

Periodic Review Report

Williamsburg Bridgeview Apartment 337 Berry Street Brooklyn, New York 11249

NYSDEC BCP Site No. C224233

Prepared For:

LPC Development Group LLC 456 East 173rd Street Bronx, NY 10457

Prepared By:

Advanced Cleanup Technologies, Inc. 110 Main Street, Suite 103 Port Washington, NY 11050

May 28, 2019

Table of Contents

		Page
1.	Introduction	1
2.	Institutional Controls	1
3.	Engineering Controls	2
	A. Cover System	2
	B. Sub-Slab Depressurization System	2
	C. Soil Vapor Extraction System	3
4.	Startup Inspections	4
5.	Site-wide Inspections	6
6.	Groundwater Monitoring	7
7.	Proposed Modification to SVES Monitoring Schedule	7
8.	Certification of Institutional and Engineering Controls	8

List of Appendices

A.	Site	Managem	ent Plan
----	------	---------	----------

- **B.** Cover System
- C. Sub-Slab Depressurization System Layout
- D. Soil Vapor Extraction System Layout and Logged Data
- E. SVES Implementation Plan
- F. Certified Laboratory Reports

List of Tables

- **1** SSDS Effluent VOC Concentrations
- 2 SVES Vacuum and Flow Measurements
- **3** SVES Influent and Effluent VOC Concentrations

1. Introduction

The property located at 337 Berry Street, Brooklyn, New York 11249 (the Site) has implemented a New York State Department of Environmental Conservation (NYSDEC) approved Site Management Plan (SMP) dated August 2018. A copy of the SMP is provided in Appendix A.

Advanced Cleanup Technologies, Inc. (ACT) was retained to perform operation, maintenance and monitoring activities and prepare this Periodic Review Report for the Site pursuant to the approved SMP. This report contains a summary of the current condition of institutional and engineering controls at the Site and the results of the Operation, Maintenance and Monitoring (OM&M) inspections performed to date.

2. <u>Institutional Controls</u>

An Environmental Easement (EE) for the Site was executed by the NYSDEC and filed with the New York City Clerk on November 2, 2018. The EE contains a series of Institutional Controls (ICs) required by the Final Engineering Report (FER) to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to restricted residential, commercial and industrial uses only. Adherence to these ICs is required by the EE and they are being implemented pursuant to the SMP.

3. <u>Engineering Controls</u>

Since remaining contaminated soil, groundwater and soil vapor exist beneath the Site, Engineering Controls (EC) are required to protect human health and the environment. The Site has the following primary ECs, as described in the following subsections.

A. Cover System

Exposure to remaining contamination in soil/fill at the Site is prevented by a soil cover system placed over the Site. This cover system is comprised of a minimum of 12 to 24 inches of clean soil, asphalt pavement, concrete-covered sidewalks, and/or concrete building slabs. Appendix B contains a diagram identifying the location of each cover type built at the Site. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix A of the SMP.

B. Sub-Slab Depressurization System (SSDS)

There is a Sub-Slab Depressurization System (SSDS) located within the building. The site SSDS consists of five (5) zones underneath the building. The zones were designed to address approximately 2,000 square feet of the building footprint. Each zone has a layer of crushed stone and geovent over the stone around its perimeter to act as a permeable layer to transmit vapors through the system. The geovent is connected to sub-slab PVC piping which transitions into cast iron piping above the concrete floor. The cast iron piping travels vertically up through the building and vents on the roof through in-line fans. The system has monitoring points to determine if a vacuum is being created in each zone, alarms should the exhaust fans shut down or air flow is blocked, and vacuum gauges to determine if there is flow. The SSDS is designed to run continuously until such time as the DEC allows for a reduction in use or

termination of the system. The layout of the active SSDS installed at the Site is provided in Appendix C.

A vapor barrier consisting of a geosynthetic membrane and liner was installed above the geovent and below the building slab. It was anchored into the foundation wall and properly sealed to make a monolithic barrier to prevent vapor intrusion into the building. The vapor barrier consists of:

- Geosynthetic membrane
- WR Grace Florprufe 120
- Preprufe Tape
- Bithuthene
- Hilti anchor system to anchor the Preprufe to the foundation walls

C. Soil Vapor Extraction System (SVES)

The SVES was installed in the parking lot area of the site to address potential vapor intrusion into neighboring properties along Berry Street. The system consists of four (4) PVC extraction points that extend approximately 15 feet below grade with a 5-foot screen and horizontal PVC piping to a package treatment plant. The horizontal piping is approximately 4-feet deep. The package plant key components include the system controls, extraction motor, and activated Carbon canisters to remove VOCs from the vapor. The system is designed to run continuously until such time as the removal rates become asymptotic or negligible and the DEC allows for a reduction of use or termination of the system. The as-built layout of the SVES is provided in Appendix D.

4. <u>Startup Inspections</u>

Pursuant to the approved SVES Implementation Plan contained in Appendix E, startup inspections of the SVES were performed once all piping and equipment was installed and energized.

A startup inspection of the SSDS was performed on March 26, 2019 for the purpose of collecting effluent air samples from the 5 vacuum blowers mounted on riser pipes on the roof of the recently constructed building. The laboratory results from the SSDS exhaust sampling are summarized in Table 1. The certified laboratory reports are contained in Appendix F.

Table 1

Parameter	NYSDOH Air	Sampling Location				
	Guideline	SSDS-1	SSDS-2	SSDS-3	SSDS-4	SSDS-5
Tetrachloroethene	30	3.2	0.46	3.3	4.3	ND
Trichloroethene	2	1.3	ND	0.51	0.97	ND
1,1,1-Trichloroethane	NA	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	NA	0.33	ND	0.32	ND	ND
NA = Not Available						
ND = Not detected above	e laboratory's m	nethod detecti	on limit			

SSDS Effluent VOC Concentrations (ug/m³) March 26, 2019

It can be seen from Table 1 that from one and three VOCs included in the NYSDOH's Decision Matrices were detected in up to four SSDS effluent samples. However, all of the VOCs were detected below applicable air guidance values. Therefore, effluent treatment of the SSDS exhaust should not be necessary.

Startup inspections of the SVES were performed on February 25th, March 11th and April 30th, 2019. During startup inspections, system pressure and flow were recorded and adjusted to maintain an optimum vacuum.

Table 2

Date	02/25/2019	03/11/2019	04/30/2019
Blower Vac	85"	-83"	80"
SVE-1 Vac	84"	-82"	69"
SVE-2 Vac	Not Measured	-82"	63"
SVE-3 Vac	Not Measured	-80"	65"
SVE-4 Vac	Not Measured	-82"	70"
Flow (cfm)	80.5	90	79.5
PID Reading (ppb)	425	160	0
Sample Collected	No	Yes	Yes
Observations	0 PID post-carbon	System off on arrival; Water in SVE wells	System off on arrival; installed telemetry

SVES Vacuum and Flow Measurements

It can be seen from Table 2 that the SVES had automatically shut down on the two inspections following startup due to a buildup of water in the moisture separator. The vacuum generated by the SVES was water was steadily reduced until the SVES no longer accumulated stormwater drainage from transient storm events.

The accumulated stormwater was subsequently drained into 55-gallon drums and left onsite pending laboratory analysis. The laboratory results indicated that a trace concentration of TCE (0.22 ug/L) was the only chemical of concern detected in the drummed water. The TCE level was well below its TOGS 1.1.1 groundwater and effluent discharge standard, so the drummed water was discharged into the municipal sewer. A remote telemetry system was also installed within the treatment shed to insure that subsequent system outages could be serviced immediately and appropriate operating adjustments made. Appendix D contains the logged telemetry data to date indicating that only one subsequent shutdown occurred on May 6, 2019, which was corrected with a final blower pressure setting of 78 inches w.c.

The laboratory results from the SVES exhaust sampling are summarized in Table 2. The certified laboratory reports are contained in Appendix F. It can be seen from Table 2 that VOC concentrations increased slightly from March to April, which is expected immediately following startup of the SVES. It can also be seen that between 99.7 and 100 percent of VOC emissions were captured by the vapor-phase granular activated carbon adsorbers installed within the treatment shed.

Table 3

Parameter	SVES Exhaust Sampling Event					
	March 11, 2019		April 30, 2019			
	Influent	Effluent	Removal (%)	Influent	Effluent	Removal (%)
Tetrachloroethene	460	0.27	99.9	550	1.4	99.7
Trichloroethene	320	ND	100	450	0.79	99.8
1,1,1-Trichloroethane	18	ND	100	17	ND	100
Cis-1,2-Dichloroethene	5.8	ND	100	15	ND	100
ND = Not detected above laboratory's method detection limit						

SVES Influent and Effluent VOC Concentrations (ug/m³)

5. <u>Site-wide Inspections</u>

In accordance with the SMP, site-wide inspections of the cover system, SSDS and SVES are required at a minimum of once per year to verify that all EC's are being maintained and are functioning properly.

The first Site-wide inspection is currently scheduled to take place in October 2019 to coincide with the annual groundwater monitoring event. Additional Site-wide inspections will be performed annually thereafter.

6. Groundwater Monitoring

Annual groundwater monitoring is required in accordance with the SMP and should include the three recently installed onsite groundwater monitoring wells. According to the NYSDEC, the first annual groundwater monitoring was performed by Equity Environmental, Inc. in October 2018 and consisted of the collection and analysis of groundwater samples from the three onsite monitoring wells (MW-1, MW-2 and MW-3). All groundwater samples were analyzed for VOCs via EPA Method 8260, Per- and Poly-flouroalkyl Substances (PFAS) via USEPA Method 537, and 1,4-Dioxane via EPA Method 8270-SIM. The laboratory reports have not yet been provided to ACT for review.

The next round of groundwater monitoring will take place October 2019. The NYSDEC has not yet determined whether the analysis of PFAS will be required in subsequent groundwater monitoring events.

7. Proposed Modifications to SVES Monitoring Schedule

The SSDS and SVES engineering controls are currently functioning without nominally. The recently installed remote telemetry system indicates that the SVES has operated continuously since the system-wide vacuum was reduced to 74 in. w.c., which is producing vacuums in each SVE well ranging from 63 to 70 in. w.c. at a flow of 80 cfm.

The recently accumulated startup data indicate that influent vapor concentrations remain extremely low and over 99 percent removal efficiency with the existing vapor phase carbon treatment. In light of the SVES's stable operating conditions and the continuous 24/7/365 monitoring of SVES vacuum by the remote telemetry system, it is recommended that sampling and analysis of the SVES exhaust be reduced from monthly to quarterly.

8. <u>Certification of Institutional and Engineering Controls</u>

The following certification has been prepared by a Qualified Environmental Professional as per the requirements of NYSDEC DER-10:

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- I performed the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Paul Stewart, of Advanced Cleanup Technologies, Inc., am certifying as LPC Development Group LLC's Designated Site Representative for the site."

M. KA

Paul P. Stewart, MS, QEP

Appendix A

Site Management Plan

Williamsburg Bridgeview Apartments KINGS COUNTY BROOKLYN, NEW YORK

SITE MANAGEMENT PLAN

NYSDEC Site Number: C224233

Prepared for: LPC Development Group LLC 456 E 173rd Street Bronx, NY 10457

Prepared by: Equity Environmental Engineering LLC 500 International Drive Suite 150 Mt. Olive, NJ 07828 973/527-7451

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

AUGUST 2018

CERTIFICATION STATEMENT

I ROBERT JACKSON certify that I am currently a [NYS registered professional engineer or Qualified Environmental Professional as in defined in 6 NYCRR Part 375] and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

_____ QEP

AUGUST 1, 2018 DATE

TABLE OF CONTENTS

Williamsburg Bridgeview Apartments KINGS COUNTY BROOKLYN, NEW YORK

SITE MANAGEMENT PLAN

Table of Contents

Section

Description

Page

LIST OF ACRONYMS

1.0	Introduction
1.1	General12
1.2	Revisions13
2.1	Site Location and Description17
2.2	Physical Setting 17
2.2.1	Land Use 17
2.2.2	2 Geology
2.2.3	B Hydrogeology
So	jil 21
So	pil Vapor21
2.5	Remaining Contamination
3.0	institutional and Engineering control plan25
3.1	General25
3.3	Engineering Controls 27
3.3	3.1 Cover
3.3	3.2 Other ECs: Sub-slab Depressurization Systems; Soil Vapor Extraction Systems 27
3.3.3	Criteria for Completion of Remediation/Termination of Remedial Systems
3.3	3.3.1 - Cover
3.3	3.3.2 - Sub-Slab Depressurization (SSD) System29
3.3	3.3.3 - Soil Vapor Extraction System (SVE) System
4.0	Monitoring and sampling plan

4.1	General
4.2	Site – wide Inspection
4.3	Treatment System Monitoring and Sampling33
4.3.	1 Remedial System Monitoring
4.4.3	3 Groundwater Sampling
4.4.7	7 Monitoring and Sampling Protocol
5.0	OPERATION AND MAINTENANCE PLAN
5.3.	1 System Start-Up and Testing
5.3.2	2 Routine System Operation and Maintenance
5.3.3	3 Non-Routine Operation and Maintenance
5.3.4	4 System Monitoring Devices and Alarms
6.0	PERIODIC ASSESSMENTS/EVALUATIONS43
6.1	Climate Change Vulnerability Assessment43
6.2	Green Remediation Evaluation44
7.0.	reporting REQUIREMENTS
7.1	Site Management Reports
7.2	Periodic Review Report
7.4	Remedial Site Optimization Report54
8.0	REFERENCES

- 1. Notifications
- 2. Remaining Soil Sample Exceedances
- 3. Remaining Groundwater Sample Exceedances
- 4. Remaining Soil Vapor Sample Exceedance
- 5. Inspection, Monitoring and Sampling Schedule
- 6. Remedial System Sampling Requirements
- 7. Post Remediation Media Monitoring
- 8. Interim Reporting Summary/Schedule

TABLE OF CONTENTS (Continued)

Section

Description

Page

Figures

- 1. Site Location Map
- 2. Site Layout Map (Sample Locations, Boundaries, Tax Parcels, etc.)
- 3. Tax Map
- 4. Remaining Soil Sample Exceedances
- 5. Previous/New Monitoring Well Locations
- 6. Remaining Soil Vapor Sample Exceedances
- 7. Engineering Controls Location
- 8. Groundwater Sample Exceedances

Appendices

- A. Easement
- B. Contacts
- C. Soil Boring Logs
- D. Well Construction Logs
- E. Excavation Workplan
- F. HASP & CAMP
- G. O&M Manuals
- H. QAPP
- I. Site Management Forms
- J. Field Sampling Plan
- K. Remedial System Optimization Table of Contents
- L. Permits and/or Permit Equivalent
- M. Responsibilities of the Owner/Remedial Party

List of Acronyms

ASP	Analytical Services Protocol
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act
CAMP	Community Air Monitoring Plan
C/D	Construction and Demolition
CFR	Code of Federal Regulation
CLP	Contract Laboratory Program
COC	Certificate of Completion
СР	Commissioner Policy
DER	Division of Environmental Remediation
EC	Engineering Control
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
ERP	Environmental Restoration Program
EWP	Excavation Work Plan
HASP	Health and Safety Plan
IC	Institutional Control
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYCRR	New York Codes, Rules and Regulations
O&M	Operation and Maintenance
OM&M	Operation, Maintenance and Monitoring
OSHA	Occupational Safety and Health Administration
PID	Photoionization Detector
PRP	Potentially Responsible Party
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Remedial Party
RSO	Remedial System Optimization
SAC	State Assistance Contract
SCG	Standards, Criteria and Guidelines
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SOP	Standard Operating Procedures
SOW	Statement of Work
SPDES	State Pollutant Discharge Elimination System

SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leachate Procedure
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCP	Voluntary Cleanup Program

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan:

Site Identification: C224233			
	Williamsburg Bridgeview Apartments		
	95-105 South 5 th Street		
	Brooklyn, NY 11249		
Institutional Controls:	1. The property may be used for restricted residential and commercial use		
	2. Property Easement		
	3. All ECs must be inspected at manner defined in the SMP.	a frequency and in a	
Engineering Controls:	1. Cover system		
	2. Sub-slab depressurization system (SSDS)		
	3. Soil Vapor Extraction System (S	SVE)	
Inspections:		Frequency	
1. Cover inspection		Annually	
Monitoring:			
1. SSDS		Quarterly	
2. SVE		Monthly	
Maintenance:			
1. Exhaust Fan main	Quarterly		
2. SVE Package Plan	Semi-annually		
2. SVE Carbon Can	ister exchange	As required	

Site Identification:C224233Williamsburg Bridgeview Apartments95-105 South 5th StreetBrooklyn, NY 11249

Reporting:	
1. Inspections reports	As required
2. Periodic Review Report	Annually

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the Williamsburg Bridgeview Apartments located in Brooklyn, New York (hereinafter referred to as the "Site"). See Figure 1. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP) Site No. C224233 which is administered by New York State Department of Environmental Conservation (NYSDEC).

LPC Development Group LLC (LPC) entered into a Brownfield Cleanup Agreement on June 24, 2016 with the NYSDEC to remediate the site. The site location and boundaries are provided in Figure 2. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in Appendix A.

After completion of the remedial work, some contamination was left at this site, which is hereafter referred to as "remaining contamination". Institutional and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Kings County Clerk, requires compliance with this SMP and all ECs and ICs placed on the site.

This SMP was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375, the BCA, Site #C223233, for the site, and thereby subject to applicable penalties.

All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in Appendix B of this SMP.

This SMP was prepared by Equity Environmental Engineering LLC (Equity), on behalf of LPC, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated August , 2018, and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the site.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER -10 for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the VCA, 6NYCRR Part 375 and/or Environmental Conservation Law.
- 7-day advance notice of any field activity associated with the remedial program.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1 on the following page includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate

contact information. A full listing of site-related contact information is provided in Appendix B.

Table 1: Notifications*

Name	Contact Information
NYSDEC Project Manager – Melissa Sweet	(518) 402-9614 New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7015 melissa.sweet@dec.ny.gov
NYSDEC Regional HW Engineer – Jane O Connell	Jane O'Connell 718-482-4995 New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101-5401 jane.oconnell@dec.ny.gov;
NYSDEC Site Control – Kelly Lewandowski	Kelly Lewandowski (518)402-9553 New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7015 Kelly.lewandowski@dec.ny.gov,

* Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The site is located in Brooklyn, Kings County, New York and is identified as Block 2443 and Lot 6 (formerly lots 6, 37, and 41) on the Williamsburg Tax Map (see Figure 3). The site is an approximately one-third-acre area and is bounded by Berry Street to the north, residential property to the east, commercial property to the west, and South 5th Street to the south (see Figure 2 – Site Layout Map). The boundaries of the site are more fully described in Appendix A –Environmental Easement. The Beneficial Owner of the site parcel at the time of issuance of this SMP is LPC Development Group, LLC (LPC). On June 29, 2016 the Property was deeded from the City of New York to LPC Development Group LLC which Property was then immediately deeded from LPC Development Group LLC to Williamsburg Bridgeview Apartments Housing Development Fund Corporation. The Property and keeps the legal fee interest in the Property with Williamsburg Bridgeview Apartments Housing Development Bridgeview Apartments Housing Development Bridgeview Apartments Housing Bridgeview

LPC Development Group, as the beneficial owner of the Property has all control over the Property.

2.2 Physical Setting

2.2.1 Land Use

The Site consisted of an abandoned warehouse and undeveloped land. The Site is zoned as manufacturing with a residential overlay (M1-2/R6) designation and is currently has an 11 story residential building with limited parking. Site occupants will include the building residents, and future community or commercial uses.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include commercial and residential mixed use properties. The properties immediately south of the entire Site include South 5th Street and the Williamsburg Bridge underpass; the properties immediately north of the Site include residential properties; the properties immediately east of the Site include commercial and residential properties; and the properties to the west of the Site include residential properties.

2.2.2 Geology

Fill material was observed throughout all borings at different depths between 0-5 feet bgs. Soils consisted of well-graded sand with silt (ranging from fine to coarse sands) and well well-graded sand (ranging from fine to coarse). Small to large sized gravel and cobbles were observed throughout all borings. Bedrock was encountered at 39 feet bgs at MW-3, 42 feet bgs at MW-2 and 27 feet bgs at MW-4. Bedrock was not encountered in MW-1 which suggests that bedrock slopes downward to the north with the topography towards the East River. Groundwater was encountered at all wells at approximately 45-47 feet bgs.

Soil boring logs are provided in Appendix C.

2.2.3 Hydrogeology

Groundwater was encountered at approximately 45 below ground surface (bgs) in the three monitoring wells (MW-1, MW-2, and MW-4) installed during the remedial investigation. Groundwater flow is generally west towards the East River. There are no known private or public water supply wells in the area. Groundwater monitoring well construction logs for the remedial investigation are provided in Appendix D. Groundwater monitoring construction logs for the permanent wells will be provided when available.

2.3 Investigation and Remedial History

Former lot 6 was owned by the city of New York. On June 29, 2016 the Property was deeded from the City of New York to LPC Development Group LLC which Property

was then immediately deeded from LPC Development Group LLC to Williamsburg Bridgeview Apartments Housing Development Fund Corporation. The Property was simultaneously encumbered by a Declaration of Interest and Nominee Agreement which provides LPC Development Group LLC with the beneficial interest in the Property and keeps the legal fee interest in the Property with Williamsburg Bridgeview Apartments Housing Development Fund Corporation.

LPC Development Group, as the beneficial owner of the Property has all control over the Property.

Prior to the Ownership the New York City Landmarks Preservation Commission (LPC) started an architectural salvage program at the warehouse on the Site in 1980 to reuse discarded elements from buildings throughout the City. Salvaged items such as doors, windows, fences, and decorative elements, were sold to the public at low rates to restore historic buildings. The program ended in 2000 due to budgetary constraints. In the 2005 Greenpoint-Williamsburg Points of Agreement, the City identified this Site as a location for future affordable housing development.

Former lots 37 and 41 were originally housed with two story residential buildings from ca. 1868. They were connected to the sewer system probably in the same year or shortly before. Lot 37 was originally divided into 3 lots (37, 38 and 39). According to the Archaeological Field Investigation that was completed by Historical Perspectives in July 2015 on behalf of the Applicant, lots 37 and 39 do not have any history of the owner living at the address and therefore not possible to trace the building's history of occupation. Former lot 38 was a two and a half story building owned by David Downing and occupied by an engineer named Daniel Downing in the late 1800's. There is no further history on NYC ACRIS in regards to subsequent ownership except for the foreclosure of a tax lien from the Commissioner of Finance conveyed to The City of New York on May 28, 1986.

Pursuant to NYC ACRIS lot 41 was previously owned by Ellen L. Goodrich and Leo W. Goodrich and conveyed to William and Clarence Goodrich on May 4, 1925. On November 21, 1972, both William and Clarence Goodrich then conveyed property to Eleanora Donop. Subsequently, in an action to foreclose certain tax liens owned and held by the City of New York the Commissioner of Finance also conveyed lot 41 to The City of New York on May 28, 1986.

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 -References.

A Phase I Environmental Site Assessment was completed on 8/20/13 by Hillmann Consulting LLC.

A Phase II was conducted onsite in multiple phases from October 2015 and January 2016 and evaluated the onsite contamination in soil, soil vapor, and groundwater. It also included the offsite vapor intrusion investigation. It was the basis for an Interim Remedial Workplan (IRMWP).

The IRMWP covered the design for the soil excavation, the design and installation of the Sub-Slab Depressurization System (SSDS), and the design of the Soil Vapor Extraction (SVE) system. The IRMWP was completed in August 2016.

A Preliminary Phase II Investigation Report was prepared and submitted to the DEC in November 2016.

During the implementation of the IRM, five (5) underground storage tanks (USTs) were discovered onsite at various times throughout 2017. The USTs were properly cleaned out, disposed of, and the disposition recorded with the DEC. The reports on the UST closures were included in the Construction Closure Report (CCR).

A CCR was prepared to document the implementation of the IRM. The final version of the CCR was completed in March 2018.

A Decision Document was issued by the DEC on September 27, 2017.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document dated September 27, 2018, are as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.5 Remaining Contamination

2.5.1 <u>Soil</u>

• The end-point sampling conducted onsite after the soil was excavated and removed, indicated that metals were the only contaminants detected above the site SCOs: Part 375-6 unrestricted residential, restricted residential, an residential standards. Two volatile organic compounds, and numerous semi-volatile organic compounds were detected but none above an applicable SCO.

Table 2 summarizes the results of all soil samples collected that exceeded the Unrestricted Use SCOs and the residential and restricted residential. Figure 4 shows the end-point sampling locations and the mercury exceedance and applicable SCOs at the site after completion of remedial action. The applicable data reports and Date Usability Summary Reports (DUSRs) were submitted in the CCR.

2.5.3 Groundwater

Groundwater was encountered at approximately 45 feet below ground surface (bgs) in four (4) monitor wells installed in the Phase II investigation and based on topography, the flow is believed to be west towards the East River. Four (4) groundwater samples were collected and the analytical results indicate that there may be an up-gradient source of contamination that exceeds the DEC TOGS Class GA GW groundwater limits for PCE and TCE. MW-4 was the only well in which the concentration of TCE was below the regulatory limits. Several metals were detected in the groundwater samples. Iron, sodium, silver, and manganese were identified within the samples above regulatory limits for groundwater. A summary table of data for chemical analyses performed on groundwater samples is included in Table 3. Figure 5 shows the groundwater exceedances. The investigation and proposed permanent monitoring wells are shown on Figure 6.

Three new monitoring wells will be installed for long term monitoring of the site as required by the NYSDEC. The new wells will be installed as shown on Figure 6.

2.5.5 Soil Vapor

Six (6) soil vapor samples were collected in accordance with the requirements in the most current NYSDOH guidance. Approximately 30 compounds, many of which were chlorinated, were detected in varying levels of concentrations in the six samples. In the parking lot area the concentrations were three orders of magnitude higher. The highest concentrations of Tetrachloroethylene (PCE), Trichloroethene (TCE) and 1,1,1-Trichloroethane (TCA) are located where the proposed development parking lot will be constructed. There was a problem with sampling equipment for SG-5 and results were presented for discussion purposes only and the data is not considered valid.

Five (5) additional sub-slab, soil vapor samples were collected during the second phase of the RI. TCE was detected above the regulatory limits in four of the five (5) samples with the exception being SS-12. TCE was detected in four (4) of the samples (i.e. SS-10, SS-11, SS-13, and SS-14).

Soil vapor and indoor air samples were collected offsite in neighboring properties and found to have high concentrations of PCE and TCE.

The majority of the soil vapor samples were collected under the former warehouse (sub-slab). Three samples were not collected from under the building. There is not a direct correlation between detected contaminants in the soil, soil vapor, and groundwater data. The concentrations of VOCs in soil were generally low. The concentrations of VOCs in groundwater were also low, however, similar contaminants were found in the groundwater and soil vapor and this would support a determination that groundwater migrating under the site has served as a potential source. However, given the stratigraphy on the site and the vertical distance between groundwater and the depth of the soil vapor samples, there is not a strong line of evidence that groundwater is the source of the soil vapor contaminants.

Under these circumstances, the historic USTs that were removed from the site remain the suspected source of contaminated soil vapor.

Table 4 and Figure 7summarize the results of all samples of soil vapor that exceed the SCGs after completion of the remedial action.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all IC/ECs on the site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix E) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC.

3.2 Institutional Controls

A series of ICs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to restricted residential and commercial uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are the entire site. These ICs are:

- The property may be used for: restricted residential and as a commercial activity facility ;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Kings Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries or entire site, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the site are prohibited;

3.3 Engineering Controls

3.3.1 <u>Cover</u>

Exposure to remaining contamination at the site is prevented by a cover system placed over the site. This cover system is comprised of asphalt pavement, concrete-covered sidewalks, and concrete building slabs, and a small landscaped area with 2-feet of clean fill. Figure 8 presents the location of the cover system and engineering controls. The Excavation Work Plan (EWP) provided in Appendix E outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan included in Section 4.0 of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP) prepared for the site and provided in Appendix F.

3.3.2 <u>Other ECs: Sub-slab Depressurization Systems; Soil Vapor Extraction</u> <u>Systems</u>

The Sub-slab Depressurization System (SSDS) consists of five (5) zones and has been installed to remove vapor that potentially could infiltrate the sub-grade portion of the building and impact onsite residents. The system addresses the entire footprint of the building and was started on June 2018. The system consists of vapor barrier and extraction points piped to the roof with a vacuum created by exhaust fans on the roof. The vapor barrier consists of a layer of crushed stone, geovent (permeable transmission layer), a geosynthetic liner, PVC sub-grade and cast iron above grade piping through the roof of the building. There are exhaust fans are connected in-line to the piping on the roof and create a vacuum for each zone of the building. Each zone contains sampling points, vacuum gauges, and an alarm system should the exhaust fan shut down or air flow dramatically decreases. The system is designed to run continuously until such time as the DEC and the New York State Department of Health (DOH) permits reduction in operations or termination of the system.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). As built drawings, signed and sealed by a professional engineer, are included in Appendix G – Operations and Maintenance Manual. Figure 7 shows the location of the ECs for the site.

The Soil Vapor Extraction (SVE) system was installed in the driveway/parking lot of the site. The SVE system was installed to contain onsite vapors from migrating offsite into neighboring residential properties. The system consists of four (4) extraction points connected to a PVC pipe gallery that terminates at a skid mounted, package plant that includes the necessary controls, a blower system and multiple, activated carbon canisters. There are sample points on the system to measure the contaminant concentrations in the system and to determine when the canisters need to rotated out of service. The system is designed to run continuously until such time as removal rates reach asymptotic concentrations and the DEC and DOH allows for the reduced operation or termination of the system.

Procedures for operating and maintaining the SVE system are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). As built drawings, signed and sealed by a professional engineer, are included in Appendix G – Operations and Maintenance Manual. Figure 7 shows the location of the ECs for the site.

3.3.3 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

3.3.3.1 - <u>Cover</u>

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with this SMP in perpetuity.

3.3.3.2 - Sub-Slab Depressurization (SSD) System

The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC and the NYSDOH. In the event that monitoring data indicates that the SSD system may no longer be required, a proposal to discontinue the SSD system will be submitted by the remedial party to the NYSDEC and NYSDOH.

3.3.3.3 - Soil Vapor Extraction System (SVE) System

The SVE system will not be discontinued unless prior written approval is granted by the NYSDEC and DOH. In the event that monitoring data indicates that the SVE system may no longer be required, a proposal to discontinue the system will be submitted by the remedial party. Conditions that may warrant discontinuing the SVE system include contaminant concentrations in groundwater and/or soil that: (1) reach levels that are consistently below ambient water quality standards or the site SCGs, as appropriate; (2) have become asymptotic to a low level over an extended period of time, as accepted by the NYSDEC; or (3) the NYSDEC has determined that the SVE system has reached the limit of its effectiveness. This assessment will be based in part on post-remediation contaminant levels in groundwater collected from monitoring wells located throughout the site. Systems will remain in place and operational until permission to discontinue their use is granted in writing by the NYSDEC.

SMP: Williamsburg Bridgeview Apartments 2018

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the site are included in the Quality Assurance Project Plan provided in Appendix H.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site – wide Inspection

Site-wide inspections will be performed at a minimum of once per year. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in Appendix I – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that site records are up to date.

Inspections of all remedial components installed at the site will be conducted. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If site records are complete and up to date; and

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the site, verbal notice to the NYSDEC must be given by noon of the following day. In addition, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the site by a qualified environmental professional, as determined by the NYSDEC. Written confirmation must be provided to the NYSDEC within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.3 Treatment System Monitoring and Sampling

4.3.1 <u>Remedial System Monitoring</u>

Monitoring of the SSDS and SVE systems will be performed on a routine basis, as identified in Table 6 Remedial System Monitoring Requirements and Schedule (see below). Modification to the frequency or sampling requirements will require approval from the NYSDEC. A visual inspection of the complete system will be conducted during each monitoring event. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSDS and/or SVE system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. SSDS and SVE system components to be monitored include, but are not limited to, the components included in Table 5 below.

RemedialSystemComponent	Monitoring Parameter	Operating Range	Monitoring Schedule
Sub-slab	Vacuum and Flow	0.01 in of hg	Quarterly
Depressurization	Rate		
Soil Vapor Extraction	Compressor		Monthly
	Vacuum Blower		
	Pressure Gauges		
	Influent		
	Effluent		

Table 5 – Remedial S	System Monitorin	g Requirements	and Schedule

A complete list of components to be inspected is provided in the Inspection Checklist, provided in Appendix I - Site Management Forms. If any equipment readings are not within their specified operation range, any equipment is observed to be malfunctioning or the system is not performing within specifications; maintenance and repair, as per the Operation and Maintenance Plan, is required immediately.

4.3.2 <u>Remedial System Sampling</u>

Effluent sampling will be conducted for the SSDS. Influent and effluent sampling will be done for the SVE system. Air samples shall be collected from the SSDS and SVE systems on a routine basis. Sampling locations, required analytical parameters and schedule are provided in Table 6 – Remedial System Sampling Requirements and Schedule below. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

	Schedule		
Sampling	VOC (EPA		
Location	Method TO-		
Location	15)		
SSDS	Х	Annually	
zones 1-5			
SVE	Х	Monthly	

Table 6 – Remedial System Sampling Requirements and Schedule

Detailed analytical procedures and protocols are provided in Appendix H – Quality Assurance Project Plan. Detailed sample collection procedures are explained the Field Sampling Plan in Appendix J. The sampling procedures will comply with the most current version of the DOH Vapor Intrusion Guidance.

4.4 **Post-Remediation Media Monitoring and Sampling**

Samples shall be collected from the proposed monitoring wells and indoor air on a routine basis. Sampling locations, required analytical parameters and schedule are provided in Table 7 – Remedial System Sampling Requirements and Schedule below. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

Table 7 – Po	ost Remediation	Sampling Red	quirements and Sc	hedule

			Schedule			
Sampling	VOCs	SVOCs &	TAL	PFAs	VOC	
Location	Method	Pesticides	Metals	Method	(EPA	
Location	8260)	Method	Method	537	Method	
		8270& 8081	6010C/		TO-15)	
			7471B			
Monitoring	Х	Х	Х	Х		Annually
Well #1, 2,						
and 3						

Indoor air				Annually	inside
			Х	basement	of
				building	

Detailed analytical procedures and protocols are provided in Appendix H – Quality Assurance Project Plan. Samples will be collected in accordance with the requirements in DER-10.

4.4.3 Groundwater Sampling

Groundwater monitoring will be performed annually to assess contaminant concentrations. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

The network of monitoring wells will be installed to monitor upgradient and downgradient groundwater conditions at the site.

The well identification number, as well as the purpose, location, depths, diameter, and screened intervals of the wells will be provided upon completion. As part of the groundwater monitoring, three on-site wells will be sampled to evaluate the quality of the groundwater.

Monitoring well construction logs will be provided upon completion

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced, if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of the NYSDEC. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC.

The sampling frequency may only be modified with the approval of the NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

Deliverables for the groundwater monitoring program are specified in Section 7.0 – Reporting Requirements.

4.4.5 Soil Vapor Sampling

Soil vapor sampling will be performed indirectly through the SVE system influent to assess the performance of the remedy. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

4.4.6 Soil Vapor Intrusion Sampling

Soil vapor intrusion sampling will be performed annually inside the basement of the building to assess the performance of the remedy. Offsite locations will be monitored on an annual basis by the DEC. Modification to the frequency or sampling requirements will require approval from the NYSDEC. The network of on-site vapor intrusion sample locations has been designed based providing coverage throughout the basement of the building and the samples will analyzed for TO+15. The air samples will be analyzed by an ELAP approved laboratory.

The sampling frequency may only be modified with the approval of the NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

Deliverables for the soil vapor intrusion sampling program are specified in Section 7.0 – Reporting Requirements.

4.4.7 Monitoring and Sampling Protocol

All sampling activities will be recorded in a field book and associated sampling log as provided in Appendix I - Site Management Forms. Other observations (e.g., groundwater monitoring well integrity, etc.) will be noted on the sampling log. The sampling log will serve as the inspection form for the monitoring network. Additional detail regarding monitoring and sampling protocols are provided in the site-specific Field Sampling Plan provided as Appendix J of this document.

5.0 OPERATION AND MAINTENANCE PLAN

5.1 General

This Operation and Maintenance Plan provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the site. This Operation and Maintenance Plan:

- Includes the procedures necessary to allow individuals unfamiliar with the site to operate and maintain the SSDS and SVE systems;
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSDS and SVE systems are operated and maintained.

Further detail regarding the Operation and Maintenance of the SSDS and SVE is provided in Appendix G - Operation and Maintenance Manual. A copy of this Operation and Maintenance Manual, along with the complete SMP, is to be maintained at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of this SMP.

5.2 Remedial System Performance Criteria

The Remedial system performance criteria is included in the O&M manuals for each system and provided in Appendix H.

5.3 Operation and Maintenance of SSDS

The following sections provide a description of the operations and maintenance of the SSDS. Cut-sheets and as-built drawings for the SSDS are provided in Appendix G -Operations and Maintenance Manual. All discharge permits or permit equivalencies are provided in Appendix L.

5.3.1 System Start-Up and Testing

The system start-up, testing, and operations followed the prescribed steps in the O&M manual for the SSDS and SVE mechanical components. The Pre start-up inspections included all visible components of the system. For both the SSDS and SVE systems, a large part of the system is underground. Pressure gauges should fit snuggly into the piping. The alarms shall be tested to ensure that if the power is cut, they will activate.

For the SSDS, the piping shall be inspected to ensure there are no leaks, loose joints, etc. A micro-manometer will be used to test for a vacuum in each zone.

For the SVE system, an inspection of the piping similar to that for the SSDS will take place. In addition, a complete implementation of the start-up steps will be completed in accordance with the O&M manual. The results of the pre start-up tests will be recorded and maintained onsite.

Baseline sampling of both systems will take place as soon as possible after start-up to determine initial sub-surface vapor conditions. Air samples will be collected from the basement and the SSDS piping before the exhaust fans for TO+15 analysis. Air samples from the SVE system will be collected at an influent and effluent point as well as between carbon canisters to obtain initial subsurface conditions and removal efficiency.

The system testing described above will be conducted if, in the course of the systems lifetimes, they go down or significant changes are made to the systems and they must be restarted.

5.3.2 Routine System Operation and Maintenance

Routine SSDS and SVE Operations and Maintenance will follow the manufacturer's recommendations for the various components of each system. Inspections will be completed per the Remedial Systems Inspection Schedule on Table 5. If either system is

not operating properly, the troubleshooting guidance will be consulted first and if that does not provide the necessary answers to address the situation, the system's technical advisors will be contacted. Both systems are designed to operate continuously until such time as they need to be replaced or the DEC and DOH permit a reduction in operation or termination of either system.

There are few adjustments that can be made to the SSDS. Repairs will be made as required during the operating life of the exhaust fans.

The SVE system will be adjusted based on the removal efficiency and the offsite vapor intrusion data from the DEC. Adjustments may include shutting down a portion of the extraction points so that no air is being evacuated, reducing the rate of the mechanical blowers, sizing of the carbon canisters, etc. Any of these adjustments will be made only with the approval of the DEC and/or DOH. Other adjustments may be made based solely on the mechanical operation of the equipment when necessary.

A copy of an Operations and Maintenance Manual specific to the remedial systems is provided in Appendix G, which will provide further detail on the above.

5.3.3 <u>Non-Routine Operation and Maintenance</u>

Non-routine O&M will be done as an as-needed basis given the current situation. Those situations could include the activation of warning devices or alarms, damage done to system components deliberately or from storms, reduced effectiveness not associated with the reduction in concentrations of contaminants, and/or if it is time for parts replacement sooner than anticipated. The maintenance will be conducted as required and the system will be thoroughly inspected to determine why the non-routine measures were needed. They reasons for the non-routine maintenance may be indicative of some larger operational issues or changes in site conditions which need to be understood.

A summary and schedule of routine maintenance for both systems are provided in Appendix G.

5.3.4 System Monitoring Devices and Alarms

The SSDS system has alarm devices to indicate that the system is not operating properly. In the event that warning device is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SSDS system will be restarted. Operational problems will be noted in the Periodic Review Report (PRR) to be prepared for that reporting period.

The SVE system has numerous warning devices for the monitoring of various components of the system. The system has monitoring devices and alarm notifications for SVE vacuum blower failure, pressures and temperatures out of operating range, and the accumulation of water in the system, etc.

The SVE system has warning devices to indicate that the system is not operating properly. In the event that warning device is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SVE system will be restarted. Operational problems will be noted in the Periodic Review Report to be prepared for that reporting period. The warnings will be addressed with the necessary maintenance, reset and noted in the inspection log, PRR.

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a summary of vulnerability assessments that will be conducted for the site during periodic assessments, and briefly summarizes the vulnerability of the site and/or engineering controls to severe storms/weather events and associated flooding.

High Wind: The site is susceptible to damage from high winds as the SSDS exhaust fans are located on the roof of the building. Even if properly anchored, given strong enough winds, they may be knocked off their piping and rendered inoperable.

Electricity: Sustained, long-term, loss of electricity will impact the ability of the remedial systems to operate and potentially cause exposure to onsite contaminants. This more of a concern with the SVE system not being able to control the vapor intrusion conditions for the neighboring properties. It may be necessary to have a back-up generator on standby for instances when there is long term power loss.

Spill/Contaminant Release: There are no known remaining items onsite that could result in a new release or spill onsite.

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the site during site management, and as reported in the PRR.

- Waste Generation will be limited to the regeneration of spent carbon from the SVE system. The carbon units will be used to the maximum extent possible before being regenerated on or offsite. If possible, they will be regenerated onsite to reduce travel requirements.
- Energy usage will be reduced to the extent possible by minimizing the use of the operation of the SVE system and potentially the SSDS as quickly as possible. If possible, a reduction in the fan and/or motor size will be evaluated to potentially reduce power usage for the systems.
- Emissions will be limited by the proper operation of the SSDS and SVE systems. SSDS emissions will be dispersed at roof top level and little to no impact on health or the environment. SVE emissions will be limited by the removal efficiency of the system. In addition, to the extent possible, the SVE operations will be reduced or terminated as quickly as possible.

Methods proposed to reduce energy consumption, resource usage, waste generation, water usage, etc., will be included in the PRR.

6.2.1 Timing of Green Remediation Evaluations

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), or at any time that the Project Manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities. An outline of RSO report are provided in Appendix K.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities. Reporting of these modifications will be presented in the PRR.

6.2.2. <u>Remedial Systems</u>

Remedial systems will be operated properly considering the current site conditions to conserve materials and resources to the greatest extent possible. Consideration will be given to operating rates and use of reagents and consumables. Spent materials will be recycled onsite if possible or sent for recycling, as appropriate.

Remedial system types and associated parameters to be evaluated include, but are not limited to:

- Soil vapor extraction operations rates based on the removal of contaminants ;
- Activated carbon systems (spent carbon replacement and disposal or regeneration);
- SSDS operations

6.2.3 Building Operations

Buildings and sheds will be operated and maintained to provide for the most efficient operation of the remedy, while minimizing energy, waste generation and water consumption.

Components to be evaluated included, but are not limited to:

- Heating/cooling systems and temperature set-points;
- Building skin, insulation and building use and occupancy;
- Ventilation;
- Lighting and plug loads; and
- Grounds and property management.

6.2.4 Frequency of System Checks, Sampling and Other Periodic Activities

Transportation to and from the Site and use of consumables in relation to visiting the Site in order to conduct system checks and or collect samples and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

To the extent possible, onsite staff (building superintendent, janitorial staff, etc.) shall be trained to inspect, observe, and report on system operations so as to reduce the number of visits by offsite personnel. It is assumed that they will use public transportation to get to the site and/or live on the premises. Once the system has been in operation for approximately 6-12 months, a review will be done to optimize inspections by offsite personnel.

Other than testing and routine maintenance, the SSDS will only need to be addressed by offsite personnel should the system shut down.

6.2.5 <u>Metrics and Reporting</u>

As discussed in Section 7.0 and as shown in Appendix I – Site Management Forms, information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during site management and to identify corresponding benefits; a set of metrics has been developed.

6.3 Remedial System Optimization

A Remedial Site Optimization (RSO) study will be conducted any time that the NYSDEC or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the Decision Document;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the site management to another remedial party or agency; and
- A new and applicable remedial technology becomes available.

An RSO will provide a critique of a site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the site's cleanup goals, gather additional performance or media specific data and information and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study focuses on overall site cleanup strategy, process optimization and management with the intent of identifying impediments to cleanup and improvements to site operations to increase efficiency, cost effectiveness and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

7.0. **REPORTING REQUIREMENTS**

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in Appendix I. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of Table 8 and summarized in the Periodic Review Report.

Table 8: Schedule of Interim Monitoring/Inspection Reports

Task/Report	Reporting Frequency*
Inspection Report	Monthly
Periodic Review Report	Annually, or as otherwise determined by
renoue Review Report	the Department

* The frequency of events will be conducted as specified until otherwise approved by the NYSDEC.

All interim monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc.);

- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and

• Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

7.2 **Periodic Review Report**

A PRR will be submitted to the Department beginning sixteen (16) months after the Certificate of Completion is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the Department or at another frequency as may be required by the Department. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix A -Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances

highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP, ROD or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan; and
 - Trends in contaminant levels in the affected media will be evaluated to determine if the remedy continues to be effective in achieving remedial goals as specified by the Decision Document.
 - The overall performance and effectiveness of the remedy.
- A performance summary for all treatment systems at the site during the calendar year, including information such as:
 - The number of days the system operated for the reporting period;
 - The average, high, and low flows per day;
 - The contaminant mass removed;
 - A description of breakdowns and/or repairs along with an explanation for any significant downtime;
 - A description of the resolution of performance problems;
 - Alarm conditions;

- Trends in equipment failure;
- A summary of the performance, effluent and/or effectiveness monitoring; and
- Comments, conclusions, and recommendations based on data evaluation.

7.2.1 Certification of Institutional and Engineering Controls

Following the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;

- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner/Remedial Party or Owner's/Remedial Party's Designated Site Representative] "

At the end of each certifying period, as determined by the NYSDEC, the following certification will be provided to the Department:

"For each institutional control identified for the site, I certify that all of the following statements are true:

- The institutional control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement.
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]"

- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and
- The assumptions made in the qualitative exposure assessment remain valid.

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the site is located and the NYSDOH Bureau of Environmental Exposure Investigation. The Periodic Review Report may need to be submitted in hard-copy format, as requested by the NYSDEC project manager.

7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC.

7.4 Remedial Site Optimization Report

In the event that an RSO is to be performed (see Section 6.3, upon completion of an RSO, an RSO report must be submitted to the Department for approval. A general outline for the RSO report is provided in Appendix K. The RSO report will document the research/ investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model and present recommendations. RSO recommendations are to be implemented upon approval from the NYSDEC. Additional work plans, design documents, HASPs etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

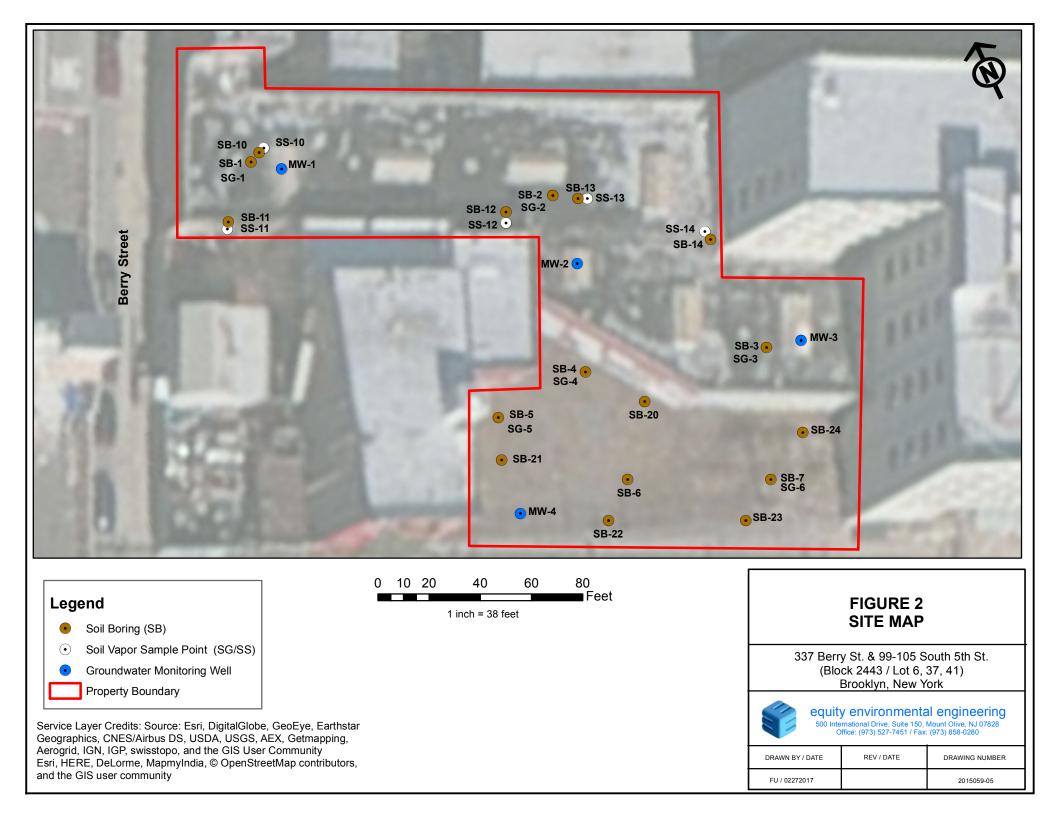
The RSO report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the site is located, Site Control and the NYSDOH Bureau of Environmental Exposure Investigation.

8.0 **REFERENCES**

Hillmann Consulting LLC, 2013 Phase I Environmental Site Assessment

Equity Environmental Engineering LLC, 2016 Phase II Report

Equity Environmental Engineering LLC, 2016 IRMWP

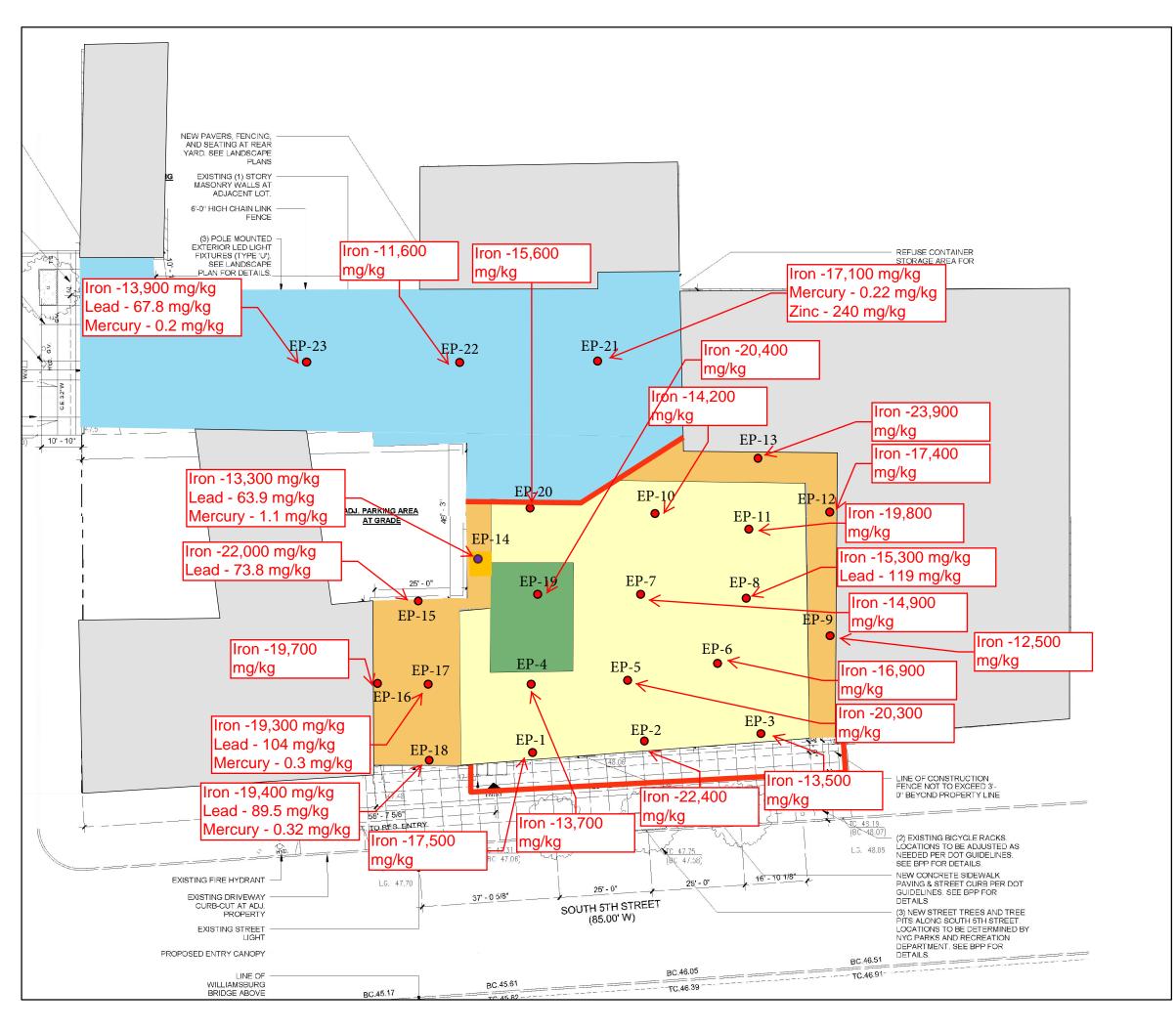

Equity Environmental Engineering LLC, 2017 Construction Closure Report

NYSDEC 2017 Decision Document

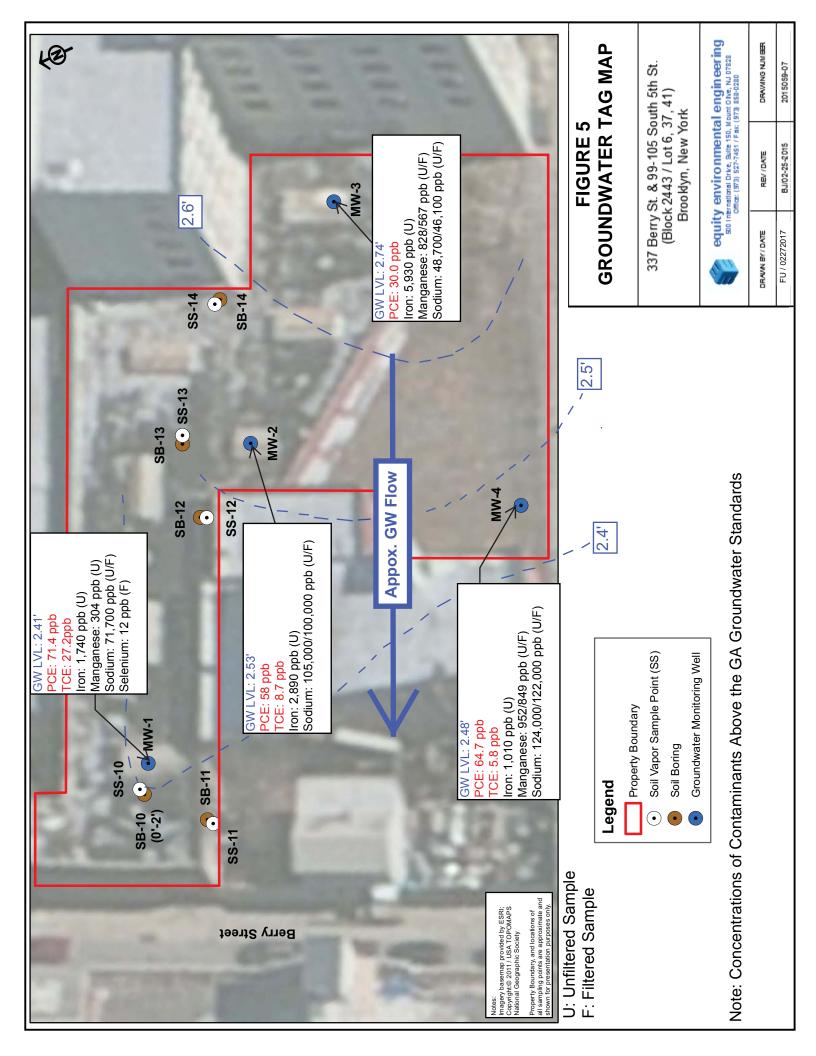
6NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

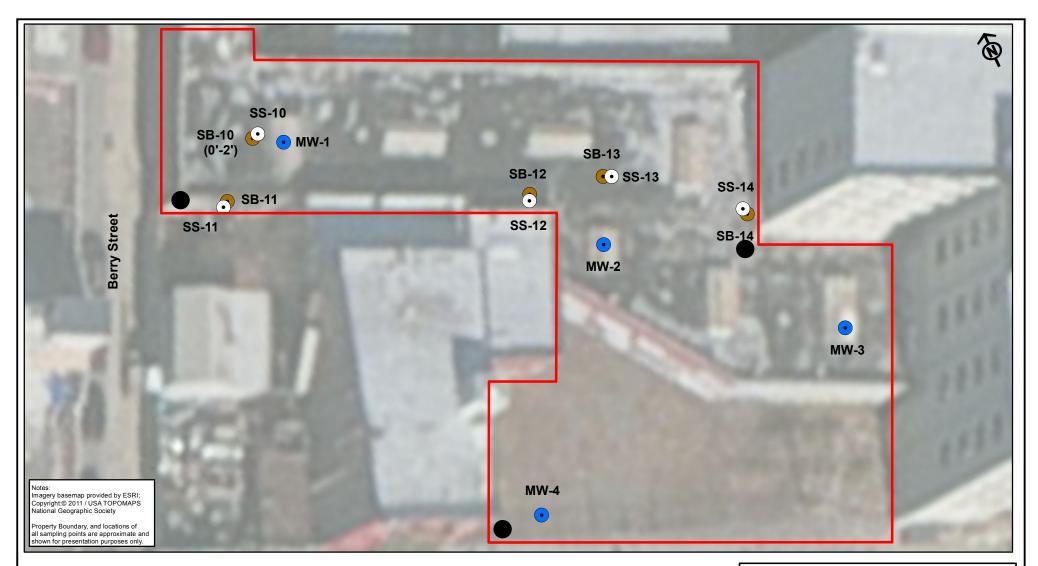
NYSDEC DER-10 – "Technical Guidance for Site Investigation and Remediation".

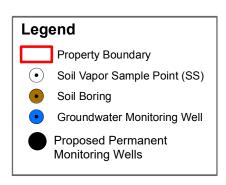
NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).



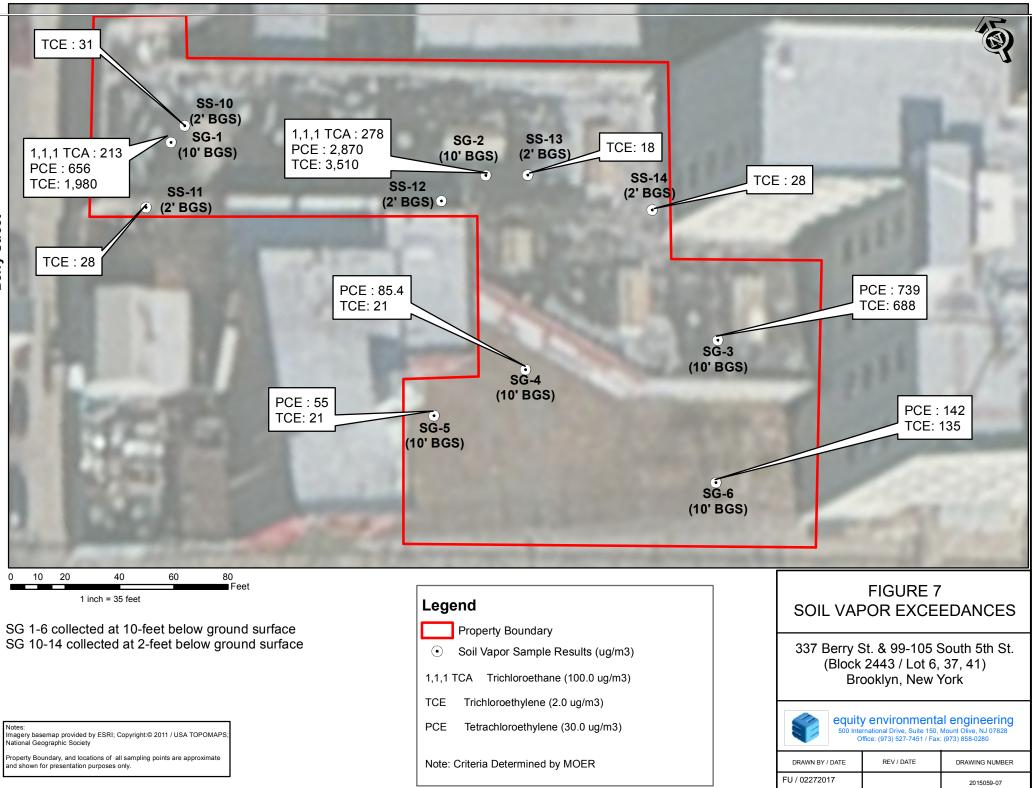
Legend

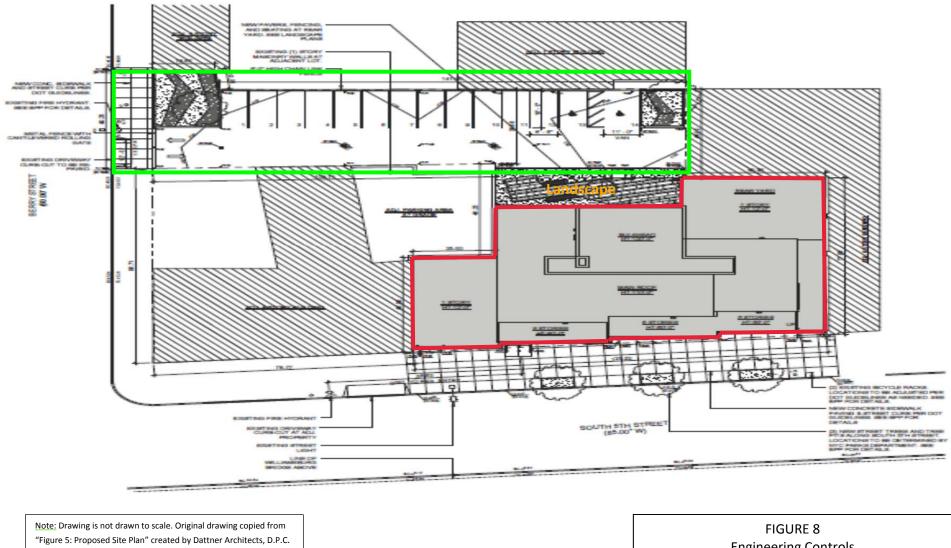


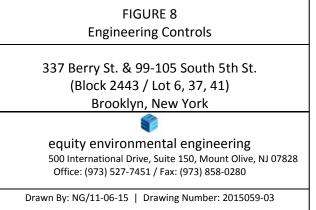

	FIGURE 3 TAX MAP	
337 Berry St & 99-105 South 5th Street (Block 2443 / Lot 6, 37, 41) Brooklyn, New York		
equity environmental engineering 500 International Drive, Suite 150, Mount Olive, NJ 07828 Office: (973) 527-7451 / Fax: (973) 858-0280		
DRAWN BY / DATE	REV / DATE	DRAWING NUMBER
GB/7.30.18		2015059-01



Lege	end
	Lined Sheeting
•	End-Point Soil Sample Location
•	Exceedance
	Adjoining Buildings
	Elevator Pit Excavation Area (17')
	Outer Excavation Area
	Inner Excavation Area (13')
	Parking Lot


FIGURE 4 REMAINING SOIL SAMPLE EXCEEDANCES			
337 Berry St. & 99-105 South 5th St. (Block 2443 / Lot 6, 37, 41) Brooklyn, New York			
equity environmental engineering500 International Drive, Suite 150, Mount Olive, NJ 07828Office: (973) 527-7451 / Fax: (973) 858-0280			
EDITED BY / DATE	REV / DATE	DRAWING NUMBER	
JRV / 01112017		2015059-09	




FIGURE 6 Proposed Monitoring Well Locations		
337 Berry St. & 99-105 South 5th St. (Block 2443 / Lot 6, 37, 41) Brooklyn, New York		
equity environmental engineering 500 International Drive, Suite 150, Mount Olive, NJ 07828 Office: (973) 527-7451 / Fax: (973) 858-0280		
DRAWN BY / DATE	REV / DATE	DRAWING NUMBER
NG / 10-28-15		2015059-04

Berry Street

Client Sample ID:	NY SCO - Unrestricted Use (6 NYCRR	NY SCO - Residential w/CP-51 (10/10)	NY SCO - Restricted Residential	EP-1	EP-2	EP-3	EP-4	EP-5	EP-6	EP-7	EP-8	EP-9	EP-10	EP-11	EP-12	EP-13	DUP-01	EP-14	EP-15	EP-16	EP-17	EP-18 EP-1		EP-21	EP-22	EP-23
Lab Sample ID: Date Sampled:	375-6 12/06)	(6 NYCRR 375-6 12/06)	w/CP-51 (10/10) (6 NYCRR 375-6	JC34077-1 12/19/2016	JC34077-2 12/19/2016		JC34077-4 12/19/2016	JC34077-5 12/19/2016			JC34077-8 12/19/2016				JC34077-12 12/19/2016		JC34077-14 12/19/2016	JC34245-1 12/21/2016	JC34245-2 12/21/2016	JC34245-3 12/21/2016	JC34245-4 12/21/2016	JC34245-5 JC352 12/21/2016 1/10/2	0-1 JC35210-2 117 1/10/2017	JC35210-3 1/10/2017	JC35210-4 1/10/2017	JC35210-5 1/10/2017
Matrix: GC/MS Volatiles (SW846 8260		-	12/06)	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil GC/MS	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil Soi	Soil	Soil	Soil	Soil
Acetone	ma/ka 0.05	100	100	ND (0.0049)	ND (0.0046)	ND (0.0056)	ND (0.0054)	ND (0.0051)	ND (0.0046)	ND (0.0050)	ND (0.0054)	ND (0.0058)	ND (0.0063)	ND (0.0051)	ND (0.0051)	ND (0.0048)	ND (0.0052)	ND (0.0052)	ND (0.0050)	ND (0.0052)	ND (0.0049)	ND (0.0050) ND (0.0	052) ND (0.0049	ND (0.0051)	ND (0.0063)	ND (0.0053)
Bromochloromethane Bromodichloromethane	malka 0.06 malka - malka -	-	4.8	ND (0.00031) ND (0.00015)	ND (0.00030) ND (0.00014)	ND (0.00036) ND (0.00017)	ND (0.00034) ND (0.00016)	ND (0.00032) ND (0.00015)			ND (0.00035) ND (0.00016)			ND (0.00032) ND (0.00015)	ND (0.00012) ND (0.00032) ND (0.00015)	ND (0.00030) ND (0.00014)	ND (0.00012) 1 ND (0.00033) 1 ND (0.00016) 1	ND (0.00013) ND (0.00033) ND (0.00016)	ND (0.00032) ND (0.00015)	ND (0.00033) ND (0.00016)	ND (0.00012) ND (0.00031) ND (0.00015)	ND (0.00032) ND (0.0 ND (0.00015) ND (0.0	033) ND (0.00012 016) ND (0.00031 016) ND (0.00015	ND (0.00032) 1 ND (0.00032) 1 ND (0.00015) 1	ND (0.00040) 1 ND (0.00019) 1	ND (0.00034) ND (0.00016)
Bromoform Bromomethane	malka - malka - malka 0.12		-	ND (0.00026) ND (0.00047) ND (0.0017)	ND (0.00025) ND (0.00045)	ND (0.00030) ND (0.00054)	ND (0.00029) ND (0.00052) ND (0.0019)	ND (0.00027) ND (0.00049) ND (0.0018)	ND (0.00024) ND (0.00045)	ND (0.00027) ND (0.00048)	ND (0.00029) ND (0.00052)	ND (0.00031) ND (0.00056)	ND (0.00033) ND (0.00061)	ND (0.00027) ND (0.00049)	ND (0.00027) ND (0.00049)	ND (0.00025) ND (0.00046)	ND (0.00028) // ND (0.00050) // ND (0.0018)	ND (0.00028) ND (0.00051)	ND (0.00026) ND (0.00048)	ND (0.00028) ND (0.00050)	ND (0.00026) ND (0.00047)	ND (0.00027) ND (0.0 ND (0.00049) ND (0.0 ND (0.0018) ND (0.0	028) ND (0.00026 050) ND (0.00048	ND (0.00027) 1 ND (0.00049) 1	ND (0.00033) ND (0.00061)	ND (0.00028) ND (0.00052)
2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	ma/ka -	100 100 1.4	2.4 100	ND (0.00017)	ND (0.00016)	ND (0.00019)	ND (0.00018)	ND (0.00017)	ND (0.00016)	ND (0.00017)	ND (0.00018)	ND (0.00020)	ND (0.00021)	ND (0.00017)	ND (0.00017)	ND (0.00016)	ND (0.0018) ND (0.00018) ND (0.00017) 1	(0.00018)	ND (0.00017)	ND (0.00018)	ND (0.00017)	ND (0.0018) ND (0.0 ND (0.00017) ND (0.0 ND (0.00017) ND (0.0	018) ND (0.00017	ND (0.0018) ND (0.00017) 1 ND (0.00017) 1	ND (0.00021)	ND (0.00018)
Chlorobenzene Chloroethane	mg/kg 1.1 mg/kg -	100		ND (0.00042)	ND (0.00040)	ND (0.00048)	ND (0.00046)	ND (0.00017) ND (0.00016) ND (0.00043)	ND (0.00039)	ND (0.00043)	ND (0.00046)	ND (0.00050)	ND (0.00054)	ND (0.00016) ND (0.00044)	ND (0.00016) ND (0.00044)	ND (0.00015) ND (0.00041)	ND (0.00017) ND (0.00045) ND	ND (0.00017) ND (0.00045)	ND (0.00016) ND (0.00043)	ND (0.00017) ND (0.00044)	ND (0.00016) ND (0.00042)	ND (0.00016) ND (0.0 ND (0.00043) ND (0.0	017) ND (0.00016 045) ND (0.00042	ND (0.00016) ND (0.00044)	ND (0.00020) 1 ND (0.00054) 1	ND (0.00017) ND (0.00046)
Chloroform Chloromethane Cyclohexane	malka 0.37 malka - malka -	10	49	ND (0.00023) ND (0.00021) ND (0.00053)	ND (0.00020)	ND (0.00024)	ND (0.00023)	ND (0.00024) ND (0.00021) ND (0.00055)	ND (0.00022) ND (0.00019) ND (0.00050)	ND (0.00024) ND (0.00021) ND (0.00054)	ND (0.00026) ND (0.00023) ND (0.00059)	ND (0.00028) ND (0.00024) ND (0.00063)	ND (0.00026)	ND (0.00021)	ND (0.00024) ND (0.00021) ND (0.00055)	ND (0.00020)	ND (0.00025) ND (0.00022) ND (0.00057) ND (0	ND (0.00025) ND (0.00022) ND (0.00057)	ND (0.00024) ND (0.00021) ND (0.00054)	ND (0.00025) ND (0.00022) ND (0.00056)	ND (0.00023) ND (0.00021) ND (0.00053)	ND (0.00024) ND (0.0 ND (0.00021) ND (0.0 ND (0.00055) ND (0.0	025) ND (0.00023 022) ND (0.00021 057) ND (0.00053	ND (0.00024) 1 ND (0.00021) 1 ND (0.00055) 1	ND (0.00030) 1 ND (0.00026) 1 ND (0.00068) 1	ND (0.00025) ND (0.00022) ND (0.00058)
1.2-Dibromo-3-chloropropane Dibromochloromethane	ma/ka -			ND (0.00047) ND (0.00015)	ND (0.00045)	ND (0.00054)	ND (0.00052)	ND (0.00049) ND (0.00015)		ND (0.00048) ND (0.00015)	ND (0.00052) ND (0.00016)		ND (0.00061)	ND (0.00049)	ND (0.00049)	ND (0.00046)	ND (0.00050) ND (0.00016) ND	ND (0.00051) ND (0.00016)		ND (0.00050) ND (0.00016)	ND (0.00047) ND (0.00015)	ND (0.00049) ND (0.0 ND (0.00015) ND (0.0		ND (0.00049) ND (0.00015)	ND (0.00061) ND (0.00019)	
1,2-Dibromoethane 1,2-Dichlorobenzene 1.3-Dichlorobenzene	mg/kg - mg/kg 1.1 mg/kg 2.4	100	100	ND (0.00024) ND (0.00017)	ND (0.00022) ND (0.00016)	ND (0.00027) ND (0.00019)	ND (0.00026) ND (0.00018)	ND (0.00025) ND (0.00017)	ND (0.00022) ND (0.00016)	ND (0.00024) ND (0.00017)	ND (0.00026) ND (0.00019)	ND (0.00028) ND (0.00020)	ND (0.00030) ND (0.00021) ND (0.00017)	ND (0.00025) ND (0.00017)	ND (0.00025) ND (0.00017)	ND (0.00023) ND (0.00016)	ND (0.00025) ND (0.00018) ND (0.00014) ND (0.00014) ND (0.00014)	ND (0.00025) ND (0.00018)	ND (0.00024) ND (0.00017)	ND (0.00025) ND (0.00018)	ND (0.00024) ND (0.00017)	ND (0.00024) ND (0.0 ND (0.00017) ND (0.0 ND (0.00014) ND (0.0	025) ND (0.00024 018) ND (0.00017	ND (0.00025) 1 ND (0.00017) 1 ND (0.00014) 1	ND (0.00030) 1 ND (0.00021) 1	ND (0.00026) ND (0.00018)
1.4-Dichlorobenzene Dichlorodifluoromethane	malka 1.8 malka -	9.8	13	ND (0.00015) ND (0.00053)	ND (0.00014) ND (0.00050)	ND (0.00017) ND (0.00061)	ND (0.00016)	ND (0.00015) ND (0.00055)	ND (0.00014) ND (0.00060)	ND (0.00015) ND (0.00054)	ND (0.00017)	ND (0.00018) ND (0.00063)	ND (0.00019)	ND (0.00016) ND (0.00055)	ND (0.00016) ND (0.00055)	ND (0.00015) ND (0.00052)	ND (0.00016) ND (0.00057) ND (0.00057)	ND (0.00016) ND (0.00057)	ND (0.00015) ND (0.00054)	ND (0.00016) ND (0.00056)	ND (0.00015) ND (0.00053)	ND (0.00015) ND (0.0 ND (0.00055) ND (0.0	016) ND (0.00015 057) ND (0.00053	ND (0.00016) 1 ND (0.00055) 1	ND (0.00019) ND (0.00068)	ND (0.00016) ND (0.00058)
1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene	mg/kg 0.27 mg/kg 0.02 mg/kg 0.33	19 2.3	26 3.1	ND (0.00018) ND (0.00017) ND (0.00015)	ND (0.00016)	ND (0.00019)	ND (0.00020) ND (0.00018)	ND (0.00019) ND (0.00017)	ND (0.00017) ND (0.00016)	ND (0.00019) ND (0.00017)	ND (0.00020) ND (0.00019)	ND (0.00022) ND (0.00020)	ND (0.00023) ND (0.00021) ND (0.00010)	ND (0.00019) ND (0.00017)	ND (0.00019) ND (0.00017) ND (0.00016)	ND (0.00018) ND (0.00016)	ND (0.00019) ND (0.00018) ND (0	ND (0.00020) ND (0.00018)	ND (0.00019) ND (0.00017)	ND (0.00019) ND (0.00018)	ND (0.00018) ND (0.00017)	ND (0.00019) ND (0.0 ND (0.00017) ND (0.0 ND (0.00015) ND (0.0	019) ND (0.00018 018) ND (0.00017 016) ND (0.00017	ND (0.00019) 1 ND (0.00017) 1 ND (0.00017) 1		ND (0.00020) ND (0.00018) ND (0.00016)
cis-1,2-Dichloroethene trans-1.2-Dichloroethene	mg/kg 0.25 mg/kg 0.25	59 100	100	ND (0.00013) ND (0.00043) ND (0.00015)	ND (0.00041)	ND (0.00049)	ND (0.00017) ND (0.00017)	ND (0.00015) ND (0.00044) ND (0.00016)	ND (0.00014) ND (0.00040) ND (0.00015)	ND (0.00044) ND (0.00016)	ND (0.00047) ND (0.00017)	ND (0.00018) ND (0.00051) ND (0.00018)	ND (0.00055) ND (0.00020)	ND (0.00016) ND (0.00016)	ND (0.00016) ND (0.00016)	ND (0.00015) ND (0.00042) ND (0.00015)	ND (0.00016) ND (0.00045) ND (0.00016) ND	ND (0.00016) ND (0.00046) ND (0.00017)	ND (0.00015) ND (0.00044) ND (0.00016)	ND (0.00016) ND (0.00016)	ND (0.00015) ND (0.00015)	ND (0.00015) ND (0.0 ND (0.00044) ND (0.0 ND (0.00016) ND (0.0	045) ND (0.00015 016) ND (0.00015	ND (0.00045) 1 ND (0.00045) 1	ND (0.00055)	ND (0.00047) ND (0.00017)
1.2-Dichloropropane	ma'ka - ma'ka - ma'ka -			ND (0.00030) ND (0.00019)	ND (0.00029) ND (0.00018)	ND (0.00035) ND (0.00022)	ND (0.00033) ND (0.00021)	ND (0.00031) ND (0.00020)	ND (0.00028) ND (0.00018)	ND (0.00031) ND (0.00020)	ND (0.00033) ND (0.00021)	ND (0.00036) ND (0.00023)	ND (0.00039) ND (0.00025)	ND (0.00031) ND (0.00020)	ND (0.00031) ND (0.00020)	ND (0.00029) ND (0.00019)	ND (0.00032) 1 ND (0.00020) 1 ND (0.00023) 1	ND (0.00032) ND (0.00021)	ND (0.00031) ND (0.00020)	ND (0.00032) ND (0.00020)	ND (0.00030) ND (0.00019)	ND (0.00031) ND (0.0 ND (0.00020) ND (0.0 ND (0.00023) ND (0.0	032) ND (0.00030 020) ND (0.00019	ND (0.00031) 1 ND (0.00020) 1 ND (0.00022) 1	ND (0.00039) 1 ND (0.00025) 1	ND (0.00033) ND (0.00021)
Ethvibenzene Freon 113	ma'ka 1 ma'ka -	30 100	41	ND (0.00015) ND (0.00047) ND (0.0014)	ND (0.00014) ND (0.00045)	ND (0.00017) ND (0.00054)	ND (0.00016) ND (0.00052)	ND (0.00015) ND (0.00049)			ND (0.00016) ND (0.00052)			ND (0.00015) ND (0.00049)	ND (0.00015) ND (0.00049)	ND (0.00014) ND (0.00046)	ND (0.00015) ND (0.00050)	ND (0.00016) ND (0.00051)	ND (0.00015) ND (0.00048)	ND (0.00015) ND (0.00050)	ND (0.00014) ND (0.00047)	ND (0.00015) ND (0.0 ND (0.00015) ND (0.0 ND (0.00049) ND (0.0	015) ND (0.00015 050) ND (0.00047	ND (0.00015)		ND (0.00016) ND (0.00051)
2-Hexanone Isoprov/benzene Methyl Acetate	mg/kg - mg/kg - mg/kg -	100		ND (0.0001E)	ND (0.00014)	ND (0.00017)	ND (0.00017)	ND (0.00016)	ND (0.0013)	ND (0.0014)	ND (0.0015)	ND (0.0016)	ND (0.0017)	ND (0.00016)	NID (0.0001@)	ND (0.0004.6)	ND (0.0014) ND (0.00016)	ND (0.0015) ND (0.00016)	ND (0.0014) ND (0.00015)			ND (0.0014) ND (0.0 ND (0.00015) ND (0.0	016) ND (0.00015	ND (0.0014) ND (0.00016)	ND (0.0017) ND (0.00019)	ND (0.0015) ND (0.00016)
Methylcyclohexane Methyl Tert Butyl Ether		62	100	ND (0.0020) ND (0.00049) ND (0.00026)	ND (0.00047) ND (0.00025)	ND (0.00056) ND (0.00030)	ND (0.00054) ND (0.00028)	ND (0.00051) ND (0.00027)	ND (0.00046) ND (0.00024)	ND (0.00050) ND (0.00026)	ND (0.00022) ND (0.00055) ND (0.00029)	ND (0.00059) ND (0.00031)	ND (0.00063) ND (0.00033)	ND (0.00051) ND (0.00027)	ND (0.00021) ND (0.00051) ND (0.00027)	ND (0.00048) ND (0.00025)	ND (0.00018) ND (0.00052) 1 ND (0.00028) 1	ND (0.00053) ND (0.00028)	ND (0.00050) ND (0.00026)	ND (0.00052) ND (0.00027)	ND (0.0020) ND (0.00049) ND (0.00026)	ND (0.0020) ND (0.0 ND (0.00051) ND (0.0 ND (0.00027) ND (0.0	052) ND (0.00049 027) ND (0.00026	ND (0.0021) ND (0.00051) 1 ND (0.00027) 1	ND (0.00063) 1 ND (0.00033) 1	ND (0.00054) ND (0.00028)
4-Methvl-2-pentanone(MIBK) Methvlene chloride	mg/kg 0.93 ma/ka - ma/ka 0.05	51	100	ND (0.00083) 0.0014 J	ND (0.00079) 0.0019 J	ND (0.00095) 0.0014 J	ND (0.00091) 0.0016 J	ND (0.00086) 0.0012 J	ND (0.00078) 0.0017 J	ND (0.00085) 0.0029 J	ND (0.00092) 0.0015 J	ND (0.00098) 0.0021 J	ND (0.0011) 0.0019 J	ND (0.00086) 0.0012 J	ND (0.00086) 0.0017 J	ND (0.00081) 0.0023 J	ND (0.00088) 1 0.0021 J	ND (0.00089) ND (0.0010)	ND (0.00085) ND (0.0010)	ND (0.00088) ND (0.0010)	ND (0.00083) ND (0.00097)	ND (0.00027) ND (0.0 ND (0.00085) ND (0.0 ND (0.0010) ND (0.0 ND (0.00015) ND (0.0 ND (0.00024) ND (0.0 ND (0.00024) ND (0.0	088) ND (0.00083 010) ND (0.00098	ND (0.00086) ND (0.0010)	ND (0.0011) I ND (0.0013)	ND (0.00090) ND (0.0011)
Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene	mg/kg - mg/kg - mg/ka 1.3	35 5.5	19	ND (0.00014) ND (0.00023) ND (0.00027)	ND (0.00013) ND (0.00022) ND (0.00026)	ND (0.00016) ND (0.00027) ND (0.00031)	ND (0.00016) ND (0.00026) ND (0.00030)	ND (0.00015) ND (0.00024) ND (0.00028)	ND (0.00022) ND (0.00022) ND (0.00026)	ND (0.00028)	ND (0.00016) ND (0.00026) ND (0.00030)	ND (0.00033)	ND (0.00035)	ND (0.00015) ND (0.00024) ND (0.00029)	ND (0.00015) ND (0.00024) ND (0.00029)	ND (0.00014) ND (0.00023) ND (0.00027)								ND (0.00015) 1 ND (0.00024) 1 ND (0.00029) 1	ND (0.00030) 1 ND (0.00030) 1 ND (0.00035) 1	ND (0.00015) ND (0.00025) ND (0.00030)
Toluene 1.2.3-Trichlorobenzene	mg/kg 0.7 mg/kg -	100	100	ND (0.00012) ND (0.00049)	ND (0.00012) ND (0.00046)	ND (0.00014) ND (0.00056)	ND (0.00013) ND (0.00054)	ND (0.00013) ND (0.00051)	ND (0.00011) ND (0.00046)	ND (0.00012) ND (0.00050)	ND (0.00014) ND (0.00054)	ND (0.00015) ND (0.00058)	ND (0.00016) ND (0.00063)	ND (0.00013) ND (0.00051)	ND (0.00013) ND (0.00051)	ND (0.00012) ND (0.00048)	ND (0.00013) ND (0.00052) ND (0.00052)	ND (0.00013) ND (0.00052)	ND (0.00012) ND (0.00050)	ND (0.00013) ND (0.00052)	ND (0.00012) ND (0.00049)	ND (0.00013) ND (0.0 ND (0.00050) ND (0.0	013) ND (0.00012 052) ND (0.00049	ND (0.00013) 1 ND (0.00051) 1	ND (0.00016) I ND (0.00063) I	ND (0.00013) ND (0.00053)
1.2.4-Trichlorobenzene 1.1.1-Trichloroethane 1.1.2-Trichloroethane	malka - malka 0.68 malka -	100	100	ND (0.00049) ND (0.00016) ND (0.00032)	ND (0.00046) ND (0.00015) ND (0.00030)	ND (0.00056) ND (0.00019) ND (0.00036)	ND (0.00054) ND (0.00018) ND (0.00035)	ND (0.00051) ND (0.00017) ND (0.00033)	ND (0.00046) ND (0.00015) ND (0.00030)	ND (0.00050) ND (0.00017) ND (0.00032)	ND (0.00054) ND (0.00018) ND (0.00035)	ND (0.00058) ND (0.00019) ND (0.00037)	ND (0.00063) ND (0.00021) ND (0.00040)	ND (0.00051) ND (0.00017) ND (0.00033)	ND (0.00051) ND (0.00017) ND (0.00033)	ND (0.00048) ND (0.00016) ND (0.00031)	ND (0.00052) ND (0.00017) ND (0.00034) ND (0.00034) ND (0.00034)	ND (0.00052) ND (0.00018) ND (0.00034)	ND (0.00050) ND (0.00017) ND (0.00032)	ND (0.00052) ND (0.00017) ND (0.00033)	ND (0.00049) ND (0.00016) ND (0.00031)	ND (0.00050) ND (0.0 ND (0.00017) ND (0.0 ND (0.00032) ND (0.0	052) ND (0.00049 017) ND (0.00016 034) ND (0.00032	ND (0.00051) 1 ND (0.00017) 1 ND (0.00033) 1	ND (0.00063) ND (0.00021) ND (0.00040)	ND (0.00053) ND (0.00018) ND (0.00034)
Trichlorofluoromethane	mg/kg 0.47 mg/kg -	10	21	0.00025 J ND (0.00061)	0.00042 J ND (0.00058)	0.00023 J ND (0.00070)	0.00034 J ND (0.00068)																	ND (0.00019) 1 ND (0.00064) 1	ND (0.00024) 1 ND (0.00079) 1	ND (0.00020) ND (0.00067)
Vinvl chloride m,p-Xylene o-Xylene	malka 0.02 mg/kg 0.26 malka 0.26	100	100	ND (0.00020)	ND (0.00019)	ND (0.00023)	ND (0.00022)	ND (0.00020)	ND (0.00019)	ND (0.00020)	ND (0.00022)	ND (0.00023) ND (0.00025) ND (0.00023)	ND (0.00025) ND (0.00027) ND (0.00025)	ND (0.00022) ND (0.00022) ND (0.00021)	ND (0.00022) ND (0.00022) ND (0.00021)	ND (0.00019) ND (0.00021) ND (0.00019)	ND (0.00023) ND (0.00021) ND (0.00023) ND (0.00021) ND (0.000200000000000000000000000000000000	ND (0.00023) ND (0.00023)	ND (0.00022) ND (0.00022)	ND (0.00023) ND (0.00023)	ND (0.00020) ND (0.00021) ND (0.00020)	ND (0.00063) ND (0.0 ND (0.00020) ND (0.0 ND (0.00022) ND (0.0 ND (0.00022) ND (0.0	023) ND (0.00021 023) ND (0.00021 021) ND (0.00020	ND (0.00022) 1 ND (0.00022) 1 ND (0.00021) 1	ND (0.00025) 1 ND (0.00027) 1 ND (0.00025) 1	ND (0.00023) ND (0.00021)
o-Xvlene Xvlene (total)	malka 0.26 malka 0.26	100	100	ND (0.00020)	ND (0.00019)	ND (0.00023)	ND (0.00022)	ND (0.00020)	ND (0.00019)	ND (0.00020)	ND (0.00022)	ND (0.00023)	ND (0.00025)	ND (0.00021)	ND (0.00021)	ND (0.00019)	ND (0.00021)	ND (0.00021)	ND (0.00020)	ND (0.00021)	ND (0.00020)	ND (0.00020) ND (0.0	021) ND (0.00020	ND (0.00021)	ND (0.00025)	ND (0.00021)
2-Chlorophenol	ma/ka -	100	1	ND (0.018)	ND (0.018)	ND (0.019)	ND (0.019)	ND (0.018)	ND (0.018)	ND (0.017)	ND (0.018)	ND (0.018)	ND (0.019)	ND (0.020)	ND (0.017)	ND (0.019)	ND (0.020)	ND (0.018)	ND (0.019)	ND (0.018)	ND (0.018)	ND (0.018) ND (0.1	19) ND (0.020)	ND (0.019)	ND (0.018)	ND (0.020)
4-Chloro-3-methyl phenol 2.4-Dichlorophenol 2.4-Dimethylphenol	mg/kg - mg/kg - mg/kg -	- 100		ND (0.022) ND (0.031) ND (0.064)	ND (0.022) ND (0.030)	ND (0.023) ND (0.033)	ND (0.024) ND (0.033) ND (0.068)	ND (0.023) ND (0.032) ND (0.066)	ND (0.023) ND (0.032)	ND (0.021) ND (0.030)	ND (0.022) ND (0.031) ND (0.065)	ND (0.022) ND (0.030)	ND (0.024) ND (0.034)	ND (0.024) ND (0.034)	ND (0.021) ND (0.030)	ND (0.023) ND (0.032)	ND (0.025) ND (0.035)	ND (0.022) ND (0.031) ND (0.064)	ND (0.023) ND (0.033) ND (0.068)	ND (0.022) ND (0.031) ND (0.064)	ND (0.023) ND (0.032)	ND (0.022) ND (0.) ND (0.030) ND (0.) ND (0.064) ND (0.)	24) ND (0.025) 34) ND (0.034) 70) ND (0.071)	ND (0.024) ND (0.033) ND (0.070)	ND (0.023) ND (0.032)	ND (0.025) ND (0.035)
2,4-Dinitrophenol 4,6-Dinitro-o-cresol	mg/kg - mg/kg -	100		ND (0.14) ND (0.039)	ND (0.13) ND (0.038)	ND (0.14) ND (0.041)	ND (0.14) ND (0.041)	ND (0.14) ND (0.040)	ND (0.14) ND (0.040)	ND (0.13) ND (0.037)	ND (0.14) ND (0.039)	ND (0.13) ND (0.038)	ND (0.15) ND (0.042)	ND (0.15) ND (0.042)	ND (0.13) ND (0.037)	ND (0.14) ND (0.040)	ND (0.0721 ND (0.15) ND (0.043)	ND (0.14) ND (0.039)	ND (0.14) ND (0.041)	ND (0.13) ND (0.038)	ND (0.14) ND (0.040)	ND (0.13) ND (0. ND (0.038) ND (0.	 ND (0.15) 42) ND (0.043) 	ND (0.15) ND (0.042)	ND (0.14) ND (0.040)	ND (0.15) ND (0.044)
2-Methvlohenol 3&4-Methvlohenol	malka 0.33 malka - malka -	100	100	ND (0.023) ND (0.030) ND (0.024) ND (0.097)					ND (0.024)	ND (0.022)	ND (0.023)	ND (0.023)	ND (0.025)	ND (0.025)	ND (0.022)	ND (0.024) ND (0.031)	ND (0.026)	ND (0.023)	ND (0.024)	ND (0.023)	ND (0.024)	ND (0.023) ND (0.023) ND (0.029) ND (0.020) ND (0.024) ND (0.020) ND (0.095) ND (0.000)	25) ND (0.026)	ND (0.025)	ND (0.024)	ND (0.026)
2-Nitrophenol 4-Nitrophenol Pentachlorophenol	mg/kg - mg/kg 0.8	2.4	6.7	ND (0.024) ND (0.097) ND (0.034)	ND (0.024) ND (0.095) ND (0.034)	ND (0.025) ND (0.10) ND (0.036)	ND (0.023) ND (0.10) ND (0.036)	ND (0.025) ND (0.099) ND (0.035)	ND (0.025) ND (0.099) ND (0.035)	ND (0.093) ND (0.033)	ND (0.024) ND (0.098) ND (0.034)	ND (0.024) ND (0.095) ND (0.034)	ND (0.028) ND (0.10) ND (0.037)	ND (0.028) ND (0.11) ND (0.037)	ND (0.023) ND (0.033)	ND (0.025) ND (0.10) ND (0.035)	ND (0.027) ND (0.11) ND (0.038)	ND (0.024) ND (0.096) ND (0.034)	ND (0.025) ND (0.10) ND (0.036)	ND (0.096) ND (0.034)	ND (0.025) ND (0.035)	ND (0.024) ND (0. ND (0.095) ND (0. ND (0.034) ND (0.)	11) ND (0.028) 37) ND (0.038)	ND (0.028) ND (0.10) ND (0.037)	ND (0.024) ND (0.099) ND (0.035)	ND (0.11) ND (0.038)
Phenol 2.3.4.6-Tetrachlorophenol	mg/kg 0.33 mg/kg - mg/ka -	100	100	ND (0.019) ND (0.024) ND (0.027)	ND (0.019) ND (0.024)	ND (0.020) ND (0.025)	ND (0.020) ND (0.025)	ND (0.019) ND (0.025)	ND (0.019) ND (0.025)	ND (0.018) ND (0.023)	ND (0.019) ND (0.024)	ND (0.019) ND (0.024)	ND (0.021) ND (0.026)	ND (0.021) ND (0.026)	ND (0.018) ND (0.023)	ND (0.020) ND (0.025)	ND (0.021) ND (0.027)	ND (0.019) ND (0.024)	ND (0.020) ND (0.025)	ND (0.019) ND (0.024)	ND (0.020) ND (0.025)	ND (0.019) ND (0.1 ND (0.024) ND (0.1	21) ND (0.021) 26) ND (0.027)	ND (0.020) ND (0.026)	ND (0.019) ND (0.025)	ND (0.021) ND (0.027)
2.4.5-Trichlorophenol 2.4.6-Trichlorophenol Acenaphthene	ma/ka - ma/ka 20	100	100	ND (0.022) ND (0.012)	ND (0.021) ND (0.012)	ND (0.023) ND (0.013)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.026) ND (0.021) ND (0.012)	ND (0.022) ND (0.013)	ND (0.021) ND (0.012)	ND (0.023) ND (0.014)	ND (0.024) ND (0.014)	ND (0.021) ND (0.012)	ND (0.028) ND (0.022) ND (0.013)	ND (0.030) ND (0.024) ND (0.014)	ND (0.012)	ND (0.013)	ND (0.012)	ND (0.013)	ND (0.021) ND (0.1 0.0171 J ND (0.1	14) ND (0.014)	ND (0.014)	0.0149 J	ND (0.024) 0.135
Acenaphthylene Acetophenone Anthracene	mg/kg 100 mg/kg - mg/kg 100	100	100	ND (0.018) ND (0.0078) ND (0.022)	ND (0.0077)	ND (0.0082)	ND (0.0083)	ND (0.0080)	ND (0.0080)	ND (0.0075)	ND (0.019) ND (0.0079) ND (0.022)	ND (0.018) ND (0.0077)	ND (0.020) ND (0.0084)	ND (0.020) ND (0.0085)	ND (0.018) ND (0.0075)	ND (0.019) ND (0.0081)	ND (0.021) ND (0.0087) ND (0.025)	ND (0.018) ND (0.0077)	ND (0.019) ND (0.0082)	ND (0.018) ND (0.0077)	0.0221 J ND (0.0080)	0.0245 J ND (0.1 ND (0.0077) ND (0.0	20) ND (0.020) 365) ND (0.0086 24) ND (0.026)			0.0912 ND (0.0087)
Atrazine Benzo(a)anthracene	mg/kg - mg/kg 1	- 1	-	ND (0.015) ND (0.010)	ND (0.015) ND (0.010)	ND (0.016) ND (0.011)	ND (0.016) 0.0219.1	ND (0.016) ND (0.011)	ND (0.016) ND (0.010)	ND (0.015) 0.0203 J	ND (0.016) 0.0637	ND (0.015) ND (0.010)	ND (0.017) 0.0165 J	ND (0.017) ND (0.011)	ND (0.015) ND (0.0098)	ND (0.016) ND (0.011)	ND (0.017) ND (0.011)	ND (0.015) 0.0757	ND (0.016) 0.179	ND (0.015) 0.0734	ND (0.016) 0.192	ND (0.015) ND (0.) 0.225 ND (0.)	11) 0.0178 J	0.0237 3 ND (0.017) 0.084	ND (0.016) 0.11	ND (0.017) 0.761
Benzo(a)ovrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	malka 1 mg/kg 1 mg/kg 100	1	1	ND (0.016) ND (0.016)	ND (0.016) ND (0.016)	ND (0.017) ND (0.017)	0.0200 J 0.0221 J	ND (0.017) ND (0.016) ND (0.019)	ND (0.017) ND (0.016)	0.0164 J 0.0224 J	0.057	ND (0.016) ND (0.016) ND (0.018)	ND (0.018) ND (0.017)	ND (0.018) ND (0.017)	ND (0.016) ND (0.015) ND (0.017)	ND (0.017) ND (0.017)	ND (0.018) ND (0.018)	0.0695	0.147 0.208	0.0595	0.176	0.2 ND (0.) 0.261 ND (0.) 0.122 ND (0.)	18) ND (0.018) 17) ND (0.018) 20) ND (0.020)	0.0819 0.0922	0.107 0.128	0.74
Benzofk)fluoranthene 4-Bromobhenvl phenvl ether	malka 0.8	1	3.9									ND (0.017)	ND (0.018)	ND (0.020) ND (0.018) ND (0.015)	ND (0.016)	ND (0.018)	ND (0.019) ND (0.016) ND (0.0099)	0.0287 J ND (0.014)	0.0714 ND (0.015)	0.0253 J ND (0.014)	0.0839 ND (0.014)	0.097 ND (0)	18) ND (0.019) 15) ND (0.015) 096) ND (0.0098)	0.0363.1	0.0418 ND (0.014)	0.308 ND (0.016)
Butyl benzyl phthalate 1.1'-Biphenyl Benzaldehyde	mg/kg - mg/kg - mg/kg -	100		ND (0.0088)	ND (0.0087)	ND (0.0093)	ND (0.0094)	ND (0.0091)	ND (0.0090) ND (0.0051)	ND (0.0085) ND (0.0048)	ND (0.0089) ND (0.0050)	ND (0.0087) ND (0.0049)	ND (0.0096) ND (0.0054)	ND (0.0096) ND (0.0054)	ND (0.0085) ND (0.0048)	ND (0.0092) ND (0.0052)	ND (0.0099) ND (0.0056)	ND (0.0088) ND (0.0049)	ND (0.0093) ND (0.0052)	ND (0.0087) ND (0.0049)	ND (0.0091) ND (0.0051)	0.0544 J ND (0.0 ND (0.0049) ND (0.0	096) ND (0.0098) 054) ND (0.0055)	ND (0.0096) ND (0.0054)	ND (0.0090) ND (0.0051)	0.0622 J 0.0198 J
2-Chloronaphthalene 4-Chloroaniline	maka - maka - maka -	100		ND (0.0090) ND (0.0086) ND (0.013)	ND (0.0085) ND (0.013)	ND (0.0091) ND (0.014)	ND (0.0091) ND (0.014)	ND (0.0089) ND (0.013)	ND (0.0088) ND (0.013)	ND (0.0083) ND (0.013)	ND (0.0087) ND (0.013)	ND (0.0085) ND (0.013)	ND (0.0093) ND (0.014)	ND (0.0094) ND (0.014)	ND (0.0083) ND (0.013)	ND (0.0089) ND (0.014)	ND (0.0097) ND (0.015)	ND (0.0086) ND (0.013)	ND (0.0091) ND (0.014)	ND (0.0085) ND (0.013)	ND (0.0089) ND (0.013)	ND (0.0085) ND (0.0 ND (0.013) ND (0.0	14) ND (0.0095)	ND (0.0093) ND (0.014)	ND (0.0088) ND (0.013)	ND (0.0097) ND (0.015)
Carbazole Caprolactam	ma'ka - ma'ka -		-	ND (0.0052) ND (0.014)	ND (0.0052) ND (0.014)	ND (0.0055) ND (0.015)	ND (0.0056) ND (0.015)	ND (0.0054) ND (0.015)	ND (0.0054) ND (0.015)	ND (0.0051) ND (0.014)	ND (0.0053) ND (0.014)	ND (0.0052) ND (0.014)	ND (0.0057) ND (0.016)	ND (0.0057) ND (0.016)	ND (0.0050) ND (0.014)	ND (0.0055) ND (0.015)	ND (0.0059) ND (0.016)	ND (0.0052) ND (0.014)	0.0168 J ND (0.015)	ND (0.0052) ND (0.014)	0.0223 J ND (0.015)	0.0371 J ND (0.0 ND (0.014) ND (0.0	16) ND (0.0058 16) ND (0.016)	ND (0.0057) ND (0.015)	0.0183 J ND (0.015)	0.136 ND (0.016)
Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	mg/kg - mg/kg -		-	ND (0.011) ND (0.0077) ND (0.016)	ND (0.015)	ND (0.016)	ND (0.017)	ND (0.0080) ND (0.016)	ND (0.0079) ND (0.016)	ND (0.0075) ND (0.015)	0.0614 ND (0.0078) ND (0.016)	ND (0.0077) ND (0.015)	ND (0.0084) ND (0.017)	ND (0.0085) ND (0.017)	ND (0.0074) ND (0.015)	ND (0.0080) ND (0.016)	ND (0.013) ND (0.0087) ND (0.017)	ND (0.0077) ND (0.016)	ND (0.0082) ND (0.016)	ND (0.0077) ND (0.015)	ND (0.0080) ND (0.016)	ND (0.0076) ND (0.0 ND (0.015) ND (0.0	12) ND (0.013) 084) ND (0.0086) 17) ND (0.017)	ND (0.0084) ND (0.017)	ND (0.0079) ND (0.016)	ND (0.0087) ND (0.018)
bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2.4-Dinitrotoluene	mg/kg - mg/kg - mg/kg -			ND (0.013) ND (0.012)	ND (0.013) ND (0.012)	ND (0.014) ND (0.012) ND (0.012)	ND (0.014) ND (0.012) ND (0.012)	ND (0.013) ND (0.012) ND (0.012)	ND (0.013) ND (0.012)	ND (0.013) ND (0.011)	ND (0.013) ND (0.012)	ND (0.013) ND (0.012)	ND (0.014) ND (0.013)	ND (0.014) ND (0.013)	ND (0.012) ND (0.011) ND (0.011)	ND (0.013) ND (0.012)	ND (0.015) ND (0.013)	ND (0.013) ND (0.012)	ND (0.014) ND (0.012)	ND (0.013) ND (0.012)	ND (0.013) ND (0.012)	ND (0.013) ND (0.) ND (0.012) ND (0.) ND (0.011) ND (0.)	14) ND (0.014) 13) ND (0.013) 13) ND (0.013)	ND (0.014) ND (0.013) ND (0.012)	ND (0.013) ND (0.012)	ND (0.015) ND (0.013)
2.6-Dinitrotoluene 3,3'-Dichlorobenzidine	malka - mg/kg -	1.03		ND (0.018) ND (0.030) ND (0.024)	MD (0.019)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.019) ND (0.031)	ND (0.018) ND (0.029)	ND (0.018) ND (0.030)	ND (0.018) ND (0.030)	ND (0.020) ND (0.033)	ND (0.020) ND (0.033)	ND (0.017) ND (0.029)	ND (0.012) ND (0.031)	ND (0.020) ND (0.034)	ND (0.018) ND (0.030)	ND (0.012) ND (0.032)	ND (0.018) ND (0.030)	ND (0.012) ND (0.031)	ND (0.018) ND (0.1 ND (0.030) ND (0.1 ND (0.024) ND (0.1	20) ND (0.020) 33) ND (0.033)	ND (0.020) ND (0.033)	ND (0.019) ND (0.031)	ND (0.020) ND (0.034)
1,4-Dioxane Dibenzo(a.h)anthracene	mg/kg 0.1 mg/kg 0.33 mg/kg 7	9.8 0.33	13 0.33	ND (0.024) ND (0.016)	ND (0.024) ND (0.016)	ND (0.025) ND (0.017)	ND (0.025) ND (0.017)	ND (0.025) ND (0.016)	ND (0.025) ND (0.016)	ND (0.023) ND (0.015)	ND (0.024) ND (0.016)	ND (0.024) ND (0.016)	ND (0.026) ND (0.017)	ND (0.026) ND (0.017)	ND (0.023) ND (0.015)	ND (0.025) ND (0.017)	ND (0.027) ND (0.018)	ND (0.024) ND (0.016)	ND (0.025) 0.0218 J	ND (0.024) ND (0.016)	ND (0.025) 0.0272 J	ND (0.024) ND (0.1 0.0304 J ND (0.1	26) ND (0.026) 17) ND (0.018)	ND (0.026) ND (0.017)	ND (0.024) 0.0160 J	ND (0.027) 0.0993
Dibenzofuran Di-n-butyl phthalate Di-n-octvl phthalate	mg/kg -	100 100	59	ND (0.0059) ND (0.0090)	ND (0.0058) ND (0.0089)	ND (0.0062) ND (0.0095)	ND (0.0063) ND (0.0096)	ND (0.0061) ND (0.0093)	ND (0.0060) ND (0.0092)	ND (0.0057) ND (0.0087)	ND (0.0060) ND (0.0091)	ND (0.0058) ND (0.0089)	ND (0.0064) ND (0.0098)	ND (0.0064) ND (0.0098)	ND (0.0057) ND (0.0086)	ND (0.0061) ND (0.0094)	ND (0.0066) ND (0.010)	ND (0.0059) ND (0.0090)	0.0536 J ND (0.0095)	ND (0.0058) ND (0.0089)	ND (0.0061) ND (0.0093)	ND (0.0058) ND (0.0 ND (0.0089) ND (0.0	064) ND (0.0065) 098) ND (0.010)	ND (0.0064) ND (0.0098)	ND (0.0060) ND (0.0092)	ND (0.0066) ND (0.010)
Diethvi ohthalate Dimethyl phthalate	ma'ka - mg'kg - ma'ka -	100 100		ND (0.0077) ND (0.0064)	ND (0.0076) ND (0.0064)	ND (0.0081) ND (0.0068)	ND (0.0082) ND (0.0068)	ND (0.0079) ND (0.0066)	ND (0.0079) ND (0.0066)	ND (0.0074) ND (0.0062)	ND (0.0078) ND (0.0065)	ND (0.0076) ND (0.0064)	ND (0.0084) ND (0.0070)	ND (0.0084) ND (0.0070)	ND (0.0074) ND (0.0062) ND (0.0084)	ND (0.0080) ND (0.0067)	ND (0.0086) ND (0.0072)	ND (0.0077) ND (0.0064)	ND (0.0081) ND (0.0068)	ND (0.0076) ND (0.0064)	ND (0.0080) ND (0.0067)	ND (0.024) ND (0. 0.0304 J ND (0. ND (0.015) ND (0. ND (0.0058) ND (0.0 ND (0.0076) ND (0.0 ND (0.0076) ND (0.0 ND (0.0064) ND (0.0 0.0074) ND (0.0 0.0074 ND (0.0 0.0 0.0074 ND (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	084) ND (0.0085 070) ND (0.0071	ND (0.0083) ND (0.0070)	ND (0.0079) ND (0.0066)	ND (0.0087) ND (0.0072)
bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene	mg/kg - ma/ka 100 ma/ka 30	100 100	100 100	ND (0.0085) ND (0.016) ND (0.017)	ND (0.0083) ND (0.016) ND (0.016)	ND (0.017) ND (0.018)	0.0320 J ND (0.018)	ND (0.0087) ND (0.017) ND (0.017) ND (0.0094)	ND (0.0087) ND (0.017) ND (0.017)	0.0354 ND (0.016)	0.116 ND (0.017)	ND (0.0084) ND (0.016) ND (0.016)	0.0293 J ND (0.018)	ND (0.0093) ND (0.018) ND (0.018)	ND (0.0081) ND (0.015) ND (0.016)	ND (0.0088) ND (0.017) ND (0.017)	ND (0.018) ND (0.019)	0.145 ND (0.017)	0.327 ND (0.017)	0.143 ND (0.016)	0.295 ND (0.0087) ND (0.017)	0.407 ND (0.0 0.0197 J ND (0.0	18) 0.0302 J 18) ND (0.018)	0.162 ND (0.018)	0.232 ND (0.017)	1.69
Hexachlorobenzene Hexachlorobutadiene	mg/kg 0.33 mg/kg -	0.41	1.2	ND (0.0091) ND (0.015) ND (0.014)			ND (0.0097) ND (0.015)	ND (0.0094) ND (0.015)	ND (0.0094) ND (0.015)	ND (0.0088) ND (0.014)	ND (0.0092) ND (0.015)	ND (0.0090) ND (0.014)	ND (0.0099) ND (0.016)	ND (0.010) ND (0.016)	ND (0.0088) ND (0.014)	ND (0.0095) ND (0.015)	ND (0.010) ND (0.016)	ND (0.0091) ND (0.014)	ND (0.0096) ND (0.015)	ND (0.0091) ND (0.014)	ND (0.0095) ND (0.015)	ND (0.0084) ND (0.0 0.407 ND (0.0 0.0197 J ND (0.0 ND (0.0090) ND (0.0 ND (0.014) ND (0.0 ND (0.014) ND (0.0 ND (0.018) ND (0.0	10) ND (0.010) 16) ND (0.016)	ND (0.0099) ND (0.016)	ND (0.0094) ND (0.015)	ND (0.010) ND (0.016)
Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	malka - malka - malka 0.5	0.5	0.5	ND (0.014) ND (0.018) ND (0.017)	ND (0.014) ND (0.018) ND (0.017)	ND (0.015) ND (0.019) ND (0.018)	ND (0.015) ND (0.019) ND (0.018)	ND (0.015) ND (0.018) ND (0.017)	ND (0.015) ND (0.018) ND (0.017)	ND (0.014) ND (0.017) ND (0.016)	ND (0.015) ND (0.018) 0.0413	ND (0.014) ND (0.018) ND (0.017)	ND (0.016) ND (0.019) ND (0.018)	ND (0.016) ND (0.020) ND (0.019)	ND (0.014) ND (0.017) ND (0.016)	ND (0.015) ND (0.019) ND (0.018)	ND (0.019)	0.0505	0.0944	0.0441	0.109	0.134 ND (0.)	19) ND (0.019)	0.057	0.07	0.478
2-Methvinaphthalene	malka - malka -	100 0.41		ND (0.0077) ND (0.0082)	ND (0.0081)	ND (0.0086)	ND (0.0082) ND (0.0087)	ND (0.0080) ND (0.0084)	ND (0.0079) ND (0.0084)	ND (0.0075) ND (0.0079)	ND (0.0078) ND (0.0083)	ND (0.0077) ND (0.0081)	ND (0.0084) ND (0.0089)	ND (0.0085) ND (0.0089)	ND (0.0074) ND (0.0079)	ND (0.0080) ND (0.0085)	ND (0.0087) ND (0.0092)	ND (0.0077) ND (0.0081)	ND (0.0082) ND (0.0086)	ND (0.0077) ND (0.0081)	ND (0.0080) ND (0.0084)	ND (0.0076) ND (0.0 ND (0.0081) ND (0.0 ND (0.0084) ND (0.0	084) ND (0.0086 089) ND (0.0091	ND (0.0084) ND (0.0089)	ND (0.0079) ND (0.0084)	ND (0.0087) 0.0649 J
2-Nitroaniline 3-Nitroaniline 4-Nitroaniline	mg/kg - mg/kg - mg/kg -			ND (0.0085) ND (0.0090) ND (0.0094)	ND (0.0084) ND (0.0089) ND (0.0092)	ND (0.0090) ND (0.0096) ND (0.0099)	ND (0.0091) ND (0.0096) ND (0.0099)	ND (0.0088) ND (0.0093) ND (0.0098)	ND (0.0088) ND (0.0093) ND (0.0096)	ND (0.0082) ND (0.0087) ND (0.0090)	ND (0.0086) ND (0.0091) ND (0.0095)	ND (0.0084) ND (0.0089) ND (0.0093)	ND (0.0093) ND (0.0098) ND (0.010)	ND (0.0093) ND (0.0099) ND (0.010)	ND (0.0082) ND (0.0087) ND (0.0090)	ND (0.0089) ND (0.0094) ND (0.0097)	ND (0.0096) ND (0.010) ND (0.011)	ND (0.0085) ND (0.0090) ND (0.0093)	ND (0.0090) ND (0.0095) ND (0.0099)	ND (0.0085) ND (0.0090) ND (0.0093)	ND (0.0088) ND (0.0093) ND (0.0097)	ND (0.0084) ND (0.0 ND (0.0089) ND (0.0 ND (0.0092) ND (0.0	(0.010) ND (0.010)	ND (0.0092) ND (0.0098) ND (0.010)	ND (0.0093)	ND (0.010)
C+14inoarinine	pinanta j			ND 10.00941	HD 10.00921	-10.0099)	10.0099)	10.00961	10.00961	1000001 GM	ND 10.00951	-10.0093)	1010.0101	(U1U) (U1U)	ND 10.00901	HD 10.009/1	110.0111	0.00931	140 10:00991	110 10:00931	++D 10.0097)	ND 10.00921 ND 10.	101 101010101	ND 10.0101	10.00901	10.0111

