		
Selenium, Total	88	-	79-121	-		
Silver, Total	87	-	80-120	-		
otal Metals - Mansfield Lab Associated sam	ple(s): 01 Batch: W	G1227631-2 SRM Lot N	umber: D101-540			
Mercury, Total	104	-	65-135	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 19 PATCHEN AVE. **Project Number: 19 PATCHEN AVE**

Lab Number: L1915442 **Report Date:** 04/23/19

Arsenic, Total 6.89 11.3 16.6 86 - - 75-125 - Barium, Total 52.1 189 208 82 - - 75-125 - Cadmium, Total ND 4.82 3.83 80 - - 75-125 - Chromium, Total 156 18.9 156 0 Q - - 75-125 - Lead, Total 21.1 48.2 56.6 74 Q - - 75-125 - Selenium, Total 1.07 11.3 10.3 81 - - - 75-125 -	RPD Limits	Qual	RPD	Recovery Limits	Qual	MSD %Recovery	MSD al Found	Qua	MS %Recovery	MS Found %	MS Added	Native Sample	Parameter
Barium, Total 52.1 189 208 82 - - 75-125 - Cadmium, Total ND 4.82 3.83 80 - - 75-125 - Chromium, Total 156 18.9 156 0 Q - - 75-125 - Lead, Total 21.1 48.2 56.6 74 Q - - 75-125 - Selenium, Total 1.07 11.3 10.3 81 - - - 75-125 -			ample	nt ID: MS Sa	Clier	: L1915225-01	QC Sample:	1-3	: WG122747	QC Batch ID:	nple(s): 01	Associated sar	Total Metals - Mansfield Lab A
Cadmium, Total ND 4.82 3.83 80 - - 75-125 - Chromium, Total 156 18.9 156 0 Q - - 75-125 - Lead, Total 21.1 48.2 56.6 74 Q - - 75-125 - Selenium, Total 1.07 11.3 10.3 81 - - 75-125 -	20		-	75-125		-	-		86	16.6	11.3	6.89	Arsenic, Total
Chromium, Total 156 18.9 156 0 Q - - 75-125 - Lead, Total 21.1 48.2 56.6 74 Q - - 75-125 - Selenium, Total 1.07 11.3 10.3 81 - - 75-125 -	20		-	75-125		-	-		82	208	189	52.1	Barium, Total
Lead, Total 21.1 48.2 56.6 74 Q - - 75-125 - Selenium, Total 1.07 11.3 10.3 81 - - 75-125 -	20		-	75-125		-	-		80	3.83	4.82	ND	Cadmium, Total
Selenium, Total 1.07 11.3 10.3 81 - - 75-125 -	20		-	75-125		-	-	Q	0	156	18.9	156	Chromium, Total
	20		-	75-125		-	-	Q	74	56.6	48.2	21.1	Lead, Total
	20		-	75-125		-	-		81	10.3	11.3	1.07	Selenium, Total
Silver, Total ND 28.3 26.1 92 75-125 -	20		-	75-125		-	-		92	26.1	28.3	ND	Silver, Total
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1227631-3 QC Sample: L1915738-01 Client ID: MS Sample			ample	nt ID: MS Sa	Clier	: L1915738-01	QC Sample:	1-3	: WG122763	QC Batch ID:	nple(s): 01	Associated sar	Fotal Metals - Mansfield Lab A
Mercury, Total 0.032J 0.151 0.191 126 Q 80-120 -	20		-	80-120		-	-	Q	126	0.191	0.151	0.032J	Mercury, Total

Project Name:	19 PATCHEN AVE.	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE		Report Date:	04/23/19

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1227471-4	4 QC Sample:	L1915225-01	Client ID:	DUP Sample	
Chromium, Total	156	160	mg/kg	3		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1227631-4	4 QC Sample:	L1915738-01	Client ID:	DUP Sample	
Mercury, Total	0.032J	0.039J	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

								Serial_No:04	231913:56	
Project Name:	19 PATCHEN A	VE.					Lab N	lumber:	L1915442	
Project Number:	19 PATCHEN A	VE					Repo	rt Date:	04/23/19	
				SAMPLE	RESUL	rs				
Lab ID:	L1915442-01						Date (Collected:	04/16/19 10:05	
Client ID:	DRUM						Date I	Received:	04/16/19	
Sample Location:	19 PATCHEN A	VE., B	ROOKI	LYN, NY			Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Solids, Total	88.5		%	0.100	NA	1	-	04/17/19 14:1	4 121,2540G	RI

Project Name:	19 PATCHEN AVE.	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1915442
Project Number:	19 PATCHEN AVE		Report Date:	04/23/19

Parameter	Native Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1227319-1	QC Sample:	L1915532-07	Client ID:	DUP Sample
Solids, Total	73.6	75.8	%	3		20

Project Name:19 PATCHEN AVE.Project Number:19 PATCHEN AVE

Serial_No:04231913:56 *Lab Number:* L1915442 *Report Date:* 04/23/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1915442-01A	5 gram Encore Sampler	А	NA		2.8	Y	Absent		NYTCL-8260HLW(14)
L1915442-01B	5 gram Encore Sampler	А	NA		2.8	Y	Absent		NYTCL-8260HLW(14)
L1915442-01C	5 gram Encore Sampler	А	NA		2.8	Y	Absent		NYTCL-8260HLW(14)
L1915442-01D	Plastic 2oz unpreserved for TS	А	NA		2.8	Y	Absent		TS(7)
L1915442-01E	Glass 120ml/4oz unpreserved	А	NA		2.8	Y	Absent		NYTCL-8270(14)
L1915442-01F	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.8	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L1915442-01X	Vial MeOH preserved split	А	NA		2.8	Y	Absent		NYTCL-8260HLW(14)
L1915442-01Y	Vial Water preserved split	А	NA		2.8	Y	Absent	17-APR-19 07:15	NYTCL-8260HLW(14)
L1915442-01Z	Vial Water preserved split	А	NA		2.8	Y	Absent	17-APR-19 07:15	NYTCL-8260HLW(14)

Project Name: 19 PATCHEN AVE.

Project Number: 19 PATCHEN AVE

Lab Number: L1915442

Report Date: 04/23/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when
DL	those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Report Format: DU Report with 'J' Qualifiers

Project Name:19 PATCHEN AVE.Project Number:19 PATCHEN AVE

Lab Number:	L1915442
Report Date:	04/23/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Project Name:19 PATCHEN AVE.Project Number:19 PATCHEN AVE

 Lab Number:
 L1915442

 Report Date:
 04/23/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04231913:56

	NEW YORK CHAIN OF CUSTODY	Servico Conters Mahwah; NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	95	Page / of	- /	1	Date I In L	Rec'd .ab	4	16	119	ALPHA JOB # 191544	12
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	erable	5				Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL 508-822-9300 FAX 508-822-3288	Project Name: 19 74 Project Location: 19 Project #	tchen A	VI				ASP-	Ą	- 0	ASP-8	3	Same as Client In	ifo
1746 300-0303133	PRA: 300-022-3288	Project Location: 19	Palchen	Ave bron	klyn, A	N		EQui	S (1 File)		EQuis	5 (4 File)	PO#	
Client Information		Project #			\$ 1.0	· · · · · · · ·		Other			_	_		
Client: Tenen Enc	ironmentel, UC	Use Project name as Pr					Regu	latory	Requiren	ient.			Disposal Site Informat	ion
Address: 12 We	51 22 en st	Project Manager: H.	Carroll					NY TO	GS		NY Par	1 375	Please identify below loca	
sude 702	, 10001, NY, NY	ALPHAQuote #				- 0.04		AWQ	Standards		NY CP	-51	applicable disposal facilitie	05.
Phone:		Turn-Around Time						NY Re	stricted Us	0	Olher		Disposal Facility:	
Fax:		Standard		Due Date:				NY Un	restricted	Jse				Y
Email: M. Corroll	dener env. in	Rush (only if pre approved		# of Days:				NYCS	iewer Disc	harge	-	_	Other:	
These samples have	been previously analyz	ed by Alpha					ANAI	LYSIS	Ŧ				Sample Filtration	T
Please specify Meta	ic requirements/com is or TAL	nents:					6260	6 8	ECRA HELOG BOUGHUR				Done Lab to do Preservation Lab to do (Please Specify belo	t a B v
ALPHA Lab ID			Colb	ection	Sample	Sampler's	5)	S	*				fr rease speenly sale	1
(Lab Use Only)	Si	ample ID	Date	Time	Matrix	Initials	VOL	10	T	1	1.1	1.2.1.2	Sample Specific Comm	ents
1-942-01	Drum		4/16/2011	10=050.00	5	HP	X	X	V	-				
1, 1 1 100 01	han		Hickory	10-0000		PO	-C	15	1	1				-
					-		-	-		-		-	-	_
					-			-		-				-
					-	· · · ·				-		-		_
			1							-				_
				-						-				-
								-		-				
							-	-		-				
			-	1		-		-	-	-				-
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass	Westboro: Certification N Mansfield: Certification N			Cor	ntainer Type	E	A	A				Please print clearly, and completely. Sa	mples can
$D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup				F	Preservative	A	A	À				not be logged in an turnaround time clo start until any ambig	ck will not
F = MeOH G = NaHSO,	C = Cube O = Other	Relinguisted	By:	Date/7	Time	111	Receiv	ved By	ç		/ Date	/Time	resolved, BY EXEC	UTING
$H = Na_2S_2O_3$	E = Encore	Alle	1/	4/16/2019	13=12pm	- Mart	fell	R-	HAY	1 31	14/1	9 13:	HAS READ AND A	
K/E = Zn Ac/NaOH	D = BOD Bottle	1 tin ficke	·AAA	4116/19	14-25	Tau	Um	les	de	14/	10.1	glich	TO BE BOUND BY	
O = Other		Ruteman	ella -	111/19	DIAC	du	N	1	-	41	16/19	2120	TERMS & CONDIT	and the second se
Form No: 01-25 HC (rev.	30-Sept-2013)	00		Augure -	arene					1.			(See reverse side.)	

Attachment 1 – Soil Analytical Data

Table 1 - Soil Sampling Results 19 Patchen Avenue - Brooklyn, NY

SAMPLE ID: LAB ID:		DRUM L1915442-01					
COLLECTION DATE:	4/16/201						
Volatile Organic Compounds	Conc	Q					
Units: mg/kg		-					
Methylene chloride 1,1-Dichloroethane	0.0028 0.00018	U					
Chloroform	0.00013	U					
Carbon tetrachloride	0.00028	U					
1,2-Dichloropropane	0.00015	U					
Dibromochloromethane	0.00017	U					
1,1,2-Trichloroethane Tetrachloroethene	0.00032	0					
Chlorobenzene	0.00015	U					
Trichlorofluoromethane	0.00085	U					
1,2-Dichloroethane	0.00031	U					
1,1,1-Trichloroethane	0.0002	U U					
Bromodichloromethane trans-1,3-Dichloropropene	0.00013 0.00033	U					
cis-1,3-Dichloropropene	0.00019	U					
1,3-Dichloropropene, Total	0.00019	U					
1,1-Dichloropropene	0.00019	U					
Bromoform	0.0003	UU					
1,1,2,2-Tetrachloroethane Benzene	0.0002	U					
Toluene	0.0002	U					
Ethylbenzene	0.00017	U					
Chloromethane	0.0011	U					
Bromomethane	0.00071	U					
Vinyl chloride Chloroethane	0.00041 0.00055	U					
1,1-Dichloroethene	0.00033	U					
trans-1,2-Dichloroethene	0.00017	U					
Trichloroethene	0.00017	U					
1,2-Dichlorobenzene	0.00018	U					
1,3-Dichlorobenzene 1,4-Dichlorobenzene	0.00018 0.00021	UU					
Methyl tert butyl ether	0.00021	U					
p/m-Xylene	0.00068	Ū					
o-Xylene	0.00035	U					
Xylenes, Total	0.00035	U					
cis-1,2-Dichloroethene 1,2-Dichloroethene, Total	0.00021 0.00017	UU					
Dibromomethane	0.00029	U					
Styrene	0.00024	U					
Dichlorodifluoromethane	0.0011	U					
Acetone	0.0058	J U					
Carbon disulfide 2-Butanone	0.0055 0.0027	U U					
Vinyl acetate	0.0027	U					
4-Methyl-2-pentanone	0.0016	U					
1,2,3-Trichloropropane	0.00015	U					
2-Hexanone	0.0014	U					
Bromochloromethane 2,2-Dichloropropane	0.00025 0.00024	U U					
1,2-Dibromoethane	0.00034	U					
1,3-Dichloropropane	0.0002	Ū					
1,1,1,2-Tetrachloroethane	0.00016	U					
Bromobenzene n. Butylbenzene	0.00018 0.0002	UU					
n-Butylbenzene sec-Butylbenzene	0.0002	U U					
tert-Butylbenzene	0.00013	U					
o-Chlorotoluene	0.00023	U					
p-Chlorotoluene	0.00013	U					
1,2-Dibromo-3-chloropropane	0.0012	U					
Hexachlorobutadiene Isopropylbenzene	0.0002	UU					
p-Isopropyltoluene	0.00013	U					
Naphthalene	0.00079	U					
Acrylonitrile	0.0014	U					
n-Propylbenzene 1,2,3-Trichlorobenzene	0.00021 0.00039	UU					
1,2,3-Trichlorobenzene	0.00039	U					
1,3,5-Trimethylbenzene	0.00033	U					
1,2,4-Trimethylbenzene	0.00041	U					
1,4-Dioxane	0.043	U					
p-Diethylbenzene	0.00022	U					
p-Ethyltoluene 1,2,4,5-Tetramethylbenzene	0.00047 0.00023	U U					
Ethyl ether	0.00023	U					
trans-1,4-Dichloro-2-butene	0.0017	U					
Total VOCs	0.00673						

 Total VOCs
 0.00673

 Notes:
 MDL = Maximum Detection Limit
 Conc = Concentration

 Q = Laboratory Data Qualifier
 For U qualified entries, the MDL is shown
 U = not detected at or above the MDL

 For J qualified entries, the estimated concentration is shown
 J = estimated value, indicating the detected value is below the RL, but above the MDL

 -- = No standard
 -- = No standard
 -- = No standard

Table 1 - Soil Sampling Results 19 Patchen Avenue - Brooklyn, NY

SAMPLE ID:	DRUM L1915442-01			
LAB ID:				
COLLECTION DATE: Semivolatile Organic Compounds	4/16/			
Units: mg/kg	Conc	Q		
Acenaphthene	0.092	J		
1,2,4-Trichlorobenzene	0.021	U		
Hexachlorobenzene Big(2 ahloroathyl)athar	0.021 0.025	U U		
Bis(2-chloroethyl)ether 2-Chloronaphthalene	0.023	U		
1,2-Dichlorobenzene	0.033	Ū		
1,3-Dichlorobenzene	0.032	U		
1,4-Dichlorobenzene	0.032	U		
3,3'-Dichlorobenzidine 2,4-Dinitrotoluene	0.049 0.037	U U		
2,6-Dinitrotoluene	0.032	U		
Fluoranthene	2.5			
4-Chlorophenyl phenyl ether	0.02	U		
4-Bromophenyl phenyl ether	0.028	U		
Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	0.032	U		
Hexachlorobutadiene	0.010	U		
Hexachlorocyclopentadiene	0.17	U		
Hexachloroethane	0.03	U		
Isophorone	0.024	U		
Naphthalene Nitrobenzene	0.047 0.027	J U		
NDPA/DPA	0.027	U		
n-Nitrosodi-n-propylamine	0.021	U		
Bis(2-ethylhexyl)phthalate	0.064	U		
Butyl benzyl phthalate	0.047	U		
Di-n-butylphthalate Di-n-octylphthalate	0.035 0.063	U		
Diethyl phthalate	0.063	U		
Dimethyl phthalate	0.039	U		
Benzo(a)anthracene	1.4			
Benzo(a)pyrene	1.2			
Benzo(b)fluoranthene	1.7			
Benzo(k)fluoranthene Chrysene	0.5			
Acenaphthylene	0.14	J		
Anthracene	0.25			
Benzo(ghi)perylene	0.69			
Fluorene	0.099	J		
Phenanthrene Dibenzo(a,h)anthracene	1.6 0.16			
Indeno(1,2,3-cd)pyrene	0.73			
Pyrene	2.3			
Biphenyl	0.043	U		
4-Chloroaniline	0.034	U		
2-Nitroaniline 3-Nitroaniline	0.036	U		
4-Nitroaniline	0.077	U		
Dibenzofuran	0.059	J		
2-Methylnaphthalene	0.024	J		
1,2,4,5-Tetrachlorobenzene	0.019	U U		
Acetophenone 2,4,6-Trichlorophenol	0.023 0.035	U U		
p-Chloro-m-cresol	0.033	U		
2-Chlorophenol	0.022	Ū		
2,4-Dichlorophenol	0.03	U		
2,4-Dimethylphenol	0.061	U		
2-Nitrophenol	0.07	U U		
4-Nitrophenol 2,4-Dinitrophenol	0.076	U		
4,6-Dinitro-o-cresol	0.089	U		
Pentachlorophenol	0.041	U		
Phenol	0.028	U		
2-Methylphenol 3-Methylphenol/4-Methylphenol	0.029	U U		
2,4,5-Trichlorophenol	0.029 0.035	U		
Benzoic Acid	0.19	U		
Benzyl Alcohol	0.057	U		
Carbazole	0.17	J		
Total SVOCs	15.161	-		
Total Metals	417			
Total Metals Arsenic, Total	4.42			
Total Metals	4.42 156 0.264	J		
Total Metals Arsenic, Total Barium, Total Cadmium, Total Chromium, Total	156 0.264 10.4	J		
Total Metals Arsenic, Total Barium, Total Cadmium, Total Chromium, Total Lead, Total	156 0.264 10.4 275	J		
Total Metals Arsenic, Total Barium, Total Cadmium, Total Chromium, Total	156 0.264 10.4	1		

 Silver, Total
 0.127
 U

 Notes:
 MDL = Maximum Detection Limit

 Conce = Concentration
 Q = Laboratory Data Qualifier

 For U qualified entries, the MDL is shown
 U

 U = not detected at or above the MDL
 For J qualified entries, the estimated concentration is shown

 J = estimated value, indicating the detected value is below the RL, but above the MDL

 -- = No standard

Attachment 2 – Proposed Waste Profile from Clean Harbors Disposal Facility

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH1832706

A. GENERAL INFORMATION GENERATOR EPA ID #/REGISTRATION #	NONEREQUIRED	GENERATOR NAME:	Tenen Environmental	
GENERATOR CODE (Assigned by Clean Harbors)	TE32542	CITY Brooklyn	STATE/PROVINCE NY ZIP/POSTAL CODE	11221
ADDRESS 19 Patchen Avenue			PHONE: (253) 334-9256	
CUSTOMER CODE (Assigned by Clean Harbors)	CA59174	CUSTOMER NAME:	Cascade Drilling	
ADDRESS 22722 29th Drive SE, Suite 220	3	CITY Bothell	STATE/PROVINCE WA ZIP/POSTAL CODE	98021

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Non-Hazardous Waste Solid

PROCESS GENERATING WASTE: Investigation Derived Waste from environmental drilling operations. Former Dry Cleaner. IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTIES (at 25C or 77F)

PHYSICAL STATE SOLID WITHOUT FREE LIQUID POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIDS LIQUID/SOLID MIXTURE % FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		D WITHOUT FREE LIQUID 1 2 3 TOU DER OLITHIC SOLID % BY VOLUME (Approx.) MIL ID WITH NO SOLIDS BO		VISCOSITY (If liquid pres 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor C 501 - 10,000 (e.g. Mote	Dil) <u>Brown</u>
		ODOR NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	> 10,000 MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) V > 200 (>93)	TOTAL ORGANIC CARBON (*= 1% 1-9% >= 10%
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) ✓ > 1.2 (e.g. Methylene Chloride)		> 20 2,00 Unknown 5,00	J/kg) 000 (<4.6) 0-5,000 (4.6-11.6) 0-10,000 (11.6-23.2) 1,000 (>23.2)

D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, please supply an MSDS. Please do not use abbreviations.)

