Ebenezer Plaza 2

KINGS COUNTY, NEW YORK

Final Engineering Report

NYSDEC Site Number: C224241

Prepared for:

Ebenezer Plaza Owner Phase II LLC 456 E. 173rd Street Bronx, NY 10566

Prepared by:

LaBella Associates 45 Main Street, Suite 1018 Brooklyn, NY 11201

DECEMBER 2024

CERTIFICATIONS

I, <u>Daniel Noll</u>, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department.

I certify that all documents generated in support of this report have been or will be submitted in accordance with the DER's electronic submission protocols and have been or will be accepted by the Department.

I certify that all data generated in support of this report have been or will be submitted in accordance with the Department's electronic data deliverable and have been or will be accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Daniel Noll, of LaBella Associates, D.P.C. at 300 State Street, Rochester, NY, am certifying as Owner's Designated Site Representative for the site.

081996 12/9/2024

NYS Professional Engineer #

Date

Signature

TABLE OF CONTENTS

1.0	BACKGROUND AND SITE DESCRIPTION	1
2.0	SUMMARY OF SITE REMEDY	2
2.1	Remedial Action Objectives	2
2	1.3 Soil Vapor RAOs	2
2.2	Description of Selected Remedy	2
CON	TRACTS	7
4.0	DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	7
4.1	Governing Documents	9
4		
-		
-		
-		
4	• •	
4.2		
-		
-		
	•	
-		
-		
3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS		
-		
4.5	Imported Backfill	29
4.6	Contamination Remaining at the Site	29
4		
4	6.2 Groundwater	30
4.7	Soil/Site Cover System	31
4.8	Other Engineering Controls	32
4.9	Institutional Controls	32
4.10		
1	10.1 Demodial Action Delinaction World Blan detect June 9, 2022	22

4.10.2	Dewatering Monitoring Work Plan dated September 1, 2022	33
4.10.3	Remedial Design Modification Memorandum – Supplemental Excavation dated September 27, 2022	2 34
4.10.4	Remedial Design Modification Memorandum ISCO, Revision 2 dated November 28, 2022	34
4.10.5	Imported Material Sampling Work Plan dated March 6, 2023	35
4.10.6	Imported Material Excavation & Confirmation Soil Sampling Work Plan dated May 3, 2023	35
ST OF F	IGURES	

LIS

Figure 1	Tax Map
Figure 2	Site Location
Figure 3	Areas of Concern
Figure 4	Remedial Delineation Boring Locations and Exceedances
Figure 5	Tank Boring Locations and Exceedances
Figure 6	High Concentration Lead Area Boring Results
Figure 7A	Remedial Excavation Depths
Figure 7B	Development Excavation Depths
Figure 8	On-Site Reuse Location
Figure 9A	Groundwater Treatment System As-Built and Monitoring Well Locations
Figure 9B	Groundwater Treatment System As-Built
Figure 9C	Injection Well System Details
Figure 10	Post-Excavation Confirmation Soil Sampling Locations
Figure 11	SSDS Layout
Figure 12	Backfill Locations
Figure 13	Remaining Soil Contamination after Remedial Action
Figure 14	Remaining Groundwater Contamination After the Remedial Action
Figure 15	Imported Material Sampling and Excavation
Figure 16	Cover System As-Built

LIST OF TABLES

Table 1	Soil Cleanup Objectives
Table 2	Supplemental Soil Sampling Results - Remedial Delineation Borings
Table 3	Supplemental Soil Sampling Results - Tank Borings
Table 4	Supplemental Soil Sampling Results – High Concentration Lead Area Borings
Table 5	Waste Disposal Volumes and Facilities
Table 6A	Waste Characterization Sampling Results
Table 6B	Waste Characterization Soil Reuse Sampling Results
Table 7	Post-Excavation Confirmation Soil Sampling Results
Table 8	Material Importation Quantities and Sources
Table 9	Remaining Contamination in Soil
Table 10	Remaining Contamination in Groundwater

LIST OF APPENDICES

Appendix A	Survey Map, Metes and Bounds.
Appendix B	Remedial Action Work Plan

Appendix C September 2020 Decision Document

Appendix D Deviations from the RAWP
Appendix E Daily and Monthly Reports
Appendix F NYSDEC Approval Letters

Appendix G Permits Appendix H Photo Log

Appendix I Tank Closure Documentation
Appendix J Disposal Facility Approval Letters

Appendix K Waste Disposal and Characterization Documentation

Appendix L Manifests and Bills of Lading
Appendix M ISCO Program Monitoring Report
Appendix N Data Usability Summary Reports
Appendix O Laboratory Analytical Data
Appendix P Site Management Plan

Appendix Q SSDS Design Documents
Appendix R Backfill Chemical Analytical Results
Appendix S Imported Materials Documentation

Appendix T Environmental Easement

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AWQS	Ambient Water Quality Standards
BCA	Brownfield Cleanup Agreement
CAMP	Community Air Monitoring Plan
C&D	Construction and Demolition
COC	Constituent of Concern
DD	Decision Document
DER	Division of Environmental Remediation
DFR	Daily Field Report
DUSR	Data Usability Summary Reports
EP-II	Ebenezer Plaza II
FER	Final Engineering Report
HASP	Health and Safety Plan
HCLA	High Concentration Lead Area
IRM	Interim Remedial Measure
ISCO	In Situ Chemical Oxidation
NYCRR	New York Codes, Rules and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYCDOH	New York City Department of Health
NYSDOH	New York State Department of Health
PCE	Tetrachloroethylene
PGWSCO	Protection of Groundwater Soil Cleanup Objective
PPM	Parts Per Million
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource and Conservation Recovery Act
RIR	Remedial Investigation Report
RRSCO	Restricted Residential Soil Cleanup Objective
SB	Soil Boring
SCG	Standards, Criteria and Guidance
SCO	Soil Cleanup Objective
SSDS	Sub-Slab Depressurization System
ТВ	Tank Boring
μg/L	Micrograms Per Liter (liquid)
$\mu g/M^3$	Micrograms Per Cubic Meter (gaseous)
UST	Underground Storage Tank
UUSCO	Unrestricted Use Soil Cleanup Objective
VOC	Volatile Organic Compound

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

Ebenezer Plaza Owner Phase II LLC entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in January 2017 to investigate and remediate a 0.83-acre property located in the Brownsville neighborhood of Brooklyn, New York knows as the Ebenezer Plaza II (EP-II) Site (the Site). The property was remediated to restricted residential use and will be used for the development of 217 units of affordable housing.

The site is located in the County of Kings, New York and is identified as Block 3861 and Lot 1 under the address 589 Christopher Avenue on the Kings County Real Property Tax Map #31208 as presented on **Figure 1**. The site is situated on an approximately 0.83-acre area bounded by New Lots Avenue to the north, Hegeman Avenue to the south, Sackman Street to the east, and Christopher Avenue to the west as presented on **Figure 2**. The Site consists of a partially constructed building and active construction. The boundaries of the site are fully described in **Appendix A**: Survey Map, Metes and Bounds.

2.0 SUMMARY OF SITE REMEDY

2.1 Remedial Action Objectives

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

• Remove the source of ground or surface water contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.1.3 Soil Vapor RAOs

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.2 Description of Selected Remedy

The site was remediated in accordance with the remedy selected by the NYSDEC in the Decision Document dated September 2020 as specified in the Remedial Action Work Plan (RAWP) dated February 2020, and supplemental NYSDEC-approved work plans. The RAWP is included in

Appendix B and the Decision Document is included in Appendix C.

The selected remedy specified in the Decision Document and RAWP was a Track 4 cleanup: Restricted Residential use with site-specific soil cleanup objectives remedy. NYSDEC Soil Cleanup Objectives (SCOs) for the site are listed in **Table 1.** Following the NYSDEC-approved RAWP and Decision Document, several work plans were submitted and subsequently approved by the NYSDEC in 2022 through 2023 presenting supplemental delineation and additional site characterization required to support a Track 2 cleanup. As such, the remedy completed was a Track 2 cleanup.

The work plans and memoranda listed below document the additional work beyond what was specified in the Decision Document to achieve the Track 2 Cleanup:

- Remedial Action Delineation Work Plan (June 8, 2022),
- Dewatering Monitoring Work Plan (September 1, 2022),
- Remedial Design Modification Memorandum Supplemental Excavation (September 27, 2022),
- Remedial Design Modification Memorandum ISCO, Revision 2 (November 28, 2022),
- Imported Material Sampling Work Plan (March 6, 2023), and
- Imported Material Excavation & Confirmation Soil Sampling Work Plan (May 3, 2023).

These work plans / memoranda describe additional actions performed to achieve a Track 2 cleanup, including supplemental excavation of contaminated soil where practicable to address the presence of residual petroleum hydrocarbons in saturated soil that exceeded Protection of Groundwater Standard Soil Cleanup Objectives (PGWSCOs) and the In-Situ Chemical Oxidation (ISCO) treatment program. The following Areas of Concern (AOCs) were identified based on the work following the Decision Document and RAWP. Summaries of the deviations from the RAWP are included in **Section 4.10** and reports are included in **Appendix D.** The AOCs are identified in **Figure 3.**

The factors considered during the selection of the remedy are those listed in 6 New York Codes, Rules and Regulations (NYCRR) 375-1.8 and based on the supplemental investigations described in the aforementioned documents. The following text in italics are the components of the selected remedy (Items 1-7 below) as outlined in the NYSDEC Decision Document dated September 8, 2020. The modifications to the remedy are noted in bold text:

1. Remedial Design

A remedial design program will be implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques will be implemented to the extent feasible in the design, implementation, and site management of the remedy as per Division of Environmental Remediation (DER)-31. The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;

- *Increasing energy efficiency and minimizing use of non-renewable energy;*
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- *Maximizing habitat value and creating habitat when possible;*
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals;
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development; and
- Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this site, any future on-site buildings will include, at a minimum, a 20-mil vapor barrier/waterproofing membrane on the foundation to improve energy efficiency as an element of construction.

2. Excavation:

The existing on-site buildings were demolished and materials which cannot be beneficially re-used will be taken off-site for proper disposal in order to implement the remedy.

Excavation and off-site disposal of contaminant source areas, including:

- grossly contaminated soil, as defined in 6 NYCRR Part 375-1.2(u);
- soil with visual waste material or non-aqueous phase liquid; and
- soils which exceed the protection of groundwater soil cleanup objectives (PGWSCOs), as defined by 6 NYCRR Part 375-6.8 for those contaminants found in site groundwater above standards;

Excavation and off-site disposal of all on-site soils which exceed Restricted Residential SCOs, as defined by 6 NYCRR Part 375-6.8.

Approximately 8,500 cubic yards of contaminated soil will be removed from the site. [Note: The actual volume of contaminated soils removed increased for the Track 2 remedy. Remedial quantities are shown in Section 4.3 and Figure 7A.]

Excavation and removal of any underground storage tanks (USTs), fuel dispensers, underground piping or other structures associated with a source of contamination.

3. Backfill:

On-site soil which does not exceed the above excavation criteria may be used below the cover system described in Item 4 to backfill the excavation and establish the designed grades at the site. [Note: Due to modifications to the remedy a Track 2 cleanup was achieved and thus there is no soil cover system.]

Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) will be brought in to or complete the backfilling of the excavation and establish the designed grades at the site.

4. Cover System:

A site cover will be required to allow for restricted residential use of the site in areas where the upper two feet of exposed surface soil will exceed the applicable soil cleanup objectives (SCOs). Where a soil cover is to be used it will be a minimum of two feet of soil placed over a demarcation layer, with the upper six inches of soil of sufficient quality to maintain a vegetative layer. Soil cover material, including any fill material brought to the site, will meet the SCOs for cover material for the use of the site as set forth in 6 NYCRR Part 375-6.7(d). Substitution of other materials and components may be allowed where such components already exist or are a component of the tangible property to be placed as part of site redevelopment. Such components may include, but are not necessarily limited to: pavement, concrete, paved surface parking areas, sidewalks, building foundations and building slabs. [Note: Due to modifications to the remedy a Track 2 cleanup was achieved and thus there is no soil cover system.]

5. Vapor Intrusion Evaluation:

A soil vapor intrusion evaluation will be completed. The evaluation will include a provision for implementing actions recommended to address exposures related to soil vapor intrusion.

6. Engineering and Institutional Controls:

Imposition of an institutional control in the form of an environmental easement and a Site Management Plan, as described below, will be required. The remedy will achieve a Track 4 restricted residential cleanup at a minimum and will include imposition of a site cover as a contingency if soil greater than 2 feet, but less than 15 feet deep does not meet the restricted residential SCOs. [Note: Due to modifications to the remedy a Track 2 cleanup was achieved and thus there is no soil cover system.]

Imposition of an institutional control in the form of an environmental easement for the controlled property which will:

- require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- allow the use and development of the controlled property for restricted residential use or commercial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or New York City Department of Health (NYCDOH); and
- require compliance with the Department approved Site Management Plan.

7. Site Management Plan

A Site Management Plan is required, which includes the following:

1. An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls: The Environmental Easement discussed in Section 6, above.

Engineering Controls: The soil cover discussed in Item 4. [Note: Due to modifications to the remedy a Track 2 cleanup was achieved and thus there is no soil cover system.]

This plan includes, but may not be limited to:

- an Excavation Plan which details the provisions for management of future excavations in areas of remaining contamination;
- descriptions of the provisions of the environmental easement including any land use, and groundwater restrictions;
- a provision for evaluation of the potential for soil vapor intrusion for any occupied buildings on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion;
- a provision that should a building foundation or building slab be removed in the future, a cover system consistent with that described in Section 4 above will be placed in any areas where the upper two feet of exposed surface soil exceed the applicable soil cleanup objectives (SCOs) [Note: Due to modifications to the remedy a Track 2 cleanup was achieved and thus there is no soil cover system.]
- provisions for the management and inspection of the identified engineering controls;
- maintaining site access controls and Department notification; and
- the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.
- 2. A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:
 - monitoring of groundwater to assess the performance and effectiveness of the remedy;
 - a schedule of monitoring and frequency of submittals to the Department; and
 - monitoring for vapor intrusion for any buildings on the site, as may be required by the Institutional and Engineering Control Plan discussed above.

3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS

The remedy for this site was performed as a single project, and no interim remedial measures (RMI), operable units or separate construction contracts were performed.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RAWP dated February 2022 (**Appendix B**); the Decision Document (DD)dated September 2022 (**Appendix C**) for the EP-II Site; and the additional work plans and memorandums identified in Section 2.2. Deviations from the RAWP are noted in **Section 4.10**. The following sections 4.1 to 4.10 detail the remedial work and below is a general summary of the remedy for each AOC.

AOC 1 – Construction and Demolition Debris

Following demolition of the buildings at the Site, construction and demolition (C&D) material mixed with soil was characterized on March 23 and March 24, 2022 as necessary for facility approval. The C&D material was present above-grade and had overlain the 6 feet of contaminated historic fill material (CHFM) that was identified in the RAWP. Five-point composite soil samples were collected from test pits of C&D debris in five grids across the site and submitted for facility approval. LaBella oversaw the removal of approximately 2 feet of C&D material mixed with soil across the site. Disposal information for the C&D material is further detailed in **Section 4.3.**

AOC 2 - Contaminated Historic Fill Material

Pursuant to the NYSDEC-approved Remedial Action Delineation Work Plan, supplemental delineation sampling was performed throughout the Site in order to determine the extent of additional soil remediation of soil containing constituents of concern (COCs) above the applicable restricted-residential soil cleanup objectives (RRSCOs), as well as the extent of source material in a petroleum hot spot which must be treated, contained, or removed, as required to achieve a Track 2 cleanup.

Soil samples were collected from remedial delineation sampling locations RD-1 through RD-22 at two-foot intervals, from approximately 7 to 15 ft bgs. In several instances, additional step-out samples were collected for sampling locations at which COCs exceeded RRSCOs to delineate the vertical and horizontal extent of SCO exceedances. Results of the supplemental soil delineation indicated the presence of shallow hot spots of PAHs and metals present from 7 to 13 ft bgs in the eastern and west-southwestern areas of the Site. The locations of the remedial delineation samples and exceedances are indicated in **Figure 4** and summarized in **Table 2**. The Remedial Action Delineation Work Plan and results are further discussed in **Section 4.10.1**.

AOC 2 – Former USTs and Petroleum Hydrocarbon Hot Spot

Following the removal of the approximately 2 feet of C&D debris, a geophysical investigation conducted by EPhase 2 in March and June 2022 identified the presence of USTs identified on Sanborn maps in the northeast portion of the Site. There was no evidence of any tanks anywhere else on the site, including to the west, where Sanborn maps had indicated the potential presence of former USTs. On June 17th and 20th, 2022, Brookside Environmental (FDNY License No. 81350266) cleaned and removed four 550-gallon underground gasoline storage tanks in accordance with the provisions of the New York City Fire Code, Chapter 34, Section FC3404.2.1 3 and FC3404.2.1 4. The tanks are in the process of closure and official registration with the NYSDEC. The location of the former USTs is indicated in **Figure 3.**

Pursuant to the Remedial Delineation Work Plan, supplemental delineation soil sampling was also performed in the vicinity of the former gasoline USTs to characterize the vertical and horizontal extent of the petroleum hot spot in order to support a Track 2 cleanup. Soil samples were collected from tank boring (TB) sampling locations in the vicinity of the former gasoline USTs. Several vertical intervals of petroleum-contaminated material were identified from 7 to 32 ft bgs in exceedance of RRSCOs and PGWSCOs. The location of the deeper petroleum-contaminated hot spots associated with the former USTs are indicated in **Figure 5** and the analytical results are summarized in **Table 3**. The supplemental soil delineation sampling at the former petroleum UST hot spot is further detailed in **Section 4.10.1**.

AOC 4 - High Concentration Lead Area

The RI results indicated that the soil in central portion of the site that was formerly used as an auto salvage yard contained high concentrations of lead (High Concentration Lead Area, or HCLA). The former salvage yard was contained on all sides by an approximately 2-foot-thick foundation wall that extended to approximately 5 ft bgs thereby containing the HCLA.

Additional soil sampling was performed to delineate lead concentrations and characterize the HCLA for disposal facility approval. Several portions of the HCLA were determined to be characteristic hazardous. The HCLA area is shown on **Figure 6** and the results of the sampling are summarized in **Table 4** and further described in **Sections 4.10.3** and **4.10.4**.

AOC 5 - Groundwater

Based on results from the additional soil sampling pursuant to the Remedial Design Modification Memorandum – Supplemental Excavation, several zones of petroleum-contaminated soil were defined including:

Zone 1-15 to 17 ft bgs, Zone 2-13 to 22 ft bgs, Zone 3-7 to 23 ft bgs, and Zone 4-13 to 32 ft bgs

The subsequent update of the memorandum, Remedial Design Modification Memorandum – ISCO, Revision 2 dated November 28, 2022) included an ISCO treatment plan to treat residual petroleum hydrocarbons in groundwater and saturated soil that exceed PGWSCOs in Zones 2 and 3 (17 to 23 ft bgs) and Zone 4 (17 to 32 ft bgs). A summary of the ISCO treatment program and associated groundwater monitoring is included in **Section 4.4.2** and **Section 4.4.3**. The Remedial

Design Modification Memorandum – ISCO, Revision 2 is summarized in Section 4.10.4.

4.1 Governing Documents

4.1.1 Site Specific Health & Safety Plan (HASP)

The HASP was included as Appendix A of the RAWP approved by the NYSDEC. The HASP outlines the requirements for training, medical surveillance, daily tailgate meetings, emergency response, and accident and injury reporting. The HASP and requirements defined in this Remedial Action Work Plan pertain to remedial and invasive work performed at the Site until the issuance of a Certificate of Completion.

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The HASP was complied with for all remedial and invasive work performed at the Site.

4.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix D of the RAWP approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities, and quality assurance/ quality control activities designed to achieve the project data quality objectives.

The components of the QAPP include:

- Program Description
- Project Organization,
- Quality Assurance Objectives
- Environmental Sampling / Testing Procedures
- Documentation / Chain of Custody Procedures
 - Calibration, Analytical, Internal Quality Control, and Data Assessment Procedures
 - Data Reduction, Validation and Reporting
 - Performance and System Audits, and;
 - Preventative Maintenance

4.1.3 Soil/Materials Management Plan (S/MMP)

The remediation was performed pursuant to a Soil/Materials Management Plan (SMMP), further detailed in the NYSDEC approved RAWP, which includes detailed plans for managing

soils/materials that were disturbed at the Site, including excavation, handling, storage, transport, and disposal. The SMMP also includes the controls that were applied to these efforts to assure effective, nuisance-free performance in compliance with applicable federal, state, and local laws and regulations. Soil and historic fill material were disposed of at properly permitted facilities and in accordance with the SMMP and applicable federal, state, and local laws.

4.1.4 Storm-Water Pollution Prevention Plan (SWPPP)

Support of Excavation (SOE) was implemented along the entire site boundary for development purposes and the SOE created a barrier that contained all stormwater within the site and thus, no SWPPP was required.

4.1.5 Community Air Monitoring Plan (CAMP)

Pursuant to the Site-specific Community Air Monitoring Plan (CAMP) included as Appendix B of the NYSDEC-approved RAWP, real-time monitoring was performed during intrusive activities such as excavation, manipulation of soil piles, etc. Air monitoring consisted of monitoring for Volatile Organic Compounds (VOCs) and dust particulates hourly during intrusive activities using a MiniRAE 3000 PID and a Dust Track Pro II-dust monitor, respectively, within the work area and along the Site perimeter. Before work began, background concentrations were measured. During intrusive activities, if concentrations exceeded background concentrations, pursuant to the action levels detailed below, appropriate corrective actions were taken.

- If ambient air concentrations of total organic vapors at the downwind perimeter of work exceed 5 parts per million (ppm) above background for a 15-minute time average, work activities must be halted and monitoring continued, if readings decrease, work can continue. If readings are sustained, corrective actions must be taken.
- If sustained 15-minute downwind particulate concentrations greater than 100 micrograms per cubic meter (μg/m³) above background levels are observed or visible dust is observed leaving the work area, then dust suppression must be employed. If particulate levels exceed 150 μg/m³ then work must be stopped, and dust suppression techniques should be reevaluated.

The CAMP was implemented and executed in accordance with 29 CFR 1910.120(h), the NYSDOH Generic CAMP, and the NYSDEC TAGM #4031. Daily log sheets of CAMP monitoring are presented in **Appendix D**.

The CAMP was implemented during all intrusive activities including excavation, grading, and soil/fill handling activities. The goal of the CAMP was to protect downwind receptors from potential VOCs and air-born particulates (i.e., dust) emanating from the Site by identifying potential impacts so they could be mitigated and controlled.

The following monitoring and reporting actions were completed:

• Fixed air monitoring stations were established daily at two of the four property corners (in opposite corners based on wind direction) along the Site perimeter;

- Continuous perimeter and work zone (s) air quality monitoring was collected each working day whenever intrusive activities involving the removal or handling of potentially impacted materials was being performed;
- With the consent of NYSDEC, continuous work zone monitoring with periodic perimeter monitoring was conducted, as needed, when clean native soils (confirmed by laboratory data) were excavated or placed;
- Monitoring for each day was recorded on the daily field reports and submitted to NYSDEC digitally with the daily report; and
- Monitoring results that exceeded the action levels set by the CAMP and corrective actions were summarized in the monthly CAMP report provided to the NYSDEC.

The CAMP results and response actions are provided in Section 4.2.5.

4.1.6 Community Participation Plan

A certification of mailing was sent by the Volunteer to the NYSDEC project manager following the distribution of Fact Sheets (English and Spanish) and notices that included: (1) certification that the Fact Sheets were mailed, (2) the date they were mailed; (3) a copy of the Fact Sheet, and (4) a list of recipients (contact list).

No changes were made to approved Fact Sheets authorized for release by NYSDEC. No other information, such as brochures and flyers, was included with the Fact Sheet mailing.

Document repositories were established at the following locations which contain applicable project documents:

Brooklyn Community Board #16 444 Thomas S. Boyland Street – Room 103 Brooklyn, NY 11212

Brooklyn Public Library East Flatbush Branch 9612 Church Avenue Brooklyn, New York 11212 Phone: 718-922-0931

Brooklyn Public Library Spring Creek Branch 12143 Flatlands Ave Brooklyn, NY 11207 Phone: 718-257-6571

4.2 Remedial Program Elements

4.2.1 Contractors and Consultants

The following table provides a listing of contractors and consultants who performed work and their associated tasks:

Table A. List of Contractors and Consultants

Contractor	Remedial Work Performed					
LaBella Associates, D.P.C.	Environmental consultant responsible for correspondence with NYSDEC, ensuring compliance with applicable BCP documents, environmental oversight, reporting, sample collection and CAMP monitoring					
Concrete Works Corp (Deer Park, NY)	Soil Excavation and Removal					
Ephase 2, LLC (Huntington Station, NY)						
Land Air Water Environmental (Center Moriches, NY)	Soil Borings and Monitoring Well Installations					
Lakewood Environmental Services, Corp (Smithtown, NY)	mstanations					
NYLand-Tech Land Surveying P.C. (East Meadows, NY)	Surveyor					
Eco-Rental Solutions (Elmsford, NY)	Environmental Equipment Rental Company					
ISOTEC (Lawrenceville, NJ)	ISCO injections					
Subsurface Consulting Services, LLC (Yonkers, NY)	Dewatering Permitting					
Factor Group (South Orange, NJ)	Soil Disposal Support					
Bayshore Recycling Corp. (<i>Keasbey, NJ</i>) Posillico Materials, LLC (<i>Farmingdale, NY</i>) Ppark (<i>Prospect Park, NJ</i>)) Clean Earth, LLC (<i>Carteret, NJ</i>)	Nonhazardous Contaminated Soil Disposal					

A & I Elite Transport LLC (Newark, NJ)

A & M Logistics LLC (Bound Brook, NJ)

AMD Trucking LLC (Newark, NJ)

Amelia Trucking LLC (Newark, NJ)

Andrades Trucking LLC (Hamilton, NJ)

Avila's Trucking (Hightstown, NJ)

Cahl Trucking LLC (Elmwood Park, NJ)

CF & Bros Transportation INC (Bound Brook, NJ)

D&A Contracting LLC (Parsippany, NJ)

DI trucking LLC (Newark, NJ)

DKC Villalba Trucking LLC (Belleville, NJ)

F&F Movement Materials LLC (Manalapan, NJ)

Felix J. Transport LLC (Newark, NJ)

G. Gomez Trucking (Belleville, NJ)

Galindo Enterprises LLC (Tenafly, NJ)

Grid Logistics LLC (Kearny, NJ)

H&A Transport LLC (Newark, NJ)

Ha trucking LLC (Wallington, NJ)

Inca Logistics LLC (Elizabeth, NJ)

Jaym Trucking (Newark, NJ)

J Brothers Trucking (Hamburg, NJ)

J Granda Trans LLC (Clifton, NJ)

Jhonatan Trucking LLC (*Landing*, *NJ*)

JL Transportation LLC (Kearny, NJ)

Justin Xpress LLC (Elizabeth, NJ)

Logitech Transport (Irvington, NJ)

Lomupo Trucking (Waldwick, NJ)

Manolos Trucking LLC (Belleville, NJ)

MCB Trucking (Belleville, NJ)

Mid Haulers LLC (Linden, NJ)

Motion Transport, Inc. (Woodbridge, NJ)

Mr Calle Trucking Corp (Morristown, NJ)

Transportation of Soil

Contractor	Remedial Work Performed				
PCS Trucking LLC (Roselle, NJ)					
Procida Construction Corp. (Bronx, NY)					
S Ulloa LLC (Lakewood, NJ)					
Seni Trucking LLC (North Bergen, NJ)					
Serpa Express LLC (Elizabeth NJ)					
SVA Trucking LLC (Wharton, NJ)					
Tommy Trucking LLC (Orange, NJ)					
Uriel Trucking LLC (South Plainfield, NJ)					
USN Trans LLC (Union City, NJ)					
Vega Jc Trucking LLC (Morris Plans, NJ)					
Violet & Serenity Express LLC (Newark, NJ)					
W Ojeda & Sons Trans (Linden, NJ)					
WCS Trucking LLC (Hamilton, NJ)					
WP Trucking LLC (Belleville, NJ)					
Cycle Chem Inc (Elizabeth, NJ) (aka ACV Enviro)	Lead-contaminated Soil Disposal				
Century – Waste Servies, LLC (<i>Elizabeth</i> , <i>NY</i>)	Concrete and Demolition Debris Disposal				
KSR Corp Development (Kearny, NJ)	Clean-fill Soil Disposal				
Brookside Environmental (Copiague, NY)	UST Removal and Disposal				
Republic Environmental Systems LLC (Hatfield, PA)	IDW Drum Disposal				
Tully Environmental (Flushing, NY)	Import of Backfill Material				
Impact Environmental (Lyndhurst, NJ)	import of backing wateriar				
York Laboratories (Richmond Hill, NJ)					
Alpha Analytical (Mahwah, NJ)	Laboratory Analytical Services				
Pheonix Environmental Laboratories (Manchester, CT)	Education of this property of the second of				
Laboratory Data Consultants (Carlsbad, CA)	Data Validation				
Environmental Data Validation Inc. (Pittsburgh, PA)	Data Vandation				

Contractor	Remedial Work Performed
Tridon Chemical (Deer Park, NY)	ISCO Reagent
Tridon Chemical (Deer 1 ark, 191)	Vendor/Transportation/Delivery
United Industries & Construction Corp. (Brooklyn, NY)	Demolition
ES Firmino Asbestos Inspection Inc. (Brookyln, NY)	New York State Certified Asbestos Assessment
Pillori Associates (Secaucus, NJ)	Geotechnical consulting
Restor Technologies, Inc. (Huntington, NY)	Waterproofing
Medley Air Inc. (Bohemia, NY)	HVAC & SSDS installation
Ziegenfuss Drilling Inc.	Mobilization & Demobilization

LaBella was the certifying Engineer of Record responsible for the oversight of the remedial work completed at the Site.

4.2.2 Site Preparation

Prior to mobilization, multiple asbestos abatement inspections were conducted for the 4 previously existing structures on 68 New Lots Avenue, 257 Hegeman Avenue, 265 Hegeman Avenue, and 558 Christopher Avenue between December 2018 and August 2018. These inspections concluded that no asbestos was present in any of the structures. All previously existing above grade structures were demolished and removed between November 2017 and February 2018. The crushed / broken brick and concrete from the demolition was spread across the Site. The barrier limited potential exposure to the soils and suppressed potential dust and fugitive VOC emissions during the delay between demolition activity and commencement of the Site remediation. A pre-construction meeting was held virtually with NYSDEC and NYSDOH prior to mobilization. A meeting was also held between LaBella and the general contractors on the March 23rd, 2022, where site workers received site orientation and training in accordance with the site-specific HASP, CAMP, and established policies and procedures to be followed during the implementation of remedial activities. The remediation contractor and associated subcontractors each received a copy of the RAWP, HASP, and CAMP and were briefed on their contents.

Documentation of agency approvals required by the RAWP is included in **Appendix F** Other non-agency permits relating to the remediation project are provided in **Appendix G**.

4.2.1.1 Activities Performed Prior to Site Preparation

The following supplemental delineation, characterization, and removal activities were performed in order to facilitate the remedial excavation and supplemental remedial activities.

- Characterization and removal of C&D material (AOC 1). Removal of C&D material is detailed in **Section 4.3.1.**
- Supplemental delineation sampling (RD-1 through RD-22 and associated step-out samples) pursuant to NYSDEC-approved Remedial Action Delineation Work Plan. The results indicated the presence of shallow hot spots of PAHs and metals present from 7 to 13 ft bgs in the eastern and west-southwestern areas of the Site which required deeper remedial excavation (AOC 2), indicated on Figure 7A. A summary of the Remedial Action Delineation Work Plan and associated results is provided in Section 4.10.1.
- Site-wide geophysical investigation and subsequent removal of four 550-gallon USTs (AOC 2). The UST removal is detailed in **Section 4.3.2.**
- Supplemental delineation soil sampling (TB-1 through TB-22) in the vicinity of the former USTs pursuant to the NYSDEC-approved Remedial Design Modification Memorandum Supplemental Excavation and the Remedial Design Modification Memorandum ISCO, Revision 2. Petroleum-contaminated intervals were delineated from 7 to 32 ft bgs in the vicinity of the former USTs which required deeper excavation (to 17 ft bgs) and ISCO treatment (AOC 2). A summary of the supplemental delineation sampling and results is provided in **Section 4.10.1.**
- Supplemental HCLA delineation in the vicinity of the former auto salvage yard to delineate lead concentrations, including the vertical and horizontal extent of hazardous concentrations of lead or waste disposal facility approval. Several portions of the HCLA were determined to be characteristic hazardous waste and required proper off-site disposal (AOC 4). A summary of the HCLA delineation sampling and results is provided in **Section 4.10.4.**

4.2.3 General Site Controls

4.2.3.1 Site Security

An 8-foot perimeter wood-boarded fence was installed at the curbline on Christopher Ave and Sackman Street and 9 ft from the curb of New Lots and Christopher Avenue complying with NYC Construction Code. A gate was installed along Sackman Street for access to the site and locked during non-working hours. All visitors were instructed to check in with the general contractor, Procida Construction, when first arriving at the Site. In addition, a security guard was on duty to prevent unauthorized visitors to the Site after working hours.

4.2.3.2Job Site Record Keeping

LaBella maintained daily notes in electronic daily reports documenting remediation activity described in this Final Engineering Report (FER). **Section 4.2.6** summarizes the reporting.

4.2.3.3 Equipment Decontamination

Equipment directly in contact with subsurface materials was limited to excavator buckets, trucks for transport of contaminated soil, and sampling equipment. Soil was removed from this

equipment using hand tools over the excavation area or over poly sheeting. Excavated soil was stockpiled and lined with poly sheeting prior to characterization and re-use or disposal. Soils excavated for off-site disposal were directly loaded into trucks or roll-off containers for transport to an approved waste disposal facility. Trucks were lined with poly sheeting for the transportation of hazardous contaminated soil.

Standardized procedures for decontamination were established to reduce the likelihood of cross-contamination between samples and sampling locations as specified in the QAPP found in Appendix D of the Remedial Action Work Plan.

4.2.3.4 Soil Screening Results

Field screening of soil during all remedial excavation work was performed by qualified environmental personnel. Screening included visual and olfactory assessments of potential impacts, and screening for VOCs using a photo-ionization detector (PID). Soil was screened during all remedial excavation work, during removal of USTs, and during the high-concentration lead, tank, and remedial delineation boring sampling.

4.2.3.5 Problems Encountered

During the initial trucking of construction debris and contaminated soil, the large volume of trucks queueing around the site caused heavy traffic around the city block. For this reason, scheduled trucking was enforced to guarantee an adequate flow of trucks to minimize vehicle traffic in the neighborhood.

4.2.4 Nuisance Controls

Excavated non-hazardous contaminated soil/urban fill material, pre-characterized, was loaded into dump trailers positioned adjacent to the excavation areas during loading. Transportation of the material was performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Loaded vehicles leaving the Site were appropriately lined (as necessary), securely covered, manifested, and placarded in accordance with Federal, State and local Department of Transportation (DOT) requirements. All outbound trucks were inspected and cleaned as necessary in the work area to remove loose soil, prior to leaving the Site. Soils were removed from truck tires mechanically using water and brushes prior to exiting the Site. Soils tracked off-Site were immediately swept back on-Site.

Trucks would arrive at pre-determined hours to prevent the agglomeration of trucks queuing along New Lots Ave and Sackman Street. LaBella personnel maintained communication with truck drivers to ensure compliance.

As described in **Section 4.1.6**, CAMP was implemented during intrusive Site work to monitor dust and odor potentially emanating from the work area. CAMP implementation included air monitoring and periodic odor inspections during excavation, backfill and soil management activities. Air monitoring and odor inspection results were documented and reported in accordance with the CAMP.

If CAMP monitoring data indicated that VOC concentrations downwind of intrusive Site work zones exceeded the levels in the CAMP, or odors were observed migrating off-Site,

techniques used to control migration of fugitive organic vapors and/ or odors included:

- Limitations on the excavation size; and,
- Pausing operations if wind conditions changed to adjust position of CAMP equipment on-Site.

No nuisance complaints were recorded during the project.

4.2.5 CAMP Results

Real-time community air monitoring was performed during remedial activities at the Site as described in **Section 4.1.2**. Air monitoring data gathered in accordance with the CAMP was provided to the NYSDEC project manager on a weekly basis while RA activities were being conducted.

Air monitoring data was recorded during intrusive activities including excavation, grading, and soil/fill handling activities from March 2022 through October 2023.

The following exceedances of the dust action levels were observed during the following instances:

- October 25th, 2022: There was a spike in the PID at 7:40 AM due to temporary work being completed on a nearby generator.
- November 14th, 2022: While excavating the tank area, elevated VOC hits were observed. All work was stopped for one hour until levels dropped to acceptable levels.

Copies of all field data sheets relating to the CAMP are attached to daily reports provided in electronic format in **Appendix E**.

4.2.6 Reporting

Daily Field Reports (DFRs) were generated by LaBella personnel for the duration of all remedial activities. DFRs documented the personnel present on-Site, a description of the work performed, key site observations, sample collection, equipment and material delivery, and a detailed daily site map indicating site activity and/or sample locations when applicable. Daily CAMP reports were attached to the DFRs. All DFRs and monthly reports are included in electronic format in **Appendix E.** The digital photo log required by the RAWP is included in electronic format in **Appendix H.**

4.3 Contaminated Materials Removal

Contaminated media removed from the site includes C&D debris, USTs, and CHFM. The SCOs for the site are RRSCOs, included in **Table 1.**

4.3.1 Construction and Demolition Debris

Between May 17 and May 26, approximately 2 feet of C&D debris across the Site was removed and properly disposed off-site. 4,802 tons of C&D debris was transported off-site for disposal, as indicated in the table in **Section 4.3.3.** This material was present above-grade and had overlain the 6 feet of CHFM that was identified in the Remedial Investigation Report (RIR) and RAWP.

4.3.2 Petroleum Underground Storage Tank Closure Activities

A geophysical investigation conducted by E Phase 2, LLC in March and June 2022 identified the presence of USTs identified on Sanborn maps in the northeast portion of the Site. There was no evidence of any tanks anywhere else on the site, including to the west, where Sanborn maps had indicated the potential presence of former USTs. On June 17th and 20th, 2022, Brookside Environmental (FDNY License No. 81350266) completed the cleaning and removal of four 550-gallon gasoline underground storage tanks in accordance with the provisions of the New York City Fire Code, Chapter 34, Section FC3404.2.1 3 and FC3404.2.1 4.

During the removal of the tanks, Brookside completed the following:

- Pumped and disposed of 1,845 gallons of gas/water mixture.
- Removed and disposed of 2 drums of tank sludge.
- · Cleaned and removed the tanks.
- Disposed of the tanks as scrap metal.
- Removed and disposed of all piping associated with the tanks.

Petroleum, contaminated soil was stockpiled on plastic and covered with plastic until the material could be properly disposed. The work was performed under the RAWP and NYSDEC was provided notification. The tanks are currently in the registration process with the NYSDEC. Tank Closure Documentation, including an Affidavit provided by Brookside dated June 30, 2022, is presented in **Appendix I. Figure 3** presents the location of the four former USTs that were removed as part of the remedial action.

4.3.3 Soil Removal

Excavated soil was transported off-site for disposal under the following waste streams: non-hazardous contaminated soil, hazardous lead-contaminated soil, construction debris/concrete, and clean soil/fill. A total of approximately 32,621 tons (23, 161 cubic yards) of soil was excavated and transported for proper off-site disposal for both remedial and development purposes.

4.3.3.1 Contaminated Soil Removal

Contaminated soil, including CHFM, petroleum-contaminated soil, and characteristic hazardous lead-containing soil, was excavated to achieve RRSCOs as part of the remedial action. C&D material and CHFM were excavated across the entire site to 6 ft bgs to meet RRSCOs. Several hot spots across the site including the petroleum hotspot, and HCLAs including hazardous lead-contaminated soil required deeper excavation between 6 to 17 ft bgs. To achieve the excavation of these hotspots, additional soil was removed to facilitate safe sloping at a ratio of 1

horizontal foot for each vertical foot (1V:1H) when the hot spot excavation depth exceeded approximately 3 feet below the remedial grade for CHFM. All soil removed for sloping was excavated and transported for proper off-site disposal. Additionally, grids at which confirmation samples indicated exceedances of RRSCOs at 6 ft bgs were excavated an additional one to two feet and re-sampled. The depth of the remedial excavation is presented in **Figure 7A**.

4.3.3.2 Contaminated Soil Disposal Details

LaBella characterized soil from 0 to 15 ft bgs where the site was formerly covered by concrete slabs for off-site disposal purposes. One 5-point composite waste characterization sample was collected from each of 9 grids representing areas of less than 800 cubic yards of material. One 5-point composite sample was also collected from a petroleum stockpile that was created when the 4 former 550-gallon underground storage tanks were removed. The samples were analyzed for TCL+30/TAL, Cyanide, TCLP Resource and Conservation Recovery Act (RCRA) 8 Metals, EPH, and RCRA characteristics.

A total of approximately 19,457 tons (13,814 cubic yards) of contaminated soil was excavated for remedial purposes and transported for proper off-site disposal to approved facilities as indicated below. This total does not include the clean soil that was excavated for development purposes (Section 4.3.3.3).

Table B. Contaminated Soil Disposal Details

Category	Amount (Tons)	Destination
Non-hazardous contaminated C&D material and soil	4,511	Bayshore
Non-hazardous contaminated soil	11,406	Posillico
Non-hazardous contaminated soil	273	Cycle Chem
Non-hazardous urban fill soil	2,300	Clean Earth of Carteret
Hazardous lead contaminated soil	676	Cycle Chem
Non-hazardous contaminated C&D Material	291	Interregional – Century Waste

Two 55-gallon drums with investigation derived waste, including non-hazardous purge water and drill cuttings, was transported to Republic Environmental Systems, Inc for disposal.

Table 5 shows the total quantities of each category of material removed from the site and the disposal locations. A summary of the samples collected to characterize the waste, and associated analytical results are summarized on **Table 6A**.

Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in **Appendix J.**

Waste Disposal and Characterization Documentation including letters from Applicants to disposal facility owners, and laboratory analytical results for waste characterization samples are attached in **Appendix K**.

Manifests and bills of lading are included in electronic format in Appendix L.

4.3.3.3 Clean Soil Removal

Clean soil was removed from the site below the extent of contaminated soil to the depth of development, from 6 to 15 ft bgs around the proposed building footprint. Additionally, the area surrounding the courtyard was excavated from 6 to 15 ft bgs with 1V:1H safe sloping. The development excavation depths are indicated on **Figure 7B.** Approximately 13,164 tons (9,346 cubic yards) of clean soil were excavated and transported for disposal to approved facilities as indicated below:

Table C. Clean Soil Disposal Details

Category	Amount (Tons)	Destination
Clean fill/soil	4,931	P. Park
Clean fill/soil	4,037	KSR
Clean fill/soil	4,196	Impact Reuse

4.3.4 On-Site Reuse

Approximately 300 cubic yards of soil was removed from grids WC-1, WC-2, WC-3, WC-6, WC-10 and WC-11 on October 18, 2022 from 12 to 15 ft bgs and relocated to the courtyard area in order to re-establish the ramp to grade (approximately 6 feet). Thirteen (13) samples were collected according to DER-10 Table 5.4(e)10 from the aforementioned grids: COMP-WC2A (10-15), COMP-WC3A (10-15), WC2A-04 (13-14), WC3A-03 (13-14), COMP WC10A (10-15), COMP WC11A (10-15), WC11A-02 (13-14), COMP WC6B (10-15), WC6B-03 (13-14), WC1-03 (10-15), WC1 (COMP) (10-15), WC2 (COMP), and WC3 (COMP). Lab Soil samples contained no exceedances of RRSCOs.

Analytical data of grids used for soil re-use is included in **Table 6B**. The on-site reuse relocation area is shown on **Figure 8**. Documentation of the on-site soil reuse approval is included in **Appendix F**.

4.3.5 Groundwater

Soil in the former UST and petroleum hydrocarbon hot spot (AOC 3) was excavated to 17 ft bgs throughout Zone 1. Petroleum-contaminated soil and groundwater in Zones 2 and 3 (7 to

23 ft bgs) and Zone 4 (13 to 32 ft bgs) were subsequently treated with ISCO pursuant to the Remedial Design Modification Memorandum – ISCO, Revision 2, summarized in **Section 4.10.4** and the zones are shown on **Figure 9A**.

Activated sodium persulfate (ASP) was utilized for the initial injection event based in its effectiveness for the target COCs and its persistence. A network of permanent vertical wells was installed for the injection of ASP. Each vertical injection well was constructed of #10 slotted 1-inch or 2-inch diameter schedule 40 Flush Joint PVC. The injection wells were installed via direct push technology with 2.25-inch casing. Filter sand was packed around the screened portion of the monitoring well to no less than 1-2 feet above the top of the screen and the remaining area sealed with bentonite up to 17 ft bgs. The bentonite seal was composed of three types of bentonite (chips, pellets, and powder) to establish a competent seal. Bentonite thickness varied depending on the well depth and screened interval; 4 feet (17-21 ft bgs) of the bentonite mixture for the 23-32 feet-bgs screened wells, and 1 foot for the 17-23 and 17-20 ft bgs screened wells. Each injection well was piped through the gravel layer to a common location in the basement of the building in the northern portion of the building along New Lots Ave. using horizontal conveyance pipe (1" PVC or polyethylene tubing) and at this location the pipes run vertically, through the concrete slab, and upon exiting the slab were manifolded for potential future use for re-injection which will be protected by an above grade steel cabinet within the basement.

Injection wells targeted the treatment zone between 17 feet bgs and 32 feet bgs based on soil sampling performed in 2022. Injection wells were placed in a grid with spacing of approximately 12 to 15 feet between points. Five permanent couplet injection wells were installed in the area with the highest concentration of contamination. Each of these locations has one shallow injection well (screened from 17 to 23 feet bgs) and one permanent deep injection well (screened from 23 to 32 feet bgs). Additionally, 10 permanent injection wells were installed in the hotspot area south and east of the coupled wells, screened from 17-20 feet bgs.

Chemical oxidation injections were performed under low pressure (<10 to 30 psi) and low flow (1 to 3.5 gallons per minute). To inhibit the transportation of contaminated groundwater from the source area and limit the potential for contaminant displacement or mobilization of petroleum hydrocarbon material, injections were sequenced by beginning with injections at southern/downgradient and side-gradient perimeter injection wells followed by injections in the northern hotspot injection wells. Therefore, if any petroleum hydrocarbons were displaced these contaminants would be moving towards areas where persistent oxidants are present. If necessary, a follow-up injection event may incorporate use of Modified Fenton's Reagent (MFR) as a standalone ISCO approach or in combination with ASP. The need for future injections, if any, will be based on groundwater monitoring results and discussions with NYSDEC.

The locations of the ISCO injection and monitoring wells are presented in the Remedial Design Modification Memorandum, ISCO, Revision 2 included in **Appendix D.** As-Built Documentation, including injection dates and volumes, is detailed in the Chemical Oxidation Injection Program Summary Report prepared by ISOTEC and dated August 2023 included in **Appendix M.** Groundwater treatment and monitoring well locations are presented on **Figure 9A. Figures 9B and 9C** provide as-builts of the injection system infrastructure.

4.4 Remedial Performance/Confirmation Sampling

Remedial performance and confirmation sampling included end-point soil samples to

confirm that RRSCOs were achieved across the site, and the monitoring well construction sampling associated with ISCO injections performed in August 2023.

4.4.1 Post-Excavation Confirmation Soil Sampling

Post-excavation confirmation soil sampling was performed to document concentrations of regulated constituents that remain in site soils following excavation activities. Each post-excavation confirmation sample was analyzed for the full list of Part 375 parameters. Post-excavation confirmation samples were biased towards AOCs identified in the Remedial Investigation and modified, as appropriate, from the proposed locations presented in the RAWP, as per discussions with the NYSDEC Project Manager, to reflect actual site conditions and observations (i.e., sampling of worst-case locations).

The initial post-excavation confirmation samples achieved RRSCOs/Track 2 cleanup levels for site-related constituents with the exception of CS-34, CS-35, and CS-36, at the center of the site at approximately 6.5 ft bgs. CS-34 at 6.5 ft bgs contained exceedances of RRSCOs including Benzo(a)anthracene (1.22 mg/kg), Benzo(a)pyrene (1.14 mg/kg), and Indeno(1,2,3-cd)pyrene (0.663 mg/kg). CS-35 at 6.5 ft bgs contained exceedances of RRSCOs including Indeno(1,2,3-cd)pyrene (0.536 mg/kg). CS-36 at 6.5 ft bgs contained exceedances of RRSCOs including Benzo(a)anthracene (1.45 mg/kg), Benzo(a)pyrene (1.15 mg/kg) and Indeno(1,2,3-cd)pyrene (0.649 mg/kg). In order to address these locations, the grid corresponding to confirmation sample CS-34 was further excavated to a depth of 11 ft bgs, and the grids corresponding CS-35 and CS-36 were also further excavated to 12 ft bgs, thus removing the soil that exceeded RRSCOs in this location. After the additional excavation, supplemental confirmation samples (CS-34.2, CS-35.2, and CS-36.2) were taken at bottom of excavation and exhibited no further RRSCO exceedances.

In addition to the above, post-excavation soil samples in the petroleum hot spot area also exceeded RRSCOs for 1,3,5-Trimethylbenzene and Xylenes and CS-103 identified Xylenes at 3 locations (CS-101, CS-102 and CS-103); however, these samples were taken at 17 ft bgs and thus below the Track 2 cleanup requirements. These exceedances are attributed to the petroleum-contaminated Zone 3 (7 to 32 ft bgs) and Zone 4 (13 to 32 ft bgs). This soil has been treated with ISCO, as described in **Section 4.3** and **Section 4.10.** The exceedances of RRSCOs in the ISCO-treated area is further discussed in **Section 4.6**.

Additional post-excavation confirmation samples were taken following the removal of unapproved imported backfill material, further described in **Section 4.10.6.** Confirmation soil samples CS-51 through CS-55 were collected at a depth of 12 ft bgs following the removal of the unapproved backfill material in the courtyard area, pursuant to DEC - approved Imported Material Excavation and Confirmation Sampling work plan, indicating that RRSCOs were met.

Table 7 presents post-excavation confirmation sampling results highlighting exceedances of SCOs. Soil that was removed following the confirmation sample taken, whether for remedial or development purposes, is indicated in red. Figure 7A presents remedial excavation areas and Figure 7B presents development excavation areas. Figure 10 presents post-excavation confirmation sampling locations.

Confirmation soil sampling was performed following QA/QC guidelines set in the quality assurance project plan (QAPP) presented in **Appendix D** of the RAWP. Data Usability Summary Reports (DUSRs) were prepared for data generated in this remedial performance evaluation program. These DUSRs are included in **Appendix N** and associated raw data is provided

4.4.2 Post Remedial Monitoring Well Construction

In August 2023, ISOTEC performed ISCO injections of ASP at 20 injection wells, pursuant to the Remedial Design Modification Memorandum – ISCO, Revision 2 dated November 2022 and previously discussed in **Section 4.3.5**. The treatment included ISCO to treat residual petroleum hydrocarbons in groundwater and saturated soil that exceeded PGWSCOs.

Pursuant to the NYSDEC-approved Remedial Design Modification Memorandum – ISCO, Revision 2, eight (8) permanent post-remedial monitoring wells were installed upgradient, downgradient, and within the treatment zone prior to injections to assess the ISCO remedy. Each monitoring well location contained a well couplet with varying screening zones at a shallow and deep interval. The source area monitoring well location (MW-18R) was installed in the vicinity of the former MW-18, which contained the highest concentrations of VOCs in groundwater during previous investigations. An upgradient monitoring well was installed within the right-of-way on the north side of New Lots Avenue (MW-26). Two downgradient monitoring wells were installed, including one on the south side of Hegeman Avenue in the right of way near the corner of Sackman Street (MW-27) to monitor the potential for off-site migration and one on-site within the courtyard (MW-28) closer to the source. Monitoring wells MW-24R and MW-25, which were installed in October 2022 prior to the Remedial Design Modification Memorandum – ISCO, Revision 2, were also used to assess the performance of the remedial action. The monitoring well locations are depicted on Figure 9A.

The monitoring wells were installed in accordance with the Remedial Design Modification Memorandum – ISCO, Revision 2. A Geoprobe 6712DT rig was used to advance 4.25-inch hollow stem augers at various depths between 8 and 34 ft bgs. The wells were constructed with 2-inch Scheduled 40 polyvinyl chloride (PVC) casing and 10-slot well screens. The deep wells MW-26D, MW-27D, and MW-28D are screened from 24 to 34 ft bgs, and the deep well MW-18R-D is screened from 9 to 19 ft bgs. The shallow wells MW-26S, MW-27S, and MW-28S are screened from 18 to 23 ft bgs, and the shallow well MW-18R-S is screened from 3 to 8 ft bgs. A sand filter pack (Morie 0) was installed into the annular space to no less than 2 feet above the top of the screen. A 1-foot thick layer of choke sand (Morie 00), a 1-foot thick of bentonite seal, and Morie 0 sand to 3-feet from grade were placed above the filter pack. The wells were finished with 2.5 to 3 feet of portland-bentonite and an 8" flush mounted manhole/protective cover set in a 1-ft² concrete pad. Monitoring well construction logs are included in **Appendix M.**

The wells were developed immediately after construction with a downhole submersible pump. Water quality parameters including temperature, pH, conductivity, and turbidity, were collected and recorded at a frequency of not less than once per well volume removed. No less than 3 well volumes will be removed. Monitoring well locations and elevations were surveyed by NY Land-Tech Land Surveying P.C. to the NAVD 88 Datum.

The post remedial monitoring network is further detailed in the ISCO Performance Monitoring Report (**Appendix M**). Groundwater development and sampling logs are included in **Appendix M**. Well location and groundwater elevation data is summarized in Table 1 of

Appendix M. Underground injection control (UIC) permits from the August 2023 ISCO injections are included in **Appendix G.**

4.4.3 Post Remedial Groundwater Monitoring

The post-remedial monitoring wells (MW-24R, MW-25, MW-26S, MW-26D, MW-27S, MW-27D, MW-18R-S, MW-18R-D, MW-28S, and MW-28D) were sampled before and after the August 2023 ISCO injections to monitor the effectiveness of the ISCO injections. Groundwater samples were analyzed for VOCs using EPA Method 8260D (which includes 1,2,3-Trimethylbenzene and 1,2,4-Trimethylbenzene), temperature, dissolved oxygen, pH, conductivity, oxygen reduction potential, and turbidity.

Concentrations of dissolved-phase petroleum hydrocarbon-related constituents in groundwater have decreased significantly from the pre-remedial concentrations. Due to the building construction, the pre-remedial wells (former wells MW-14, MW-16, MW-17, MW-18, MW-19, MW-20, and MW-21, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27) were either destroyed or could not be found and were replaced by the wells installed as part of the post-remedial monitoring network. Note that former well MW-24 was replaced by MW-24R, however, the couplet wells MW-25S/D, MW-26S/D, MW-27S/D were not installed in the same locations of the original MW-25, MW-26, and MW-27. During the RIR conducted in 2011, the pre-remedial on-site source area wells (former well MW-18) contained 1,2,4-TMB at 1,800 μ g/L, 1,3,5-TMB at 410 μ g/L, ethylbenzene at 2,200 μ g/L, and toluene at 57 μ g/L in exceedance of the AWQS. Former well MW-19 contained 1,2,4-TMB at 150 μ g/L, 1,3,5-TMB at 13 μ g/L, and ethylbenzene at 210 μ g/L. During the supplemental sampling investigation (SSI) conducted in June 2020, pre-remedial on-site source area well MW-27 contained 1,2,4-TMB at 840 μ g/L, 1,3,5-TMB at 160 μ g/L, ethylbenzene at 1400 μ g/L, toluene at 18.3 μ g/L and total xylenes at 450 μ g/L in exceedance of the AWQS.