Table 2 Remaining Soil Sample Exceedances

Naphthalene	ma/ka	12	100	100	ND (0.010)	ND (0.010)		ND (0.011)		ND (0.010)	ND (0.0098)	ND (0.010)		ND (0.011)		ND (0.0098)	ND (0.011)		ND (0.010)	0.0158 J	ND (0.010)	0.0227 J	0.0192 J	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.010)	0.161
Nitrobenzene	mg/kg		3.7	15	ND (0.014)	ND (0.014)		ND (0.015)	ND (0.014)		ND (0.013)	ND (0.014)		ND (0.015)	ND (0.015)	ND (0.013)	ND (0.015)	ND (0.016)			ND (0.014)	ND (0.014)		ND (0.015)	ND (0.015)	ND (0.015)	ND (0.014)	ND (0.016)
N-Nitroso-di-n-propylamine	mg/kg		-		ND (0.010)	ND (0.010)		ND (0.011)								ND (0.010)				ND (0.011)		ND (0.011)		ND (0.011)		ND (0.011)		ND (0.012)
N-Nitrosodiphenvlamine	ma/ka				ND (0.013)	ND (0.013)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.013)	ND (0.013)	ND (0.014)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.015)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.013)	ND (0.014)	ND (0.015)	ND (0.014)	ND (0.014)	ND (0.015)
Phenanthrene	ma/ka	100	100	100	ND (0.012)	ND (0.012)	ND (0.013)	0.0182 J		ND (0.012)		0.0639	ND (0.012)			ND (0.012)				0.196	0.101	0.194	0.297	ND (0.013)	0.0239 J	0.099	0.158	1.24
Pyrene	mg/kg	100	100	100	ND (0.012)	ND (0.011)			ND (0.012)			0.117				ND (0.011)				0.322	0.142	0.343		ND (0.013)	0.0241 J	0.142	0.198	1.52
1.2.4.5-Tetrachlorobenzene	ma/ka		-		ND (0.0092)	ND (0.0091)	ND (0.0097)	ND (0.0098)	ND (0.0095)	ND (0.0094)	ND (0.0089)	ND (0.0093)	ND (0.0091)	ND (0.010)	ND (0.010)	ND (0.0088)	ND (0.0095)	ND (0.010)	ND (0.0091)	ND (0.0097)	ND (0.0091)	ND (0.0095)	ND (0.0091)	ND (0.010)	ND (0.010)	ND (0.010)	ND (0.0094)	ND (0.010)
Metals Analysis												Metals																
Aluminum	ma/ka				5960	6510	4980	6620	7340	6140	4500	5970	5920	5340	5580	4510	7660	6480	6350	6180	5260	7700	7790	5570	6780	8800	5640	6550
	ma/ka				<2.2	<2.2	<2.4	<2.3	<2.3	<2.2	<2.1	<2.3	<2.2	<2.4	<2.3	<2.1	<2.2	<2.5	<2.2	<2.2	<2.2	<2.3	<2.2	<1.6	<2.4	<2.5	<2.2	<1.6
Arsenic	mg/kg	13	16	16	<2.2	2.5	<2.4	2.3	2.3	<2.2	<2.1	3.3	2.2	<2.4	<2.3	2.1	2.3	<2.5	2.5	3	2.7	3.3	3.2	2.5	<2.4	2.9	2.3	2.4
Barium	ma/ka	350	350	400	42.9	47.1	35.2	44.1	54.7	42.8	37.9	77.1	36.7	38.4	48.9	33.3	47.7	45	155	56.4	42.9	83	80.3	42.5	46.7	66.8	44.2	57.4
Bervllium	ma/ka	7.2	14	72	< 0.22	< 0.22	< 0.24	< 0.23	< 0.23	<0.22	<0.21	< 0.23	< 0.22	< 0.24	< 0.23	< 0.21	< 0.22	<0.25	0.37	0.46	0.42	0.46	0.49	0.47	0.45	0.82	0.29	0.35
Cadmium	ma/ka	2.5	2.5	4.3	<0.55	<0.55	<0.60	< 0.56	< 0.58	< 0.54	< 0.53	< 0.57	<0.56	< 0.61	< 0.59	< 0.52	< 0.55	<0.61	< 0.54	<0.56	<0.55	<0.56	<0.55	<0.40	<0.59	<0.62	<0.55	<0.41
Calcium	ma/ka				1050	1190	1420	1930	1290	1140	1420	3830	2610	1770	1320	853	738	1360	1980	2170	1960	3050	2830	1120	1630	3080	1740	2040
Chromium	ma/ka				19.6	18.1	13	16.4	21.9	16.4	12.7	14.4	14.3	16.5	18.8	13.9	20.6	19.6	14.6	17.3	14.9	18.8	22.4	17.1	17.4	28.9	14.4	16.4
Cobalt	ma/ka		30		8.2	8	<6.0	63	8	6.6	< 5.3	<5.7	<5.6	<6.1	7.5	64	9.2	74	5.8	6.3	6.1	63	62	7	6.8	8	<5.5	5.6
Copper	ma/ka	50	270	270	22.6	22.6	11.9	15.2	24	18	13.8	16.1	12.4	11.8	20.8	11.6	26.5	21.8	14.2	17.8	15.3	19.5	20.3	24.9	17.3	42.9	14.5	16.1
	ma/ka		2000		17500	22400	13500	13700	20300	16900	14900	15300	12500	14200	19800	17400	23900	18400	13300	22000	19700	19400	19300	20400	15600	17100	11600	13900
Lead	ma/ka	63	400	400	74	82	16.1	40.8	13.9	8.9	7.5	119	28	8.2	94	5.9	81	8.5	63.9	73.8	32.7	104	89.5	20	37.8	56.4	40.7	67.8
Magnesium	mg/kg	-	-	400	1960	1930	1920	2230	2440	1830	1630	2080	1870	2070	1760	1370	1830	1910	1950	1760	1750	2300	2570	1720	2120	3730	1880	2020
Manganese	mg/kg	1600	2000	2000	277	407	279	323	384	326	317	237	285	356	483	532	407	348	326	561	437	376	348	352	337	357	260	297
Mercury	ma/ka	0.18	0.81	0.81	0.037	<0.036	<0.036	0.042	<0.038	<0.035	+0.032	0.12	<0.033	≤0.038	<0.037	< 0.034	0.04	<0.039	1.1	0.17	0.09	0.3	0.32	<0.038	=0.039	0.22	0.15	0.2
Nickel	ma/ka	20	140	310	11.1	12.3	11.7	14.5	13.2	11.1	0.032	13.1	12.5	11.9	10.9	9.5	13.5	11.7	14.1	12.7	14.3	14	13.6	10.038	13.6	23.3	12.5	13.5
Potassium	mg/kg	30	140	310	1220	1460	<1200	1240	1880	1290	<1100	<1100		<1200	<1200	<1000	1560	1370	<1100	<1100	<1100	1170	1240	1130	1410	1450	<1100	1130
Selenium	mg/kg	3.9	36	180	<2.2	<2.2	<2.4	<2.3	<2.3	<2.2	<2.1	<2.3		<2.4	<2.3	<2.1	<2.2	<2.5	<2.2	<2.2	<2.2	<2.3	<2.2	<1.6	<2.4	<2.5	<2.2	<1.6
Selenium	mg/kg	3.8	36	180	<0.55	0.57	<0.60	<0.56	<0.58	<0.54	<0.53	<0.57	<0.56	<0.61	<0.59 c0.59	<0.52	<0.55	<0.61	<0.54	<0.56	<0.55	<0.56	<0.55	<0.40	<0.59	<0.62	<0.55	<0.41
Silver Sodium	ma/ka	2	30	180	<0.55	<1100	<1200	<0.56	<1200	<0.64	<0.53	<0.57	<1100	<1200	<1200	<0.52	<1100	<1200	<0.54	<0.56	<1100	<1100	<0.55	<0.40	<1200	<0.62	<0.55	<0.41
Thallium	ma/ka			•	<1100	<1100	<1200	<1100	<1200	<1100	<1100	<1100	<1100	<1200	<1200	<1000	<1100	<1200	<110	<1100	<110	<1100	<1100	<800	<1200	<1200	<1100	<0.82
Vanadium	mg/kg		100		<1.1	<1.1	35.5	<1.1	<1.2 30.8	<1.1	<1.1	<1.1	<1.1	<1.2	<1.2	<1.0	<1.1	32.1	30	<1.1	<1.1	30	<1.1	<0.80	<1.2	<1.2	<1.1	<0.82
/anadium	ma/ka	109	2200	10000	31.2	35	35.5	22.2 44.2	39.8	28.2	25.2	92.9	18.9	24.9	36.2	23.5	36.5	32.1	30 54.1	28.4	27.9 45.1	30	32.4	28.9	35.8	240	20.4	23.1
inc	ma/ka	109	2200	10000	34.2	33.8	33.4	44.2	34.5	28.7	25	92.9	63.1	23.8	31.9	24	38.3	31.3	54.1	54.3	45.1	77.3	75.9	53.8	46.3	240	37.3	48.5
General Chemistry																												
Jeneral Chemistry																												
Solids Percent	%				89.8	91.6	86.1	86.2	86.6	89.3	92.8	90.6	01.7	83.2	82.1	04.7	87.5	81.6	80.0	86.6	91.2	3.88	88.9	83.1	04	83.4	00.0	81.1
Solids. Percent	76				89.8	91.6	80.1	80.2	0.05	69.3	92.8	90.6	91.7	53.Z	82.1	94./	8/.D	81.0	89.9	0.08	91.2	0.65	88.9	83.1	81	83.4	8.05	81.1
*This compound in BS is outsid																												
Regulatory limits listed in this										10																		
responsibility for errors in reg	gulatory doc	uments or chan	ages to criteria detailed	d in later versions o	of the referenced	regulation. It is	s the responsit	pility of the user	to verify these			1																
limits before using or reportin	ng any data.																											
27 results exceeded regulator	ry criteria.																											
Hit																												
Exceed																												

					I	ſ					[[
Client Sample ID:		NY TOGS Class	MW-4	MW-4	MW-3	MW-3	FB-1	FB-1	MW-201	MW-201	MW-2	MW-2	MW-1	MW-1	TRIP BLANK
Lab Sample ID:		GA GW Standards	JC12052-1	JC12052-1F	JC12052-2	JC12052-2F	JC12052-3	JC12052-3F	JC12052-4	JC12052-4F	JC12052-5	JC12052-5F	JC12052-6	JC12052-6F	JC12052-7
Date Sampled:		(NYSDEC 6/2004) ¹	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016
Matrix:			Ground Water	Groundwater	Ground Water	Groundwater	Field Blank	Field Blank	Ground Water	Groundwater	Ground Water	Groundwater	Ground Water	Groundwater	Trip Blank
matrix.			Ground Water	Filtered	Ground Water	Filtered	Water	Filtered	Cround Water	Filtered	Ground Water	Filtered	Cround Water	Filtered	Water
GC/MS Volatiles (SW846 82600	C)														
			-		-	-	-	-		-					
Acetone	ug/l	-	ND (3.3)	-	ND (3.3)	-	ND (3.3)	-	ND (3.3)	-	ND (3.3)	-	ND (0.93)		-
Benzene	ug/l	1	ND (0.24)	-	ND (1.4)	-	-								
Bromochloromethane	ug/l	5	ND (0.37)	-	ND (1.3)	-	-								
Bromodichloromethane	ug/l ug/l	-	ND (0.23) ND (0.23)	-	ND (0.23) ND (0.23)	-	ND (0.23) ND (0.23)	-	ND (0.23) ND (0.23)	-	ND (0.23) ND (0.23)	-	ND (1.3) ND (1.1)		-
Bromoform Bromomethane	ug/i	5	ND (0.23)	-	ND (0.23)		ND (0.23)	-	ND (0.23) ND (0.42)		ND (0.23) ND (0.42)		ND (1.1) ND (0.87)		-
2-Butanone (MEK)	ug/i	-	ND (5.6)		ND (0.82)		-								
Carbon disulfide	ug/i	- 60	ND (0.25)		ND (0.67)										
Carbon tetrachloride	ug/i	5	ND (0.23)		ND (0.07)										
Chlorobenzene	ug/l	5	ND (0.22)		ND (0.22)		ND (0.22)		ND (0.22)		ND (0.22)	-	ND (1.4)	-	
Chloroethane	ug/l	5	ND (0.34)		ND (0.34)	-	ND (0.34)	-	ND (0.34)		ND (0.34)	-	ND (1.1)	-	-
Chloroform	ug/l	7	3	-	4.2		ND (0.19)	-	2.1		2.3	-	ND (0.31)	-	-
Chloromethane	ug/l	5	ND (0.41)		ND (0.41)		ND (0.41)	-	ND (0.41)	-	ND (0.41)	-	ND (1.4)		-
Cvclohexane	ug/l	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (1.5)		-
1.2-Dibromo-3-chloropropane	ug/l	0.04	ND (0.99)	-	ND (1.4)	-	-								
Dibromochloromethane	ug/l	-	ND (0.15)	-	ND (0.15)	-	ND (0.15)	-	ND (0.15)	-	ND (0.15)	-	ND (0.29)	-	-
1.2-Dibromoethane	ug/l	0.0006	ND (0.23)		ND (0.23)	-	ND (0.24)		-						
1.2-Dichlorobenzene	ug/l	3	ND (0.19)		ND (0.19)	-	ND (0.28)								
1.3-Dichlorobenzene	ug/l	3	ND (0.23)		ND (0.23)	-	ND (0.25)								
1.4-Dichlorobenzene	ug/l	3	ND (0.27)		ND (0.27)	-	ND (0.42)	-	-						
Dichlorodifluoromethane	ug/l	5	ND (0.90)	-	ND (0.34)	-	-								
1.1-Dichloroethane	ug/l	5	ND (0.17)	-	ND (0.32)	-	-								
1.2-Dichloroethane	ug/l	0.6	ND (0.18)	-	ND (0.33)	-	-								
1.1-Dichloroethene	ua/l	5	ND (0.51)	-	1.1	-	ND (0.51)	-	0.57 J	-	0.53 J	-	ND (0.32)	-	-
cis-1.2-Dichloroethene	ug/l	5	ND (0.27)	-	ND (0.27)	-	ND (0.27)	-	0.51 J	-	0.61 J	-	ND (0.41)	-	-
trans-1,2-Dichloroethene	ug/l	5	ND (0.65)	-	ND (0.37)	-	-								
1,2-Dichloropropane	ua/l	1	ND (0.39)	-	ND (0.37)	-	-								
cis-1,3-Dichloropropene	ug/l	-	ND (0.21)	-	ND (0.21)	-	ND (0.21)	-	ND (0.21)	-	ND (0.21)	-	ND (0.27)	-	-
trans-1,3-Dichloropropene	ug/l	-	ND (0.19)	-	ND (0.19)	-	ND (0.19)	-	ND (0.19)	-	ND (0.19)	-	ND (0.26)	-	-
Ethylbenzene	ua/l	5	ND (0.27)	-	ND (0.30)	-	-								
Freon 113	ua/l	5	ND (0.52)	-	ND (0.23)	-	-								
2-Hexanone	ug/l	-	ND (1.7)	-	ND (1.7)	-	ND (1.7)	-	ND (1.7)	-	ND (1.7)	-	ND (0.29)	-	-
Isopropylbenzene	ug/l	5	ND (0.23)	-	ND (0.43)	-	-								
Methyl Acetate	ug/l	-	ND (1.9)	-	ND (1.9)	-	ND (1.9)	-	ND (1.9)	-	ND (1.9)	-	ND (0.35)	-	-
Methylcyclohexane	ug/l	-	ND (0.22)	-	ND (0.22)	-	ND (0.22)	-	ND (0.22)	-	ND (0.22)	-	ND (0.26)	-	-
Methyl Tert Butyl Ether	ug/l	10	ND (0.24)	-	ND (0.34)	-	-								
4-Methyl-2-pentanone(MIBK)	ug/l	-	ND (1.0)	-	ND (1.0)	-	ND (1.0)	-	ND (1.0)	-	ND (1.0)	-	ND (0.28)	-	-
Methylene chloride	ug/l	5	ND (0.73)	-	ND (0.27)	-	-								
Styrene	ug/l	5	ND (0.27)	-	ND (0.26)	-	-								
1,1,2,2-Tetrachloroethane	ug/l	5	ND (0.21)	-	ND (0.32)	-	-								
Tetrachloroethene	ug/l	5	64.7	-	30	-	ND (0.40)	-	57.2	-	58	-	ND (0.53)	-	-
Toluene	ug/l	5	ND (0.16)	-	ND (0.72)	-	-								
1,2,3-Trichlorobenzene	ug/l	5	ND (0.23)	-	ND (0.37)	-	-								
1,2,4-Trichlorobenzene	ug/l	5	ND (0.21)	-	ND (0.27)	-	-								
1,1,1-Trichloroethane	ug/l	5	0.31 J	-	0.80 J	-	ND (0.25)	-	0.74 J	-	0.64 J	-	ND (0.79)	-	-
1,1,2-Trichloroethane	ug/l	1	ND (0.21)	-	ND (0.29)		-								
Trichloroethene	ug/l	5	5.8	-	3.4	-	ND (0.22)	-	9.2	-	8.7	-	ND (0.24)		-
Trichlorofluoromethane	ug/l	5	ND (0.43)		ND (0.43)	-	ND (0.31)		-						
Vinyl chloride	ug/l	2	ND (0.15)		ND (0.15)	-	1.5 J		-						
m,p-Xylene	ug/l		ND (0.38)		ND (0.38)	-	ND (0.23)		-						
o-Xylene	ug/l	5	ND (0.17)		ND (0.17)	-	ND (0.29)		-						
Xylene (total)	ug/l	5	ND (0.17)		ND (0.17)	-	ND (0.42)		-						

Client Sample ID:		NY TOGS Class	MW-4	MW-4	MW-3	MW-3	FB-1	FB-1	MW-201	MW-201	MW-2	MW-2	MW-1	MW-1	TRIP BLANK
Lab Sample ID:		GA GW Standards	JC12052-1	JC12052-1F	JC12052-2	JC12052-2F	JC12052-3	JC12052-3F	JC12052-4	JC12052-4F	JC12052-5	JC12052-5F	JC12052-6	JC12052-6F	JC12052-7
Date Sampled:		(NYSDEC 6/2004) ¹	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016
		(Groundwater		Groundwater	Field Blank	Field Blank		Groundwater		Groundwater		Groundwater	Trip Blank
Matrix:			Ground Water		Ground Water	Filtered	Water	Filtered	Ground Water	Filtered	Ground Water		Ground Water		
				Filtered		Flitered	water	Flitered		Filtered		Filtered	ND (0.36)	Filtered	Water
GC/MS Semi-volatiles (SW846	8270D)											-	ND (0.29)	-	-
	-			1								-	ND (0.22)	-	-
2-Chlorophenol 4-Chloro-3-methyl phenol	ug/l ug/l	-	ND (0.94) ND (1.4)		ND (0.96) ND (1.4)	-	ND (0.93) ND (1.4)	-	ND (0.93) ND (1.4)	-	ND (0.93) ND (1.4)	-	ND (0.38) ND (0.29)		-
2,4-Dichlorophenol	ug/i ua/l	- 1	ND (1.4) ND (1.3)		ND (1.4) ND (1.3)	-	ND (0.29) ND (0.29)								
2,4-Dimethylphenol	ug/l	1	ND (1.3)	-	ND (0.21)	-	-								
2,4-Dinitrophenol	ug/l	1	ND (1.1)	-	ND (0.24)	-	-								
4,6-Dinitro-o-cresol	ug/l	-	ND (0.88)	-	ND (0.90)	-	ND (0.87)	-	ND (0.87)	-	ND (0.87)	-	ND (0.34)	-	-
2-Methylphenol 3&4-Methylphenol	ug/l ug/l	-	ND (0.83) ND (0.68)	-	ND (0.84) ND (0.69)	-	ND (0.82) ND (0.67)	-	ND (0.82) ND (0.67)	-	ND (0.82) ND (0.67)	-	ND (0.28) ND (0.46)	-	
2-Nitrophenol	ug/l	-	ND (0.08)		ND (0.09)	-	ND (0.07)	-	ND (0.07)		ND (0.07)		ND (0.40)		-
4-Nitrophenol	ug/l	-	ND (1.1)	-	ND (1.1)	-	ND (1.1)	-	ND (1.1)	-	ND (1.1)	-	ND (0.29)	-	-
Pentachlorophenol	ug/l	1	ND (1.5)	-	ND (1.5)	-	ND (1.4)	-	ND (1.4)	-	ND (1.4)	-	ND (0.23)	-	-
Phenol	ug/l	1	ND (0.32)	-	ND (0.32)	-	ND (0.31)	-	ND (0.31)	-	ND (0.31)	-	ND (0.34)	-	-
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	ug/l ug/l	-	ND (1.4) ND (1.5)		ND (1.5) ND (1.5)	-	ND (1.4) ND (1.5)	-	ND (1.4) ND (1.5)		ND (1.4) ND (1.5)		ND (0.36) ND (1.5)		-
2,4,6-Trichlorophenol	ug/l	-	ND (1.5)	-	ND (1.5)	-	ND (1.4)	-	-						
Acenaphthene	ug/l	-	ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	-
Acenaphthylene	ug/l	-	ND (0.24)	-	ND (0.25)	-	ND (0.24)	-	-						
Acetophenone	ug/l	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	
Anthracene Atrazine	ug/l ug/l	- 7.5	ND (0.25) ND (0.42)	-	ND (0.25) ND (0.43)	-	ND (0.25) ND (0.42)		-						
Benzaldehyde	ug/l	-	ND (0.34)	-	ND (0.35)	-	ND (0.34)	-	_						
Benzo(a)anthracene	ug/l	-	ND (0.32)	-	ND (0.32)	-	ND (0.32)	-	ND (0.32)	-	ND (0.32)	-	ND (0.32)	-	-
Benzo(a)pyrene	ug/l	ND	ND (0.34)	-	ND (0.34)	-	ND (0.33)	-	-						
Benzo(b)fluoranthene	ug/l	-	ND (0.32) ND (0.41)		ND (0.33) ND (0.42)	-	ND (0.32) ND (0.41)	-	-						
Benzo(g,h,i)perylene Benzo(k)fluoranthene	ug/l ug/l	-	ND (0.41) ND (0.37)	-	ND (0.42) ND (0.38)	-	ND (0.41) ND (0.37)		-						
4-Bromophenyl phenyl ether	ug/l	-	ND (0.37)		ND (0.38)	-	ND (0.37)		-						
Butyl benzyl phthalate	ug/l	-	ND (0.27)	-	ND (0.28)	-	ND (0.27)	-	-						
1,1'-Biphenyl	ug/l	5	ND (0.26)		ND (0.26)	-	ND (0.26)	-	ND (0.26)	-	ND (0.26)		ND (0.26)		-
2-Chloronaphthalene 4-Chloroaniline	ug/l	- 5	ND (0.30) ND (0.23)		ND (0.31) ND (0.24)	-	ND (0.30) ND (0.23)	-	ND (0.30) ND (0.23)	-	ND (0.30) ND (0.23)		ND (0.30) ND (0.23)		
Carbazole	ug/l ug/l	-	ND (0.23) ND (0.30)	-	ND (0.24) ND (0.30)	-	ND (0.23)	-	ND (0.23) ND (0.29)	-	ND (0.23) ND (0.29)	-	ND (0.23) ND (0.29)		-
Caprolactam	ug/l	-	ND (0.43)		ND (0.44)	-	ND (0.43)	-							
Chrysene	ug/l	-	ND (0.35)	-	ND (0.36)	-	ND (0.35)	-	ND (0.35)	-	ND (0.35)		ND (0.35)		-
bis(2-Chloroethoxy)methane	ug/l	5	ND (0.26)	-	ND (0.27)	-	ND (0.26)	-							
bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether	ug/l ug/l	1 5	ND (0.35) ND (0.29)	-	ND (0.35) ND (0.29)	-	ND (0.34) ND (0.28)	-	ND (0.34) ND (0.28)	-	ND (0.34) ND (0.28)		ND (0.34) ND (0.28)		
4-Chlorophenyl phenyl ether	ug/l	-	ND (0.23)	-	ND (0.28)	-	ND (0.20)	-	ND (0.27)	-	ND (0.20)	-	ND (0.27)		-
2,4-Dinitrotoluene	ug/l	5	ND (0.27)	-	ND (0.27)	-	ND (0.26)	-	-						
2,6-Dinitrotoluene	ug/l	5	ND (0.33)	-	ND (0.33)	-	ND (0.32)	-	-						
3,3'-Dichlorobenzidine 1,4-Dioxane	ug/l	5	ND (0.54) ND (0.73)	-	ND (0.55) ND (0.74)	-	ND (0.53) ND (0.72)	-							
Dibenzo(a,h)anthracene	ug/l ug/l	-	ND (0.73) ND (0.37)		ND (0.74) ND (0.38)	-	ND (0.72) ND (0.37)	-	ND (0.72) ND (0.37)		ND (0.72) ND (0.37)	-	ND (0.72) ND (0.37)		-
Dibenzofuran	ug/l	-	ND (0.27)	-	ND (0.28)	-	ND (0.27)		_						
Di-n-butyl phthalate	ug/l	50	ND (0.79)	-	ND (0.81)	-	ND (0.79)	-	-						
Di-n-octyl phthalate	ug/l	-	ND (0.29)	-	ND (0.30)	-	ND (0.29)	-	-						
Diethyl phthalate	ug/l	-	ND (0.25)		ND (0.25) ND (0.32)	-	ND (0.24)	-	ND (0.24)	-	ND (0.24) ND (0.31)	-	ND (0.24)		-
Dimethyl phthalate bis(2-Ethylhexyl)phthalate	ug/l ug/l	- 5	ND (0.32) ND (0.78)		ND (0.32) 1.4 J		ND (0.31) ND (0.77)	-	ND (0.31) ND (0.77)	-	ND (0.31)		ND (0.31) 1.5 J		-
Fluoranthene	ug/l	-	ND (0.23)	-	ND (0.24)	-	ND (0.23)	-	- 1						
Fluorene	ug/l		ND (0.30)	-	ND (0.30)	-	ND (0.29)		ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	-
Hexachlorobenzene	ug/l	0.04	ND (0.43)	-	ND (0.44)	-	ND (0.42)	-	-						
Hexachlorobutadiene	ug/l	0.5	ND (0.37)	-	ND (0.38)	-	ND (0.36)	-	ND (0.36) ND (0.29)	-	ND (0.36)	-	ND (0.36)	-	-
Hexachlorocyclopentadiene Hexachloroethane	ug/l ug/l	5	ND (0.30) ND (0.22)	-	ND (0.30) ND (0.23)	-	ND (0.29) ND (0.22)		-						
Indeno(1,2,3-cd)pyrene	ug/l	-	ND (0.39)	-	ND (0.40)	-	ND (0.38)	-	ND (0.38)	-	ND (0.22)	-	ND (0.38)	-	-
Isophorone	ug/l		ND (0.29)	-	ND (0.29)	-	ND (0.29)		ND (0.29)	-	ND (0.29)	-	ND (0.29)	-	-
2-Methylnaphthalene	ug/l	-	ND (0.29)	-	ND (0.30)	-	ND (0.29)	-	-						
2-Nitroaniline	ug/l	5	ND (0.21)	-	ND (0.22)	-	ND (0.21)	-	-						
3-Nitroaniline	ug/l	5	ND (0.24)	-	ND (0.25)	-	ND (0.24)	-							

Client Sample ID:		NY TOGS Class	MW-4	MW-4	MW-3	MW-3	FB-1	FB-1	MW-201	MW-201	MW-2	MW-2	MW-1	MW-1	TRIP BLANK
Lab Sample ID:		GA GW Standards	JC12052-1	JC12052-1F	JC12052-2	JC12052-2F	JC12052-3	JC12052-3F	JC12052-4	JC12052-4F	JC12052-5	JC12052-5F	JC12052-6	JC12052-6F	JC12052-7
Date Sampled:		(NYSDEC 6/2004) ¹	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016
Matrix:			Ground Water	Groundwater Filtered	Ground Water	Groundwater Filtered	Field Blank Water	Field Blank Filtered	Ground Water	Groundwater Filtered	Ground Water	Groundwater Filtered	Ground Water	Groundwater Filtered	Trip Blank Water
4-Nitroaniline	ua/l	5	ND (0.35)	Fillereu	ND (0.35)	Fillereu	ND (0.34)	Fillereu	ND (0.34)	-	ND (0.34)	Fillereu	ND (0.34)	Fillereu	water
Naphthalene	ug/l	-	ND (0.29)	-	ND (0.29)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	ND (0.28)	-	-
Nitrobenzene	ug/l	0.4	ND (0.47)		ND (0.48)	-	ND (0.46)	-	ND (0.46)	-	ND (0.46)	-	ND (0.46)	-	-
N-Nitroso-di-n-propylamine	ug/l	-	ND (0.32)		ND (0.32)		ND (0.31)		ND (0.31)		ND (0.31)	· .	ND (0.31)		
N-Nitrosodiphenylamine	ua/l	-	ND (0.30)		ND (0.30)		ND (0.29)		ND (0.29)		ND (0.29)	-	ND (0.29)	-	-
Phenanthrene	ua/l	-	ND (0.23)		ND (0.24)		ND (0.23)		ND (0.23)		ND (0.23)	-	ND (0.23)	-	-
Pyrene	ug/l	-	ND (0.34)	-	ND (0.35)	-	ND (0.34)	-	ND (0.34)	-	ND (0.34)	-	ND (0.34)	-	-
1.2.4.5-Tetrachlorobenzene	ug/l	5	ND (0.37)	-	ND (0.37)	-	ND (0.36)	-	ND (0.36)	-	ND (0.36)	-	ND (0.36)	-	-
	ug/i		110 (0.01)		110 (0.07)		112 (0.00)		112 (0.00)		110 (0.00)		112 (0.00)		
GC Semi-volatiles (SW846 80	081B)														
Aldrin	ua/l	ND	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)		ND (0.0029)	-	-
alpha-BHC	ua/l	0.01	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	-
beta-BHC	ug/l	0.04	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	-
delta-BHC	ua/l	0.04	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	-
gamma-BHC (Lindane)	ua/l	0.05	ND (0.0028)	-	ND (0.0028)	-	ND (0.0028)	-	ND (0.0028)	-	ND (0.0028)	-	ND (0.0028)	-	-
alpha-Chlordane	ua/l	-	ND (0.0025)	-	ND (0.0025)	-	ND (0.0025)	-	ND (0.0025)	-	ND (0.0025)	-	ND (0.0025)	-	-
gamma-Chlordane	ua/l	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	-
Dieldrin	ua/l	0.004	ND (0.0020)	-	ND (0.0020)	-	ND (0.0020)	-	ND (0.0020)	-	ND (0.0020)	-	ND (0.0020)	-	-
4.4'-DDD	ua/l	0.3	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	-
4.4'-DDE	ua/l	0.2	ND (0.0027)	-	ND (0.0027)	-	ND (0.0027)	-	ND (0.0027)	-	ND (0.0027)	-	ND (0.0027)	-	-
4,4'-DDT	ua/l	0.2	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	-
Endrin	ua/l	ND	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	-
Endosulfan sulfate	ua/l	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	-
Endrin aldehvde	ua/l	5	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	ND (0.0032)	-	-
Endrin ketone	ug/l	5	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	ND (0.0023)	-	-
Endosulfan-I	ua/l	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	-
Endosulfan-II	ua/l	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	-
Heptachlor	ua/l	0.04	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	ND (0.0029)	-	-
Heptachlor epoxide	ua/l	0.03	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	ND (0.0026)	-	-
Methoxychlor	ua/l	35	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	ND (0.0022)	-	-
Toxaphene	ua/l	0.06	ND (0.088)		ND (0.088)		ND (0.088)		ND (0.088)		ND (0.088)		ND (0.088)		

Client Sample ID:		NY TOGS Class	MW-4	MW-4	MW-3	MW-3	FB-1	FB-1	MW-201	MW-201	MW-2	MW-2	MW-1	MW-1	TRIP BLANK
Lab Sample ID:		GA GW Standards	JC12052-1	JC12052-1F	JC12052-2	JC12052-2F	JC12052-3	JC12052-3F	JC12052-4	JC12052-4F	JC12052-5	JC12052-5F	JC12052-6	JC12052-6F	JC12052-7
Date Sampled:		(NYSDEC 6/2004) ¹	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016	5/1/2016
Matrix:			Ground Water	Groundwater	Ground Water	Groundwater	Field Blank	Field Blank	Ground Water	Groundwater	Ground Water	Groundwater	Ground Water	Groundwater	Trip Blank
				Filtered		Filtered	Water	Filtered		Filtered		Filtered		Filtered	Water
GC Semi-volatiles (SW846 80	082A)														
Aroclor 1016		0.00	ND (0.12)		ND (0.12)		ND (0.12)	-	ND (0.12)		ND (0.12)		ND (0.12)	1	
	ug/l	0.09	ND (0.12) ND (0.19)	-	ND (0.12) ND (0.19)	-	ND (0.12) ND (0.19)	-	ND (0.12) ND (0.19)		ND (0.12) ND (0.19)	-	ND (0.12) ND (0.19)	-	
Aroclor 1221	ug/l	0.09	ND (0.19) ND (0.16)	-	ND (0.19) ND (0.16)	-	ND (0.19) ND (0.16)	-	ND (0.19) ND (0.16)	-	ND (0.19) ND (0.16)	-	ND (0.19) ND (0.16)	-	-
Aroclor 1232 Aroclor 1242	ug/l	0.09	ND (0.16) ND (0.13)	-	ND (0.16) ND (0.13)	-	ND (0.16) ND (0.13)		ND (0.16) ND (0.13)	-	ND (0.16) ND (0.13)	-	ND (0.16) ND (0.13)	-	-
Aroclor 1242 Aroclor 1248	ug/l ug/l	0.09	ND (0.13) ND (0.15)		ND (0.13) ND (0.15)	-	ND (0.13)	-	ND (0.13) ND (0.15)		ND (0.13)	-	ND (0.13)	-	-
Aroclor 1254	ug/l	0.09	ND (0.13)		ND (0.040)		ND (0.13)	-	ND (0.13)		ND (0.040)	-	ND (0.040)	-	-
Aroclor 1260	ug/l	0.09	ND (0.092)		ND (0.040)		ND (0.040)	-	ND (0.092)		ND (0.040)	-	ND (0.040)	-	-
Aroclor 1268	ug/l	0.09	ND (0.074)		ND (0.032)	-	ND (0.032)	-	ND (0.074)		ND (0.032)	-	ND (0.032)	-	-
Aroclor 1262	ug/i	0.09	ND (0.12)		ND (0.12)		ND (0.12)		ND (0.12)		ND (0.12)	-	ND (0.12)	-	-
	uyn	0.03	ND (0.12)	-	ND (0.12)	-	ND (0.12)	-	ND (0.12)	-	ND (0.12)	-	ND (0.12)		
Metals Analysis															
Aluminum	ug/l		622	<200	4120	<200	<200	<200	1000	<200	1480	<200	988	<200	-
Antimony	ug/l	3	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	<6.0	-
Arsenic	ug/l	25	8	3.7	7.9	4.2	<3.0	<3.0	4.3	5.2	6.1	3.9	5.4	4.8	-
Barium	ug/l	1000	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	-
Beryllium	ug/l	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
Cadmium	ug/l	5	3.4	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	-
Calcium	ug/l	-	78700	76200	53700	49800	<5000	<5000	66000	63400	64500	60800	71000	72000	-
Chromium	ug/l	50	<10	<10	13.6	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Cobalt	ug/l	-	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	-
Copper	ug/l	200	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Iron	ug/l	300	1010	<100	5930	<100	<100	<100	2340	<100	2890	<100	1740	153	-
Lead	ug/l	25	5.5	<3.0	10.6	<3.0	<3.0	<3.0	6.2	<3.0	5.9	<3.0	4.4	<3.0	-
Magnesium	ug/l		25500	26100	12800	11900	<5000	<5000	21200	21700	21000	21100	27000	27600	-
Manganese	ug/l	300	952	849	828	567	<15	<15	239	136	234	130	304	290	-
Mercury	ug/l	0.7	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	-
Nickel	ug/l	100	10.9	<10	12.8	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Potassium Selenium	ug/l	- 10	<10000 <10	<10000 <10	<10000 <10	<10000 <10	<10000 <10	<10000	<10000 <10	<10000 <10	<10000 <10	<10000	<10000 <10	<10000 12	-
Selenium	ug/I	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	12 <10	-
Silver	ug/i ug/i	20000	<10 124000	<10 122000	<10 48700	<10 46100	<10	<10000	<10 105000	<10 105000	<10 105000	<10	<10 71700	<10 71700	-
Thallium	ug/l	-	<2.0	<2.0	<2.0	<2.0	<10000	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	-
Vanadium	ug/i ug/i		<2.0	<50	<2.0	<2.0	<50	<2.0	<2.0	<2.0	<2.0	<50	<50	<2.0	-
Zinc	ug/l	-	<20	<20	23.8	<20	<20	<20	<20	<20	<20	<20	<20	<20	-
Regulatory limits listed in the		een obtained from the la								<20	<20	<20	<20	<20	
for errors in regulatory docu									sponsibility						
using or reporting any data.	intente et enangee t														
30 results exceeded regulato	orv criteria.														
¹ NOTE: The above contain t		that must be evaluated	manually by the us	ser:											
Sum of Aldicarb and Methon		ultu													
Sum of Iron and Manganese															
Sum of Parathion and Methy		/l.													
Sum of Phenolic compounds															
Sum of Phenols, total chlorin															
Sum of Phenols, total unchio															
Principal organic contamina		s "any and every indivi	dual substance, wh	ether listed in this	Table or not, that	is in one of the p	rincipal organic	contaminant cl	asses						
as defined in section 700.1 o															
Hit	Exceed											-			

Client Sample ID: Lab Sample ID:	-	SG-1 JC7272-4	SG-2 JC7272-5	SG-3 JC7272-6	SG-4 JC7272-2	SG-5 JC7272-1	SG-6 JC7272-3	SS-10 JC11091-1	SS-11 JC11091-2	SS-12 JC11091-5	SS-13 JC11091-4	SS-14 JC11091
Date Sampled:		10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	10/28/2015	12/172015	12/172015	12/172015	12/172015	12/17201
Matrix:		Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vap
Matrix:		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp
C/MS Volatiles (TO-15) -	ua/m3											
cetone	ug/m3	54.6 ND (0.27)	109 ND (0.27)	31.6 ND (0.27)	110 ND (0.27)	208 ND (0.27)	54.6 ND (0.27)					
.3-Butadiene	ug/m3 ug/m3	ND (0.27)	ND (0.27)	ND (0.27)	ND (0.27) 5.1	ND (0.27) 24	ND (0.27) 4.8					
Bromodichloromethane	ug/m3	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)	ND (0.87)					
Bromoform	ug/m3	ND (0.85)	ND (0.85)	ND (0.85)	ND (0.85)	ND (0.85)	ND (0.85)					
Bromomethane	ug/m3	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)					
Bromoethene	ug/m3	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)					
Benzyl Chloride	ug/m3	ND (0.52)	ND (0.52)	ND (0.52)	ND (0.52)	ND (0.52)	ND (0.52)					
Carbon disulfide	ua/m3	ND (0.34)	3.4	2.2 J	10	12	1.6 J					
Chlorobenzene	ug/m3	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)					
Chloroethane	ug/m3	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)					
Chloroform	ug/m3	34	59.1	14	ND (0.59)	ND (0.59)	ND (0.59)					
Chloromethane	ug/m3	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)					
3-Chloropropene	ug/m3	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)					
2-Chlorotoluene	ug/m3	ND (0.67)	ND (0.67)	ND (0.67)	ND (0.67)	ND (0.67)	ND (0.67)		-			
Carbon tetrachloride	ug/m3	2.6 J	2.6 J	ND (0.62)	ND (0.62)	ND (0.62)	ND (0.62)					
Cyclohexane	ug/m3	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)					
1,1-Dichloroethane	ug/m3	19	31	5.3	ND (0.49)	ND (0.49)	ND (0.49)					
1,1-Dichloroethylene	ug/m3	76.1	181	90.8	ND (0.44)	ND (0.44)	ND (0.44)					
1,2-Dibromoethane	ug/m3	ND (1.1)	5.3 J	ND (1.1)	43	ND (1.1)	ND (1.1)	1				
,2-Dichloroethane	ug/m3	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)					
.2-Dichloropropane	ua/m3	ND (0.92)	ND (0.92)	ND (0.92)	ND (0.92)	ND (0.92)	ND (0.92)	-				
,4-Dioxane	ug/m3	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)					
Dichlorodifluoromethane	ug/m3	3.2 J	3.4 J	4	4.2	3.1 J	5.4					
Dibromochloromethane	ug/m3	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)					
		3.8	5.9	ND (0.32)	ND (0.32)	ND (0.32)	ND (0.32)					
rans-1,2-Dichloroethylene	ug/m3 ug/m3	3.8	233	ND (0.32) 12	ND (0.32) ND (0.39)	ND (0.32) ND (0.39)	ND (0.32) ND (0.39)					
ss-1,3-Dichloropropene	ug/m3	ND (0.64)	233 ND (0.64)	ND (0.64)	ND (0.64)	ND (0.64)	ND (0.64)					
		ND (0.64)	ND (0.64)	ND (0.64)	ND (0.66)	ND (0.66)						
m-Dichlorobenzene	ug/m3 ug/m3	ND (0.72)	ND (0.66)	ND (0.66)	ND (0.72)	ND (0.08)	ND (0.66) ND (0.72)					
p-Dichlorobenzene	ug/m3	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)					
rans-1,3-Dichloropropene	ug/m3	ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)					
Ethanol	ug/m3	40.3	33.2	14	14	14	9.6					
Ethylbenzene	ug/m3	ND (0.83)	3.0 J	6.9	2.1 J	6.1	1.7 J					
Ethyl Acetate	ug/m3	ND (0.90)	ND (0.90)	ND (0.90)	3.4	ND (0.90)	ND (0.90)					
4-Ethyltoluene	ug/m3	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)					
Freon 113	ug/m3	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)					
Freon 114	ug/m3	ND (0.70)	ND (0.70)	ND (0.70)	ND (0.70)	ND (0.70)	ND (0.70)					
Heptane	ug/m3	142	17.1	ND (0.49)	5.3	126	ND (0.49)					
Hexachlorobutadiene	ug/m3	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)	ND (1.4)					
Hexane	ua/m3	3.9	3.3	3.9	11	277	21.1					
2-Hexanone	ug/m3	ND (0.74)	ND (0.74)	ND (0.74)	ND (0.74)	ND (0.74)	ND (0.74)					
sopropyl Alcohol	ug/m3	3.9	3.2	1.7 J	2.7	2.9	1.8 J					
Methylene chloride	ug/m3	5.2	4.5	4.9	4.2	3.3	3.4					
Methyl ethyl ketone	ug/m3	3.8	20	2.9	16	49.3	5.6					
Aethyl Isobutyl Ketone	ug/m3	ND (0.45)	6.6	2.1 J	ND (0.45)	ND (0.45)	ND (0.45)					
Aethyl Tert Butyl Ether	ug/m3	ND (0.36)	ND (0.36)	8.7	ND (0.36)	ND (0.36)	ND (0.36)					
Methylmethacrylate	ug/m3	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)					
ropylene	ug/m3	6.4	22.3	22	129	3990	4					
Styrene	ug/m3	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)					
,1,1-Trichloroethane	ug/m3	213	278	73.7	21	17	69.3	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.71)	ND (0.7
,1,2,2-Tetrachloroethane	ug/m3	ND (0.82)	ND (0.82)	ND (0.82)	ND (0.82)	ND (0.82)	ND (0.82)					
,1,2-Trichloroethane	ug/m3	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)					
,2,4-Trichlorobenzene	ug/m3	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)					
.2.4-Trimethvlbenzene	ua/m3	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)					
,3,5-Trimethylbenzene	ug/m3	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	1				
,2,4-Trimethylpentane	ug/m3	377	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)					
ertiary Butyl Alcohol	ug/m3	8.8	7.3	4.2	4.5	ND (0.61)	5.8					
etrachloroethylene	ug/m3	656	2870	739	85.4	55	142	ND (0.64)	7.3	5.8	0.75 J	2
etrahydrofuran	ug/m3	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)					
oluene	ug/m3	5.3	4.5	4.9	7.2	31	4.9					
richloroethylene	ug/m3	1980	3510	688	21	21	135	31	23	3.4	18	28
richlorofluoromethane	ug/m3	27	57.9	116	39	9.6	33					
/inyl chloride	ug/m3	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)					
finyl Acetate	ug/m3	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)	ND (0.77)					
n,p-Xylene	ug/m3	3.0 J	11	26	6.1	13	4.3					
	ug/m3	ND (0.43)	4.3	15	2.5 J	4.8	1.7 J 6 1					
-Xylene vlenes (total)	ug/m3	301	15	41	87	18						

APPENDIX A

ENVIRONMENTAL EASEMENT

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this day of , 20, between

Owner(s) Williamsburg Bridgeview Apartments Housing Development Fund Corporation, (the "Grantor Fee Owner") having an office at 143 Huron Street, Brooklyn, New York 11222, County of Kings, State of New York, and LPC Development Group LLC, (the "Grantor Beneficial Owner"), having an office at 456 E. 173rd Street, Bronx, New York 10457, County of Bronx, State of New York (collectively, the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 105 S. 5th Street in the City of New York, County of Kings and State of New York, known and designated on the tax map of the New York City Department of Finance as tax map parcel number: Block 2443 Lot 6, being the same as that property conveyed to Grantor by deed dated June 29, 2016 and recorded in the City Register of the City of New York in Instrument No. 2016000239363. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 0.366 +/- acres, and is hereinafter more fully described in the Land Title Survey dated June 18, 2018 prepared by Neville V. Ramsay, L.L.S., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A;

WHEREAS, Grantor Beneficial Owner, is the owner of the beneficial interest in the Environmental Easement Page 1

Controlled Property being the same as a portion of that beneficial interest conveyed to Grantor Beneficial Owner by means of a Declaration of Interest and Nominee Agreement dated June 29, 2016 and recorded in the City Register of the City of New York in Instrument No. 2016000239364; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C224233-06-16, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the New York City Department of Health and Mental Hygiene to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the

Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in $6NYCRR\ 375-1.8(g)(2)(i)$, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property, excluding leasehold interests, a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property

shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by

the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement<u>after applicable notice and</u> <u>cure period</u>, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: C224233 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500
With a copy to:	Site Control Section Division of Environmental Remediation

Environmental Easement Page 5

NYSDEC 625 Broadway

Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

County: Kings Site No: C224233 Brownfield Cleanup Agreement Index : C224233-06-16

IN WITNESS WHEREOF, Grantor Fee Owner has caused this instrument to be signed in its name.

Williamsburg Bridgeview Apartments Housing Development Fund

Corporation:

By: _____

Print Name:

Title:_____ Date:_____

Grantor Fee Owner's Acknowledgment

 STATE OF NEW YORK
)

) ss:
)

 COUNTY OF
)

 On the
 day of
 , in the year 20
 , before me, the undersigned,

 personally appeared
 , personally known to me or proved to me on the basis

of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

County: Kings Site No: C224233 Brownfield Cleanup Agreement Index : C224233-06-16

IN WITNESS WHEREOF, Grantor Beneficial Owner has caused this instrument to be signed in its name.

LPC Development Group LLC:

By: _____

Print Name: _____

Title:_____ Date:_____

Grantor Beneficial Owner's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF) On the day of _____, in the year 20 , before me, the undersigned, _____

personally appeared , personally known to me or proved to me on the basis

of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

County: Kings Site No: C224233 Brownfield Cleanup Agreement Index : C224233-06-16

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the day of , in the year 20 , before me, the undersigned,

personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

S CHE DUL E "A" PRO PE RTY DE S CRI PT ION

ALL that certain plot, piece or parcel of land, situate, lying and being in the Borough of Brooklyn, County of Kings, City and State of New York, bounded and described as follows:

BEGINNING at a point on the easterly side of Berry Street distant 90.00 feet southerly from the corner formed by the intersection of the easterly side of Berry Street with the southerly side of South 4th Street;

RUNNING THENCE easterly at 90 degrees to the easterly side of Berry Street and parallel to the southerly side of South 4th Street, 18.67 feet;

THENCE southwesterly forming an interior angle of 97 degrees 35 minutes 54 seconds with the last mentioned course 10.09 feet (survey), 10.15 feet (tax map);

THENCE southeasterly forming an interior angle of 262 degrees 24 minutes 06 seconds with the last mentioned course and parallel with the southerly side of South 4th Street, 141.00 feet;

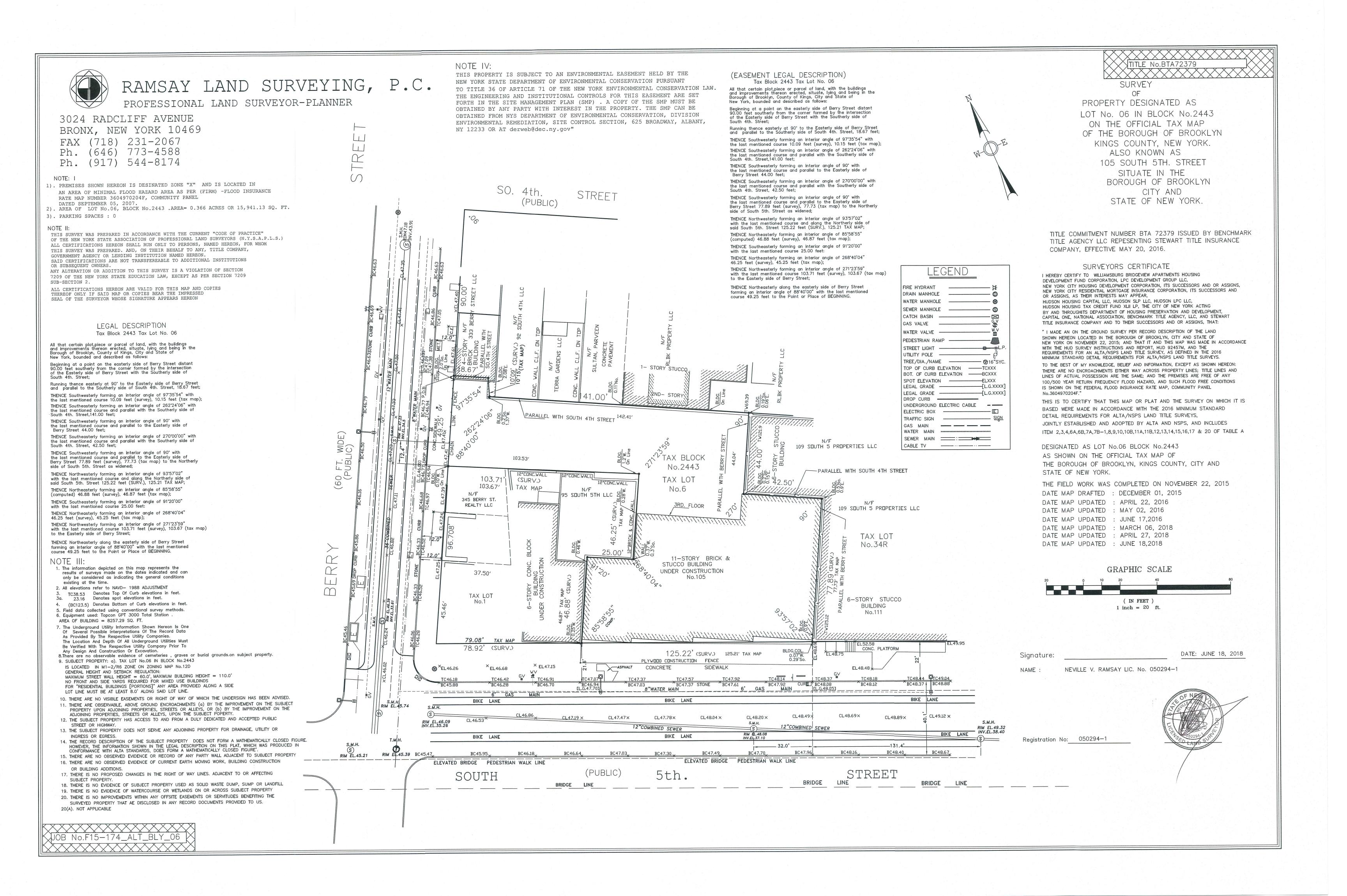
THENCE southwesterly forming an interior angle of 90 degrees with the last mentioned course and parallel to the easterly side of Berry Street, 44.00 feet;

THENCE southeasterly forming an interior angle of 270 degrees 00 minutes 00 seconds with the last mentioned course and parallel with the southerly side of South 4th Street, 42.50 feet;

THENCE southwesterly forming an interior angle of 90 degrees with the last mentioned course and parallel to the easterly side of Berry Street, 77.89 feet (survey), 77.73 (tax map) to the northerly side of South 5th Street as widened;

THENCE northwesterly forming an interior angle of 93 degrees 57 minutes 02 seconds with the last mentioned course and along the northerly side of said South 5th Street 125.22 feet (survey) 125.21 (tax map);

THENCE northeasterly forming an interior angle of 85 degrees 58 minutes 55 seconds (computed) 46.88 feet (survey) 46.87 feet (tax map);


THENCE southeasterly forming an interior angle of 91 degrees 20 minutes 00 seconds with the last mentioned course, 25.00 feet;

THENCE northeasterly forming an interior angle of 268 degrees 40 minutes 04 seconds 46.25 feet (survey), 45.25 feet (tax map);

THENCE northwesterly forming an interior angle of 271 degrees 23 minutes 59 seconds with the last mentioned course 103.71 feet (survey), 103.67 (tax map) to the easterly side of Berry Street;

THENCE northeasterly along the easterly side of Berry Street forming an interior angle of 88 degrees 40 minutes 00 seconds with the last mentioned course 49.25 feet to the point or place of BEGINNING.

Containing an area of 15,941.13 square feet or 0.366 acres more or less.

APPENDIX B

SITE CONTCTS

Phone/Email Address

Name

Site Owner/Remedial Party - LPC Development Group LLC, Peter Procida

QEP Robert Jackson, P.E.

973-527-7451 bob.jackson@equityenvironmental.com (518) 402-9614 melissa.sweet@dec.ny.gov

718-299-7000x211 pprocida@procidacompanies.com

NYSDEC Project Manager – Melissa Sweet

NYSDEC Regional HW Engineer – Jane O'Connell NYSDEC Site Control – Kelly Lewandowski Dean S. Sommer Jane O'Connell 718-482-4995 jane.oconnell@dec.ny.gov;

Kelly Lewandowski (518)402-9553 Kelly.lewandowski@dec.ny.gov,

518.438.9907 Ext. 236 DSommer@youngsommer.com

APPENDIX C SOIL BORING LOGS

Equity Envi	ronmen	tal Engi	neeri	ng		CI	LIENT: LPC Development Group, LLC	WELL ID: SB-1
500 Internation							ROJECT: 105 South 5th Street	
Mount Olive, N	50 C						OCATION: 105 South 5th St., Brooklyn, NY	
START DATE: 10/2		07020			_		ULLING CO.: Zebra	TOTAL DEBTIL 20.0
COMPLETION DAT	ACC.	10/27/2015						TOTAL DEPTH: 30.0'
		10/2//2015	_			-	ILLER: Evan Moraitu	WELL DEPTH: N/A
BORING DIAMETE	residence						ILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A
WELL DIAMETER:					_		GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring
SCREENED INTER	and the second state						ELL TYPE: N/A	WATER LEVEL STATIC: N/A
CREEN TYPE / SL Depth (Lf.) Sample ID	Kecovery (in.)	Interval (Ft.)	PID (ppm)	Reading At	Sample	HI	Lithology / Remarks	CASING TYPE: N/A Boring Construction
0 1 SB- (0'-2 2		-	0.0 0.0		x	-	0.0'- 1.0' Concrete Slab- Drill rig pushed through the concrete slab in garage to get to soil material. 1.0'-3.0' Fill Material. Loose, coarse sand with concrete, brick fragments, medium-large gravel, dry.	
3 SB-1 (2'-4 5			0.0 0.0 0.0		X		3.0'-5.0' (SW-SM) Well graded sand with silt. Medium dense, Strong Brown (7.5YR 4/6), coarse sand with silt, small gravel, dry.	
6 7 8 9	35"		0.0 0.0 0.0 0.0				5.0'-6.0' (SW-SM) Well graded sand with silt. Dense, Strong Brown (7.5YR 4/6), coarse sand with silt, small-medium gravel, dry. 6.0'-6.5' Red Brick & Large Rock 6.5'-7.0' Rock 7.0'-10.0' (SW-SM) Well graded sand with silt. Loose, Light Brown (7.5YR 6/3), fine sand with silt, small gravel, dry.	
10 11 12 13 14 15	55"		0.0 0.0 0.0 0.0 0.0 0.0				10.0 ¹ -15.0 ¹ (SW-SM) Well graded sand with silt. Dense, Brownish Yellow (10YR 6/8), coarse sand with silt, stiff, medium plasticity, dry.	10 10 11 12 13 14 15 15
16 17 18 19 20	55"		0.0 0.0 0.0 0.0 0.0 0.0				15.0'-20.0' (SW-SM) Well graded sand with silt. Dense, Brownish Yellow (10YR 6/8), coarse sand with silt, stiff, medium plasticity, dry.	
			0.0				SB-1 Continued on Page 2 of 2	
KEY: SPT = Standard Penetra CAL = Calibration BZ = Breathing Zone	tion Test	SS = Split Spo A = Auger Cu GP = Geoprob	ttings		GS	= Gra	bre Hole HS = Headspace TOSC = Top of Screen ab Sample Y = Water Level TOS = Top of Sand pposite TOB = Top of Bentonite CB = Curb Box Page 1 of 2	Concrete Fill Brick/Rock

Equity E	nvir	onment	tal Engi	neer	nσ			LIENT: LPC Development Group, LLC	WELL ID: SP 1 (Continued)
500 Interna				neer	ng			ROJECT: 105 South 5th Street	WELL ID: SB-1 (Continued)
Mount Oliv									
6			07020					OCATION: 105 South 5th St., Brooklyn, NY	
START DATE			10000010				-	ILLING CO.: Zebra	TOTAL DEPTH: 30.0'
COMPLETION			10/27/2015				-	ILLER: Evan Moraitu	WELL DEPTH: N/A
BORING DIAN								ILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A
VELL DIAME							-	GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring
CREENED IN								ELL TYPE: N/A	WATER LEVEL STATIC: N/A
SCREEN TYPI	E/SLO	200					FIL	.TER PACK: N/A	CASING TYPE: N/A
Depth (Ft.)	Sample ID	Recovery (in.)	Interval (Ft.)	PID (ppm)	Reading At	Sample	H2O	Lithology / Remarks	Boring Construction
20 21 22 22 23		37"		0.0 0.0 0.0 0.0				20.0'-22.0' (SW-SM) Well graded sand with silt. Dense, Brownish Yellow (10YR 6/8), coarse sand with silt and large gravel, stiff, medium plasticity, dry. 22.0'-25.0 (SW) Well graded sand . Loose, Light Brown (7.5YR 6/3) coarse sand and small gravel, non-plastic, dry.	20 21 22 23
24				0.0 0.0				25.0'-30.0' (SW) Well graded sand. Loose, Light Brown (7.5YR 6/3)	24 25
26 27 28		58"		0.0 0.0 0.0				coarse sand and small gravel, non-plastic, dry.	26 27 28
29 30				0.0 0.0					29 30
								Boring Stopped at 30.0' bgs	
KEY: SPT = Standard P CAL = Calibratio BZ = Breathing Z	n	n Test	SS = Split Sp A = Auger Ct GP = Geopro	uttings		GS	= Gra	re Hole HS = Headspace TOSC = Top of Screen ab Sample Y = Water Level TOS = Top of Sand posite TOB = Top of Bentonite CB = Curb Box Page 2 of 2	Concrete Fill Brick/Rock

Equity E	nvir	onmen	tal Engi	neer	nσ			LIENT: LPC Development Group, LLC	WELL ID: SB-2
500 Interna				neen	ing			ROJECT: 105 South 5th Street	WELL ID: SB-2
							1000		
Mount Oliv			07828					OCATION: 105 South 5th St., Brooklyn, NY	
START DATE								ILLING CO.: Zebra	TOTAL DEPTH: 15.0'
COMPLETION			10/27/2015					ILLER: Evan Moraitu	WELL DEPTH: N/A
BORING DIA	METER	: 2.5"						ILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A
WELL DIAME	ETER: N	I/A				_	LO	GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring
SCREENED IN	NTERV	AL: N/A					WI	ELL TYPE: N/A	WATER LEVEL STATIC: N/A
SCREEN TYP	E/SLO						FII	TER PACK: N/A	CASING TYPE: N/A
Depth (Ft.)	Sample ID	Recovery (in.)	Interval (Ft.)	PID (ppm)	Reading At	Sample	H20	Lithology / Remarks	Boring Construction
							-	0.0'- 0.5' Concrete- Drill rig through the concrete floor in the garage	
0	SB-2		1	0.0				area. 0.5'-2.5' Fill Material. Loose, coarse sand with asphalt, concrete and	• • • • • • • • • • • • • • • • • • •
1	(0'-2')			0.0		X		gravel mix, dry 2.5'-5.0' (SW-SM) Well graded sand with silt. Medium dense,	
2				0.0				Yellowish Red (5YR 4/6), fine sand with silt, non-plastic,	
3	SB-2	35"		0.0				dry.	
	(2'-4')					X			
4				0.0		-	-		4 XXXX
5				0.0					5
6				0.0				5.0'-10.0' (SW-SM) Well graded sand with silt. Very dense, Yellowish Red (5YR 4/6), fine sand with silt, very stiff, low	
0				0.0				plasticity, dry.	└── °│
7				0.0					
- 8		41"		0.0					
9									
9				0.0					└─── º│
10	-			0.0			-	10.0'-15.0' (SW-SM) Well graded sand with silt, Very dense.	10 10
11				0.0				10.0'-15.0' (SW-SM) Well graded sand with silt. Very dense, Yellowish Red (5YR 4/6), fine sand with silt, very stiff, low	
								plasticity, dry.	
12		42"		0.0					12
13		42		0.0					13
14				0.0					14
				0.0					
15			<u> </u>	0.0			+	Boring Stopped at 15.0' bgs	15
									├─
KEY: SPT = Standard I CAL = Calibratic		on Test	SS = Split Sp A = Auger Ci					The Hole $HS = Headspace$ TOSC = Top of Screen ab Sample $\Psi = Water Level$ TOS = Top of Sand	Concrete SP Fill Rock
BZ = Breathing 2			GP = Geopro					posite TOB = Top of Bentonite CB = Curb Box	Brick/Rock SW-SM
								Page 1 of 1	

Equity Environme	ental Engi	neer	ing		CI	LIENT: LPC Development Group, LLC	WELL ID: SB-3
500 International Drive	-		8			ROJECT: 105 South 5th Street	
Mount Olive, New Jers	200					OCATION: 105 South 5th St., Brooklyn, NY	
START DATE: 10/27/15	., .,				-	ULLING CO.: Zebra	TOTAL DEPTH: 15.0'
COMPLETION DATE:	10/27/2015				-	RILLER: Evan Moraitu	
BORING DIAMETER: 2.5"	10/2/12015				-	ALLER, Evan Molanu	WELL DEPTH: N/A
WELL DIAMETER: N/A					-		CASING ELEVATION: N/A
						GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring
SCREENED INTERVAL: N/A					-	ELL TYPE: N/A	WATER LEVEL STATIC: N/A
SCREEN TYPE/SLOT: N/A Break (Lt) Control (ur) Screen (ur) Screen (ur)	Interval (Ft.)	PID (ppm)	Reading At	Sample	H2O	.TER PACK: N/A Lithology / Remarks	CASING TYPE: N/A Boring Construction
0 1 3 47"		0.0 0.0 0.0 0.0 0.0 0.0		x	-	0.0'- 1.0' Fill Material. Loose, coarse sand with asphalt, concrete and gravel mix, dry. 1.0'-5.0' (SW-SM) Well graded sand with silt. Medium dense, Yellowish Red (5YR 4/6), fine sand with silt, non-plastic, dry.	
6 7 8 42" 42"		0.0 0.0 0.0 0.0 0.0				5.0'-10.0' (SW-SM) Well graded sand with silt. Medium dense, Yellowish Red (5YR 4/6), fine sand with silt, non-plastic, dry.	
11 12 13 13 (12'- 14') 14 15		0.0 0.0 0.0 0.0 0.0		x		10.0'-11.0' (SW-SM) Well graded sand with silt. Medium dense, Yellowish Red (5YR 4/6), fine sand with silt, non-plastic, dry. 11.0'-11.5' Rock 11.5'-15.0' (SW-SM) Well graded sand. Medium dense, Yellowish Red (5YR 4/6), fine sand, non-plastic, dry.	11 12 13 14 15
KEY: SPT = Standard Penetration Test CAL = Calibration BZ = Breathing Zone	SS = Split Spo A = Auger Cu GP = Geoprob	ttings		GS	= Gra	re Hole HS = Headspace TOSC = Top of Screen ab Sample Y = Water Level TOS = Top of Sand posite TOB = Top of Bentonite CB = Curb Box Page 1 of 1	Concrete Fill Brick/Rock

Equity Environn	nental Engi	neeri	ng			LIENT: LPC Development Group, LLC	WELL ID: SB-4
500 International Dri			8			ROJECT: 105 South 5th Street	
~						OCATION: 105 South 5th St., Brooklyn, NY	
START DATE:	10/26/2015) 				ALLING CO.: Zebra	TOTAL DEDTIL 20.0
COMPLETION DATE:	10/26/2015				-	ULLER: Evan Moraitu	TOTAL DEPTH: 20.0'
	10/20/2015	X					WELL DEPTH: N/A
BORING DIAMETER: 2.5"			-			ALL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A
WELL DIAMETER: N/A						GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring
SCREENED INTERVAL: N	ac.			_		ELL TYPE: N/A	WATER LEVEL STATIC: N/A
SCREEN TYPE / SLOT: N/A	kocovery (m.)	PID (ppm)	Reading At	Sample	H2O	Lithology / Remarks	CASING TYPE: N/A Boring Construction
0 1 3 4 4 5		0.0 0.0 0.0 0.0 0.0 0.0 0.0	F	x	-	0.0'-2.0' Fill Material- Loose, coarse sand with concrete, brick fragments, med-large gravel, dry 2.0'-5.0' (SW-SM) Well graded sand with silt. Dense, Yellowish-red (SYR 4/6), fine sand with silt, dry. 5.0'-6.0' (SW) Well graded sand. Medium dense, Strong Brown	
6 7 8 5 9 10	4"	0.4 0.2 0.2 0.0 0.0				 (7.5YR 5/8), coarse sand with small - medium gravel, dry. 6.0'-10.0' (SW) Well graded sand. Dense, Strong Brown (7.5YR 5/8), fine sand with small gravel, dry. Note: White rock observed @ 6.0' to 6.25' 	
11 12 13 14 14 15	6"	0.1 0.1 0.1 0.1 0.1		x		10.0'-12.0' (SW) Well graded sand. Yellowish-red (7.5YR 5/8), coarse sand with small gravel, dry. 12.0'-12.5' White Rock 12.5'-15' (SW-SM) Well graded sand and silt. Medium dense, fine sand with silt, non-plastic, dry.	
16 17	6"	0.0 0.0 0.0 0.0 0.0 0.0				15.0'-17.5' (SW-SM) Well graded sand and silt. Medium dense, fine sand with silt, non-plastic, dry. 17.5'-18' White Rock 18'-19.5' (SW) Well graded sand. Yellowish-red (7.5YR 5/8), coarse sand with small gravel, dry. 19.5'-20.0' Rock Boring Refusal at 20.0' bgs	
KEY: SPT = Standard Penetration Test CAL = Calibration BZ = Breathing Zone	SS = Split Sp A = Auger C GP = Geopro	uttings		GS	= Gr	re Hole HS = Headspace TOSC = Top of Screen ab Sample Y = Water Level TOS = Top of Sand posite TOB = Top of Bentonite CB = Curb Box Page 1 of 1	Concrete Fill Brick/Rock

Equity Environmer	tol Engineer	ing	_		LENT. LDC Davalanment Crown, LLC	WELL ID: SD 5		
	-	mg			LIENT: LPC Development Group, LLC ROJECT: 105 South 5th Street	WELL ID: SB-5		
500 International Drive,								
Mount Olive, New Jersey					OCATION: 105 South 5th St., Brooklyn, NY			
START DATE:	10/26/2015			1	RILLING CO.: Zebra	TOTAL DEPTH: 23.0'		
COMPLETION DATE:	10/26/2015				ULLER: Evan Moraitu	WELL DEPTH: N/A		
BORING DIAMETER: 2.5"				1	RILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A		
WELL DIAMETER: N/A					GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring		
SCREENED INTERVAL: N/A			_	-	ELL TYPE: N/A	WATER LEVEL STATIC: N/A		
SCREEN TYPE / SLOT: N/A Deptit (FL,) Recovery (in,) Recovery (in,)	Interval (Ft.) PID (ppm)	Reading At	Sample	H2O	Lithology / Remarks	CASING TYPE: N/A Boring Construction		
0 1 3 53"	0.0 0.0 0.0 0.0 0.0 0.0		x	-	0.0'-1.0' Fill Material- Very loose, Dark Yellowish Brown (10YR 4/6) coarse sand with silt, large gravel, dry 1.0'-5.0' (SW-SM) Well graded sand with silt. Medium dense, Strong Brown (7.5YR 4/6), coarse sand with silt, small gravel, dry. Note: Concrete chunk @ 3.5"			
6 7 8 56" 9 10	0.0 0.0 0.0 0.0 0.0				5.0'-7.0' (SW-SM) Well graded sand with silt. Medium dense, Strong Brown (7.5YR 4/6), coarse sand with silt, small gravel, dry. 7.0'-7.5' Concrete, dry 7.5'-8.0' See (5.0'-7.0') 8.0'-10.0' (SW) Well graded sand. Loose, Yellowish-red(5YR 4/6) fine sand with no gravel, dry.			
11 12 13 (12' 13 (12' 14') 14 15	0.0 0.0 0.0 0.0 0.0 0.0		x		 10.0'-13.0' (SW) Well graded sand. Loose, Yellowish-red (SYR 4/6) fine sand with no gravel, dry. 13.0'-15.0' (SW-SM) Well graded sand with silt. Medium dense, Brownish-yellow (10YR 4/6), coarse sand with silt, small gravel, non-plastic, dry. 	11 12 13 14 15		
16 17 17 18 56"	0.0 0.0 0.0 0.0				15.0'-15.5' See (8.0'-10.0') 15.5'-18.5' (SW-SM) Well graded sand with silt. Dense, Dark Yellowish-brown (10YR 4/6), coarse sand with silt, small gravel, dry. 18.5'-20 (SW-SM) Well graded sand with silt. Dense, Yellowish-	16 17 18 19		
20	0.0				brown (10YR 4/6), coarse sand, silt, small gravel, dry. Note: White rock @ 18.5'-19.5'	20		
_					SB-5 Continued on Page 2 of 2			
KEY: SPT = Standard Penetration Test CAL = Calibration BZ = Breathing Zone	SS = Split Spoon A = Auger Cuttings GP = Geoprobe		GS	= Gr	ore Hole HS = Headspace TOSC = Top of Screen rab Sample V = Water Level TOS = Top of Sand nposite TOB = Top of Bentonite CB = Curb Box Page 1 of 2	Grout Concrete Fill Brick/Rock		

						_					
Equity Environmental Engineering							С	LIENT: LPC Development Group, LLC	WELL ID: SB-5		
500 Interna	ationa	l Drive, S	uite 150				P	ROJECT: 105 South 5th Street			
Mount Oliv	ve, Ne	w Jersey	07828				L	OCATION: 105 South 5th St., Brooklyn, NY			
START DATE: 10/26/2015								RILLING CO.: Zebra	TOTAL DEPTH: 23.0'		
COMPLETION DATE: 10/26/2015							DI	RILLER: Evan Moraitu	WELL DEPT	H: N/A	
BORING DIA	METER	: 2.5"					DI	RILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELE	VATION: N/A	
WELL DIAME	ETER: N	//A					LC	DGGED BY: Faron Moser		ATER: No GW in Soil Boring	
SCREENED IN	TERV.	AL: N/A					w	ELL TYPE: N/A		EL STATIC: N/A	
SCREEN TYP	E/SLO	T: N/A					FI	LTER PACK: N/A	CASING TYP	PE: N/A	
Depth (Ft.)	Sample ID	Recovery (in.)	Interval (Ft.)	PID (ppm)	Reading At	Sample	H20			Boring Construction	
20 21 22 22 23		44"		0.0 0.0 0.0 0.0				20.0'-23.0' (SW) Well graded sand. Loose, Yellowish-red (5YR 4/6) fine sand, dry.	20 21 22 22 23		
_								Boring Refusal at 23.0' bgs			
									<u> </u>		
									<u> </u>		
_											
				1							
							-				
CAL = Calibration A = Auger Cuttings GS =						GS	= G	ore Hole HS = Headspace TOSC = Top of Screen rab Sample \underline{Y} = Water Level TOS = Top of Sand nposite TOB = Top of Botonite CB = Curb Box		Concrete SP Fill Rock Brick/Rock SSW-SM	

Equity En	vire	nmon	tal Fngi	noori	na						
Equity Environmental Engineering 500 International Drive, Suite 150								LIENT: LPC Development Group, LLC ROJECT: 105 South 5th Street	WELL ID: SB-6		
	Mount Olive, New Jersey 07828										
								OCATION: 105 South 5th St., Brooklyn, NY			
								RILLING CO.: Zebra	TOTAL DEPTH: 20.0'		
			10/26/2015				-	RILLER: Evan Moraitu	WELL DEPTH: N/A		
BORING DIAME								RILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A		
WELL DIAMETH		The Stational Control of Control				_	1	OGGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring		
SCREENED INT								ELL TYPE: N/A	WATER LEVEL STATIC: N/A		
SCREEN TYPE /	SLOT					-	FII	LTER PACK: N/A	CASING TYPE: N/A		
Depth (FL)	Sample ID	Recovery (in.)	Interval (Ft.)	PID (ppm)	Reading At	Sample	H20	Lithology / Remarks	Boring Construction		
0								0.0'-1.0' Fill Material- Loose, Dark Brown (7.5YR 3/3) coarse sand			
				0.0			1	with small-medium gravel, dr y.	°		
	B-6)'-2')			0.0		x		1.0'-5.0' (SW-SM) Well graded sand with silt. Dense, Yellowish-			
2		51"		0.0				red (5YR 4/6), fine sand with silt, small gravel, dry. Note:			
3				0.0				Rock @ 4.5' bgs Geoprobe hit Rock.			
				0.0							
5	_			0.0				5.0'-10.0' (SW) Well graded sand. Loose, Yellowish-red (5YR 4/6),			
6				0.0				fine sand, no gravel, no silt, non-plastic, dry.			
- 7				0.0							
		55"									
°				0.0							
9				0.0					└──_ º		
10				0.0							
- 11				0.0				10.0'-15.0' (SW) Well graded sand. Loose, Yellowish-red (5YR 4/6), fine sand, no gravel, no silt, non-plastic, dry.			
								inte sand, no graver, no snt, non-plastic, uty.			
12		570		0.0					12		
	B-6 12'-	56"		0.0		x					
141	4')			0.0							
15				0.0							
								15.0'-17.0' (SW) Well graded sand. Loose, Yellowish-red (5YR 4/6),	15		
16				0.0				fine sand, non-plastic, dry.			
17				0.0					17		
18		55"		0.0				17.0'-19.5' (SW-SM) Well graded sand with silt. Dense, Dark Brown (7.5YR 3/3) coarse sand with silt, large gravel, dry.			
19				0.0							
									19 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
20	-			0.0				19.5'-20.0' Rock	20		
								Boring Refusal at 20.0' bgs			
CAL = Calibration A = Auger Cuttings GS =							= Gra	re Hole HS = Headspace TOSC = Top of Screen ab Sample \underline{V} = Water Level TOS = Top of Sand posite TOB = Top of Bentonite CB = Curb Box Page 1 of 1 Page 1 of 1	Concrete Fill Brick/Rock		

Equity Environmental Engin	eering		CI	JENT: LPC Development Group, LLC	WELLID, CD 7		
500 International Drive, Suite 150	leering			CJECT: 105 South 5th Street	WELL ID: SB-7		
Mount Olive, New Jersey 07828							
				OCATION: 105 South 5th St., Brooklyn, NY			
START DATE: 10/26/2015		_		ILLING CO.: Zebra	TOTAL DEPTH: 19.0'		
COMPLETION DATE: 10/26/2015			-	ILLER: Evan Moraitu	WELL DEPTH: N/A		
BORING DIAMETER: 2.5"				ILL RIG / METHOD: Direct Puch / GeoProbe 7822DT	CASING ELEVATION: N/A		
WELL DIAMETER; N/A				GGED BY: Faron Moser	DEPTH TO WATER: No GW in Soil Boring		
SCREENED INTERVAL: N/A				ELL TYPE: N/A	WATER LEVEL STATIC: N/A		
SCREEN TYPE / SLOT: N/A			FIL	TER PACK: N/A	CASING TYPE: N/A		
Depth (Ft.) Sample ID Recovery (in.) Interval (Ft.)	PID (ppm) Reading At	Sample	H2O	Lithology / Remarks	Boring Construction		
				0.0'-5.0' Fill Material- Loose, Dark Brown (7.5YR 3/2) coarse sand			
0	0.0			with concrete, brick fragments, gravel, dry	0		
1 SB-7 (0'-2')	0.0	X					
	0.0				2		
3	0.0				3		
	0.0						
*	0.0						
5	0.0	_	$\left \right $	5.0'-10.0' (SW) Well graded sand- Dense, Strong Brown (7.5YR 5/8),			
6	0.0			fine sand with small-large gravel, dry.	6		
- 7	0.0						
43"							
8	0.0						
9	0.0				└── º		
10	0.0				10		
— ₁₁	0.0			10.0'-15.0' (SW) Well graded sand- Dense, Dark yellowish brown (10YR 4/6), fine sand, dry.	- 11		
				(
12 	0.0	-	11		12		
<u> </u>	0.0	x			13		
<u> </u>	0.0				14		
- 15	0.0				15		
			Π	15.0'-19.0' (SW) Well graded sand- Dense, Dark yellowish brown			
16	0.0			(10YR 4/6), fine sand , dry.			
17 35"	0.0						
18	0.0				18		
19	0.0				19		
				Boring Refusal at 19.0' bgs			
					sw		
KEY: SPT = Standard Penetration Test SS = Split Spoo	n	BH	= Bor	e Hole HS = Headspace TOSC = Top of Screen	SM		
CAL = Calibration A = Auger Cutti	ings	GS	= Gral	b Sample V = Water Level TOS = Top of Sand	Concrete SP		
BZ = Breathing Zone GP = Geoprobe		C =	Comp	posite TOB = Top of Bentonite CB = Curb Box	Brick/Rock SW-SM		

APPENDIX D

MOMITORING WELL CONSTRUCTION LOGS

Equity Enviro	nmenta	l Engi	inee	ring		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-1
500 International D		-		0		PF	ROJECT:	2015059		
Mt. Olive, New Jer	,					LC	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE:	-	/12/2015					RILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	70.0'
COMPLETION DATE:	24/	/12/2015					RILLER:	Greg Rivera	WELL DEPTH:	55.27'
BORING DIAMETER:	6''					DR	RILL RIG / ME		CASING ELEVATION:	49.19'
WELL DIAMETER:	2''						GGED BY:	Faron Moser	DEPTH TO WATER:	49.00'
SCREENED INTERVAL	.: 45'	'-55'					ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	
SCREEN TYPE / SLOT:		diameter	PVC/	020 Slot		FII	TER PACK:	# 2 Well Grade Sand		liameter SCH40 PVC
Depth (Ft.) Sample ID	Recovery (in.	interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well (Construction
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	NA NA NA NA		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				0.0'-8.0" 8.0"-5.0' 5.0'-9.0' 9.0'-10.0' 10.0'-12.0' 12.0' - 15.0' 15.0'-20.0'	Concrete Slab Fill Material. Loose coarse sand with large gravel and brick fagments throughout, dry. Note: Cobble @ 3' (SW-SM) Well graded sand wih silt. Medium dense, Strong Brown (7.5 YR 4/6) fine sand with silt, small- medium gravel, medium plasticity, dry. (SW-SM) Well graded sand wih silt. Medium dense, Light Brown (7.5 YR 6/3) fine sand with silt and small gravel, medium plasticity, dry. (SW) Well Graded Sand. Loose, medium dense Brownish Yellow (10YR 6/8) fine sand, small gravel and brick fragments throughout, dry. (SW-SM) Well graded sand wih silt. Medium dense, Light Brown (7.5 YR 6/3) fine sand with silt and small gravel, medium plasticity, dry. (SW-SM) Well graded sand wih silt. Medium dense, Light Brown (7.5 YR 6/3) fine sand with silt and small gravel, medium plasticity, dry Note: Rock observed @ 15.0' (SW) Well Graded Sand. Loose, Med. Dense Brownish Yellow (10YR 6/8) coarse sand with medium to large gravel throughout, dry.	0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20	2" Dia PVC
								CONTINUE BORING TO 40.0' ON PAGE 2		
KEY: SPT = Standard Penetration T CAL = Calibration BZ = Breathing Zone	A =	= Split Spor - Auger Cutt = Geoprobe	tings		GS	= Gr	ore Hole rab Sample nposite	$\begin{array}{ll} HS = Headspace & TOSC = Top \ of \ Screen \\ \underline{V} = Water \ Level & TOS = Top \ of \ Sand \\ TOB = Top \ of \ Bentonite & CB = Curb \ Box \\ Page \ 1 \ of \ 3 & \end{array}$	Plug Slurry Concrete Sand Screen	SW-SM SM FILL ROCK SW