CHEMICAL			MIN	÷.,	MAX	NOU
ACETONE			0.0000000	-	6.0000000	PPB
GRAVEL, DEBRIS			0.0000000		5.0000000	%
SOIL			95.0000000	- 10	00.0000000	%
TETRACHLOROETHYLENE			0.0000000	-	1.0000000	PPB
DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DI >12" LONG, METAL REINFORCED HOSE >12" LONG, METAL PIECES OF CONCRETE >3")?				DR	YES	NO
If yes, describe, including dimensions:						
DOES THIS WASTE CONTAIN ANY METALS IN POWDERED	OR OTHER FINEL	Y DIVIDED FORM?			YES	NO
DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WAS POTENTIALLY INFECTIOUS MATERIAL?				(YES	NO
I acknowledge that this waste material is neither infectious based on my knowledge of the material. Select the answer			his certification is			
The waste was never exposed to potentially infectious mate	erial.				YES	NO
Chemical disinfection or some other form of sterilization ha	s been applied to th	e waste.			YES	NO
I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN	HARBORS BATTER	Y PACKAGING REQUIREMENTS.			YES	NO
I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS	DOUBLE BAGGED	AND WETTED.			YES	NO
SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE.	G49	SPECIFY THE FORM CODE ASSOCIATE	D WITH THE WA	ASTE.	W301	

Clean Harbors Profile No. CH1832706

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge 🗹 Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICABLE	
D004	ARSENIC BARIUM	5.0				V V	
D006	CADMIUM	1.0				·····	

D007	CHROMIUM	5.0					
D008	LEAD	5.0				V	
D009	MERCURY	0.2				V	
D010	SELENIUM	1.0				✓	
D011	SILVER	5.0					
	VOLATILE COMPOUNDS			OTHER CONSTITUE	TS	MAX UOM	NOT
D018	BENZENE	0.5		1.000			APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE			V
D021	CHLOROBENZENE	100.0		CHLORINE			<
D022	CHLOROFORM	6.0		FLUORINE			V
D028	1,2-DICHLOROETHANE	0.5		IODINE			•
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR			
D035	METHYL ETHYL KETONE	200.0		POTASSIUM			2
D039	TETRACHLOROETHYLENE	0.7		SODIUM			2
D040	TRICHLOROETHYLENE	0.5		AMMONIA			2
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE			V
	SEMI-VOLATILE COMPOUN	**************		CYANIDE REACTIVE			~
D023	o-CRESOL	200.0		CYANIDE TOTAL	*********	****************	
D024	m-CRESOL	200.0	*******	SULFIDE REACTIVE		•••••	
D025	p-CRESOL	200.0		HOCs		PCBs	
D026	CRESOL (TOTAL)	200.0		NONE		V NONE	
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM		< 50 PPM	
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM	
D032	HEXACHLOROBENZENE	0.13		1		IF PCBS ARE PRESEN	T. IS THE
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGULATED	
D034	HEXACHLOROETHANE	3.0				CFR 761?	
D036	NITROBENZENE	2.0		L.		YES 🗸	NO
D037	PENTACHLOROPHENOL	100.0					
D038	PYRIDINE	5.0					
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0					
	PESTICIDES AND HERBICID	ES	0,00000				
D012	ENDRIN	0.02					
D013	LINDANE	0.4					
D014	METHOXYCHLOR	10.0					
D015	TOXAPHENE	0.5	•••••				
D016	2,4-D	10.0					
D017	2,4,5-TP (SILVEX)	1.0	•••••				
D020	CHLORDANE	0.03					
D020	HEPTACHLOR (AND ITS EPOXIC						
ADDIT	IONAL HAZARDS		INCIDENTS	ASSOCIATED WITH IT. WH	CH COULD AF	FECT THE WAY IT SHOULD	BE HANDLED?
YES			1. 2. 7. W. 1. 2.	Service contractor and	COLUMN TOTAL		
	SE ALL THAT APPLY						
	REGULATED SUBSTANCES	EXPLOSIVE		FUMING		OSHA REGULATE	DCARCINOCENIC
DEA				1 Olympic		IT USHA REGULATE	D CAROINUGENS

F. REGULATORY STATUS

			USEPA HAZARDOUS WASTE?		
YES	~	NO	DO ANY STATE WASTE CODES	APPLY?	
			Tayaa Wasta Cada		
YES	~	NO	Texas Waste Code L	L WASTE CODES APPLY?	
YES	~	NO	the state of the s	ROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PE	ER 40 CFR PART 268?
			VARIANCE INFO:	bject to LDR	
YES	~	NO	IS THIS A UNIVERSAL WASTE?		
YES	~	NO	IS THE GENERATOR OF THE W	ASTE CLASSIFIED AS VERY SMALL QUANTITY GENERATO	OR (VSQG) OR A STATE EQUIVALENT DESIGNATION?
YES		NO	IS THIS MATERIAL GOING TO B	E MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT	T, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?
YES	~	NO	DOES TREATMENT OF THIS WA	ASTE GENERATE A F006 OR F019 SLUDGE?	
YES		NO	IS THIS WASTE STREAM SUBJE	CT TO THE INORGANIC METAL BEARING WASTE PROHIB	ITION FOUND AT 40 CFR 268.3(C)?
YES	~	NO	DOES THIS WASTE CONTAIN V	OC'S IN CONCENTRATIONS >=500 PPM?	
YES		NO	DOES THE WASTE CONTAIN GR	REATER THAN 20% OF ORGANIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?
YES	4	NO	DOES THIS WASTE CONTAIN A	N ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HA	S A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?
YES	4	NO	IS THIS CERCLA REGULATED (S	SUPERFUND) WASTE ?	
YES	~	NO	IS THE WASTE SUBJECT TO ON	E OF THE FOLLOWING NESHAP RULES?	
			Hazardous Organic NESHA	P (HON) rule (subpart G) Pharmaceuticals produ	uction (subpart GGG)
YES		NO	IF THIS IS A US EPA HAZARDOU	JS WASTE, DOES THIS WASTE STREAM CONTAIN BENZEM	NE?
			e TAB quantity for your facility?	Megagram/year (1 Mg = 2,200 lbs)	
	The Des /TDG I	e basis scribe t	e TAB quantity for your facility? for this determination is: Knowledge he knowledge :		Knowledge Testing
DOT/TDG	The Des /TDG I	e basis scribe t INFOR ER SH	for this determination is: Knowledge he knowledge :		Knowledge Testing
DOT/TDG NO	The Des /TDG I PROP T RE	e basis scribe I INFOR ER SH GULA ATION	for this determination is: Knowledge he knowledge :	of the Waste Or Test Data	
DOT/TDG NO	The Des /TDG I PROP T RE	e basis scribe I INFOR ER SH GULA ATION	for this determination is: Knowledge he knowledge :		
DOT/TDG NO 1. TRANS	The Des /TDG I PROP T RE PORT/ D SHIF	e basis scribe I INFOR ER SH GULA ATION PMENT	for this determination is: Knowledge he knowledge :	of the Waste Or Test Data	
DOT/TDG NO I. TRANS STIMATE	The Des 7TDG I PROP T RE PORTA D SHIF	e basis scribe t NFOR ER SH GULA ATION PMENT PMENT CI TAINE	for this determination is: Knowledge he knowledge :	vof the Waste Or Test Data	ER
DOT/TDG NO I. TRANS STIMATE <u>1-1</u> STORAGE CONTAINE	The Des TDG I PROP T REC PORT/ D SHIF CON CAPAG R TYP	e basis scribe I INFOR ER SH GULA ATION PMENT PMENT CITAINE CITY: PE:	for this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID
DOT/TDG NO I. TRANSI ESTIMATE STIMATE I-1 STORAGE CONTAINE PO	The Des PROP T RE PORTA D SHIF CON CAPAC R TYP RTABLE	e basis scribe I INFOR EER SH GULA ATION PMENT PMENT PMENT CITY: 2E: TOTE T/	for this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO I. TRANS STIMATE STIMATE I TORAGE CONTAINE PO CU	The Des TDG I PROP T REC PORT/ D SHIF CON CAPAG R TYP	e basis scribe I INFOR EER SH GULA ATION PMENT PMENT PMENT CITY: 2E: TOTE T/	for this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO A. TRANS STIMATE STORAGE CONTAINE PO CU OT	The Des TTDG I PROP T RE PORT/ D SHIF CON CAPA R TYP RTABLE BIC YAR HER:	e basis scribe t NFOR EER SH GULA ATION PMENT PMENT CITY: CITY: E: TOTE T/ D BOX	for this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO I. TRANS STIMATE ITORAGE CONTAINE PO CU OTI	The Des TTGG I PPROP T REE PORTA D SHIF CON CON CON CAPAA RTYP RTABLE BIC YAR HER:	e basis scribe I INFOR EER SH GULA ATION PMENT CITY: CITY: CITY: D BOX	tor this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO H. TRANS STIMATE STORAGE CONTAINE PO CU OTI I. SPECIA COMME	The Des TTGG I PROP T RE PORTA D SHIF CON CAPAP R TYP RTABLE BIC YAR HER:	e basis scribe I NFOR ER SH GULA ATION PMENT CITAINE CITY: E: TOTE T/ D BOX	tor this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO H. TRANS STIMATE STORAGE CONTAINE PO CU OTI I. SPECIA COMME CNO. No In	The Des Des TTRE PROP T RE PORT, D SHIF CON CAPA R TYP RTABLE BIC YAR HER: L REC NTS OF	A basis scribe I INFOR ER SH GULA ATION PMENT CITAINE CITY: TOTE T/ D BOX	for this determination is: Knowledge he knowledge :	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD
DOT/TDG NO H. TRANS ESTIMATE: I-1 STORAGE CONTAINE PO CU OTI I. SPECIA COMME CNO. No In GENERATO I certify that is	The Des TTDG I PROP T RE PORT, D SHIF CON CAPA R TYP RTABLE BIC YAR HER: L REC L REC CIAPA R TYP RTABLE R SCE I am aui	A basis scribe I INFOR ER SH GULA ATION PMENT CITY: CE: TOTET/ D BOX	tor this determination is: Knowledge he knowledge : MATION IPPING NAME: TED BY DOT, (SOIL) REQUIREMENTS FREQUENCY I ONE TIME NK BOXICARTONICASE INTAINERIZED RS/SHIPMENT 10 NK BOXICARTONICASE INTAINERIZE DRUM DRUM SIZE: 55 INTENS: Intained in Determination Provided. ATION to execute this document as an authorize	WEEKLY MONTHLY QUARTERLY YEARLY OTH	ER BULK SOLID SHIPMENT UOM: TON YARD TONS/YARDS/SHIPMENT: <u>0 Min - 0 Max</u>

Site Address :

19 Patchen Avenue Brooklyn,NY 11221

SC PPW 10/10/2017

WORK ORDER NO 31800670495

DOCUMENT NO. 9	13827 STRAIGHT BILL OF LADING	
TRANSPORTER 1 _	Clean Harbors Environmental Services, Inc.	VEHICLE ID #
EPA ID # _	MAD039322250	TRANS. 1 PHONE (781) 792-5000
TRANSPORTER 2 _	SJ Transportation	VEHICLE ID # 1240 - VId8
FPA ID #	NJD071629976	TRANS. 2 PHONE

DESIGNATED	FACILITY	urce Red	covery Inc.		SHIPPER Environmental		
FACILITY					SHIPPER EPAID #		
ADDRESS 4879 St	pring Grove	Avenue			ADDRESS 121 W 27th St		
CITY			STATE OH	ZIP 45232	CITY New York	STATE Z	21P 10001
CONTAINERS NO. & SIZE	DNTAINERS			DESCRIPTIC	ON OF MATERIALS	TOTAL QUANTITY	UNIT WT/VOL
			A. NOT REG	ULATED BY DOT	(soil) (46) ,		
4×55 ,DM			B. NON DOT REGULATED MATERIAL, (WATER, SOIL)		SOLE	P	
11.9			C.				
			D.				
			E.				
			F.				
			G.				
			Н.				
SPECIAL HAN		1381	IONS EMER	RGENCY PHONE		RATOR: Tenen Environn	nental

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER	PRINT AIRETALIMON	SIGN MUD SICIN	DAJE 9/8
TRANSPORTER 1	MANUE GARCED.	SIGN Rauf Spices	DATE 9 18
TRANSPORTER 2	PRINT Andreas	SIGN	DATE 2/18/18
RECEIVED BY	PRINT having Bongst	SIGN Ste	314/18

APPENDIX E – CAMP Field Data Sheets and Air Monitoring Data (included on CD)

APPENDIX F – Raw Analytical Data (included on CD)

APPENDIX G – Daily and Monthly Reports (included on CD)

APPENDIX H – Project Photo Log (included on CD)

APPENDIX I – EC As-Built Drawings, Documentation and Specifications

SECTION 025000 SITE REMEDIATION

PART 1 INTRODUCTION

1.1 SECTION INCLUDES

A. All labor, materials, equipment and incidentals that are required to furnish and install a subslab depressurization system (SSDS) as shown, specified, and required to complete the Work.

1.2 TABLE OF CONTENTS

- A. This specification is arranged as follows:
 - PART 1 INTRODUCTION
 - 1.1 Section Includes
 - 1.2 Table of Contents
 - 1.3 Disclosed Documents
 - 1.4 Related Sections
 - 1.5 Background

PART 2 - SYSTEM REQUIREMENTS

- 2.1 General Requirements
- 2.2 Quality Control
- 2.3 Product Requirements
- 2.4 Product delivery, storage and Handling Requirements
- PART 3 INSTALLATION
 - 3.1Protecting Installed Construction
 - 3.2 Field Engineering
 - 3.3Existing Conditions
 - 3.4 Sub-Slab System
 - 3.5 Above-Ground System
 - 3.6 Testing of Equipment and Starting of the System
 - 3.7 Close-Out Procedures
 - 3.8 Active SSDS Alternate Items

1.3 DISCLOSED DOCUMENTS

One relevant document has been prepared for the Site that relate to this Section:

A. Interim Remedial Measures (IRM) Work Plan, dated March 2017 by Matthew M. Carroll, PE and Tenen Environmental, submitted to the New York State Department of Environmental Conservation (NYSDEC). Appendix D includes the layout for the sub-slab depressurization system (SSDS), as updated from time to time.

1.4 RELATED SECTIONS

Several other Sections are related to implementing the Disclosed Documents including, but not limited to the following:

A.

1.5 BACKGROUND

The Site is in the NYSDEC Brownfield Cleanup Program (BCP) as Site #C224232. The IRM Work Plan includes a SSDS, which is described in this Section. Other Agency requirements are detailed in the Disclosed Documents.

PART 2 SYSTEM REQUIREMENTS

2.1 GENERAL REQUIREMENTS

- 1. See drawings X-100 and X-101 for SSDS layouts below and above the slab, respectively.
- 2. See drawing X-102 for the SSDS layout on the roof.
- 3. See drawing X-103 for SSDS details.
- 4. See drawing X-104 for the results of a pressure field extension test.
- 5. As shown on the drawings, there is one systems with two suction pits.
- 6. The term "Engineer" shall mean a representative of the Remedial Engineer for the project.
- 7. The term "provide" means furnish and install complete and ready for intended use, as applicable in each instance. All materials and equipment shown, specified and/or required for the intended use shall be furnished and installed.
- 8. Any proposed changes to the SSDS must be approved in writing by the Engineer.
- 9. In strict accordance with all applicable codes, regulations and ordinances having jurisdiction, Contractor shall give all notices and comply with all codes, laws, ordinances, rules, regulations and lawful orders of any public authority bearing on the performance and execution of the work. Electrical systems shall be installed in accordance with all applicable municipal and state jurisdictional codes, the National Electric Code and utility company specifications. All work shall be performed in strict adherence with the latest editions of the BOCA National Building Codes, the State of New York Uniform Construction Code and the Occupations Safety & Health Administration (OSHA) regulations. All materials, workmanship and construction shall conform to all current prevailing state, county, municipal and/or utility company specifications, standards and requirements.
- 10. The Contractor shall identify, apply for and obtain and pay all fees for licenses, permits, approvals and insurance required from federal, state and local governmental and public agencies and authorities as necessary to perform the work. The Contractor shall provide indemnification to public and private agencies and authorities as necessary to perform the work.
- 11. If any law, regulation or the plans have contradicting requirements, then the most stringent requirement shall apply, as determined by the Engineer.
- 12. Contractor's responsibilities include arranging for inspections and obtaining the Engineer's approval prior to finalization of work.
- 13. The Contractor shall supervise and direct the work using the best construction skills and attention. The Contractor shall be solely responsible and have control over construction means, methods, techniques, sequences and procedures. The Contractor shall be solely responsible for coordination all portions of the work.
- 14. The Contractor shall furnish all labor, equipment, materials, supplies, facilities, water, power and incidentals as necessary to construct and fully complete the work as shown, as specified and as directed by the Engineer. The Contractor shall be responsible for performing all the work described and shown including items not specifically identified as required to complete the work as to provide a complete SSDS, ready for use.
- 15. The SSDS shall be installed in accordance with the specifications controlling the mechanical, electrical and plumbing contracts.
- 16. Label all accessible components of the SSDS (including but not limited to the abovegrade piping where exposed or concealed above the ceiling) with permanent letter as follows: "COMPONENT OF THE SUB-SLAB DEPRESSURIZATION SYSTEM – DO NOT ALTER OR DISCONNECT".

2.2 QUALITY CONTROL

- 1. Contractor's responsibilities include arranging inspections and obtaining the Engineer's approval prior to concealment of work. At a minimum, inspection of the Owner or it's approved representative of all components of the SSDS shall be required and the Contractor shall be required to obtain approval of all components of the SSDS by the Owner or it's approved representative upon completion of installation. Additional inspections, examination and quality control measure may be required as per manufacturers' recommendation and are the responsibility of the Contractor. The Owner reserves the right to perform additional inspection or quality control tests as deemed necessary by the Owner at any point during the installation process at no additional cost to the Owner.
- 2. Pre-installation Meeting; The Contractor shall arrange for and convene a pre-installation meeting prior to the start of work of this Section to review installation procedures, protection, and coordination with other work. The meeting shall be held on a date that is a minimum of ten business days prior to start of the work of this Section.
- 3. Whenever construction work is in progress or preparation, the Contractor shall permit access and inspection and shall provide proper and necessary facilities to representatives of the Owner, Engineer and regulatory agencies. Contractor shall fully cooperate with all testing performed the Owner or Engineer during construction and shall not make any claims for additional time or payment for cooperating fully.

2.3 PRODUCT REQUIREMENTS

1. All materials and equipment furnished shall be new, in first-class condition, supplied directly from original equipment manufacturers or approved distributers and installed in accordance with manufacturer's recommendations.

2.4 PRODUCT DELIVERY, STORAGE AND HANDLING REQUIREMENTS

Deliver products to the site in manufacturers' original packaging, with labels clearly identifying product and manufacturer.

- 1. Store materials in a clean and dry area in accordance with manufacturers' instructions.
- 2. Protect materials during handling and installation to prevent damage.
- 3. Examine all equipment and materials before installation. Do no install any equipment or material that is found to be defective.

PART 3 INSTALLATION

- 1. Equipment and materials shall be installed in accordance with the requirements herein, as shown on the drawings, in accordance with manufacturers' specifications and recommendations and with applicable building code requirements.
- 2. Contractor shall permanently support all SSDS components in accordance with building code requirements.
- 3. Contractor shall perform all required wiring and electrical work for fully functioning SSDS.

3.1 PROTECTING INSTALLED CONSTRUCTION

1. It is the sole responsibility of the Contractor to ensure that no damage occurs to components of the SSDS prior to, during or following installation of the SSDS. Any damages to the SSDS during performance of the work shall be repaired and tested at no additional cost to the Owner.

3.2 FIELD ENGINEERING

1. Contractor shall be solely responsible for all locations, dimensions and elevations. No

data other than written order of the Engineer shall justify departure from the dimensions and elevations required by the drawings.

2. Contractor shall employ or retain at the location of the work, a field Engineer or superintendence capable of performing engineering tasks required of the Contractor.

3.3 EXISTING CONDITIONS

- 1. Contractor shall become fully acquainted with the conditions as they exist in order that the restrictions attending the work are understood. All areas and dimensions of the drawings shall be verified by the Contractor at the site. Failure of the Contractor to examine the site shall not relieve the Contractor from any obligation.
- 2. All conditions and dimensions shall be verified by the Contractor prior to the start of construction. It is the Contractor's responsibility to report to the Owner, in writing, significant variations or discrepancies from the conditions noted or implied, immediately upon discovery of such conditions and prior to scheduling the work.

3.4 SUB-SLAB SYSTEM

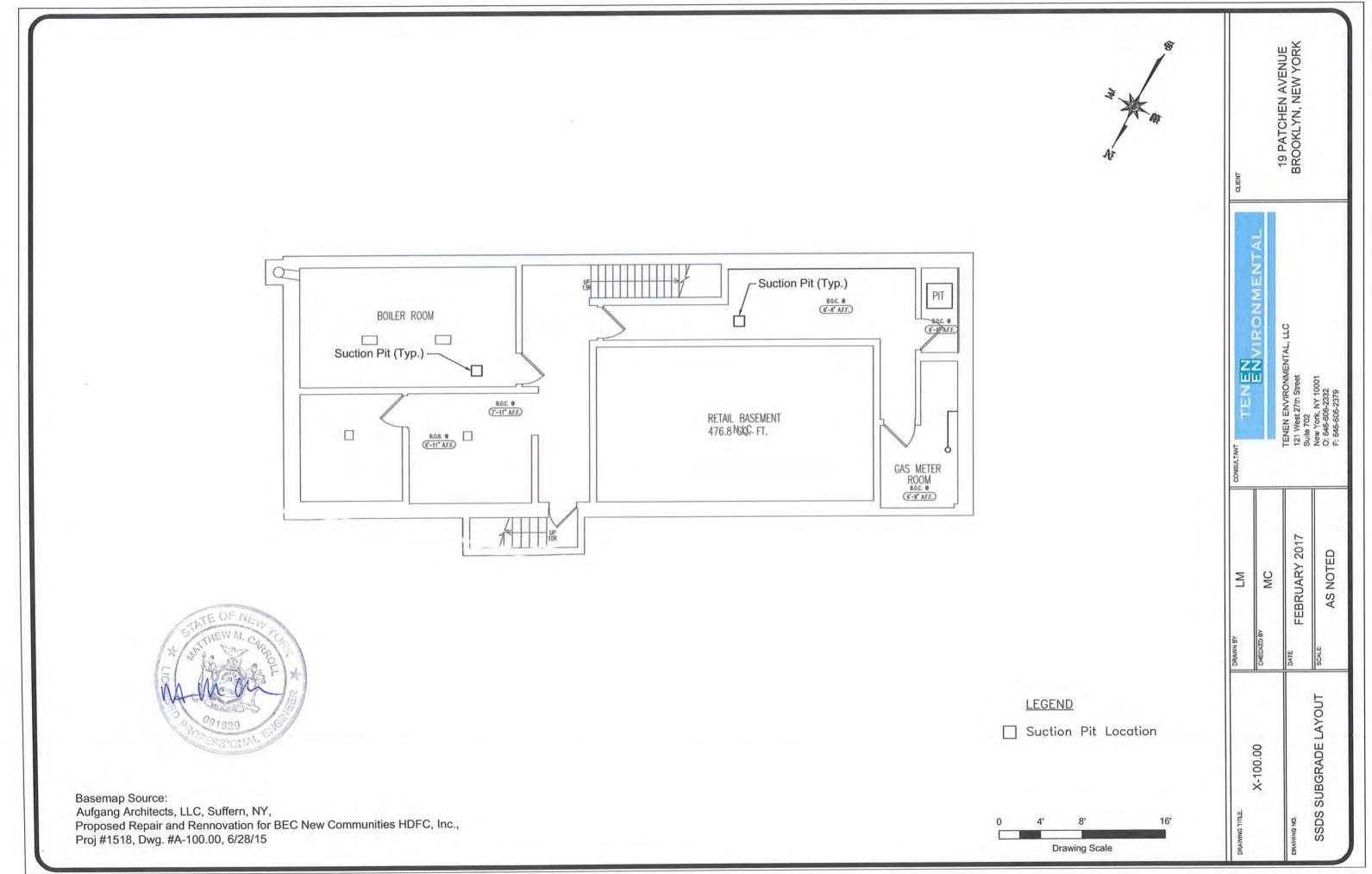
- 1. Install two suction pits as shown on drawing X-100 and X-104.
- 2. Slope all solid horizontal pipes a minimum 2% uniformly toward suction pits, so as to not allow for water pooling in the portions of solid pipe.
- 3. Connect sub-slab piping to a vertical riser extending through the roof.
- 4. Obtain Engineer's approval prior to re-installating the concrete slab at the suction pits and installing the pressure monitoring points.
- 5. Geotextile fabric to be placed on properly compacted and prepared subgrade within the suction pits shall be a non-woven polypropylene type, Mirafi N-series product type 140NL or approved equal having the following properties.