The post-ISCO injection samples have shown the remedy to be effective, as detailed in the ISCO Performance Monitoring Report (Appendix M). The pre- and post- ISCO injection monitoring data indicates that petroleum hydrocarbon residuals detected on-site groundwater were limited to ethyl benzene, 1,3,5-TMB and 1,2,4-TMB at concentrations exceeding the TOGS 1.1.1 standards. Pre- and post-ISCO injection data from source area well MW-18R-S indicate the initial post-ISCO sampling appears to show that the ISCO injections desorbed some contaminants from the soils and 4 compounds exceeded the AWQSs; however, the second post-ISCO sampling event has shown a significant reduction and only 3 compounds are slightly above their respective AWQS indicating that the treatment chemicals are effectively treating the contaminants. Subsequent post-ISCO sampling has indicated that the ISCO injections have desorbed some contaminants from the soil however there is no indication that the COCs are migrating off-site or have the potential to migrate from the site. Ethylbenzene was detected in October 2023 at 320 μg/L and decreased to 280 μg/L in July 2024. 1,3,5-TMB was detected in October 2023 at 150 μg/L and decreased below the AWQS in July 2024. 1,2,4-TMB was detected in October 2023 at 570 μg/L and decreased to 360 μg/L in July 2024. Total xylenes were detected in October 2023 at 180 µg/L and decreased to 64 µg/L in July 2024.

Data from the source area well MW-18R-D indicated that the initial post-ISCO sampling appears to show that the ISCO injections desorbed some contaminants from the soils and 4

compounds slightly exceeded the AWQSs; however, subsequent post-ISCO sampling has shown the treatment chemicals are still effective and only no compounds exceeded the AWQS. Ethyl benzene was detected in October 2023 at 6.7 μ g/L and decreased below the AWQS in July 2024. 1,3,5-TMB was detected in October 2023 at 14 μ g/L and decreased to below the AWQS in July 2024. 1,2,4-TMB was detected at 22 μ g/L in October 2023 and decreased below the AWQS in July 2024. Total Xylenes were detected at 19 μ g/L in October 2023 and decreased to non-detect levels in July 2023.

After ISCO injections were performed in August 2023, the concentrations of these contaminants decreased below the 1.1.1 Ambient Water Quality Standards (AWQS) in all of the wells, with the exception of the on-site source area wells MW-18R-S and MW-18R-D. A groundwater analytical data summary is included in Table 2 of **Appendix M.** Data from on-site source area wells is summarized in the below table.

Table D. Summary of On-Site Source Well Monitoring Data

INVESTIGATION			RIR		SSI			ISCO Performance Monitoring									
		MW- 18	MW- 18	MW- 19	MW- 27	MW- 22	MW- 23	MW- 18RS	MW- 18RS	MW- 18RS	MW-18RS	MW-18RS	MW-18RD	MW- 18RD	MW- 18RD	MW- 18RD	MW- 18RD
Compound	AWQ S	11/22/1	11/28/1	11/28/1	6/17/2	6/16/2	6/17/2	8/9/2 3 (Pre- ISC O)	10/6/2 3 (Post- ISCO	1/25/2 4 (Post- ISCO	4/26/24 (Post- ISCO)	7/26/24 (Post ISCO)	8/14/23 (Pre- ISCO)	10/6/23 (Post- ISCO)	1/25/24 (Post- ISCO)	4/26/24 (Post- ISCO)	7/26/24 (Post ISCO)
Ethyl Benzene	5	2200	1400	210	1400	ND	ND	ND	320	7.4	6.9	280	3.8	6.7	0.74	ND	ND
1,3,5- Trimethylbenzene	5	410	320	13	160	ND	ND	ND	150	4.6	1.1	ND	5.4	14	2.7	ND	ND
1,2,4- Trimethylbenzene	5	1800	1400	150	840	ND	ND	ND	570	14	7.6	360	14	22	9.7	0.97	ND
Tetrachloroethene (PCE)	5	ND	ND	ND	ND	0.71	ND	0.23	ND	0 .24	0.85	ND	0.94	ND	2.1	2.8	2.3
Toluene	5	57	54	ND	18.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Xylenes	N/A*	3230	2227	18.96	450	ND	0.35	1.3	180	20	12	64	2.2	19	1	ND	ND

Notes:
All units are reported in ug/L.
Highlighted cells exceed the TOGS 1.1.1 AWQS.
*There is no AWQS standard for the some of Xylenes, the standard for each of the three Xylenes is 5.

There is no indication that any on-site residual source on site is currently contributing or will contribute in the future to off-site migration of the aforementioned contaminants. The ISCO work appears to have performed as designed and off-site contaminant migration does not appear to be a concern. Additional quarterly monitoring is stipulated in **Section 4** of the Site Management Plan (SMP) to evaluate its long-term effectiveness. If groundwater monitoring results produce an unsatisfactory result, further remedial action may be required, including another round of ISCO treatment utilizing the procedures included in the approved RAWP. The SMP is included in **Appendix P.**

While not a site-related COC, PCE was detected in exceedance of the AWQS at MW-27D at 5.1 µg/L in August 2023 and at 7.7 µg/L in October 2023. Trace levels of PCE were detected in the upgradient wells MW-26S/D ranging from 0.67 µg/L to 1 µg/L. It should be noted that the detections/exceedances of PCE in groundwater in MW-27S/D appear to be attributable to an off-site, upgradient source. Historical data indicates that PCE was detected prior to remediation at trace to minor concentrations from an unidentified source in groundwater at former wells located in the northwest and southwest of the site. The RIR only indicated minor exceedances in groundwater and soil for PCE and generally in locations west and northwest of MW-27S/D and not directly upgradient of MW27S/D. The distribution of PCE and relatively low concentrations indicate that there is no evidence of a significant release or an on-site source for PCE. Groundwater wells (MW-28S/D) between the source area and MW-27S/D identified only minor detections of PCE at concentrations lower than those identified in MW-27S/D. MW-27S/D only detected PCE and no other site-related contaminants.

The results of groundwater sampling are presented in **Appendix M. Figure 9A** depicts the location of the post-remedial monitoring well locations and ISCO treatment locations.

4.4.4 Vapor Intrusion Evaluation

The Decision Document requires that a soil vapor intrusion evaluation be performed following the completion of excavation. The evaluation will consist of collecting vapor samples at the lowest level of the Site Building. Holes of approximately 1 inch diameter will be drilled through the building's floor slab. A tracer gas test will be conducted to ensure an adequate seal is observed before sampling. Sub-slab vapor, indoor air, and outdoor air samples will be collected utilizing individually certified-clean Summa® canisters (or equivalent) equipped with laboratory calibrated flow over an approximate twenty-four (24) hour time period. The samples will be submitted to a New York State Department of Health Environmental Laboratory Approval Program certified laboratory for analysis of VOCs by United States Environmental Protection Agency method TO-15. A future workplan will be provided including details of the sampling locations, schedule, and sampling methodology.

The physical components of a sub-slab depressurization system (SSDS) were installed proactively and will be activated should SVI sampling in accordance with the Guidance for Evaluating Soil Vapor Intrusion in the State of New York, with updates, indicate that actions are needed to address potential exposures to VOC contamination via the SVI pathway. This testing will occur upon completion of the entire building envelope after air handling systems are in place and operating. Should the SSDS need to be activated, efficacy verification will include pressure

differential testing to confirm that the extent of the building's slab is sufficiently depressurized and post mitigation indoor air analytical sampling will be conducted to confirm indoor air falls within typical background ranges. The Site Management Plan will be updated accordingly if the SSDS requires operation.

The SSDS as-built documents are included as **Appendix Q.** The SSDS layouts and detail are shown in **Figure 11.**

4.5 Imported Backfill

Materials imported to the Site for backfill of building foundation included quarry stone, free of fines. The material originated from Tully Environmental. Materials appeared free of signs of impact based upon visual inspection.

Pursuant to NYSDEC approval provided on October 11, 2022, materials were imported to the Site from off-site sources for temporary use as construction entrance stabilization that will then remain on site. Materials included 3/4-inch crushed bluestone from recycled virgin bedrock, free of fines. The material originated from Impact Reuse and Recovery Center. Materials appeared free of signs of impact based upon visual inspection. to NYSDEC approval provided on June 11, 2024, ½-inch bluestone was imported to the Site from Impact Materials Jersey City for backfill of the courtyard.

Backfill material sources and quantities are summarized below.

Source	Material	Quantity (Cubic Yards)
Tully Environmental	Quarry Stone	1488
Impact Reuse and Recovery Center	Structural Fill - Bluestone	1195.58
Impact Materials Jersey City	Structural Fill – Bluestone	1647.21

A table of all sources of imported backfill with quantities for each source is shown in **Table 8.** Tables summarizing chemical analytical results for backfill, in comparison to allowable levels, are provided in **Appendix R**. A figure showing the site locations where backfill was used at the site is shown in **Figure 12.** Imported Materials Documentation, including trucking slips, is included in **Appendix S.**

4.6 Contamination Remaining at the Site

The following section describes contamination remaining at the Site based on data collected during remedial action. The Site has been remediated to achieve a Track 2 cleanup. Remaining contamination refers to soil impacts above the Unrestricted Use SCOs, Protection of Groundwater SCOs, and Restricted Residential Use SCOs; and groundwater impacts above Part 703 Groundwater Standards or NYSDEC Technical and Operational Guidance Series (TOGS) and AWQS.

4.6.1 Soil

The site has been excavated to a depth of 15 ft bgs with the exception of the petroleum-contaminated hot spot area which has been excavated to a depth of 17 ft bgs, and the courtyard area which was excavated to a depth of 6 to 12 ft bgs.

While several post-excavation confirmation soil samples collected after the remedial excavation was completed [CS-16 (6.5') – Lead; CS-29 (6.5') – Lead; CS-30 (6.5') – Lead; CS-30 (6.5') – Lead, Zinc, and Mercury; CS-40 (7.5') – Lead, Mercury; and CS-49 (6.5') – Nickel] contained COCs in soil at concentrations that exceed unrestricted use SCOs (UUSCOs), the majority of this material with the exception of soil below 6 feet in the courtyard area (CS-29 and CS-49) was removed as part of the subsequent excavation for development purposes which was performed to a depth of approximately 15 ft bgs across most of the Site (a portion of the courtyard area was only excavated to 6-12 ft, with the exception of the hot spot removals).

Similarly, post-excavation confirmation soil samples were collected after the remedial excavation was completed in the vicinity of the former UST and petroleum hydrocarbon hot spot. Sample locations CS-101 (15') – 1,3,5-Trimethylbenzene; CS-102 (15') – 1,3,5-Trimethylbenzene; and CS-103 (15') – 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, Ethyl Benzene and Naphthalene contained COCs at concentrations that exceeded UUSCOs, but below RRSCOs. This material was removed as part of the excavation of the former UST and petroleum hydrocarbon hot spot to a final depth of 17 ft bgs pursuant to the Remedial Design Modification Memorandum – Supplemental Excavation dated September 27, 2022.

Several samples taken pursuant to the Remedial Design Modification Memorandum – Supplemental Excavation at depths greater than 17 ft bgs contained COCs in soil at concentrations that exceed UUSCOs and RRSCOs including 1,2,4-TMB, 1,3,5-TMB, Benzene, Ethylbenzene, Methylene chloride, Naphthalene, n-Butylbenzene, n-Propylbenzene, Toluene, and Xylenes.

The remainder of the petroleum contaminated located below 17 ft bgs was subsequently treated with ISCO injections in August 2023. No further confirmation soil samples were taken in this area. It should be noted that the remaining contamination samples in this area are pre-ISCO injections and actual concentrations are likely lower now.

Table 9 and **Figure 13** summarize the results of all soil samples remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs.

4.6.2 Groundwater

Pre-Remediation Groundwater Sampling

Results from the June 2020 groundwater sampling event for on-site wells indicated the absence of VOCs in groundwater above applicable standards at on-site wells MW-22 and MW-23 and perimeter wells MW-24, MW-25, and MW-26. Well MW-27 contained 1,2,4-TMB at 840 μ g/L, 1,3,5-TMB at 160 μ g/L, ethylbenzene at 1400 μ g/L, toluene at 18.3 μ g/L and total xylenes at 450 μ g/L in exceedance of the AWQS. Groundwater sampling performed on March 24, 2022, indicated the absence of VOCs in groundwater above applicable standards at perimeter monitoring wells MW-24, MW-25, and MW-26.

Post-Remediation Groundwater Sampling

Following the ISCO injections performed in August 2023, concentrations of petroleum hydrocarbon residuals associated with the on-site petroleum hydrocarbon source decreased below the AWQS in all of the wells, with the exception of the source area wells (MW-18R-S and MW-18R-D). There is no indication that any on-site residual source on site is currently contributing or will contribute in the future to off-site migration of the aforementioned contaminants that have been treated by ISCO, as summarized in LaBella's 2024 ISCO Performance Monitoring Report (**Appendix M**).

Remaining contaminants in on-site groundwater include the VOCs 1,2,4,5-Tetramethylbenzene, 1,2,4-TMB, Ethylbenzene, Napthalene, and p/m-xylene as detailed below.

Two (2) groundwater samples contained VOCs at concentrations that exceed NYS Class GA groundwater standards. The most recent sampling event for each well with an exceedance is provided below along with the sample date in parentheses:

- MW-18R-S 1,2,4-TMB (sample date: 1/25/24)
- MW-18R-D 1,2,4,5-Tetramethylbenzene, 1,2,4-TMB, Ethylbenzene, Naphthalene, p/m-xylene (sample date: 1/25/24)

Table 10 and **Figure 14** summarize the results of all samples of groundwater that exceed the Standards, Criteria and Guidance (SCG) after completion of the remedial action. **Figure 9A** shows the ISCO injection locations and the monitoring well locations.

Since contaminated soil and groundwater remains beneath the site after completion of the Remedial Action, Institutional Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

4.7 Soil/Site Cover System

The Site has attained a Track 2 cleanup and thus the top 15-ft. of soil was remediated to RRSCOs and as such, the Site does not have a formal cover system. However, a Site Management Plan will be developed to manage remaining contamination that is left in-place. Although not a formal engineering control, the material types and associated depths of clean materials are summarized on Figure 14. **Figure 14** shows the as-built cross sections and locations for each backfill type of material used on the site. An Excavation Work Plan, which outlines the procedures required in the event that future excavations extend into underlying residual contamination, is provided in Appendix A of the SMP. In general, the surface material types are broken down into two distinct areas:

- 1. Building Areas The building areas were excavated to 15-ft. bgs and quarry stone was placed prior to construction of the SSDS and building basement slab. Remaining contamination is not accessible since it is located beneath the building slab. As such, the SMP will include provisions for the event any future excavations occur beneath the building slab.
- 2. Courtyard Area The courtyard area was excavated between 6 ft. and 15 ft. depending on location. This area was backfilled to grade such that the top 15-ft. of

material meets RRSCOs. As such, remaining contamination in this area is below 15-ft. bgs. The SMP will include provisions for the event that any future excavations extend beneath clean material in this area.

4.8 Other Engineering Controls

The remedy for the site did not require the construction of any other engineering control systems.

4.9 Institutional Controls

The site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls;

(2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential or commercial uses only.

The environmental easement for the site was executed by the Department on June 12, 2014, and filed with the Kings County Clerk on July 19, 2024. The County Recording Identifier number for this filing is 2024000185220. A copy of the easement and proof of filing is provided in **Appendix T.**

4.10 Deviations from the Remedial Action Work Plan

The following deviations from the NYSDEC-approved 2020 RAWP are summarized in the below sections. The complete reports are provided in **Appendix D.** NYSDEC approvals are provided in **Appendix G.**

4.10.1 Remedial Action Delineation Work Plan dated June 8, 2022

Pursuant to the Remedial Action Delineation Work Plan dated June 8, 2022, approved by the NYSDEC on June 21, 2022, LaBella performed supplemental delineation from 7 to 15 ft bgs in order to explore additional response actions to achieve a Track 2 cleanup. The supplemental delineation determined the extent of additional remediation of soil containing OCs above the RRSCOs and the extent of source material in the petroleum hot spot which would require treatment, containment, or removal in order to achieve a Track 2 cleanup.

Removal of the top 6 feet of CHFM (approximately 8,200 cubic yards) was followed by supplemental delineation sampling to characterize the material at two-foot intervals from approximately 7 to 15 ft bgs. Delineation samples were collected from approximately 40 sampling locations throughout the site, including samples collected from the petroleum hot spot for waste disposal approval. The results of the supplemental soil delineation indicated the presence of shallow hot spots as follows:

- PAHs from 7 to 11 ft bgs at RD-01 and RD-02,
- PAHs present from 7 to 9 ft bgs at RD-16C and RD-16D,
- PAHs and metals present from 7 to 9 ft bgs at RD-10 and from 11-13 ft bgs at RD-10A, and

• Metals present from 7 to 11 ft bgs at RD-15 and from 7 to 9 ft bgs at RD-15C,

Supplemental delineation soil sampling was also performed in the vicinity of the former gasoline USTs to characterize the vertical and horizontal extent of the petroleum hot spot in order to support a Track 2 cleanup, pursuant to discussions with NYSDEC and the June 8, 2022, NYSDEC-approved Remedial Action Delineation Work Plan. Exceedances of RRSCO for soil samples collected at RD-1 through RD-22, and associated step-out samples, are presented in **Table 2** and **Figure 4**.

The following is a summary of the vertical intervals of petroleum-contaminated material based on RRSCO and PGWSCO exceedances in connection with the 2022 Supplemental Soil Delineation Sampling at the Former Petroleum UST Hot Spot.

Petroleum-Contaminated Interval (ft bgs)
7-23
13-19
13-31
13-15
15-17
15-17
16-20
14-32
14-20
14-16
16-22

Exceedances of RRSCO's for soil samples collected at TB-1 through TB-22 are presented in **Table 3** and **Figure 5**. The Remedial Action Delineation Work Plan is included in **Appendix D**.

4.10.2 Dewatering Monitoring Work Plan dated September 1, 2022

Dewatering of the site was required for excavation in dry and safe working conditions and to reduce groundwater pressures on underground structures. As such, NYSDEC requested the Dewatering Monitoring Work Plan dated September 1, 2022. Activities are summarized in the Dewatering Monitoring and Reporting Work Plan Implementation Activities dated October 31, 2022.

LaBella performed groundwater elevation monitoring and sampling of monitoring wells during dewatering operations between October 17, 2022 through March 3, 2023. LaBella installed two wells along Sackman Street and performed baseline sampling and gauging of the wells at MW-1, MW-2, MW-3R, MW-4, and MW-5. Daily groundwater elevation monitoring was conducted from October 17 through October 31, 2022. Groundwater elevation levels stabilized within the monitoring network since the start-up of the dewatering system. Wells MW-1 through MW-5, MW-24R, and MW-25 were sampled on October 24, 2022. The Dewatering Monitoring Work Plan is included in **Appendix D.** Data from dewatering monitoring is included in Attachment B of the 2024 ISCO Performance Monitoring Report (**Appendix M**).

4.10.3 Remedial Design Modification Memorandum – Supplemental Excavation dated September 27, 2022

Pursuant to the Remedial Design Modification Memorandum – Supplemental Excavation dated September 27, 2022, approved by the NYSDEC on September 28, 2022, the following modifications were implemented in the remedial design to achieve a Track 2 Cleanup:

- Soil in the unsaturated zone (Zone 1) were excavated to approximately 17 ft bgs to remove soil containing COCs above the applicable SCOs.
- Hot spots of PAHs and metals in the unsaturated zone were excavated at the following locations and depths:

RD-02	7 to 11 ft bgs
RD-10	7 to 9 ft bgs
RD-10A	11 to 13 ft bgs
RD-15	7 to 11 ft bgs
RD-15C	7 to 9 ft bgs
RD-16C	7 to 9 ft bgs
RD-16D	7 to 9 ft bgs

- Following excavation to 17 ft bgs throughout Zone 1, saturated petroleum-contaminated soil remaining in Zones 2 and 3 (17 to 23 ft bgs) and Zone 4 (17 to 32 ft bgs) were treated through ISCO using ASP and catalyzed hydrogen peroxide / MFR.

SSDS was installed proactively during building construction by the Volunteer from 15 to 16 ft bgs, previously detailed in **Section 4.4.4.**

4.10.4 Remedial Design Modification Memorandum -- ISCO, Revision 2 dated November 28, 2022

Pursuant to the NYSDEC-approved Remedial Design Modification Memorandum – ISCO, Revision 2 dated November 28, 2022, the following supplemental activities were performed in order to achieve a Track 2 cleanup.

The revision to the Remedial Design Modification Memorandum – Supplemental Excavation included the following modifications which were implemented in the remedial design to achieve a Track 2 cleanup:

- Eight wells were installed to evaluate the effectiveness of the ISCO program, which consisted of injection of ASP at 20 injection wells.
- Post-treatment groundwater sampling was conducted by LaBella to evaluate the effectiveness of the treatment program. Following soil removal, the wells were sampled pre-ISCO injection to establish baseline conditions prior to the August 2023 ISCO injections. The wells were sampled in the following quarters before the August 2023 ISCO injections: Q1 2022, Q4, 2022, Q1, 2023, Q3 2023, and the following quarters after the August 2023 ISCO injections: Q4 2023 and Q1 2024.

The Remedial Design Modification Memorandum is included in **Appendix D.** A summary of post-treatment groundwater sampling is included in the 2024 ISCO Performance Monitoring Report (**Appendix M**).

4.10.5 Imported Material Sampling Work Plan dated March 6, 2023

Between February 21 and 24, 2023, approximately 414 cubic yards of unapproved backfill material was inadvertently imported and placed/compacted in the future courtyard area of the Site without NYSDEC approval.

Pursuant to the Imported Material Sampling Work Plan dated March 6, 2023, approved by the NYSDEC on March 28, 2023, six borings (SB-01 through SB-06 indicated on **Figure 15**) were advanced to characterize the imported backfill on the north and south sides of the courtyard, and soil samples were collected every two feet starting at the existing ground surface/grade through the depth of imported fill material, approximately 11 ft bsl on each side of the courtyard. Soil samples SB-01 through SB-06 were analyzed for the full TCL/TAL parameters including PFAS by EPA Method 1633.

The analytical results of the sampling indicated that imported material on the northern perimeter of the courtyard met RRSCOs and some of the imported material on the southern perimeter of the courtyard (SB-05 at 9 to 11 bsl) exceeded RRSCO and required removal. The area surrounding SB-05 which exhibited RRSCO exceedances was excavated to approximately 9 ft bgs (12 ft bsl) vertically and extending horizontally to the east of SB-06 and the west of SB-04. Confirmation soil samples CS-51 through CS-55 were collected at a depth of 12 ft below grade and confirmed that RRSCOs were achieved. The analytical results are included in **Appendix D**.

No intrusive work or import of material occurred in the courtyard area until NYSDEC received the analytical data and approved intrusive work and granted import. CAMP was implemented during excavation and ground intrusive activities in accordance with the NYSDEC and the RAWP. The Imported Material Sampling Work Plan is included in **Appendix D**.

4.10.6 Imported Material Excavation & Confirmation Soil Sampling Work Plan dated May 3, 2023

Pursuant to the Imported Material Excavation & Confirmation Soil Sampling Work Plan dated May 3, 2023, and approved by the NYSDEC on May 10, 2023, confirmation soil sampling was performed in the courtyard and unapproved backfill material exceeding RRSCOs was excavated. Approximately 106 cubic yards of unapproved imported backfill material was excavated from May 3, 2023 through June 19, 2023 and transported to Posillico Materials.

Confirmation soil samples (CS-51 through CS-55) were collected at 9 ft bgs and analyzed for Full Part 375 parameters, reported as Category B deliverables, and submitted to the NYSDEC. No RRSCO exceedances were detected in any of the confirmation soil samples taken. The analytical data from samples CS-51 through CS-55 are included in **Table7**, and the locations of these samples are indicated in **Figure 15**. The excavated area was subsequently backfilled with clean, approved imported fill material. The Imported Material Excavation and Confirmation Soil Sampling Work Plan is included in **Appendix D**.

LaBella Project No: 20918.07 Date: March 2024

Final Engineering Report

589 Christopher Ave Brooklyn, New York

Tax Map FIGURE 1

LaBella Project No: 20918.07 Date: March 2024

Ebenezer Plaza 2 Final Engineering Report

589 Christopher Ave Brooklyn, New York Site Location

FIGURE 2

589 CHRISTOPHER AVE BROOKLYN, NY

0

35 Feet

1:420

Former Potential Areas of Concern

AOC-1: Construction and Demolition Debris (Site Wide)

AOC-2: Contaminated Historic Fill Material (Site-Wide)

AOC-3: Former UST and Petroleum Hydrocarbon Hot Spot

AOC-4: High Concentration Lead Area

Location of Former Areas of Concern

FIGURE 3

LaBella Project No:20918.07

589 CHRISTOPHER AVE BROOKLYN, NY

1:600

1 inch = 50 feet

Sample ID (De	pth)
Analyte	mg/kg

Approximate Site Boundary

Remedial Delineation Sampling

Remedial Delineation **Boring Locations and Exceedances**

FIGURE 4

LaBella Project No:20918.07

INCHES TO THE PERSON.

4. All values displayed in milligrams per kilogram (mg/kg) or parts per million (ppm).

5. Exceedances of NYSDEC Part 375-6 restricted residential soil cleanup objectives (SCOs) are shown in the callouts.

LaBella
Powered by partnership.

EBENEZER PLAZA II BCP SITE NO. 224241

589 CHRISTOPHER AVE BROOKLYN, NY

1 inch = 25 ft

Petroleum Hot Spot

Sample ID	(Depth)
Analyte	mg/kg

Tank Boring Locations and Exceedances of Restricted Residential SCOs

FIGURE 5A

LaBella Project No:20918.07 Date: March 2024

Xylenes, Total

13

589 CHRISTOPHER AVE BROOKLYN, NY

50 Feet

1:600

1 inch = 50 feet

Callout Legend:

Sample ID	Sample	Total	TCLP
	Interval	Lead	Lead
	3764355475555	(mg/kg)	(mg/L)

AOC-4 High Concentration Lead Area

Approximate Site Boundary

HLCA Sampling Locations and Results

FIGURE 6

LaBella Project No:20918.07

PLAZA II **BCP SITE NO. 224241**

589 CHRISTOPHER AVE BROOKLYN, NY

Entire Site - Excavated to 6 ft

Remedial Excavation

PLAZA II BCP SITE NO. 224241

589 CHRISTOPHER AVE BROOKLYN, NY

Entire Site - Excavated to 15 ft bgs

Development **Excavation Depths**

589 CHRISTOPHER AVE BROOKLYN, NY

LaBella Project No:20918.07

Date: 3/20/2024

ON-SITE SOIL REUSE

DETAIL 2 SUBSLAB INJECTION PIPING ASSEMBLY

DETAIL 3 PLAN VIEW OF TREATMENT WELL PIPING RISERS AND **MANIFOLDS**

2" X 2" X 1" SCH 40 PVC REDUCING TEE (SOCKET X SOCKET X SOCKET X). SCH 40 2" PVC PIPE SCH 40 2" PVC CAP~ SCH 40 2" PVC ELBOW -SOCKET X MALE NPT, TYPICAL -1" PVC BALL VALVE " DIAMETER VERTICAL PIPING TO MANIFOLD INTERIOR FLOOR SLAB

DETAIL 4 TYPICAL ABOVE GRADE PIPING AND MANIFOLD

DETAIL 1 TYPICAL INTERIOR INJECTION WELL DETAIL

> It is a violation of New York Education Law Article 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a specific description of the alteration.

3/4" MNFT X 3/4" HOSE

PROJECT/DRAWING NUMBER 20918.07 Figure 9B

EBENEZER PLAZA II 9 CHRISTOPHER STREET BROOKLYN, NY

AB DP AB

EBENEZER PLAZA OWNER PHASE II LLC

SYSTEM

- THIS PLAN IS NOT INTENDED TO PROVIDE STRUCTURAL, ELECTRICAL, OR PLUMBING DETAILS. REFER
- TO STRUCTURAL, ELECTRICAL, OR PLUMBING DRAWINGS FOR THOSE DETAILS. SUB-SLAB HORIZONTAL PIPES ARE 0.75-INCH ID X 1-IN OD X 1/8" WALL HDPE FLEXIBLE TUBING
- CONNECTED VIA 0.75-IN X 0.75-IN HOSE BARBED STRAIGHT COUPLERS AS NEEDED. REFER TO DETAIL 2.
- SLOPE HORIZONTAL RUNS OF PIPING TO PROMOTE DRAINAGE TO INJECTION WELLS. 4. INJECTION WELLS WILL BE CONSTRUCTED BASED ON SUBSURFACE CONDITIONS. REFER TO DETAIL 1
- FOR TYPICAL INJECTION WELL CONSTRUCTION AND CONNECTION TO HORIZONTAL PIPING.
- MOVE PIPING IN FIELD TO AVOID PLUMBING AND SSDS SYSTEM.
- VERTICAL PIPES ARE 1-INCH SCHEDULE 40 PVC.
- PIPING TO DAYLIGHT WITHIN BUILDING CELLAR, REFER TO DETAIL 2 FOR DAYLIGHT DETAILS. PIPING WILL BE MANIFOLDED IN THE BUILDING CELLAR AS SHOW IN DETAILS 3 AND 4. THREE SEPARATE
- MANIFOLDS ARE PLANNED AS SHOWN IN DETAIL 3.
- MANIFOLDS ARE 2-INCH SCHEDULE 40 PVC.

LaBella
Powered by partnership.

EBENEZER
PLAZA II
BCP SITE NO. 224241

589 CHRISTOPHER AVE BROOKLYN, NY

1 inch =28 feet

Confirmation Soil Samples
Achieving UUSCOs

Approximate Site Boundary

Post-Excavation Confirmation Soil Sampling Locations

FIGURE 10

LaBella Project No:20918.07

It is a violation of New York Education Law Article 14. CONTRACTOR TO CONFIRM NO AIR INTAKE IS WITHIN 10 FEET OF VENT STACK. 145 Sec.7209, for any person, unless acting under the direction of a licensed architect, professional engineer, or land surveyor, to alter an item in any way. If an item bearing the seal of an architect, engineer, or land surveyor is altered; the altering architect, engineer, or land surveyor shall affix to the item their seal and notation "altered by" followed by their signature and date of such alteration, and a 20. ALARM, FAN AND SWITCH ELECTRICAL INSTALLED TO SHUT OFF FAN AND ALARM WHEN FLOAT SWITCH

EBENEZER PLAZA OWNER PHASE II LLC = \square EBENEZER PLAZA I CHRISTOPHER STF BROOKLYN, NY

AB DP AB SUB-SLAB DEPRESSURIZATION SYSTEM DETAILS

20918.07

specific description of the alteration.

PROJECT/DRAWING NUMBER

INDICATES HIGH GROUNDWATER LEVEL. REFER TO DETAIL 8.

REFER TO DETAIL 3: PROFILE AT GAUGE POINT

ROOF. REFER TO DETAIL 1: REAR END WALL.

15. CONTRACTOR TO CONFIRM NO ADJOINING OR ADJACENT BUILDINGS, AIR INTAKES OR SUPPLY REGISTERS ARE WITHIN 10 FEET OF VENT STACK. 16. VENT/EXHAUST STACK TO EXTEND AT LEAST 1 FOOT ABOVE ROOF LEVEL. 17. SYSTEM DESCRIPTION LABELS SHALL BE PLACED ON PIPING ABOVE THE SLAB TO READ "SUB-SLAB DEPRESSURIZATION SYSTEM." 18. INSTALL ALARM FOR EACH SYSTEM. REFER TO DETAIL 4. 19. FLOAT SWITCH FOR FAN CONTROL TO BE INSTALLED FOR EACH RISER THROUGH SLAB. REFER TO DETAIL 7.

1. VAPOR PIN® INSERT MONITORING POINTS WITH CAP INSTALLED PER MANUFACTURER INSTRUCTIONS. INSERT TO EXTEND FROM SURFACE OF CONCRETE THROUGH VAPOR BARRIER AND TERMINATE IN GRAVEL SUBBASE.

2. 4 INCH CAST IRON OR METALLIC PIPING RISER TO BE LOCATED IN PIPE CHASE AND VENTED UP THROUGH THE

3. 4 INCH SCHEDULE 40 PVC TO 4 INCH SLOTTED OR PERFORATED PIPE CONNECTION. REFER TO DETAIL 2: DETAIL

589 CHRISTOPHER AVE BROOKLYN, NEW YORK

1 inch = 33 feet

Legend

Courtyard Area

::::: Building Areas

Approximate Site Boundary

FIGURE 12

Backfill Locations

LaBella Project No: 20918.07 Date: March 2024

589 CHRISTOPHER AVE BROOKLYN, NY

0 35 Feet

1 inch =32 ft

Approximate Site Boundary

Confirmation Soil Samples
 Achieving UUSCOs

Tank Borings

Sample ID (Depth)

Analyte mg/kg

Exceedance Color Coding:

Part 375 Restricted Residential Use SCOs (mg/kg)

Part 375 Protection of Groundwater SCOs (mg/kg)

Part 375 Unrestricted Use SCOs (mg/kg)

Remaining Soil
Contamination After
Remedial Action

FIGURE 13

LaBella Project No:20918.07

589 CHRISTOPHER AVE **BROOKLYN, NY**

35 Feet

1:420

1 inch = 35 feet

Approximate Site Boundary

Monitoring Well

Remaining Groundwater Contamination After the **Remedial Action**

FIGURE 14

LaBella Project No:20918.07

LaBella
Powered by partnership.

BCP SITE NO. 224241

589 CHRISTOPHER AVE BROOKLYN, NY

Supplemental Excavation to Approximately 12 ft bgs

Post-Imported Material Excavation Confirmation Soil

Imported Material Sampling & Excavation

589 CHRISTOPHER AVE BROOKLYN, NY

Soil Cover (Courtyard)

Building Footprint

Site Boundary

Cover System As-Built

FIGURE 16

LaBella Project No: 20918.07 Date: March 2024

	Restricted -	Protection of					
Parameter	Residential Use	Groundwater					
rarameter	(RRSCOs) ¹	(PGWSCO) ¹					
Volatile Organic Compunds (VOCs) - n	,	(1.011303)					
1,1,1-Trichloroethane	100	0.68					
1,1,2,2-Tetrachloroethane	NS	NS					
1,1,2-Trichloroethane	NS	NS					
1,1,2-Trichlorotrifluoroethane	NS	NS					
1,1-Dichloroethane	26	0.27					
1,1-Dichloroethene	100	0.33					
1,2,4-Trichlorobenzene	NS	NS					
1,2,4-Trimethylbenzene	52	3.6					
1,2-Dibromo-3-Chloropropane	NS	NS					
1,2-Dibromoethane	NS	NS					
1,2-Dichlorobenzene	100	1.1					
1,2-Dichloroethane	3.1	0.02					
1,2-Dichloropropane	NS NS	NS					
1,3,5-Trimethylbenzene	52	8.4					
1,3-Dichlorobenzene	49	2.4					
1,4-Dichlorobenzene	13	1.8					
1,4-Dioxane	13	0.1					
2-Hexanone	NS	NS					
4-Methyl-2-Pentanone	NS	NS					
Acetone	100	0.05					
Benzene	4.8	0.06					
Bromodichloromethane	NS	NS					
Bromoform	NS	NS					
Bromomethane	NS	NS					
Carbon Disulfide	NS	NS					
Carbon Tetrachloride	2.4	0.76					
Chlorobenzene	100	1.1					
Chloroethane	NS	NS					
Chloroform	49	0.37					
Chloromethane	NS	NS					
cis-1,2-Dichloroethene	100	0.25					
cis-1,3-Dichloropropene	NS	NS					
Cyclohexane	NS	NS					
Dibromochloromethane	NS	NS					
Dichlorodifluoromethane	NS	NS					
Ethylbenzene	41	1					
Hexachlorobenzene	1	3.2					
Ispopropylbenzene	NS	NS					
m/p-Xylenes	100+	1.6					
Methyl Acetate	NS	NS					

	Restricted -	Protection of				
Parameter	Residential Use	Groundwater				
Farameter	(RRSCOs) ¹	(PGWSCO) ¹				
Volatile Organic Communds (VOCs)	, ,	(rawsco)				
Volatile Organic Compunds (VOCs) - n		0.42				
Methyl ethyl ketone (2-butanone)	100	0.12				
Methyl tert-butyl Ether	100	0.93				
Methylcyclohexane	NS 100	NS 0.05				
Methylene Chloride	100	0.05				
n-Butylbenzene	100	12				
n-Propylbenzene	100	3.9				
o-Xylenes	100+	1.6				
sec-Butylbenzene	100	11				
Styrene	NS	NS				
trans-1,3-Dichloropropene	NS	NS				
tert-Butylbenzene	100	5.9				
Tetrachloroethene	19	1.3				
Toluene	100	0.7				
trans-1,2-Dichloroethene	100	0.19				
Trichloroethene	21	0.47				
Trichlorofluoromethane (freon 11)	NS	NS				
Vinyl Chloride	0.9	0.02				
Semi-Volatile Organic Compunds (SV	OCs) - mg/kg					
1,1-Biphenyl	NS	NS				
2,2-oxybis(1-Chloropropane)	NS	NS				
2,4,5-Trichlorophenol	NS	NS				
2,4,6-Trichlorophenol	NS	NS				
2,4-Dichlorophenol	NS	NS				
2,4-Dimethylphenol	NS	NS				
2,4-Dinitrophenol	NS	NS				
2,4-Dinitrotoluene	NS	NS				
2,6-Dinitrotoluene	NS	NS				
2-Chloronaphthalene	NS	NS				
2-Chlorophenol	NS	NS				
2-Methylnaphthalene	NS	NS				
2-Methylphenol	NS	NS				
2-Nitroaniline	NS	NS				
2-Nitrophenol	NS	NS				
3,3-Dichlorobenzidine	NS	NS				
3+4-Methylphenols	NS	NS				
3-Nitroaniline	NS	NS				
4,6-Dinitro-2-methylphenol	NS	NS				
4-Bromophenyl-phenylether	NS	NS				
4-Chloro-3-methylphenol	NS	NS				
4-Chloroaniline	NS	NS				
. Chioroanimic	113	145				

	Restricted -	Protection of				
Parameter	Residential Use	Groundwater				
raiailletei	(RRSCOs) ¹	(PGWSCO) ¹				
Sami Valatila Organia Campunda (SV)	· , ,	(rawsco)				
Semi-Volatile Organic Compunds (SV		NC				
4-Chlorophenyl-phenylether	NS	NS				
4-Methylphenol	NS	NS				
4-Nitroaniline	NS	NS				
4-Nitrophenol	NS	NS				
Acenaphthene	100	98				
Acenaphthylene	100	107				
Acetophenone	NS	NS				
Anthracene	100	1000				
Atrazine	NS	NS				
Benzoic acid	NS	NS				
Benzyl alcohol	NS	NS				
Benzaldehyde	NS	NS				
Benzo(a)anthracene	1	1				
Benzo(a)pyrene	1	22				
Benzo(b)fluoranthene	1	1.7				
Benzo(g,h,i)perylene	100	1000				
Benzo(k)fluoranthene	3.9	1.7				
bis(2-Chloroethoxy)methane	NS	NS				
bis(2-Chloroethyl)ether	NS	NS				
bis (2-Ethylhexyl) phthalate	NS	NS				
Butylbenzylphthalate	NS	NS				
Caprolactam	NS	NS				
Carbazole	NS	NS				
Chrysene	3.9	1				
Dibenz(a,h)anthracene	0.33	1000				
Dibenzofuran	59	210				
Diethylphthalate	NS	NS				
Dimethylphthalate	NS	NS				
Di-n-butylphthalate	NS	NS				
Di-n-octyl phthalate	NS	NS				
Fluoranthene	100	1000				
Fluorene	100	386				
Hexachlorobenzene	1.2	3.2				
Hexachlorobutadiene	NS	NS				
Hexachlorocyclopentadiene	NS	NS				
Hexachloroethane	NS	NS				
Indeno(1,2,3-cd)pyrene	0.5	8.2				
Isophorone	NS	NS				
Naphthalene	100	12				
Nitrobenzene	NS	NS				
		. , ,				

	Restricted -	Protection of
Parameter	Residential Use	Groundwater
i arameter	(RRSCOs) ¹	(PGWSCO) ¹
Semi-Volatile Organic Compunds (SVC	` '	(1 0 11 3 0 0)
N-Nitroso-di-n-propylamine	NS	NS
,	NS NS	NS NS
N-Nitrosodiphenylamine		_
Pentachlorophenol Phenanthrene	6.7	0.8 1000
	100	
Phenol	100	0.33
Pyrene Reliable rings and Rinks and (RCRs)	100	1000
Polychlorinated Biphenyls (PCBs) - mg	-	2.2
Aroclor - 1016	1	3.2
Aroclor - 1221	1	3.2
Aroclor - 1232	1	3.2
Aroclor - 1242	1	3.2
Aroclor - 1248	1	3.2
Aroclor - 1254	1	3.2
Aroclor - 1260	1	3.2
Pesicides/Herbicides - mg/kg		
2,4,5-TP Acid (Silvex)	100	3.8
4,4-DDD	13	14
4,4-DDE	8.9	17
4,4-DDT	7.9	136
Aldrin	0.097	0.19
alpha-BHC	0.48	0.02
beta-BHC	0.36	0.09
Chlordane (alpha)	4.2	2.9
delta-BHC	100	0.25
Dibenzofuran	59	210
Dieldrin	0.2	0.1
Endosulfan I	24	102
Endosulfan II	24	102
Endosulfan Sulfate	24	1000
Endrin	11	0.06
Endrin aldehyde	NS	NS
Endrin ketone	NS	NS
gamma-BHC	NS	NS
gamma-Chlordane	NS	NS
Heptachlor	2.1	0.38
Heptachlor epoxide	NS	NS
Lindane	1.3	0.1
Methoxychlor	NS	NS
Toxaphene	NS	NS

Parameter	Restricted - Residential Use (RRSCOs) ¹	Protection of Groundwater (PGWSCO) ¹
Total Metals - mg/kg	,	
Aluminum	NS	NS
Antimony	NS	NS
Arsenic	16	16
Barium	400	820
Beryllium	72	47
Cadmium	4.3	7.5
Calcium	NS	NS
Chromium, hexavalent	110	19
Chromium, trivalent	180	NS
Cobalt	NS	NS
Copper	270	1,720
Cyanide	27	40
Iron	NS	NS
Lead	400	450
Magnesium	NS	NS
Manganese	2,000	2,000
Mercury	0.81	0.73
Nickel	310	130
Potassium	NS	NS
Selenium	180	4
Silver	180	8.3
Sodium	NS	NS
Thallium	NS	NS
Vanadium	NS	NS
Zinc	10,000	2,480

Notes:

1. Values per New York State Department of Environmental Conservation (NYSDEC) 6 NYCRR Part 375.6.8(b): Restricted Use Soil Cleanup Objectives

RRSCO - Restricted Residential Soil Cleanup Objective

PGWSCO - Protection of Groundwater Soil Cleanup Objective

NS - Not specified

mg/kg - milligrams per kilogram

Sample ID						RD-1 7-9 ft	RD-1 9-1		RD-1 13-15 ft	RD-2 7-9 ft		9-11 ft	RD-2 11-13 ft	RD-2 13-15 ft	RD-3 7-9 ft		D-3 9-11 ft	RD-3 11-13 ft	RD-3 13-15 ft		0-4 7-9 ft	RD-4 9-11 ft	RD-4 11-13 ft	RD-4 13-15 ft
York ID	Part 375	Part 375	Part 375	Part 37	5 Part 375	22H0357-01 8/4/2022	22H0357 8/4/203		22H0357-04 8/4/2022	22H0357-05 8/4/2022		357-06	22H0357-07 8/4/2022	22H0357-08 8/4/2022	22H0406-01 8/5/2022		2H0406-02 8/5/2022	22H0406-03	22H0406-04 8/5/2022		10406-05 /5/2022	22H0406-06 8/5/2022	22H0406-07	22H0406-08 8/5/2022
Sampling Date Client Matrix	RRSC0s	CSCOs	PGSC0s	RSCO	UUSCOs	8/4/2022 Soll	8/4/20: Soil	22 8/4/2022 Soll	8/4/2022 Soil	8/4/2022 Soil	8/4/ Si	/2022	8/4/2022 Soil	8/4/2022 Soil	8/5/2022 Soil	'	8/5/2022 Soll	8/5/2022 Soll	8/5/2022 Soil		/5/2022 Soll	8/5/2022 Soll	8/5/2022 Soll	8/5/2022 Soil
Compound						Result Q		Q Result Q	Result Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Resu		Result Q	Result Q			Result Q	Result Q	Result Q
/OA, 8260 MASTER						- Robuit Q	result	Q Nobalt Q	Troount Q	Troour Q	rtoout	Ť	ricount Q	Troodic Q	TOOGIC Q	11000		recount Q	roour Q	roouic	·	ricodit Q	ricount Q	Troodic Q
1,1,1-Trichloroethane	100	500	0.68	100	0.68	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
1,1-Dichloroethane	26	240	0.27	19	0.27	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
1,1-Dichloroethylene	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
1,2-Dichlorobenzene	100	500	1.1	100		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
1,2-Dichloroethane	3.1	30	0.02	2.3		ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	52 49	190 280	8.4 2.4	17	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND	ND ND	NE NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
1,4-Dichlorobenzene	13	130	1.8	9.8	_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	NE		ND ND	ND	ND ND		ND ND	ND ND	ND ND
1,4-Dioxane	13	130	0.1	9.8		ND	ND	ND ND	ND	ND ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND ND	ND	ND
2-Butanone	100	500	0.12	100				CCVE ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Acetone	100	500	0.05	100	0.05	ND CCVE	0.007	, CCVE ND CCVE	ND CCVE	ND CCVE	ND	CCVE	ND CCVE	ND CCVE	ND	ND)	ND	ND	ND		ND	ND CCVE	ND CCVE
Benzene	4.8	44	0.06	2.9	0.06	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
Carbon tetrachloride	2.4	22	0.76	1.4		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Chlorobenzene	100	500	1.1	100		ND	ND	ND ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Chloroform	49	350	0.37	10	_	ND	ND	ND ND	ND ND	ND ND	ND ND		ND	ND	ND ND	ND ND		ND	ND	ND		ND	ND	ND
cis-1,2-Dichloroethylene Ethyl Benzene	100 41	500 390	0.25	59 30	_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Methyl tert-butyl ether (MTBE)	100	500	0.93	62		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Methylene chloride	100	500	0.93	51		0.036 L	0.051	L 0.074 L	0.058 L	0.047 L	0.054	L	0.073 L	0.065 L	0.054 CCVEL			0.11 L	0.063 L	0.072		0.12 L	0.14 L	0.15 L
Naphthalene	100	500	12	100		ND L	ND	ND ND	ND E	ND E	ND		ND L	ND E	ND ND	NE		ND L	ND ND	ND.		ND E	ND E	ND L
n-Butylbenzene	100	500	12	100		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
n-Propylbenzene	100	500	3.9	100		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
o-Xylene	~	~	~	~	~	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
p- & m- Xylenes	~	~	~	~	~	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
sec-Butylbenzene	100	500	11	100		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
tert-Butylbenzene	100	500	5.9	100		ND	ND	ND ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Tetrachloroethylene Teluana	19	150	1.3	5.5		ND	ND	ND ND	ND	ND ND	ND ND		ND	ND	ND ND	NE NE		ND ND	ND	ND ND		ND	ND	ND ND
Toluene trans-1,2-Dichloroethylene	100	500 500	0.7	100		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	NE		ND	ND ND	ND ND		ND ND	ND ND	ND ND
Trichloroethylene	21	200	0.13	100		ND	ND ND	ND ND	ND	ND ND	ND.		ND	ND ND	ND ND	NE		ND ND	ND	ND.		ND ND	ND	ND
Vinyl Chloride	0.9	13	0.02	0.21		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
Xylenes, Total	100	500	1.6	100	_		ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Semi-Volatiles, 1,4-Dioxane 8270 SIM-So	ii '						_			•				•		_								•
1,4-Dioxane	13	130	0.1	9.8	0.1	ND	ND	ND	ND	ND	ND		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
SVOA, 8270 MASTER																								
2-Methylphenol	100	500	0.33	100			ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
3- & 4-Methylphenols	100	500	0.33	34		ND	ND	ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Acenaphthene	100	500	98	100		0.0662	0.0637	J ND	ND	0.336	0.136		ND ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Acenaphthylene	100	500	107 1000	100		ND 0.172	0.0527	J ND ND	ND ND	0.173	0.0869	J	ND ND	ND ND	ND ND	NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Anthracene Benzo(a)anthracene	100	500 5.6	1000	100	100	0.172 0.473	0.209	ND ND	ND ND	3.84	0.355		ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Benzo(a)pyrene	1	1	22	1		0.473	0.612	ND ND	ND ND	2.5	0.683		ND ND	ND	ND ND	NE		ND ND	ND ND	ND ND		ND ND	ND	ND
Benzo(b)fluoranthene	1	5.6	1.7	1		0.368	0.482	ND ND	ND	2.15	0.524		ND ND	ND ND	ND ND	NE		ND	ND	ND ND		ND	ND	ND
Benzo(g,h,i)perylene	100	500	1000	100		0.248	0.297	ND ND	ND	1.46	0.454		ND ND	ND	ND	NE		ND	ND	ND		ND ND	ND	ND
Benzo(k)fluoranthene	3.9	56	1.7	1	0.8	0.276	0.427	ND	ND	2.03	0.557		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
Chrysene	3.9	56	1	1	1	0.524	0.612	ND	ND	3.84	0.89		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
Dibenzo(a,h)anthracene	0.33	0.56	1000	0.33	0.33	0.0932	0.117	ND	ND	0.611	0.171		ND	ND	ND	NE)	ND	ND	ND		ND	ND	ND
Dibenzofuran	59	350	210	14		ND	ND	ND	ND	0.238	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Fluoranthene	100	500	1000		_	0.729	1.13	ND	ND	7.87	1.54		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Fluorene	100	500	386	100		0.0662 J	0.0705	J ND	ND	0.419	0.124		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
Hexachlorobenzene	1.2	6	3.2	0.33		ND	ND	ND ND	ND	ND	ND		ND	ND	ND	NE		ND	ND	ND		ND	ND	ND
ndeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	_	0.253	0.331	ND ND	ND ND	1.79	0.532		ND ND	ND	ND ND	NE		ND	ND	ND ND		ND	ND	ND ND
Naphthalene Pentachlorophenol	100 6.7	500 6.7	0.8	100 2.4		ND ND	ND ND	ND ND	ND ND	0.14 ND	0.0574 ND	J	ND ND	ND ND	ND ND	NE NE		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Phenanthrene	100	500	1000	100		0.705	0.903	ND ND	ND ND	5.57	1.36		ND ND	ND ND	ND ND	NC.		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND
Phenol	100	500	0.33	100	_	0.705 ND	0.903 ND	ND ND	ND ND	ND	ND		ND ND	ND ND	ND	NE		ND	ND ND	ND ND		ND ND	ND ND	ND ND
Pyrene	100	500	1000		_	0.943	1.05	ND ND	ND	6.39	1.6		ND	ND ND	ND ND	NE		ND ND	ND	ND ND		ND	ND	ND
,·-··-	1 100	_ 500	1000	1 100	1 100		1.00	1	1.15	1 0.00	1.0		1	15	1	146	-			1 110		1	1	1

Sample ID						RD-1 7-9 ft	RD-1 9-11 ft	RD-1 11-13 ft	RD-1 13-15 ft	RD-2 7-9 ft	RD-2 9-11 ft	RD-2 11-13 ft	RD-2 13-15 ft	RD-3 7-9 ft	RD-3 9-11 ft	RD-3 11-13 ft	RD-3 13-15 ft	RD-4 7-9 ft	RD-4 9-11 ft	RD-4 11-13 ft	RD-4 13-15 ft
York ID	Part 375	22H0357-01	22H0357-02	22H0357-03	22H0357-04	22H0357-05	22H0357-06	22H0357-07	22H0357-08	22H0406-01	22H0406-02	22H0406-03	22H0406-04	22H0406-05	22H0406-06	22H0406-07	22H0406-08				
Sampling Date	RRSCOs		PGSC0s		UUSC0s	8/4/2022	8/4/2022	8/4/2022	8/4/2022	8/4/2022	8/4/2022	8/4/2022	8/4/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022
Client Matrix					-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soll	Soil	Soil	Soil
PEST, 8081 MASTER						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
4,4'-DDD	13	92	14	2.6	0.0033	ND	ND	ND	ND												
4,4'-DDE	8.9	62	17	1.8	0.0033	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND
4,4'-DDT	7.9	47	136	1.7	0.0033	ND	ND	ND ND	ND	0.00257	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Aldrin	0.097	0.68	0.19	0.019	0.005	ND	ND	ND	ND												
alpha-BHC	0.48	3.4	0.02	0.097	0.02	ND	ND	ND	ND												
alpha-Chlordane	4.2	24	2.9	0.91	0.094	ND	ND	ND	ND												
beta-BHC	0.36	3	0.09	0.072	0.036	ND	ND	ND	ND												
delta-BHC	100	500	0.25	100	0.04	ND	ND	ND	ND												
Dieldrin	0.2	1.4	0.1	0.039	0.005	ND	ND	ND	ND												
Endosulfan I	24	200	102	4.8	2.4	ND	ND	ND	ND												
Endosulfan II	24	200	102	4.8	2.4	ND	ND	ND	ND												
Endosulfan sulfate	24	200	1000	4.8	2.4	ND	ND	ND	ND												
Endrin	11	89	0.06	2.2	0.014	ND	ND	ND	ND												
gamma-BHC (Lindane)	1.3	9.2	0.1	0.28	0.1	ND	ND	ND	ND												
Heptachlor	2.1	15	0.38	0.42	0.042	ND	ND	ND	ND												
Metals, NYSDEC Part 375	1 40	10	10	10	10	ND	L ND	L ND	L ND	2.07	F 55	I ND	L ND	L ND	L ND	L ND	L ND	L ND	L ND	L ND	L ND
Arsenic Barium	16 400	16 400	16 820	16 350	13 350	ND 63.8	ND 42.6	ND 16	ND 21.4	3.07 117	5.55 231	ND 11.9	ND 29.2	ND 16.6	ND 18.7	ND 25.9	ND 21.8	ND 13.9	ND 16.9	ND 27.6	ND 16.4
Beryllium	72	590	47	14	7.2	63.8 ND	42.6 ND	ND ND	21.4 ND	ND ND	ND 231	11.9 ND	29.2 ND	ND	18.7 ND	25.9 ND	21.8 ND	13.9 ND	16.9 ND	27.6 ND	16.4 ND
Cadmium	4.3	9.3	7.5	2.5	2.5	ND	ND ND	ND ND	ND ND	ND ND	0.366	0.44	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Chromium	~	~	~	~	~	14.8	20.1	9.24	7.02	20.1	24.1	9.57	9.48	10.6	7.98	14.7	15	7.76	140	9.99	8.58
Copper	270	270	1720	270	50	44.5	7.63	9.05	6.58	31.6	45.3	6.63	11.3	8.87	8.18	9.63	10.6	8.34	10.9	9.77	8.52
Lead	400	1000	450	400	63	46.3	13.6	5.48	4.25	132	157	3.11	15.4	5.27	4.12	8.62	6.82	4.2	5.76	7.84	4.62
Manganese	2000	10000	2000	2000	1600	371	218	217	255	346	412	195	215	288	259	269	189	168	314	310	161
Nickel	310	310	130	140	30	17.3	17.7	17	14.8	21.9	20.6	16.5	14.9	22.1	12.7	19.9	20.5	11.9	16.6	17.8	15.5
Selenium	180	1500	4	36	3.9	ND	ND	ND	ND												
Silver	180	1500	8.3	36	2	ND	ND	ND	ND												
Zinc	10000	10000	2480	2200	109	53.6	27.2	14.3	10.6	132	235	13.7	28	14.4	12.2	15.4	18.2	12.1	13.5	18.1	11.9
Mercury by 7473																					
Mercury	0.81	2.8	0.73	0.81	0.18	0.177	ND	ND	ND	0.19	0.679	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Hexavalent																					
Chromium, Hexavalent	110	400	19	22	1	ND	ND	ND	ND												
Chromium, Trivalent			T				1		T =	T		1	I	T	T	T=	T	T ===	T	T	1
Chromium, Trivalent	180	1500	~	36	30	14.8	20.1	9.24	7.02	20.1	24.1	9.57	9.48	10.6	7.98	14.7	15	7.76	11.4	9.99	8.58
Cyanide, Total	T		T				T		T			1			I	T	T	I		T	T
Cyanide, total	27	27	40	27	27	ND	ND	ND	ND												
Total Solids (%)						00.4	1 040	07.0	1 00 7	T 00.0	I 00 0	1 000	I 00 5	000	1 00 7	1 000	00.0	1 000	07.0	1 000	05.7
% Solids	~	~	~	~	-	93.1	94.8	97.3	92.7	88.8	89.9	96.8	96.5	96.9	96.7	96.9	83.8	96.3	97.2	96.3	95.7
HERB, 8151 MASTER							1		T	T	I	1	1	T	T	T	T	1	1	T	1
2,4,5-TP (Silvex)	100	500	3.8	58	3.8	ND	ND	ND	ND												
PCB, 8082 MASTER	1		T			A UP	1		T	1	l was	1	1	1.00	Lun	1	Lun	Lun	1	T 110	T
Aroclor 1016	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
Aroclor 1221 Aroclor 1232	- ~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Aroclor 1242	~	~	~	~	~	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Aroclor 1242 Aroclor 1248	~	~	~	~	~	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Aroclor 1254	~	~	~	~	~	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Aroclor 1260	~	~	~	~	~	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND
Total PCBs	1	1	3.2	1	0.1	ND	ND	ND	ND												
PFAS, NYSDEC Target List									_	_		1		_	_	_		1			
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8		~	~	~	~	ND	ND	ND	ND												
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6	_	~	~	~	~	ND	ND	ND	ND												
N-EtFOSAA	~	~	~	~	~	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-MeFOSAA	~	~	~	~	~	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Perfluoro-1-heptanesulfonic acid (PFHpS) Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Perfluoro-1-octanesulfonamide (FOSA) Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Perfluorodecanoic acid (PFBS) Perfluorodecanoic acid (PFDA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Perfluorododecanoic acid (PFDA) Perfluorododecanoic acid (PFDA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	ND	ND	ND	ND												
Perfluorononanoic acid (PFNA)	~	~	~	~	~	ND	ND	ND	ND												
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	ND	0.00107	0.00061	0.00106	ND	ND	0.00038	ND	ND	0.00029	ND	ND	ND	ND	ND	ND
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	ND	ND	ND	ND												
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	ND	ND	ND	ND												
Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	ND	ND	ND	ND												
. ,									I sum	I sum	I sum			L ND	I ND	I ND	I ND	I ND	I sum		I ND
Perfluorotridecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND												