Equity En	viron	men	tal Eng	inee	ring		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-1
500 Internati			-		8			ROJECT:	2015059		
Mt. Olive, Ne									95-105 S. 5th Street Brooklyn, NY		
START DATE:		-	23/12/2015					ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	70.0'
								ILLER:	Greg Rivera	WELL DEPTH:	55.27'
BORING DIAME			6"					ILLER.	-	CASING ELEVATION:	49.19
			2"						•		
WELL DIAMETI								GGED BY:	Faron Moser	DEPTH TO WATER:	49.00'
SCREENED INT			45'-55'	- DVCV	020 51-4			ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	
SCREEN TYPE		-	2'' diamete			pe	FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2"	diameter SCH40 PVC
Depth (Ft.)	Sample IU	Recovery (in	Interval (Ft.)	(mqq) DID (ppm)	Reading At	Sample Type	H20	20.0'-25.0'	Lithology / Remarks	Boring/Well (Construction
20 21 22 23 24 25 26 27 28 29 30 31 31 32 33 34 35 36		NA NA		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				25.0'-27.0' 27.0'-30.0' 30.0'-35.0' 35.0'-40.0'	 6/3) coarse sand with medium to large gravel throughout, dry. (SW) Well Graded Sand. Loose, Light Brown (7.5YR 6/3) coarse sand with medium to large gravel throughout, dry. (SW) Well Graded Sand. Very loose, Light Brown (7.5YR 6/3) fine sand, dry. (SW) Well Graded Sand. Very loose, Light Brown (7.5YR 6/3), fine sand, dry. (SW) Well Graded Sand. Very loose, Light Brown (7.5YR 6/3), fine sand, dry. 	20 21 22 23 24 25 24 25 26 27 28 29 30 31 31 32 33 34 34 35 36	PVC
37 38 39 40	1	NА		0.0 0.0 0.0					CONTINUE BORING TO 60.0' ON PAGE 3	37 38 39 40	
KEY: SPT = Standard Pene CAL = Calibration BZ = Breathing Zone			SS = Split Sp A = Auger Cu GP = Geoprol	attings		GS	= Gra	ore Hole ab Sample sposite	HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box Page 2 of 3 CB = Curb Box	Plug Slurry Concrete Sand Screen	SW-SM SM FILL ROCK SW

Equity E	Invir	onme	ntal En	ginee	ering		Cl	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-1
500 International Drive , Suite 150								ROJECT:	2015059		
Mt. Olive, I	New J	lersey 07	7828				L	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE: 23/12/2015								RILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION DATE: 24/12/2015							DF	RILLER:	Greg Rivera	WELL DEPTH:	55.27'
BORING DIA!	METEF	R:	6''				DF	RILL RIG / ME	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	49.19
WELL DIAME	ETER:		2''				LC	GGED BY:	Faron Moser	DEPTH TO WATER:	49.00'
SCREENED IN	NTERV	AL:	45'-55'				W	ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	46.96'
SCREEN TYP	E / SLC		2" diamete	er PVC/	020 Slot		FII	LTER PACK:	# 2 Well Grade Sand	CASING TYPE: 2" d	liameter SCH40 PVC
Depth (Ft.)	Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	
40 41 42 43 43 44 45		NA		0.0 0.0 0.0 0.0 0.0 0.0				40.0'-45.0'	(SW) Well Graded Sand. Loose, Light Brown (7.5YR 6/3), coarse sand with medium to large gravel throughout, dry. Bentonite plug from 42.0' - 44.0'	40 41 42 43 43 44 45	2"Dia PVC
46 47 48 49		NA		0.0 0.0 0.0 0.0			v	45.0'-50.0' Static Wat	 (SW) Well Graded Sand. Loose, Light Brown (7.5YR 6/3) coarse sand with medium to large gravel throughout, dry. der @ 46.96' (i.e. Depth to water reading with interface probe after well is installed). 		
50 51 52 53		NA		0.0 0.0 0.0 0.0 0.0				50.0' - 55.0'	Note: moist sand observed @ 50.0' bgs (SW) Well Graded Sand. Loose, Light Brown (7.5YR 6/3) coarse sand with small to medium gravel throughout, moist.	50 51 52 53	
54				0.0				55.0'-60.0'		54	
56 57 58		NA		0.0 0.0 0.0 0.0				55.0-00.0	(SW) Well Graded Sand. Very loose, Light Brown (7.5YR 6/3), fine sand, dry.	56 57 58	
59 60				0.0					DRILLING ENDED @ 60.0' bgs	59 60	
KEY: SPT = Standard F CAL = Calibratio BZ = Breathing Z	on	on Test	SS = Split Sp A = Auger C GP = Geopre	uttings		GS	= Gi	ore Hole rab Sample nposite	$ HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box Page 3 of 3 CB = Curb According to the second seco$	Plug Slurry Concrete Sand Screen	SW-SM SM FILL ROCK SW

Equity F	Enviro	onmen	tal Engi	ineer	ing		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-2
500 Interna			_		8		-	ROJECT:	2015059		
Mt. Olive,									95-105 S. 5th Street Brooklyn, NY		
START DATE		v	22/12/2015				1	ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETIO	N DATE:	:	23/12/2015					ILLER:	Greg Rivera	WELL DEPTH:	54.45'
	BORING DIAMETER: 6"						1	LILL RIG / ME		CASING ELEVATION:	50.13'
WELL DIAM			2''					GGED BY:	Faron Moser and Bob Jackson	DEPTH TO WATER:	47.80'
SCREENED I		AL:	45'-55'					ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	
SCREEN TYP			2" diamete	r PVC/	020 Slot		1	TER PACK:	# 2 Well Grade Sand		liameter SCH40 PVC
Depth (Ft.)	Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	Construction
				0.0		3 2		0.0'-8.0"	Concrete Slab		2" Dia
0				0.0						• •	PVC
1								8.0"-2.5'	(SW-SM) Well graded sand with silt Loose, Yellowish Bed (SYB 4/6) george cond with silt and ground dry	1	
2				0.0					Red (5YR 4/6), coarse sand with silt and gravel, dry.	2	
3		NA		0.0				2.5'-5.0'	(SW-SM) Well graded sand with silt Loose, Yellowish		
				0.0				2.3-3.0	Red (5YR 4/6), fine sand with silt, non-plastic, dry.		
4				0.0						4	
5										5	
6				0.0				5.0'-10.0'	(SW-SM) Well graded sand wih silt. Dense, Yellowish Red (5YR 4/6), fine sand with silt and small gravel	6	
~				0.0					throughout low-plasticity, dry.		
7				0.0						7	
8		NA								8	
9				0.0						9	
10				0.0							
10				0.0				10.0'-11.0'	(SW-SM) Well graded sand wih silt. Dense, Yellowish	10	
11				0.0					Red (7.5 YR 4/6) coarse sand with some silt. Low plasticity. Dry.	11	
12				0.0				11.0' - 15.0'	(SW) Well Graded Sand. Loose, Yellowish Red (7.5 YR	12	
13		NA		0.0					4/6) fine sand, small-medium gravel and cobbles throughout, non-plastic, dry.	13	
				0.0							
14				0.0					Note: Large rock observed at 11.5'	14	
15						<u> </u>		15 01 20 01		15	
16				0.0				15.0'-20.0'	(SW) Well Graded Sand. Loose, Yellowish Red (7.5 YR 4/6) fine sand, small-medium gravel and cobbles	16	
				0.0					throughout, non-plastic, dry.	17	
1/		NA		0.0							
18		110		0.0						18	
19										19	
20				0.0						20	
			1			1			CONTINUE BORING TO 40.0' ON PAGE 2		
			1			I	<u> </u>	1		·	
KEY: SPT = Standard 1 CAL = Calibratic BZ = Breathing 2	on	n Test	SS = Split Sp A = Auger Cu GP = Geopro	attings		GS	= Gr	rre Hole ab Sample posite	HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box	Plug Slurry Concrete Sand Screen	SW-SM SM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Dreaming Z			5. <u>– Geopio</u>			C-	Con	T-9900	Page 1 of 3	bereen	

Equity Environm	ental Engi	ineering		CL	JENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-2
500 International Driv	ve , Suite 150			PR	OJECT:	2015059		
Mt. Olive, New Jersey	07828			LC	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE:	22/12/2015			DR	ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION DATE:	23/12/2015			DR	ILLER:	Greg Rivera	WELL DEPTH:	54.45'
BORING DIAMETER:	6''			DR	ILL RIG / ME'	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	50.13
WELL DIAMETER:	2''			LO	GGED BY:	Faron Moser and Bob Jackson	DEPTH TO WATER:	47.80'
SCREENED INTERVAL:	45'-55'			WE	ELL TYPE:	Flush Mount	WATER LEVEL STATIC	: 47.60'
SCREEN TYPE / SLOT:	2" diameter	PVC/ 020 Slot	t	FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2"	diameter SCH40 PVC
Depth (Ft.) Sample ID Recovery (in		PID (ppm) Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well	Construction
20 21 22 23 23 24		0.0 0.0 0.0 0.0 0.0 0.0			20.0'-25.0'	(SW) Well Graded Sand. Loose, Yellowish Red (7.5 YR 4/6) fine sand and cobbles throughout, non-plastic, dry.	20 21 22 23 23 24	2" Dia PVC
25262728NA		0.0 0.0 0.0 0.0 0.0			25.0'-30.0'	(SW) Well Graded Sand. Loose, Yellowish Red (7.5 YR 4/6) fine sand with gravel throughout, non-plastic, moist @ 30.0'	25 26 27 28 29 30	
30 31 31 32 33 NA 34 35		0.0 0.0 0.0 0.0 0.0			30.0'-33.0' 33.0'-35.0'	 (SW) Well Graded Sand. Loose, Yellowish Red (7.5 YR 4/6) fine sand, dry. (SW-SM) Well graded sand wih silt. Dense, Yellowish Red (7.5 YR 4/6) fine sand with silt, dry. 	31 32 33 34 35	
36 37 38 38 39 40		0.0 0.9 0.0 3.2 0.0			35.0'-36.0' 36.0'-37.0' 37.0'-40.0'	 (SW) Well Graded Sand. Loose, grey, sand with gravel, dry. (SW) Well Graded Sand. Loose, fine sand, dry. (SW-SM) Well graded sand wih silt. Dense, Yellowish Red (7.5 YR 4/6) coarse sand with silt, low plasticity, dry. 	36 37 38 38 39 40	
KEY: SPT = Standard Penetration Test CAL = Calibration BZ = Breathing Zone	SS = Split Spoc A = Auger Cutt GP = Geoprobe	lings	GS	= Gra	re Hole ab Sample posite	HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box Page 2 of 3 Page 2 of 3	Plug Slurry Concrete Sand Screen	SW-SM SM IIIIIIIIIIIIIII FILL ROCK SW

Equity E	Inviro	onmen	tal Engi	neer	ing		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-2
500 Interna			-		0		PR	ROJECT:	2015059		
Mt. Olive,	New Je	ersey 078	328				LC	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE	3:		22/12/2015				DR	ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETIO	N DATE:	:	23/12/2015				DRILLER: Greg Rivera		WELL DEPTH:	54.45'	
BORING DIA	ING DIAMETER: 6"						DR	ILL RIG / ME	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	50.13
WELL DIAME	ETER:		2''				LO	GGED BY:	Faron Moser and Bob Jackson	DEPTH TO WATER:	47.80'
SCREENED I	NTERVA	AL:	45'-55'				WE	ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	47.60'
SCREEN TYP	E / SLO	Г:	2" diamete	r PVC/	020 Slot		FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2"	diameter SCH40 PVC
Depth (Ft.)	Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well (Construction
40 41 42 43		NA		0.0 1.5 1.5 1.5				40.0'-42.0' 42.0'-45.0'	(SW) Well Graded Sand. Loose, Grey Brown, fine- coarse sand with cobbles. Thin lense of lighter soil @ 41.5' bgs. Bedrock	40 41 42 43	2" Dia PVC
44				0.0 0.0					Bentonite plug from 42.0' - 44.0'	44 45	
46 47 48 48 49		NA		0.0 0.0 0.0 0.0			V	45.0'-50.0'	Bedrock	46 47 48 	
50 50 51 52 53 53 54 55		NA		0.0 0.0 0.0 0.0 0.0 0.0				50.0'-55.0'	Bedrock	50 51 51 52 53 54 54 55	
56 57 58 59 60		NA		0.0 0.0 0.0 0.0 0.0				55.0'-60.0'	Bedrock DRILLING ENDED @ 60.0' bgs	56 57 58 59 60	
KEY: SPT = Standard I CAL = Calibratic BZ = Breathing 2	on	1 Test	SS = Split Spc A = Auger Cu GP = Geoprol	ittings		GS	= Gra	ore Hole ab Sample posite	HS = HeadspaceTOSC = Top of Screen \underline{V} = Water LevelTOS = Top of S andTOB = Top of BentoniteCB = Curb BoxPage 3 of 3Page 3 of 3	Plug Shrry Concrete Sand Screen	SW-SM SM FILL ROCK SW

Equity En	nvironn	nental E	nginee	ering		Cl	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-3
500 Internati			-	U		PI	ROJECT:	2015059		
Mt. Olive, N						L	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE:	-	18/12/20	15				RILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION I	DATE:	22/12/20	15			DF	RILLER:	Greg Rivera	WELL DEPTH:	53.86'
BORING DIAM	ETER:	6''				DF	RILL RIG / ME		CASING ELEVATION:	50.19'
VELL DIAMETER: 2"						LC	GGED BY:	Faron Moser	DEPTH TO WATER:	45.05'
SCREENED INT	FERVAL:	40'-55'				W	ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	47.45'
SCREEN TYPE	/ SLOT:	2" diame	eter PVC/	020 Slot		FI	LTER PACK:	# 2 Well Grade Sand	CASING TYPE: 2" o	diameter SCH40 PVC
Depth (Ft.)	Sample ID Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	Construction
		I	0.0				0.0'-1.0'	Concrete Slab Fill Material. Loose coarse sand with asphalt, brick	0 1	2" Dia PVC
2 3 4	NA		0.0 0.0 0.0 0.0				2.0'-5.0'	fragments and concrete (SW-SM) Well graded sand wih silt. Very dense, Yellowish Red (5YR 4/6) fine sand with silt, medium plasticity, dry.		
5 6 7 8 9	NA		0.0 0.0 0.0 0.0 0.0				5.0'-10.0'	(SW-SM) Well graded sand wih silt. Very dense, Yellowish Red (5YR 4/6) fine sand with silt, medium plasticity, dry. Note: Rock observed at 5.5' -6.0'	5 6 7 8 9	
10 11 12 13 14 15	NA		0.0 0.0 0.0 0.0 0.0				10.0'-11.0' 11.0' - 12.5' 12.5' - 15.0'	(SW-SM) Well graded sand wih silt. Very dense, Yellowish Red (5YR 4/6) fine sand with silt, medium plasticity, dry. Asphalt. (SW-SM) Well graded sand wih silt. Dense, Yellowish Red (5YR 4/6) coarse sand with silt and medium gravel, medium plasticity, dry.		
13 16 17 18 19 20	NA		0.0 0.0 0.0 0.0 0.0				15.0'-16.0' 16.0'-20.0'	Same as 12.5' - 15.0' (SW) Well Graded Sand. Loose, Yellowish Red (5YR 4/6) coarse sand, small gravel throughout, non-plastic, dry.	13 16 17 17 18 19 20	
<u> </u>								CONTINUE BORING TO 40.0' ON PAGE 2		
KEY: SPT = Standard Pen CAL = Calibration BZ = Breathing Zon		SS = Split A = Auger GP = Geop	Cuttings		GS	= Gi	ore Hole rab Sample nposite	$ HS = Headspace TOSC = Top of Screen \\ \underline{V} = Water Level TOS = Top of Sand \\ TOB = Top of Bentonite CB = Curb Box \\ Page 1 of 3 $	Plug Slurry Concrete Sand Screen	SW-SM SM IIIIIIIIIIII FILL ROCK SW

Equity Environ	mental En	ginee	ering		CI	JENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-3
500 International D			0		PR	OJECT:	2015059		
Mt. Olive, New Jers	ey 07828				LC	CATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE:	18/12/2015	5			DR	ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION DATE:	22/12/2015	5			DR	ILLER:	Greg Rivera	WELL DEPTH:	53.86'
BORING DIAMETER:	6''				DR	ILL RIG / ME'	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	50.19'
WELL DIAMETER:	2''				lo	GGED BY:	Faron Moser	DEPTH TO WATER:	45.05'
SCREENED INTERVAL:	40'-55'				WE	LL TYPE:	Flush Mount	WATER LEVEL STATIC:	47.45'
SCREEN TYPE / SLOT:	2" diamete	er PVC/	020 Slot		FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2" d	liameter SCH40 PVC
Depth (Ft.) Sample ID	kecovery (m. Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	Construction
20 21 22 23 24 24 25 26 27		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		<u>×</u>		20.0'-25.0' 25.0'-30.0'	 (SW-SM) Well graded sand with silt. Dense, Yellowish Red (5YR 4/6), coarse sand with silt, large gravel and rock mixed throughout, medium plasticity, dry. Note: Large gravel and rock were observed between 23.0° - 25.0° interval. (SW-SM) Well graded sand with silt. Dense, Yellowish Red (5YR 4/6), coarse sand with silt. Dense, Yellowish Red (5YR 4/6), coarse sand with silt with medium -large gravel and rock mixed throughout, medium plasticity, dry. Note: Medium to large gravel was observed between 25.0° - 27.0° Lorge gravel may observed between 25.0° 	20 21 22 23 24 25 26 27 28	2" Dia PVC
29 30 31 32 33 34 35	iA	0.0 0.0 0.0 0.0 0.0 0.0 0.0				30.0'-35.0'	 27.0°. Large gravel and rock were observed between 27:0 - 30.0°. (SW-SM) Well graded sand with silt. Loose, Yellowish Red (5YR 4/6), coarse sand with silt, small -large gravel and rock mixed throughout, medium plasticity, dry. 	29 30 31 32 33 33 34 35	
36 37 38 38 39 40	IA	0.0 0.0 0.0 0.0 0.0				35.0'-36.5' 36.5'-38.5' 38.5'-40.0'	 (SW-SM) Well graded sand with silt. Dense, Yellowish Red (5YR 4/6), coarse sand with silt, medium plasticity dry. (SW-SM) Well graded sand with silt. Loose, Yellowish Red (5YR 4/6), coarse sand with silt. Loose, Yellowish Red (5YR 4/6), coarse sand with silt, small -large gravel and rock mixed throughout, medium plasticity, dry. Bedrock Note: Bentonite plug from 37.0' - 39.0' CONTINUE BORING TO 60.0' ON PAGE 3 	36 37 38 38 39 40	
KEY: SPT = Standard Penetration Te: CAL = Calibration BZ = Breathing Zone	st SS = Split Sp A = Auger C GP = Geopre	Cuttings		GS	= Gr	re Hole ab Sample posite	$ HS = Headspace TOSC = Top of Screen \\ V = Water Level TOS = Top of Sand \\ TOB = Top of Bentonite CB = Curb Box \\ Page 2 of 3 $	Plug Slurry Concrete Sand Screen	SW-SM SM FILL ROCK SW

Equity Envi	ronmer	ntal Eng	ginee	ring		CLIE	ENT:	LPC Dev	. Group 95-105	S. 5th Street	WELL ID:	MV	V-3
500 Internationa				C		PRO.	JECT:	2015059					
Mt. Olive, New							ATION:		. 5th Street Broo	oklyn, NY			
START DATE:		18/12/2015					LING CO.:		Aquifer Drilling and		TOTAL DEPTH:	60.0	
COMPLETION DAT	E:	22/12/2015				DRILI			Greg Rivera		WELL DEPTH:	53.80	
BORING DIAMETE		6''					L RIG / ME	THOD:	Geoprobe 8140LC -	Sonic	CASING ELEVATI		
WELL DIAMETER:		2''					ED BY:		Faron Moser		DEPTH TO WATE		5'
SCREENED INTER									Flush Mount		WATER LEVEL ST		
SCREEN TYPE / SL		2" diameter	r PVC/	020 Slot			L TYPE: ER PACK:		# 2 Well Grade San	d	CASING TYPE:		er SCH40 PVC
Depth (Ft.) Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20]	Lithology / Remarks		Boring	z/Well Constru	iction
$ \begin{array}{c} - & 40 \\ - & 41 \\ - & 42 \\ - & 43 \\ - & 44 \\ - & 45 \\ - & 46 \\ - & 47 \\ - & 48 \\ - & 49 \\ - & 50 \\ - & 51 \\ - & 52 \\ - & 53 \\ - & 54 \\ - & 55 \\ - & 56 \\ - & 57 \\ - & 58 \\ - & 59 \\ \end{array} $	NA NA NA		0.0 0.0			45 V 50	.0'-45.0' .0'-50.0' Static Wat		(i.e. Depth to water e after well is install	reading with interface ed).	$ \begin{array}{c} - 40 \\ - 41 \\ - 42 \\ - 43 \\ - 44 \\ - 45 \\ - 46 \\ - 47 \\ - 46 \\ - 47 \\ - 48 \\ - 49 \\ - 50 \\ - 51 \\ - 52 \\ - 53 \\ - 54 \\ - 55 \\ - 55 \\ - 56 \\ - 57 \\ - 58 \\ - 59 \\ -$		
60			0.0			$\left \right $		DRILI	LING ENDED @ 60	.0' bgs	60		
KEY: SPT = Standard Penetrati CAL = Calibration BZ = Breathing Zone		SS = Split Spc A = Auger Cu GP = Geoprob	ttings		GS	= Bore F = Grab S : Composi	Sample	$HS = Headsp$ $\underline{V} = Water La$ $TOB = Top a$ $Page 3$	evel f Bentonite	TOSC = Top of Screen TOS = Top of Sand CB = Curb Box	Plug Slurry Sand Sand Scree	rete	SW-SM SM FILL ROCK SW

Equity E	Inviro	onment	al Engi	neer	ing		CI	JENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-4
500 Interna			-		0			OJECT:	2015059		
Mt. Olive, I	New Je	ersey 078	28				LC	CATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE		•	24/12/2015					ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION	N DATE:		24/12/2015				DR	ILLER:	Greg Rivera	WELL DEPTH:	53.95'
BORING DIA	METER:		6''				DR	ILL RIG / ME	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	48.13'
WELL DIAME	ETER:		2''				LO	GGED BY:	Faron Moser	DEPTH TO WATER:	45.65'
SCREENED IN	NTERVA	L:	44'-54'				WE	ELL TYPE:	Flush Mount	WATER LEVEL STATIC:	45.65'
SCREEN TYP	E / SLO	Г:	2" diamete	r PVC/	020 Slot		FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2" d	iameter SCH40 PVC
Depth (Ft.)	Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	onstruction
0 1 2 3 4		NA		0.0 0.0 0.0 0.0 0.0 0.0				0.0'-5.0'	Fill Material. Medium dense, coarse sand with brick fragments and large gravel and some silt, dry.		2" Dia PVC
5 6 7 8 9 10		NA		0.0 0.0 0.0 0.0 0.0				5.0'-10.0'	(SW-SM) Well graded sand wih silt. Loose, Yellowish- red (5YR 4/6) fine sand with silt, dry.		
11 12 13 14 15		NA		0.0 0.0 0.0 0.0 0.0				10.0'-12.0' 12.0'-15.0'	 (SW-SM) Well graded sand wih silt. Loose, Yellowishred (5YR 4/6) fine sand with some silt, dry. (SW-SM) Well graded sand wih silt. Medium Dense, Dark Brown (7.5YR 3/3) coarse sand with silt. Brick fragments and large rocks were observed throughout, dry. 	11 12 13 14 15	
16 17 18 19 20		NA		0.0 0.0 0.0 0.0 0.0				15.0'-18.0' 18.0'-18.5 18.5'-20.0'	(SW-SM) Well graded sand wih silt. Loose, Yellowish- red (5YR 4/6) fine sand with some silt, dry. Rock (SW) Well graded sand. Medium dense, Dark Brown (7.5YR 3/3) coarse sand with medium gravel throughout. Brick fragments were observed throghout, dry. CONTINUE BORING TO 40.0' ON PAGE 2	16 17 18 19 20	
KEY: SPT = Standard F CAL = Calibratic BZ = Breathing Z	on	Test	SS = Split Spa A = Auger Cu GP = Geoprol	ittings		GS	= Gra	re Hole ab Sample posite	HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box Page 1 of 3	Plug Slurry Concrete Sand Screen	SW-SM SM IIIIIIIIII FILL ROCK SW

Equity Envir	onmer	ntal Eng	ginee	ring		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-4
500 International				0			ROJECT:	2015059		
Mt. Olive, New J								95-105 S. 5th Street Brooklyn, NY		
START DATE:	-	24/12/2015					ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETION DATE	3:	24/12/2015					ILLER:	Greg Rivera	WELL DEPTH:	53.95'
BORING DIAMETER	ε :	6''				DR	ILL RIG / ME		CASING ELEVATION:	48.13
WELL DIAMETER:		2''					GGED BY:	Faron Moser	DEPTH TO WATER:	45.65'
SCREENED INTERV	AL:	44'-54'				WE	ELL TYPE:	Standpipe	WATER LEVEL STATIC:	45.65'
SCREEN TYPE / SLO	DT:	2" diamete	r PVC/	020 Slot		FIL	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2" o	liameter SCH40 PVC
Depth (Ft.) Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well C	Construction
$ \begin{array}{c} 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 26 \\ 26 \\ $	NA		0.0 0.0 0.0 0.0 0.0 0.0 0.0				20.0'-25.0' 25.0'-27.0'	 (SW) Well graded sand. Medium dense, Dark Brown (7.5YR 3/3), coarse sand with large gravel throughout. cobbles were observed throughout, dry. (SW) Well graded sand. Medium Dense, Dark Brown (7.5YR 2/2) and with hardware data brown (7.5YR 2/2). 	20 21 22 23 24 24 25 26	PVC
27 27 28 29 30	NA		0.0 0.0 0.0 0.0				Sampling dri through bedr	 (7.5YR 3/3) coarse sand with large gravel throughout, cobbles were observed throghout, dry. Bedrock buld not advance passed 27.0' due to bedrock refusal. Ill casing was replaced with driving casing to advance rock. 	27 27 28 29 30	
31 32 33 33 34 35	NA		0.0 0.0 0.0 0.0 0.0				30.0'-35.0'	Bedrock	31 32 33 33 34 35	
36 37 37 38 39 40	NA		0.0 0.0 0.0 0.0 0.0				35.0'-40.0'	Bedrock CONTINUE BORING TO 60.0' ON PAGE 3	36 37 38 39 40	
KEY: SPT = Standard Penetratio CAL = Calibration BZ = Breathing Zone		SS = Split Sp A = Auger Cu GP = Geoprol	ittings		GS	= Gr	re Hole ab Sample posite	HS = HeadspaceTOSC = Top of Screen \underline{V} = Water LevelTOS = Top of SandTOB = Top of BentoniteCB = Curb BoxPage 2 of 3S	Plug Slurry Concrete Sand Screen	SW-SM SM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Equity E	Inviro	onmen	tal Engi	ineer	ing		CI	LIENT:	LPC Dev. Group 95-105 S. 5th Street	WELL ID:	MW-4
500 Interna			-		C		PF	OJECT:	2015059		
Mt. Olive,	New Je	ersey 078	828				LC	OCATION:	95-105 S. 5th Street Brooklyn, NY		
START DATE	l:		24/12/2015				DR	ILLING CO.:	Aquifer Drilling and Testing	TOTAL DEPTH:	60.0'
COMPLETIO	N DATE	:	24/12/2015				DRILLER: Greg Rivera			WELL DEPTH:	53.95'
BORING DIA	METER:		6''				DR	ILL RIG / ME	THOD: Geoprobe 8140LC - Sonic	CASING ELEVATION:	48.13
WELL DIAMI	ETER:	2''				LO	GGED BY:	Faron Moser	DEPTH TO WATER:	45.65'	
SCREENED I	NTERVA	AL:	44'-54'				WE	ELL TYPE:	Flush Mount	WATER LEVEL STATIC	45.65'
SCREEN TYP	E / SLO	Г:	2" diamete	er PVC/	020 Slot		FII	TER PACK:	# 2 Well Grade Sand	CASING TYPE: 2'	diameter SCH40 PVC
Depth (Ft.)	Sample ID	Recovery (in.	Interval (Ft.)	PID (ppm)	Reading At	Sample Type	H20		Lithology / Remarks	Boring/Well	Construction
40 41 42 43 43 44 44 45		NA		0.0 0.0 0.0 0.0 0.0 0.0				40.0'-45.0'	Bedrock Bentonite plug from 41.0' - 43.0'	40 41 41 42 43 43 44 44 45	2" Dia PVC
46 47 48 48 49 50		NA		0.0 0.0 0.0 0.0 0.0			V	45.0'-50.0'	Bedrock Water @ 45.65' bgs	46 47 48 48 49 50	
51 52 53 54 55		NA		0.0 0.0 0.0 0.0 0.0				50.0'-55.0'	Bedrock	51 52 53 53 54 55	
56 57 58 59 60		NA		0.0 0.0 0.0 0.0 0.0 0.0				55.0'-60.0'	Bedrock DRILLING ENDED @ 60.0' bgs	50 56 57 57 58 58 59 60	
KEY: SPT = Standard I CAL = Calibratic BZ = Breathing 2	on	n Test	SS = Split Sp A = Auger Ct GP = Geopro	uttings		GS	= Gr	re Hole ab Sample posite	$ HS = Headspace TOSC = Top of Screen \underline{V} = Water Level TOS = Top of Sand TOB = Top of Bentonite CB = Curb Box Page 3 of 3 $	Grout Bentonite Sand Screen	SP-SM SM SP ROCK SW

APPENDIX E EXCAVATION WORKPLAN

E-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the NYSDEC. Table 1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix B

NYSDEC Project Manager – Melissa Sweet	(518) 402-9614 New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7015 melissa.sweet@dec.ny.gov
NYSDEC Regional HW Engineer – Jane O Connell	Jane O'Connell 718-482-4995 New York State Department of Environmental Conservation 47-40 21st Street Long Island City, NY 11101-5401 jane.oconnell@dec.ny.gov;
NYSDEC Site Control – Kelly Lewandowski	Kelly Lewandowski (518)402-9553 New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7015 Kelly.lewandowski@dec.ny.gov,

Table 1: Notifications*

* Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

• A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;

- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix F of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

E-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed by a qualified environmental professional during all excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site as soil beneath a cover or if the material can be used as cover soil. Further discussion of off-site disposal of materials and on-site reuse is provided in Section B-4 of this Appendix.

E-3 SOIL STAGING METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC.

E-4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional or person under their supervision will oversee all significant invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck decon station will be operated on-site, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be decontaminated at the station before leaving the site until the activities performed under this section are complete. Truck decon waste will be collected and disposed of off-site in an appropriate manner.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

E-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks loaded with site materials will exit the vicinity of the site using only approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

E-6 MATERIALS DISPOSAL OFF-SITE

All material excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of material from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

E-7 MATERIALS REUSE ON-SITE

The probability of the reuse of excavated soil from the subject property is extremely low. If the need arises, the following will be required in accordance with DER-10 requirements:

- Procedure for determining if reuse is appropriate:
 - Sampling (methods and analytical)
 - o Stockpile segregation scheme for on-site reuse
- Size of stockpiles, location (figure)

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

E-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including but not limited to, excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, and will be managed off-site, unless prior approval is obtained from NYSDEC.

E-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the decision document. The existing cover system is comprised of a minimum of 8-12 inches of clean stone and asphalt pavement or concrete covered sidewalks and concrete building, etc. The demarcation layer, will be replaced to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in an updated SMP.

E-10 BACKFILL FROM OFF-SITE SOURCES

The probability that there will be a need for imported backfill is extremely low. Should there be a need for the import of backfill from an offsite source, the following will be provided:

- Source area approval following the DER-10 sampling and approval process
 Sources of backfill material
 - Source area background check
- Chemical sampling for the appropriate analytes at the required frequency

 Imported Soil Chemical Quality Standards
 - Applicability of protection of groundwater SCOs
 - Stockpile procedures for imported backfill material
 Size of stockpiles, cover, etc.

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. A Request to Import/Reuse Fill or Soil form, which can be found at <u>http://www.dec.ny.gov/regulations/67386.html</u>, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are the restricted residential standards. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

E-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

E-12 EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

E-13 COMMUNITY AIR MONITORING PLAN

Given the configuration of the site, the air monitoring locations are limited to the driveway/parking lot and the South 5th Street side of the building. They will be adjusted on a daily or more frequent basis to the extent possible based on actual wind directions to provide an upwind and downwind monitoring stations.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

E-1 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors offsite and on-site. Specific odor control methods to be used on a routine basis will include the necessary materials for the situation. At a minimum, the source will be covered, kept wet, and/or a chemical suppressant used. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

E-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

APPENDIX F HASP & CAMP

Project Name: <u>105 South 5th Street</u> Project Number: <u>2014074</u>

EQUITY ENVIRONMENTAL ENGINEERING, LLC

500 International Drive, Suite 150 Mount Olive, New Jersey 07828

SITE-SPECIFIC CONSTRUCTION HEALTH AND SAFETY PLAN

Address: 105 South 5th Street Brooklyn, New York 11201

Plan Revisions

Number	Date	Initials
1	5/6/15	RLJ
2	7/6/16	FU
3		
4		

Faron Moser		
Site Supervisor (SS)	Date	
Robert Jackson		
Project Manager (PM)	Date	
Health and Safety Officer		
Plan Preparer		
Neha Gautam		
Alternate Health & Safety Officer	Date	

i

Table of Contents

Page

Introduction	2
Site Information	3
Emergency Contacts	6
Emergency Contact List Cell Phone Numbers	
Key Project Personnel	
Medical Surveillance and Training Dates for Authorized Personnel	
Task Identification	. 10
Chemical Hazards	. 11
Physical and Biological Hazards	. 12
Risk Analysis	
General Safety Rules	. 14
Heat Stress	. 15
Cold Stress	. 16
Employee Training Program	. 17
Personal Protective Equipment (PPE) Requirements	
Suggested Levels of Protection	
Medical Surveillance	. 21
Monitoring Requirements	. 22
Air Monitoring and Contaminant Action Levels	. 23
Procedures for Handling Anticipated Wastes	
Spill Prevention and Response	. 25
Emergency Procedure	
Subcontractor Safety	. 31

FORMS

Job Safety & Health Protection HASP Sign-off Equipment Calibration Log Sampling Log Heat Stress Monitoring Log Daily Sign In/Sign Out Daily Safety Meeting Log Accident Injury Report Vehicle Accident Report Material Safety Data Sheets

Introduction

This Site-Specific Health and Safety Plan (HASP) has been prepared by Equity Environmental Engineering, LLC (Equity) to summarize the work related health and safety hazards at the subject site (105 South 5th Street, Brooklyn, New York) and the requirements and procedures to protect its employees from them. This plan meets or exceeds the requirements of Occupational Safety and Health Administration (OSHA), 29 CFR 1910.120, for a site-specific health and safety plan.

This plan was designed to reduce the potential for occupational illness or injury resulting from working at this site. The purpose of the HASP is to inform Equity's employees of the health and safety risks present at this site, and the proper methods of protecting themselves from those risks. Each worker must be fully aware of the risks associated with the work to be accomplished, and be dedicated to completing that work safely.

Existing and potential hazards at this site have been identified. As new information becomes available, this HASP will be revised. Standard practices and procedures of industrial hygiene, occupational health, safety, and environmental protection are prescribed in this plan, which was prepared and reviewed by experienced professionals.

Equity employees who work on this site must read the HASP and sign the form included in this plan, to indicate that they understand the plan's contents, and agree to comply with its provisions. Anyone who cannot, or will not comply with this HASP will be excluded from on-site activities. Violations of this HASP or any applicable federal, state, or local health and safety regulations should be reported immediately to the Site Supervisor (SS), or to Equity's Health & Safety Officer (HSO).

This HASP will be readily available so workers can reference it when necessary.

Site Information

Location: <u>105 South 5th Street, Brooklyn, NY 11201</u>

Current Site Information:

The subject property currently consists of a multi-story building located at 105 South 5th Street (Block 2443 /Lots 6, 37 and 41) in Brooklyn. This is an initial investigation of the subject property.

Location/Class:	[X] Industria [] Suburban	l [] Commercial [] Rural	[]	Urban/Residential	
Site Regulatory Sta	-] CERCLA/SARA	[] US EPA	[] NYCDEP
	L] NPL	L] RCRA	[] NJ ISRA
	[2	[] Other (OER)	[] Not Regulated	

Operations or Tasks to be Performed, and Approximate Duration of Each:

- 1- Subsurface geophysics survey
- 2- Installation and sampling of soil borings, soil-gas points and monitoring wells.
- **3-** Excavation of contaminated soils.
- 4- Back-fill with clean soil.
- 5- Installation of vapor mitigation system

Surrounding Population/Structures:

The area surrounding the subject property is mixed residential and commercial/industrial.

Site and Surrounding Topography:

The topography is generally flat.

Known or Suspected Pathways of Contaminant Dispersion:

None

Emergency Shower, Eyewash and First Aid Equipment Located at:

Eyewash and emergency shower will be available.

First aid provided by emergency services (911).

Personnel On-Site trained in First Aid:

1.	N. Gautam	5.
2.	F. Moser	6.
3.	B. Jackson	7.
4.	P. Jaran	8.

Emergency Medical Care

Hospital

Hospital Name: SUNY	Oownstate Medical Center	Telephone #: 888-270-7869
Address: 450 Clarkso	on Ave, Brooklyn, NY 11203	
Contact:	<u>Operator</u>	Telephone #: 888-270-7869
Type of Service	(X) Physical Trauma Only	
	() Physical Trauma and Chemical	Exposure
Hospital Route:	() Available 24 Hours	
"New York	Driggs Ave Head eact on S 5th St towarCB ision Ave Turn right onto Lee Ave Continue onto Nostrand Avits 200 Based of States States 200 Based of States 200 Based of St	· · · · · · · · · · · · · · · · · · ·

Turn left onto Clarkson

- 1. Head east on S 5th St 0.1 mi
- 2. Turn right onto Driggs Ave 0.2 mi
- 3. Turn left onto Division Ave 0.2 mi
- 4. Turn right onto Lee Ave 0.7 mi
- 5. Continue onto Nostrand Ave 3.1 mi
- 6. Turn left onto Clarkson Ave 0.2 mi

**Hospital route information has been provided to satisfy OSHA requirements (29 CFR 1910.120). However, where 911-emergency service and/or transport is available, Equity personnel are strictly prohibited from transporting accident victims in either company or personal vehicles.

Google-ear

Transporting the injured in non-emergency vehicles increases the potential for motor vehicle accidents during transit to the hospital and further injury to the victim. Also, the victims' condition can worsen during transit. As a result, transportation in non-emergency vehicles can delay or even prevent treatment by trained emergency personnel during a critical time. Employees must remain at the site of the accident, administer appropriate first aid, and await the arrival of **trained emergency and/or rescue personnel**.

Emergency Contacts

	Town	Phone
Fire Department	NYC	911
Police Department	NYC	911 / (212) 334-0611
Site Contact	Equity Personnel	(973) 641-0825
Site Telephone	Equity Personnel	(973) 641-0825
Nearest Telephone	Equity Personnel	TBD
First Aid/EMS	NYC	911
Federal Agency Representative	NA	NA
State Agency Representative	NA	NA
Local Agency Representative	NA	NA
Pesticide Poisoning	NA	(800) 845-7633
NY Poison Control Center	State-wide	(212) 764-7667
CHEM TREC	Washington, DC	(800) 424-9300
Utility	Company Name	Phone
Water Supply	NYC DEP	*
Sewer	NYC DEP	*
Power	Con Edison	*
Telephone	*	*
Gas	National Grid	*
NY One Call	NY	811

* NY One Call will supply this information

Equity Environmental Engineering LLC Emergency Contact List Cell Phone Numbers

Peter Jaran	(973) 479-2381
Bob Jackson	(973) 641-0825
Faron Moser	(201) 341-1323
Neha Gautam	(201) 916-3416

Key Project Personnel

The following describes the project position assignments, associated responsibilities, and reporting relationships.

Position	Job Description	Interactions
Project Manager (PM)	Responsible for technical and administrative performance of the project. Supports Site Supervisor and is available to him at all times. Will visit the site periodically, or as necessary. Reports progress of project on a regular basis. Assigns key personnel, and identifies, requests, secures, and monitors use of resources for project. Approves program expenditures and invoices.	Reports directly to Managing Director. Works closely with Site Supervisor.
Site Supervisor (SS)	Acts as point of contact for client and client's representative(s). Supervises all on-site personnel and subcontractors. Coordinates daily site-specific work efforts, and ensures all activities are in strict compliance with site-specific health and safety plan. Has authority to suspend all work that possesses any health and safety risk. Briefs subordinate technical personnel on task requirements. Identifies and resolves technical problems. Provides periodic review of project progress.	Reports directly to Project Manager.
Health & Safety Officer (HSO)	Develops, implements, and enforces the on-site safety program. Oversees all health and safety aspects of project, conducts periodic audits to ensure compliance. Available at all times to discuss project progress and health and safety related issues.	Reports directly to Managing Director. Works closely with Project Manager, and Site Supervisor.
Onsite Health Physicist	Implementing the radiation safety at the Site with authorization to stop work due to unsafe acts, unsafe conditions, non-compliance and/or non-implementation of the Safety Plan and/or applicable safety and health requirements; performs the proper operation of radiation monitoring equipment; conducts radiation surveys; and notifies anomalies to the site supervisor.	Reports directly to Site Supervisor.

Equity is the entity responsible for managing health and safety for its employees at this site. Key project personnel are as follows:

Project Manager: HSO	Robert Jackson Name	<u>973-527-7451/974-641-0825</u> Telephone / Cellular Number
Site Supervisor:	<u>Faron Moser</u> Name	<u>973-527-7451/201-341-1323</u> Telephone / Cellular Number
Alternate SSO:	Neha Gautam	<u>973-527-7451/201-916-3416</u> Telephone / Cellular Number

Employee	Medical Exam	OSHA 8-Hr.	Site Supervisor Training	Respirator Fit Test
Bob Jackson	12/12/14	11/11/2013	9/27/2004	12/13/2012
Peter Jaran	12/16/14	11/11/2013		12/13/2012
Faron Moser	4/1/2014	1/28/2014		
Neha Gautam	3/4/2014	6/25/2013		

Medical Surveillance and Training Dates for Authorized Personnel

Task Identification

Tasks covered under this plan:

Task #	Description
1	Surface geophysics Survey
2	Installation of soil borings, soil-gas points and monitoring wells
3	Collection of soil, soil-gas and groundwater samples.
4	Excavation of contaminated soils
5	Back-fill with clean soil
6	Installation of vapor mitigation system

Off-site tasks planned?	No
-------------------------	----

Describe:_____

				Other	Primary Hazard			
Task No.(s)	Chemical Name (or class)	PEL	TLV	Pertinent Limits (specify)	Ingestion	Dermal	Inhalation	SDS Attached (Y/N)
2, 3	Isobutylene (PID Calibration Gas)	250 ppm	250 ppm		х	Х	х	Y
2,3 and 4	Benzo(a) anthracene*	0.2 mg/m ³	0.2 mg/m ³		Х	Х	х	Y
2,3 and 4	Benzo(a)pyrene*	0.2 mg/m ³	0.2 mg/m ³		х	Х	х	Y
2,3 and 4	Benzo(b) fluoranthene*	0.2 mg/m ³	0.2 mg/m ³		Х	Х	х	Y
2,3 and 4	Chrysene *	0.2 mg/m ³	0.2 mg/m ³		х	Х	х	Y
2,3 and 4	Indeno (1,2,3-cd) Pyrene*	0.2 mg/m ³	0.2 mg/m ³		Х	Х	Х	Y
2,3 and 4	Mercury	0.1 mg/m ³	0.025 mg/m ³		Х	Х	х	Y

Chemical Hazards

* Values based on OSHA Coal tar pitch volatiles (benzene soluble fraction), anthracene, BaP, phenanthrene, acridine, chrysene, pyrene)

PEL – OSHA Permissible Exposure Limit: the maximum allowable 8-hour time weighted average (TWA) exposure concentration.

TLV – ACGIH Threshold Limit Value: the recommended 8-hour TWA exposure concentration.

STEL – ACGIH or OSHA Short-term Exposure Limit: the maximum allowable 15-minute TWA exposure concentration.

Ceiling – OSHA and Cal-OSHA Ceiling Limit: the maximum exposure concentration above, which an employee shall not be exposed during any period without respiratory protection.

IDLH – Immediately Dangerous to Life and Health: the concentration at which one could be exposed for 30 minutes without experiencing escapeimpairing or irreversible health effects.

Physical and Biological Hazards

Hazard	Yes	No	Task No.(s)	Hazard	Yes	No	Task No.(s)
Electrical (overhead lines)		X	1,2,3,4.5	Uneven Terrain		X	
Electrical (underground lines)	Х		1,2,3,4.5	Unstable Surfaces	X		1,2,3,4.5
Gas Lines	X		1,2,3,4.5	Elevated Surfaces		X	
Water Lines	X		1,2,3,4.5	Lightning	Х		1,2,3,4.5
Drilling Equipment	X		1,2,3,4.5	Rain	Х		1,2,3,4.5
Excavation Equipment	X		1,2,3,4.5	Snow	X		1,2,3,4.5
Power Tools	X		1,2,3,4.5	Liquefied/Pressurized Gases		X	
Heat Exposure	X		1,2,3,4.5	Lifting Equipment		X	
Cold Exposure	Х		1,2,3,4.5	Vermin	X		1,2,3,4.5
Oxygen Deficiency		X		Insects	X		1,2,3,4.5
Confined Spaces		X		Disease-causing organisms	X		1,2,3,4.5
Noise	X		1,2,3,4.5	Others, e.g., marine sampling (specify)		X	
Ionizing Radiation		X					
Non-Ionizing Radiation		X					
Fire	X		1,2,3,4.5				
Explosive Atmospheres		X					
Shoring	Х		1,2,3,4.5				
Scaffolding		X					
Holes/Ditches	Х		1,2,3,4.5				
Steep Grades		X					
Slippery Surfaces	Х		1,2,3,4.5				

Risk Analysis

Task #	Substance	Concentration (if known)	Risk*
1,2,3	Isobutylene (PID Calibration Gas)	250 ppm	1
2,3 and 4	Benzo(a) anthracene	1.39 mg/kg	1
2,3 and 4	Benzo(a)pyrene	1.25 mg/kg	1
2,3 and 4	Benzo(b) fluoranthene	1.62 mg/kg	1
2,3 and 4	Chrysene	1.31 mg/kg	1
2,3 and 4	Indeno (1,2,3-cd) Pyrene	0.957 mg/kg	1
2,3 and 4	Mercury	0.97 mg/kg	1

*Risk

0 – No Risk

1 - Slight Risk
2 - Moderate Risk
3 - Dangerous Conditions/Caution

4 – High Risk

5 – Extremely Dangerous

General Safety Rules

- 1. If an employee must work alone, he/she must call his/her supervisor twice a day. If the supervisor is unavailable, that supervisor's supervisor must be contacted.
- 2. Workers must wear all personal protective equipment required for the tasks to be performed.
- 3. Horseplay or practical jokes are forbidden on the job.
- 4. Compressed air must not be used to blow dirt from clothing, or played with or blown at another person.
- 5. Drinking of alcoholic beverages or the use of drugs on the job is prohibited. Their use will cause immediate dismissal from the site.
- 6. All areas must be continually cleaned to maintain good housekeeping. Trash is to be piled neatly and removed promptly. All tools and work areas are to be kept in clean and safe condition.
- 7. Competent workers must do welding and cutting.
- 8. Ladders are to be of proper design and tied off while in use. Do not go up or down a ladder without the free use of both hands. Use a rope to lift or lower materials or tools. Always face a ladder when climbing or descending.
- 9. Every work site must have a complete first aid kit.
- 10. ALL accidents must be investigated and reported. Use the Accident Investigation Form in the back section of this plan.
- 11. Injuries sustained while on duty must be reported to supervisor immediately, or as soon as possible after injury is sustained.
- 12. Explosives must be handled and transported by licensed people only.
- 13. All tools and electrical equipment must be in proper working order.
- 14. Clothing appropriate to the duties performed shall be worn by all workers. Large pockets, loose jewelry, cuffed trousers and loose or torn clothing are dangerous and should not be worn around machinery, or when climbing ladders, or working on structures.

Heat Stress

Site employees will be trained to recognize signs of heat stress. The Site Supervisor will maintain a log of all site employees exposed to temperature extremes, showing the work and rest times as well as worker monitoring results. Appropriate rest periods will be provided to help site workers accommodate to temperature extremes.

Signs and Symptoms of Heat Stress

- Heat rash may result from continuous exposure to heat or humid air.
- **Heat cramps** are caused by heavy sweating with inadequate electrolyte replacement. Signs and symptoms include:
 - muscle spasms
 - pain in the hands, feet and abdomen
- **Heat exhaustion** occurs from increased stress on various body organs, including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms are:
 - pale, cool, moist skin
 - heavy sweating
 - dizziness
 - nausea
 - fainting
- **Heat stroke** is the most serious form of heat stress. Temperature regulation fails and the body temperature rises to critical levels. Immediate action must be taken to cool the body before serious injury and death occurs. Competent medical help must be obtained. Signs and symptoms are:
 - red, hot, usually dry skin
 - lack of reduced perspiration
 - nausea
 - dizziness and confusion
 - strong, rapid pulse
 - coma

Measures to Avoid Heat Stress

- Establish work-rest cycles (short and frequent are more beneficial than long and seldom).
- Identify a shaded, cool rest area.
- Rotate personnel, alternate job functions.
- Water intake should be equal to the sweat produced. Most workers exposed to hot conditions drink less fluids than needed because of an insufficient thirst. DO NOT DEPEND ON THIRST TO SIGNAL WHEN AND HOW MUCH TO DRINK. For an 8-hour workday, 50 ounces of fluids should be drunk.
- Eat lightly salted foods or drink salted drinks such as Gatorade to replace lost salt.
- Save most strenuous tasks for non-peak hours, such as the early morning or at night.
- Avoid alcohol during prolonged periods of heat. Alcohol will cause additional dehydration.

Site personnel should monitor their pulse rate as an indicator of heat strain by the following method:

At the beginning of the rest period, count the radial pulse during a 30-second period. If the rate exceeds 110 beats per minute, lengthen the rest period by one-third. If the heart rate still exceeds 110 beats per minute at the end of the rest period, shorten the next work cycle by one-third.

Cold Stress

Equity will provide appropriate rest periods to help site workers accommodate to temperature extremes. Site employees will be trained to recognize signs of cold stress.

Measures to Avoid Cold Stress

- Wear multi-layer clothing (the outer most layer should be of wind-resistant fabric)
- Drink warm fluids
- Work in pairs
- Avoid heavy sweating

	1											
Estimated												
Wind Speed (in	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
mph)				Eq	uivalen	t Chill	Tempe	rature (°F)			
Calm	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
5	48	37	27	16	6	-5	-15	-26	-36	-47	-57	-68
10	40	28	16	4	-9	-24	-33	-46	-58	-70	-83	-95
15	36	22	9	-5	-18	-32	-45	-58	-72	-85	-99	-112
20	32	18	4	-10	-25	-39	-53	-67	-82	-96	-110	-121
25	30	16	0	-15	-29	-44	-59	-74	-88	-104	-118	-133
30	28	13	-2	-18	-33	-48	-63	-79	-94	-109	-125	-140
35	27	11	-4	-20	-35	-51	-67	-82	-98	-113	-129	-195
40	26	10	-6	-21	-37	-53	-69	-85	-100	-116	-132	-148
(Wind speeds	LITTI	LE DAN	IGER		INCR	EASIN	G DAN	GER	GREA	AT DAN	IGER	
greater than 40	In <hr. dry="" skin.<="" td="" with=""><td colspan="3">Danger from freezing of</td><td colspan="3">Flesh may freeze within 30</td></hr.>			Danger from freezing of			Flesh may freeze within 30					
mph have little	Maximum danger of false			exposed flesh within one			seconds.					
additional	sense	sense of security. minute.										
effect).		Trei	nch foot	and im	mersion	n foot n	nay occu	ır at any	point o	on this c	chart	

Cooling Power of Wind on Exposed Flesh Expressed as Equivalent Temperature (under calm conditions)*

* Developed by U.S. Army Research Institute of Environmental Medicine, Natick, MA

The Site Supervisor will maintain a log of all site employees exposed to temperature extremes, showing the work and rest times as well as environmental monitoring results.

Employee Training Program

All personnel performing work in areas on this site covered by this HASP must have completed the appropriate training requirements specified in 29 CFR 1910.120(e). Each individual must have completed an 8-hour refresher-training course and/or initial 40-hour training course within the last two years prior to performing any intrusive work on this site covered by this HASP. Records that demonstrate that all persons subject to the training requirements have actually met them will be maintained either on site or in the project file. The Project Manager and/or Supervisor are responsible for verifying compliance of the project team with these rules.

Prior to commencement of on-site activities, a site safety meeting will be held to review the specific information and requirements of this HASP. HASP sign-off sheets will be collected at the end of this meeting.

Site Specific Training (when applicable) will include:

- Explanation of the overall site HASP.
- Health and safety personnel and organization.
- Brief site history.
- Special attention to signs and symptoms of overexposure to known and suspected site contaminants.
- Health effects of site contaminants.
- Air monitoring description.
- Physical hazards associated with the project.
- Selection, use and limitations of available safety.
- Personal hygiene and decontamination.
- Respirator face-piece fit testing.
- PPE use and maintenance.
- Site rules and regulations.
- Work zone establishment and markings.
- Site communication.
- Emergency preparedness procedures.
- Equipment decontamination.
- Medical monitoring procedures.
- Contingency plan.

Prior to work, each Equity employee will attend the contractor's health and safety orientation, if applicable. In addition, Equity's employees will review health and safety items specific to the tasks to be performed that were not covered in the contractor's orientation.

Site Health and Safety Meetings

In addition, the Site Supervisor will meet daily with all Equity employees prior to beginning work on site. The agenda of the meeting will include a review of important elements of this plan, any special safety items, and a discussion of the emergency response procedures. Also, everyone will agree on a schedule for periodic meetings, (for example, before beginning work each day), to review the effectiveness of this plan and make changes as necessary. If significant changes at the site occur, special meetings will be scheduled.

Training Records

The Site Supervisor will complete a report of the daily safety meetings, using the form in the back section of this plan, and all attending the meeting will sign the Daily Safety Meeting Log.

The training status of contractor and subcontractor employees will be verified that their training criteria meets the requirements specified in 29 CFR 1910.120(e). A copy of all training certificates will be kept for Equity personnel working at the site.

Personal Protective Equipment (PPE) Requirements

Task No.(s)	Level of Protection (A – D)*	Level of Upgrade	PPE Suit	PPE Gloves	PPE Feet	PPE Head	PPE Eye	PPE Ear	PPE Respirator	Additional PPE for Upgrade
1,2,3	D	NA	Std	N	Steel	HH	Glasses	Plugs	NA	
<u>SUIT</u>				<u>FEET</u>				RESPIRATO	<u>DR</u>	
Tyvek = Uncoate PE Tyvek = Poly	Std = Standard Work Clothes Tyvek = Uncoated Tyvek Disposal Coverall PE Tyvek = Polyethylene-coated Tyvek Saranex = Saranex-laminated Tyvek			Steel = Steel-toe shoes or bootsAPR = Air purifying respiratorSteel+ = Steel-toe shoes or boots & PVC bootsFull APR = Full face APRBooties = PVC bootiesHalf APR = Half face APRHEADSCBA = Self-contained breathing appa			spirator			
<u>GLOVES</u>	e runngen			HH = Hardhat			Escape = Escape SCBA OV = Organic Vapor Cartridge			
Work = Work Gloves (canvas, leather) Neo = Neoprene Gloves			EYE			AG = Acid Gas Cartridge OV/AG = Organic Vapor/Acid Gas Cartridge AM = Ammonia Cartridge Dust/Mist = Dust/Mist pre-filter and cover for cartridge HEPA = High efficiency particulate air filter cartridge				
PVC = PVC Gloves N = Nitrile Gloves V = Vinyl Gloves L = Latex Gloves			Glasses = Safety glasses Goggles = Goggles Shield = Face shield							
L – Latex Glove	5			EAR						
				Plugs = Earpl Muff = Ear m						

* For unspecified volatile organics (based on 1-minute breathing zone measurement using PID or OVA):

Up to 1 ppm above background	Level D
1 – 5 ppm above background	Level C
5 – 500 ppm above background	Level B
500 ppm above background	Level A

** Earplugs will be available on-site, but are not required

Suggested Levels of Protection

Level "D" Protection

- 1. Coveralls (optional)
- 2. Gloves
- 3. Boots/shoes steel toe
- 4. Boots (outer) chemical resistant (disposable- if required)
- 5. Safety glasses or chemical splash goggles
- 6. Hard hat (safety shield if required)

Level "C" Protection

- 1. Full-face, air-purifying, canister-equipped respirator (NIOSH/MSHA approved)
- 2. Chemical resistant clothing (coveralls; hooded, two-piece, chemical splash suit; chemical resistant hood & apron; disposable, chemical-resistant coveralls)
- 3. Coveralls
- 4. Gloves (outer) chemical-resistant
- 5. Gloves (inner) chemical-resistant
- 6. Boots (outer) chemical-resistant
- 7. Boots (inner) steel toe
- 8. Hard hat (face shield)
- 9. Escape mask
- 10. Two-way radio

Level "B" Protection

- 1. Pressure/Demand SCBA (MSHA-NIOSH approved)
- 2. Chemical resistant clothing (overalls and long-sleeved jacket; coveralls; hooded, one- or twopiece chemical splash suite; disposable, chemical-resistant coveralls)
- 3. Coveralls
- 4. Gloves (outer) chemical-resistant
- 5. Gloves (inner) chemical-resistant
- 6. Boots (outer) chemical-resistant
- 7. Boots (inner) steel toe
- 8. Hard hat (face shield)
- 9. Two-way radio

Level "A" Protection (Equity does not perform work in Level A PPE)

- 1. Pressure/Demand SCBA (MSHA-NIOSH approved)
- 2. Fully encapsulating, chemical-resistant suit
- 3. Coveralls
- 4. Gloves (outer) chemical-resistant
- 5. Gloves (inner) chemical-resistant
- 6. Boots, chemical-resistant, steel toe (depending on suit construction, work over or under suit boot)
- 7. Hard hat (under suit)
- 8. Two-way radio

Medical Surveillance

Requirements

All Equity employees covered by this HASP, who engage in site activities governed by 29 CFR 1910.120 for 30 or more days per year, must meet the medical surveillance requirements specified in 1910.120(f). Therefore, such personnel must have completed occupational medical baseline or surveillance examination, performed by a licensed physician, within the last 24 months. The medical examination includes the following components:

- Personal Medical Questionnaire
- Occupational Exposure History
- Physical Examination
- Vision Testing
- Spirometry
- Audiometry
- Blood Chemistry Panel (e.g., SMAC-20)
- Complete Blood Count with Differential
- Urinalysis
- Chest X-Ray (every two years at a minimum)
- Electrocardiogram (at physician's discretion)

Examinations are required upon hiring, termination, and exposure to substances at or above the PEL.

Results of the examinations are communicated directly from the physician to the employee. Medical records for Equity's employees are kept by the Company and the employee

Monitoring Requirements

Monitoring is to be conducted by the Site Supervisor, or his/her designee. Copies of monitoring results and calibration logs will be filed with the HASP.

Monitoring is designed to assess exposure to employees during site activities, and to determine if PPE is required and adequate to assure protection. Because investigation and remediation activities at hazardous waste sites are of an inconsistent nature, it is not possible to assign a monitoring protocol that excludes, or is not directly dependent upon, professional judgment in determining when monitoring is required to assess exposure. Thus, the following generic protocol must be followed at a minimum, and should be modified to be more conservative (e.g., require more monitoring) if deemed necessary by the Site Supervisor or HSO. Under no conditions will the required frequency be decreased.

At a minimum, air monitoring will be conducted before and during each task or activities for which air monitoring has been designated. If airborne concentrations of contaminants reach action levels based on observations with the direct reading instruments, then the appropriate PPE upgrade or work stoppage order will be enforced by the Site Supervisor. In case a work stoppage order is given, the area must be cleared of all personnel immediately.

The use of action levels and the basis for the selection of monitoring equipment is explained as follows:

Action levels determine:

- (1) the PPE to be used by site workers
- (2) their ability to remain and work in the exclusion zone

The selection of the specified monitoring equipment is based on

- (1) the nature of the contaminants
- (2) the likely concentrations of the contaminants
- (3) the probable duration of exposure
- (4) the relative sensitivity of the monitoring equipment to the specific contaminants

The following summarizes the calibration requirements for the air monitoring instruments used at the site:

Instrument

Calibration Frequency

PID: Mini RAE-3000 (or equivalent)

Beginning of each work shift

Teal	Task		Monitoring	Monitoring	Action Level Concentration		
No.(s)	Location	Contaminant	Monitoring Equipment	Monitoring	Mandatory	Mandatory Work	
110.(5)			Equipment	Frequency	Respirator Use	Stoppage	
1,2,3	Work Areas	Volatile Organic	PID: Mini-Rae	Periodically during all tasks/activities.	NA	10 ppm above background in breathing zone	

Air Monitoring and Contaminant Action Levels

PID = Photoionization Detector (e.g., Multi-Rae, Mini-Rae, HNU, TIP, OVM)

FID = Flame Ionization Detector (e.g., OVA)

LEL-O₂ = Explosivity and Oxygen Meter

Name(s) of individual(s) responsible for performing the monitoring, and certifying the results: <u>All Equity personnel</u>

Type, make and model of instruments used: Mini-Rae 3000 (or equivalent) PID Gas Monitor

Method and frequency of calibration:

- 100 ppm isobutylene-calibration gas. Calibrated prior to each day's use according to manufacturer's instruction.
- The calibration of all radiation survey instrumentation will be conducted using calibration standards traceable to the National Bureau of Standards, All instruments used for surveys will be calibrated every six months and after instrument repair when required. All instrument calibrations will be performed by the original manufacturer or a qualified vendor. Instruments will be response checked to a known source of radiation prior to and after field use.

Procedures for Handling Anticipated Wastes

Waste G	eneration	
1	Anticipated:	YesXNo
r	Гуреs:	Liquid <u>X</u> Solid <u>X</u> Sludge <u>Gas</u>
(Quantity:	Expected volume of each type: Field determined
	trans	will _Xwill not generate hazardous wastes. These wastes will be: storedtreated sportedmanifested in accordance with NYS and federal regulations.
1	Any soll and/	or groundwater produced from sampling activities will remain onsite.
l	Packaging requ	irements for waste material:

Spill Prevention and Response

Potentially hazardous spill situations can be mitigated by using containment devices and materials in work areas. If site conditions are suitable, earthen berms will be constructed around specific areas. If site conditions are not suitable for this, or the potential spill is smaller, barriers will be constructed with sorbent materials such as "speedi-dry", sorbent booms and/or straw bales. Dikes and berms will also be used to divert stormwater run-on and run-off away from critical zones.

Because a spill cleanup must be conducted under crisis conditions, it is important that the methods used for dealing with a spill be thought out beforehand. However, the steps followed cannot be inflexible, because no two spills are identical. Factors that will be assessed in the event of any and all spills include:

- 1. The volume of the hazardous substance released and the rate of release.
- 2. The nature of the spill material.
- 3. What danger exists to personnel in the immediate area.
- 4. Nature of damage and possibilities of repair.
- 5. If the transfer of material to an alternate containment is advisable.
- 6. Feasibility of the construction of a containment dike.
- 7. Nature of spill area.
- 8. Whether the spilled substance has reached a watercourse or sewer.
- 9. Danger of explosion or fire.
- 10. Equipment and supplies necessary to confine the material and carry out the cleanup.

In most cases, the success of a cleanup operation is dependent upon the time it takes to contain the spill. Therefore, Equity's first attempt at spill containment will be at the point of discharge. This can often be accomplished by closing valves, reinforcing or repairing damaged containers, moving or changing the position of fallen or ruptured containers, or emptying the container by pumping to a temporary storage or holding vessel. Pumps, suction hoses and containers will be available to recover spilled materials when directed to do so by the Site Supervisor.

Handling and transport of drummed waste always must be conducted in a controlled and safe manner, which will minimize damage to structurally sound drums, repacks and overpacks. If leakage or spillage of waste occurs, the drum must immediately be placed within an overpack unit. Overpack units must be provided at each staging area, at areas of existing drums, and along all site roadways.

Task/Work Area	Potential Spill or Discharge	Equipment, Materials, and Procedures for Spill Cleanup
Soil excavation	Hydraulic fluid from drill rig	Pads/Speedy Dry

Emergency Procedures

Potential emergencies that may arise are most likely to be associated with physical hazards from heavy equipment operation and/or lifting and loading of debris. Emergency response will, in most cases, be performed in Level D protection.

Modifications to these emergency procedures may be necessary after the actual site set-up, based on prevailing conditions. Periodic reviews of these procedures will be performed by the Site Supervisor to ensure that they are appropriate for all anticipated emergencies.

Responsibilities

The Site Supervisor has the authority and responsibility to commit company resources to appropriately respond to an emergency, and to exclude all personnel not directly responding to the emergency.

Prior to beginning work at the site, Equity will designate an employee, usually the Site Supervisor, to be responsible for initiating any emergency response actions. In the event an injury or illness requires more than first aid treatment, the Site Supervisor (or alternate) will accompany the injured person to the hospital, and will remain with the person until release, admittance is decided, or another Equity staff relieves them of this responsibility.

Evacuation Plan

The basic elements of an emergency evacuation plan include employee training, escape routes, escape procedures, critical operations or equipment, rescue and medical duty assignments, designation of responsible parties, emergency reporting procedures and methods to account for all employees after evacuation.

When appropriate, wind direction will be discussed during the daily safety briefing to all on-site personnel by the Site Supervisor to indicate possible routes of upwind escape. Work-area entrance and exit routes will be planned, and emergency escape routes will be delineated by the Site Supervisor. The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated, will result in the evacuation of the team and a re-evaluation of the hazard and the level of protection required. This re-evaluation will be conducted by appropriate on-site health and safety personnel in coordination with the HSO

In the highly unlikely event that barrels, canisters, or chemical gases or vapors are uncovered during site work, the following procedures shall be followed:

- 1) In the event that barrels, canisters, or any other vessels are encountered during excavation, all work shall immediately cease and all workers to be removed from the area. The Site Supervisor shall be immediately notified, and he/she shall identify vessel contents, handling procedures and storage and disposal techniques prior to starting work.
- 2) In the event that high concentrations of gases or vapors are detected, the following actions will be taken:
 - Remove all workers from the area
 - Monitor gas or vapor concentrations to determine the type of respiratory protection that will be required before workers reenter the area.
- 3) In the highly unlikely event of a major leak of toxic gas, such as might occur if a compressed gas cylinder were ruptured during excavation or drilling, all on-site personnel will be evacuated to a safe distance. The HSO and Emergency services will be contacted immediately and the risk will be assessed prior to restarting work.

Training

Employees will be instructed in the specific aspects of emergency evaluation applicable to the site as part of the site safety meeting prior to the commencement of all on-site activities. On-site refresher or update training is required anytime escape routes or procedures are modified or personnel assignments are changed. During the site safety meeting, all employees will be trained in, and reminded of the location of this plan, the procedures outlined in this plan, and the communication systems and evacuation routes used during an emergency.

On a continuous basis, individual employees should be constantly alert for indicators of potentially hazardous situations, and for signs and symptoms in themselves and others that warn of hazardous conditions and exposures. Rapid recognition of dangerous situations can avert an emergency. In the event of any emergency that necessitates an evaluation of the site, on-site personnel will be notified by the use of car horns sounded in regularly spaced, repeated blasts, as detailed in the next section of this procedure. The Site Supervisor will control the site until the appropriate local or state agency representatives arrive, if required. He will also contact the HSO.

Alarm Systems Emergency Signals

The simplest and most effective emergency communication system, in any situation, is direct voice communications. Voice communications will be supplemented anytime voices cannot be clearly perceived above ambient noise levels (e.g., noise from heavy equipment, drilling rigs or backhoes0, and anytime a clear line-of-sight cannot be easily maintained among all site personnel because of distance, terrain, or other obstructions. When voice communications must be supplemented, the following emergency signals, using car horns, will be used.

• One Horn Blast: General Warning

One blast is used to signal relatively minor, but important events on site. An example would be a minor chemical spill where there is no immediate damage to life or health, yet personnel working on site should be aware of the situation so unnecessary problems are avoided. If one horn blast is sounded, personnel must stop all activity and equipment on site and await further instruction from the Site Supervisor.

• Two Horn Blasts: Medical Emergency

Two blasts are used to signal a medical emergency where immediate first aid or emergency medical care is required. If two horn blasts are sounded, all first aid and CPR trained personnel should respond, as appropriate. All other activity and equipment should stop, and personnel should await further instructions from the Site Supervisor.

• Three Horn Blasts Followed by One Continuous Blast: Immediate Danger to Life or Health

Three blasts followed by another extended or continuous horn blast signals a situation that could present an immediate danger to the life or health (IDLH) to all employees on site. Examples of possible IDLH situations could include fires, explosions, hazardous chemical spills or releases, hurricanes, tornadoes, blizzards or floods. If three horn blasts followed by a continuous blast are sounded, all activity and equipment must stop, and all personnel must evacuate the site to an appropriately designated site located outside the site gate, or further off site if necessary. (Note: unless otherwise specified, all decontamination procedures must be implemented.) All personnel must be accounted for by the Site Supervisor, and other response actions determined by the Site Supervisor must be followed.

Employees on site will use the "buddy" system (pairs). Buddies should pre-arrange hand signals or other means of emergency communication in case radios cannot be used, or if the radios no longer operate. The following had signals are suggested:

- 1. Hand gripping throat: out of air, can't breathe.
- 2. Grip partner's wrist or place both hands around waste: leave area immediately, no debate.
- 3. Hand on top of head: need assistance.
- 4. Thumbs up: OK, I'm alright, I understand.
- 5. Thumbs down: No, negative.

Visual contact will be maintained between employee pairs. Team members will remain in close proximity to each other in order to provide assistance in case of emergencies, and will inform each other of any of the following effects of exposure to site contamination:

- headaches
- dizziness
- blurred vision
- cramps
- irritation of eyes, skin or respiratory tract

If any member of the work crew experiences any adverse symptoms while on site, the entire work crew will immediately stop work and follow the instructions provided by the Site Supervisor.

Medical Treatment/First Aid

Community emergency services (EMS, fire, and police) will be notified immediately if their resources are needed on site. If necessary, the injured or sick party shall be taken to the nearest hospital.

Emergency Reporting

Any incident (other than minor first aid treatment) resulting in injury, illness or property damage will be reported to Equity. An incident investigation will be initiated as soon as emergency conditions are under control. The purpose of this investigation is not to attribute blame but to determine the pertinent facts so that repeat or similar occurrences can be avoided.

The investigations will begin while details are fresh in the mind of all involved. The person administering first aid may be able to start the fact gathering process if the injured are able to speak. Pertinent facts must be determined. Questions beginning with who, what, when, where, and how are usually most effective to discover ways to improve job performance in terms of efficiency, quality of work, as well as safety and health concerns.

<u>On-Site Evacuation Plan</u> –A series of repeated blasts is the signal for all Equity personnel and subcontractors to evacuate the site and assemble at:

To be determined at the beginning of each field event

The criteria for activating the alarm will be the first sign of any serious problem that requires assistance or evacuation. Should either a fire or explosion occur, all personnel will proceed immediately to the evacuation assembly point and await further instructions. At that time a personnel check will be conducted to determine if anyone is missing, and the local fire and police departments will be called for assistance. Once on site, the acting officer of the fire department and the Site Supervisor will determine if further evacuations are necessary. No Equity personnel will re-enter the site without clearance from the fire/police department and Site Supervisor. Subcontractor

Safety It has been and shall continue to be the policy of Equity that employees of all subcontractors are required to adhere to all applicable company, local, state, and federal safety rules and regulations.

When an infraction of a local, state, federal, or company safety regulation is observed, the Site Supervisor will request verbally that the subcontractor's supervisory personnel correct the infraction immediately. If correction is not made, then the project manager will request in writing that proper corrective action be taken. Subcontractors who continue to ignore proper safety procedures will have payments withheld until compliance is achieved or be terminated.

Subcontractors are required to hold safety meetings for their employees when they are working on Equity projects, and submit documentation of such meetings to the Project Manager. At a minimum they shall have specific safety procedures for proper use of all heavy equipment such as excavators, drilling rigs, etc., on site during the project. Subcontractor employees are required to attend Equity's safety meetings.

Forms

Job Safety & Health Protection

The Occupational Safety and Health Act of 1970 provides job safety and health protection for workers by promoting safe and healthful working conditions throughout the Nation. Provisions of the Act include the following:

Employers

All employers must furnish to employees' employment and a place of employment free from recognized hazards that are causing or are likely to cause death or serious harm to employees. Employers must comply with occupational safety and health standards issued under the Act.

Employees

Employees must comply with all occupational safety and health standards, rules, regulations and orders issued under the Act that apply to their own actions and conduct on the job.

The Occupational Safety and Health Administration (OSHA) of the U.S. Department of Labor has the primary responsibility for administering the Act. OSHA issues occupational salary and health standards, and its Compliance Safety and Health Officers conduct job site inspections to help ensure compliance with the Act.

Inspection

The Act requires that a representative of the employer and a representative authorized by the employees be given an opportunity to accompany the OSHA inspector for the purpose of aiding the inspection.

Complaint

Employees or their representatives have the right to file a complaint with the nearest OSHA office requesting an inspection. If they believe unsafe or unhealthful conditions exist in their workplace. OSHA will withhold, on request, names of employees complaining.

The Act provides that employees may not be discharged or discriminated against in any way for filing safety and health complaints or for otherwise exercising their rights under the Act.

Employees who believe they have been discriminated against may file a complaint with their nearest OSHA office within 30 days of the alleged discriminatory action.

Citation

If upon inspection OSHA believes an employer has violated the Act, a citation alleging such violations will be issued to the employer. Each citation will specify a time period with which the alleged violation must be corrected.

The OSHA citation must be prominently displayed at or near the place of alleged violation for three days, or until it is corrected, whichever is later, to warn employees of dangers that may exist there.

Proposed Penalty

The Act provides for mandatory penalties against employers of up to \$1,000 for each serious violation and for optional penalties of up to \$1,000 for each nonserious violation. Penalties of up to \$1,000 per day may be proposed for failure to correct violations within the proposed time period. Also, any employer who willfully or repeatedly violates the Act may be assessed penalties of up to \$10,000 for each such violation.

There are also provisions for central penalties. Any willful violation resulting in death of an employee, upon conviction, is punishable by a fine of up to \$250,000 (or \$500,000 if the employer is a corporation), or by imprisonment for up to six months or both. A second conviction of an employer doubles the possible term of imprisonment.

Voluntary Activity

While providing penalties for violation, the Act also encourages efforts by labor and management before an OSHA inspection, to reduce workplace hazards voluntarily and to develop and improve safety and health programs in all workplaces and industries. OSHA's Voluntary Protection Programs recognize outstanding efforts of this nature.

OSHA has published Safety and Health Program Management Guidelines to assist employers in establishing or perfecting programs to prevent or control employee exposure to workplace hazards. There are many public and private organizations that can provide information and assistance in this effort if requested. Also, your local OSHA office can provide considerable help and advice on saving safety and health problems or can refer you to other sources for help such as training.

Consultation

Free assistance in identifying and correcting hazards and in improving safety and health management is available to employers, without citation or penalty, through OSHA-supported programs in each State. These programs are usually administered by the State of Labor or Health Department or a State University.

Under provisions of Title 29, Code of Federal Regulations, part 1903.2(s)(1) employers must post this notice (or facsimile) in a conspicuous place where notices to employees are customarily posted.

HASP Sign-Off Form

INSTRUCTIONS: Site personnel are required to read, understand, and agree to the provision of the plan. Personnel are required to sign this form indicating agreement. The original of this form is maintained by the Project Manager, and becomes part of the permanent site project files upon completion of site work.

|--|--|

Location: <u>105 South 5th Street, Brooklyn, New York</u>

Project Name and Number: 2014074

I have read, understand, and agree to comply with the provisions of this HASP for work activities on this site.

Name	Signature	Company/Agency	Date

Equipment	Calibration	Log
-----------	-------------	-----

Operator Name: _____ Instrument Notice: _____

Signature:_____

Serial Number:_____

Date	Time	Concentration	Comments

Sampling Log

Operator Name:	Instrument Notice:		
Signature:	Serial Number:		

Was the equipment calibrated? _____ Yes _____ No

Date	Time	Concentration	Comments

Heat Stress Monitoring Log

Employee Name				
Start Time				
Measurement 1 Pulse Work Minutes Rest Minutes				
<u>Measurement 2</u> Pulse Work Minutes Rest Minutes				
<u>Measurement 3</u> Pulse Work Minutes Rest Minutes				
Measurement 4 Pulse Work Minutes Rest Minutes				
<u>Measurement 5</u> Pulse Work Minutes Rest Minutes				
<u>Measurement 6</u> Pulse Work Minutes Rest Minutes				
<u>Measurement 7</u> Pulse Work Minutes Rest Minutes				
<u>Measurement 8</u> Pulse Work Minutes Rest Minutes				

Signature	of Site	Supervisor	(or	designee)
0				

Date

Daily Sign In/Sign Out Form (to be completed on site)

South 5th Street Site Name:

South 5th St, Brooklyn, New York Location:

Employee Name	Company Name	Purpose	Time In	Time Out	Date

Signature of Site Supervisor (or designee)

Date

Daily Safety Meeting Log (to be completed on site)

Site Name	South 5 th St.		
Location	South 5 th St, Brooklyn	, New York	
Weather			
Topics			
Employee Names:		Signatures	
		·	
Signature of Site Supe	ervisor (or designee)	Date	

ACCIDENT INVESTIGATION REPORT

Place Accident Occurred:				Name of Person	Involved:	
Site Location			Age	Sex	Job Title	
				Yrs in This Job		Yrs with Company
Date & Time of Incident AM //			Date & Time of Investigation		АМ	
Date Incident Reported	Reported to	ed to Whom		Investigated By:		
Regulatory Agencies or Insurance Carriers Contacted:		Witness(es):				
Description from injured or witnesses	(use reverse side o	f form for more spa	ice):			
elect one or more in each column. Don't h				Signature	Date	
When completing the following task: Operating (what machine) Using (what tool) Handling (what material) Maintenance or repair (of what) Office or sales task Other Provide details		The following occur Amputation (total Burn (thermal) Electric shock Concussion/uncor Crushing injury (c skin Cut, laceration, pu Fracture or disloc: Sprain/strain Cumulative traum Occupational illne Internal injuries None Near acci Other Provide d Respiratory	l or partial) nscious contusion, cru uncture, abrass ation na ess or disease ident letails	sh, bruise) intact ion		Eye
Person was, or got: DStruck against (not including falls) DStruck by DFell from (from a higher level) DSlipped, tripped, fell on (in the same level) DForeign body in eye DContacted electrical energy from DExposure to (substance)		While (taking what Carrying Climbing Bending Driving Jumping Kneeling Lifting - below wa	aist, give weig			□ The injured employee was sent to a docto clinic; list the doctor/clinic name, address, and phone:
from inhalation ingestion skin absorption UVehicle accident Caught in, under or between Repetitive Other		Lifting - above wa Pulling Pushing Reaching or stretce RRiding Standing Standing Throwing Twisting or turnin Walking	ching			☐The employee was hospitalized. List name and address of hospital:
□Awkward job procedure □Inadequate guard/safety device	What unsafe proce Operating without Failure to follow p Failure to secure	training/authority	The unde □Unawar □Inattenti	rlying causes of the e of job hazards ion to hazard e of how to avoid ir	e incident are:	Classification (check as many as apply) □Fatality □Medical treatment other than First Aid □Occupation illness or disease

- □Inadequate guard/safety device □Inadequate warning/labeling system □Fire/explosion hazard □Not secured against moving □Poor housekeeping □Protruding object □Close clearance/congestion □Hazardous arrangement/storage □Defective tools/equipment □Inadequate ventilation □Atmospheric condition: gases,
- □Failure to follow proper procedure

 □Failure to secure

 □Operating at unsafe speed

 □Failure to warn/signal

 □Congestion

 □Used defective equipment

 □Used equipment improperly/unsafely

 □Improper loading or placement

 □Horseplay/distraction

 □Improper protective equipment

 □Improper lifting or carrying

□Unaware of job hazards □Inattention to hazard □Unaware of how to avoid incident □Not enough time to act □Person motivated to use unsafe procedure □Emotional/mental/physical stress □Equipment failed to perform as expected □Intoxicant/drugs □Failure to report/correct unsafe condition □Illness/medical condition □Work procedure not ergonomically correct

□Substandard design

□Fatality □Medical treatment other than First Aid □Occupation illness or disease □First Aid □Environmental Release □Property Damage □Near-accident dusts, fumes, vapors
Repetitive motion
Illumination/noise hazard
Other

□Taking unsafe or awkward position □Servicing moving equipment □Other □Other

ACCIDENT DESCRIPTION (continued):

What steps have already been taken to prevent similar incidents?

What else can be done (engineering controls, training, enforcement, process changes) to eliminate the hazard?_____

Site Supervisor Signature		Date		
Health and Safety Review: Is proposed action appropriate?	Yes		No	Comments
HSO Signature	Date	_		

VEHICLE ACCIDENT REPORT

EMPLOYEE NAME:	DRV LIC NO.:
COMPANY ADDRESS:	INSURANCE COMPANY
	POLICY NO.:
DESCRIPTION O	DF ACCIDENT
DATE: TIME: SPEED LIMIT	:
LOCATION:	
DIRECTION OF TRAVEL:	
HOW DID IT HAPPEN?	

USE SPACE BELOW TO INDICATE VEHICLE PATHS - INDICATE NORTH BY ARROW

1	POLICE REPORT
NAME OF OFFICER:	BADGE #:
DEPARTMENT:	LOCATION:
SUMMONS ISSUED? Y [] N [] TO WHOM?	
	YOUR VEHICLE
YEAR/MAKE:	REGIST #:
DRIVEN BY:	AGE: TEL #:
ADDRESS:	CITY: STATE:
NATURE OF DAMAGE:	

OTHER DRIVER

(continue below for additional drivers and witnesses)

NAME:	DRV LIC NO.:
ADDRESS:	VEHICLE REGISTRATION:
	INSURANCE COMPANY
POLICY NO.:	

Safety Data Sheets

Health	3
Fire	0
Reactivity	0
Personal Protection	

Material Safety Data Sheet Mercury MSDS

Section 1: Chemical Product and Company Identification

Product Name: Mercury

Catalog Codes: SLM3505, SLM1363

CAS#: 7439-97-6

RTECS: OV4550000

TSCA: TSCA 8(b) inventory: Mercury

Cl#: Not applicable.

Synonym: Quick Silver; Colloidal Mercury; Metallic Mercury; Liquid Silver; Hydragyrum

Chemical Name: Mercury

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247 International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Chemical Formula: Hg

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Mercury	7439-97-6	100

Toxicological Data on Ingredients: Mercury LD50: Not available. LC50: Not available.

Section 3: Hazards Identification

Potential Acute Health Effects:

Very hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Hazardous in case of skin contact (corrosive, permeator). Liquid or spray mist may produce tissue damage particularly on mucous membranes of eyes, mouth and respiratory tract. Skin contact may produce burns. Inhalation of the spray mist may produce severe irritation of respiratory tract, characterized by coughing, choking, or shortness of breath. Severe over-exposure can result in death. Inflammation of the eye is characterized by redness, watering, and itching. Skin inflammation is characterized by itching, scaling, reddening, or, occasionally, blistering.

Potential Chronic Health Effects:

Hazardous in case of skin contact (permeator). CARCINOGENIC EFFECTS: Classified A5 (Not suspected for human.) by ACGIH. 3 (Not classifiable for human.) by IARC. MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available. The substance may be toxic to blood, kidneys, liver, brain, peripheral nervous system, central nervous system (CNS). Repeated or prolonged exposure to the substance can produce target organs damage. Repeated or prolonged contact with spray mist may produce chronic eye irritation and severe skin irritation.

Repeated or prolonged exposure to spray mist may produce respiratory tract irritation leading to frequent attacks of bronchial infection. Repeated exposure to a highly toxic material may produce general deterioration of health by an accumulation in one or many human organs.

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. WARM water MUST be used. Get medical attention immediately.

Skin Contact:

In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Cover the irritated skin with an emollient. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention immediately.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek immediate medical attention.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

Serious Inhalation:

Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. WARNING: It may be hazardous to the person providing aid to give mouth-to-mouth resuscitation when the inhaled material is toxic, infectious or corrosive. Seek immediate medical attention.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, tie, belt or waistband.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Non-flammable.

Auto-Ignition Temperature: Not applicable.

Flash Points: Not applicable.

Flammable Limits: Not applicable.

Products of Combustion: Not available.

Fire Hazards in Presence of Various Substances: Not applicable.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions: Not applicable.

Special Remarks on Fire Hazards:

When thrown into mercury vapor, boron phosphodiiodide ignites at once. Flame forms with chlorine jet over mercury surface at 200 deg to 300 deg C. Mercury undergoes hazardous reactions in the presence of heat and sparks or ignition.

Special Remarks on Explosion Hazards:

A violent exothermic reaction or possible explosion occurs when mercury comes in contact with lithium and rubidium. CHLORINE DIOXIDE & LIQUID HG, WHEN MIXED, EXPLODE VIOLENTLY. Mercury and Ammonia can produce an

explosive compound. A mixture of the dry carbonyl and oxygen will explode on vigorous shaking with mercury. Methyl azide in the presence of mercury was shown to be potentially explosive.

Section 6: Accidental Release Measures

Small Spill: Absorb with an inert material and put the spilled material in an appropriate waste disposal.

Large Spill:

Corrosive liquid. Poisonous liquid. Stop leak if without risk. Absorb with DRY earth, sand or other non-combustible material. Do not get water inside container. Do not touch spilled material. Use water spray curtain to divert vapor drift. Use water spray to reduce vapors. Prevent entry into sewers, basements or confined areas; dike if needed. Call for assistance on disposal. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep locked up.. Keep container dry. Do not ingest. Do not breathe gas/fumes/ vapor/spray. Never add water to this product. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, metals.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area. Do not store above 25°C (77°F).

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection:

Face shield. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves. Boots.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 0.025 from ACGIH (TLV) [United States] SKIN TWA: 0.05 CEIL: 0.1 (mg/m3) from OSHA (PEL) [United States] Inhalation TWA: 0.025 (mg/m3) [United Kingdom (UK)] Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid. (Heavy liquid)

Odor: Odorless.

Taste: Not available.

Molecular Weight: 200.59 g/mole

Color: Silver-white

pH (1% soln/water): Not available.

Boiling Point: 356.73°C (674.1°F)

Melting Point: -38.87°C (-38°F)

Critical Temperature: 1462°C (2663.6°F)

Specific Gravity: 13.55 (Water = 1)

Vapor Pressure: Not available.

Vapor Density: 6.93 (Air = 1)

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not available.

Ionicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Very slightly soluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Incompatible materials

Incompatibility with various substances: Reactive with oxidizing agents, metals.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Ground mixtures of sodium carbide and mercury, aluminum, lead, or iron can react vigorously. A violent exothermic reaction or possible explosion occurs when mercury comes in contact with lithium and rubidium. Incompatible with boron diiodophosphide; ethylene oxide; metal oxides, metals(aluminum, potassium, lithium, sodium, rubidium); methyl azide; methylsilane, oxygen; oxidants(bromine, peroxyformic acid, chlorine dioxide, nitric acid, tetracarbonynickel, nitromethane, silver perchlorate, chlorates, sulfuric acid, nitrates,); tetracarbonylnickel, oxygen, acetylinic compounds, ammonia, ethylene oxide, methylsiliane, calcium,

Special Remarks on Corrosivity:

The high mobility and tendency to dispersion exhibited by mercury, and the ease with which it forms alloys (amalga) with many laboratory and electrical contact metals, can cause severe corrosion problems in laboratories. Special precautions: Mercury can attack copper and copper alloy materials.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Dermal contact. Eye contact. Inhalation. Ingestion.

Toxicity to Animals:

LD50: Not available. LC50: Not available.

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: Classified A5 (Not suspected for human.) by ACGIH. 3 (Not classifiable for human.) by IARC. May cause damage to the following organs: blood, kidneys, liver, brain, peripheral nervous system, central nervous system (CNS).

Other Toxic Effects on Humans:

Very hazardous in case of skin contact (irritant), of ingestion, of inhalation. Hazardous in case of skin contact (corrosive, permeator).

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans:

May affect genetic material. May cause cancer based on animal data. Passes through the placental barrier in animal. May cause adverse reproductive effects(paternal effects- spermatogenesis; effects on fertility - fetotoxicity, post-implantation mortality), and birth defects.

Special Remarks on other Toxic Effects on Humans:

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Class 8: Corrosive material

Identification: : Mercury UNNA: 2809 PG: III

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

California prop. 65: This product contains the following ingredients for which the State of California has found to cause cancer, birth defects or other reproductive harm, which would require a warning under the statute: Mercury California prop. 65: This product contains the following ingredients for which the State of California has found to cause birth defects which would require a warning under the statute: Mercury Connecticut hazardous material survey.: Mercury Illinois toxic substances disclosure to employee act: Mercury Illinois chemical safety act: Mercury New York acutely hazardous substances: Mercury Rhode Island RTK hazardous substances: Mercury Pennsylvania RTK: Mercury Minnesota: Mercury Massachusetts RTK: Mercury New Jersey: Mercury New Jersey spill list: Mercury Louisiana spill reporting: Mercury California Director's List of Hazardous Substances.: Mercury TSCA 8(b) inventory: Mercury SARA 313 toxic chemical notification and release reporting: Mercury CERCLA: Hazardous substances.: Mercury: 1 lbs. (0.4536 kg)

Other Regulations:

OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada):

CLASS D-1A: Material causing immediate and serious toxic effects (VERY TOXIC). CLASS D-2A: Material causing other toxic effects (VERY TOXIC). CLASS E: Corrosive liquid.

DSCL (EEC):

R23- Toxic by inhalation. R33- Danger of cumulative effects. R38- Irritating to skin. R41- Risk of serious damage to eyes. R50/53- Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. S2- Keep out of the

reach of children. S7- Keep container tightly closed. S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S39- Wear eye/face protection. S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). S46- If swallowed, seek medical advice immediately and show this container or label. S60- This material and its container must be disposed of as hazardous waste. S61- Avoid release to the environment. Refer to special instructions/Safety data sheets.

HMIS (U.S.A.):

Health Hazard: 3

Fire Hazard: 0

Reactivity: 0

Personal Protection:

National Fire Protection Association (U.S.A.):

Health: 3

Flammability: 0

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Full suit. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate. Face shield.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:22 PM

Last Updated: 05/21/2013 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

SUPELCO INC -- 48499, INDENO (1,2,3-CD) PYRENE 10MG -- 6810-00N032522

Product ID:48499, INDENO (1,2,3-CD) PYRENE 10MG MSDS Date:06/06/1985 FSC:6810 NIIN:00N032522 MSDS Number: BNSSK === Responsible Party === Company Name:SUPELCO INC Address:SUPELCO PARK City: BELLEFONTE State:PA ZIP:16823-0048 Country:US Info Phone Num: 814-359-3441 Emergency Phone Num: 814-359-3441 CAGE:54968 === Contractor Identification === Company Name:SIGMA-ALDRICH INC. Address: 3050 SPRUCE STREET Box:14508 City:ST. LOUIS State:MO ZIP:63103 Country:US Phone: 314-771-5765/414-273-3850X5996 CAGE:54968 ======= Composition/Information on Ingredients ========== Ingred Name: INDENO 1,2,3-CD PYRENE CAS:193-39-5 RTECS #:NK9300000 EPA Rpt Qty:100 LBS DOT Rpt Qty:100 LBS LD50 LC50 Mixture: NONE SPECIFIED BY MANUFACTURER. Routes of Entry: Inhalation:YES Skin:YES Ingestion:YES Reports of Carcinogenicity:NTP:YES IARC:YES OSHA:NO Health Hazards Acute and Chronic: REPORTED ANIMAL CARCINOGEN. Explanation of Carcinogenicity:INDENO(1,2,3-CD) PYRENE: GROUP 2B(IARC), ANTICIPATED TO BE CARCINOGEN (NTP). Effects of Overexposure: NONE SPECIFIED BY MANUFACTURER. Medical Cond Aggravated by Exposure: NONE SPECIFIED BY MANUFACTURER. First Aid: EYES: FLUSH WITH WATER FOR AT LEAST 15 MIN. SKIN: FLUSH WITH LARGE VOLUMES OF WATER. REMOVE CONTAMINATED CLOTHING. INHAL: MOVE TO FRESH AIR. IF BREATHING STOPS, GIVE ARTF RESP. INGEST: IMMED CONTACT A PHYSICIAN. Flash Point:400F,204C Extinguishing Media:CO2, DRY CHEMICAL. Fire Fighting Procedures:WEAR NIOSH/MSHA APPROVED SCBA AND FULL PROTECTIVE EQUIPMENT . Spill Release Procedures: SWEEP UP MATERIAL. AVOID GENERATING DUST.

http://hazard.com/msds/f2/bns/bnssk.html

Neutralizing Agent:NONE SPECIFIED BY MANUFACTURER.

Handling and Storage Precautions:STORE IN SEALED CONTR IN COOL, DRY LOCATION. KEEP AWAY FROM OXIDIZERS. STORE IN DRY, WELL VENTILATED AREA. Other Precautions: REPORTED CANCER HAZARD. AVOID EYE OR SKIN CONTACT. ======= Exposure Controls/Personal Protection ========== Respiratory Protection:WEAR NIOSH/MSHA APPROVED SCBA AND FULL PROTECTIVE EQUIPMENT . Ventilation: USE ONLY IN EXHAUST HOOD. Protective Gloves: NEOPRENE GLOVES. Eye Protection: CHEMICAL WORKERS GOGGLES . Work Hygienic Practices: NONE SPECIFIED BY MANUFACTURER. Supplemental Safety and Health NONE SPECIFIED BY MANUFACTURER. HCC:T6 Melt/Freeze Pt:M.P/F.P Text:324F,162C Vapor Pres:0.10 Appearance and Odor:YELLOW CRYSTALS Stability Indicator/Materials to Avoid:YES OXIDIZING AGENTS. METALLIC SODIUM & POTASSIUM. Waste Disposal Methods: COMPLY WITH ALL APPLICABLE FEDERAL, STATE, OR

Disclaimer (provided with this information by the compiling agencies): This information is formulated for use by elements of the Department of Defense. The United States of America in no manner whatsoever, expressly or implied, warrants this information to be accurate and disclaims all liability for its use. Any person utilizing this document should seek competent professional advice to verify and assume responsibility for the suitability of this information to their particular situation.

LOCAL REGULATIONS.

Material Safety Data Sheet Chrysene, 98%

ACC# 95251

Section 1 - Chemical Product and Company Identification

MSDS Name: Chrysene, 98% Catalog Numbers: AC224140000, AC224140010, AC224140050, AC224145000, NC9381297, XXAC22414-300G Synonyms: 1,2-Benzophenanthrene; Benzo(a)phenanthrene; 1,2,5,6-Dibenzonaphthalene. Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
218-01-9	Chrysene	98	205-923-4

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: very light beige solid.

Caution! May cause eye and skin irritation. May cause respiratory tract irritation. May cause cancer in humans.

Target Organs: Liver, skin.

Potential Health Effects

Eye: May cause eye irritation.
Skin: May cause skin irritation.
Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea.
Inhalation: May cause respiratory tract irritation.
Chronic: May cause cancer according to animal studies.

Section 4 - First Aid Measures

Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

Ingestion: Do not induce vomiting. If victim is conscious and alert, give 2-4 cupfuls of milk or

water. Never give anything by mouth to an unconscious person. Get medical aid immediately. **Inhalation:** Get medical aid immediately. Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. **Notes to Physician:** Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. This material in sufficient quantity and reduced particle size is capable of creating a dust explosion.

Extinguishing Media: Use water spray, dry chemical, carbon dioxide, or chemical foam.

Flash Point: Not applicable.

Autoignition Temperature: Not available.

Explosion Limits, Lower:Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: ; Flammability: 1; Instability:

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Vacuum or sweep up material and place into a suitable disposal container. Clean up spills immediately, observing precautions in the Protective Equipment section. Wear a self contained breathing apparatus and appropriate personal protection. (See Exposure Controls, Personal Protection section). Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Wash thoroughly after handling. Avoid contact with eyes, skin, and clothing. Use only with adequate ventilation. Avoid breathing dust. **Storage:** Store in a tightly closed container. Store in a cool, dry area away from incompatible substances.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use process enclosure, local exhaust ventilation, or other engineering controls to control airborne levels.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Chrysene	0.2 mg/m3 TWA (as benzene soluble aerosol) (listed under Coal tar pitches).	0.1 mg/m3 TWA (cyclohexane-extractable fraction) (listed under Coal tar pitches).80 mg/m3 IDLH (listed under Coal tar pitches).	soluble fraction) (listed

OSHA Vacated PELs: Chrysene: No OSHA Vacated PELs are listed for this chemical. **Personal Protective Equipment**

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166. **Skin:** Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Section 9 - Physical and Chemical Properties

Physical State: Solid Appearance: very light beige Odor: Not available. pH: Not available. Vapor Pressure: Not available. Vapor Density: Not available. Evaporation Rate:Not available. Viscosity: Not available. Boiling Point: 448 deg C @ 760 mm Hg Freezing/Melting Point:250-255 deg C Decomposition Temperature:Not available. Solubility: insoluble Specific Gravity/Density:Not available. Molecular Formula:C18H12 Molecular Weight:228.29

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures.
Conditions to Avoid: Dust generation.
Incompatibilities with Other Materials: Strong oxidizing agents.
Hazardous Decomposition Products: Carbon monoxide, carbon dioxide.
Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 218-01-9: GC0700000 **LD50/LC50:** Not available.

Carcinogenicity: CAS# 218-01-9:

- ACGIH: A3 Confirmed animal carcinogen with unknown relevance to humans
- California: carcinogen, initial date 1/1/90
- NTP: Known carcinogen (listed as Coal tar pitches).

• IARC: Group 1 carcinogen (listed as Coal tar pitches).

Epidemiology: No information found Teratogenicity: No information found Reproductive Effects: No information found Mutagenicity: Chrysene was mutagenic to S. Typhimurium in the presence of an exogenous metabolic system. Neurotoxicity: No information found Other Studies:

Section 12 - Ecological Information

Ecotoxicity: Water flea LC50 = 1.9 mg/L; 2 Hr.; Unspecified Fish toxicity : LC50 (96hr) Neauthes arenacedentata >1ppm. (Rossi,S.S. et al Marine Pollut. Bull. 1978) Invertebrate toxicity : lethal treshold concentration (24hr) Daphnia Magna 0,7æg/I.(* Newsted,J.L. et al Environ. Toxicol. Chem. 1987) Bioaccumulation : 24hr Daphnia Magna log bioconcentration factor 3.7845 (*)
Environmental: Degradation studies : biodegradated by white rot fungus (Proc.Annu.Meet.Am.Wood-Preserv.Assoc.1989) May be utilised by axenic cultures of microorganisms e.g. Pseudomonas pancimobilis EPA505, which may have novel degradative systems(Mueller,J.G. et al ppl.Environ.Microbiol.1990; Mueller, J.G. et al Environ.Sci.Technol.1991).
Physical: Not found.
Other: No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series:

CAS# 218-01-9: waste number U050.