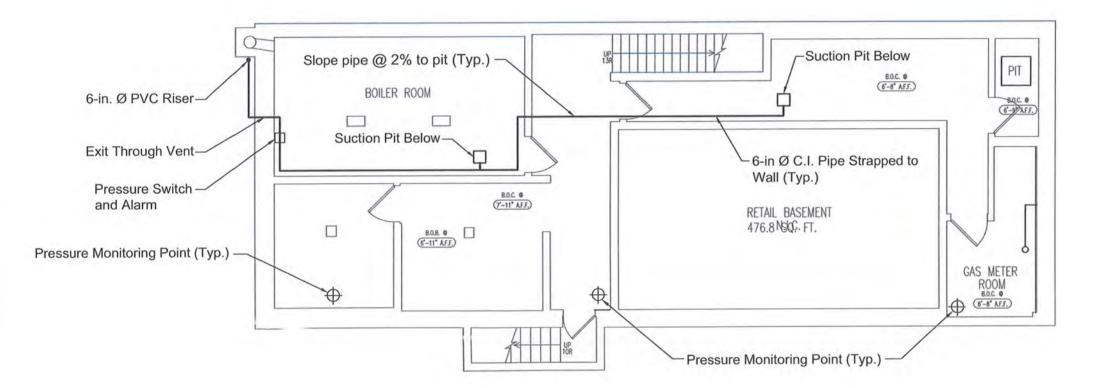
Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
			MD	CD	
Grab Tensile Strength	ASTM D4632	lbs (N)	120 (534)	120 (534)	
Grab Tensile Elongation	ASTM D4632	%	50	50	
Trapezoid Tear Strength	ASTM D4533	lbs (N)	50 (223)	50 (223)	
CBR Puncture Strength	ASTM D6241	lbs (N)	310 (1380)	
Apparent Opening Size (AOS)1	ASTM D4751	U.S. Sieve (mm)	70 (0	.212)	
Permittivity	ASTM D4491	sec-1	1.7		
Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	135 (5500)		
UV Resistance (at 500 hours) ²	ASTM D4355	% strength retained	7	0	

¹ ASTM D4751: AOS is a Maximum Opening Diameter Value ² Modified

- 6. Washed gravel layer shall be ³/₄-inch washed stone with 100% passing the 2-inch sieve and 0% passing the ³/₄-inch sieve, by weight. Gravel layer to be placed on the geotextile fabric.
- 7. Consult with Engineer for blower test prior to construction of vertical riser outside of building.
- 8. Locations of monitoring points may be changed upon approval from Engineer.
- 9. Monitoring points shall be installed through the floor slab as shown on Drawing X-103.
- 10. Monitoring points shall consist of the sub-slab vapor probe kit manufactured by AMS product #52954 or approved equal. The monitoring points shall be installed through the cellar slab. Penetrations through floor slab for monitoring points shall be air-tight and completed monitoring points shall be air-tight, preventing the potential for migration of gas from the sub-slab into the building.
- 11. The screen and/or opening of the sub-slab monitoring points shall be installed within

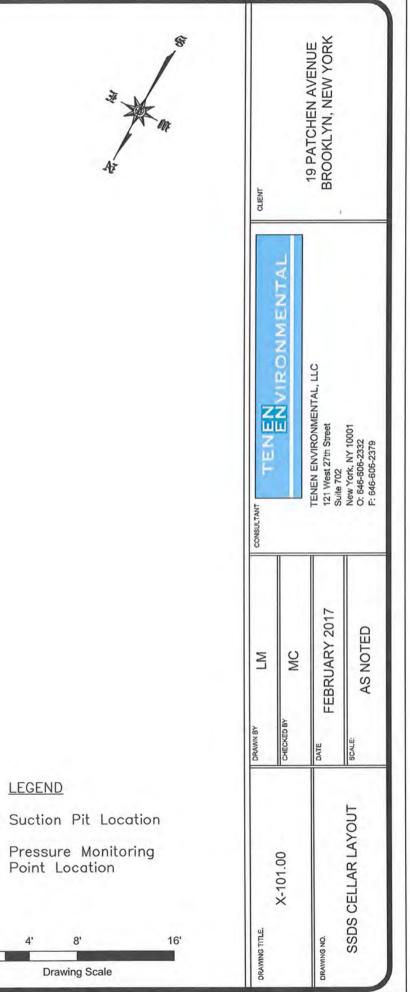
two inches of the bottom of the slab.

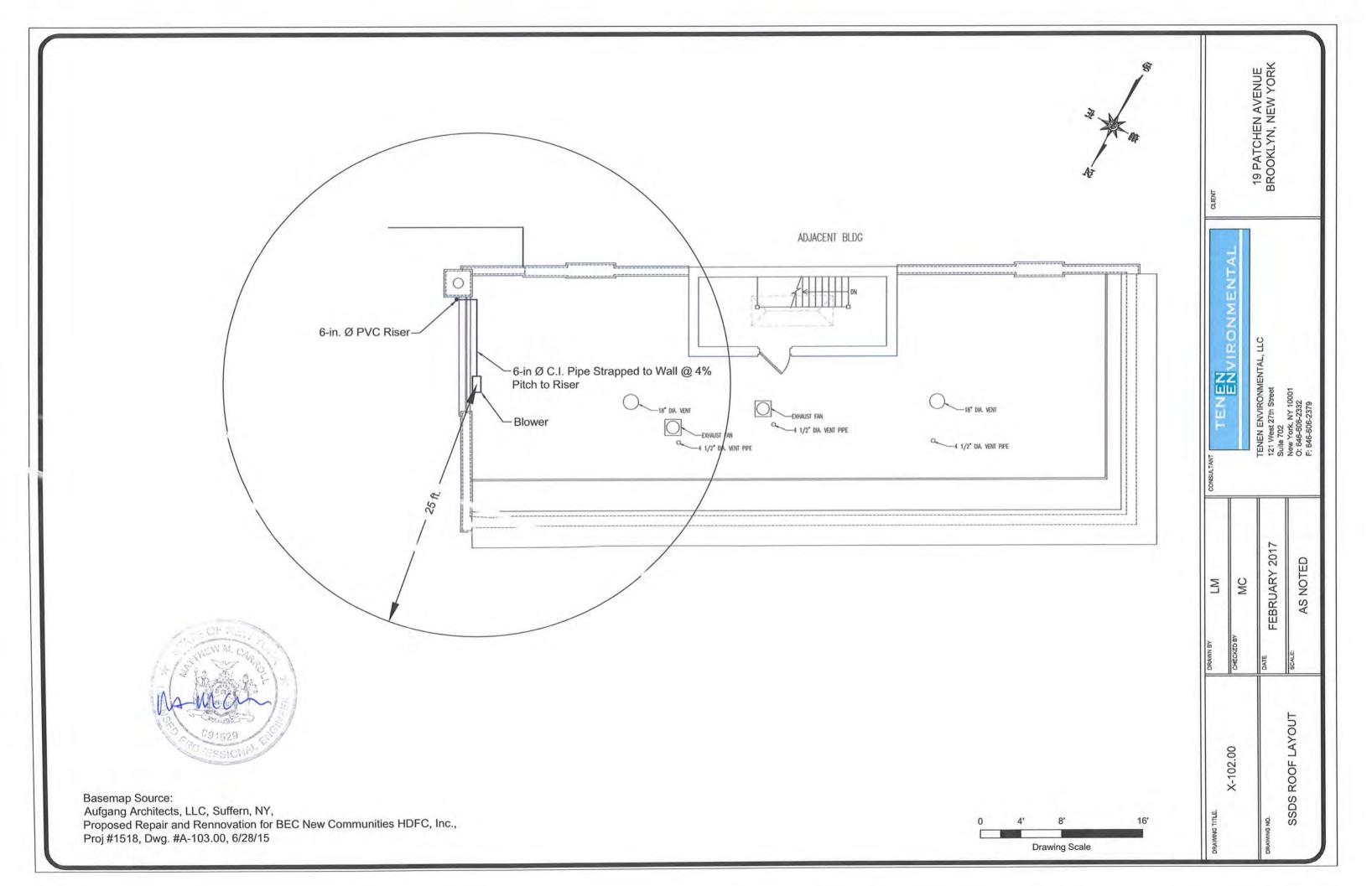

3.5 ABOVE-GROUND SYSTEM

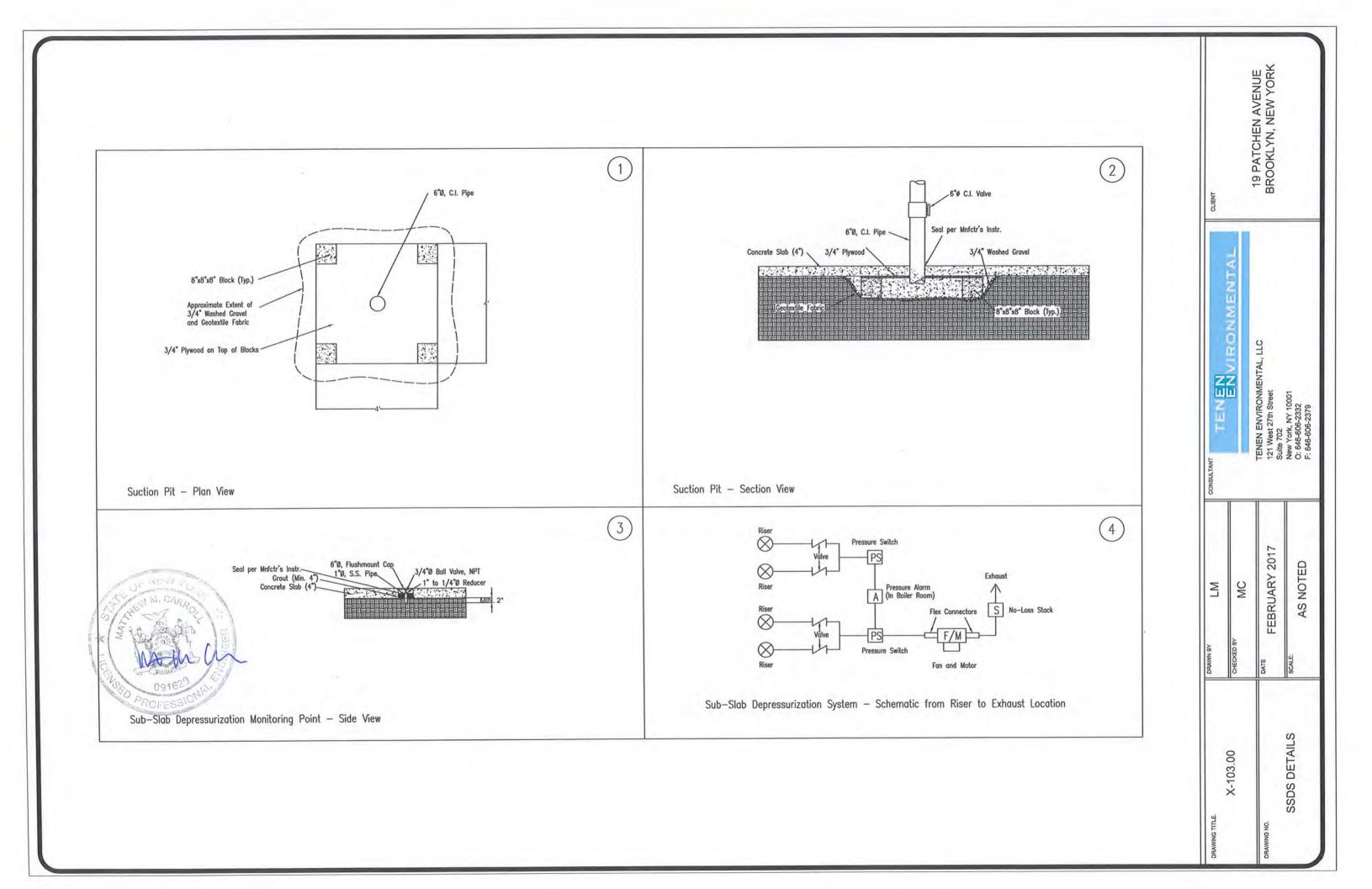

- 1. Slope all horizontal above-ground pipes a minimum 1% uniformly to vertical riser.
- 2. Connect vertical riser to exterior suction fan on roof.
- 3. Continuous tape labeling on riser pipe beginning at the floor slab elevation, within each floor level and continuing to the installation of the suction fan above roof penetration shall be permanently installed on riser, shall indicate flow direction and shall read "CAUTION: DO NOT TAP OR PUNCTURE. SUBSURFACE VAPOR VENT PIPE. NOT FOR DOMESTIC USE."
- 4. Furnish, install test and place pressure gauge and switch, valves and suction fan in service in accordance with manufacturers' recommendations and accessories as required for a complete and fully functional installation.
- 5. The pressure monitor and switch and suction fan shall be as directed by Engineer subsequent to blower test. Items specified below are typical and should not be furnished without written approval by Engineer.
- 6. The pressure monitor shall be a Wika pressure indicator, model 612.20 Part 9747724 or approved equivalent.
- 7. The pressure switch shall be an Ashcroft pressure switch, watertight enclosure, product model B4-24-B-000-NEG50"H20 or approved equal.
- 8. The pressure switch shall activate a local alarm at low pressure. The Engineer shall establish set point in the field.
- 9. The suction fan shall be a Plastec direct-drive suction fan product model PLA 20 X52P or approved equivalent with Weather Hood Enclosed Pedestal (PLA WH3). The discharge position shall be CCW90.
- 10. Valves shall be 6-inch diameter cast iron butterfly valves with hand levers as manufactured by Saunders, Xomox, Crane or approved equivalent.
- 11. Provide local power disconnect switch near suction fan as required by code.
- 12. Power requirements for motor are: 115/208-230 volt.
- 13. A flexible connector shall be installed on the suction fan inlet. A transition type flexible outlet connector shall be furnished and installed on the suction fan outlet.
- 14. Exhaust discharge shall by a minimum 2-feet above the roof.
- 15. Exhaust discharge point shall be at least 25-feet from any building operable openings, air intakes, supply registers or adjoining or adjacent buildings. Exhaust pipe shall terminate in a vertical position above the roof.
- 16. Remote alarm shall be the building security system. The alarm panel shall include warning lights, audible alarm and an appropriate enclosure. The remote alarm shall be configured such that if the pressure falls below the set point, the remote alarm will be activated.
- 17. Remote visual alarm shall be labeled as follows: "Sub-slab gas venting system alarm. Fan malfunction if lit. Service immediately."

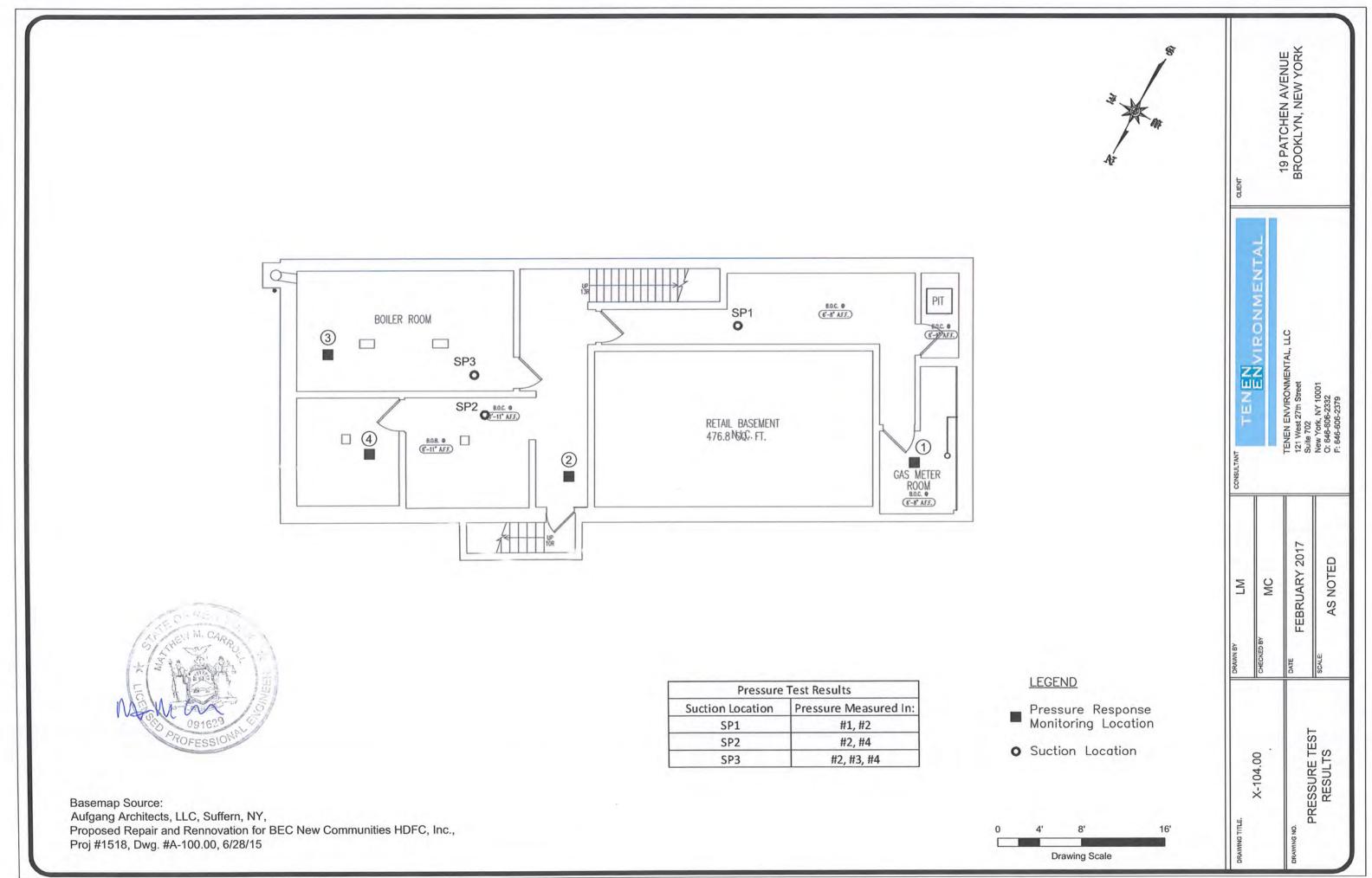
3.7 CLOSE-OUT PROCEDURES

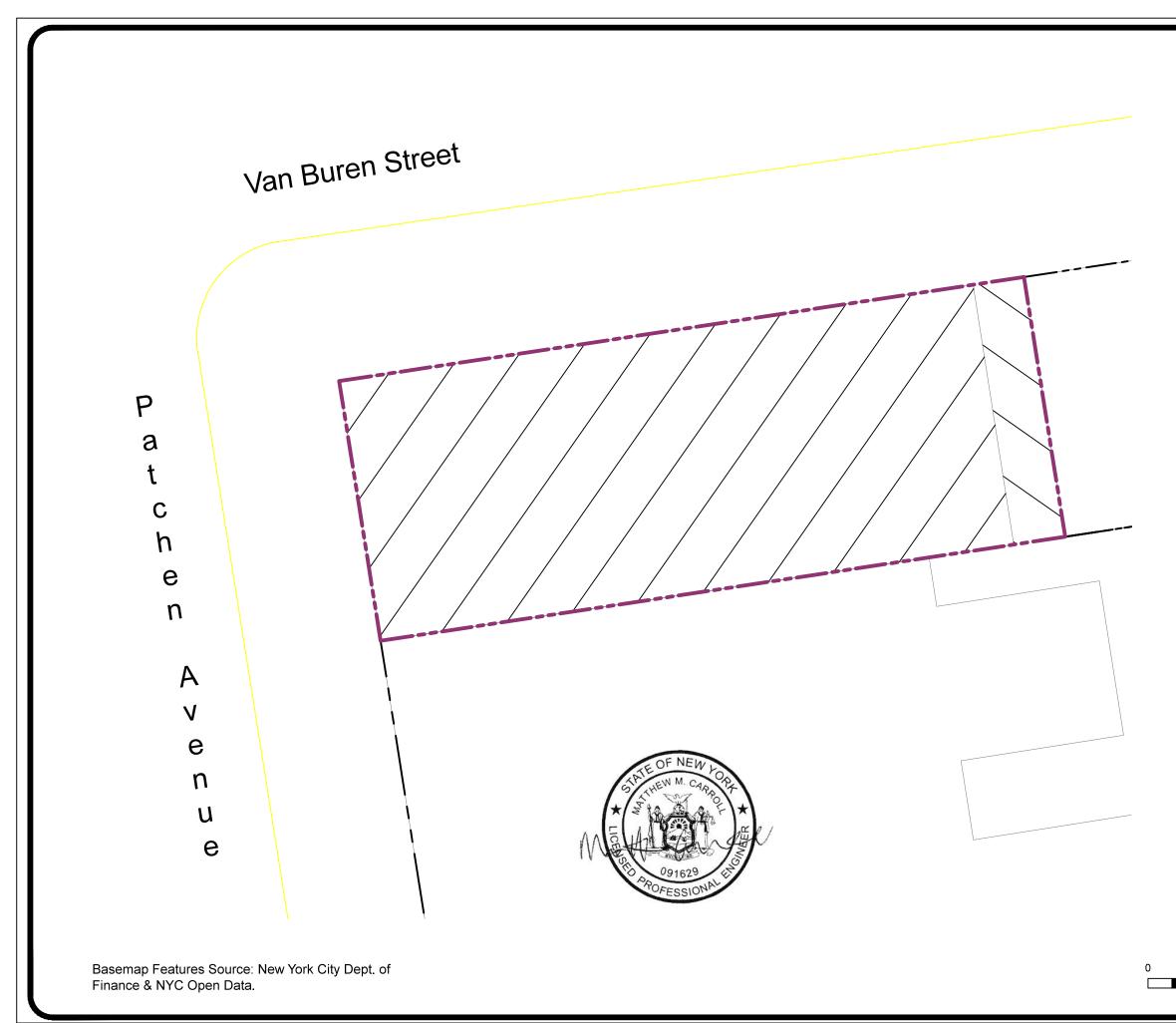
- 1. Contractor shall thoroughly clean all materials, equipment and structures; all marred surfaces shall be touched up to match adjacent surfaces; remove labels, tags, packing materials and other foreign items or substances from interior and exterior surfaces, equipment, signs and lettering.
- 2. At the time of substantial completion, an inspection shall be held with the Owner and Engineer. At this time, the Contractor shall also provide any manufacturers' Owner's manuals and warranties.
- 3. Legally transport and dispose of off-site all generated waste.