Sample ID						4 1	13-15 ft Field Dupli		RD-5 9-11 ft	RD-5 11-13 ft	RD-5 13-15 ft	RD-6 7-9 ft	RD-6 9-11 ft	RD-6 11-13 ft	RD-6 13-15 ft	RD-7 7-9 ft	RD-7 9-11 ft	RD-7 11-13 ft	RD-7 13-15 ft	RD-8 7-9 ft	RD-8 9-11 ft	RD-8 11-13 ft
York ID	Part 375	Part 37	5 Part 37	'5 Part 37	5 Part 3	375	22H0406-09	22H0406-10		22H0406-12	22H0406-13	22H0406-14	22H0406-15	22H0406-16	22H0406-17	22H0406-18	22H0406-19	22H0406-20	22H0406-21	22H0406-22	22H0406-23	22H0406-24
Sampling Date	RRSCOs	CSCOs				Os	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022
Client Matrix	_					<u> </u>	Soll	Soil	Soll	Soll	Soll	Soll	Soil	Soll	Soil	Soll	Soll	Soll	Soll	Soll	Soll	Soll
Compound VOA, 8260 MASTER						F	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
•	100	F00	1 0.00	100	1 00	.	ND	I ND	I ND	I ND	I ND	I ND	I ND	ND	I ND	I ND	I ND	ND	L ND	L ND	I ND	T ND
1,1,1-Trichloroethane 1,1-Dichloroethane	100 26	500 240	_				ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethylene	100	500	_	_	_	_	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
1,2,4-Trimethylbenzene	52	190			3.6		ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	100	500				-	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND
1.2-Dichloroethane	3.1	30	0.02			_	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND
1,3,5-Trimethylbenzene	52	190				_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	49	280			_	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	13	130	_		_	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	13	130				-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	100	500	0.12	100	0.1	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	100	500	0.05	100	0.0	5	ND CCVE	ND	ND	ND	ND	ND	ND CCVE	ND CCVE	ND CCVE	ND	ND CCVE	ND CCVE	ND	ND	ND	ND CCVE, ICVE
Benzene	4.8	44	0.06	2.9	0.0	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	2.4	22	0.76	1.4	0.7	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100	500	1.1	100	1.1	L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	49	350	_	10	0.3	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethylene	100	500			_	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene	41	390	1	30	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	100	500					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	100	500				-	0.16 L	0.15 L		0.087 L	0.076 L	0.25 L	0.19 L	0.24 L	0.14 L	0.3 L	0.28 L	0.68 L	0.056 CCVEL		0.062 L	0.056 L
Naphthalene	100	500	_		12	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	100	500				_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	100	500					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	~	~	~	- ~	~	_	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
p- & m- Xylenes sec-Butylbenzene	100	500	11	100			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	100			_		_		ND ND		ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND
tert-Butylbenzene Tetrachloroethylene	19	500 150			_	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	100	500	_		_	-	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
trans-1,2-Dichloroethylene	100	500					ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Trichloroethylene	21	200					ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.9	13	_		_		ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
Xylenes, Total	100	500	_	_		_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil								-					1									
1,4-Dioxane	13	130	0.1	9.8	0.1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOA, 8270 MASTER			_					,		1		•	-		•		'	·	•			
2-Methylphenol	100	500	0.33	100	0.3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- & 4-Methylphenols	100	500	0.33	34	0.3	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	100	500					ND	ND	ND	ND	ND	ND	ND	0.0578 J	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	100	500	107	100	100	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	100	500	1000	100	100	0	ND	ND	ND	ND	ND	ND	ND	1.05	ND	ND	ND	ND	ND	ND	ND	0.0613 J
Benzo(a)anthracene	1	5.6	1	1	1		ND	ND	ND	ND	ND	ND	ND	0.324	ND	0.114	ND	0.19	ND	ND	ND	0.181
Benzo(a)pyrene	1	1	22	1	1		ND	ND	ND	ND	ND	ND	ND	0.212	ND	0.103	ND	0.155	ND	ND	ND	0.16
Benzo(b)fluoranthene	1	5.6			1		ND	ND	ND	ND	ND	ND	ND	0.127	ND	0.073 J	ND	0.108	ND	ND	ND	0.127
Benzo(g,h,i)perylene	100	500					ND	ND	ND	ND	ND	ND	ND	0.0857	ND	0.0695 J	ND	0.0962	ND	0.0571 J	ND	0.0872
Benzo(k)fluoranthene	3.9	56	1.7	1	3.0		ND	ND	ND	ND	ND	ND	ND	0.19	ND	0.0842 J	ND	0.126	ND	ND	ND	0.125
Chrysene	3.9	56	1	1	1	-	ND	ND	ND	ND	ND	ND	ND	0.386	ND	0.134	ND	0.191	ND	ND	ND	0.187
Dibenzo(a,h)anthracene	0.33	0.56				-	ND	ND	ND	ND	ND	ND	ND	0.0571 J	ND	ND	ND	0.0425 J	ND	ND	ND	ND
Dibenzofuran	59	350					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	100	500				_	ND	ND	ND	ND	ND	ND	ND	0.606	ND	0.174	ND	0.274	ND	0.0618 J	ND	0.402
Fluorene	100	500	_			_	ND	ND	ND	ND	ND	ND	ND	0.0497 J	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	1.2	6	3.2			_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	5.6				-	ND	ND	ND	ND	ND	ND	ND	0.112	ND	0.0674 J	ND	0.119	ND	ND	ND	0.094
Naphthalene	100	500					ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Pentachlorophenol	6.7	6.7	0.8			_	ND	ND NB	ND ND	ND	ND ND	ND	ND	ND 1.04	ND ND	ND 0.105	ND	ND 0.101	ND ND	ND	ND	ND 0.005
Phenanthrene	100	500	_		_	_	ND	ND	ND	ND	ND	ND	ND ND	1.04	ND	0.105	ND	0.164	ND	ND ND	ND	0.285
Phenol	100	500 500					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.777	ND ND	ND 0.218	ND ND	ND 0.291	ND ND	ND 0.0631 J	ND ND	ND 0.37
Pyrene	100	200	1000	, 1 100	100	·	טאו	עאו ן	טאו	עאו	עאו	טאו	טאו	0.111	עאו	U.216	עא ן	0.291	עווו	U.U031 J	טאו	0.37

Sample ID						4 13-15 ft Fleid Duplica	RD-5 7-9 ft	RD-5 9-11 ft	RD-5 11-13 ft	RD-5 13-15 ft	RD-6 7-9 ft	RD-6 9-11 ft	RD-6 11-13 ft	RD-6 13-15 ft	RD-7 7-9 ft	RD-7 9-11 ft	RD-7 11-13 ft	RD-7 13-15 ft	RD-8 7-9 ft	RD-8 9-11 ft	RD-8 11-13 ft
York ID	Part 375	Part 375	Part 375	Part 375	Part 375	22H0406-09	22H0406-10	22H0406-11	22H0406-12	22H0406-13	22H0406-14	22H0406-15	22H0406-16	22H0406-17	22H0406-18	22H0406-19	22H0406-20	22H0406-21	22H0406-22	22H0406-23	22H0406-24
Sampling Date		CSCOs			UUSCOs	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022
Client Matrix						Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
PEST, 8081 MASTER						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
4,4'-DDD	13	92	14	2.6	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	8.9	62	17	1.8	0.0033	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND
4,4'-DDT	7.9	47	136	1.7	0.0033	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	0.097	0.68	0.19	0.019	0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	0.48	3.4	0.02	0.097	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane	4.2	24	2.9	0.91	0.094	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	0.36	3	0.09	0.072	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC Dieldrin	0.2	500 1.4	0.25	100 0.039	0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan I	24	200	102	4.8	2.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Endosulfan II	24	200	102	4.8		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	24	200	1000	4.8	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin	11	89	0.06	2.2	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane)	1.3	9.2	0.1	0.28	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	15	0.38	0.42	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals, NYSDEC Part 375	1		1	T	1			I	T	T	I	T	T	1	T	T	T	I	T	T	1
Arsenic Barium	16 400	16 400	16 820	16 350	13 350	ND 48.1	ND 16.3	ND 13	ND 16.2	ND 15.7	ND 20.3	ND 12.4	ND 87.7	ND 16.1	ND 36.3	ND 18.9	ND 22.4	ND 24.6	ND 27.2	ND 18.9	ND 18.9
Beryllium	72	590	47	14	7.2	48.1 ND	ND	ND	16.2 ND	ND	20.3 ND	12.4 ND	87.7 ND	ND	36.3 ND	18.9 ND	22.4 ND	24.6 ND	27.2 ND	18.9 ND	18.9 ND
Cadmium	4.3	9.3	7.5	2.5	2.5	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
Chromium	~	~	~	~	~	11.5	9.72	10.2	7.86	9.41	8.54	9.57	11.9	10.8	15	8.28	9.56	8.68	12.2	9.84	8.81
Copper	270	270	1720	270		8.42	8.42	7.77	8.03	8.21	8.32	6.96	12.3	9.65	16.4	7.86	8.24	8.39	8.7	8.1	8.87
Lead	400	1000	450	400	63	7.36	8.52	5.22	5.37	5.09	10.8	4.2	7.76	4.4	24.8	4.89	6.2	4.49	15.2	5.62	5.47
Manganese	2000	10000	2000	2000		333	204	223	223	96.7	211	191	332	224	268	236	236	233	232	221	162
Nickel	310	310	130	140	30	18.5	12.8	19.8	16.8	16 ND	12.9	20.6	18.8	16.9	16.1	15.4 ND	14.5	14 ND	12.9 ND	18.3 ND	15.7
Selenium Silver	180 180	1500 1500	8.3	36 36	3.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc	10000	10000	2480	2200	109	21.7	13.7	13.7	12.4	12.9	18.8	12.4	19.2	16.6	44.2	14.2	14.6	16.3	25.8	14	13.1
Mercury by 7473																	_				
Mercury	0.81	2.8	0.73	0.81	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Hexavalent																					
Chromium, Hexavalent	110	400	19	22	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Trivalent								1	1	1	T	1	1	1	T	T			1	1	1
Chromium, Trivalent Cyanide, Total	180	1500	~	36	30	11.5	9.72	10.2	7.86	9.41	8.54	9.57	11.9	10.8	15	8.28	9.56	8.68	12.2	9.84	8.81
Cvanide, total	27	27	40	27	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Solids (%)	21	21	40	21	21	ND	ND	IND	I ND	IND	IND	ND	IND	IND	I ND	IND	IND	ND	IND	ND	IND
% Solids	~	~	~	~	~	97.2	97	98.4	97.3	95.8	95.5	97.7	97.4	90	94.7	97	98.8	97.2	97.8	97.6	97.5
HERB, 8151 MASTER	<u> </u>											-									
2,4,5-TP (Silvex)	100	500	3.8	58	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB, 8082 MASTER	1							•		·		•	·		•	·	•	_	•	•	
Aroclor 1016	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	~	~	~	-	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242 Aroclor 1248	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor 1254	~	~	~	~	- ~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
Aroclor 1260	~	~	~	~	~	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND
Total PCBs	1	1	3.2	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFAS, NYSDEC Target List	J					l ND	ND	L ND	L	L ND	L ND	I ND	I ND	I ND	L	L ND	L	l ND	L ND		L ND
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8: 1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:		~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
N-EtFOSAA	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
N-MeFOSAA	~	~	~	~	~	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND
Perfluorododecanoic acid (PFDoA) Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorononanoic acid (PFNA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00044	ND	ND
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoropentanoic acid (PFPA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoroundecanoic acid (PFInA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
. oasroanaceanoie acia (FT OliA)	1		1	1		140	יווי	1 110	110	1 110	110	שוו	1 110	110	110	I NO	140	1 110	1 110	שוו	1 110

Sample ID						RD-8 13-15 ft	RD-9 7-9 ft	RD-9 9-11 ft	RD-9 11-13 ft	RD-9 13-15 ft	RD-10 7-9	RD-10 9-11	RD-10 11-13	RD-10 11-13 Field Duplicate		RD-11 7-9	RD-11 9-11	RD-11 11-13	RD-11 13-15	RD-12 7-9
York ID	Part 375	Part 375	Part 375	Part 375	Part 375	22H0406-25	22H0406-26	22H0406-27	22H0406-28	22H0406-29	22H0553-01	22H0553-02	22H0553-03	22H0553-04	22H0553-05	22H0553-06	22H0553-07	22H0553-08	22H0553-09	22H0553-10
Sampling Date		CSCOs			UUSCOs	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022
Client Matrix						Soil	Soll	Soil	Soil	Soil	Soll	Soll	Soil	Soil	Soll	Soll	Soil	Soll	Soil	Soll
Compound						Result Q	Result Q	Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER	1 400		1	1 400	1 000	1	Lun	T	L	T T	110	Lun	I No	T 115	Lun	T ND	I	T was	Lun	Lun
1,1,1-Trichloroethane	100	500	0.68	100	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	26	240	0.27	19	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND
1,2-Dichlorobenzene	100	500	1.1	100	1.1	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	3.1	30	0.02	2.3	0.02	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,0,0 mmounyibonzono	52	190	8.4	_	8.4	1,15	115	118	11.5	.,,5	115	115	115	110	115	118			115	115
1,3-Dichlorobenzene	49	280	2.4	17	2.4	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
1,4-Dichlorobenzene	13	130	1.8	9.8	1.8	ND	110	ND ND	ND	ND ND	ND	ND ND	ND ND	***	110	ND	ND ND	ND	ND	
1,4-Dioxane 2-Butanone	13 100	130 500	0.12	9.8	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
			_																	
Acetone Benzene	100 4.8	500 44	0.05	2.9	0.05	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.01800 J ND	ND ND	0.01400 J ND	ND ND	ND ND	0.00750 J ND
	2.4				0.06		_							ND ND						ND ND
Carbon tetrachloride Chlorobenzene	100	500	0.76	1.4	1.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroform	49	350	0.37	100	0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	100	500	0.37	59	0.25	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
Ethyl Benzene	41	390	0.25	30	0.25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl tert-butyl ether (MTBE)	100	500	0.93	62	0.93	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Methylene chloride	100	500	0.93	51	0.93	0.097	0.1 CCVEL	_	0.055 CCVEL	0.17 CCVEL		L 0.21 L	0.04 L	0.13 L	0.14 L	0.11 L QM-07	0.19 L	0.23 L QM-07	0.15 L QM-07	0.08 LQM-07
Naphthalene	100	500	12	100	12	ND L	ND CCVEL	ND COVEL	ND CCVEL	ND CCVEL	ND	ND ND	ND L	ND L	ND L	ND LQW-07	ND L	ND L QWI-07	ND L QIVI-07	ND LQWI-07
n-Butvlbenzene	100	500	12	100	12	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
n-Propylbenzene	100	500	3.9	100	3.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	~	~	2.9	~	2.9	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
o-Xylene p- & m- Xylenes	~	~	~	- ~	- ~	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
sec-Butvlbenzene	100	500	11	100	11	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
tert-Butylbenzene	100	500	5.9	100	5.9	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND
Tetrachloroethylene	19	150	1.3	5.5	1.3	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND
Toluene	100	500	0.7	100	0.7	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND
trans-1,2-Dichloroethylene	100	500	0.19	100	0.19	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND
Trichloroethylene	21	200	0.47	10	0.47	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.9	13	0.02	0.21	0.02	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	100	500	1.6	100		ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soi			1 2.0	100	0.20	11.5	11.5	110	1.0	1.0	11.5	11.5		1.15	1.10	11.5	115	110	11.5	113
1,4-Dioxane	13	130	0.1	9.8	0.1	ND	ND	ND	ND	ND	ND	ND	ND	I ND	ND	ND	ND	ND	ND	ND
SVOA, 8270 MASTER		1 200	0.2	0.0	0.2	11.5	11.5	1115	1.13	1.15	11.5	11.5	1,15	1	1.10	11.5	115	1 110	1,15	113
2-Methylphenol	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3- & 4-Methylphenols	100	500	0.33	34	0.33	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND
Acenaphthene	100	500	98	100	20	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
Acenaphthylene	100	500	107	100	100	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	0.01800 J	ND ND	0.01400 J	ND ND	ND	0.00750 J
Anthracene	100	500	1000	100	100	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
Benzo(a)anthracene	1	5.6	1	1	1	ND	0.0739 J	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	1	1	22	1	1	ND	0.0636 J	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	1	5.6	1.7	1	1	ND	0.0547 J	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	100	500	1000	100	100	ND	0.0431 J	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	3.9	56	1.7	1	0.8	ND	0.0554 J	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	3.9	56	1	1	1	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.33	0.56	1000	0.33	0.33	ND	ND ND	ND ND	ND	ND	0.10	L 0.21 L	0.04 L	0.13 L	0.14 L	0.11 L QM-07	0.19 L	0.23 L QM-07	0.15 L QM-07	0.08 LQM-07
Dibenzofuran	59	350	210	14	7	ND	ND ND	ND	ND	ND	ND	ND ND	ND L	ND E	ND L	ND ND	ND L	ND 2 QIII 01	ND L Q.II. 01	ND EQ.II 61
Fluoranthene	100	500	1000	100	100	ND	0.128	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	100	500	386	100	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	1.2	6	3.2	0.33	0.33	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	0.5	ND	0.0438 J	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	100	500	12	100	12	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	6.7	6.7	0.8	2.4	0.8	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	100	500	1000	100	100	ND	0.08 J	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Phenol	100	500	0.33	100	0.33	ND	ND S	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	100	500	1000	100	100	ND	0.124	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND
				1 100	, 100			1				1 ,,,,,	, ,,,,,	1 110		1		1		

Sample ID						RD-8 13-15 ft	RD-9 7-9 ft	RD-9 9-11 ft	RD-9 11-13 ft	RD-9 13-15 ft	RD-10 7-9	RD-10 9-11	RD-10 11-13	RD-10 11-13 Field Duplicate	RD-10 13-15	RD-11 7-9	RD-11 9-11	RD-11 11-13	RD-11 13-15	RD-12 7-9
York ID	Part 375	Part 375	Part 375	Part 375	Part 375	22H0406-25	22H0406-26	22H0406-27	22H0406-28	22H0406-29	22H0553-01	22H0553-02	22H0553-03	22H0553-04	22H0553-05	22H0553-06	22H0553-07	22H0553-08	22H0553-09	22H0553-10
Sampling Date	RRSC0s	CSC0s	PGSC0s	RSCOs	UUSC0s	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/5/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/9/2022	8/9/2022	8/9/2022
Client Matrix	-					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil				Soil	Soil	Soil
Compound PEST, 8081 MASTER						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
4,4'-DDD	13	92	14	26	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	8.9	62	17	1.8	0.0033	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	7.9	47	136	1.7	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Aldrin	0.097	0.68	0.19	0.019		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	0.48	3.4	0.02	0.097	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane	4.2	24	2.9	0.91	0.094	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	0.36	3	0.09	0.072	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	100	500	0.25	100	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	1.4	0.1	0.039		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	24	200	102	4.8	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	24	200	102	4.8	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan sulfate	24	200	1000	4.8	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND
Endrin	11	89	0.06	2.2	0.014	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND
gamma-BHC (Lindane) Heptachlor	1.3 2.1	9.2 15	0.1	0.28	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Metals, NYSDEC Part 375	2.1	15	0.36	0.42	0.042	ND	ם או	טא	I ND	I ND	ND	ND	עא	עא	I ND	IND	ם או	IND	I ND	IND
Arsenic	16	16	16	16	13	ND	l ND	ND	ND	l ND l	2.32	I ND I	ND	ND	ND	ND	I ND	ND	ND	ND
Barium	400	400	820	350	350	42.7	28.6	14.7	13.9	26.9	255	18	14	24	16	63	16	31	28	70
Beryllium	72	590	47	14	7.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND
Cadmium	4.3	9.3	7.5	2.5	2.5	ND	ND ND	ND	ND	ND	1.58	ND	ND	ND ND	0.47	ND ND	ND	0.40	ND	ND
Chromium	~	~	~	~	~	11.2	18.4	9.07	8.3	9.13	27.1	10.8	10.9	13.7	12.2	19.2	11.3	14.2	13.1	18.0
Copper	270	270	1720	270	50	8.14	12.1	7.62	6.58	10.1	50.0	9.3	8.4	10.7	10.0	14.2	8.2	10.5	9.8	15.0
Lead	400	1000	450	400	63	5.1	16.9	5.63	4.8	4.39	267	5	6	14	4	43	6	15	10	43
Manganese	2000	10000	2000	2000		437	254	218	180	234	447	225	171	252	247	233	221	203	207	254
Nickel	310	310	130	140	30	21	28	16.5	10.4	15.7	14.8	15.5	15.4	27.4	15.3	20.0	20.1	16.7	25.8	19.2
Selenium	180	1500	4	36	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	180	1500	8.3	36	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc	10000	10000	2480	2200	109	11.9	37.1	13.6	12.6	13.6	466	14	15	30	19	65	35	43	26	54
Mercury by 7473				1	1		1		T	I		T T		1		T	T	T	T	1
Mercury	0.81	2.8	0.73	0.81	0.18	ND	ND	ND	ND	ND	0.119	ND	ND	ND	ND	0.057	ND	ND	ND	0.144
Chromium, Hexavalent	140	100	1 40	1 00	T 4	ND	T ND	ND	Lub	L	4	T 4 T	4	1 4	1 4	1 4	1 4	T 4	T 4	
Chromium, Hexavalent	110	400	19	22	1	ND	ND	ND	ND	ND	1	1	1	1	1	1	1	1	1	1
Chromium, Trivalent Chromium, Trivalent	100	1500	T ~	36	30	11.2	18.4	9.07	8.3	9.13	27.1	10.8	10.9	13.7	12.2	19.2	11.3	14.2	13.1	18.0
Cyanide, Total	180	1500	<u> </u>	30	1 30	11.2	10.4	9.07	0.3	9.13	21.1	10.8	10.9	13.7	12.2	19.2	11.3	14.2	13.1	18.0
Cyanide, total	27	27	40	27	27	ND	ND	ND	ND	ND	1	1	1	1	1	1	1	1	1	1
Total Solids (%)	21		40	21	21	IND	IND	ND	IND	IND	<u> </u>	1 1	<u>+</u>				1 -	1 -		
% Solids	~	~	~	~	~	91.2	96.2	98.9	96.9	89.9	96.1	97.8	97.6	98.4	90.1	94.2	97.4	96.7	87.7	91.6
HERB, 8151 MASTER	l					02.2	00.2	00.0	00.0	00.0	00.1	01.0	01.0	55.1	00.1	0 1.12	0	00.1	01	02.0
2,4,5-TP (Silvex)	100	500	3.8	58	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB, 8082 MASTER	100	_ 500	3.0	1 30	3.0	NB	I NB	ND	NB	IND .	NO	IND	ND	I NO	IND	ND	I NO	I ND	NB	110
Aroclor 1016	~	T ~	T ~	~	T ~	ND	ND	ND	ND	ND I	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total PCBs	1	1	3.2	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PFAS, NYSDEC Target List 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:	-	T ~	T ~	T ~	T ~	ND	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND
1H,1H,2H,2H-Perfluorooctanesulfonic acid (8:		~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
N-EtFOSAA	~	~	- ~	~	- ~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND
N-MeFOSAA	~	~	~	~	~	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorononanoic acid (PFNA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND 0.000000	ND	ND 0.000017	ND 0.000544	ND	ND 0.000400	0.00094	0.00057	ND	ND 0.0000F0
Perfluoroctanesulfonic acid (PFOS)	~	~	~	~	~	ND	ND ND	ND	ND	ND ND	0.000662	ND ND	0.000317	0.000511	ND ND	0.002460	0.006420	0.002690	ND	0.000350
Perfluoroctanoic acid (PFOA)	~	~	-~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00030	0.00025	ND ND	ND ND
Perfluoropentanoic acid (PFPeA) Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00034	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00030	ND ND
, ,	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00034 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00030 ND	ND ND
Perfluoroundecanoic acid (PFUnA)	~_	_ ~	_ ~	~_		עאו ן	עאו ן	טווו	עאו ן	טאו	טאו	טאו	טאו	ן אט	עאו ן	טאו	טוו ן	ן ואט	עאו	T IND

Sample ID							RD-12 9-11	RD-12 11-:		RD-13 7-9	RD-13 9-11	1	Field Duplica	RD-13 11-13	RD-13 13-1	I	-15 ft	RD-17 7-9 ft	RD-17 9-11 ft	RD-17 13	1-13 ft	RD-17 13-15 ft	RD-18 7-9 ft	RD-18 9-11 ft	RD-18 11-13 ft
York ID	Part 375	Part 37	5 Part 3	75 Par	rt 375	Part 375	22H0553-11	22H0553-		22H0553-14	22H0553-15	1	0553-16	22H0553-17	22H0553-18										
Sampling Date	RRSCOs				SCOs	UUSCOs	8/9/2022	8/9/202		8/9/2022	8/9/2022		/2022	8/9/2022	8/9/2022			8/11/2022	8/11/2022	8/11/2		8/11/2022	8/11/2022	8/11/2022	8/11/2022
Client Matrix							Soil	Soil	Soil	Soil	Soil		Soil	Soil	Soll	Soil		Soil	Soll	Soi		Soil	Soll	Soil	Soil
Compound							Result Q	Result	Q Result Q	Result Q	Result Q	Result	Q	Result Q	Result (Result	Q	Result Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER								1									-			<u> </u>			T		
1,1,1-Trichloroethane	100	500	_		100	0.68	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
1,1-Dichloroethane	26	240		_	19	0.27	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
1,1-Dichloroethylene	100	500			100	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	190		_	47	3.6	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
1,2-Dichlorobenzene	100	500			100	1.1	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
1,2-Dichloroethane	3.1	30	0.02	_	2.3	0.02	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND ND	ND		ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	190	_		47	8.4	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND ND	ND		ND	ND ND	ND	ND ND
1,3-Dichlorobenzene	49	280	_	_	17	2.4	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND ND	ND
1,4-Dichlorobenzene	13	130		-	9.8	1.8	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND ND	ND		ND	ND	ND	ND
1,4-Dioxane	13	130		_	9.8	0.1	ND	ND ND	ND ND	ND	ND	ND ND		ND ND	ND ND	ND		ND ND	ND ND	ND		ND ND	ND	ND ND	ND ND
2-Butanone Acetone	100	500 500	_	_	100	0.12	ND 0.00760 J	ND ND	0.01900 J	ND 0.00650 J	ND ND	ND ND		ND ND	ND ND	ND ND		0.0087 J	ND ND	ND ND		ND ND	ND 0.0062 J	ND ND	0.0081 J
				_																					
Benzene Carbon totraphlarida	4.8 2.4	22	0.06	-	2.9	0.06	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND
Carbon tetrachloride	100	500		_	1.4	1.1			ND ND	ND ND		ND ND	-	ND ND	ND ND	ND ND		ND ND	ND ND			ND ND	ND ND	ND ND	ND ND
Chlorobenzene Chloroform	49	350			100	0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	+	ND ND	ND ND	0.0054	1	0.007 J	0.014 J	ND 0.009		0.005 J	ND ND	ND ND	ND ND
cis-1,2-Dichloroethylene	100	500		_	59	0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	+	ND ND	ND ND	0.0054 ND	,	0.007 J	0.014 J	0.009 ND	,	0.005 J	ND ND	ND ND	ND ND
Ethyl Benzene	41	390		_	30	0.25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	-	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND
Methyl tert-butyl ether (MTBE)	100	500		_	62	0.93	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	+	ND	ND ND	ND		ND	ND ND	ND		ND	ND ND	ND ND	ND ND
Methylene chloride	100	500			51	0.95	0.07 L	0.15	L 0.15 L QM-07	0.07 L	0.09 L QM-07	0.07	L QM-07	0.10 L QM-07	0.09 L QN		_ QM-07	0.11 L QM-07			L QM-07	0.048 L QM-07		ND ND	0.019 L
Naphthalene	100	500		_	100	12	ND	ND	ND ND	ND L	ND	ND	L QIVI-07	ND	ND LQ	ND	_ QIVI-O1	ND L QWF07	ND EQWI-01	ND	L QIVI-O1	ND L QWI-07	ND ND	ND	ND E
n-Butylbenzene	100	500	_		100	12	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND ND	ND	ND
n-Propylbenzene	100	500		_	100	3.9	ND	ND	ND ND	ND	ND	ND		ND	ND	ND		ND	ND ND	ND		ND	ND	ND	ND
o-Xylene	~	~	~	_	~	~	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND ND	ND	ND
p- & m- Xvlenes	-	~	~		~	~	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
sec-Butylbenzene	100	500	11	-	100	11	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND ND	ND	ND
tert-Butylbenzene	100	500		_	100	5.9	ND	ND	ND ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND.	ND	ND
Tetrachloroethylene	19	150		_	5.5	1.3	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND ND	ND	ND
Toluene	100	500	_	_	100	0.7	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
trans-1,2-Dichloroethylene	100	500		-	100	0.19	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Trichloroethylene	21	200			10	0.47	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Vinyl Chloride	0.9	13	_	_	0.21	0.02	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Xylenes, Total	100	500			100	0.26	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil																•									
1,4-Dioxane	13	130	0.1		9.8	0.1	ND	ND	ND	ND	ND	ND	I	ND	ND	ND	П	ND	ND	ND		ND	ND	ND	ND
SVOA, 8270 MASTER												_													
2-Methylphenol	100	500	0.33	3 2	100	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
3- & 4-Methylphenols	100	500	_	_	34	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Acenaphthene	100	500			100	20	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Acenaphthylene	100	500			100		0.00760 J	ND	0.01900 J	0.00650 J	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Anthracene	100	500			100	100	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	0.0728 J	ND	ND
Benzo(a)anthracene	1	5.6	1		1	1	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.111	ND	ND		ND	0.151	ND	ND
Benzo(a)pyrene	1	1	22		1	1	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.107	ND	ND		ND	0.121	ND	ND
Benzo(b)fluoranthene	1	5.6	1.7		1	1	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.0745 J	ND	ND		ND	0.105	ND	ND
Benzo(g,h,i)perylene	100	500	100	0 :	100	100	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.0787 J	ND	ND		ND	0.0953	ND	ND
Benzo(k)fluoranthene	3.9	56	1.7		1	0.8	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.116	ND	ND		ND	0.13	ND	ND
Chrysene	3.9	56	1		1	1	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.122	ND	ND		ND	0.159	ND	ND
Dibenzo(a,h)anthracene	0.33	0.56	100	0 0	0.33	0.33	0.07 L	0.15	L 0.15 L QM-07	0.07 L	0.09 L QM-07	0.07	L QM-07	0.10 L QM-07	0.09 L QN	M-07 ND		ND	ND	ND		ND	ND	ND	ND
Dibenzofuran	59	350	210)	14	7	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Fluoranthene	100	500	100	0 :	100	100	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.236	ND	ND		ND	0.349	ND	ND
Fluorene	100	500	386	3 :	100	30	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Hexachlorobenzene	1.2	6	3.2		0.33	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2		0.5	0.5	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.0648 J	ND	ND		ND	0.1	ND	ND
Naphthalene	100	500	12		100	12	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Pentachlorophenol	6.7	6.7	0.8		2.4	0.8	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
Phenanthrene	100	500	100	0 :	100	100	ND	ND	ND	ND	ND	ND		ND	ND	ND		0.139	ND	ND		ND	0.249	ND	ND
Phenol	100	500	0.33	3 :	100	0.33	ND	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND		ND	ND	ND	ND
			100	0 :	100	100																ND			ND

Sample ID						RD-12 9-11	RD-12 11-13	RD-12 13-15	RD-13 7-9	RD-13 9-11	0-13 9-11 Field Duplica		RD-13 13-15	RD-16 13-15 ft	RD-17 7-9 ft	RD-17 9-11 ft	RD-17 11-13 ft	RD-17 13-15 ft	RD-18 7-9 ft	RD-18 9-11 ft	RD-18 11-13 ft
York ID	Part 375	Part 375	Part 375	Part 375	Part 375	22H0553-11	22H0553-12	22H0553-13	22H0553-14	22H0553-15	22H0553-16	22H0553-17	22H0553-18	0.44.0000	0/44/0000	0.44.6000	0.44.40000	0.44.40000	0/44/0000	0.44.40000	0.44.0000
Sampling Date Client Matrix	RRSCOs	CSCOs	PGSC0s	RSC0s	UUSC0s	8/9/2022 Soll	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/9/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil
Compound	-					Result 0		Result 0			Result 0	Result Q	Result 0	Result 0	Result Q		Result 0	Result 0	Result Q	Result 0	Result Q
PEST, 8081 MASTER						, , , , , , , , , , , , , , , , , , ,	1.000.0		1100010	1100011	1,1000.0	1100001	1100000	1100011	111111111111111111111111111111111111111	110000	1.054	, modern	1,000.0	1100011	1.000.0
4,4'-DDD	13	92	14	2.6	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	8.9	62	17	1.8	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	7.9	47	136	1.7	0.0033	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin alpha-BHC	0.097	0.68 3.4	0.19	0.019	0.005	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
alpha-Chlordane	4.2	24	2.9	0.037	0.02	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND
beta-BHC	0.36	3	0.09	0.072		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta-BHC	100	500	0.25	100	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	0.2	1.4	0.1	0.039	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	24	200	102	4.8	2.4	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND
Endosulfan II Endosulfan sulfate	24	200	102 1000	4.8		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endrin	11	89	0.06	2.2	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane)	1.3	9.2	0.1	0.28	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	2.1	15	0.38	0.42	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals, NYSDEC Part 375							T		1	1	1	I	I		T	T	1	1	I	1	1
Arsenic	16 400	16 400	16 820	16 350	13 350	ND 16	ND 14	ND 30	ND 14	ND	ND 13	ND 22	ND	ND 19.4	ND 37.5	2.43	ND 17.9	ND 13.7	ND 262	ND 43.8	ND 11.8
Barium Beryllium	72	590	820 47	14	7.2	16 ND	ND ND	20 ND	ND	21 ND	13 ND	23 ND	22 ND	19.4 ND	37.5 ND	ND ND	17.8 ND	13.7 ND	262 ND	43.8 ND	11.8 ND
Cadmium	4.3	9.3	7.5	2.5	2.5	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	0.323	ND ND
Chromium	~	~	~	~	~	9.0	9.5	8.2	7.5	8.9	9.5	11.6	8.8	9.47	16.9	9.29	9.2	11.4	17.2	15.8	6.9
Copper	270	270	1720	270		9.2	9.0	8.1	6.4	7.9	6.7	16.2	8.4	8.35	8.88	8.67	10.5	7	19.6	14.6	7.37
Lead	400	1000	450	400	63	9	6	3	4	9	5	8	5	3.89 B	6.85	8.29	4.86	3.87	168	9.14	3.33
Manganese	2000	10000	2000	2000		227	172	248	198 16.8	225	212	226	209	250	218	214	279	80.1	520	152	75.9
Nickel Selenium	310 180	310 1500	130	140 36	30	16.6 ND	21.1 ND	14.2 ND	16.8 ND	15.3 ND	19.1 ND	15.8 ND	20.2 ND	17.1 ND	17.4 ND	12.1 ND	12.8 ND	13.7 ND	12.5 ND	19.5 ND	9.8 ND
Silver	180	1500	8.3	36	2	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc	10000	10000	2480	2200	109	15	14	14	14	19	17	17	14	13.6	23	14.8	14.5	10.7	134	75.4	10.3
Mercury by 7473																					
Mercury	0.81	2.8	0.73	0.81	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0337	ND	ND	ND	0.0611	ND	ND
Chromium, Hexavalent	1 440	100	1 40	1 00	1 4	4	T 4	4	1 4	1 4	T 4	1 4		ND	L ND	L ND	L	L ND	L	L ND	L ND
Chromium, Hexavalent Chromium, Trivalent	110	400	19	22	1	1	1	1	1	1	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND
Chromium, Trivalent	180	1500	T ~	36	30	9.0	9.5	8.2	7.5	8.9	9.5	11.6	8.8	ND	ND	ND	ND	ND	ND	ND	ND
Cyanide, Total																					
Cyanide, total	27	27	40	27	27	1	1	1	1	1	1	1	1	96.3	93.9	96.2	96.1	94.7	91.3	97.3	96.9
Total Solids (%)																					
% Solids	~	~	~	~	~	98.2	92.5	87.9	96.7	96.8	97.2	97.5	95.7								
HERB, 8151 MASTER			T	1	1		1		T	I	1	T	T	T	1	T	1	T	T	1	1
2,4,5-TP (Silvex) PCB, 8082 MASTER	100	500	3.8	58	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1016	T ~	~	Τ ~	T ~	T ~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	~	~	~	~	-	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND
Aroclor 1232	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	~	~	~	-	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254 Aroclor 1260	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total PCBs	1	1	3.2	1	0.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
PFAS, NYSDEC Target List					,										· · · · · · · · · · · · · · · · · · ·						
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:	-	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:		~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-EtFOSAA N-MeFOSAA	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	-	~	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND
Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoronexanesultonic acid (PFHxS) Perfluoronexanoic acid (PFHxA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
Perfluorononanoic acid (PFNA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	0.00069	0.00041	ND	0.00045	ND	0.00192	0.00151	0.00143
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00031	ND
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	ND ND	ND 0.00036	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorotridecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
. S GOTOGNACOGNOTO GOTO (FT ONA)	1		1		1	טוו	1 110	110	110	1 110	1 140	שוו	1 110	שוו	שוו	I NO	110	שוו	1 110	1110	שוו

Sample ID						RD-18 13-15 ft	RD-19 7-9 ft	RD-19 9-11 ft	RD-19 11-13 ft	RD-19 13-15 ft	RD-20 7-9 ft	RD-20 9-11 ft	RD-20 11-13 ft	RD-20 13-15 ft	RD-21 7-9 ft	RD-22 (7-9)	RD-22 (9-11)	RD-22 (11-13)	RD-22 (13-15)	RD-15A (7-9)	RD-15A (9-11)
York ID	Part 375	Part 375	Part 375	Part 3	75 Part 375																
Sampling Date	RRSCOs	CSCOs	PGSCOs	RSCO	s UUSCOs	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022 Soll	8/11/2022 Soil	8/11/2022 Soil	8/11/2022	8/11/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022 Soil	8/25/2022	8/25/2022
Client Matrix Compound						Soll	Soil	Soll	Soil Result 0	Soil				Soll	Soll	Soil	Soll	Soil Result 0	Jon	Soil Result 0	Soll
VOA, 8260 MASTER						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1.1.1-Trichloroethane	100	500	0.68	100	0.68	ND	I ND	ND	ND	l ND	ND	ND	I ND	ND	I ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,1-Dichloroethane	26	240	0.27	19		ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1.1-Dichloroethylene	100	500	0.33	100	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,2,4-Trimethylbenzene	52	190	3.6	47		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,2-Dichlorobenzene	100	500	1.1	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,2-Dichloroethane	3.1	30	0.02	2.3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,3,5-Trimethylbenzene	52	190	8.4	47		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,3-Dichlorobenzene	49	280	2.4	17	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,4-Dichlorobenzene	13	130	1.8	9.8		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
1,4-Dioxane 2-Butanone	13 100	130 500	0.1	9.8		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.053 UJ 0.0026 U	0.044 UJ 0.0022 U	0.064 UJ 0.0032 U	0.058 UJ 0.0029 U	0.049 UJ 0.0024 U	0.053 UJ 0.0026 U
	100		0.12	100		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0088 J	0.0083 J		0.0078 J	0.0026 0	0.0022 U	0.0032 U	0.0029 U	0.0024 0	0.0026 0
Acetone Benzene	4.8	500 44	0.05	2.9		ND	ND ND	ND ND	ND	ND ND	ND ND	ND	0.0083 J	0.005 J ND	0.0078 J	0.0011 0.0026 U	0.0044 U	0.0064 U	0.0099 J	0.014 0.0024 U	0.0027 0.0026 U
Carbon tetrachloride	2.4	22	0.76	1.4	_	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Chlorobenzene	100	500	1.1	100		ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Chloroform	49	350	0.37	10		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
cis-1,2-Dichloroethylene	100	500	0.25	59	0.25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Ethyl Benzene	41	390	1	30		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Methyl tert-butyl ether (MTBE)	100	500	0.93	62		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Methylene chloride	100	500	0.05	51	_	ND	ND	ND	0.018 L	0.046 L	0.027 L	0.041 L	0.035 L	0.026 L	0.038 L	0.0053 U	0.0044 U	0.029	0.0058 U	0.0049 U	0.0053 U
Naphthalene	100	500	12	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
n-Butylbenzene	100	500	12	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NB	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U 0.0026 U
n-Propylbenzene o-Xylene	100	500	3.9	100	3.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0026 U	0.0022 U 0.0022 U	0.0032 U 0.0032 U	0.0029 U 0.0029 U	0.0024 U 0.0024 U	0.0026 U 0.0026 U
p- & m- Xylenes	- ~	~	~	~		ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	0.0028 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
sec-Butylbenzene	100	500	11	100	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0039 U	0.0024 U	0.0035 U
tert-Butylbenzene	100	500	5.9	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Tetrachloroethylene	19	150	1.3	5.5	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 UJ	0.0022 UJ	0.0032 UJ	0.0029 UJ	0.0024 UJ	0.0026 UJ
Toluene	100	500	0.7	100	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
trans-1,2-Dichloroethylene	100	500	0.19	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Trichloroethylene	21	200	0.47	10		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 U	0.0022 U	0.0032 U	0.0029 U	0.0024 U	0.0026 U
Vinyl Chloride	0.9	13	0.02	0.22		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0026 UJ	0.0022 UJ	0.0032 UJ	0.0029 UJ	0.0024 UJ	0.0026 UJ
Xylenes, Total	100	500	1.6	100	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0079 U	0.0067 U	0.0096 U	0.0088 U	0.0073 U	0.0079 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	12	130	0.1	9.8	0.1	ND	I ND	I ND	I ND	ND	I ND	I ND	I ND	I ND	T ND	0.0198 U	0.0198 U	0.0196 U	0.0189 U	0.0196 U	0.0198 U
SVOA, 8270 MASTER	1 13	130	0.1	9.0	0.1	ND	IND	IND	IND	IND	IND	IND	IND	IND	IND	0.0196 0	0.0198 0	0.0196 0	0.0169 0	0.0196 0	0.0198
2-Methylphenol	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
3- & 4-Methylphenols	100	500	0.33	34		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Acenaphthene	100	500	98	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Acenaphthylene	100	500	107	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Anthracene	100	500	1000	_	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Benzo(a)anthracene	1	5.6	1	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.071 JD	0.0463 JD	_	0.0524 U	0.0564 JD	0.0456 U
Benzo(a)pyrene	1	1	22	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0753 JD	0.044 U	0.0534 JD	0.0524 U	0.0535 JD	0.0456 U
Benzo(b)fluoranthene	1 100	5.6	1.7	1 100	1 100	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	0.0575 JD	0.044 U	0.0532 U	0.0524 U	0.0456 JD	0.0456 U
Benzo(g,h,i)perylene	100 3.9	500 56	1000	100	0.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0547 UJ 0.0583 JD	0.044 UJ 0.044 U	0.0532 UJ 0.0532 U	0.0524 UJ 0.0524 U	0.0454 UJ 0.0454 U	0.0456 UJ 0.0456 U
Benzo(k)fluoranthene Chrysene	3.9	56	1.7	1		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0583 JD 0.0682 JD	0.0442 JD	0.0532 U 0.0585 JD	0.0524 U	0.0454 U	0.0456 U
Dibenzo(a.h)anthracene	0.33	0.56	1000			ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	0.0445 U	0.0442 JD	0.0532 U	0.0524 U	0.0393 JD	0.0456 U
Dibenzofuran	59	350	210	14		ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Fluoranthene	100	500	1000	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.107 D	0.0764 JD	0.0958 JD	0.0524 U	0.0955 D	0.0456 U
Fluorene	100	500	386	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Hexachlorobenzene	1.2	6	3.2	0.33	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0618 UJ	0.044 UJ	0.0532 UJ	0.0524 UJ	0.0454 UJ	0.0456 UJ
Naphthalene	100	500	12	100		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Pentachlorophenol	6.7	6.7	0.8	2.4	_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0445 UJ	0.044 UJ	0.0532 UJ	0.0524 UJ	0.0454 UJ	0.0456 UJ
Phenanthrene	100	500	1000		_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0497 JD	0.0554 JD	0.0619 JD	0.0524 U	0.0629 JD	0.0456 U
Phenol	100	500	0.33	100	_	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	0.0445 U	0.044 U	0.0532 U	0.0524 U	0.0454 U	0.0456 U
Pyrene	100	500	1000	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.114 D	0.0799 JD	0.095 JD	0.0524 U	0.108 D	0.0456 U

Table 2 Supplemental Soil Sampling Results - Remedial Delineation Borings Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID							RD-18 13-15 ft	RD-19 7-9 ft	RD-19 9-11 ft	RD-19 11-13 ft	RD-19 13-15 ft	RD-20 7-9 ft	RD-20 9-11 ft	RD-20 11-13 ft	RD-20 13-15 ft	RD-21 7-9 ft	RD-22 (7-9)	RD-22 (9-11)	RD-22 (11-13)	RD-22 (13-15)	RD-15A (7-9)	RD-15A (9-11)
York ID	D. 4 075	D. 4 075				0.75													(,	(, , , , , , , ,		1.5 _5.1(6 _5,
Sampling Date	Part 375	CSCOs				Part 375 UUSCOs	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022
Client Matrix	11110000	35555	. 4555			-	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound							Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
PEST, 8081 MASTER	1 40	- 00	1 44			0.0000	ND	L	L ND	ND	L	ND.	I ND	ND	L ND	NID.	T 0 00474 III	0.00470	T 0 00044 II	T 0 00000 11	10,00400 11	0.00470
4,4'-DDD 4,4'-DDE	13 8.9	92 62	14			0.0033	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00174 U 0.00174 U		0.00211 U 0.00211 U	0.00206 U 0.00206 U	0.00182 U 0.00182 U	0.00179 U 0.00179 U
4,4'-DDT	7.9	47	136	_		0.0033	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	
Aldrin	0.097	0.68	0.19	_		0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	
alpha-BHC	0.48	3.4	0.02	_	97	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	
alpha-Chlordane	4.2	24	2.9	0.9	91	0.094	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U	0.00176 U	0.00211 U	0.00206 U	0.00182 U	0.00179 U
beta-BHC	0.36	3	0.09	_		0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	_
delta-BHC	100	500	0.25	_		0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	0.00179 U
Dieldrin	0.2	1.4	0.1	_		0.005	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	
Endosulfan II	24	200	102 102			2.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00174 U 0.00174 U		0.00211 U	0.00206 U 0.00206 U	0.00182 U 0.00182 U	0.00179 U 0.00179 U
Endosulfan sulfate	24	200	1000	_		2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	0.00179 U
Endrin	11	89	0.06			0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	0.00179 U
gamma-BHC (Lindane)	1.3	9.2	0.1	_		0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U		0.00211 U	0.00206 U	0.00182 U	
Heptachlor	2.1	15	0.38	3 0.4	42	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00174 U	0.00176 U	0.00211 U	0.00206 U	0.00182 U	0.00179 U
Metals, NYSDEC Part 375																						
Arsenic	16	16	16	_	.6	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.69 U		1.93 U	2.02 U	2.31	1.68 U
Barium	400	400	820	_		350	24.5	13.3	20.7	17.5	18.4	62.4	15.5	24.7	30.6	19.5	131	68.2	34.8	15.1	144	44.7
Beryllium	72	590	47	_	.4	7.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.056 U		0.064 U	0.067 U	0.057 U	
Chromium	4.3	9.3	7.5		.5	2.5	ND 10.7	ND 7.89	ND 12.3	ND 12.6	ND 9.61	ND 11.7	ND 9.92	ND 12.5	ND 10.1	ND 9.64	0.416	0.333 U	0.385 U 13.4	0.404 U 11.7	0.363 17.2	0.336 U 21.2
Chromium Copper	270	270	1720		70	50	9.77	7.89	9.07	9.01	7.18	11.7	8.39	9.84	18.1	10.8	19.4 24.2	18.3 14.3	13.4	8.81	25.8	9.78
Lead	400	1000	450	_		63	4.45	4.53	6.87	5.22	3.81	21.2	4.57	5.68	4.84	6.39	134	38.6	8.68	4.99	25.8 258	12.4
Manganese	2000	10000	2000	_		1600	157	232	315	209	338	338	248	306	377	169	332	300	557	150	565	207
Nickel	310	310	130) 14	40	30	21.1	15	14.3	12.1	13.9	12.7	11.2	20.1	19.5	15.5	16.6 B	17.1 B	26.2 B	16 B	14.7 B	16.1 B
Selenium	180	1500	4	3	6	3.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.82 U	2.77 U	3.21 U	3.36 U	2.86 U	2.8 U
Silver	180	1500	8.3	_	16	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.565 U		0.642 U	0.673 U	0.573 U	0.561 U
Zinc	10000	10000	2480	0 22	200	109	15.9	13	14.5	14.5	11.6	40.7	14.5	13.6	13.4	14.9	158	52.4	20.5	15.3	98.1	34.1
Mercury by 7473	T							T	1		T	T	1		T		T	1	T	T		
Mercury Chromium Hayayalant	0.81	2.8	0.73	3 0.8	81	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	0.044	0.0385 U	0.0383 U	0.236	0.0331 U
Chromium, Hexavalent Chromium, Hexavalent	110	400	19	1 2	2	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.536 U	0.536 U	0.642 U	0.639 U	0.553 U	0.551 U
Chromium, Trivalent	110	400	15		.2		ND	IND	ND	ND	ND	IND	1 140	ND	IND	ND	0.550	0.550	0.042 0	0.059	0.555	0.551
Chromium, Trivalent	180	1500	~	3	6	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.4	18.3	13.4	11.7	17.2	21.2
Cyanide, Total	<u> </u>		_	_							_		'							•	•	
Cyanide, total	27	27	40	2	.7	27	88.3	97.2	96.7	96.8	82.3	95.2	96.9	96.8	89.3	97.5	0.536 U	0.536 U	0.642 U	0.639 U	0.553 U	0.551 U
Total Solids (%)																						
% Solids	~	~	~		~	~											93.2	93.2	77.9	78.3	90.3	90.7
HERB, 8151 MASTER																						
2,4,5-TP (Silvex)	100	500	3.8	5	8	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0209 U	0.021 U	0.0255 U	0.0249 U	0.0215 U	0.0218 U
PCB, 8082 MASTER																						
Aroclor 1016	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0175 U		0.0213 U	0.0208 U	0.0184 U	
Aroclor 1221	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0175 U		0.0213 U	0.0208 U	0.0184 U	
Aroclor 1232 Aroclor 1242	~	~	~	_	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0175 U 0.0175 U		0.0213 U 0.0213 U	0.0208 U 0.0208 U	0.0184 U 0.0184 U	0.0181 U 0.0181 U
Aroclor 1242 Aroclor 1248	~	~	~	_	-	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0175 U		0.0213 U	0.0208 U	0.0184 U	0.0181 U
Aroclor 1254	~	~	~		- +	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0175 U		0.0213 U	0.0208 U	0.0184 U	0.0181 U
Aroclor 1260	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.024	0.0178 U	0.0213 U	0.0208 U	0.0184 U	0.0181 U
Total PCBs	1	1	3.2	1	1	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.024	0.0178 U	0.0213 U	0.0208 U	0.0184 U	0.0181 U
PFAS, NYSDEC Target List	J						ND	L ND	l ND	NID.	I ND	L ND	L NID		L	NID.	L 0 00007	0.0000=	1 0 00001	L 0 00000	L 0 00007	1 0 00000 :::
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8		~	- ~	_	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		0.00025 UJ	0.00031 UJ	0.00029 UJ	0.00027 UJ	
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6: N-EtFOSAA	~	~	~	_	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00027 U 0.00027 UJ		0.00031 U 0.00031 UJ	0.00029 U 0.00029 UJ	0.00027 U 0.00027 UJ	
N-MeFOSAA N-MeFOSAA	~	~	~	_	-	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00027 UJ		0.00031 UJ	0.00029 UJ	0.00027 UJ	
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~		-	~	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluorobutanesulfonic acid (PFBS)	~	~	~	_	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U	0.00025 U	0.00031 U	0.00029 U	0.00027 U	
Perfluorodecanoic acid (PFDA)	~	~	~	^	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluorododecanoic acid (PFDoA)	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluoroheptanoic acid (PFHpA)	~	~	~	_	~	~	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	~	~	~	_	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00027 U 0.00027 U		0.00031 U 0.00031 U	0.00029 U 0.00029 U	0.00027 U 0.00027 U	
Perfluoronexanoic acid (PFHxA) Perfluoro-n-butanoic acid (PFBA)	~	~	- ~	_	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00027 U		0.00031 U	0.00029 U 0.00029 U	0.00027 U	
Perfluorononanoic acid (PFNA)	~	~	~		+	~	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluorooctanesulfonic acid (PFOS)	~	~	~		-	~	0.00657	0.00129	0.00062	0.00203	ND	0.00615	0.00501	0.00312	0.00032	ND	0.00027	0.00023	0.00031 U	0.00029 U	0.00027 U	
Perfluorooctanoic acid (PFOA)	~	~	~	<u> </u>	-	~	ND	ND	ND	ND	ND	0.00035 PF-LCS-H			ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
Perfluoropentanoic acid (PFPeA)	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U	0.00025 U	0.00031 U	0.00029 U	0.00027 U	0.00026 U
Perfluorotetradecanoic acid (PFTA)	~	~	~		~]	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	0.00026 U
Perfluorotridecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnA)	~	~	~		~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U		0.00031 U	0.00029 U	0.00027 U	
	~	~	~	I ~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00027 U	0.00025 U	0.00031 U	0.00029 U	0.00027 U	0.00026 U