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	ENVIRONMENTALLY HAZARDOUS SUBSTANCES, SOLID, N.O.S.	No information available.
Hazard Class:	9	
UN Number:	UN3077	
Packing Group:	111	

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 218-01-9 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs

CAS# 218-01-9: 100 lb final RQ; 45.4 kg final RQ

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

Section 313

This material contains Chrysene (CAS# 218-01-9, 98%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants.

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 218-01-9 is listed as a Priority Pollutant under the Clean Water Act.

None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 218-01-9 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California Prop 65

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act:

WARNING: This product contains Chrysene, a chemical known to the state of California to cause cancer.

California No Significant Risk Level: CAS# 218-01-9: 0.35 æg/day NSRL (oral)

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

Risk Phrases:

Т

R 45 May cause cancer. R 50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Safety Phrases:

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

S 60 This material and its container must be disposed of as hazardou s waste.

S 61 Avoid release to the environment. Refer to special instructions /safety data sheets.

WGK (Water Danger/Protection)

CAS# 218-01-9: No information available.

Canada - DSL/NDSL

CAS# 218-01-9 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

Canadian Ingredient Disclosure List

CAS# 218-01-9 is listed on the Canadian Ingredient Disclosure List.

Section 16 - Additional Information

MSDS Creation Date: 6/30/1999 Revision #5 Date: 3/15/2007

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

CHEM SERVICE INC -- F74 BENZO/B/FLUORANTHENE -- 6550-00F037517

Product ID: F74 BENZO/B/FLUORANTHENE MSDS Date:09/11/1990 FSC:6550 NIIN:00F037517 MSDS Number: BWJGM === Responsible Party === Company Name: CHEM SERVICE INC Address:660 TOWER LN Box:3108 City:WEST CHESTER State:PA ZIP:19381-3108 Country:US Info Phone Num:215-692-3026/800-452-9994 Emergency Phone Num: 215-692-3026/800-452-9994 CAGE:84898 === Contractor Identification === Company Name: CHEM SERVICE INC Box:3108 City:WEST CHESTER State:PA ZIP:19381 Country:US Phone: 215-692-3026 CAGE:84898 Company Name: CHEM SERVICE, INC Address:660 TOWER LN Box:599 City:WEST CHESTER State: PA ZIP:19301-9650 Country:US Phone: 610-692-3026 CAGE:8Y898 Ingred Name: BENZO (B) FLUORANTHENE (SUSPECTED CARCINOGEN BY NTP, IARC *94-4* GROUP 2B) CAS:205-99-2 RTECS #:DF6350000 Other REC Limits: A2 CARCINOGEN EPA Rpt Qty:1 LB DOT Rpt Qty:1 LB LD50 LC50 Mixture:ORAL LD50 (RAT/MOUSE): 72 MG/KG Routes of Entry: Inhalation:NO Skin:NO Ingestion:NO Reports of Carcinogenicity:NTP:YES IARC:YES OSHA:NO Explanation of Carcinogenicity:SEE INGREDIENTS First Aid: EYES: FLUSH W/WATER FOR 15-20 MINS. SKIN: FLUSH W/WATER FOR 15-20 MINS. IF NOT BURNED, WASH W/SOAP & WATER TO CLEANSE. INHALATION: REMOVE TO FRESH AIR. GIVE CPR/OXYGEN IF NEEDED. KEEP WARM & QUIET. IN GESTION: DON'T GIVE LIQUIDS/INDUCE VOMITING IF UNCONSCIOUS/CONVULSING. IF VOMITING OCCURS, WATCH CLOSELY TO AVOID AIRWAY OBSTRUCTION. OBTAIN MEDICAL ATTENTION IN ALL CASES.

Extinguishing Media:CO2, DRY CHEMICAL POWDER/SPRAY.

Spill Release Procedures:EVACUATE AREA. WEAR APPRORPRIATE OSHA REGULATED EQUIPMENT. VENTILATE AREA. ABSORB ON VERMICULITE/SIMILAR MATERIAL. SWEEP UP & PLACE IN APPROPRIATE CONTAINER/HOLD FOR DISPOSAL. WASH CONTAMINATED SURFAC ES TO REMOVE ANY RESIDUES.

- Handling and Storage Precautions:STORE IN A COOL DRY PLACE ONLY W/COMPATIBLE CHEMICALS. KEEP TIGHTLY CLOSED. FOR LABORATORY USE ONLY.
- Other Precautions: AVOID CONTACT W/SKIN, EYES & CLOTHING. DON'T BREATH VAPORS. CONTACT LENSES SHOULDN'T BE WORN IN THE LABORATORY. ALL CHEMICALS SHOULD BE CONSIDERED HAZARDOUS. AVOID DIRECT PHYSICAL CONTACT.

Respiratory Protection:WEAR APPROPRIATE OSHA/MSHA APPROVED SAFETY EQUIPMENT.

Ventilation: CHEMICAL SHOULD BE HANDLED ONLY IN A HOOD.

Eye Protection: EYE SHIELDS

Work Hygienic Practices:REMOVE/LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.

Supplemental Safety and Health

Melt/Freeze Pt:M.P/F.P Text:334.4F Appearance and Odor:CRYSTALLINE SOLID

Stability Indicator/Materials to Avoid:YES

Waste Disposal Methods:BURN IN A CHEMICAL INCINERATOR EQUIPPED W/AN AFTERBURNER & SCRUBBER IAW/FEDERAL, STATE & LOCAL REGULATIONS.

Disclaimer (provided with this information by the compiling agencies): This information is formulated for use by elements of the Department of Defense. The United States of America in no manner whatsoever, expressly or implied, warrants this information to be accurate and disclaims all liability for its use. Any person utilizing this document should seek competent professional advice to verify and assume responsibility for the suitability of this information to their particular situation.

i.

Material Safety Data Sheet Benzo[a]pyrene, 98%

ACC# 37175

Section 1 - Chemical Product and Company Identification

MSDS Name: Benzo[a]pyrene, 98% Catalog Numbers: AC105600000, AC105600010, AC105601000, AC377200000, AC377200010, AC377201000 AC377201000 Synonyms: 3,4-Benzopyrene; 3,4-Benzpyrene; Benzo[def]chrysene. Company Identification: Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410 For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
50-32-8	50-32-8 Benzo[a]pyrene		200-028-5

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: yellow to brown powder.

Danger! May cause harm to the unborn child. May impair fertility. May cause eye, skin, and respiratory tract irritation. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Cancer hazard. May cause allergic skin reaction. May cause heritable genetic damage.

Target Organs: Reproductive system, skin.

Potential Health Effects

Eye: May cause eye irritation.

Skin: May cause skin irritation. May be harmful if absorbed through the skin. May cause an allergic reaction in certain individuals.

Ingestion: May cause irritation of the digestive tract. The toxicological properties of this substance have not been fully investigated. May be harmful if swallowed.

Inhalation: May cause respiratory tract irritation. The toxicological properties of this substance have not been fully investigated. May be harmful if inhaled.

Chronic: May cause cancer in humans. May cause reproductive and fetal effects. Laboratory experiments have resulted in mutagenic effects.

Section 4 - First Aid Measures

Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

Ingestion: Never give anything by mouth to an unconscious person. Get medical aid. Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water. **Inhalation:** Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid. **Notes to Physician:** Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.

Extinguishing Media: Use water spray, dry chemical, carbon dioxide, or appropriate foam. **Flash Point:** Not available.

Autoignition Temperature: Not available.

Explosion Limits, Lower:Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: 2; Flammability: 0; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Clean up spills immediately, observing precautions in the Protective Equipment section. Sweep up, then place into a suitable container for disposal. Avoid generating dusty conditions. Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Use with adequate ventilation. Minimize dust generation and accumulation. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.

Storage: Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Benzo[a]pyrene	nitches)	0.1 mg/m3 TWA (cyclohexane-extractable fraction) (listed under Coal tar pitches).80 mg/m3 IDLH (listed under Coal tar	(listed under Coar tar nitches)

pitches).			-
		pitches).	

OSHA Vacated PELs: Benzo[a]pyrene: No OSHA Vacated PELs are listed for this chemical. **Personal Protective Equipment**

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant respirator use.

Section 9 - Physical and Chemical Properties

Physical State: Powder Appearance: yellow to brown Odor: faint aromatic odor pH: Not available. Vapor Pressure: Not available. Vapor Density: Not available. Evaporation Rate:Not available. Viscosity: Not available. Boiling Point: 495 deg C @ 760 mm Hg Freezing/Melting Point:175 - 179 deg C Decomposition Temperature:Not available. Solubility: 1.60x10-3 mg/l @25°C Specific Gravity/Density:Not available. Molecular Formula:C20H12 Molecular Weight:252.31

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures. Conditions to Avoid: Dust generation. Incompatibilities with Other Materials: Strong oxidizing agents.

Hazardous Decomposition Products: Carbon monoxide, carbon dioxide. Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 50-32-8: DJ3675000 LD50/LC50: Not available.

Carcinogenicity: CAS# 50-32-8:

• ACGIH: A2 - Suspected Human Carcinogen

- California: carcinogen, initial date 7/1/87
- NTP: Suspect carcinogen
- IARC: Group 1 carcinogen (listed as Coal tar pitches).

Epidemiology: No information found Teratogenicity: No information found Reproductive Effects: Adverse reproductive effects have occurred in experimental animals. Mutagenicity: Mutagenic effects have occurred in humans.Mutagenic effects have occurred in experimental animals. Neurotoxicity: No information found Other Studies:

Section 12 - Ecological Information

No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series:

CAS# 50-32-8: waste number U022.

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	NOT REGULATED FOR DOMESTIC TRANSPORT	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOL (Benzo{a} pyrene)
Hazard Class:		9
UN Number:		UN3077
Packing Group:		111

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 50-32-8 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs CAS# 50-32-8: 1 lb final RQ; 0.454 kg final RQ

CAS# 50-32-8: T ID TITAL RC; 0.454 KY IITAL RC

SARA Section 302 Extremely Hazardous Substances None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 50-32-8: immediate, delayed.

Section 313

This material contains Benzo[a]pyrene (CAS# 50-32-8, >96%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR

Clean Air Act:

This material does not contain any hazardous air pollutants.

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 50-32-8 is listed as a Priority Pollutant under the Clean Water Act.

None of the chemicals in this product are listed as Toxic Pollutants under the CWA. **OSHA:**

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 50-32-8 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California Prop 65

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act:

WARNING: This product contains Benzo[a]pyrene, a chemical known to the state of California to cause cancer.

California No Significant Risk Level: CAS# 50-32-8: 0.06 æg/day NSRL

European/International Regulations

European Labeling in Accordance with EC Directives

Hazard Symbols:

ΤN

Risk Phrases:

- R 43 May cause sensitization by skin contact.
- R 45 May cause cancer.
- R 46 May cause heritable genetic damage.

R 60 May impair fertility.

R 61 May cause harm to the unborn child.

R 50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Safety Phrases:

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

S 60 This material and its container must be disposed of as hazardou s waste.

S 61 Avoid release to the environment. Refer to special instructions /safety data sheets.

WGK (Water Danger/Protection)

CAS# 50-32-8: No information available.

Canada - DSL/NDSL

CAS# 50-32-8 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

Canadian Ingredient Disclosure List

CAS# 50-32-8 is listed on the Canadian Ingredient Disclosure List.

Section 16 - Additional Information

MSDS Creation Date: 9/02/1997 Revision #7 Date: 6/30/2006

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

SUPELCO, INC. -- BENZO(A) ANTHRACENE 0.1G, 48563 -- 6810-00N010656

Product ID: BENZO(A) ANTHRACENE 0.1G, 48563 MSDS Date:05/16/1985 FSC:6810 NIIN:00N010656 MSDS Number: BHYRL === Responsible Party === Company Name: SUPELCO, INC. Address:SUPELCO PARK City: BELLEFONTE State: PA ZIP:16823-0048 Info Phone Num: 814-359-3441 Emergency Phone Num: 814-359-3441 CAGE: HO582 === Contractor Identification === Company Name:SIGMA-ALDRICH INC. Address: 3050 SPRUCE STREET Box:14508 City:ST. LOUIS State:MO ZIP:63103 Country:US Phone: 314-771-5765/414-273-3850X5996 CAGE: 54968 Company Name: SUPELCO, INC. Address:SUPELCO PARK Box:City:BELLEFONTE State: PA ZIP:16823-0048 Phone: 814-359-3441 CAGE: HO582 Ingred Name: BENZ A ANTHRACENE (SARA III) CAS:56-55-3 RTECS #:CV9275000 Other REC Limits:N/K ACGIH TLV:A2 ; 9394 EPA Rpt Qty:10 LBS DOT Rpt Qty:10 LBS Routes of Entry: Inhalation:NO Skin:NO Ingestion:NO Reports of Carcinogenicity:NTP:YES IARC:YES OSHA:NO Health Hazards Acute and Chronic:SEE SIGNS AND SYMPTOMS OF OVEREXPOSURE. Explanation of Carcinogenicity:SUSPECTED HUM CARCIN/KNOWN ANIM CARCIN (NTP 1985).INADEQ EVID FOR CARC IN HUM, SUFF EVID FOR CARC IN ANIMALS (IARC 1987). Effects of Overexposure:EYES/SKIN/INGESTION/INHALATION:N/K . Medical Cond Aggravated by Exposure:N/K

7/16/2010

First Aid: EYES: FLUSH WITH WATER FOR AT LEAST 15 MINUTES. SKIN: FLUSH WITH LARGE VOLUMES OF WATER.REMOVE CONTAMINATED CLOTHING.INGESTION: CONTACT PHYSICIAN.INHALATION: IMMEDIAATELY MOVE TO FRESH AIR.GIVE OXYGEN IF B REATHING IS LABORED.IF BREATHING STOPS, GIVE ARTIFICIAL RESPIRATION. CONTACT PHYSICIAN. Flash Point:N/K Lower Limits:N/K Upper Limits:N/K Extinguishing Media:CO*2,FOAM,DRY CHEMICAL. Fire Fighting Procedures: USE NIOSH/MSHA APPROVED SCBA AND FULL PROTECTIVE EQUIPMENT . Spill Release Procedures: SWEEP UP MATERIAL. VENTILATE AREA. AVOID GENERATING DUST. Neutralizing Agent:N/K Handling and Storage Precautions:STORE IN SEALED CONTAINER IN COOL, DRY LOCATION.KEEP AWAY FROM OXIDIZERS.AVOID GENERATING DUST. Other Precautions: REPORTED CANCER HAZARD. AVOID EYE OR SKIN CONTACT. Respiratory Protection:NIOSH/MSHA APPROVED RESPIRATOR APPROPRIATE FOR EXPOSURE OF CONCERN . Ventilation:LOCAL AND GENERAL VENTILATION NECESSARY TO KEEP AIR CONCENTRATION BELOW LEVEL OF CONCERN . Protective Gloves: RUBBER Eye Protection: CHEMICAL WORKERS GOGGLES . Work Hygienic Practices:N/K Supplemental Safety and Health ROUTES OF ENTRY: INHALATION/SKIN/INGESTION . Boiling Pt:B.P. Text:438C,820F Melt/Freeze Pt:M.P/F.P Text:157C,315F Decomp Temp:Decomp Text:N/K Appearance and Odor: PALE YELLOW CRYSTAL. Stability Indicator/Materials to Avoid:YES OXIDIZING AGENTS. Waste Disposal Methods: DISPOSAL MUST BE IN ACCORDANCE WITH FEDERAL, STATE AND LOCAL REGULATIONS . Disclaimer (provided with this information by the compiling agencies): This information is formulated for use by elements of the Department of Defense. The United States of America in no manner whatsoever,

7/16/2010

expressly or implied, warrants this information to be accurate and disclaims all liability for its use. Any person utilizing this document should seek competent professional advice to verify and assume responsibility for the suitability of this information to their particular situation.

AIR LIQUIDE

MATERIAL SAFETY DATA SHEET

Prepared to U.S. OSHA, CMA, ANSI and Canadian WHMIS Standard

1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: NONFLAMMABLE GAS MIXTURE

Containing One or More of the Following Components in a Nitrogen Balance Gas:

Oxygen 0-23.5%; Isobutylene, 0.0005-0.9% CHEMICAL FAMILY NAME: Not Applicable

SYNONYMS: Not Applicable

Document Number: 50054 Note: The Material Safety Data Sheet is for this gas mixture supplied in cylinders with 33 cubic feet (935 liters) or less gas capacity (DOT - 39 cylinders). This MSDS has been developed for various gas mixtures with the composition of components within the ranges listed in Section 2 (Composition and Information on Ingredients). Refer to the product label for information on the actual composition of the product.

PRODUCT USE

U.S. SUPPLIER/MANUFACTURER'S NAME: ADDRESS:

BUSINESS PHONE:

General MSDS Information: Fax on Demand:

EMERGENCY PHONE:

Chemtrec: United States/Canada/Puerto Rico:

Chemtrec International:

Calibration of Monitoring and Research Equipment CALGAZ 821 Chesapeake Drive Cambridge, MD 21613 1-410-228-6400 (8 a.m. to 5 p.m. U.S. EST) 1-713-868-0440 1-800-231-1366

FORMULA: Not Applicable

1-800-424-9300 [24-hours]

1-703-527-3887 [24-hours]

2. COMPOSITION and INFORMATION ON INGREDIENTS

CHEMICAL NAME	CAS #	mole %	EXPOSURE LIMITS IN AIR					
			ACGIH-TLV		OSH	A-PEL	NIOSH	OTHER
			TWA	STEL	TWA	STEL	IDLH	
			ppm	ppm	ppm	ppm	ppm	ppm
Isobutylene	115-11-7	0.0005-0.9%	There are no specific exposure limits for Isobutylene.		e.			
Oxygen	7782-44-7	0-23.5%	There are no specific exposure limits for Oxygen.					
Nitrogen	7727-37-9	Balance	There are no specific exposure limits for Nitrogen. Nitrogen is a simple asphyxian (SA). Oxygen levels should be maintained above 19.5%.					

NE = Not Established. See Section 16 for Definitions of Terms Used.

NOTE (1): ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This gas mixture has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.

3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: This is a colorless, odorless gas mixture. Releases of this gas mixture may produce oxygen-deficient atmospheres (especially in confined spaces or other poorly-ventilated environments); individuals in such atmospheres may be asphyxiated. Isobutylene, a component of this gas mixture, may cause drowsiness and other central nervous system effects in high concentrations; however due to its low concentration in this gas mixture, this is unlikely to occur.

SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE: The most significant route of over-exposure for this gas mixture is by inhalation. e

INHALATION: Due to the small size	of an individual cylinder of this gas mixture, no unusual	
health effects from over-exposur	e to the product are anticipated under routine	
circumstances of use. The chief hea	Ith hazard associated with this gas mixture is when this	HE
gas mixture contains less than 19.5°	% Oxygen and is released in a small, poorly-ventilated	ПС
area (i.e. an enclosed or confined s	space). Under this circumstance, an oxygen-deficient	
environment may occur. Individua	als breathing such an atmosphere may experience	
symptoms which include heada	aches, ringing in ears, dizziness, drowsiness,	
unconsciousness, nausea, vomiting	, and depression of all the senses. Under some	FL
circumstances of over-exposure, de	eath may occur. The effects associated with various	
levels of oxygen are as follows:		
CONCENTRATION OF OXYGEN	OBSERVED EFFECT	
12-16% Oxygen:	Breathing and pulse rate increase, muscular coor-	PH
	dination slightly disturbed.	
10-14% Oxygen:	Emotional upset, abnormal fatigue, disturbed	
	respiration.	
6-10% Oxygen:	Nausea, vomiting, collapse, or loss of consciousness.	
Below 6%:	Convulsive movements, possible respiratory collapse,	

Convulsive movements, possible respiratory collapse, and death.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms. Over-

exposure to this gas mixture may cause the following health effects: ACUTE: Due to the small size of the individual cylinder of this gas mixture, no unusual health effects from exposure to the product are anticipated under routine circumstances of use. The most significant hazard associated with this gas mixture when it contains less than 19.5% oxygen is the potential for exposure to oxygen-deficient atmospheres. Symptoms of

	, -	,
HAZARDOUS MATERIAL IDENTIFICA	TION SY	STEM
HEALTH HAZARD	(BLUE)	1
FLAMMABILITY HAZARD	(RED)	0
PHYSICAL HAZARD (YE	ELLOW)	0
PROTECTIVE EQUIPMENT		
EYES RESPIRATORY HANDS	BC	IDY
See Section 8		
For Routine Industrial Use and Handlin	• • •	

oxygen deficiency include respiratory difficulty, ringing in ears, headaches, shortness of breath, wheezing, headache, dizziness, indigestion, nausea, unconsciousness, and death. The skin of a victim of over-exposure may have a blue color. Additionally, Isobutylene, a component of this gas mixture, may cause drowsiness or central nervous system effects in high concentrations; however, due to its low concentration in this gas mixture, this is unlikely to occur. CHRONIC: Chronic exposure to oxygen-deficient atmospheres (below 18% oxygen in air) may affect the heart and nervous system.

TARGET ORGANS: ACUTE: Respiratory system, eyes. CHRONIC: Heart, cardiovascular system, central nervous system.

4. FIRST-AID MEASURES

RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF EXPOSURE TO THIS GAS MIXTURE WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus must be worn.

No unusual health effects are anticipated after exposure to this gas mixture, due to the small cylinder size. If any adverse symptom develops after over-exposure to this gas mixture, remove victim(s) to fresh air as quickly as possible. Only trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation if necessary. Victim(s) who experience any adverse effect after over-exposure to this gas mixture must be taken for medical attention. Rescuers should be taken for medical attention if necessary. Take a copy of the label and the MSDS to physician or other health professional with victim(s).

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Acute or chronic respiratory conditions may be aggravated by over-exposure to this gas mixture

RECOMMENDATIONS TO PHYSICIANS: Administer oxygen, if necessary; treat symptoms and eliminate exposure.

5. FIRE-FIGHTING MEASURES

NFPA RATING

FLAMMABILITY

0

OTHER

1

HEALTH

0

REACTIVITY

FLASH POINT: Not applicable

AUTOIGNITION TEMPERATURE: Not applicable.

FLAMMABLE LIMITS (in air by volume, %):

Lower (LEL): Not applicable. Upper (UEL): Not applicable.

FIRE EXTINGUISHING MATERIALS: Non-flammable gas mixture. Use extinguishing media appropriate for surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: This gas mixture is not flammable; however, containers, when involved in fire, may rupture or burst in the heat of the fire.

Explosion Sensitivity to Mechanical Impact: Not sensitive. Explosion Sensitivity to Static Discharge: Not sensitive.

SPECIAL FIRE-FIGHTING PROCEDURES: Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment.

6. ACCIDENTAL RELEASE MEASURES

LEAK RESPONSE: Due to the small size and content of the cylinder, an accidental release of this gas mixture presents significantly less risk of an oxygen deficient environment and other safety hazards than a similar release from a larger cylinder. However, as with any chemical release, extreme caution must be used during emergency response procedures. In the event of a release in which the atmosphere is unknown, and in which other chemicals are potentially involved, evacuate immediate area. Such releases should be responded to by trained personnel using preplanned procedures. Proper protective equipment should be used. In case of a leak, clear the affected area, protect people, and respond with trained personnel.

Allow the gas mixture to dissipate. If necessary, monitor the surrounding area (and the original area of the release) for oxygen. Oxygen levels must be above 19.5% before non-emergency personnel are allowed to re-enter area. If leaking incidentally from the cylinder, contact your supplier.

7. HANDLING and USE

WORK PRACTICES AND HYGIENE PRACTICES: Be aware of any signs of dizziness or fatigue; exposures to fatal concentrations of this gas mixture could occur without any significant warning symptoms, due to oxygen deficiency. Do not attempt to repair, adjust, or in any other way modify the cylinders containing this gas mixture. If there is a malfunction or another type of operational problem, contact nearest distributor immediately

STORAGE AND HANDLING PRACTICES: Cylinders should be firmly secured to prevent falling or being knocked-over. Cylinders must be protected from the environment, and preferably kept at room temperature (approximately 21°C [70°F]). Cylinders should be stored in dry, wellventilated areas, away from sources of heat, ignition, and direct sunlight. Protect cylinders against physical damage. Full and empty cylinders should be segregated. Use a first-in, first-out inventory system to prevent full containers from being stored for long periods of time. These cylinders are not refillable. WARNING! Do not refill DOT 39 cylinders. To do so may cause personal injury or property damage.

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: WARNING! Compressed gases can present significant safety hazards. During cylinder use, use equipment designed for these specific cylinders. Ensure all lines and equipment are rated for proper service pressure. PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely. Always use product in areas where adequate ventilation is provided.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: No special ventilation systems or engineering controls are needed under normal circumstances of use. As with all chemicals, use this gas mixture in well-ventilated areas. If this gas mixture is used in a poorly-ventilated area, install automatic monitoring equipment to detect the levels of Nitrous Oxide and Oxygen.

RESPIRATORY PROTECTION: No special respiratory protection is required under normal circumstances of use. Maintain oxygen levels above 19.5% in the workplace. Use supplied air respiratory protection when oxygen levels are below 19.5%, or during emergency response to a release of this gas mixture. During an emergency situation, before entering the area, check the concentration of Methane and Oxygen. If respiratory protection is needed, use only protection authorized in the U.S. Federal OSHA Standard (29 CFR 1910.134), applicable U.S. State regulations, or the Canadian CSA Standard Z94.4-93 and applicable standards of Canadian Provinces. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA's Respiratory Protection Standard (1910.134-1998).

EYE PROTECTION: Safety glasses. If necessary, refer to U.S. OSHA 29 CFR 1910.133 or appropriate Canadian Standards. **HAND PROTECTION**: Wear leather gloves when handling cylinders. Chemically resistant gloves should be worn when using this gas mixture. If necessary, refer to U.S. OSHA 29 CFR 1910.138 or appropriate Standards of Canada.

BODY PROTECTION: No special protection is needed under normal circumstances of use. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee's feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR 1910.136.

9. PHYSICAL and CHEMICAL PROPERTIES

The following information is for Nitrogen, a main component of this ga	as mixture.
GAS DENSITY @ 32°F (0°C) and 1 atm: 0.072 lbs/ ft ³ (1.153 kg/m ³)	
BOILING POINT: -195.8°C (-320.4°F)	FREEZING/MELTING POINT @ 10 psig: -210°C (-345.8°F)
SPECIFIC GRAVITY (air = 1) @ 70°F (21.1°C): 0.906	pH: Not applicable.
SOLUBILITY IN WATER vol/vol @ 32°F (0°C) and 1 atm: 0.023	MOLECULAR WEIGHT: 28.01
EVAPORATION RATE (nBuAc = 1): Not applicable.	EXPANSION RATIO: Not applicable.
ODOR THRESHOLD: Not applicable.	SPECIFIC VOLUME (ft ³ /lb): 13.8
VAPOR PRESSURE @ 70°F (21.1°C) psig: Not applicable.	COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.
The following information is for Oxygen, a main component of this ga	s mixture.
GAS DENSITY @ 32°F (0°C) and 1 atm: 0.083 lb/cu ft (1.326 kg/m ³)	
FREEZING/MELTING POINT @ 10 psig: -218.8°C (-361.8°F)	BOILING POINT: -183.0°C (-297.4°F)
SPECIFIC GRAVITY (air = 1) @ 70°F (21.1°C): 1.105	pH: Not applicable.
SOLUBILITY IN WATER vol/vol at 32°F (0°C) and 1 atm: 0.04.91	MOLECULAR WEIGHT: 32.00
EVAPORATION RATE (nBuAc = 1): Not applicable.	EXPANSION RATIO: Not applicable.
ODOR THRESHOLD: Not applicable.	VOLUME (ft ³ /lb): 12.1
VAPOR PRESSURE @ 70°F (21.1°C) psig: Not applicable.	COEFFICIENT WATER/OIL DISTRIBUTION: Not applicable.
The following information is for the gas mixture.	
APPEARANCE AND COLOR: This is a colorless, odorless gas mixture.	
HOW TO DETECT THIS SUBSTANCE (warning properties): There a	are no unusual warning properties associated with a release of this gas
mixture. In terms of leak detection, fittings and joints can be painted w	ith a soap solution to detect leaks, which will be indicated by a bubble
formation.	

10. STABILITY and REACTIVITY

STABILITY: Normally stable in gaseous state.

DECOMPOSITION PRODUCTS: The thermal decomposition products of Isobutylene include carbon oxides. The other components of this gas mixture do not decompose, per se, but can react with other compounds in the heat of a fire.

MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Titanium will burn in the Nitrogen component of this gas mixture. Lithium reacts slowly with Nitrogen at ambient temperatures. The Isobutylene component of this gas mixture is also incompatible with strong oxidizers (i.e. chlorine, bromine pentafluoride, oxygen difluoride, and nitrogen trifluoride). HAZARDOUS POLYMERIZATION: Will not occur.

CONDITIONS TO AVOID: Contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: The following toxicology data are available for the components of this gas mixture:

ISOBUTYLENE:

LC₅₀ (inhalation, rat) = 620,000 mg/kg/4 hours

LC₅₀ (inhalation, mouse) = 415,000 mg/kg

NITROGEN:

There are no specific toxicology data for Nitrogen. Nitrogen is a simple asphyxiant, which acts to displace oxygen in the environment.

SUSPECTED CANCER AGENT: The components of this gas mixture are not found on the following lists: FEDERAL OSHA Z LIST, NTP, CAL/OSHA, and IARC; therefore, they are not considered to be, nor suspected to be, cancer-causing agents by these agencies

IRRITANCY OF PRODUCT: Contact with rapidly expanding gases can be irritating to exposed skin and eyes. **SENSITIZATION TO THE PRODUCT:** The components of this gas mixture are not known to cause human skin or respiratory sensitization.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of this gas mixture and its components on the human reproductive system.

Mutagenicity: No mutagenicity effects have been described for the components in this gas mixture.

Embryotoxcity: No embryotoxic effects have been described for the components in this gas mixture. Teratogenicity: No teratogenicity effects have been described for the components in this gas mixture.

Reproductive Toxicity: No reproductive toxicity effects have been described for the components in gas mixture.

A mutagen is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. An <u>embryotoxin</u> is a chemical which causes damage to a developing embryo (i.e. within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A <u>teratogen</u> is a chemical which causes damage to a developing fetus, but the damage s generational lines. A <u>reproductive toxin</u> is any substance which interferes in any way with the reproductive process. BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, Biological Exposure Indices (BEIs) are not applicable for the components of this gas mixture.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: The components of this gas mixture occur naturally in the atmosphere. The gas will be dissipated rapidly in wellventilated areas. The following environmental data are applicable to the components of this gas mixture.

OXYGEN: Water Solubility = 1 volume Oxygen/32 volumes water at 20°C. Log K_{ow} = -0.65 NITROGEN: Water Solubility = 2.4 volumes Nitrogen/100 volumes water at 0°C. 1.6 volumes Nitrogen/100 volumes water at 20°C.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: No evidence is currently available on the effects of this gas mixture on plant and animal life. EFFECT OF CHEMICAL ON AQUATIC LIFE: No evidence is currently available on the effects of this gas mixture on aquatic life.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL PREPARING WASTES FOR DISPOSAL: Waste disposal must be in accordance with appropriate Federal, State, and local regulations. Cylinders with undesired residual product may be safely vented outdoors with the proper regulator. For further information, refer to Section 16 (Other Information).

14 TRANSPORTATION INFORMATION

THIS GAS MIXTURE IS HAZARDOUS AS DEFINED BY 49	CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.
PROPER SHIPPING NAME: Compressed gases, n.o.s. (*Oxygen, Nitrogen)*or the gas component with the next highest concentration next to
Nitrogen.	
HAZARD CLASS NUMBER and DESCRIPTION:	2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER:	UN 1956
PACKING GROUP:	Not applicable.
DOT LABEL(S) REQUIRED:	Class 2.2 (Non-Flammable Gas)
NORTH AMERICAN EMERGENCY RESPONSE GUIDEB	
1 8	re are not classified by the DOT as Marine Pollutants (as defined by 49 CFR 172.101,
Appendix B).	
	e transported in a secure position, in a well-ventilated vehicle. The transportation of
	body vehicles can present serious safety hazards. If transporting these cylinders in
	extremely high temperatures (as may occur in an enclosed vehicle on a hot day).
Additionally, the vehicle should be well-ventilated during	
	r package). Pertinent shipping information goes on the outside of the outer package.
DOT 39 Cylinders do not have transportation informa	,
	OUS GOODS REGULATIONS: This gas is considered as Dangerous Goods, per
regulations of Transport Canada.	
	*Oxygen, Nitrogen)*or the gas component with the next highest concentration next to
	2.2 (Non Elemental Cos)
HAZARD CLASS NUMBER and DESCRIPTION:	2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER:	UN 1956
PACKING GROUP:	Not Applicable
HAZARD LABEL: SPECIAL PROVISIONS:	Class 2.2 (Non-Flammable Gas) None
EXPLOSIVE LIMIT AND LIMITED QUANTITY INDEX:	0.12
ERAP INDEX:	
PASSENGER CARRYING SHIP INDEX:	None None
PASSENGER CARRYING SHIP INDEX. PASSENGER CARRYING ROAD VEHICLE OR PASSENCE	
NORTH AMERICAN EMERGENCY RESPONSE GUIDEB	
Transportation of Dangerous Goods Act, 1992).	blic Passenger Road Vehicle is a violation of Canadian law (Transport Canada
Tansportation of Dangerous Goods Act, 1992).	

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: The components of this gas mixture are not subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act.

U.S. SARA THRESHOLD PLANNING QUANTITY: There are no specific Threshold Planning Quantities for this gas mixture. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lb (4,540 kg) may apply, per 40 CFR 370.20.

U.S. TSCA INVENTORY STATUS: The components of this gas mixture are listed on the TSCA Inventory. U.S. CERCLA REPORTABLE QUANTITY (RQ): Not applicable.

OTHER U.S. FEDERAL REGULATIONS:

No component of this gas mixture is subject to the requirements of CFR 29 1910.1000 (under the 1989 PELs).

Isobutylene is subject to the reporting requirements of Section 112(r) of the Clean Air Act. The Threshold Quantity for this gas is 10,000 pounds.

The regulations of the Process Safety Management of Highly Hazardous Chemicals are not applicable (29 CFR 1910.119).

· This gas mixture does not contain any Class I or Class II ozone depleting chemicals (40 CFR Part 82).

15. REGULATORY INFORMATION (continued)

Nitrogen and Oxygen are not listed as Regulated Substances, per 40 CFR, Part 68, of the Risk Management for Chemical Releases. Isobutylene is listed under this regulation in Table 3 as Regulated Substances (Flammable Substances), in guantities of 10,000 lbs (4,554 kg) or greater

U.S. STATE REGULATORY INFORMATION: The components of this gas mixture are covered under the following specific State regulations:

Alaska - Designated Toxic and Hazardous Substances: No.

California - Permissible Exposure Limits for Chemical Contaminants: Nitrogen.

Florida - Substance List: Oxygen, Isobutylene. Illinois - Toxic Substance List: No.

Kansas - Section 302/313 List: No.

Massachusetts - Substance List: Oxygen, Isobutylene.

Michigan - Critical Materials Register: No.

Minnesota - List of Hazardous Substances: No. Missouri - Employer Information/Toxic Substance List: No.

New Jersey - Right to Know Hazardous Substance List: Oxygen, Nitrogen, Isobutylene.

North Dakota - List of Hazardous Chemicals, Reportable Quantities: No. Pennsylvania - Hazardous Substance List: Oxygen, Nitrogen, Isobutylene.

Rhode Island - Hazardous Substance List: Oxygen, Nitrogen.

Texas - Hazardous Substance List: No.

West Virginia - Hazardous Substance List: No. Wisconsin - Toxic and Hazardous Substances: : No.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): No component of this gas mixture is on the California Proposition 65 lists.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/NDSL INVENTORY STATUS: The components of this gas mixture are listed on the DSL Inventory.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITIES SUBSTANCES LISTS: The components of this gas mixture are not on the CEPA Priorities Substances Lists

CANADIAN WHMIS REGULATIONS: This gas mixture is categorized as a Controlled Product, Hazard Class A, as per the Controlled Product Regulations.

16. OTHER INFORMATION

INFORMATION ABOUT DOT-39 NRC (Non-Refillable Cylinder) PRODUCTS

DOT 39 cylinders ship as hazardous materials when full. Once the cylinders are relieved of pressure (empty) they are not considered hazardous material or waste. Residual gas in this type of cylinder is not an issue because toxic gas mixtures are prohibited. Calibration gas mixtures typically packaged in these cylinders are Nonflammable n.o.s., UN 1956. A small percentage of calibration gases packaged in DOT 39 cylinders are flammable or oxidizing gas mixtures.

For disposal of used DOT-39 cylinders, it is acceptable to place them in a landfill if local laws permit. Their disposal is no different than that employed with other DOT containers such as spray paint cans, household aerosols, or disposable cylinders of propane (for camping, torch When feasible, we recommended recycling for scrap metal content. CALGAZ will do this for any customer that wishes to return etc.). cylinders to us prepaid. All that is required is a phone call to make arrangements so we may anticipate arrival. Scrapping cylinders involves some preparation before the metal dealer may accept them. We perform this operation as a service to valued customers who want to participate

MIXTURES: When two or more gases or liquefied gases are mixed, their hazardous properties may combine to create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture. Consult an Industrial Hygienist or other trained person when you make your safety evaluation of the end product. Remember, gases and liquids have properties which can cause serious injury or death.

Further information about the handling of compressed gases can be found in the following pamphlets published by: Compressed Gas Association Inc. (CGA), 1725 Jefferson Davis Highway, Suite 1004, Arlington, VA 22202-4102. Telephone: (703) 412-0900.

AV-1

"Safe Handling of Compressed Gases in Containers" "Safe Handling and Storage of Compressed Gases" "Handbook of Compressed Gases"

This Material Safety Data Sheet is offered pursuant to OSHA's Hazard Communication Standard, 29 CFR, 1910.1200. Other government regulations must be reviewed for applicability to this gas mixture. To the best of CALGAZ knowledge, the information contained herein is reliable and accurate as of this date; however, accuracy, suitability or completeness are not guaranteed and no warranties of any type, either express or implied, are provided. The information contained herein relates only to this specific product. If this gas mixture is combined with other materials, all component properties must be considered. Data may be changed from time to time. Be sure to consult the latest edition.

Community Air Monitoring Plan (CAMP) LPC Development Group LLC 337 Berry and 95-105 South 5th Street Brooklyn, New York

1.0 INTRODUCTION

1.1 Background

In accordance with the New York State Department of Health (NYSDOH) and New York State DER-10 Technical Guidance for Site Investigation and Remediation, a Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

This CAMP has been developed to address particulates (dust) and potential subsurface organic vapors that may be released to the air during implementation of the interim remedial action activities. The CAMP was prepared in accordance with New York State Department of Health (NYSDOH) requirements presented in Appendix 1A of the NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation (2010). The CAMP requires real-time monitoring for dust and organic vapors at the upwind and downwind perimeters of each designated work area. The measures included in the CAMP will provide a level of protection for the occupants of the neighboring properties and water bodies as well as the downwind community, from potential airborne releases. The CAMP sets forth specific action levels for determining monitoring frequency and the appropriate corrective actions, including work shutdown.

1.2 Objectives and Procedures of the CAMP

The intention of the CAMP is to monitor air quality at areas where soil is being disturbed or loaded during the remedial activities as stated in the Interim Remedial Measures Work Plan. The CAMP for this project describes monitoring of dust and vapors on a real-time, continuous basis. Air monitoring will involve standard monitoring functions for environmental projects including real-time air monitoring for particulate matter less than 10 micrometers in size (PM-10) and volatile organic compounds (VOCs); observations for visible dust emissions and odors; inspection and monitoring of the contractor's work practices; and reporting to the NYSDEC and NYSDOH.

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities

include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, the installation of soil borings or monitoring wells, and vapor mitigation systems. As such, continuous monitoring will be performed during all ground intrusive actives associated with the project site.

The objectives of the CAMP consist of the following:

- Monitor dust as PM-10 on a real-time, continuous basis such that dust associated with the investigative and remedial actions is maintained below action levels.
- Monitor organic vapors as VOCs on a real-time, continuous basis such that potential vapors associated with the investigative and remedial actions are maintained below action levels.
- Monitor odors and dust emissions (based on olfactory and visible evidence) so that vapors and dust from work areas do not leave the Site.
- In the event that PM-10 or VOC concentrations exceed action levels, Site personnel will be immediately notified so that all necessary corrective actions can be taken.

1.3 Future Actions

Should there be any intrusive work onsite, the CAMP will be implemented to ensure the safety of the field team, tenants, and local residents.

2.0 CAMP PROCECDURES

2.1 VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work will be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment will be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than

25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

2.2 Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m3 above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m3 above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m3 of the upwind level and in preventing visible dust migration.
- All readings will be recorded and be available for State (DEC and DOH) personnel to review.

3.0 Monitoring Equipment

The activities, as part of the CAMP, will be performed by trained and qualified personnel. In addition, Equity personnel who perform air monitoring functions described in this CAMP will be experienced in the use of air monitoring equipment and procedures.

All monitoring equipment will be calibrated on a daily basis (before the monitoring session begins) in accordance with the manufacturer's operation instructions. A dedicated field notebook will be maintained during the course of the CAMP which will provide record of the details, time and dates of calibration and concentrations of the particulate matter and organic vapors throughout the monitoring sessions.

The equipment to be used throughout this CAMP consists of the following:

- TSI DUSTTRAK II Desktop 8530 Dust/Aerosol Monitor with PM-10 filter and Strobe light/Audible Alarm and Data logger. One upwind and one downwind station will be utilized as part of the CAMP.
- MiniRAE 3000 (or equivalent) Photoionization Detector. One upwind and one downwind unit will be utilized as part of the CAMP.

4.0 Controlling Particulate Generation and Migration

It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential-- such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.

The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- Applying water on haul roads;
- Wetting equipment and excavation faces;
- Spraying water on buckets during excavation and dumping;
- Hauling materials in properly tarped or watertight containers;
- Restricting vehicle speeds to 10 mph;
- Covering excavated areas and material after excavation activity ceases; and
- Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using

atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

APPENDIX G

OPERATIONS & MAINTENANCE

O&M MANUAL - SSDS

The O&M Manual provides protocols for the operation and maintenance of a remedial system. The procedures detailed in the O&M Manual do not replace the manufacturer's documents for specific remedial components but rather supplement such documents and provide for a concise, organized reference document for the remedial system and associated remedial components for operation and maintenance.

The O&M Manual includes all as-built drawings and catalog-cuts on all fixed and mobile equipment necessary to operate and maintain the remedial system including any pumps, blower, air strippers, etc. Catalog-cuts will include maintenance procedures, spare parts lists, and any special tool requirement as well as vendor/service contact/local dealer information, including address and telephone numbers.

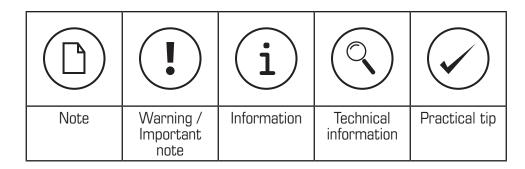
The O&M Manual is to be revised on a periodic basis and must be kept up to date by the remedial party.

Installation and Operation Manual

Item #: 484840 Rev Date: 2016-09-09

HP/FR Series

Inline Radon Fans

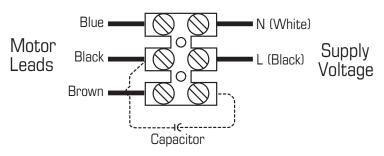


Techical / Customer Support: Support technique et service à la clientèle United States / États-Unis Tel.: 800.747.1762

(\mathbf{I})

DO NOT CONNECT POWER SUPPLY until fan is completely installed. Make sure electrical service to the fan is in the locked "OFF" position.

- 1. Suitable for use with solid-state speed control.
- 2. WARNING! TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS OBSERVE THE FOLLOWING:
- a. Use this unit in the manner intended by the manufacturer. If you have any questions, contact your manufacturer's representative or contact us directly.
- b. CAUTION: Before installation, servicing or cleaning unit, switch power off at service panel and lock the service disconnection means to prevent power from being switched on accidentally. When the service disconnection means cannot be locked, securely fasten a prominent warning device, such as tag, to the panel.
- c. Installation work and electrical wiring must be done by qualified person(s) in accordance with all applicable codes and standards, including firerated construction.
- d. The combustion airflow needed for safe operation of fuel burning equipment may be affected by this unit's operation. Follow the heating equipment manufacturer's guidelines and safety standards such as those published by the National Fire Protection Association (NFPA), the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the local code authorities.
- e. When cutting or drilling into wall and ceiling, do not damage electrical wiring and other hidden utilities.
- f. Ducted fans must always be vented to the outdoors.
- g. If this unit is to be installed over a tub or shower, it must be marked as appropriate for the application and be connected to a GFCI (Ground Fault Circuit Interrupter) protected branch circuit.
- h. NEVER place a switch where it can be reached from a tub or shower.


3. WARNING! Check voltage at the fan to see if it corresponds to the motor name plate.

GUARDS MUST BE INSTALLED WHEN FAN IS WITHIN REACH OF PERSONNEL OR WITHIN SEVEN (7) FEET OF WORKING LEVEL OR WHEN DEEMED ADVISABLE FOR SAFETY.

The ducting from this fan to the outside of the building has a strong effect on the air flow, noise and energy use of the fan. Use the shortest, straightest duct routing possible for best performance, and avoid installing the fan with smaller ducts than recommended. Insulation around the ducts can reduce energy loss and inhibit mold growth. Fans installed with existing ducts may not achieve their rated air flow.

WIRING DIAGRAM

Five (5) Year Warranty

This warranty supersedes all prior warranties

DURING ENTIRE WARRANTY PERIOD:

Fantech will repair or replace any part which has a factory defect in workmanship or material. Product may need to be returned to the Fantech factory, together with a copy of the bill of sale and identified with RMA number.

FOR FACTORY RETURN YOU MUST:

- Have a Return Materials Authorization (RMA) number. This may be obtained by calling Fantech either in the USA at 1.800.747.1762 or in CANADA at 1.800.565.3548. Please have bill of sale available.
- The RMA number must be clearly written on the outside of the carton, or the carton will be refused.
- All parts and/or product will be repaired/replaced and shipped back to buyer; no credit will be issued.

OR

The Distributor may place an order for the warranty part and/or product and is invoiced. The Distributor will receive a credit equal to the invoice only after product is returned prepaid and verified to be defective.

FANTECH WARRANTY TERMS DO NOT PROVIDE FOR REPLACEMENT WITHOUT CHARGE PRIOR TO INSPECTION FOR A DEFECT. REPLACEMENTS ISSUED IN ADVANCE OF DEFECT INSPECTION ARE INVOICED, AND CREDIT IS PENDING INSPECTION OF RETURNED MATERIAL. DEFECTIVE MATERIAL RETURNED BY END USERS SHOULD NOT BE REPLACED BY THE DISTRIBUTOR WITHOUT CHARGE TO THE

Limitation of Warranty and Liability

This warranty does not apply to any Fantech product or part which has failed as a result of faulty installation or abuse, incorrect electrical connections or alterations made by others, or use under abnormal operating conditions or misapplication of the product or parts. We will not approve for payment any repair not made by us or our authorized agent without prior written consent. The foregoing shall constitute our sole and exclusive warranty and our sole exclusive liability, and is in lieu of any other warranties, whether written, oral, implied or statutory. There are no warranties which extend beyond the description on the page hereof. In no event, whether as a result of breach of contract, or

Warning

Fantech products are designed and manufactured to provide reliable performance, but they are not guaranteed to be 100% free from defects. Even reliable products will experience occasional failures and this possibility should be recognized by the user. If these products are

END USER, AS CREDIT TO DISTRIBUTOR'S ACCOUNT WILL BE PENDING INSPECTION AND VERIFICATION OF ACTUAL DEFECT BY FANTECH.

THE FOLLOWING WARRANTIES DO NOT APPLY:

- Damages from shipping, either concealed or visible. Claim must be filed with freight company.
- Damages resulting from improper wiring or installation.
- Damages or failure caused by acts of God, or resulting from improper consumer procedures, such as:
 - 1. Improper maintenance
 - 2. Misuse, abuse, abnormal use, or accident, and
 - 3. Incorrect electrical voltage or current.
- Removal or any alteration made on the Fantech label control number or date of manufacture.
- Any other warranty, expressed, implied or written, and to any consequential or incidental damages, loss or property, revenues, or profit, or costs of removal, installation or reinstallation, for any breach of warranty.

WARRANTY VALIDATION

- The user must keep a copy of the bill of sale to verify purchase date.
- These warranties give you specific legal rights, and are subject to an applicable consumer protection legislation. You may have additional rights which vary from state to state.

warranty or alleged negligence, defect incorrect advice or other causes, shall Fantech be liable for special or consequential damages, including, but not limited to, loss of profits or revenue, loss of use of equipment or any other associated equipment, cost of capital, cost of substitute equipment, facilities or services, downtime costs, or claims of customers of purchase for such damages. Fantech neither assumes or authorizes any person to assume for it any other liability in connection with the sale of product(s) or part(s). Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages so the above limitations and exclusions may not apply to you.

used in a life support ventilation system where failure could result in loss or injury, the user should provide adequate backup ventilation, supplementary natural ventilation, failure alarm system, or acknowledge willingness to accept the risk of such loss or injury. Fantech reserves the right to make technical changes. For updated documentation please refer to www.fantech.net

Fantech®

INSTALLATION & OPERATING INSTRUCTIONS Instruction P/N IN015 Rev E FOR CHECKPOINT IIa TM P/N 28001-2 & 28001-3 RADON SYSTEM ALARM

INSTALLATION INSTRUCTIONS (WALL MOUNTING)

Select a suitable wall location near a vertical section of the suction pipe. The unit should be mounted about four or five feet above the floor and as close to the suction pipe as possible. Keep in mind that with the plug-in transformer provided, the unit must also be within six feet of a 120V receptacle. **NOTE: The Checkpoint IIa is calibrated for vertical mounting, horizontal mounting will affect switchpoint calibration.**

Drill two $\frac{1}{4}$ " holes 4" apart horizontally where the unit is to be mounted.

Install the two 1/4" wall anchors provided.

Hang the CHECKPOINT IIa from the two mouting holes located on the mounting bracket. Tighten the mounting screws so the unit

fits snugly and securely against the wall.

Drill a 5/16" hole into the side of the vent pipe about 6" higher than the top of the unit.

Insert the vinyl tubing provided about 1" inside the suction pipe.

Cut a suitable length of vinyl tubing and attach it to the pressure switch connector on the CHECKPOINT IIa.

CALIBRATION AND OPERATION.

The CHECKPOINT IIa units are calibrated and sealed at the factory to alarm when the vacuum pressure falls below the factory setting and should not normally require field calibration. Factory Settings are: **28001-2** -.25" WC Vacuum **28001-3** -.10" WC Vacuum

To Verify Operation:

With the exhaust fan off or the pressure tubing disconnected and the CHECKPOINT IIa plugged in, both the red indicator light and the audible alarm should be on.

Turn the fan system on or connect the pressure tubing to the fan piping. The red light and the audible alarm should go off. The green light should come on.

Now turn the fan off. The red light and audible alarm should come on in about two or three seconds and the green light should go out.

WARRANTY INFORMATION

Subject to applicable consumer protection legislation, RadonAway warrants that the CHECKPOINT IIa will be free from defective material and workmanship for a period of (1) year from the date of purchase. Warranty is contingent on installation in accordance with the instructions provided. This warranty does not apply where repairs or alterations have been made or attempted by others; or the unit has been abused or misused. Warranty does not include damage in shipment unless the damage is due to the negligence of RadonAway. All other warranties, expressed or written, are not valid. To make a claim under these limited warranties, you must return the defective item to RadonAway with a copy of the purchase receipt. RadonAway is not responsible for installation or removal cost associated with this warranty. In no case is RadonAway liable beyond the repair or replacement of the defective product FOB RadonAway.

THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. THERE IS NO WARRANTY OF MERCHANTIBILITY. ALL OTHER WARRANTIES, EXPRESSED OR WRITTEN, ARE NOT VALID.

For service under these warranties, contact RadonAway for a Return Material Authorization (RMA) number and shipping information. **No returns can be accepted without an RMA.** If factory return is required, the customer assumes all shipping costs to and from factory.

> Manufactured by: RadonAway Ward Hill, MA (978)-521-3703

O&M MANUAL - SVE

The O&M Manual provides protocols for the operation and maintenance of a remedial system. The procedures detailed in the O&M Manual do not replace the manufacturer's documents for specific remedial components but rather supplement such documents and provide for a concise, organized reference document for the remedial system and associated remedial components for operation and maintenance.

The O&M Manual includes all as-built drawings and catalog-cuts on all fixed and mobile equipment necessary to operate and maintain the remedial system including any pumps, blower, air strippers, etc. Catalog-cuts will include maintenance procedures, spare parts lists, and any special tool requirement as well as vendor/service contact/local dealer information, including address and telephone numbers.

The O&M Manual is to be revised on a periodic basis and must be kept up to date by the remedial party.

Operation & Maintenance Manual

ACT PROJECT NUMBER: 9311-BKNY, August 2018 PROJECT NAME: <u>Soil Vapor Extraction System</u>

> 337 Berry Street Brooklyn, NY

Prepared for:

Procidadvanced Cleanup Technologies Inc. 110 Main Street Suite 103 Port Washington, NY 11050

110 Main Street, Suite 103, Port Washington, NY 11050 • Tel: (516) 441-5800 • Fax: (516) 441-5511 Website Address: actenvirons.com

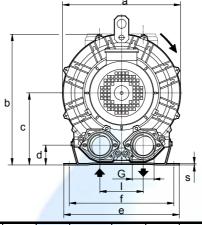
FPZ S.p.A. Via F.Ili Cervi 16 20049 Concorezzo - (MB) - ITALIA

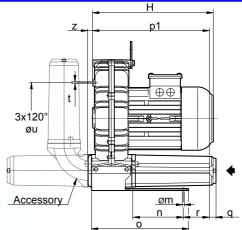
Tel. +39 039 69 09 811 Fax +39 039 60 41 296 www.fpz.com

MS series - **MOR** range

SN 1870-7 1/2

TECHNICAL CHARACTERISTICS


- Aluminium alloy construction
- Smooth operation
- High efficiency impeller
- Maintenance free
- Mountable in any position


OPTIONS

- Special voltages (IEC 38)
- Surface treatments

 $\begin{array}{l} \mbox{Possible alternative positions,} \\ \mbox{please refer to drw SI 1835} \end{array}$

Dimensions in mm. Dimensions for reference only

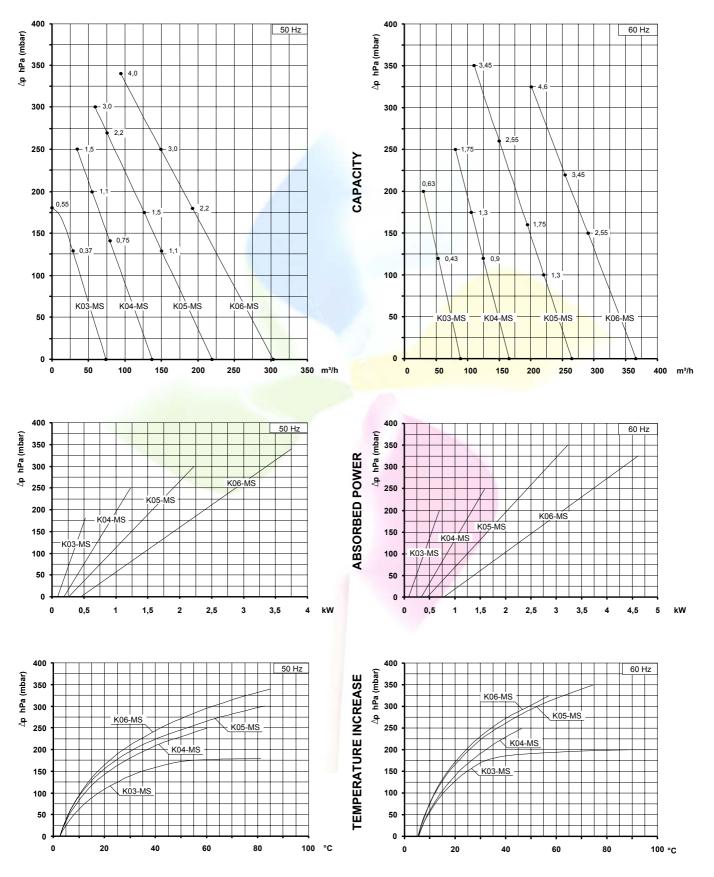
Model	а	b	с	d	е	f	G	I	m	n	ο	р1	q	r	s	t	u	z
K03-MS	241	268	147	43	230	205	G 1" ¼	86	10	83	142	205	18	75	4	M6	140	12
K04-MS	285	315	172	49	255	225	G 1" ½	102	12	95	171	222	18	70	4	M6	175	18
K05-MS	327	365	200	54	320	260	G 2"	120	15	115	265	320	18	98	4	M8	200	19
K06-MS	376	393	205	54	325	290	G 2"	125	15	140	272	334	18	85	4	M8	240	19

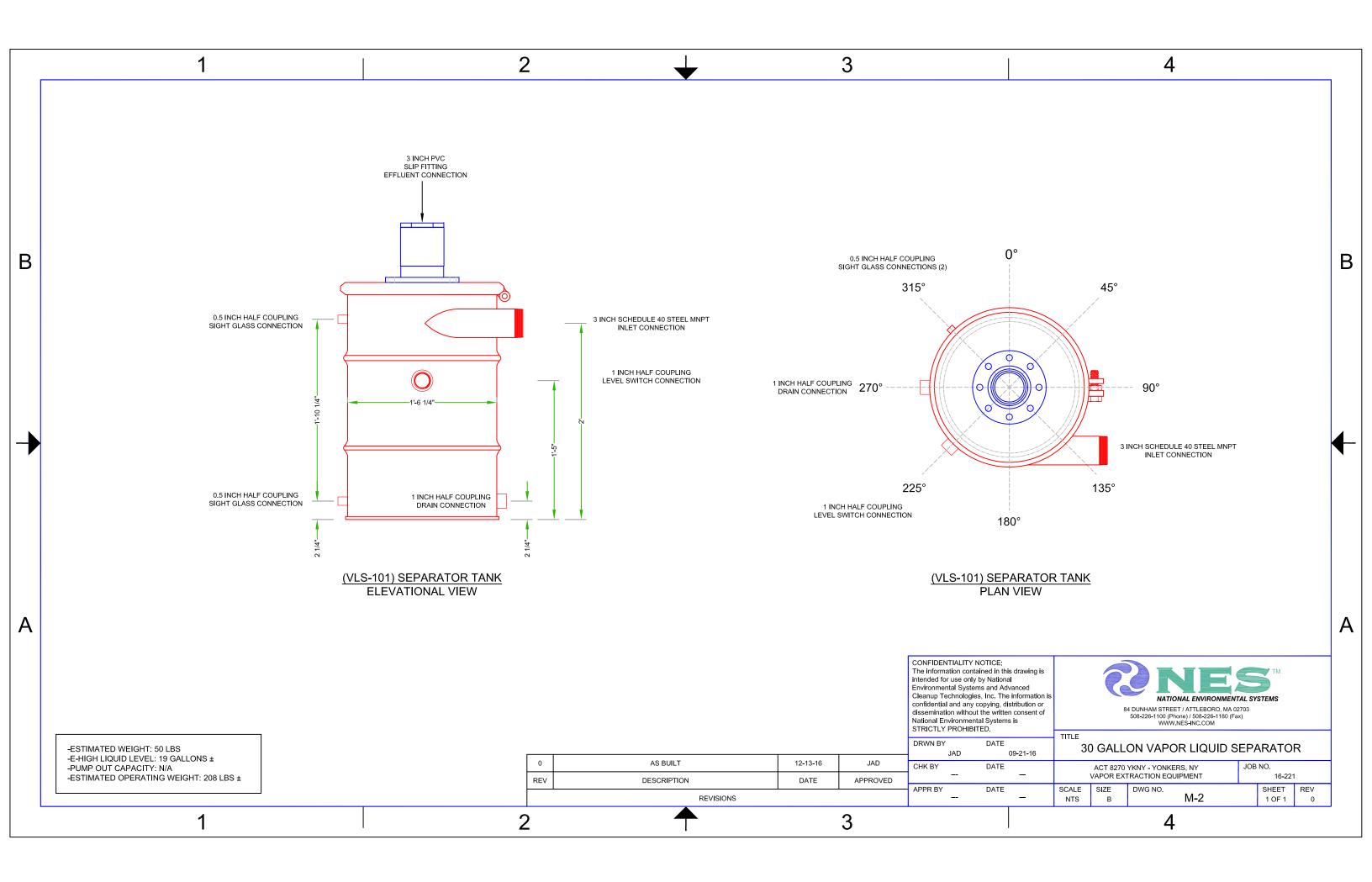
	Maxi	mum	Insta	alled	Maxi	mum	Noise	level	Overall	Weight		
Model	flo	w	pov	ver	differentia	l pressure	Lp d	B (A)	dimensions	•		
	m³/h			w	<mark>∆p</mark> hPa	a (mbar)	(*	1)	H (max)	(max)		
	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz	50 Hz	60 Hz				
	2900 rpm	3500 rpm	2900 rpm	3500 rpm	2900 rpm	3500 rpm	2900 rpm	3500 rpm	mm	Kg		
K03-MS	74	89	0.37	0.43	130	120	59.7	61.7	241	11.0		
100-100			0.55	0.63	180	200	60.0	62.0	241	12.0		
	137	166	0.75	0.9	140	120	62.6	64.6	282	15.8		
K04-MS			1.1	1.3	200	175	62.8	64.8	282	16.5		
			1.5	1.75	250	250	63.0	65.0	310	19.5		
K05-MS	219	265	1.1	1.3	130	100	68.2	70.2	307	22.5		
			1.5	1.75	175	160	68.5	70.5	315	23.5		
			2.2	2.55	270	260	68.8	70.8	345	26.5		
			3.0	3.45	300	350	69.1	71.1	375	30.5		
		366	2.2	2.55	180	150	71.0	73.0	400	31.2		
K06-MS	304		3.0	3.45	250	220	71.3	73.3	400	32.5		
			4.0	4.6	340	325	71.6	73.6	400	41.0		

(1) Noise measured at 1 m distance with inlet and outlet ports piped, in accordance to ISO 3744.

- For proper use, the blower should be equipped with inlet filter and safety valve; other accessories available on request.

- Ambient temperature from -15° to +40°C.


- Specifications subject to change without notice.


LATERAL CHANNEL BLOWERS - COMPRESSORS SCL K03 / K04 / K05 / K06

MS SERIES - MOR RANGE

SN 1870-7 2/2

Curves refer to air at 20°C temperature and 1013 mbar (abs) atmospheric pressure measured at inlet port. Values for flow, power consumption and temperature rise: +/-10% tolerance. Data can change without prior notice.

"L" Style Compact Vacuum Filters CSL Series 3/8" - 3"

Seamless drawn housings

Corrosion resistant carbon steel construction

Stainless steel torsion clips for durability

Technical Specifications

• Vacuum Rating: Medium vacuum service**

• Temp (continuous): min -15°F (-26°C) max 220°F (104°C)

• Filter change out differential: 15-20" H2O over initial Δ P

• Polyester: 99%+ removal efficiency standard to 5 micron

• Paper: 99%+ removal efficiency standard to 2 micron

** See Vacuum Filter Technical Data for vacuum service data.

• O-ring seal

• Powder coat finish

A C Outlet

Benefits

- Large dirt holding capacity and easy field cleaning, especially when mounted horizontally or inverted
- Low pressure design

Options

- Vacuum gauge
- Higher holding capacity configurations available (select models)
- Material/Finishes: stainless steel, epoxy coating
- Support brackets
- Alternative top-to-canister fastening system for low pressure or pulsating systems
- Stainless steel (select models)

Ini	et/	Assembly							Suggested		Replac	ement	Element	
Out	tlet	SCFM	Housing	Assembly I	Part Number	Dimensions - inches				Service HT.	Approx.	Element	Part No.	SCFM
Size	Туре	Rating	Config.	Polyester	Paper	Α	В	С	D	E	Wt. lbs	Polyester	Paper	Rating
3/8"	BSPP	18	Α	CSL-825-039HCB	CSL-824-039HCB	3 3/8	2 1/8	3 3/4	1 13/16	3	0.88	825	824	25
1/2"	NPSC	18	Α	CSL-825-050HCB	CSL-824-050HCB	3 1/2	2 1/4	3 3/4	2	3	0.88	825	824	25
1/2"	NPSC	20	В	CSL-843-050HC	CSL-842-050HC	4	3	5 3/4	2 1/2	3	3	843	842	55
3/4"	NPSC	24	Α	CSL-825-075HCB	CSL-824-075HCB	3 1/2	2 5/16	3 3/4	2	3	0.88	825	824	25
3/4"	NPSC	25	В	CSL-843-075HC	CSL-842-075HC	4	3	5 3/4	2 1/2	3	3	843	842	55
1"	NPSC	35	В	CSL-843-100HC	CSL-842-100HC	4 1/4	3 1/4	5 3/4	2 5/8	3	3	843	842	55
1"	NPSC	40	С	CSL-849-100HC	CSL-848-100HC	6 11/16	4 1/8	7 3/8	4 1/2	5	5	849	848	115
1 1/4"	NPSC	55	В	CSL-843-125HC	CSL-842-125HC	4 1/4	3 1/4	5 3/4	2 5/8	3	3	843	842	55
1 1/4"	NPSC	60	С	CSL-849-125HC	CSL-848-125HC	6 11/16	4 1/8	7 3/8	4 1/2	5	5	849	848	115
1 1/2"	NPSC	80	С	CSL-849-150HC	CSL-848-150HC	6 3/4	4 1/8	7 3/8	4 1/2	5	5	849	848	115
2"	NPSC	175	D	CSL-851-200HC	CSL-850-200HC	10 1/4	4 1/2	8 3/4	5	9	15	851	850	290
2 1/2"	EDT	210	D	CSL 851 250HC	CSI 850 250HC	10 11/16	5 1/8	8 3/4	5 1/2	0	15	851	850	290
3"	FPT	300	Е	CSL-239-300C	CSL-238-300C	15 3/4	8 13/16	13 1/4	8 11/16	11	33	239	238	570

See Vacuum Filter Technical Data section for sizing guidelines.

Note: Model offerings and design parameters may change without notice. See www.solbergmfg.com for most current offering.

SOLBERG

Inlet Vacuum Filters Maintenance Manual

www.solbergmfg.com

Note: Please read the maintenance instructions given by the OEM for the machinery first. The OEM's manual should be adhered to in order to protect the equipment. Solberg Manufacturing, Inc has made every effort to make sure that these instructions are accurate but is not responsible for any typos, slight variations or for human errors that may occur.

Maintenance Manual

SOLBERG Inlet Vacuum Filters

<u>CONTENTS</u>

Section A

Introduction	og.	3
	- 3-	-

Section B

General I	nformation	
1.	Identification of Solberg Filters	pg. 3
2.	Filtration Rules of Thumb	pg. 4
3.	Element Specifications	pg. 6
4.	Element Cleaning	pg. 7

Section C

Procedure	es	
1.	Installation	pg. 8
2.	Disconnecting Canister Top from Base	pg. 8
3.	Removing Element for Service/Maintenance	
4.	Securing Element	pg. 9
5.	Securing Canister Top to Canister Base	pa. 9

Section D

Maintena	ance Recommendations		
1.	General	pg.	10
2.	Spare Parts List	pg.	10

*For Further Information Please Call: 630-773-1363

Page 2 Solberg Manufacturing, Inc., 1151 Ardmore Itasca, IL 60143 USA Ph: 630.773.1363 Fax: 630.773.0727 Email: sales@solbergmfg.com Web: www.solbergmfg.com Rev: MMVF-910

Section A

INTRODUCTION

The purpose of this manual is instruction on the proper assembly and care of Solberg inlet vacuum filters.

WARNING

This manual must be read and thoroughly understood before using and caring for this air filter. Failure to comply could result in explosion, product/system contamination or personal injury.

This manual should be used as a supplement to the user's understanding of the proper care needed to maintain a safe and dependable air filter. It is the responsibility of the user to interpret and explain all instructions to persons who do not read or understand English <u>BEFORE</u> they are allowed to maintain and use this filter.

This manual should be readily available to all operators responsible for operation and maintenance of the vacuum inlet filters.

We thank you for selecting products from Solberg Manufacturing, Inc. We are confident that our superior filter designs will exceed your application requirements.

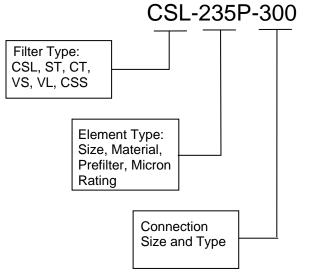
Section B

GENERAL INFORMATION

1. Identification of Solberg Vacuum Inlet Filters.

All Solberg inlet vacuum air filters should have an identification label/nameplate that gives the following information:

Assembly Model # Replacement Element


(The exception is OEM supplied units. In this case please enter the OEM part numbers below.)

Fill in the actual nameplate data from your new Solberg inlet filter(s):

No.	Filter Model Number	Replacement Element
1		
2		
3		
4		
5		
Table 1		•

The model number designates the filter type, the original element configuration and housing connection size. For example, the following part number identifies the filter as being a 'CSL' design filter with a 235 element with prefilter and 3" MPT connection size:

2. Filtration Rules of Thumb

General: For peak output performance from a compressor, blower, vacuum pump, engine, or any other machine that consumes air, one must have clean, unrestricted air. Proper filtration can help stabilize the working environment within rotating equipment even when the external conditions may be quite severe. A critical component in creating the right working conditions is filter sizing. With the properly sized filter, equipment will run smoothly over its entire expected operating life.

A major factor in filtration and filter sizing is air velocity through the filter media. Generally, the slower the velocity of air through a media the higher the filter efficiency and, conversely, the lower the pressure drop. Therefore, the primary

goal in filter sizing is to optimize the velocity of air through the media (sometimes called face velocity).

Rule of Thumb #1: Always begin with the filter cartridge requirements when sizing a filter. Once the appropriate element has been selected then move on to the housing requirements.

Rule of Thumb #2: Always ask or specify a filter based on a micron rating **with** filtration efficiencies. As an example, stating a requirement for a 1-micron filter is misleading because no efficiency rating has been specified. A 1-micron filter at 95-% efficiency may be less efficient than a 5-micron filter at 99% efficiency. For proper air system performance in light and industrial duty environments, a filter with a minimum of 99% filtration efficiency at 5 microns is required.

Rule of Thumb #3: Size your filter correctly by understanding the impact air velocity through a media has on efficiency and pressure drop. Maintain the suggested Air-to-Media ratios listed below based on the external environment listings and Filtration efficiency needs.

Filtration Efficiency Requirements (99+% efficiency)	Environmental Conditions	Air to Me	edia Ratio
Industrial Grade 2-micron Paper	al Grade 2-micron Industrial Duty (clean, office/warehouse-like) Severe Duty (workshop, factory-like)		(51m ³ /h)/cm ²
			(25.5m ³ /h)/cm ²
	Extreme Duty (Foundry, Construction-like)	10 CFM/ft ²	(17m ³ /h)/cm ²
<i>Industrial Grade</i> 5-micron Polyester	Industrial Duty (clean, office/warehouse-like)	50 CFM/ft ²	(85m ³ /h)/cm ²
	Severe Duty (workshop, factory-like)	40 CFM/ft ²	(68m ³ /h)/cm ²
	Extreme Duty (Foundry, Construction-like)	25 CFM/ft ²	(42.5m ³ /h)/cm ²
<i>Industrial Grade</i> 1-micron Polyester	Severe Duty (Foundry, Construction-like)	10 CFM/ft ²	(17m ³ /h)/cm ²
<i>Industrial Grade</i> 0.3-micron HEPA Glass @ 99.97%	Industrial Duty (clean office/warehouse-like)	10 CFM/ft ²	(17m ³ /h)/cm ²
efficiency	Severe Duty (workshop, factory-like)	7 CFM/ft ²	(12m ³ /h)/cm ²
	Extreme Duty (Foundry, Construction-like)	5 CFM/ft ²	(8.5m ³ /h)/cm ²

Table 2

Rule of Thumb #4: Pressure drop is also caused by the dirt holding capacity of the element. As the element fills up with dirt, the pressure drop increases. It is important to document the pressure drop across a given filter when it is new and then clean or replace it when the pressure drop increases by 10" to 15" / 250-380mm H₂O from the original reading.

Rule of Thumb #5: The inlet connection greatly influences the overall pressure drop of the filter system. To minimize the restriction contributed by an inlet filter, a velocity of 6,000 ft/min (10200m³/h) or less is suggested through the outlet pipe. The table below lists the suggested flows based on pipe size:

Pipe Size (inches)	Max Airflow		Pipe Size (inches)	Max Airflow		Pipe Size (inches)	Airf	low
1/4"	6 CFM	10m ³ /h	1 ¼"	60 CFM	102m ³ /h	6"	1,100 CFM	1870m ³ /h
3/8"	8 CFM	14m ³ /h	1 1⁄2"	80 CFM	136m ³ /h	8"	1,800 CFM	3060m ³ /h
1/2"	10 CFM	17m ³ /h	2"	135 CFM	230m ³ /h	10"	3,300 CFM	5610m ³ /h
3/4"	20 CFM	34m ³ /h	2 ½"	195 CFM	332m ³ /h	12"	4,700 CFM	7990m ³ /h
1"	35 CFM	60m ³ /h	3"	300 CFM	510m ³ /h	14"	6,000 CFM	10200m ³ /h
			4"	520 CFM	884m ³ /h			
			5"	800 CFM	1360m ³ /h			

Table 3

*Note: This information is for general use only. A qualified engineer must properly design each system.

3. Element Specifications

Temperature Range: -15° to 220°F / -26° to 105°C Filter Change-Out Differential: 10" to 15" / 250-380mm H₂O Over Initial Delta P

Media	Micron Rating
Standard Paper	99+% @ 2 micron
Standard Polyester	99+% @ 5 micron
"S" Series Wire Mesh	Epoxy Coated Wire Mesh
"Z" Series Polyester	99+% @ 1 micron
"HE" Series HEPA	99.97% @ 0.3 microns
"U" Series Polyester	99+% @ 25 micron
"W" Series Polyester	99+% @ 100 micron
"S2" Series	Stainless Steel Wire Mesh
"AC" & "ACP" Series	N/A
"Y" Series Polypropylene	99+% @ 5 micron

Table 4

Temperature Range: -15° to 385°F / -26° to 196°C Filter Change-Out Differential: 10" to 15" / 250-380mm H₂O Over Initial Delta P

Media	Micron Rating
"MX" & "MXD" Series – Nomex Cloth	99+% @ 5 micron

Table 5

4. Element Cleaning - Inlet Filtration

Solberg elements should be cleaned or replaced, once the pressure drop reaches 15 to 20-inches water column (380 - 500mm WC) above the initial pressure drop of the installation.

The decision to clean the element rather than replace it is left to the discretion of the operator. Any damage which results from by-pass or additional pressure drop created by element cleaning is the sole responsibility of the operator.

WARNING

The overall performance of a filter element is altered once cleaned.

The initial pressure drop after cleaning will be greater than the original, clean pressure drop of the element.

After each subsequent cleaning, the initial pressure drop will continue to increase.

Under all circumstances, the initial pressure drop of the element needs to be maintained at less than 20-inches water column (500mm WC).

Cleaned elements that exceed 20-inches water column (500mm WC) at start-up should be replaced with new elements.

With many types of equipment, the maximum pressure drop allowed will be dictated by the ability of the equipment to perform to its rated capacity. Under all

Page 7 Solberg Manufacturing, Inc., 1151 Ardmore Itasca, IL 60143 USA Ph: 630.773.1363 Fax: 630.773.0727 Email: sales@solbergmfg.com Web: www.solbergmfg.com Rev: MMVF-910

circumstances, the operator should avoid exceeding the manufacturer's recommended maximum pressure drop for their specific equipment.

- A. **Polyester Element**: The polyester element may be washed in warm soapy water, vacuumed, gently blown out or replaced. The element should be dry before reinstallation. The element should be replaced after a maximum of three cleanings.
- B. *Paper Element*: The paper element may be lightly blown with low pressure air. It is disposable and in most cases should be replaced with a new element.
- C. **Polyurethane Prefilter**: The prefilter may be washed as a sponge or replaced to give the element a longer service life.
- D. **Epoxy Coated Wire Mesh and Stainless Steel Wire Mesh Elements**: Cleaning instructions similar to polyester, except mild solvents may be used.
- E. Activated Carbon Element: Not cleanable
- F. **Polypropylene Element**: Cleaning instructions similar to polyester
- G. Nomex Cloth Element: Cleaning instructions similar to polyester

If you are not confident that the integrity of the element was maintained during cleaning, it is recommended that a new element be installed. Also, spare parts such as gaskets, wing nuts and washers can be supplied upon request.

Section C

PROCEDURES

1. Installation.

- A. Maximum inlet gas stream temperature for most Solberg inlet vacuum filter products is 220°F / 105°C. Temperatures in excess of this could cause damage to elements, media and elastomers.
- B. Direction of flow is typically from the outside of the element to the inside of the element. Most products have arrows indicating direction of flow on inlet and outlet ports.
- C. Ensure that pipe/flange connections are adequately sealed so the potential for leaks is reduced to a minimum.

2. Disconnecting canister top from canister base.

A. ST/CT/Small CSL: Release wire-form clips or loosen wing nut on "claw" bolts.

- B. Large CSL: Loosen wing nut or hex head on T-bolts.
- C. CSS: Twist upper housing to release.
- D. VS/VL: Remove V-clamp by loosening Hex Nut or T-bolt and releasing.
- E. Lift off canister top.

3. Removing element for service/maintenance.

- A. Remove retaining hex head/wing-nut and washer carefully, and then remove element. Some elements will have a top plate that should also be removed.
- B. Clean sealing surfaces of housing, top & base plates, and element endcaps so that they are free of dirt or any other particulate.

WARNING

Failure to comply with these instructions may result in system or pump contamination.

4. Securing Element.

- A. Place new or cleaned element evenly on base plate. Be sure element seats properly on base and there is no dirt or particulate present on sealing surfaces.
- B. Place top plate (if necessary) on element by centering on tap bolt.
- C. Secure washer and wing nut to end cap (or top plate) and tap bolt. Element must be tightly secured. Note: DO NOT over tighten!

WARNING

Defective installation may cause system or pump contamination. Use only genuine Solberg replacement parts.

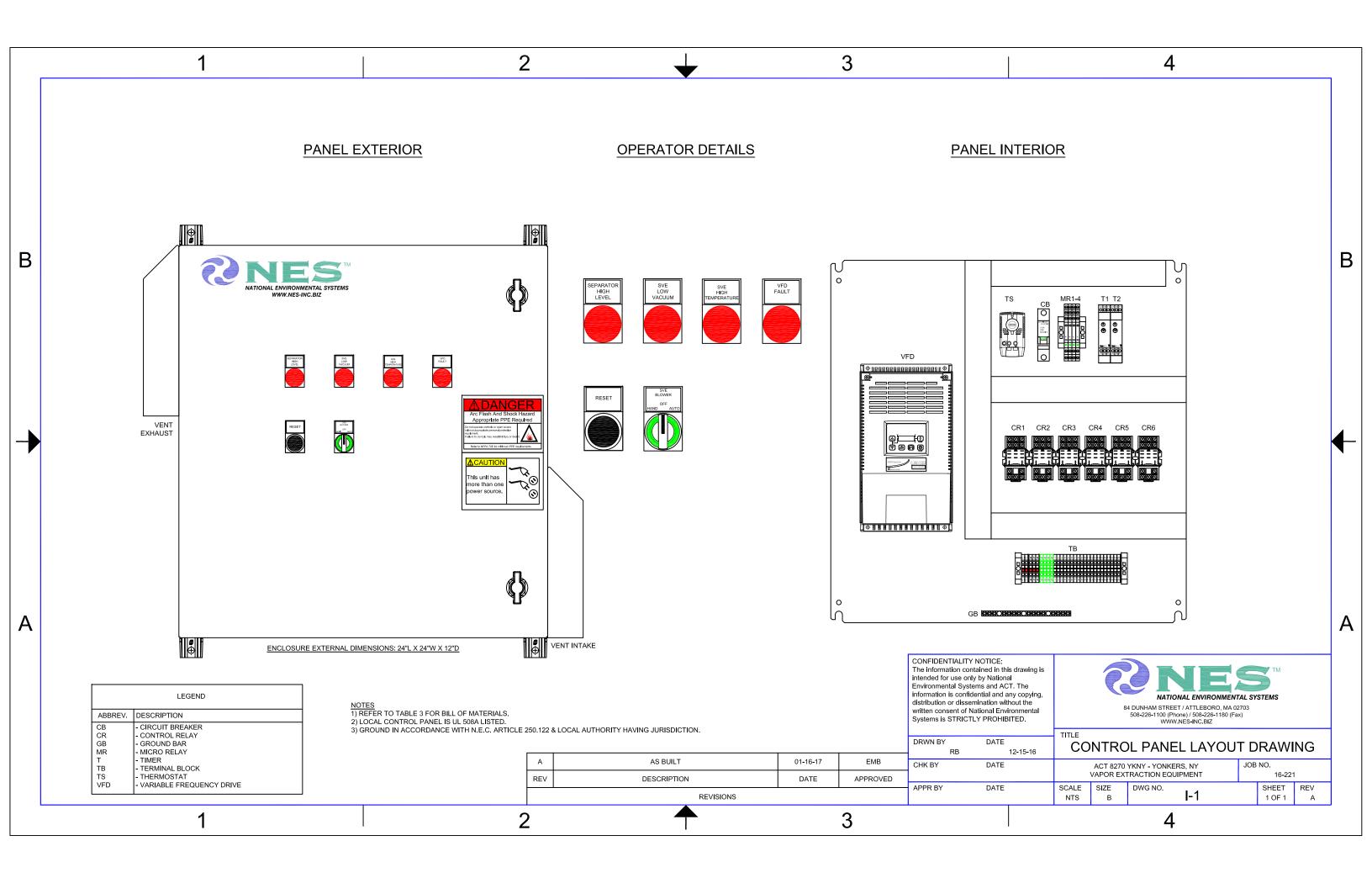
- 5. Securing canister top to canister base.
 - A. Make sure all surfaces are free from dust and other particulate.

SOLBERG

Page 9 Solberg Manufacturing, Inc., 1151 Ardmore Itasca, IL 60143 USA Ph: 630.773.1363 Fax: 630.773.0727 Email: sales@solbergmfg.com Web: www.solbergmfg.com Rev: MMVF-910

- B. Hemisphere o-ring must rest evenly along canister/casting base o-ring groove.
- C. ST/CT/Small CSL: Hold canister housing against o-ring or sealing ring on main filter head. Re-fasten wire-form clips or "claw" bolts.
- D. Large CSL: Replace housing top plate. Feed T-bolts into corresponding slots and tighten evenly around perimeter. Note: Do NOT over tighten!
- E. VS/VL: Secure V-clamp by disconnecting hex nut or T-bolt portion and placing V-clamp along the diameter of canister o-ring groove. Fasten T-bolt and secure tightly. V-CLAMP LEGS MUST REST UNIFORMLY ALONG ENTIRE O-RING GROOVE.
- F. CSS: Reassemble top housing to bottom housing by aligning tabs and turning into place.

Section D

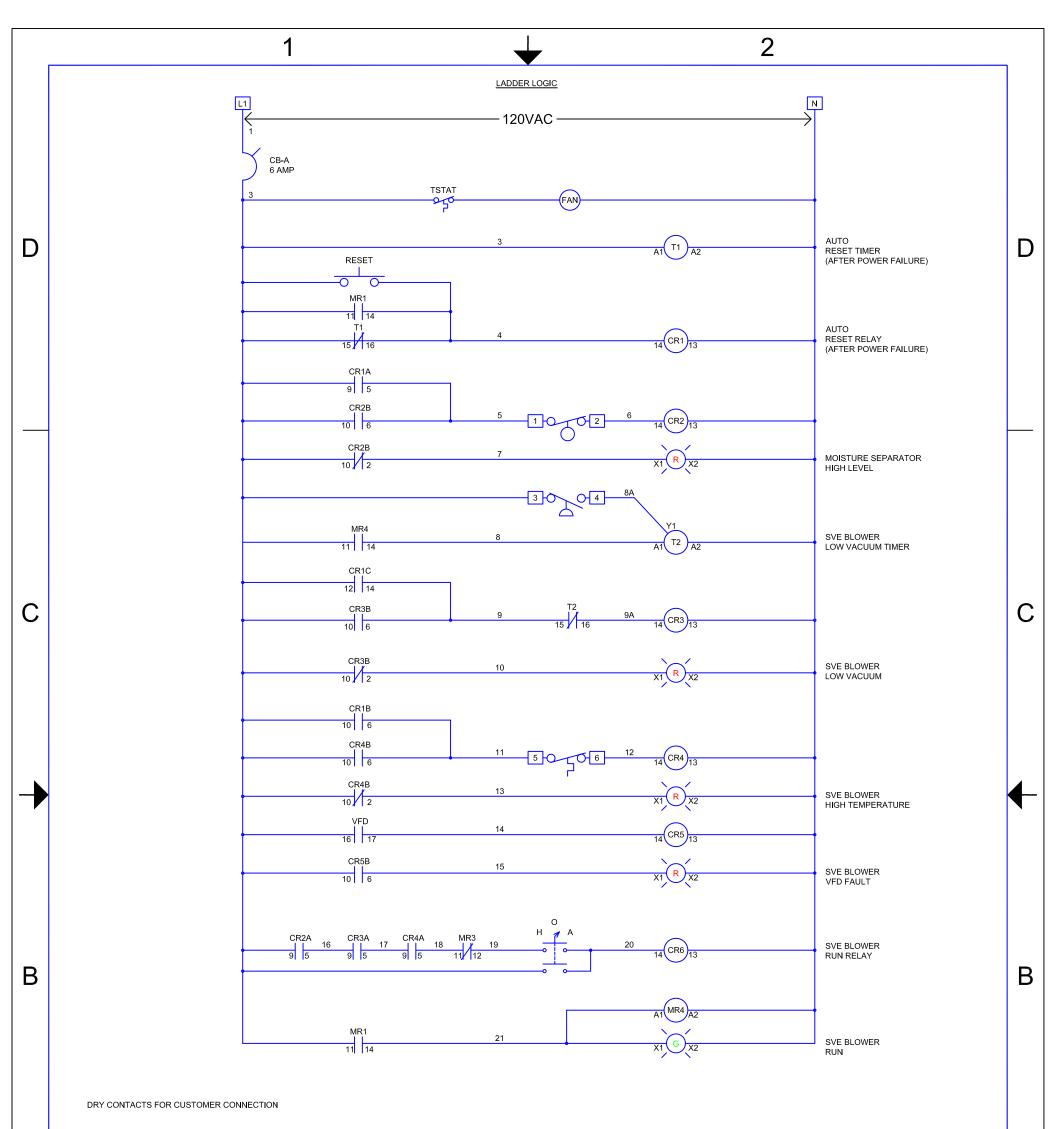

MAINTENANCE RECOMMENDATIONS

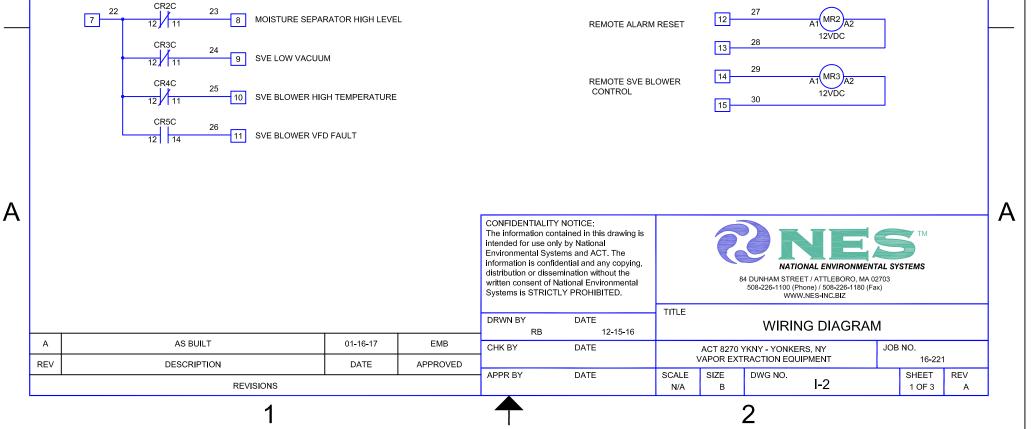
- Pressure drop readings are recommended to have an effective air filter. Always document initial pressure drop during start-up when element is clean. Replacement cartridge is needed when system experiences 10" to 15" / 250-380mm H₂O higher pressure drop above the initial reading. Refer to page 4 for instructions.
- 2. Always check replacement cartridge gaskets to insure they are adhered uniformly along the end caps during handling. If not, contact Solberg Manufacturing, Inc. immediately. Do not modify or change from Solberg specified parts!
- 3. Always check inlets/outlets, element base and its components when replacing element to insure cleanliness. Wipe clean if necessary.
- 4. Operate only when a proper seal exists.
- 5. VS/VL: Never operate without absolute assurance that V-clamp is secured correctly along entire diameter of canisters. Check along V-clamp for wear. Replace if any distortion occurs due to handling and usage.

SPARE PARTS

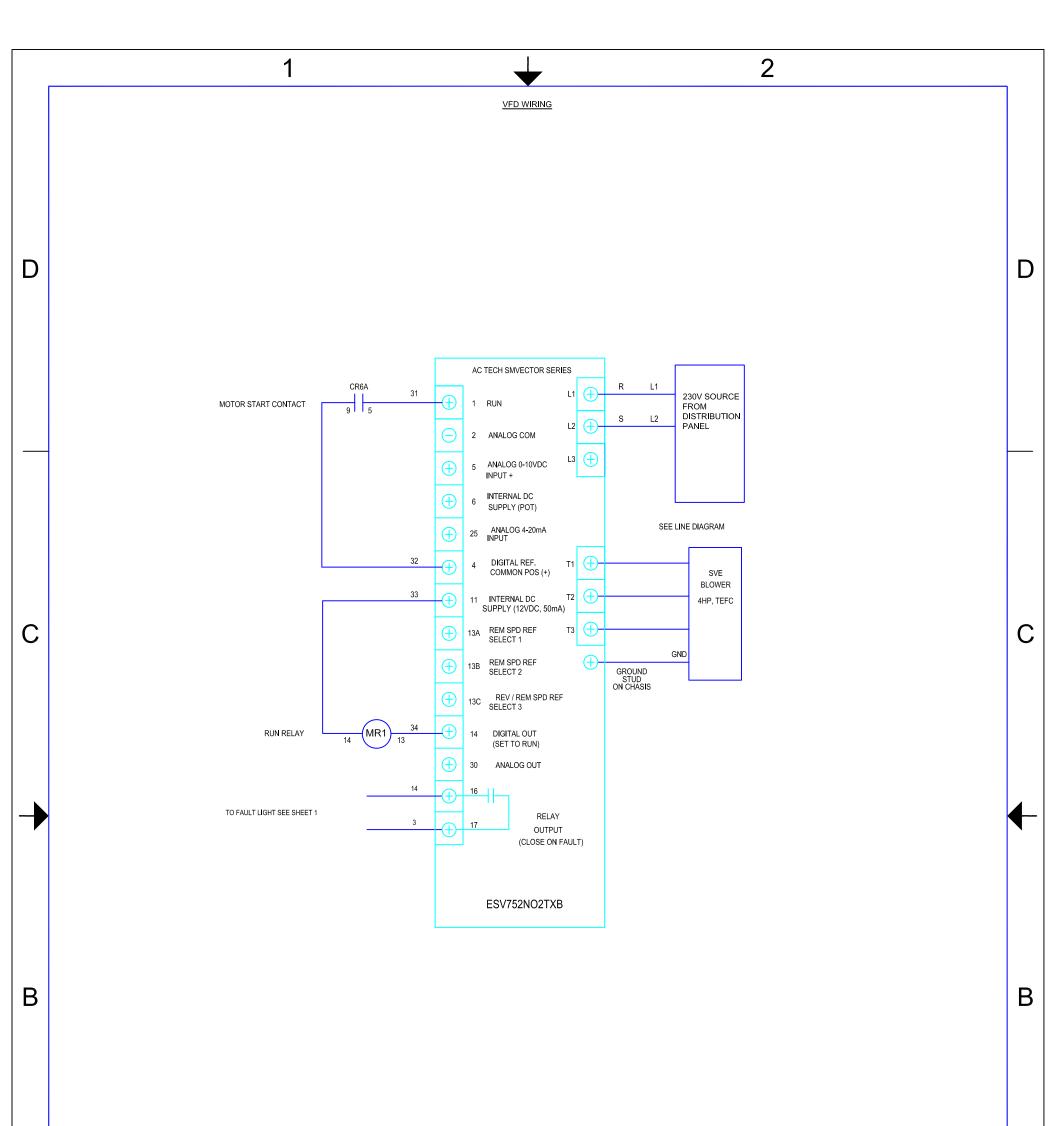
Contact your Solberg Representative for spare part model numbers.