END OF SECTION

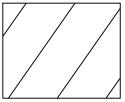


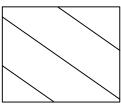

Basemap Source: Aufgang Architects, LLC, Suffern, NY, Proposed Repair and Rennovation for BEC New Communities HDFC, Inc., Proj #1518, Dwg. #A-100.00, 6/28/15

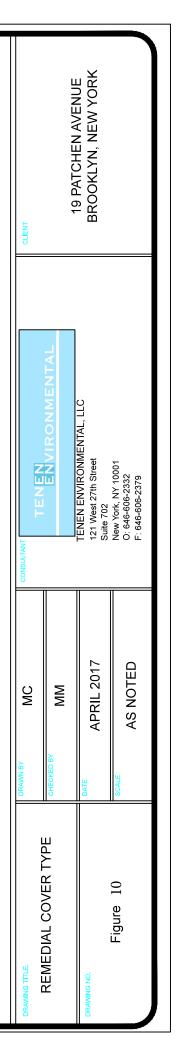


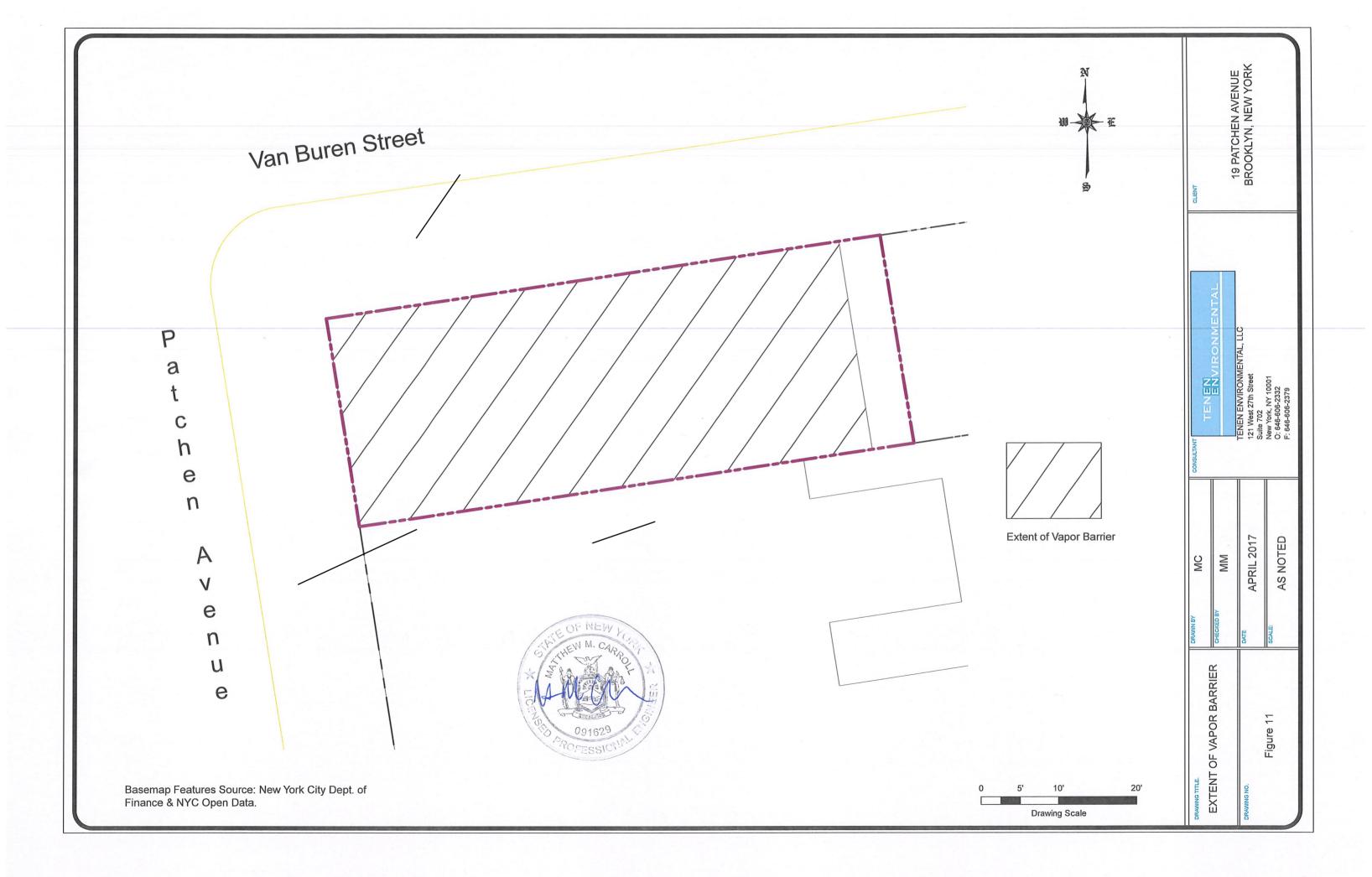

Ф

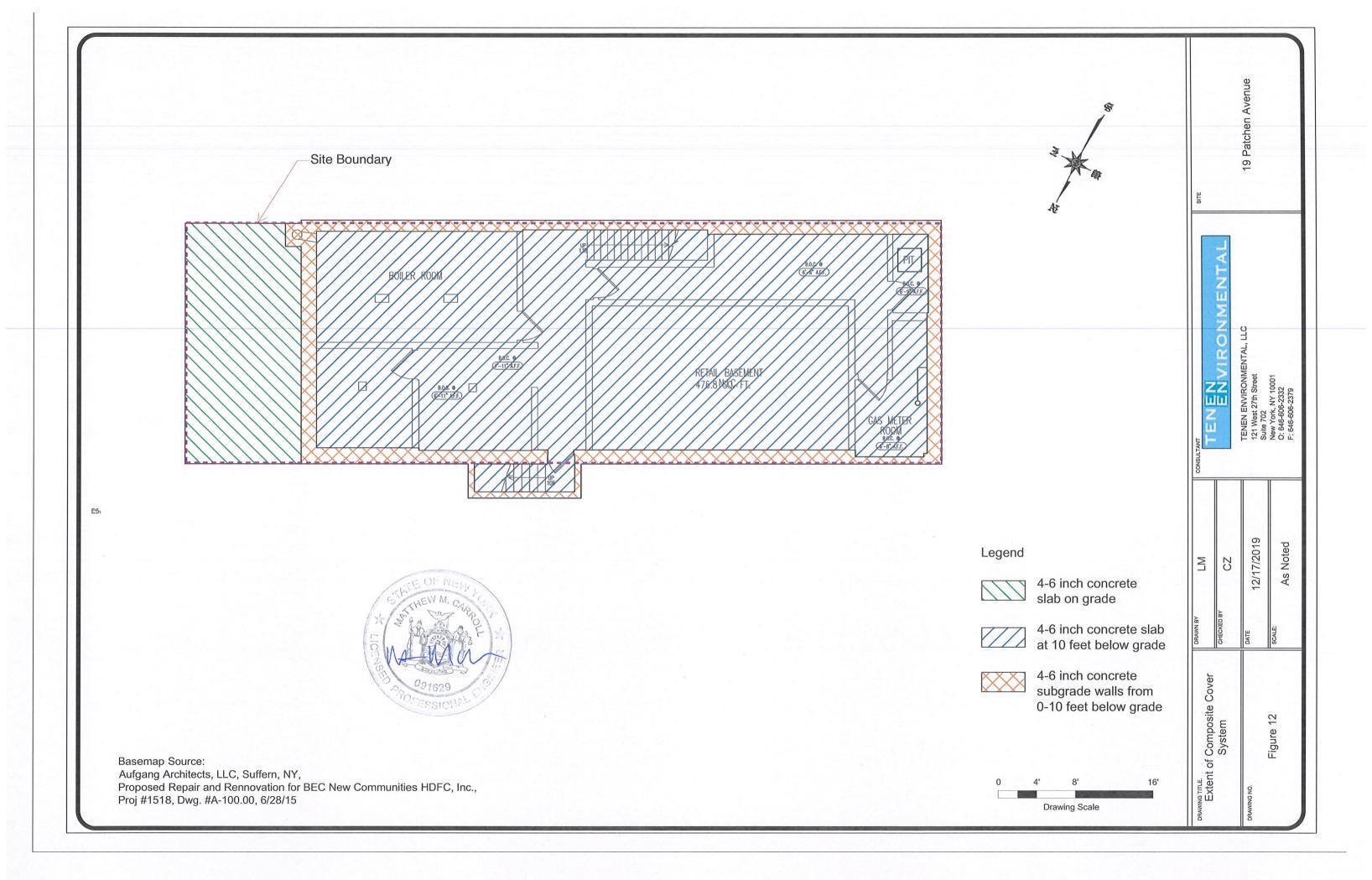
0






Extent of Existing Concrete Basement Slab




Extent of Existing Concrete Paving

Drawing Scale

REMOVE SPECIFIC AIRBORNE CHEMICALS INCLUDING VOLATILE ORGANIC COMPOUNDS

> THE AIRPURA C600 Available in White / Black / Cream

THE AIRPURA LIMITED WARRANTY 5 years parts / 10 years labor

THE AIRPURA C600-DLX CHEMICAL ABATEMENT UNIT OFFERS YOU:

- 26 LB ENHANCED IMPREGNATED ACTIVATED CARBON BED Adsorbs airborne chemicals including volatile organic compounds (VOCs)
- HEPA-BARRIER POST FILTER Traps particles after the carbon bed.
- > 560 CFM INTEGRATED FAN / MOTOR Largest CFM available in a portable unit.
- VARIABLE SPEED MOTOR Gives you flexible air flow options.
- PROPER CONTACT TIMES FOR EFFECTIVE FILTRATION Correctly calibrated air flow / bed depth for efficient adsorbtion.
- **PRESSURE SEALED FILTER CHAMBER** Unique pressure seal on the filter chamber ensures all contaminants are filtered and non escape.
- **CALL OUR AIR QUALITY EXPERTS** For the solution to your air pollution problem.

OVER 4000 CHEMICALS CAN BE REMOVED

Carbon blends are available to deal with over 4000 airborne chemicals including:

- Ammonias Nitrous dioxide Nitrous trioxide Monoethylamine CHydrogen Sulfide Mercury vapors Chlorine dioxide
- Hydrogen Bromide Sulfur dioxide Hydrogen fluoride Hydrogen chloride Benzene Methylene Chloride Radioactive Iodine
- Toulene Napthene Pesticides Chlorine Mold Mycotoxins

FILTER LIFE

Carbon filters should be changed as needed in heavy applications and at least every 24 months in normal use. Airpura carbon canisters are refillable to save costs.

Hepa filters should be changed every 12 months

Pre-filters can be vacuumed from the exterior of the unit and should be changed every 12 months depending on use the exterior of the unit and should be changed every 12 months depending on use.

PROTECT YOURSELF WITH AIRPURA HIGH EFFICIENCY AIR PURIFICATION

FILTRATION SYSTEM

Cleanable pre-filter Vacuum through grill and change every 12 months

26 lb Enhanced Impregnated Carbon filter Enhanced carbon to capture VOCs more efficiently

HEPA-Barrier post filter •--Traps carbon dust and particles

UNIQUE FEATURES

• ALL METAL HOUSING ensures no plastic vapors are emitted.

.....

 MOTOR OUT OF THE AIR FLOW. Most air purifiers blow the clean air over the motor and pick up impurities.

R

- ELECTRICAL PARTS IN A SEALED CHAMBER out of the airflow. Increases safety and prevents off-gassing.
- **PRESSURE SEALED FILTER CHAMBER** prevents leakage of polluted air around filters.
- FELT GASKETS SEAL THE FILTER CHAMBER. Maximize filtration with no rubber off-gassing found with other filters.
- CLEAN MODERN APPEARANCE fits in any decor.
- LOW NOISE LEVEL (at 6 feet) 28.1db on low 62.3db on high (560 cfm).

SPECIALLY DESIGNED TO REMOVE SPECIFIC AIRBORNE CHEMICALS AND VOCS

DWELL TIME

For best results the correct dwell time of the pollutants over the carbon bed is vital. The 560 CFM impeller/motor combined with the variable speed control and unimpeded airflow of the Airpura 600 series allows you to set the airflow precisely and achieve the results you need.

EXPERTISE YOU CAN CALL ON

Airpura air quality experts can offer you a solution to most airborne chemical problems. Contact your Airpura dealer or call us directly to discuss your needs.

TECHNICAL SPECIFICATIONS

ODOR, AIRBORNE CHEMICAL AND VOC CONTROL

26 lbs super enhanced impregnated activated carbon 13" x 13" x 7.5"

CARBON BED 3" deep x 570 sq" surface

AIR FLOW 560 CFM More cfm than any other portable unit available

PRE-FILTER 570 sq in x 1 in

POST PARTICLE FILTER 306 sq in

SIZE 23" x 15**"**

WEIGHT 49 lbs total

VOLTAGE OPTIONS 115 or 220 volts

WATTS 120 on high / 40 on low

SOUND LEVEL 28.1 db on low (at 6 feet) 62.3 db on high (560 cfm) (Room level 25.1 db)

ETL CERTIFIED Conforms to CSA C22.2 no 113 ANSI / UL 507

YOUR AIRPURA™ DEALER

SAFE EFFECTIVE AIR FILTRATION FOR YOUR BETTER HEALTH

PRODUCT **DATA SHEET**

Retro-Coat[™] SEALER

Product Description

Retro-Coat SEALER is a two part, solvent-free clear epoxy sealer. It has no odor during application and no toxic byproducts. It is normally applied anywhere up to 20 mils (80 SF/gal) in a single coat. Used as a top coat for the Retro-Coat system, Retro-Coat SEALER has enhanced flexibility with a 9% tensile elongation for improved mechanical impact and thermal shock resistance. It dries to a high gloss, water white finish.

Typical Application

Retro-Coat SEALER is recommended to be used as a top clear coat when using a decorative finish in combination with the Retro-Coat system. When applied over a decorative flake or quartz system, Retro-COAT SEALER is an ideal clear coat because of its lack of solvents and no odor. Retro-Coat SEALER is also an ideal topcoat for the standard Retro-Coat system as it will provide a sacrificial wearing surface that will increase the system's ability to withstand and mask, scuffing, tire marks, and superficial scratches.

Chemical Resistance

Retro-Coat™ SEALER is a modified acrylic epoxy and therefore has slightly different chemical resistance properties than Retro-Coat. If the chemical resistance of the top coat is very important it is advised to not use Retro-Coat SEALER as a protective top coat or sacrificial layer, instead us the standard Retro-Coat system.

Physical Properties

Tensile Strength	(ASTM D-638)	: 1560 psi	Bond Strength to Quarry Tile	: >1000 psi
Tensile Elongation	(D-638)	: 9%	Vapor Transmission Rate (E-96)	: .03 perms
Flexural Strength	(D-790)	: 7035 psi	Water Absorption (D-570)	: 0.2% in 24hrs.
Hardness, Shore D	(D-2240)	: 80	Taber Abrasion (D-1044)	: 105 mg loss.
			60° Gloss	: 95

Physical Characteristics

Density, Ibs/gal.	Mixing Ratios	Ву	/ Volume	By Weight
Pt. A : 9.5	Pt. A : Pt. B	1.7	75:1	1.94:1
Pt. B : 8.6				
A&B Mixed : 9.2	Curing Times @	50° F	77°F	90°F
Viscosity @ 77°F, cps	Pot Life	65 min.	55 min.	25 min.
Pt. A : 700	Working Times	55 min.	40 min.	20 min.
Pt. B : 400	Hard, Foot Traffic	70 hrs.	30 hrs.	20 hrs.
A&B Mixed : 600	Maximum hardness and o	chemical resis	stance are achi	eved after 7 days at 77°F

4 Gallon Kit

20 Gallon Kit

100 Gallon Kit

Color Availability

Packaging and Coverage Rates (for 10 mil coverage)

÷

2

•

Standard color is clear and not pigmented.

640 SF

3200 SF

16,000 SF

Shelf Life: 1 Year at 60-80°F in unopened containers.

Installation

Particular care must be taken to follow those instructions precisely to assure proper installation. These instructions pertain to a standard 20 mil application; please contact us if the desired application is different.

- 1. No primer is necessary, as **Retro-Coat SEALER** is self priming and meant to be applied directly over Retro-Coat. Allow to dry tack free.
- 2. Retro-Coat SEALER can be applied by a roller or notched rubber squeegee. Recommended coverage is 160 SF per gallon per coat.
- Apply the mixed material with a short nap roller, a squeegee or a brush. Apply approximately 160 SF per gallon per coat to achieve a finished thickness of about 10 mils depending on the substrate. For application thickness greater than 15 mils, use of a spiked roller is recommended to help eliminate air bubbles.
- 4. Multiple coats can usually be applied as soon as the first coat is tack free. If the base coast is allowed to dry hard, (for truck traffic), it must be sanded prior to application of the second coat.
- 5. A suitable aggregate may be broadcast onto the surface after backrolling to provide more anti-slip profile to the finished surface. It is advisable to test various types and sizes of aggregate to achieve the desired finished profile.

Note: Failure to follow the above instruction, unless expressly authorized by a Land Science Technologies Representative, will void our material warranty.

Precautions

- 1. Do not apply more than 20 mils (80SF/gallon) per coat, as clarity is diminished.
- 2. Recoat window without sanding at 70°F: 40 hours

Product Specification

The specified area shall receive an application of **Retro-Coat SEALER** as manufactured by **Land Science Technologies**, **San Clemente**, **California**. The system shall be installed by precisely following the manufacturer's published recommendations pertaining to surface preparation, mixing, and application. The material shall be a low odor, solvent-free, 100% solids, high gloss flexibilized epoxy system with good resilience to resist thermal and mechanical shock. The system must adhere to damp as well as dry concrete, wood, metal, tile, terrazzo, and sound existing epoxy and urethane coatings. It shall have an elongation of 9% in the unfilled form, when tested using ASTM D-638. The maximum film hardness shall be a Shore D of 80. The system shall be unaffected by oils, greases, and resist such chemicals as 36% hydrochloric acid, 10% nitric acid, 30% phosphoric and 50% sodium hydroxide.

The data, statements and recommendations set forth in this product information sheet are based on testing, research and other development work which has been carefully conducted by us, and we believe such data, statements and recommendations will serve as reliable guidelines. However, this product is subject to numerable uses under varying conditions over which we have no control, and accordingly, we do NOT warrant that this product is suitable for any particular use. Users are advised to test the product in advance to make certain it is suitable for their particular production conditions and particular use or uses.

WARRANTY - All products manufactured by us are warranted to be first class material and free from defects in material and workmanship.

Liability under this warranty is limited to the net purchase price of any such products proven defective or, at our option, to the repair or replacement of said products upon their return to us transportation prepaid. All claims hereunder on defective products must be made in writing within 30 days after the receipt of such products in your plant and prior to further processing or combining with other materials and products. WE MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE SUITABILITY OF ANY OF OUR PRODUCTS FOR ANY PARTICULAR USE, AND WE SHALL NOT BE SUBJECT TO LIABILITY FROM ANY DAMAGES RESULTING FROM THEIR USE IN OPERATIONS NOT UNDER OUR DIRECT CONTROL.

THIS WARRANTY IS EXCLUSIVE OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, AND NO REPRESENTATIVE OF OURS OR ANY OTHER PERSON IS AUTHORIZED TO ASSUME FOR US ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF OUR PRODUCTS.

PRODUCT DATA SHEET

Retro-Coat™ PRIMER

Product Description

Retro-Coat™ PRIMER is a low viscosity, two part, 100% solids epoxy primer. It is virtually odorless and non-toxic. **Retro-Coat PRIMER** has excellent damp, as well as dry adhesion to concrete, masonry surfaces, wood and gyp board. With a very low viscosity of 250 centipoise, it readily penetrates porous substrates to provide an excellent mechanical bond. Where faster curing times are required, specify **Retro-Coat PRIMER**⁻FC.

Typical Application

Applied to a 6 mil thickness, **Retro-Coat PRIMER** provides an ideal substrate for **Retro-Coat**, but may not be required when top coating thickness is greater than 20 mil or a specific aesthetic look is desired. Prior to the application of **Retro-Coat**, **Retro-Coat PRIMER** should be allowed to dry tack free to maximize its effectiveness.

In areas where concrete is spalled or needs to be leveled **Geo-Seal PRIMER-S** is more appropriate.

Installation

Please refer to our Application Specs for detailed instructions. Particular care must be taken to follow those instructions precisely to assure proper installation.

- 1. New concrete should be allowed to cure a minimum of 28 days and/or be checked with a rubber mat or plastic sheet to insure adequate curing time has occurred. If this is not possible, contact Land Science Technologies for further information.
- 2. All surfaces to be covered should be power washed, shot blasted, acid etched, scarified or sanded to present a clean, sound substrate to which to bond to. The prepared surface should have a ph of 7.
- 3. Part A and B should be mixed in the prescribed ratio, using a low speed jiffy-style mixer (maximum 750 rpm), for at least 60 seconds.
- 4. Retro-Coat PRIMER is a 100% solids epoxy and no solvents are necessary.
- 5. Apply the mixed material with a fine nap adhesive roller, squeegee or brush. Apply at approximately 200-250 SF per gallon, depending on surface porosity.
- 6. Allow to dry prior to the application of **Retro-Coat**.

Note: Failure to follow the above instruction, unless expressly authorized by a Land Science Technologies Representative, will void our material warranty.

Precautions

- 1. Retro-Coat Primer-FC is very fast reacting; pour out of bucket immediately after mixing and spread with squeegee.
- 2. Only Retro-Coat Primer-FC can be applied below 50°F.
- 3. Recoat windows at 70°: Retro-Coat Primer 18 hours; Retro-Coat Primer-FC 10 hours for expanding recoat window, broadcast in aggregate into primer.
- 4. Never apply Retro-Coat Primer or Retro-Coat Primer-FC more than 15 mils (100SF/gallon) per pass as it will not cure hard in greater thicknesses.

Product Specification

The specified area shall receive an application of **Retro-Coat PRIMER** as manufactured by **Land Science Technologies**, **San Clemente, California.** The system shall be installed by precisely following the manufacturers published recommendations pertaining to surface preparation, mixing, and application. The material shall be a low odor, solvent free, 100% solids epoxy primer with excellent adhesion to damp as well as dry concrete, metal and wood. It should be able to adhere to brick and tile, exceeding1000 psi on an Elcometer pull test.

Physical Characteristics

Density, Ibs/gal. Retro-Coat Primer	Pt. A 9.5	Pt. B 8.0	A&B Mixed 9.2	Mixing Ratios	(Part A:Part B) By Volume	e By Weight
Retro-Coat Primer-FC	9.5	8.2	9.3	Retro-Coat PR	IMER 3.5:1	4.1:1
Viscosity@77°F, cps	Pt. A	Pt. B	A&B Mixed	Retro-Coat PR	IMER-FC 4.6:1	5.4:1
Retro-Coat Primer	476	60	250			
Retro-Coat Primer-FC	476	60	250			
Curing Times@			40°F	50°F	77°F	90°F
Retro-Coat Primer	Pot Life	Э		35 min.	25 min.	15 min.
	Tack F	ree		40 hrs.	10 hrs.	5 hrs.
	Set Ha	rd		72 hrs.	18 hrs.	9 hrs.
Retro-Coat Primer-FC	Pot Life	е		10 min.	9 min.	9 min.
	Tack F	ree		18 hrs.	5 hrs.	2 hrs.
	Set Ha	rd		30 hrs.	9 hrs.	4 hrs.

Packaging and Coverage Rates

	Retro-Coat Primer & Retro-Coat Primer-FC	
4 Gallon Kit:	1000 SF	
20 Gallon Kit :	5000 SF	
100 Gallon Drum Kit :	25,000 SF	

The data, statements and recommendations set forth in this product information sheet are based on testing, research and other development work which has been carefully conducted by Land Science Technologies, and we believe such data, statements and recommendations will serve as reliable guidelines. However, this product is subject to numerable uses under varying conditions over which we have no control, and accordingly, we do NOT warrant that this product is suitable for any particular use. Users are advised to test the product in advance to make certain it is suitable for their particular production conditions and particular use.

WARRANTY - All products manufactured by us are warranted to be first class material and free from defects in material and workmanship.

Liability under this warranty is limited to the net purchase price of any such products proven defective or, at our option, to the repair or replacement of said products upon their return to us transportation prepaid. All claims hereunder on defective products must be made in writing within 30 days after the receipt of such products in your plant and prior to further processing or combining with other materials and products. WE MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE SUITABILITY OF ANY OF OUR PRODUCTS FOR ANY PARTICULAR USE, AND WE SHALL NOT BE SUBJECT TO LIABILITY FROM ANY DAMAGES RESULTING FROM THEIR USE IN OPERATIONS NOT UNDER OUR DIRECT CONTROL.

THIS WARRANTY IS EXCLUSIVE OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, AND NO REPRESENTATIVE OF OURS OR ANY OTHER PERSON IS AUTHORIZED TO ASSUME FOR US ANY OTHER LIABILITY IN CONNECTION WITH THE SALE OF OUR PRODUCTS.

APPENDIX J – Emerging Contaminants Sampling

121 West 27th Street, Suite 702 New York, NY 10001 (646) 606-2332

May 23, 2019

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau A 625 Broadway, 12th Floor Albany, NY 12233-7014

Attn: Matthew Mashhadi, Project Manager

Re: Emerging Contaminant Sampling – September 2018 19 Patchen Avenue – Brooklyn, NY Block 1618, Lot 8 BCP Site #C224232

Dear Justin:

Tenen Environmental, LLC (Tenen) has prepared this summary of emerging contaminants groundwater results for the 19 Patchen Avenue Site in Brooklyn, NY. These samples were collected on September 21, 2018.

Background

On behalf of the Volunteer, Tenen has collected groundwater samples to investigate emerging contaminants in groundwater at the Site. The samples were collected in response to a request from the Department.