Sample ID						RD-1	.5A (11-13)	RD-15A (13-15)	RD-15B (7-9)	RD-15B (9-11)	RD-15B (11-13)	RD-15B (13-1	5) RD-15C (7-9	9)	RD-15C (9-11)	RD-15C (11-13)	RD-15C (13-15)	RD-15D (7-9)	RD-15D (9-11)	RD-15D (11-13)	RD-15D (13-15)	RD-15B (9-11) Field Du	RD-10A (9-11)
York ID Sampling Date		Part 375	Part 375	Part 37		Ω/	25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	,	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/25/2022	8/26/2022
Client Matrix	RRSCOs	CSCOs	PGSCOs	RSCO	s UUSCOs	3	Soll	Soil	Soll	Soll	Soll	Soll	Soll	-	Soll	Soll	Soll	Soil	Soll	Soll	Soll	Soll	Soil
Compound						Resul	t Q	Result Q	Result Q	Result Q	Result Q	Result (Result	Q Re	Result Q	Result Q							
VOA, 8260 MASTER																							
1,1,1-Trichloroethane	100	500	0.68	100		_		0.0026 U	0.0027 U	0.0028 U	0.0026 U	******	J 0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
1,1-Dichloroethane 1.1-Dichloroethylene	26 100	240 500	0.27	19 100	0.27	0.002		0.0026 U 0.0026 U	0.0027 U 0.0027 U	0.0028 U 0.0028 U	0.0026 U 0.0026 U	0.0026	J 0.0021 J 0.0021		0.0029 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0025 U 0.0025 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6	0.002		0.0026	0.0027 U	0.0028	0.0026		0.0021		0.0029 U	0.0028	0.0027 U 0.0027 U	0.0025 U	0.0028	0.0025	0.0025 U	0.0028 U	0.0027 U
1,2-Dichlorobenzene	100	500	1.1	100		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0026		0 0.	0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 UJ	0.0025 UJ	0.0025 UJ	0.0028 UJ	0.0027 U
1,2-Dichloroethane	3.1	30	0.02	2.3				0.0026 U	0.0027 U	0.0028 U	0.0026 U		0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
1,3,5-Trimethylbenzene	52	190	8.4	47	_	0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U		0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
1,3-Dichlorobenzene	49	280	2.4	17		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	***************************************	0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 UJ	0.0025 UJ	0.0025 UJ	0.0028 UJ	0.0027 U
1,4-Dichlorobenzene	13 13	130 130	1.8 0.1	9.8		0.002		0.0026 U 0.051 UJ	0.0027 U 0.054 UJ	0.0028 U 0.055 UJ	0.0026 U 0.052 UJ	0.0026 0.051			0.0029 U 0.059 UJ	0.0028 U 0.055 UJ	0.0027 U 0.055 U	0.0025 U 0.051 U	0.0028 UJ 0.056 UJ	0.0025 UJ	0.0025 UJ 0.051 UJ	0.0028 UJ 0.056 UJ	0.0027 U 0.053 U
2-Butanone	100	500	0.12	100				0.0026 U	0.0027 U	0.0038 U	0.0026 U	+	0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0037 U
Acetone	100	500	0.05	100	_	0.005		0.0051 U	0.0054 U	0.0069 J	0.0078 J	0.0054	0.0043		0.0059 U	0.0055 U	0.0055 U	0.0051 U	0.011 J	0.005 UJ	0.0051 UJ	0.015 J	0.018
Benzene	4.8	44	0.06	2.9	0.06	0.002	5 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0026	0.0021	U 0.0	0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Carbon tetrachloride	2.4	22	0.76	1.4		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U		0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Chlorobenzene	100	500	1.1	100		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0020	0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Chloroform cis-1.2-Dichloroethylene	49 100	350 500	0.37 0.25	10 59		0.002		0.0026 U 0.0026 U	0.0027 U 0.0027 U	0.0028 U 0.0028 U	0.0026 U 0.0026 U	0.0020	J 0.0021 J 0.0021		0.0029 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0025 U 0.0025 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U
Ethyl Benzene	41	390	1	30	1	0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U		J 0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Methyl tert-butyl ether (MTBE)	100	500	0.93	62	0.93	0.002	5 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U		0.0021	U 0.0	0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Methylene chloride	100	500	0.05	51	0.05	0.005	1 U	0.0051 U	0.0054 U	0.0055 U	0.0052 U	0.0051	0.0044	J 0	0.008 J	0.0055 U	0.0068 J	0.0051 U	0.0056 U	0.0083 J	0.01	0.0056 U	0.021
Naphthalene	100	500	12	100	_	0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0020	0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
n-Butylbenzene	100	500	12	100		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0020	J 0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 UJ	0.0025 UJ	0.0025 UJ	0.0028 UJ	0.0027 U
n-Propylbenzene o-Xylene	100	500	3.9	100	3.9	0.002		0.0026 U	0.0027 U 0.0027 U	0.0028 U	0.0026 U 0.0026 U		J 0.0021 J 0.0021		0.0029 U	0.0028 U	0.0027 U 0.0027 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0025 U 0.0025 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U
p- & m- Xvlenes	~	~	~	- ~	- ~	0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U		J 0.0021 J 0.0043		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
sec-Butylbenzene	100	500	11	100	11	0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U		0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
tert-Butylbenzene	100	500	5.9	100	5.9	0.002	5 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0026	0.0021	U 0.0	0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Tetrachloroethylene	19	150	1.3	5.5	1.3	0.002	5 UJ	0.0026 UJ	0.0027 UJ	0.0028 UJ	0.0026 UJ	0.0026 l	J 0.0021 I	UJ O.	0.0029 UJ	0.0028 UJ	0.0027 UJ	0.0025 UJ	0.0028 UJ	0.0025 UJ	0.0025 UJ	0.0028 UJ	0.0027 U
Toluene	100	500	0.7	100		0.002		0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0026	0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
trans-1,2-Dichloroethylene	100	500	0.19	100				0.0026 U	0.0027 U	0.0028 U	0.0026 U		J 0.0021 J 0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Trichloroethylene Vinyl Chloride	0.9	200	0.47	0.21	0.47	0.002		0.0026 U 0.0026 UJ	0.0027 U 0.0027 UJ	0.0028 U 0.0028 UJ	0.0026 U 0.0026 UJ	0.0020	0.0021		0.0029 U 0.0029 UJ	0.0028 U 0.0028 UJ	0.0027 U 0.0027 UJ	0.0025 U 0.0025 UJ	0.0028 U 0.0028 U	0.0025 U 0.0025 U	0.0025 U 0.0025 U	0.0028 U 0.0028 U	0.0027 U 0.0027 U
Xylenes, Total	100	500	1.6	100				0.0020 U	0.0027 U	0.0028 U	0.0026 U		0.0021		0.0029 U	0.0028 U	0.0027 U	0.0025 U	0.0028 U	0.0025 U	0.0025 U	0.0028 U	0.0027 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-So																							
1,4-Dioxane	13	130	0.1	9.8	0.1	0.019	2 U	0.019 U	0.0198 U	0.0192 U	0.0198 U	0.0196	0.0198	U 0.0	0.0198 U	0.0198 U	0.0196 U	0.0194 U	0.0196 U	0.0198 U	0.0198 U	0.0192 U	0.0185 U
SVOA, 8270 MASTER																							
2-Methylphenol	100	500	0.33	100				0.0424 U	0.0447 U	0.0459 U	0.0435 U	****	0.0458		0.0517 U	0.0431 U	0.0432 U	0.0446 U	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
3- & 4-Methylphenols	100	500	0.33 98	34 100		0.041		0.0424 U	0.0447 U	0.0459 U	0.0435 U	0.0 120	J 0.0458 J 0.0458		0.0517 U	0.0431 U	0.0432 U	0.0446 U 0.0477 JD	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Acenaphthene Acenaphthylene	100	500	107	100		0.041		0.0424 U	0.0447 U	0.0459 U	0.0435 U		J 0.0458		0.0517 U	0.0431 U	0.0432 U	0.0477 JD	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Anthracene	100	500	1000	100		0.041		0.0424 U	0.0447 U	0.0459 U	0.0435 U	0.0423	0.0458		0.0517 U	0.0991 D	0.0432 U	0.177 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Benzo(a)anthracene	1	5.6	1	1	1	0.041		0.0424 U	0.087 JD	0.0459 U	0.0618 JD	0.0423	0.0458		0.0517 U	0.237 D	0.0432 U	0.506 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Benzo(a)pyrene	1	1	22	1	1	0.041		0.0424 U	0.087 JD	0.0459 U	0.0562 JD	0.0423			0.0517 U	0.226 D	0.0432 U	0.485 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Benzo(b)fluoranthene	1	5.6	1.7	1	1	0.041		0.0424 U	0.0692 JD	0.0459 U	0.0465 JD	0.0420	0.0458		0.0517 U	0.172 D	0.0432 U	0.432 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Benzo(g,h,i)perylene	100	500	1000	100	100	0.041		0.0424 U	0.0549 JD	0.0459 U	0.0435 U	0.0423			0.0517 U	0.128 D	0.0432 U	0.35 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Benzo(k)fluoranthene Chrysene	3.9	56 56	1.7	1	0.8	0.0419		0.0424 U 0.0424 U	0.0813 JD 0.0898 D	0.0459 U 0.0459 U	0.0514 JD 0.0514 JD	0.0 120	J 0.0458 J 0.0458	0.	0.0517 U 0.0517 U	0.171 D 0.248 D	0.0432 U 0.0432 U	0.412 D 0.501 D	0.0432 U 0.0432 U	0.0426 U 0.0426 U	0.0426 U	0.046 U	0.0431 U 0.0431 U
Dibenzo(a.h)anthracene	0.33	0.56	1000	0.33				0.0424 U	0.0898 D	0.0459 U	0.0514 JD	****	J 0.0458		0.0517 U	0.248 D	0.0432 U	0.0562 JD	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Dibenzofuran	59	350	210	14	7	0.041		0.0424 U	0.0447 U	0.0459 U	0.0435 U		0.0458		0.0517 U	0.0431 U	0.0432 U	0.0446 U	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Fluoranthene	100	500	1000	100	100	0.041	9 U	0.0424 U	0.154 D	0.0459 U	0.128 D	0.0423	0.0458		0.0517 U	0.484 D	0.0432 U	0.93 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Fluorene	100	500	386	100		0.041		0.0424 U	0.0447 U	0.0459 U	0.0435 U	0.0	0.0458		0.0517 U	0.0468 JD	0.0432 U	0.0648 JD	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Hexachlorobenzene	1.2	6	3.2	0.33				0.0424 U	0.0447 U	0.0459 U	0.0435 U	0.0425	0.0458		0.0517 U	0.0431 U	0.0432 U	0.0446 U	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	_	0.041		0.0424 U	0.0456 JD	0.0459 U	0.0435 U	0.0423	0.0 100	-	0.0517 U	0.164 D	0.0432 U	0.431 D	0.0432 U	0.0426 UJ	0.0426 U	0.046 UJ	0.0431 U
Naphthalene Pentachlorophenol	100 6.7	500 6.7	0.8	100 2.4		0.041		0.0424 U 0.0424 U	0.0447 U 0.0447 U	0.0459 U 0.0459 U	0.0435 U 0.0435 U	0.0 120	J 0.0458 J 0.0458	0 0.	0.0517 U 0.0517 U	0.0431 U 0.0431 U	0.0432 U 0.0432 U	0.0446 U 0.0446 U	0.0432 U 0.0432 U	0.0426 U 0.0426 UJ	0.0426 U 0.0426 U	0.046 U 0.046 UJ	0.0431 U 0.0431 U
Phenanthrene	100	500	1000	100		0.041		0.0424 U	0.112 D	0.0459 U	0.0433 D		J 0.0458		0.0517 U	0.0431 U	0.0432 U	0.708 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
Phenol	100	500	0.33	100				0.0424 U	0.0447 U	0.0459 U	0.0435 U		0.0458		0.0517 U	0.0431 U	0.0432 U	0.0446 U	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U
	100	500	1000				9 U	0.0424 U	0.129 D	0.0459 U	0.112 D	0.0423	0.0458		0.0517 U	0.495 D	0.0432 U	0.908 D	0.0432 U	0.0426 U	0.0426 U	0.046 U	0.0431 U

Sample ID							RD-15A (11-13) RD-15A (1	.3-15)	RD-15B (7-9)	RD-15B (9-11)	RD-15B (11	-13)	RD-15B (13	3-15)	RD-15C (7-9)		RD-15C (9-11)	RD-15C ((11-13)	RD-15C (13-1	.5) RD	-15D (7-9)	RD-15D (9-1	L) RD-15D (11-13)	RD-15D (13	-15) RE	D-15B (9-11) Field D	ur RD-10	OA (9-11)
York ID	Part 375	Part 375	5 Part 37	'5 Part	375 Pa	Part 375	0 /0E /0000	9/25/2	000	8 /0E /0000	8 /2E /2022	B /0E /00/		9 /2E /20		9 /OE /OOOO		0/05/0000	9 /05 //	2022	9 /2E /2022	. .,	05/0000	8 /25 /2022	9/05/0	000	9 /25 /20/	,,	9/25/2022	9/06	2/2022
Sampling Date Client Matrix	RRSCOs	CSCOs	PGSCC	s RS0	COs U	JUSCOs	8/25/2022 Soil	8/25/20 Soil	022	8/25/2022 Soil	8/25/2022 Soli	8/25/202 Soil		8/25/20 Soil	22	8/25/2022 Soil		8/25/2022 Soil	8/25/2 Soi		8/25/2022 Soil	• •/	25/2022 Soil	8/25/2022 Soil	8/25/2 Soi		8/25/202 Soil		8/25/2022 Soil	1	6/2022 Soil
Compound	1						Result Q	Result	Q	Result Q	Result Q	_	Q	Result	Q R	Result Q	R	esult Q	Result	Q	Result () Resul	Q E	Result (Result	Q	Result	Q	Result Q	Result	Q
PEST, 8081 MASTER																															
4,4'-DDD	13	92	14				0.00167 U	_	U	0.00175 U	0.00178 U	0.00168		0.00168		.00177 U	-	00199 U	0.0017	U		U 0.001		0.00171		U			0.0018 U	0.00171	
4,4'-DDE 4,4'-DDT	8.9 7.9	62 47	17 136				0.00167 U		U	0.00175 U 0.00175 U	0.00178 U 0.00178 U	0.00168		0.00168 0.00168		.00177 U		00199 U 00199 U	0.0017	U	0.00172 0.00172	U 0.001		0.00171 0.00171		U			0.0018 U	0.00171	
Aldrin	0.097	0.68					0.00167 U		U	0.00175 U	0.00178 U	0.00168		0.00168		.00177 U		00199 U	0.0017	U		U 0.001		0.00171		U			0.0018 U	0.00171	
alpha-BHC	0.48	3.4	0.02	_		0.02	0.00167 U		U	0.00175 U	0.00178 U	0.00168	U	0.00168		.00177 U	_	00199 U	0.0017	U		U 0.001		0.00171	0.00168	U	0.00167	U	0.0018 U	0.00171	
alpha-Chlordane	4.2	24	2.9	0.9	91	0.094	0.00167 U	0.00167	U	0.00175 U	0.00178 U	0.00168	U	0.00168	U 0.	.00177 U	0.0	00199 U	0.0017	U	0.00172	U 0.001	78 U	0.00171	0.00168	U	0.00167	U	0.0018 U	0.00171	U
beta-BHC	0.36	3	0.09			0.036	0.00167 U		U	0.00175 U	0.00178 U	0.00168		0.00168		.00177 U		00199 U	0.0017	U	******	U 0.001		0.00171		U	0.00167		0.0018 U	0.00171	
delta-BHC Dieldrin	0.2	500 1.4	0.25				0.00167 U		U	0.00175 U 0.00175 U	0.00178 U 0.00178 U	0.00168	U	0.00168		.00177 U		00199 U 00199 U	0.0017	U		U 0.001		0.00171 0.00171		U			0.0018 U	0.00171	
Endosulfan I	24	200	102	_			0.00167 U		U	0.00175 U	0.00178 U	0.00168	U	0.00168		.00177 U		00199 U	0.0017	U	0.00172			0.00171		U	0.00167		0.0018 U	0.00171	
Endosulfan II	24	200	102	4.	.8	2.4	0.00167 U	0.00167	U	0.00175 U	0.00178 U	0.00168	U	0.00168	U 0.	.00177 U	0.0	00199 U	0.0017	U	0.00172	U 0.001	78 U	0.00171	0.00168	U	0.00167	U	0.0018 U	0.00171	. U
Endosulfan sulfate	24	200	1000	_			0.00167 U		U	0.00175 U	0.00178 U	0.00168		0.00168		.00177 U		00199 U	0.0017	U	******	U 0.001		0.00171	0.00168	U	0.00167		0.0018 U	0.00171	
Endrin gamma-BHC (Lindane)	1.3	89	0.06				0.00167 U		U	0.00175 U	0.00178 U 0.00178 U	0.00168		0.00168		.00177 U		00199 U 00199 U	0.0017	U		U 0.001		0.00171		U			0.0018 U	0.00171	
Heptachlor	2.1	9.2	0.1	_			0.00167 U		U	0.00175 U 0.00175 U	0.00178 U	0.00168		0.00168		.00177 U		00199 U	0.0017	U	0.00172 0.00172			0.00171 0.00171		U			0.0018 U	0.00171	
Metals, NYSDEC Part 375			3.30	, J.				3.00101	-		,	1.00200	-		- 10.		0.0		3.0011			. 0.001		,	0.00100		,	_		3.00271	
Arsenic	16	16	16		L6	13	1.54 U	1.59	U	1.66 U	1.74 U	1.65	U	1.57	U .	4.77	:	1.89 U	1.63	U	1.58	U 1.64	U	1.6	1.66	U	1.57	U	1.73 U	1.61	U
Barium	400	400	820		50	350	15.1	14.9		74.9	17.2	11.1		28.4		412		15.6	12.5		17.5	325		21.5	16.5		22.7		45.4	18.7	
Beryllium	72 4.3	590 9.3	7.5		L4 2.5	7.2	0.051 U		U	0.055 U 0.333 U	0.058 U 0.349 U	0.055	U	0.052		0.056 U 0.843	_	0.063 U 0.378 U	0.054	U		U 0.059 U 1.28		0.053 0.321		U	0.052 0.315	U	0.058 U 0.346 U	0.054	U
Cadmium	4.3	9.3	7.5		~	~	9.88	7.09	U	13.2	13.8	8.64	0	11		16.7	_	8.92	8.07	U	6.35	33.9		13.9	8.4	U	10.6	0	18.8	11.8	U
Copper	270	270	1720		70	50	7.47	8.19		20.4	6.92	5.48		11.6		56.2		6.74	7.82		6.58	59.4		7.31	8.53		10.5		8.55	9.86	
Lead	400	1000		_	00	63	5.14	5.59		64.4	7.01	5.54		4.76		271		5.84	5.33		3.28	297		6.4	5.46		6		13.8	6.11	
Manganese	2000	10000		_		1600	227	227		463	277	182		239		394	_	233	235		212	1050		206	211		301		278	209	
Nickel Selenium	310 180	310 1500	130	_	40 36	3.9	14.1 B	_	B U	17.7 2.77 U	30.2 2.91 U	15.8 2.75	U	2.62		19.3 2.8 U	_	18.8 3.15 U	19.2 2.72	U	11.5 2.63	27.2 U 2.73		25.2 2.67	15.6 J 2.76	U	18 2.62	U	16.1 2.88 U	24.1	U
Silver	180	1500			36	2	0.512 U	_	U	0.555 U	0.582 U	_	U	0.524		0.56 U	-	0.631 U	0.545	U		U 0.54			0.552	U		U	0.576 U	0.538	U
Zinc	10000	10000	2480) 22	200	109	14.7	14.8		75.8	17.9	14		17.6		458		18.9	15.7		12.7	454		28.7	16.7		22.1		30.3	16.3	
Mercury by 7473																															
Mercury	0.81	2.8	0.73	0.8	.81	0.18	0.186	0.0308	U	0.0915	0.0331 U	0.0313	U	0.0309	U O	0.0331 U	0.	.0372 U	0.0374		0.0315	U 0.033	4	0.0316	0.0309	U	0.031	U	0.0334 U	0.0312	U
Chromium, Hexavalent	110	400	19	1 2	22	1	0.512 U	0.514	U	0.536 U	0.552 U	0.522	U	0.515	U C	0.551 U	<u> </u>	0.62 U	0.518	U	0.525	U 0.54	5 U	0.526	0.515	U	0.516	U	0.557 U	0.52	U
Chromium, Trivalent						_																			110=0						
Chromium, Trivalent	180	1500	~	3	36	30	9.88	7.09		13.2	13.8	8.64		11		16.7	8	8.92	8.07		6.35	33.9		13.9	8.4		10.6		18.8	11.8	
Cyanide, Total											1										<u> </u>										
Cyanide, total Total Solids (%)	27	27	40	2	27	27	0.512 U	0.514	U	0.536 U	0.552 U	0.522	U	0.515	UC	0.551 U		0.62 U	0.518	U	0.525	U 0.54	5 U	0.526	0.515	U	0.516	U	0.557 U	0.52	U
% Solids	~	~	T ~	Τ,	~	~	97.6	97.3		93.2	90.5	95.7		97.1		90.7	1 3	80.6	96.6		95.2	91.5		95.1	97		96.9		89.7	96.1	
HERB, 8151 MASTER							01.0	07.0		00.2	00.0	00.7		01.12		00.1			00.0		00.2	02.0		00.2			00.0			00.2	
2,4,5-TP (Silvex)	100	500	3.8	5	58	3.8	0.02 U	0.0204	U	0.0212 U	0.0219 U	0.0206	U	0.02	U O	0.0214 U	0.	.0245 U	0.0204	U	0.0206	U 0.021	7 U	0.0208	0.0201	U	0.0203	U	0.0221 U	0.0202	U
PCB, 8082 MASTER																															
Aroclor 1016	~	~	~		-	~	0.0169 U		U	0.0176 U	0.018 U		U	0.0169		.0178 U	-	.0201 U	0.0172	U		U 0.01		0.0172		U			0.0181 U	0.0172	
Aroclor 1221 Aroclor 1232	~	~	~			~	0.0169 U		U	0.0176 U 0.0176 U	0.018 U 0.018 U	0.017	U	0.0169		0.0178 U 0.0178 U		.0201 U	0.0172 0.0172	U		U 0.01		0.0172 0.0172		U	0.0169 0.0169		0.0181 U	0.0172	U
Aroclor 1232	~	~	~	_	~	~	0.0169 U		U	0.0176 U	0.018 U		U	0.0169		0.0178 U		.0201 U	0.0172	U		U 0.01		0.0172		U	1		0.0181 U	0.0172	
Aroclor 1248	~	~	~	<u> </u>	~	~	0.0169 U		U	0.0176 U	0.018 U	0.017	U	0.0169		0.0384	_	.0201 U	0.0172	U		U 0.01		0.0172		U	0.0169		0.0181 U	0.0172	
Aroclor 1254	~	~	~	1	~	~	0.0169 U		U	0.0176 U	0.018 U		U	0.0169		0.0178 U		.0201 U	0.0172	U		U 0.01		0.0172	0.0200	U	0.0200		0.0181 U	0.0172	
Aroclor 1260	- 1	- 1	3.2		~	0.1	0.0169 U		U	0.0176 U 0.0176 U	0.018 U 0.018 U	0.017	U	0.0169		0.0259		.0201 U	0.0172 0.0172	U		U 0.018		0.0172 0.0172	0.0169 0.0169	U	0.0169 0.0169		0.0181 U	0.0172	
PFAS, NYSDEC Target List		1	3.2	1	-	U.1	0.0109 0	0.0108	U	J.U110 U	1 0.010 0	1 0.017	U	0.0103	0 1 0		1 0.	.0201 U	0.0112	U	0.0113	0.01	, 0	0.0112	, 1 0.0108	U	0.0109	0	0.0101 U	0.0172	U
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:		~	~	1	~		0.00025 U.			0.00027 UJ	0.00028 UJ			0.00024		.00027 UJ		.0003 UJ	0.00024	UJ		0.000:		0.00025 l		UJ			0.00027 UJ	0.00025	
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:		~	~				0.00025 U		U	0.00027 U	0.00028 U	0.00024		0.00024		.00027 U	_	.0003 U	0.00024	U		U 0.000:		0.00025	0.0002	U	0.00026		0.00027 U	0.00025	
N-EtFOSAA N-MeFOSAA	~	~	~	-	~		0.00025 U. 0.00025 U.		UJ	0.00027 UJ 0.00027 UJ	0.00028 UJ 0.00028 UJ			0.00024		.00027 UJ	-	.0003 UJ	0.00024	UJ		0.000:		0.00025 U		UJ			0.00027 UJ 0.00027 UJ	0.00025	
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	- ~	+	~ +		0.00025 U		U	0.00027 U	0.00028 U	0.00024	U	0.00024		.00027 U	_	.0003 U	0.00024	U		U 0.000:		0.00025	J 0.00024	U	0.00026		0.00027 U	0.00025	
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~		~		0.00025 U		U	0.00027 U	0.00028 U	0.00024	U	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025		U			0.00027 U	0.00025	
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	_	~		0.00025 U		U	0.00027 U	0.00028 U	0.00024	_	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025		U			0.00027 U	0.00025	
Perfluorobutanesulfonic acid (PFBS)	~	~	~		~		0.00025 U		U	0.00027 U	0.00028 U	0.00024		0.00024		.00027 U	-	.0003 U	0.00024	U	0.00026			0.00025		U	0.00026		0.00027 U	0.00025	
Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)	~	~	~	+	~	~	0.00025 U		U	0.00027 U 0.00027 U	0.00028 U 0.00028 U	0.00024	U	0.00024		.00027 U	-	.0003 U	0.00024	U	0.00026 0.00026	U 0.000: U 0.000:		0.00025 0.00025	J 0.00024 J 0.00024	U II	0.00026		0.00027 U 0.00027 U	0.00025	
Perfluoroheptanoic acid (PFHpA)	~	~	~		~	~	0.00025 U		U	0.00027 U	0.00028 U	_	U	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025		U			0.00027 U	0.00025	
Perfluorohexanesulfonic acid (PFHxS)	~	~	~		~		0.00025 U		U	0.00027 U	0.00028 U	0.00024		0.00024		.00027 U		.0003 U	0.00024	U		U 0.000		0.00025		U	0.00026		0.00027 U	0.00025	
Perfluorohexanoic acid (PFHxA)	~	~	~				0.00025 U		U	0.00027 U	0.00028 U	0.00024		0.00024		.00027 U	_	.0003 U	0.00024	U		U 0.000:		0.00025		U	0.00026		0.00027 U	0.00025	
Perfluoro-n-butanoic acid (PFBA)	~	~	~	+-	~	~	0.00025 U	_	U	0.00027 U	0.00028 U	_	U	0.00024		.00027 U	_	.0003 U	0.00024	U		U 0.000:		0.00025	***************************************	U	*******		0.00027 U	0.00025	
Perfluorononanoic acid (PFNA) Perfluorooctanesulfonic acid (PFOS)	~	~	~	+	~	~	0.00025 U		U	0.00027 U 0.00027 U	0.00028 U 0.00028 U	0.00024	U	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000: U 0.000:		0.00025 0.00025	J 0.00024 J 0.00024	U	0.00026 0.00026		0.00027 U 0.00027 U	0.00025	
Perfluorooctanic acid (PFOA)	~	~	~	_	~		0.00025 U		U	0.00027 U	0.00028 U	0.00024		0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025		U			0.00027 U	0.00025	
Perfluoropentanoic acid (PFPeA)	~	~	~		~		0.00025 U		U	0.00027 U	0.00028 U	0.00024	U	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025		U	0.00026		0.00027 U	0.00025	
Perfluorotetradecanoic acid (PFTA)	~	~	~		~		0.00025 U	_	U	0.00027 U	0.00028 U	0.00024	U	0.00024		.00027 U	-	.0003 U	0.00024	U		U 0.000:			0.00024	U	*******		0.00027 U	0.00025	
Perfluorotridecanoic acid (PFTrDA)	~	~	- ~	-	~		0.00025 U		U	0.00027 U	0.00028 U	0.00024	U	0.00024		.00027 U		.0003 U	0.00024	U		U 0.000:		0.00025	0.00024	U	0.00026		0.00027 U	0.00025	
Perfluoroundecanoic acid (PFUnA)	~	~	~		~	~	0.00025 U	0.00023	U	0.00027 U	0.00028 U	0.00024	U	0.00024	U 0.	.00027 U	0.	.0003 U	0.00024	U	0.00026	U 0.000:	26 U	0.00025	0.00024	U	0.00026	U	0.00027 U	0.00025	U

Sample ID						RD-10A (11-1	3) RD-10A (13-15)	RD-2C (7-9)	RD-2C (9-11)	RD-2C (11-13)	RD-2C (13-15)	RD-2D (7-9)	RD-2D (9-11)	RD-2D (11-13)	RD-2D (13-15)	RD-16B (7-9) Field Dup	RD-21 9-11 ft	RD-21 11-13 ft	RD-21 13-15 ft	-21 9-11 ft Field Duplica	RD-17 13-15 ft
York ID	Part 375	Part 375	Part 375	Part 37	Part 375																
Sampling Date	RRSCOs					8/26/202	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022
Client Matrix	TINGGGG	30000	7 40000	1,000	000000	Soll	Soll	Soll	Soll	Soil	Soll	Soll	Soll	Soil	Soil	Soll	Soll	Soll	Soil	Soll	Soil
Compound						Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER																					
1,1,1-Trichloroethane	100	500	0.68	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,1-Dichloroethane	26	240	0.27	19	0.27	0.0031	J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,1-Dichloroethylene	100	500	0.33	100	0.33	0.0031	J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	100	500	1.1	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,2-Dichloroethane	3.1	30	0.02	2.3			J 0.0025 U		0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	52	190	8.4	47	8.4		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	49	280	2.4	17	2.4		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	13	130	1.8	9.8	1.8		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
1,4-Dioxane	13	130	0.1	9.8	0.1		J 0.05 U	0.059 U	0.042 U	0.054 U	0.048 U	0.058 U	0.052 U	0.054 U	0.047 U	0.044 U	ND	ND	ND	ND	ND
2-Butanone	100	500	0.12	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
Acetone	100	500	0.05	100	0.05	0.022	0.018	0.014	0.023	0.023	0.022	0.026	0.031	0.05	0.015	0.011	ND	0.011	ND	ND	ND
Benzene	4.8	44	0.06	2.9	0.06		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
Carbon tetrachloride	2.4	22	0.76	1.4			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
Chlorobenzene	100	500	1.1	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND ND	ND
Chloroform	49	350	0.37	10	0.37	0.0001	J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND ND	0.005 J
cis-1,2-Dichloroethylene	100	500	0.25	59	0.25		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND ND	ND
Ethyl Benzene	41	390	1	30	1		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	100	500	0.93	62	0.93		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
Methylene chloride	100	500	0.05	51	0.05	0.033	0.027	0.017	0.025	0.032	0.031	0.014	0.023	0.025	0.0085 J	0.0044 U	ND	0.015 L	ND	ND	0.048 L QM-07
Naphthalene	100	500	12	100	12		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
n-Butylbenzene	100	500	12	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND	ND
n-Propylbenzene	100	500	3.9	100	3.9		J 0.0025 U	_	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND	ND	ND ND	ND
o-Xylene	~	~	~	~	- ~		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND ND	ND	ND ND	ND
p- & m- Xylenes							J 0.005 U	0.0059 U	0.0042 U	0.0054 U	0.0048 U	0.0058 U	0.0052 U	0.0054 U	0.0047 U	0.0044 U	ND	ND	ND	ND ND	ND
sec-Butylbenzene tert-Butylbenzene	100	500 500	11 5.9	100	5.9		J 0.0025 U J 0.0025 U		0.0021 U	0.0027 U 0.0027 U	0.0024 U	0.0029 U 0.0029 U	0.0026 U	0.0027 U 0.0027 U	0.0024 U 0.0024 U	0.0022 U 0.0022 U	ND ND	ND ND	ND ND	ND ND	ND ND
Tetrachloroethylene	19	150	1.3	5.5	1.3		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND ND	ND ND	ND ND	ND ND
,	100		0.7	100	0.7		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene trans-1,2-Dichloroethylene	100	500 500	0.19	100			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroethylene	21	200	0.19	100	0.19		J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND ND	ND ND	ND	ND
Vinyl Chloride	0.9	13	0.47	0.21			J 0.0025 U	0.003 U	0.0021 U	0.0027 U	0.0024 U	0.0029 U	0.0026 U	0.0027 U	0.0024 U	0.0022 U	ND	ND ND	ND	ND ND	ND
Xvienes Total	100	500	1.6	100			J 0.0025 U	0.003 U	0.0021 0	0.0027 U	0.0024 U	0.0029 U	0.0028 U	0.0027 U	0.0024 U	0.0022 U	ND	ND ND	ND ND	ND	ND ND
Semi-Volatiles, 1.4-Dioxane 8270 SIM-Soil	100	300	1.0	100	0.20	0.0092	0.0074 0	0.0003	0.0003 0	0.0002 0	0.0072 0	0.0000	0.0076 0	0.0001 0	0.0071 0	0.0007	ND	IND	IND	ND	IND
1 4-Dioxane	13	130	0.1	9.8	0.1	0.0198	J 0.0183 U	0.0185 U	0.0189 U	0.0183 U	0.0185 U	0.0196 U	0.0194 U	0.0192 U	0.0185 U	0.0198 U	ND	I ND	I ND	ND	I ND
SVOA, 8270 MASTER	1 10	130	0.1	3.0	0.1	0.0190	0.0165 0	0.0103	0.0109 0	0.0103	0.0165	0.0130 0	0.0194 0	0.0192 0	0.0103 0	0.0190 0	ND	IND	IND	ND	IND
2-Methylphenol	100	500	0.33	100	0.33	0.0474	J 0.0431 U	0.0448 U	0.0442 U	0.043 U	0.045 U	0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND	ND	ND	ND
3- & 4-Methylphenols	100	500	0.33	34	0.33		J 0.0431 U	0.0448 U	0.0442 U	0.043 U	0.045 U	0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND ND	ND	ND ND	ND ND
Acenaphthene	100	500	98	100		0.581	0.0431 U		0.0442 U	0.043 U	0.045 U	0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND ND	ND ND	ND ND	ND ND	ND ND
Acenaphthylene	100	500	107	100		0.766	0.0431 U		0.0442 U	0.043 U	0.045 U	0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND ND	ND ND	ND ND	ND ND	ND ND
Anthracene	100	500	1000	100	100	1.55	0.0431 U	0.131	0.0442 U	0.043 U	0.045 U	0.128	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND ND	ND ND	ND ND	ND
Benzo(a)anthracene	1	5.6	1	1	1		0.0431 U		0.0442 U	0.043 U	0.045 U	0.213	0.0435 U	0.0436 U	0.0456 U	0.104	ND	ND ND	ND ND	ND ND	ND
Benzo(a)pyrene	1	1	22	1	1		0.0431 U		0.0442 U	0.043 U	0.045 U	0.213	0.0435 U	0.0436 U	0.0456 U	0.104	ND	ND ND	ND ND	ND ND	ND ND
Benzo(b)fluoranthene	1	5.6	1.7	1	1	0.00	0.0431 U	0.452	0.0442 U	0.043 U	0.045 U	0.182	0.0435 U	0.0436 U	0.0456 U	0.0814 JD	ND	ND ND	ND ND	ND	ND ND
Benzo(g,h,i)perylene	100	500	1000	100		1.91	0.0431 U	0.332	0.0442 U	0.043 U	0.045 U	0.0824 ID	0.0435 U	0.0436 U	0.0456 U	0.0614 JD	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(k)fluoranthene	3.9	56	1.7	1	0.8		0.0431 U	0.358	0.0442 U	0.043 U	0.045 U	0.163	0.0435 U	0.0436 U	0.0456 U	0.0012 35	ND	ND ND	ND	ND	ND ND
Chrysene	3.9	56	1	1	1	3.13	0.0431 U	0.421	0.0442 U	0.043 U	0.045 U	0.201	0.0435 U	0.0436 U	0.0456 U	0.105	ND	ND ND	ND ND	ND	ND
Dibenzo(a.h)anthracene	0.33	0.56	1000	0.33		0.714		0.421	0.0442 U	0.043 U	0.045 U	0.201 0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.105 0.0436 U	ND	ND ND	ND	ND ND	ND ND
Dibenzofuran	59	350	210	14	7	0.714	0.0431 U	0.0914	0.0442 U	0.043	0.045	0.0457 U	0.0435 U	0.0436	0.0456 U	0.0436 U	ND ND	ND ND	ND ND	ND	ND
Fluoranthene	100	500	1000	100		6.12	0.0431 U	0.768	0.0442 U	0.043 U	0.045 U	0.395 D	0.0435 U	0.0436 U	0.0456 U	0.0436 0	ND	0.0531 J	ND ND	ND ND	ND ND
Fluorene	100	500	386	100		0.627	0.0431 U	0.0448 U	0.0442 U	0.043 U	0.045 U	0.0576 JD	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND ND	ND	ND	ND
	1.2	6	3.2	0.33			J 0.0431 U	0.0448 U	0.0442 U	0.043 U	0.045 U	0.0370 JD	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND ND	ND ND	ND	ND
Hexachlorobenzene	0.5	5.6	8.2	0.55	0.55	-	0.0431 U		0.0442 U	0.043 U	0.045 U	0.0437 U	0.0435 U	0.0436 U	0.0456 U	0.0436 U	ND	ND ND	ND	ND	ND
		5.0			12	0.24	0.0431 U	0.216 0.0448 U	0.0442 U	0.043 U	0.045 U	0.0457 U	0.0435 U	0.0436 U	0.0456 U	0.0315 JD	ND	ND ND	ND ND	ND	ND ND
ndeno(1,2,3-cd)pyrene	100	500	1 1 2																1 110		שוו
Indeno(1,2,3-cd)pyrene Naphthalene	100	500 6.7	0.8	2.4									0.0435 U	0.0436		0.0436		ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene Naphthalene Pentachlorophenol	6.7	6.7	0.8	2.4	0.8	0.0474	J 0.0431 U	0.0448 U	0.0442 U	0.043 U	0.045 U	0.0457 U	1	0.0436 U	0.0456 U	0.0436 U	ND				
		 			0.8	0.0474 4.8					0.045 U		0.0435 U 0.0435 U 0.0435 U	0.0436 U 0.0571 JD 0.0436 U		0.0436 U 0.136 0.0436 U		ND ND ND	ND ND ND	ND ND	ND ND ND

Sample ID						RD-10A (11-13)	RD-10A (13-15)	RD-2C (7-9)	RD-2C (9-11)	RD-2C (11-13)	RD-2C (13-15)	RD-2D (7-9)	RD-2D (9-11)	RD-2D (11-13)	RD-2D (13-15)	RD-16B (7-9) Field Dup	RD-21 9-11 ft	RD-21 11-13 ft	RD-21 13-15 ft	-21 9-11 ft Fleid Duplic	RD-17 13-15 ft
York ID Sampling Date	Part 375		Part 375		Part 375	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/26/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022
Client Matrix	RRSCOs	CSCOs	PGSC0s	RSCOs	UUSCOs	Soil	Soil	Soil	Soil	Soil	Soil	Soil									
Compound						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q									
PEST, 8081 MASTER 4,4'-DDD	13	92	14	2.6	0.0033	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
4,4'-DDE	8.9	62	17	1.8	0.0033	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
4,4'-DDT	7.9	47	136	1.7			0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U		0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
Aldrin alpha-BHC	0.097	0.68 3.4	0.19	0.019	0.005	0.00186 U	0.00166 U 0.00166 U	0.00179 U 0.00179 U	0.00173 U 0.00173 U	0.00167 U 0.00167 U	0.0018 U 0.0018 U	0.0018 U 0.0018 U	0.00173 U 0.00173 U	0.00172 U 0.00172 U	0.0018 U 0.0018 U	0.00174 U 0.00174 U	ND ND	ND ND	ND ND	ND ND	ND ND
alpha-Chlordane	4.2	24	2.9	0.097	0.02	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND ND	ND ND	ND	ND ND
beta-BHC	0.36	3	0.09	0.072	0.036	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
delta-BHC	100	500	0.25	100		0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U		0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
Dieldrin Endosulfan I	0.2 24	200	0.1 102	0.039 4.8	0.005 2.4	0.00186 U 0.00186 U	0.00166 U 0.00166 U	0.00179 U 0.00179 U	0.00173 U 0.00173 U	0.00167 U 0.00167 U	0.0018 U 0.0018 U	0.0018 U 0.0018 U	0.00173 U 0.00173 U	0.00172 U 0.00172 U	0.0018 U 0.0018 U	0.00174 U 0.00174 U	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan II	24	200	102	4.8	2.4	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
Endosulfan sulfate	24	200	1000	4.8	2.4	0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U	0.0018 U	0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND	ND	ND
Endrin gamma-BHC (Lindane)	11 1.3	9.2	0.06	2.2 0.28	0.014	0.00186 U	0.00166 U 0.00166 U	0.00179 U 0.00179 U	0.00173 U 0.00173 U	0.00167 U 0.00167 U	0.0018 U 0.0018 U	0.0018 U	0.00173 U 0.00173 U	0.00172 U 0.00172 U	0.0018 U 0.0018 U	0.00174 U 0.00174 U	ND ND	ND ND	ND ND	ND ND	ND ND
Heptachlor	2.1	15	0.38	0.42		0.00186 U	0.00166 U	0.00179 U	0.00173 U	0.00167 U	0.0018 U		0.00173 U	0.00172 U	0.0018 U	0.00174 U	ND	ND	ND ND	ND	ND
Metals, NYSDEC Part 375												_									
Arsenic Barium	16 400	16 400	16 820	16 350	13 350	1.85 U	1.55 U 21.4	1.64 U 47.8	1.65 U 12.3	1.63 U	1.65 U 27.6	1.71 U	1.69 U 18.8	1.61 U	1.75 U 22.8	1.64 U 48.9	ND 26.4	ND 17.7	ND 15.8	ND 19.8	ND 13.7
Beryllium	72	590	47	14	7.2	0.062 U	0.052 U	0.055 U	0.055 U	0.054 U	0.055 U	0.057 U	0.056 U	0.054 U	0.058 U	0.055 U	26.4 ND	ND	15.8 ND	19.8 ND	13.7 ND
Cadmium	4.3	9.3	7.5	2.5	2.5	0.504	0.31 U	0.328 U	0.37	0.591	0.33 U	0.501	0.339 U	0.323 U	0.349 U	0.328 U	ND	ND	ND	ND	ND
Chromium	~	~	4700	~	~	31.6	9.96	16.9	10.3	19.1	8.41	19.3	12	12.2	14	19.6	9.27	9.51	9.73	7.23	11.4
Copper Lead	270 400	270 1000	1720 450	270 400	50 63	47.8 318	9.08 6.36	12.5 29.6	9.61 6.01	30 107	8.46 5.67	23.7 84.6	10.4 8.49	13.9 28.6	27.1 6.19	10 9,38	9.25 4.12	7.63 6.58	9.01 4.34	7.96 4.21	7 3.87
Manganese	2000	10000	2000	2000	1600	609	226	213	218	313	80.3	253	135	146	134	250	132	227	235	233	80.1
Nickel	310	310	130	140	30	64.9	24.9	26.7	25.7	25.8	20	30.2	28.4	25.8	29.2	6.97	13.6	11.6	9.52	17.5	13.7
Selenium Silver	180 180	1500 1500	8.3	36 36	3.9	3.08 U 0.616 U	2.59 U 0.517 U	2.73 U 0.546 U	2.74 U 0.549 U	2.72 U 0.543 U	2.75 U 0.55 U	2.86 U 0.571 U	2.82 U 0.565 U	2.69 U 0.538 U	2.91 U 0.582 U	2.74 U 0.547 U	ND ND	ND ND	ND ND	ND ND	ND ND
Zinc	10000	10000	2480	2200			14.6	44.1	16.1	152	15	140	32.9	42.1	21.1	21.8	14.8	14.2	14.6	15.3	10.7
Mercury by 7473																					
Mercury Chromium, Hexavalent	0.81	2.8	0.73	0.81	0.18	0.265	0.031 U	0.181	0.0318 U	0.031 U	0.033 U	0.203	0.0316 U	0.0317 U	0.0332 U	0.305	ND	0.0377	ND	ND	ND
Chromium, Hexavalent	110	400	19	22	1	0.575 U	0.517 U	0.546 U	0.53 U	0.516 U	0.55 U	0.552 U	0.527 U	0.529 U	0.553 U	0.529 U	ND	ND	ND	ND	ND
Chromium, Trivalent																					
Chromium, Trivalent	180	1500	_ ~	36	30	31.6	9.96	16.9	10.3	19.1	8.41	19.3	12	12.2	14	19.6	ND	ND	ND	ND	ND
Cyanide, Total Cyanide, total	27	27	40	27	27	0.575 U	0.517 U	0.546 U	0.53 U	0.516 U	0.55 U	0.552 U	0.527 U	0.529 U	0.553 U	0.529 U	85.1	96	96.8	97.4	94.7
Total Solids (%)			40		1 21	0.575	0.517	0.040	0.00	0.010	0.55	0.552	0.521	0.020	0.555	0.525	55.1		30.0	37.4	54.1
% Solids	~	~	~	~	~	87	96.7	91.5	94.3	96.9	90.8	90.5	94.8	94.5	90.4	94.5					
HERB, 8151 MASTER					1																
2,4,5-TP (Silvex) PCB, 8082 MASTER	100	500	3.8	58	3.8	0.0228 U	0.0202 U	0.0215 U	0.0211 U	0.0204 U	0.0219 U	0.022 U	0.0209 U	0.0211 U	0.0221 U	0.021 U	ND	ND	ND	ND	ND
Aroclor 1016	~	~	~	~	~	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND	ND	ND
Aroclor 1221	~	~	~	~	~	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND	ND	ND
Aroclor 1232	~	~	~	~	~	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND	ND	ND
Aroclor 1242 Aroclor 1248	~	~	~	~	~	0.0188 U	0.0168 U 0.0168 U	0.0181 U 0.0181 U	0.0175 U 0.0175 U	0.0169 U 0.0169 U	0.0182 U 0.0182 U	0.0182 U 0.0182 U	0.0175 U 0.0175 U	0.0173 U 0.0173 U	0.0182 U 0.0182 U	0.0176 U 0.0176 U	ND ND	ND ND	ND ND	ND ND	ND ND
Aroclor 1254	~	~	~	~	~	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND	ND	ND
Aroclor 1260	~	~	~	~	~	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND ND	ND ND	ND
Total PCBs PFAS, NYSDEC Target List			3.2		0.1	0.0188 U	0.0168 U	0.0181 U	0.0175 U	0.0169 U	0.0182 U	0.0182 U	0.0175 U	0.0173 U	0.0182 U	0.0176 U	ND	ND	ND	ND	ND
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:		~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U		0.00026 U	0.00025 U	0.00026 U	ND	ND	ND	ND	ND
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:: N-EtFOSAA	~	~	~	~	~	0.00029 U 0.00029 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00024 U 0.00024 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
N-BEFOSAA N-MeFOSAA	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND ND	ND ND	ND	ND ND
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND	ND	ND
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00029 U 0.00029 U	0.00024 U	0.00025 U 0.00025 U		0.00024 U	0.00025 U	0.00025 U 0.00025 U		0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluoro-1-octanesulfonamide (FOSA) Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00029 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00024 U 0.00024 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	0.00025 U	0.00026 U 0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00027	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND ND	ND	ND
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND ND	ND ND	ND ND
Perfluoroheptanoic acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	0.00029 U 0.00029 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00024 U 0.00024 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U		0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND ND	ND ND	ND
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND	ND	ND
Perfluorononanoic acid (PFNA) Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00029 U 0.00029 U	0.00024 U 0.002	0.00025 U 0.00025 U	0.00024 U 0.00038	0.00024 U 0.00041	0.00025 U 0.00052	0.00025 U 0.00157	0.00025 U 0.00865	0.00026 U 0.00173	0.00025 U 0.00206	0.00026 U 0.00026 U	ND ND	ND 0.00036	ND ND	ND ND	ND ND
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	0.00029 U	0.0002 0.00024 U	0.00025 U	0.00038 0.00024 U	0.00041 0.00024 U	0.00032 0.00025 U	0.00157 0.00025 U	0.00005 U	0.00173 0.00026 U	0.00206 0.00025 U	0.00026 U	ND	ND	ND ND	ND	ND ND
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND	ND	ND	ND	ND
Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	0.00029 U	0.00024 U	0.00025 U	0.00024 U	0.00024 U	0.00025 U	0.00025 U	0.00025 U	0.00026 U	0.00025 U	0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
Perfluorotridecanoic acid (PFTrDA) Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00029 U 0.00029 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00024 U 0.00024 U	0.00024 U 0.00024 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00026 U 0.00026 U	ND ND	ND ND	ND ND	ND ND	ND ND
				-		1	10.00027	1 3.00020	1 3.0002.	1 3.0002 / 0	3.00020	1 3.00020	1 0.00020	0.00020	1	100020			1	1	

0						DD 40 7 0 7	DD 400 44 5	DD 40 44 40 5	DD 40 40 45 6	DD 40 7 0 0	DD 40 0 44 6	DD 40 44 40 5	DD 40 40 45 5	DD 00 7 0 0	DD 00 0 44 5	DD 00 44 40 C	DD 00 10 15 5	DD 04 7 0 0	DD 00 7 0 #
Sample ID						RD-18 7-9 ft	RD-18 9-11 ft	RD-18 11-13 ft	RD-18 13-15 ft	RD-19 7-9 ft	RD-19 9-11 ft	RD-19 11-13 ft	RD-19 13-15 ft	RD-20 7-9 ft	RD-20 9-11 ft	RD-20 11-13 ft	RD-20 13-15 ft	RD-21 7-9 ft	RD-2B 7-9 ft
York ID Sampling Date	Part 375		Part 375	Part 375		8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/11/2022	8/29/2022
Client Matrix	RRSCOs	CSC0s	PGSC0s	RSC0s	UUSC0s	Soll	Soil	Soil	Soil	Soll	Soll	Soll	Soil	Soil	Soil	Soil	Soll	Soil	Soil
Compound						Result Q		Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER						Troout &	- Hoodite - Q	Troount &	T.COURT &		Trocure &		- Toolait	Troount Q	1100uit Q	Tiount &	Trooms &	- Hooding	Trouse &
1,1,1-Trichloroethane	100	500	0.68	100	0.68	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,1-Dichloroethane	26	240	0.27	19	0.27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,1-Dichloroethylene	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,2-Dichlorobenzene	100	500	1.1	100	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,2-Dichloroethane	3.1	30	0.02	2.3	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,3,5-Trimethylbenzene	52	190	8.4	47	8.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,3-Dichlorobenzene	49	280	2.4	17	2.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,4-Dichlorobenzene	13	130	1.8	9.8	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
1,4-Dioxane	13	130	0.1	9.8	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.042 U
2-Butanone	100	500	0.12	100	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Acetone	100	500	0.05	100	0.05	0.0062 J	ND	0.0081 J	ND	ND	ND	ND	ND	ND	0.0088 J	0.0083 J	0.005 J	0.0078 J	0.015
Benzene	4.8	44	0.06	2.9	0.06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Carbon tetrachloride	2.4	22	0.76	1.4	0.76	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	0.0021 U
Chloroform	100	500	1.1	100	1.1	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	0.0021 U
Chloroform	49	350	0.37	10	0.37	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
cis-1,2-Dichloroethylene Ethyl Benzene	100 41	500 390	0.25	59 30	0.25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0021 U 0.0021 U
Methyl tert-butyl ether (MTBE)	100	500	0.93	62	0.93	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0021 U
Methylene chloride	100	500	0.95	51	0.95	ND	ND ND	0.019 L	ND	ND	ND	0.018 L	0.046 L	0.027 L	0.041 L	0.035 L	0.026 L	0.038 L	0.0021 0
Naphthalene	100	500	12	100	12	ND	ND	ND E	ND	ND	ND	ND E	ND E	ND E	ND E	ND E	ND L	ND E	0.0021 U
n-Butylbenzene	100	500	12	100	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
n-Propylbenzene	100	500	3.9	100	3.9	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
o-Xvlene	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
p- & m- Xylenes	~	~	~	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0042 U
sec-Butylbenzene	100	500	11	100	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
tert-Butylbenzene	100	500	5.9	100	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Tetrachloroethylene	19	150	1.3	5.5	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Toluene	100	500	0.7	100	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
trans-1,2-Dichloroethylene	100	500	0.19	100	0.19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Trichloroethylene	21	200	0.47	10	0.47	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Vinyl Chloride	0.9	13	0.02	0.21	0.02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0021 U
Xylenes, Total	100	500	1.6	100	0.26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0064 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-S																			
1,4-Dioxane	13	130	0.1	9.8	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0198 U
SVOA, 8270 MASTER																			
2-Methylphenol	100	500	0.33	100	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 U
3- & 4-Methylphenols	100	500	0.33	34	0.33	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 U
Acenaphthene	100	500	98	100	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0477 JD
Acenaphthylene	100	500	107	100	100	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.046 U
Anthracene	100	500	1000	100	100	0.0728 J	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.137 D
Benzo(a)anthracene	1 1	5.6	1 22	1	1	0.151	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	0.386 D
Benzo(a)pyrene	1 1	1 5.6	22	1	1	0.121	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.364 D
Benzo(b)fluoranthene Benzo(g,h,i)perylene	100	5.6 500	1.7 1000	100	100	0.105 0.0953	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.283 D 0.269 D
	3.9	56	1.7	100	0.8	0.0953	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.269 D
Benzo(k)fluoranthene Chrysene	3.9	56	1.7	1	1	0.159	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	0.299 D
Dibenzo(a,h)anthracene	0.33	0.56	1000	0.33	0.33	0.159 ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	0.0507 JD
Dibenzofuran	59	350	210	14	7	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	0.046 U
Fluoranthene	100	500	1000	100	100	0.349	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	0.83 D
Fluorene	100	500	386	100	30	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	0.058 JD
Hexachlorobenzene	1.2	6	3.2	0.33	0.33	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	0.038 JD
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	0.55	0.1	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	0.214 D
Naphthalene	100	500	12	100	12	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 U
Pentachlorophenol	6.7	6.7	0.8	2.4	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 U
Phenanthrene	100	500	1000	100	100	0.249	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.635 D
Phenol	100	500	0.33	100	0.33	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.046 U
	100	500		100		+						1	1				1	1	