TABLE 3 PANEL BILL OF MATERIALS

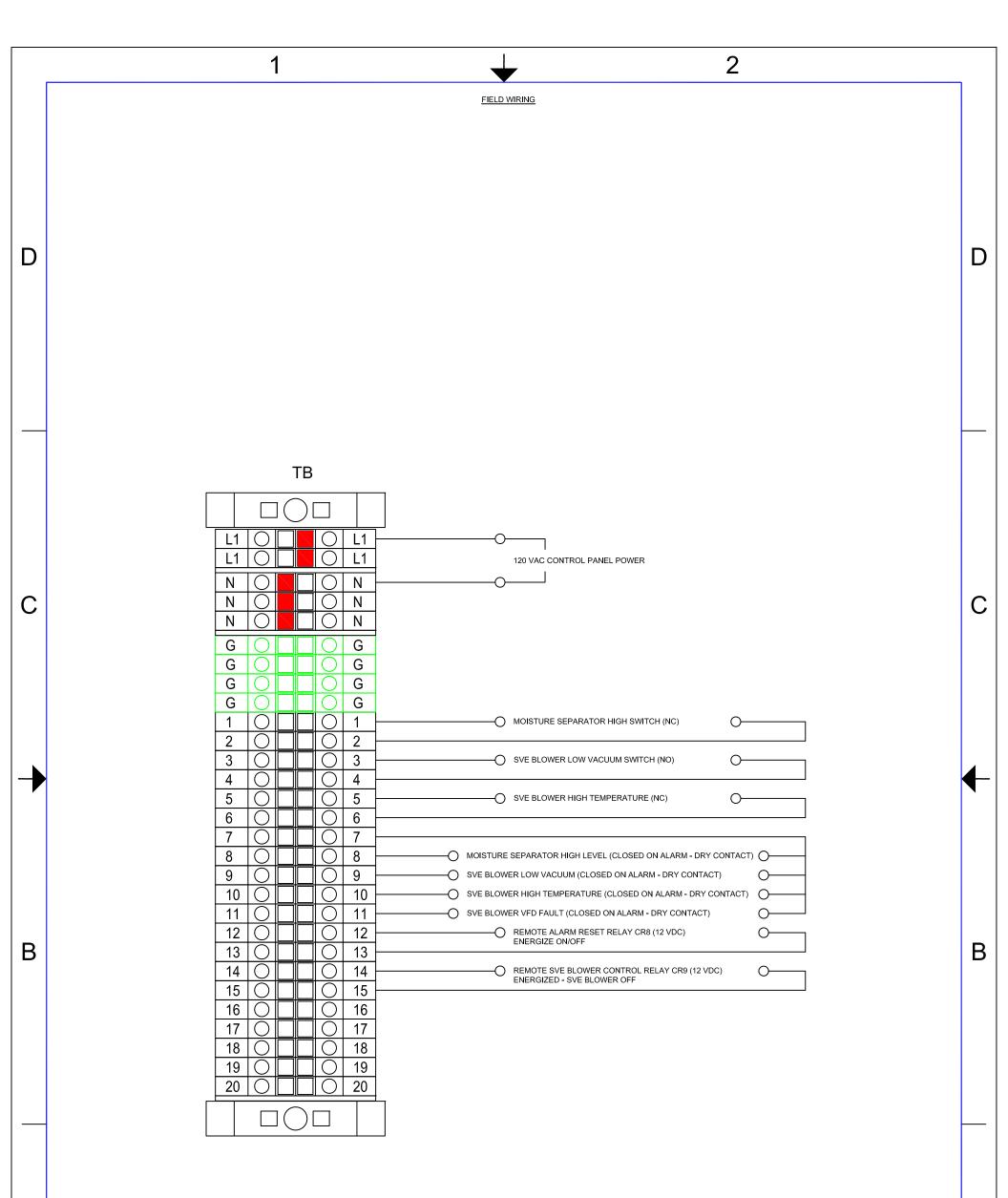

REVISION A

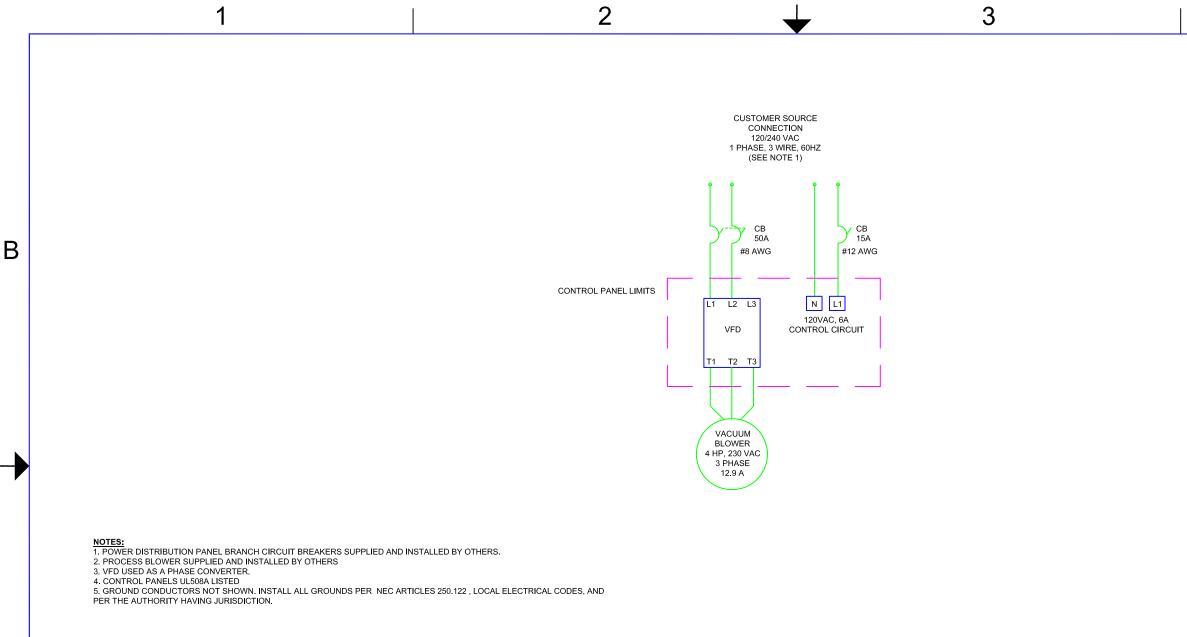

JANUARY 2017

16-221


ACT 8270 YKNY - YONKERS, NY / VAPOR EXTRACTION EQUIPMENT

TAG	QUANTITY	ІТЕМ	MODEL	MANUFACTURER
ENCL	1	CONTROL PANEL ENCLOSURE 24 X 24 X 12 - MILD STEEL/GRAY	EN4SD242412GY	HAMMOND
ENCL	1	BACK-PANEL, 24 X 24 - STEEL/WHT	EP2424	HAMMOND
ENCL	1	MOUNTING FEET SET OF 4 - ZINC PLATED	EZPMFHD	HAMMOND
VF	1	VENT FAN 105CFM 115VAC 4.7" W/ FILTER GRILL 24 IN CORD	DNFF120BK115	HAMMOND
VF	1	VENT FAN ADJUSTABLE 30-140F BI-METAL TEMP SWITCH N.O.	SKT011419NO	HAMMOND
VF	2	VENT FAN RAINHOOD NEMA 3R	RH20000GY	HAMMOND
VF	2	VENT FAN GRILL / SOLID COVER KIT	RHA20000G	HAMMOND
СВ	1	CIRCUIT BREAKER 6A 1-POLE 120/240 VAC 1-PHASE 10KA DIN-MOUNT	MG24430_	SQUARE D
VFD	1	VFD, 10 HP 208/230VAC 3-PHASE 33 AMPS	ESV752N02TXB	AC TECH
MR1-3	3	RELAY 1 POLE 6-24VDC	RV8H-L-D24	IDEC
MR4	1	RELAY 1 POLE 120VAC	RV8H-L-AD110	IDEC
CR1-6	6	RELAY 3PDT 120VAC W/INDICATOR LIGHT	RH3B-UL-AC 120V	IDEC
CR1-6	6	RELAY SOCKET FOR RH3B	SH3B- 05	IDEC
Т	2	TIMER ON-DELAY	RE17RAMU	SQUARE D
РВ	6	LEGEND PLATE HOLDER	ZBZ33	SQUARE D
LT	4	PILOT LIGHT HEAD, RED	ZB5AV043	SQUARE D
LT	4	MOUNTING BASE,120V RED PROTECTED LED	ZB5AVG4	SQUARE D
SW	1	PUSH BUTTON OPERATOR NON-ILLUM BLACK	ZB5AA2	SQUARE D
SW	1	3 POSITION SELECTOR SWITCH ILLUM. GREEN MOMENTARY	ZB5AK1733	SQUARE D
SW	1	MOUNTING BASE 120V GREEN PROTECTED LED	ZB5AVG3	SQUARE D
ТВ	25	TERMINAL BLOCK SCREW CLAMP 20 AMP 600 V GRAY	NSYTRV22	SQUARE D
ТВ	3	TERMINAL BLOCK END BARRIERS GRAY	NSYTRAC22	SQUARE D
ТВ	2	TERMINAL BLOCK END ANCHORS	NSYTRAABV35	SQUARE D
GB	1	LOAD CENTER GROUND BAR 15 TERMINALS	PK15GTA	SQUARE D





A			CONFIDENTIALITY The information con intended for use only Environmental Syste information is confid distribution or disser written consent of N Systems is STRICTI	ATIONAL ENVIRONMENTAL SYSTEMS 84 DUNHAM STREET / ATTLEBORO, MA 02703 508-226-1100 (Fax) WWW.NES-INC.BIZ						A			
				T	DRWN BY RB	DATE 12-15-16	TITLE			G DIAGR	AM		
	A REV	AS BUILT	01-16-17 DATE	EMB APPROVED	СНК ВҮ	DATE	ACT 8270 YKNY - YONKERS, NY JOB NO. VAPOR EXTRACTION EQUIPMENT 16-221		21				
	REVISIONS			APPR BY	DATE	SCALE N/A	SIZE B	DWG NO.	I-2	SHEET 2 OF 3	REV A		
	1				$\mathbf{\uparrow}$				2				-

A					intended for use only Environmental Syster information is confid distribution or disser	tained in this drawing is y by National ms and ACT. The ential and any copying, mination without the ational Environmental			84 DUNHAM STRE 508-226-1100 (Pl	ONAL ENVIRONI	MENTAL SYSTEMS MA 02703	и	A
				1	DRWN BY RB	DATE 12-15-16	TITLE		WIRIN	IG DIAGR	RAM		
	А	AS BUILT	01-16-17	EMB	СНК ВҮ	DATE			YKNY - YONKEI		JOB NO.		1
	REV	DESCRIPTION	DATE	APPROVED					TRACTION EQU	IPMENT		6-221	_
	I	REVISIONS	1	1	APPR BY	DATE	SCALE N/A	SIZE B	DWG NO.	I-2	SHE 3 O		
		1			$\mathbf{\uparrow}$				2				_

Α

	REV	DESCRIPTION	DATE	APPROVED	APPR BY	DATE
	А	AS BUILT	01-16-17	ЕМВ	СНК ВҮ	DATE
					DRWN BY RB	DATE 12-15-
					Environmental Sys Cleanup Technolog confidential and an dissemination witho National Environme STRICTLY PROHI	gies. The informatio y copying, distributi out the written cons ental Systems is
					The information co intended for use or	ntained in this draw nly by National
						intended for use or Environmental Sys Cleanup Technolar onfidential and an dissemination with National Environme STRICTLY PROHI DRWN BY RB

			4					
								В
								A
s drawing is I vanced		2	2 6	JE		ТМ		
rmation is stribution or consent of s is		84	DUNHAM STREI 508-226-1100 (Pr	DNAL ENVIRONMEN ET / ATTLEBORO, MA none) / 508-226-1180 (F /.NES-INC.BIZ	02703	STEMS		
12-15-16	TITLE				N			
		VAPOR EX1	YKNY - YONKE TRACTION EQU	RS, NY IIPMENT	JOB	NO. 16-22		
	SCALE N/A	SIZE B	DWG NO.	E-1		SHEET 1 OF 1	REV A	
			4	•				

VFD SETTINGS NES 16-221 REVISION A - (JANUARY, 2017) ACT 8270 YKNY - YONKERS, NY / VAPOR EXTRACTION EQUIPMENT

CODE#	NAME	SELECTION	DESCRIPTION
P100	START CONTROL SOURCE	1	TERMINAL STRIP
P101	STANDARD REFERENCE SOURCE	0	KEYPAD
P102	MINIMUM FREQUENCY	30	Hz
P104	ACCELERATION TIME 1	3	SECONDS
P108	MOTOR OVERLOAD	44	PERCENTAGE 12.9 / 29 = .4448 (44%)
P111	STOP METHOD	0	COAST
P140	RELAY OUTPUT (TB16-17)	4	INVERSE FAULT
P142	TB-14 OUTPUT	1	RUN SIGNAL

SETPOINTS LOADED BY NES - VIA VFD INTEGRAL KEYPAD

PLEASE NOTE: PARAMETERS NOT LISTED REMAIN AT FACTORY DEFAULT

Type 4 Mild Steel Wallmount Enclosure Eclipse Series

Hinge Door with Quarter Turn/Handle

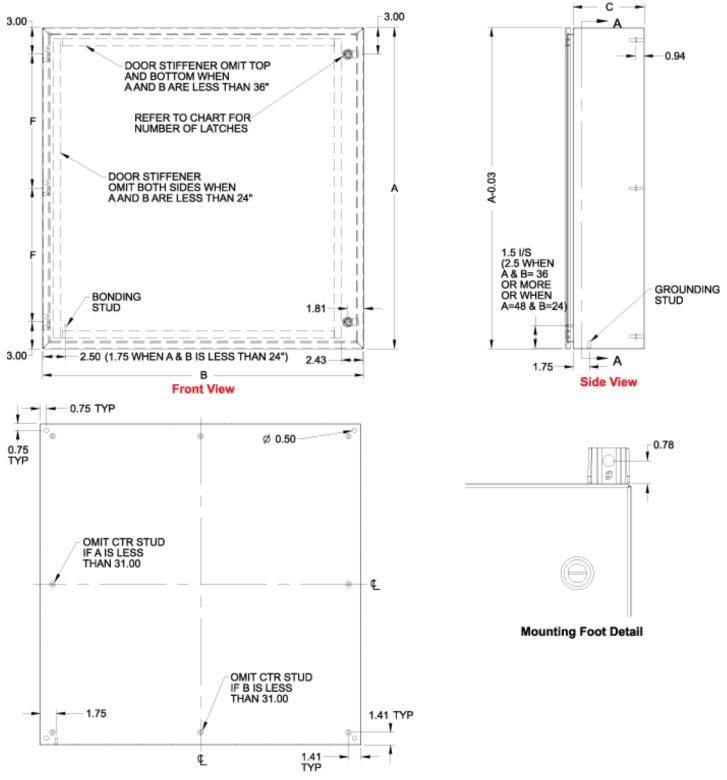
HAMMOND MANUFACTURING.

Application

- Designed to enclose electrical and/or electronic equipment and protect against harsh, industrial environments for wallmount applications.
- Impressive styling features like hidden hinges, attractive latching systems make the Eclipse a suitable addition to any high-tech equipment installation.
- A wide range of sizes and practical accessories make this product line a complete package.

Standards

- UL 508 Type 3R, 4, and 12
- CSA Type 3R, 4, and 12
- Complies with
 - NEMA Type 3R, 4, and 12
 - IEC 60529, IP66


Construction

- Formed 14 or 16 gauge steel.
- Smooth, continuously welded seams ground smooth.
- Door stiffeners are provided where required for increased strength and rigidity designed to also permit additional mounting options.
- Formed lip on enclosure to exclude flowing liquids and contaminants.
- Door latches feature the added safety of quarter turn slot requiring use of tool for opening.
- Doors may be easily removed for modifications and are interchangeable.
- Seamless poured-in place gasket.
- Collar studs provided for mounting inner panel.
- Includes hardware kit with panel mounting nuts and sealing washers for wall mounting holes.
- Bonding stud provided on door and grounding stud installed in enclosure.
- Hinges are constructed from 304 stainless steel.
- Hinge pins are stainless steel.
- Quarter turn latch and multi-point handle (key lockable) are zinc diecast with black epoxy finish.
- Door alignment guide provided on 36" wide enclosures.

Finish

• Cover and enclosure are phosphatized and finished with a recoatable powder inside and out with choice of ANSI 61 smooth Gray (GY) or RAL7035 textured light gray (LG).

Accessories

SECTION A-A

(RAL 7035 Light (ANSI 61 Gray)ABCGaugeQtyTypePart No.DEHingesF(Ibs)EN4SD12126GYEN4SD12126LG12.0012.006.00161Qtr TurnEP121210.2010.202<6.0012EN4SD12246GYEN4SD12246LG12.0024.006.00161Qtr TurnEP122410.2022.20218.0024EN4SD16126GYEN4SD16126LG16.0012.006.00161Qtr TurnEP161214.2010.20210.0010EN4SD16166GYEN4SD16166LG16.0016.006.00161Qtr TurnEP161614.2014.20210.0019EN4SD16206GYEN4SD16206LG16.0020.006.00161Qtr TurnEP161214.2018.20210.0022				Overal	I				Opt.					Ship
(ANSI 61 Gray) Gray) A B C Gauge Qty Type Part No. D E Hinges F (Ibs) EN4SD12126GY EN4SD12126LG 12.00 12.00 6.00 16 1 Qtr Turn EP1212 10.20 10.20 2 6.00 12 EN4SD12246GY EN4SD12246LG 12.00 24.00 6.00 16 1 Qtr Turn EP1224 10.20 22.20 2 18.00 24 EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1612 14.20 10.20 2 10.00 16 1 EN4SD16126GY EN4SD16166LG 16.00 16.00 6.00 16 1 Qtr Turn EP1612 14.20 10.20 2 10.00 16 EN4SD16126GY EN4SD16126LG 16.00 16.00 16 1 Qtr Turn EP1616 14.20 12.00 2 10.00 19 EN4SD16206GY EN4SD16206LG 16.00 2.000 16 1 Qtr Tur	Part No.	Part No.	Di	mensio	ns	Door/Body	La	atches	Panel	Pane	l Size			Wt.
EN4SD12126GY EN4SD12126LG 12.00 12.00 6.00 16 1 Qtr Turn EP1212 10.20 10.20 2 6.00 12 EN4SD12246GY EN4SD12246LG 12.00 24.00 6.00 16 1 Qtr Turn EP1212 10.20 10.20 2 6.00 12 EN4SD12246GY EN4SD12246LG 12.00 24.00 6.00 16 1 Qtr Turn EP1224 10.20 22.20 2 18.00 24 EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1212 10.20 22.20 2 18.00 24 EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1612 14.20 10.20 2 10.00 16 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1616 14.20 18.20 2 10.00 22 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16<		(RAL 7035 Light										#		
EN4SD12246GY EN4SD12246LG 12.00 24.00 6.00 16 1 Qtr Turn EP1224 10.20 22.20 2 18.00 24 EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1224 10.20 22.20 2 18.00 24 EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1612 14.20 10.00 2 10.00 19 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1616 14.20 18.20 2 10.00 19 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1616 14.20 18.20 2 10.00 22	(ANSI 61 Gray)	Gray)	Α	В	С	Gauge	Qty	Туре	Part No.	D	Е	Hinges	F	(lbs)
EN4SD16126GY EN4SD16126LG 16.00 12.00 6.00 16 1 Qtr Turn EP1612 14.20 10.20 2 10.00 16 EN4SD16166GY EN4SD16166LG 16.00 16.00 16 1 Qtr Turn EP1616 14.20 14.20 2 10.00 19 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1620 14.20 18.20 2 10.00 22	EN4SD12126GY	EN4SD12126LG	12.00	12.00	6.00	16	1	Qtr Turn	EP1212	10.20	10.20	2	6.00	12
EN4SD16166GY EN4SD16166LG 16.00 16.00 16 1 Qtr Turn EP1616 14.20 14.20 2 10.00 19 EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1620 14.20 18.20 2 10.00 19	EN4SD12246GY	EN4SD12246LG	12.00	24.00	6.00	16	1	Qtr Turn	EP1224	10.20	22.20	2	18.00	24
EN4SD16206GY EN4SD16206LG 16.00 20.00 6.00 16 1 Qtr Turn EP1620 14.20 18.20 2 10.00 22	EN4SD16126GY	EN4SD16126LG	16.00	12.00	6.00	16	1	Qtr Turn	EP1612	14.20	10.20	2	10.00	16
	EN4SD16166GY	EN4SD16166LG	16.00	16.00	6.00	16	1	Qtr Turn	EP1616	14.20	14.20	2	10.00	19
EN4SD20126GY EN4SD20126LG 20.00.12.00.6.00.16.1.Otr Turn EP2012 18.20.10.20.2.14.00.20	EN4SD16206GY	EN4SD16206LG	16.00	20.00	6.00	16	1	Qtr Turn	EP1620	14.20	18.20	2	10.00	22
	EN4SD20126GY	EN4SD20126LG	20.00	12.00	6.00	16	1	Qtr Turn	EP2012	18.20	10.20	2	14.00	20

			Overal	1				Opt.					Ship
Part No.	Part No.	Di	mensio	ons	Door/Body	La	atches	Panel	Pane	l Size			Wt.
	(RAL 7035 Light	_	_	_	_		_		_	_	#	_	
(ANSI 61 Gray)	Gray)	A	В	С	Gauge	Qty		Part No.	D	E	Hinges	F	(lbs)
EN4SD202410GY	EN4SD202410LG	20.00	24.00	10.00	16	1	Qtr. Turn	EP2024	18.20	22.20	2	14.00	36
EN4SD241210GY	EN4SD241210LG	24.00	12.00	10.00	16	1	Qtr Turn	EP2412	22.20	10.20	2	18.00	26
EN45D241610GY	EN4SD241610LG	24.00	16.00	10.00	16	1	Qtr.	EP2416	22.20	14 20	2	18.00	30
2145024101001	2145024101026	24.00	10.00	10.00	10	-	Turn	LI 2410	22.20	14.20	2	10.00	50
EN4SD242010GY	EN4SD242010LG	24.00	20.00	10.00	16	1	Qtr. Turn	EP2420	22.20	18.20	2	18.00	36
EN4SD242410GY	EN4SD242410LG	24.00	24.00	10.00	14	2	Qtr. Turn	EP2424	22.20	22.20	2	18.00	45
EN4SD243010GY	EN4SD243010LG	24.00	30.00	10.00	14	2	Qtr. Turn	EP2430	22.20	28.20	2	18.00	53
EN4SD302010GY	EN4SD302010LG	30.00	20.00	10.00	14	2	Qtr. Turn	EP3020	28.20	18.20	3	12.00	47
EN4SD302410GY	EN4SD302410LG	30.00	24.00	10.00	14	2	Qtr.	EP3024	28.20	22.20	3	12.00	53
							Turn Qtr.						
EN4SD303010GY	EN4SD303010LG	30.00	30.00	10.00	14	2	Turn	EP3030	28.20	28.20	3	12.00	75
EN4SD362410GY	EN4SD362410LG	36.00	24.00	10.00	14	2	Qtr. Turn	EP3624	34.20	22.20	3	15.00	70
EN4SD363010GY	EN4SD363010LG	36.00	30.00	10.00	14	2	Qtr. Turn	EP3630	34.20	28.20	3	15.00	84
EN4SD363610GY	EN4SD363610LG	36.00	36.00	10.00	14	2	Qtr. Turn	EP3636	34.20	34.20	3	15.00	100
EN4SD423010GY	EN4SD423010LG	42.00	30.00	10.00	14	1	3-point	EP4230	40.20	28.20	4	12.00	107
EN4SD423610GY	EN4SD423610LG	42.00	36.00	10.00	14	1	3-point	EP4236	40.20	34.20	4	12.00	117
EN4SD482410GY	EN4SD482410LG	48.00	24.00	10.00	14	1	3-point	EP4824	46.20	22.20	4	14.00	95
EN4SD483010GY	EN4SD483010LG	48.00	30.00	10.00	14	1	3-point		46.20	28.20	4	14.00	120
EN4SD483610GY	EN4SD483610LG	48.00	36.00	10.00	14	1	3-point		46.20	34.20	4	14.00	125
EN4SD603610GY	EN4SD603610LG	60.00	36.00	10.00	14	1	3-point	EP6036	58.20	34.20	4	18.00	150
EN4SD201612GY	EN4SD201612LG	20.00	16.00	12.00	16	1	Qtr Turn	EP2016	18.20	14.20	2	14.00	32
EN4SD202012GY	EN4SD202012LG	20.00	20.00	12.00	16	1	Qtr Turn	EP2020	18.20	18.20	2	14.00	34
EN4SD242012GY	EN4SD242012LG	24.00	20.00	12.00	16	1	Qtr Turn	EP2420	22.20	18.20	2	18.00	38
EN4SD242412GY	EN4SD242412LG	24.00	24.00	12.00	14	2	Qtr Turn	EP2424	22.20	22.20	2	18.00	47
EN4SD302412GY	EN4SD302412LG	30.00	24.00	12.00	14	2	Qtr Turn	EP3024	28.20	22.20	3	12.00	57
EN4SD303012GY	EN4SD303012LG	30.00	30.00	12.00	14	2	Qtr Turn	EP3030	28.20	28.20	3	12.00	80
EN4SD362412GY	EN4SD362412LG	36.00	24.00	12.00	14	2	Qtr Turn	EP3624	34.20	22.20	3	15.00	62
EN4SD363012GY	EN4SD363012LG	36.00	30.00	12.00	14	2	Qtr Turn	EP3630	34.20	28.20	3	15.00	91
EN4SD363612GY	EN4SD363612LG	36.00	36.00	12.00	14	2	Qtr Turn	EP3636	34.20	34.20	3	15.00	104
EN4SD423012GY	EN4SD423012LG	42.00	30.00	12.00	14	1	3-point	EP4230	40.20	28.20	4	12.00	111
EN4SD423612GY	EN4SD423612LG	42.00	36.00	12.00	14	1	3-point	EP4236	40.20	34.20	4	12.00	121
EN4SD482412GY	EN4SD482412LG	48.00	24.00	12.00	14	1	3-point	EP4824	46.20	22.20	4	14.00	98
EN4SD483612GY	EN4SD483612LG	48.00	36.00	12.00	14	1	3-point	EP4836	46.20	34.20	4	14.00	148
EN4SD603612GY	EN4SD603612LG	60.00	36.00	12.00	14	1	3-point	EP6036	58.20	34.20	4	18.00	165
EN4SD723012GY	EN4SD723012LG	72.00	30.00	12.00	14	2	Qtr Turn, 5-point	EP7230	70.20	28.20	5	16.50	190
EN4SD723612GY	EN4SD723612LG	72.00	36.00	12.00	14	2	Qtr Turn, 5-point	EP7236	70.20	34.20	5	16.50	195
EN4SD242016GY	EN4SD242016LG	24 00	20.00	16.00	16	1		EP2420	22.20	18 20	2	18.00	52
	EN4SD242416LG		24.00		14			EP2424				18.00	66
	EN4SD302416LG		24.00		14		-	EP3024				12.00	85
	EN4SD363016LG		30.00		14			EP3630				15.00	102
							-						
E1143D423010GY	EN4SD423616LG	42.00	36.00	10.00	14	1	5-point	EP4236	40.20	54.20	4	12.00	140

HAMMOND MANUFACTURING.

- Kit includes one (1) of the following:
 - ∘ Fan
 - Plastic Filter Grill
 - Filter
 - Metal Grill
 - Wire Cord or Leads (see table)
 - Includes Mounting Hardware
- Flame retardant, ABS plastic filter fan grill is molded in a choice of four colors to match our racks & accessories.
 - "BK" (Black)
 - "GY" (ANSI 61 Gray)
 - "LG" (Light Gray RAL7035)
 - "CG" (Beige)
- Fan is cooled by incoming air.
- Fan component is UL recognized to UL 507, and cUL recognized or CSA certified to CSA-C22.2 No. 113.

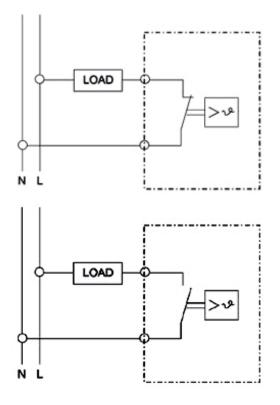
Part No.	Part No.	Part No.	Part No.				
Black Filter Grill	ANSI 61 Gray Filter Grill	Gray/Beige Filter Grill	Light Gray Filter Grill	VAC	Fan Size	CFM	Cord Length
DNFF080BK115	DNFF080GY115	DNFF080CG115	DNFF080LG115	115	3.15	32	11 Inch leads
DNFF120BK115	DNFF120GY115	DNFF120CG115	DNFF120LG115	115	4.70	105	24 Inch cord
DNFF150BK115	DNFF150GY115	DNFF150CG115	DNFF150LG115	115	6.00	230	12 Inch leads
DNFF254BK115	DNFF254GY115	DNFF254CG115	DNFF254LG115	115	10.00	550	24 Inch cord
DNFF080BK230	DNFF080GY230	DNFF080CG230	DNFF080LG230	230	3.15	32	11 Inch leads
DNFF120BK230	DNFF120GY230	DNFF120CG230	DNFF120LG230	230	4.70	105	24 Inch cord
DNFF150BK230	DNFF150GY230	DNFF150CG230	DNFF150LG230	230	6.00	230	12 Inch leads
DNFF254BK230	DNFF254GY230	DNFF254CG230	DNFF254LG230	230	10.00	550	24 Inch cord

Data subject to change without notice

© 2016. Hammond Manufacturing Ltd. All rights reserved.

HAMMOND MANUFACTURING.

Features


- Designed to provide air temperature control and monitoring in cabinets.
- Thermostat NC (Normally Closed) for the control of heaters and heater fans
- Thermostat NO (Normally Open) for the control of cooling units, or for switching signal transmitters in case of overheating.
- Available in Fahrenheit or Celsius.

NC - Normally Closed (Red)

- Used in conjunction with heaters.
- Contact opens when rising temperatures reach the set point temperature, shutting heater off.

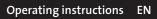
NO - Normally open (Blue)

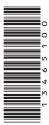
- Used in conjunction with fans.
- Contact closes when rising temperatures reach the set point temperature, turning fan on.

			Dimensions		
		Contact	Height x Width x		Ship Wt.
Part No.	Scale	Туре	Depth	Switching Capacity	lbs
SKT011409NC	F°	Normally Closed	2.8 x 1.5 x 1.4	15 A (1) AC 120 V, 10 A (1) AC 250 V	1

			Dimensions		
Part No.	Scale	Contact Type	Height x Width x Depth	Switching Capacity	Ship Wt. Ibs
SKT011409NC- C	C°	Normally Closed	2.8 x 1.5 x 1.4	15 A (1) AC 120 V, 10 A (1) AC 250 V	1
SKT011419NO	F°	Normally Open	2.8 x 1.5 x 1.4	15 A (1) AC 120 V, 10 A (1) AC 250 V	1
SKT011419NO- C	C°	Normally Open	2.8 x 1.5 x 1.4	15 A (1) AC 120 V, 10 A (1) AC 250 V	1

Sensor Element:	Thermostatic bi-metal
Switching difference (hysteresis):	+ or - 4°F (+or- 3°K)
Adjustment Range:	30 - 140°F
Noise Suppression:	N (according to VDE 0875)
Connection:	2 pole terminal for AWG 14 (2.5 mm ²)
Mounting:	Easily installed by clip mounting on 35 or 38mm DIN rail (included)
Housing:	Flame retardant plastic UL94VO
Color:	Gray (SB)
Protection:	IP20
Approval:	UL Recognized Component, cUL Recognized Component, CE


Data subject to change without notice


© 2016. Hammond Manufacturing Ltd. All rights reserved.

SMV

Frequency Inverter

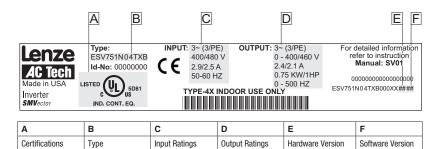
Copyright © 2013 - 2006 Lenze AC Tech Corporation

All rights reserved. No part of this manual may be reproduced or transmitted in any form without written permission from Lenze AC Tech Corporation. The information and technical data in this manual are subject to change without notice. Lenze AC Tech Corporation makes no warranty of any kind with respect to this material, including, but not limited to, the implied warranties of it's merchantability and fitness for a given purpose. Lenze AC Tech Corporation assumes no responsibility for any errors that may appear in this manual.

All information given in this documentation has been carefully selected and tested for compliance with the hardware and software described. Nevertheless, discrepancies cannot be ruled out. We do not accept any responsibility nor liability for damages that may occur. Any necessary corrections will be implemented in subsequent editions.

This document printed in the United States

Contents


Abo	ut the	seInstruct	ions		2
1	Safe	ety Inform	nation		3
2	Tecl	nnical Da	ta		7
	2.1	Standard	s and App	lication Conditions	7
	2.2	SMV Typ	e Number	Designation	8
	2.3			-	
3	Inch	allation			40
3	3.1			ounting	
	3.1	3.1.1		(IP31) Models ≤ 30HP (22kW)	
		3.1.1		(IP31) Models > 30HP (22kW)	
		3.1.2		(IP65) Models	
		3.1.4		(IP65) Models with Disconnect Switch	
	3.2				
	0.2	3.2.1		onnections	
		0.2.1	3.2.1.1	Mains Connection to 120VAC Single-Phase Supply	
			3.2.1.2	Mains Connection to 240VAC Single-Phase Supply	
			3.2.1.3	Mains Connection to Three-Phase Supply	
			3.2.1.4	Motor Connection	
			3.2.1.5	Installation Recommendations for EMC Compliance	18
			3.2.1.6	NEMA 4X (IP65) Input Terminal Block	18
			3.2.1.7	Dynamic Brake Connections	19
		3.2.2	Fuses/Ca	able Cross-Sections	20
		3.2.3	Control T	erminals	21
4	Con	mission	ina		23
-	4.1		-	splay	
	4.2			Aodes of Operation	
	4.3				
	4.4		0	ming Module (EPM)	
	4.5	Paramete	er Menu	• • • •	27
		4.5.1	Basic Se	tup Parameters	27
		4.5.2	I/O Setup	Parameters	31
		4.5.3	Advance	d Setup Parameters	35
		4.5.4	PID Para	meters	39
		4.5.5	Vector Pa	arameters	41
		4.5.6	Network	Parameters	43
		4.5.7	0	ic Parameters	
				erminal & Protection Status Display	
				eypad Status Display	
		4.5.8		Communications Parameters 15-60HP (11-45kW)	
		4.5.9		er Parameters	
			4.5.9.1	Sequencer Flow Diagram Left	
			4.5.9.2	Sequencer Flow Diagram Right	
			4.5.9.3	Sequencer Status	57
5	Trou	ubleshoo	ting and	Diagnostics	58
	5.1	Status/W	arning Me	ssages	58
	5.2	Drive Cor	nfiguration	Messages	59
	5.3	Fault Mes	ssages		59
Ann	endix	Α			62
	A.1			Lengths	

About These Instructions

This documentation applies to the SMV frequency inverter and contains important technical data regarding the installation, operation, and commissioning of the inverter.

These instructions are only valid for SMV frequency inverters with software revision 4.23 or higher for version 4.23 software, the drive nameplate illustrated below would show "42" in the "F" location.

Please read these instructions in their entirety before commissioning the drive.

Scope of delivery	Important
 1 SMV Inverter with EPM installed (see Section 4.4) 1 Operating Instructions manual 	After receipt of the delivery, check immediately whether the items delivered match the accompanying papers. Lenze AC Tech does not accept any liability for deficiencies claimed subsequently. Claim: • visible transport damage immediately to the forwarder. • visible deficiencies /incompleteness immediately to your Lenze AC Tech representative

Related Documents

i

The documentation listed herein contains information relevant to the operation of the SMVector frequency inverter. To obtain the latest documentation, visit the Technical Library at http://www.lenzeamericas.com.

Document #	Description	
CMVINS01	SMVector Communications Module Installation Instruction	
CMVMB401	SMVector ModBus RTU over RS485 Communications Reference Guide	
CMVLC401	SMVector Lecom Communications Reference Guide	
CMVCAN01	SMVector CANopen Communications Reference Guide	
CMVDVN01	SMVector DeviceNet Communications Reference Guide	
CMVETH01	SMVector EtherNet/IP Communications Reference Guide	
CMVPFB01	SMVector PROFIBUS Communications Reference Guide	
ALSV01	SMVector Additional I/O Module Installation and Operation Manual	
DBV01	SMVector Dynamic Braking	
PTV01	SMVector Potentiometer Install Instructions	
RKV01	SMVector ESVZXK1 Remote Keypad	
RKVU01	SMVector ESVZXH0 Remote Keypad (for NEMA 1 15-60HP (11-45kW) Drives)	

Lenze SMVector 13465100 EDBSV01 EN v18

1 Safety Information

General

Some parts of Lenze AC Tech controllers can be electrically live and some surfaces can be hot. Nonauthorized removal of the required cover, inappropriate use, and incorrect installation or operation creates the risk of severe injury to personnel and/or damage to equipment.

All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel who are familiar with the installation, assembly, commissioning, and operation of variable frequency drives and the application for which it is being used.

Installation

Ensure proper handling and avoid excessive mechanical stress. Do not bend any components and do not change any insulation distances during transport, handling, installation or maintenance. Do not touch any electronic components or contacts. This drive contains electrostatically sensitive components, which can easily be damaged by inappropriate handling. Static control precautions must be adhered to during installation, testing, servicing and repairing of this drive and associated options. Component damage may result if proper procedures are not followed.

To ensure proper operation, do not install the drive where it is subjected to adverse environmental conditions such as combustible, oily, or hazardous vapors; corrosive chemicals; excessive dust, moisture or vibration; direct sunlight or extreme temperatures.

This drive has been tested by Underwriters Laboratory (UL) and is UL Listed in compliance with the UL508C Safety Standard. This drive must be installed and configured in accordance with both national and international standards. Local codes and regulations take precedence over recommendations provided in this and other Lenze AC Tech documentation.

The SMVector drive is considered a component for integration into a machine or process. It is neither a machine nor a device ready for use in accordance with European directives (reference machinery directive and electromagnetic compatibility directive). It is the responsibility of the end user to ensure that the machine meets the applicable standards.

Electrical Connection

When working on live drive controllers, applicable national safety regulations must be observed. The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections, fuses, protective earth [PE] connection). While this document does make recommendations in regards to these items, national and local codes must be adhered to.

The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must also be observed for CE-marked controllers. The manufacturer of the system or machine is responsible for compliance with the required limit values demanded by EMC legislation.

Application

The drive must not be used as a safety device for machines where there is a risk of personal injury or material damage. Emergency Stops, over-speed protection, acceleration and deceleration limits, etc must be made by other devices to ensure operation under all conditions.

The drive does feature many protection devices that work to protect the drive and the driven equipment by generating a fault and shutting the drive and motor down. Mains power variances can also result in shutdown of the drive. When the fault condition disappears or is cleared, the drive can be configured to automatically restart, it is the responsibility of the user, OEM and/or integrator to ensure that the drive is configured for safe operation.

Explosion Proof Applications

Explosion proof motors that are not rated for inverter use lose their certification when used for variable speed. Due to the many areas of liability that may be encountered when dealing with these applications, the following statement of policy applies:

Lenze AC Tech Corporation inverter products are sold with no warranty of fitness for a particular purpose or warranty of suitability for use with explosion proof motors. Lenze AC Tech Corporation accepts no responsibility for any direct, incidental or consequential loss, cost or damage that may arise through the use of AC inverter products in these applications. The purchaser expressly agrees to assume all risk of any loss, cost or damage that may arise from such application.

Operation

Systems including controllers must be equipped with additional monitoring and protection devices according to the corresponding standards (e.g. technical equipment, regulations for prevention of accidents, etc.). The controller may be adapted to your application as described in this documentation.

DANGER!

- After the controller has been disconnected from the supply voltage, live components and power connection
 must not be touched immediately, since capacitors could be charged. Please observe the corresponding
 notes on the controller.
- Close all protective covers and doors prior to and during operation.
- Do not cycle input power to the controller more than once every two minutes.
- For SMVector models that are equipped with a Disconnect Switch (11th character in model number is L or M), the Disconnect Switch is intended as a motor service disconnect and does not provide branch circuit protection to the inverter or motor. When servicing the motor, it is necessary to wait 3 minutes after turning this switch to the off position before working on motor power wiring as the inverter stores electrical power. To service the inverter, it is necessary to remove mains ahead of the drive and wait 3 minutes.

Safety Notifications

All safety information given in these Operating Instructions includes a visual icon, a bold signal word and a description.

Signal Word! (characterizes the severity of the danger) NOTE (describes the danger and informs on how to proceed)

lcon	Signal Word	Meaning	Consequences if ignored
Â	DANGER!	Warns of hazardous electrical voltage.	Death or severe injuries.
\triangle	WARNING!	Warns of potential, very hazardous situations.	Risk of severe injury to personnel and/or damage to equipment.
	WARNING! Hot Surface	Warns of hot surface and risk of burns. Labels may be on or inside the equipment to alert people that surfaces may reach dangerous temperatures.	Risk of severe injury to personnel.
STOP	STOP!	Warns of potential damage to material and equipment.	Damage to the controller/drive or its environment.
i	NOTE	Designates a general, useful note.	None. If observed, then using the control- ler/drive system is made easier.

Harmonics Notification in accordance with EN 61000-3-2, EN 61000-3-12:

Operation in public supply networks (Limitation of harmonic currents i.a.w. EN 61000-3-2, Electromagnetic Compatibility (EMC) Limits). Limits for harmonic current emissions (equipment input current up to 16A/phase).

Directive	Total Power connected to Mains (public supply)	Additional Measures Required for Compliance ⁽²⁾	
	< 0.5kW	with mains choke	
EN 61000-3-2	0.5 1kW	with active filter	
	> 1kW	complies without additional measures	
EN 61000-3-12	16 75amp	Additional measures are required for compliance with the standard	

(1) For compliance with EMC regulations, the permissable cable lengths may change.

(2) The additional measures described only ensure that the controller meets the requirements of the EN 61000-3-2. The machine/system manufacturer is responsible for the machine's compliance with the regulations.

Safety Information in accordance with EN 61800-5-1:

DANGER! - Risk of Electric Shock

Capacitors retain charge for approximately 180 seconds after power is removed. Disconnect incoming power and wait at least 3 minutes before touching the drive.

DANGER! - Risque de choc électrique

Les condensateurs restent sous charge pendant environ 180 secondes après une coupure de courant. Couper l'alimentation et patienter pendant au moins 3 minutes avant de toucher l'entraînement.

WARNING!

- This product can cause a d.c. current in the PE conductor. Where a residual currentoperated (RCD) or monitoring (RCM) device is used for protection in case of direct or indirect contact, only an RCD or RCM Type B is allowed on the supply side of this product.
- Leakage Current may exceed 3.5mA AC. The minimum size of the PE conductor shall comply with local safety regulations for high leakage current equipment.
- In a domestic environment, this product may cause radio interference in which case supplementary mitigation measures may be required.

Safety Information in accordance with UL:

Note for UL approved system with integrated controllers: UL warnings are notes which apply to UL systems. The documentation contains special information about UL.

- Integral solid state protection does not provide branch circuit protection. Branch circuit protection
 must be provided in accordance with the National Electrical Code and any additional local codes. The
 use of fuses or circuit breakers is the only approved means for branch circuit protection.
- When protected by CC and T Class Fuses, suitable for use on a circuit capable of delivering not more than 200,000 rms symmetrical amperes, at the maximum voltage rating marked on the drive.
- Additionally suitable when protected by a circuit breaker having an interrupting rating not less than 200,000 rms symmetrical amperes, at the maximum voltage rating marked on the drive. (Excludes ESV113xx2T, ESV153xx2T, ESV113xx4T, ESV153xx4T, ESV183xx4T, ESV223xx4T, ESV303xx4T, ESV113xx6T, ESV153xx6T, ESV183xx6T, ESV223xx6T, and ESV303xx6T).
- Use minimum 75°C copper wire only, except for control circuits.
- . For control circuits, use wiring suitable for NEC Class 1 circuits only.
- Torque Requirements (in accordance with UL) are listed in section 3.2.1, Power Connections and in 3.2.3, Control terminals
- · Shall be installed in a pollution degree 2 macro-environment.
- NEMA 1 (IP31) models shall be installed in a pollution degree 2 macro-environment.
- All models are suitable for installation in a compartment handling Conditioned Air (i.e., plenum rated).

WARNING!

The opening of branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, current carrying parts and other components of the controller should be examined and replaced if damaged.

AVERTISSEMENT!

Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défaut. Pour limiter le risque d'incendie ou de choc électrique, examiner les pièces porteuses de courant et les autres éléments du contrôleur et les remplacer s'ils sont endommagés. En cas de grillage de l'élément traverse par le courant dans un relais de surcharge, le relais tout entier doit être remplacé.

NOTE

Control and communications terminals provide reinforced insulation (i.e. considered SELV or PELV, providing protection in case of direct contact) when the drive is connected to a power system rated up to 300VAC between phase to ground (PE) and the applied voltage on Terminals 16 and 17 is less than 150VAC between phase to ground. Otherwise, control and communications terminals provide basic insulation.

Technical Data

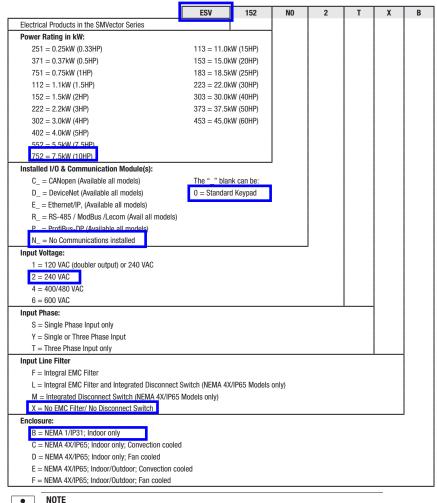
2 Technical Data

2.1 Standards and Application Conditions

Conformity	CE	Low Voltage (2006/95/EC) & EMC (2004/108/EC) Directives	
Approvals	UL508C	Underwriters Laboratories -Power Conversion Equipment	
Input voltage phase imbalance	< 2%		
Supported Power Systems	TT TN	 For central grounded systems, operation is permitted without restrictions. For corner grounded 400/500V systems, operation is possible but reinforced insulation to control circuits is compromised. 	
Humidity	≤ 95% non-condensing		
	Transport	-25 +70°C	
Temperature range	Storage	-20 +70°C	
	Operation	-10 +55°C (with 2.5%/°C current derating above +40°C)	
Installation height	0 - 4000m a.m.s.l.	(with 5%/1000 m current derating above 1000m a.m.s.l.)	
Vibration resistance	acceleration resistant up to 1.0g		
🕂 Earth leakage current	> 3.5 mA to PE		
May Darmiasable Cable Length (1)	<= 4.0 Hp (3.0 kW)	30 meters shielded, 60 meters un-shielded	
Max Permissable Cable Length (1)	=> 5.0 Hp (3.7 kW)	50 meters shielded, 100 meters un-shielded.	
	IP31/NEMA 1	IP65/NEMA 4X	
Enclosure	NEMA 1 and NEMA 4X model enclosures are plenum rated in accordance with UL 508C and are suitable for installation in a compartment handling conditioned air.		
Protection measures against	Earth fault, phase loss, over voltage, under voltage, motor stalling, over temperature motor overload (125% of FLA), short circuit (SCCR=200kA at rated voltage)		
	< 0.5kW	with mains choke	
Compliance with EN 61000-3-2 Requirements ⁽²⁾	0.5 1kW	with active filter	
	> 1kW	without additional measures	
Compliance with EN 61000-3-12 Requirements ⁽²⁾	16 75amp	Additional measures required for compliance with EN 61000-3-12	

Operation in public supply networks (Limitation of harmonic currents i.a.w. EN 61000-3-2, Electromagnetic Compatibility (EMC) Limits). Limits for harmonic current emissions (equipment input current up to 16A/phase).

(1) The stated cable lengths are permissible at default carrier frequencies (refer to parameter P166).


(2) The additional measures described only ensure that the controller meets the requirements of the EN 61000-3-2. The machine/system manufacturer is responsible for the machine's compliance with the regulations.

Technical Data

2.2 SMV Type Number Designation

The table herein describes the Type numbering designation for the SMVector Inverter models.

Prior to installation make sure the enclosure is suitable for the end-use environment

Variables that influence enclosure suitability include (but are not limited to) temperature, airborne contaminates, chemical concentration, mechanical stress and duration of exposure (sunlight, wind, precipitation).

Ĺ

Technical Data

2.3 Ratings

120V / 240VAC Models

Mains = 120V Single Phase (1/N/P	PE) (90132V), 240V Single	e Phase (2/PE) (170264V); 4862Hz

	Туре	Po	Power		Mains Current		Output Current		Heat Loss (Watts)		
		Нр	kW	120V A			Max I %	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter	
	ESV2511S	0.33	0.25	6.8	3.4	1.7	200	24			
	ESV3711S	0.5	0.37	9.2	4.6	2.4	200	32	32		
Γ	ESV7511S	1	0.75	16.6	8.3	4.2	200	52	41		
	ESV1121S	1.5	1.1	20	10.0	6.0	200	74	74		

NOTES:

Output Current: The Output Current Maximum (%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

240VAC Models

	Main	s = 240V	Single Phase (2/	PE) (170	264V); 4	862Hz		
Туре	Po	wer	Mains Current	Output Current		Heat Loss (Watts)		
	Hp	kW	240V A	Cont (I _n) A	Max I %	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV2512S	0.33 0.25		3.4	1.7	200	20		
ESV3712S	0.5	0.37	5.1	2.4	200			30
ESV7512S	1	0.75	8.8	4.2	200			42
ESV1122S	1.5	1.1	12.0	6.0	200			63
ESV1522S			13.3	7.0	200			73
ESV2222S			17.1	9.6	200			97

240V Single	Phase (2/PE) (1	70264\	'), 240V ⁻	Three Ph	ase (3/PE)	(17026	4V); 486	2Hz
Туре	Po	wer	Mains Current		Output Current		Heat Loss (Watts)		
	Hp	b kW 1~ (2/PE) 3~ (3/PE) A A			Cont (I _n) A	Max I %	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
ESV3712Y	0.5	0.37	5.1	2.9	2.4	200	27	26	
ESV7512Y	1	0.75	8.8	5.0	4.2	200	41	38	
ESV1122Y	1.5	1.1	12.0	6.9	6.0	200	64	59	
ESV1522Y	2	1.5	13.3	8.1	7.0	200	75	69	
ESV2222Y	3	2.2	17.1	10.8	9.6	200	103	93	

240V Three Phase (3/PE) (170264V); 4862Hz											
Туре	Power Mains Current Output Current Heat Loss (Watts)										
			240V	Cont (In) Max I		N1/IP31		N4X/IP65			
Hp kW A A % No filter W/ filter											

Technical Data

ESV1122T	1.5	1.1	6.9	6	200	64		
ESV1522T	2	1.5	8.1	7	200	75		
ESV2222T	3	2.2	10.8	9.6	200	103		
ESV4022T	5	4.0	18.6	16.5	200	154	139	
ESV5522T	7.5	5.5	26	23	200	225	167	
ESV7522T	10	7.5	33	29	200	274	242	
ESV1132T	15	11	48	42	180	485	468	
ESV1532T	20	15	59	54	180	614	591	

NOTES:

Output Current: The Output Current Maximum (%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

400...480VAC Models

400 4	80V Thre	e Phase	(3/PE) (400V: 34	104	40V),	(480	V: 34	0528V);	4862Hz	
Туре	Po	wer	Mains	Current	0	utput	Curre	ent	Hea	at Loss (Wa	atts)
	Нр	kW	400V A	480V A	Con	t (I _n) A		ax I %	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter
					400V	480V	400V	480V			
ESV3714T	0.5	0.37	1.7	1.5	1.3	1.1	175	200	23	21	25
ESV7514T	1	0.75	2.9	2.5	2.4	2.1	175	200	37	33	37
ESV1124T	1.5	1.1	4.2	3.6	3.5	3.0	175	200	48	42	46
ESV1524T	2	1.5	4.7	4.1	4.0	3.5	175	200	57	50	54
ESV2224T	3	2.2	6.1	5.4	5.5	4.8	175	200	87	78	82
ESV3024T	4	3.0	8.3	7.0	7.6	6.3	175	200			95
ESV4024T	5	4.0	10.6	9.3	9.4	8.2	175	200	128	103	111
ESV5524T	7.5	5.5	14.2	12.4	12.6	11.0	175	200	178	157	165
ESV7524T	10	7.5	18.1	15.8	16.1	14.0	175	200	208	190	198
ESV1134T	15	11	27	24	24	21	155	180	418	388	398
ESV1534T	20	15	35	31	31	27	155	180	493	449	459
ESV1834T	25	18.5	44	38	39	34	155	180	645	589	600
ESV2234T	30	22	52	45	46	40	155	180	709	637	647
ESV3034T	40	30	68	59	60	52	155	180	1020		
ESV3734T	50	37.5	85	74	75	65	155	180	1275		
ESV4534T	60	45	100	87	88	77	155	180	1530		

NOTES:

Output Current: The Output Current Maximum (%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

For 400...480 VAC models, the output current maximum (%) in the 400V column is used when P107 = 0For 400...480 VAC models, the output current maximum (%) in the 480V column is used when P107 = 1

Technical Data

		600V Thr	ee Phase (3/PE)	(42566	0V); 486	2Hz			
Туре	Po	wer	Mains Current	Output	t Current	Heat Loss (Watts)			
	Hp	kW	А	Cont (I _n) A	Max I %	N1/IP31	N4X/IP65 No filter	N4X/IP65 W/ filter	
ESV7516T	1	0.75	2	1.7	200	37	31		
ESV1526T	2	1.5	3.2	2.7	200	51	43		
ESV2226T	3	2.2	4.4	3.9	200	68	57		
ESV4026T	5	4	6.8	6.1	200	101	67		
ESV5526T	7.5	5.5	10.2	9	200	148	116		
ESV7526T	10	7.5	12.4	11	200	172	152		
ESV1136T	15	11	19.7	17	180	380	356		
ESV1536T	20	15	25	22	180	463	431		
ESV1836T	25	18.5	31	27	180	560	519		
ESV2236T	30	22	36	32	180	640	592		
ESV3036T	40	30	47	41	180	930			
ESV3736T	50	37.5	59	52	180	1163			
ESV4536T	60	45	71	62	180	1395			

600VAC Models

NOTES:

Output Current: The Output Current Maximum (%) is a percentage of the Output Current Continuous Amps (In) rating and is adjustable in parameter P171.

STOP!

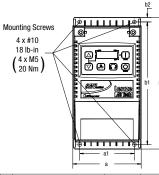
- For installations above 1000m a.m.s.l., derate I_n by 5% per 1000m, do not exceed 4000m a.m.s.l.
- Operation above 40°C, derate I, by 2.5% per °C, do not exceed 55°C.

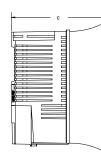
Output Current (In) derating for Carrier Frequency (P166) for NEMA 1 (IP31) Models:

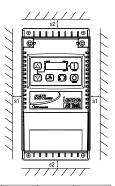
- If P166=2 (8 kHz), derate In to 92% of drive rating
- If P166=3 (10 kHz), derate I to 84% of drive rating

Output Current (In) derating for Carrier Frequency (P166) for NEMA 4X (IP65) Models:

- If P166=1 (6 kHz), derate In to 92% of drive rating
- If P166=2 (8 kHz), derate In to 84% of drive rating
- If P166=3 (10 kHz), derate In to 76% of drive rating

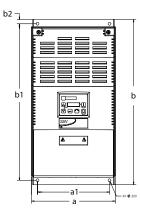

3 Installation

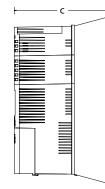

3.1 Dimensions and Mounting

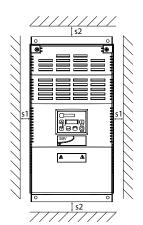

WARNING!

Drives must not be installed where subjected to adverse environmental conditions such as: combustible, oily, or hazardous vapors; corrosive chemicals; excessive dust, moisture or vibration; direct sunlight or extreme temperatures.

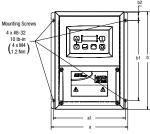
3.1.1 NEMA 1 (IP31) Models ≤ 30HP (22kW)



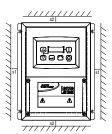

	Туре	a in (mm)	a1 in (mm)	b in (mm)	b1 in (mm)	b2 in (mm)	c in (mm)	s1 in (mm)	s2 in (mm)	m lb (kg)
G1	ESV251~~~~B; ESV371~~~~B ESV751~~~~B	3.90 (99)	3.12 (79)	7.48 (190)	7.00 (178)	0.24 (6)	4.35 (111)	0.6 (15)	2.0 (50)	2.0 (0.9)
G2	ESV112~~~~B; ESV152~~~~B ESV222~~~~B	3.90 (99)	3.12 (79)	7.52 (191)	7.00 (178)	0.26 (7)	5.45 (138)	0.6 (15)	2.0 (50)	2.8 (1.3)
G3	ESV402~~~~B	3.90 (99)	3.12 (79)	7.52 (191)	7.00 (178)	0.30 (8)	5.80 (147)	0.6 (15)	2.0 (50)	3.2 (1.5)
H1	ESV552~~~~B; ESV752~~~~B	5.12 (130)	4.25 (108)	9.83 (250)	9.30 (236)	0.26 (7)	6.30 (160)	0.6 (15)	2.0 (50)	6.0 (2.0)
J1	ESV113~~~~B; ESV153~~~~B ESV183~~~~B; ESV223~~~~B	6.92 (176)	5.75 (146)	12.50 (318)	11.88 (302)	0.31 (8)	8.09 (205)	0.6 (15)	2.0 (50)	13.55 (6.15)


Conduit Hole Dimensions	Туре	N in (mm)	P in (mm)	P1 in (mm)	Q in (mm)	S in (mm)
Q Q	G1	1.84 (47)	1.93 (49)	.70 (18)	1.00 (25)	.88 (22)
	G2	1.84 (47)	3.03 (77)	.70 (18)	1.00 (25)	.88 (22)
	G3	1.84 (47)	3.38 (86)	.70 (18)	1.00 (25)	.88 (22)
	H1	2.46 (62)	3.55 (90)	.13 (3)	1.38 (35)	1.13 (29)
						.88 (22)
	J1	3.32 (84)	4.62 (117)	.73 (19)	1.40 (36)	.88 (22)

3.1.2 NEMA 1 (IP31) Models > 30HP (22kW)

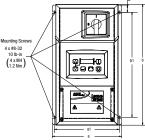


	Туре	a in (mm)	a1 in (mm)	b in (mm)	b1 in (mm)	b2 in (mm)	c in (mm)	s1 in (mm)	s2 in (mm)	m lb (kg)
K1	ESV303~~4~~B; ESV303~~6~~B	8.72 (221)	7.50 (190)	14.19 (360)	13.30 (338)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	24 (10.9)
К2	ESV373~~4~~B; ESV373~~6~~B	8.72 (221)	7.50 (190)	17.19 (436)	16.30 (414)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	31 (14.1)
кз	ESV453~~4~~B ESV453~~6~~b	8.72 (221)	7.50 (190)	20.19 (513)	19.30 (490)	0.45 (11.4)	10.07 (256)	0.6 (15)	2.0 (50)	35 (15.9)

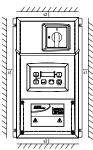

Conduit Hole Dimensions	Туре	N in (mm)	P in (mm)	P1 in (mm)	Q in (mm)	S in (mm)	S1 in (mm)
	K1	3.75 (95)	5.42 (137)	1.50 (38.1)	1.75 (44.4)	1.75 (44.4)	0.875 (22.2)
	K2	3.75 (95)	5.42 (137)	1.50 (38.1)	1.75 (44.4)	1.75 (44.4)	0.875 (22.2)
	K3	3.75 (95)	5.42 (137)	1.50 (38.1)	1.75 (44.4)	1.75 (44.4)	0.875 (22.2)

3.1.3 NEMA 4X (IP65) Models

	in (mm)	in (mm)	b in (mm)	b1 in (mm)	b2 in (mm)	c in (mm)	s1 in (mm)	s2 in (mm)	m lb (kg)
ESV371N01SX_; ESV751N01SX_; ESV371N02YX_; ESV751N02YX_; ESV371N04TX_; ESV751N04TX_; ESV751N06TX_; ESV371N02SF_; ESV751N02SF_; ESV371N04TF_; ESV751N04TF_;	6.28 (160)	5.90 (150)	8.00 (203)	6.56 (167)	0.66 (17)	4.47 (114)	2.00 (51)	2.00 (51)	3.6 (1.63)
ESV112N01SX_; ESV112N02YX_; ESV152N02YX_; ESV112N04TX_; ESV152N01X_; ESV22N04TX_; ESV152N04TX_; ESV222N06TX_; ESV152N06TX_; ESV52N02SF_; ESV112N02F_; ESV152N02F_; ESV12N04TF_; ESV152N04TF_; ESV222N04TF_; ESV302N04TF_;	6.28 (160)	5.90 (150)	8.00 (203)	6.56 (167)	0.66 (17)	6.31 (160)	2.00 (51)	2.00 (51)	5.9 (2.68)
ESV222N02YX_; ESV222N02SF_	7.12 (181)	6.74 (171)	8.00 (203)	6.56 (167)	0.66 (17)	6.77 (172)	2.00 (51)	2.00 (51)	7.1 (3.24)
ESV552N02TX~; ESV752N02TX~ ESV752N04TX~; ESV752N06TX~; ESV752N04TF~	8.04 (204)	7.56 (192)	10.00 (254)	8.04 (204)	0.92 (23)	8.00 (203)	4.00 (102)	4.00 (102)	10.98 (4.98)
ESV402N02TX_; ESV402N04TX_; ESV552N04TX_; ESV402N06TX_ ESV552N06TX_; ESV402N04TF_; ESV552N06TF_	8.96 (228)	8.48 (215)	10.00 (254)	8.04 (204)	0.92 (23)	8.00 (203)	4.00 (102)	4.00 (102)	11.58 (5.25)
ESV113N02TX-; ESV153N02TX- ESV113N04TX-; ESV153N04TX ESV113N04TF-; ESV153N04TF- ESV113N06TX-; ESV153N06TX- ESV183N04TX-; ESV183N04TF- ESV183N04TX-;	9.42 (240)	8.94 (228)	14.50 (368)	12.54 (319)	0.92 (24)	9.45 (241)	4.00 (102)	4.00 (102)	22.0 (10.0)
ESV223N04TX~; ESV223N04TF~ ESV223N06TX~	9.42 (240)	8.94 (228)	18.5 (470)	16.54 (420)	0.92 (24)	9.45 (241)	4.00 (102)	4.00 (102)	25.5 (11.6)
	ESV751N025F.; ESV371N04TF_; ESV751N04TF_; ESV152N04TK_; ESV112N02TX_; ESV152N02YX_; ESV112N04TX_; ESV152N02YX_; ESV112N04TX_; ESV152N04TX_; ESV222N04TK_; ESV12N04TF_; ESV152N04TF_; ESV222N04TF_; ESV152N04TF_; ESV222N04TF_; ESV52N04TF_; ESV52N04TX_; ESV752N04TX_; ESV52N04TX_; ESV752N04TX_; ESV52N04TX_; ESV402N04TK_; ESV52N04TX_; ESV402N04TF_; ESV52N04TF_ ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TF_; ESV52N04TX_; ESV13N04TF_;	ESV71100317_ESV3711045F_1 ESV7511003F_ESV3711047F_1 ESV7511003F_ESV3711047F_1 ESV7511047F_1 ESV7511047F_1 ESV1521047X_1ESV122047F_1 ESV1520107X_ESV2201047X_1 ESV15201047F_1 ESV52201047F_1 ESV22201047F_1 ESV52201047F_1 ESV52201047F_1 ESV52201047F_1 ESV52201047F_1 ESV52201047F_1 ESV52201047F_1 ESV52011310047F_1 ESV52010	ESV751NU25F_; ESV751NU25F_; ESV751NU25F_; ESV751NU25F_; ESV751NU25F_; ESV751NU25F_; ESV125NU27K_; ESV125NU27K_; ESV125NU27K_; ESV125NU27K_; ESV125NU27K_; ESV222NU27K_; ESV222NU27K_; ESV222NU27K_; ESV222NU27K_; ESV222NU27K_; ESV222NU27K_; ESV222NU27K_; ESV552NU27K_; ESV52NU27K_;	ESV51N0017.; ESV371N047F.; ESV751N025F.; ESV371N047F.; ESV751N047F.; ESV751N047F.; ESV751N047F.; ESV152N047X.; ESV152N047X.; ESV152N047X.; ESV22N047F.; ESV22N047F.; ESV522N047F.; ESV522N047F.; ESV522N047F.; ESV522N047F.; ESV52N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV13N047F.; ESV223N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F.; ESV23N047F	ESV75110057_: ESV77110057_: ESV75110057_: ESV77110057_: ESV75110057_: ESV712N047F_: ESV75120057_: ESV75120057_: ESV722N047X_: ESV122N047F_: ESV222N047F_: ESV222N047F_: ESV222N047F_: ESV222N047F_: ESV222N047F_: ESV222N047F_: ESV522N047F_: ESV522N047F_: ESV522N047F_: ESV52N047F_: ESV113N047F_: ESV113N047F_: ESV153N047F_: ESV13N047F_: ESV23N047F_: ESV23N047F_:	ESV751N025FESV751N025FESV751N04TF ESV751N025FESV751N04TF ESV751N04TFESV752N04TF ESV122N04TX_ESV122N04TX ESV122N04TX_ESV122N04TX ESV222N04TX_ESV122N04TF ESV222N04TX_ESV122N04TF ESV222N04TX_ESV122N04TF ESV222N04TX_ESV122N04TF ESV222N04TX_ESV122N04TF ESV222N04TX_ESV122N04TF ESV522N04TX_ESV122N04TF ESV522N04TX_ESV122N04TF ESV52N04TX_ESV122N04TF ESV52N04TX_ESV122N04TF ESV52N04TX_ESV122N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV52N04TX_ESV12N04TF ESV113N04TX_ESV12N04TF ESV113N04TX_ESV12N04TF ESV13N04TX_ESV12N04TX	ESV7510037, ESV752004TK, ESV752	ESV751N0357, ESV771N025F, ESV771N025F, ESV771N025F, ESV751N025F, ESV751N035F, ESV751N035F, ESV751N035F, ESV751N037F, ESV752N047F, ESV75	ESV751N025F_155V751N025F_155V752N04TX_ ESV751N025F_155V752N04TX_ ESV751N025F_155V752N04TX_ ESV752N04TX_155V722N04TX_155V722N04TX_155V722N04TX_155V725N04TX_155


_ = Last digit of part number:

C = N4X Indoor (convection cooled) E = N4X In/Outdoor (convection cooled) \sim = Last digit of part number: D = N4X Indoor (fan cooled) F = N4X In/Outdoor (fan cooled)


Conduit Hole	Conduit Hole Dimensions		N in (mm)	P in (mm)	Q in (mm)	S in (mm)	S1 in (mm)
	►-9 + -9 +	R1	3.14 (80)	2.33 (59)	1.50 (38)	.88 (22)	n/a
		R2	3.14 (80)	4.18 (106)	1.50 (38)	.88 (22)	n/a
$- \boxed{+} \oplus \oplus \boxed{+}$		S1	3.56 (90)	4.63 (118)	1.50 (38)	.88 (22)	n/a
		T1	4.02 (102)	5.00 (127)	1.85 (47)	1.06 (27)	n/a
P		V1	4.48 (114)	5.00 (127)	1.85 (47)	1.06 (27)	n/a
		W1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)
e N	₩	X1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)

NEMA 4X (IP65) Models with Disconnect Switch 3.1.4

Installation

	Туре	a in	a1 in	b in	b1 in	b2 in	c in	c1 in	s1 in	s2 in	m Ib
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(kg)
AA1	ESV371N01SM_; ESV371N02YM_; ESV371N02SL_; ESV371N04TM_; ESV371N04TL_; ESV371N06TM_; ESV751N02SL_; ESV751N02YM_; ESV751N02SL_; ESV751N04TM_;	6.28 (160)	5.90 (150)	10.99 (279)	9.54 (242)	0.66 (17)	4.47 (114)	.86 (22)	2.00 (51)	2.00 (51)	4.7 (2.13)
AA2	ESV112N01SM_; ESV112N02YM_; ESV112N02SL_; ESV12N04TM_; ESV12N02TL_; ESV152N02YM_; ESV152N02SL_; ESV152N04TM_; ESV152N04TL_; ESV152N06TM_; ESV222N04TM_; ESV22N04TL_; ESV222N06TM_; ESV302N04TL_;	6.28 (160)	5.90 (150)	10.99 (279)	9.54 (242)	0.66 (17)	6.31 (160)	.86 (22)	2.00 (51)	2.00 (51)	7.9 (3.58)
AD1	ESV222N02SL_; ESV222N02YM_;	7.12 (181)	6.74 (171)	10.99 (279)	9.54 (242)	0.66 (17)	6.77 (172)	.86 (22)	2.00 (51)	2.00 (51)	9.0 (4.08)
AB1	ESV552N02TM~; ESV752N02TM~ ESV752N04TM~; ESV752N06TM~; ESV752N04TL~	8.04 (204)	7.56 (192)	13.00 (330)	11.04 (280)	0.92 (23)	8.00 (203)	.86 (22)	4.00 (102)	4.00 (102)	13.9 (6.32)
AC1	ESV402N02TM_; ESV402N04TM_; ESV552N04TM_; ESV402N06TM_; ESV552N06TM_; ESV402N04TL_; ESV552N06TL_	8.96 (228)	8.48 (215)	13.00 (330)	11.04 (280)	0.92 (23)	8.04 204)	.86 (22)	4.00 (102)	4.00 (102)	14.7 (6.66)
AE1	ESV113N04TM~; ESV153N04TM~, ESV113N06TM~; ESV153N06TM~	9.42 (240)	8.94 (228)	14.50 (368)	12.54 (319)	0.92 (24)	9.45 (241)	0.73 (19)	4.00 (102)	4.00 (102)	23.0 (10.4)
AF1	ESV113N02TM~; ESV153N02TM~ ESV113N04TL~; ESV153N04TL~ ESV183N04TL~; ESV223N04TL~ ESV183N04TL~; ESV223N04TL~ ESV183N06TM~; ESV223N06TM~	9.42 (240)	8.94 (228)	18.5 (470)	16.54 (420)	0.92 (24)	9.45 (241)	0.73 (19)	4.00 (102)	4.00 (102)	28.5 (12.9)

_ = Last digit of part number: C = N4X Indoor (convection cooled) ~ = Last digit of part number: D = N4X Indoor (fan cooled)

Conduit Hole	Dimensions

Туре	N in (mm)	P in (mm)	Q in (mm)	S in (mm)	S1 in (mm)
AA1	3.14 (80)	2.33 (59)	1.50 (38)	.88 (22)	n/a
AA2	3.14 (80)	4.18 (106)	1.50 (38)	.88 (22)	n/a
AD1	3.56 (90)	4.63 (118)	1.50 (38)	.88 (22)	n/a
AB1	4.02 (102)	5.00 (127)	1.85 (47)	1.06 (27)	n/a
AC1	4.48 (114)	5.00 (127)	1.85 (47)	1.06 (27)	n/a
AE1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)
AF1	4.71 (120)	5.70 (145)	2.00 (51)	1.375 (35)	1.125 (28)

3.2 Electrical Installation

Installation After a Long Period of Storage

STOP!

Severe damage to the drive can result if it is operated after a long period of storage or inactivity without reforming the DC bus capacitors.

If input power has not been applied to the drive for a period of time exceeding three years (due to storage, etc), the electrolytic DC bus capacitors within the drive can change internally, resulting in excessive leakage current. This can result in premature failure of the capacitors if the drive is operated after such a long period of inactivity or storage.

In order to reform the capacitors and prepare the drive for operation after a long period of inactivity, apply input power to the drive for 8 hours prior to actually operating the motor.

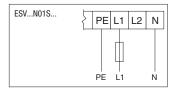
3.2.1 Power Connections

STOP!

If the kVA rating of the AC supply transformer is greater than 10 times the input kVA rating of the drive(s), an isolation transformer or 2-3% input line reactor must be added to the line side of the drive(s).

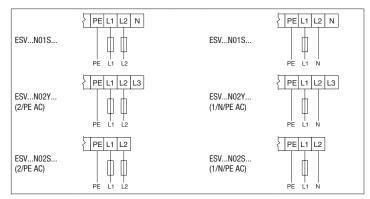
DANGER! Hazard of electrical shock!

Circuit potentials up to 600 VAC are possible. Capacitors retain charge after power is removed. Disconnect power and wait at least three minutes before servicing the drive.

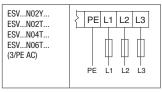


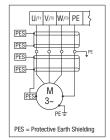
STOP!

- · Verify mains voltage before connecting to drive.
- Do not connect mains power to the output terminals (U,V,W)! Severe damage to the drive will result.
- Do not cycle mains power more than once every two minutes. Damage to the drive may result.


<u>ا</u> ل	Mains and Motor Terminations							
<u></u>	Туре	Torque	Strip Length					
	<5HP	12 lb-in (1.3 Nm)	5/16 in (8mm)					
	ESV552xx2T, ESV752xx2T, ESV113xx4/6, ESV153xx4/6, ESV183xx6, ESV223xx6	16 lb-in (1.8 Nm)	5/16 in (8mm)					
	ESV552xx4Txx, ESV752xx4Txx, ESV552xx6Txx, ESV752xx6Txx	12 lb-in (1.3Nm)	0.25 in (6mm)					
	ESV113xx2xxx, ESV153xx2xxx, ESV183xx4xxx, ESV223xx4xxx, ESV303xx4xxx	24 lb-in (2.7 Nm)	7/16 in (10mm)					
	ESV373xx4xxx, ESV453xx4xxx	27 lb-in (3.05 Nm)	0.75 in (19mm)					
	Torque: N4X/IP65 Door Screws							
	N4X/IP65	6-7 lb-in (0.67-0.79 Nm)	0.25 in (6mm)					

3.2.1.1 Mains Connection to 120VAC Single-Phase Supply




3.2.1.2 Mains Connection to 240VAC Single-Phase Supply

3.2.1.3 Mains Connection to Three-Phase Supply

3.2.1.4 Motor Connection

WARNING!

If the cable connection between the drive and the motor has an in-line contactor or circuit breaker then the drive must be stopped prior to opening/closing the contacts. Failure to do so may result in Overcurrent trips and/or damage to the inverter.

Installation

WARNING!

Leakage current may exceed 3.5 mA AC. The minimum size of the protective earth (PE) conductor shall comply with local safety regulations for high leakage current equipment.

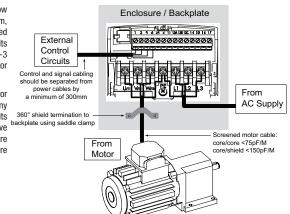
STOP

STOP!

In the case of a Spinning Motor:

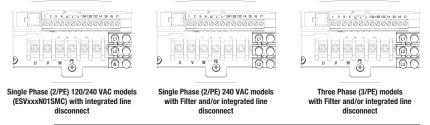
To bring free-wheeling loads such as fans to a rest before starting the drive, use the DC injection braking function. Starting a drive into a freewheeling motor creates a direct short-circuit and may result in damage to the drive.

Confirm motor suitability for use with DC injection braking. Consult parameter P110 for starting / restarting into spinning motors.


3.2.1.5 Installation Recommendations for EMC Compliance

For compliance with EN 61800-3 or other EMC standards, motor cables, line cables and control or communications cables must be shielded with each shield/screen clamped to the drive chassis. This clamp is typically located at the conduit mounting plate.

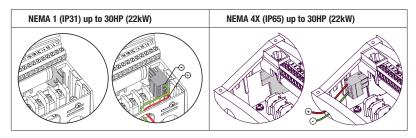
The EMC requirements apply to the final installation in its entirety, not to the individual components used. Because every installation is different, the recommended installation should follow these guidelines as a minimum. Additional equipment (such as ferrite core absorbers on power conductors) or alternative practices may be required to meet conformance in some installations.


Motor cable should be low capacitance (core/core <75pF/m, core/shield <150pF/m). Filtered drives can meet the class A limits of EN 55011 and EN 61800-3 Category 2 with this type of motor cable up to 10 meters.

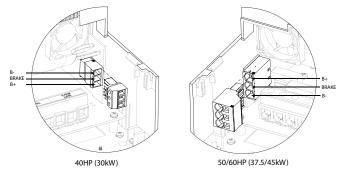
NOTE: Refer to Appendix A for recommended cable lengths. Any external line filter should have its chassis connected to the drive chassis by mounting hardware or with the shortest possible wire or braid.

3.2.1.6 NEMA 4X (IP65) Input Terminal Block

For NEMA 4X (IP65) models with integrated EMC filter and/or integrated line disconnect, the input terminal block is located on the right-hand side of the SMV inverter in the NEMA 4 X (IP65) enclosure. The single and three phase models are illustrated herein. Refer to paragraph 3.2.3 Control Terminals for pin out information.


WARNING

Power remains present for up to 3 minutes on power input terminals (L1, L2 and L3) and output terminals (U, V and W) even when the disconnect switch is in the OFF position. Remove input power ahead of the drive and wait 3 minutes before removing the terminal cover.



3.2.1.7 Dynamic Brake Connections

For NEMA 1 and NEMA 4X Drives rated up to 30HP (22kW) the Dynamic Brake connections are made as illustrated herein. Refer to the SMV Dynamic Brake Instructions (DBV01) for complete information.

The SMV 40...60Hp (30...45kW) models include a dynamic brake transistor as standard and only require the connection of an external resistor kit for dynamic braking operation. The dynamic brake resistor connections for 40...60 Hp (30...45kW) drives are standard built-in connections as illustrated in the diagram below. In the 40Hp (30kW) model drives, the dynamic brake connector is on the right-hand side of the drive and the terminals from top to bottom are B-, BRAKE and B+. In the 50/60HP (37.5/45 kW) model drives, the dynamic brake connector is on the left-hand side of the drive and the terminals from top to bottom are B+, BRAKE and B-.

External resistor kits must be connected to terminals B+ and BRAKE (no connection to B-). Refer to the table herein for external resistor kit selection. Refer to parameter P189 for enabling the dynamic brake function in the 40...60Hp (30...45kW) models.

400/480	VAC SMV Inv	/erter	Resistor Kit				
Туре	Нр	kW	Resistance (Ω)	Power (W)	Catalog #	SAP#	
ESV303**4T**	40	30	23.5	1020	841-013	13317724	
ESV373**4T**	50	37	17	1400	841-015	13317626	
ESV453**4T**	60	45	17	1400	841-015	13317626	
600 V	AC SMV Inve	ter	Resistor Kit				
Туре	Нр	kW	Resistance (Ω)	Power (W)	Catalog #	SAP#	
ESV303**6T**	40	30	35	1070	841-014	13317624	
ESV373**6T**	50	37	24	1560	841-016	13317628	
ESV453**6T**	60	45	24	1560	841-016	13317628	

3.2.2 Fuses/Cable Cross-Sections

1 NOTE: Observe local regulations. Local codes may supersede these recommendations

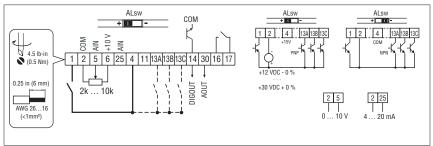
WARNING: Use a FUSE * for 240V drives requiring > 40A protection and for 400/480/600V drives requiring >32A protection.

	Recommendations					
	Туре	Fuse	Miniature circuit	Fuse ^{(2)*} or Breaker ⁽³⁾		ver Wiring L3, PE)
			breaker ⁽¹⁾	(N. America)	[mm ²]	[AWG]
	ESV251N01SXB	M10 A	C10 A	10 A	1.5	14
120V	ESV371N01SXB, ESV371N01SX*	M16 A	C16 A	15 A	2.5	14
1~ (1/N/PE)	ESV751N01SXB, ESV751N01SX*	M25 A	C25 A	25 A	4	10
()	ESV112N01SXB, ESV112N01SX*	M32 A	C32 A	30A	4	10
	ESV251N01SXB, ESV251N02SXB, ESV371N01SXB, ESV371N02YXB, ESV371N02SF*	M10 A	C10 A	10 A	1.5	14
240V	ESV751N01SXB, ESV751N02YXB, ESV751N02SF*	M16 A	C16 A	15 A	2.5	14
1~ (2/PE)	ESV112N02YXB, ESV112N02SFC, ESV112N01SXB ESV112N01SX*	M20 A	C20 A	20 A	2.5	12
	ESV152N02YXB, ESV152N02SF*	M25 A	C25 A	25 A	2.5	12
	ESV222N02YXB, ESV222N02SF*	M32 A	C32A	30 A	4	10
	ESV371N02YXB, ESV751N02YXB, ESV371N02Y_*, ESV751N02Y_*	M10 A	C10 A	10 A	1.5	14
	ESV112N02YXB, ESV152N02YXB, ESV112N02TXB, ESV152N02TXB, ESV112N02Y_*, ESV152N02Y_*	M16 A	C16 A	12 A	1.5	14
240V	ESV222N02YXB, ESV222N02TXB, ESV222N02YX*	M20 A	C20 A	20 A	2.5	12
3~	ESV402N02TXB, ESV402N02T_*	M32 A	C32 A	30 A	4.0	10
(3/PE)	ESV552N02TXB, ESV552N02T_~	M40 A	C40 A	35 A	6.0	8
	ESV752N02TXB, ESV752N02T_~	M50 A	* use Fuse only	45 A *	10	8
	ESV113N02TXB, ESV113N02TX~, ESV113N02TM~	M80 A	* use Fuse only	80 A *	16	6
	ESV153N02TXB, ESV153N02TX~, ESV153N02TM~	M100 A	* use Fuse only	90 A *	16	4
	ESV371N04TXBESV222N04TXB ESV371N04T_*ESV222N04T_* ESV371N04TF*ESV222N04TF*	M10 A	C10 A	10 A	1.5	14
400V	ESV302N04T_*	M16 A	C16 A	15 A	2.5	14
or 480V 3~(3/PE)	ESV402N04TXB, ESV402N04T_*	M16 A	C16 A	20 A	2.5	14
. ()	ESV552N04TXB, ESV552N04T_*	M20 A	C20 A	20 A	2.5	14
	ESV752N04TXB, ESV752N04T_~	M25 A	C25 A	25 A	4.0	10
	ESV113N04TXB, ESV113N04T_~	M40 A	* use Fuse only	40 A *	4	8
	ESV153N04TXB, ESV153N04T_~	M50 A	* use Fuse only	50 A *	10	8
400V	ESV183N04TXB, ESV183N04T_~	M63 A	* use Fuse only	70 A *	10	6
or 480V	ESV223N04TXB, ESV223N04T_~	M80 A	* use Fuse only	80 A *	16	6
3~(3/PE)	ESV303N04TXB	M100 A	* use Fuse only	100 A *	25	4
	ESV373N04TXB	M125 A	* use Fuse only	125 A *	35	2
	ESV453N04TXB	M160 A	* use Fuse only	150 A *	35	1
	ESV751N06TXBESV222N06TXB ESV751N06T_*ESV222N06T_*	M10 A	C10 A	10 A	1.5	14
	ESV402N06TXB, ESV402N06T_*	M16 A	C16 A	12 A	1.5	14
	ESV552N06TXB, ESV552N06T_*	M16 A	C16 A	15 A	2.5	14
	ESV752N06TXB, ESV752N06T_~	M20 A	C20 A	20 A	2.5	12
600V	ESV113N06TXB, ESV113N06TX~, ESV113N06TM~	M32 A	C32 A	30 A	4	10
3~(3/PE)	ESV153N06TXB, ESV153N06TX~, ESV153N06TM~	M40 A	* use Fuse only	40 A *	4	8
	ESV183N06TXB, ESV183N06TX~, ESV183N06TM~	M50 A	* use Fuse only	50 A *	6	8
	ESV223N06TXB, ESV223N06TX~, ESV223N06TM~	M63 A	* use Fuse only	60 A *	10	8
	ESV303N06TXB	M80 A	* use Fuse only	70 A *	16	6
	ESV373N06TXB	M100 A	* use Fuse only	90 A *	16	4
	ESV453N06TXB	M125 A	* use Fuse only	110 A *	25	2

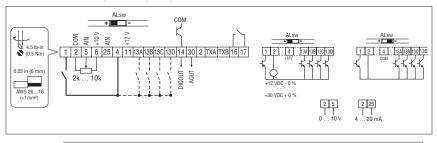
Notes for Fuse and Cable Table:

(1) Installations with high fault current due to large supply mains may require a type D circuit breaker.

(2) UL Class CC or T fast-acting current-limiting type fuses, 200,000 AIC, preferred. Bussman KTK-R, JJN or JJS or equivalent. (3) Thermomagnetic type breakers preferred.


 _ 11th digit of part number: F = Integral EMC Filter L = Integral EMC Filter and Integrated Disconnect Switch (NEMA 4X/IP65 Models only) M = Integrated Disconnect Switch (NEMA 4X/IP65 Models only) X = No EMC Filter/ No Disconnect Switch
 * = Last digit of part number: C = N4X Indoor only (convection cooled) E = N4X Indoor/Outdoor (convection cooled)
 ~ = Last digit of part number: D = N4X Indoor only (fan cooled) F = N4X Indoor/Outdoor (fan cooled)

Observe the following when using Ground Fault Circuit Interrupters (GFCIs):


- · Installation of GFCI only between supplying mains and controller.
- · The GFCI can be activated by:
 - capacitive leakage currents between the cable screens during operation (especially with long, screened motor cables)
 connecting several controllers to the mains at the same time
 - RFI filters

3.2.3 Control Terminals

Control Terminal Strip for 0.33 - 10 HP (0.25 - 7.5 kW):

Control Terminal Strip for 15HP (11 kW) and Greater Drives:

NOTE

i

Control and communications terminals provide basic insulation when the drive is connected to a power system rated up to 300V between phase to ground (PE) and the applied voltage on terminals 16 and 17 is less than 250 VAC between phase to phase and ground (PE).

Control Terminal Strip Descriptions

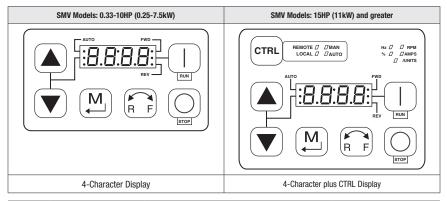
Terminal	Description	Important		
1	Digital Input: Start/Stop	input resistance = $4.3 k\Omega$		
2	Analog Common			
5	Analog Input: 010 VDC	input resistance: >50 k Ω		
6	Internal DC supply for speed pot	+10 VDC, max. 10 mA		
25	Analog Input: 420 mA	input resistance: 250Ω		
4	Digital Reference/Common	+15 VDC / 0 VDC, depending on assertion level		
11	Internal DC supply for external devices	+12 VDC, max. 50 mA		
13A	Digital Input: Configurable with P121			
13B	Digital Input: Configurable with P122	input resistance = 4.3 k Ω		
13C	Digital Input: Configurable with P123			
13D*	Digital Input: Configurable with P124			
14	Digital Output: Configurable with P142, P144	DC 24 V / 50 mA; NPN		
30	Analog Output: Configurable with P150P155	010 VDC, max. 20 mA		
2*	Analog Common			
TXA*	RS485 TxA			
TXB*	RS485 TxB			
16	Delay autout, Configurable with D140, D144	AC 250 V / 3 A		
17	Relay output: Configurable with P140, P144	DC 24 V / 2 A \ldots 240 V / 0.22 A, non-inductive		

* = Terminal is part of the terminal strip for the 15HP (11kW) and higher models only.

Assertion level of digital inputs

The digital inputs can be configured for active-high or active-low by setting the Assertion Level Switch (ALsw) and P120. If wiring to the drive inputs with dry contacts or with PNP solid state switches, set the switch and P120 to "High" (+). If using NPN devices for inputs, set both to "Low" (-). Active-high (+) is the default setting.

 $\begin{array}{l} \text{HIGH} = +12 \ \ldots \ +30 \ \text{V} \\ \text{LOW} = 0 \ \ldots \ +3 \ \text{V} \end{array}$


NOTE

An **F_AL** fault will occur if the Assertion Level switch (ALsw) position does not match the parameter P120 setting and P100 or any of the digital inputs (P121...P124) is set to a value other than 0.

4 Commissioning

4.1 Local Keypad & Display

Display	START BUTTON						
RUN	In Local Mode (P100 = 0, 4, 6), this button will start the drive.						
	STOP BUTTON						
\square	Stops the drive, regardless of which mode the drive is in.						
STOP	MARNING! When JOG is active, the STOP button will not stop the drive!						
	ROTATION						
RF	In Local Mode (P100 = 0, 4, 6), this selects the motor rotation direction: - The LED for the present rotation direction (FWD or REV) will be on - Press R/F; the LED for the opposite rotation direction will blink - Press N within 4 seconds to confirm the change - The blinking direction LED will turn on, and the other LED will turn off						
	When rotation direction is changed while the drive is running, the commanded direction LED will blink until th drive is controlling the motor in the selected direction. Rotation is set in P112. When P112 = 0, rotation is forward only. When P112 = 1 rotation is forward and reverse						
	MODE						
M	Used to enter/exit the Parameter Menu when programming the drive and to enter a changed parameter value.						
	UP AND DOWN BUTTONS						
	Used for programming and can also be used as a reference for speed, PID setpoint, or torque setpoint. When the ▲ and ▼ buttons are the active reference, the middle LED on the left side of the display will be on.						

ON

Display	INDICATING LEDs (on 4-character display)						
	FWD LED: Indicate the present rotation direction is forward. Refer to ROTATION description above.						
	REV LED: Indicate the pres	sent rotation direction is r	reverse. Refer to ROTATION d	escription above.			
		D mode is active (if PID n		TB13 inputs (P121P124 set at sequencer mode is active (if			
	RUN LED: Indicates that th	ne drive is running.					
••	▲ ▼ LED: Indicates the	at the 🔺 🔻 are the act	tive reference.				
			eference (P121…P124 is 6) nd ▲ ▼ LEDs will both be				
	FUNCTIONS THAT FOLLO	W ARE APPLICABLE TO	SMV DRIVES 15HP (11kW)	AND HIGHER			
CTRL	CTRL The CTRL pushbutton sele Press ()) mode button t		eference control sources for	the drive.			
	CTRL LEDs		START CONTROL	REFERENCE CONTROL			
		[LOCAL] [MAN]	Keypad	P101 Settings			
		[LOCAL] [AUTO]	Keypad	Terminal 13x Settings			
		[Remote] [Man]	Terminal Strip	P101 Settings			
	REMOTE DAN LOCAL DAUTO	[Remote] [Auto]	Terminal Strip	Terminal 13x Settings			
	If P100 = 6 the CTRL butt start control between the and the keypad [LOCAL]	00	REM/LOC LED indicating the present start control source is ON Press [CTRL]; the LED for other start control source will blink Press [M] within 4 sec to confirm the change Blinking LED will turn ON (the other LED will turn OFF)				
	If P113 = 1 the CTRL buttor reference control betweer [AUTO] and P101 [MANUA	the TB-13x setup	- AUT/MAN LED indicating present reference control is ON - Press [CTRL]; the other reference control will blink - Press [M] within 4 sec to confirm change - Blinking LED will turn ON (the other LED will turn OFF)				
	If $P100 = 6$ and $P113 = 1$ change the start and refer the same time	· ·					

0
ON

Display	START CONTROL							
	The REMOTE/LOCAL LEDs indicate the current start control source. If the start control source is a remote keypad or the network, then both LEDs will be OFF.							
	REFERENCE CONTROL							
	The AUTO/MANUAL LEDs indicate the current reference control source. IF P113 = 0 or 2, the AUTO/MANUAL LEDs will match the AUTO LED on the 4-character display. IF P113 = 0 and no AUTO reference has been setup on the terminal strip, the MANUAL LED will turn ON and the AUTO LED will turn OFF.							
	IF P113 = 1, the AUTO/MANUAL LEDS show the commanded reference control source as selected by the [CTR button. If the [CTRL] button is used to set the reference control source to AUTO but no AUTO reference has been setup on the terminal strip, reference control will follow P101 but the AUTO LED will remain ON.							
	UNITS LEDs							
	HZ: current display value is in Hz	In Speed mode, if P178 = 0 then HZ LED will be ON. If						
	%: current display value is in %	P178 > 0, the Units LEDs follow the setting of P177 when						
	RPM: current display value is in RPM	the drive is in run (non-programming) mode. In Torque mode, the HZ LED will be ON when the drive is						
	AMPS: current display value is in Amps	in run (non-programming) mode.						
	/UNITS current display value is a per unit (i.e./sec, /min, /hr, etc.)	In Pid mode, the Units LEDs follow the setting of P203 when the drive is in run (non-programming) mode.						
		If P179 > 0, the Units LEDs will show the unit of the diagnostic parameter that is being displayed.						

4.2 Drive Display and Modes of Operation

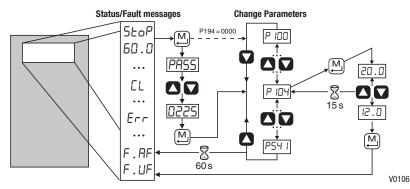
Speed Mode Display

In the standard mode of operation, the drive frequency output is set directly by the selected reference (keypad, analog reference, etc.). In this mode, the drive display will show the drive's output frequency.

PID Mode Display

When the PID mode is enabled and active, the normal run display shows the actual PID setpoint. When PID mode is not active, the display returns to showing the drive's output frequency.

Torque Mode Display


When the drive is operating in Vector Torque mode, the normal run display shows the drive's output frequency.

Alternate (Run-Screen) Display

When P179 (Run Screen Display) is set to a value other than 0, one of the diagnostic parameters (P501...P599) is displayed. Example: if P179 is set to 1, then diagnostic parameter P501 (Software version) is displayed. If P179 =2, then P502 (Drive ID) is displayed.

4.3 Parameter Setting

4.4 Electronic Programming Module (EPM)

The EPM contains the drives operational memory. Parameter settings are stored in the EPM and setting changes are made to the "User settings" in the EPM.

An optional EPM Programmer (model EEPM1RA) is available that allows:

- An EPM to be copied directly to another EPM.
- An EPM to be copied to the memory of the EPM Programmer.
- Stored files can be modified in the EPM Programmer.
- · Stored files can be copied to another EPM.

EPM Module in SMV Drive

As the EPM Programmer is battery operated, parameter settings can be copied to an EPM and inserted into a drive without power being applied to the drive. This means that the drive will be fully operational with the new settings on the next application of power.

Additionally, when the drives parameter settings are burned into an EPM with the EPM Programmer, the settings are saved in two distinct locations; the "User settings" and the "OEM default settings". While the User settings can be modified in the drive, the OEM settings cannot. Thus, the drive can be reset not only to the "factory" drive default settings (shown in this manual), but can be set to the Original Machine settings as programmed by the OEM.

The user area contents of the EPM are what are copied into the OEM space by the EPM programmer. When parameter modifications are made to the drive and then a copy made via the EPM Programmer, these are the settings that will be available by the OEM selections from P199. The EPM Programmer is the only way to load the OEM area of the EPM. While the EPM can be removed for copying or to use in another drive, it must be installed for the drive to operate (a missing EPM will trigger an $F_{-}F_{-}I$ fault)

4.5 Parameter Menu

4.5.1 Basic Setup Parameters

Code		Possible	Settings	IMPORTANT			
No.	Name	Default	Selection	- IMPORTANT			
P 100	Start Control Source	0	0 Local Keypad	Use RUN button on front of drive to start			
			1 Terminal Strip	Use start/stop circuit wired into the terminal strip. Refer to section 3.2.3			
			2 Remote Keypad Only	Use RUN button on optional Remote Keypad to start			
			3 Network Only	 Start command must come from network (Modbus, CANopen, etc) SMV models <15HP (11kW) require optional communication module (refer to the network module documentation). Must also set one of the TB-13 inputs to 9 (Network Enable); see P121P124 			
			4 Terminal Strip or Local Keypad	Allows start control to be switched between terminal strip and local keypad using one of the TB-13 inputs. See note below.			
			5 Terminal Strip or Remote Keypad	Allows start control to be switched between terminal strip and optional remote keypad using one of the TB-13 inputs. See Note below			
			6 CTRL button select	Allows start control to be switched between terminal strip and local keypad using the CTRL button. NOTE: P100 Selection 6 is applicable to SMV 15HP ((11kW) and higher models only.			
			WARNING! P100 = 0 disables TB-1 as a STOP input! STOP circuitry may be disabled if parameters ar reset back to defaults (see P199)				
		i	 NOTE P100 = 4, 5: To switch between control sources, one of the TB-13 inputs (P121P12 must be set to 08 (Control Select); TB-13x OPEN (or not configured): Terminal strip control TB-13x CLOSED: Local (P100 = 4) or Remote (P100 = 5) keypad P100 = 0, 1, 4, 6: Network can take control if P121P124 = 9 and the correspondi TB-13x input is CLOSED. The STOP button on the front of the drive is always active except in JOG mode. TB-1 is an active STOP input if P100 is set to a value other than 0. An F_RI fault will occur if the Assertion Level switch (ALsw) position does not mate the P120 setting and P100 is set to a value other than 0. 				
P 10 1	Standard Reference Source	0	0 Keypad (Local or Remote) 1 0-10 VDC 2 4-20 mA 3 Preset #1 (P131) 4 Preset #2 (P132) 5 Preset #3 (P133) 6 Network	Selects the default speed or torque reference when no Auto Reference is selected using the TB-13 inputs.			
			 7 Preset Sequence Segment #1 (P710) 8 Preset Sequence Segment #2 (P715) 9 Preset Sequence Segment #3 (P720) 	or torque reference.			

ON

Code		Possible	Settings					
No.	Name	Default	Selection		IMPORTANT			
P 102	Minimum Frequency	0.0	0.0 {Hz}	P103	P102, P103 are active for all speed			
P 103	Maximum Frequency	60.0	7.5 {Hz}	500	references • When using an analog speed reference, also see P160, P161			
		1	NOTE P103 cannot be set below Minimum Frequency (P102) To set P103 above 120 Hz: - Scroll up to 120 Hz; display shows <i>H iFr</i> (flashing) Release ⊽ button and wait one second Press ⊽ button again to continue increasing P103.					
	WARNING! Consult motor/machir damage to equipment			g above rated freque	ency. Overspeeding the motor/machine may cause			
P 104	Acceleration Time 1	20.0	0.0 {s}	3600	 P104 = time of frequency change from 0 Hz to P167 (base frequency) P105 = time of frequency change from P167 			
P 105	Deceleration Time 1	20.0	0.0 {s}	3600	 For S-ramp accel/decel, adjust P106 			
i	EXAMPLE: IF P103 = Hz to 120 Hz = 40.0 s		104 = 20.0 s and P16	7 (base frequency) =	= 60 Hz; then the rate of frequency change from 0			
P 106	S-Ramp Integration Time	0.0	0.0 {s}	50.0	 P106 = 0.0: Linear accel/decel ramp P106 > 0.0: Adjusts S-ramp curve for smoother ramp 			
P ורסו	Line Voltage Selection	1*	 Low (120, 200, 4 High (120, 240, 4 		* The default setting is 1 for all drives except when using "Reset to 50Hz default settings" (Parameter P199, selection 4) with 480V models. In this case, the default setting is 0.			
P 108	Motor Overload	100	30 {%}	100	P108 = motor current rating x 100 SMV output rating Example: if motor = 3amps and SMV = 4amps, then P108 = 75%			
		i	overload function of th	he SMV is UL approve	listed on the motor dataplate. The motor thermal ed as a motor protection device. Cycling power after ntly reducing the motor life.			
P 109	Motor Overload Type	0	0 Speed Compensa	tion				
			1 No Speed Compe Example: Motor is ventilation as appose self cooling fans.	cooled by forced				

(1) Any changes to this parameter will not take effect until the drive is stopped.

1	ON
IPORTANT	
tically start	when power is
nd is applied	d, drive will apply

10

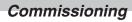
0000	1	Default	octungs	IMPORTANT		
No.	Name		Selection			
P I 10	Start Method	0	0 Normal			
			1 Start on Power-up	Drive will automatically start when power is applied.		
			2 Start with DC Brake	When start command is applied, drive will apply DC braking according to P174, P175 prior to starting the motor		
			3 Auto Restart	Drive will automatically restart after faults, or when power is applied.		
			4 Auto Restart with DC Brake	Combines settings 2 and 3		
			5 Flying Start/Restart - Type 1	 Drive will automatically restart after faults, or when power is applied. After 3 failed attempts, drive will Auto Restart 		
			6 Flying Start/Restart - Type 1	 with DC brake. P110 = 5, 7: Performs speed search, starting at Max Frequency (P103) P110 = 6, 8: Performs speed search, starting 		
			7 Flying Start /Restart - Type 2 for 2-pole motors requiring a flying restart	 at the last output frequency prior to faulting or power loss If P111 = 0, a flying START is performed when 		
		i	8 Flying Start/Restart - Type 2 for 2-pole motors requiring a flying restart	 a start command is applied. P110 = 7,8: Utilizes P280/281 to set Max Current Level and Decel Time for restart 		
			 fault will occur if start command is ap P110 = 1, 36: For automatic start/ and the start command must be pres P110 = 2, 46: If P175=999.9, dc t P110 = 36: Drive will attempt 5 re (fault lockout) and requires manual re 	t/restart, the start source must be the terminal stri sent. braking will be applied for 15s. restarts; if all restart attempts fail, drive displays L reset. ne spinning motor, drive will trip into F_rF fault.		
⚠				y to personnel! Automatic starting/restarting should		
PIII	Stop Method	0	0 Coast	Drive's output will shut off immediately upon a stop command, allowing the motor to coast to a stop		
			1 Coast with DC Brake	The drive's output will shut off and then the DC Brake will activate (refer to P174, P175)		
			2 Ramp	The drive will ramp the motor to a stop according to P105 or P126.		
			3 Ramp with DC Brake	The drive will ramp the motor to 0 Hz and then the DC Brake will activate (refer to P174, P175)		
	Rotation	0	0 Forward Only	If PID mode is enabled, reverse direction is disabled		
P I 12				(except for Jog).		