Summary of Emerging Contaminants Sampling

Samples were collected from existing monitoring wells MW-1 though MW-6 and deep monitoring well MW-1D. Samples were collected using low-flow techniques in accordance with EPA Region 1 Low-Stress (Low-Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. (EQASOP-GW 001 Revision 3 dated July 30, 1996 Revised: January 19, 2010). Samples were collected in accordance with the Quality Assurance Project Plan (QAPP) and the New York State Department of Environmental Conservation (NYSDEC) July 2018 Groundwater Sampling for Emerging Contaminants guidance document. One duplicate and one field blank were collected.

All groundwater samples were analyzed for 1,4-dioxane and perfluoroalkyl acids (PFAAs). Samples were analyzed by EPA Methods 537 and 8270D SIM.

Sample Analysis

The samples were sent under chain-of-custody documentation to Alpha Analytical, Inc. (Alpha). Alpha is certified by the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) as LABIDs 11148 and 11627. All groundwater samples were analyzed for 1,4-dioxane and PFAAs.

Sample Results

A summary of the results is included as Table 1 and the laboratory deliverables are included in Attachment 1. The method detection limit (MDL) was less than 2 nanograms per liter (ng/L) for PFAAs.

All PFAA compounds were compared to the EPA Drinking Water Health Advisory level of 70 ng/L and 1,4-Dioxane was compared to the EPA Cancer Reference Concentration of 35 ng/L.

All concentrations of PFAA compounds were below 70 ng/L. All concentrations of 1,4-Dioxane were below the EPA Cancer Reference Concentration.

Sincerely, Tenen Environmental, LLC

Matthew M. Carroll, PE Principal / Environmental Engineer

Table Attachment 1: Laboratory Deliverables 19 Patchen Avenue - Brooklyn, NY Emerging Contaminants Results

Tables

Table 1 - Emerging Contaminant Sampling Results19 Patchen Avenue - Brooklyn, NY

SAMPLE ID:			MW-1-I	D	MW-1		MW-2		MW-4		MW-4 D	UP	MW-5		MW-6		MW-3		FIELD BLA	NK
LAB ID:	EPA-	EPA-10-6 Cancer	L1837978	-01	L1837978	-02	L1837978	-03	L1837978	-04	L1837978	-05	L1837978	-06	L1837978	-07	L1837978	-08	L1837978-0	09
COLLECTION DATE:	DWHS	Reference	9/21/201	8	9/21/201	8	9/21/201	8	9/21/201	8	9/21/201	8	9/21/201	8	9/21/201	8	9/21/201	8	9/21/2018	3
1,4 DIOXANE BY 8270D-SIM	Dwns	Concentration	Como		Como	0	Como													
Units: ug/l		Concentration	Conc	Q	Conc	Q														
1,4-Dioxane		0.35	0.0735	U	0.0708	U	0.0735	U	0.0765	U	0.0735	U	0.0735	U	0.075	U	0.0694	U	-	-
PERFLUORINATED ALKYL ACIDS BY ISOTOPE DILUTION	ON																			
Perfluorobutanoic Acid (PFBA)	0.07		0.00567		0.00613		0.00776		0.00524		0.00464		0.00602		0.00863		0.00383		0.000127	U
Perfluoropentanoic Acid (PFPeA)	0.07		0.0102		0.0127		0.0242		0.00759		0.00696		0.00623		0.015		0.00652		0.000083	U
Perfluorobutanesulfonic Acid (PFBS)	0.07		0.00342		0.00333		0.00344		0.00261		0.00229		0.0035		0.00304		0.00142	J	0.000106	U
Perfluorohexanoic Acid (PFHxA)	0.07		0.0104		0.00957		0.016		0.00672		0.00655		0.00577		0.0125		0.00465		0.000122	U
Perfluoroheptanoic Acid (PFHpA)	0.07		0.0106		0.00763		0.0153		0.00548		0.00456		0.00653		0.012		0.00222		0.000089	U
Perfluorohexanesulfonic Acid (PFHxS)	0.07		0.00671		0.00433		0.00596		0.00225		0.00252		0.00312		0.00451		0.00097	J	0.000104	U
Perfluorooctanoic Acid (PFOA)	0.07		0.0457		0.0396		0.0804		0.041		0.039		0.061		0.0575		0.00762		0.000049	U
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	0.07		0.0191		0.00018	U	0.000176	U	0.0103		0.012		0.00515		0.0066		0.00018	U	0.000187	U
Perfluoroheptanesulfonic Acid (PFHpS)	0.07		0.000144	U	0.000144	U	0.000141	U	0.000145	U	0.000476	J	0.000145	U	0.00014	U	0.000144	U	0.00015	U
Perfluorononanoic Acid (PFNA)	0.07		0.000093	U	0.00162	J	0.00144	J	0.000739	J	0.000816	J	0.000094	U	0.000848	J	0.00222		0.000097	U
Perfluorooctanesulfonic Acid (PFOS)	0.07		0.00455		0.0225		0.0418		0.0154		0.0151		0.011		0.0302		0.0171		0.00134	J
Perfluorodecanoic Acid (PFDA)	0.07		0.000176	U	0.000176	U	0.000173	U	0.000178	U	0.000178	U	0.000178	U	0.000172	U	0.000177	U	0.000184	U
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	0.07		0.000269	U	0.000269	U	0.000264	U	0.000271	U	0.000272	U	0.000272	U	0.000263	U	0.00027	U	0.000281	U
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	0.07		0.000232	U	0.000232	U	0.000228	U	0.00138	J	0.000234	U	0.000234	U	0.000227	U	0.000233	U	0.000242	U
Perfluoroundecanoic Acid (PFUnA)	0.07		0.000177	U	0.000177	U	0.000174	U	0.000178	U	0.000179	U	0.000179	U	0.000173	U	0.000178	U	0.000184	U
Perfluorodecanesulfonic Acid (PFDS)	0.07		0.000206	U	0.000206	U	0.000202	U	0.000207	U	0.000208	U	0.000208	U	0.000201	U	0.000207	U	0.000215	U
Perfluorooctanesulfonamide (FOSA)	0.07		0.00021	U	0.00021	U	0.000206	U	0.000212	U	0.000212	U	0.000212	U	0.000205	U	0.000211	U	0.000219	U
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	0.07		0.000345	U	0.000345	U	0.000339	U	0.000348	U	0.000349	U	0.000349	U	0.000338	U	0.000346	U	0.00036	U
Perfluorododecanoic Acid (PFDoA)	0.07		0.000085	U	0.000085	U	0.000083	U	0.000085	U	0.000086	U	0.000086	U	0.000083	U	0.000085	U	0.000088	U
Perfluorotridecanoic Acid (PFTrDA)	0.07		0.000084	U	0.000084	U	0.000082	U	0.000084	U	0.000085	U	0.000085	U	0.000082	U	0.000084	U	0.000087	U
Perfluorotetradecanoic Acid (PFTA)	0.07		0.000067	U	0.000067	U	0.000065	U	0.000067	U	0.000067	U	0.000067	U	0.000065	U	0.000067	U	0.00007	U
Notes	-	•			•		•		•		•		-		-		-			

Notes:

EPA-DWHS - EPA Drinking Water Health Advisory

Q - Laboratory Qualifier

J - Estimated Value

U - the MDL is shown

MDL - Method of Detection Limit

ug/l - Micrograms per liter

19 Patchen Avenue - Brooklyn, NY Emerging Contaminants Results

Attachment 1 *Laboratory Deliverables*

ANALYTICAL REPORT

Lab Number:	L1837978
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Matt Carroll
Phone:	(646) 606-2332
Project Name:	19 PATCHEN AVE.
Project Number:	19 PATCHEN AVE
Report Date:	10/15/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:	19 PATCHEN AVE.
Project Number:	19 PATCHEN AVE

 Lab Number:
 L1837978

 Report Date:
 10/15/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1837978-01	MW-1-D	WATER	BROOKLYN	09/21/18 10:35	09/21/18
L1837978-02	MW-1	WATER	BROOKLYN	09/21/18 12:35	09/21/18
L1837978-03	MW-2	WATER	BROOKLYN	09/21/18 09:55	09/21/18
L1837978-04	MW-4	WATER	BROOKLYN	09/21/18 12:00	09/21/18
L1837978-05	MW-4 DUP	WATER	BROOKLYN	09/21/18 12:10	09/21/18
L1837978-06	MW-5	WATER	BROOKLYN	09/21/18 14:10	09/21/18
L1837978-07	MW-6	WATER	BROOKLYN	09/21/18 16:05	09/21/18
L1837978-08	MW-3	WATER	BROOKLYN	09/21/18 16:15	09/21/18
L1837978-09	FIELD BLANK	WATER	BROOKLYN	09/21/18 16:20	09/21/18
L1837978-10	TRIP BLANK	WATER	BROOKLYN	09/21/18 00:00	09/21/18

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE

Lab Number: L1837978 Report Date: 10/15/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:19 PATCHEN AVE.Project Number:19 PATCHEN AVE

 Lab Number:
 L1837978

 Report Date:
 10/15/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by Isotope Dilution

The WG1161650-3 LCSD recovery, associated with L1837978-01 through -09, is above the 50-150% acceptance criteria for low level 522 (537) for perfluorononanesulfonic acid (pfns) (154%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1161650-4 MS recovery, performed on L1837978-06, is outside the acceptance criteria for 1h,1h,2h,2h-perfluorodecanesulfonic acid (8:2fts) (189%).

The WG1161650-4/-5 MS/MSD RPDs, performed on L1837978-06, are outside the acceptance criteria for 1h,1h,2h,2h-perfluorodecanesulfonic acid (8:2fts) (60%) and n-ethyl perfluorooctanesulfonamidoacetic acid (netfosaa) (42%).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 10/15/18

ORGANICS

VOLATILES

			Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-01		Date Collected:	09/21/18 10:35
Client ID:	MW-1-D		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/25/18 15:38			
Analyst:	MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.6		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP		6				
Lab ID:	L1837978-01				Date Col	lected:	09/21/18 10:35	
Client ID:	MW-1-D				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		0.28	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND ND		ug/l	2.5 2.5	0.70 0.70	1	
p-Chlorotoluene	220	ND		ug/l	2.5	0.70		
1,2-Dibromo-3-chloroprop				ug/l			1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

						Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.				Lab Nu	umber:	L1837978
Project Number:	19 PATCHEN AVE				Report	t Date:	10/15/18
		SAMPL	E RESULTS	5			
Lab ID:	L1837978-01				Date Co	llected:	09/21/18 10:35
Client ID:	MW-1-D				Date Re	ceived:	09/21/18
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	96	70-130	

		Serial_N	o:10151818:53
19 PATCHEN AVE.		Lab Number:	L1837978
19 PATCHEN AVE		Report Date:	10/15/18
	SAMPLE RESULTS		
L1837978-02		Date Collected:	09/21/18 12:35
MW-1		Date Received:	09/21/18
BROOKLYN		Field Prep:	Not Specified
Water			
1,8260C			
09/25/18 16:04			
MKS			
	19 PATCHEN AVE L1837978-02 MW-1 BROOKLYN Water 1,8260C 09/25/18 16:04	19 PATCHEN AVE SAMPLE RESULTS L1837978-02 MW-1 BROOKLYN Water 1,8260C 09/25/18 16:04	19 PATCHEN AVE. 19 PATCHEN AVE L1837978-02 MW-1 BROOKLYN Water 1,8260C 09/25/18 16:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	3.5		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

							0.10151818.53	
Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP	LE RESULT	S				
Lab ID:	L1837978-02				Date Col	llected:	09/21/18 12:35	
Client ID:	MW-1				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
							-	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
Trichloroethene		0.27	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	9	ND		ug/l	2.5	0.70	1	
Bromobenzene	·	ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND			2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
		ND		ug/l				
Naphthalene		UN		ug/l	2.5	0.70	1	

			Serial_No:10151818:53					
Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMPL	E RESULTS	5				
Lab ID:	L1837978-02				Date Col	lected:	09/21/18 12:35	
Client ID:	MW-1				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	96	70-130	

	Serial_No:10151818:53				
19 PATCHEN AVE.		Lab Number:	L1837978		
19 PATCHEN AVE		Report Date:	10/15/18		
	SAMPLE RESULTS				
L1837978-03		Date Collected:	09/21/18 09:55		
MW-2		Date Received:	09/21/18		
BROOKLYN		Field Prep:	Not Specified		
Water					
1,8260C					
09/25/18 16:29					
MKS					
	19 PATCHEN AVE L1837978-03 MW-2 BROOKLYN Water 1,8260C 09/25/18 16:29	19 PATCHEN AVE SAMPLE RESULTS L1837978-03 MW-2 BROOKLYN Water 1,8260C 09/25/18 16:29	19 PATCHEN AVE. 19 PATCHEN AVE Caber SAMPLE RESULTS L1837978-03 MW-2 BROOKLYN Water 1,8260C 09/25/18 16:29		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.1	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	12		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:19 PATCHEN AVELab Mmber:L18/3776Project Number:19 PATCHEN AVESAMPLE RESULTSReport Date:0/11/5/18Lab ID::L18/3778-03Lab ID::L18/3778-03Date Collected:0/22/178Client ID:MW-2Sample Location:BROOKLYNDate Recover.0/22/178Sample Location:BROOKLYNReuVolNot SpecifiedSample Coganics WG/MS-Westborough Labrelation of the sample Location:Not SpecifiedFoldorothoman041Jugh0.90.11.2 OctobrobananNough2.50.7011.4 OctobrobananNOugh2.50.701								0:10151818:53	
Lab LD: L1337978-03 Client LD: MV-2 Sample Location BROOKLYN Sample Location BROOKLYN Sample Location BROOKLYN Sample Corganics by CC/MS - Westborough Lab Sample Corganics by CC/MS - Westborough	Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Lab DD: Client DD: MW-2 Sample Location:L1837978-03 MV-2 BROOKLYNDate Collect: Date Receive: 	Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
Client ID: Sample Location:MW-2 BROCKLYNDate Receiver0y21/18 Not SpecifiedSample Depth:ParameterResult0utiferViteNot SpecifiedVatatie Organics by GCMS - Westborough LabTrichorosthane0.41Jug10.500.1811.2 OcthorosthoroneNDug12.50.7011.4 OcthorosthoroneNDug12.50.7011.4 OcthorosthoroneNDug12.50.7011.4 OcthorosthoroneNDug12.50.701Metry Int subj otherNDug12.50.701VitereNDug12.50.701SylencNDug12.50.7011.4 OcthorosthoroneNDug12.50.7011.4 OcthorosthoroneNDug12.50.7011.4 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 OcthorosthoroneNDug15.01.011.2 Octhorosthorosthoro <t< th=""><th></th><th></th><th>SAMP</th><th>LE RESULT</th><th>S</th><th></th><th></th><th></th><th></th></t<>			SAMP	LE RESULT	S				
Client ID: sample Ducation:MW-2 BROVKLYNData Rec:vNot SpecifiedSample Dupti:Not SpecifiedParameterResultQuifferViteNot Not SpecifiedVatalie Organics JC/MS - Westboroug LucUg10.000.1811-20 chlorobenzaneNDUg10.250.7011-20 chlorobenzaneNDUg12.50.7011-20 chlorobenzaneNDUg12.50.7011-20 chlorobenzaneNDUg12.50.7010-70 vigineNDUg12.50.7010-70 vigineNDUg12.50.7010-70 vigineNDUg12.50.7010-70 vigineNDUg12.50.7011-20 chlorobenzaneNDUg12.50.7010-70 vigineNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.7011-20 chlorobenzeneNDUg12.50.701<	Lab ID:	L1837978-03				Date Col	lected:	09/21/18 09:55	
Sample Depth: Parametr Realt Quiffer Units RL MPL Dilution Factor Valitie Organics by GC/MS - Westborough Lab	Client ID:					Date Red	ceived:	09/21/18	
ParanterResultJouisiteNutNutMultJouise PatientJouise Control0.41.0.0.0.1 <td>Sample Location:</td> <td>BROOKLYN</td> <td></td> <td></td> <td></td> <td>Field Pre</td> <td>ep:</td> <td>Not Specified</td> <td></td>	Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
ParanterResultJouisiteNutNutMultJouise PatientJouise Control0.41.0.0.0.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>								-	
Valatile Organics by GC/MS - Westborough Lab Trichoroethene 0.41 J ug1 0.50 0.18 1 1.2-Dichlorobenzene ND ug1 2.5 0.70 1 1.3-Dichlorobenzene ND ug1 2.5 0.70 1 1.4-Dichlorobenzene ND ug1 2.5 0.70 1 Methyl ter burj other ND ug1 2.5 0.70 1 Vigenes, Total ND ug1 2.5 0.70 1 0-Xjerne ND ug1 2.5 0.70 1 1.2-Dichloroethene ND ug1 2.5 0.70 1 1.2-Dichloroethene ND ug1 2.5 0.70 1 1.2-Dichloroethene ND ug1 5.0 1.0 1 1.2-Dichloroethene ND ug1 5.0 1.0 1 1.2-Dichloroethene ND ug1 5.0 1.0 1 1.2-Dichloroethene ND<	Sample Depth:								
Tichloroshnane 0.41 J ugl 0.50 0.18 1 1.2-Dichloroshnane ND ugl 2.5 0.70 1 1.3-Dichloroshnane ND ugl 2.5 0.70 1 1.4-Dichloroshnane ND ugl 2.5 0.70 1 pim Xylene ND ugl 2.5 0.70 1 pim Xylene ND ugl 2.5 0.70 1 oXylene ND ugl 2.5 0.70 1 ylenes, Total ND ugl 2.5 0.70 1 1.2-Dichloroshene, Tatal ND ugl 2.5 0.70 1 1.2-Dichloroshene, Tatal ND ugl 5.0 1.0	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
1.2.Dichlorobanzane ND ugl 2.5 0.70 1 1.3.Dichlorobanzane ND ugl 2.5 0.70 1 1.4.Dichlorobanzane ND ugl 2.5 0.70 1 p/m-Xylene ND ugl 2.5 0.70 1 p/m-Xylene ND ugl 2.5 0.70 1 o:Xylene ND ugl 2.5 0.70 1 o:Li_2.Dichlorochene ND ugl 2.5 0.70 1 o:Li_2.Dichlorochene ND ugl 2.5 0.70 1 1.2.3-Trichlorochene ND ugl 5.0 1.0 1	Volatile Organics b	oy GC/MS - Westborough	n Lab						
1.3-Dichlorobenzene ND ugl 2.5 0.70 1 1.4-Dichlorobenzene ND ugl 2.5 0.70 1 Methyl terb buly ather ND ugl 2.5 0.70 1 pir Xylene ND ugl 2.5 0.70 1 or Xylene ND ugl 2.5 0.70 1 Xylenes ND ugl 2.5 0.70 1 Xylenes ND ugl 2.5 0.70 1 1.20-bichorobenene, Total ND ugl 2.5 0.70 1 1.2.3-Trichloropopane ND ugl 5.0 1.0 1 <t< td=""><td>Trichloroethene</td><td></td><td>0.41</td><td>J</td><td>ug/l</td><td>0.50</td><td>0.18</td><td>1</td><td></td></t<>	Trichloroethene		0.41	J	ug/l	0.50	0.18	1	
A-Dichlorobanzene ND ug/l 2.5 0.70 1 Metryl terb tudyl ether ND ug/l 2.5 0.70 1 pim Xylane ND ug/l 2.5 0.70 1 pim Xylane ND ug/l 2.5 0.70 1 Xylenes, Total ND ug/l 2.5 0.70 1 L2-Dichloroethene, Total ND ug/l 2.5 0.70 1 L2-Dichloroptpano ND ug/l 5.0 1.0 1 L2-Dichloroptpane ND ug/l 5.0 1.0 1 L2-Dichloroptpane ND ug/l 5.0 1.0 1 L2-Dichloroptpane ND ug/l 5.0 1.0	1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tethyl ether ND ug1 2.5 0.70 1 p/m-Xylene ND ug1 2.5 0.70 1 a-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 1.2-Dichlorethene ND ug1 2.5 0.70 1 1.2-Dichlorethene, Total ND ug1 5.0 1.0 1 1.2-Dichlorethene, Total ND ug1 5.0 1.0 1 1.2-Dichlorethene, Total ND ug1 5.0 1.5 1 1.2-Dichlorethene ND ug1 5.0 1.5 1 2.4-Dichlorethene ND ug1 5.0 1.0 1 1.2-Dichlorethene ND ug1 5.0 1.0 1 2.5 0.70 1 1 1 1 1.2-Dichlorethene ND ug1 5.0 1.0 1 2.4-	1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
pim Xylene ND ug1 2.5 0.70 1 o-Xylene ND ug1 2.5 0.70 1 Xylenes, Total ND ug1 2.5 0.70 1 dis-12.Dichoroethene, Total ND ug1 2.5 0.70 1 1.2.Dichoroethene, Total ND ug1 5.0 1.0 1 1.2.Dichoroethene ND ug1 5.0 1.0 1 2.Dichoroethane ND ug1 5.0 1.0 1 2.Dichoroethane ND ug1 5.0 1.0 1 2.Butanone ND ug1 5.0 1.0 1 <td>1,4-Dichlorobenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td> <td></td>	1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
xXiene ND ugit 2.5 0.70 1 Xylenes, Total ND ugit 2.5 0.70 1 ais-1.2-Dichlorethene ND ugit 2.5 0.70 1 1.2-Dichlorethene, Total ND ugit 2.5 0.70 1 1.2-Dichlorethene, Total ND ugit 2.5 0.70 1 1.2-Dichlorethene, Total ND ugit 2.5 0.70 1 1.2-Brichlorepropane ND ugit 5.0 1.0 1 Acytonitrile ND ugit 5.0 1.0 1 Styrene ND ugit 5.0 1.0 1 Acotore ND ugit 5.0 1.0 1 Carbon disulfide ND ugit 5.0 1.0 1 2-Butanone ND ugit 5.0 1.0 1 2-Hexanone ND ugit 5.0 1.0 1 2-	Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
Xylenes, Total ND ug1 2.5 0.70 1 cis-1,2-Dichloroethene ND ug1 2.5 0.70 1 1,2-Dichloroethene, Total ND ug1 2.5 0.70 1 Dibromomethane ND ug1 5.0 1.0 1 1,2-3-Tichloropropane ND ug1 5.0 1.5 1 Acrylonitrile ND ug1 5.0 1.5 1 Styrene ND ug1 5.0 1.6 1 Carbon disulfide ND ug1 5.0 1.0 1 2-Butanone ND ug1 5.0 1.0 1 2-Butanone ND ug1 5.0 1.0 1 2-Hexanoe ND ug1 5.0 1.0 1 2-Hexanoe ND ug1 5.0 1.0 1 2-Hexanoe ND ug1 2.5 0.70 1 1.1.2-Tetachoroethane	p/m-Xylene		ND		ug/l	2.5	0.70	1	
ND Ug1 2.5 0.70 1 1.2-Dichloroethene, Total ND Ug1 2.5 0.70 1 1.2-Dichloroethene, Total ND Ug1 5.0 1.0 1 1.2.3-Trichloropropane ND Ug1 2.5 0.70 1 Acryonitrile ND Ug1 2.5 0.70 1 Styrene ND Ug1 5.0 1.5 1 Dichorodifluoromethane ND Ug1 5.0 1.0 1 Acetone ND Ug1 5.0 1.5 1 Carbon disutifde ND Ug1 5.0 1.0 1 2-Butanone ND Ug1 5.0 1.0 1 4-Methyl-2-pentanone ND Ug1 5.0 1.0 1 2-Hexanone ND Ug1 5.0 1.0 1 2-Dichloropropane ND Ug1 2.5 0.70 1 1.2-Dibromothame ND	o-Xylene		ND		ug/l	2.5	0.70	1	
1.2-Dichloroethene, Total ND ug/l 2.5 0.70 1 Dibromomethane ND ug/l 5.0 1.0 1 1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrylonirile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.0 1 Acetore ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-Dichoromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.3-Dichoropr	Xylenes, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane ND ug/l 5.0 1.0 1 1.2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acrytonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichorodifluoromethane ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichoromethane ND ug/l 2.5 0.70 1 2-Dichoromethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane	cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1.2.3-Trichloropropane ND ug/l 2.5 0.70 1 Acrytonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 1.5 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetore ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 2.5 0.70 1 1.2-Dichloropropane ND ug/l 2.5 0.70 1 1.1,1.2-Tettachlorothane ND ug/l 2.5 0.70 1 1.1,1	1,2-Dichloroethene, Tota	l	ND		ug/l	2.5	0.70	1	
Acytonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 2.5 0.70 1 1.2-Dichloroptropane ND ug/l 2.5 0.70 1 1.3-Dichloroptropane ND ug/l 2.5 0.70 1 1.3-	Dibromomethane		ND		ug/l	5.0	1.0	1	
Styrene ND ug/l 2.5 0.70 1 Dichlorodffluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2-2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromeethane ND ug/l 2.5 0.70 1 1.1_2-Ditrachloroethane ND ug/l 2.5 0.70 1 Bromo	1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Dichlorodfiluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Haxanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.1.1.2-Tetrachloroethane ND ug/l 2.5 0.70 1	Acrylonitrile		ND		ug/l	5.0	1.5	1	
Acetone ND ug/ 5.0 1.5 1 Carbon disulfide ND ug/ 5.0 1.0 1 2-Butanone ND ug/ 5.0 1.9 1 Vinyl acetate ND ug/ 5.0 1.0 1 4-Methyl-2-pentanone ND ug/ 5.0 1.0 1 2-Hexanone ND ug/ 5.0 1.0 1 2-Hexanone ND ug/ 5.0 1.0 1 2-Hexanone ND ug/ 2.5 0.70 1 2.2-Dichloropropane ND ug/ 2.5 0.70 1 1.2-Dibromoethane ND ug/ 2.5 0.70 1 1.3-Dichloropropane ND ug/ 2.5 0.70 1 1.3-Dichloropropane ND ug/ 2.5 0.70 1 1.3-Dichloropropane ND ug/ 2.5 0.70 1 sec-Butylbenzene	Styrene		ND		ug/l	2.5	0.70	1	
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1.2-Dibromoethane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.3-Dichloropropane ND ug/l 2.5 0.70 1 1.1.1.2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 <td>Acetone</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.5</td> <td>1</td> <td></td>	Acetone		ND		ug/l	5.0	1.5	1	
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1.1.2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 e-Chlorotoluene ND ug/l 2.5 0.70 1 </td <td>Carbon disulfide</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td> <td></td>	Carbon disulfide		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 <	2-Butanone		ND		ug/l	5.0	1.9	1	
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2.2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 ec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1<	Vinyl acetate		ND		ug/l	5.0	1.0	1	
Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dichloropropane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 <td>4-Methyl-2-pentanone</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.0</td> <td>1</td> <td></td>	4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5	2-Hexanone		ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 <t< td=""><td>Bromochloromethane</td><td></td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td><td></td></t<>	Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 hexachlorobutadiene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1 </td <td>1,2-Dibromoethane</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.0</td> <td>0.65</td> <td>1</td> <td></td>	1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropylbenzene ND ug/l 2.5 0.70 1	1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethan	e	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-lsopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropylbenzene ND ug/l 2.5 0.70 1	o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
	Isopropylbenzene		ND		ug/l	2.5	0.70	1	
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
	Naphthalene		ND		ug/l	2.5	0.70	1	