Sample ID						RD-18 7-9 ft	RD-18 9-11 ft	RD-18 11-13 ft	RD-18 13-15 ft	RD-19 7-9 ft	RD-19 9-11 ft	RD-19 11-13 ft	RD-19 13-15 ft	RD-20 7-9 ft	RD-20 9-11 ft	RD-20 11-13 ft	RD-20 13-15 ft	RD-21 7-9 ft	RD-2B 7-9 ft
York ID	Part 375	9/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	8/44/2022	9/11/2022	9/11/2022	8/20/2022				
Sampling Date	RRSCOs	CSC0s	PGSC0s	RSCOs	UUSC0s	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soll	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/11/2022 Soil	8/29/2022 Soil
Client Matrix												-	+	-		+	+	+	
PEST, 8081 MASTER						Result Q													
4,4'-DDD	13	92	14	2.6	0.0033	ND	0.00179 U												
4,4'-DDE	8.9	62	17	1.8	0.0033	ND	0.00179 U												
4,4'-DDT	7.9	47	136	1.7	0.0033	ND	0.00179 U												
Aldrin	0.097	0.68	0.19	0.019	0.005	ND	0.00179 U												
alpha-BHC	0.48	3.4	0.02	0.097	0.02	ND	0.00179 U												
alpha-Chlordane	4.2	24	2.9	0.91	0.094	ND	0.00179 U												
beta-BHC	0.36	3	0.09	0.072	0.036	ND	0.00179 U												
delta-BHC	100	500	0.25	100	0.04	ND	0.00179 U												
Dieldrin	0.2	1.4	0.1	0.039	0.005	ND	0.00179 U												
Endosulfan I	24	200	102	4.8	2.4	ND	0.00179 U												
Endosulfan II	24	200	102	4.8	2.4	ND	0.00179 U												
Endosulfan sulfate	24	200	1000	4.8	2.4	ND	0.00179 U												
Endrin	11	89	0.06	2.2	0.014	ND	0.00179 U												
gamma-BHC (Lindane)	1.3	9.2	0.1	0.28	0.1	ND	0.00179 U												
Heptachlor	2.1	15	0.38	0.42	0.042	ND	0.00179 U												
Metals, NYSDEC Part 375	4.0	40	10	40	1 40	ND.	L ND	1.07											
Arsenic	16 400	16 400	16 820	16 350	13 350	ND 262	ND 43.8	ND 11.8	ND 24.5	ND 13.3	ND 20.7	ND 17.5	ND 18.4	ND 62.4	ND 15.5	ND 24.7	ND 30.6	ND 19.5	1.67 U 107
Barium Beryllium	72	590	820 47	350 14	7.2	262 ND	43.8 ND	11.8 ND	24.5 ND	13.3 ND	20.7 ND	17.5 ND	18.4 ND	62.4 ND	15.5 ND	24.7 ND	30.6 ND	19.5 ND	0.056 U
Cadmium	4.3	9.3	7.5	2.5	2.5	ND ND	0.323	ND ND	ND ND	ND ND	ND	ND ND	0.334 U						
Chromium	~	~	~	~	~	17.2	15.8	6.9	10.7	7.89	12.3	12.6	9.61	11.7	9.92	12.5	10.1	9.64	47.5
Copper	270	270	1720	270	50	19.6	14.6	7.37	9.77	7	9.07	9.01	7.18	11.8	8.39	9.84	18.1	10.8	128
Lead	400	1000	450	400	63	168	9.14	3.33	4.45	4.53	6.87	5.22	3.81	21.2	4.57	5.68	4.84	6.39	92.1
Manganese	2000	10000	2000	2000	1600	520	152	75.9	157	232	315	209	338	338	248	306	377	169	394
Nickel	310	310	130	140	30	12.5	19.5	9.8	21.1	15	14.3	12.1	13.9	12.7	11.2	20.1	19.5	15.5	21.6
Selenium	180	1500	4	36	3.9	ND	2.78 U												
Silver	180	1500	8.3	36	2	ND	0.556 U												
Zinc	10000	10000	2480	2200	109	134	75.4	10.3	15.9	13	14.5	14.5	11.6	40.7	14.5	13.6	13.4	14.9	107
Mercury by 7473																			
Mercury	0.81	2.8	0.73	0.81	0.18	0.0611	ND	0.123											
Chromium, Hexavalent																			
Chromium, Hexavalent	110	400	19	22	1	ND	0.556 U												
Chromium, Trivalent			,		_														
Chromium, Trivalent	180	1500	~	36	30	ND	47.5												
Cyanide, Total							T			T	1	T				T		T	
Cyanide, total	27	27	40	27	27	91.3	97.3	96.9	88.3	97.2	96.7	96.8	82.3	95.2	96.9	96.8	89.3	97.5	0.556 U
Total Solids (%)						ı		1	ı		T	1	1	1	1	T	1	1	
% Solids	~	~	_ ~	~	_ ~														89.9
HERB, 8151 MASTER					_														
2,4,5-TP (Silvex)	100	500	3.8	58	3.8	ND	0.0222 U												
PCB, 8082 MASTER							I	1	T.	l .	1	T	1	1	1	T	T	1	
Aroclor 1016	~	~	~	~	-	ND	0.018 U												
Aroclor 1221	~	~	~	~	~	ND	ND ND	ND	ND ND	ND	0.018 U								
Aroclor 1232	~	-	~	~	~	ND ND	0.018 U 0.018 U												
Aroclor 1242 Aroclor 1248	~	~	~	~	~	ND ND	0.018 U												
Aroclor 1254	~	~	~	~	~	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	0.018 U
Aroclor 1254 Aroclor 1260	~	~	~	~	-	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	0.018 U						
Total PCBs	1	1	3.2	1	0.1	ND	0.018 U												
PFAS, NYSDEC Target List																			<u>'</u>
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:		~	~	~	~	ND	0.00027 U												
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:		~	~	~	~	ND	0.00027 U												
N-EtFOSAA	~	~	~	~	~	ND	0.00027 U												
N-MeFOSAA	~	~	~	~	~	ND	0.00027 U												
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	ND	0.00027 U												
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	ND	ND ND	ND	ND ND	ND	ND ND	ND	0.00027 U						
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	0.00027 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	ND ND	0.00027 U 0.00027 U												
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	ND ND	ND ND	ND ND		ND ND	0.00027 U 0.00027 U								
Perfluorododecanoic acid (PFDoA) Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	ND ND	0.00027 U												
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	ND ND	0.00027 U												
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	0.00027 U
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.00027 U
Perfluorononanoic acid (PFNA)	~	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.00027 U
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00192	0.00151	0.00143	0.00657	0.00129	0.00062	0.00203	ND	0.00615	0.00501	0.00312	0.00032	ND	0.00027
	~	~	~	~	~	ND ND	0.00031	ND	ND ND	ND	ND ND	ND ND	ND	0.00035 PF-LCS-H		+		ND	0.00027 U
Perfluorooctanoic acid (PFOA)									ND ND	ND		ND	ND	ND ND	ND ND	ND ND		ND	0.00027 U
Perfluorooctanoic acid (PFOA) Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	ND	ND	ND	I ND	I ND	ND	I ND	ND	IND	IND	NU	ND	IND	
	2 2	~	~	~	~	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.00027 U
Perfluoropentanoic acid (PFPeA)																			_

Sample ID						RD-2B 9-	-11 ft	RD-2B 11-13 ft	RD-2B 13-15 ft	RD-1A 7-9 ft	RD-1A 9-11 ft	RD-1A 11-13 ft	RD-1A 13-15 ft	RD-1C 7-4	9 ft	RD-1C 9-11 ft	RD-1C 11-13 ft	RD-1C 13-15 ft	RD-1B 7-9 ft	RD-1B 9-11 ft	RD-1B 11-13 ft	RD-1B 13-15 ft	D-1C 11-13 ft Field Du
York ID	Part 375	Part 375	Part 375	Part 37	Part 375																		
Sampling Date	RRSCOs		PGSC0s			8/29/2		8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/20	022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022
Client Matrix						Soll		Soil	Soll	Soll	Soll	Soll	Soll	Soil	_	Soll	Soil	Soll	Soll	Soil	Soll	Soll	Soll
Compound VOA, 8260 MASTER						Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1.1.1-Trichloroethane	100	500	0.68	100	0.68	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	11	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1.1-Dichloroethane	26	240	0.08	19	0.08	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0020	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1.1-Dichloroethylene	100	500	0.27	100	0.27	0.002	- 11	0.0027 U	0.0026 U	0.0027	0.0028 U	0.0026	0.0027 U	0.0022	II	0.0023 U	0.0028 U	0.0028	0.0021 U	0.0019	0.0027	0.0026	0.0027 U
1,2,4-Trimethylbenzene	52	190	3.6	47	3.6	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,2-Dichlorobenzene	100	500	1.1	100	1.1	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,2-Dichloroethane	3.1	30	0.02	2.3	0.02	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,3,5-Trimethylbenzene	52	190	8.4	47	8.4	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,3-Dichlorobenzene	49	280	2.4	17	2.4	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,4-Dichlorobenzene	13	130	1.8	9.8	1.8	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
1,4-Dioxane	13	130	0.1	9.8	0.1	0.04	U	0.053 U	0.053 U	0.054 U		0.052 U	0.053 U	0.044	U	0.047 U	0.056 U	0.056 U	0.041 U	0.039 U	0.054 U	0.052 U	0.055 U
2-Butanone	100	500	0.12	100	0.12	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Acetone	100	500	0.05	100	0.05	0.015		0.037	0.008 J	0.012	0.0065 J	0.0052 U	0.0058 J	0.0057	J	0.016	0.0097 J	0.0056 U	0.009	0.012	0.008 J	0.0055 J	0.0084 J
Benzene Corbon totrophlorida	4.8	44	0.06	2.9	0.06	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Carbon tetrachloride Chlorobenzene	2.4 100	22 500	0.76	1.4		0.002	U	0.0027 U 0.0027 U	0.0026 U 0.0026 U	0.0027 U 0.0027 U		0.0026 U	0.0027 U 0.0027 U	0.0022	U	0.0023 U 0.0023 U	0.0028 U 0.0028 U	0.0028 U	0.0021 U 0.0021 U	0.0019 U	0.0027 U 0.0027 U	0.0026 U 0.0026 U	0.0027 U 0.0027 U
Chloroform	49	350	0.37	100	0.37	0.002	II	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	II	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
cis-1,2-Dichloroethylene	100	500	0.37	59	0.25	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Ethyl Benzene	41	390	1	30	1	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Methyl tert-butyl ether (MTBE)	100	500	0.93	62	0.93	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Methylene chloride	100	500	0.05	51	0.05	0.008		0.021	0.016	0.017	0.021	0.0053 J	0.0094 J	0.0096		0.016	0.021	0.014	0.0069 J	0.011	0.012	0.0063 J	0.025
Naphthalene	100	500	12	100	12	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
n-Butylbenzene	100	500	12	100	12	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
n-Propylbenzene	100	500	3.9	100	3.9	0.002	U	0.0027 U	0.0026 U	0.0027 U	_	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
o-Xylene	~	~	~	~	~	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
p- & m- Xylenes	~	~	~	~	~	0.004	U	0.0053 U	0.0053 U	0.0054 U	0.0055 U	0.0052 U	0.0053 U	0.0044	U	0.0047 U	0.0056 U	0.0056 U	0.0041 U	0.0039 U	0.0054 U	0.0052 U	0.0055 U
sec-Butylbenzene	100	500	11	100		0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
tert-Butylbenzene	100	500	5.9	100	5.9	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Tetrachloroethylene	19	150	1.3 0.7	5.5 100	1.3 0.7	0.002	U	0.0027 U 0.0027 U	0.0026 U	0.0027 U 0.0027 U		0.0026 U 0.0026 U	0.0027 U 0.0027 U	0.0022	U	0.0023 U 0.0023 U	0.0028 U 0.0028 U	0.0028 U 0.0028 U	0.0021 U			0.0026 U 0.0026 U	0.0027 U 0.0032 J
Toluene trans-1,2-Dichloroethylene	100	500 500	0.19	100	0.19	0.002	U	0.0027 U	0.0026 U	0.0027 U	0.0028 U	0.0026 U	0.0027 U	0.0022	IJ	0.0023 U	0.0028 U	0.0028 U	0.0021 U 0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0032 J
Trichloroethylene	21	200	0.13	10	0.13	0.002	U	0.0027 U	0.0026 U	0.0027		0.0026 U	0.0027 U	0.0022	II I	0.0023 U	0.0028 U	0.0028	0.0021 U	0.0019 U	0.0027 U	0.0026	0.0027 U
Vinvl Chloride	0.9	13	0.02	0.21	0.02	0.002	U	0.0027 U	0.0026 U	0.0027 U		0.0026 U	0.0027 U	0.0022	U	0.0023 U	0.0028 U	0.0028 U	0.0021 U	0.0019 U	0.0027 U	0.0026 U	0.0027 U
Xylenes, Total	100	500	1.6	100	_	0.006	U	0.008 U	0.0079 U	0.0082 U	0.0083 U	0.0078 U	0.008 U	0.0066	U	0.007 U	0.0083 U	0.0084 U	0.0062 U	0.0058 U	0.0082 U	0.0078 U	0.0082 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil		'		•				•	<u>'</u>	•		'	•	<u> </u>		· · · · · · · · · · · · · · · · · · ·	•	<u>'</u>	•		<u>'</u>	•	
1,4-Dioxane	13	130	0.1	9.8	0.1	0.0196	U	0.0198 U	0.0192 U	0.0194 U	0.0189 U	0.0183 U	0.0185 U	0.0189	U	0.0187 U	0.0183 U	0.019 U	0.0194 U	0.0192 U	0.0185 U	0.0196 U	0.0187 U
SVOA, 8270 MASTER																							
2-Methylphenol	100	500	0.33	100	0.33	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0448 U	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
3- & 4-Methylphenols	100	500	0.33	34	0.33	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0448 U	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Acenaphthene	100	500	98	100	20	0.0457	U	0.0461 U	0.044 U	0.0453 U		0.0427 U	0.0541 JD	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Acenaphthylene	100	500	107	100	_	0.0457	U	0.0461 U	0.044 U	0.0453 U		0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Anthracene	100	500 5.6	1000	100	100	0.0598	D D	0.0676 JD 0.133 D	0.044 U	0.0874 JD		0.0427 U	0.193 D 0.306 D	0.0454	JD	0.0742 JD 0.214 D	0.0436 U 0.0436 U	0.043 U	0.0759 JD 0.215 D	0.0514 JD 0.178 D	0.0427 U 0.0427 U	0.0427 U 0.0427 U	0.0441 U 0.0441 U
Benzo(a)anthracene Benzo(a)pyrene	1	5.6	22	1	1	0.291	D	0.133 D 0.115 D	0.044 U	0.31 D		0.0427 U	0.306 D	0.0717	D OI	0.214 D 0.183 D	0.0436 U	0.043 U	0.215 D 0.196 D	0.178 D 0.14 D	0.0427 U	0.0427 U	0.0441 U
Benzo(b)fluoranthene	1	5.6	1.7	1	1	0.269	D	0.115 D	0.044 U	0.281 D	0.020 B	0.0427 U	0.263 D	0.0753	ID OF	0.143 D	0.0436 U	0.043 U	0.196 D	0.14 D	0.0427 U	0.0427 U	0.0441 U
Benzo(g,h,i)perylene	100	500	1000	100	100	0.217	D	0.0813 JD	0.044 U	0.233 D		0.0427 U	0.17 D	0.0456	JD JD	0.143 D	0.0436 U	0.043 U	0.138 D	0.0793 JD	0.0427 U	0.0427 U	0.0441 U
Benzo(k)fluoranthene	3.9	56	1.7	1	0.8	0.222	D	0.0881 JD	0.044 U	0.243 D		0.0427 U	0.165 D	0.0616	JD	0.147 D	0.0436 U	0.043 U	0.189 D	0.115 D	0.0427 U	0.0427 U	0.0441 U
Chrysene	3.9	56	1	1	1	0.315	D	0.14 D	0.044 U	0.323 D		0.0427 U	0.257 D	0.0732	JD	0.201 D	0.0436 U	0.043 U	0.202 D	0.182 D	0.0427 U	0.0427 U	0.0441 U
Dibenzo(a,h)anthracene	0.33	0.56	1000	0.33	0.33	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0485 JD	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Dibenzofuran	59	350	210	14	7	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0448 U	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Fluoranthene	100	500	1000	100	100	0.561	D	0.311 D	0.044 U	0.676 D		0.0427 U	0.605 D	0.139	D	0.428 D	0.0436 U	0.043 U	0.429 D	0.275 D	0.0427 U	0.0427 U	0.0441 U
Fluorene	100	500	386	100		0.0457	U	0.0461 U	0.044 U	0.0453 U		0.0427 U	0.0698 JD	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Hexachlorobenzene	1.2	6	3.2	0.33		0.0457	U	0.0461 U	0.044 U	0.0453 U		0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	8.2	0.5	0.5	0.141	D	0.0566 JD	0.044 U	0.162 D	0.200	0.0427 U	0.104 D	0.0454	U	0.0907 D	0.0436 U	0.043 U	0.0949 D	0.069 JD	0.0427 U	0.0427 U	0.0441 U
Naphthalene	100	500	12	100	12	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0448 U	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Pentachlorophenol	6.7	6.7	0.8	2.4	0.8	0.0457	U	0.0461 U	0.044 U	0.0453 U	0.0448 U	0.0427 U	0.0429 U	0.0454	U	0.0448 U	0.0436 U	0.043 U	0.0458 U	0.046 U	0.0427 U	0.0427 U	0.0441 U
Phenanthrene	100	500	0.33	100	0.33	0.263	D U	0.345 D 0.0461 U	0.044 U	0.404 D 0.0453 U		0.0427 U	0.773 D 0.0429 U	0.0768	JD	0.272 D 0.0448 U	0.0436 U	0.043 U	0.311 D	0.19 D 0.046 U	0.0427 U	0.0427 U	0.0441 U
Phenol		500		100		0.0457			+					****	U		******	0.043 U			*******		******
Pyrene	100	500	1000	100	100	0.464	D	0.25 D	0.044 U	0.524 D	0.649 D	0.0427 U	0.768 D	0.114	D	0.435 D	0.0436 U	U.U43 U	0.387 D	0.289 D	0.0427 U	0.0427 U	0.0441 U

Sample ID York ID						RD-2B 9-11	Lft RD-2B 1	.1-13 ft	RD-2B 13-15 ft	RD-1A 7	-9 ft	RD-1A 9-11 f	RD-1A 11-	13 ft	RD-1A 13-15 ft	RD-1C 7-9 ft	RD-1C 9-11 ft	RD-1C 11-13 ft	RD-1C 13-15 ft	RD-1B	7-9 ft	RD-1B 9-11	t RD-18	11-13 ft	RD-1B 13-15 ft	D-1C 11-13 ft Field Du
Sampling Date		Part 375 CSCOs	Part 375 PGSCOs	Part 375 RSC0s	Part 375 UUSCOs	8/29/202			8/29/2022	8/29/20		8/29/2022	8/29/20	22	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/2022	8/29/		8/29/2022		9/2022	8/29/2022	8/29/2022
Client Matrix	-					Soil	So		Soil	Soil		Soil	Soil	_	Soil	Soil	Soil	Soil	Soil	So		Soil		Soil	Soil	Soil
PEST, 8081 MASTER						Result	Q Result	Q	Result Q	Result	Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result	Q	Result (Result	Q	Result Q	Result Q
4,4'-DDD	13	92	14	2.6	0.0033	0.00176	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168	U	0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	0.00179	U	0.00178	0.00166	U	0.00168 U	0.00172 U
4,4'-DDE	8.9	62	17	1.8	0.0033	0.002.0	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U		U	0.00178			0.00168 U	0.00172 U
4,4'-DDT	7.9	47	136	1.7	0.0033		U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U		U	0.00178			0.00168 U	0.00172 U
Aldrin alpha-BHC	0.097	0.68 3.4	0.19	0.019	0.005	0.00176 0.00176	U 0.00183 U 0.00183	U	0.00175 U 0.00175 U	0.00181	U	0.00179 L	0.00168 0.00168		0.00169 U 0.00169 U	0.00178 U 0.00178 U	0.00176 U 0.00176 U	0.00169 U 0.00169 U	0.00169 U 0.00169 U		U II	0.00178 0.00178	0.00166 0.00166		0.00168 U 0.00168 U	0.00172 U 0.00172 U
alpha-Chlordane	4.2	24	2.9	0.097	0.02	0.00176	U 0.00183	U	0.00175 U	0.00181	U	0.00179 U	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	0.00179	U	0.00178			0.00168 U	0.00172 U
beta-BHC	0.36	3	0.09	0.072	0.036	0.00176	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	_	U	0.00178			0.00168 U	0.00172 U
delta-BHC	100	500	0.25	100	0.04		U 0.00183	U	0.00175 U	0.00181		0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U		0.00169 U		U		0.00166		0.00168 U	0.00172 U
Dieldrin	0.2	1.4	0.1	0.039	0.005	0.002.0	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	0.00179	U	0.00178			0.00168 U	0.00172 U
Endosulfan I Endosulfan II	24	200	102 102	4.8 4.8	2.4	0.00176 0.00176	U 0.00183 U 0.00183	U	0.00175 U 0.00175 U	0.00181	U	0.00179 L	0.00168 0.00168		0.00169 U 0.00169 U	0.00178 U 0.00178 U	0.00176 U 0.00176 U	0.00169 U 0.00169 U	0.00169 U 0.00169 U	0.00179	U II	0.00178 0.00178	0.00200		0.00168 U 0.00168 U	0.00172 U 0.00172 U
Endosulfan sulfate	24	200	1000	4.8	2.4	 	U 0.00183	U	0.00175 U	0.00181	U	0.00179 U	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	_	U	0.00178			0.00168 U	0.00172 U
Endrin	11	89	0.06	2.2	0.014	0.00176	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168	U	0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	0.00179	U	0.00178	0.00166	U	0.00168 U	0.00172 U
gamma-BHC (Lindane)	1.3	9.2	0.1	0.28	0.1	0.002.0	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168		0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U		U	0.00178	0.00200		0.00168 U	0.00172 U
Heptachlor	2.1	15	0.38	0.42	0.042	0.00176	U 0.00183	U	0.00175 U	0.00181	U	0.00179 L	0.00168	U	0.00169 U	0.00178 U	0.00176 U	0.00169 U	0.00169 U	0.00179	U	0.00178	0.00166	U	0.00168 U	0.00172 U
Metals, NYSDEC Part 375 Arsenic	16	16	16	16	13	1.7	U 1.95		1.64 U	1.69	U	1.66 L	1.6	U I	1.64 U	2.02	1.67 U	1.6 U	1.66 U	1.74	U	1.66	1.6	U	1.62 U	1.64 U
Barium	400	400	820	350	350	94.7	99.7		12.8	51.8		56.5	45		21.1	97.9	84.1	32.7	17.1	61.8		78.8	22.2		16.6	15.4
Beryllium	72	590	47	14	7.2	0.057	U 0.057	U	0.055 U	0.056	U	0.055 L	0.053	U	0.055 U	0.056 U	0.056 U	0.053 U	0.055 U	0.058	U	0.055	0.053	U	0.054 U	0.055 U
Cadmium	4.3	9.3	7.5	2.5	2.5		U 0.34	U	0.327 U		U	0.332 L		U	0.327 U	1.07	1.03	0.32 U		_			0.319	U	0.325 U	
Copper	270	270	~ 1720	270	50	18.4 23.6	33.4 24		7.33	18.5 17.6		19 17.5	13.4 11.9		11 16	17.6 24.1	20.2 17.9	15 12.1	9.4 9.24	23.8 16		21.8	10.2		9.72	9.85 11.5
Copper	400	1000	450	400	63		84.2		4.6	21		38.6	6.5		6.48	97.3	62.6	12.1	9.24 5.17	33.2		105	7.43		7.11	2.92
Manganese	2000	10000	2000	2000	1600	336	626		289	488		238	379		384	425	361	271	293	431		394	247		220	211
Nickel	310	310	130	140	30	17	34.6		17	18.4		18.6	22.6		24.9	3.13	1.12 U	49.6	12.4	10.6		38.4	14		32.6	14.2
Selenium	180	1500	4	36	3.9	2.84	U 2.83	U	2.73 U	2.82	U	2.77 L	2.66	U	2.73 U	2.82 U	2.79 U	2.67 U	2.77 U	2.89	U	2.77		U	2.71 U	2.73 U
Silver	180 10000	1500 10000	8.3 2480	36 2200	109	0.001	U 0.566 90.3	U	0.546 U 12.7	0.564 35.2	U	0.554 L 55.9	0.532 17	U	0.545 U 16	0.564 U 100	0.558 U 78.6	0.534 U 29.1	0.553 U 14.7	0.578 48.9	U	0.554 70.2	0.532 17.8	U	0.541 U 14.9	0.545 U 15
Mercury by 7473	10000	10000	2460	2200	109	73.0	90.3		12.1	35.2		55.9	1 1/		10	100	70.0	29.1	14.7	40.3		10.2	17.8		14.9	15
Mercury	0.81	2.8	0.73	0.81	0.18	0.0329	U 0.0334	U	0.0322 U	0.0332	U	0.0327 L	0.0314	U	0.0316 U	0.151	0.0323 U	0.0315 U	0.031 U	0.34		0.136	0.0308	U	0.0308 U	0.0322 U
Chromium, Hexavalent																										
Chromium, Hexavalent	110	400	19	22	1	0.548	U 0.556	U	0.536 U	0.554	U	0.544 L	0.523	U	0.527 U	0.545 U	0.539 U	0.525 U	0.516 U	0.549	U	0.554	0.514	U	0.514 U	0.536 U
Chromium, Trivalent Chromium, Trivalent	180	1500	~	36	30	18.4	33.4		10.2	18.5	1	19	13.4		11	17.6	20.2	15	9.4	23.8		21	10.2		8.35	9.85
Cyanide, Total	100	1000		30	30	10.4	55.4		10.2	10.0			10.4		**	11.0	20.2	1 10	1 0.4	20.0			10.2		0.00	
Cyanide, total	27	27	40	27	27	0.548	U 0.556	U	0.536 U	0.554	U	0.544 L	0.523	U	0.527 U	0.545 U	0.539 U	0.525 U	0.516 U	0.549	U	0.554	0.514	U	0.514 U	0.536 U
Total Solids (%)																										
% Solids	~	~	~	~	~	91.2	89.9		93.2	90.2		91.8	95.6		94.9	91.7	92.8	95.3	96.8	91		90.2	97.3		97.3	93.2
HERB, 8151 MASTER	100	500	0.0		1 20	0.0044			0.0040	0.0004	1	0.0040	1 0 0000	1	0.004	T 0 0040 II	T 0 0044 II	0.0000	1 0 0000	0.0047		T 0.000	1 0 0000	- 11		1 0 0040
2,4,5-TP (Silvex) PCB, 8082 MASTER	100	500	3.8	58	3.8	0.0214	U 0.022	U	0.0212 U	0.0221	U	0.0216 L	0.0208	U	0.021 U	0.0216 U	0.0211 U	0.0209 U	0.0206 U	0.0217	U	0.022	0.0202	U	0.0202 U	0.0213 U
Aroclor 1016	~	~	~	~	~	0.0178	U 0.0185	U	0.0177 U	0.0183	U	0.0181 L	0.0169	U	0.0171 U	0.018 U	0.0177 U	0.0171 U	0.0171 U	0.0181	U	0.018	0.0168	U	0.017 U	0.0174 U
Aroclor 1221	~	~	~	~	~		U 0.0185	U	0.0177 U	0.0183	U	0.0181 L	0.0169	U	0.0171 U	0.018 U	0.0177 U	0.0171 U	0.0171 U	0.0181	U	0.018			0.017 U	0.0174 U
Aroclor 1232	~	~	~	~	~	******	U 0.0185	U	0.0177 U	0.0183	U	0.0181 L	******	U	0.0171 U	0.018 U	0.0177 U		0.0171 U		U		0.0168		0.017 U	0.0174 U
Aroclor 1242	~	~	~	~	~		U 0.0185 U 0.0185	U	0.0177 U 0.0177 U	0.0183 0.0183	U	0.0181 U	0.0169 0.0169	U	0.0171 U 0.0171 U	0.018 U 0.018 U	0.0177 U 0.0177 U	0.0171 U 0.0171 U	0.0171 U 0.0171 U		U	0.018 0.018	J 0.0168 J 0.0168		0.017 U 0.017 U	0.0174 U 0.0174 U
Aroclor 1248 Aroclor 1254	~	~	~	~	~		U 0.0185	U	0.0177 U	0.0183	U	0.0181 U	0.0169	U	0.0171 U	0.018 U 0.018 U	0.0177 U	_	0.0171 U 0.0171 U	_	U II	0.018			0.017 U	0.0174 U
Aroclor 1260	~	~	~	~	~		U 0.0185	U	0.0177 U	0.0183	Ü	0.0181 L		U	0.0171 U	0.018 U	0.0177 U	0.0171 U	0.0171 U		U		0.0168		0.017 U	0.0174 U
Total PCBs	1	1	3.2	1	0.1	0.0178	U 0.0185	U	0.0177 U	0.0183	U	0.0181 L	0.0169	U	0.0171 U	0.018 U	0.0177 U	0.0171 U	0.0171 U	0.0181	U	0.018	0.0168	U	0.017 U	0.0174 U
PFAS, NYSDEC Target List 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8	<u>ا</u>	~	~	~	T ~	0.00026	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026	U	0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	0.00027	U	0.00027	0.00025	U	0.00025 U	0.00026 U
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:		~	~	~	~	 	U 0.00027	U	0.00026 U		U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U		U		0.00025		0.00025 U	0.00026 U
N-EtFOSAA	~	~	~	~	~		U 0.00027	U	0.00026 U			0.00026 L		_		0.00026 U	0.00026 U				U		0.00025		0.00025 U	
N-MeFOSAA	~	~	~	~	~	0.00026	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U		U	0.00027			0.00025 U	0.00026 U
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~		U 0.00027	U	0.00026 U	0.00027		0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U		0.00025 U	_	U		0.00025		0.00025 U	
Perfluoro-1-heptanesulfonic acid (PFHpS) Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~		U 0.00027 U 0.00027	U	0.00026 U 0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U 0.00026 U	0.00026 U 0.00026 U	0.00026 U 0.00026 U		0.00025 U 0.00025 U		U		0.00025 0.00025		0.00025 U 0.00025 U	0.00026 U 0.00026 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~		U 0.00027	U	0.00026 U	0.00027		0.00026 L				0.00026 U	0.00026 U		0.00025 U		U		0.00025		0.00025 U	
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00026	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026	_	0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	_	U	0.00027			0.00025 U	0.00026 U
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~		U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U		0.00025 U	_	U	-	0.00025		0.00025 U	_
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	******	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U		0.00025 U		U		0.00025		0.00025 U	0.00026 U
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	~	~	~	~	~		U 0.00027 U 0.00027	U	0.00026 U 0.00026 U	******	U	0.00026 L			0.00026 U	0.00026 U 0.00026 U	0.00026 U 0.00026 U		0.00025 U 0.00025 U		U II		0.00025 0.00025		0.00025 U 0.00025 U	
Perfluoron-butanoic acid (PFBA)	~	~	~	~	~	0.00026	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	_	U	0.00027			0.00025 U	0.00026 U
Perfluorononanoic acid (PFNA)	~	~	~	~	~		U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026		0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	_	U	0.00027			0.00025 U	0.00026 U
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	******	U 0.00027	U	0.00026 U	0.00033		0.00068	0.00026			0.00107	0.00071	0.00026 U	0.00025 U		U	0.00068	0.00025		0.00092	0.00026 U
, ,			~	~	~	0.00026	U 0.00027	U	0.00026 U	0.00027	υl	0.00026 L	0.00026	U	0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	0.00027	U	0.00027	0.00025	U	0.00025 U	0.00026 U
Perfluorooctanoic acid (PFOA)	~	~																	0.0000=		- 10	0.0000=				0.00000
Perfluorooctanoic acid (PFOA) Perfluoropentanoic acid (PFPeA)	~	~ ~	~	~	~	0.00026	U 0.00027	U	0.00026 U	0.00027	U	0.00026 L	0.00026	U	0.00026 U	0.00026 U	0.00026 U	0.00026 U	0.00025 U	0.00027	U		0.00025	U	0.00025 U	
Perfluorooctanoic acid (PFOA)	~	~		~		0.00026 0.00026								U					0.00025 U 0.00025 U 0.00025 U	0.00027 0.00027	U U	0.00027	0.00025	U		0.00026 U 0.00026 U 0.00026 U

Table 2 Supplemental Soil Sampling Results - Remedial Delineation Borings Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID						RD-1 7	-9 ft	RD-19	-11 ft	RD-1 1:	1-13 ft	RD-1 1	3-15 ft	RD-2
York ID	Part 375	22H03	7-01	22H03	57-02	22H03	57-03	22H03	57-04	22H03				
Sampling Date	RRSCOs	CSCOs	PGSCOs	RSCOs	UUSCOs	8/4/2	022	8/4/2	2022	8/4/2	2022	8/4/2	2022	8/4/:
Client Matrix	Milocos	00003	7 00003	110003	000003	Sol	l	Sc	il	So	il	So	ii	Sc
Compound						Result	Q	Result	Q	Result	Q	Result	Q	Result
MATTE			,			•								

Any Regulatory Exceedences are color coded by Regulation

Part 375 RRSCOs Restricted Residential Soil Cleanup Objective

Part 375 CSCOs Commercial Use Soil Cleanup Objectives
Part 376 PGSCOs

Jse Soil Cleanup Objective

Q is the Qualifier Column with definitions as follows:

CCVE=The value is ESTIMATED. The value is estimated due to its behavior during continuing calibration verification (>20% Difference for average Rf or >20% Drift for quadratic fit)

ICVE=The value is ESTIMATED. The value is estimated due to its behavior during initial calibration verification (recovery exceeded 30% of expected value)

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated L=analyte is a lab contaminant and does not represent Site conditions

NT=this indicates the analyte was not a target for this sample

 \sim =this indicates that no regulatory limit has been established for this analyte

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-1 (7-9)		TB-1 (9-11)	TB-1 (11-13)	TB-1 (13-15)		TB-1 (15-17)	TB-1 (17-19)		TB-1 (19-21)		TB-1 (21-23)		TB-1 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	5/25/2022	5/25/2022		5/25/2022	5/25/2022		5/25/2022		5/25/2022		5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil	Soil	Soil		Soil	Soil		Soil		Soil		Soil
					Result	Q	Result Q	Result Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
VOA, 8260 MASTER		I							T									
1,1,1-Trichloroethane	100	500	100	0.68	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
1,1-Dichloroethane	26	240	19	0.27	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
1,1-Dichloroethylene	100	500	100	0.33	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
1,2,4-Trimethylbenzene	52	190	47	3.6	1.5	D	69 D	56 D		D	210 D	53	D		D	110	D	0.84 JD
1,2-Dichlorobenzene 1,2-Dichloroethane	100 3.1	500 30	100 2.3	0.02	0.26 0.26	U	0.51 U	0.48 U 0.48 U		U	1.3 U	0.46 0.46	U		U	0.52	U	0.51 U
	52	190	47	8.4	0.32	JD	20 D	16 D		JD	61 D	15	D		JD	29	D	0.51 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	49	280	17	2.4	0.32	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U U	0.52	U	0.51 U
1,4-Dichlorobenzene	13	130	9.8	1.8	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
1,4-Dioxane	13	130	9.8	0.1	5.3	U	10 U	9.5 U		U	26 U	9.2	U		U	10	U	10 U
2-Butanone	100	500	100	0.12	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Acetone	100	500	100	0.05	0.53	U	1 U	0.95 U		U	2.6 U	0.92	U		U	1	U	1 U
Benzene	4.8	44	2.9	0.06	0.26	U	2.9 D	2.5 D		U	8.6 D	2.7	D		U	3.8	D	0.51 U
Carbon tetrachloride	2.4	22	1.4	0.76	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Chlorobenzene	100	500	100	1.1	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Chloroform	49	350	10	0.37	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
cis-1,2-Dichloroethylene	100	500	59	0.25	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Ethyl Benzene	41	390	30	1	0.29	JD	15 D	12 D		D	49 D	12	D		JD	24	D	0.51 U
Methyl tert-butyl ether (MTBE)	100	500	62	0.93	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Methylene chloride	100	500	51	0.05	0.53	U	1 U	0.95 U		JD	2.6 U	0.92	U		U	1	U	1.7 JD
Naphthalene	100	500	100	12	1.1	D	12 D	11 D		JD	33 D	9.8	D	2.1	JD	19	D	0.51 U
n-Butylbenzene	100	500	100	12	0.36	JD	2.9 D	3 D	20	D	8.6 D	2.2	D	7.1	D	3.9	D	0.51 U
n-Propylbenzene	100	500	100	3.9	0.53	D	9.3 D	8.4 D	41	D	28 D	7.3	D	32	D	13	D	0.51 U
o-Xylene	~	~	~	~	0.4	JD	30 D	23 D	1.5	JD	96 D	23	D	2.7 .	JD	47	D	0.51 U
p- & m- Xylenes	~	~	~	~	1.1	D	78 D	58 D	3.5	JD	250 D	60	D	6.1	D	120	D	1 U
sec-Butylbenzene	100	500	100	11	0.26	U	1.5 D	1.4 D	6.5	D	4.6 D	1.2	D	2.6	JD	2.1	D	0.51 U
tert-Butylbenzene	100	500	100	5.9	0.26	U	0.51 U	0.48 U	1.2	U	1.3 U	0.46	U	1.5	U	0.52	U	0.51 U
Tetrachloroethylene	19	150	5.5	1.3	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Toluene	100	500	100	0.7	0.72	D	48 D	36 D		JD	170 D	38	D		D	80	D	0.52 JD
trans-1,2-Dichloroethylene	100	500	100	0.19	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Trichloroethylene	21	200	10	0.47	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Vinyl Chloride	0.9	13	0.21	0.02	0.26	U	0.51 U	0.48 U		U	1.3 U	0.46	U		U	0.52	U	0.51 U
Xylenes, Total	100	500	100	0.26	1.5	JD	110 D	81 D	5	JD	350 D	83	D	8.8 .	JD	160	D	1.5 U
SVOA, 8270 MASTER																		
2-Methylphenol	100	500	100	0.33	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
3- & 4-Methylphenois	100	500	34	0.33	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Acenaphthylene	100	500 500	100 100	20 100	0.0431 0.0431	U	0.048 U	0.0488 U 0.0488 U		JD U	0.0523 U 0.0523 U	0.0476 0.0476	U		U	0.0468 0.0468	U	0.0501 U 0.0501 U
Acenaphthylene Anthracene	100	500	100	100	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Benzo(a)anthracene	1	5.6	1	1	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Benzo(a)pyrene	1	1	1	1	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Benzo(b)fluoranthene	1	5.6	1	1	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Benzo(g,h,i)perylene	100	500	100	100	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Benzo(k)fluoranthene	3.9	56	1	0.8	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Chrysene	3.9	56	1	1	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Dibenzo(a,h)anthracene	0.33	0.56	0.33	0.33	0.0431	U	0.048 U	0.0488 U	0.0462	U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Dibenzofuran	59	350	14	7	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Fluoranthene	100	500	100	100	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Fluorene	100	500	100	30	0.0431	U	0.048 U	0.0488 U		D	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Hexachlorobenzene	1.2	6	0.33	0.33	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.5	0.5	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Naphthalene	100	500	100	12	0.0431	U	1.71 D	0.59 D		D	3.69 D	1.53	D		D	1.19	D	0.385 D
Pentachlorophenol	6.7	6.7	2.4	0.8	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Phenanthrene	100	500	100	100	0.0431	U	0.048 U	0.0488 U		D	0.0523 U	0.0476	U		U	0.0468	U	0.0501 U
Phenol	100	500	100	0.33	0.0431	U	0.048 U	0.0488 U		U	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U
Pyrene	100	500	100	100	0.0431	U	0.048 U	0.0488 U	0.0531	JD	0.0523 U	0.0476	U	0.0496	U	0.0468	U	0.0501 U

Table 3 Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID					TB-1 (7-9)		TB-1 (9-11)	TB-1 (11-13))	TB-1 (13-15)	T	TB-1 (15-17)	TB-1 (17-1	.9)	TB-1 (19-21)	TB-1 (21-23)	TB-1 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	5/25/2022		5/25/2022	!	5/25/2022	5/25/202	22	5/25/2022	5/25/2022	5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil	Soil		Soil		Soil	Soil		Soil	Soil	Soil
					Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result (Q Result Q	Result (
PEST, 8081 MASTER																	
4,4'-DDD	13	92	2.6	0.0033	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
4,4'-DDE	8.9	62	1.8	0.0033	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
4,4'-DDT	7.9	47	1.7	0.0033	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
Aldrin	0.097	0.68	0.019	0.005	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
alpha-BHC	0.48	3.4	0.097	0.02	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
alpha-Chlordane	4.2	24	0.91	0.094	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
beta-BHC	0.36	3	0.072	0.036	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
delta-BHC	100	500	100	0.04	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
Dieldrin	0.2	1.4	0.039	0.005	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
Endosulfan I	24	200	4.8	2.4	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
Endosulfan II	24	200	4.8	2.4	0.00168	U	0.00189 U	0.0019	U			0.00205 U	0.00188	U	0.00197 l		ļ
Endosulfan sulfate	24	200	4.8	2.4	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	
Endrin	11	89	2.2	0.014	0.00168	U	0.00189 U		U		U C	0.00205 U	0.00188	U	0.00197 l		
gamma-BHC (Lindane)	1.3	9.2	0.28	0.1	0.00168	U	0.00189 U		U			0.00205 U	0.00188	U	0.00197 l		
Heptachlor	2.1	15	0.42	0.042	0.00168	U	0.00189 U	0.0019	U	0.00179	U C	0.00205 U	0.00188	U	0.00197 l	J 0.00188 U	0.00201
Metals, NYSDEC Part 375																	
Arsenic	16	16	16	13	1.55	U	1.73 U	1.78	U	1.66	U	1.88 U	1.71	U	1.81 l	J 1.73 U	1.83
Barium	400	400	350	350	13.8		20.2	31.4		23.9		26.9	26.1		33.3	25.5	28.4
Beryllium	72	590	14	7.2	0.052	U	0.058 U	0.059	U	0.055	U	0.063 U	0.057	U	0.06 l	J 0.058 U	0.061
Cadmium	4.3	9.3	2.5	2.5	0.31	U	0.345 U	0.356	U	0.333	U	0.377 U	0.343	U	0.362 l	J 0.346 U	0.367
Chromium	~	~	~	~	11		11.2	11.9		13.5		11.5	13.7		15.6	15	11.9
Copper	270	270	270	50	7.18		13.5	24.8		8.45		11.7	14.5		14.4	10.6	8.67
Lead	400	1000	400	63	3.38		14.7	28.5		7.71		20.6	32.1		37.2	13.4	2.46
Manganese	2000	10000	2000	1600	175		148	175		266		146	180		179	236	133
Nickel	310	310	140	30	21.1		12	11.8		15.8		10.2	10.9		13.1	13.1	18.8
Selenium	180	1500	36	3.9	2.58	U	2.88 U	2.97	U	2.77	U	3.14 U	2.86	U	3.02 l	J 2.88 U	3.06
Silver	180	1500	36	2	0.517	U	0.576 U	0.593	U	0.554	U	0.628 U	0.571	U	0.604 l		0.611
Zinc	10000	10000	2200	109	12.9		23.4	35.9		13.8		27.7	32.9		33.7	24	16.8
Mercury by 7473																	
Mercury	0.81	2.8	0.81	0.18	0.031	U	0.0345 U	0.0633		0.0333	U (0.0377 U	0.0343	U	0.0362 l	J 0.0346 U	0.0367
Chromium, Hexavalent																	
Chromium, Hexavalent	110	400	22	1	0.517	U	0.576 U	0.593	U	0.554	U	0.628 U	0.571	U	0.604 l	J 0.577 U	0.611
Chromium, Trivalent																	
Chromium, Trivalent	180	1500	36	30	11		11.2	11.9		13.5		11.5	13.7		15.6	15	11.9
Cyanide, Total																	
Dilution Factor					1		1	1		1		1	1		1	1	1
Cyanide, total	27	27	27	27	0.517	U	0.576 U	0.593	U	0.554	U	0.628 U	0.571	U	0.604 l	J 0.577 U	0.611
Total Solids																	
% Solids	~	~	~	~	96.7		86.8	84.3		90.2		79.7	87.5		82.8	86.7	81.8
HERB, 8151 MASTER	<u> </u>		·													_	
2,4,5-TP (Silvex)	100	500	58	3.8	0.0202	U	0.0229 U	0.0236	U	0.022	U	0.0248 U	0.0227	U	0.0236 l	J 0.0224 U	0.0243
PCB, 8082 MASTER								•			_						
Aroclor 1016	~	~	~	~	0.0169	U	0.0191 U	0.0192	U	0.0181	U	0.0207 U	0.019	U	0.0199 l	J 0.019 U	0.0203
Aroclor 1221	~	~	~	~	0.0169	U	0.0191 U	1	U			0.0207 U	0.019	U	0.0199 l		
Aroclor 1232	~	~	~	~	0.0169	U	0.0191 U		U			0.0207 U	0.019	U	0.0199 l		
Aroclor 1242	~	~	~	~	0.0169	U	0.0191 U		U			0.0207 U	0.019	U	0.0199 U		
Aroclor 1248	~	~	~	~	0.0169	U	0.0191 U		U			0.0207 U	0.019	U	0.0199 l		
Aroclor 1254	~	~	~	~	0.0169	U	0.0191 U	+	U			0.0207 U	0.019	U	0.0199 U		
Aroclor 1260	~	~	~	~	0.0169	U	0.0191 U		U			0.0207 U	0.019	U	0.0199 U		
Total PCBs	1	1	1	0.1	0.0169	U	0.0191 U		U		_	0.0207 U		U	0.0199 U		

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-1 (25-27)		TB-2 (7-9)	TB-2 (9-11)	TB-2 (11-13)	TB-2 (13-15)	TB-2 (15-17)	1	TB-2 (17-19)		TB-2 (19-21)		TB-3 (11-13)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	5/25/2022	5/25/2022	5/25/2022	5/25/2022		5/25/2022		5/25/2022		5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil	Soil	Soil	Soil	Soil		Soil		Soil		Soil
VOA, 8260 MASTER					Result	Q	Result Q	Result Q	Result Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
1,1,1-Trichloroethane	100	500	100	0.68	0.0031	U	0.0026 U	0.0023 U	0.0026 U	0.27 U	0.21	υl	2.6	υT	0.003	U	0.0028 U
1.1-Dichloroethane	26	240	19	0.08	0.0031	U	0.0026 U	+	0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
1,1-Dichloroethylene	100	500	100	0.33	0.0031	U	0.0026 U		0.0026 U	0.27 U	-	U		U	0.003	U	0.0028 U
1,2,4-Trimethylbenzene	52	190	47	3.6	0.045	\dashv	0.024	0.10023	0.09	140 D	90	D		D	0.044		0.0028 U
1,2-Dichlorobenzene	100	500	100	1.1	0.0031	U	0.0026 U		0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
1,2-Dichloroethane	3.1	30	2.3	0.02	0.0031	U	0.0026 U	+	0.0026 U	0.27 U		U		u l	0.003	U	0.0028 U
1,3,5-Trimethylbenzene	52	190	47	8.4	0.011	-	0.0039 J	0.018	0.018	34 D		D	100	D	0.031		0.0028 U
1,3-Dichlorobenzene	49	280	17	2.4	0.0031	U	0.0026 U	+	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
1,4-Dichlorobenzene	13	130	9.8	1.8	0.0031	U	0.0026 U		0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
1,4-Dioxane	13	130	9.8	0.1	0.062	U	0.052 U	0.046 U	0.052 U	5.4 U	4.1	U	52	U	0.061	U	0.057 U
2-Butanone	100	500	100	0.12	0.0031	U	0.0039 J	0.007	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
Acetone	100	500	100	0.05	0.0062	U	0.016	0.022	0.0098 J	0.54 U	0.41	U	5.2	U	0.0061	U	0.0057 U
Benzene	4.8	44	2.9	0.06	0.0031	U	0.0026 U	0.0027 J	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
Carbon tetrachloride	2.4	22	1.4	0.76	0.0031	U	0.0026 U	 	0.0026 U	0.27 U	-	U	2.6	u	0.003	U	0.0028 U
Chlorobenzene	100	500	100	1.1	0.0031	U	0.0026 U	+	0.0026 U	0.27 U		U	2.6	U	0.003	U	0.0028 U
Chloroform	49	350	10	0.37	0.0031	U	0.0026 U	0.0023 U	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
cis-1,2-Dichloroethylene	100	500	59	0.25	0.0031	U	0.0026 U	0.0023 U	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
Ethyl Benzene	41	390	30	1	0.0046	J	0.0049 J	0.016	0.013	16 D	8.1	D	310	D	0.06		0.0028 U
Methyl tert-butyl ether (MTBE)	100	500	62	0.93	0.0031	U	0.0026 U	0.0023 U	0.0026 U	0.27 U	0.21	U	2.6	U	0.003	U	0.0028 U
Methylene chloride	100	500	51	0.05	0.052		0.0084 J	0.0091 J	0.011	0.54 U	0.41	U	5.2	U	0.031		0.0058 J
Naphthalene	100	500	100	12	0.052		0.029	0.053	0.1	28 D	18	D	170	D	0.058		0.0028 U
n-Butylbenzene	100	500	100	12	0.0042	J	0.0026 U	0.0032 J	0.0029 J	5.2 D	3.1	D	26	D	0.0053	J	0.0028 U
n-Propylbenzene	100	500	100	3.9	0.004	J	0.004 J	0.012	0.01	17 D	9.5	D	120	D	0.027		0.0028 U
o-Xylene	~	~	~	~	0.015		0.0026 U	0.0023 U	0.0026 U	0.49 JD	0.3	JD	2.6	U	0.003	U	0.0028 U
p- & m- Xylenes	~	~	~	~	0.012		0.0073 J	0.019	0.02	32 D	15	D	13	D	0.013		0.0057 U
sec-Butylbenzene	100	500	100	11	0.0031	U	0.0026 U	0.0023 U	0.0026 U	2.4 D	1.4	D	9.7	D	0.003	U	0.0028 U
tert-Butylbenzene	100	500	100	5.9	0.0031	U	0.0026 U		0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
Tetrachloroethylene	19	150	5.5	1.3	0.0031	U	0.0026 U		0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
Toluene	100	500	100	0.7	0.014		0.014	0.01	0.0026 U	0.27 U	+	U		U	0.003	U	0.0029 J
trans-1,2-Dichloroethylene	100	500	100	0.19	0.0031	U	0.0026 U	1 1 1 1 1 1	0.0026 U	0.27 U		U	2.6	-	0.003	U	0.0028 U
Trichloroethylene	21	200	10	0.47	0.0031	U	0.0026 U		0.0026 U	0.27 U	0.21	U	2.6	-	0.003	U	0.0028 U
Vinyl Chloride	0.9	13	0.21	0.02	0.0031	U	0.0026 U		0.0026 U	0.27 U		U		U	0.003	U	0.0028 U
Xylenes, Total	100	500	100	0.26	0.027	\perp	0.0079 U	0.019	0.02	32 D	15	D	13 .	JD	0.013	J	0.0085 U
SVOA, 8270 MASTER	1										T						
2-Methylphenol	100	500	100	0.33	0.0507	U	0.0433 U		0.043 U	0.044 U		U		U	0.0501	U	0.0483 U
3- & 4-Methylphenols	100	500	34	0.33	0.0507	U	0.0433 U		0.043 U	0.044 U		U	0.0472	-	0.0501	U	0.0483 U
Acenaphthylana	100	500 500	100	20 100	0.0507 0.0507	U	0.0433 U 0.0433 U	 	0.043 U 0.043 U	0.044 U	0.124 0.0562	D JD	0.0472	_	0.0501	U	0.0483 U 0.0483 U
Acenaphthylene Anthracene	100	500	100	100	0.0507	U	0.0433 U		0.043 U	0.044 U	0.0562	U	0.0472 0.0472	-	0.0501	U	0.0483 U
Benzo(a)anthracene	1	5.6	1	1	0.0507	U	0.0433 U		0.043 U	0.044 U	0.047	U	0.0472	U I	0.0501	U	0.0483 U
Benzo(a)pyrene	1	1	1	1	0.0507	U	0.0433 U		0.043 U	0.044 U		U		U	0.0501	U	0.0483 U
Benzo(b)fluoranthene	1	5.6	1	1	0.0507	U	0.0433 U	 	0.043 U	0.044 U		U		U	0.0501	U	0.0483 U
Benzo(g,h,i)perylene	100	500	100	100	0.0507	U	0.0433 U			0.044 U		U		U	0.0501	U	0.0483 U
Benzo(k)fluoranthene	3.9	56	1	0.8	0.0507	U	0.0433 U		0.043 U	0.044 U		U		U	0.0501	U	0.0483 U
Chrysene	3.9	56	1	1	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U	0.047	U	0.0472	U	0.0501	U	0.0483 U
Dibenzo(a,h)anthracene	0.33	0.56	0.33	0.33	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U	0.047	U	0.0472	U	0.0501	U	0.0483 U
Dibenzofuran	59	350	14	7	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U	0.047	U	0.0472	U	0.0501	U	0.0483 U
Fluoranthene	100	500	100	100	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U		JD	0.0472	U	0.0501	U	0.0483 U
Fluorene	100	500	100	30	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U		D	0.0472	U	0.0501	U	0.0483 U
Hexachlorobenzene	1.2	6	0.33	0.33	0.0507	U	0.0433 U		0.043 U	0.044 U		U		U	0.0501	U	0.0483 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.5	0.5	0.0507	U	0.0433 U		0.043 U	0.044 U		U	0.0472	-	0.0501	U	0.0483 U
Naphthalene	100	500	100	12	0.0507	U	0.0433 U		 	5.43 D		D		D	0.0501	U	0.0483 U
Pentachlorophenol	6.7	6.7	2.4	0.8	0.0507	U	0.0433 U			0.044 U		U		U	0.0501	U	0.0483 U
Phenanthrene	100	500	100	100	0.0507	U	0.0433 U		0.043 U	0.0547 JD		D		U	0.0501	U	0.0483 U
Phenol	100	500	100	0.33	0.0507	U	0.0433 U	 	<u> </u>	0.044 U	-	U		U	0.0501	U	0.0483 U
Pyrene	100	500	100	100	0.0507	U	0.0433 U	0.0435 U	0.043 U	0.044 U	0.0622	JD	0.0472	υ	0.0501	U	0.0483 U