Code

Possible Settings

ON

Code	Code		Settings	IMPORTANT
No.	Name	Default Selection		IMPORTANT
P I 13	Auto/Manual Control 0		0 Terminal Strip Control	The reference is dictated by the settings and state of the TB-13x terminals. If no AUTO reference has been setup on the terminal strip then reference control is dictated by P101.
			1 Auto/Manual (CTRL button select)	Allows the reference to be switched between auto and manual using the CTRL pushbutton on the drive keypad. If the CTRL pushbutton has selected AUTO reference but no AUTO reference has been setup on the terminal strip, then reference control is dictated by P101.
			2 Manual Control Only	Reference is dictated by P101 regardless of any AUTO source that may be selected by the TB-13x terminals.
		i	NOTE P113 is applicable to SMV 15HP (11kW) a	and higher models only.
P I 15	MOP Speed	0	0 Set to last MOP speed at power up	Output frequency at power-up = last MOP speed
	Initialization at		1 Set to 0.0Hz at power up	Output frequency at power-up = 0Hz
	Power-Up		2 Set to Preset #3 (P133) at power up	Output frequency at power-up = P133



4.5.2 I/O Setup Parameters

Code		Possible	Settings	IMPORTANT
No.	Name	Default	Selection	IMPORTANT
P 120	Assertion Level	2	1 Low	P120 and the Assertion Level switch must both match the desired assertion level unless P100, P124 are all est to 0. Otherwise an E-14
			2 High	P121P124 are all set to 0. Otherwise an F.AL fault will occur.
P 12 I	TB-13A Digital Input	0	0 None	Disables input
			1 AUTO Reference: 0-10 VDC	For frequency mode, see P160P161,
P 122	TB-13B Digital Input		2 AUTO Reference: 4-20 mA	For PID mode, see P204P205, For vector torque mode, see P330
	(Priority > TB13A) Same as TB13A except:		3 AUTO Reference: Preset #1	For frequency mode see P131P137, For PID mode, see P231P233,
	3 = Preset #2		* 13D: 3 = Reserved	For torque mode see, P331P333
	23 = Seq Seg, #2		4 AUTO Reference: MOP Up	 Normally open: Close input to increase or decrease speed, PID or torque setpoint.
P 123	TB-13C Digital Input (Priority > TB13B, A)		5 AUTO Reference: MOP Down	MOP Up is not active while in STOP
	(Priority > 1813B, A) Same as TB13A except:		6 AUTO Reference: Keypad	
	3 = Preset #3		7 AUTO Reference: Network	
	23 = Seq Seg, #4		8 Control Select	Use when $P100 = 4$, 5 to switch between terminal strip control and local or remote keypad control.
P 124	TB-13D* Digital Input		9 Network Enable	Required to start the drive through the network.
	(Priority > TB13C, B, A)		10 Reverse Rotation	Open = Forward Closed = Reverse
	Same as TB13A except:		11 Start Forward	Refer to Note for typical circuit
	3 = Preset #4 23 = Seq Seg, #8		12 Start Reverse	
			13 Run Forward	Refer to Note for typical circuit
			14 Run Reverse	
			15 Jog Forward	Jog Forward speed = P134
	NOTE: P124 is applicable to SMV		16 Jog Reverse	Jog Reverse speed = P135
	15HP (11kW) and			\land Active even if P112 = 0
	higher models only		17 Accel/Decel #2	Refer to P125, P126
			18 DC Brake	Refer to P174; close input to override P175
			19 Auxiliary Ramp to Stop	Normally closed: Opening input will ramp drive to STOP according to P127, even if P111 is set to Coast (0 or 1).
			20 Clear Fault	Close to reset fault
			21 External Fault F_EF	Normally closed circuit; open to trip
			22 Inverse External Fault F_EF	Normally open circuit; close to trip
			23 AUTO Ref: Sequence Segment #1	Works in Speed Mode only
			24 Start Sequence	
			25 Step Sequence	Transition from non-asserted to asserted state
			26 Suspend Sequence	
	WARNING Jog overrides all ST fault condition induc		nands! To stop the drive while in Jog	mode, the Jog input must be deactivated or a
	WARNING If the input defined to	o "Start S	equence" is opened during a sequence Iternate speed source (dependent on di	, the drive will exit sequencer mode and will run rive configuration).

ON

Code		Possible	Possible Settings			IMPORTANT
No.	Name	Default	Select	tion		IMPORTANT
1	TB-13B and TB-1: Settings 1014 a If Start/Run/Jog F If Jog input is activ An F_RL fault will inputs (P121P12 An F_I L fault will - TB-13ATB-131 - One input is set t - One input is set Typical control cir	3-13D are 3B overrid re only val orward anuvated while occur if th 24) are set l occur und D settings o "MOP Up to 10 and to 11 or 12 cuits are s	configui es TB-1 id in Te d Start/I e drive is e Assert to a val der the f are dup are dup and a another 2 and an hown b	red for Auto Reference 3A. Any other Auto R mrminal Strip mode (P Run/Jog Reverse are a running, the drive w tion Level switch (ALs lue other than 0. following conditions: licated (each setting, nother is not set to "N. input is set to 11 nother input is set for	eference will I 100 = 1, 4, 5, both activated ill enter Jog m w) position do except 0, 3 a 10P Down", or 14. 13 or 14.	, drive will STOP ode; when Jog input is deactivated, drive will STOP es not match the P120 setting and any of the digital nd 23, can only be used once) vice-versa.
	Run / Stop with Direction P121 = 10			Start Forward Start Revers P121 = 11, P122 1 4 13A	e = 12 13B	Run Forward / Run Reverse P121 = 13, P122 = 14 1 4 13A 13B RUN RUN REV REV
P 125	Acceleration Time 2	20.0	0.0	{S}	3600	• Selected using TB-13ATB-13D (P121
P 126	Deceleration Time 2	20.0	0.0	{S}	3600	 P124 = 17) For S-ramp accel/decel, adjust P106
P 127	Deceleration Time for Auxiliary Ramp to Stop	20.0	0.0	{S}	3600	 Selected using TB-13ATB-13D (P121 P124 = 19). For S-ramp accel/decel, adjust P106 Once executed, this ramp time has priority over P105 and P126.
P 129	Automatic Accel/ Decel rate switch threshold	0.0	0.0	{Hz}	1000	If Actual Frequency < P129 Use Accel/decel time #2 (P125/P126) If Actual Frequency > P129 Use Accel/decel time #1 (P104/P105)
P IB I	Preset Speed #1	0.0	0.0	{Hz}	500	PRESET 13A 13B 13C 13D
P 132	Preset Speed #2	0.0	0.0	{Hz}	500	1 X
	Dreast Crossed #C	0.0	0.0	(I -)	500	2 X
P 133	Preset Speed #3	0.0	0.0	{Hz}	500	3 X
P 134	Preset Speed #4	0.0	0.0	{Hz}	500	4 X X 4 (alternate) X
P 135	Preset Speed #5	0.0	0.0	{Hz}	500	5 X X 6 X X
P 136	Preset Speed #6	0.0	0.0	{Hz}	500	7 X X X
				(··)		8 (alternate) X X
רפו ק	Preset Speed #7	0.0	0.0	{Hz}	500	8 (alternate X X
P 138	Preset Speed #8	0.0	0.0	{Hz}	500	 Speed setting is used by P158 13D available on 15HP (11kW) & higher drives.

ON

Code		Possible	Settings	INDODIANT
No.	Name	Default	Selection	IMPORTANT
P 140	Relay Output	0	0 None	Disables the output
	TB-16, 17		1 Run	Energizes when the drive is running
			2 Reverse	Energizes when reverse rotation is active
			3 Fault	De-energizes when the drive trips, or power is removed
			4 Inverse Fault	Energizes when the drive trips
			5 Fault Lockout	P110 = 36: De-energizes if all restart attempts fail
			6 At Speed	Energizes when output frequency = commanded frequency
			7 Above Preset Speed #6	Energizes when output frequency > P136
			8 Current Limit	Energizes when motor current = P171
			9 Follower Loss (4-20 mA)	Energizes when 4-20 mA signal is < P164
			10 Loss of Load	Energizes when motor load drops below P145; Refer to P146 also
			11 Local Keypad Control Active	
			12 Terminal Strip Control Active	Energizes when the selected source is active for
			13 Remote Keypad Control Active	start control
			14 Network Control Active	
			15 Standard Reference Active	Energizes when P101 reference is active
			16 Auto Reference Active	Energizes when Auto Reference is activated using TB-13 input; refer to P121P124
			17 Sleep Mode Active	Refer to P240P242
			18 PID Feedback < Min. Alarm	Energizes when PID feedback signal < P214
			19 Inverse PID Feedback < Min. Alarm	De-energizes when PID feedback signal < P214
			20 PID Feedback > Max Alarm	Energizes when PID feedback signal > P215
			21 Inverse PID Feedback > Max Alarm	De-energizes when PID feedback signal > P215
			22 PID Feedback within Min/Max Alarm range	Energizes when PID feedback signal is within the Min/Max Alarm range; refer to P214, P215
			23 PID Feedback outside Min/Max Alarm range	Energizes when PID feedback signal is outside the Min/Max Alarm range; refer to P214, P215
			24 Reserved	
			25 Network Controlled	SMV models < 15HP (11kW) require an optional communication module (refer to the network module documentation).
			26 Loss of 0-10V Input	Energizes when 0-10V signal is < P158
			27 Sequencer Controlled	State set in individual sequencer segments
			28 Sequencer Active	
			29 Sequencer Suspended	
			30 Sequence Done	End Sequence
			31 Output Frequency = 0.0Hz	Output inactive
P 142	TB-14 Output	0	023 (same as P140)	
			24 Dynamic Braking	For use with Dynamic Braking option
			2531 (same as P140)	

Code	de Possible Settings		INDODIANT				
No.	Name	Default	Selection				IMPORTANT
P 144	Digital Output Inversion		P144 0 1 2 3	Invert P142 NO NO YES YES			Used to invert the selections for P140 (Relay Output) and P142 (TB-14 Output). EXAMPLE: When P140 = 6 (AT SPEED), the relay is energized when output frequency = commanded frequency. IF P144=1 or 3, then P140 is inverted (INVERSE AT SPEED) and the relay is energized when the output frequency does not equal the command frequency.
		i	energized co	ontinuously or drives ra	ated at 0.33	to 10	ter is set to NONE (0) will result in the output being) HP (0.25 to 7.5 kW), P144 is only available with
P 145	Loss of Load Threshold	0	0	{%}	200		P140, $P142 = 10$: Output will energize if motor load falls below the P145 value longer than the
P 146	Loss of Load Delay	0.0	0.0	{S}	240.0)	P146 time
P 149	Analog Output Offset	0.0	0	{%}	100		Scaled value. Example: $P149 = 10\%$, Scaled variable = freq, $P150 = 1$, $P152 = 60Hz$; then TB30 = 0VDC below 6Hz
P 150	TB-30 Output	0	2 2-10 VD 3 0-10 VD 4 2-10 VD 5 0-10 VD 6 2-10 VD 7 0-10 VD	C Load C Torque	w)		$2\text{-}10\text{VDC}$ signal can be converted to 4-20 mA with a total circuit impedance of 500 Ω
				Controlled			SMV models < 15HP (11kW) require an optional communication module (refer to the network module documentation).
		0	10 Sequenc	er Controll	ed		Value set in individual sequencer segments
P 15 I	Add Analog Input to TB-30 Output	0		Add TB-25 4-20mA) NO NO YES YES	Add TB-5 (0-10VDC) NO YES NO YES	-	This parameter adds the analog input signal(s) to the TB-30 Output signal. EXAMPLE: If a drive is running at 60Hz with P150 set to 1 (0-10VDC Freq) and P152 set to 240.0Hz, the output at TB-30 would be 2.5VDC. If there is a 2.0VDC signal going into TB-5 and P151 is set to 1 (ADD TB-5), the output at TB-30 would become 4.5VDC.
P 152	TB-30 Scaling: Frequency	60.0	3.0	{Hz}	2000		If P150 = 1 or 2, sets the frequency at which output equals 10 VDC $% \left(\frac{1}{2}\right) =0$
P 153	TB-30 Scaling: Load	200	10	{%}	500		If $P150 = 3$ or 4, sets the Load (as a percent of drive current rating) at which output equals 10 VDC.
P 154	TB-30 Scaling: Torque	100	10	{%}	1000		If $P150 = 5$ or 6, sets the Torque (as a percent of motor rated torque) at which output equals 10 VDC
P 155	TB-30 Scaling: Power (kW)	1.0	0.1	{kW}	200.0)	If $P150 = 7$ or 8, sets the power at which output equals 10 VDC

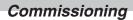
4.5.3 Advanced Setup Parameters

Code		Possible	Settings			IMPORTANT
No.	o. Name Default Selection		IMPORTANT			
P 156	Analog Inputs Configuration	0	1 TB5: ((2 TB5: (2 4 TB5: (1 5 TB5: (1	0-10 VDC); TB25 0 - 5 VDC); TB25 2 - 10 VDC); TB25 0-10 VDC); TB25 0 - 5 VDC); TB25 2 - 10 VDC); TB25	: (4-20mA) 5: (4-20mA) :: (0-20mA) :: (0-20mA)	
P 157	TB5 (0-10V) Analog Input Monitoring Action	0	0 No Act 1 If TB5 2 If TB5 3 If TB5 4 If TB5 5 If TB5		ault F_FRU reset #8 reset Seg. #16 ault F_FRU reset #8	Selects the reaction to a loss of the 0-10V signal at TB5 500ms is the minimum time above/below Monitoring Level (P158) before triggering the drive to trip or run at a preset speed. For P157 = 3 or 6, the accel/decel time is set in P786. NOTE: P157 has priority over P163 and TB-13 presets/auto references (P121-P124)
P 158	TB5 (0-10V) Analog Input Monitoring Level (ML)	0.0	-10.0	{VDC}	10.0	Negative input voltage is not currently supported.
P 159	0-10V Analog Input Deadband	0.0	0	{VDC}	10.0	Not active if [-10 to +10 VDC] option is selected.
P 160	Speed at Minimum Signal	0.0	-999.0	{Hz}	1000	P161
P 16 I	Speed at Maximum Signal	60.0	-999.0	{Hz}	1000	(4mA) P160 V0111
		i	 P161 s P160 s 	or P161 < 0.0 Hz	requency at 10 z: For scaling p	, analog input 0% analog input urposes only; does not indicate opposite direction! ly to analog input signal
P 162	Analog Input Filter	0.01	0.00	{S}	10.00	 Adjusts the filter on the analog inputs (TB-5 and TB-25) to reduce the effect of signal noise The P162 delay time will affect the response time of diagnostic parameters (P520-P523).
P 163	TB-25 (4-20mA) Analog Input Monitoring Action	0	2 If TB25 3 If TB25 4 If TB25 5 If TB25	$\begin{array}{l} \text{ion} \\ \overline{5} < \text{P164} - \text{Trip I} \\ \overline{5} < \text{P164} - \text{Run I} \\ \overline{5} < \text{P164} - \text{Run P} \\ \overline{5} \geq \text{P164} - \text{Trip I} \\ \overline{5} \geq \text{P164} - \text{Run I} \\ \overline{5} \geq \text{P164} - \text{Run P} \end{array}$	Preset #7 reset Seg. #15 Fault F_FoL Preset #7	 Selects the reaction to a loss of the 4-20 mA signal at TB-25. Signal is considered lost if it falls below the value set in P164 Digital outputs can also indicate a loss of 4-20 mA signal; see P140, P142 For P163 = 3 or 6, the accel/decel time is set in P781. NOTE: P163 has priority over TB-13 presets/auto references (P121-P124)

ON

Code Possib		Possible	Settings			INDODTANT
No.	Name	Default	Selection			IMPORTANT
P 164	TB-25 (4-20mA) Analog Input Monitoring Level	2.0	0.0	{mA}	20.0	
P 165	Base Voltage		15	{V}	1000	Valid for V/Hz mode only. Set voltage for bus compensation in V/Hz mode
P 166	Carrier Frequency	See Notes	0 4 kHz 1 6 kHz 2 8 kHz 3 10 kHz	Z		 As carrier frequency is increased, motor noise is decreased Observe derating in section 2.3 Automatic shift to 4 kHz at 120% load NEMA 4X (IP65) Models: Default = 0 (4kHz) NEMA 1 (IP31) Models: Default = 1 (6kHz)
P 1670	Base Frequency	60.0	10.0	{Hz}	1500	100%
P 168	Fixed Boost	i	0.0 NOTE	{%}	40.0	P168 0 0 0 P167 V0112
						ndard applications s on drive rating
P 169	Accel Boost	0.0	0.0	{%}	20.0	Accel Boost is only active during acceleration
P (10)	Slip Compensation	0.0	0.0	{%}	40.0	Increase P170 until the motor speed no longer changes between no load and full load conditions.
P N 1"	Current Limit	Max I	30	{%}	Max I	 When the limit is reached, the drive displays <i>LL</i>(Current Limit), and either the acceleration time increases or the output frequency decreases. Digital outputs can also indicate when the limit is reached; see P140, P142. Refer to section 2.3 for the maximum output current Max I (%)
P 112	Current Limit Reduction	0	Norma 1 Currer respor 2 Currer Norma 3 Currer	nt Limit Reduc al response nt Limit Reductionse nt Limit Reduct al response nt Limit Reduct esponse	on Active - Fast ion Disabled -	In field weakening, the Current Limit is inversely proportional to the speed.
Р ПЭ	Decel Override Time	2.0	0.0	{S}	60.0	Maximum time before drive trips into HF fault.
Р ПЧ	DC Brake Voltage	0.0	0.0	{%}	50.0	Setting is a percent of the nominal DC bus voltage.

(1) Any changes to this parameter will not take effect until the drive is stopped.


Code		Possible	Settings		
No.	Name	Default	Selection		IMPORTANT
P 115	DC Brake Time	0.0	0.0 {s}	999.9	
		i	NOTE: CONFIRM MOTOR DC Brake voltage (P174) is : If P111=1, 3 and P175 or fault condition occur If P110=2, 46 and P If P121P124=18 and	applied for the =999.9 the br 's. 175=999.9, b d the correspo	OR USE WITH DC BRAKING time specified by P175 with the following exceptions: ake voltage will be applied continuously until a run rake voltage will be applied for 15s nding TB-13 input is CLOSED, brake voltage will be IED or a fault condition occurs.
P 116	Keypad Setpoint Single Press Increment	0.1	0.1	100.0	Used for run screen setpoint editing only. If P176 >0.1 then scrolling of keypad setpoint is enabled.
Р П	Speed Units	0	0 Hz 1 RPM 2 % 3 /UNITS 4 NONE		Select the UNITS LED that will be illuminated when the drive is running in speed control mode. For this parameter to be used, P178 must be set to a value other than 0. IF P178 is set to 0, the Hz LED will be illuminated regardless of the value set in P177.
P 118	Display Frequency Multiplier	0.00	0.00	650.00	 Allows frequency display to be scaled P178 = 0.00: Scaling disabled P178 > 0.00: Display = Actual Frequency X P178
		i	EXAMPLE If P178 = 29.17 and actua	I frequency =	60 Hz, then Drive displays 1750 (rpm)
P (19	Run Screen Display	0	0 {Parameter Number}	599	 0 = Normal Run Screen, this display depends on mode of operation. Refer to section 4.2. Other selections choose a diagnostic parameter to display (P501P599). Parameters P560 - P564 are selectable if the sequencer is enabled (P700 is not 0). P560-P564 are not visible until P700 is enabled.
P 180	Oscillation Damping Control	0	0	80	0 = Damping disabled Compensation for resonances within drive
P 18 1	Skip frequency 1	0.0	0.0 {Hz}	500	• Drive will not run in the defined skip range;
P 182	Skip frequency 2	0.0	0.0 {Hz}	500	used to skip over frequencies that cause mechanical vibration
P 184	Skip frequency bandwidth	0.0	0.0 {Hz}	10.0	 P181 and P182 define the start of the skip ranges P184 > 0 defines the bandwidth of both ranges.
		i	NOTE Bandwidth (Hz) = f_s (Hz) + EXAMPLE: P181 = 18 Hz a		f _s = P181 or P182 łz; skip range is from 18 to 22 Hz
P 185	Voltage Midpoint V/Hz characteristic	0	0.0 {V}	P165	Valid only when P300 = 0 or 2. Use with P187 to define midpoint on V/Hz curve.
P 187 (%)	Frequency Midpoint V/Hz characteristic	0.0	0.0 {Hz}	P167	Valid only when P300 = 0 or 2. Use with P185 to define midpoint on V/Hz curve.
P 189 (8)	Integrated Dynamic Brake		0 Disabled 1 Enabled		

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

(3) Parameter applicable to SMV models 40HP (30kW) and higher.

ON

Code		Possible	Settings	INDODIANT			
No.	Name	Default	Selection	IMPORTANT			
P 190	Motor Braking		0 Disabled	Flux brake OFF.			
			1 Braking with BUS threshold	When drive is in deceleration and $V_{bus} > V_{deceleration freeze}$ (114% of the rated V_{bus}), the flux brake will be turned ON.			
			2 Braking always on with deceleration	As long as drive is in deceleration, the flux brake will be ON.			
			3 Braking with bus regulator	When drive is in deceleration and $V_{bec} > V_{ecceleration}$ frees (114% of the rated V_{bec}), the motor speed will be increased to reduce the bus voltage. Determined by the value in P191, the speed increment = slip speed * P191(%) / 37.			
			4 Special	(Consult factory before using)			
				. To avoid damage to the motor, use a PTC to d too frequently, the drive will trip fault "F_PF".			
P 19 I	Motor Brake Level	0	0 {%} 75 (flux braking disabled)	Active when P190 > 0 and drive is in deceleration mode. Use to reduce deceleration time on high inertia loads. NOTE: Over usage of P190 can cause frequent 'overload' trips "F.PF" Not active for P300 = 5 (Torque mode)			
P 192	Motor Braking Deceleration Reduction Level	0.0	0 P167 (base freq) Raising the value of P191 reduces the drive deceleration rate during flux braking.	Active when P190 > 0 and P192 > 0.0, Drive is in deceleration mode. Use to reduce deceleration time on high inertia loads. NOTE: Usage of P192 can cause the drive to decelerate faster than settings in P105/P127. Not active for P300 = 5 (Torque mode)			
P 194	Password	0	0000 9999	 Must enter password to access parameters P194 = 0000: Disables password 			
P 197	Clear Fault History	0	0 No Action				
			1 Clear Fault History				
P 199	Program Selection		0 Operate from User settings				
			1 Operate from OEM settings	Refer to Notes 1, 2 and 3			
			2 Reset to OEM default settings	Refer to Note 1			
			Reset to 60 Hz default settings Reset to 50 Hz default settings	 Refer to Note 4 Parameters are reset to the defaults listed in this manual. For P199=4, the following exceptions apply: - P103, P152, P161, P167 = 50.0 Hz - P165 = 400V (400/480V drives only) 			
				- P185 = 4000 (400/400/ dives only) - P304 = 50 Hz - P305 = 1450 RPM - P107 = 0 (480 V drives only)			
			5 Translate	Refer to Note 5			
			WARNING! Modification of P199 can affect drive functionality! STOP and EXTERNAL FAULT circuitry may be disabled! Check P100 and P121P124				
		i	NOTE 1 If the EPM does not contain valid OEM settings, a flashing <i>DF</i> will be displayed when P199 is set to 1 or 2. NOTE 2 When P199 is set to 1, the drive operates from the OEM settings stored in the EPM Module and no other parameters can be changed (<i>DE</i> will be displayed if attempted). NOTE 3				
			Auto Calibration is not possible when ope NOTES 4 and 5 - on next page.	rating from OEM Settings.			

Code		Possible	Settings	IMPORTANT
No.	Name	Default	Selection	IMPORTANT
P 199	Program Selection	1	P120 may need to be reset for the digital i if P120 and the Assertion switch are not s NOTE 5 If an EPM that contains data from a previo The drive will operate according to the (cE will be displayed if attempted)	bus compatible software version is installed: previous data, but parameters cannot be changed are version, set P199 = 5. The parameters can now

4.5.4 PID Parameters

Code	Code		Settings	
No.	Name	Default	Selection	IMPORTANT
P200	PID Mode	0	0 Disabled 1 Normal-acting 2 Reverse-acting 3 Normal-acting, Bi-directional 4 Reverse-acting, Bi-directional	
		i	Auto Reference that matches the reference uses the same analog s Example: The desired PID setpoi (Auto Reference: Keypad): • TB-13x = closed: PID mode is	TB-13 inputs (P121P124) must be used to select the desired PID setpoint reference. If the selected PID setpoint gnal as the PID feedback (P201), an $F_{-1}I$ fault will occur. It reference is the keypad (\blacktriangle and \blacktriangledown). Set TB-13x = 6 active disabled and the drive speed will be controlled by the
P20 I	PID Feedback Source	0	0 4-20 mA (TB-25) 1 0-10 VDC (TB-5) 2 Drive Load (P507) 3 Feedback from Network	Must be set to match the PID feedback signal
P202	PID Decimal Point	1	0 PID Display = XXXX 1 PID Display = XXX.X 2 PID Display = XX.XX 3 PID Display = X.XXX 4 PID Display = .XXXX	Applies to P204, P205, P214, P215, P231P233, P242, P522, P523
6503 ø	PID Units	0	0 % 1 /UNITS 2 AMPS 3 NONE	Select the UNITS LED that will be illuminated when the drive is running in PID control mode
P204	Feedback at Minimum Signal	0.0	-99.9 310	being used
P205	Feedback at Maximum Signal	100.0	-99.9 310	0.0 Example: Feedback signal is 0 - 300 PSI; P204 = 0.0, P205 = 300.0

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

ON

Code		Possible	Settings			
No.	Name Default Selection			IMPORTANT		
ггол	Proportional Gain	5.0	0.0	{%}	1000.0	Used to tune the PID loop:
P208	Integral Gain	0.0	0.0	{S}	20.0	 Increase P207 until system becomes unstable, then decrease P207 by 10-15%
P209	Derivative Gain	0.0	0.0	{S}	20.0	Next, increase P207 by 10-15% Next, increase P208 until feedback matches setpoint If required, increase P209 to compensate for sudden changes in feedback
		i	NOTE • •		,	sitive to noise on the feedback signal. Use with care. nally required in pump and fan applications
P2 10	PID Setpoint Ramp	20.0	0.0	{S}	100.0	 time of setpoint change from P204 to P205 or vice versa. Used to smooth the transition from one PID setpoint to another, such as when using the Preset PID Setpoints (P231P233)
P2 14	Minimum Alarm	0.0	P204		P205	Use with P140, P142 = 1823
P2 15	Maximum Alarm	0.0	P204		P205	
P23 I	Preset PID Setpoint #1	0.0	P204		P205	TB-13A activated; P121 = 3 and P200 = 1 or 2
P232	Preset PID Setpoint #2	0.0	P204		P205	TB-13B activated; P122 = 3 and P200 = 1 or 2
P233	Preset PID Setpoint #3	0.0	P204		P205	TB-13C activated; P123 = 3 and P200 = 1 or 2
P234@	Preset PID Setpoint #4	0.0	P204		P205	TB-13D activated; $P124 = 3$ and $P200 = 1$ or 2
P240	Sleep Threshold	0.0	0.0	{Hz}	500.0	• If drive speed < P240 for longer than P241,
P24 I	Sleep Delay	30.0	0.0	{S}	300.0	 output frequency = 0.0 Hz; drive display = 5LP P240 = 0.0: Sleep mode is disabled.
P242	Sleep Bandwidth	0.0	0.0 Where: B	m _{ax} = I(P205 - P2	B _{max} 204)I	 P200 = 02: Drive will start again when speed command is above P240 P242 > 0.0: Drive will restart when the PID feedback differs from the setpoint by more than the value of P242 or when the PID loop requires a speed above P240.
P243	Feedback Sleep Entry Threshold	0.0	P204		P205	Active only when P244 = 1 or 2
P244	Sleep Entry Mode	0	1 Enter	SLEEP if Drive S SLEEP if Feedba SLEEP if Feedba	ack >P243	For time longer than P241 For time longer than P241 or same as Sel 0 For time longer than P241 or same as Sel 0
P245	Sleep Entry Stop Type	0	1 Ramp	t to Stop to Stop with P111 setting	gs	
P246	Feedback Recovery from Sleep Threshold	0.0	P204		P205	Active only when P247 = 1 or 2
P247	Sleep Recovery Mode	0	0 Recovery if Speed Setpoint > P240 or if PID feedback differs from setpoint by more than P242		rs from setpoint	
				very only if Feedl		
			2 Reco	very only if Feedl	back $> P246$	

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

Com			
LOM	mise	sini	nna
COIII	11133	2101	ши

Code	Code		Settings			IMPORTANT		
No.	Name	Default	Selection			IMPORTANT		
P250	Auto Rinse in Sleep Mode	0	0 Disabled 1 Enabled			Activated in sleep mode only. Sleep Recovery cancels Auto Rinse		
P25 I	Time Delay between Auto Rinses	30.0	0.0	{min}	6553.5	Time delay reset by re/entering sleep mode		
P252	Auto Rinse Speed	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign = reverse direction		
P253	Auto Rinse Time	0.0	0.0	{sec}	6553.5	Does not include time to decel back to speed		
			Auto Pump Rii P250=1 (Enab P251=# mi PumpRinse P252=Hz spec P253=# secon	oled) inutes be ed of Pump		Pump Rinse Speed P252 P104/ P105/ P105/ P105/ P105/ P106 P106 P106/ P106 P106/ P106 P106/ P10		
P280	Current Level: Flying Restart Type 2	70.0	0.0	{%}	P171	Maximum current during Type 2 flying restart operation		
P28 I	Decel Time: Flying Restart Type 2	3.0	0.0	{sec}	3600.0	Deceleration rate used during Type 2 flying restart operation		

4.5.5 Vector Parameters

Code		Possible	Settings	IMPORTANT
No.	Name	Default	Selection	IMPORTANT
P300 ⁽¹⁾	Drive Mode	0	0 Constant V/Hz 1 Variable V/Hz	Constant torque V/Hz control for general applications Variable torque V/Hz control for centrifugal pump and fan applications
			2 Enhanced Constant V/I 3 Enhanced Variable V/H	
			4 Vector Speed	For single-motor applications requiring higher starting torque and speed regulation
			5 Vector Torque	For single-motor applications requiring torque control independent of speed
		i	 P300 = 4, 5: Set P302P306 acct. Set P399 = 1 or 2 (if Make sure motor is c Display will indicate I Once the calibration command to actually If an attempt is ma performing the Motor 	either Vector mode or Enhanced V/Hz mode: ording to motor nameplate option 1 failed or in case of non-standard motor) old (20° - 25° C) and apply a Start command FL for about 40 seconds is complete, the display will indicate 5toP ; apply another Start start the motor de to start the drive in Vector or Enhanced V/Hz mode before 'Calibration, the drive will display F_n Id and will not operate above but only need to set P302P304
P302 (1)	Motor Rated Voltage		0 {V}	600 • Default setting = drive rating
P303 ⁽¹⁾	Motor Rated Current		0.1 {A}	500.0 • Set to motor nameplate data

(1) Any changes to this parameter will not take effect until the drive is stopped.

o

Code		Possible				IMPODIANT		
No.	Name	Default	Selection			IMPORTANT		
P304 ⁽¹⁾	Motor Rated Frequency	60	0	{Hz}	1000			
P305 (1)	Motor Rated Speed	1750	300	{RPM}	65000	Set to motor nameplate data		
P306 (1)	Motor Cosine Phi	0.80	0.40		0.99	1		
		i	cos phi =	motor Watts / (n	notor efficier	wn, use one of the following formulas: ncy X P302 X P303 X 1.732) ent / motor current)]		
P3 10 ⁽¹⁾	Motor Stator Resistance		0.00	$\{\Omega\}$	64.00	 P310, 311 default setting depends on drive rating Will be automatically programmed by P399 		
P3 I ⁽¹⁾	Motor Stator Inductance		0.0	{mH}	2000	 Changing these settings can adversely affect performance. Contact factory technical support prior to changing 		
P3 15	Dead Time Compensation Factor	0.0	-50.0	{%}	+50.0	 Adjust dead time correction from internal default Takes effect when P399 = 3. 		
P330	Torque Limit	100	0	{%}	400	When $P300 = 5$, sets the maximum output torque.		
P33 I	Preset Torque Setpoint #1	100	0	{%}	400	TB-13A activated; P121 = 3 and P300 = 5		
P332	Preset Torque Setpoint #2	100	0	{%}	400	TB-13B activated; P122 = 3 and P300 = 5		
P333	Preset Torque Setpoint #3	100	0	{%}	400	TB-13C activated; P123 = 3 and P300 = 5		
P334 ⁽²⁾	Preset Torque Setpoint #4	100	0	{%}	400	TB-13D activated; P124 = 3 and P300 = 5		
P340 (1)	Current Loop P Gain	0.25	0.00		16.0	Changing these settings can adversely affect		
P34 I (1)	Current Loop I Gain	65	12	{ms}	9990	performance. Contact factory technical support		
P342 (1)	Speed Loop Adjust	0.0	0.0	{%}	20.0	prior to changing.		
P343	Slip Compensation Response Filter	99	90	{ms}	9999	Low pass filter time constant for varying the slip compensation response to changes in the motor current.		
P399	Motor Auto- calibration	0	0 Calibration Not Done 1 Standard Calibration Enabled 2 Advanced Calibration Enabled 3 Bypass Calibration, enable operation in vector mode w/o Auto Calibration 4 Standard Calibration Complete 5 Advanced Calibration Complete			 If P300 = 4 or 5, motor calibration must be performed if P399 is not set to 3 (bypass calibration). If P300=2 or 3, motor calibration is recommended. Use option 2 if option 1 failed or in case of non-standard motors An alternating <i>LRL / Err</i> will occur if: attempt motor calibration with P300 = 0 or 1 motor calibration with prove before programming motor data 		
		1		Set P399 = 1 o Make sure mot Apply a Start co Display will ind	6 according or 2 (if option or is cold (20 ommand icate CAL fo ration is con I to actually	to motor nameplate 1 failed or in case of non-standard motor) 0° - 25° C) r about 40 seconds mplete, the display will indicate Stop ; apply another start the motor		

(1) Any changes to this parameter will not take effect until the drive is stopped.

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

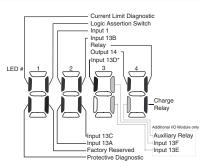
4.5.6 Network Parameters

Code		Possible	Settings	IMPORTANT	
No.	Name	Default	Selection	INFORTANT	
P400	Network Protocol		0 Not Active	This parameter setting is based upon the network	
, ,00			1 Remote Keypad	or I/O module that is installed.	
			2 Modbus RTU		
			3 CANopen		
			4 DeviceNet		
			5 Ethernet		
			6 Profibus		
			7 Lecom-B		
			8 I/O Module		
P40 I	Module Type Installed	0	0 No Module Installed	Module type format: 0xAABC; Drive Display:	
			1 Basic I/O (0x0100, 1.0.0)	AA.B.C	
			2 RS485/Rem. Keypad (0x0200, 2.0.0)	AA = Module Type	
			3 CANopen (0x0300, 3.0.0)	B = Major revision	
			11 PROFIBUS (0x1100, 11.0.0)	C = minor revision	
			12 Ethernet (0x1200, 12.0.0)		
P402	Module Status	0	0 Not Initialized		
			1 Initialization: Module to EPM		
			2 Initialization: EPM to Module		
			3 Online		
			4 Failed Initialization Error		
			5 Time-out Error		
			6 Initialization Failed	Module type mismatch P401	
			7 Initialization Error	Protocol selection mismatch P400	
P403	Module Reset	0	0 No Action	Returns module parameters 401499 to the	
			1 Reset parameters to default values	default values shown in the manual	
РЧ0ч	Module Timeout Action	3	0 No Fault	Action to be taken in the event of a Module/	
			1 STOP (see P111)	Drive Time-out.	
			2 Quick Stop	Time is fixed at 200ms	
			3 Fault (F_ntF)	STOP is by the method selected in P111.	
P405	Current Network Fault		0 No Fault		
			1 F.nF1	NetIdle Mode	
			2 F.nF2	Loss of Ethernet I/O connection	
			3 F.nF3	Network Fault	
			4 F.nF4	Explicit Message Timeout	
			5 F.nF5	Overall Network Timeout	
			6 F.nF6	Overall Explicit Timeout	
			7 F.nF7	Overall I/O Message Timeout	
P406	Proprietary		<u> </u>	Manufacturer specific	
רחעם	8499	Module	pecific Parameters	Refer to the Communications Reference Guide	
	רקטס	Informe 2	שלוווט רמומווופופוט	specific to the network or I/O module installed.	

4.5.7 Diagnostic Parameters

Code					
No.	Name	Display	Range (READ	UNLY)	IMPORTANT
P500	Fault History				 Displays the last 8 faults Format: n.xxx where: n = 18, 1 is the newest fault; xxx = fault message (w/o the <i>F</i>.) Refer to section 5.3
P50 I	Software Version				Format: x.yz
P502	Drive ID				A flashing display indicates that the Drive ID stored in the EPM does not match the drive model it is plugged into.
P503	Internal Code				Alternating Display: xxx-; -yy
P505	DC Bus Voltage	0	{VDC}	1500	
P506	Motor Voltage	0	{VAC}	1000	
P507	Load	0	{%}	255	Motor load as % of drive's output current rating. Refer to section 2.3.
P508	Motor Current	0.0	{A}	1000	Actual motor current
P509	Torque	0	{%}	500	Torque as % of motor rated torque (vector mode only)
P5 10	Output Power kW	0.00	{kW}	650.0	
PS 11	Total kWh	0.0	{kWh}	9999999	Alternating display: xxx-; yyyy when value exceeds 9999
PS 12	Heatsink Temp	0	{°C}	150	Heatsink temperature
P520	0-10 VDC Input	0.0	{VDC}	10.0	Actual value of signal at TB-5 (See P162)
P52 I	4-20 mA Input	0.0	{mA}	20.0	Actual value of signal at TB-25 (See P162)
P522	TB-5 Feedback	P204		P205	TB-5 signal value scaled to PID feedback units (See P162)
P523	TB-25 Feedback	P204		P205	TB-25 signal value scaled to PID feedback units (See P162)
P524	Network Feedback	P204		P205	Network signal value scaled to PID feedback units
P525	Analog Output	0	{VDC}	10.0	Refer to P150P155
P527	Actual Output Frequency	0	{Hz}	500.0	
P528	Network Speed Command	0	{Hz}	500.0	Command speed if (Auto: Network) is selected as the speed source
P530	Terminal and Protection Status				Indicates terminal status using segments of the LED display. (Refer to section 4.5.7.1)
P53 I	Keypad Status				Indicates keypad button status using segments of the LED display. (Refer to section 4.5.7.2)
P540	Total Run Time	0	{h}	9999999	Alternating display: xxx-; yyyy when value exceeds 9999
P54 I	Total Power On Time	0	{h}	9999999	
P550	Fault History	1		8	 Displays the last 8 faults Format: n.xxx where: n = 18, 1 is the newest fault; xxx = fault message (w/o the <i>F</i>.) Refer to section 5.3
P55 I	Fault History Time	0	{h}	999999	Display: "n.hh-" "hhhh" "mm.ss" = fault #, hours, seconds The "hhhh" screen is displayed after hours exceed 999.
P552	Fault History Counter	0		255	Number of sequential occurrences of a fault. For example: 3 external faults occur over a period of time with no other errors occurring. Then P552 will indicate 3, P550 will indicate the error EF and P551 will indicate the time of the first fault occurrence.

Com	miss	ior	nina
COM	11133		my

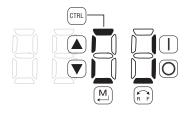

Code	Code		Dianlay Danga (DEAD O		IMPORTANT		
No.	Name		Display Range (READ O	VL T)	IMPORTANT		
P560	Sequencer: Currently Active Segment	0	1	7			
P56 I	Sequencer: Time since Start of Active Segment	0.0 0	())	553.5 5535	Unit depends on P708 (0.1sec, sec or minutes)		
P562	Sequencer: Time Remaining in Active Segment	0.0 0	())	553.5 5535	Unit depends on P708 (0.1sec, sec or minutes)		
P563	Sequencer: Number of cycles since start	0	6	5535			
P564	Sequencer: Number of cycles remaining	0	6	5535			
		I NOTE: Parameters P560-P564 are visible only when P700 > 0 (i.e. the sequencer is enabled)					

4.5.7.1 Terminal & Protection Status Display

Parameter P530 allows monitoring of the control terminal points and common drive conditions:

An illuminated LED segment indicates:

- the protective circuit is active (LED 1)
- the Logic Assertion Switch is set to High (+)
- input terminal is asserted (LED 2)
- output terminal is energized (LED 4)
- the Charge Relay is not a terminal, this segment will be illuminated when the Charge Relay is energized (LED 4).


* Input 13D available on 15-60HP (11-45kW) models only

4.5.7.2 Keypad Status Display

Parameter P531 allows monitoring of the keypad pushbuttons:

An illuminated LED segment indicates when the button is depressed.

LED 1 and LED 2 are used to indicate pushbutton presses on a remote keypad that is attached to the drive. LED 3 and LED 4 indicate button presses on the local drive keypad.

0

4.5.8 Onboard Communications Parameters 15-60HP (11-45kW)

The P6xx Onboard Communication parameters are applicable to the 15HP (11kW) and higher models only.

Code		Possible	Settings	IMPORTANT
No.	Name	Default	Selection	IWFUNTAINT
P600	Network Enable	0	0 Disabled	This parameter enables the onboard networl
			1 Remote Keypad	communications.
			2 Modbus	
			7 Lecom	
		•	NOTE: Onboard Communications will be	
		i	disabled if:	If the onboard communications are disabled
			- P600 = 0, or	the user will not have access to any of the other
			- P600 = 1 and P400 = 1, or	P6xx parameters.
			- P600 = 2 and P400 = 2, 3, 4, 5, 6 or 7 - P600 = 7 and P400 = 2, 3, 4, 5, 6 or 7	
P6 10	Network Address	1	1 - 247	Modbus
ro 10	Notwork Address	1	1 - 99	Lecom
P6 I I	Network Baud Rate	2	0 2400 bps 2 9600 bps	Modbus
PD	Network Daud Hate	~	1 4800 bps 3 19200 bps	Moduus
		0	0 9600 bps	Lecom
		v	1 4800 bps	
			2 2400 bps	
			3 1200 bps	
			4 19200 bps	
05 (3	Network Data Format	0	0 8, N, 2	Modbus Only
P6 12	notwork bata ronnat	v	1 8, N, 1	Modulus Only
			2 8, E, 1	
			3 8, 0, 1	
P620	Network Control	0	0 Monitor Only	Lecom Only
FOCU	Level	v	1 Parameter Programming	
			2 Programming and Setpoint Control	
			3 Full Control	
P624	Network Powerup	0	0 Quick Stop	Lecom Only
FOET	Start Status	v	1 Controller Inhibit	
P625	Network Timeout	10.0	0.0 - 300.0 seconds	Modbus
FOES	Notwork Hincout	50	0 - 65000 milliseconds	Lecom
P626	Network Timeout	4	0 No action	Modbus
F0C0	Action	-	1 Stop (P111)	Woubus
			2 Quick Stop	
			3 Controller Inhibit	
			4 Trip Fault, F.nF1	
		0	0 No action	Lecom
		v	1 Controller Inhibit	
			2 Quick Stop	
			3 Trip Fault, F.nF1	
05 77	Network Messages		Read-Only: 0 - 9999	Valid network messages received
P627	Received			ő
	10001000	i	NULE: When the number of messages e counting from 0.	exceeds 9999, the counter resets and resumes

4.5.9 Sequencer Parameters

The P700 Sequencer parameters are listed herein. Refer to section 4.5.7 for P56x Sequencer Diagnostic Parameters. The sequencer function consists of 16 step segments, each individual step segment can have its own ramp time, time spent in individual segment and output frequency entered. The sequencer has 3 different modes to control how the drive moves through each individual step segment: Timer Transition, Step Sequence or Timer and Step Sequence.

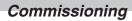
P700= 1 (Timer Transition)

Starting at the segment number entered in the "Start Segment" parameter, the drive will automatically move through each of the segments. The time spent in each segment is determined by the values set in the individual "Time in Current Step" parameters.

P700= 2 (Step Sequence)

Starting at the segment number entered in the "Start Segment" parameter the sequencer will only move to the next segment when a rising edge is applied to the highest priority digital input which is programmed to "Step Sequence" selection "24".

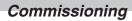
P700= 3 (Timer Transition or Step Sequence)


Starting at the segment number entered in the "Start Segment" parameter, the drive will automatically move through each of the segments. The time spent in each segment is determined by the values set in the individual "Time in Current Step" parameters, however if a rising edge is applied to the highest priority digital input which is programmed to "Step Sequence" selection "24" it will force the sequencer to step into the next segment.

Code		Possible	Settings	IMPORTANT
No.	Name	Default	Selection	IMPORTANT
P700	Sequencer Mode	0	0 Disabled	If $P700 = 0$ and no reference (P121, P101)
			1 Enabled: transition on timer only	points to any of the sequence segments, then P701-P799 will not be displayed on the
			$ \begin{array}{llllllllllllllllllllllllllllllllllll$	local keypad.
			3 Enabled: transition on timer or rising edge	
ו סרק	Sequencer: TB13A Trigger Segment	1	1 - 16 TB13A = lowest priority	Asserting TB13A with selection #24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
כסרק	Sequencer: TB13B Trigger Segment	1	1 - 16 TB13B: higher priority than TB13A	Asserting TB13B with selection #24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
בסרק	Sequencer: TB13C Trigger Segment	1	1 - 16 TB13C: higher priority thanTB13B, A	Asserting TB13C with selection #24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
P704®	Sequencer: TB13D Trigger Segment	1	1 - 16 TB13D: higher priority than TB13C, B, A	Asserting TB13D with selection #24 (Start Sequence), starts the sequence operation from the segment specified in this parameter.
P706	Sequencer: Action	0	0 Restart at beginning of sequence	Pointed by TB13x
after Stop/Start transition or Fault			1 Restart at beginning of current seg	
	Restart		2 Start at beginning of prior segment	
			3 Start at beginning of next segment	
רםרי	Sequencer: Number of cycles	1	1 65535	1 = single scan; 65535 = continuous loop

(2) Parameter applicable to SMV models 15HP (11kW) and higher.

Code		Possible	e Settings			
No.	Name	Default	Selection		IMPORTANT	
P708					Setup units/scaling for all sequencer time related parameters	
		i	- Segmer P752, P	nt Times in cu 757, P762, P	rrent step: P71	ted parameters: 2, P717, P722, P727, P732, P737, P742, P747, 77, P782, P787, P792 2562
	Segment #1					
םו רק	Segment #1 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
וו רק	Segment #1 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P1 12	Segment #1 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
EI רק	Segment #1 Digital Output State	0	Value set in P713 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the I optional Digital I/O r	Relay Output (TB	0 1 0 1 0 0 1 1 1 1 1 1 1 1 19, 20, 21) of the 1 1 1 1	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P7 14	Segment #1 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #2					
P7 IS	Segment #2 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P7 16	Segment #2 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
ח רק	Segment #2 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time $= 0$
P7 18	Segment #2 Digital Output State	0	Value set in P718 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the I optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 1 1 19, 20, 21) of the 1 1 1 1	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
פו רק	Segment #2 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$



0
ON

Code		Possible	e Settings			
No.	Name	Default	Selection			IMPORTANT
	Segment #3					
P720	Segment #3 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ו ברק	Segment #3 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P722	Segment #3 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
ESCA	Segment #3 Digital Output State	0	Value set in P723 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the I optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P724	Segment #3 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #4					
P725	Segment #4 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P726	Segment #4 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
רברק	Segment #4 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time $= 0$
87C9	Segment #4 Digital Output State	0	Value set in P728 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the I optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P729	Segment #4 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $\mbox{P150}=10$
	Segment #5	·				
P730	Segment #5 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ו ברק	Segment #5 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
9732 SEC9	Segment #5 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
етээ	Segment #5 Digital Output State	0	Value set in P733 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the I optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
PT34	Segment #5 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $\mbox{P150}=10$

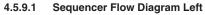
Code		Possible	e Settings			INDODTANT
No.	Name	Default	Selection			IMPORTANT
	Segment #6					
P735	Segment #6 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
Р136	Segment #6 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
РТЭТ	Segment #6 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
P730	Segment #6 Digital Output State	0	Value set in P738 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the F optional Digital I/O n	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P739	Segment #6 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #7					
РТЧО	Segment #7 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ртч і	Segment #7 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P742	Segment #7 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time $= 0$
РТЧЭ	Segment #7 Digital Output State	0	Value set in P743 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the F optional Digital I/O m	0 1 0 1 0 0 1 1 1 2) 0 0 0 0 0 Relay Output (TB- 0 0 0 0 0	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
РТЧЧ	Segment #7 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $\mbox{P150}=10$
	Segment #8					
P745	Segment #8 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
Р746	Segment #8 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
РТЧТ	Segment #8 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
P748	Segment #8 Digital Output State	0	Value set in P748 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the P optional Digital I/O n	0 1 0 1 0 0 1 1 1 2) 0 0 0 0 0 Relay Output (TB- 0 0 0 0 0 0	19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P749	Segment #8 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$

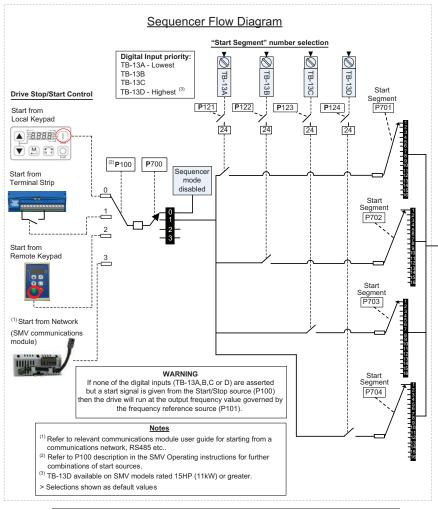
Code		Possible	e Settings			
No.	Name	Default	Selection			IMPORTANT
	Segment #9					
P750	Segment #9 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P75 I	Segment #9 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P752	Segment #9 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
P153	Segment #9 Digital Output State	0	Value set in P753 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P754	Segment #9 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #10					
P755	Segment #10 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P756	Segment #10 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
רברק	Segment #10 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time $= 0$
P750	Segment #10 Digital Output State	0	Value set in P758 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the optional Digital I/O r	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P759	Segment #10 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $\mbox{P150}=10$
	Segment #11					
P760	Segment #11 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P76 I	Segment #11 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P762	Segment #11 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
Р76Э	Segment #11 Digital Output State	0	Value set in P763 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the optional Digital I/O r	0 1 0 1 0 0 1 1 1 2) 0 0 0 0 0 Relay Output (TB- 0 0 0 0 0	0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P764	Segment #11 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$

Code	-	Possible	e Settings			INDODTANT
No.	Name	Default	Selection			IMPORTANT
	Segment #12					
P765	Segment #12 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P766	Segment #12 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P767	Segment #12 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
P768	Segment #12 Digital Output State	0	Value set in P768 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the F optional Digital I/O n	Relay Output (TB-	0 1 0 1 0 0 1 1 1 1 1 1 19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P769	Segment #12 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #13					
סררק	Segment #13 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ו ררץ	Segment #13 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
בררק	Segment #13 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time $= 0$
РТТЭ	Segment #13 Digital Output State	0	Value set in P773 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the F optional Digital I/O m	0 1 0 1 0 0 1 1 1 2) 0 0 0 0 0 Relay Output (TB- 0 0 0 0 0 0	19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
РТТЧ	Segment #13 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $\mbox{P150}=10$
	Segment #14					
РЛЛ5	Segment #14 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
РТТБ	Segment #14 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
РТТТ	Segment #14 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
פררק	Segment #14 Digital Output State	0	Value set in P778 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the P optional Digital I/O n	0 1 0 1 0 0 1 1 1 2) 0 0 0 0 0 Relay Output (TB- 0 0 0 0 0 0		bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
פררק	Segment #14 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$

5
ON

Code		Possible	e Settings		INFOOTANT	
No.	Name	Default	Selection		IMPORTANT	
	Segment #15					
P780	Segment #15 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ו פרק	Segment #15 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
P782	Segment #15 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
P183	Segment #15 Digital Output State	0		83 0 1 2 3 4 5 6 7 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 18it 2) 0 0 0 1 1 1 1 he Relay Output (TB-19, 20, 21) of the 19 20, 21) of the 10 10 10 10		bit = 0: OFF (De-energized) bit = 1: ON (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P784	Segment #15 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	Segment #16					
P785	Segment #16 Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
P786	Segment #16 Accel/Decel Time	20.0	0.0	{sec}	3600.0	
רפרק	Segment #16 Time in current step	0.0 0	0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708 Skip segment if time = 0
Р188	Segment #16 Digital Output State	0	NOTE: P441 is the	Value set in P788 0 1 2 3 4 5 6 7 Relay (Bit 0) 0 1 0 1 0 1 0 1		bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27
P789	Segment #16 TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$
	End Segment	·				
P790	End Segment: Frequency Setpoint	0.0	-500.0	{Hz}	500.0	If $P112 = 1$, negative sign forces reverse direction
ו פרק	End Segment: Accel/Decel Time	5.0	0.0	{sec}	3600.0	
P792	End Segment: Delay before P793, 794 & 795 activation		0.0 0	{P708} {P708}	6553.5 65535	Scaling/units depend on P708
F193	End Segment: Digital Output State		Value set in P793 Relay (Bit 0) TB14 (Bit 1) I/O option Relay (Bit 2 NOTE: P441 is the optional Digital I/O r	Relay Output (TB-	19, 20, 21) of the	bit = 0: OFF (De-energized) bit = 1: 0N (Energized) The corresponding digital output/relay must be set to accept data from the sequencer: P140, P142, P441 = 27


Code	Code		e Settings	;		IMPORTANT			
No.	Name	Default	Selection			IMPORTANT			
P794	End Segment: TB30 Analog Output Value	0.00	0.00	{VDC}	10.00	TB30 configuration parameter must be set to accept this value: $P150 = 10$			
P795	End Segment:	0	0 Keep	Running		Recovery: Toggling the START SEQUENCE will			
	Drive Action		1 Stop (based on P111)			start the cycle from 'end segment Stop' or 'end segment DC Brake'.			
			2 Coast to Stop						
			 Quick Stop (per P127) Coast with DC Brake 						
			5 Ram	p with DC Brake					
			in the inf	= 0 then toggling th	is open the driv	e input will also restart the sequencer cycle but e will ramp to the standard or specified alternate guration.			

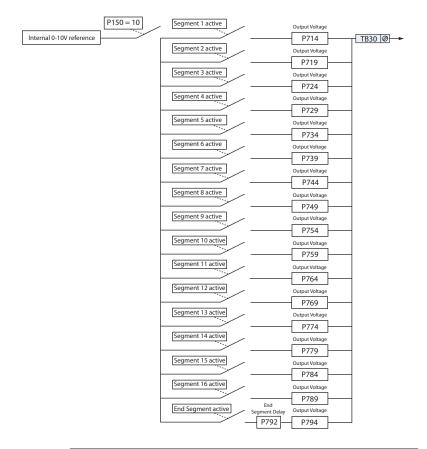


WARNING

If the input defined to "Start Sequence" is opened during a sequence, the drive will exit sequencer mode and will run at the specified standard or alternate speed source (dependent on drive configuration).

WARNING

If the input defined to "Start Sequence" is opened during a sequence, the drive will exit sequencer mode and will run at the specified standard or alternate speed source (dependent on drive configuration).



4.5.9.2 Sequencer Flow Diagram Right

4.5.9.3 Sequencer Status

i

NOTE

On the "End Segment", the output voltage is not present until after the end segment delay P792 has expired. On the other segments the output voltage is present on entry to the segment. The same is true for the digital outputs.

(1) The drive can only be restarted if the error message has been reset.

5 Troubleshooting and Diagnostics

5.1 Status/Warning Messages

	Status / Warning	Cause	Remedy
br	DC-injection brake active	DC-injection brake activated • activation of digital input (P121P124 = 18) • automatically (P110 = 2, 46) • automatically (P111 = 1, 3)	Deactivate DC-injection brake deactivate digital input automatically after P175 time has expired
ЬF	Drive ID warning	The Drive ID (P502) stored on the EPM does not match the drive model.	Verify motor data (P302P306) and perform Auto Calibration. Set drive mode (P300) to 0 or 1 Reset the drive (P199 to 3 or 4) and reprogram.
ERL	Motor Auto-calibration active	Refer to P300, P399	Motor Auto-calibration is being performed
сE	An EPM that contains valid data from a previous software version has been installed	An attempt was made to change parameter settings	Parameter settings can only be changed after the EPM data is converted to the current version (P199 = 5)
EL	Current Limit (P171) reached	Motor overload	 Increase P171 Verify drive/motor are proper size for application
dEC	Decel Override	The drive has stopped decelerating to avoid tripping into <i>HF</i> fault, due to excessive motor regen (2 sec max).	
Err	Error	Invalid data was entered, or an invalid command was attempted	
FEL	Fast Current Limit	Overload	Verify drive/motor are proper size for application
FSE	Flying Restart Attempt after Fault	P110 = 5,6	
GE	OEM Settings Operation warning	An attempt was made to change parameter settings while the drive is operating in OEM Settings mode.	In OEM Settings mode (P199 = 1), making changes to parameters is not permitted.
GF	OEM Defaults data warning	An attempt was made to use (or reset to) the OEM default settings (P199 = 1 or 2) using an EPM without valid OEM data.	Install an EPM containing valid OEM Defaults data
LC	Fault Lockout	The drive attempted 5 restarts after a fault but all attempts were unsuccessful $(P110 = 36)$	
Pdec	PID Deceleration Status	PID setpoint has finished its ramp but the drive is still decelerating to a stop.	
PId	PID Mode Active	Drive has been put into PID Mode.	Refer to P200
SLP	Sleep Mode is active	Refer to P240P242	
SP	Start Pending	The drive has tripped into a fault and will automatically restart (P110 = 36)	To disable Auto-Restart, set P110 = 02
SPd	PID Mode disabled.	Drive has been taken out of PID Mode. Refer to P200.	
StoP	Output frequency = 0 Hz (outputs U, V, W inhibited)	Stop has been commanded from the keypad, terminal strip, or network	Apply Start command (Start Control source depends on P100)

(1) The drive can only be restarted if the error message has been reset.

5.2 Drive Configuration Messages

When the Mode button is pressed and held, the drive's display will provide a 4-digit code that indicates how the drive is configured. If the drive is in a Stop state when this is done, the display will also indicate which control source commanded the drive to Stop (the two displays will alternate every second).

Configuration Display							
Format = x.y.zz	x = Control Source:	y = Mode:	zz = Reference:				
	 L = Local Keypad E = Terminal Strip r = Remote Keypad n = Network 	$\begin{array}{c} \boldsymbol{L}\boldsymbol{P} = \text{Keypad} \blacktriangle \boldsymbol{\nabla} \\ \boldsymbol{E}\boldsymbol{U} = 0.10 \text{ VDC (TB-5)} \\ \boldsymbol{E} \ \boldsymbol{I} = 4.20 \text{ mA (TB-25)} \\ \boldsymbol{J}\boldsymbol{L} = \text{Jog} \\ \boldsymbol{n}\boldsymbol{L} = \text{Network} \\ \boldsymbol{D}\boldsymbol{P} = \text{MOP} \\ \boldsymbol{P} \ \boldsymbol{I}_{} \ \boldsymbol{P}\boldsymbol{T} = \text{Preset } 17 \\ \boldsymbol{D} \ \boldsymbol{I}_{} \ \boldsymbol{I}\boldsymbol{5} = \text{Sequencer Segment} \end{array}$					
	Example: L_5_CP = Local Keypad Start control, Speed mode, Keypad speed reference E_P_EU = Terminal Strip Start control, PID mode, 0-10 VDC setpoint reference E_C_ I2 = Terminal Strip Start control, Sequencer Operation (Speed mode), Segment #12 n_E_P2 = Network Start control, Vector Torque mode, Preset Torque #2 reference n_5_013 = Network Start control, Speed mode, Speed reference from Sequencer segment #03						
	Stop Source Display						
Format = x_5EP	L_SEP = Stop command came from Local Keypad L_SEP = Stop command came from Terminal Strip r_SEP = Stop command came from Remote Keypad n_SEP = Stop command came from Network						

5.3 Fault Messages

The messages below show how they will appear on the display when the drive trips. When looking at the Fault History (P500), the F_{-} will not appear in the fault message.

	Fault	Cause	Remedy (1)
F_AF	High Temperature fault	Drive is too hot inside	Reduce drive load Improve cooling
F_AL	Assertion Level fault	 Assertion Level switch is changed during operation P120 is changed during operation P100 or P121P124 are set to a value other than 0 and P120 does not match the Assertion Level Switch. 	 Make sure the Assertion Level switch and P120 are both set for the type of input devices being used, prior to setting P100 or P121P124. Refer to 3.2.3 and P120.
F_bF	Personality fault	Drive Hardware	Cycle Power
F_CF	Control fault	An EPM has been installed that is either blank or corrupted	 Power down and install EPM with valid data Reset the drive back to defaults (P199 = 3, 4)
F_cF	Incompatible EPM fault	An EPM has been installed that contains data from an incompatible parameter version	 and then re-program If problem persists, contact factory technical support
F_cFt	Forced Translation fault	An EPM from an old drive put in new drive causes drive to trip F_cFT fault.	Press [M] (mode button) twice to reset

Fault		Cause	Remedy (1)
F_dbF	Dynamic Braking fault	Dynamic braking resistors are overheating	 Increase active decel time (P105, P126, P127). Check mains voltage and P107
F_EF	External fault	 P121P124 = 21 and that digital input has been opened. P121P124 = 22 and that digital input has been closed. 	 Correct the external fault condition Make sure digital input is set properly for NC or NO circuit
F_F I	EPM fault	EPM missing or defective	Power down and replace EPM
F_F2 F_F 12	Internal faults		Contact factory technical support
F_Fnr	Control Configuration Fault	The drive is setup for REMOTE KEYPAD control (P100=2 or 5) but is not setup to communicate with a remote keypad	Set P400 = 1, or P600 = 1
		The drive is setup for NETWORK ONLY control (P100=3) but is not setup for network communications	Set P400 or P600 to a valid network communications protocol selection
F_FoL	TB25 (4-20 mA signal) Threshold fault	4-20 mA signal (at TB-25) drops below the value set in P164.	Check signal/signal wireRefer to parameters P163 and P164.
F_GF	OEM Defaults data fault	Drive is powered up with P199 =1 and OEM settings in the EPM are not valid.	Install an EPM containing valid OEM Defaults data or change P199 to 0.
F_HF	High DC Bus Voltage fault	Mains voltage is too high	Check mains voltage and P107
		Decel time is too short, or too much regen from motor	Increase active decel time (P105, P126, P127) or install Dynamic Braking option
F_ IL	Digital Input Configuration fault (P121	More than one digital input set for the same function	Each setting can only be used once (except settings 0 and 3)
	P124)	Only one digital input configured for MOP function (Up, Down)	One input must be set to MOP Up, another must be set to MOP Down
		PID mode is entered with setpoint reference and feedback source set to the same analog signal	Change PID setpoint reference (P121P124) or feedback source (P201).
		One of the digital inputs (P121P124) is set to 10 and another is set to 1114.	
		One of the digital inputs (P121P124) is set to 11 or 12 and another is set to 13 or 14.	Reconfigure digital inputs
		PID enabled in Vector Torque mode (P200 = 1 or 2 and P300 = 5)	PID cannot be used in Vector Torque mode
F_JF	Remote keypad fault	Remote keypad disconnected	Check remote keypad connections
F_LF	Low DC Bus Voltage fault	Mains voltage too low	Check mains voltage
F_n Id	No Motor ID fault	An attempt was made to start the drive in Vector or Enhanced V/Hz mode prior to performing the Motor Auto-calibration	Refer to parameters P300P399 for Drive Mode setup and calibration.
F_n£F	Module communication fault	Communication failure between drive and Network Module.	Check module connections
F_nF I F_nF9	Network Faults	Refer to the module documentation. for Causes and Remedies.	

	Fault	Cause	Remedy ⁽¹⁾
F_OF	Output fault:	Output short circuit	Check motor/motor cable
	Transistor fault	Acceleration time too short	Increase P104, P125
		Severe motor overload, due to: • Mechanical problem • Drive/motor too small for application	 Check machine / system Verify drive/motor are proper size for application
		Boost values too high	Decrease P168, P169
		Excessive capacitive charging current of the motor cable	 Use shorter motor cables with lower charging current Use low capacitance motor cables Install reactor between motor and drive.
		Failed output transistor	Contact factory technical support
F_OF I	Output fault: Ground fault	Grounded motor phase	Check motor and motor cable
		Excessive capacitive charging current of the motor cable	Use shorter motor cables with lower charging current
F_PF	Motor Overload fault	Excessive motor load for too long	 Verify proper setting of P108 Verify drive and motor are proper size for application
F_rF	Flying Restart fault	Controller was unable to synchronize with the motor during restart attempt; (P110 = 5 or 6)	Check motor / load
F_SF	Single-Phase fault	A mains phase has been lost	Check mains voltage
F_UF	Start fault	Start command was present when power was applied (P110 = 0 or 2).	 Must wait at least 2 seconds after power-up to apply Start command Consider alternate starting method (P110).
F_FAU	TB5 (0-10V signal) Threshold fault	0-10V signal (at TB5) drops below the value set in P158.	Check signal/signal wireRefer to parameters P157 and P158

(1) The drive can only be restarted if the error message has been reset.

Appendix A

A.1 Permissable Cable Lengths

The table herein lists the permissable cable lengths for use with an SMV inverter with an internal EMC filter.

r.	

NOTE

This table is intended as a reference guideline only; application results may vary. The values in this table are based on testing with commonly available low-capacitance shielded cable and commonly available AC induction motors. Testing is conducted at worst case speeds and loads.

Maximum Permissible Cable Lengths (Meters) for SMV Model with Internal EMC Filters									
Mains	Mains Model 4 kHz Carrier (P166 = 0)		6 kHz Carrier (P166 = 1)		8 kHz Carrier (P166 = 2)		10 kHz Carrier (P166 = 3)		
		Class A	Class B	Class A	Class B	Class A	Class B	Class A	Class B
	ESV251∉∉2SF∉	38	12	35	10	33	5	30	N/A
s	ESV371002SF0	38	12	35	10	33	5	30	N/A
240 V, 1-phase (2/PE)	ESV751002SF0	38	12	35	10	33	5	30	N/A
0 V, 1-pt (2/PE)	ESV112dd2SFd	38	12	35	10	33	5	30	N/A
24	ESV152∉∉2SF∉	38	12	35	10	33	5	30	N/A
	ESV222∉∉2SF∉	38	12	35	10	33	5	30	N/A
	ESV371004TF0	30	4	25	2	20	N/A	10	N/A
	ESV751∮∮4TF∮	30	4	25	2	20	N/A	10	N/A
e	ESV112∮∮4TF∮	30	4	25	2	20	N/A	10	N/A
400/480 V,3-phase (3/PE)	ESV152∉∉4TF∉	30	4	25	2	20	N/A	10	N/A
0 V,3- (3/PE)	ESV222dd4TFd	30	4	25	2	20	N/A	10	N/A
)0/48	ESV302dd4TFd	30	4	25	2	20	N/A	10	N/A
40	ESV402dd4TFd	54	5	48	3	42	2	N/A	N/A
	ESV552dd4TFd	54	5	48	3	42	2	N/A	N/A
	ESV752004TF0	54	5	48	3	42	2	N/A	N/A

NOTE: The "&&" and "&" symbols are place holders in the Model part number that contain different information depending on the specific configuration of the model. Refer to the SMV Type Number Designation table in section 2.2 for more information.

Lenze SMVector 13465100 EDBSV01 EN v18

Lenze Americas Corporation 630 Douglas Street Uxbridge, MA 01569 USA

800 217-9100
 508 278-7873

 ■ marketing@lenzeamericas.com
 ● www.Lenze.com

Service Lenze AC Tech Corporation 630 Douglas Street Uxbridge, MA 01569 USA

Product data sheet **Characteristics**

RE17RAMU on-delay timing relay - 1 s..100 h - 24..240 V AC - 1 OC

Main

Range of product	Zelio Time
Product or component type	Modular timing relay
Discrete output type	Relay
Width	17.5 mm
Component name	RE17R
Time delay type	A At
Time delay range	0.11 s 110 h 110 min 110 s 10100 h 660 min 660 s
Nominal output current	8 A

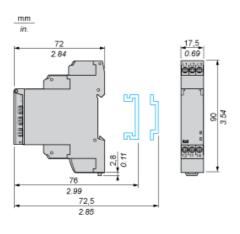
Complementary

Complementary	
Contacts material	Cadmium free
Control type	Selector switch on front panel
[Us] rated supply voltage	24 V DC 24240 V AC at 50/60 Hz
Voltage range	0.851.1 Us
Supply frequency	5060 Hz (+/- 5 %)
Release of input voltage	10 V
Connections - terminals	Screw terminals, clamping capacity: 2 x 0.22 x 1.5 mm ² AWG 24AWG 16 (flexible) with cable end Screw terminals, clamping capacity: 1 x 0.21 x 2.5 mm ² AWG 24AWG 14 (flexible) with cable end Screw terminals, clamping capacity: 2 x 0.52 x 2.5 mm ² AWG 20AWG 14 (solid) without cable end Screw terminals, clamping capacity: 1 x 0.51 x 3.3 mm ² AWG 20AWG 12 (solid) without cable end
Tightening torque	0.61 N.m conforming to IEC 60947-1
Housing material	Self-extinguishing
Repeat accuracy	+/- 0.5 % conforming to IEC 61812-1
Temperature drift	+/- 0.05 %/°C
Voltage drift	+/- 0.2 %/V
Setting accuracy of time delay	+/- 10 % of full scale at 25 °C conforming to IEC 61812-1
Control signal pulse width	30 ms typical 100 ms with load in parallel typical
Insulation resistance	100 MOhm at 500 V DC conforming to IEC 60664-1
Reset time	120 ms on de-energisation typical
On-load factor	100 %
Power consumption in VA	<= 32 VA at 240 V AC
Power consumption in W	<= 0.6 W at 24 V DC
Minimum switching current	10 mA 5 V DC
Maximum switching current	8 A AC/DC
Maximum switching voltage	250 V AC
Breaking capacity	<= 2000 VA

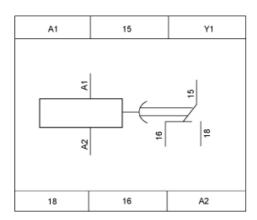
Operating frequency	10 Hz
Electrical durability	100000 cycles for resistive load (8 A at 250 V AC maximum)
Mechanical durability	1000000 cycles
Dielectric strength	2.5 kV 1 mA/1 minute 50 Hz conforming to IEC 61812-1
[Uimp] rated impulse withstand voltage	5 kV (1.2/50 μs)
Power on delay	< 100 ms
Marking	CE
Creepage distance	4 kV/3 conforming to IEC 60664-1
Mounting position	Any position in relation to normal vertical mounting plane
Mounting support	35 mm DIN rail conforming to EN/IEC 60715
Local signalling	LED indicator pulsing: relay de-energised, no timing in progress (except function Di-D, Li-L) (5 % ON and 95 % OFF) LED indicator flashing: timing in progress (80 % ON and 20 % OFF) LED indicator on steady: relay energised, no timing in progress
Product weight	0.07 kg

Environment

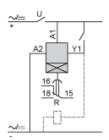
Immunity to microbreaks	<= 20 ms
Standards	2004/108/EC EN 61000-6-1 EN 61000-6-2 EN 61000-6-3 EN 61000-6-4 IEC 61812-1 2006/95/EC
Product certifications	CSA CULus GL
Ambient air temperature for storage	-3060 °C
Ambient air temperature for operation	-2060 °C
IP degree of protection	IP50 (front panel) conforming to IEC 60529 IP40 (housing) conforming to IEC 60529 IP20 (terminal block) conforming to IEC 60529
Vibration resistance	20 m/s ² (f = 10150 Hz) conforming to IEC 60068-2-6
Shock resistance	15 gn (duration = 11 ms) conforming to IEC 60068-2-27
Relative humidity	93 % without condensation conforming to IEC 60068-2-30
Electromagnetic compatibility	Conducted and radiated emissions conforming to EN 55022 class B Voltage dips and interruptions immunity test, 25/30 cycles at 70 % conforming to IEC 61000-4-11 Voltage dips and interruptions immunity test, 1 cycle at 0 % conforming to IEC 61000-4-11 Conducted RF disturbances, 0.1580 MHz at 10 V conforming to IEC 61000-4-6 level 3 1.2/50 µs shock waves immunity test, common mode at 2 kV conforming to IEC 61000-4-5 level 3 1.2/50 µs shock waves immunity test, differential mode at 1 kV conforming to IEC 61000-4-5 level 3 Electrical fast transient/burst immunity test, direct at 2 kV conforming to IEC 61000-4-4 level 3 Electrical fast transient/burst immunity test, capacitive connecting clip at 1 kV conforming to IEC 61000-4-4 level 3 Susceptibility to electromagnetic fields, 80 MHz to 1 GHz at 10 V/m conforming to IEC 61000-4-3 level 3 Electrostatic discharge immunity test, in air at 8 kV conforming to IEC 61000-4-2 level 3 Electrostatic discharge immunity test, in contact at 6 kV conforming to IEC 61000-4-2 level 3


Offer Sustainability

onor odotalitability	
Sustainable offer status	Green Premium product
RoHS (date code: YYWW)	Compliant - since 1243 - Consider Electric declaration of conformity
REACh	Reference not containing SVHC above the threshold
Product environmental profile	Available 🗟 Download Product Environmental
Product end of life instructions	Available 🗟 Download End Of Life Manual


Product data sheet Dimensions Drawings

RE17RAMU


Width 17.5 mm

Internal Wiring Diagram

Wiring Diagram


RE17RAMU

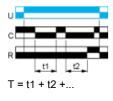
Function A : Power on Delay Relay

Description

The timing period T begins on energisation. After timing, the output(s) R close(s). The second output can be either timed or instantaneous.

Function: 1 Output

Function: 2 Outputs


2 timed outputs (R1/R2) or 1 timed output (R1) and 1 instantaneous output (R2 inst.)

Function At : Power on Delay Relay (Summation) with Control Signal

Description

After power-up, the first opening of control contact C starts the timing. Timing can be interrupted each time control contact closes. When the cumulative total of time periods elapsed reaches the pre-set value T, the output relay closes.

Function: 1 Output

Legend

Relay de-energised
Relay energised
Output open
Output closed
C Control contact
G Gate
R Relay or solid state output
R1/ 2 timed outputs
R2
R2 The second output is instantaneous if the right position is selected inst.
T Timing period
Ta Adjustable On-delay
-
Tr Adjustable Off-delay
-
U Supply

APPENDIX H

QUALITY ASSURANCE PROJECT PLAN

QUALITY ASSURANCE PROJECT PLAN Williamsburg Bridgeview Apartments Brooklyn, New York

NYSDEC Site Number C224233

Prepared For:

LPC Development Group LLC

Bronx, NY

Prepared By:

500 International Drive Suite 150 Mt. Olive, NJ 07828

August 2018

TABLE OF CONTENTS

PAGE

SECTION 1 PROJECT DESCRIPTION1
1.1 INTRODUCTION1
1.2 PROJECT Objectives1
1.3 SCOPE of Work1
1.4 DATA quality objectives and processes1
SECTION 2 PROJECT ORGANIZATION
SECTION 3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) OBJECTIVES FOR MEASUREMENT OF DATA
3.1 INTRODUCTION
3.2 PRECISION
3.3 ACCURACY
3.4 REPRESENTATIVENESS
3.5 COMPLETENESS7
3.6 COMPARABILITY
SECTION 4 SAMPLING PROGRAM9
4.1 INTRODUCTION9
4.2 SAMPLE Container Preparation and Sample Preservation9
4.3 SAMPLE Holding Times9
4.4 FIELD QC Samples9
SECTION 5 SAMPLE TRACKING AND CUSTODY13
5.1 INTRODUCTION
5.2 FIELD Sample Custody13
5.3 LABORATORY Sample Custody16

SECTION 6 CALIBRATION PROCEDURES	17
6.1 FIELD Instruments	17
6.2 LABORATORY Instruments	17
SECTION 7 ANALYTICAL PROCEDURES	18
SECTION 8 DATA REDUCTION, VALIDATION, AND REPORTING	19
8.1 INTRODUCTION	19
8.2 DATA Reduction	19
8.3 DATA Validation	21
SECTION 9 INTERNAL QUALITY CONTROL CHECKS AND FREQUE	NCY.23
9.1 QUALITY Assurance Batching	23
9.2 CALIBRATION Standards and Surrogates	23
9.3 ORGANIC Blanks and Matrix Spike	23
9.4 TRIP and Field Blanks	23
SECTION 10 QUALITY ASSURANCE PERFORMANCE AUDITS AND SAUDITS	
10.1 INTRODUCTION	24
10.2 SYSTEM Audits	24
10.3 PERFORMANCE Audits	24
10.4 FORMAL Audits	24
SECTION 11 PREVENTIVE MAINTENANCE PROCEDURES AND SCH	
11.1 PREVENTIVE Maintenance Procedures	
11.2 SCHEDULES	
11.3 RECORDS	26
SECTION 12 CORRECTIVE ACTION	27
12.1 INTRODUCTION	27

12.2 PRO	CEDURE Description	 	
SECTION 13	REFERENCES	 	

LIST OF FIGURES

Figure 5.1	Sample Custody	18
Figure 5.2	Chain-of-Custody Record	19
Figure 12.1	Corrective Action Request	33

LIST OF TABLES

Table 3 Quality Control Limits for Water Samples	5
Table 4.1 Summary of Samples and Analyses	15
Table 4.2 Water Sample Containerization, Preservation, and Holding Times	15
Table 4.3 Soil and Waste Sample Containerization and Holding Times	16
Table 8.1 Field and Character Lengths for Disk Deliverables	24

SECTION 1

PROJECT DESCRIPTION

This Quality Assurance Project Plan (QAPP) specifies analytical methods to be used to ensure that data from the proposed remedial action is precise, accurate, representative, comparable, and complete.

1.1 INTRODUCTION

This QAPP has been prepared by Equity Environmental Engineering, LLC (Equity) for the Williamsburg Bridgeview Apartments (WBA) to investigate soil and groundwater at the Site, located at 337 Berry Street, Brooklyn, New York, Site #C224233.

1.2 PROJECT OBJECTIVES

The objectives of this project are as follows:

- 1. Installation of soil borings, temporary groundwater monitoring wells, and soil-gas sampling points.
- 2. Collection of soil, groundwater, soil-gas, and indoor air samples to assist with the delineation of VOC contamination association with past Site operations.

1.3 SCOPE OF WORK

The scope of work includes the installation of monitoring well(s) and the collection of soil-gas, indoor air, and groundwater samples as part of the Site Management Plan (SMP) for the WBA site.

1.4 DATA QUALITY OBJECTIVES AND PROCESSES

The quality assurance and quality control (QA/QC) objectives for all measurement data include:

- **Precision** an expression of the reproducibility of measurements of the same parameter under a given set of conditions. Field sampling precision will be determined by analyzing coded duplicate samples and analytical precision will be determined by analyzing internal QC duplicates and matrix spike duplicates.
- *Accuracy* a measure of the degree of agreement of a measured value with the true or expected value of the quantity of concern. Sampling accuracy will be determined through the assessment of the analytical results of field blanks and trip blanks for each sample set. Analytical accuracy will be assessed by examining the percent recoveries of surrogate compounds that are added to each sample (organic analyses only), and

the percent recoveries of matrix spike compounds added to selected samples and laboratory blanks.

- **Representativeness** expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness will be determined by assessing a number of investigation procedures, including chain of custody, decontamination, and analysis of field blanks and trip blanks.
- *Completeness* the percentage of measurements made which are judged to be valid. Completeness will be assessed through data validation. The QC objective for completeness is generation of valid data for at least 90 percent of the analyses requested.
- *Comparability* expresses the degree of confidence with which one data set can be compared to another. The comparability of all data collected for this project will be ensured using several procedures, including standard methods for sampling and analysis, instrument calibrations, using standard reporting units and reporting formats.

Each of the above objectives is discussed in detail in Section 3.

SECTION 2

PROJECT ORGANIZATION

This Remedial Investigation will be completed for WBA Products, Inc. Equity Environmental Engineering, LLC (Equity) will coordinate the field activities and provide an on-site field representative to perform the site Health & Safety, soil, soil vapor, and groundwater sampling. Equity will perform the data analysis and all reporting tasks. The analytical services will be performed by an ELAP approved laboratory.

Key contacts for this project are as follows:

LPC Development Group LLC.	Mr. Peter Procida Telephone: (973) 242-6521 Fax: (973) 242-0131
Equity Environmental Engineering	Mr. Robert Jackson
Project Manager:	Telephone: (973) 527-7451
	Fax: (973)858-0280
	Mr. Peter Jaran, P.E.
	Telephone: (973)-527-7451
	Fax: (973)858-0280
SGS Accutest Laboratory	Ms. Tammy McCloskey
Address: 2235 Rt. 130	Telephone: (732) 329-2000
Dayton, NJ 08810	Fax: (732) 329-3499

SECTION 3

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) OBJECTIVES FOR MEASUREMENT OF DATA

3.1 INTRODUCTION

The quality assurance and quality control (QA/QC) objectives for all measurement data include precision, accuracy, representativeness, completeness, and comparability. These objectives are defined in following subsections. They are formulated to meet the requirements of the USEPA SW-846. The analytical methods are given in Section 7.

3.2 PRECISION

Precision is an expression of the reproducibility of measurements of the same parameter under a given set of conditions. Specifically, it is a quantitative measurement of the variability of a group of measurements compared to their average value (USEPA, 1987). Precision is usually stated in terms of standard deviation, but other estimates such as the coefficient of variation (relative standard deviation), range (maximum value minus minimum value), relative range, and relative percent difference (RPD) are common.

For this project, field sampling precision will be determined by analyzing coded duplicate samples (labeled so that the laboratory does not recognize them as duplicates) for the same parameters, and then, during data validation (Section 8), calculating the RPD for duplicate sample results.

Analytical precision will be determined by the laboratory by calculating the RPD for the results of the analysis of internal QC duplicates and matrix spike duplicates. The formula for calculating RPD is as follows:

$$RPD = \frac{|V1 - V2|}{(V1 + V2)/2} \times 100$$

where:

RPD	=	Relative Percent Difference.
V1, V2	=	The two values to be compared.
V1 - V2	=	The absolute value of the difference between the two values.
(V1 + V2)/2	=	The average of the two values.

The data quality objectives for analytical precision, calculated as the RPD between duplicate analyses, are presented in the following tables.

Compound CAS No.	RL MDI	. Units	Control Limits (%) MS/MSD RPD		DUP
compound CAS NO.		. Offics		5	DOF
Acetone 67-64-1	10	6 ug/l	34-149	17 42-150	20
Benzene 71-43-2	0.5	0.43 ug/l	54-136	10 80-120	20
Bromochlc 74-97-5	1	0.48 ug/l	79-124	11 84-121	20
Bromodich 75-27-4	1	0.58 ug/l	79-124	11 83-120	20
Bromoforn 75-25-2	1	0.63 ug/l	71-130	11 76-129	20
Bromomet 74-83-9	2	1.5 ug/l	53-142	14 57-138	20
2-Butanon 78-93-3	10	6.9 ug/l	54-142	15 64-137	20
Carbon dis 75-15-0	2	0.95 ug/l	59-145	17 64-137	20
Carbon tet 56-23-5	1	0.55 ug/l	70-143	12 75-135	20
Chloroben: 108-90-7	1	0.56 ug/l	78-123	10 84-117	20
Chloroetha 75-00-3	1	0.73 ug/l	57-141	14 63-132	20
Chloroforn 67-66-3	1	0.5 ug/l	76-123	11 80-119	20
Chloromet 74-87-3	1	0.76 ug/l	43-141	16 46-136	20
Cyclohexar 110-82-7	5	0.78 ug/l	51-155	16 64-137	20
1,2-Dibron 96-12-8	2	1.2 ug/l	66-130	13 72-127	20
Dibromocł 124-48-1	1	0.56 ug/l	76-125	11 80-123	20
1,2-Dibron 106-93-4	1	0.48 ug/l	78-119	11 84-117	20
1,2-Dichlor 95-50-1	1	0.53 ug/l	77-123	11 84-119	20
1,3-Dichlor 541-73-1	1	0.54 ug/l	76-122	11 81-117	20
1,4-Dichlor 106-46-7	1	0.51 ug/l	76-122	11 82-117	20
Dichlorodil 75-71-8	2	1.4 ug/l	31-159	16 36-149	20
1,1-Dichlor 75-34-3	1	0.57 ug/l	73-126	11 79-120	20
1,2-Dichlor 107-06-2	1	0.6 ug/l	72-131	11 78-126	20
1,1-Dichlor 75-35-4	1	0.59 ug/l	63-136	14 69-126	20
cis-1,2-Dicl 156-59-2	1	0.51 ug/l	60-136	11 80-120	20
trans-1,2-E 156-60-5	1	0.54 ug/l	70-126	11 76-120	20
1,2-Dichlor 78-87-5	1	0.51 ug/l	78-124	10 82-121	20
cis-1,3-Dicl 10061-01-	1	0.47 ug/l	79-123	11 83-120	20
trans-1,3-E 10061-02-	1	0.43 ug/l	77-123	11 82-121	20
Ethylbenze 100-41-4	1	0.6 ug/l	51-140	20 80-120	20
Freon 113 76-13-1	5	1.9 ug/l	60-192	14 62-182	20
2-Hexanon 591-78-6	5	2 ug/l	56-139	14 65-132	20
Isopropylb 98-82-8	1	0.65 ug/l	75-129	11 83-120	20
Methyl Act 79-20-9	5	0.8 ug/l	55-131	15 67-129	20
Methylcycl 108-87-2	5	0.6 ug/l	57-155	13 71-134	20
Methyl Ter 1634-04-4	1	0.51 ug/l	72-123	11 80-119	20
4-Methyl-2108-10-1	5	1.9 ug/l	66-136	13 71-131	20
Methylene 75-09-2	2	1 ug/l	73-125	13 77-120	20
Styrene 100-42-5	1	0.7 ug/l	75-129	11 82-122	20
1,1,2,2-Tet 79-34-5	1	0.65 ug/l	71-122	11 76-119	20
Tetrachlor 127-18-4	1	0.9 ug/l	61-139	11 70-131	20
Toluene 108-88-3	1	0.53 ug/l	60-135	10 80-120	20
1,2,3-Trich 87-61-6	1	0.5 ug/l	70-138	13 76-134	20
1,2,4-Trich 120-82-1	1	0.5 ug/l	72-137	13 79-132	20
1,1,1-Trich 71-55-6	1	0.54 ug/l	74-138	12 81-128	20
1,1,2-Trich 79-00-5	1	0.53 ug/l	78-121	11 83-118	20
Trichloroet 79-01-6	1	0.53 ug/l	62-141	10 80-120	20

Trichloroflı 75-69-4	2	0.84 ug/l	57-149	14 64-136	20
Vinyl chlor 75-01-4	1	0.79 ug/l	43-146	15 51-135	20
m,p-Xylene	1	0.78 ug/l	50-144	20 80-120	20
o-Xylene 95-47-6	1	0.59 ug/l	63-134	10 80-120	20
Xylene (tot 1330-20-7	1	0.59 ug/l	56-139	20 80-120	20
Dibromoflı 1868-53-7			Surrogate Limits:	80-120	
1,2-Dichlor 17060-07-0			Surrogate Limits:	81-124	
Toluene-D: 2037-26-5			Surrogate Limits:	80-120	
4-Bromoflı 460-00-4			Surrogate Limits:	80-120	

Table 3 SVOCs

				Control Limits (%)	Rev: 5/10/17		
Compound CAS No.	RL	MDL	Units	MS/MSD RPD	BS	DUP	
2-Chloropt 95-57-8	5	0.82	ug/l	36-113	33 39-106		30
4-Chloro-3 59-50-7	5		ug/l	40-126	29 45-118		30
2,4-Dichlor 120-83-2	2		ug/l	40-119	30 43-115		30
2,4-Dimetł 105-67-9	5		ug/l	34-134	30 38-125		30
2,4-Dinitro 51-28-5	5	1.6	ug/l	22-157	34 35-137		30
4,6-Dinitro 534-52-1	5	1.3	ug/l	26-151	37 45-134		30
2-Methylp 95-48-7	2	0.89	ug/l	31-119	32 34-106		30
3&4-Meth	2	0.88	ug/l	29-118	31 31-110		30
2-Nitrophe 88-75-5	5	0.96	ug/l	38-123	34 41-118		30
4-Nitrophe 100-02-7	10	1.2	ug/l	10-161	36 10-113		30
Pentachlor 87-86-5	4	1.4	ug/l	22-149	36 21-134		30
Phenol 108-95-2	2	0.39	ug/l	10-110	35 10-110		30
2,3,4,6-Tet 58-90-2	5	1.5	ug/l	43-131	36 41-129		30
2,4,5-Trich 95-95-4	5	1.3	ug/l	45-118	30 45-117		30
2,4,6-Trich 88-06-2	5	0.92	ug/l	48-126	31 47-125		30
Acenaphth 83-32-9	1	0.19	ug/l	44-119	28 40-114		30
Acenaphth 208-96-8	1	0.14	ug/l	40-115	28 40-109		30
Acetophen 98-86-2	2	0.21	ug/l	34-127	32 43-112		30
Anthracen 120-12-7	1	0.21	ug/l	44-120	30 50-113		30
Atrazine 1912-24-9) 2	0.45	ug/l	31-149	30 46-141		30
100-52-7 אBenzaldeh	5	0.29	ug/l	11-132	37 27-116		30
Benzo(a)ar 56-55-3	1	0.2	ug/l	48-116	30 55-110		30
Benzo(a)p _\ 50-32-8	1	0.21	ug/l	43-120	31 52-112		30
Benzo(b)flι 205-99-2	1	0.21	ug/l	42-123	31 53-114		30
Benzo(g,h, 191-24-2	1		ug/l	39-121	32 46-115		30
Benzo(k)flι 207-08-9	1		ug/l	44-123	31 55-115		30
4-Bromopł 101-55-3	2	0.4	ug/l	47-127	31 47-122		30
Butyl benz [,] 85-68-7	2	0.46	ug/l	41-135	32 50-124		30
1,1'-Bipher 92-52-4	1		ug/l	39-124	29 42-114		30
2-Chlorona 91-58-7	2		ug/l	37-120	30 33-112		30
4-Chloroar 106-47-8	5		ug/l	10-110	49 17-87		30
Carbazole 86-74-8	1		ug/l	46-127	29 54-118		30
Caprolacta 105-60-2	2		ug/l	10-110	37 10-110		30
Chrysene 218-01-9	1		ug/l	45-113	30 52-107		30
bis(2-Chlor 111-91-1	2		ug/l	33-122	29 38-116		30
bis(2-Chlor 111-44-4	2		ug/l	29-132	36 38-118		30
2,2'-Oxybis 108-60-1	2		ug/l	27-115	34 29-108		30
4-Chloropt 7005-72-3			ug/l	43-125	30 40-122		30
2,4-Dinitro 121-14-2	1	0.55	ug/l	49-135	31 54-129		30

Tab	le	3
SV	OC:	5

		5	SVOCs		
2,6-Dinitro 606-20-2	1	0.48 ug/l	50-135	32 53-131	30
3,3'-Dichlo 91-94-1	2	0.51 ug/l	2-115	43 28-91	30
1,4-Dioxan 123-91-1	1	0.66 ug/l	10-110	42 10-110	30
Dibenzo(a, 53-70-3	1	0.33 ug/l	44-121	32 51-117	30
Dibenzofur 132-64-9	5	0.22 ug/l	43-123	29 46-118	30
Di-n-butyl 84-74-2	2	0.5 ug/l	46-133	30 54-124	30
117-84-0 ا Di-n-octyl	2	0.23 ug/l	31-147	32 41-137	30
Diethyl ph184-66-2	2	0.26 ug/l	46-126	30 49-122	30
Dimethyl p 131-11-3	2	0.22 ug/l	49-120	29 51-118	30
bis(2-Ethyl 117-81-7	2	1.7 ug/l	35-140	35 47-128	30
Fluoranthe 206-44-0	1	0.17 ug/l	48-122	30 54-118	30
Fluorene 86-73-7	1	0.17 ug/l	45-121	30 45-116	30
Hexachlor(118-74-1	1	0.33 ug/l	42-129	32 45-124	30
Hexachlorc 87-68-3	1	0.49 ug/l	10-129	36 10-120	30
Hexachlorc 77-47-4	10	2.8 ug/l	10-111	40 10-110	30
Hexachlorc 67-72-1	2	0.39 ug/l	12-116	37 11-110	30
Indeno(1,2193-39-5	1	0.33 ug/l	39-129	33 45-123	30
Isophoron: 78-59-1	2	0.28 ug/l	37-122	29 43-115	30
2-Methyln; 91-57-6	1	0.21 ug/l	33-118	31 37-111	30
2-Nitroanil 88-74-4	5	0.28 ug/l	32-156	31 40-144	30
3-Nitroanil 99-09-2	5	0.39 ug/l	11-114	41 31-104	30
4-Nitroanil 100-01-6	5	0.44 ug/l	31-125	30 48-119	30
Naphthale 91-20-3	1	0.23 ug/l	24-119	33 29-110	30
Nitrobenze 98-95-3	2	0.64 ug/l	28-130	32 35-118	30
N-Nitroso- 621-64-7	2	0.48 ug/l	29-128	31 38-116	30
N-Nitrosod 86-30-6	5	0.22 ug/l	40-128	31 49-114	30
Phenanthr 85-01-8	1	0.18 ug/l	41-128	30 49-116	30
Pyrene 129-00-0	1	0.22 ug/l	47-122	30 51-116	30
1,2,4,5-Tet 95-94-3	2	0.37 ug/l	23-134	31 21-124	30
2-Fluoroph 367-12-4			Surrogate Limits:	10-110	
Phonol_d5 1165-62-2			Surrogate Limits:	10-110	

Phenol-d5 4165-62-2 2-Chloropt 2,4,6-Tribr 118-79-6 1,2-Dichlor 2199-69-1 Nitrobenze 4165-60-0 2-Fluorobij 321-60-8 Terphenyl- 1718-51-0

Surrogate Limits:	10-110
Surrogate Limits:	10-110
Surrogate Limits:	70-130
Surrogate Limits:	36-151
Surrogate Limits:	70-130
Surrogate Limits:	34-128
Surrogate Limits:	38-119
Surrogate Limits:	26-129

Compound CAS No. RL	MDL	Units	Control Limits (%) MS/MSD RPD	Rev: 3/30/17 BS	DUP
Aldrin 309-00-2	0.005 0.002	6 ug/l	10-157	46 13-135	25
alpha-BHC 319-84-6		6 ug/l	33-154	45 36-139	25
beta-BHC 319-85-7		4 ug/l	36-154	45 44-136	25
delta-BHC 319-86-8		4 ug/l 3 ug/l	29-165	43 44-130 50 40-139	25
gamma-BH 58-89-9		3 ug/l	33-154	43 43-136	25
0		5 ug/l 5 ug/l	26-158		25
alpha-Chlo 5103-71-9		0.		44 32-140	
gamma-Ch 5103-74-2		1 ug/l	20-163	44 28-143	25
Dieldrin 60-57-1		8 ug/l	24-165	44 39-142	25
4,4'-DDD 72-54-8		9 ug/l	27-157	45 36-142	25
4,4'-DDE 72-55-9		5 ug/l	13-164	43 27-140	25
4,4'-DDT 50-29-3		4 ug/l	11-169	44 30-144	25
Endrin 72-20-8		3 ug/l	39-170	42 44-151	25
Endosulfar 1031-07-8		7 ug/l	22-164	49 41-144	25
Endrin ald 7421-93-4	0.005 0.003	4 ug/l	21-176	48 42-144	25
Endrin ket: 53494-70-!	0.005 0.003	1 ug/l	33-166	45 41-149	25
Endosulfar 959-98-8	0.005 0.002	6 ug/l	23-161	44 40-136	25
Endosulfar 33213-65-	0.005 0.002	4 ug/l	30-161	43 42-140	25
Heptachloi 76-44-8	0.005 0.002	2 ug/l	10-158	47 11-140	25
Heptachloi 1024-57-3	0.005 0.00	3 ug/l	29-163	43 41-138	25
Methoxycł 72-43-5	0.01 0.003	4 ug/l	15-164	46 31-149	25
Toxaphene 8001-35-2	0.13 0.0	8 ug/l	50-150	30 40-140	25
Tetrachlor 877-09-8			Surrogate Limits:	13-153	
Decachlorc 2051-24-3			Surrogate Limits:	10-138	

Table 3 PCBs

Compound CAS No. RL	MDL	Units	Control Limits (%) MS/MSD RPD	Rev: 2/2/17 BS	DUP
Aroclor 10 12674-11-:	0.25 0.09	8 ug/l	18-187	42 37-164	30
Aroclor 12 11104-28-	0.25 0.2	1 ug/l	70-130	50 70-130	30
Aroclor 12 11141-16-!	0.25 0.1	3 ug/l	70-130	50 70-130	30
Aroclor 12, 53469-21-	0.25 0.1	1 ug/l	70-130	50 70-130	30
Aroclor 12, 12672-29-(0.25 0.06	3 ug/l	70-130	50 70-130	30
Aroclor 12: 11097-69-:	0.25 0.2	1 ug/l	70-130	50 70-130	30
Aroclor 12 11096-82-!	0.25 0.07	6 ug/l	10-185	46 36-155	30
Aroclor 12 11100-14-4	0.25 0.08	7 ug/l		50	30
Aroclor 12:37324-23-!	0.25 0.09	7 ug/l		50	30
Tetrachlor 877-09-8			Surrogate Limits:	11-166	
Decachlorc 2051-24-3			Surrogate Limits:	10-150	

9 compounds and 2 surrogates reported in list PCB11

Table 3 Metals

	Method	I.	
	200.7/6010	Method	waters -
	waters -	200.7/6010	pooled MDL
	normal RL in	waters - NJ RL	for SS ICP's in
TEST	ug/I - ICP	in ug/I - ICP	ug/l
AI	200.0		45.84
Sb	6.0		4.67
As	8.0	3.000	2.76
Ba	200.0		13.37
Be	1.0		0.50
Cd	3.0		1.04
Са	5000.0		99.20
Cr	10.0		1.99
Со	50.0		2.57
Cu	10.0		5.85
Fe	100.0		32.11
Pb	3.0		1.80
Mg	5000.0		139.77
Mn	15.0		1.44
Ni	10.0		1.71
K	10000.0		200.30
Se	10.0		4.94
Ag	10.0		1.88
Na	10000.0		568.60
TI	10.0		1.76
V	50.0		1.79
Zn	20.0		6.90

TEST	RL	MDL
Hg AQ and		
TCLP Hg,		
SW846		
7470A	0.2 ug/l	0.0952

3.3 ACCURACY

Accuracy is a measure of the degree of agreement of a measured value with the true or expected value of the quantity of concern (Taylor, 1987), or the difference between a measured value and the true or accepted reference value. The accuracy of an analytical procedure is best determined by the analysis of a sample containing a known quantity of material, and is expressed as the percent of the known quantity which is recovered or measured. The recovery of a given analyte is dependent upon the sample matrix, method of analysis, and the specific compound or element being determined. The concentration of the analyte relative to the detection limit of the analytical method is also a major factor in determining the accuracy of the measurement. Concentrations of analytes which are close to the detection limits are less accurate because they are more affected by such factors as instrument "noise". Higher concentrations will not be as affected by instrument noise or other variables and thus will be more accurate.