		Serial_No:10151818:53						
Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP		6				
Lab ID:	L1837978-03				Date Col	lected:	09/21/18 09:55	
Client ID:	MW-2				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	Volatile Organics by GC/MS - Westborough Lab							
n-Propylbenzene		ND		ug/l	2.5	0.70	1	

ND

1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1
1,4-Dioxane	ND	ug/l	250	61.	1
p-Diethylbenzene	ND	ug/l	2.0	0.70	1
p-Ethyltoluene	ND	ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1
Ethyl ether	ND	ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1

ug/l

2.5

0.70

1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	97	70-130	

1,2,3-Trichlorobenzene

			Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-04		Date Collected:	09/21/18 12:00
Client ID:	MW-4		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/25/18 16:55			
Analyst:	MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	8.6		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	23		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP		6				
Lab ID:	L1837978-04				Date Col	lected:	09/21/18 12:00	
Client ID:	MW-4				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		0.44	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

			Serial_No:10151818:53						
Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978		
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18		
		SAMPL	E RESULTS	5					
Lab ID:	L1837978-04				Date Col	lected:	09/21/18 12:00		
Client ID:	MW-4				Date Ree	ceived:	09/21/18		
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough	Lab							

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	99	70-130	

			Serial_No:10151818:53				
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978			
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18			
		SAMPLE RESULTS					
Lab ID:	L1837978-05		Date Collected:	09/21/18 12:10			
Client ID:	MW-4 DUP		Date Received:	09/21/18			
Sample Location:	BROOKLYN		Field Prep:	Not Specified			
Sample Depth:							
Matrix:	Water						
Analytical Method:	1,8260C						
Analytical Date:	09/25/18 17:20						
Analyst:	MKS						

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	7.4		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	19		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP		S				
Lab ID:	L1837978-05				Date Col	llected:	09/21/18 12:10	
Client ID:	MW-4 DUP				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
Trichloroethene		0.40	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		1.6	J	ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane 1,3-Dichloropropane		ND		ug/l ug/l	2.0 2.5	0.65	1	
1,1,1,2-Tetrachloroethane	5	ND		ug/l	2.5	0.70	1	
Bromobenzene	,	ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	
•								

				Serial_No:10151818:53					
Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978		
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18		
		SAMPI	E RESULTS	6					
Lab ID:	L1837978-05				Date Col	lected:	09/21/18 12:10		
Client ID:	MW-4 DUP				Date Red	ceived:	09/21/18		
Sample Location:	BROOKLYN				Field Pre	p:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough	Lab							

n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	98	70-130	

			Serial_No:10151818:53		
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978	
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18	
		SAMPLE RESULTS			
Lab ID:	L1837978-06		Date Collected:	09/21/18 14:10	
Client ID:	MW-5		Date Received:	09/21/18	
Sample Location:	BROOKLYN		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	09/25/18 17:46				
Analyst:	MKS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.7		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	10		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
•		SAMP		5	•		10,10,10	
Lab ID:	L1837978-06				Date Col	lected:	09/21/18 14:10	
Client ID:	MW-5				Date Red		09/21/18	
Sample Location:	BROOKLYN				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
	y GC/MS - Westborough		Quainer	01113			Dilution ractor	
Trichloroethene	-	ND			0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.18	1	
1,3-Dichlorobenzene		ND		ug/l ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene	222	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop		ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
Project Number:	19 PATCHEN AVE				Report Date:	10/15/18
		SAMP	LE RESULTS			
Lab ID:	L1837978-06				Date Collected:	09/21/18 14:10
Client ID:	MW-5				Date Received:	09/21/18
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
/olatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	98	70-130	

			Serial_N	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-07		Date Collected:	09/21/18 16:05
Client ID:	MW-6		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/25/18 18:12			
Analyst:	MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	1.2	J	ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	12		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1		
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP		5				
Lab ID:	L1837978-07				Date Col	lected:	09/21/18 16:05	
Client ID:	MW-6				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
Trichloroethene		0.81		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND ND		ug/l	5.0	1.0 1.9	1	
2-Butanone				ug/l		1.9	1	
Vinyl acetate 4-Methyl-2-pentanone		ND ND		ug/l	5.0 5.0	1.0	1	
2-Hexanone		ND		ug/l ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane)	ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
Project Number:	19 PATCHEN AVE				Report Date:	10/15/18
		SAMP		5		
Lab ID:	L1837978-07				Date Collected:	09/21/18 16:05
Client ID:	MW-6				Date Received:	09/21/18
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Parameter	Result	Quaimer	Units	RL.	WIDE	Difution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	112	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-08		Date Collected:	09/21/18 16:15
Client ID:	MW-3		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/25/18 18:37			
Analyst:	MKS			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.4	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	72		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMPI	LE RESULTS	5				
Lab ID:	L1837978-08				Date Col	lected:	09/21/18 16:15	
Client ID:	MW-3				Date Red	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	<pre>/ GC/MS - Westborough</pre>	l Lab						
Trichloroethene		1.5		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropa	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	o:10151818:53
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
Project Number:	19 PATCHEN AVE				Report Date:	10/15/18
		SAMP	LE RESULTS	6		
Lab ID:	L1837978-08				Date Collected:	09/21/18 16:15
Client ID:	MW-3				Date Received:	09/21/18
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Volatile Organics by GC/MS - Westbord	ough Lab					
n-Propylbenzene	ND	ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	1	
1,4-Dioxane	ND	ug/l	250	61.	1	
p-Diethylbenzene	ND	ug/l	2.0	0.70	1	
p-Ethyltoluene	ND	ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	1	
Ethyl ether	ND	ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-10		Date Collected:	09/21/18 00:00
Client ID:	TRIP BLANK		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	09/25/18 19:03			
Analyst:	MKS			
-				

Parameter	Result	Qualifier Ur	iits RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Methylene chloride	ND	uç	g/l 2.5	0.70	1
1,1-Dichloroethane	ND	uç	g/l 2.5	0.70	1
Chloroform	ND	uç	g/l 2.5	0.70	1
Carbon tetrachloride	ND	uç	g/l 0.50	0.13	1
1,2-Dichloropropane	ND	uç	g/l 1.0	0.14	1
Dibromochloromethane	ND	uç	g/l 0.50	0.15	1
1,1,2-Trichloroethane	ND	uç	g/l 1.5	0.50	1
Tetrachloroethene	ND	uç	g/l 0.50	0.18	1
Chlorobenzene	ND	uç	g/l 2.5	0.70	1
Trichlorofluoromethane	ND	uç	g/l 2.5	0.70	1
1,2-Dichloroethane	ND	uç	g/l 0.50	0.13	1
1,1,1-Trichloroethane	ND	uç	g/l 2.5	0.70	1
Bromodichloromethane	ND	uç	g/l 0.50	0.19	1
trans-1,3-Dichloropropene	ND	uç	g/l 0.50	0.16	1
cis-1,3-Dichloropropene	ND	uç	g/l 0.50	0.14	1
1,3-Dichloropropene, Total	ND	uç	g/l 0.50	0.14	1
1,1-Dichloropropene	ND	uç	g/l 2.5	0.70	1
Bromoform	ND	uç	g/l 2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	uç	g/l 0.50	0.17	1
Benzene	ND	uç	g/l 0.50	0.16	1
Toluene	ND	uç	g/l 2.5	0.70	1
Ethylbenzene	ND	uç	g/l 2.5	0.70	1
Chloromethane	ND	uç	g/l 2.5	0.70	1
Bromomethane	ND	uç	g/l 2.5	0.70	1
Vinyl chloride	ND	uç	g/l 1.0	0.07	1
Chloroethane	ND	uç	g/l 2.5	0.70	1
1,1-Dichloroethene	ND	uç	g/l 0.50	0.17	1
trans-1,2-Dichloroethene	ND	uç	g/l 2.5	0.70	1

Project Name:	19 PATCHEN AVE.				Lab Nu	mber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP	LE RESULTS	5				
Lab ID:	L1837978-10				Date Col	lected:	09/21/18 00:00	
Client ID:	TRIP BLANK				Date Rec	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	p:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	n Lab						
Trichloroethene		ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
Xylenes, Total		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total		ND		ug/l	2.5	0.70	1	
Dibromomethane		ND		ug/l	5.0	1.0	1	
1,2,3-Trichloropropane		ND		ug/l	2.5	0.70	1	
Acrylonitrile		ND		ug/l	5.0	1.5	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
Vinyl acetate		ND		ug/l	5.0	1.0	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone Bromochloromethane		ND		ug/l	2.5	0.70	1	
2,2-Dichloropropane		ND		ug/l ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,3-Dichloropropane		ND		ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane		ND		ug/l	2.5	0.70	1	
Bromobenzene		ND		ug/l	2.5	0.70	1	
n-Butylbenzene		ND		ug/l	2.5	0.70	1	
sec-Butylbenzene		ND		ug/l	2.5	0.70	1	
tert-Butylbenzene		ND		ug/l	2.5	0.70	1	
o-Chlorotoluene		ND		ug/l	2.5	0.70	1	
p-Chlorotoluene		ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1	
Hexachlorobutadiene		ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1	
Naphthalene		ND		ug/l	2.5	0.70	1	

					Serial_N	lo:10151818:53
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
Project Number:	19 PATCHEN AVE				Report Date:	10/15/18
		SAMPL	E RESULTS	5		
Lab ID:	L1837978-10				Date Collected:	09/21/18 00:00
Client ID:	TRIP BLANK				Date Received:	09/21/18
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Sample Depth:						
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor

Tarameter	Roodit	quaintoi	onno	112		Bildion Factor
Volatile Organics by GC/MS - West	borough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	97	70-130	

Project Name:	19 PATCHEN AVE.	Lab Number:	L1837978
Project Number:	19 PATCHEN AVE	Report Date:	10/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/25/18 10:58
Analyst:	PD

arameter	Result	Qualifier Unit	s RL	-	MDL
platile Organics by GC/MS -	Westborough La	b for sample(s):	01-08,10	Batch:	WG1160786-5
Methylene chloride	ND	ug/	1 2.5	5	0.70
1,1-Dichloroethane	ND	ug/	1 2.5	5	0.70
Chloroform	ND	ug/	1 2.5	5	0.70
Carbon tetrachloride	ND	ug/	1 0.5	0	0.13
1,2-Dichloropropane	ND	ug/	1.0)	0.14
Dibromochloromethane	ND	ug/	1 0.5	0	0.15
1,1,2-Trichloroethane	ND	ug/	1.5	5	0.50
Tetrachloroethene	ND	ug/	1 0.5	0	0.18
Chlorobenzene	ND	ug/	1 2.5	5	0.70
Trichlorofluoromethane	ND	ug/	1 2.5	5	0.70
1,2-Dichloroethane	ND	ug/	1 0.5	0	0.13
1,1,1-Trichloroethane	ND	ug/	1 2.5	5	0.70
Bromodichloromethane	ND	ug/	1 0.5	0	0.19
trans-1,3-Dichloropropene	ND	ug/	1 0.5	0	0.16
cis-1,3-Dichloropropene	ND	ug/	1 0.5	0	0.14
1,3-Dichloropropene, Total	ND	ug/	1 0.5	0	0.14
1,1-Dichloropropene	ND	ug/	1 2.5	5	0.70
Bromoform	ND	ug/	1 2.0)	0.65
1,1,2,2-Tetrachloroethane	ND	ug/	1 0.5	0	0.17
Benzene	ND	ug/	1 0.5	0	0.16
Toluene	ND	ug/	1 2.5	5	0.70
Ethylbenzene	ND	ug/	1 2.5	5	0.70
Chloromethane	ND	ug/	1 2.5	5	0.70
Bromomethane	ND	ug/	1 2.5	5	0.70
Vinyl chloride	ND	ug/	1 1.0)	0.07
Chloroethane	ND	ug/	1 2.5	5	0.70
1,1-Dichloroethene	ND	ug/	1 0.5	0	0.17
trans-1,2-Dichloroethene	ND	ug/	1 2.5	5	0.70
Trichloroethene	ND	ug/	1 0.5	0	0.18

Project Name:	19 PATCHEN AVE.	Lab Number:	L1837978
Project Number:	19 PATCHEN AVE	Report Date:	10/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/25/18 10:58
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
blatile Organics by GC/MS -	Westborough La	b for sample(s):	01-08,10	Batch: WG1160786-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name:	19 PATCHEN AVE.	Lab Number:	L1837978
Project Number:	19 PATCHEN AVE	Report Date:	10/15/18

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	09/25/18 10:58
Analyst:	PD

arameter	Result	Qualifier Units	s RL	. MDL	
olatile Organics by GC/MS - V	Vestborough La	b for sample(s):	01-08,10	Batch: WG110	60786-5
o-Chlorotoluene	ND	ug/	2.5	0.70	
p-Chlorotoluene	ND	ug/	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/	2.5	0.70	
Hexachlorobutadiene	ND	ug/	2.5	0.70	
Isopropylbenzene	ND	ug/	2.5	0.70	
p-Isopropyltoluene	ND	ug/	2.5	0.70	
Naphthalene	ND	ug/	2.5	0.70	
n-Propylbenzene	ND	ug/	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/	2.5	0.70	
1,4-Dioxane	ND	ug/	250) 61.	
p-Diethylbenzene	ND	ug/	2.0	0.70	
p-Ethyltoluene	ND	ug/	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/	2.0	0.54	
Ethyl ether	ND	ug/	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	92		70-130		
Toluene-d8	104		70-130		
4-Bromofluorobenzene	111		70-130		
Dibromofluoromethane	91		70-130		

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1-08,10 Batch:	WG1160786-3 WG116078	6-4	
Methylene chloride	90		90	70-130	0	20
1,1-Dichloroethane	88		86	70-130	2	20
Chloroform	84		84	70-130	0	20
Carbon tetrachloride	88		87	63-132	1	20
1,2-Dichloropropane	90		91	70-130	1	20
Dibromochloromethane	91		89	63-130	2	20
1,1,2-Trichloroethane	93		92	70-130	1	20
Tetrachloroethene	94		91	70-130	3	20
Chlorobenzene	89		87	75-130	2	20
Trichlorofluoromethane	92		90	62-150	2	20
1,2-Dichloroethane	85		86	70-130	1	20
1,1,1-Trichloroethane	90		86	67-130	5	20
Bromodichloromethane	84		85	67-130	1	20
trans-1,3-Dichloropropene	93		92	70-130	1	20
cis-1,3-Dichloropropene	89		90	70-130	1	20
1,1-Dichloropropene	85		82	70-130	4	20
Bromoform	88		88	54-136	0	20
1,1,2,2-Tetrachloroethane	96		96	67-130	0	20
Benzene	89		88	70-130	1	20
Toluene	93		90	70-130	3	20
Ethylbenzene	92		91	70-130	1	20
Chloromethane	67		68	64-130	1	20
Bromomethane	41		41	39-139	0	20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 0	1-08,10 Batch:	WG1160786-3	3 WG1160786	6-4		
Vinyl chloride	75		75		55-140	0		20
Chloroethane	92		89		55-138	3		20
1,1-Dichloroethene	93		90		61-145	3		20
trans-1,2-Dichloroethene	89		88		70-130	1		20
Trichloroethene	84		84		70-130	0		20
1,2-Dichlorobenzene	95		93		70-130	2		20
1,3-Dichlorobenzene	93		91		70-130	2		20
1,4-Dichlorobenzene	90		89		70-130	1		20
Methyl tert butyl ether	94		97		63-130	3		20
p/m-Xylene	95		90		70-130	5		20
o-Xylene	90		90		70-130	0		20
cis-1,2-Dichloroethene	88		88		70-130	0		20
Dibromomethane	88		89		70-130	1		20
1,2,3-Trichloropropane	98		99		64-130	1		20
Acrylonitrile	90		93		70-130	3		20
Styrene	90		90		70-130	0		20
Dichlorodifluoromethane	98		98		36-147	0		20
Acetone	88		89		58-148	1		20
Carbon disulfide	87		85		51-130	2		20
2-Butanone	88		89		63-138	1		20
Vinyl acetate	92		92		70-130	0		20
4-Methyl-2-pentanone	92		92		59-130	0		20
2-Hexanone	99		99		57-130	0		20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s): 0 [,]	1-08,10 Batch:	WG1160786-3 WG1160	786-4		
Bromochloromethane	93		95	70-130	2	20	
2,2-Dichloropropane	89		87	63-133	2	20	
1,2-Dibromoethane	97		97	70-130	0	20	
1,3-Dichloropropane	97		95	70-130	2	20	
1,1,1,2-Tetrachloroethane	90		87	64-130	3	20	
Bromobenzene	91		90	70-130	1	20	
n-Butylbenzene	92		90	53-136	2	20	
sec-Butylbenzene	93		92	70-130	1	20	
tert-Butylbenzene	90		88	70-130	2	20	
o-Chlorotoluene	89		90	70-130	1	20	
p-Chlorotoluene	93		92	70-130	1	20	
1,2-Dibromo-3-chloropropane	86		86	41-144	0	20	
Hexachlorobutadiene	82		81	63-130	1	20	
Isopropylbenzene	90		89	70-130	1	20	
p-Isopropyltoluene	91		89	70-130	2	20	
Naphthalene	97		98	70-130	1	20	
n-Propylbenzene	96		95	69-130	1	20	
1,2,3-Trichlorobenzene	100		100	70-130	0	20	
1,2,4-Trichlorobenzene	87		86	70-130	1	20	
1,3,5-Trimethylbenzene	96		95	64-130	1	20	
1,2,4-Trimethylbenzene	90		90	70-130	0	20	
1,4-Dioxane	70		88	56-162	23	Q 20	
p-Diethylbenzene	88		87	70-130	1	20	

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): (01-08,10 Batch:	WG11607	86-3 WG1160786	6-4			
p-Ethyltoluene	94		93		70-130	1		20	
1,2,4,5-Tetramethylbenzene	88		87		70-130	1		20	
Ethyl ether	92		96		59-134	4		20	
trans-1,4-Dichloro-2-butene	86		88		70-130	2		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	93	92	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	105	104	70-130
Dibromofluoromethane	95	94	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:	19 PATCHEN AVE.	