Table 3 Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-1 (25-27)	TB-2 (7-9)		TB-2 (9-11)		TB-2 (11-13))	TB-2 (13-15)	TB-2 (15-17))	TB-2 (17-19)	TB-2 (19-21)	TB-3 (11-13)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022	:	5/25/2022	:	5/25/2022	:	5/25/2022		5/25/2022	5/25/2022		5/25/2022	5/25/2022	5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Soil	Soil
					Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q Result Q	Result (
PEST, 8081 MASTER		•		•		-								<u>'</u>			•	
4,4'-DDD	13	92	2.6	0.0033	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
4,4'-DDE	8.9	62	1.8	0.0033	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
4,4'-DDT	7.9	47	1.7	0.0033	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Aldrin	0.097	0.68	0.019	0.005	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
alpha-BHC	0.48	3.4	0.097	0.02	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
alpha-Chlordane	4.2	24	0.91	0.094	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
beta-BHC	0.36	3	0.072	0.036	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
delta-BHC	100	500	100	0.04	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Dieldrin	0.2	1.4	0.039	0.005	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Endosulfan I	24	200	4.8	2.4	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Endosulfan II	24	200	4.8	2.4	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Endosulfan sulfate	24	200	4.8	2.4	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Endrin	11	89	2.2	0.014	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
gamma-BHC (Lindane)	1.3	9.2	0.28	0.1	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	
Heptachlor	2.1	15	0.42	0.042	0.002	U	0.0017	U	0.00172	U	0.00173	U	0.00173 U	0.00185	U	0.00183	U 0.00199 U	0.0019 L
Metals, NYSDEC Part 375																		
Arsenic	16	16	16	13	1.83	U	1.57	U	1.58	U	1.58	U	1.6 U	1.69	U	1.71	U 1.83 U	1.74 L
Barium	400	400	350	350	28.3		13.4		16.6		20.5		33.2	17.8		17.2	21.8	36.9
Beryllium	72	590	14	7.2	0.061	U	0.052	U	0.053	U	0.053	U	0.053 U	0.056	U	0.086	0.061 U	0.058 L
Cadmium	4.3	9.3	2.5	2.5	0.365	U	0.315	U	0.316	U	0.316	U	0.321 U	0.339	U	0.342	U 0.366 U	0.349 L
Chromium	~	~	~	~	8.92		8.82		9.88		9.69		20.4	9.56		10	9.5	13.2
Copper	270	270	270	50	6.74		7.29		8.05		8.71		10.7	8.95		6.77	8.74	11.2
Lead	400	1000	400	63	0.794		2.27		2.56		3.78		6.46	6.2		6.3	1.71	4.13
Manganese	2000	10000	2000	1600	244		106		295		202		468	286		130	85.2	350
Nickel	310	310	140	30	7.59		14.6		13.8		17		22.4	17.3		16.8	16.3	18.9
Selenium	180	1500	36	3.9	3.05	U	2.62	U	2.64	U	2.63	U	2.67 U		U		U 3.05 U	
Silver	180	1500	36	2	0.609	U	0.525	U	0.527	U	0.527	U	0.535 U		U		U 0.61 U	
Zinc	10000	10000	2200	109	12.4		12.9		12.7		13.7		16.9	13.1		13.7	13.4	18
Mercury by 7473																		
Mercury	0.81	2.8	0.81	0.18	0.0365	U	0.0315	U	0.0316	U	0.0316	U	0.0321 U	0.0339	U	0.0342	U 0.0366 U	0.0349 L
Chromium, Hexavalent																		
Chromium, Hexavalent	110	400	22	1	0.609	U	0.525	U	0.527	U	0.527	U	0.535 U	0.564	U	0.57	U 0.61 U	0.581 L
Chromium, Trivalent																		
Chromium, Trivalent	180	1500	36	30	8.92		8.82		9.88		9.69		20.4	9.56		10	9.5	13.2
Cyanide, Total																		
Dilution Factor					1		1		1		1		1	1		1	1	1
Cyanide, total	27	27	27	27	0.609	U	0.525	U	0.527	U	0.527	U	0.535 U	0.564	U	0.57	U 0.61 U	0.581 l
Total Solids																		
% Solids	~	~	~	~	82.1		95.2		94.8		94.9		93.5	88.6		87.8	82	86
HERB, 8151 MASTER																		
2,4,5-TP (Silvex)	100	500	58	3.8	0.024	U	0.0207	U	0.021	U	0.021	U	0.0213 U	0.0224	U	0.0227	U 0.0243 U	0.0231 L
PCB, 8082 MASTER																		
Aroclor 1016	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1221	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1232	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1242	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1248	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1254	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Aroclor 1260	~	~	~	~	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L
Total PCBs	1	1	1	0.1	0.0202	U	0.0171	U	0.0173	U	0.0175	U	0.0175 U	0.0187	U	0.0185	U 0.0201 U	0.0192 L

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, N	Υ
-------------------------------------	---

Sample ID					TB-3 (13-15)		TB-3 (15-17)		TB-3 (17-19))	TB-4 (7-9)		TB-4 (9-11)		TB-4 (11-13)		TB-4 (13-15)	TB-4 (15-17)	TB-4 (17-19)	\neg
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022		5/25/2022		5/25/2022		5/25/2022		5/25/2022		5/25/2022	5/25/2022	5/25/2022	
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil		Soil		Soil		Soil		Soil		Soil	Soil	Soil	
					Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Ç	Result Q	Result	Q
VOA, 8260 MASTER																		 		
1,1,1-Trichloroethane	100	500	100	0.68	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L	1 1 1 1 1 1 1	0.0027	U
1,1-Dichloroethane	26	240	19	0.27	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,1-Dichloroethylene	100	500	100	0.33	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,2,4-Trimethylbenzene	52	190	47	3.6	0.0024	U	0.31	U	0.0029	J	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,2-Dichlorobenzene	100	500	100	1.1	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,2-Dichloroethane	3.1	30	2.3	0.02	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,3,5-Trimethylbenzene	52	190	47	8.4	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,3-Dichlorobenzene	49	280	17	2.4	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,4-Dichlorobenzene	13	130	9.8	1.8	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
1,4-Dioxane	13	130	9.8	0.1	0.048	U	6.3	U	0.041	U	0.052	U	0.053	U	0.045	U	0.049 L		0.055	U
2-Butanone	100	500	100	0.12	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Acetone	100	500	100	0.05	0.0048	U	0.63	U	0.0087		0.0052	U	0.0087	J	0.0063	J	0.011	0.026	0.014	
Benzene	4.8	44	2.9	0.06	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Carbon tetrachloride	2.4	22	1.4	0.76	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Chlorobenzene	100	500	100	1.1	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Chloroform	49	350	10	0.37	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
cis-1,2-Dichloroethylene	100	500	59	0.25	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Ethyl Benzene	41	390	30	1	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.021	0.061	0.0027	U
Methyl tert-butyl ether (MTBE)	100	500	62	0.93	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Methylene chloride	100	500	51	0.05	0.0073	J	2.1	D	0.011		0.016		0.017		0.018		0.017	0.038	0.024	
Naphthalene	100	500	100	12	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.081	0.057	0.0027	U
n-Butylbenzene	100	500	100	12	0.0024	U	0.31	U	0.0029	J	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
n-Propylbenzene	100	500	100	3.9	0.0024	U	0.35	JD	0.01		0.0026	U	0.0026	U	0.0022	U	0.0079	0.084	0.0027	U
o-Xylene	~	~	~	~	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
p- & m- Xylenes	400	-	400	~	0.0048	U	0.63	U	0.0041	U	0.0052	U	0.0053	U	0.0045	U	0.0049 L		0.0055	U
sec-Butylbenzene	100	500 500	100	11 5.9	0.0024 0.0024	U	0.31	U	0.002	U	0.0026 0.0026	U	0.0026 0.0026	U	0.0022 0.0022	U	0.0024 L		0.0027 0.0027	U
tert-Butylbenzene Tetrachloroothylono	19	150	5.5	1.3	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 U		0.0027	U
Tetrachloroethylene Toluene	100	500	100	0.7	0.0024	U	0.31	U I	0.002	U	0.0026	U	0.0026	U	0.0022	11	0.0024	0.0039 U	0.0027	U
trans-1,2-Dichloroethylene	100	500	100	0.19	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	u	0.0024 L		0.0027	U
Trichloroethylene	21	200	10	0.47	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	Ü	0.0024 L		0.0027	U
Vinyl Chloride	0.9	13	0.21	0.02	0.0024	U	0.31	U	0.002	U	0.0026	U	0.0026	U	0.0022	U	0.0024 L		0.0027	U
Xylenes, Total	100	500	100	0.26	0.0071	U	0.94	U	0.0061	U	0.0077	U	0.0079	U	0.0067	U	0.0073 L		0.0082	U
SVOA, 8270 MASTER	1 200			0.20	0.0012		0.01	-	0.0001		0.001.1		0.00.0		0.000.		0.007.0	0.022	0.0002	۳
2-Methylphenol	100	500	100	0.33	0.0466	υl	0.0473	υl	0.0488	υl	0.0431	υl	0.0437	υl	0.0442	υl	0.045 L	0.0465 U	0.0512	U
3- & 4-Methylphenols	100	500	34	0.33	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.0442	U	0.045 L		0.0512	U
Acenaphthene	100	500	100	20	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.0442	U	0.045 L	U 0.0465 U	0.0512	U
Acenaphthylene	100	500	100	100	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.521	D	0.045 L		0.0512	U
Anthracene	100	500	100	100	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	4.43	D	0.045 L	U 0.234 D	0.0512	U
Benzo(a)anthracene	1	5.6	1	1	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	15.6	D	0.045 L	0.441 D	0.0512	U
Benzo(a)pyrene	1	1	1	1	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	12.8	D	0.045 L	0.203 D	0.0512	U
Benzo(b)fluoranthene	1	5.6	1	1	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	9.6	D	0.045 L		0.0512	U
Benzo(g,h,i)perylene	100	500	100	100	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	6.1	D	0.045 L		0.0512	U
Benzo(k)fluoranthene	3.9	56	1	0.8	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	9.63	D	0.045 L		0.0512	U
Chrysene Dibanza(a h)anthrasana	3.9	56	1 0.22	1	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	16.4	D	0.045 L		0.0512	U
Dibenzo(a,h)anthracene	0.33	0.56	0.33	0.33	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	2.6	D	0.045 L		0.0512	U
Dibenzofuran Fluoranthene	59 100	350 500	14 100	7 100	0.0466 0.0466	U	0.0473 0.0473	U	0.0488 0.0488	U	0.0431 0.0431	U	0.0437 0.0437	U	0.0442 24.5	U D	0.045 L		0.0512 0.0512	U
Fluorene	100	500	100	30	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	1.3	D	0.045 L		0.0512	-11
Hexachlorobenzene	1.2	6	0.33	0.33	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.0442	U	0.045 L		0.0512	-11
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.55	0.55	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	5.13	D	0.045 L		0.0512	U
Naphthalene	100	500	100	12	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.263	D	0.045 L		0.0512	U
Pentachlorophenol	6.7	6.7	2.4	0.8	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.0442	U	0.045 L		0.0512	U
Phenanthrene	100	500	100	100	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	18	D	0.045 L		0.0512	U
Phenol	100	500	100	0.33	0.0466	U	0.0473	U	0.0488	U	0.0431	U	0.0437	U	0.0442	U	0.045 L		0.0512	U
	•		-	100				-								-				

Table 3 Supplemental Soil Sampling - Tank Boring Analytical Results Summary

589 Christopher Avenue, Brooklyn, NY

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-3 (13-15)	TB-3 (15-17)	TB-3 (17-19))	TB-4 (7-9)		TB-4 (9-11)		TB-4 (11-13))	TB-4 (13-15)		TB-4 (15-17))	TB-4 (17-19)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022	5/25/2022	:	5/25/2022		5/25/2022	:	5/25/2022		5/25/2022		5/25/2022		5/25/2022		5/25/2022
Client Matrix	RRSCOs	CSC0s	RSCOs	UUSCOs	Soil	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil
					Result C	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result
PEST, 8081 MASTER		•					- 1				- 1				- 1		- 1		- 1	
4,4'-DDD	13	92	2.6	0.0033	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
4,4'-DDE	8.9	62	1.8	0.0033	0.00186 L	_	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
4,4'-DDT	7.9	47	1.7	0.0033	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Aldrin	0.097	0.68	0.019	0.005	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
alpha-BHC	0.48	3.4	0.097	0.02	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
alpha-Chlordane	4.2	24	0.91	0.094	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
beta-BHC	0.36	3	0.072	0.036	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
delta-BHC	100	500	100	0.04	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Dieldrin	0.2	1.4	0.039	0.005	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Endosulfan I	24	200	4.8	2.4	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Endosulfan II	24	200	4.8	2.4	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Endosulfan sulfate	24	200	4.8	2.4	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Endrin	11	89	2.2	0.014	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
gamma-BHC (Lindane)	1.3	9.2	0.28	0.1	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Heptachlor	2.1	15	0.42	0.042	0.00186 L	0.00186	U	0.00195	U	0.00172	U	0.00172	U	0.00173	U	0.00178	U	0.00181	U	0.00203
Metals, NYSDEC Part 375																				
Arsenic	16	16	16	13	1.69 L	1.71	U	1.78	U	1.57	U	1.59	U	1.62	U	1.64	U	1.69	U	1.86
Barium	400	400	350	350	17.7	26		18.1		17.4		16.7		24		35.1		23		23.3
Beryllium	72	590	14	7.2	0.056 L	0.057	U	0.106		0.118		0.114		0.108		0.083		0.057		0.104
Cadmium	4.3	9.3	2.5	2.5	0.339 L	0.343	U	0.356	U	0.314	U	0.319	U	0.323	U	0.328	U	0.337	U	0.371
Chromium	~	~	~	~	9.21	11.9		9.13		12.6		8.98		10.9		15.9		9.65		11.1
Copper	270	270	270	50	8.33	9.41		7.34		6.87		8.01		8.93		8.98		6.83		6.9
Lead	400	1000	400	63	2.01	1.65		1.84		1.58		1.92		3.66		2.22		2.43		2.35
Manganese	2000	10000	2000	1600	177	97		128		228		265		309		275		107		150
Nickel	310	310	140	30	12.7	19.8		14.8		13.2		13		13.4		15.1		14.4		13.7
Selenium	180	1500	36	3.9	2.82 L	2.86	U	2.97	U	2.61	U	2.66	U	2.69	U	2.73	U	2.81	U	3.09
Silver	180	1500	36	2	0.564 L	0.572	U	0.594	U	0.523	U	0.531	U	0.539	U	0.547	U	0.562	U	0.619
Zinc	10000	10000	2200	109	13.2	13.3		13.9		10.6		11.2		13.5		11.4		11.4		18.6
Mercury by 7473																				
Mercury	0.81	2.8	0.81	0.18	0.0339 L	0.0343	U	0.0356	U	0.0314	U	0.0319	U	0.0795		0.0328	U	0.0337	U	0.0371
Chromium, Hexavalent		•	•														<u>'</u>			
Chromium, Hexavalent	110	400	22	1	0.564 L	0.572	U	0.594	U	0.523	U	0.531	U	0.539	U	0.547	U	0.562	U	0.619
Chromium, Trivalent		•	•				·										,		·	
Chromium, Trivalent	180	1500	36	30	9.21	11.9		9.13		12.6		8.98		10.9		15.9		9.65		11.1
Cyanide, Total			•	•													•			
Dilution Factor					1	1	I	1		1		1		1		1		1		1
Cyanide, total	27	27	27	27	0.564 L	0.572	U	0.594	U	0.523	U	0.531	U	0.539	U	0.547	U	0.562	U	0.619
Total Solids		•	•				<u> </u>													
% Solids	~	~	~	~	88.6	87.5	П	84.2	Т	95.6	T	94.1		92.8	T	91.4	Т	89	Т	80.8
HERB, 8151 MASTER																				
2,4,5-TP (Silvex)	100	500	58	3.8	0.0224 L	0.0227	U	0.0234	U	0.0206	U	0.0212	U	0.0215	U	0.0215	U	0.0222	U	0.0242
PCB, 8082 MASTER		,				•					,						<u>'</u>			
Aroclor 1016	~	~	~	~	0.0187 L	0.0188	υl	0.0196	U	0.0174	U	0.0173	U	0.0175	U	0.0179	U	0.0182	U	0.0205
Aroclor 1221	~	~	~	~	0.0187 L	_	U	0.0196	U	0.0174	U	0.0173	U	0.0175	U	0.0179	U	0.0182	U	0.0205
Aroclor 1232	~	~	~	~	0.0187 L		U	0.0196	U	0.0174	U	0.0173	U	0.0175	U	0.0179	U	0.0182	U	0.0205
Aroclor 1242	~	~	~	~	0.0187 L		U	0.0196	U	0.0174	U	0.0173	U	0.0175	U	0.0179	U	0.0182	U	0.0205
Aroclor 1248	~	~	~	~	0.0187 L	_	U	0.0196	U	0.0174	U	0.0173	U	0.0175	U	0.0179	U	0.0182	U	0.0205
Aroclor 1254	~	~	~	~	0.0187 L		U	0.0196	U	0.0174	U	0.0173	u	0.0175	U	0.0179	U	0.0182	U	0.0205
Arcelor 1260		+	 	+ +	0.0107		-	0.0100		0.0174	- 11	0.0170	- 11	0.0175	- 11	0.0170		0.0102	- 11	0.0205

0.0174

0.0174

U

U

0.0173

0.0173

0.0175

0.0175

0.0179

0.0179

U

U

0.0182

0.0182

0.0188

0.0188

U

0.0196

0.0196

U

0.0187

0.0187

0.1

Aroclor 1260

Total PCBs

0.0205

0.0205

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-6 (7-9)		TB-6 (9-11)	TB-6 (11-13)	TB-6 (13-15)		TB-6 (15-17)	TB-6 (17-19	n	TB-6 (19-21)		TB-6 (21-23)		TB-6 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	5/25/2022	5/25/2022	+	5/25/2022	5/25/2022		5/25/2022	+	5/25/2022	-	5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSCOs	Soil	-	Soil	Soil	Soil	+	Soil	Soil	-	Soil	+	Soil		Soil
Charle Matrix					Result	Q	Result Q			Q	Result Q	Result	Q	Result (5	Result	Q	Result Q
VOA, 8260 MASTER																		,
1,1,1-Trichloroethane	100	500	100	0.68	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
1,1-Dichloroethane	26	240	19	0.27	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
1,1-Dichloroethylene	100	500	100	0.33	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
1,2,4-Trimethylbenzene	52	190	47	3.6	0.97	D	0.018	0.016	120	D	890 DE	240	D	370)	420	D	0.13
1,2-Dichlorobenzene	100	500	100	1.1	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
1,2-Dichloroethane	3.1	30	2.3	0.02	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
1,3,5-Trimethylbenzene	52	190	47	8.4	0.21	U	0.0034 J	0.0025 J	28	D	230 D	200	D	93 [)	160	D	0.1
1,3-Dichlorobenzene	49	280	17	2.4	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
1,4-Dichlorobenzene	13	130	9.8	1.8	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
1,4-Dioxane	13	130	9.8	0.1	4.3	U	0.051 U	0.051 U	4.9	U	8.8 U	10	U	4.9 I	J	12	U	0.057 U
2-Butanone	100	500	100	0.12	0.21	U	0.0075	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
Acetone	100	500	100	0.05	0.43	U	0.026	0.0066 J	0.49	U	0.88 U	1	U	0.49	J	1.2	U	0.01 J
Benzene	4.8	44	2.9	0.06	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
Carbon tetrachloride	2.4	22	1.4	0.76	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
Chlorobenzene	100	500	100	1.1	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
Chloroform	49	350	10	0.37	0.21	U	0.0026 U	0.0025 U		U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
cis-1,2-Dichloroethylene	100	500	59	0.25	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
Ethyl Benzene	41	390	30	1	0.21	U	0.0026 U	0.0025 U	8.2	D	150 D	270	D	57 I)	160	D	0.11
Methyl tert-butyl ether (MTBE)	100	500	62	0.93	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	0.58	U	0.0028 U
Methylene chloride	100	500	51	0.05	0.79	JD	0.026 B	0.035	0.75	JD	6.7 D	2.7	D	0.53 J	D	5.2	D	0.018
Naphthalene	100	500	100	12	0.46	JD	0.031	0.064	37	D	NT	140	D	69 I	D	110	D	0.071
n-Butylbenzene	100	500	100	12	0.21	U	0.0026 U	0.0025 U	6.9	D	48 D	18	D	16 I	0	29	D	0.017
n-Propylbenzene	100	500	100	3.9	0.21	U	0.0026 U	0.0025 U	12	D	130 D	100	D	48 I)	100	D	0.064
o-Xylene	~	~	~	~	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	0.5	U	0.25 I	J	78	D	0.0028 U
p- & m- Xylenes	~	~	~	~	0.43	U	0.0051 U	0.0051 U	10	D	200 D	53	D	66 I)	78	D	0.025
sec-Butylbenzene	100	500	100	11	0.21	U	0.0026 U	0.0025 U	2.2	D	16 D	8.8	D	6 I)	9.5	D	0.0094
tert-Butylbenzene	100	500	100	5.9	0.21	U	0.0026 U	0.0025 U	0.25	U	0.44 U	1.4	D	0.25	J	0.58	U	0.003 J
Tetrachloroethylene	19	150	5.5	1.3	0.21	U	0.0026 U			U	0.44 U	0.5	U	0.25	J	0.58	U	0.0028 U
Toluene	100	500	100	0.7	0.21	U	0.0026 U		+	U	0.44 U	0.5	U	0.25	_	0.58	U	0.0028 U
trans-1,2-Dichloroethylene	100	500	100	0.19	0.21	U	0.0026 U	0.0025 U		U	0.44 U	0.5	U	0.25	-	0.58	U	0.0028 U
Trichloroethylene	21	200	10	0.47	0.21	U	0.0026 U	0.0025 U	 	U	0.44 U	0.5	U	0.25	_	0.58	U	0.0028 U
Vinyl Chloride	0.9	13	0.21	0.02	0.21	U	0.0026 U	0.0025 U		U	0.44 U	0.5	U	0.25	_	0.58	U	0.0028 U
Xylenes, Total	100	500	100	0.26	0.64	U	0.0077 U	0.0076 U	10	D	200 D	53	D	66 [160	D	0.025
SVOA, 8270 MASTER																		
2-Methylphenol	100	500	100	0.33	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
3- & 4-Methylphenols	100	500	34	0.33	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Acenaphthene	100	500	100	20	0.0427	U	0.044 U	0.0432 U		U	0.473 U	0.047	U	0.0892 J	-	0.0492	U	0.0499 U
Acenaphthylene	100	500	100	100	0.0427	U	0.044 U	0.0432 U		U	0.473 U	0.047	U	0.0491	7	0.0613	JD	0.0499 U
Anthracene	100	500	100	100	0.0427	U	0.044 U	0.0432 U		U	0.473 U	0.047	U	0.0491	,	0.0492	U	0.0499 U
Benzo(a)nyrene	1	5.6 1	1	1	0.0427 0.0427	U	0.044 U	0.0432 U 0.0432 U		U	0.473 U 0.473 U	0.047 0.047	U	0.0491 U	-	0.0492 0.0492	U	0.0499 U 0.0499 U
Benzo(a)pyrene Benzo(b)fluoranthene	1	5.6	1	1	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	-	0.0492	U	0.0499 U
Benzo(g,h,i)perylene	100	5.0	100	100	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Benzo(k)fluoranthene	3.9	56	1	0.8	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Chrysene	3.9	56	1	1	0.0427	U	0.044 U	0.0432 U		U	0.473 U	0.047	U	0.0491	-	0.0492	U	0.0499 U
Dibenzo(a,h)anthracene	0.33	0.56	0.33	0.33	0.0427	U	0.044 U		<u> </u>	U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Dibenzofuran	59	350	14	7	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	-	0.0492	U	0.0499 U
Fluoranthene	100	500	100	100	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Fluorene	100	500	100	30	0.0427	U	0.044 U		<u> </u>	U	0.473 U	0.047	U	0.0491	_	0.0492	U	0.0499 U
Hexachlorobenzene	1.2	6	0.33	0.33	0.0427	U	0.044 U			U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.5	0.5	0.0427	U	0.044 U	0.0432 U	0.0437	U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
Naphthalene	100	500	100	12	0.0427	U	0.044 U	0.0432 U	0.384	D	22 D	1.95	D	9.06)	15.5	D	0.0499 U
Pentachlorophenol	6.7	6.7	2.4	0.8	0.0427	U	0.044 U	0.0432 U	0.0437	U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
Phenanthrene	100	500	100	100	0.0427	U	0.044 U	0.0432 U	0.0437	U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
Phenol	100	500	100	0.33	0.0427	U	0.044 U	0.0432 U	0.0437	U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
Pyrene	100	500	100	100	0.0427	U	0.044 U	0.0432 U	0.0437	U	0.473 U	0.047	U	0.0491	J	0.0492	U	0.0499 U
1 ·								· · · · ·	1			· · · · · · · · · · · · · · · · · · ·					-	

Table 3 Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-6 (7-9)		TB-6 (9-11)		TB-6 (11-13))	TB-6 (13-15)	TB-6 (15-17)	TB-6 (17-19))	TB-6 (19-21)	TB-6 (21-23)	TB-6 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	:	5/25/2022		5/25/2022	2	5/25/2022	5/25/2022		5/25/2022	5/25/2022	5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Soil	Soil
					Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result (Q Result Q	Result Q
PEST, 8081 MASTER								-		-								
4,4'-DDD	13	92	2.6	0.0033	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
4,4'-DDE	8.9	62	1.8	0.0033	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
4,4'-DDT	7.9	47	1.7	0.0033	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
Aldrin	0.097	0.68	0.019	0.005	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
alpha-BHC	0.48	3.4	0.097	0.02	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
alpha-Chlordane	4.2	24	0.91	0.094	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
beta-BHC	0.36	3	0.072	0.036	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
delta-BHC	100	500	100	0.04	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	
Dieldrin	0.2	1.4	0.039	0.005	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	
Endosulfan I	24	200	4.8	2.4	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	
Endosulfan II	24	200	4.8	2.4	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	
Endosulfan sulfate	24	200	4.8	2.4	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U		U		U 0.00194 U	<u> </u>
Endrin	11	89	2.2	0.014	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U		U		U 0.00194 U	
gamma-BHC (Lindane)	1.3	9.2	0.28	0.1	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U		U		U 0.00194 U	
Heptachlor	2.1	15	0.42	0.042	0.00169	U	0.00174	U	0.00169	U	0.0017	U	0.00187 U	0.00186	U	0.00195 l	U 0.00194 U	0.002 U
Metals, NYSDEC Part 375																		
Arsenic	16	16	16	13	1.96		2.3		1.56	U	1.57	U	1.73 U		U		U 1.77 U	
Barium	400	400	350	350	18		26.2		35.7		23.6		25.6	18.7		24.1	17.9	21.7
Beryllium	72	590	14	7.2	0.133		0.167		0.114		0.089		0.103	0.199		0.104	0.079	0.061 U
Cadmium	4.3	9.3	2.5	2.5	0.311	U	0.318	U	0.311	U	0.314	U	0.346 U		U		U 0.355 U	
Chromium	~	~	~	~	11		17.1		10.1		14.6		13.8	18.1		17	12.3	10.7
Copper	270	270	270	50	8.03		10		9.26		10.2		9.6	9.05		11.4	7.06	8.14
Lead	400	1000	400	63	3.33		5.66		5.27		6.63		6.81	3.39		8.28	3.46	1.34
Manganese	2000	10000	2000	1600	163		261		265		328		236	392		213	139	174
Nickel	310	310	140	30	16		15.1		15.3		20.5		16.4	16.6		17.8	16.8	20.9
Selenium	180	1500	36	3.9	2.59	U	2.65	U	2.59	U	2.62	U	2.89 U	2.84	U		U 2.96 U	
Silver	180 10000	1500 10000	36 2200	109	0.518	U	0.53 18.7	U	0.518 11.4	U	0.524 14.4	- 0	0.577 U 12.5	0.568 11.4	- 0	0.593 l 15.3	U 0.591 U 12.3	0.609 U 20.5
Zinc	10000	10000	2200	109	13		10.7		11.4		14.4		12.5	11.4		15.5	12.3	20.5
Mercury by 7473	1 001					1						1		1				
Mercury	0.81	2.8	0.81	0.18	0.0311	U	0.0318	U	0.0311	U	0.0314	U	0.0346 U	0.0341	U	0.0356 L	U 0.0355 U	0.0365 U
Chromium, Hexavalent	1 440	100			0.710									1 2 - 2 - 2				
Chromium, Hexavalent	110	400	22	1	0.518	U	0.53	U	0.518	U	0.524	U	0.577 U	0.568	U	0.593 l	U 0.591 U	0.609 U
Chromium, Trivalent	1	1												1			T 40.0	
Chromium, Trivalent	180	1500	36	30	11		17.1		10.1		14.6		13.8	18.1		17	12.3	10.7
Cyanide, Total			T			-		-						1 .				1 .
Dilution Factor					1		1		1		1		1	1		1	1	1
Cyanide, total	27	27	27	27	0.518	U	0.53	U	0.518	U	0.524	U	0.577 U	0.568	U	0.593 l	U 0.591 U	0.609 U
Total Solids	T	T												T			T	1
% Solids	~	~	~	~	96.6		94.3		96.5		95.4		86.6	88.1		84.3	84.6	82.2
HERB, 8151 MASTER	T													1				
2,4,5-TP (Silvex)	100	500	58	3.8	0.0206	U	0.0211	U	0.0205	U	0.0204	U	0.0226 U	0.0224	U	0.0235 l	U 0.023 U	0.0242 U
PCB, 8082 MASTER																		
Aroclor 1016	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Aroclor 1221	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U	0.0197 l		
Aroclor 1232	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Aroclor 1242	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Aroclor 1248	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Aroclor 1254	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Aroclor 1260	~	~	~	~	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U		U		U 0.0196 U	
Total PCBs	1	1	1	0.1	0.017	U	0.0175	U	0.0171	U	0.0172	U	0.0189 U	0.0188	U	0.0197 l	U 0.0196 U	0.0202 U

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

0 1 10					TD 0 (05 07)		TD 0 (07 00)	TD 0 (00 04)	TD 7 (7 0)	TD 7 (0.44)	TD 7 (44 40)	TD 7 (40 45)	TD 7 (45 47)	TD 7 (47 40)
Sample ID	D-+ 075	D-+ 075	D-+ 075	Day 075	TB-6 (25-27)	-	TB-6 (27-29)	TB-6 (29-31) 5/25/2022	TB-7 (7-9)	TB-7 (9-11) 5/25/2022	TB-7 (11-13) 5/25/2022	TB-7 (13-15) 5/25/2022	TB-7 (15-17)	TB-7 (17-19)
Sampling Date	Part 375 RRSCOs	Part 375 CSC0s	Part 375 RSC0s	Part 375 UUSCOs	5/25/2022 Soil		5/25/2022 Soil	5/25/2022 Soil	5/25/2022 Soil	5/25/2022 Soil	5/25/2022 Soil	Soil	5/25/2022 Soil	5/25/2022 Soil
Client Matrix	RNSCOS	03005	nocos	003005	Result		Result Q							
VOA. 8260 MASTER					Nesuit	Q	itesuit Q	Result Q	Result Q	Result Q	inesuit Q	Result Q	inesuit Q	ilesuit Q
1,1,1-Trichloroethane	100	500	100	0.68	0.58	u l	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
1,1-Dichloroethane	26	240	19	0.27		U	0.31 U			0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
1,1-Dichloroethylene	100	500	100	0.33		U	0.31 U			0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
1,2,4-Trimethylbenzene	52	190	47	3.6		D	27 D			0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
1,2-Dichlorobenzene	100	500	100	1.1		U	0.31 U			+	0.0025 U	0.26 U	0.26 U	0.0025 U
1,2-Dichloroethane	3.1	30	2.3	0.02	0.58	Ū	0.31 U	0.23 U			0.0025 U	0.26 U	0.26 U	0.0025 U
1,3,5-Trimethylbenzene	52	190	47	8.4		D	11 D		0.0025 U		0.0025 U	0.26 U	0.26 U	
1,3-Dichlorobenzene	49	280	17	2.4	0.58	U	0.31 U		0.0025 U		0.0025 U	0.26 U	0.26 U	
1,4-Dichlorobenzene	13	130	9.8	1.8	0.58	U	0.31 U		0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
1,4-Dioxane	13	130	9.8	0.1	12	U	6.1 U				0.049 U	5.2 U	5.2 U	0.05 U
2-Butanone	100	500	100	0.12	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Acetone	100	500	100	0.05	1.2	U	0.61 U	0.45 U	+	0.014	0.011	0.52 U	0.52 U	0.005 U
Benzene	4.8	44	2.9	0.06	0.58	U	0.31 U			-	0.0025 U	0.26 U	0.26 U	
Carbon tetrachloride	2.4	22	1.4	0.76	0.58	U	0.31 U				0.0025 U	0.26 U	0.26 U	
Chlorobenzene	100	500	100	1.1	0.58	U	0.31 U		0.0025 U		0.0025 U	0.26 U	0.26 U	0.0025 U
Chloroform	49	350	10	0.37		U	0.31 U				0.0025 U	0.26 U	0.26 U	0.0025 U
cis-1,2-Dichloroethylene	100	500	59	0.25		U	0.31 U	0.23 U			0.0025 U	0.26 U	0.26 U	0.0025 U
Ethyl Benzene	41	390	30	1	11	D	11 D	2 D	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Methyl tert-butyl ether (MTBE)	100	500	62	0.93	0.58	U	0.31 U	0.23 U		0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Methylene chloride	100	500	51	0.05	14	D	0.84 JD	3.4 D	0.0066 J	0.0059 J	0.0049 U	0.89 JD	3.5 BD	0.034
Naphthalene	100	500	100	12	8.1	D	8.2 D	1.1 D	0.0054 J	0.0024 J	0.0025 U	0.26 U	0.26 U	0.0025 U
n-Butylbenzene	100	500	100	12	1.6	D	1.9 D	0.26 JD	0.0025 U	0.0023 U	0.0025 U	6 D	0.35 JD	0.0025 U
n-Propylbenzene	100	500	100	3.9	6.8	D	5.8 D	0.93 D	0.0025 U	0.0023 U	0.0025 U	11 D	0.74 D	0.0067
o-Xylene	~	~	~	~	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
p- & m- Xylenes	~	~	~	~	6.1	D	4.5 D				0.0049 U	0.52 U	0.52 U	
sec-Butylbenzene	100	500	100	11	0.74	JD	0.61 D	0.23 U	0.0025 U	0.0023 U	0.0025 U	2.4 D	0.26 U	0.0025 U
tert-Butylbenzene	100	500	100	5.9	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Tetrachloroethylene	19	150	5.5	1.3	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Toluene	100	500	100	0.7	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
trans-1,2-Dichloroethylene	100	500	100	0.19	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Trichloroethylene	21	200	10	0.47	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Vinyl Chloride	0.9	13	0.21	0.02	0.58	U	0.31 U	0.23 U	0.0025 U	0.0023 U	0.0025 U	0.26 U	0.26 U	0.0025 U
Xylenes, Total	100	500	100	0.26	6.1	D	4.5 D	0.74 JD	0.0076 U	0.0068 U	0.0074 U	0.78 U	0.79 U	0.0074 U
SVOA, 8270 MASTER														
2-Methylphenol	100	500	100	0.33	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	0.0514 U
3- & 4-Methylphenols	100	500	34	0.33	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	0.0514 U
Acenaphthene	100	500	100	20		U	0.0498 U				0.0433 U	0.0531 JD		
Acenaphthylene	100	500	100	100		U	0.0498 U				0.0433 U	0.0456 U		
Anthracene	100	500	100	100	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0741 JD		0.0514 U
Benzo(a)anthracene	1	5.6	1	1	0.0498	U	0.0498 U		0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	
Benzo(a)pyrene Renzo(b)fluoranthone	1 1	5.6	1 1	1		U	0.0498 U				0.0433 U 0.0433 U	0.0456 U 0.0456 U		
Benzo(b)fluoranthene Benzo(g,h,i)perylene	100	5.6	100	100						+				
Benzo(k)fluoranthene	3.9	56	100	0.8		U	0.0498 U				0.0433 U 0.0433 U	0.0456 U		
Chrysene	3.9	56	1	1		U	0.0498 U				0.0433 U	0.0456 U		
Dibenzo(a,h)anthracene	0.33	0.56	0.33	0.33		U	0.0498 U				0.0433 U	0.0456 U		L
Dibenzofuran	59	350	14	7		U	0.0498 U				0.0433 U	0.0456 U		
Fluoranthene	100	500	100	100		Ü	0.0498 U				0.0433 U	0.0456 U		
Fluorene	100	500	100	30	0.0498	U	0.0498 U				0.0433 U	0.0756 JD	-	
Hexachlorobenzene	1.2	6	0.33	0.33		U	0.0498 U				0.0433 U	0.0456 U		+
Indeno(1,2,3-cd)pyrene	0.5	5.6	0.5	0.5		U	0.0498 U				0.0433 U	0.0456 U		
Naphthalene	100	500	100	12	2.82	D	0.767 D		0.0435 U	0.0423 U	0.0433 U	0.768 D	0.0505 U	
Pentachlorophenol	6.7	6.7	2.4	0.8	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	0.0514 U
Phenanthrene	100	500	100	100	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.069 JD	0.0505 U	0.0514 U
Phenol	100	500	100	0.33	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	0.0514 U
	100	500	100	100	0.0498	U	0.0498 U	0.0485 U	0.0435 U	0.0423 U	0.0433 U	0.0456 U	0.0505 U	0.0514 U

Table 3 Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID					TB-6 (25-27)		TB-6 (27-29)	TB-6 (29-31)	TB-7	(7-9)		TB-7 (9-11)	TB-7 (11-13))	TB-7 (13-15)		TB-7 (15-17))	TB-7 (17-19)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/25/2022		5/25/2022	5/25/2022	5/25	/2022		5/25/2022	5/25/2022		5/25/2022		5/25/2022		5/25/2022
Client Matrix	RRSCOs	CSC0s	RSC0s	UUSC0s	Soil		Soil	Soil	S	oil		Soil	Soil		Soil		Soil		Soil
					Result	Q	Result (Result Q	Resu	lt	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
PEST, 8081 MASTER																			
4,4'-DDD	13	92	2.6	0.0033	0.00198	U	0.00195 l	0.0019 U	0.002	17	U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
4,4'-DDE	8.9	62	1.8	0.0033	0.00198	U	0.00195 l	0.0019 U	0.002	17	U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
4,4'-DDT	7.9	47	1.7	0.0033	0.00198	U	0.00195 l	0.0019 U	0.002	L7	U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Aldrin	0.097	0.68	0.019	0.005	0.00198	U	0.00195 l	U 0.0019 U	0.002	17	U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
alpha-BHC	0.48	3.4	0.097	0.02	0.00198	U	0.00195 l				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
alpha-Chlordane	4.2	24	0.91	0.094	0.00198	U	0.00195 l		+		U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
beta-BHC	0.36	3	0.072	0.036	0.00198	U	0.00195 l				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
delta-BHC	100	500	100	0.04	0.00198	U	0.00195 l				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Dieldrin	0.2	1.4	0.039	0.005	0.00198	U	0.00195 l		+		U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Endosulfan I	24	200	4.8	2.4	0.00198	U	0.00195 U				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Endosulfan II	24	200	4.8	2.4	0.00198	U	0.00195 U				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Endosulfan sulfate	24	200	4.8	2.4	0.00198	U	0.00195 U				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Endrin	11	89	2.2	0.014	0.00198	U	0.00195 U				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
gamma-BHC (Lindane)	1.3	9.2	0.28	0.1	0.00198	U	0.00195 U				U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
Heptachlor Metals, NYSDEC Part 375	2.1	15	0.42	0.042	0.00198	U	0.00195 l	0.0019 U	0.002	L/	U	0.00166 U	0.00171	U	0.0018	U	0.00197	U	0.002 U
	16	16	16	13	1.81	U	1.8 l	J 1.75 U	1.57	7	υl	1.9	1.57	υl	1.66	υl	1.85	υl	1.87 U
Arsenic Barium	400	400	350	350	15.5		20.3	23.5	16.2		- 0	23.7	26.7	0	18.2	- 0	25.1	- 0	33.3
Beryllium	72	590	14	7.2	0.06	U	0.06 l		0.05		U	0.052 U	0.052	U	0.055	U	0.062	U	0.062 U
Cadmium	4.3	9.3	2.5	2.5	0.362	U	0.361 l		+		U	0.312 U		U	0.331	U	0.37	U	0.375 U
Chromium	~	~	~	~	5.39		8.33	10.1	13			12.8	11.6	-	7.8		13.4		12.7
Copper	270	270	270	50	5.27		6.31	13.6	10			8.89	9.17		9.05		11.8	-	10
Lead	400	1000	400	63	1.15		1.96	0.582 U				7.04	3.82		6.12		4.05	_	3.11
Manganese	2000	10000	2000	1600	111		120	293	240			223	311		513		433		213
Nickel	310	310	140	30	6.6		8.3	6.52	26.1			15.9	16.6		15.4		22.4		18.1
Selenium	180	1500	36	3.9	3.02	U	3.01 l				U	2.6 U	2.62	U	2.76	U	3.08	U	3.12 U
Silver	180	1500	36	2	0.603	U	0.601 l		+		U	0.519 U	0.523	U	0.552	U	0.616	U	0.625 U
Zinc	10000	10000	2200	109	7.73		9.9	13	15.8			16.2	15.6		14.3		18		28.9
Mercury by 7473	_		!										•						
Mercury	0.81	2.8	0.81	0.18	0.0362	U	0.0361 l	U 0.0349 U	0.032	13	U	0.0312 U	0.0314	U	0.0331	υT	0.037	U	0.0375 U
Chromium, Hexavalent																			
Chromium, Hexavalent	110	400	22	1	0.603	U	0.601 l	U 0.582 U	0.52	2	U	0.519 U	0.523	U	0.552	υl	0.616	U	0.625 U
Chromium, Trivalent											, , , , , , , , , , , , , , , , , , ,								
Chromium, Trivalent	180	1500	36	30	5.39		8.33	10.1	13			12.8	11.6		7.8		13.4	T	12.7
Cyanide, Total																			
Dilution Factor					1	T	1	1	1			1	1		1	Т	1	Т	1
Cyanide, total	27	27	27	27	0.603	U	0.601 l	0.582 U	0.52	2	U	0.519 U	0.523	U	0.552	U	0.616	U	0.625 U
Total Solids			•						•				•						
% Solids	~	~	~	~	82.9		83.2	85.8	95.8	3		96.3	95.6		90.5		81.2		80.1
HERB, 8151 MASTER																			
2,4,5-TP (Silvex)	100	500	58	3.8	0.024	U	0.024 l	0.0231 U	0.020	08	U	0.0205 U	0.0208	U	0.0219	U	0.0246	U	0.0246 U
PCB, 8082 MASTER	<u> </u>	•	'						•				•						
Aroclor 1016	~	~	~	~	0.02	U	0.0197 l	0.0192 U	0.017	72	U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1221	~	~	~	~	0.02	U	0.0197 l				U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1232	~	~	~	~	0.02	U	0.0197 l		_		U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1242	~	~	~	~	0.02	U	0.0197 l	0.0192 U	0.017	72	U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1248	~	~	~	~	0.02	U	0.0197 l	0.0192 U	0.017	72	U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1254	~	~	~	~	0.02	U	0.0197 l	0.0192 U	0.017	72	U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Aroclor 1260	~	~	~	~	0.02	U	0.0197 l	0.0192 U	0.017	72	U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U
Total PCBs	1	1	1	0.1	0.02	U	0.0197 l	0.0192 U	0.017		U	0.0168 U	0.0173	U	0.0182	U	0.0199	U	0.0202 U

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-5 (7-9)		TB-5 (9-11)		TB-5 (11-13)		TB-5 (13-15)		TB-5 (15-:		TB-5 (17-19)		TB-5 (19-21	-	TB-5 (21-23)		TB-5 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/20:	22	5/26/2022		5/26/2022	:	5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil
VOA, 8260 MASTER					Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result
1,1,1-Trichloroethane	0.68	100	100	500	0.0041	U	0.0026	υl	0.0023	U	0.0023	υl	0.0022	U	0.0023	υl	0.0027	U	0.27	υl	0.003
1,1-Dichloroethane	0.27	26	19	240	0.0041	Ü	0.0026	U	0.0023	U	0.0023	Ü	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1,1-Dichloroethylene	0.33	100	100	500	0.0041	U	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0041	U	0.0026	D	0.0023	U	0.0023	U	0.39	E	0.057		0.0027	U	1	D	0.003
1,2-Dichlorobenzene	1.1	100	100	500	0.0041	Ü	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0041	Ü	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1.3.5-Trimethylbenzene	8.4	52	47	190	0.0041	U		JD	0.0023	U	0.0023	U	0.045		0.0061		0.0027	U	0.27	U	0.003
1,3-Dichlorobenzene	2.4	49	17	280	0.0041	U	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0041	U		U	0.0023	U	0.0023	Ü	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
1,4-Dioxane	0.1	13	9.8	130	0.082	U		U	0.047	U	0.047	U	0.044	U	0.046	U	0.054	U	5.3	U	0.059
2-Butanone	0.12	100	100	500	0.0041	U		U	0.0023	U	0.0023	U	0.0054		0.0091		0.0068		0.27	U	0.0037
Acetone	0.05	100	100	500	0.22			U	0.026		0.0064	J	0.031		0.039		0.037		0.53	U	0.025
Benzene	0.06	4.8	2.9	44	0.0041	U		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Carbon tetrachloride	0.76	2.4	1.4	22	0.0041	U		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Chlorobenzene	1.1	100	100	500	0.0041	U		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Chloroform	0.37	49	100	350	0.0041	U		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0041	U		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Ethyl Benzene	1	41	30	390	0.0041	U		JD	0.0023	U	0.0023	U	0.13		0.024		0.0027	U	0.31	JD	0.003
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0041	Ü		U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Methylene chloride	0.05	100	51	500	0.15	Ť		U	0.0066	JB	0.03	В	0.0059	JB	0.0025	JB	0.29	BE	2.9	D	0.077
Naphthalene	12	100	100	500	0.0041	U		D	0.0023	U	0.0023	U	0.12	- 35	0.018	35	0.0027	U	0.27	U	0.003
n-Butylbenzene	12	100	100	500	0.0041	U		JD	0.0023	U	0.0023	U	0.027		0.004		0.0027	U	0.27	U	0.003
n-Propylbenzene	3.9	100	100	500	0.0041	U		D	0.0023	U	0.0023	U	0.13		0.027		0.0027	U	0.31	JD	0.003
o-Xylene	~	~	~	~	0.0041	U		JD	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
p- & m- Xylenes	~	~	~	~	0.0082	U	0.0051	D	0.0047	U	0.0047	U	0.0059	J	0.012		0.0054	U	0.53	U	0.0059
sec-Butylbenzene	11	100	100	500	0.0041	U	0.0026	U	0.0023	U	0.0023	U	0.014		0.0023	U	0.0027	U	0.27	U	0.003
tert-Butylbenzene	5.9	100	100	500	0.0041	U	0.0026	U	0.0023	U	0.0023	Ü	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Tetrachloroethylene	1.3	19	5.5	150	0.0041	U	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Toluene	0.7	100	100	500	0.0041	Ü	0.0026	D	0.0023	U	0.0023	U	0.0022	U	0.0042	il	0.0027	U	0.27	U	0.003
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0041	Ü	0.0026	U	0.0023	U	0.0023	ш	0.0022	U	0.0023	ii l	0.0027	U	0.27	U	0.003
Trichloroethylene	0.47	21	10	200	0.0041	U	0.0026	U	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	U	0.003
Vinyl Chloride	0.02	0.9	0.21	13	0.0041	U	0.0026	ii l	0.0023	U	0.0023	U	0.0022	U	0.0023	U	0.0027	U	0.27	u l	0.003
Xylenes, Total	0.26	100	100	500	0.012	U		JD	0.007	U	0.007	U	0.0066	U	0.014		0.0081	U	0.8	ii l	0.0089
SVOA, 8270 MASTER	0.20	100	100	300	0.012		0.0077	70	0.001		0.001		0.0000		0.014		0.0001		0.0		0.0000
2-Methylphenol	0.33	100	100	500	0.0451	U	0.043	υl	0.0428	U	0.0434	u	0.0456	U	0.0484	ш	0.0485	U	0.05	υl	0.0519
3- & 4-Methylphenols	0.33	100	34	500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Acenaphthene	20	100	100	500	0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Acenaphthylene	100	100	100	500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Anthracene	100	100	100	500	0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Benzo(a)anthracene	100	1	1	5.6	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Benzo(a)pyrene	1	1	1	1	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Benzo(b)fluoranthene	1	1	1	5.6	0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Benzo(g,h,i)perylene	100	100	100	500	0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0451	II I	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U II	0.0485	U	0.05	U	0.0519
Chrysene	1	3.9	1	56	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Dibenzofuran	7	59	14	350	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Fluoranthene	100	100	100	500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Fluorene	30	100	100	500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Hexachlorobenzene	0.33	1.2	0.33	6	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.33	5.6	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Naphthalene	12	100	100	500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	JD		U	0.0485	U	0.05	U	0.0519
•	0.8	6.7	2.4	6.7	0.0451	U		U	0.0428	U	0.0434	U	0.0763	U	0.0484	U	0.0485	U	0.05	U	0.0519
Pentachlorophenol Phononthropo																					
Phenal Phenal	100 0.33	100	100	500 500	0.0451	U		U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519
Phenol		100	100		0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U		U	0.0519 0.0519
Pyrene	100	100	100	500	0.0451	U	0.043	U	0.0428	U	0.0434	U	0.0456	U	0.0484	U	0.0485	U	0.05	U	0.0519

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-5 (7-9)		TB-5 (9-11)		TB-5 (11-13)		TB-5 (13-15)		TB-5 (15-17)	TB-5 (17-19	9)	TB-5 (19-21)		TB-5 (21-23)		TB-5 (23-25)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022	5/26/2022	2	5/26/2022		5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil	Soil		Soil		Soil		Soil
					Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
PEST, 8081 MASTER																				
4,4'-DDD	0.0033	13	2.6	92	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
4,4'-DDE	0.0033	8.9	1.8	62	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
4,4'-DDT	0.0033	7.9	1.7	47	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
Aldrin	0.005	0.097	0.019	0.68	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
alpha-BHC alpha-Chlordane	0.02	0.48 4.2	0.097 0.91	3.4 24	0.00181 0.00181	U	0.0017 0.0017	U	0.00168 0.00168	U	0.00172 0.00172	U	0.0018 U		U	0.00196 0.00196	U	0.00196 0.00196	U	0.00205 U 0.00205 U
beta-BHC	0.094	0.36	0.91	3	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
Chlordane, total	~	~	~	~	NT		NT	U	NT	-	NT	-	NT O.0018	NT NT	-	NT	-	NT		NT 0.00203
delta-BHC	0.04	100	100	500	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
Dieldrin	0.005	0.2	0.039	1.4	0.00181	U	0.0017	Ü	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
Endosulfan I	2.4	24	4.8	200	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
Endosulfan II	2.4	24	4.8	200	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U	0.00195	U	0.00196	U	0.00196	U	0.00205 U
Endosulfan sulfate	2.4	24	4.8	200	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U	0.00195	U	0.00196	U	0.00196	U	0.00205 U
Endrin	0.014	11	2.2	89	0.00181	U	0.0017	U	0.00168	U	0.00172	U	0.0018 U	0.00195	U	0.00196	U	0.00196	U	0.00205 U
Endrin aldehyde	~	~	~	~	NT		NT	U	NT		NT		NT	NT		NT		NT		NT
Endrin ketone	~	~	~	~	NT		NT		NT		NT		NT	NT		NT		NT		NT
gamma-BHC (Lindane)	0.1	1.3	0.28	9.2	0.00181	U	0.0017		0.00168	U	0.00172	U	0.0018 U		U	0.00196	U	0.00196	U	0.00205 U
gamma-Chlordane	~	~	~	~	NT		NT	U	NT		NT		NT	NT		NT		NT		NT
Heptachlor	0.042	2.1	0.42	15	0.00181	U	0.0017		0.00168	U	0.00172	U	0.0018 U	_	U	0.00196	U	0.00196	U	0.00205 U
Heptachlor epoxide	~	~	~	~	NT NT		NT	U	NT		NT NT		NT	NT		NT		NT NT		NT
Methoxychlor	~ ~	~	~	~	NT		NT NT	U	NT NT		NT		NT NT	NT NT		NT NT		NT		NT NT
Toxaphene Metals, NYSDEC Part 375			~		INI		INI		INI		INI		INI	INI		INI		INI		INI
Arsenic	13	16	16	16	2.68	Т	1.55	Т	1.56	υl	1.57	υl	1.68 U	1.78	υl	1.79	υI	1.81	υI	1.89 U
Barium	350	400	350	400	47		13.5		29	<u> </u>	28.3		36.1	25.7		26.8		23.5		21.5
Beryllium	7.2	72	14	590	0.306		0.207	U	0.313		0.135		0.118	0.183		0.134		0.155		0.135
Cadmium	2.5	4.3	2.5	9.3	0.332	U	0.311	U	0.311	U	0.313	U	0.337 U		U	0.358	U	0.361	U	0.377 U
Chromium	~	~	~	~	21.6		9.73		15.9		10.8		23.7	10.7		11.6		13.2		10.3
Copper	50	270	270	270	8.33		8.2		13.1		10.8		12.6	8.12		9.39		8.55		7.89
Lead	63	400	400	1000	7.04		2.62		6.28		3.77		5.66	1.85		2.99		2.29		1.88
Manganese	1600	2000	2000	10000	363		267	U	604		274		135	287		405		230		110
Nickel	30	310	140	310	19		17.6		19.5		21.8		26	17.7		18.2		19		17.2
Selenium	3.9	180	36	1500	2.77	U	2.59		2.59	U	2.61	U	2.81 U		U	2.99	U	3.01	U	3.14 U
Silver	2	180	36	1500	0.554	U	0.518	U	0.518	U	0.522	U	0.561 U		U	0.597	U	0.602	U	0.629 U
Zinc	109	10000	2200	10000	27.1		14.1		27.9		14.3		25.8	15.5		17.4		17.7		12.8
Mercury by 7473	0.18	0.81	0.81	1 20 1	0.0332	11.1	0.0311		0.0311	11.1	0.0313	υI	0.0337 U	0.0357	υl	0.0358	11.1	0.0361	11.1	0.0377 U
Mercury Chromium, Hexavalent	0.10	0.61	0.01	2.8	0.0332	U	0.0311		0.0311	U	0.0313	U	0.0337 U	0.0357	<u> </u>	0.0336	U	0.0361	U	0.0377 U
Chromium, Hexavalent	1	110	22	400	0.554	U	0.518	т	0.518	U	0.522	υl	0.561 U	0.595	υl	0.597	U	0.602	υl	0.629 U
Chromium, Trivalent					0.00 .		0.010		0.020		0.022		0.001	0.000		0.001		0.002		0.020
Chromium, Trivalent	30	180	36	1500	21.6	Т	9.73	Т	15.9		10.8		23.7	10.7		11.6		13.2		10.3
Cyanide, Total												<u> </u>				-				
Cyanide, total	27	27	27	27	0.554	U	0.518		0.518	U	0.522	U	0.561 U	0.595	U	0.597	U	0.602	U	0.629 U
Total Solids (%)						<u> </u>				<u> </u>		<u> </u>			<u> </u>					
% Solids	~	~	~	~	90.3	Т	96.6	U	96.5		95.7		89.1	84.1		83.7		83		79.6
HERB, 8151 MASTER								<u> </u>		•									<u> </u>	
2,4,5-TP (Silvex)	3.8	100	58	500	0.0219	U	0.0202	U	0.0203	U	0.0206	U	0.0224 U	0.0236	U	0.0238	U	0.024	U	0.0246 U
PCB, 8082 MASTER																				
Aroclor 1016	~	~	~	~	0.0183	U	0.0172	U	0.017	U	0.0173	U	0.0182 U	0.0197	U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1221	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U	0.0197	U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1232	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U	0.0197	U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1242	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U		U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1248	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U		U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1254	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U		U	0.0198	U	0.0198	U	0.0207 U
Aroclor 1260	~	~	~	~	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U		U	0.0198	U	0.0198	U	0.0207 U
Total PCBs	0.1	1	1	1	0.0183	U	0.0172		0.017	U	0.0173	U	0.0182 U	0.0197	U	0.0198	U	0.0198	U	0.0207 U