Sampling accuracy may be determined through the assessment of the analytical results of field blanks and trip blanks for each sample set. Analytical accuracy is typically assessed by examining the percent recoveries of surrogate compounds that are added to each sample (organic analyses only), and the percent recoveries of matrix spike compounds added to selected samples and laboratory blanks. Additionally, initial and continuing calibrations must be performed and accomplished within the established method control limits to define the instrument accuracy before analytical accuracy can be determined for any sample set.

Accuracy is normally measured as the percent recovery (%R) of a known amount of analyte, called a spike, added to a sample (matrix spike) or to a blank (blank spike). The %R is calculated as follows:

	SSR - SR	
%R =		x 100
	SA	

where:

%R	=	Percent recovery.
SSR	=	Spike sample result: concentration of analyte obtained by analyzing the sample with the spike added.
SR	=	Sample result: the background value, i.e., the concentration of the analyte obtained by analyzing the sample.
SA	=	Spiked analyte: concentration of the analyte spike added to the sample.

The acceptance limits for accuracy for each parameter are presented in Tables 3.1 through 3.4.

3.4 REPRESENTATIVENESS

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter which is most concerned with the proper design of the sampling program (USEPA, 1987). Samples must be representative of the environmental media being sampled. Selection of sample locations and sampling procedures will incorporate consideration of obtaining the most representative sample possible.

Field and laboratory procedures will be performed in such a manner as to ensure, to the degree that is technically possible, that the data derived represents the in-place quality of the material sampled. Every effort will be made to ensure chemical compounds will not be introduced into the sample via sample containers, handling, and analysis. Decontamination of sampling devices and digging equipment will be performed between samples as outlined in the Health and Safety Plan, and according to the NJDEP Field Sampling Procedures Manual (2005). Analysis of field blanks, trip blanks, and method blanks will also be performed to monitor for potential sample contamination from field and laboratory procedures.

The assessment of representativeness also must consider the degree of heterogeneity in the material from which the samples are collected. Sampling heterogeneity will be evaluated during data validation through the analysis of coded field duplicate samples. The analytical laboratory will also follow acceptable procedures to assure the samples are adequately homogenized prior to taking aliquots for analysis, so the reported results are representative of the sample received.

Chain-of-custody procedures will be followed to document that contamination of samples has not occurred during container preparation, shipment, and sampling. Details of blank, duplicate and Chain-of-custody procedures are presented in Sections 4 and 5.

3.5 COMPLETENESS

Completeness is defined as the percentage of measurements made which are judged to be valid (USEPA, 1987). The QC objective for completeness is generation of valid data for at least 90 percent of the analyses requested. Completeness is defined as follows for all sample measurements:

where:

%C = Percent completeness.

V = Number of measurements judged valid.

T = Total number of measurements.

3.6 COMPARABILITY

Comparability expresses the degree of confidence with which one data set can be compared to another (USEPA, 1987). The comparability of all data collected for this project will be ensured by:

- Using identified standard methods for both sampling and analysis phases of this project;
- Requiring traceability of all analytical standards and/or source materials to the U.S. Environmental Protection Agency (USEPA) or National Institute of Standards and Technology (NIST);
- Requiring that all calibrations be verified with an independently prepared standard from a source other than that used for calibration (if applicable);
- Using standard reporting units and reporting formats including the reporting of QC data;
- Performing a complete data validation on a representative fraction of the analytical results, including the use of data qualifiers in all cases where appropriate; and
- Requiring that all validation qualifiers be used any time an analytical result is used for any purpose.

These steps will ensure all future users of either the data or the conclusions drawn from them will be able to judge the comparability of these data and conclusions.

SAMPLING PROGRAM

4.1 INTRODUCTION

The sampling program will provide data concerning the presence and the nature and extent of soil, groundwater, soil-gas, and indoor air contamination. This section presents sample container preparation procedures, sample preservation procedures, sample holding times, and field QC sample requirements. Sample locations, and the number of environmental and QC samples to be taken are given in Table 4.1. The sampling procedures are presented in the Remedial Investigation Workplan.

4.2 SAMPLE CONTAINER PREPARATION AND SAMPLE PRESERVATION

Sample containers will be properly washed and decontaminated prior to their use by either the analytical laboratory or the container vendor to the specifications required by the NJDEP. Copies of the sample container QC analyses will be provided by the laboratory for each container lot used to obtain samples. The containers will be tagged and the appropriate preservatives will be added. The types of containers are listed in Tables 4.2 and 4.3.

Samples shall be preserved according to the preservation techniques given in Tables 4.2 and 4.3. Preservatives will be added to the sample bottles by the laboratory prior to their shipment in sufficient quantities to ensure that proper sample pH is met. Following sample collection, the sample bottles should be placed on ice in the shipping cooler, cooled to 4°C with ice, and delivered to the laboratory within 24 hours of collection. Chain-of-custody procedures are described in Section 7.

Soil-gas and indoor air samples will be shipped to the laboratory at ambient temperatures with no preservative.

4.3 SAMPLE HOLDING TIMES

The sample holding times for organic and inorganic parameters are given in Tables 4.2 and 4.3 and must be in accordance with the NYSDEC requirements. The holding times must be strictly adhered to by the laboratory. Any holding time exceedances must be reported to WBA.

4.4 FIELD QC SAMPLES

To assess field sampling and decontamination performance, two types of "blanks" will be collected and submitted to the laboratory for analyses. In addition, the precision of field sampling procedures will be assessed by collecting coded field duplicates. Matrix spike/matrix spike duplicates (MS/MSDs) will be completed by Accutest Laboratories and in accordance with Accutest's Quality System precision, accuracy, and completeness objectives. The blanks will include:

- a. Trip Blanks A Trip Blank will be prepared before the sample containers are sent by the laboratory. The trip blank will consist of a 40-ml VOA vial containing distilled, deionized water, which accompanies the other water sample bottles into the field and back to the laboratory. A trip blank will be included with each shipment of water samples VOC analysis. The Trip Blank will be analyzed for VOCs to assess any contamination from sampling and transport, and internal laboratory procedures.
- b. Field Blanks Field Blanks will be taken at a minimum frequency of one per 20 field samples per sample matrix, or one per day. Field blanks are used to determine the effectiveness of the decontamination procedures for sampling equipment. It is a sample of deionized, distilled water provided by the laboratory that has passed through a decontaminated bailer or other sampling apparatus. It is usually collected as a last step in the decontamination procedure, prior to taking an environmental sample. The field blank may be analyzed for all or some of the parameters of interest.

The duplicates will consist of:

- a. Coded Field Duplicate To determine the representativeness of the sampling methods, coded field duplicates will be collected. The samples are termed "coded" because they will be labeled in such a manner that the laboratory will not be able to determine that they are a duplicate sample. This will eliminate any possible bias that could arise.
- b. Matrix Spike/Matrix Spike Duplicate (MS/MSD) MS/MSD samples (MS/MSD for organics; MS and laboratory duplicate for inorganics) will be completed by the analytical laboratory and/or taken at a frequency of one pair per 20 field samples and/or in accordance with Accutest's Quality System objectives.. These samples are used to assess the effect of the sample matrix on the recovery of target compounds or target analytes. The percent recoveries and RPDs are given in Section 3 tables.

TABLE 4.1SUMMARY OF SAMPLES AND ANALYSES

			-	Field Sa	amples		<u>QC B</u>	lanks	
Matrix	Parameter	Analytical Method	Field Samples	Field Duplicate	MS/MSD ^(a) (Total)	Sub- Total	Trip Blank	Rinse Blank	Total
Groundwater Samples	TCL VOCs, SVOCs, Pesticides, PCBs, and TAL Metals	EPA SW846 8260, 8270, 8081, 8082 EPA 200.7/SW84	3	1	1	5	1	1	7
Indoor air	VOCs	TO+15	3	1		4			4

(a) Matrix spike / matrix spike duplicate for organic analyses; matrix spike and laboratory duplicate for inorganic analysis; to be completed by Accutest Laboratories.

(b) The total number of soil samples will be determined in the field based on the scheduling and duration of the events.

(c) The total number of groundwater samples will be determined in the field (if necessary).

TABLE 4.2 WATER SAMPLE CONTAINERIZATION, PRESERVATION, AND HOLDING TIMES

Analysis	Bottle Type	Preservation (a)	Holding Time ^(b)			
Volatile Organic Compounds (VOCs)	3-40 mL glass vial w/ Teflon septum	Cool to 4 ^o C	24 hrs-field/14 days			
SVOCs 8270 1,4-Dioxane	2 x 1L unpreserved	Cool to 4°C	7 days for extraction			
Pesticides 8081 PCBs 8082	2 x 1L unpreserved	Cool to 4°C	7 days for extraction			
TAL Metals	1-500 mL poly w/	HNO3, Cool to 4oC	48 hrs-field/ 6 Months			
	Teflon septum					
PFAs	2x250 ml HPDE	Cool to 4°C	14 days for extraction			
(a) All samples to be preserved in ice during collection and transport.						

(b) Days from time of sample receipt at the laboratory. Maximum field holding time for all samples is 48-hours.

TABLE 4.3 AIR SAMPLE CONTAINERIZATION, PRESERVATION, AND HOLDING TIMES

ļ

Analysis	Bottle Type	Preservation	Holding Time (a)
TO+15	Stainless Steel Summa Canister	None	

(a) Days from time of sample receipt at the laboratory. Maximum field holding time for all samples is 48-hours.

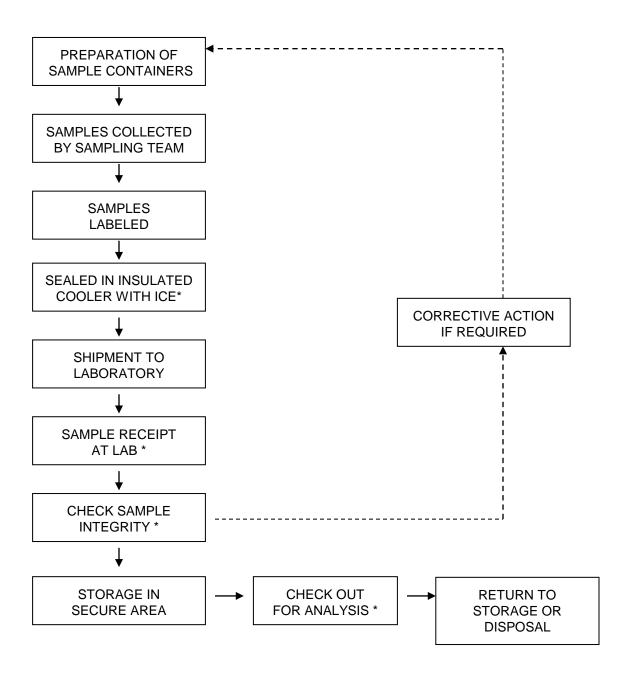
SAMPLE TRACKING AND CUSTODY

5.1 INTRODUCTION

This section presents sample custody procedures for both the field and laboratory. Implementation of proper custody procedures for samples generated in the field is the responsibility of field personnel. Both laboratory and field personnel involved in the Chain-of-custody (COC) and transfer of samples will be trained as to the purpose and procedures prior to implementation.

Evidence of sample traceability and integrity is provided by COC procedures. These procedures document the sample traceability from the selection and preparation of the sample containers by the laboratory, to sample collection, to sample shipment, to laboratory receipt and analysis. The sample custody flowchart is shown in Figure 5.1. A sample is considered to be in a person's custody if the sample is:

- In a person's possession;
- Maintained in view after possession is accepted and documented;
- Locked and tagged with Custody Seals so that no one can tamper with it after having been in physical custody; or
- In a secured area which is restricted to authorized personnel.


5.2 FIELD SAMPLE CUSTODY

A COC record (Figure 5.2 or similar) accompanies the sample containers from selection and preparation at the laboratory, during shipment to the field for sample containment and preservation, and during return to the laboratory. Triplicate copies of the COC must be completed for each sample set collected.

The COC lists the field personnel responsible for taking samples, the project name and number, the name of the analytical laboratory to which the samples are sent, and the method of sample shipment. The COC also lists a unique description of every sample bottle in the set. If samples are split and sent to different laboratories, a copy of the COC record will be sent with each sample.

The REMARKS space on the COC is used to indicate if the sample is a matrix spike, matrix spike duplicate, or any other sample information for the laboratory. Since they are not specific to any one sample point, trip and field blanks are indicated on separate rows. Once all bottles are properly accounted for on the form, a sampler will write his or her signature and the date and time on the first RELINQUISHED BY space. The sampler will also write the method of shipment and the shipper air bill number of the top of the COC, if applicable. Mistakes will be crossed out with a single line in ink and initialed.

SAMPLE CUSTODY

* REQUIRES SIGN-OFF ON CHAIN-OF-CUSTODY FORM

14

CHAIN OF CUSTODY

DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SO - Soil SL - Suidge SD - Soil SL - Suidge SD - Other Liquid AIR - Mr SOL - Other Soil SUL - Other Soil SOL - Other Soil EB-Equipment Blank RB- Rinse Blank TB-Trip Blank LAB USE ONLY Matrix Codes Sample inventory is verified upon receipt in the Laboratory Cooler Temp. Б ^g ₽ PAGE Bottle Order Control # Received By: 2 Received By: SGS Job # Ч Preserved where applicable 李道之後三之法軍王法於盖有著者自 Date Time: Date Time: Sample Custody must be documented below each time samples change possession, including courier delivery. ED-EX Tracking # SGS Quote # Intact Not intact Commercial "B" = Results + QC Summary NYASP Category A NYASP Category B EDD Format State Forms 푷뽚쭹츐댢툳뚶쿻셷녛귵쇧뵹쑵숦욯꽅릚묥옱**꿓짩**쒏큟눹**뽚쿪**킳빲쒏놂흾혛햜섨똣솋똳폳뢼쫯힆롲휟 ЕИСОВЕ Other For ober of preserved bottles R NJ Data of Known Quality Protocol Reporting MEOH ation netsvy IC NJ Reduced = Results + QC Summary + Partial Raw data **ENON** Billing Information (if different from Report to) Company Name Relinquished By: h2SO4 Relinquished By: Custody Seal # Data Deliverable CONH State HOen Commercial "A" (Level 1) Commercial "B" (Level 2) ЮH FULLT1 (Level 344) Commercial "A" = Results Only; # of bottles NJ Reduced Matrix Street Address Sampled by Attention: ₹ Time State Approved by (SGS Project Manager)/Date: Collection Received By: 5 Date Received By: Received By: Client Purchase Order # ŝ MEOH/DI Vial # Project Manage Project Name Project # Street δit Phone # Date Time: Date Time: Date Time: E-mail # Xe1 ŝ Emergency & Rush T/A data available via LabLink Turnaround Time (Business days) Field ID / Point of Collection
 Std. 10 Business Days

 5 Day RUSH

 3 Day RUSH

 2 Day RUSH

 1 Day RUSH

 1 Day RUSH
 State Relinquished by Sampler. Relinquished by Sampler Relinquished by: 5 Sampler(s) Name(s) Company Name Project Contact street Address Phone # Lab Sample # È ŝ

http://www.sgs.com/en/terms-and-conditions.

Form:SM088-03C (revised 2/12/18)

One copy of the COC is retained by sampling personnel (notations identifying blind duplicate samples will be added to this copy of the COC but not the others that will go to the laboratory) and the other two copies are put into a sealable plastic bag and taped inside the lid of the shipping cooler. The cooler lid is closed, custody seals provided by the laboratory are affixed to the latch and across the back and front lids of the cooler, and the person relinquishing the samples signs their name across the seal. The seal is taped, and the cooler is wrapped tightly with clear packing tape. It is then relinquished by field personnel to personnel responsible for shipment, typically an overnight carrier. The COC seal must be broken to open the container. Breakage of the seals before receipt at the laboratory may indicate tampering. If tampering is apparent, the laboratory will contact the Project Manager, and the sample will only be analyzed pending further investigation.

5.3 LABORATORY SAMPLE CUSTODY

The Project Manager or Field Team Leader will notify the laboratory of upcoming field sampling activities, and the subsequent shipment of samples to the laboratory. This notification will include information concerning the number and type of samples to be shipped as well as the anticipated date of arrival.

The following laboratory sample custody procedures will be used:

- The laboratory will designate a sample custodian who will be responsible for maintaining custody of the samples, and for maintaining all associated records documenting that custody.
- Upon receipt of the samples, the custodian will check cooler temperature, and check the original COC documents and compare them with the labeled contents of each sample container for correctness and traceability. The sample custodian will sign the COC record and record the date and time received.
- Care will be exercised to annotate any labeling or descriptive errors. In the event of discrepant documentation, the laboratory will immediately contact the Project Manager or Field Team Leader as part of the corrective action process. A qualitative assessment of each sample container will be performed to note any anomalies, such as broken or leaking bottles. This assessment will be recorded as part of the incoming chain-of-custody procedure.
- The samples will be stored in a secured area at a temperature of approximately 4 degrees Celsius until analyses commence.
- A laboratory tracking record will accompany the sample or sample fraction through final analysis for control.
- A copy of the tracking record will accompany the laboratory report and will become a permanent part of the project records.

CALIBRATION PROCEDURES

6.1 FIELD INSTRUMENTS

All field analytical equipment will be calibrated immediately prior to each day's use. The calibration procedures will conform to manufacturer's standard instructions and are described in the Field Sampling Plan. This calibration will ensure that the equipment is functioning within the allowable tolerances established by the manufacturer and required by the project. Records of all instrument calibration will be maintained by the Field Team Leader. Copies of all the instrument manuals will be maintained on-site by the Field Team Leader.

Calibration procedures for instruments used for monitoring health and safety hazards (e.g., photoionization detector; dataRam dust monitors) are provided in the Health and Safety Plan.

6.2 LABORATORY INSTRUMENTS

The laboratory will follow all calibration procedures and schedules as specified in the sections of the USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods given in Section 7.

ANALYTICAL PROCEDURES

Samples will be analyzed according to the USEPA SW-846 "Test Methods for Evaluating Solid Waste," February 2007, revision 6 and subsequent updates. The methods to be used for the laboratory analysis of soil, groundwater, and soil-gas/indoor air samples are referenced in Section 3 (Tables 3.1 through 3.4).

DATA REDUCTION, VALIDATION, AND REPORTING

8.1 INTRODUCTION

Data collected during the field investigation will be reduced and reviewed by the laboratory QA personnel, and a report on the findings will be tabulated in a standard format. The criteria used to identify and quantify the analytes will be those specified for the applicable methods in the USEPA SW-846 and subsequent updates. The data package provided by the laboratory will contain all items specified in the USEPA SW-846 appropriate for the analyses to be performed, and be reported in standard format.

The completed copies of the Chain-of-custody records (both external and internal) accompanying each sample from time of initial bottle preparation to completion of analysis shall be attached to the analytical reports.

8.2 DATA REDUCTION

One copy of the analytical data packages and an electronic disk deliverable (EDD) will be provided by the laboratory approximately 30 days after receipt of a complete sample delivery group. The Project Manager will immediately arrange for filing one package; a second copy, and the CD-ROM, may be used to generate summary tables. These tables will form the database for assessment of the site contamination condition (if present).

The electronic deliverable format required is a tab delimited text file with the fields and character lengths summarized in Table 8.1. EDDs will be processed regardless of the sampling date.

The Project Manager or Task Manager will maintain close contact with the laboratory QA reviewer to ensure all non-conformance issues are acted upon prior to data manipulation and assessment routines. Once the QA review has been completed, the Project Manager may direct the Team Leaders or others to initiate and finalize the analytical data assessment.

Table 8.1

Field and Character Lengths for Electronic Disk Deliverable

Description	Length	Format
Site ID	12	Character
Site Name	40	Character
Initial Date Sampled	8	Date
Received at Lab Date	8	Date
Analysis Complete Date	8	Date
Laboratory	30	Character
Number of Samples	3	Integer
Contract	6	Character
Report Format	10	Character
Field ID (for each sample)	15	Numeric
Laboratory ID (for each sample)	15	Character
Date Sampled (for each sample)	8	Date
Matrix (for each sample)	10	Character

8.3 DATA VALIDATION

Laboratory data validation may be performed in accordance with the USEPA Region II validation guidelines for organic and inorganic data review. These validation guidelines are regional modifications to the National Functional Guidelines for organic and inorganic data review (USEPA 1994). Validation will include the following:

- Verification of 100% of all QC sample results (both qualitative and quantitative),
- Verification of the identification of 100% of all sample results (both positive hits and non-detects),
- Recalculation of 10% of all investigative sample results, and
- Data Validation/Usability Report
- A third party data validator will not be used on this project.

The determination to validate data will be made based on the presence of data anomalies, suspect data, or laboratory issues. A data validation report will be prepared and reviewed by the laboratory quality assurance officer (QAO) before issuance. The data validation report will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and COC procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. A detailed assessment of each SDG will follow. For each of the organic analytical methods, the following will be assessed:

- Holding times;
- Instrument tuning;
- Instrument calibrations;
- Blank results;
- System monitoring compounds or surrogate recovery compounds (as applicable);
- Internal standard recovery results;
- MS and MSD results;
- Target compound identification;
- Chromatogram quality;
- Compound quantization and reported detection limits;
- System performance; and
- Results verification.

For each of the inorganic compounds, the following will be assessed:

• Holding times;

- Calibrations;
- Blank results;
- Interference check sample;
- Laboratory check samples;
- Duplicates;
- Matrix Spike;
- Furnace atomic absorption analysis QC;
- ICP serial dilutions; and
- Results verification and reported detection limits.

Based on the results of data validation, the validated analytical results reported by the laboratory will be assigned one of the following usability flags:

- "U" Not detected at given value;
- "UJ" Estimated not detected at given value;
- "J" Estimated value;
- "N" Presumptive evidence at the value given;
- "R" Result not useable; and
- No Flag Result accepted without qualification.

INTERNAL QUALITY CONTROL CHECKS AND FREQUENCY

9.1 QUALITY ASSURANCE BATCHING

Each set of samples will be analyzed concurrently with calibration standards, method blanks, matrix spikes (MS), matrix spike duplicates (MSD) or laboratory duplicates, and QC check samples (if required by the protocol). MS/MSD samples will be designated by the laboratory and are not proposed to be collected in the field as part of this RIWP.

9.2 CALIBRATION STANDARDS AND SURROGATES

All organic standard and surrogate compounds are checked by the method of mass spectrometry for correct identification and gas chromatography for degree of purity and concentration. All standards are traceable to a source of known quality certified by the USEPA or NIST, or other similar program. When the compounds pass the identity and purity tests, they are certified for use in standard and surrogate solutions. Concentrations of the solutions are checked for accuracy before release for laboratory use. Standard solutions are replaced monthly or more frequently, based upon data indicating deterioration.

9.3 ORGANIC BLANKS AND MATRIX SPIKE

Analysis of blank samples verifies that the analytical method does not introduce contaminants or detect "false positives". The blank water can be generated by reverse osmosis and Super-Q filtration systems, or distillation of water containing KMnO₄. The matrix spike is generated by addition of surrogate standard to each sample.

9.4 TRIP AND FIELD BLANKS

Trip blanks and field blanks will be utilized in accordance with the specifications in Section 4. These blanks will be analyzed to provide a check on sample bottle preparation and to evaluate the possibility of atmospheric or cross contamination of the samples.

QUALITY ASSURANCE PERFORMANCE AUDITS AND SYSTEM AUDITS

10.1 INTRODUCTION

Quality assurance audits may be performed by the project quality assurance group under the direction and approval of the project Quality Assurance Officer (QAO). These audits will be implemented to evaluate the capability and performance of project and subcontractor personnel, items, activities, and documentation of the measurement system(s). Functioning as an independent body and reporting directly to corporate quality assurance management, the QAO may plan, schedule, and approve system and performance audits based upon procedures customized to the project requirements. At times, the QAO may request additional personnel with specific expertise from company and/or project groups to assist in conducting performance audits. However, these personnel will not have responsibility for the project work associated with the performance audit.

10.2 SYSTEM AUDITS

System audits may be performed by the QAO or designated auditors, and encompass a qualitative evaluation of measurement system components to ascertain their appropriate selection and application. In addition, field and laboratory quality control procedures and associated documentation may be system audited. These audits may be performed once during the performance of the project. However, if conditions adverse to quality are detected or if the Project Manager requests additional audits may occur.

10.3 PERFORMANCE AUDITS

The laboratory may be required to conduct an analysis of Performance Evaluation (PE) samples or provide proof that Performance Evaluation samples submitted by USEPA or a state agency have been analyzed within the past twelve months.

10.4 FORMAL AUDITS

Formal audits refer to any system or performance audit that is documented and implemented by the QA group. These audits encompass documented activities performed by qualified lead auditors to a written procedure or checklists to objectively verify that quality assurance requirements have been developed, documented, and instituted in accordance with contractual and project criteria. Formal audits may be performed on project and subcontractor work at various locations.

Audit reports will be written by auditors who have performed the site audit after gathering and evaluating all data. Items, activities, and documents determined by lead auditors to be in noncompliance shall be identified at exit interviews conducted with the involved management. Non-compliance occasions will be logged, and documented through audit findings which are attached to and are a part of the integral audit report. These audit finding forms are directed to management to satisfactorily resolve the noncompliance in a specified and timely manner.

The Project Manager has overall responsibility to ensure that all corrective actions necessary to resolve audit findings are acted upon promptly and satisfactorily. Audit reports must be submitted to the Project Manager within fifteen days of completion of the audit. Serious deficiencies will be reported to the Project Manager within 24 hours. All audit checklists, audit reports, audit findings, and acceptable resolutions are approved by the QAO prior to issue. Verification of acceptable resolutions may be determined by reaudit or documented surveillance of the item or activity. Upon verification acceptance, the QAO will close out the audit report and findings.

PREVENTIVE MAINTENANCE PROCEDURES AND SCHEDULES

11.1 PREVENTIVE MAINTENANCE PROCEDURES

Equipment, instruments, tools, gauges, and other items requiring preventive maintenance will be serviced in accordance with the manufacturer's specified recommendations and written procedure developed by the operators.

A list of critical spare parts will be established by the operator. These spare parts will be available for use in order to reduce the downtime. A service contract for rapid instrument repair or backup instruments may be substituted for the spare part inventory.

11.2 SCHEDULES

Written procedures will establish the schedule for servicing critical items in order to minimize the downtime of the measurement system. The laboratory will adhere to the maintenance schedule, and arrange any necessary and prompt service. Required service will be performed by qualified personnel.

11.3 RECORDS

Logs shall be established to record and control maintenance and service procedures and schedules. All maintenance records will be documented and traceable to the specific equipment, instruments, tools, and gauges. Records produced shall be reviewed, maintained, and filed by the operators at the laboratories. The QAO may audit these records to verify complete adherence to these procedures.

CORRECTIVE ACTION

12.1 INTRODUCTION

The following procedures have been established to ensure that conditions adverse to quality, such as malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected.

12.2 PROCEDURE DESCRIPTION

When a significant condition adverse to quality is noted at site, laboratory, or subcontractor location, the cause of the condition will be determined and corrective action will be taken to preclude repetition. Condition identification, cause, reference documents, and corrective action planned to be taken will be documented and reported to the QAO, Project Manager, Field Team Leader and involved contractor management, at a minimum. Implementation of corrective action is verified by documented follow-up action.

All project personnel have the responsibility, as part of the normal work duties, to promptly identify, solicit approved correction, and report conditions adverse to quality. Corrective actions will be initiated as follows:

- When predetermined acceptance standards are not attained;
- When procedure or data compiled are determined to be deficient;
- When equipment or instrumentation is found to be faulty;
- When samples and analytical test results are not clearly traceable;
- When quality assurance requirements have been violated;
- When designated approvals have been circumvented;
- As a result of system and performance audits;
- As a result of a management assessment;
- As a result of laboratory/field comparison studies; and
- As required by USEPA SW-846, and subsequent updates, or by the NJDEP.

Project management and staff such as field investigation teams, remedial response planning personnel, and laboratory groups, monitor on-going work performance in the normal course of daily responsibilities. Work may be audited at the sites, laboratories, or contractor locations. Activities, or documents ascertained to be noncompliant with quality assurance requirements will be documented. Corrective actions will be mandated through audit finding sheets attached to the audit report. Audit findings are logged, maintained, and controlled by the Task Manager. Personnel assigned to quality assurance functions will have the responsibility to issue and control Corrective Action Request (CAR) Forms (Figure 12.1 or similar). The CAR identifies the out-of-compliance condition, reference document(s), and recommended corrective action(s) to be administered. The CAR is issued to the personnel responsible for the affected item or activity. A copy is also submitted to the Project Manager. The individual to whom the CAR is addressed returns the requested response promptly to the QA personnel, affixing his/her signature and date to the corrective action block, after stating the cause of the conditions and corrective action to be taken. The QA personnel maintain the log for status of CARs, confirms the adequacy of the intended corrective action, and verifies its implementation. CARs will be retained in the project file for the records.

Any project personnel may identify noncompliance issues; however, the designated QA personnel are responsible for documenting, numbering, logging, and verifying the close out action. The Project Manager will be responsible for ensuring that all recommended corrective actions are implemented, documented, and approved.

FIGURE 12.1

CORRECTIVE ACTION REQUEST				
Number: Date:				
TO:				
You are hereby requested to take corrective actions indicated below and as otherwise determined by you to (a) resolve the noted condition and (b) to prevent it from recurring. Your written response is to be returned to the project quality assurance manager by				
CONDITION:				
REFERENCE DOCUMENTS:				
RECOMMENDED CORRECTIVE ACTIONS:				
Originator Date Approval Date Approval Date				
RESPONSE				
CAUSE OF CONDITION				
CORRECTIVE ACTION				
(A) RESOLUTION				
(B) PREVENTION				
(C) AFFECTED DOCUMENTS				
C.A. FOLLOWUP:				
CORRECTIVE ACTION VERIFIED BY: DATE:				

REFERENCES

NYSDEC 2010. DER-10, "Technical Guidance for Site Investigation and Remediation" revised 2017. New York State Department of Environmental Conservation.

NYSDOH 2006. *Guiidance for Evaluating Soil Vapor Intrusion in the State of New York*. New York State Department of Health.

- USEPA, 2002. "Guidance *for Quality Assurance Project Plans*," dated December 2002. U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 2007. SW-846 "Test Method for Evaluating Solid Waste," dated February 2007. U.S. Environmental Protection Agency, Washington, D.C.
- Taylor, J. K., 1987. "Quality Assurance of Chemical Measurements." Lewis Publishers, Inc., Chelsea, Michigan
- USEPA, 1987. "Data Quality Objectives for Remedial Response Actions Activities: Development Process, EPA/540/G-87/003, OSWER Directive 9355.0-7." U.S. Environmental Protection Agency, Washington, D.C.
- USEPA, 1992a. "*CLP Organics Data Review and Preliminary Review. SOP No. HW-6, Revision #8,*" dated January 1992. USEPA Region II.
- USEPA, 1992b. "Evaluation of Metals Data for the Contract Laboratory Program (CLP) based on SOW 3/90. SOP No. HW-2, Revision XI," dated January 1992. USEPA Region II.

APPENDIX I

SITE MANAGEMENT FORM

Туре	Inspection Task	Status	Condition	Date Completed	Initials	Remarks
	Building					
	Basement Slab					
	Pavement					
Infrastructure	Landscaping					
	New Structures					
	Monitoring Wells					
	SSDS					
	SVE					
	Site Fences/Security					
	Topography					
Physical	Surface Drainage					
	Cover System					
	Vegetation					
	Odors					
Contamination	Staining					
	Sheens					
Property Owner Representative	Interview					
	New					
			-			
Inspection Acknowledgement	Signature/Date			Represen	ting	

Notes

Status - Modified/Unchanged

Condition - unchanged/Deteriorated

Interview - work completed during the previous year and future plans

Summary of Green Remediation Metrics for Site Management

Site Name:	_Site Code:
Address:	City:
State:	Zip Code:County:

Initial Report Period (Start Date of period covered by the Initial Report submittal) Start Date: ______

Current Reporting Period

Reporting Period From: ______To: _____

Contact Information

Preparer's Name:	Phone No.:	
Preparer's Affiliation:		

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current	Total to Date
	Reporting Period	
Fuel Type 1 (e.g. natural gas (cf))		
Fuel Type 2 (e.g. fuel oil, propane (gals))		
Electricity (kWh)		
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar,		
wind)		
Other energy sources (e.g. geothermal, solar		
thermal (Btu))		

Provide a description of all energy usage reduction programs for the site in the space provided on Page 3.

II. Solid Waste Generation: Quantify the management of solid waste generated onsite.

	Current Reporting Period (tons)	Total (tons)	to	Date
Total waste generated on-site				
OM&M generated waste				
Of that total amount, provide quantity:				
Transported off-site to landfills				
Transported off-site to other disposal facilities				
Transported off-site for recycling/reuse				
Reused on-site				

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 3.

III. Transportation/Shipping: Quantify the distances travelled for delivery of supplies, shipping of laboratory samples, and the removal of waste.

	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor		
Laboratory Courier/Delivery Service		
Waste Removal/Hauling		

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site		
Of that total amount, provide quantity:		
Public potable water supply usage		
Surface water usage		
On-site groundwater usage		
Collected or diverted storm water usage		

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to (acres)	Date
Land disturbed			
Land restored			

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 3.

Description of green remediation programs reported above
(Attach additional sheets if needed)
Energy Usage:
Waste Generation:
Transportation/Shipping:
Water usage:
Land Use and Ecosystems:
Other:

CERTIFICATION BY CONTRACTOR							
I,	(Name)	do	hereby	certify	that	Ι	am
(Title) of the Company/Corporation herein referenced and							
contractor for the work described in the foregoing application for payment. According							
to my knowledge and belief, all items and amounts shown on the face of this application							
for payment are correct, all work has been performed and/or materials supplied, the							
foregoing is a true and correct statement of the contract account up to and including that							
last day of the period covered by this application.							

Date

Contractor

APPENDIX J

FIELD SAMPLING PLAN

Field Sampling Plan Williamsburg Bridgeview Apartments 95-105 South 5th Street Brooklyn, NY

NYSDEC Site Number: C224233

Prepared for:

LPC Development Group, LLC 456 E173rd St. Bronx, NY 10457

Prepared by: Equity Environmental Engineering LLC 500 International Drive Mt. Olive, NJ 07828

August 2018

Table of Contents

1.0	Introdu	iction		
	1.1	Project	Description	
	1.2	Scope of	of Work	1-1
2.0	Genera	l Field G	Guidelines	2-1
	2.1	Site Ha	zards	
	2.2	Underg	round Utilities	
	2.3	Field L	og Books	2-1
3.0	Field E	quipmen	t Decontamination and Management of Investigation-Derived	Residuals 3-1
	3.1	Deconta	amination Area	
	3.2	Equipm	nent Decontamination	
		3.2.1	Sampling Equipment Decontamination	
	3.3	Manage	ement of Investigation-Derived Residuals	
		3.3.1	Decontamination Fluids	
		3.3.2	Drill Cuttings	
		3.3.3	Development and Purge Water	
		3.3.4	Personal Protective Equipment	
		3.3.5	Dedicated Sampling Equipment	
4.0	Well In	stallatio	n Procedures	
	4.1	Introdu	ction	
	4.2	Monito	ring Well Installation and Development	
		4.2.1	Overburden Monitoring Well Installation	
		4.2.2	Monitoring Well Development	4-4
5.0	Ground	lwater S	ampling Procedures	
	5.1	Introdu	ction	
	5.2	Ground	water Sampling	
		5.2.1	Required Equipment and Supplies	
		5.2.2	Groundwater Sampling Method	

6.0	Indoor	Air Sampling	6-1
7.0	Air mo	nitoring	
	7.1	Introduction	
	7.2	Breathing Zone Air Monitoring During Drilling and Sampling	7-1
	7.3	Community Air Monitoring	7-1
8.0	Field Iı	nstruments and Calibration	
	8.1	Portable Photo-Ionization Detector (PID)	
	8.2	Multi-Parameter Groundwater Meter	
9.0	Analyti	ical Program	

List of Figures

- 1. Site Location Map
- 2. Site Map
- 3. Soil Boring Log
- 4. Monitoring Well Construction Log
- 5. Field Data Sheet
- 6. Indoor Air Building Inventory

1.0 Introduction

This Field Sampling Plan (FSP) presents the methods and procedures to be used for any ground intrusive, maintenance, and monitoring activities covered under the Williamsburg Bridgeview Apartment Site Management Plan.

1.1 Project Description

The site is located in Brooklyn, Kings County, New York and is identified as Block 2443 and Lot 6 (formerly lots 6, 37, and 41) on the Williamsburg Tax Map. The site is an approximately one-third-acre area and is bounded by Berry Street to the north, residential property to the east, commercial property to the west, and South 5th Street to the south (see Figures 1 and 2).

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include commercial and residential mixed use properties. The properties immediately south of the entire Site include South 5th Street and the Williamsburg Bridge underpass; the properties immediately north of the Site include residential properties; the properties immediately east of the Site include commercial and residential properties; and the properties to the west of the Site include residential properties.

The Site has been redeveloped and what once was a vacant warehouse and undeveloped land there is now an 11 story residential building and ancillary parking.

1.1 Scope of Work

The scope of work at the Site covered under this FSP includes.

- Monitoring well installation and development
- Groundwater sampling and analysis
- Indoor air and ambient air sampling and analysis
- Investigation-derived waste management
- Data validation, evaluation, and reporting
- Community air monitoring (addressed in a separate appendix)

This FSP will be modified for specialized work if necessary. Any modification to the FSAP will require approval in writing from the DEC. The property owner or its representative must notify National Grid of any scheduled ground intrusive work at least 15 days prior to the start of field activity.

2.0 General Field Guidelines

2.1 Site Hazards

Potential Site surface hazards, such as sharp objects, overhead power lines, energized areas, vehicular traffic, and building hazards will be identified prior to initiation of the fieldwork. Generally, potential hazards at the project site will be identified during a project site reconnaissance by the project team on the first day of any field activity. Additional safety measures to be undertaken for the work performed during the investigation are addressed in the Health and Safety Plan [(HASP), Appendix L of the SMP].

2.1 Underground Utilities

Underground utilities, including electric lines, gas lines, water lines, storm and sanitary sewers, and communication lines will be identified prior to initiation of any subsurface work. Underground utility location will be accomplished as follows:

- All work areas will be flagged or marked out with white paint.
- Dig Safely of New York (800) 272-4480 will be contacted to initiate the locating activities. New York State law requires that Dig Safely of New York be notified at least three working days, and not more than 10 working days, before subsurface work is conducted.
- Companies with subsurface utilities present will locate and mark out all subsurface utility lines.
- Geophysical methods may be used to further evaluate the potential presence of underground utilities in the area of each proposed investigation location.
- Subsurface investigation locations may be hand cleared to five feet below ground surface (bgs) prior to advancing borings with mechanized equipment.

2.2 Field Log Books

All field activities will be carefully documented in field log books. Entries will be of sufficient detail that a complete daily record of significant events, observations, and measurements is developed. The field log book will provide a legal record of the activities conducted at the site. Accordingly:

- Field books will be assigned a unique identification number.
- Field books will be bound with consecutively numbered pages.
- Field books will be controlled by the Site Manager while fieldwork is in progress.
- Entries will be written with waterproof ink.
- Entries will be signed and dated at the conclusion of each day of fieldwork.
- Erroneous entries made while fieldwork is in progress will be corrected by the field person that made the entries. Corrections will be made by drawing a line through the error, entering the correct information, and initialling the correction.

• Corrections necessary after departing the field will be made by the person who entered the original information. Corrections will be made by drawing a line through the error, entering the correct information, and initialling and dating the time of the correction.

At a minimum, daily field book entries will include the following information:

- Location of field activity;
- Date and time of entry;
- Names and titles of field team members on site and site contacts;
- Names, titles of any site visitors, as well as the date and time entering and leaving the site;
- Weather information, for example: temperature, cloud coverage, wind speed, and direction;
- Purpose of field activity;
- A detailed description of the fieldwork conducted;
- Sample media (soil, sediment, groundwater, etc.);
- Sample collection method;
- Number and volume of sample(s) taken;
- Description of sampling point(s);
- Volume of groundwater removed before sampling;
- Preservatives used;
- Analytical parameters;
- Date and time of collection;
- Sample identification number(s);
- Sample distribution (e.g., laboratory);
- Field observations;
- All field measurements made, such as volatile organic compounds (VOCs) using a PID, pH, temperature, conductivity, water level, etc.;
- References for all maps and photographs of the sampling site(s); and
- Information pertaining to sample documentation such as:
 - Bottle lot numbers;
 - Dates and method of sample shipments;
 - Chain-of-custody (COC) record numbers; and
 - Federal Express air bill number.

3.0 Field Equipment Decontamination and Management of Investigation-Derived Residuals

3.1 Decontamination Area

A temporary decontamination area lined with polyethylene sheeting will be constructed on the project site for use during decontamination of the drilling equipment. Water collected from the decontamination of activities will be collected in 55-gallon drums or a bulk tank and managed as described in Section 3.3.

3.2 Equipment Decontamination

The following procedures will be used to decontaminate equipment used during any activities.

- All drilling equipment including the augers, bits, rods, tools, and tremie pipes will be cleaned with a high-pressure, hot water pressure washing unit between locations and following completion of activities.
- Tools, drill rods, and augers will be placed on something other than the ground following pressure washing.
- The back of the drill rig and all tools, augers, and rods will be decontaminated at the completion of the work and prior to leaving the project site.

3.2.1 Sampling Equipment Decontamination

Suggested Materials:

- Potable water;
- Phosphate-free detergent (such as AlconoxTM);
- Distilled water;
- Aluminum foil;
- Plastic/polyethylene sheeting;
- Plastic buckets and brushes; and
- Personal protective equipment (PPE) in accordance with the HASP.

Procedures:

- Prior to sampling, all non-dedicated sampling equipment (bowls, spoons, interface probes, etc.) will be washed with potable water and a phosphate-free detergent (such as AlconoxTM). Decontamination may take place at the sampling location as long as all liquids are contained in pails, buckets, etc.
- The sampling equipment will then be rinsed with potable water followed by a de-ionized water rinse.

- Between rinses, equipment will be placed on polyethylene sheets, if necessary. At no time will washed equipment be placed directly on the ground.
- Equipment will be wrapped in polyethylene plastic for storage or transportation from the designated decontamination area to the sampling location.

3.3 Management of Investigation-Derived Residuals

3.3.1 Decontamination Fluids

Hot water pressure wash and decontamination fluids will be collected in 55-gallon drums or a bulk tank. The storage drums or tank will be labelled as "pending analysis – investigation-derived residual decon water" and temporarily stored in a plastic-lined containment area pending characterization and proper disposal.

3.3.2 Drill Cuttings

Drill cuttings will be contained in 55-gallon drums. The drums will be labelled as "pending analysis – investigation-derived residual – soil from drill cuttings" and temporarily stored in a plastic-lined containment area pending characterization and proper disposal.

3.3.3 Development and Purge Water

All development and purge water will be contained in 55-gallon drums or a bulk tank. The drums or tank will be labelled as "pending analysis - investigation derived residual development and purge water" and temporarily stored in a plastic-lined containment area pending characterization and proper disposal.

3.3.4 Personal Protective Equipment

All PPE will be placed in thick mil plastic bags for proper disposal.

3.3.5 Dedicated Sampling Equipment

All dedicated groundwater sampling equipment will be placed in thick mil plastic bags or 55-gallon drums for disposal.

4.0 Soil Sampling and Well Installation Procedures

4.1 Introduction

Surface and subsurface activities to be conducted at the Site may consist of utility work; excavation; the installation of groundwater monitoring wells and soil vapor intrusion and indoor air sampling. These activities will require the use of the following equipment and material:

- Field book;
- Project plans;
- PPE in accordance with the HASP;
- Tape measure;
- Decontamination supplies;
- Water level indicator;
- Electronic oil/water interface probe
- Clear Teflon disposable bailers;
- Submersible electric pump for well development;
- Horiba multi-meter for field parameters (well development);
- PID with a 10.2 or 10.6 eV lamp;
- Camera;
- Clear tape, duct tape;
- Laboratory sample bottles;
- Coolers and ice; and

Procedures for these activities are described in the following sections.

4.2 Excavation

Excavation activities, if any, will be dictated by the Contractor hired to conduct the work and will follow the Excavation Work Plan included as Appendix E of the SMP. During field activities, personnel will stand upwind of the excavation area to the extent possible. Air monitoring and odor mitigation (if necessary) will be conducted in accordance with the Community Air Monitoring Project (CAMP) and HASP. Excavation materials will be photographed and logged for future reference. Material removed from the excavation will be placed on polyethylene sheeting. The location and size of the excavation will be measured and described in the field logbook.

Visually clean soils, such as surface soils, will be segregated from soils that may be impacted. The visually clean soils may be placed back in the excavation. At a minimum, the top 2 feet of backfilled soil will be visually clean. The excavation will be backfilled as soon as possible after completion and in general prior to the cessation of activities at the end of the day. If excavation resulted in removal of any remaining contamination, a demarcation layer as detailed in Appendix E of the SMP will be placed over the surface prior to backfilling. Following restoration of the excavation, the excavation will be staked/marked to facilitate subsequent location by surveying crews.

4.2.1 Soil Borings

Soil borings, if any, will be advanced with the appropriate drilling equipment for the work. Typically a direct-push (GeoprobeTM) drilling rig equipped with 4-foot long, 2-inch diameter Macro-CoreTM samplers will be used. A sonic drill rig may be used based on the depth of the boring based on previous onsite work. All drilling equipment will be decontaminated between each boring in accordance with methods specified in Section 3.2.

All locations will be properly abandoned following the collection of samples. Boreholes for the direct-push borings will be filled with the soil cuttings and topped off with bentonite chips if necessary. The borings will be filled using a cement/bentonite grout mixture with the following specifications:

- Bentonite will be powdered sodium montmorillonite furnished in moisture resistant sacks without additives.
- Cement shall be a low-alkaline Portland cement, Type I in conformance with ASTM C-150 and without additives.
- The cement/bentonite grout mixture shall be to the following proportion:
 - Three sacks (94 pounds) of Type I Portland cement;
 - 14 pounds of granular bentonite (5% mix); and
 - 25 gallons of water.

The cement will be mechanically mixed, above ground, with water from a potable water source. Bentonite will be added to ensure a lump-free consistency. The mixture will be pumped through a tremie pipe as the drill is being withdrawn.

4.2.2 Geologic Logging Methods

The field technician will log borehole geology and headspace measurements, and any other observations (e.g., odors, non-aqueous phase liquid (NAPL), soil staining, etc.), in the field book and the soil boring log. Soil samples retrieved from the borehole will be visually described for: 1) percent recovery, 2) soil type, 3) color, 4) moisture content, 5) texture, 6) grain size and shape, 7) consistency, 8) visible evidence of staining or other hydrocarbon-related impacts, and 9) any other relevant observations. The descriptions will be in accordance with the Unified Soil Classification System (USCS) and the American Society for Testing and Materials (ASTM) guidelines.

4.2.3 Collection of Samples

The number and frequency of samples to be collected from each boring and the associated analytical parameters will be based on the field activity. The sample locations, descriptions, and depths will be recorded on the bore logs in the field book.

Samples for laboratory analyses will be collected directly from the sampling device and placed into appropriate containers for all grab sample analyses or homogenized for composite samples (except for VOC analyses); and compacted to minimize headspace and pore space. Dedicated sampling equipment will be used for soil sampling. Soil remaining after completion of sample description, collection, and field screening will be properly disposed.

The sample containers will be labelled, placed in a laboratory-supplied cooler, and packed with ice. The coolers will then be shipped to the laboratory for analysis. COC procedures will be followed as outlined in Appendix H Quality Assurance Project Plan (QAPP) of the SMP. If there is a delay of sample shipment due to insufficient samples to warrant overnight delivery, the samples will be stored in a cool, secure place with sufficient ice to maintain a temperature of 4° C.

4.3 Monitoring Well Installation and Development

The following methods will be used for drilling, installing, and developing the monitoring wells. Figure 3 and 4 illustrates the construction details for a typical overburden soil boring and monitoring well respectively. Specific details regarding the depth and anticipated screened interval of proposed monitoring wells is provided in the SMP. In general, monitoring wells will be installed according to the following specifications:

- The monitoring well borings will be advanced using a sonic drill rig
- Wells will be constructed with 2-inch ID, threaded, flush-joint, Schedule 40 PVC casings and screens.
- Screens will be 10-feet long with 0.01-inch slot openings (or 0.02-inch, if NAPL present) with a 2-foot DNAPL sump at the base. Alternative screen lengths up to 20 feet long may be used at the discretion of the field geologist and with the approval of DEC, based on site conditions.
- The annulus around the screens will be backfilled with clean silica sand having appropriate size (e.g., Morie No. 1) to a minimum height of 2 feet above the top of the screen.

- A bentonite chip seal with a minimum thickness of 2 feet will be placed above the sand pack. The bentonite seal will be hydrated with clean, potable water before placement of grout above the seal layer.
- The remainder of the annular space will be filled with cement-bentonite grout to ground surface. The grout will be allowed to set for a minimum of 24 hours before wells are developed.
- Each monitoring well will be a flush-mounted installation with a locking cap.
- The concrete seal or pad will be sloped to channel water away from the well, and be deep enough to remain stable during freezing and thawing of the ground.
- The top of the PVC well casing and ground surface will be marked and surveyed to 0.01 foot, and the elevation will be determined relative to a fixed benchmark or datum.
- The measuring point on all wells will be on the innermost PVC casing.
- Monitoring well construction details will be recorded in the field book and on the Construction Log shown in Appendix F of the SMP.
- If commercially available nested wells are considered to sample multiple aquifer depth zones in the same borehole, they will be discussed with DEC prior to installation.

4.3.2 Monitoring Well Development

- After a minimum of 24 hours after installation, the monitoring wells will be developed by surging and pumping. Surging will be performed periodically, across the lengths of screen in 2-foot increments prior to, at interim periods of pumping, and immediately before the final pumping. Pumping methods may include using a centrifugal, submersible, or peristaltic pump and dedicated polyethylene tubing.
- Water levels will be measured in each well to the nearest 0.01 foot prior to development.
- The wells will be developed until the water in the well is reasonably free of visible sediment (50 NTU if possible or until pH, temperature, and specific conductivity stabilize). A multi-meter probe will be used for all field parameter measurements.
- Development water will be contained in and properly disposed of.

Following development, wells will be allowed to recover for at least 14 days before groundwater is purged and sampled. All monitoring well development will be performed or overseen by a field geologist and recorded in the field book.

5.0 Groundwater Sampling Procedures

5.1 Introduction

Procedures for collecting groundwater samples of groundwater are described in this section. Groundwater samples will be collected using low-flow, low-stress purge and sampling methods.

5.2 Groundwater Sampling

The following method will be used to collect groundwater samples from monitoring wells.

5.2.1 Required Equipment and Supplies

- Field book
- Project plans
- PPE in accordance with the HASP
- Electronic oil/water interface probe
- Disposable Teflon bailers and low-flow sampling pump
- Polypropylene rope
- Multi-meter for all filed parameters
- Flow-through cell
- Decontamination supplies
- Peristaltic or submersible pump capable of achieving low-flow rates (i.e., 0.5 liters per minute or less)
- Plastic tubing
- Plastic sheeting
- PID
- Clear tape, duct tape
- Coolers and ice
- Laboratory sample bottles

5.2.2 Groundwater Sampling Method

5.2.2.1 Purging

- Prior to sampling, the static water level and thickness of any light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) will be measured to the nearest 0.01 foot from the surveyed well elevation mark on the top of the PVC casing with a decontaminated oil/water interface probe. NAPL thickness will be confirmed using a clear bailer or a weighted string. The measurement will be recorded in the field book.
- The probe will be decontaminated between uses.
- Groundwater from the well will be purged until field parameters stabilize, up to three well volumes are removed, or 1 hour of continuous purging is performed. Field parameters are considered to be stable when three consecutive readings are within the stabilization criteria for that parameter. The stabilization criteria are as follows: 10% or below 10 NTUs for turbidity, 3% for conductivity and temperature, 0.1 unit for pH, and 10 mV for ORP. Purging will be conducted using the low-flow sampling technique specified by the United States

Environmental Protection Agency (USEPA) Region 1 in its guidance document entitled "Low-Stress (low flow) Purging and Sampling for the Collection of Groundwater Samples from Monitoring Wells".

- The flow rate measurement will be approximately 0.5 liter per minute or less.
- If a well goes dry before the required volumes are removed, it will be allowed to recover, purged a second time until dry or the required parameters are met, and sampled when it recovers sufficiently, in accordance with low-flow sampling protocol.
- Purge water will be managed and disposed of properly.
- Peristaltic pumps will not be used to collect VOC samples.

5.2.2.2 Sampling

- Samples will be collected using dedicated 1/4- or 3/8-inch Teflon bailers.
- Prior to filling the sample bottles, the temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential (ORP), and turbidity will be measured within a flow-through cell. All measurements will be recorded in the field book.
- The sample container and preservative requirements are provided in the QAPP in Appendix H of the SMP.
- The sample containers will be labelled, placed in a laboratory-supplied cooler, and packed on ice (to maintain a temperature of 4°C). The cooler will be shipped overnight or delivered to the laboratory for analysis.
- COC procedures will be followed as outlined in the QAPP (Appendix H of the SMP).
- Well sampling data will be recorded on the Groundwater Sampling Record shown in Figure 5 or similar form.

6.0 Indoor Air Sampling

An indoor air evaluation will be performed at the Site to establish post remedy conditions. The work will be performed in accordance with *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* [DOH, 2006] and the USEPA document entitled *Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils, Office of Solid Waste and Emergency Response* [USEPA, 2002].

A pre-sampling survey and a product inventory will be conducted on the day of sampling (Figure 6). The surveys and inventories will be completed in accordance with the NYDOH guidance. The chemical inventory check will be performed at each location to document current conditions with the regard to the storage of chemicals. The previous surveys will be reviewed and any changes in conditions from the previous sampling will be noted. As with previous surveys, a screening for total volatiles will be conducted with a PID. An ambient air sample will be collected concurrently with the indoor air samples for each property.

The methods to be used for the collection of the indoor air samples and the ambient air sample are summarized as follows:

- The indoor air sample will be collected from a minimum of two-feet above the floor surface.
- The ambient air sample will be collected at a location determined to be upwind at time of sampling.
- The indoor air and ambient air samples will be collected as an integrated sample. A laboratory-provided flow controller fixed to a negative pressure vessel (a batch certified clean 6-liter Summa canister) will be used to collect the integrated sample. The controller will be a fixed-rate flow controller and the approximate length of the sample time will be set by the laboratory. The flow controllers are fitted with an internal filter to prevent particulates from entering the Summa canisters.
- The sample time for the canisters will be set from 8-24 hours depending on the use of the data. The collection of the samples in 6-liter canisters over an approximate time interval will ensure that the samples are collected at the rate specified by the NYSDOH (less than 0.2 liters per minute).
- The sample tubing will be attached to the sampling canister with SwagelokTM fittings.
- Prior to sampling, the initial vacuum in each canister will be checked prior to use to ensure mechanical integrity of the canister. The initial vacuum should be approximately 30 inches mercury (in. Hg).
- To start sampling, the canister ball valve is opened and the initial time and vacuum is recorded.
- The final vacuum should be between 10 and 4 in. Hg, with a target of 5 in. of Hg. The initial and final vacuum in each canister will be recorded on the laboratory chain-of-custody form to be returned to the laboratory with the samples. The gauges provided with the canisters are

accurate only for "indication of change", and are not sufficiently accurate to provide gaugeto- gauge comparisons. The final vacuum will also be measured in the laboratory.

- Following collection of the sample, the canister will be sealed by closing the ball valve and fitting on the canister inlet. The inlet will then be capped with a laboratory-provided threaded end cap.
- Following collection of the sample, the PID will be used to obtain a final reading from the probe assembly or tubing for the concentration of total organic vapors.
- Quality assurance and quality control samples will include one field duplicate, one trip blank, a laboratory blank and laboratory quality control samples as required by the analytical method.
- The site name, sample identification, canister number, canister certification number, sampler's name, sample times and date will be recorded on a tag that is attached to each canister.
- The indoor air samples will be shipped overnight to a NY ELAP-certified laboratory for analysis.

The field sampling team will record all information regarding the sampling chain of custody. Information to be recorded will include the following: sample identification, date and times of sample collection, identity of the field personnel, sampling methods and equipment, purge volumes and rates, and any other relevant observations made during the sampling. A DOH indoor air quality questionnaire and building inventory form will also be filled out prior to indoor air sampling.

7.0 Air Monitoring

7.1 Introduction

Two types of air monitoring will be performed during the site investigation: 1) work zone monitoring for protection of the workers performing the site investigation, and 2) community air monitoring at the perimeter of the work site for protection of the local community.

7.1.1 Breathing Zone Air Monitoring During Drilling and Sampling

Monitoring of air in the breathing zone within the work site will be conducted periodically during all drilling and sampling activities. A PID will be used to monitor for VOCs or other organic vapors in the breathing zone and borehole, and to screen the samples.

The PID readings will be recorded in the field book and on the boring log during drilling activities. The procedure for the PID operation and calibration is included in the HASP. Note that equipment calibration will be performed as often as needed to account for changing conditions or instrument readings. The minimum frequency of calibration is specified in the HASP; more frequent calibration will be performed if spurious readings are observed or there are other problems with the instruments.

7.1 Community Air Monitoring

The procedures and action levels for community air monitoring are presented in Appendix L of the SMP.

8.0 Field Instruments and Calibration

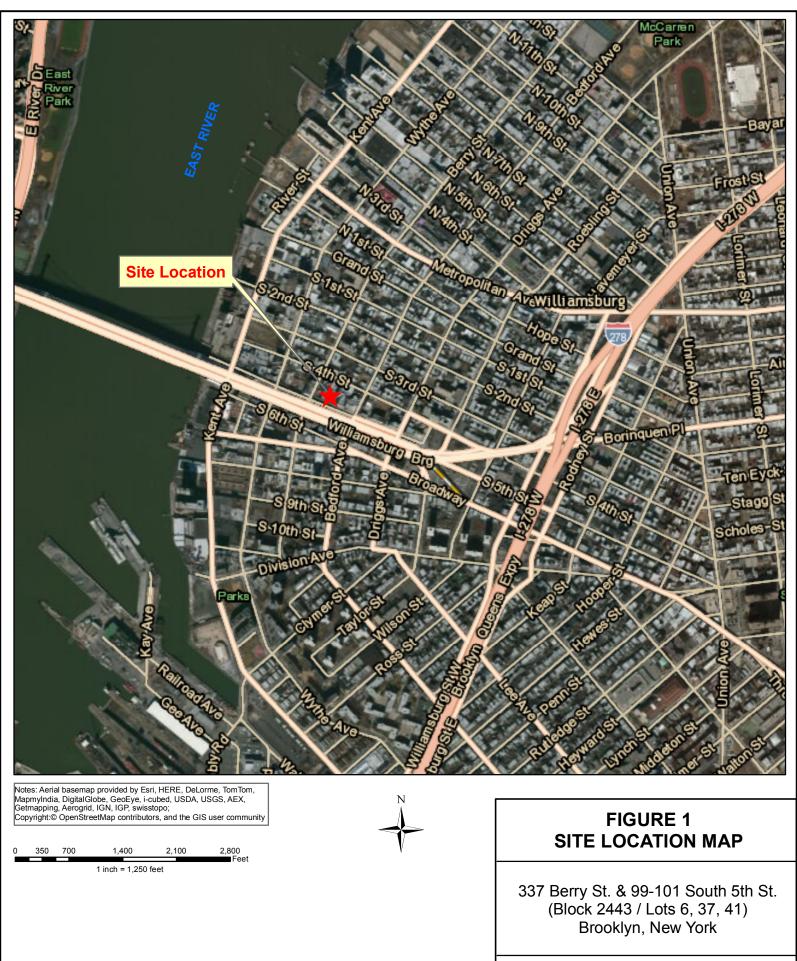
All field analytical equipment will be calibrated immediately prior to each day's use and more frequently if required. The calibration procedures will conform to manufacturer's standard instructions. This calibration will ensure that the equipment is functioning within the allowable tolerances established by the manufacturer and required by the project. All instrument calibrations will be documented in the project field book and in an instrument calibration log. Records of all instrument calibration will be maintained by the Site Safety Coordinator (SSC). Copies of all of the instrument manuals will be maintained on site by the SSC. All changes to instrumentation will be noted in the field log book.

The following field instruments will be used during the investigation:

- PID
- Particulate monitors
- Multi-parameter meter (pH, specific conductivity, dissolved oxygen, oxidation reduction, turbidity, and temperature meter)

8.1 Portable Photo-Ionization Detector (PID)

- The photo-ionization detector will be equipped with either a 10.2 or 10.6 eV lamp. In this configuration, the PID is capable of ionizing and detecting compounds that account for over 70% of the VOCs on the USEPA Target Compound List.
- Calibration must be performed at the beginning of each day of use with a standard calibration gas having a concentration of 100 parts per million of isobutylene. If the unit experiences abnormal perturbation or erratic readings, more frequent or additional calibration will be required.
- All calibration data must be recorded in the project field notebooks.
- A battery check must be completed at the beginning and end of each working day.
- All changes to the PID will be noted in the field notes (such as lamp or filter cleaning or replacement or change of instrument).


8.2 Multi-Parameter Meter

- Calibration of the meter (YSI or equivalent) must be performed at the start of each day of use, and after very high or low readings as required by this Plan, according to manufacturer's instructions.
- National Institute of Standards and Technology traceable standard calibration solutions will be used (where applicable). At least one backup meter will also be present on-site in the event of a malfunction.
- The calibration data must be recorded in the project field book each time it is performed.

9.0 Analytical Program

The analytical procedures for the site are provided the QAPP in Appendix H of the SMP.

Figures

equity environmental engineering 227 Route 206, Suite 6, Flanders, NJ 07836, (973) 527-7451

DRAWN BY/ DATE	CHK/DATE	DRAWING NUMBER		
NG / 04-14-15		2014074-01		

					EC	QUITY ENVIRONMENTAL ENGINEERING, LLC	"	Sheet of
Contrac	tor:			_		DRILLING RECORD	boring #	
Driller:				_	DDO I		Location Descrip	tion:
Dia Tur	л: «			_	PROJ	ECT NAME:		
nigityp	a			_	FNO	. NOMBER.		
GF	ROUNDW	ATER	OBSERVA	TIONS			Location Plan	
Water						Weather:		
Level								
Date					Dat	e/Time Start:	_	
Time Meas.					Data			
From					Dale	Time Finish:	-	
	Sample	Inch	XRF	PID		FIELD IDENTIFICATION OF MATERIAL	SCHEMATIC	COMMENTS
Depth		Rec.	Pb	(ppm)	USCS			
0								
						-		
1						•		
2								
3								
4						*		
5								
6						•		
7								
8						*		
9								
10						-		
						•		
11								
10						-		
12						*		
13						•		
14								
15								
13						+		
16						1		
17								
18		ļ						
19								
20								
20						ł		
		l				+		
					<u> </u>	<u> </u>		
						COMMENTS:		
	SAMPLIN							
	SAMPLIN							
	A = AUGE							
	GP = GEO	PROBE -	DIRECT PU	SH				

Equity Environme	ntal Engir	neering		CL	LIENT:	SB/WELL ID:
500 International Drive	, Suite 150			PR	ROJECT:	PERMIT #:
Iount Olive, New Jersey 07828 LOCATION:						
START DATE:				DR	RILLING CO.:	TOTAL DEPTH:
COMPLETION DATE:				DR	RILLER:	WELL DEPTH:
BORING DIAMETER:				DR	RILL RIG / METHOD:	CASING ELEVATION:
WELL DIAMETER:				LO	DGGED BY:	DEPTH TO WATER:
SCREENED INTERVAL:				WF	ELL TYPE:	WATER LEVEL STATIC:
SCREEN TYPE / SLOT:				FIL	LTER PACK:	CASING TYPE:
Depth (Ft.) Sample ID Recovery (in.	Interval (Ft.)	PID (ppm) Reading At	Sample Type	H20	Lithology / Remarks	Well Construction
0 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20						0 * Dia 1 PVC 2 3 3 4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20
KEY: SPT = Standard Penetration Test CAL = Calibration BZ = Breathing Zone	SS = Split Spoon A = Auger Cuttin GP = Geoprobe		GS	= Gra	ore Hole HS = Headspace TOSC = Top of Screen rab Sample \underline{V} = Water Level TOS = Top of Sand nposite TOB = Top of Bentonite CB = Curb Box Page 1 of 1 CB CB	Grout SP-SM Bentonite SP Sand ROCK Screen SW

			GROUN	DWATER	SAMPLING	LOG				
SITE:										
ADDRESS:										
Monitoring Well:		-								
Depth to Water (feet):		<u>-</u>	Date:			_				
Total Well Depth (feet):		-	Samplers:			-				
Casing Diameter (inches): Water Column (feet):			Weather Condit	iono:						
Water Column Volume (gallons):				10113						
Screened/Open Interval:		-								
Purging Information										
Start Time:		_	Purge Method:	(Circle One)						
End Time:										
Purge Rate (gpm or/ lpm): Total Volume Removed:		(Gallons or/	l iters)	Centrifugal pu Submersible			Dedicated Lo Bailer	ow Flow		
rotar volume Komovod.			Litero)	Peristaltic Pu			Other:			
						1		1		1
Time										-
Volume (Liters/Gallons)										-
Depth to Water										-
Temperature (deg. C)*										-
рН										-
ORP/Redox										-
Conductivity (mS/cm)* [S/m]										-
Turbidity (NTU)										-
DO (mg/L)*										-
TDS										-
Salinity (ppt)	haaa aattingaa	y DO is set to	mg/l_pat 0/							
* Make sure meter are set to read in t	nese settings - e	x. DO IS SEL IC	o mg/∟ not %.							
Sampling Information										
Sample ID:	Sampling Metho	od/Equipment:		Pum	p Intake Depth:					
Sample Time:	Depth to Water	:								
			-		1					
Analyte Group	Bottle Type	Number	Preservation	Analyzed?						
Metals Filtered? Yes / No Sample Rate (gpm/lpm):					-					
Comments/Observations for sampling ev	vent pertaining to	this well [.]								1
Commental Observations for sampling et	fernt pertaining to	ans wen.								
										J
Misc Field Info/Reference:										
Well Volume: Case Dia (inches):	2	3	4	4.5	5	6	8	12	1	
Gallons/linear Foot:		0.38	4 0.66	4.5 0.83	5 1.02	1.5	o 2.6	5.8	1	
For Low Flow										
Stabilization Order/Range	L ···									
Three successive reading within:	*SC (Conductivity):	+/- 0.1 +/- 3%	SC - Specific Conc	luctance						
	*DO:	+/- 10mV +/- 10%								
Mai		+/- 3%	Is greater than 1 NT	U						

OSR - 3

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Date/Time Prepared
	Phone No
Purpose of Investigation	
1. OCCUPANT:	
Interviewed: Y / N	
Last Name:	First Name:
County:	
Home Phone:	Office Phone:
	s at this location Age of Occupants
2. OWNER OR LANDLOR	D: (Check if same as occupant)
Interviewed: Y / N	
Last Name:	First Name:
County:	
	Office Phone:

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential	School	Commercial/Multi-use
Industrial	Church	Other:

2

If the p	roperty	is residential,	type?	(Circle	appropriate	response)
----------	---------	-----------------	-------	---------	-------------	-----------

	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	1 15¢	Townh		
If	multiple units, how many?)				
If	the property is commercia	l, type?				
	Business Type(s)		· · · · · · · · · · · · · · · · · · ·			
	Does it include residences	(i.e., multi-use)?	Y / N		If yes, how many?	
Of	ther characteristics:					
	Number of floors		Building	age		
3	Is the building insulated? Y	Y/N	How air	tight?	Tight / Average / Not Tight	
4.	AIRFLOW					
		er smake to evel	noto oivfle		terns and qualitatively describe:	
Aiı 						
Air 						
Out	tdoor air infiltration					-
Infi	ltration into air ducts					

5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	Y / N			
k. Water in sump? Y / N /	not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove		Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal		Kerosene Solar	
Domestic hot water tank fue	led by:	i		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? Y / N

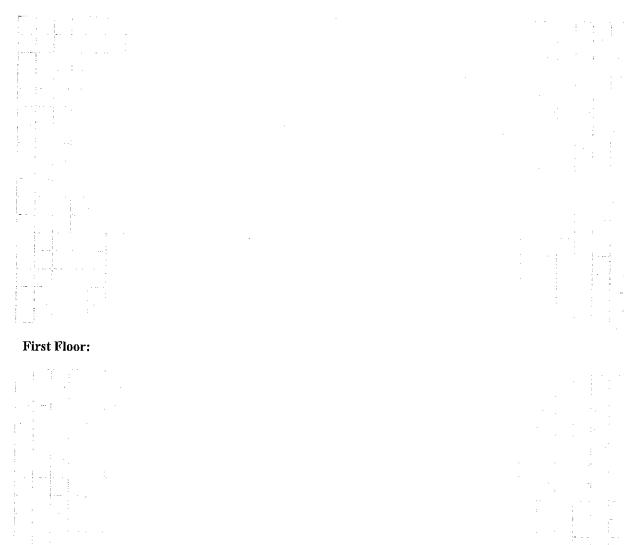
i. Have cosmetic products been used recently?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Level Basement 1st Floor 2nd Floor 3rd Floor 4th Floor -----8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a. Is there an attached garage? Y/N b. Does the garage have a separate heating unit? Y/N/NA c. Are petroleum-powered machines or vehicles Y/N/NA stored in the garage (e.g., lawnmower, atv, car) Please specify_____ d. Has the building ever had a fire? Y / N When? e. Is a kerosene or unvented gas space heater present? Y/N Where? f. Is there a workshop or hobby/craft area? Y / N Where & Type? Y / N How frequently? g. Is there smoking in the building? Y / N When & Type? h. Have cleaning products been used recently?

Y / N When & Type?

4


j. Has painting/st	in the last 6 mo	nths? Y / N	Where & W	hen?		
k. Is there new ca	Y / N	Where & W	hen?			
l. Have air freshe	cently?	Y / N	When & Typ	oe?		
m. Is there a kitcl		Y / N	If yes, where vented?			
n. Is there a bath	o?	Y / N	If yes, where vented?			
o. Is there a cloth	es dryer?		Y / N	Y / N If yes, is it vented outside? Y / N Y / N When & Type?		
p. Has there been	a pesticide appli	cation?	Y / N			
Are there odors in If yes, please des	n the building? cribe:		Y / N			
Do any of the buildi (e.g., chemical manuf poiler mechanic, pest	facturing or labora	itory, auto mech		[,] shop, paintin	g, fuel oil delivery,	
If yes, what types of	of solvents are use	ed?				
If yes, are their clo	Y / N					
Do any of the buildi response) Vest use dry-	ng occupants reg		ork at a dry-clea	ining service: No	? (Circle appropriate	
	ntly (monthly or	less)				
s there a radon mit s the system active		r the building/s Active/Passive		Date of Insta	allation:	
. WATER AND SE	WAGE			١		
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION	INFORMATIO	l (for oil spill re	esidential emerg	ency)		
a. Provide reaso	ns why relocation	1 is recommend	ed:			
b. Residents cho	ose to: remain in	home reloca	te to friends/fam	ily relo	cate to hotel/motel	
c. Responsibility	for costs associa	ted with reimb	ırsement explai	ned? Y / 1	N	
d. Relocation pa	ckage provided a	and explained to	residents?	Y/1	N	

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

.

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Ţ

8

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
						· · · · · · · · · · · · · · · · · · ·
			······································			
			,			
		-				

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

1

APPENDIX K

REMEDIAL SYSTEM OPTIMIZATION TABLE OF CONTENTS

REMEDIAL SYSTEM OPTIMIZATION FOR THE WILLIAMSBURG BRIDGEVIEW APARTMENTS

TABLE OF CONTENTS

- 1.0 INTRODUCTION
- 1.1 SITE OVERVIEW
- 1.2 PROJECT OBJECTIVES AND SCOPE OF WORK
- **1.3 REPORT OVERVIEW**
- 2.0 REMEDIAL ACTION DESCRIPTION
- 2.1 SITE LOCATION AND HISTORY
- 2.2 REGULATORY HISTORY AND REQUIREMENTS
- 2.3 CLEAN-UP GOALS AND SITE CLOSURE CRITERIA
- 2.4 PREVIOUS REMEDIAL ACTIONS
- 2.5 DESCRIPTION OF EXISTING REMEDY
- 2.5.1 System Goals and Objectives
- 2.5.2 System Description
- 2.5.3 Operation and Maintenance Program
- 3.0 FINDINGS AND OBSERVATIONS
- 3.1 SUBSURFACE PERFORMANCE
- 3.2 TREATMENT SYSTEM PERFORMANCE
- 3.3 REGULATORY COMPLIANCE 3-3
- 3.4 MAJOR COST COMPONENTS OR PROCESSES
- 3.5 SAFETY RECORD
- 4.0 RECOMMENDATIONS
- 4.1 RECOMMENDATIONS TO ACHIEVE OR ACCELERATE SITE CLOSURE
- 4.1.1 Source Reduction/Treatment
- 4.1.2 Sampling
- 4.1.3 Conceptual Site Model (Risk Assessment)
- 4.2 RECOMMENDATIONS TO IMPROVE PERFORMANCE
- 4.2.1 Maintenance Improvements
- 4.2.2 Monitoring Improvements

4.2.3 Process Modifications

4.3 RECOMMENDATIONS TO REDUCE COSTS

- 4.3.1 Supply Management
- 4.3.2 Process Improvements or Changes
- 4.3.3 Optimize Monitoring Program
- 4.3.4 Maintenance and Repairs
- 4.4 RECOMMENDATIONS FOR IMPLEMENTATION

APPENDIX L

PERMITS AND/OR PERMIT EQUIVALENT

Work Permit Department of Buildings	mber: 320597378-01-FO-EA Expires: 4 Issued to: JOSEPH PROCIDA	AULIESS. BROUKLIN 101 SOUTH STARED BUSINESS: FROCIDA CONSTRUCTION CORP Description of Work: NEW BUILDING - EARTHWORK CONSTRUCT NEW 11 STORY MIXED USE BUILDING.	Review is requested under Building Code: 2008 SITE FILL: USE UNDER 300 C	To see a Zoning Diagram (ZD1) or to challenge a zoning approval filed as part of a New Building application application filed after 7/13/2009, please use "My Community" on the Buildings Department web site at www.nyc.gov/buildings. Emergency Telephone Day or Night: 311 <i>BITE BAFETY PHONE</i> : 212 669-7043 Borough Commissioner: Commissioner of Buildings: A. Mandaga T. Tampering with or knowingly making a false entry in or falsely altering this permit is a crime that is punishable by a fine, imprisonment of both.
-------------------------------------	--	---	--	---

APPENDIX M RESPONSIBILITIES OF OWNER

Responsibilities

The responsibilities for implementing the Site Management Plan ("SMP") for the Williamsburg Bridgeview Apartments site (the "site"), number C224233, are to be implemented by the site beneficial owner who is also the Remedial Party, as defined below. The beneficial owner(s) is/are currently listed LPC Development Group LLC (owner).

Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out, the term Remedial Party ("RP") refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation ("NYSDEC") is carrying out remediation or site management, the NYSDEC and/or an agent acting on its behalf. The RP is also the owner.

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the site.

Site Beneficial Owner's Responsibilities:

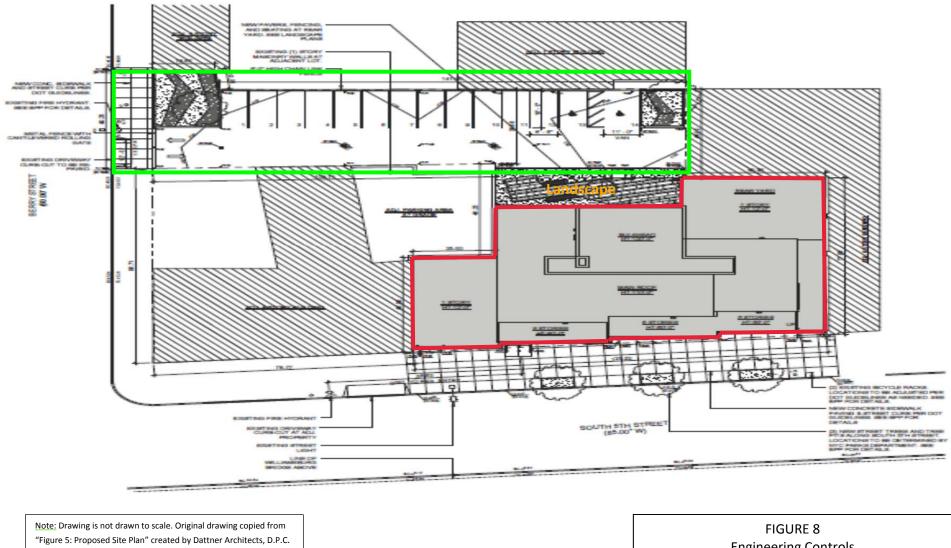
- 1) The owner shall follow the provisions of the SMP as they relate to future construction and excavation at the site.
- 2) In accordance with a periodic time frame determined by the NYSDEC, the owner shall periodically certify, in writing, that all Institutional Controls set forth in an Environmental Easement remain in place and continue to be complied with. The owner shall provide a written certification to the RP, upon the RP's request, in order to allow the RP to include the certification in the site's Periodic Review Report (PRR) certification to the NYSDEC.

- 3) In the event the site is delisted, the owner remains bound by the Environmental Easement and shall submit, upon request by the NYSDEC, a written certification that the Environmental Easement is still in place and has been complied with.
- 4) The owner shall grant access to the site to the NYSDEC and its agents for the purposes of performing activities required under the SMP and assuring compliance with the SMP.
- 5) The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event that damage to the remedial components or vandalism is evident, the owner shall notify the NYSDEC in accordance with the timeframes indicated in Section 1.3-Notifications.
- 6) In the event some action or inaction by the owner adversely impacts the site, the owner must notify the NYSDEC in accordance with the time frame indicated in 1.3-Notifications and (ii) coordinate the performance of necessary corrective actions with the RP.
- 7) The owner must notify the NYSDEC of any change in ownership of the site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the site property. 6 NYCRR Part contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the notification requirements is the following: Sixty days prior written notification must be made to the NYSDEC. Notification is to be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 2.4 of the SMP. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 8) Until such time as the NYSDEC deems the vapor mitigation system unnecessary, the owner shall operate the system, pay for the utilities for the system's operation, and report any maintenance issues to the NYSDEC.
- 10) In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data, that is produced with respect to structures and that exceeds NYSDOH or OSHA guidelines on the site, whether produced by the NYSDEC, RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

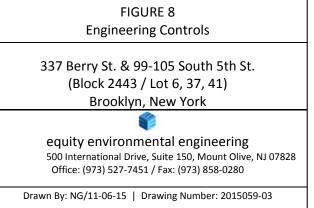
Remedial Party Responsibilities

For this site, the beneficial owner is the RP.

- 1) The RP must follow the SMP provisions regarding any construction and/or excavation it undertakes at the site.
- 2) The RP shall report to the NYSDEC all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated SMPs.
- 3) Before accessing the site property to undertake a specific activity, the RP shall provide the owner advance notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) the NYSDEC, and (iii) other entities, if required by the SMP, a copy of any data generated during the site visit and/or any final report produced.
- 4) If the NYSDEC determines that an update of the SMP is necessary, the RP shall update the SMP and obtain final approval from the NYSDEC. Within 5 business days after NYSDEC approval, the RP shall submit a copy of the approved SMP to the owner(s).
- 5) The RP shall notify the NYSDEC and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-days prior notice to the NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 6) The RP shall notify the NYSDEC of any damage to or modification of the systems as required under Section 1.3- Notifications of the SMP.
- 7) The RP is responsible for the proper maintenance of any installed vapor intrusion mitigation systems associated with the site, as required in Appendix H (Operation, Monitoring and Maintenance Manual) of the SMP.
- 8) Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the SMP, the RP shall submit to the NYSDEC for approval an amended SMP.
- 9) Any change in use, change in ownership, change in site classification (*e.g.*, delisting), reduction or expansion of remediation, and other significant changes related to the site

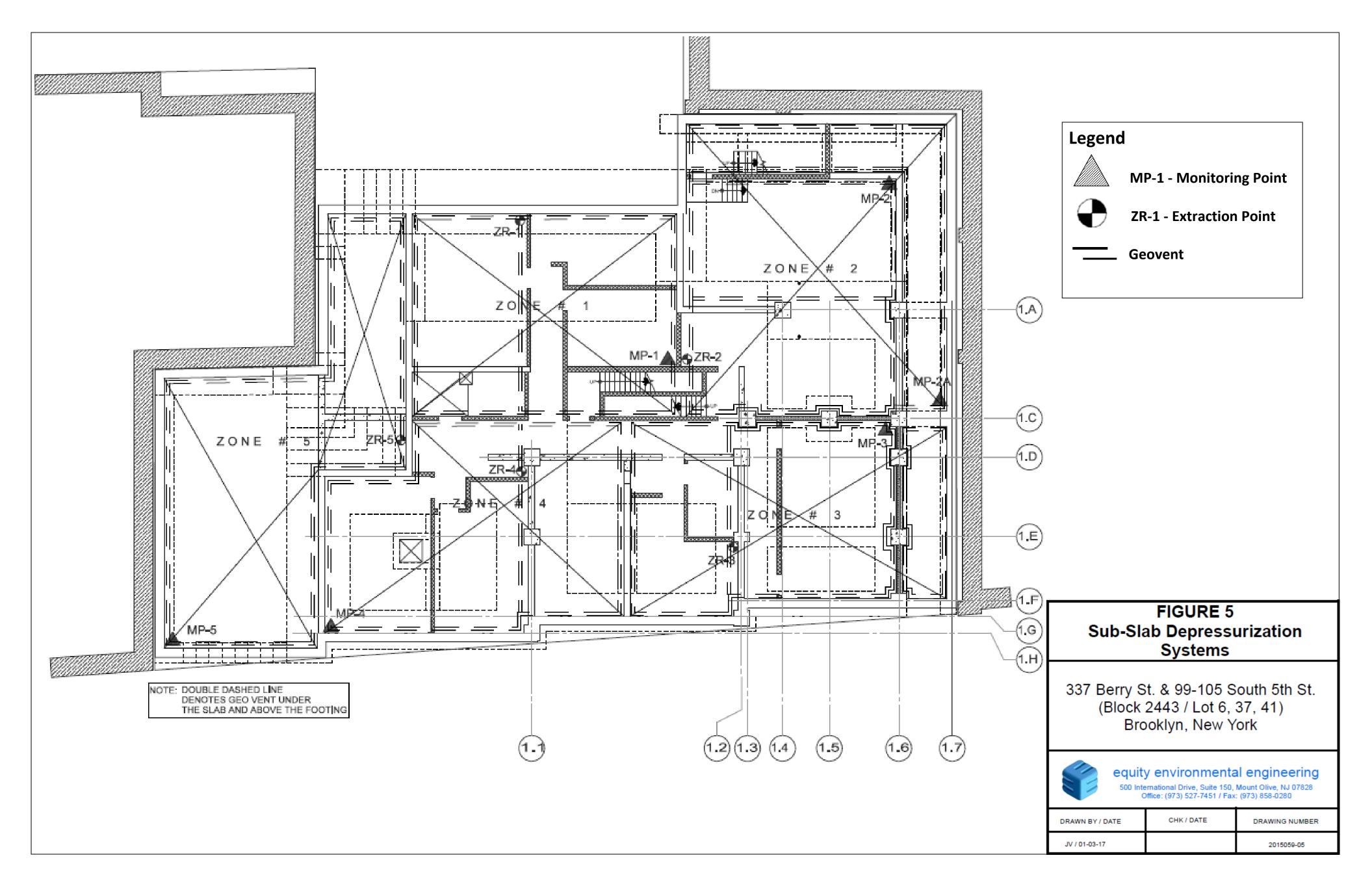

may result in a change in responsibilities and, therefore, necessitate an update to the SMP and/or updated legal documents. The RP shall contact the Department to discuss the need to update such documents.

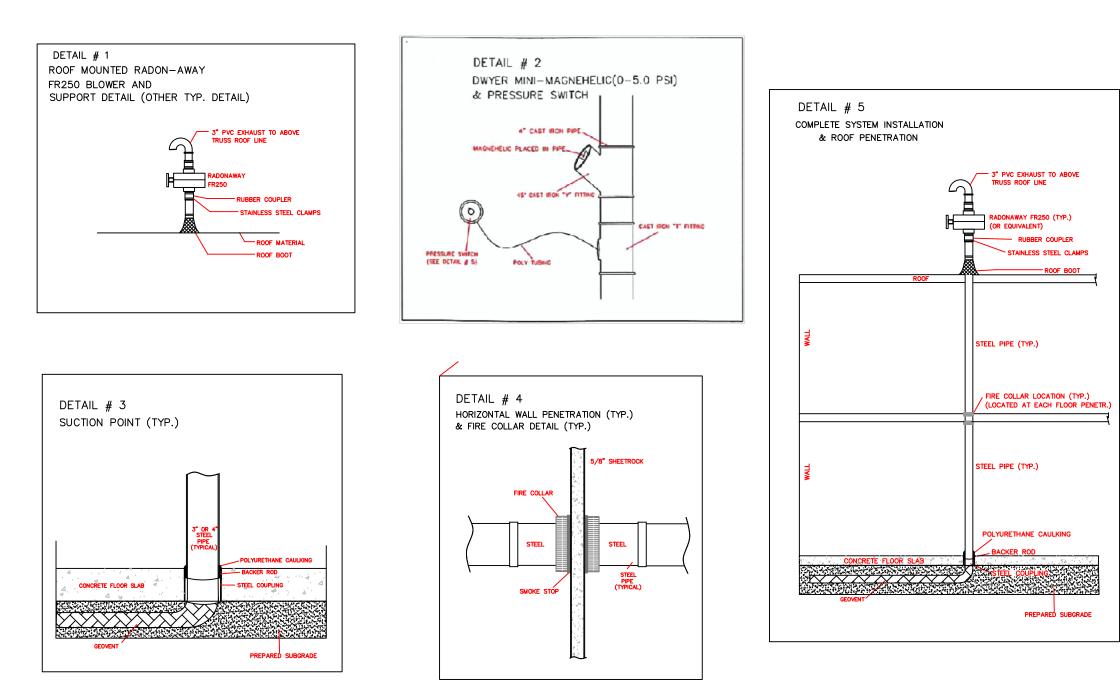
Change in RP ownership and/or control and/or site ownership does not affect the RP's obligations with respect to the site unless a legally binding document executed by the NYSDEC releases the RP of its obligations.

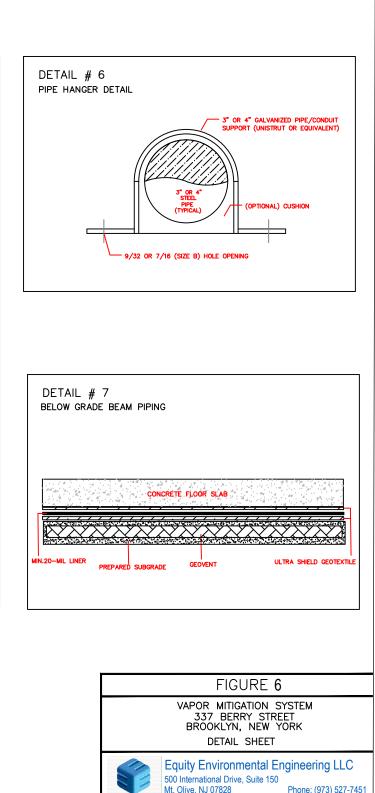

Future site owners and RPs and their successors and assigns are required to carry out the activities set forth above.

Appendix B

Cover System

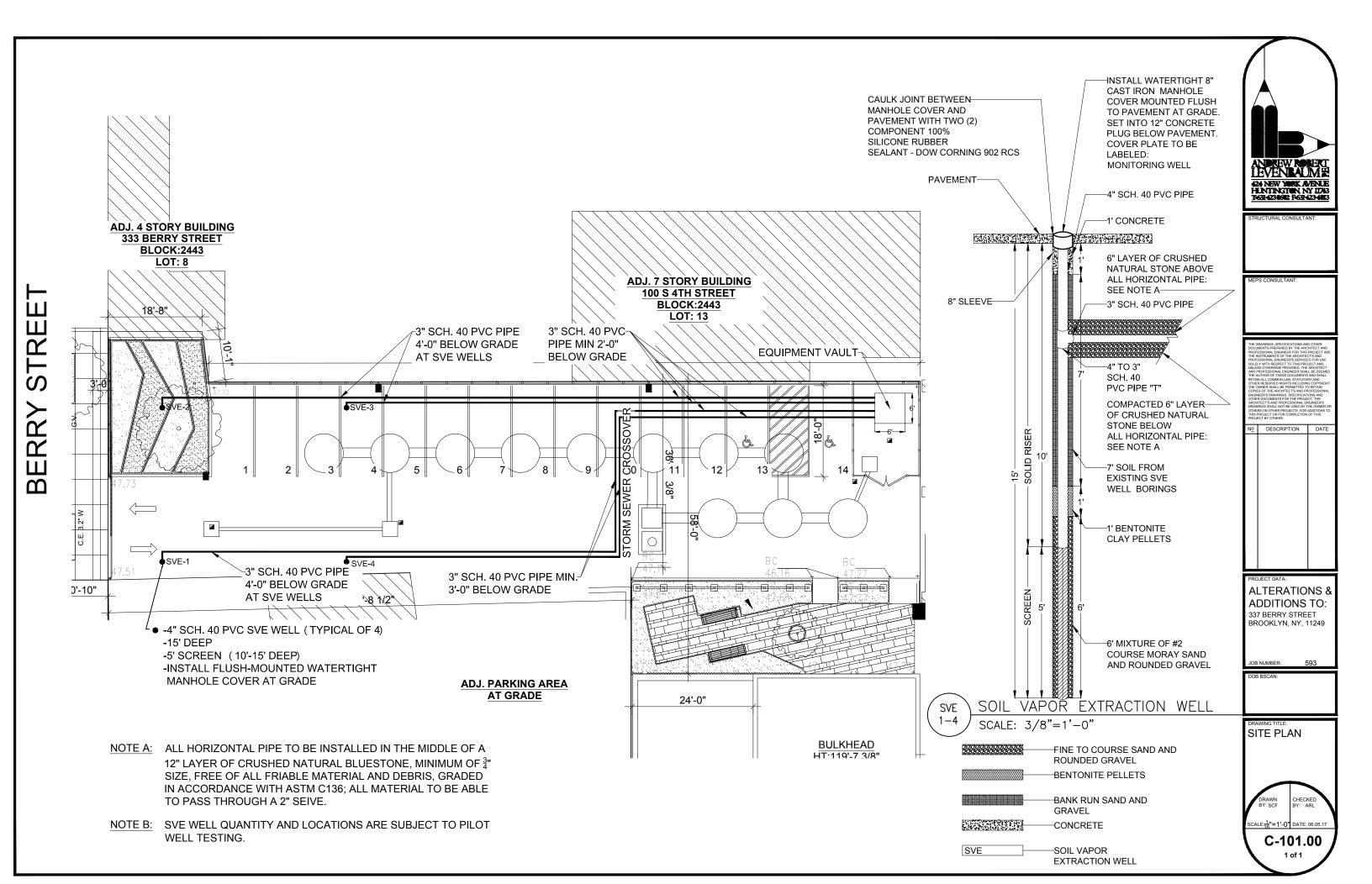




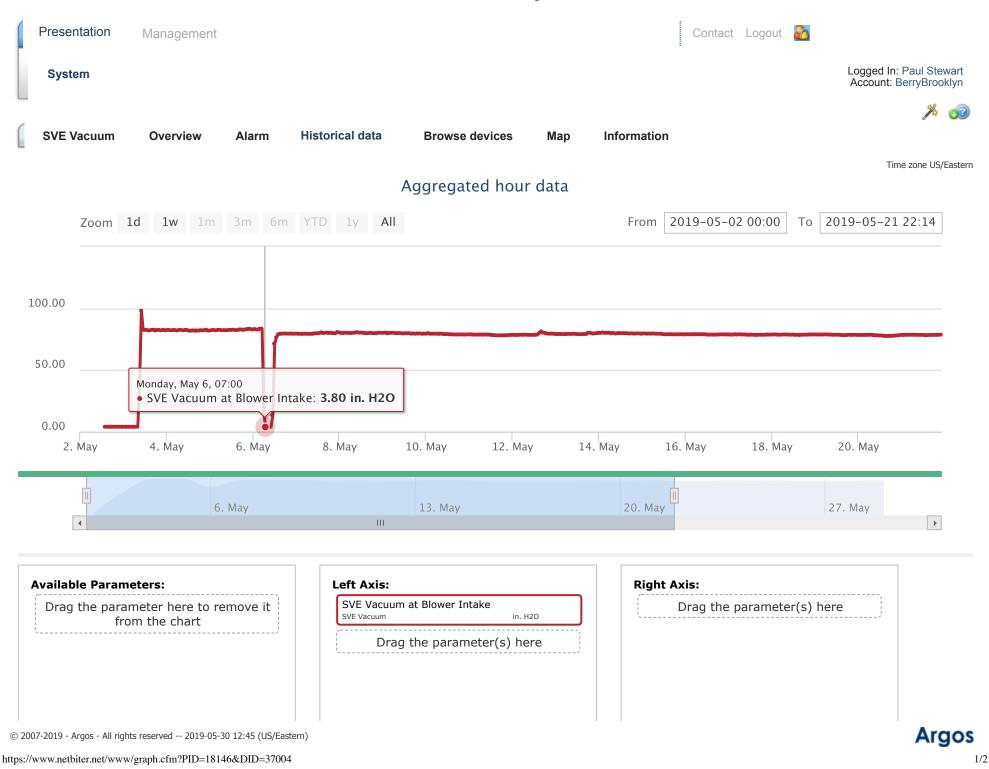


Appendix C

Sub-Slab Depressurization System Layout



· ·		1 110110. (0	10/021 1101
DATE	DWG BY	REV	снк
11082016	TAF	FU	


Appendix D

Soil Vapor Extraction System Layout and Logged Data

5/30/2019

Argos

Appendix E

SVES Implementation Plan

Mr. Peter Procida LPC Developmet Group LLC 456 East 173rd Street Bronx, New York 10457

> Re: Soil Vapor Extraction System Implementation Plan 337 Berry Street, Brooklyn, New York

Dear Mr. Procida,

Advanced Cleanup Technologies, Inc. (ACT) is pleased to present the following Implementation Plan for the construction of the proposed Soil Vapor Extraction (SVE) system at 337 Berry Street, Brooklyn, New York. A preliminary design plan providing the proposed number and layout of SVE wells and system piping is attached. A Typical P&ID diagram for the SVE system is also attached.

The following outlines the details of construction and the methodology and sequencing of the construction related activities. The ground surface over the area to be remediated is currently bare dirt. Hence, vacuum measurements recorded during pilot testing will be viewed as conservative, with higher vacuum anticipated once the asphalt pavement has been installed.

Scope of Work

1. Pilot Testing

The New York State Department of Health (NYSDOH) has indicated that a minimum vacuum of 0.1 in. w.c. is required to maintain an effective vacuum within an area influenced by an SVE system. A pilot test will be performed on an SVE well to be installed along the property boundary adjacent to 333 Berry Street to generate site-specific permeability data under varying conditions of pressure, flow and distance.

Prior to pilot testing, temporary vacuum points will be installed at 5, 10 and 15 foot depths along the property boundary with 333 Berry Street and at one 10-foot step out to the south. Temporary sub-slab vacuum points (less than 6 in. deep) will also be installed inside the basement at 333 Berry Street at three distances from the southern property boundary.

LPC Developmet Group LLC August 8, 2017 Page Two

The results of the pilot test will document the extraction well vacuum and flow rates required to maintain effective horizontal and vertical pressure fields beneath the site and its immediate vicinity. This information will be used to refine the proposed layout of the SVE system and sizing of vacuum blower and treatment equipment. The blower will be selected with approval from the NYSDEC.

2. Trenching

A backhoe will be utilized to dig a trench from each extraction well to lateral piping connecting the SVE well to the vacuum system. An additional trench will be dug along the northern property boundary to contain lateral piping from each SVE well to the vacuum system.

3. Extraction Well Installation

Each SVE well will be installed utilizing a rotary auger drill rig, which will drill an 8-inch diameter borehole to a depth of 15 feet below ground surface (bgs). The entire well assembly, including 5 feet of 4-inch diameter 20 mil slotted schedule 40 PVC well screen and 10 feet of 4-inch diameter solid PVC riser pipe, will be inserted into the borehole. A 4-inch to 3-inch PVC "T" will be installed four feet from the top of the well casing to provide connection to lateral piping.

The borehole will be filled with 6 feet of well gravel (#2 moray sand and rounded gravel) followed by 1 foot of hydrated bentonite clay pellets and then native soil to 1-foot bgs. An 8-inch diameter well cover labeled "Monitoring Well" will be installed at an elevation flush with the asphalt surface. The well cover will be secured in place with a concrete plug, inhibiting surface water infiltration into the well annulus.

4. Lateral Piping Installation

A 6-inch layer of crushed natural bluestone will be placed in the base of each pipe trench. A layer of filter fabric will be placed between the bluestone and the native soil. Three-inch diameter schedule 40 PVC piping will be laid out in the trenches in 10-foot sections. Each section will be welded to the next with PVC primer and cement. Care will be taken to make sure PVC couplings are fully inserted and dry before moving to the next section. Lateral piping will be covered with a 6-inch layer of crushed stone. The trenches will then be backfilled with native soil to grade.