Project Number: 19 PATCHEN AVE

 Lab Number:
 L1837978

 Report Date:
 10/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD		RPD Limits
Volatile Organics by GC/MS MW-5	- Westborough	Lab Assoc	iated sample(s): 01-08,10	QC Batch	ID: WG11	60786-6 WG1	160786-7 QC Sar	nple: L′	1837978-0	6 Client ID:
Methylene chloride	ND	10	9.7	97		10	100	70-130	3		20
1,1-Dichloroethane	ND	10	9.6	96		10	100	70-130	4		20
Chloroform	2.7	10	12	93		13	103	70-130	8		20
Carbon tetrachloride	ND	10	8.8	88		10	100	63-132	13		20
1,2-Dichloropropane	ND	10	9.4	94		10	100	70-130	6		20
Dibromochloromethane	ND	10	9.4	94		10	100	63-130	6		20
1,1,2-Trichloroethane	ND	10	9.8	98		11	110	70-130	12		20
Tetrachloroethene	10	10	16	60	Q	19	90	70-130	17		20
Chlorobenzene	ND	10	8.5	85		9.8	98	75-130	14		20
Trichlorofluoromethane	ND	10	9.4	94		11	110	62-150	16		20
1,2-Dichloroethane	ND	10	9.8	98		10	100	70-130	2		20
1,1,1-Trichloroethane	ND	10	9.3	93		10	100	67-130	7		20
Bromodichloromethane	ND	10	9.5	95		10	100	67-130	5		20
trans-1,3-Dichloropropene	ND	10	9.3	93		10	100	70-130	7		20
cis-1,3-Dichloropropene	ND	10	8.4	84		9.4	94	70-130	11		20
1,1-Dichloropropene	ND	10	7.6	76		9.0	90	70-130	17		20
Bromoform	ND	10	8.7	87		9.4	94	54-136	8		20
1,1,2,2-Tetrachloroethane	ND	10	9.7	97		10	100	67-130	3		20
Benzene	ND	10	9.2	92		10	100	70-130	8		20
Toluene	ND	10	8.6	86		10	100	70-130	15		20
Ethylbenzene	ND	10	8.2	82		9.6	96	70-130	16		20
Chloromethane	ND	10	8.0	80		9.6	96	64-130	18		20
Bromomethane	ND	10	2.5	25	Q	3.8	38	Q 39-139	41	Q	20

Matrix Spike Analysis Batch Quality Control

Project Name:	19 PATCHEN AVE.	E
Project Number:	19 PATCHEN AVE	

19 PATCHEN AVE

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/N MW-5	MS - Westborough	Lab Assoc	iated sample(s): 01-08,10	QC Batch ID: WG11	60786-6 WG1	160786-7 QC San	nple: L1	837978-06 Client ID
Vinyl chloride	ND	10	7.4	74	8.5	85	55-140	14	20
Chloroethane	ND	10	9.8	98	11	110	55-138	12	20
1,1-Dichloroethene	ND	10	9.0	90	10	100	61-145	11	20
trans-1,2-Dichloroethene	ND	10	8.9	89	9.9	99	70-130	11	20
Trichloroethene	ND	10	8.6	86	9.7	97	70-130	12	20
1,2-Dichlorobenzene	ND	10	8.5	85	9.5	95	70-130	11	20
1,3-Dichlorobenzene	ND	10	8.0	80	9.0	90	70-130	12	20
1,4-Dichlorobenzene	ND	10	7.9	79	9.0	90	70-130	13	20
Methyl tert butyl ether	ND	10	10	100	11	110	63-130	10	20
p/m-Xylene	ND	20	16	80	19	95	70-130	17	20
o-Xylene	ND	20	16	80	19	95	70-130	17	20
cis-1,2-Dichloroethene	ND	10	9.3	93	10	100	70-130	7	20
Dibromomethane	ND	10	9.7	97	10	100	70-130	3	20
1,2,3-Trichloropropane	ND	10	9.7	97	10	100	64-130	3	20
Acrylonitrile	ND	10	10	100	11	110	70-130	10	20
Styrene	ND	20	16	80	19	95	70-130	17	20
Dichlorodifluoromethane	ND	10	9.1	91	11	110	36-147	19	20
Acetone	ND	10	11	110	12	120	58-148	9	20
Carbon disulfide	ND	10	8.5	85	9.8	98	51-130	14	20
2-Butanone	ND	10	9.6	96	10	100	63-138	4	20
Vinyl acetate	ND	10	8.4	84	9.0	90	70-130	7	20
4-Methyl-2-pentanone	ND	10	9.8	98	11	110	59-130	12	20
2-Hexanone	ND	10	10	100	11	110	57-130	10	20

Matrix Spike Analysis Batch Quality Control

Project Name:	19 PATCHEN AVE.

Project Number: 19 PATCHEN AVE

 Lab Number:
 L1837978

 Report Date:
 10/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSL Qual Four		Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - MW-5	- Westborough	Lab Asso	ciated sample	e(s): 01-08,10	QC Batch ID: WC	61160786-6 WG	1160786-7 QC Sar	nple: L1	837978-06 Client IE
Bromochloromethane	ND	10	10	100	11	110	70-130	10	20
2,2-Dichloropropane	ND	10	8.2	82	9.2	92	63-133	11	20
1,2-Dibromoethane	ND	10	9.9	99	11	110	70-130	11	20
1,3-Dichloropropane	ND	10	9.9	99	11	110	70-130	11	20
1,1,1,2-Tetrachloroethane	ND	10	9.4	94	10	100	64-130	6	20
Bromobenzene	ND	10	8.2	82	9.3	93	70-130	13	20
n-Butylbenzene	ND	10	6.8	68	8.2	82	53-136	19	20
sec-Butylbenzene	ND	10	7.0	70	8.4	84	70-130	18	20
tert-Butylbenzene	ND	10	7.0	70	8.4	84	70-130	18	20
o-Chlorotoluene	ND	10	7.7	77	8.8	88	70-130	13	20
p-Chlorotoluene	ND	10	7.9	79	9.0	90	70-130	13	20
1,2-Dibromo-3-chloropropane	ND	10	8.8	88	9.2	92	41-144	4	20
Hexachlorobutadiene	ND	10	5.9	59	Q 7.2	72	63-130	20	20
Isopropylbenzene	ND	10	7.1	71	8.5	85	70-130	18	20
p-Isopropyltoluene	ND	10	6.8	68	Q 8.3	83	70-130	20	20
Naphthalene	ND	10	9.3	93	10	100	70-130	7	20
n-Propylbenzene	ND	10	7.5	75	9.0	90	69-130	18	20
1,2,3-Trichlorobenzene	ND	10	8.8	88	9.8	98	70-130	11	20
1,2,4-Trichlorobenzene	ND	10	7.0	70	8.0	80	70-130	13	20
1,3,5-Trimethylbenzene	ND	10	7.6	76	8.9	89	64-130	16	20
1,2,4-Trimethylbenzene	ND	10	7.4	74	8.6	86	70-130	15	20
1,4-Dioxane	ND	500	220J	44	Q 400	80	56-162	58	Q 20
p-Diethylbenzene	ND	10	6.6	66	Q 8.0	80	70-130	19	20

_

Matrix Spike Analysis

Project Name:	19 PATCHEN AVE.	Batch Quality Control	Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18

Parameter		MS dded	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS MW-5	- Westborough La	b Assoc	ciated sample(s	s): 01-08,10	QC Batch	ID: WG11	60786-6 WG1	160786-7 QC Sam	ple: L1	837978-06 Client ID:
p-Ethyltoluene	ND	10	7.3	73		8.8	88	70-130	19	20
1,2,4,5-Tetramethylbenzene	ND	10	6.5	65	Q	7.7	77	70-130	17	20
Ethyl ether	ND	10	9.7	97		11	110	59-134	13	20
trans-1,4-Dichloro-2-butene	ND	10	8.8	88		9.4	94	70-130	7	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	103	99	70-130
4-Bromofluorobenzene	100	101	70-130
Dibromofluoromethane	101	99	70-130
Toluene-d8	102	103	70-130

SEMIVOLATILES

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-01		Date Collected:	09/21/18 10:35
Client ID:	MW-1-D		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/03/18 19:17			
Analyst:	PS			
/ maryot.				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	147	73.5	1
Surrogate			% Recovery	Qualifier		eptance iteria
1,4-Dioxane-d8			16			15-110

			Serial_No	:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-01		Date Collected:	09/21/18 10:35
Client ID:	MW-1-D		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/13/18 21:42			
Analyst:	PB			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
	5.07			4.05	0.404			
Perfluorobutanoic Acid (PFBA)	5.67		ng/l	1.85	0.121	1		
Perfluoropentanoic Acid (PFPeA)	10.2		ng/l	1.85	0.079	1		
Perfluorobutanesulfonic Acid (PFBS)	3.42		ng/l	1.85	0.102	1		
Perfluorohexanoic Acid (PFHxA)	10.4		ng/l	1.85	0.117	1		
Perfluoroheptanoic Acid (PFHpA)	10.6		ng/l	1.85	0.086	1		
Perfluorohexanesulfonic Acid (PFHxS)	6.71		ng/l	1.85	0.100	1		
Perfluorooctanoic Acid (PFOA)	45.7		ng/l	1.85	0.047	1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	19.1		ng/l	1.85	0.180	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85	0.144	1		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.85	0.093	1		
Perfluorooctanesulfonic Acid (PFOS)	4.55		ng/l	1.85	0.103	1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.176	1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	0.269	1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.85	0.232	1		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.177	1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.206	1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.210	1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.345	1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.085	1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.084	1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.067	1		

_ // / / / / / /	I Asida hu lastana Dilutia					
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor
Sample Depth:						
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Client ID:	MW-1-D				Date Received:	09/21/18
Lab ID:	L1837978-01				Date Collected:	09/21/18 10:35
		SAMP	LE RESULTS	5		
Project Number:	19 PATCHEN AVE				Report Date:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
					Serial_N	lo:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	89	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	99	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	126	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	108	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	98	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	107	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	57	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	82	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	54	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	39	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	78	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	46	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	54	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	64	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	81	33-143

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-02		Date Collected:	09/21/18 12:35
Client ID:	MW-1		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/05/18 20:05			
Analyst:	PS			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	142	70.8	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			22			15-110

			Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1837978-02 MW-1 BROOKLYN		Date Collected: Date Received: Field Prep:	09/21/18 12:35 09/21/18 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 122,537(M) 10/13/18 21:59 PB		Extraction Method Extraction Date:	d: EPA 537 09/27/18 18:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	6.13		ng/l	1.85	0.121	1		
Perfluoropentanoic Acid (PFPeA)	12.7		ng/l	1.85	0.079	1		
Perfluorobutanesulfonic Acid (PFBS)	3.33		ng/l	1.85	0.102	1		
Perfluorohexanoic Acid (PFHxA)	9.57		ng/l	1.85	0.102	1		
Perfluoroheptanoic Acid (PFHpA)	7.63		ng/l	1.85	0.086	1		
Perfluorohexanesulfonic Acid (PFHxS)	4.33		ng/l	1.85	0.100	1		
Perfluorooctanoic Acid (PFOA)	39.6		ng/l	1.85	0.047	1		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.85	0.180	1		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.85	0.144	1		
Perfluorononanoic Acid (PFNA)	1.62	J	ng/l	1.85	0.093	1		
Perfluorooctanesulfonic Acid (PFOS)	22.5	0	ng/l	1.85	0.103	1		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.85	0.176	1		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.85	0.269	1		
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	1.85	0.232	1		
(NMeFOSAA) Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.85	0.177	1		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.85	0.206	1		
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.85	0.210	1		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.85	0.345	1		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.85	0.085	1		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.85	0.084	1		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.85	0.067	1		

	d Asida by leatons Dilution	. Manafial					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BROOKLYN				Field Prep	:	Not Specified
Client ID:	MW-1				Date Rece	eived:	09/21/18
Lab ID:	L1837978-02				Date Colle	ected:	09/21/18 12:35
		SAMP		5			
Project Number:	19 PATCHEN AVE				Report D	Date:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Num	nber:	L1837978
					Se	erial_No	0:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	90	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	121	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	114	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	104	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	118	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	88	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	50	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	84	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	88	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	37	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	79	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	48	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	65	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	78	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	84	33-143

			Serial_No	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-03		Date Collected:	09/21/18 09:55
Client ID:	MW-2		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/05/18 20:34			
Analyst:	PS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	147	73.5	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			30			15-110

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-03		Date Collected:	09/21/18 09:55
Client ID:	MW-2		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	l: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/13/18 22:15			
Analyst:	PB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfield	d Lab				
	7 70		"	4.00	0.440	
Perfluorobutanoic Acid (PFBA)	7.76		ng/l	1.82	0.119	1
Perfluoropentanoic Acid (PFPeA)	24.2		ng/l	1.82	0.078	1
Perfluorobutanesulfonic Acid (PFBS)	3.44		ng/l	1.82	0.100	1
Perfluorohexanoic Acid (PFHxA)	16.0		ng/l	1.82	0.115	1
Perfluoroheptanoic Acid (PFHpA)	15.3		ng/l	1.82	0.084	1
Perfluorohexanesulfonic Acid (PFHxS)	5.96		ng/l	1.82	0.098	1
Perfluorooctanoic Acid (PFOA)	80.4		ng/l	1.82	0.046	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.82	0.176	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.82	0.141	1
Perfluorononanoic Acid (PFNA)	1.44	J	ng/l	1.82	0.092	1
Perfluorooctanesulfonic Acid (PFOS)	41.8		ng/l	1.82	0.101	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.82	0.173	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.82	0.264	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.82	0.228	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.82	0.174	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.82	0.202	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.82	0.206	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.82	0.339	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.82	0.083	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.82	0.082	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.82	0.065	1

Parameter		Result	Qualifier	Units	RL N	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BROOKLYN				Field Prep:		Not Specified
Client ID:	MW-2				Date Receive	ed:	09/21/18
Lab ID:	L1837978-03				Date Collecte	ed:	09/21/18 09:55
		SAMP	LE RESULT	6			
Project Number:	19 PATCHEN AVE				Report Dat	e:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Numbe	er:	L1837978
					Seria	al_No	:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	93	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	123	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	122	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	117	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	114	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	41	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	102	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	27	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	52	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	92	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	48	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	71	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	93	33-143

			Serial_No	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-04		Date Collected:	09/21/18 12:00
Client ID:	MW-4		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/03/18 20:41			
Analyst:	PS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
,4-Dioxane	ND		ng/l	153	76.5	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			17			15-110

			Serial_No	:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-04		Date Collected:	09/21/18 12:00
Client ID:	MW-4		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	I: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/13/18 22:32			
Analyst:	PB			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Diluti	Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab								
Perfluorobutanoic Acid (PFBA)	5.24		ng/l	1.86	0.122	1			
Perfluoropentanoic Acid (PFPeA)	7.59		•	1.86	0.080	1			
			ng/l						
Perfluorobutanesulfonic Acid (PFBS)	2.61		ng/l	1.86	0.103	1			
Perfluorohexanoic Acid (PFHxA)	6.72		ng/l	1.86	0.118	1			
Perfluoroheptanoic Acid (PFHpA)	5.48		ng/l	1.86	0.086	1			
Perfluorohexanesulfonic Acid (PFHxS)	2.25		ng/l	1.86	0.100	1			
Perfluorooctanoic Acid (PFOA)	41.0		ng/l	1.86	0.047	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	10.3		ng/l	1.86	0.181	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.86	0.145	1			
Perfluorononanoic Acid (PFNA)	0.739	J	ng/l	1.86	0.094	1			
Perfluorooctanesulfonic Acid (PFOS)	15.4		ng/l	1.86	0.104	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86	0.178	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86	0.271	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	1.38	J	ng/l	1.86	0.234	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86	0.178	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86	0.207	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86	0.212	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86	0.348	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86	0.085	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86	0.084	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86	0.067	1			

	I Asida hu lastana Dilutia					
Parameter		Result	Qualifier	Units	RL MD	Dilution Factor
Sample Depth:						
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Client ID:	MW-4				Date Received:	
Lab ID:	L1837978-04				Date Collected:	09/21/18 12:00
		SAMP	LE RESULT	5		
Project Number:	19 PATCHEN AVE			_	Report Date:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
					Serial_	No:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	85	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	96	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	112	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	106	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	89	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	38	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	80	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	98	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	30	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	55	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	91	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	54	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	67	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	77	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	81	33-143

			Serial_No	o:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-05		Date Collected:	09/21/18 12:10
Client ID:	MW-4 DUP		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Metho	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/03/18 21:09			
Analyst:	PS			
2				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	147	73.5	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			18		1	15-110

			Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-05		Date Collected:	09/21/18 12:10
Client ID:	MW-4 DUP		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/13/18 22:48			
Analyst:	PB			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	4.64		ng/	1.87	0.123	1			
			ng/l						
Perfluoropentanoic Acid (PFPeA)	6.96		ng/l	1.87	0.080	1			
Perfluorobutanesulfonic Acid (PFBS)	2.29		ng/l	1.87	0.103	1			
Perfluorohexanoic Acid (PFHxA)	6.55		ng/l	1.87	0.118	1			
Perfluoroheptanoic Acid (PFHpA)	4.56		ng/l	1.87	0.087	1			
Perfluorohexanesulfonic Acid (PFHxS)	2.52		ng/l	1.87	0.101	1			
Perfluorooctanoic Acid (PFOA)	39.0		ng/l	1.87	0.047	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	12.0		ng/l	1.87	0.182	1			
Perfluoroheptanesulfonic Acid (PFHpS)	0.476	J	ng/l	1.87	0.145	1			
Perfluorononanoic Acid (PFNA)	0.816	J	ng/l	1.87	0.094	1			
Perfluorooctanesulfonic Acid (PFOS)	15.1		ng/l	1.87	0.104	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.87	0.178	1			
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.87	0.272	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.87	0.234	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.87	0.179	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.87	0.208	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.87	0.212	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.87	0.349	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.87	0.086	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.87	0.085	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.87	0.067	1			

						Serial_No	0:10151818:53	
Project Name:	19 PATCHEN AVE.				Lab Nu	ımber:	L1837978	
Project Number:	19 PATCHEN AVE				Report	Date:	10/15/18	
		SAMP	LE RESULTS	6				
Lab ID:	L1837978-05				Date Co	llected:	09/21/18 12:10	
Client ID:	MW-4 DUP				Date Re	ceived:	09/21/18	
Sample Location:	BROOKLYN				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	/I Acids by Isotope Dilutio	n - Mansfiel	d Lab					

i onnaonnatoa / ingr/ tolao by lootopo Dilation - manonola Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	95	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	106	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	117	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	113	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	100	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	94	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	39	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	88	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	95	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	29	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	42	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	80	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	74	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	88	33-143

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-06		Date Collected:	09/21/18 14:10
Client ID:	MW-5		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/03/18 21:37			
Analyst:	PS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	147	73.5	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			18			15-110

			Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-06		Date Collected:	09/21/18 14:10
Client ID:	MW-5		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	l: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/13/18 23:05			
Analyst:	PB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab									
Perfluorobutanoic Acid (PFBA)	6.02		ng/l	1.87	0.123	1			
Perfluoropentanoic Acid (PFPeA)	6.23		ng/l	1.87	0.080	1			
Perfluorobutanesulfonic Acid (PFBS)	3.50		ng/l	1.87	0.103	1			
Perfluorohexanoic Acid (PFHxA)	5.77		ng/l	1.87	0.103	1			
Perfluoroheptanoic Acid (PFHpA)	6.53		ng/l	1.87	0.087	1			
Perfluorohexanesulfonic Acid (PFHxS)	3.12		ng/l	1.87	0.101	1			
Perfluorooctanoic Acid (PFOA)	61.0		ng/l	1.87	0.047	1			
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.15		ng/l	1.87	0.182	1			
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.87	0.145	1			
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.87	0.094	1			
Perfluorooctanesulfonic Acid (PFOS)	11.0		ng/l	1.87	0.104	1			
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.87	0.178	1			
1H,1H,2H.2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.87	0.272	1			
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.87	0.234	1			
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.87	0.179	1			
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.87	0.208	1			
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.87	0.212	1			
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.87	0.349	1			
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.87	0.086	1			
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.87	0.085	1			
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.87	0.067	1			

	I Asida hu lastana Dilutia						
Parameter		Result	Qualifier	Units	RL N	NDL	Dilution Factor
Sample Depth:							
Sample Location:	BROOKLYN				Field Prep:		Not Specified
Client ID:	MW-5				Date Receive	ed:	09/21/18
Lab ID:	L1837978-06				Date Collecte	ed:	09/21/18 14:10
		SAMP	LE RESULT	6			
Project Number:	19 PATCHEN AVE				Report Date	e:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Numbe	er:	L1837978
					Seria	al_No	:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	90	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	97	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	101	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	112	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	113	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	104	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	40	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	82	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	89	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	94	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	38	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	26	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	55	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	44	33-143

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-07		Date Collected:	09/21/18 16:05
Client ID:	MW-6		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/04/18 12:36			
Analyst:	PS			
·				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	150	75.0	1
Surrogate			% Recovery	Qualifier		eptance riteria
1,4-Dioxane-d8			21			15-110

			Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-07		Date Collected:	09/21/18 16:05
Client ID:	MW-6		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/14/18 00:11			
Analyst:	PB			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	8.63		ng/l	1.81	0.119	1
Perfluoropentanoic Acid (PFPeA)	15.0		ng/l	1.81	0.078	1
Perfluorobutanesulfonic Acid (PFBS)	3.04		ng/l	1.81	0.100	1
Perfluorohexanoic Acid (PFHxA)	12.5		ng/l	1.81	0.114	1
Perfluoroheptanoic Acid (PFHpA)	12.0		ng/l	1.81	0.084	1
Perfluorohexanesulfonic Acid (PFHxS)	4.51		ng/l	1.81	0.098	1
Perfluorooctanoic Acid (PFOA)	57.5		ng/l	1.81	0.046	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	6.60		ng/l	1.81	0.176	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.81	0.140	1
Perfluorononanoic Acid (PFNA)	0.848	J	ng/l	1.81	0.091	1
Perfluorooctanesulfonic Acid (PFOS)	30.2		ng/l	1.81	0.101	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.81	0.172	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.81	0.263	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.81	0.227	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.81	0.173	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.81	0.201	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.81	0.205	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.81	0.338	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.81	0.083	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.81	0.082	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.81	0.065	1

	I Asida by Isotopa Dilutio					
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor
Sample Depth:						
Sample Location:	BROOKLYN				Field Prep:	Not Specified
Client ID:	MW-6				Date Received:	09/21/18
Lab ID:	L1837978-07				Date Collected:	09/21/18 16:05
		SAMP	LE RESULTS	5		
Project Number:	19 PATCHEN AVE			_	Report Date:	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Number:	L1837978
					Serial_N	lo:10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	81	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	91	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	113	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	107	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	98	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	107	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	86	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	35	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	79	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	31	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	54	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	91	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	11	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	47	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78	33-143

			Serial_No	0:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-08		Date Collected:	09/21/18 16:15
Client ID:	MW-3		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	09/28/18 08:30
Analytical Date:	10/04/18 14:11			
Analyst:	PS			
-				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4 Dioxane by 8270D-SIM - Mansfield Lab						
1,4-Dioxane	ND		ng/l	139	69.4	1
Surrogate			% Recovery	Qualifier	Acceptance alifier Criteria	
1,4-Dioxane-d8			17			15-110

			Serial_No	:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-08		Date Collected:	09/21/18 16:15
Client ID:	MW-3		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/14/18 00:27			
Analyst:	PB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfiel	d Lab				
	0.00			4.00	0.400	4
Perfluorobutanoic Acid (PFBA)	3.83		ng/l	1.86	0.122	1
Perfluoropentanoic Acid (PFPeA)	6.52		ng/l	1.86	0.080	1
Perfluorobutanesulfonic Acid (PFBS)	1.42	J	ng/l	1.86	0.102	1
Perfluorohexanoic Acid (PFHxA)	4.65		ng/l	1.86	0.117	1
Perfluoroheptanoic Acid (PFHpA)	2.22		ng/l	1.86	0.086	1
Perfluorohexanesulfonic Acid (PFHxS)	0.970	J	ng/l	1.86	0.100	1
Perfluorooctanoic Acid (PFOA)	7.62		ng/l	1.86	0.047	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.86	0.180	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.86	0.144	1
Perfluorononanoic Acid (PFNA)	2.22		ng/l	1.86	0.094	1
Perfluorooctanesulfonic Acid (PFOS)	17.1		ng/l	1.86	0.104	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.86	0.177	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.86	0.270	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/l	1.86	0.233	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.86	0.178	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.86	0.207	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.86	0.211	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.86	0.346	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.86	0.085	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.86	0.084	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.86	0.067	1