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-8 (7-9)		TB-8 (9-11)		TB-8 (11-13)	TB-8 (13-15)		TB-8 (15-17)	TB-8 (17-19)		TB-8 (19-21)	TB-9 (7-9)		TB-9 (9-11)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022	5/26/2022		5/26/2022	5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Soil		Soil
					Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q Result	Q	Result
VOA, 8260 MASTER	•					,				,		,		·			·		
1,1,1-Trichloroethane	0.68	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,1-Dichloroethane	0.27	26	19	240	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,1-Dichloroethylene	0.33	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.03	0.0024	U	0.0024	U 0.0023	U	0.0024
1,2-Dichlorobenzene	1.1	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,3-Dichlorobenzene	2.4	49	17	280	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	0.0024	U	0.0024	U 0.0023	U	0.0024
1,4-Dioxane	0.1	13	9.8	130	0.054	U	0.043	U	0.041	U	0.046	U	0.052 U	0.048	U	0.049	U 0.047	U	0.048
2-Butanone	0.12	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.004 J	0.0069		0.0048	J 0.0023	U	0.0024
Acetone	0.05	100	100	500	0.0054	U	0.0043	U	0.0044	J	0.0046	U	0.025	0.03		0.035	0.0047	U	0.0048
Benzene	0.06	4.8	2.9	44	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Carbon tetrachloride	0.76	2.4	1.4	22	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Chlorobenzene	1.1	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Chloroform	0.37	49	10	350	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	*****	U	*****	U 0.0023	U	0.0024
Ethyl Benzene	1	41	30	390	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.018	0.0024	J		U 0.0023	U	0.0024
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Methylene chloride	0.05	100	51	500	0.0089	J	0.0071	J	0.017		0.0077	J	0.033 B		В	0.16	0.0084	J	0.0068
Naphthalene	12	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.078	0.0024	U		U 0.0023	U	0.0024
n-Butylbenzene	12	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0034 J		U		U 0.0023	U	0.0024
n-Propylbenzene	3.9	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.017	0.012			U 0.0023	U	0.0024
o-Xylene	~	~	~	~	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
p- & m- Xylenes	~	~	~	~	0.0054	U	0.0043	U	0.0041	U	0.0046	U	0.0052 U		U		U 0.0047	U	0.0048
sec-Butylbenzene	11	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	_	U		U 0.0023	U	0.0024
tert-Butylbenzene	5.9	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Tetrachloroethylene	1.3	19	5.5	150 500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Toluene trops 1.2 Dishlorosthylops	0.7	100	100 100	500	0.0027 0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023 U 0.0023	U	0.0024
trans-1,2-Dichloroethylene Trichloroethylene	0.19	21	100	200	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U	_	U		U 0.0023	U	0.0024
Vinyl Chloride	0.02	0.9	0.21	13	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0026 U		U		U 0.0023	U	0.0024
Xylenes, Total	0.02	100	100	500	0.0027	U	0.0021	U	0.002	U	0.0023	U	0.0020 U		U		U 0.0023	U	0.0024
SVOA, 8270 MASTER	0.26	100	100	500	0.0061	- 0	0.0064	0	0.0061	- 0	0.0069	0	0.0077 0	0.0072	0	0.0073	0.007	- 0	0.0072
2-Methylphenol	0.33	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	υl	0.0472 U	0.0501	U	0.0491	U 0.0434	υl	0.0444
3- & 4-Methylphenols	0.33	100	34	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Acenaphthene	20	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Acenaphthylene	100	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Anthracene	100	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Benzo(a)anthracene	1	1	1	5.6	0.0635	JD	0.0997	D	0.0425	U	0.0466	U	0.0472 U	_	U		U 0.0434	U	0.0444
Benzo(a)pyrene	1	1	1	1	0.0606	JD	0.0984	D	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Benzo(b)fluoranthene	1	1	1	5.6	0.0458	U	0.0746	JD	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Benzo(g,h,i)perylene	100	100	100	500	0.0458	U	0.0638	JD	0.0425	Ü	0.0466	U	0.0472 U		U		U 0.0434	Ü	0.0444
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0467	JD	0.0814	JD	0.0425	U	0.0466	U	0.0472 U	0.0501	U	0.0404	U 0.0434	U	0.0444
Chrysene	1	3.9	1	56	0.065	JD	0.1	D	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		Ü		U 0.0434	U	0.0444
Dibenzofuran	7	59	14	350	0.0458	U	0.0425	U	0.0425	U	0.0466	U U	0.0472 U		U		U 0.0434	U	0.0444
Fluoranthene	100	100	100	500	0.0912	JD	0.202	D	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Fluorene	30	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U	_	U		U 0.0434	U	0.0444
Hexachlorobenzene	0.33	1.2	0.33	6	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	0.0458	U	0.0516	JD	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Naphthalene	12	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U	_	U		U 0.0434	U	0.0444
Pentachlorophenol	0.8	6.7	2.4	6.7	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Phenanthrene	100	100	100	500	0.0518	JD	0.134	D	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444
Phenol	0.33	100	100	500	0.0458	U	0.0425	U	0.0425	U	0.0466	U	0.0472 U	_	U		U 0.0434	U	0.0444
Pyrene	100	100	100	500	0.0971	D	0.17	D	0.0425	U	0.0466	U	0.0472 U		U		U 0.0434	U	0.0444

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-8 (7-9)		TB-8 (9-11)	TB-8 (11-13)	TB-8 (13-15)	TB-8 (15-17)	TB-8 (17-19))	TB-8 (19-21)		TB-9 (7-9)		TB-9 (9-11)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022	5/26/2022	5/26/2022	5/26/2022	5/26/2022		5/26/2022		5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil	Soil	Soil	Soil	Soil		Soil		Soil		Soil
					Result	Q	Result Q	Result Q	Result	Q Result Q	Result	Q	Result	Q	Result	Q	Result Q
PEST, 8081 MASTER	•					<u>'</u>		•	'	· '	'			'			
4,4'-DDD	0.0033	13	2.6	92	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
4,4'-DDE	0.0033	8.9	1.8	62	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
4,4'-DDT	0.0033	7.9	1.7	47	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Aldrin	0.005	0.097	0.019	0.68	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
alpha-BHC	0.02	0.48	0.097	3.4	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
alpha-Chlordane	0.094	4.2	0.91	24	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
beta-BHC	0.036	0.36	0.072	3	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Chlordane, total	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
delta-BHC	0.04	100	100	500	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Dieldrin	0.005	0.2	0.039	1.4	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Endosulfan I	2.4	24	4.8	200	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Endosulfan II	2.4	24	4.8	200	0.00182	U	0.00171 U	0.00167 U		U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Endosulfan sulfate	2.4	24	4.8	200	0.00182	U	0.00171 U	0.00167 U		U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Endrin	0.014	11	2.2	89	0.00182	U	0.00171 U	0.00167 U		U 0.00186 U		U	0.00191	U	0.00173	U	0.00176 U
Endrin aldehyde	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
Endrin ketone	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
gamma-BHC (Lindane)	0.1	1.3	0.28	9.2	0.00182	U	0.00171 U	0.00167 U		U 0.00186 U		U	0.00191	U	0.00173	U	0.00176 U
gamma-Chlordane	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
Heptachlor	0.042	2.1	0.42	15	0.00182	U	0.00171 U	0.00167 U	0.00182	U 0.00186 U	0.00194	U	0.00191	U	0.00173	U	0.00176 U
Heptachlor epoxide	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
Methoxychlor	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
Toxaphene	~	~	~	~	NT		NT	NT	NT	NT	NT		NT		NT		NT
Metals, NYSDEC Part 375																	
Arsenic	13	16	16	16	3.44		1.57 U	1.55 U		U 1.73 U		U	1.77	U	1.6	U	1.61 U
Barium	350	400	350	400	37.9		23.4	34.1	32	30.5	23		21.6		140		75.2
Beryllium	7.2	72	14	590	0.275		0.188	0.161	0.186	0.183	0.146		0.111		0.223		0.167
Cadmium	2.5	4.3	2.5	9.3	0.332	U	0.313 U	0.31 U		U 0.346 U		U	0.354	U	0.32	U	0.322 U
Chromium	~	~	~	~	19.1		14.2	9.42	9.74	21.6	16.6		11.4		19.5		17.7
Copper	50	270	270	270	12.2		9.59	9.2	9.59	11	7.96		7.41		7.31		10.5
Lead	63	400	400	1000	18.5		4.26	2.37	2.93	3.26	3.14		2.16		4.7		24.8
Manganese	1600	2000	2000	10000	263		198	243	144	243	164		111		308		332
Nickel	30	310	140	310	13.1		19.1	16	14.6	21.5	14.6		16.1		15.6		16.9
Selenium	3.9	180	36	1500	2.76	U	2.61 U	2.59 U		U 2.88 U		U	2.95	U	2.66	U	2.68 U
Silver		180	36	1500	0.553	U	0.522 U			U 0.576 U		U	0.591	U	0.533	U	0.536 U
Zinc	109	10000	2200	10000	32.5		16.9	12	14.4	14.5	15.2		30.5		24.8		18.6
Mercury by 7473 Mercury	0.18	0.81	0.81	2.8	0.248		0.301	0.031 U	0.0336	U 0.0346 U	0.0364	υI	0.0354	υI	0.032	υI	0.0322 U
Chromium, Hexavalent	0.18	0.81	0.81	2.6	0.248		0.301	0.031 0	0.0330	0 0.0340 0	0.0304	<u> </u>	0.0354	- 0	0.032	- 0	0.0322 0
Chromium, Hexavalent	1 1	110	22	400	0.553	U	0.522 U	0.517 U	0.559	U 0.576 U	0.606	U	0.591	U	0.533	υl	0.536 U
Chromium, Trivalent				.00	0.000		0.022	0.021	0.000	0,0,0	0.000		0.001		0.000		0.000
Chromium, Trivalent	30	180	36	1500	19.1		14.2	9.42	9.74	21.6	16.6	T	11.4	T	19.5	T	17.7
Cyanide, Total		130		1000	10.1		47.4	J.72	5.77		10.0		44.7		10.0		±1.1
Cyanide, total	27	27	27	27	0.553	υl	0.522 U	0.517 U	0.559	U 0.576 U	0.606	U	0.591	υT	0.533	υl	0.536 U
Total Solids (%)					0.000	1	0.022 0	0.017	0.000	0.070	3.000		0.001	<u> </u>	0.000		0.000 0
% Solids	~	~	~	~	90.4	I	95.7	96.7	89.4	86.8	82.5	T	84.6	T	93.9	T	93.3
HERB, 8151 MASTER					30.4		55.1	30.1	30.7	1 00.0	02.0		U-1.0		33.3		55.5
2.4.5-TP (Silvex)	3.8	100	58	500	0.0218	U	0.0208 U	0.0205 U	0.0223	U 0.0228 U	0.0236	υl	0.0231	υl	0.0211	υl	0.021 U
PCB, 8082 MASTER	3.0	100		550	0.0210		0.0200 0	0.0200	0.0220	0.0220	0.0230		0.0201	<u> </u>	0.0211	٠,١	0.021 0
Aroclor 1016	~	~	~	~	0.0184	U	0.0172 U	0.0168 U	0.0184	U 0.0188 U	0.0196	U	0.0193	υl	0.0175	υl	0.0178 U
Aroclor 1221	~	~	~	~	0.0184	U	0.0172 U		 	U 0.0188 U	+	U	0.0193	U	0.0175	U	0.0178 U
Aroclor 1221 Aroclor 1232	~	~	~	~	0.0184	U	0.0172 U			U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
Aroclor 1242	~	~	~	~	0.0184	U	0.0172 U			U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
Aroclor 1242 Aroclor 1248	~	~	~	~	0.0184	U	0.0172 U	+		U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
Aroclor 1254	~	~	~	~	0.0184	U	0.0172 U			U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
Aroclor 1260	~	~	~	~	0.0184	U	0.0172 U			U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
Total PCBs	0.1	1	1	1	0.0184	U	0.0172 U	+		U 0.0188 U		U	0.0193	U	0.0175	U	0.0178 U
וטנמו רטשט	0.1	1 1	l +	1 ±	0.0184	υl	0.01/2	0.0108 0	0.0184	0.0199 0	0.0196	U	0.0193	υl	0.01/5	υl	U.U118 U

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-9 (11-13)	TB-9 (13-15)		TB-9 (15-17)		TB-10 (7-9)		TB-10 (9-11)		TB-10 (11-13)		TB-10 (13-15)		(15-17)		TB-11 (7-9)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022	5/26	2022		5/26/2022
Client Matrix	UUSC0s	RRSCOs	RSC0s	CSC0s	Soil	Soil		Soil		Soil		Soil		Soil		Soil		oil		Soil
VOA. 8260 MASTER					Result Q	Result	Q	Result	Q	Result Ç	5	Result	Q	Result	Q	Result Q	Resu	lt	Q	Result
	0.68	100	100	500	0.0016 U	0.0024	U	0.0028	υl	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	12	U	0.002
1,1,1-Trichloroethane 1,1-Dichloroethane	0.08	26	19	240	0.0016 U		U	0.0028	U		,	0.0024	U		U	0.0026 U	+		U	0.002
1,1-Dichloroethylene	0.33	100	100	500	0.0016 U		U	0.0028	U		,	0.0024	U		U	0.0026 U			U	0.002
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0016 U		U	0.0028	U		,	0.0024	U		U	0.0026 U			U	0.002
1,2-Dichlorobenzene	1.1	100	100	500	0.0016 U		U	0.0028	U		<u>, </u>	0.0024	U		U	0.0026 U			U	0.002
1,2-Dichloroethane	0.02	3.1	2.3	300	0.0016 U		U	0.0028	U	0.0022 U	_	0.0024	U		U	0.0026 U			U	0.002
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U			U	0.002
1,3-Dichlorobenzene	2.4	49	17	280	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U			U	0.002
1.4-Dichlorobenzene	1.8	13	9.8	130	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U	+		U	0.002
1,4-Dioxane	0.1	13	9.8	130	0.031 U		U	0.055	U	0.045 L		0.049	U		U	0.052 U			U	0.039
2-Butanone	0.12	100	100	500	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U	-		U	0.002
Acetone	0.05	100	100	500	0.0044 J	0.0048	U	0.0055	U		-	0.0049	U	0.011	,	0.0073 J	0.01			0.0056
Benzene	0.06	4.8	2.9	44	0.0016 U		U	0.0028	U		J	0.0024	U		U	0.0026 U			U	0.002
Carbon tetrachloride	0.76	2.4	1.4	22	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U	-		U	0.002
Chlorobenzene	1.1	100	100	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L		0.0024	U		u	0.0026 U	0.002		U	0.002
Chloroform	0.37	49	10	350	0.0016 U	0.0024	U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U	0.002		U	0.002
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U		U	0.0026 U	0.002		U	0.002
Ethyl Benzene	1	41	30	390	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U	0.002		U	0.002
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U		U	0.0026 U	0.002	23	U	0.002
Methylene chloride	0.05	100	51	500	0.0046 J	0.012		0.0069	J	0.0062 J	,	0.0066	J	0.2		0.011	0.008		J	0.0095
Naphthalene	12	100	100	500	0.0016 U		U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002		U	0.002
n-Butylbenzene	12	100	100	500	0.0016 U		U	0.0028	U	0.0022 L	J	0.0024	U		U	0.0026 U	0.002	23	U	0.002
n-Propylbenzene	3.9	100	100	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U		U	0.0026 U	0.002	23	U	0.002
o-Xylene	~	~	~	~	0.0016 U		U	0.0028	U	0.0022 L		0.0024	U		U	0.0026 U			U	0.002
p- & m- Xylenes	~	~	~	~	0.0031 U		U	0.0055	U	0.0045 L	J	0.0049	U		U	0.0052 U	1		U	0.0039
sec-Butylbenzene	11	100	100	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	23	U	0.002
tert-Butylbenzene	5.9	100	100	500	0.0016 U		U	0.0028	U		J	0.0024	U		U	0.0026 U	+		U	0.002
Tetrachloroethylene	1.3	19	5.5	150	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	23	U	0.002
Toluene	0.7	100	100	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	27	J	0.002
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	23	U	0.002
Trichloroethylene	0.47	21	10	200	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	23	U	0.002
Vinyl Chloride	0.02	0.9	0.21	13	0.0016 U	0.0024	U	0.0028	U	0.0022 L	J	0.0024	U	0.0031	U	0.0026 U	0.002	23	U	0.002
Xylenes, Total	0.26	100	100	500	0.0047 U	0.0073	U	0.0083	U	0.0067 L	J	0.0073	U	0.0092	U	0.0077 U	0.006	8	U	0.0059
SVOA, 8270 MASTER	· ·	•	•			'											•			
2-Methylphenol	0.33	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U T	0.044 U	0.045	55	U	0.0438
3- & 4-Methylphenols	0.33	100	34	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Acenaphthene	20	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Acenaphthylene	100	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Anthracene	100	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Benzo(a)anthracene	1	1	1	5.6	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Benzo(a)pyrene	1	1	1	1	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Benzo(b)fluoranthene	1	1	1	5.6	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Benzo(g,h,i)perylene	100	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Chrysene	1	3.9	1	56	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Dibenzofuran	7	59	14	350	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Fluoranthene	100	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Fluorene	30	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Hexachlorobenzene	0.33	1.2	0.33	6	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	0.0444 U		U	0.0517	U		J	0.0452	U	0.043	U	0.044 U	-	55	U	0.0438
Naphthalene	12	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Pentachlorophenol	0.8	6.7	2.4	6.7	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438
Phenanthrene	100	100	100	500	0.0444 U		U	0.0517	U		J	0.0452	U		U	0.044 U			U	0.0438
Phenol	0.33	100	100	500	0.0444 U		U	0.0517	U		J	0.0452	U		U	0.044 U	+		U	0.0438
Pyrene	100	100	100	500	0.0444 U	0.0451	U	0.0517	U	0.0439 L	J	0.0452	U	0.043	U	0.044 U	0.045	55	U	0.0438

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

la					TD 0 (44 40)		TD 0 (40 45)		TD 0 (45 47)		TD 40 (7.0)		TD 40 (0.44)		TD 40 (44 40)		TD 40 (40 45)	TD 40 (45 47)		TD 44 (7.0)
Sample ID	Part 375	Dort 275	Part 375	Part 375	TB-9 (11-13) 5/26/2022		TB-9 (13-15) 5/26/2022		TB-9 (15-17) 5/26/2022		TB-10 (7-9) 5/26/2022		TB-10 (9-11) 5/26/2022		TB-10 (11-13) 5/26/2022		TB-10 (13-15) 5/26/2022	TB-10 (15-17) 5/26/2022		TB-11 (7-9) 5/26/2022
Sampling Date Client Matrix	UUSCOs	Part 375 RRSC0s	RSCOs	CSCOs	Soil		Soil		5/26/2022 Soil		Soil		Soil		5/26/2022 Soil		Soil	5/ 20/ 2022 Soil		Soil
CHEFIC MACHX		Tutocco	110000	00000	Result	Q	Result	Q	Result	Q		Q	Result	Q	Result	Q	Result Q		Q	Result
PEST, 8081 MASTER					ricodic	۱۶	ricourt	٧١	resure	٧١	Nesuit	٧١	ricourt	۷۱	resure	٧١	ricourt Q	Nesuit	۷۱	Ttoodic .
4,4'-DDD	0.0033	13	2.6	92	0.00173	U	0.0018	U	0.00206	U	0.00176 l	υl	0.00179	U	0.0017	U	0.0017 U	0.00177	υl	0.00176
4,4'-DDE	0.0033	8.9	1.8	62	0.00173	U	0.0018	U	0.00206	U		U	0.00179	U	0.0017	U	0.0017 U		U	0.00176
4,4'-DDT	0.0033	7.9	1.7	47	0.00173	Ü	0.0018	U	0.00206	U		u 	0.00179	U	0.0017	Ü	0.0017 U		U	0.00176
Aldrin	0.005	0.097	0.019	0.68	0.00173	U	0.0018	U	0.00206	U		u	0.00179	U	0.0017	U	0.0017 U		U	0.00176
alpha-BHC	0.02	0.48	0.097	3.4	0.00173	U	0.0018	U	0.00206	U		u l	0.00179	U	0.0017	U	0.0017 U		U	0.00176
alpha-Chlordane	0.094	4.2	0.91	24	0.00173	U	0.0018	U	0.00206	U		u	0.00179	U	0.0017	U	0.0017 U		U	0.00176
beta-BHC	0.036	0.36	0.072	3	0.00173	U	0.0018	U	0.00206	U	0.00176 l	U	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Chlordane, total	~	~	~	~	NT		NT		NT		NT		NT		0.0341	U	NT	NT		NT
delta-BHC	0.04	100	100	500	0.00173	U	0.0018	U	0.00206	U	0.00176 l	u 📗	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Dieldrin	0.005	0.2	0.039	1.4	0.00173	U	0.0018	U	0.00206	U	0.00176 l	u	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Endosulfan I	2.4	24	4.8	200	0.00173	U	0.0018	U	0.00206	U	0.00176 l	u l	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Endosulfan II	2.4	24	4.8	200	0.00173	U	0.0018	U	0.00206	U	0.00176 l	u 📗	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Endosulfan sulfate	2.4	24	4.8	200	0.00173	U	0.0018	U	0.00206	U	0.00176 l	U	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Endrin	0.014	11	2.2	89	0.00173	U	0.0018	U	0.00206	U	0.00176 l	U	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Endrin aldehyde	~	~	~	~	NT		NT		NT		NT	\top	NT		0.0017	U	NT	NT		NT
Endrin ketone	~	~	~	~	NT		NT		NT		NT		NT		0.0017	U	NT	NT		NT
gamma-BHC (Lindane)	0.1	1.3	0.28	9.2	0.00173	U	0.0018	U	0.00206	U	0.00176 l	U	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
gamma-Chlordane	~	~	~	~	NT		NT		NT		NT		NT		0.0017	U	NT	NT		NT
Heptachlor	0.042	2.1	0.42	15	0.00173	U	0.0018	U	0.00206	U	0.00176 l	U	0.00179	U	0.0017	U	0.0017 U	0.00177	U	0.00176
Heptachlor epoxide	~	~	~	~	NT		NT		NT		NT		NT		0.0017	U	NT	NT		NT
Methoxychlor	~	~	~	~	NT		NT		NT		NT		NT		0.0017	U	NT	NT		NT
Toxaphene	~	~	~	~	NT		NT		NT		NT		NT		0.17	U	NT	NT		NT
Metals, NYSDEC Part 375																				
Arsenic	13	16	16	16	1.6	U	1.66	U	1.89	U	1.61 l	U	3.11		1.57	U	1.59 U	1.65	U	1.61
Barium	350	400	350	400	19.1		18.2		13.9		16.8		31.7		16.2		45.1	18.9		18.5
Beryllium	7.2	72	14	590	0.106		0.098		0.063	U	0.054 l	U	0.056	U	0.052	U	0.053 U	0.055	U	0.054
Cadmium	2.5	4.3	2.5	9.3	0.32	U	0.332	U	0.379	U	0.321 l	U	0.334	U	0.314	U	0.318 U	0.33	U	0.322
Chromium	~	~	~	~	9.12		16.4		8.88		11.6		14		9.73		8.02	9.45		8.1
Copper	50	270	270	270	8.59		9.17		7.97		6.9		13.2		11.8		7.54	7.92		7.18
Lead	63	400	400	1000	1.47		1.56		1.54		2.25		21.3		1.77		2.25	2.55		2.19
Manganese	1600	2000	2000	10000	224		233		145		302		298		241		318	356		419
Nickel	30	310	140	310	14.4		17.8		15.4		14.5		8.89		14.3		11.6	18.2		14.8
Selenium	3.9	180	36	1500	2.67	U	2.77	U	3.16	U		U	2.79	U	2.62	U	2.65 U	2.75	U	2.68
Silver	2	180	36	1500	0.534	U	0.554	U	0.631	U		U	0.557	U	0.523	U	0.529 U		U	0.536
Zinc	109	10000	2200	10000	11.4		11.8		12.7		15.9	\perp	22.6		16.5		10.6	13.4		12.1
Mercury by 7473																				
Mercury	0.18	0.81	0.81	2.8	0.032	U	0.0332	U	0.0379	U	0.0321 l	U	0.133		0.0314	U	0.0318 U	0.033	U	0.0322
Chromium, Hexavalent				100	0.504		0.554		2.004		2.525		0.555		0.500		0.500			2.500
Chromium, Hexavalent	1	110	22	400	0.534	U	0.554	U	0.631	U	0.535 l	U	0.557	U	0.523	U	0.529 U	0.55	U	0.536
Chromium, Trivalent		100		4500	0.40		10.1								0.70			0.45		
Chromium, Trivalent	30	180	36	1500	9.12		16.4		8.88		11.6		14		9.73		8.02	9.45		8.1
Cyanide, Total		0.7		0.7	0.504		0.554		2.004		2.525		0.555		0.500		0.500			2.522
Cyanide, total	27	27	27	27	0.534	U	0.554	U	0.631	U	0.535 l	υ	0.557	U	0.523	U	0.529 U	0.55	U	0.536
Total Solids (%)									70 -						05 -					
% Solids	~	~	~	~	93.6		90.3		79.2		93.4		89.8		95.5		94.4	90.9		93.3
HERB, 8151 MASTER	1									. 1						1				
2,4,5-TP (Silvex)	3.8	100	58	500	0.0213	U	0.0219	U	0.0251	U	0.0213 l	U L	0.0218	U	0.0208	U	0.0211 U	0.0216	U	0.0214
PCB, 8082 MASTER												_								
Aroclor 1016	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1221	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1232	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1242	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1248	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1254	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Aroclor 1260	~	~	~	~	0.0174	U	0.0181	U	0.0208	U		U	0.0181	U	0.0172	U	0.0172 U		U	0.0178
Total PCBs	0.1	1	1	1	0.0174	U	0.0181	U	0.0208	U	0.0178 l	U	0.0181	U	0.0172	U	0.0172 U	0.0178	U	0.0178

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID					TB-11 (9-11)		TB-11 (11-13)		TB-11 (13-15)		TB-11 (15-17)		TB-12 (7-9)		TB-12 (9-11)		TB-12 (11-13)	TB-12 (13-15	5)	TB-12 (15-17)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022	5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil		Soil		Soil	Soil		Soil
VOA, 8260 MASTER					Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Ç) Result	Q	Result
1,1,1-Trichloroethane	0.68	100	100	500	0.0024	U	0.0035	υl	0.0028	U	0.0022	U	0.0018	υl	0.0023	υl	0.0021 U	0.0024	U	0.29
1,1-Dichloroethane	0.27	26	19	240	0.0024	U	0.0035	Ü	0.0028	U	0.0022	Ü	0.0018	Ü	0.0023	U	0.0021 U		U	0.29
1,1-Dichloroethylene	0.33	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		u	0.29
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0024	U	0.0035	11	0.0028	U	0.0022	- 11	0.0018	U	0.0023	II I	0.0021 U		u	0.29
1,2-Dichlorobenzene	1.1	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	11	0.0021 U		U	0.29
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0024	U	0.0035	U	0.0028	U	0.0022	Ü	0.0018	U	0.0023	U	0.0021 U		U	0.29
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
1.3-Dichlorobenzene	2.4	49	17	280	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
1,4-Dioxane	0.1	13	9.8	130	0.048	U	0.069	U	0.056	U	0.044	U	0.036	U	0.0023	U	0.0021 U		U	5.9
,	0.12	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.036	U	0.0023	U	0.0021 U	_	U	0.29
2-Butanone																				
Acetone	0.05	100	100	500	0.0048	J	0.0069	U	0.0058	J	0.0066	J	0.0036	U	0.0047	U	0.0041 U	_	U	0.59
Benzene Corbon totrophlorida	0.06	4.8	2.9	44	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	_	U	0.29
Carbon tetrachloride	0.76	2.4	1.4	22	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
Chlorobenzene	1.1	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
Chloroform	0.37	49	10	350	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	_	U	0.29
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
Ethyl Benzene	1	41	30	390	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
Methylene chloride	0.05	100	51	500	0.013		0.02		0.012		0.014		0.0048	J	0.0078	J	0.013	0.0075	J	1.1
Naphthalene	12	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U		U	0.29
n-Butylbenzene	12	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	16
n-Propylbenzene	3.9	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	28
o-Xylene	~	~	~	~	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
p- & m- Xylenes	~	~	~	~	0.0048	U	0.0069	U	0.0056	U	0.0044	U	0.0036	U	0.0047	U	0.0041 U	0.0047	U	0.59
sec-Butylbenzene	11	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	5.7
tert-Butylbenzene	5.9	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
Tetrachloroethylene	1.3	19	5.5	150	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
Toluene	0.7	100	100	500	0.0039	J	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
Trichloroethylene	0.47	21	10	200	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
Vinyl Chloride	0.02	0.9	0.21	13	0.0024	U	0.0035	U	0.0028	U	0.0022	U	0.0018	U	0.0023	U	0.0021 U	0.0024	U	0.29
Xylenes, Total	0.26	100	100	500	0.0071	U	0.01	U	0.0083	U	0.0066	U	0.0054	U	0.007	U	0.0062 U	0.0071	U	0.88
SVOA, 8270 MASTER		•																		
2-Methylphenol	0.33	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U	0.0452	U	0.0491
3- & 4-Methylphenols	0.33	100	34	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Acenaphthene	20	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Acenaphthylene	100	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Anthracene	100	100	100	500	0.0758	JD	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U	_	U	0.0491
Benzo(a)anthracene	1	1	1	5.6	0.297	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Benzo(a)pyrene	1	1	1	1	0.265	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Benzo(b)fluoranthene	1	1	1	5.6	0.169	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U	_	U	0.0491
Benzo(g,h,i)perylene	100	100	100	500	0.135	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Benzo(k)fluoranthene	0.8	3.9	1	56	0.135	D	0.044	U U	0.0475	U U	0.0502	U	0.0459	U U	0.0433	U II	0.0431 U		U	0.0491
	1	3.9	1	56	0.319	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Chrysene Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.319	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U	_	U	0.0491
Dibenzofuran	7	59	14	350	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U	+	U	0.0491
	100		100	500	0.0432				0.0475		0.0502		0.0459		0.0433					
Fluoranthene		100				D	0.044	U		U		U		U		U	0.0431 U		U	0.0491
Fluorene	30	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Hexachlorobenzene	0.33	1.2	0.33	6	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	0.121	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Naphthalene	12	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.577
Pentachlorophenol	0.8	6.7	2.4	6.7	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Phenanthrene	100	100	100	500	0.324	D	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0501
Phenol	0.33	100	100	500	0.0432	U	0.044	U	0.0475	U	0.0502	U	0.0459	U	0.0433	U	0.0431 U		U	0.0491
Pyrene	100	100	100	500	0.528	D	0.044	U	0.0475	U	0.0502	U	0.0622	JD	0.0433	U	0.0431 U	0.0452	U	0.0491

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Segretary Control Co	e ID					TB-11 (9-11))	TB-11 (11-13	3)	TB-11 (13-15	5)	TB-11 (15-17	7)	TB-12 (7-9)	TB-12 (9-11)	ı	TB-12 (11-13)	TB-12 (13-:	L5)	TB-12 (15-17)
		Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022	5/26/2022		5/26/2022	5/26/202	2	5/26/2022
Proceedings	Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Soil		Soil
Proceedings						Result	Q	Result	Q	Result	Q	Result	Q	Result (Q Result	Q	Result	Q Result	Q	Result (
ACCOS	8081 MASTER	•			•		· ·				'		<u>'</u>		'			'	<u> </u>	
Georgia Control Cont	OD .	0.0033	13	2.6	92	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
March 1909	DE	0.0033	8.9	1.8	62	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
Separation Column	DT	0.0033	7.9	1.7	47	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
American Control Con		0.005	0.097	0.019	0.68	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
See See 1,575 0,586 0,757 2 0,001.00 0 0,001.00	BHC	0.02	0.48	0.097	3.4	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
Second	Chlordane	0.094	4.2	0.91	24	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
Separation	HC	0.036	0.36	0.072	3	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
Control Cont	ane, total	~	~	~											_					NT
Freedomen 9,4 9,4 4,8 250 0.00169 U 0.00175 U 0.00185 U 0.00180 U 0.00172 U 0.00175 U 0.00185 U 0.00176 U 0.00172 U 0.00175 U 0.00175	BHC	0.04	100			0.00169	U	0.00175	U			0.002	U	0.00182 l	U 0.00169	U	0.00172		U	0.00198 L
Information	n	0.005	0.2	0.039	1.4	0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
	ulfan I		24			0.00169	U	0.00175	U	0.00183	U	0.002	U	0.00182 l	U 0.00169	U	0.00172	U 0.00179	U	0.00198 L
March Marc	ulfan II		24	4.8		0.00169	U	0.00175	U	0.00183	U		U	0.00182 l	U 0.00169	U	0.00172	_	U	0.00198 L
Personal profession				-															U	0.00198 L
Carlo Instance			+	+			U		U		U		U		_	U			U	0.00198 L
Seminar Semi																				NT
Parmet Chiefering															_					NT
Repetitive Color			+	+			U		U		U		U			U			U	0.00198 L
Processor Proc																				NT
Mathopsylvior			1	1			U		U		U		U			U			U	0.00198 L
Troughene				ļ																NT
Marie Mari	·																			NT
Density 13		~	~	_ ~	_ ~	NI		NI		NI		NI		NI	NI		NI	NI NI		NT
Serium Satura S	•	1 40	1 10	1 10		4.50									1 1 50		4.50			1.01
Sentimen							U		U		U		U			U			U	1.81 L
Commission																				21
Composition			+	+					U				- U		_				U	0.06 L
Copper So 270 270 270 270 2115 9.92 8.96 7.72 115.5 8.51 8.39 10.9			+				- 0		U		U		<u> </u>			U			U	0.362 L
Lead																				11.4 11.6
Manganese 1600 2000 2000 2000 2000 2015 227 264 129 305 208 287 334 334 345 356 330 310			-	.																3.85
Neckel 30 310 140 310 108 11.4 129 193 233 18.4 16.1 26.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1 5	2222						-								_					109
Selenium 3.9 180 36 1500 2.64 U 2.67 U 2.85 U 3.07 U 2.81 U 2.6 U 2.64 U 2.78 Silver 2 180 36 1500 0.529 U 0.535 U 0.571 U 0.614 U 0.561 U 0.52 U 0.528 U 0.528 U 0.556 U 0.571 U 0.614 U 0.561 U 0.52 U 0.528 U 0.528 U 0.556 U 0.571 U 0.614 U 0.561 U 0.52 U 0.528 U 0.537 U 0.0337 U 0.0333 U 0.0342 U 0.0345 U 0.0342 U 0.0345 U 0.0561 U 0.552 U 0.528 U 0.556 U 0.0566 U U U 0.0566 U U U U U U U U U	illese																	_		25.4
Silver 2	um		-				- 11		- 11		- 11				_	- 11			U	3.02 L
200 1000 2200 10000 24.7 15.5 15 11 39.3 13.8 14 14.5	um		+																U	0.603 L
Mercury by 7473 Mercury by 7473 Mercury by 7473																				16
Mercury 0.18 0.81 0.81 2.8 0.0518 0.0321 U 0.0342 U 0.0369 U 0.1 0.0312 U 0.0317 U 0.0333 U 0.0000000000000000000000000000000	rv hv 7473	100	10000	2200	10000	24.1		10.0		10				00.0	10.0		<u> </u>	14.0		10
Chromium, Hexavalent 1 110 22 400 0.529 U 0.535 U 0.571 U 0.614 U 0.561 U 0.52 U 0.528 U 0.556 U 0.566 U U 0.566 U 0.566 U U 0.566 U U U U U U U U U		0.18	0.81	0.81	2.8	0.0518	Т	0.0321	u I	0.0342	u I	0.0369	u I	0.1	0.0312	u I	0.0317	U 0.0333	υI	0.0362 L
Chromium, Trivalent 30 180 36 1500 11.6 8.35 8.77 10.3 21 11.4 9.7 10.4 10.4 10.5 10.4 10.5 10.4 10.5	,	1120				1111=1			-				-	<u> </u>	***************************************				-	
Chromium, Trivalent 30 180 36 1500 11.6 8.35 8.77 10.3 21 11.4 9.7 10.4	ium, Hexavalent	1	110	22	400	0.529	U	0.535	U	0.571	U	0.614	U	0.561 l	U 0.52	U	0.528	U 0.556	U	0.603 L
Cyanide, total 27 27 27 27 27 27 27 2	ium, Trivalent																			
Cyanide, total 27 27 27 27 27 27 27 2	ium, Trivalent	30	180	36	1500	11.6		8.35		8.77		10.3		21	11.4	Т	9.7	10.4		11.4
Total Solids (%) % Solids																				
% Solids	le, total	27	27	27	27	0.529	U	0.535	U	0.571	U	0.614	U	0.561 l	U 0.52	U	0.528	U 0.556	U	0.603 L
% Solids	Solids (%)			•											_				<u> </u>	
HERB, 8151 MASTER 2,4,5-TP (Silvex) 3.8 100 58 500 0.0211 U 0.0213 U 0.0227 U 0.0239 U 0.0222 U 0.0203 U 0.021 U 0.0219 U PCB, 8082 MASTER Arcolor 1016		~	~	~	~	94.6	Т	93.5		87.6	П	81.4	Т	89.1	96.2	Т	94.7	90	Т	82.9
PCB, 8082 MASTER Aroclor 1016 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1221 ~ ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1232 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1242 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1248 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202	8151 MASTER																			
PCB, 8082 MASTER Arcolor 1016 ~ ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Arcolor 1221 ~ ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Arcolor 1232 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Arcolor 1242 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Arcolor 1248 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U	TP (Silvex)	3.8	100	58	500	0.0211	υl	0.0213	υl	0.0227	υl	0.0239	υl	0.0222 l	U 0.0203	υl	0.021	U 0.0219	U	0.0236 L
Arocior 1016	()														, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,	-	
Aroclor 1221 ~ ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1232 ~ ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1242 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1248 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0181 U Aroclor 1248 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0		~	~	~	~	0.0171	ı, I	0.0177	u l	0.0185	u l	0.0202	u l	0.0184	U 0.0171	IJ	0.0174	U 0.0181	U	0.02 L
Aroclor 1232			 	+			_								_				U	0.02 L
Aroclor 1242 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0174 U 0.0181 U Aroclor 1248 ~ ~ ~ ~ 0.0171 U 0.0171 U 0.0174 U 0.0181 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0174 U 0.0174 U 0.0181 U 0.0181 U 0.0184 U 0.0171 U 0.0174 U 0.0181		_													_				U	0.02 L
Aroclor 1248 ~ ~ ~ ~ 0.0171 U 0.0177 U 0.0185 U 0.0202 U 0.0184 U 0.0171 U 0.0174 U 0.0181 U				_															U	0.02 L
															_				U	0.02 L
															_				U	0.02 L
		~	~	~	~														U	0.02 L
		0.1		1											_				U	0.02 L

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-12 (17-19)	TB-1	3 (7-9)	TB-13 (9-11)	1	TB-13 (11-13)	TB-13 (13-15)		TB-13 (15-17)		TB-13 (17-19)	TB-13 (19-21)		TB-13 (21-23)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		/2022	5/26/2022		5/26/2022	5/26/2022		5/26/2022		5/26/2022	5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSC0s	RSCOs	CSCOs	Soil		oil	Soil		Soil	Soil		Soil		Soil	Soil		Soil
Cheff Matrix		TITLOGGG	1,0000	55555		Q Resi		Result	Q	Result Q		Q	Result	Q	Result Q		Q	Result (
VOA, 8260 MASTER					resuit	Q 11031	" 4	resuit	٧١	ricourt Q	ricourt	٧١	nesure	4	ricourt Q	resure	٧١	result
1,1,1-Trichloroethane	0.68	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
1,1-Dichloroethane	0.27	26	19	240	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
1,1-Dichloroethylene	0.33	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	12	D	0.29 U	0.3	U	0.0086
1,2-Dichlorobenzene	1.1	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.62	D	0.29 U	0.3	U	0.0026 l
1,3-Dichlorobenzene	2.4	49	17	280	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
1,4-Dioxane	0.1	13	9.8	130	0.048	U 0.04	5 U	0.046	U	0.05 U	0.046	U	6.1	U	5.7 U	5.9	U	0.052
2-Butanone	0.12	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0074
Acetone	0.05	100	100	500	0.022	0.00	↓5 U	0.006	J	0.0051 J	0.0046	U	0.61	U	0.57 U	0.59	U	0.033
Benzene	0.06	4.8	2.9	44		U 0.00		0.0023	U	0.0025 U		U		U	0.29 U	0.3	U	0.0026 I
Carbon tetrachloride	0.76	2.4	1.4	22		U 0.00		0.0023	U	0.0025 U		U		U	0.29 U	0.3	U	0.0026 I
Chlorobenzene	1.1	100	100	500		U 0.00		0.0023	U	0.0025 U		U		U	0.29 U	0.3	U	0.0026 I
Chloroform	0.37	49	10	350	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U		U	0.29 U	0.3	U	0.0026 I
cis-1,2-Dichloroethylene	0.25	100	59	500		U 0.00		0.0023	U	0.0025 U		U		U	0.29 U	0.3	U	0.0026 I
Ethyl Benzene	1	41	30	390		U 0.00		0.0023	U	0.0025 U		U		D	0.29 U	0.3	U	0.0045
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0024	U 0.00		0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
Methylene chloride	0.05	100	51	500	0.011	0.00	88 J	0.0094		0.011	0.0076	J	0.96	JD	1.2 D	0.91	JD	0.011
Naphthalene	12	100	100	500		U 0.00		0.0023	U	0.0025 U		U	3.4	D	0.29 U	0.3	U	0.0036
n-Butylbenzene	12	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.84	D	0.29 U	0.3	U	0.0026 I
n-Propylbenzene	3.9	100	100	500	0.0052	0.00	22 U	0.0023	U	0.0025 U	0.0023	U	2.3	D	0.29 U	0.3	U	0.003
o-Xylene	~	~	~	~		U 0.00		0.0023	U	0.0025 U		U	0.31	U	0.29 U	0.3	U	0.0026 I
p- & m- Xylenes	~	~	~	~	0.0048	U 0.00		0.0046	U	0.005 U		U	5.4	D	0.57 U	0.59	U	0.0052 l
sec-Butylbenzene	11	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.32	JD	0.29 U	0.3	U	0.0026 I
tert-Butylbenzene	5.9	100	100	500	0.0024	U 0.00		0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
Tetrachloroethylene	1.3	19	5.5	150	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
Toluene	0.7	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 I
Trichloroethylene	0.47	21	10	200	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
Vinyl Chloride	0.02	0.9	0.21	13	0.0024	U 0.00	22 U	0.0023	U	0.0025 U	0.0023	U	0.31	U	0.29 U	0.3	U	0.0026 l
Xylenes, Total	0.26	100	100	500	0.0072	U 0.00	67 U	0.0069	U	0.0075 U	0.0069	U	5.4	D	0.86 U	0.89	U	0.0077 l
SVOA, 8270 MASTER						•					•							
2-Methylphenol	0.33	100	100	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
3- & 4-Methylphenols	0.33	100	34	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Acenaphthene	20	100	100	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Acenaphthylene	100	100	100	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Anthracene	100	100	100	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Benzo(a)anthracene	1	1	1	5.6	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Benzo(a)pyrene	1	1	1	1	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Benzo(b)fluoranthene	1	1	1	5.6	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Benzo(g,h,i)perylene	100	100	100	500	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Chrysene	1	3.9	1	56	0.0496	U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56		U 0.04	24 U	0.0418	U	0.0431 U	0.0438	U	0.0496	U	0.0484 U	0.049	U	0.0521 l
Dibenzofuran	7	59	14	350		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U		U	0.0521 l
Fluoranthene	100	100	100	500		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U		U	0.0521 I
Fluorene	30	100	100	500		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U	0.049	U	0.0521 I
Hexachlorobenzene	0.33	1.2	0.33	6		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U		U	0.0521 I
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U	0.049	U	0.0521
Naphthalene	12	100	100	500		U 0.04		0.0418	U	0.0431 U	+	U		JD	0.0484 U	0.049	Ü	0.0521
Pentachlorophenol	0.8	6.7	2.4	6.7		U 0.04		0.0418	U	0.0431 U		U	0.0496	U	0.0484 U	0.049	U	0.0521
Phenanthrene	100	100	100	500		U 0.04		0.0418	U	0.0431 U		U	0.0496	U	0.0484 U	0.049	U	0.0521
Phenol	0.33	100	100	500		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U	0.049	U	0.0521
	100	100	100	500		U 0.04		0.0418	U	0.0431 U		U		U	0.0484 U	0.049	U	0.0521

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2

BCP No. C224241

Sample ID					TB-12 (17-19)		TB-13 (7-9)		TB-13 (9-11)	TB-13	(11-13)		TB-13 (13-15)	TB-13 (15-17)	TB-13 (17-19)		TB-13 (19-21))	TB-13 (21-23)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022		5/26/2022	5/26,	/2022		5/26/2022	5/26/2022		5/26/2022		5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil	s	oil		Soil	Soil		Soil		Soil		Soil
					Result	Q	Result	Q	Result Q	Resu	lt	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
PEST, 8081 MASTER												·			·					
4,4'-DDD	0.0033	13	2.6	92	0.00198	U	0.0017	U	0.00167 U	0.001	72	U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
4,4'-DDE	0.0033	8.9	1.8	62	0.00198	U	0.0017	U	0.00167 U	0.001	72	U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
4,4'-DDT	0.0033	7.9	1.7	47	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Aldrin	0.005	0.097	0.019	0.68	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
alpha-BHC	0.02	0.48	0.097	3.4	0.00198	U	0.0017	U	0.00167 U			U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
alpha-Chlordane	0.094	4.2	0.91	24	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
beta-BHC	0.036	0.36	0.072	3	0.00198	U	0.0017	U	0.00167 U			U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Chlordane, total	~	100	100	~	NT 0.00108		NT 0.0017	- 11	NT 0.00167	NT 0.001			NT 0.00175	NT 0.0010E	- 11	NT		NT 0.00101		NT 0.00207
delta-BHC Dieldrin	0.04 0.005	100 0.2	100 0.039	500 1.4	0.00198 0.00198	U	0.0017 0.0017	U	0.00167 U 0.00167 U	0.001 0.001		U	0.00175 U 0.00175 U	0.00195 0.00195	U	0.00192 0.00192	U	0.00191 0.00191	U	0.00207 U 0.00207 U
	2.4	24	4.8	200	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Endosulfan I Endosulfan II	2.4	24	4.8	200	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Endosulfan sulfate	2.4	24	4.8	200	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Endrin	0.014	11	2.2	89	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Endrin aldehyde	~	~	~	~	NT		NT		NT O.00107	NT	_		NT O	NT	-	NT		NT		NT O.00201
Endrin ketone	~	~	~	~	NT		NT		NT	NT			NT	NT		NT		NT		NT
gamma-BHC (Lindane)	0.1	1.3	0.28	9.2	0.00198	U	0.0017	U	0.00167 U	0.001		U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
gamma-Chlordane	~	~	~	~	NT		NT		NT	NT			NT	NT		NT		NT		NT
Heptachlor	0.042	2.1	0.42	15	0.00198	U	0.0017	U	0.00167 U	0.001	72	U	0.00175 U	0.00195	U	0.00192	U	0.00191	U	0.00207 U
Heptachlor epoxide	~	~	~	~	NT		NT		NT	NT			NT	NT		NT		NT		NT
Methoxychlor	~	~	~	~	NT		NT		NT	NT			NT	NT		NT		NT		NT
Toxaphene	~	~	~	~	NT		NT		NT	NT			NT	NT		NT		NT		NT
Metals, NYSDEC Part 375																				
Arsenic	13	16	16	16	1.83	U	1.56	U	1.54 U	1.57		U	1.61 U	1.8	U	1.78	U	1.79	U	1.89 U
Barium	350	400	350	400	29		19.6		17	18.4			16.1	20.3		25.4		31.2		18.8
Beryllium	7.2	72	14	590	0.061	U	0.052	U	0.051 U	0.05		U	0.054 U	0.062		0.103		0.09		0.063 U
Cadmium	2.5	4.3	2.5	9.3	0.365	U	0.312	U	0.308 U	0.31		U	0.323 U	0.36	U	0.357	U	0.357	U	0.379 U
Chromium	~	~	~	~	12		11.9		8.84	8.77			10.6	9.47		11.4		21.2		8.73
Copper	50	270	270	270	8.31		9.15		8.14	7.94			8.84	6.81		10.6		9.99		8.47
Lead Manganese	63 1600	400 2000	400 2000	1000 10000	2.64 114		6.24 298		2.45 138	2.64 159			2.9 87.3	2.19 76.6		2.66 229		2.03 194		1.01
Nickel	30	310	140	310	22.4		16.9		18.5	15.5			15	17.1		17.8		20.1		14.7
Selenium	3.9	180	36	1500	3.04	U	2.6	U	2.57 U			U	2.69 U	3	U	2.97	U	2.98	U	3.16 U
Silver	2	180	36	1500	0.609	U	0.521	U	0.514 U			U	0.538 U	0.599	U	0.594	U	0.596	U	0.632 U
Zinc	109	10000	2200	10000	19.8		22		12.9	11.3		- -	11.8	11.1		16.2	- 	13.8		17.6
Mercury by 7473																			<u> </u>	
Mercury	0.18	0.81	0.81	2.8	0.0365	U	0.0312	U	0.0308 U	0.031	L3	U	0.0323 U	0.036	U	0.0357	U	0.0357	U	0.0379 U
Chromium, Hexavalent																				
Chromium, Hexavalent	1	110	22	400	0.609	U	0.521	U	0.514 U	0.52	2	U	0.538 U	0.599	U	0.594	U	0.596	U	0.632 U
Chromium, Trivalent																				
Chromium, Trivalent	30	180	36	1500	12		11.9		8.84	8.77	7		10.6	9.47		11.4		21.2		8.73
Cyanide, Total																				
Cyanide, total	27	27	27	27	0.609	U	0.521	U	0.514 U	0.52	2	U	0.538 U	0.599	U	0.594	U	0.596	U	0.632 U
Total Solids (%)																				
% Solids	~	~	~	~	82.1		96.1		97.3	95.7	7		93	83.4		84.1		84		79.2
HERB, 8151 MASTER				_,.											. 1					
2,4,5-TP (Silvex)	3.8	100	58	500	0.0242	U	0.0202	U	0.0202 U	0.020)5	U	0.0209 U	0.0237	U	0.0236	U	0.0231	U	0.0246 U
PCB, 8082 MASTER							0.04==		0.045-				0.0476		т. Т	0.045		00:	,. 1	
Aroclor 1016	~	~	~	~	0.02	U	0.0172	U	0.0169 U			U	0.0176 U	0.0197	U	0.0194	U	0.0193	U	0.0209 U
Aroclor 1221	~	~	~	~	0.02	U	0.0172	U	0.0169 U			U	0.0176 U	0.0197	U	0.0194	U	0.0193	U	0.0209 U
Aroclor 1232	~	~	~	~	0.02	U	0.0172	U	0.0169 U	0.017		U	0.0176 U	0.0197	U	0.0194	U	0.0193	U	0.0209 U
Aroclor 1242	~	~	~	~	0.02	U	0.0172	U	0.0169 U	0.017		U	0.0176 U	0.0197	U	0.0194	U	0.0193	U	0.0209 U
Aroclor 1248 Aroclor 1254	~	~	~	~	0.02	U	0.0172	U	0.0169 U 0.0169 U	0.017		U	0.0176 U 0.0176 U	0.0197	U	0.0194	U	0.0193 0.0193	U	0.0209 U 0.0209 U
Aroclor 1254 Aroclor 1260	~	~	~	~	0.02	U	0.0172 0.0172	U	0.0169 U 0.0169 U	0.017		U	0.0176 U 0.0176 U	0.0197 0.0197	U	0.0194 0.0194	U	0.0193	U	0.0209 U
Total PCBs	0.1	1	1	1	0.02	U	0.0172	U	0.0169 U			U	0.0176 U	0.0197	U	0.0194	U	0.0193	U	0.0209 U
100011 003	∪.⊥		_ +		0.02	J	0.0112	U	0.0109 0	0.017	J	٠	0.0170 0	0.0131	U	0.0134	J	0.0133	١	0.0200 0

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-14 (7-9)		TB-14 (9-11)	TB-14 (11-13)		TB-14 (13-15)		TB-14 (15-17)
Sampling Date	Part 375	Part 375	Part 375	Part 375	5/26/2022		5/26/2022	5/26/2022		5/26/2022		5/26/2022
Client Matrix	UUSCOs	RRSCOs	RSCOs	CSC0s	Soil		Soil	Soil		Soil		Soil
One in water	-			3333	Result	Q	Result Q	Result	Q	Result Q	Т	Result Q
VOA, 8260 MASTER	•				resure	۱۶	nesuit Q	ricourt	۷۱	ricourt Q		ricodit Q
1,1,1-Trichloroethane	0.68	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U	Т	0.0026 U
1,1-Dichloroethane	0.27	26	19	240	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,1-Dichloroethylene	0.33	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,2-Dichlorobenzene	1.1	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,3-Dichlorobenzene	2.4	49	17	280	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
1,4-Dioxane	0.1	13	9.8	130	0.048	U	0.045 U	0.052	U	0.056 U		0.052 U
2-Butanone	0.12	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Acetone	0.05	100	100	500	0.015		0.0078 J	0.0087	J	0.014		0.014
Benzene	0.06	4.8	2.9	44	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Carbon tetrachloride	0.76	2.4	1.4	22	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Chlorobenzene	1.1	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Chloroform	0.37	49	10	350	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Ethyl Benzene	1	41	30	390	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Methylene chloride	0.05	100	51	500	0.014		0.014	0.011		0.023		0.016
Naphthalene	12	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
n-Butylbenzene	12	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
n-Propylbenzene	3.9	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
o-Xylene	~	~	~	~	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
p- & m- Xylenes	~	~	~	~	0.0048	U	0.0045 U	0.0052	U	0.0056 U	_	0.0052 U
sec-Butylbenzene	11	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
tert-Butylbenzene	5.9	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Tetrachloroethylene	1.3	19	5.5	150	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Toluene	0.7	100	100	500	0.0027	J	0.0023 U	0.0026	U	0.0028 U		0.004 J
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Trichloroethylene	0.47	21	10	200	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Vinyl Chloride	0.02	0.9	0.21	13	0.0024	U	0.0023 U	0.0026	U	0.0028 U		0.0026 U
Xylenes, Total	0.26	100	100	500	0.0072	U	0.0068 U	0.0077	U	0.0084 U		0.0078 U
SVOA, 8270 MASTER	1	100	100		0.0400		0.0407	00474		0.000		0.0400
2-Methylphenol	0.33	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
3- & 4-Methylphenols	0.33	100	34	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Acenaphthene	20	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Acenaphthylene	100	100	100	500	0.0428		0.0437 U	0.0471	U	0.233 U	_	0.0496 U
Anthracene Renze(a)anthracene	100	100	100	500 5.6	0.0428 0.0428	U	0.0437 U 0.0437 U	0.0471 0.0471	U	0.233 U	_	0.0496 U
Benzo(a)anthracene Benzo(a)pyrene	1	1	1	1	0.0428	U	0.0437 U	0.0471	U	0.233 U	_	0.0496 U
Benzo(b)fluoranthene	1	1	1	5.6	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Benzo(g,h,i)perylene	100	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
. ` '	1	3.9	1	56		U			-		+	
Chrysene Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0428	U	0.0437 U	0.0471 0.0471	U	0.233 U 0.233 U		0.0496 U
Dibenzofuran	7	59	14	350	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Fluoranthene	100	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Fluorene	30	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Hexachlorobenzene	0.33	1.2	0.33	6	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.55	5.6	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Naphthalene	12	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Pentachlorophenol	0.8	6.7	2.4	6.7	0.0428	U	0.0437 U	0.0471	U	0.233 U	_	0.0496 U
Phenanthrene	100	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U	_	0.0496 U
Phenol	0.33	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
Pyrene	100	100	100	500	0.0428	U	0.0437 U	0.0471	U	0.233 U		0.0496 U
. ,	1 100	1 100	1 100	550	0.0720	٥	0.0-01	J 0.0771	٦	0.200		0.0400