LPC Developmet Group LLC August 8, 2017 Page Three

5. Vacuum System Installation

Located in the northeast portion of the asphalt driveway, a vacuum system consisting of a vacuum blower, moisture separator, pre-filter, instrumentation and controls will be installed within a pre-fabricated metal enclosure. (See Attachment A for the proposed location of the vacuum system).

The enclosure will be soundproofed to reduce the sound level of the blower. Provisions to alternatively mount the vacuum system and enclosure on the roof of the building under construction will be made if it is determined that this would be a more suitable location.

6. Exhaust Treatment

Prior to operational startup, the vacuum system exhaust will be sampled and analyzed for volatile organic compounds pursuant to EPA Method TO-15. An ambient Air Quality Impact Analysis will be performed in accordance with NYS DAR-1 guidelines to determine if treatment of exhaust with granular activated carbon will be required.

7. Electrical Work

The vacuum system will be energized using a new electrical distribution panel installed by the client. Circuit breakers will be labeled "Active Soil Vapor Extraction System." Additionally, a system description label will be placed on the vacuum system enclosure and control panel.

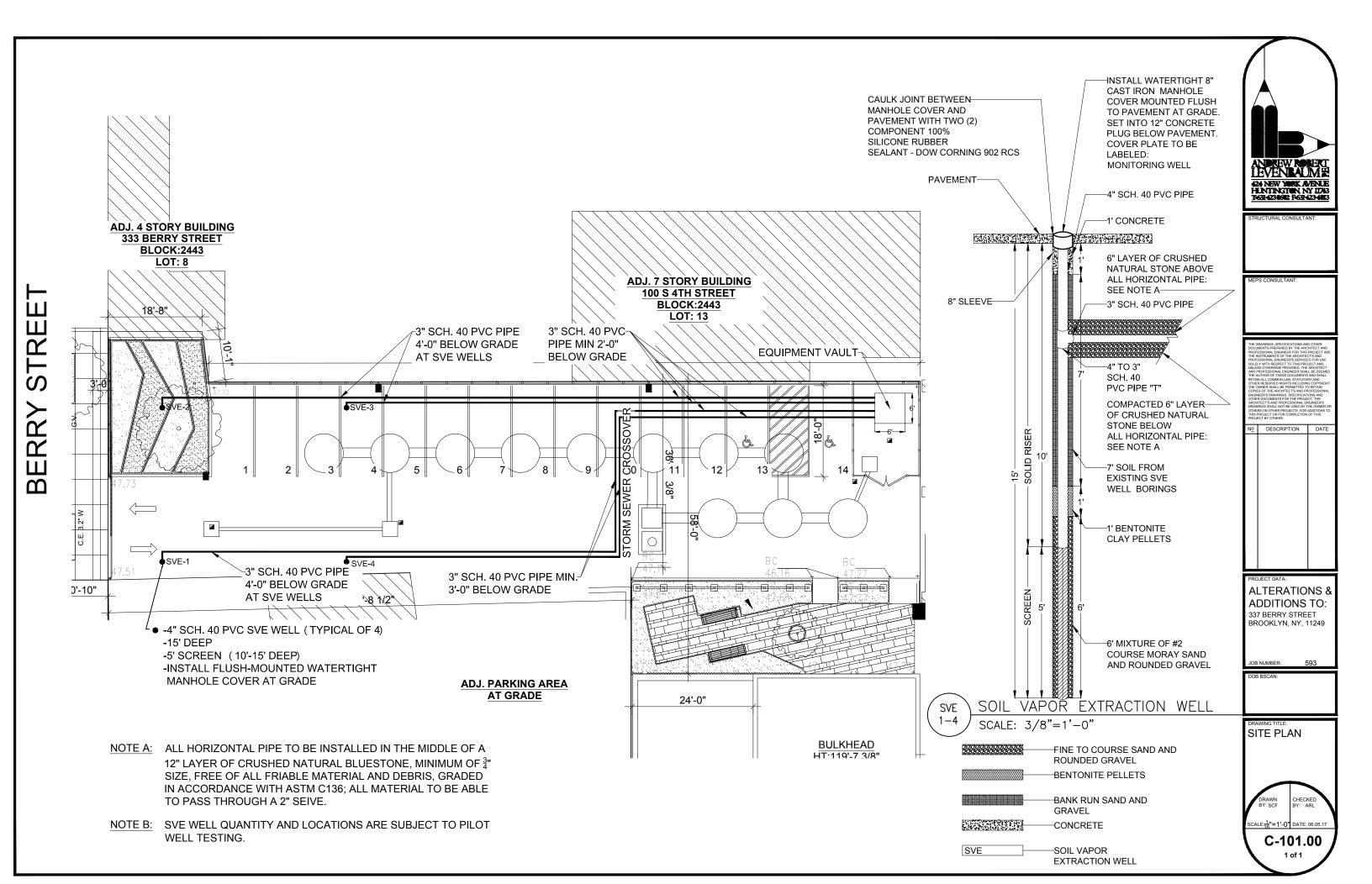
Electrical conduit and wire will be run in a manner that meets or exceeds the NYC electrical code to the enclosure where the control panel will be located. A disconnect switch will be provided outside the enclosure which will serve as a local means of disconnect for emergency or maintenance use.

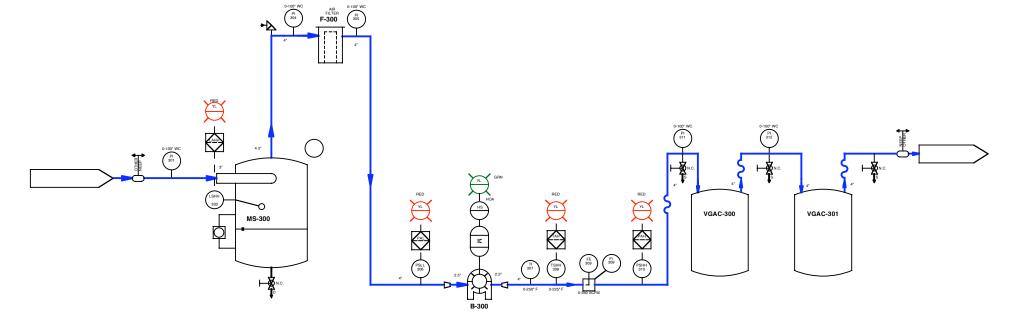
8. System Testing and Startup

Prior to the startup of the SVE system, the vacuum blower and controls will be tested for correct operation, both electrically and mechanically.

LPC Developmet Group LLC August 8, 2017 Page Four

Temporary sub-slab vacuum points (less than 6 in. deep) will be installed inside the basements at 333 and 345 Berry Street. A minimum of 6 temporary vacuum points will be installed to verify that adequate vacuum is reaching each of the points.


Each of the vacuum points will be connected to a hand-held digital manometer to check for vacuum influence. This vacuum influence will be used to demonstrate that the SVE system is providing adequate depressurization coverage.


Following startup of the SVE system, the flow, vacuum, temperature and vapor concentrations in the influent and effluent will be monitored on a daily basis for the first 7 to 10 days and then monthly thereafter.

If you have any questions or require additional information, please do not hesitate to contact the undersigned.

Very truly yours,

Paul P. Stewart, QEP President

TYPICAL P&ID

Appendix F

Certified Laboratory Reports

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050

Attention: Paul Stewart

Report Date: 03/18/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19C0387

k Project (SDG) No.: 19C03

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 03/18/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19C0387

Advanced Cleanup Technologies, Inc.

110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 12, 2019 with a temperature of C. The project was identified as your project: **9311-BKNY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	Matrix	Date Collected	Date Received
19C0387-01	9311-INF	Vapor Extraction	03/11/2019	03/12/2019
19C0387-02	9311-EFF	Vapor Extraction	03/11/2019	03/12/2019

General Notes for York Project (SDG) No.: 19C0387

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 03/18/2019

Benjamin Gulizia Laboratory Director

<u>Client Sample ID:</u> 9311-INF			York Sample ID:	19C0387-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

Volatile Organics, EPA TO15 Full List				<u>Log-in Notes:</u>	Sample Notes:						
Sample Prepared CAS No.	l by Method: EPA TO15 PREP Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
30-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	2.0	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
1-55-6	1,1,1-Trichloroethane	18		ug/m³	1.6	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
9-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	2.0	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	2.3	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
9-00-5	1,1,2-Trichloroethane	ND		ug/m³	1.6	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
5-34-3	1,1-Dichloroethane	ND		ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
5-35-4	1,1-Dichloroethylene	9.9		ug/m³	0.29	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
20-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.2	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
5-63-6	1,2,4-Trimethylbenzene	47		ug/m³	1.5	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
06-93-4	1,2-Dibromoethane	ND		ug/m³	2.3	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
5-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.8	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
07-06-2	1,2-Dichloroethane	ND		ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
8-87-5	1,2-Dichloropropane	ND		ug/m³	1.4	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
6-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	2.1	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
08-67-8	1,3,5-Trimethylbenzene	17		ug/m³	1.5	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
06-99-0	1,3-Butadiene	ND		ug/m³	2.0	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
41-73-1	1,3-Dichlorobenzene	3.0		ug/m³	1.8	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
42-28-9	* 1,3-Dichloropropane	ND		ug/m³	1.4	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
06-46-7	1,4-Dichlorobenzene	2.0		ug/m³	1.8	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen		AS
23-91-1	1,4-Dioxane	ND		ug/m³	2.1	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
8-93-3	2-Butanone	8.6		ug/m³	0.87	2.966	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 11:41	AS
120 RES	SEARCH DRIVE	STRATFORD,	CT 06615	1	1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			FA	X (203) 3	57-0166		ClientServices	Page 4	of 14

Page 4 of 14

Client Sam	ple ID:	9311-INF

Client Sample ID: 9311-INF			York Sample ID:	19C0387-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

Volatile Organics, EPA TO15 Full List Sample Prepared by Method: EPA TO15 PREP			<u>Log-in Notes:</u>	Sample Notes:						
CAS No		Result	Flag Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
91-78-6	* 2-Hexanone	ND	ug/m³	2.4	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
07-05-1	3-Chloropropene	ND	ug/m³	4.6	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 712058,NJDEP-Queens	03/15/2019 11:41	AS
08-10-1	4-Methyl-2-pentanone	ND	ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 712058,NJDEP-Queens	03/15/2019 11:41	AS
7-64-1	Acetone	8.2	ug/m³	1.4	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
7-13-1	Acrylonitrile	ND	ug/m³	0.64	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-43-2	Benzene	ND	ug/m³	0.95	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
00-44-7	Benzyl chloride	ND	ug/m³	1.5	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
5-27-4	Bromodichloromethane	ND	ug/m³	2.0	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
5-25-2	Bromoform	ND	ug/m³	3.1	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-83-9	Bromomethane	ND	ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-15-0	Carbon disulfide	ND	ug/m³	0.92	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
5-23-5	Carbon tetrachloride	0.56	ug/m³	0.47	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
8-90-7	Chlorobenzene	ND	ug/m³	1.4	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-00-3	Chloroethane	ND	ug/m³	0.78	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-66-3	Chloroform	19	ug/m³	1.4	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-87-3	Chloromethane	ND	ug/m³	0.61	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
6-59-2	cis-1,2-Dichloroethylene	5.8	ug/m³	0.29	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
0-82-7	Cyclohexane	ND	ug/m³	1.0	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
4-48-1	Dibromochloromethane	ND	ug/m³	2.5	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
-71-8	Dichlorodifluoromethane	3.2	ug/m³	1.5	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queens	03/15/2019 11:41	AS
1-78-6	* Ethyl acetate	ND	ug/m³	2.1	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
120 RES	SEARCH DRIVE	STRATFORD, C	CT 06615	1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	

Client Sample ID: 9311-I	NF
--------------------------	----

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

York Sample ID:

19C0387-01

	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No	d by Method: EPA TO15 PREP D. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
100-41-4	Ethyl Benzene	11		ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
37-68-3	Hexachlorobutadiene	ND		ug/m³	3.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
67-63-0	Isopropanol	2.7		ug/m³	1.5	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
80-62-6	Methyl Methacrylate	ND		ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	1.1	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
75-09-2	Methylene chloride	ND		ug/m³	2.1	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
142-82-5	n-Heptane	ND		ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
110-54-3	n-Hexane	ND		ug/m³	1.0	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
95-47-6	o-Xylene	41		ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
179601-23-1	p- & m- Xylenes	72		ug/m³	2.6	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
622-96-8	* p-Ethyltoluene	37		ug/m³	1.5	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
115-07-1	* Propylene	ND		ug/m³	0.51	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
100-42-5	Styrene	ND		ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
127-18-4	Tetrachloroethylene	460		ug/m³	0.50	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
109-99-9	* Tetrahydrofuran	17		ug/m³	1.7	2.966	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 11:41	AS
108-88-3	Toluene	64		ug/m³	1.1	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	1.2	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
79-01-6	Trichloroethylene	320		ug/m³	0.40	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 11:41	AS
75-69-4	Trichlorofluoromethane (Freon 11)	2.3		ug/m³	1.7	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
108-05-4	Vinyl acetate	ND		ug/m³	1.0	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 11:41	AS
593-60-2	Vinyl bromide	ND		ug/m³	1.3	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 712058,NJDEP-Queens	03/15/2019 11:41	AS
120 RES	SEARCH DRIVE	STRATFORD, C	T 06615		1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YC	ORKLAB.com	(203) 325-1371			FA	X (203) 3	57-0166		ClientServices	Page 6	6.4.4

Client Sample ID: 9311-INF			York Sample ID:	19C0387-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

CAS No	d by Method: EPA TO15 PREP D. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	0.19	2.966	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 12058,NJDEP-Queen	03/15/2019 11:41 s	AS
	Surrogate Recoveries	Result		Acceptar	nce Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	129 %		70)-130						
				Samnle In	formation						

<u></u> ,			<u></u>	1)0000/ 02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

Log-in Notes:

Sample Notes: TO-VAC

Volatile Organics, EPA TO15 Full List

Sample Prepared by Meth	od: EPA TO15 PREP

CAS No.	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.91	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.72	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.91	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.0	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.72	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.54	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 ¥12058,NJDEP-Queens	03/15/2019 12:33	AS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.13	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.98	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
95-63-6	1,2,4-Trimethylbenzene	1.5		ug/m³	0.65	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.0	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.80	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.54	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS

<u>Client Sample ID:</u> 9311-EFF			York Sample ID:	19C0387-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

	rganics, EPA TO15 Full Lis d by Method: EPA TO15 PREP	<u> </u>		<u>Log-in Notes:</u>	<u>Sample Notes:</u> TO-VAC					
CAS No.	. Parameter	Result Flag	Units	Reported to LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
8-87-5	1,2-Dichloropropane	ND	ug/m³	0.61	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
6-14-2	1,2-Dichlorotetrafluoroethane	ND	ug/m³	0.93	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
08-67-8	1,3,5-Trimethylbenzene	ND	ug/m³	0.65	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
06-99-0	1,3-Butadiene	ND	ug/m³	0.88	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
41-73-1	1,3-Dichlorobenzene	1.7	ug/m³	0.80	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 ¥12058,NJDEP-Queens	03/15/2019 12:33	AS
42-28-9	* 1,3-Dichloropropane	ND	ug/m³	0.61	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
06-46-7	1,4-Dichlorobenzene	ND	ug/m³	0.80	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
23-91-1	1,4-Dioxane	ND	ug/m³	0.96	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
78-93-3	2-Butanone	2.2	ug/m ³	0.39	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
91-78-6	* 2-Hexanone	ND	ug/m³	1.1	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
07-05-1	3-Chloropropene	ND	ug/m³	2.1	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
08-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.54	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
7-64-1	Acetone	5.1	ug/m ³	0.63	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
07-13-1	Acrylonitrile	ND	ug/m³	0.29	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
1-43-2	Benzene	0.64	ug/m³	0.42	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
00-44-7	Benzyl chloride	ND	ug/m³	0.69	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
5-27-4	Bromodichloromethane	ND	ug/m³	0.89	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
5-25-2	Bromoform	ND	ug/m³	1.4	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
4-83-9	Bromomethane	ND	ug/m³	0.52	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queens	03/15/2019 12:33	AS
5-15-0	Carbon disulfide	ND	ug/m³	0.41	1.327	EPA TO-15 Certifications:			03/15/2019 12:33	AS
6-23-5	Carbon tetrachloride	ND	ug/m³	0.21	1.327	EPA TO-15 Certifications:			03/15/2019 12:33	AS
08-90-7	Chlorobenzene	ND	ug/m³	0.61	1.327	EPA TO-15 Certifications:			03/15/2019 12:33	AS
120 RES	SEARCH DRIVE	STRATFORD, CT 066	15	a 13	32-02 89th	AVENUE		RICHMOND HIL		
	SEARCH DRIVE DRKLAB.com	STRATFORD, CT 0667 (203) 325-1371	15	_	32-02 89th AX (203) 3	AVENUE	NELAC-N			

Client Sample ID: 9311-EFF			York Sample ID:	19C0387-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

	tile Organics, EPA TO15 Full List			<u>Log-in Notes:</u>	Sample Notes: TO-VAC					
CAS No.		Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5-00-3	Chloroethane	ND	ug/m³	0.35	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
7-66-3	Chloroform	ND	ug/m³	0.65	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
4-87-3	Chloromethane	47	ug/m³	0.27	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
56-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.13	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
0061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.60	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
10-82-7	Cyclohexane	ND	ug/m³	0.46	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
24-48-1	Dibromochloromethane	ND	ug/m³	1.1	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
5-71-8	Dichlorodifluoromethane	0.66	ug/m³	0.66	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
41-78-6	* Ethyl acetate	ND	ug/m³	0.96	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
00-41-4	Ethyl Benzene	ND	ug/m³	0.58	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
7-68-3	Hexachlorobutadiene	ND	ug/m³	1.4	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
7-63-0	Isopropanol	2.3	ug/m³	0.65	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
0-62-6	Methyl Methacrylate	ND	ug/m³	0.54	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.48	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
5-09-2	Methylene chloride	ND	ug/m³	0.92	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
42-82-5	n-Heptane	ND	ug/m³	0.54	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
10-54-3	n-Hexane	ND	ug/m³	0.47	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 /12058,NJDEP-Queens	03/15/2019 12:33	AS
5-47-6	o-Xylene	1.0	ug/m³	0.58	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
79601-23-1	p- & m- Xylenes	2.1	ug/m³	1.2	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
22-96-8	* p-Ethyltoluene	1.2	ug/m³	0.65	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
15-07-1	* Propylene	ND	ug/m³	0.23	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
00-42-5	Styrene	ND	ug/m³	0.57	1.327	EPA TO-15 Certifications:	NELAC-NY	03/14/2019 09:00 (12058,NJDEP-Queens	03/15/2019 12:33	AS
120 RES	EARCH DRIVE	STRATFORD, (CT 06615	■ 13	32-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371		F/	AX (203) 3	57-0166		ClientServices	Page 9	of 14

Client Sample ID: 9311-EFF

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C0387	9311-BKNY	Vapor Extraction	March 11, 2019 1:30 pm	03/12/2019

Volatile O	<u>Volatile Organics, EPA TO15 Full List</u>				Log-in Notes: <u>Sample Notes:</u> TO-			es: TO-VAC	O-VAC		
Sample Prepare	d by Method: EPA TO15 PREP				D				D (15)	D (//F!	
CAS No	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	0.27		ug/m³	0.23	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 12:33	AS
109-99-9	* Tetrahydrofuran	4.2		ug/m³	0.78	1.327	EPA TO-15 Certifications:		03/14/2019 09:00	03/15/2019 12:33	AS
108-88-3	Toluene	1.8		ug/m³	0.50	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen	03/15/2019 12:33	AS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.53	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.60	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
79-01-6	Trichloroethylene	ND		ug/m³	0.18	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	0.75	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
108-05-4	Vinyl acetate	ND		ug/m³	0.47	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
593-60-2	Vinyl bromide	ND		ug/m³	0.58	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
75-01-4	Vinyl Chloride	ND		ug/m³	0.085	1.327	EPA TO-15 Certifications:	NELAC-N	03/14/2019 09:00 Y12058,NJDEP-Queen:	03/15/2019 12:33	AS
	Surrogate Recoveries	Result		Accep	otance Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	130 %	S-04		70-130						

ClientServices

York Sample ID:

19C0387-02

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 11 of 14

Sample and Data Qualifiers Relating to This Work Order

- TO-VAC The final vacuum in the canister was less than -2 inches Hg vacuum. The time integrated sampling may be affected and not reflect proper sampling over the time period. The data user should take note.
- TO-LCS-H The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater than 130% of the expected value.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

Definitions and Other Explanations

- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 **RICHMOND HILL, NY 11418**

ClientServices

3) 357-0166

Page 12 of 14

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 13 of 14

YORK Project No.	Pageof	Turn-Around Time	RUSH - Next Day	RUSH - Two Day RUSH - Three Day	RUSH - Four Day	Standard (5-7 Day) X		YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)	- - - -			vuudd vqdd	Analysis Requested	10				Sampling Media	6 Liter Canister X Tedlar Bag	Date/Time	31.91/9 32.34.4 Date/Time		Date Time 3/12/15 10.10 a	
Field Chain-of-Custody Record - AIR	ment. Your	YOUR Project Number	9311-BKNY	YOUR Project Name				selections)	Standard Excel EDD			NJDEP SRP HazSite	Reporting Units: ug/m ³		SI-R	,,			ts Required	NYSDEC V1 Limits Other	ed by / Company	by Company		ceived in LAB by	
Recor	ck side of this docu tuested below. onditions.	YOUF	93	NOY			YOUR PO#:	Report / EDD Type (circle selections)	д	CT RCP DQA/DUE	NJDEP Reduced Deliv.	d		Flow Cont. ID	N/A	N/A			Detection Limits Required	игуеу	Samples Relinquishe	Samples Received t		Samples Received in	x
stody	ons are listed on the ba ed with the analyses rec K's Standard Terms & C						earth		DOIL CT RCP	CT RC		ckage NJDKQP	RED Field Data	Canister ID	18305	23797				≤ 1 ug/m Routine Survey		4 1640			
-of-Cu	ndard Terms & Conditi tion for YORK to proce ture binds you to YORI	Invoice To:	Act	Sure		Fredmen	FW ALT.		Summary Report	QA Report	NY ASP A Package	NY ASP B Package Other:	ollowing REQUI	Canister Vacuum After Sampling (in Hg)	11	7'					Date/Time	3/11/14 Date/Time		Date/Time	
d Chain	NOTE: YORK's Sta is your written authoriza signa		Company:		Phone.:	Contact: Kur	E-mail: Kinn	Samples From	New York	New Jersey	Connecticut	Pennsylvania Other	Please enter the following REQUIRED Field Data	Canister Vacuum Before Sampling (in Hg)	- 30	-30					hu	Lybut K		'ny	
Field	NOTE: YORK's standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.	To:				ちき	ouves Oact, earth	Air Matrix Codes	AI - Indoor Ambient Air	AO - Outdoor Amb. Air	AE - Vapor Extraction Well/ Process Gas/Effluent	AS - Soil Vapor/Sub-Slab		Air Matrix	46	AC					Samples Received by / Compa	Samiles Refinitished by / Co		Samples Received by / Company	
_aboratories, Inc. 132-02 89th Ave Queens, NY 11418	ĝyorklab.com lab.com	Report To:	Company: ACT	Address:	Phone.:	contact Park Shwart	E-mail: DUVCSO	e complete. Samples will ot begin until any			/e and sign below)	þ	Individual	Date/Time Sampled	2/11/14 ~1330						Date/Time	3/11/19 1640	3/12/19 850Am	Date/Time	
York Analytical Laboratories, Inc. 120 Research Drive 132-02 89th Ave Queer Stratford, CT 06615 NY 11418	clientservices@yorklab.com www.yorklab.com	YOUR Information	Teit	st. tex.Ny			to act, ear the	1.0 5	K are resolved.	Tim Yung	Samples Collected by forint your name above and sign below)		Certified Canisters: Batch	Sample Identification								ACT	Query Scurrallow		
	YORH	INOY	Advance (learyo	Address: 110 July	Phone: S16 -4	Contact Vice	*	Please print clearly not be logged in an	questions by YOR!		Sampl		Certifie	Samp	1-11-20	[] (Comments:		Samples Relinquished by / Compan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 saiding	ge 14 (of 14

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050

Attention: Paul Stewart

Report Date: 04/03/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19C1121

ALL PACCREDIA

ORATO

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com

CT Cert. No. PH-0723

STRATFORD, CT 06615 (203) 325-1371

New Jersey Cert. No. CT005 and NY037

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Page 1 of 23

Report Date: 04/03/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19C1121

Advanced Cleanup Technologies, Inc.

110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on March 27, 2019 with a temperature of C. The project was identified as your project: **9311-BKNY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

<u>York Sample ID</u>	<u>Client Sample ID</u>	<u>Matrix</u>	Date Collected	Date Received
19C1121-01	9311-SSDS1	Vapor Extraction	03/26/2019	03/27/2019
19C1121-02	9311-SSDS2	Vapor Extraction	03/26/2019	03/27/2019
19C1121-03	9311-SSDS3	Vapor Extraction	03/26/2019	03/27/2019
19C1121-04	9311-SSDS4	Vapor Extraction	03/26/2019	03/27/2019
19C1121-05	9311-SSDS5	Vapor Extraction	03/26/2019	03/27/2019

General Notes for York Project (SDG) No.: 19C1121

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 04/03/2019

Benjamin Gulizia Laboratory Director

Client Sample ID: 9311-SSDS1			York Sample ID:	19C1121-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:30 pm	03/27/2019

Volatile Or	Volatile Organics, EPA TO15 Full List				Log-in Notes:	Sample Notes: TO-VAC					
Sample Prepared CAS No.	·	Result	Flag	Units	Reported to	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND	g	ug/m ³	0.95	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.76	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.95	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.1	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.76	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.56	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-35-4	1,1-Dichloroethylene	0.28		ug/m³	0.14	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.0	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
95-63-6	1,2,4-Trimethylbenzene	1.9		ug/m³	0.68	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.1	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.84	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.56	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.64	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.97	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
108-67-8	1,3,5-Trimethylbenzene	0.75		ug/m³	0.68	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 ¥12058,NJDEP-Queens	03/29/2019 19:52	AS
106-99-0	1,3-Butadiene	ND		ug/m³	0.92	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	0.84	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	0.64	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	0.84	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
123-91-1	1,4-Dioxane	ND		ug/m³	1.0	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 ¥12058,NJDEP-Queens	03/29/2019 19:52	AS
78-93-3	2-Butanone	3.5		ug/m³	0.41	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
120 RES	EARCH DRIVE	STRATFORD, CT 06615			■ 1:	132-02 89th AVENUE			RICHMOND HILL, NY 11418		
www.YO	RKLAB.com	(203) 325-1371			Fi	AX (203) 3	57-0166		ClientServices	Page 4	of 23

Client Sample ID: 9311-SSDS1			York Sample ID:	19C1121-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:30 pm	03/27/2019

	rganics, EPA TO15 Full Li d by Method: EPA TO15 PREP	<u>st</u>		<u>Log-in Notes:</u>		<u>Sample Notes:</u> TO-VAC				
CAS No.	,	Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	* 2-Hexanone	ND	ug/m³	1.1	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
107-05-1	3-Chloropropene	ND	ug/m³	2.2	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
108-10-1	4-Methyl-2-pentanone	0.91	ug/m³	0.57	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
67-64-1	Acetone	9.9	ug/m³	0.66	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
107-13-1	Acrylonitrile	ND	ug/m³	0.30	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
71-43-2	Benzene	1.6	ug/m³	0.44	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
100-44-7	Benzyl chloride	ND	ug/m³	0.72	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-27-4	Bromodichloromethane	ND	ug/m³	0.93	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-25-2	Bromoform	ND	ug/m³	1.4	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
74-83-9	Bromomethane	ND	ug/m³	0.54	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-15-0	Carbon disulfide	ND	ug/m³	0.43	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
56-23-5	Carbon tetrachloride	0.70	ug/m³	0.22	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
108-90-7	Chlorobenzene	ND	ug/m³	0.64	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-00-3	Chloroethane	ND	ug/m³	0.37	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
67-66-3	Chloroform	ND	ug/m³	0.68	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
74-87-3	Chloromethane	0.89	ug/m³	0.29	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
156-59-2	cis-1,2-Dichloroethylene	0.33	ug/m³	0.14	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
10061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	0.63	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
110-82-7	Cyclohexane	1.5	ug/m³	0.48	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
124-48-1	Dibromochloromethane	ND	ug/m³	1.2	1.391	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
75-71-8	Dichlorodifluoromethane	2.5	ug/m³	0.69	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 19:52	AS
141-78-6	* Ethyl acetate	1.6	ug/m³	1.0	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
120 RES	SEARCH DRIVE	STRATFORD, (CT 06615	a 13	32-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YC	ORKLAB.com	(203) 325-1371		FA	AX (203) 3	57-0166		ClientServices	Page 5	of 23

Client Sample ID: 9311-SSDS1			York Sample ID:	19C1121-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:30 pm	03/27/2019

	ganics, EPA TO15 Full List by Method: EPA TO15 PREP			<u>Log-in Notes:</u>		<u>5an</u>	ipie note	<u>s:</u> TO-VAC		
CAS No.	Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
00-41-4	Ethyl Benzene	6.7	ug/m³	0.60	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
7-68-3	Hexachlorobutadiene	ND	ug/m³	1.5	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 19:52	AS
7-63-0	Isopropanol	1.5	ug/m³	0.68	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
0-62-6	Methyl Methacrylate	0.80	ug/m³	0.57	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
534-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	0.50	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 19:52	AS
5-09-2	Methylene chloride	1.3	ug/m³	0.97	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
42-82-5	n-Heptane	1.8	ug/m³	0.57	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
10-54-3	n-Hexane	4.2	ug/m³	0.49	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 19:52	AS
5-47-6	o-Xylene	8.0	ug/m³	0.60	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 19:52	AS
79601-23-1	p- & m- Xylenes	27	ug/m³	1.2	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 19:52	AS
22-96-8	* p-Ethyltoluene	1.6	ug/m³	0.68	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
15-07-1	* Propylene	ND	ug/m³	0.24	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
00-42-5	Styrene	ND	ug/m³	0.59	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 19:52	AS
27-18-4	Tetrachloroethylene	3.2	ug/m³	0.24	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 19:52	AS
09-99-9	* Tetrahydrofuran	1.8	ug/m³	0.82	1.391	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 19:52	AS
08-88-3	Toluene	16	ug/m³	0.52	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 19:52	AS
56-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	0.55	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
0061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	0.63	1.391	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
9-01-6	Trichloroethylene	1.3	ug/m³	0.19	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
5-69-4	Trichlorofluoromethane (Freon 11)	1.4	ug/m³	0.78	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
08-05-4	Vinyl acetate	ND	ug/m³	0.49	1.391	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 19:52	AS
93-60-2	Vinyl bromide	ND	ug/m³	0.61	1.391	EPA TO-15		03/29/2019 09:00	03/29/2019 19:52	AS
5-01-4	Vinyl Chloride	0.11	ug/m³	0.089	1.391	Certifications: EPA TO-15 Certifications:		/12058,NJDEP-Queens 03/29/2019 09:00 /12058 NIDEP-Queens	03/29/2019 19:52	AS
120 RES	EARCH DRIVE	STRATFORD, C	a 13	Certifications: 132-02 89th AVENUE			RICHMOND HILL, NY 11418			
	RKLAB.com	(203) 325-1371		_	X (203) 3			ClientServices	Page 6	of 23

<u>Client Sa</u>	ample ID: 9311-SSDS1										
									York Sample	<u>ID:</u> 19	C1121-01
York Pro	ject (SDG) No.	Client	Project II	<u>)</u>		M	atrix	Colle	ction Date/Time	Date	e Received
	19C1121	9311	-BKNY			Vapor I	Extraction	March 2	6, 2019 12:30 pr	n (03/27/2019
	Organics, EPA TO15 Full List				<u>Log-in Notes:</u>		Sam	ple Note	e <u>s:</u> TO-VAC		
	red by Method: EPA TO15 PREP				Reported to				Date/Time	Date/Time	
CAS N		Result	Flag	Units	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
460-00-4	Surrogate Recoveries Surrogate: SURR: p-Bromofluorobenzene	Result 80.9 %		Acce	ptance Range 70-130						
			;	Sample	Information						
Client Sa	ample ID: 9311-SSDS2								York Sample	<u>ID:</u> 19	C1121-02
	ject (SDG) No.		Project II	<u>)</u>			atrix		ction Date/Time		e Received
	19C1121	9311	-BKNY			Vapor I	Extraction	March 2	6, 2019 12:35 pr	n (03/27/2019
	Organics, EPA TO15 Full List red by Method: EPA TO15 PREP				<u>Log-in Notes:</u>		Sam	ple Note	e <u>s:</u> TO-VAC		
CAS N		Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.93	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.74	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 22:01	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.93	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 22:01	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	ND		ug/m³	1.0	1.354	EPA TO-15	NIEL AC N	03/29/2019 09:00	03/29/2019 22:01	AS
	(Freon 113)						Certifications:	NELAC-IN	Y12058,NJDEP-Queens		
79-00-5	(Freon 113) 1,1,2-Trichloroethane	ND		ug/m³	0.74	1.354	EPA TO-15 Certifications:		Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 22:01	AS
79-00-5 75-34-3	. ,	ND ND		ug/m³ ug/m³	0.74	1.354 1.354	EPA TO-15	NELAC-NY	03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01	AS AS
	1,1,2-Trichloroethane			-			EPA TO-15 Certifications: EPA TO-15	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	
75-34-3 75-35-4 120-82-1	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene	ND ND ND		ug/m³ ug/m³ ug/m³	0.55 0.13 1.0	1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS
75-34-3 75-35-4	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene	ND ND		ug/m³	0.55	1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15	NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS
75-34-3 75-35-4 120-82-1	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene	ND ND ND		ug/m³ ug/m³ ug/m³	0.55 0.13 1.0	1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15	NELAC-NY NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS
75-34-3 75-35-4 120-82-1 95-63-6	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	ND ND ND 1.3		ug/m³ ug/m³ ug/m³	0.55 0.13 1.0 0.67	1.354 1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS AS
75-34-3 75-35-4 120-82-1 95-63-6 106-93-4	1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane	ND ND ND 1.3 ND		ug/m³ ug/m³ ug/m³ ug/m³	0.55 0.13 1.0 0.67 1.0	1.354 1.354 1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS AS
75-34-3 75-35-4 120-82-1 95-63-6 106-93-4 95-50-1	 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 	ND ND 1.3 ND ND		ug/m³ ug/m³ ug/m³ ug/m³ ug/m³	0.55 0.13 1.0 0.67 1.0 0.81	1.354 1.354 1.354 1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS AS AS
75-34-3 75-35-4 120-82-1 95-63-6 106-93-4 95-50-1 107-06-2 78-87-5	 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 	ND ND 1.3 ND ND ND	CT 06615	ug/m³ ug/m³ ug/m³ ug/m³ ug/m³ ug/m³	0.55 0.13 1.0 0.67 1.0 0.81 0.55 0.63	1.354 1.354 1.354 1.354 1.354 1.354 1.354	EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications: EPA TO-15 Certifications:	NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01 03/29/2019 22:01	AS AS AS AS AS AS

Client Sample ID: 9311-SSDS2			York Sample ID:	19C1121-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:35 pm	03/27/2019

	ganics, EPA TO15 Full List by Method: EPA TO15 PREP	<u>t</u>			<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u> TO-VAC		
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
6-14-2	1,2-Dichlorotetrafluoroethane	ND	1	ug/m³	0.95	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
08-67-8	1,3,5-Trimethylbenzene	ND	1	ug/m³	0.67	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
06-99-0	1,3-Butadiene	ND	I	ug/m³	0.90	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
41-73-1	1,3-Dichlorobenzene	ND	1	ug/m³	0.81	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
42-28-9	* 1,3-Dichloropropane	ND	1	ug/m³	0.63	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
06-46-7	1,4-Dichlorobenzene	ND	I	ug/m³	0.81	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
23-91-1	1,4-Dioxane	ND	1	ug/m³	0.98	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
8-93-3	2-Butanone	3.8	u	ıg/m³	0.40	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
91-78-6	* 2-Hexanone	ND	1	ug/m³	1.1	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
07-05-1	3-Chloropropene	ND	1	ug/m³	2.1	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
08-10-1	4-Methyl-2-pentanone	ND	1	ug/m³	0.55	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
7-64-1	Acetone	7.4	u	ıg/m³	0.64	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
07-13-1	Acrylonitrile	ND	ı	ug/m³	0.29	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
1-43-2	Benzene	0.82	u	ıg/m³	0.43	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
00-44-7	Benzyl chloride	ND	1	ug/m³	0.70	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
5-27-4	Bromodichloromethane	ND	ı	ug/m³	0.91	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
5-25-2	Bromoform	ND	1	ug/m³	1.4	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
4-83-9	Bromomethane	ND	I	ug/m³	0.53	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
5-15-0	Carbon disulfide	ND	1	ug/m³	0.42	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
6-23-5	Carbon tetrachloride	0.43	u	ıg/m³	0.21	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
08-90-7	Chlorobenzene	ND	1	ug/m³	0.62	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
5-00-3	Chloroethane	ND	1	ug/m³	0.36	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 22:01	AS
120 RES	EARCH DRIVE	STRATFORD, O	CT 06615		1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			F/	X (203) 3	57-0166		ClientServices	Page 8	of 23

Client Sample ID: 9311-SSDS2			York Sample ID:	19C1121-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:35 pm	03/27/2019

	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>San</u>	<u>iple Note</u>	<u>s:</u> TO-VAC		
CAS No.		Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
7-66-3	Chloroform	ND		ug/m³	0.66	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
4-87-3	Chloromethane	1.0		ug/m³	0.28	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
56-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.13	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.61	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
10-82-7	Cyclohexane	ND		ug/m³	0.47	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
24-48-1	Dibromochloromethane	ND		ug/m³	1.2	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
5-71-8	Dichlorodifluoromethane	2.2		ug/m³	0.67	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
41-78-6	* Ethyl acetate	ND		ug/m³	0.98	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
00-41-4	Ethyl Benzene	1.9		ug/m³	0.59	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
7-68-3	Hexachlorobutadiene	ND		ug/m³	1.4	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
07-63-0	Isopropanol	1.3		ug/m³	0.67	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
80-62-6	Methyl Methacrylate	0.55		ug/m³	0.55	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.49	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
5-09-2	Methylene chloride	4.0		ug/m³	0.94	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
42-82-5	n-Heptane	0.67		ug/m³	0.55	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 /12058,NJDEP-Queens	03/29/2019 22:01	AS
10-54-3	n-Hexane	0.72		ug/m³	0.48	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
5-47-6	o-Xylene	3.9		ug/m³	0.59	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
79601-23-1	p- & m- Xylenes	9.8		ug/m³	1.2	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
22-96-8	* p-Ethyltoluene	1.1		ug/m³	0.67	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
15-07-1	* Propylene	ND		ug/m³	0.23	1.354	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 22:01	AS
00-42-5	Styrene	ND		ug/m³	0.58	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
27-18-4	Tetrachloroethylene	0.46		ug/m³	0.23	1.354	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 22:01	AS
120 RES	EARCH DRIVE	STRATFORD, 0	CT 06615		a 13	2-02 89th	NAVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			FA	X (203) 3	357-0166		ClientServices	Page 9	of 22

Page 9 of 23

Client Sample ID: 9311-SSDS2			York Sample ID:	19C1121-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:35 pm	03/27/2019

<u>Volatile O</u>	<u> Drganics, EPA TO15 Full List</u>				Log-in Notes:		Sample Not	tes: TO-VAC		
Sample Prepare	ed by Method: EPA TO15 PREP									
CAS N	o. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
109-99-9	* Tetrahydrofuran	ND		ug/m³	0.80	1.354	EPA TO-15 Certifications:	03/29/2019 09:00	03/29/2019 22:01	AS
108-88-3	Toluene	4.1		ug/m³	0.51	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.54	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.61	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
79-01-6	Trichloroethylene	ND		ug/m³	0.18	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
75-69-4	Trichlorofluoromethane (Freon 11)	1.1		ug/m³	0.76	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
108-05-4	Vinyl acetate	ND		ug/m³	0.48	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
593-60-2	Vinyl bromide	ND		ug/m³	0.59	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
75-01-4	Vinyl Chloride	ND		ug/m³	0.087	1.354	EPA TO-15 Certifications: NELAC-	03/29/2019 09:00 NY12058,NJDEP-Queen	03/29/2019 22:01 s	AS
	Surrogate Recoveries	Result		Acce	ptance Range					

460-00-4 Surrogate: SURR: p-Bromofluorobenzene 113 %

Sample Information											
Client Sample ID: 9311-SSD	83		York Sample ID:	19C1121-03							
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received							
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:38 pm	03/27/2019							

70-130

	rganics, EPA TO15 Full List				Log-in Notes:		<u>Samp</u>	<u>le Notes:</u> TO-VAC		
CAS No	d by Method: EPA TO15 PREP Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	Date/Time Aethod Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.93	1.358	EPA TO-15 Certifications:	03/29/2019 09:00	03/29/2019 23:06	AS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.74	1.358	EPA TO-15 Certifications:	03/29/2019 09:00 NELAC-NY12058,NJDEP-Queen	03/29/2019 23:06 s	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.93	1.358	EPA TO-15 Certifications:	03/29/2019 09:00 NELAC-NY12058,NJDEP-Queen	03/29/2019 23:06 s	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.0	1.358	EPA TO-15 Certifications:	03/29/2019 09:00 NELAC-NY12058,NJDEP-Queen	03/29/2019 23:06 s	AS
120 RES	SEARCH DRIVE	STRATFORD, O	CT 06615		1	32-02 89th	AVENUE	RICHMOND HI	L, NY 11418	
www.YC	DRKLAB.com	(203) 325-1371			F/	AX (203) 3	57-0166	ClientServices	Page 10	of 23

Client Sample ID: 9311-SSDS3			York Sample ID:	19C1121-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:38 pm	03/27/2019

	ganics, EPA TO15 Full List by Method: EPA TO15 PREP	<u>t</u>		<u>Log-in Notes:</u>		<u>Sam</u>	iple Note	<u>s:</u> TO-VAC		
CAS No.	Parameter	Result	Flag Unit	Reported to s LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
9-00-5	1,1,2-Trichloroethane	ND	ug/m	.74	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
5-34-3	1,1-Dichloroethane	ND	ug/m	0.55	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
5-35-4	1,1-Dichloroethylene	ND	ug/m	0.13	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
20-82-1	1,2,4-Trichlorobenzene	ND	ug/m	3 1.0	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
5-63-6	1,2,4-Trimethylbenzene	3.1	ug/m ³	0.67	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
06-93-4	1,2-Dibromoethane	ND	ug/m	3 1.0	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
5-50-1	1,2-Dichlorobenzene	ND	ug/m	.82	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
07-06-2	1,2-Dichloroethane	ND	ug/m	0.55	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
8-87-5	1,2-Dichloropropane	ND	ug/m	0.63	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
6-14-2	1,2-Dichlorotetrafluoroethane	ND	ug/m	0.95	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
08-67-8	1,3,5-Trimethylbenzene	0.93	ug/m³	0.67	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
06-99-0	1,3-Butadiene	ND	ug/m	.90	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
41-73-1	1,3-Dichlorobenzene	ND	ug/m	0.82	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
42-28-9	* 1,3-Dichloropropane	ND	ug/m	0.63	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
06-46-7	1,4-Dichlorobenzene	ND	ug/m	3 0.82	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
23-91-1	1,4-Dioxane	ND	ug/m	.98	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
8-93-3	2-Butanone	5.6	ug/m ³	0.40	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/29/2019 23:06	AS
91-78-6	* 2-Hexanone	ND	ug/m	, 1.1	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
07-05-1	3-Chloropropene	ND	ug/m	3 2.1	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
08-10-1	4-Methyl-2-pentanone	ND	ug/m	0.56	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
7-64-1	Acetone	6.0	ug/m ³	0.65	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
07-13-1	Acrylonitrile	ND	ug/m	0.29	1.358	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/29/2019 23:06	AS
120 RES	EARCH DRIVE	STRATFORD, C	CT 06615	■ 13	32-02 89th	NAVENUE		RICHMOND HIL		
www.YOF	RKLAB.com	(203) 325-1371		F/	AX (203) 3	357-0166		ClientServices	Page 11	of 23

Client Sample ID: 9311-SSDS3			York Sample ID:	19C1121-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:38 pm	03/27/2019

	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>San</u>	<u>iple Note</u>	<u>s:</u> TO-VAC		
CAS No.	•	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
71-43-2	Benzene	0.52		ug/m³	0.43	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
100-44-7	Benzyl chloride	ND		ug/m³	0.70	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
75-27-4	Bromodichloromethane	ND		ug/m³	0.91	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
75-25-2	Bromoform	ND		ug/m³	1.4	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
74-83-9	Bromomethane	ND		ug/m³	0.53	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
75-15-0	Carbon disulfide	ND		ug/m³	0.42	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
56-23-5	Carbon tetrachloride	0.34		ug/m³	0.21	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
108-90-7	Chlorobenzene	ND		ug/m³	0.63	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
75-00-3	Chloroethane	ND		ug/m³	0.36	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
67-66-3	Chloroform	ND		ug/m³	0.66	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
74-87-3	Chloromethane	0.67		ug/m³	0.28	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
156-59-2	cis-1,2-Dichloroethylene	0.32		ug/m³	0.13	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.62	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
110-82-7	Cyclohexane	ND		ug/m³	0.47	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
124-48-1	Dibromochloromethane	ND		ug/m³	1.2	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
75-71-8	Dichlorodifluoromethane	1.8		ug/m ³	0.67	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens		AS
141-78-6	* Ethyl acetate	ND		ug/m ³	0.98	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
100-41-4	Ethyl Benzene	5.8		ug/m ³	0.59	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 23:06 03/29/2019 23:06	AS
67.62.0	Hexachlorobutadiene	ND		ug/m ³			EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00		AS
67-63-0	Isopropanol Mathul Mathaarulata	1.7		ug/m ³	0.67	1.358	EPA TO-15 Certifications: EPA TO-15	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 23:06 03/29/2019 23:06	AS
80-62-6	Methyl Methacrylate	ND		ug/m ³			Certifications:	NELAC-N	Y12058,NJDEP-Queens		AS
1634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.49	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
120 RES	SEARCH DRIVE	STRATFORD, (CT 06615		■ 13	32-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YC	ORKLAB.com	(203) 325-1371			F/	AX (203) 3	57-0166		ClientServices	Page 12	of 23

Client Sample ID: 9311-SSDS3			York Sample ID:	19C1121-03
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:38 pm	03/27/2019

	rganics, EPA TO15 Full List				Log-in Notes:		<u>San</u>	ple Note	es: TO-VAC		
Sample Prepareo	d by Method: EPA TO15 PREP Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
5-09-2	Methylene chloride	ND		ug/m ³	0.94	1.358	EPA TO-15		03/29/2019 09:00	03/29/2019 23:06	AS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens	5	
42-82-5	n-Heptane	0.67		ug/m³	0.56	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
10-54-3	n-Hexane	0.53		ug/m³	0.48	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
5-47-6	o-Xylene	11		ug/m³	0.59	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
79601-23-1	p- & m- Xylenes	30		ug/m³	1.2	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
22-96-8	* p-Ethyltoluene	2.1		ug/m³	0.67	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
15-07-1	* Propylene	ND		ug/m³	0.23	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
00-42-5	Styrene	ND		ug/m³	0.58	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
27-18-4	Tetrachloroethylene	3.3		ug/m³	0.23	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
09-99-9	* Tetrahydrofuran	2.4		ug/m³	0.80	1.358	EPA TO-15 Certifications:		03/29/2019 09:00	03/29/2019 23:06	AS
08-88-3	Toluene	2.9		ug/m³	0.51	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.54	1.358	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.62	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
9-01-6	Trichloroethylene	0.51		ug/m³	0.18	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
5-69-4	Trichlorofluoromethane (Freon 11)	1.1		ug/m³	0.76	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
08-05-4	Vinyl acetate	ND		ug/m³	0.48	1.358	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/29/2019 23:06	AS
93-60-2	Vinyl bromide	ND		ug/m³	0.59	1.358	EPA TO-15		03/29/2019 09:00	03/29/2019 23:06	AS
5-01-4	Vinyl Chloride	ND		ug/m³	0.087	1.358	Certifications: EPA TO-15		Y12058,NJDEP-Queens 03/29/2019 09:00	03/29/2019 23:06	AS
							Certifications:	NELAC-N	Y12058,NJDEP-Queens	3	
	Surrogate Recoveries	Result		Acce	ptance Range						
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	88.9 %			70-130						

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Page 13 of 23

Client Sample ID: 9311-SSDS4			York Sample ID:	19C1121-04
York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:40 pm	03/27/2019

	ganics, EPA TO15 Full List by Method: EPA TO15 PREP				<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No.	•	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
30-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	2.1	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
1-55-6	1,1,1-Trichloroethane	ND		ug/m³	1.6	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
9-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	2.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
6-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	2.3	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
9-00-5	1,1,2-Trichloroethane	ND		ug/m³	1.6	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-34-3	1,1-Dichloroethane	ND		ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-35-4	1,1-Dichloroethylene	ND		ug/m³	0.30	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
20-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.2	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
95-63-6	1,2,4-Trimethylbenzene	22		ug/m³	1.5	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
06-93-4	1,2-Dibromoethane	ND		ug/m³	2.3	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
5-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.8	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
07-06-2	1,2-Dichloroethane	ND		ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
8-87-5	1,2-Dichloropropane	ND		ug/m³	1.4	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
6-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	2.1	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
08-67-8	1,3,5-Trimethylbenzene	7.0		ug/m³	1.5	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
06-99-0	1,3-Butadiene	ND		ug/m³	2.0	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
41-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.8	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
42-28-9	* 1,3-Dichloropropane	ND		ug/m³	1.4	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
06-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.8	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
23-91-1	1,4-Dioxane	ND		ug/m³	2.2	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
78-93-3	2-Butanone	58		ug/m³	0.89	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
591-78-6	* 2-Hexanone	3.2		ug/m³	2.5	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
120 RES	EARCH DRIVE	STRATFORD,	CT 06615		13	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			FA	X (203) 3	57-0166		ClientServices	Page 14	of 23

Client Sample ID: 9311-SSDS4			York Sample ID:	19C1121-04
York Project (SDG) No.	Client Project ID	<u>Matrix</u>	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:40 pm	03/27/2019

	rganics, EPA TO15 Full Li d by Method: EPA TO15 PREP	<u>st</u>		<u>Log-in Notes:</u>	<u>: Sample Notes:</u>					
CAS No.		Result	Flag Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
07-05-1	3-Chloropropene	ND	ug/m³	4.7	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
08-10-1	4-Methyl-2-pentanone	4.6	ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
7-64-1	Acetone	90	ug/m³	1.4	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
07-13-1	Acrylonitrile	ND	ug/m³	0.66	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
-43-2	Benzene	2.2	ug/m³	0.97	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
0-44-7	Benzyl chloride	ND	ug/m³	1.6	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-27-4	Bromodichloromethane	ND	ug/m³	2.0	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-25-2	Bromoform	ND	ug/m³	3.1	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
1-83-9	Bromomethane	ND	ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
-15-0	Carbon disulfide	ND	ug/m³	0.94	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-23-5	Carbon tetrachloride	0.95	ug/m³	0.48	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
)8-90-7	Chlorobenzene	ND	ug/m³	1.4	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-00-3	Chloroethane	ND	ug/m³	0.80	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
-66-3	Chloroform	ND	ug/m³	1.5	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
4-87-3	Chloromethane	2.0	ug/m³	0.62	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
56-59-2	cis-1,2-Dichloroethylene	ND	ug/m³	0.30	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
0061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	1.4	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
0-82-7	Cyclohexane	2.7	ug/m³	1.0	3.022	EPA TO-15 Certifications:			03/30/2019 00:11	AS
24-48-1	Dibromochloromethane	ND	ug/m³	2.6	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
5-71-8	Dichlorodifluoromethane	4.5	ug/m³	1.5	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
1-78-6	* Ethyl acetate	5.9	ug/m³	2.2	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
00-41-4	Ethyl Benzene	130	ug/m³	1.3	3.022	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queens	03/30/2019 00:11	AS
120 RES	SEARCH DRIVE	STRATFORD, CI	06615	1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	ORKLAB.com	(203) 325-1371		F/	X (203) 3	357-0166		ClientServices	Page 15	of 23

Client Sample ID: 9311-SSDS4			York Sample ID:	19C1121-04
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:40 pm	03/27/2019

	rganics, EPA TO15 Full List			<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u>		
CAS No.	l by Method: EPA TO15 PREP Parameter	Result Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7-68-3	Hexachlorobutadiene	ND	ug/m³	3.2	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
67-63-0	Isopropanol	6.1	ug/m³	1.5	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
0-62-6	Methyl Methacrylate	ND	ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
634-04-4	Methyl tert-butyl ether (MTBE)	ND	ug/m³	1.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
5-09-2	Methylene chloride	ND	ug/m³	2.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
42-82-5	n-Heptane	7.7	ug/m³	1.2	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
10-54-3	n-Hexane	4.6	ug/m³	1.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
5-47-6	o-Xylene	170	ug/m³	1.3	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
79601-23-1	p- & m- Xylenes	480	ug/m³	2.6	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
22-96-8	* p-Ethyltoluene	19	ug/m³	1.5	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
15-07-1	* Propylene	ND	ug/m³	0.52	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
00-42-5	Styrene	ND	ug/m³	1.3	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
27-18-4	Tetrachloroethylene	4.3	ug/m³	0.51	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
09-99-9	* Tetrahydrofuran	2.0	ug/m³	1.8	3.022	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 00:11	AS
08-88-3	Toluene	28	ug/m³	1.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
56-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	1.2	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
0061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	1.4	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
9-01-6	Trichloroethylene	0.97	ug/m³	0.41	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
5-69-4	Trichlorofluoromethane (Freon 11)	2.5	ug/m³	1.7	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 00:11	AS
08-05-4	Vinyl acetate	ND	ug/m³	1.1	3.022	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
93-60-2	Vinyl bromide	ND	ug/m³	1.3	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
5-01-4	Vinyl Chloride	ND	ug/m³	0.19	3.022	EPA TO-15 Certifications:		03/29/2019 09:00 (12058,NJDEP-Queens	03/30/2019 00:11	AS
	Surrogate Recoveries	Result	Acce	ptance Range		Sertifications.				
120 RES	EARCH DRIVE	STRATFORD, CT 0661	5	1	32-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
	RKLAB.com	(203) 325-1371	-	_	AX (203) 3			ClientServices	Page 16	of 23

Sample Inforr	nation
---------------	--------

			:	Sample	e Information						
<u>Client Sar</u>	mple ID: 9311-SSDS4			<i>уч</i> г	/				<u>York Sample</u>	<u>ID:</u> 19	C1121-04
York Proje	ect (SDG) No.	Client P	Project IE	<u>)</u>		M	<u>latrix</u>	Colle	ction Date/Time	Dat	e Received
1	9C1121	9311-1	BKNY			Vapor I	Extraction	March 2	26, 2019 12:40 p	m	03/27/2019
	Drganics, EPA TO15 Full List ed by Method: EPA TO15 PREP				Log-in Notes:	<u>.</u>	<u>San</u>	nple Note	<u>:s:</u>		
CAS No		Result	Flag	Units	Reported to LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	95.3 %			70-130			-			
			ł	Sample	e Information						
Client San	mple ID: 9311-SSDS5								York Sample	<u>ID:</u> 19	C1121-05
	ect (SDG) No.		Project IE	<u>)</u>			<u>latrix</u>		ction Date/Time		e Received
1	9C1121	9311-	BKNY			Vapor I	Extraction	March 2	6, 2019 12:50 p	m	03/27/2019
	Drganics, EPA TO15 Full List ed by Method: EPA TO15 PREP				Log-in Notes:	<u>:</u>	<u>San</u>	nple Note	es: TO-VAC		
CAS No		Result	Flag	Units	Reported to	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND	g	ug/m ³	0.95	1.386	EPA TO-15	e meenou	03/29/2019 09:00	03/30/2019 01:16	-
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.76	1.386	Certifications: EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y 12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.95	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.1	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.76	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.56	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.14	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen	03/30/2019 01:16 s	AS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	1.0	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
95-63-6	1,2,4-Trimethylbenzene	1.6		ug/m³	0.68	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.1	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.83	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.56	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen:	03/30/2019 01:16 s	AS
78-87-5	1,2-Dichloropropane	ND		ug/m³	0.64	1.386	EPA TO-15 Certifications:		03/29/2019 09:00 Y12058,NJDEP-Queen	03/30/2019 01:16	AS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	0.97	1.386	EPA TO-15 Certifications:	NELAC-N	03/29/2019 09:00 Y12058,NJDEP-Queen	03/30/2019 01:16 s	AS
120 RE	SEARCH DRIVE	STRATFORD, C	T 06615		1	32-02 89th	NAVENUE		RICHMOND HIL	L, NY 11418	
	ORKLAB.com	(203) 325-1371			_	AX (203) 3			ClientServices		

Client Sample ID: 9311-SSDS5			York Sample ID:	19C1121-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:50 pm	03/27/2019

	rganics, EPA TO15 Full Listed by Method: EPA TO15 PREP	<u>st</u>		<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u> TO-VAC		
CAS No	,	Result	Flag Uni	Reported to s LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
08-67-8	1,3,5-Trimethylbenzene	ND	ug/n	³ 0.68	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
06-99-0	1,3-Butadiene	ND	ug/n	.92	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
41-73-1	1,3-Dichlorobenzene	ND	ug/n	3 0.83	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
42-28-9	* 1,3-Dichloropropane	ND	ug/n	3 0.64	1.386	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 01:16	AS
06-46-7	1,4-Dichlorobenzene	ND	ug/n	.83	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
23-91-1	1,4-Dioxane	ND	ug/n	.0	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
8-93-3	2-Butanone	2.0	ug/m		1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens		AS
91-78-6	* 2-Hexanone	ND	ug/n		1.386	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 01:16	AS
07-05-1	3-Chloropropene	ND	ug/n		1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16 03/30/2019 01:16	AS
08-10-1 7-64-1	4-Methyl-2-pentanone Acetone	0.74 7.0	ug/m ug/m		1.386	EPA TO-15 Certifications: EPA TO-15	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens 03/29/2019 09:00		AS AS
07-13-1	Acrylonitrile	ND	ug/n		1.386	Certifications: EPA TO-15	NELAC-NY	12058,NJDEP-Queens 03/29/2019 09:00	03/30/2019 01:16	AS
1-43-2	Benzene	0.93	ug/m	0.44	1.386	Certifications: EPA TO-15	NELAC-NY	12058,NJDEP-Queens 03/29/2019 09:00	03/30/2019 01:16	AS
00-44-7	Benzyl chloride	ND	ug/n	³ 0.72	1.386	Certifications: EPA TO-15		12058,NJDEP-Queens 03/29/2019 09:00	03/30/2019 01:16	AS
5-27-4	Bromodichloromethane	ND	ug/n	³ 0.93	1.386	Certifications: EPA TO-15		12058,NJDEP-Queens 03/29/2019 09:00	03/30/2019 01:16	AS
5-25-2	Bromoform	ND	ug/n	3 1.4	1.386	Certifications: EPA TO-15 Certifications:		12058,NJDEP-Queens 03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
4-83-9	Bromomethane	ND	ug/n	³ 0.54	1.386	EPA TO-15 Certifications:		03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
5-15-0	Carbon disulfide	ND	ug/n	.43	1.386	EPA TO-15 Certifications:		03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
6-23-5	Carbon tetrachloride	0.44	ug/m	0.22	1.386	EPA TO-15 Certifications:		03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
08-90-7	Chlorobenzene	ND	ug/n	.64	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
5-00-3	Chloroethane	ND	ug/n	.33	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
7-66-3	Chloroform	ND	ug/n	³ 0.68	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
120 RE	SEARCH DRIVE	STRATFORD,	CT 06615	1;	32-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	

Client Sample ID: 9311-SSDS5			York Sample ID:	19C1121-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:50 pm	03/27/2019

	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>s:</u> TO-VAC		
CAS No.		Result	Flag U	Inits	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys
4-87-3	Chloromethane	1.4	սք	g/m³	0.29	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
56-59-2	cis-1,2-Dichloroethylene	ND	u	g/m³	0.14	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
0061-01-5	cis-1,3-Dichloropropylene	ND	u	g/m³	0.63	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
10-82-7	Cyclohexane	ND	u	g/m³	0.48	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
24-48-1	Dibromochloromethane	ND	u	g/m³	1.2	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
5-71-8	Dichlorodifluoromethane	2.4	ug	g/m³	0.69	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens	03/30/2019 01:16	AS
41-78-6	* Ethyl acetate	ND	u	g/m³	1.0	1.386	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 01:16	AS
00-41-4	Ethyl Benzene	2.2	-	g/m³	0.60	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens		AS
7-68-3	Hexachlorobutadiene	ND		g/m³	1.5	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 712058,NJDEP-Queens		AS
7-63-0	Isopropanol	1.4	-	g/m³	0.68	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens		AS
0-62-6	Methyl Methacrylate	ND		g/m³	0.57	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 712058,NJDEP-Queens		AS
634-04-4	Methyl tert-butyl ether (MTBE)	ND	u	g/m³	0.50	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens		AS
5-09-2	Methylene chloride	1.7	-	g/m ³	0.96	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 12058,NJDEP-Queens		AS
42-82-5	n-Heptane	0.57	-	g/m ³	0.57	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens		AS
10-54-3 5-47-6	n-Hexane	0.73	-	y/m ³	0.49	1.386	EPA TO-15 Certifications: EPA TO-15	NELAC-NY	03/29/2019 09:00 712058,NJDEP-Queens 03/29/2019 09:00	03/30/2019 01:16 03/30/2019 01:16	AS AS
79601-23-1	o-Xylene	3.2 9.0	-	g/m ³ g/m ³	1.2	1.386	Certifications: EPA TO-15	NELAC-NY	(12058,NJDEP-Queens 03/29/2019 09:00		AS
22-96-8	p- & m- Xylenes * p-Ethyltoluene	1.3	-	g/m³	0.68	1.386	Certifications: EPA TO-15	NELAC-NY	(12058,NJDEP-Queens 03/29/2019 09:00		AS
15-07-1	* Propylene	ND	-	g/m³	0.24	1.386	Certifications: EPA TO-15		03/29/2019 09:00	03/30/2019 01:16	AS
00-42-5	Styrene	ND		g/m³	0.59	1.386	Certifications: EPA TO-15		03/29/2019 09:00	03/30/2019 01:16	AS
				-			Certifications:	NELAC-NY	12058,NJDEP-Queens		
27-18-4	Tetrachloroethylene	ND		g/m ³	0.24	1.386	EPA TO-15 Certifications:	NELAC-NY	03/29/2019 09:00 (12058,NJDEP-Queens		AS
09-99-9	* Tetrahydrofuran	ND	u	g/m³	0.82	1.386	EPA TO-15 Certifications:		03/29/2019 09:00	03/30/2019 01:16	AS
120 RES	EARCH DRIVE	STRATFORD,	CT 06615		1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418	
www.YO	RKLAB.com	(203) 325-1371			F/	X (203) 3	57-0166		ClientServices	Page 19	of 23

Client Sample ID: 9311-SSDS5			York Sample ID:	19C1121-05
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19C1121	9311-BKNY	Vapor Extraction	March 26, 2019 12:50 pm	03/27/2019

Volatile O	olatile Organics, EPA TO15 Full List			Log-in Notes:		Sample Not			
Sample Prepare	d by Method: EPA TO15 PREP								
CAS No	. Parameter	Result	Flag Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
108-88-3	Toluene	4.3	ug/m³	0.52	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
156-60-5	trans-1,2-Dichloroethylene	ND	ug/m³	0.55	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
10061-02-6	trans-1,3-Dichloropropylene	ND	ug/m³	0.63	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
79-01-6	Trichloroethylene	ND	ug/m³	0.19	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
75-69-4	Trichlorofluoromethane (Freon 11)	1.3	ug/m³	0.78	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
108-05-4	Vinyl acetate	ND	ug/m³	0.49	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
593-60-2	Vinyl bromide	ND	ug/m³	0.61	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
75-01-4	Vinyl Chloride	ND	ug/m³	0.089	1.386	EPA TO-15 Certifications: NELAC-1	03/29/2019 09:00 NY12058,NJDEP-Queen	03/30/2019 01:16	AS
	Surrogate Recoveries	Result	Acce	ptance Range					
460-00-4	Surrogate: SURR:	84.0 %		70-130					

Surrogate: SURR: p-Bromofluorobenzene

_

132-02 89th AVENUE FAX (203) 357-0166

ClientServices

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 21 of 23

Sample and Data Qualifiers Relating to This Work Order

TO-VAC	The final vacuum in the canister was less than -2 inches Hg vacuum. The time integrated sampling may be affected and not reflect proper sampling over the time period. The data user should take note.
	Definitions and Other Explanations
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported
RPD	Relative Percent Difference
Wet	The data has been reported on an as-received (wet weight) basis
Low Bias	Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
High Bias	High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
Non-Dir.	Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

132-02 89th AVENUE FAX (203) 357-0166

RICHMOND HILL, NY 11418

ClientServices

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050

Attention: Paul Stewart

Report Date: 05/06/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19E0001

b(CP.

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 05/06/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19E0001

Advanced Cleanup Technologies, Inc.

110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 01, 2019 with a temperature of 1.8 C. The project was identified as your project: **9311-BKNY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	Matrix	Date Collected	Date Received
19E0001-01	MS-Drum	Water	04/30/2019	05/01/2019

General Notes for York Project (SDG) No.: 19E0001

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 05/06/2019

Benjamin Gulizia Laboratory Director

Client Sample ID: MS-Drum			York Sample ID:	19E0001-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0001	9311-BKNY	Water	April 30, 2019 12:50 pm	05/01/2019

Volatile Or	ganics, NJDEP/TCL/Part 37	<u>5 List</u>			Log-in Notes:				<u>Sample Notes:</u>			
Sample Prepared CAS No.	by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
530-20-6	1,1,1,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
71-55-6	1,1,1-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
79-00-5	1,1,2-Trichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-34-3	1,1-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-35-4	1,1-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
87-61-6	1,2,3-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/03/2019 07:30 /10854,NELAC-NY12	05/03/2019 12:58 2058,PADEP,NJE	SS
96-18-4	1,2,3-Trichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
95-63-6	1,2,4-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
96-12-8	1,2-Dibromo-3-chloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
106-93-4	1,2-Dibromoethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
95-50-1	1,2-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
107-06-2	1,2-Dichloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
78-87-5	1,2-Dichloropropane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
541-73-1	1,3-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
106-46-7	1,4-Dichlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
123-91-1	1,4-Dioxane	ND		ug/L	40	80	1	EPA 8260C Certifications:	NELAC-N	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
78-93-3	2-Butanone	2.0	CCV-E	g ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
120 RES	EARCH DRIVE	STRATFORD,	CT 06615			1	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

Page 4 of 11

<u>Client Sample ID:</u> MS	-Drum		York Sample ID:	19E0001-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0001	9311-BKNY	Water	April 30, 2019 12:50 pm	05/01/2019

	rganics, NJDEP/TCL/Part 37	<u> /5 List</u>			<u>Log-in Notes:</u>			Sample Notes:				
Sample Prepare CAS No	d by Method: EPA 5030B Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
591-78-6	2-Hexanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
108-10-1	4-Methyl-2-pentanone	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58	SS
67-64-1	Acetone	2.3	CCV-E	ug/L	1.0	2.0	1	EPA 8260C Certifications:		05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58	SS
107-02-8	Acrolein	ND		ug/L	0.20	2.0	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
107-13-1	Acrylonitrile	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
71-43-2	Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
74-97-5	Bromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-N	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
75-27-4	Bromodichloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-25-2	Bromoform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
74-83-9	Bromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-15-0	Carbon disulfide	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
56-23-5	Carbon tetrachloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
108-90-7	Chlorobenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-00-3	Chloroethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
57-66-3	Chloroform	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
74-87-3	Chloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
156-59-2	cis-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58	SS
10061-01-5	cis-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
10-82-7	Cyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/03/2019 07:30 (10854,NELAC-NY12	05/03/2019 12:58	SS
24-48-1	Dibromochloromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:		05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58	SS
4-95-3	Dibromomethane	ND		ug/L	0.20	0.50	1	EPA 8260C		05/03/2019 07:30		SS

STRATFORD, CT 06615 (203) 325-1371

132-02 89th AVENUE

RICHMOND HILL, NY 11418

FAX (203) 357-0166 ClientServices

Page 5 of 11

Client Sample ID: MS-D	rum		York Sample ID:	19E0001-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0001	9311-BKNY	Water	April 30, 2019 12:50 pm	05/01/2019

	rganics, NJDEP/TCL/Part 3 d by Method: EPA 5030B	<u>75 List</u>			<u>Log-in Notes:</u>			<u>Sample Notes:</u>				
CAS No.		Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
5-71-8	Dichlorodifluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
00-41-4	Ethyl Benzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
7-68-3	Hexachlorobutadiene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/03/2019 07:30 (10854,NELAC-NY12	05/03/2019 12:58 2058,PADEP,NJE	SS
8-82-8	Isopropylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
9-20-9	Methyl acetate	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/03/2019 07:30 (10854,NELAC-NY12	05/03/2019 12:58 2058,PADEP,NJE	SS
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
08-87-2	Methylcyclohexane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	NELAC-NY	05/03/2019 07:30 /10854,NELAC-NY12	05/03/2019 12:58 2058,PADEP,NJE	SS
5-09-2	Methylene chloride	ND		ug/L	1.0	2.0	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
04-51-8	n-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
03-65-1	n-Propylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
5-47-6	o-Xylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
79601-23-1	p- & m- Xylenes	ND		ug/L	0.50	1.0	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
9-87-6	p-Isopropyltoluene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
35-98-8	sec-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
00-42-5	Styrene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
5-65-0	tert-Butyl alcohol (TBA)	ND		ug/L	0.50	2.5	1	EPA 8260C Certifications:	NELAC-NY	05/03/2019 07:30 (10854,NELAC-NY1)	05/03/2019 12:58 2058,PADEP,NJE	SS
8-06-6	tert-Butylbenzene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
27-18-4	Tetrachloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
08-88-3	Toluene	0.36	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
56-60-5	trans-1,2-Dichloroethylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
9-01-6	Trichloroethylene	0.22	J	ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,NI	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
120 RES	SEARCH DRIVE	STRATFORD,	CT 06615			1	32-02 89th	AVENUE		RICHMOND HI	LL, NY 11418	

<u>Client Sample ID:</u> MS-Drum			York Sample ID:	19E0001-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0001	9311-BKNY	Water	April 30, 2019 12:50 pm	05/01/2019

	rganics, NJDEP/TCL/Part 375	<u>List</u>			<u>Log-in</u>	Notes:	-	<u>San</u>	nple Note	<u>es:</u>		
CAS No	. Parameter	Result	Flag	Units	Reported to LOD/MDL	LOQ	Dilution	Referenc	e Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-69-4	Trichlorofluoromethane	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
75-01-4	Vinyl Chloride	ND		ug/L	0.20	0.50	1	EPA 8260C Certifications:	CTDOH,N	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,PA	SS
1330-20-7	Xylenes, Total	ND		ug/L	0.60	1.5	1	EPA 8260C Certifications:	CTDOH,N	05/03/2019 07:30 ELAC-NY10854,NEL	05/03/2019 12:58 AC-NY12058,NJ	SS
	Surrogate Recoveries	Result		Acc	eptance Ran	ge						
17060-07-0	Surrogate: SURR: 1,2-Dichloroethane-d4	105 %			69-130							
2037-26-5	Surrogate: SURR: Toluene-d8	103 %			81-117							
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	113 %			79-122							

RICHMOND HILL, NY 11418

ClientServices

Page 7 of 11

Volatile Analysis Sample Containers

Lab ID

Client Sample ID

19E0001-01

MS-Drum

Volatile Sample Container

40mL Clear Vial (pre-pres.) HCl; Cool to 4° C

RICHMOND HILL, NY 11418

ClientServices

Sample and Data Qualifiers Relating to This Work Order

- QR-04 The RPD exceeded control limits for the LCS/LCSD QC.
- QL-02 This LCS analyte is outside Laboratory Recovery limits due the analyte behavior using the referenced method. The reference method has certain limitations with respect to analytes of this nature.
- J Detected below the Reporting Limit but greater than or equal to the Method Detection Limit (MDL/LOD) or in the case of a TIC, the result is an estimated concentration.
- CCV-E The value reported is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit).
- B Analyte is found in the associated analysis batch blank. For volatiles, methylene chloride and acetone are common lab contaminants.

Definitions and Other Explanations

- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

120 RESEARCH DRIVE	STRATFORD, CT 06615	132-02 89th AVENUE	RICHMOND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientServices Page 9 of 11

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

RICHMOND HILL, NY 11418

ClientServices

YORK Project No.		Page of	Turn-Around Time	RUSH - Next Day	RUSH - Two Day RUSH - Three Day	RUSH - Four Day	Standard (5-7 Day)		YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)	NYSDEC .	TOG 5(64)		Container Description	3 VOA'S WINCL						Special Instruction	Field Filtered	Lab to Filter		5-1-14 1654	Date/Time		Temp. Received at Lab	/ & B Degrees C
Field Chain-of-Custody Record	NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document.	d Terms & Conditions	YOUK Project Number	9311-BKNY	YOUR Project Name			YOUR PO#:	Report / EDD Type (circle selections)	CT RCP Standard Excel EDD	CT RCP DQA/DUE EQuIS (Standard)	NJDEP Reduced NYSDEC EQUIS	Deliverables NJDEP SRP HazSite NJDKQP Other:	Analysis Requested	K ¹ s						Preservation: (check all that apply)	HNO3 H2SO4 NaOH ZhAC	512 	Samples Relinquished by / Company	12 gebr 4001 c	Samples Received by / Company		Samples Received in LAB by Date/Time	70 Hicker Sp/19 1654
-of-Cus	erms & Conditions are listed	pinds you to YORK's Standar	Invoice To:	F			Friedman	Kannfe act. earth	Report	Summary Report	QA Report	NY ASP A Package	NY ASP B Package		VOV			•			Pres	нсі 🗙 меон	Ascorbic Acid Other:	Date/Time	2/1/16 0200	Date/Time		Date/Time	
Id Chair	NOTE: YORK's Standard T	Your signature b		Company: ACT	Address: SAME	Phone.:	t Karen	E-mail: Karafo	Samples From	New York X	New Jersey	Connecticut	Pennsylvania Other	Date/Time Sampled	414/4 1250									ny	Unth .	mpany .		pany	
Fio	This doc		Report To:		ω.		Struct	act earth	Matrix Codes	S - soil / solid	GW - groundwater	DW - drinking water	WW - wastewater 0 - Oil	Sample Matrix	ather - drum		With sumple							Samples Received by / Compa	VRade	Samples Relinquished by / Cor		Samples Received by / Compa	
aboratories, Inc. 132-02 89th Ave	ord, CT 06615 Queens, NY 11418 clientservices@yorklab.com	www.yorklab.com		Company: ACT	Address: SAM E	Phone :	Contact Du J C St	E-mail noulso	st be complete. Samples k will not begin until any			ove and sign below)		-										Date/Time	3/1/18 0200	Date/Time		Date/Time	
York Analytical Laboratories, Inc.	V Stratford, CT 06615 VORX		YOUR Information	Advanced Cleanup tech		Phone: C16 - 44/-5800	Contact. Tim Yung	E-mail + 111 Oact - early	Please print clearly and legibly. All information must be complete. Samples will not be logged in and the turn-around-time clock will not begin until any	questions by YORK are resolved.	Tim Jung	Samples Collected by: (print your name above and sign below)	L'I	Sample Identification	MS-DRUM	E.					Comments:			Samples Relinquished by / Company	A CLA FT	Sa BBB Received by / Company	11 c	Set 11 Relinquished by / Company	

Technical Report

prepared for:

Advanced Cleanup Technologies, Inc. 110 Main Street Port Washington NY, 11050

Attention: Paul Stewart

Report Date: 05/08/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19E0044

k Project (SDG) No.: 19E00

CT Cert. No. PH-0723

New Jersey Cert. No. CT005 and NY037

New York Cert. Nos. 10854 and 12058

PA Cert. No. 68-04440

120 RESEARCH DRIVE www.YORKLAB.com STRATFORD, CT 06615 (203) 325-1371 132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418 ClientServices@yorklab.com

Report Date: 05/08/2019 Client Project ID: 9311-BKNY York Project (SDG) No.: 19E0044

Advanced Cleanup Technologies, Inc.

110 Main Street Port Washington NY, 11050 Attention: Paul Stewart

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 02, 2019 with a temperature of C. The project was identified as your project: **9311-BKNY**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Sample and Analysis Qualifiers section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the Sample and Data Qualifiers Relating to This Work Order section of this report and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	Matrix	Date Collected	Date Received
19E0044-01	9311-INF	Vapor Extraction	04/30/2019	05/02/2019
19E0044-02	9311-EFF	Vapor Extraction	04/30/2019	05/02/2019

General Notes for York Project (SDG) No.: 19E0044

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All analyses conducted met method or Laboratory SOP requirements. See the Sample and Data Qualifiers Section for further information.
- 6. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 7. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.
- 8. Analyses conducted at York Analytical Laboratories, Inc. Stratford, CT are indicated by NY Cert. No. 10854; those conducted at York Analytical Laboratories, Inc., Richmond Hill, NY are indicated by NY Cert. No. 12058.

Approved By:

Date: 05/08/2019

Benjamin Gulizia Laboratory Director

<u>Client Sample ID:</u> 9311-INF			York Sample ID:	19E0044-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:05 pm	05/02/2019

	rganics, EPA TO15 Full List				<u>Log-in Notes:</u>		<u>Sam</u>	iple Note	es: TO-VAC		
Sample Prepared CAS No.	d by Method: EPA TO15 PREP . Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	1.9	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS
71-55-6	1,1,1-Trichloroethane	17		ug/m³	1.5	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	1.9	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	2.2	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	1.5	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
75-34-3	1,1-Dichloroethane	2.2		ug/m³	1.1	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
75-35-4	1,1-Dichloroethylene	12		ug/m³	0.28	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	2.1	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens		AS
95-63-6	1,2,4-Trimethylbenzene	2.5		ug/m³	1.4	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
106-93-4	1,2-Dibromoethane	ND		ug/m³	2.2	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	1.7	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
107-06-2	1,2-Dichloroethane	ND		ug/m³	1.1	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
78-87-5	1,2-Dichloropropane	ND		ug/m³	1.3	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
76-14-2	1,2-Dichlorotetrafluoroethane	ND		ug/m³	2.0	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
108-67-8	1,3,5-Trimethylbenzene	ND		ug/m³	1.4	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
106-99-0	1,3-Butadiene	ND		ug/m³	1.9	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
541-73-1	1,3-Dichlorobenzene	ND		ug/m³	1.7	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
142-28-9	* 1,3-Dichloropropane	ND		ug/m³	1.3	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS
106-46-7	1,4-Dichlorobenzene	ND		ug/m³	1.7	2.812	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
123-91-1	1,4-Dioxane	ND		ug/m³	2.0	2.812	EPA TO-15 Certifications:		05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
78-93-3	2-Butanone	3.2		ug/m³	0.83	2.812	EPA TO-15 Certifications:		05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 21:56	AS
120 RES	SEARCH DRIVE	STRATFORD, (CT 06615	5	■ 13	 32-02 89tł	h AVENUE		RICHMOND HIL	L, NY 11418	
	DRKLAB.com	(203) 325-1371				AX (203) 3			ClientServices	Page 4	~f 1/

Page 4 of 14

Client Sample ID:	9311-INF

Client Sample ID: 9311-INF			York Sample ID:	19E0044-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:05 pm	05/02/2019

	rganics, EPA TO15 Full Li d by Method: EPA TO15 PREP	<u>st</u>		<u>Log-in Notes:</u>		<u>Sam</u>	ple Note	<u>ole Notes:</u> TO-VAC			
CAS No.		Result	Flag Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst	
591-78-6	* 2-Hexanone	ND	ug/m³	2.3	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS	
07-05-1	3-Chloropropene	ND	ug/m³	4.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
08-10-1	4-Methyl-2-pentanone	ND	ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
57-64-1	Acetone	3.5	ug/m³	1.3	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
07-13-1	Acrylonitrile	ND	ug/m³	0.61	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
71-43-2	Benzene	4.1	ug/m³	0.90	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
00-44-7	Benzyl chloride	ND	ug/m³	1.5	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
75-27-4	Bromodichloromethane	ND	ug/m³	1.9	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
75-25-2	Bromoform	ND	ug/m³	2.9	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
74-83-9	Bromomethane	ND	ug/m³	1.1	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
75-15-0	Carbon disulfide	4.6	ug/m³	0.88	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
56-23-5	Carbon tetrachloride	0.71	ug/m³	0.44	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
08-90-7	Chlorobenzene	ND	ug/m³	1.3	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
75-00-3	Chloroethane	ND	ug/m³	0.74	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
57-66-3	Chloroform	51	ug/m³	1.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
74-87-3	Chloromethane	ND	ug/m³	0.58	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
156-59-2	cis-1,2-Dichloroethylene	15	ug/m³	0.28	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
0061-01-5	cis-1,3-Dichloropropylene	ND	ug/m³	1.3	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens		AS	
110-82-7	Cyclohexane	0.97	ug/m³	0.97	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 /12058,NJDEP-Queens	05/07/2019 21:56	AS	
24-48-1	Dibromochloromethane	ND	ug/m³	2.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
75-71-8	Dichlorodifluoromethane	2.8	TO-LC ug/m ³ S-H	1.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 (12058,NJDEP-Queens	05/07/2019 21:56	AS	
41-78-6	* Ethyl acetate	ND	ug/m³	2.0	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS	
120 RES	SEARCH DRIVE	STRATFORD,	CT 06615	1 3	82-02 89th	AVENUE		RICHMOND HIL	L, NY 11418		
www.YO	ORKLAB.com	(203) 325-1371		F/	AX (203) 3	57-0166		ClientServices	Page 5	of 14	

<u>Client Sample ID:</u> 9311-INF

Client Sample ID: 9311-INF			York Sample ID:	19E0044-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:05 pm	05/02/2019

	by Method: EPA TO15 Full List				<u>Log-in Notes:</u>		<u>San</u>	iple Note	<u>s:</u> TO-VAC		
CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys
00-41-4	Ethyl Benzene	2.7		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
7-68-3	Hexachlorobutadiene	ND		ug/m³	3.0	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
7-63-0	Isopropanol	ND		ug/m³	1.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 712058,NJDEP-Queens	05/07/2019 21:56	AS
80-62-6	Methyl Methacrylate	ND		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	1.0	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
75-09-2	Methylene chloride	ND		ug/m³	2.0	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
142-82-5	n-Heptane	1.7		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
110-54-3	n-Hexane	2.0		ug/m³	0.99	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
95-47-6	o-Xylene	2.3		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
179601-23-1	p- & m- Xylenes	12		ug/m³	2.4	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
522-96-8	* p-Ethyltoluene	3.0		ug/m³	1.4	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS
15-07-1	* Propylene	ND		ug/m³	0.48	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS
00-42-5	Styrene	ND		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
127-18-4	Tetrachloroethylene	550		ug/m³	0.48	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
109-99-9	* Tetrahydrofuran	4.9		ug/m³	1.7	2.812	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 21:56	AS
108-88-3	Toluene	19		ug/m³	1.1	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
56-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	1.1	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
0061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	1.3	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
79-01-6	Trichloroethylene	450		ug/m³	0.38	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
75-69-4	Trichlorofluoromethane (Freon 11)	3.2		ug/m³	1.6	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
08-05-4	Vinyl acetate	ND		ug/m³	0.99	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
593-60-2	Vinyl bromide	ND		ug/m³	1.2	2.812	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 21:56	AS
120 RES	EARCH DRIVE	STRATFORD,	CT 06615		• 13	2-02 89th	AVENUE		RICHMOND HIL	I NY 11418	

Page 6 of 14

Client Sample ID: 9311-INF			York Sample ID:	19E0044-01
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:05 pm	05/02/2019

	rganics, EPA TO15 Full List d by Method: EPA TO15 PREP				<u>Log-in Notes:</u>		Sample Not	<u>es:</u> TO-VAC		
CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference Method	Date/Time Prepared	Date/Time Analyzed	Analyst
75-01-4	Vinyl Chloride	ND		ug/m³	0.18	2.812	EPA TO-15 Certifications: NELAC-N	05/07/2019 09:00 IY12058,NJDEP-Queer	05/07/2019 21:56	AS
	Surrogate Recoveries	Result		Accept	ance Range					
460-00-4	Surrogate: SURR: p-Bromofluorobenzene	94.2 %		7	0-130					
				Sample I	nformation					
Client San	nple ID: 9311-EFF							York Sample	<u>e ID:</u> 191	E0044-(

<u></u> ,			<u></u>	1720011 02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:10 pm	05/02/2019

Log-in Notes:

Sample Notes: TO-VAC

Volatile Organics, EPA TO15 Full List

hod: EPA TO15 PREP	Prepared by Metho

CAS No.	Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
630-20-6	* 1,1,1,2-Tetrachloroethane	ND		ug/m³	0.92	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS
71-55-6	1,1,1-Trichloroethane	ND		ug/m³	0.73	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
79-34-5	1,1,2,2-Tetrachloroethane	ND		ug/m³	0.92	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND		ug/m³	1.0	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
79-00-5	1,1,2-Trichloroethane	ND		ug/m³	0.73	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
75-34-3	1,1-Dichloroethane	ND		ug/m³	0.54	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
75-35-4	1,1-Dichloroethylene	ND		ug/m³	0.13	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
120-82-1	1,2,4-Trichlorobenzene	ND		ug/m³	0.99	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
95-63-6	1,2,4-Trimethylbenzene	7.3		ug/m³	0.66	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
106-93-4	1,2-Dibromoethane	ND		ug/m³	1.0	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
95-50-1	1,2-Dichlorobenzene	ND		ug/m³	0.80	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS
107-06-2	1,2-Dichloroethane	ND		ug/m³	0.54	1.333	EPA TO-15 Certifications: N		05/07/2019 09:00 2058,NJDEP-Queens	05/07/2019 23:02	AS

120 RESEARCH DRIVE	STRATFORD, CT 06615	132-02 89th AVENUE	RICHMOND HILL, NY 11418
www.YORKLAB.com	(203) 325-1371	FAX (203) 357-0166	ClientServices Page 7 of 14

<u>Client Sample ID:</u> 9311-EFF			<u>York Sample ID:</u>	19E0044-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:10 pm	05/02/2019

	rganics, EPA TO15 Full Lis d by Method: EPA TO15 PREP	<u>t</u>		<u>Log-in Notes:</u>	<u>Sample Notes:</u> TO-VAC										
CAS No	•	Result	Flag Units	Reported to LOQ	Dilution	Reference	e Method	Date/Time Prepared	Date/Time Analyzed	Analys					
8-87-5	1,2-Dichloropropane	ND	ug/m³	0.62	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
6-14-2	1,2-Dichlorotetrafluoroethane	ND	ug/m³	0.93	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
08-67-8	1,3,5-Trimethylbenzene	1.5	ug/m³	0.66	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
06-99-0	1,3-Butadiene	ND	ug/m³	0.88	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
41-73-1	1,3-Dichlorobenzene	ND	ug/m³	0.80	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
42-28-9	* 1,3-Dichloropropane	ND	ug/m³	0.62	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS					
06-46-7	1,4-Dichlorobenzene	ND	ug/m³	0.80	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
23-91-1	1,4-Dioxane	ND	ug/m³	0.96	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
8-93-3	2-Butanone	2.3	ug/m³	0.39	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
91-78-6	* 2-Hexanone	ND	ug/m³	1.1	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS					
07-05-1	3-Chloropropene	ND	ug/m³	2.1	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
08-10-1	4-Methyl-2-pentanone	ND	ug/m³	0.55	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
7-64-1	Acetone	5.0	ug/m³	0.63	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
07-13-1	Acrylonitrile	ND	ug/m³	0.29	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
1-43-2	Benzene	5.7	ug/m³	0.43	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
00-44-7	Benzyl chloride	ND	ug/m³	0.69	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
5-27-4	Bromodichloromethane	ND	ug/m³	0.89	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
5-25-2	Bromoform	ND	ug/m³	1.4	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
4-83-9	Bromomethane	ND	ug/m³	0.52	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
5-15-0	Carbon disulfide	0.66	ug/m³	0.42	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
5-23-5	Carbon tetrachloride	ND	ug/m³	0.21	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
08-90-7	Chlorobenzene	ND	ug/m³	0.61	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queens	05/07/2019 23:02	AS					
120 RES	SEARCH DRIVE	STRATFORD,	CT 06615	1 3	2-02 89th	AVENUE		RICHMOND HIL	L, NY 11418						

Client Sample ID: 9311-EFF			York Sample ID:	19E0044-02
York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:10 pm	05/02/2019

	ganics, EPA TO15 Full List by Method: EPA TO15 PREP				<u>Log-in Notes:</u>	Sample Notes: TO-VAC									
CAS No.		Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analys				
75-00-3	Chloroethane	ND		ug/m³	0.35	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
7-66-3	Chloroform	ND		ug/m³	0.65	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
74-87-3	Chloromethane	0.66		ug/m³	0.28	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
56-59-2	cis-1,2-Dichloroethylene	ND		ug/m³	0.13	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
0061-01-5	cis-1,3-Dichloropropylene	ND		ug/m³	0.61	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
110-82-7	Cyclohexane	0.69		ug/m³	0.46	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
24-48-1	Dibromochloromethane	ND		ug/m³	1.1	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
75-71-8	Dichlorodifluoromethane	1.9	TO-LC S-H	ug/m³	0.66	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
41-78-6	* Ethyl acetate	ND		ug/m³	0.96	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS				
100-41-4	Ethyl Benzene	6.0		ug/m³	0.58	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
37-68-3	Hexachlorobutadiene	ND		ug/m³	1.4	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
67-63-0	Isopropanol	0.98		ug/m³	0.66	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
80-62-6	Methyl Methacrylate	ND		ug/m³	0.55	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
634-04-4	Methyl tert-butyl ether (MTBE)	ND		ug/m³	0.48	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
75-09-2	Methylene chloride	4.0		ug/m³	0.93	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
142-82-5	n-Heptane	2.5		ug/m³	0.55	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
110-54-3	n-Hexane	4.2		ug/m³	0.47	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
95-47-6	o-Xylene	6.7		ug/m³	0.58	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
179601-23-1	p- & m- Xylenes	28		ug/m³	1.2	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
522-96-8	* p-Ethyltoluene	7.8		ug/m³	0.66	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS				
15-07-1	* Propylene	ND		ug/m³	0.23	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS				
00-42-5	Styrene	ND		ug/m³	0.57	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 12058,NJDEP-Queens	05/07/2019 23:02	AS				
120 RES	EARCH DRIVE	STRATFORD, (CT 06615		• 13	2-02 89th			RICHMOND HIL	I NY 11418					

Page 9 of 14

Client Sample ID:	9311-EFF

York Project (SDG) No.	Client Project ID	Matrix	Collection Date/Time	Date Received
19E0044	9311-BKNY	Vapor Extraction	April 30, 2019 1:10 pm	05/02/2019

Volatile O	rganics, EPA TO15 Full List				Log-in Notes:		Sam	ple Note	<u>s:</u> TO-VAC		
Sample Prepared	d by Method: EPA TO15 PREP										
CAS No	. Parameter	Result	Flag	Units	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
127-18-4	Tetrachloroethylene	1.4	1	ug/m³	0.23	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02 s	AS
109-99-9	* Tetrahydrofuran	4.0	1	ug/m³	0.79	1.333	EPA TO-15 Certifications:		05/07/2019 09:00	05/07/2019 23:02	AS
108-88-3	Toluene	33	1	ug/m³	0.50	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02 s	AS
156-60-5	trans-1,2-Dichloroethylene	ND		ug/m³	0.53	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02	AS
10061-02-6	trans-1,3-Dichloropropylene	ND		ug/m³	0.61	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y 12058,NJDEP-Queen:	05/07/2019 23:02	AS
79-01-6	Trichloroethylene	0.79	1	ug/m³	0.18	1.333	EPA TO-15 Certifications:	NELAC-N	05/07/2019 09:00 ¥12058,NJDEP-Queen:	05/07/2019 23:02 s	AS
75-69-4	Trichlorofluoromethane (Freon 11)	ND		ug/m³	0.75	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02	AS
108-05-4	Vinyl acetate	ND		ug/m³	0.47	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02	AS
593-60-2	Vinyl bromide	ND		ug/m³	0.58	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y12058,NJDEP-Queen	05/07/2019 23:02 s	AS
75-01-4	Vinyl Chloride	ND		ug/m³	0.085	1.333	EPA TO-15 Certifications:	NELAC-NY	05/07/2019 09:00 Y12058,NJDEP-Queen:	05/07/2019 23:02 s	AS
	Surrogate Recoveries	Result		Acce	ptance Range						
460-00-4	Surrogate: SURR:	90.3 %			70-130						

460-00-4 Surrogate: SURR: p-Bromofluorobenzene

ClientServices

York Sample ID:

19E0044-02

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 11 of 14

Sample and Data Qualifiers Relating to This Work Order

- TO-VAC The final vacuum in the canister was less than -2 inches Hg vacuum. The time integrated sampling may be affected and not reflect proper sampling over the time period. The data user should take note.
- TO-LCS-H The result reported for this compound may be biased high due to its behavior in the analysis batch LCS where it recovered greater than 130% of the expected value.

Definitions and Other Explanations

- * Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
- ND NOT DETECTED the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
- RL REPORTING LIMIT the minimum reportable value based upon the lowest point in the analyte calibration curve.
- LOQ LIMIT OF QUANTITATION the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
- LOD LIMIT OF DETECTION a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
- MDL METHOD DETECTION LIMIT a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
- Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
- NR Not reported
- RPD Relative Percent Difference
- Wet The data has been reported on an as-received (wet weight) basis
- Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.
- Non-Dir. Non-dir. flag (Non-Directional Bias) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note.

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

132-02 89th AVENUE FAX (203) 357-0166 RICHMOND HILL, NY 11418

ClientServices

Page 13 of 14

YORK Project No.	Pageof	Turn-Around Time	RUSH - Next Day	RUSH - Three Day	RUSH - Four Day	Standard (5-7 Day)		YORK Reg. Comp.	Compared to the following Regulation(s): (please fill in)		vhaa		Analysis Requested	15		Sampling Media	6 Liter Canister X Tedlar Bag	Date/Time	5/2/1975041 DateAline	Date/Tire	6/2/90130
d - AIR	ent. Your	YOUR Project Number	9311-BKNY	YOUR Project Name				elections)	Standard Excel EDD EQuIS (Standard)	NYSDEC EQuIS NJDEP SRP HazSite	Reporting Units' 10/m3		Analysi	1	1-01	s Required	NYSDEC V1 Limits	d by / Company	1 Company	LANDY	~
Record	tck side of this docume quested below. Conditions.	YOUR	9311-	YOUR			YOUR PO#:	Report / EDD Type (circle selections)	CT RCP CT RCP DQA/DUE	NJDEP Reduced Deliv. NJDKQP			Flow Cont. ID	1	NA	Detection Limits Required	urvey	Samples Relinquished	Samples Received by	Samples Received in	*
stody	ons are listed on the ba ed with the analyses rec <s &="" c<="" standard="" td="" terms=""><td></td><td></td><td></td><td></td><td>,</td><td>Bark</td><td>Report / ED</td><td>0</td><td></td><td></td><td>KEU FIeld Data</td><td>Canister ID</td><td>SILLE</td><td>17353</td><td></td><td>≤ 1 ug/m Routine Survey</td><td></td><td>6.5</td><td>0430</td><td></td></s>					,	Bark	Report / ED	0			KEU FIeld Data	Canister ID	SILLE	17353		≤ 1 ug/m Routine Survey		6.5	0430	
-of-Cu	ndard Terms & Condition for YORK to proceed ure binds you to YORK	Invoice To:	ACI	AME		Friedmen	on F.P. act. ear	-	K Summary Report QA Report	NY ASP A Package NY ASP B Package	Other:		After Sampling (in Hg)	1-1	h			Date/Time	S-1-1 Date/Time	Bale Firme	
Id Chain-of-Custody Record - AIR	NOTE: YORK's Star your written authorizati signat		Company:	S	Phone.:	Contact: Karen	E-mail: Karr	Samples From	New York New Jersey	Connecticut Pennsylvania	Other	Please enter the following REQUIRED Fleid Data	Canister Vacuum Before Sampling (in Hg)	- 30	- 30			any	hydle	A	
Fiela	NOTE: YORK's Standard Terms & Conditions are listed on the back side of this document. This document serves as your written authorization for YORK to proceed with the analyses requested below. signature binds you to YORK's Standard Terms & Conditions.	To:				wort	act. Rurt	Air Matrix Codes	Al - Indoor Ambient Air AO - Outdoor Amb. Air	AE Vapor Extraction Well/ Process Gas/Effluent			Air Matrix	AE	A£		d	Samples Received by / Compan	7 KK all Samples Relinquished by / Com	Samnlas Received bv / Company	
York Analytical Laboratories, Inc. 20 Research Drive 132-02 89th Ave Queens, 2146rd CT 0615 NY 11418	clientservices@yorklab.com www.yorklab.com	Report	A :Yu	Address: 110 Main St	Phone: SAME	Contact: Dave Ste						Individual	Date/Time Sampled	4/30/19 1305	11 1310	1	- grap sump	Date/Time	Date/Time	5/2/19 750AM	
York Analytical I 20 Research Drive Stratford CT 06815	YORK clientservice www.yo	YOUR Information	Advented Cleanup tech.	in St.	1.1	time 1	-mail: A	lease print clearly and legibly All information mus	not be logged in and the turn-around-time clock will not begin unus any questions by YORK are resolved.		c / c	Certified Canisters: Batch	Sample Identification	O311-INF	9311 - EFF	Comments:	No FLOW CONT.	-	Samples Relinquished by Loompany	Queen Su	amples Reimquished by / Company