	I Asida by Jactora Dilutia						
Parameter		Result	Qualifier	Units	RL M	IDL	Dilution Factor
Sample Depth:							
Sample Location:	BROOKLYN				Field Prep:		Not Specified
Client ID:	MW-3				Date Receive	d:	09/21/18
Lab ID:	L1837978-08				Date Collecte	d:	09/21/18 16:15
		SAMP	LE RESULT	5			
Project Number:	19 PATCHEN AVE				Report Date) :	10/15/18
Project Name:	19 PATCHEN AVE.				Lab Numbe	r:	L1837978
					Seria	I_No:′	10151818:53

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	124	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	112	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	95	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	34	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	90	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	31	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	53	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	82	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	34	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	50	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	67	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	75	33-143

			Serial_No	p:10151818:53
Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		SAMPLE RESULTS		
Lab ID:	L1837978-09		Date Collected:	09/21/18 16:20
Client ID:	FIELD BLANK		Date Received:	09/21/18
Sample Location:	BROOKLYN		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method	d: EPA 537
Analytical Method:	122,537(M)		Extraction Date:	09/27/18 18:30
Analytical Date:	10/14/18 00:44			
Analyst:	PB			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfield	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/l	1.93	0.127	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	1.93	0.083	1
Perfluorobutanesulfonic Acid (PFBS)	ND		•	1.93	0.005	1
	ND		ng/l			
Perfluorohexanoic Acid (PFHxA)			ng/l	1.93	0.122	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.93	0.089	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.93	0.104	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.93	0.049	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	1.93	0.187	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.93	0.150	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.93	0.097	1
Perfluorooctanesulfonic Acid (PFOS)	1.34	J	ng/l	1.93	0.108	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.93	0.184	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	1.93	0.281	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.93	0.242	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.93	0.184	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.93	0.215	1
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	1.93	0.219	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.93	0.360	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.93	0.088	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.93	0.087	1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	1.93	0.070	1

					Ser	ial_No	0:10151818:53	
Project Name:	19 PATCHEN AVE.				Lab Numb	ber:	L1837978	
Project Number:	19 PATCHEN AVE				Report Da	ite:	10/15/18	
		SAMP	LE RESULTS	5				
Lab ID:	L1837978-09				Date Collec	ted:	09/21/18 16:20	
Client ID:	FIELD BLANK				Date Receiv	/ed:	09/21/18	
Sample Location:	BROOKLYN				Field Prep:		Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	I Acids by Isotone Dilutio	n - Mansfiel	dlah					

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	91	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	93	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	94	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	109	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	84	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	92	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	32	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	92	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	95	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	25	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	49	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	119	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	20	1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	70	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	78	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	60	33-143

Project Name:	19 PATCHEN AVE.		Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18
		Mathed Dlauk Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:	122,537(M)	Extraction Method:	EPA 537
Analytical Date:	10/13/18 17:34	Extraction Date:	09/27/18 18:30
Analyst:	PB		

arameter F	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by Isotope [/G1161650-1	Dilution -	Mansfield L	ab for	sample(s):	01-09	Batch:
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		0.131
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		0.086
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		0.110
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		0.126
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		0.092
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		0.108
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		0.050
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		0.194
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		0.155
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		0.101
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		0.112
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		0.190
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		0.291
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		0.250
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		0.191
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.00		0.222
Perfluorooctanesulfonamide (FOSA)	ND		ng/l	2.00		0.227
N-Ethyl Perfluorooctanesulfonamidoacetic Ad (NEtFOSAA)	cid ND		ng/l	2.00		0.373
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		0.092
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		0.090
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		0.072

Project Name: Project Number:	19 PATCHEN AVE. 19 PATCHEN AVE		Lab Number: Report Date:	L1837978 10/15/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	122,537(M) 10/13/18 17:34 PB		Extraction Method: Extraction Date:	EPA 537 09/27/18 18:30

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotope WG1161650-1	Dilution	- Mansfield	Lab for :	sample(s):	01-09	Batch:	

Surrogate	%Recovery	cceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	106	2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	111	16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	127	31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	126	21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	118	30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	117	47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	112	36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	39	1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	98	34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	116	42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	94	38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	39	7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3- NMeFOSAA)	57	1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	89	40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	80	1-87
$N\mbox{-}Deuterioethylperfluoro-1\mbox{-}octanesulfonamidoacetic\mbox{ Acid}\mbox{ (d5-NEtFOSAA)}$	83	23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	97	24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	106	33-143

Project Name: Project Number:	19 PATCHEN AVE. 19 PATCHEN AVE			L1837978 10/15/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date:	1,8270D-SIM 10/03/18 11:24		Extraction Method: Extraction Date:	EPA 3510C 09/28/18 08:30

Parameter	Result	Qualifier	Units	RL	MDL
1,4 Dioxane by 8270D-SIM - Mansfi	eld Lab fo	r sample(s):	01-08	Batch: WG1	161870-1
1,4-Dioxane	ND		ng/l	150	75.0

Surrogate	%Recovery G	Acceptance Qualifier Criteria
1,4-Dioxane-d8	22	15-110

Analyst:

PS

Lab Control Sample Analysis Batch Quality Control

Project Name: 19 PATCHEN AVE. Project Number: 19 PATCHEN AVE

Lab Number: L1837978 Report Date: 10/15/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): 01-09	Batch:	WG1161650-2	WG1161650-3		
Perfluorobutanoic Acid (PFBA)	102		99		67-148	3		30
Perfluoropentanoic Acid (PFPeA)	104		103		63-161	1		30
Perfluorobutanesulfonic Acid (PFBS)	99		106		65-157	7		30
Perfluorohexanoic Acid (PFHxA)	114		107		69-168	6		30
Perfluoroheptanoic Acid (PFHpA)	94		87		58-159	8		30
Perfluorohexanesulfonic Acid (PFHxS)	92		96		69-177	4		30
Perfluorooctanoic Acid (PFOA)	94		104		63-159	10		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	157		154		49-187	2		30
Perfluoroheptanesulfonic Acid (PFHpS)	100		106		61-179	6		30
Perfluorononanoic Acid (PFNA)	92		106		68-171	14		30
Perfluorooctanesulfonic Acid (PFOS)	80		91		52-151	13		30
Perfluorodecanoic Acid (PFDA)	121		116		63-171	4		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	112		100		56-173	11		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	89		98		60-166	10		30
Perfluoroundecanoic Acid (PFUnA)	89		86		60-153	3		30
Perfluorodecanesulfonic Acid (PFDS)	137		128		38-156	7		30
Perfluorooctanesulfonamide (FOSA)	87		86		46-170	1		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	151		103		45-170	38	Q	30
Perfluorododecanoic Acid (PFDoA)	113		105		67-153	7		30
Perfluorotridecanoic Acid (PFTrDA)	104		99		48-158	5		30
Perfluorotetradecanoic Acid (PFTA)	111		113		59-182	2		30

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1837978

Project Number: 19 PATCHEN AVE

19 PATCHEN AVE.

Project Name:

Report Date: 10/15/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	ample(s): 01-09	Batch:	WG1161650-2	WG1161650-3			

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	94		93		2-156
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	99		98		16-173
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		107		31-159
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	107		111		21-145
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	110		106		30-139
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95		101		47-153
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		95		36-149
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	32		41		1-244
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	94		88		34-146
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	85		94		42-146
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	94		92		38-144
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	36		40		7-170
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	63		75		1-181
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	95		91		40-144
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	75		80		1-87
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	56		58		23-146
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	73		76		24-161
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	105		99		33-143

Lab Control Sample Analysis

Project Name:	19 PATCHEN AVE.	Batch Quality Control	Lab Number:	L1837978
Project Number:	19 PATCHEN AVE		Report Date:	10/15/18

-	LCS	• •	LCSD	<u> </u>	%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limit	5
1,4 Dioxane by 8270D-SIM - Mansfield Lab	Associated sample	e(s): 01-08	Batch: WG116	61870-2	WG1161870-3			
1,4-Dioxane	106		105		40-140	1	30	

Surrogate	LCS %Recovery	Qual %	LCSD Recovery	Qual	Acceptance Criteria
1,4-Dioxane-d8	23		24		15-110

Matrix Spike Analysis Batch Quality Control

Batch	Quality	Contr
-------	---------	-------

Project Name: 19 PATCHEN AVE.

Project Number: **19 PATCHEN AVE** Lab Number: L1837978 Report Date: 10/15/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Client ID: MW-5	otope Dilutior	n - Mansfield	Lab Assoc	iated sample(s):	01-09	QC Batch	ID: WG116165	0-4 WG1161650-5	QC S	ample: L	.1837978-06
Perfluorobutanoic Acid (PFBA)	6.02	39.1	47.2	105		47.2	105	67-148	0		30
Perfluoropentanoic Acid (PFPeA)	6.23	39.1	49.6	111		50.0	112	63-161	1		30
Perfluorobutanesulfonic Acid (PFBS)	3.50	39.1	44.3	104		45.4	107	65-157	2		30
Perfluorohexanoic Acid (PFHxA)	5.77	39.1	48.6	110		54.5	124	69-168	11		30
Perfluoroheptanoic Acid (PFHpA)	6.53	39.1	38.6	82		44.5	97	58-159	14		30
Perfluorohexanesulfonic Acid (PFHxS)	3.12	39.1	52.4	126		45.3	108	69-177	15		30
Perfluorooctanoic Acid (PFOA)	61.0	39.1	98.8	97		97.6	93	63-159	1		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	5.15	39.1	49.8	114		60.5	141	49-187	19		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	39.1	39.5	101		42.6	109	61-179	8		30
Perfluorononanoic Acid (PFNA)	ND	39.1	40.2	103		43.7	111	68-171	8		30
Perfluorooctanesulfonic Acid (PFOS)	11.0	39.1	45.3	88		47.0	92	52-151	4		30
Perfluorodecanoic Acid (PFDA)	ND	39.1	47.8	122		48.2	123	63-171	1		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	39.1	73.7	189	Q	39.8	101	56-173	60	Q	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	39.1	40.1	103		53.5	136	60-166	29		30
Perfluoroundecanoic Acid (PFUnA)	ND	39.1	40.5	104		42.6	109	60-153	5		30
Perfluorodecanesulfonic Acid (PFDS)	ND	39.1	42.3	108		47.0	120	38-156	11		30
Perfluorooctanesulfonamide (FOSA)	ND	39.1	39.9	102		39.7	101	46-170	1		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	39.1	41.4	106		63.1	161	45-170	42	Q	30
Perfluorododecanoic Acid (PFDoA)	ND	39.1	42.2	108		39.9	102	67-153	6		30
Perfluorotridecanoic Acid (PFTrDA)	ND	39.1	29.9	76		24.6	63	48-158	19		30
Perfluorotetradecanoic Acid (PFTA)	ND	39.1	40.8	104		48.5	124	59-182	17		30

					-	oike Ana Juality Cor							
Project Name:	19 PATCHEN	AVE.		-	Daton Q				Lab Nun	nber:	L1	837978	
Project Number:	19 PATCHEN	AVE								Report Date:			
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-09 QC Batch ID: WG1161650-4 WG1161650-5 QC Sample: L1837978-06 Client ID: MW-5

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	29		46		7-170	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	62		54		1-244	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	46		43		23-146	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	56		34		1-181	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	78		73		40-144	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	85		86		38-144	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	107		98		21-145	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107		104		30-139	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	93		86		47-153	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	52		52		24-161	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	36		24	Q	33-143	
Perfluoro[13C4]Butanoic Acid (MPFBA)	88		84		2-156	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	96		89		16-173	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	39		21		1-87	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	100		83		42-146	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	87		83		36-149	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87		77		34-146	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110		90		31-159	

Were project specific reporting limits specified?

YES

Serial_No:10151818:53 Lab Number: L1837978 Report Date: 10/15/18

Sample Receipt and Container Information

Cooler Information

Container Information

Cooler	Custody Seal
А	Absent
В	Absent
С	Absent

Final Temp Initial Frozen pН deg C Pres Seal Date/Time pН Container ID Container Type Cooler Analysis(*) L1837978-01A Vial HCI preserved А NA 2.6 Υ Absent NYTCL-8260(14) L1837978-01B Vial HCI preserved А NA 2.6 Υ NYTCL-8260(14) Absent L1837978-01C Vial HCI preserved А NA 2.6 Υ Absent NYTCL-8260(14) L1837978-01D Amber 500ml unpreserved А 7 7 2.6 Υ Absent A2-1,4-DIOXANE-SIM(7) L1837978-01E Amber 500ml unpreserved А 7 7 2.6 Υ Absent A2-1,4-DIOXANE-SIM(7) 3 Plastic Trizma/1 Plastic/1 H20+Trizma 2.6 Υ L1837978-01F А NA Absent A2-NY-537-ISOTOPE(14) L1837978-01G 3 Plastic Trizma/1 Plastic/1 H20+Trizma Α NA 2.6 Υ A2-NY-537-ISOTOPE(14) Absent L1837978-01H 3 Plastic Trizma/1 Plastic/1 H20+Trizma А NA 2.6 Υ A2-NY-537-ISOTOPE(14) Absent Υ L1837978-02A Vial HCI preserved А NA 2.6 Absent NYTCL-8260(14) L1837978-02B Vial HCl preserved А NA 2.6 Υ NYTCL-8260(14) Absent L1837978-02C Vial HCl preserved А NA 2.6 Υ NYTCL-8260(14) Absent L1837978-02D Amber 500ml unpreserved А 7 7 2.6 Υ A2-1,4-DIOXANE-SIM(7) Absent L1837978-02E А 7 7 Υ A2-1,4-DIOXANE-SIM(7) Amber 500ml unpreserved 2.6 Absent L1837978-02F 3 Plastic Trizma/1 Plastic/1 H20+Trizma А NA 2.6 Υ A2-NY-537-ISOTOPE(14) Absent L1837978-02G 3 Plastic Trizma/1 Plastic/1 H20+Trizma А NA 2.6 Υ Absent A2-NY-537-ISOTOPE(14) L1837978-02H 3 Plastic Trizma/1 Plastic/1 H20+Trizma А NA 2.6 Υ Absent A2-NY-537-ISOTOPE(14) С Vial HCI preserved Υ NYTCL-8260(14) L1837978-03A NA 2.7 Absent С L1837978-03B Vial HCI preserved NA 2.7 Υ NYTCL-8260(14) Absent L1837978-03C Vial HCI preserved С NA 2.7 Υ NYTCL-8260(14) Absent

С

С

7

7

 $\Delta LPHA$

A2-1,4-DIOXANE-SIM(7)

A2-1,4-DIOXANE-SIM(7)

2.7

2.7

Υ

Υ

Absent

Absent

7

7

L1837978-03D

L1837978-03E

Amber 500ml unpreserved

Amber 500ml unpreserved

Serial_No:10151818:53 *Lab Number:* L1837978 *Report Date:* 10/15/18

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1837978-03F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-03G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-03H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-04A	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-04B	Vial HCI preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-04C	Vial HCI preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-04D	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)
L1837978-04E	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)
L1837978-04F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-04G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-04H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-05A	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-05B	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-05C	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-05D	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)
L1837978-05E	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)
L1837978-05F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-05G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-05H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)
L1837978-06A	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06A1	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06A2	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06B	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06B1	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06B2	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06C	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06C1	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)
L1837978-06C2	Vial HCl preserved	В	NA		3.0	Y	Absent		NYTCL-8260(14)

Container Information			Initial		Тетр			Frozen		
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)	
L1837978-06D	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06D1	Amber 500ml unpreserved	В	NA		3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06D2	Amber 500ml unpreserved	В	NA		3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06E	Amber 500ml unpreserved	В	7	7	3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06E1	Amber 500ml unpreserved	В	NA		3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06E2	Amber 500ml unpreserved	В	NA		3.0	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-06F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06F1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06F2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06G1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06G2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Υ	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Υ	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06H1	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Υ	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-06H2	3 Plastic Trizma/1 Plastic/1 H20+Trizma	В	NA		3.0	Υ	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-07A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-07B	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-07C	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-07D	Amber 500ml unpreserved	А	7	7	2.6	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-07E	Amber 500ml unpreserved	А	7	7	2.6	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-07F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	А	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-07G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	А	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-07H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	А	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)	
L1837978-08A	Vial HCI preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-08B	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-08C	Vial HCl preserved	А	NA		2.6	Y	Absent		NYTCL-8260(14)	
L1837978-08D	Amber 500ml unpreserved	А	7	7	2.6	Y	Absent		A2-1,4-DIOXANE-SIM(7)	
L1837978-08E	Amber 500ml unpreserved	А	7	7	2.6	Y	Absent		A2-1,4-DIOXANE-SIM(7)	

Page 82 of 89

Serial_No:10151818:53 *Lab Number:* L1837978 *Report Date:* 10/15/18

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	r pH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1837978-08F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	А	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-08G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	A	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-08H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	A	NA		2.6	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-09F	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-09G	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-09H	3 Plastic Trizma/1 Plastic/1 H20+Trizma	С	NA		2.7	Y	Absent		A2-NY-537-ISOTOPE(14)
	L1837978-10A	Vial HCI preserved	С	NA		2.7	Y	Absent		NYTCL-8260(14)
	L1837978-10B	Vial HCI preserved	С	NA		2.7	Y	Absent		NYTCL-8260(14)

Project Name: 19 PATCHEN AVE.

Project Number: 19 PATCHEN AVE

Lab Number: L1837978

Report Date: 10/15/18

GLOSSARY

Acronyms

-	
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

DU Report with 'J' Qualifiers Report Format:

Project Name: 19 PATCHEN AVE.

Project Number: 19 PATCHEN AVE

 Lab Number:
 L1837978

 Report Date:
 10/15/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

 Lab Number:
 L1837978

 Report Date:
 10/15/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 122 Determination of Selected Perfluorintated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537, EPA/600/R-08/092. Version 1.1, September 2009.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:10151818:53

Westborough, MA 0158 8 Walkup Dr. TEL: 508-898-9193 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: 19 Pentchan Av 2				of Z	Deliv	in	es	912	ALPHA Job # L1 \$ 37978 Billing Information Same as Client Info					
PAX: 508-696-9193	FAX: 508-822-3288	Project Location:	ntin	- Fre-	-		17		ulS (1 File)) [] ASP-B] EQuIS (4 File)	Po#	ć -			
Client Information	1150 - 21.5 - E	Project #	arite				18	Othe	Services Internets			10#				
Client: TRnen	Envi	(Use Project name as Project n	ninet #)				Poor		y Requirer	-	Contraction of the local division of the loc	DI LON LON				
Address:		Project Manager: Matt Corroll							OGS	nent	Disposal Site Information	n				
		ALPHAQuote #:	As Co	1.011			- 님				NY Part 375	Please identify below location	on of			
Phone:		And the second se	-		-	-			Standards		NY CP-51	applicable disposal facilities.	20 			
Fax:		Turn-Around Time	-						lestricted U	Section Section	Other	Disposal Facility:				
	01.	Standard	Δ	Due Date				NYU	Inrestricted	Use		U NJ U NY				
Email: MCW101	t tenen - env.c	Bush (only if pre approved)		# of Days	3:			NYC	Sewer Disc	charge		Other:				
	been previously analyze ic requirements/comm						ANA	LYSI	S			Sample Filtration				
Please specify Meta	ls or TAL.						Noc	Dioxone	UU			Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o t			
(Lab Use Only)	ALPHA Lab ID (Lab Use Only) Sample ID		Coll	Sample	12202000000000000000000000000000000000		5	LL	-			t.				
1. No. 403/33/2011/5-50/16-50/1	MARK 1 TO		Date	Time	Matrix	Initials		-	P.			Sample Specific Comment	ts e			
37978-01	MW-1-D		9/2/18		GW	CZ	X	X	X				8			
	nw-1			1235	1	1	X	X	X				000			
63	MW-Z			0955			K	V	X				8			
ۍي	nw-4			1200			V	X	X				2			
15	hw-4 Du	2		1210			X	V	8	-			-8			
06	MW-5			1410			X	R		-			8			
06	MW-5-MS			1420			X	5		-			0000000000			
c la	MW.5-MS	0		1430			X	∇	2				0			
67	NW-6			1605	++	++-	K?	\diamond		-			- 8			
6%	MW-3		-	1615	1	1	X	\diamond		-			0			
Preservative Code; A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Verticative Code: Container Code Westboro: Certification No: MA935 Mainer P = Plastic Westboro: Certification No: MA935 Mainer A = Amber Glass Mansfield: Certification No: MA915 O3 V = Vial Vertification No: MA935				-		AAA	P			Please print clearly, legibly and completely. Samples can not be logged in and					
E = NaOH F = MeOH G = NaHSO₄	B = Bacteria Cup C = Cube O = Other E = Encore	A Hingstoph B		Time						turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING						
$H = Na_2S_2O_3$ S/E = Zn Ac/NaOH D = Other	D = BOD Bottle	June Paulonay	selle	9/21/18	1625	Paul	m	ag	felle	19/2	21/18/625	THIS COC, THE CLIEN HAS READ AND AGRI BE BOUND BY ALI TERMS & CONDITION	EES PHA'S			
orm No: 01-25 HC (rev. 3	u-Sept-2013)			1 1	2							(See reverse side.)				

Serial_No:10151818:53

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430; 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page Z.o	-		Date in l	Rec'd O	1/2	ALPHA JOD # L1537978			
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					/erable	5	Test	The second	Billing Information	2100		
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 19	reach	. Ave				ASP-	A		ASP-	В	Same as Client Info)
	1703. 300-022-3200	Project Location:						EQuis	S (1 File)] EQuis	S (4 File)	PO #	
Client Information		Project #	,					Other						
Client: Tenen E	nyi	(Use Project name as Pr	roject #) X				Regu	ulatory	Requiren	nent	E.		Disposal Site Information	n
Address:		Project Manager:						NY TO	GS	Γ	NY Pa	rt 375	Please identify below locatio	
		ALPHAQuote #:						AWQ	andards		-51	applicable disposal facilities.		
Phone:		Turn-Around Time		REALING	and the second	Section of	NY Restricted Use Other						Disposal Facility:	
Fax:		Standard	A	Due Date:			16	NY Un	estricted l	Use			□ NJ □ NY	
Email: ~ CCSTO 10	temenv.co	Rush (only if pre approved		# of Days:					ewer Discl				Other:	
These samples have been				a cr c uja			ANA	LYSIS	ener biod	in go			Sample Filtration	т
Other project specific re-											T 1		-	
Please specify Metals or	TAL.						L	,					Done Lab to do Preservation Lab to do	t a I B o
		1					A	2					(Please Specify below)	
ALPHA Lab ID	Sa	nple ID Collection				Sampler's	14	10						
(Lab Use Only)		-	Pate	Time	Matrix	Initials	17						Sample Specific Comment	s e
37978-09 7	Field BI	cunk	9/21/8	1620		CZ	X						1	3
(0)	Frip Blo	nk	9/21/0				1	\mathbf{X}						ž
and the state of			1 1											
										-				
		1				-				-				
		4								-				
		103							-	-		_		
							-			-				
A = None P = B = HCI A = C = HNO3 V = D = H2SO4 G = E = NaOH B =	Container Code Westboro: Certification No: MA935 P = Plastic Westboro: Certification No: MA935 A = Amber Glass Mansfield: Certification No: MA011 V = Vial G = Glass B = Bacteria Cup C = Cube				Ρ	tainer Type reservative	OB						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are	
H = Na ₂ S ₂ O ₃ E =	Other Encore BOD Bottle	Jevin Wagner 9/21/10/ Jevin Wagner 9/21/18/ Cauchy Wagner 9/21/18/				e Received By: 3-5 Jeogh amon 22 Faul Mayalla 1-7830					Date/ -1(1) 1/18	1625 193	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	