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

									TD 44 (44 40)		TD 44 (40 4T		
Sample ID	B. 4 675	D. 1 075	D. 1075	D. 1075	TB-14 (7-9)		TB-14 (9-11)		TB-14 (11-13))	TB-14 (13-15))	TB-14 (15-17)
Sampling Date	Part 375 UUSCOs	Part 375 RRSC0s	Part 375 RSC0s	Part 375 CSC0s	5/26/2022		5/26/2022		5/26/2022		5/26/2022		5/26/2022
Client Matrix	- UUSCUS	RNOCUS	ROUS	CSCUS	Soil		Soil	0.1	Soil		Soil		Soil
PEST, 8081 MASTER					Result	Q	Result	Q	Result	Q	Result	Q	Result Q
4,4'-DDD	0.0033	13	2.6	92	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
4,4'-DDE	0.0033	8.9	1.8	62	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
4,4'-DDT	0.0033	7.9	1.7	47	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Aldrin	0.005	0.097	0.019	0.68	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
alpha-BHC	0.02	0.48	0.097	3.4	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
alpha-Chlordane	0.094	4.2	0.91	24	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
beta-BHC	0.036	0.36	0.072	3	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Chlordane, total	~	~	~	~	NT		NT		NT		NT		NT
delta-BHC	0.04	100	100	500	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Dieldrin	0.005	0.2	0.039	1.4	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Endosulfan I	2.4	24	4.8	200	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Endosulfan II	2.4	24	4.8	200	0.00171	Ü	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Endosulfan sulfate	2.4	24	4.8	200	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Endrin	0.014	11	2.2	89	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Endrin aldehyde	~	~	~	~	NT		NT		NT		NT		NT
Endrin ketone	~	~	~	~	NT		NT		NT		NT		NT
gamma-BHC (Lindane)	0.1	1.3	0.28	9.2	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
gamma-Chlordane	~	~	~	~	NT		NT		NT		NT		NT
Heptachlor	0.042	2.1	0.42	15	0.00171	U	0.00172	U	0.00183	U	0.00182	U	0.00198 U
Heptachlor epoxide	~	~	~	~	NT		NT		NT		NT		NT
Methoxychlor	~	~	~	~	NT		NT		NT		NT	1	NT
Toxaphene	~	~	~	~	NT		NT		NT		NT		NT
Metals, NYSDEC Part 375						•							
Arsenic	13	16	16	16	1.57	U	1.58	U	1.71	U	1.68	U	1.8 U
Barium	350	400	350	400	14.5		29.4		27.3		19.9		29.6
Beryllium	7.2	72	14	590	0.082		0.061		0.057	U	0.056	U	0.06 U
Cadmium	2.5	4.3	2.5	9.3	0.313	U	0.316	U	0.342	U	0.336	U	0.361 U
Chromium	~	~	~	~	7.75		22.4		9.52		14.5		22.8
Copper	50	270	270	270	7.66		8.98		8.68		10.5		8.76
Lead	63	400	400	1000	1.86		23		2.45		2.22		2.59
Manganese	1600	2000	2000	10000	212		211		266		157		134
Nickel	30	310	140	310	12		16.8		12.8		23.4		18.3
Selenium	3.9	180	36	1500	2.61	U	2.63	U	2.85	U	2.8	U	3.01 U
Silver	2	180	36	1500	0.522	U	0.527	U	0.571	U	0.56	U	0.601 U
Zinc	109	10000	2200	10000	12.3		16.7		13.6		15.1		21.8
Mercury by 7473													
Mercury	0.18	0.81	0.81	2.8	0.0313	U	0.0316	U	0.0342	U	0.0336	U	0.0361 U
Chromium, Hexavalent	1 .											1	
Chromium, Hexavalent	1	110	22	400	0.522	U	0.527	U	0.571	U	0.56	U	0.601 U
Chromium, Trivalent	1												
Chromium, Trivalent	30	180	36	1500	7.75		22.4		9.52		14.5		22.8
Cyanide, Total													0.007
Cyanide, total	27	27	27	27	0.522	U	0.527	U	0.571	U	0.56	U	0.601 U
Total Solids (%)	1	1											
% Solids	~	~	~	~	95.7		95		87.6		89.3		83.2
HERB, 8151 MASTER													
2,4,5-TP (Silvex)	3.8	100	58	500	0.0206	U	0.0206	U	0.0225	U	0.022	U	0.024 U
PCB, 8082 MASTER													
Aroclor 1016	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1221	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1232	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1242	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1248	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1254	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Aroclor 1260	~	~	~	~	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U
Total PCBs	0.1	1	1	1	0.0173	U	0.0174	U	0.0185	U	0.0183	U	0.02 U

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Sample ID					TB-15 (6-8)		TB-15 (8-10)	TB-15 (10-12)	TB-15 (12-14)	TB-15 (1	4-16)	TB-16 (6-8)	TB-16 (8-10)	TB-16 (10-12)	TB-16 (12-14)
Sampling Date	Part 375	Part 375	Part 375	Part 375	6/29/2022		6/29/2022	6/29/2022	6/29/2022	6/29/2		6/29/2022	6/29/2022	6/29/2022	6/29/2022
Client Matrix	UUSCOs	RRSC0s	RSCOs	CSCOs	Soil		Soil	Soil	Soil	So		Soil	Soil	Soil	Soil
onone madik					Result	Q	Result Q	Result Q		Result	. (Result
VOA, 8260 MASTER							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
1,1,1-Trichloroethane	0.68	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	. (J 0.0026 U	0.0027 U	0.0027 U	0.003
1,1-Dichloroethane	0.27	26	19	240	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027					0.003
1,1-Dichloroethylene	0.33	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027				0.0027 U	0.003
1,2,4-Trimethylbenzene	3.6	52	47	190	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027		J 0.0026 U	0.0027 U	0.0027 U	0.003
1,2-Dichlorobenzene	1.1	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	· l	J 0.0026 U	0.0027 U	0.0027 U	0.003
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	· l	J 0.0026 U	0.0027 U	0.0027 U	0.003
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	·	J 0.0026 U	0.0027 U	0.0027 U	0.003
1,3-Dichlorobenzene	2.4	49	17	280	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	·	J 0.0026 U	0.0027 U	0.0027 U	0.003
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027		J 0.0026 U	0.0027 U	0.0027 U	0.003
1,4-Dioxane	0.1	13	9.8	130	0.052	U	0.046 U	0.053 U	0.056 U	0.054	ι	J 0.053 U	0.054 U	0.055 U	0.06
2-Butanone	0.12	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	·	J 0.0035 J	0.0079	0.0027 U	0.003
Acetone	0.05	100	100	500	0.0052	U	0.0091 J	0.0053 U	L	0.015		0.017	0.031	0.0055 U	0.006
Benzene	0.06	4.8	2.9	44	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027				<u> </u>	0.003
Carbon tetrachloride	0.76	2.4	1.4	22	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	<u> </u>			 	0.003
Chlorobenzene	1.1	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	· l			0.0027 U	0.003
Chloroform	0.37	49	10	350	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027			0.0027 U	0.0027 U	0.003
cis-1,2-Dichloroethylene	0.25	100	59	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0027 U	0.0027 U	0.003
Ethyl Benzene	1	41	30	390	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027			0.0027 U		0.003
Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	ι				0.003
Methylene chloride	0.05	100	51	500	0.021		0.011	0.011	0.017	0.02		0.015	0.017	0.019	0.019
Naphthalene	12	100	100	500	0.0026	U	0.0023 U	0.0026 U		0.0027		1 1 1 1 1 1			0.003
n-Butylbenzene	3.9	100 100	100	500 500	0.0026 0.0026	U	0.0023 U	0.0026 U	0.0028 U 0.0028 U	0.0027	<u> </u>				0.003
n-Propylbenzene o-Xylene	3.9	~	~	~	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027			0.0027 U		0.003
p- & m- Xylenes	-	~	~	~	0.0026	U	0.0023 U	0.0028 U	0.0028 U	0.0027			0.0027 U	0.0027 U	0.006
sec-Butylbenzene	11	100	100	500	0.0032	U	0.0048 U	0.0033 U	0.0036 U	0.0027			0.0034 U		0.003
tert-Butylbenzene	5.9	100	100	500		U	0.0023 U	0.0026 U	0.0028 U	0.0027					0.003
Tetrachloroethylene	1.3	19	5.5	150	0.0026	U	0.0023 U	0.0026 U		0.0027					0.003
Toluene	0.7	100	100	500	0.0026	U	0.0023 U	0.0026 U		0.0027					0.003
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027					0.003
Trichloroethylene	0.47	21	10	200	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027	· l		0.0027 U	0.0027 U	0.003
Vinyl Chloride	0.02	0.9	0.21	13	0.0026	U	0.0023 U	0.0026 U	0.0028 U	0.0027			0.0027 U		0.003
Xylenes, Total	0.26	100	100	500	0.0077	U	0.0069 U	0.0079 U	0.0084 U	0.0081	. (J 0.0079 U	0.0081 U	0.0082 U	0.009
SVOA, 8270 MASTER	,		•	<u> </u>									•	<u>'</u>	
2-Methylphenol	0.33	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491	. (J 0.0427 U	0.0428 U	0.0472 U	0.0493
3- & 4-Methylphenols	0.33	100	34	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491	. (J 0.0427 U	0.0428 U	0.0472 U	0.0493
Acenaphthene	20	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491		J 0.0427 U	0.0428 U	0.0472 U	0.0493
Acenaphthylene	100	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491	. (J 0.0427 U	0.0428 U	0.0472 U	0.0493
Anthracene	100	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491	. ι	J 0.0427 U	0.0428 U	0.0472 U	0.0493
Benzo(a)anthracene	1	1	1	5.6	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491	. (J 0.0427 U	0.0428 U	0.0472 U	0.0493
Benzo(a)pyrene	1	1	1	1	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491		J 0.0427 U	0.0428 U	0.0472 U	0.0493
Benzo(b)fluoranthene	1	1	1	5.6	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491		J 0.0427 U	0.0428 U	0.0472 U	0.0493
Benzo(g,h,i)perylene	100	100	100	500	0.0427	U	0.0428 U	0.0469 U	L	0.0491					0.0493
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491		J 0.0427 U	0.0428 U	<u> </u>	0.0493
Chrysene	1	3.9	1	56	0.0427	U	0.0428 U	0.0469 U	ļ	0.0491				<u> </u>	0.0493
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0427	U	0.0428 U	0.0469 U	ļ	0.0491				<u> </u>	0.0493
Dibenzofuran	7	59	14	350	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491					0.0493
Fluoranthene	100	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491			0.0428 U	<u> </u>	0.0493
Fluorene	30	100	100	500	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491			0.0428 U		0.0493
Hexachlorobenzene	0.33	1.2	0.33	6	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491			0.0428 U		0.0493
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	0.0427	U	0.0428 U	0.0469 U		0.0491					0.0493
Naphthalene	12	100	100	500	0.0427	U	0.0428 U	0.0469 U		0.0491					0.0493
Pentachlorophenol Phananthrona	0.8	6.7	2.4	6.7	0.0427	U	0.0428 U	0.0469 U	0.0507 U	0.0491					0.0493
Phenal Phenal	0.33	100 100	100	500	0.0427	U	0.0428 U	0.0469 U 0.0469 U	0.0507 U 0.0507 U	0.0491					0.0493
Phenol	100	100	100	500 500	0.0427 0.0427	U	0.0428 U	0.0469 U 0.0469 U	0.0507 U	0.0491					0.0493
Pyrene Total Solids (%)	1 100	100	T 700	500	0.0427	۰	U.U420 U	0.0409 0	0.0307	0.0491		0.0427	0.0428 0	0.0412	0.0493
· (/0)															

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Comple ID					TB-16 (14-15)	TD 4	.7 (6-8)		TB-17 (8-10)	TB-17 (10-12)		TB-17 (12-14)		TB-17 (14-16)	TB-17 (16-18)	TD 17 /10	20)	TD 10 (6 0)
Sample ID	Dest 275	Dom 275	Don't 275	Dom 275	6/29/2022		.7 (0-8) 0/2022		6/30/2022	6/30/2022		6/30/2022		6/30/2022	6/30/2022	TB-17 (18- 6/30/202		TB-18 (6-8) 6/30/2022
Sampling Date	Part 375 UUSCOs	Part 375 RRSC0s	Part 375 RSCOs	Part 375 CSCOs	0/29/2022 Soil		Soil		Soil	5/30/2022 Soil		Soil		Soil	Soll	Soil		Soil
Client Matrix		Milooos	110003	00003		Q Res		Q	Result Q		Q	Result	Q	Result Q			Q	Result
/OA, 8260 MASTER					rtesuit	Q Nes	uit	Ų	itesuit Q	Nesuit	Ų Į	resuit	Ų Į	rtesuit Q	itesuit Q	Nesuit	Ų į	rtesuit
1.1.1-Trichloroethane	0.68	100	100	500	0.0027	U 0.00	127	υl	0.0023 U	0.27	υl	0.28	υĪ	0.0025 U	0.0025 U	0.0028	U	0.0028
1,1-Dichloroethane	0.00	26	19	240		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0023 U	0.0028	U	0.0028
1,1-Dichloroethylene	0.33	100	100	500		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	u	0.0028
1,2,4-Trimethylbenzene	3.6	52	47	190		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.011	0.0028	U	0.026
1,2-Dichlorobenzene	1.1	100	100	500		U 0.00		U	0.0023 U		U	0.28	U	0.0025 U		0.0028	U	0.0028
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.35	JD	0.0025 U	0.22 E	0.0028	U	0.0031
1,3-Dichlorobenzene	2.4	49	17	280	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
1,4-Dioxane	0.1	13	9.8	130	0.054	U 0.0	54	U	0.047 U	5.4	U	5.6	U	0.05 U	0.05 U	0.056	U	0.057
2-Butanone	0.12	100	100	500	0.0027	U 0.00	34	J	0.0023 U	0.27	U	0.28	U	0.0068	0.0025 U	0.0028	U	0.0031
Acetone	0.05	100	100	500	0.0058	J 0.0			0.015	0.54	U	0.56	U	0.031	0.005 U	0.0077	J	0.031
Benzene	0.06	4.8	2.9	44		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
Carbon tetrachloride	0.76	2.4	1.4	22		U 0.00		U	0.0023 U		U	0.28	U	0.0025 U			U	0.0028
Chlorobenzene	1.1	100	100	500		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U		0.0028	U	0.0028
Chloroform	0.37	49	10	350		U 0.00		U	0.0023 U		U	0.28	U	0.0025 U		0.0028	U	0.0028
cis-1,2-Dichloroethylene	0.25	100	59	500		U 0.00		U	0.0023 U		U	0.28	U	0.0025 U		0.0028	U	0.0028
Ethyl Benzene	1	41	30	390		U 0.00		U	0.0023 U		D	3.3	D	0.0093	0.43 E	0.0028	U	0.0028
Methylone chloride	0.93	100	62 E1	500		U 0.00		U	0.0023 U		U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
Methylene chloride	0.05	100	51	500	0.017	0.0		J	0.01	0.54	U	0.56	U	0.0065 J 0.0025 U	0.0064 J	0.0089	J	0.009
Naphthalene n-Butylbenzene	12 12	100 100	100	500 500		U 0.00		U	0.0023 U 0.0023 U		JD D	0.28 1.2	U D	0.0025 U	0.46 E 0.12	0.0028 0.0028	U	0.063
n-Propylbenzene	3.9	100	100	500		U 0.00		U	0.0023 U		D	3.7	D	0.0025 0	0.12 0.28 E	0.0028	U	0.0037
o-Xylene	3.9	~	~	~		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0011 0.0025 U		0.0028	U	0.0032
p- & m- Xylenes		~	~	~		U 0.00		U	0.0023 U		U	1.8	D	0.0025 U		0.0056	U	0.0025
sec-Butylbenzene	11	100	100	500		U 0.00		U	0.0023 U		D	0.45	JD	0.0025 U		0.0028	U	0.0028
tert-Butylbenzene	5.9	100	100	500		U 0.00		U	0.0023 U	0.64	D	0.28	U	0.0025 U	0.0057	0.0028	U	0.0028
Tetrachloroethylene	1.3	19	5.5	150		U 0.00		U	0.0023 U	0.27	U	0.28	Ū	0.0025 U	0.0025 U	0.0028	U	0.0028
Toluene	0.7	100	100	500		U 0.00		U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0038 J	0.0028	U	0.0028
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
Trichloroethylene	0.47	21	10	200	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
Vinyl Chloride	0.02	0.9	0.21	13	0.0027	U 0.00	27	U	0.0023 U	0.27	U	0.28	U	0.0025 U	0.0025 U	0.0028	U	0.0028
Xylenes, Total	0.26	100	100	500	0.0081	U 0.00	81	U	0.007 U	0.8	U	1.8	D	0.0076 U	0.31	0.0084	U	0.0085
SVOA, 8270 MASTER																		
2-Methylphenol	0.33	100	100	500	0.0486	U 0.0	44	U	0.044 U	0.0462	U	0.047	U	0.0479 U	0.0473 U	0.0511	U	0.0434
3- & 4-Methylphenols	0.33	100	34	500	0.0486	U 0.0	14	U	0.044 U	0.0462	U	0.047	U	0.0479 U	0.0473 U	0.0511	U	0.0434
Acenaphthene	20	100	100	500	0.0486	U 0.0	44	U	0.044 U	0.0462	U	0.047	U	0.0479 U	0.0473 U	0.0511	U	0.0434
Acenaphthylene	100	100	100	500		U 0.0	44	U	0.044 U		U	0.047	U	0.0479 U		0.0511	U	0.0434
Anthracene	100	100	100	500		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Benzo(a)anthracene	1	1	1	5.6		U 0.0		U	0.044 U	0.0462	U	0.047	U	0.0479 U		0.0511	U	0.0434
Benzo(a)pyrene	1	1	1	1		U 0.0		U	0.044 U		U	0.047	U	0.0479 U		0.0511	U	0.0434
Benzo(s) hijpardene	1	1 100	1	5.6		U 0.0		U	0.044 U		U	0.047	U	0.0479 U	-		U	0.0434
Benzo(k)fluoropthone	100	100	100	500		U 0.0		U	0.044 U	0.0462	U	0.047	U	0.0479 U	0.0473 U	0.0511	U	0.0434
Benzo(k)fluoranthene	0.8	3.9 3.9	1 1	56 56		U 0.0		U	0.044 U	0.0462	U	0.047	U	0.0479 U	0.0473 U	0.0511	U	0.0434
Chrysene Dibenzo(a,h)anthracene	0.33	0.33	0.33	56 0.56		U 0.0		U	0.044 U		U	0.047	U	0.0479 U 0.0479 U	+		U	0.0434
Dibenzofuran Dibenzofuran	0.33	59	14	350		U 0.0		U	0.044 U		U	0.047	U	0.0479 U	+		U	0.0434
Fluoranthene	100	100	100	500		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Fluorene	30	100	100	500		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Hexachlorobenzene	0.33	1.2	0.33	6		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6		U 0.0		U	0.044 U		U	0.047	U	0.0479 U		0.0511	U	0.0434
Naphthalene	12	100	100	500		U 0.0		U	0.044 U	1.34	D	1.12	D	0.0479 U	0.429 D	0.0511	Ū l	0.0434
Pentachlorophenol	0.8	6.7	2.4	6.7		U 0.0		U	0.044 U		U	0.047	U	0.0479 U	-	0.0511	U	0.0434
Phenanthrene	100	100	100	500		U 0.0		U	0.044 U		JD	0.047	U	0.0479 U			U	0.0434
Phenol	0.33	100	100	500		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Pyrene	100	100	100	500		U 0.0		U	0.044 U		U	0.047	U	0.0479 U			U	0.0434
Total Solids (%)																		
% Solids	~	~	~	~	84	9.	1		94	88		88		85	88	82		95

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

- · ·-					== 10 (0 10)	TD 40 (40 40)	TR 40 (40 44)		TD 40 (40 40)	TR 40 (40 00)	TD 40 (00 00)		TD 10 (0.0)
Sample ID					TB-18 (8-10)	TB-18 (10-12)	TB-18 (12-14)	TB-18 (14-16)	TB-18 (16-18)	TB-18 (18-20)	TB-18 (20-22)	TB-18 (22-24)	TB-19 (6-8)
Sampling Date	Part 375	Part 375	Part 375	Part 375	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022
Client Matrix	UUSC0s	RRSCOs	RSCOs	CSC0s	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
WOA GOOD MACTER					Result	Q Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER	1 0.00	100	100	500	0.07		2	0.05	0.00	0.07	0.0007	0.0000	0.0000
1,1-Trichloroethane 1,1-Dichloroethane	0.68	100	100 19	500 240	0.27		U 3 U U 3 U			0.27 U 0.27 U	0.0027 U 0.0027 U		0.0028 U 0.0028 U
1,1-Dichloroethylene	0.27	26 100	100	500			U 3 U						0.0028 U 0.0028 U
1,2,4-Trimethylbenzene	3.6	52	47	190			D 240 D			4.5 D	0.0027 0	0.0026 U	0.0028 0
1,2-Dichlorobenzene	1.1	100	100	500			U 3 U			0.27 U	0.0037 0.0027 U		0.0028 U
1,2-Dichloroethane	0.02	3.1	2.3	300			U 3 U			0.27 U	0.0027 U		0.0028 U
1,3,5-Trimethylbenzene	8.4	52	47	190			D 100 D	0.25 0		0.27 U	0.0027 0	0.0026 U	0.0028 U
1,3-Dichlorobenzene	2.4	49	17	280	0.83		U 3 U			0.27 U	0.0097 0.0027 U	0.0026 U	0.0035 J
1,4-Dichlorobenzene	1.8	13	9.8	130	0.27		U 3 U			0.27 U	0.0027 U	0.0026 U	0.0028 U
1,4-Dioxane	0.1	13	9.8	130			U 59 U			5.5 U	0.053 U		0.0028 U
2-Butanone	0.12	100	100	500			U 3 U					0.002	0.0028 U
Acetone	0.12	100	100	500			U 5.9 U		+	0.55 U	0.013 0.0053 U		0.0028
Benzene	0.05	4.8	2.9	44		_	U 3 U			0.33 U	0.0033 U		0.0028 U
	0.76	2.4	1.4	22		_	U 3 U		+	0.27 U	0.0027 U		0.0028 U
Carbon tetrachloride Chlorobenzene	1.1	100	100	500		_	U 3 U	+	+	0.27 U	0.0027 U		0.0028 U
Chloroform	0.37	49	100	350	0.27		U 3 U	0.25 U		0.27 U	0.0027 U	0.0026 U	0.0028 U
cis-1,2-Dichloroethylene	0.37	100	59	500			U 3 U	0.25 U		0.27 U	0.0027 U		0.0028 U
Ethyl Benzene	1	41	30	390			D 130 D	4.1 D		0.27 U	0.0027 U		0.0028 J
Methyl tert-butyl ether (MTBE)	0.93	100	62	500			U 3 U			0.27 U	0.0027 U		0.0028 J
Methylene chloride	0.93	100	51	500			U 5.9 U			0.27 U		0.0026 U	0.0028 0
Naphthalene	12	100	100	500			D 55 D			0.42 JD		0.0084 J	0.022
n-Butylbenzene	12	100	100	500			D 22 D			5.2 D		0.0026 U	0.0028 U
n-Propylbenzene	3.9	100	100	500		100	D 45 D			5.5 D	0.003 J		0.0028 U
o-Xylene	3.9	~	~	~			U 7.7 D			0.27 U	0.0027 U		0.0029 J
p- & m- Xylenes		-	~	~	0.53		D 220 D			0.55 U	0.0027 U	0.0026 U	0.0028 U
sec-Butylbenzene	11	100	100	500	0.27	_	D 3 U			11 D	0.0033 U		0.0037 U
tert-Butylbenzene	5.9	100	100	500			U 3 U						0.0028 U
Tetrachloroethylene	1.3	19	5.5	150			U 3 U			0.27 U			0.0028 U
Toluene	0.7	100	100	500			U 3 U			0.27 U	0.0027 U		0.0028 U
trans-1,2-Dichloroethylene	0.19	100	100	500			U 3 U			0.27 U	0.0027 U		0.0028 U
Trichloroethylene	0.47	21	10	200			U 3 U			0.27 U	0.0027 U		0.0028 U
Vinyl Chloride	0.02	0.9	0.21	13		_	U 3 U			0.27 U	0.0027 U		0.0028 U
Xylenes, Total	0.26	100	100	500		-	D 230 D			0.82 U	0.0027 U		0.0025 U
SVOA, 8270 MASTER	1 0.20	100	100	500	0.0	3 13	200 0	<u> </u>	0.0	0.02 0	0.000 0	0.0010	0.0000
2-Methylphenol	0.33	100	100	500	0.0437	J NT	0.0479 U	0.0483 U	0.0491 U	0.0471 U	0.0486 U	0.0506 U	0.0429 U
3- & 4-Methylphenols	0.33	100	34	500		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Acenaphthene	20	100	100	500		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Acenaphthylene	100	100	100	500		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Anthracene	100	100	100	500		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Benzo(a)anthracene	1	1	1	5.6	0.0437		0.0479 U			0.0471 U	0.0486 U	0.0506 U	0.0429 U
Benzo(a)pyrene	1	1	1	1		J NT	0.0479 U	0.0483 U		0.0471 U	0.0486 U	0.0506 U	0.0429 U
Benzo(b)fluoranthene	1	1	1	5.6		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Benzo(g,h,i)perylene	100	100	100	500		J NT	0.0479 U						0.0429 U
Benzo(k)fluoranthene	0.8	3.9	1	56		J NT	0.0479 U						0.0429 U
Chrysene	1	3.9	1	56		J NT	0.0479 U				0.0486 U		0.0429 U
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56		J NT	0.0479 U	-	+	0.0471 U	0.0486 U		0.0429 U
Dibenzofuran	7	59	14	350		J NT	0.0479 U	+	+		0.0486 U		0.0429 U
Fluoranthene	100	100	100	500		J NT	0.0479 U	-		0.0471 U	0.0486 U		0.0429 U
Fluorene	30	100	100	500		J NT	0.068 JD				0.0486 U		0.0429 U
Hexachlorobenzene	0.33	1.2	0.33	6		J NT	0.0479 U					-	0.0429 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6		J NT	0.0479 U	-	_		+		0.0429 U
Naphthalene	12	100	100	500		J NT	11.8 D				+		0.0429 U
Pentachlorophenol	0.8	6.7	2.4	6.7		J NT	0.0479 U			0.0471 U	0.0486 U		0.0429 U
Phenanthrene	100	100	100	500		J NT	0.0901 JD				0.0486 U		0.0429 U
Phenol	0.33	100	100	500		J NT	0.0479 U				0.0486 U		0.0429 U
Pyrene	100	100	100	500	0.0437	J NT	0.0479 U	0.0483 U		0.0471 U	0.0486 U	0.0506 U	0.0429 U
Total Solids (%)	•											·	
					94								

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

-					TD 10 (0.10)		TD 40 (40 40)			TT 10 (11 10)					
Sample ID					TB-19 (8-10)		TB-19 (10-12)	TB-19 (12-14)		TB-19 (14-16)	TB-19 (16-18)	TB-19 (18-20)	TB-18 (24-26)	TB-18 (26-28)	TB-20 (6-8)
Sampling Date	Part 375	Part 375	Part 375	Part 375	6/30/2022		6/30/2022	6/30/2022		6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022
Client Matrix	UUSCOs	RRSC0s	RSC0s	CSC0s	Soil	_	Soil	Soil	_	Soll	Soil	Soil	Soil	Soil	Soil
VOA, 8260 MASTER					Result	Q	Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
	1 0.60	100	100	E00	0.25		0.26	0.20	ш	0.0027	0.26	0.0000	0.25	0.0000 11	0.0027
1,1,1-Trichloroethane 1,1-Dichloroethane	0.68	100 26	100 19	500 240		U	0.26 U		U	0.0027 U 0.0027 J	0.26 U 0.26 U	0.0028 U 0.0028 U	0.25 U 0.25 U	0.0029 U 0.0029 U	0.0027 U 0.0027 U
1,1-Dichloroethylene	0.27	100	100	500		U	0.26 U		U	0.0027 U		0.0028 U		0.0029 U	0.0027 U
1,2,4-Trimethylbenzene	3.6	52	47	190		D	1.3 D		JD	0.0027 U		0.0028 U		1.4 D	0.0027 U
1,2-Dichlorobenzene	1.1	100	100	500		U	0.26 U		U	0.0027 U		0.0028 U	0.25 U	0.0029 U	0.0028 J
1,2-Dichloroethane	0.02	3.1	2.3	30		U	0.26 U		U	0.0027 U		0.0028 U	0.25 U	0.0029 U	0.0027 U
1,3,5-Trimethylbenzene	8.4	52	47	190	110	D	2.1 D		D	0.0027 U		0.0028 U	27 D	0.0029 0	0.0027 U
1,3-Dichlorobenzene	2.4	49	17	280		U	0.26 U		U	0.27 U	0.73 D	0.0035 J	0.25 U	0.0029 U	0.0027 U
1,4-Dichlorobenzene	1.8	13	9.8	130		U	0.26 U	0.29	U	0.0027 U	0.26 U	0.0028 U	0.25 U	0.0029 U	0.0027 U
1,4-Dioxane	0.1	13	9.8	130		U	5.1 U		U	0.053 U		0.056 U	4.9 U	0.058 U	0.054 U
2-Butanone	0.12	100	100	500		U	0.26 U		U	0.0037 U		0.0028 U			0.0043 J
	0.12	100	100	500		U	0.51 U		U	0.0027 U		0.0028 U	0.49 U	0.0029 U	0.0043
Acetone	0.05	4.8		44		JD I	0.31 U		_		0.33 U		+		0.0021 0.0027 U
Benzene Carbon totrochlorida		2.4	2.9 1.4	22		U U			U	0.0037 J 0.0027 U		******			
Carbon tetrachloride	0.76	100	1.4	500		U	0.26 U		U	0.0027 U	+	0.0028 U 0.0028 U	0.25 U 0.25 U	0.0029 U 0.0029 U	0.0027 U 0.0027 U
Chloroform	0.37	49	100	350		U	0.26 U		U	0.0027 U	0.26 U	0.0028 U	0.25 U	0.0029 U	0.0027 U
Chloroform cis-1,2-Dichloroethylene	0.37	100	59	500		U	0.26 U		U	0.0027 U	+	0.0028 U	0.25 U	0.0029 U	0.0027 U
•									_						
Ethyl Benzene Methyl tort butyl other (MTRE)	0.93	100	30 62	390 500	02	D	3.7 D 0.26 U		D U	0.56 E 0.0027 U		0.0052 J 0.0028 U	11 D 0.25 U	0.09 0.0029 U	0.0027 U 0.0027 U
Methyl tert-butyl ether (MTBE)	0.93	100	51	500		U	0.26 U		U	0.0027 U		0.0028 U			0.0027 U
Methylene chloride				500		D			-						0.0054 U
Naphthalene	12	100	100	<u> </u>		_			JD			0.0020		0.084	
n-Butylbenzene	3.9	100	100	500	39 68	D	1.2 D 3.8 D		D D	0.27 U		0.0029 J	8.2 D	0.049	
n-Propylbenzene	_	100	100	500 ~		_			_			0.005 J	19 D	0.098	
o-Xylene	~	~	~	~		D	0.26 U		U	0.019	0.26 U	0.0028 U	0.25 U	0.0029 U	*****
p- & m- Xylenes	~	400	400	-		D	0.51 U		JD	0.21	0.53 U	0.0056 U	15 D	0.091	0.0054 U
sec-Butylbenzene	11	100	100	500		D	0.33 JD		D	0.13	0.55 D	0.0028 U	2.4 D	0.021	0.0027 U
tert-Butylbenzene	5.9 1.3	100 19	100 5.5	500 150		U	0.26 U		U	0.0061 0.0027 U	0.26 U 0.26 U	0.0028 U 0.0028 U		0.0054 J 0.0029 U	0.0027 U 0.0027 U
Tetrachloroethylene	0.7	100	100	500		U	0.26 U		U	0.0027 U 0.0027 U		0.0028 U 0.0028 U		0.0029 U 0.0029 U	0.0027 U
Toluene	0.19			500		U	0.26 U		U			0.0028 U		0.0029 U	0.0027 U
trans-1,2-Dichloroethylene		100	100			U			-						
Trichloroethylene	0.47	0.9	10 0.21	200 13		U	0.26 U		U	0.0027 U 0.0027 U		0.0028 U 0.0028 U	0.25 U 0.25 U	0.0029 U 0.0029 U	
Vinyl Chloride Xylenes, Total	0.02	100	100	500	31	_	0.26 U	0.29	U	0.0027	0.26 U	0.0028 U	15 D	0.0029 0	0.0027 U 0.0082 U
SVOA, 8270 MASTER	0.26	100	100	500	31	U	0.77	0.00	١	0.23	0.79	0.0064 0	10 D	0.091	0.0062 0
	1 0.22	100	100	500	0.0462		0.0465 U	0.0470		0.0477 U	0.0523 U	0.048 U	0.0476 U	0.0502	0.0433 U
2-Methylphenol	0.33	100	34	500		U			U			0.048 U 0.048 U			0.0433 U
3- & 4-Methylphenois						U			U						
Acenaphthene	20	100	100	500		U	0.0465 U		U	0.0477 U		0.0.0	0.0476 U	0.0503 U	0.0433 U
Acenaphthylene	100	100	100 100	500 500		U U	0.0465 U 0.0465 U		U	0.0477 U 0.0477 U		0.048 U 0.048 U	0.0476 U 0.0476 U	0.0503 U 0.0503 U	0.0433 U 0.0433 U
Anthracene	_					-			-						
Benzo(a)anthracene	1 1	1	1	5.6 1		U	0.0465 U 0.0465 U	0.0479 0.0479	U	0.0477 U 0.0477 U	0.0523 U 0.0523 U	0.048 U 0.048 U	0.0476 U 0.0476 U	0.0503 U 0.0503 U	0.0433 U 0.0433 U
Benzo(a)pyrene Benzo(b)fluoranthene	1	1	1	5.6		U	0.0465 U	0.0479	U	0.0477 U		0.048 U	0.0476 U		0.0433 U
Benzo(g,h,i)perylene	100	100	100	500		U	0.0465 U		U	0.0477 U					0.0433 U
Benzo(k)fluoranthene	0.8	3.9	100	56		U	0.0465 U		U	0.0477 U		0.048 U	.		0.0433 U
Chrysene	1	3.9	1	56		U	0.0465 U		U	0.0477 U		0.048 U	0.0476 U		0.0433 U
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56		U	0.0465 U		U	0.0477 U		0.048 U	0.0476 U	0.0503 U	0.0433 U
Dibenzofuran	7	59	14	350		U	0.0465 U		U	0.0477 U	+	0.048 U	0.0476 U	0.0503 U	0.0433 U
Fluoranthene	100	100	100	500		U	0.0465 U		U	0.0477 U	0.0523 U	0.048 U	0.0476 U	0.0503 U	0.0433 U
Fluorene	30	100	100	500		U	0.0465 U		U	0.0477 U	+	0.048 U	0.0476 U	0.0503 U	0.0433 U
Hexachlorobenzene	0.33	1.2	0.33	6		U	0.0465 U		U	0.0477 U		0.048 U			0.0433 U
Indeno(1,2,3-cd)pyrene	0.55	0.5	0.55	5.6		U	0.0465 U		U	0.0477 U	-	0.048 U			0.0433 U
Naphthalene	12	100	100	500		D	6.26 D		D	1.45 D					0.0433 U
Pentachlorophenol	0.8	6.7	2.4	6.7		U	0.0465 U		U	0.0477 U		0.048 U	+	0.0503 U	0.0433 U
Phenanthrene	100	100	100	500		D	0.0465 U		U	0.0477 U		0.048 U	0.0476 U	0.0503 U	0.0433 U
Phenol	0.33	100	100	500		U	0.0465 U		U	0.0477 U		0.048 U	0.0476 U	0.0503 U	0.0433 U
Pyrene	100	100	100	500		U	0.0465 U		U	0.0477 U		0.048 U	0.0476 U	0.0503 U	0.0433 U
Total Solids (%)	1 100	1 100	100	300	0.0402	٧,	0.0400	0.0475	٠,	0.0411	0.0023	0.040	0.0-70	0.0000	0.0-03
% Solids	T ~		~	~	90		89	86	Т	87	78	86	88	81	96
70 Golida	1	<u> </u>	I		90		03	I 60		OI.	10	00	1 00	ΩŢ	50

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

F		•														
Sample ID	-				TB-20 (8-10)		B-20 (10-12	·	TB-20 (12-14)	TB-21 (6-8)		TB-21 (8-10)	TB-21 (10-12)	TB-21 (12-14)	TB-21 (14-16)	TB-21 (16-18)
Sampling Date	Part 375	Part 375	Part 375	Part 375	6/30/2022		6/30/2022	²	6/30/2022	6/30/2022		6/30/2022	6/30/2022	6/30/2022	6/30/2022	6/30/2022
Client Matrix	UUSCOs	RRSC0s	RSCOs	CSC0s	Soil Result	Q	Soil Result	Q	Soil Result 0	Soil Result 0		Soil Result Q	Soil Result 0	Soil Result Q	Soil Result Q	Soil Result 0
VOA, 8260 MASTER					Result	<u> </u>	Result	Ų Į	Result Q	Result Q	۷	Result Q	Result Q	Result Q	Result Q	Result Q
1,1,1-Trichloroethane	0.68	100	100	500	0.24	u l	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,1-Dichloroethane	0.27	26	19	240			0.0024	U	0.0028 U			0.0027 U			0.0024 U	
1,1-Dichloroethylene	0.33	100	100	500		_	0.0024	U	0.0028 U		_	0.0027 U			0.0024 U	
1,2,4-Trimethylbenzene	3.6	52	47	190			0.0024	U	0.0028 U	0.0027 U	J	0.0027 U			0.0024 U	
1,2-Dichlorobenzene	1.1	100	100	500	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,2-Dichloroethane	0.02	3.1	2.3	30	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,3,5-Trimethylbenzene	8.4	52	47	190	30	D	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,3-Dichlorobenzene	2.4	49	17	280	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,4-Dichlorobenzene	1.8	13	9.8	130	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
1,4-Dioxane	0.1	13	9.8	130	4.8	U	0.048	U	0.056 U	0.053 U	J	0.053 U	5.3 U	0.055 U	0.048 U	0.053 U
2-Butanone	0.12	100	100	500	0.24	U	0.0068		0.0028 U	0.0041 J	J	0.0085	0.27 U	0.0096	0.0026 J	0.0026 U
Acetone	0.05	100	100	500		U	0.02		0.0062 J			0.035	0.53 U	+	0.016	0.011
Benzene	0.06	4.8	2.9	44			0.0024	U	0.0028 U		_	0.0027 U			0.0024 U	
Carbon tetrachloride	0.76	2.4	1.4	22			0.0024	U	0.0028 U		J	0.0027 U		+	0.0024 U	-
Chlorobenzene	1.1	100	100	500		_	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U		0.0028 U	0.0024 U	0.0026 U
Chloroform	0.37	49	10	350			0.0024	U	0.0028 U	0.0027 U	_	0.0027 U	<u> </u>		0.0024 U	
cis-1,2-Dichloroethylene	0.25	100	59	500			0.0024	U	0.0028 U		_	0.0027 U		-	0.0024 U	
Ethyl Benzene	1	41	30	390			0.0039	J	0.0055 J		_	0.0027 U			0.0024 U	
Methyl tert-butyl ether (MTBE) Methylene chloride	0.93	100	62	500 500			0.0024	U	0.0028 U 0.015	0.0027 U 0.0053 U	_	0.0027 U 0.0054 J			0.0024 U	0.0026 U 0.043
Naphthalene	0.05	100	51 100	500			0.0074	U J	0.015 0.0028 U		_	0.0054 J 0.0027 U	+		0.017 0.0024 U	
n-Butylbenzene	12	100	100	500		_	0.0024	U	0.0028 U		_	0.0027 U			0.0024 U	
n-Propylbenzene	3.9	100	100	500			0.0024		0.0025	0.0027 U	_	0.0027 U			0.0024 U	
o-Xylene	~	~	~	~			0.0024	- 11	0.0073	0.0027 U	1	0.0027 U		0.0028 U	0.0024 U	+
p- & m- Xylenes	~	~	~	~			0.0024	U II	0.0056 U	<u> </u>	1	0.0053 U			0.0024 U	
sec-Butylbenzene	11	100	100	500			0.0024	U	0.0028 U	<u> </u>	_	0.0027 U			0.0024 U	
tert-Butylbenzene	5.9	100	100	500			0.0024	U	0.0028 U			0.0027 U			0.0024 U	
Tetrachloroethylene	1.3	19	5.5	150		_	0.0024	U	0.0028 U		J	0.0027 U			0.0024 U	
Toluene	0.7	100	100	500	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
trans-1,2-Dichloroethylene	0.19	100	100	500	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
Trichloroethylene	0.47	21	10	200	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
Vinyl Chloride	0.02	0.9	0.21	13	0.24	U	0.0024	U	0.0028 U	0.0027 U	J	0.0027 U	0.27 U	0.0028 U	0.0024 U	0.0026 U
Xylenes, Total	0.26	100	100	500	2	D	0.0072	U	0.0083 U	0.008 U	J	0.008 U	0.8 U	0.0083 U	0.0072 U	0.0079 U
SVOA, 8270 MASTER																
2-Methylphenol	0.33	100	100	500	0.0449	U	0.0466	U	0.0474 U	0.0424 U	J	0.0455 U	0.0479 U	0.0458 U	0.0478 U	0.0482 U
3- & 4-Methylphenols	0.33	100	34	500	0.0449	U	0.0466	U	0.0474 U	0.0424 U	J	0.0455 U	0.0479 U	0.0458 U	0.0478 U	0.0482 U
Acenaphthene	20	100	100	500			0.0466	U	0.0474 U		J	0.0455 U			0.0478 U	
Acenaphthylene	100	100	100	500		_	0.0466	U	0.0474 U		J	0.0455 U			0.0478 U	
Anthracene	100	100	100	500		_	0.0466	U	0.0474 U	0.0424 U	J	0.0455 U		0.0458 U	0.0478 U	0.0482 U
Benzo(a)anthracene	1	1	1	5.6			0.0466	U	0.0474 U	0.0424 U		0.0455 U			0.0478 U	0.0482 U
Benzo(a)pyrene	1	1	1	1			0.0466	U	0.0474 U	0.0424 U	+	0.0455 U	1		0.0478 U	
Benzo(b)fluoranthene	1	1	1	5.6			0.0466	U	0.0474 U		_	0.0455 U	1 1 1 1		0.0478 U	0.0482 U
Benzo(g,h,i)perylene	100	100	100	500		_	0.0466	U	0.0474 U	<u> </u>	_	0.0455 U		-	0.0478 U	
Benzo(k)fluoranthene Chrysene	0.8	3.9 3.9	1	56 56			0.0466	U	0.0474 U	<u> </u>	_	0.0455 U			0.0478 U	
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56			0.0466	U	0.0474 U	<u> </u>	_	0.0455 U			0.0478 U	
Dibenzofuran	7	59	14	350			0.0466	U	0.0474 U	1	_	0.0455 U		+	0.0478 U	
Fluoranthene	100	100	100	500		_	0.0466	U	0.0474 U		_	0.0455 U			0.0478 U	
Fluorene	30	100	100	500			0.0466	U	0.0474 U		_	0.0455 U			0.0478 U	-
Hexachlorobenzene	0.33	1.2	0.33	6			0.0466	U	0.0474 U		_	0.0455 U	+		0.0478 U	
Indeno(1,2,3-cd)pyrene	0.55	0.5	0.55	5.6		_	0.0466	U	0.0474 U			0.0455 U			0.0478 U	
Naphthalene	12	100	100	500		D	1.4	D	0.0474 U		_	0.0455 U			0.0478 U	
Pentachlorophenol	0.8	6.7	2.4	6.7			0.0466	U	0.0474 U		_	0.0455 U			0.0478 U	
Phenanthrene	100	100	100	500			0.0557	JD	0.0474 U			0.0455 U			0.0478 U	
Phenol	0.33	100	100	500			0.0466	U	0.0474 U		_	0.0455 U			0.0478 U	
Pyrene	100	100	100	500			0.0466	U	0.0474 U	0.0424 U	J	0.0455 U		 	0.0478 U	+
Total Solids (%)	•					•										
% Solids	~	~	~	~	93		90		87	97	T	91	87	89	87	86
	•									•			•			•

Supplemental Soil Sampling - Tank Boring Analytical Results Summary

Ebenezer Plaza 2 BCP No. C224241

Commis ID					TD 22 (6.0)		TD 00 (0 40)		TD 00 (40 40)	. 1	TR 22 (42 44)	_	TD 00 (44.46	· I	TD 00 (46 46	n	TD 00 (40 00	<u> </u>
Sample ID	D- + 075	D-+ 075	D-+ 075	D-+ 075	TB-22 (6-8) 6/30/2022		TB-22 (8-10) 6/30/2022		TB-22 (10-12) 6/30/2022		TB-22 (12-14) 6/30/2022		TB-22 (14-16 6/30/2022	·	TB-22 (16-18 6/30/2022	·	TB-22 (18-20 6/30/2022	
Sampling Date	Part 375 UUSCOs	Part 375 RRSCOs	Part 375 RSC0s	Part 375 CSC0s	6/30/2022 Soil		6/30/2022 Soil		6/30/2022 Soil		6/30/2022 Soil		6/30/2022 Soil		6/30/2022 Soil	.	6/30/2022 Soil	
Client Matrix	003008	KNOOOS	NOCOS	COCCS	Result			Q				+		Q	Result	Q		0
VOA, 8260 MASTER					Result	Q	Result	Ų	Result	Q	Result Q	<u> </u>	Result	Ų Į	Result	ΨĮ	Result	Ų
1,1,1-Trichloroethane	0.68	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U	П	0.26	U	0.0041	U	0.0026	U
1,1-Dichloroethane	0.03	26	19	240	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
1,1-Dichloroethylene	0.27	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
1,2,4-Trimethylbenzene	3.6	52	47	190	0.012	-	0.031		350	D	66 0	_	52	D	0.0041	U	0.0026	U
1,2-Dichlorobenzene	1.1	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
1,2-Dichloroethane	0.02	3.1	2.3	30	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
1,3,5-Trimethylbenzene	8.4	52	47	190	0.0027	J	0.0027	J	77	D	17	_	8.8	D	0.0041	U	0.0026	U
1,3-Dichlorobenzene	2.4	49	17	280	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
1,4-Dichlorobenzene	1.8	13	9.8	130	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	- U
1.4-Dioxane	0.1	13	9.8	130	0.053	U	0.054	U	5.7	U	5 U	_	5.2	U	0.082	U	0.051	U
2-Butanone	0.12	100	100	500	0.0028	J	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0033	-
Acetone	0.05	100	100	500	0.025	-+	0.012	-	0.57	U	0.5 U		0.52	U	0.018	-	0.016	-
Benzene	0.05	4.8	2.9	44	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
	0.76	2.4	1.4	22	0.0027	U	0.0027	U	0.28	U	0.25 U	—	0.26	U	0.0041	U	0.0026	U
Carbon tetrachloride Chlorobenzene	1.1	100	1.4	500	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
Chlorobenzene Chloroform	0.37	49	100	350	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
	0.37	100	59	500	0.0027	U	0.0027	-	0.28			-		U	0.0041	U	0.0026	U
cis-1,2-Dichloroethylene	0.25		30	390	0.0027	U		U		U	0.25 U	_	0.26					U
Ethyl Benzene Methyl tert-butyl ether (MTBE)	0.93	100	62	500	0.0027	U	0.0027 0.0027	U	0.28	D U	0.25 U		9.3 0.26	D U	0.0041 0.0041	U	0.0026 0.0026	U
			51		0.0027	- 0		-	0.28	U	0.25 U	-	0.26		0.0041		0.0026	
Methylene chloride	0.05	100		500			0.019					_		U		J		
Naphthalene	12	100	100	500	0.021		0.17	_	110	D	14 D	_	10	D	0.0041	U	0.0026	U
n-Butylbenzene	12	100	100	500	0.0027	U	0.0066		23	D	4 D	_	3.9	D	0.0041	U	0.0026	U
n-Propylbenzene	3.9	100	100	500	0.0027	U	0.0027	U	43	D	10 D	_	7.6	D	0.0041	U	0.0026	U
o-Xylene	~	~	~	~	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
p- & m- Xylenes	~		~		0.0053	U	0.0054	U	4.5	D	18 0	_	1.1	D	0.0082	U	0.0051	U
sec-Butylbenzene	11	100	100	500	0.0027	U	0.0027	U	4.9	D	0.75 D	_	0.9	D	0.0041	U	0.0026	U
tert-Butylbenzene	5.9	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
Tetrachloroethylene	1.3	19	5.5	150	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
Toluene	0.7	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U		0.26	U	0.0041	U	0.0026	U
trans-1,2-Dichloroethylene	0.19	100	100	500	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
Trichloroethylene	0.47	21	10	200	0.0027	U	0.0027	U	0.28	U	0.25 U	-	0.26	U	0.0041	U	0.0026	U
Vinyl Chloride	0.02	0.9	0.21	13	0.0027	U	0.0027	U	0.28	U	0.25 U	_	0.26	U	0.0041	U	0.0026	U
Xylenes, Total	0.26	100	100	500	0.008	U	0.0081	U	4.5	D	18 D	<u> </u>	1.1	JD	0.012	U	0.0077	U
SVOA, 8270 MASTER						[
2-Methylphenol	0.33	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
3- & 4-Methylphenols	0.33	100	34	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Acenaphthene	20	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Acenaphthylene	100	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Anthracene	100	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Benzo(a)anthracene	1	1	1	5.6	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Benzo(a)pyrene	1	1	1	1	0.0429	U	0.0428	U	0.0456	U	0.0451 U		0.0457	U	0.0455	U	0.0479	U
Benzo(b)fluoranthene	1	1	1	5.6	0.0429	U	0.0428	U	0.0456	U		<u> </u>	0.0457	U	0.0455	U	0.0479	U
Benzo(g,h,i)perylene	100	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Benzo(k)fluoranthene	0.8	3.9	1	56	0.0429	U	0.0428	U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Chrysene	1	3.9	1	56	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	0.0429	U		U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Dibenzofuran	7	59	14	350	0.0429	U	0.0428	U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Fluoranthene	100	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Fluorene	30	100	100	500	0.0429	U	0.0428	U	0.194	D	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Hexachlorobenzene	0.33	1.2	0.33	6	0.0429	U	0.0428	U	0.0456	U	0.0451 U	-	0.0457	U	0.0455	U	0.0479	U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	0.0429	U	0.0428	U	0.0456	U	0.0451 U	_	0.0457	U	0.0455	U	0.0479	U
Naphthalene	12	100	100	500	0.0767	JD	0.0587	JD	46.8	D	14.3 D)	1.03	D	5.94	D	0.0479	U
Pentachlorophenol	0.8	6.7	2.4	6.7	0.0429	U	0.0428	U	0.0456	U	0.0451 U	J	0.0457	U	0.0455	U	0.0479	U
Phenanthrene	100	100	100	500	0.0429	U	0.0428	U	0.278	D	0.0451 U	J	0.0457	U	0.0551	JD	0.0479	U
Phenol	0.33	100	100	500	0.0429	U	0.0428	U	0.0456	U	0.0451 U	J	0.0457	U	0.0455	U	0.0479	U
Pyrene	100	100	100	500	0.0429	U	0.0428	U	0.0589	JD	0.0451 U	J	0.0457	U	0.0455	U	0.0479	U
Total Solids (%)																		
% Solids	~	~	~	~	97		97	T	91		90	T	90		90		86	
				1														—

Supplemental Soil Sampling - Tank Boring Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, NY

Sample ID					TB-15 (6-8)		TB-15 (8-10)		TB-15 (10-12)		TB-15 (12-14)		TB-15 (14-16)		TB-16 (6-8)
Sampling Date	Part 375	Part 375	Part 375	Part 375	6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/29/2022
Client Matrix	UUSCOs	RRSCOs	RSC0s	CSC0s	Soil		Soil		Soil		Soil		Soil		Soil
					Result	Q	Result Q)	Result	Q	Result	Q	Result	Q	Result

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Measured in mg/kg

Part 375 UUSCOs Unrestricted Use Soil Cleanup Objective

Part 375 RRSCOs Restricted Residential Soil Cleanup Objectiv

Part 375 RSCOs Residential Soil Cleanup Objective

Part 375 CSCOs Commercial Use Soil Cleanup Objective

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

Supplemental Soil Sampling Results - HCL Borings Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, NY

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

UUSCO= NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives

RRSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives -Restricted Residential

RSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Residential

CSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Commercial

PGSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Protection of GW

Sample ID						P-01 (0-5)		P-01 (5.5-6))	P-02 (0-2)		P-02 (2-4)		P-02 (4-6)		P-02 (6-6.5)
Sampling Date	Part 375	5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022	2				
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil		Soil		Soil		Soil	
						Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Arsenic	13	16	16	16	16	7.49		3.730		4.57		5.04		5.73		1.61	U
Barium	350	350	820	400	400	528		67.600		266		129		203		30.2	
Cadmium	2.5	2.5	7.5	9.3	4.3	4.09		0.341	U	4.73		0.597		1.76		0.323	U
Chromium	~	~	~	~	~	25.5		15.700		24.3		18.8		18.1		12.8	
Lead	63	400	450	1000	400	667		11.400		625		92.6		284		2.02	
Selenium	3.9	36	4	1500	180	2.88	U	2.850	U	2.79	U	2.8	U	2.83	U	2.69	U
Silver	2	36	8.3	1500	180	0.576	U	0.569	U	0.558	U	0.56	U	0.565	U	0.538	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Arsenic	13	16	16	16	16	NT		NT		NT		NT		NT		NT	
Barium	350	350	820	400	400	NT		NT		NT		NT		NT		NT	
Cadmium	2.5	2.5	7.5	9.3	4.3	NT		NT		NT		NT		NT		NT	
Chromium	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Lead	63	400	450	1000	400	NT		NT		NT		NT		NT		NT	
Selenium	3.9	36	4	1500	180	NT		NT		NT		NT		NT		NT	
Silver	2	36	8.3	1500	180	NT		NT		NT		NT		NT		NT	
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	1.52		0.0675		0.305		1.11		0.45		0.0323	U
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Mercury	0.18	0.81	0.73	2.8	0.81	NT		NT		NT		NT		NT		NT	
TCLP Extraction for METALS EPA 1311																	
Dilution Factor																	
TCLP Extraction	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Total Solids						%		%		%		%		%		%	
Dilution Factor						1		1		1		1		1		1	
% Solids	~	~	~	~	~	86.8		87.9		89.5		89.3		88.5		93	

Sample ID						P-03 (0-2)		P-03 (2-4)		P-03 (4-6)		P-03 (6-6.5)		P-04 (0-2)		P-04 (2-4)	
Sampling Date	Part 375	5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022	2				
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil		Soil		Soil		Soil	
						Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Arsenic	13	16	16	16	16	15		2.68		6.47		1.69		13.3		3.22	
Barium	350	350	820	400	400	1,700		65.2		80.9		31.5		1,130		73.5	
Cadmium	2.5	2.5	7.5	9.3	4.3	7.79		0.327	U	0.332	U	0.321	U	13.6		0.33	U
Chromium	~	~	~	~	~	41.700	В	19.2	В	16.2	В	17.7	В	58.2	В	20.6	В
Lead	63	400	450	1000	400	2,900		51.8		65		3.7		1,890		116	
Selenium	3.9	36	4	1500	180	2.79	U	2.73	U	2.76	U	2.68	U	2.76	U	2.75	U
Silver	2	36	8.3	1500	180	0.558	U	0.545	U	0.553	U	0.536	U	0.552	U	0.549	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Arsenic	13	16	16	16	16	NT		NT		NT		NT		NT		NT	
Barium	350	350	820	400	400	NT		NT		NT		NT		NT		NT	
Cadmium	2.5	2.5	7.5	9.3	4.3	NT		NT		NT		NT		NT		NT	
Chromium	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Lead	63	400	450	1000	400	NT		NT		NT		NT		NT		NT	
Selenium	3.9	36	4	1500	180	NT		NT		NT		NT		NT		NT	
Silver	2	36	8.3	1500	180	NT		NT		NT		NT		NT		NT	
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.29		0.172		0.265		0.0321	U	1.2		0.134	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Mercury	0.18	0.81	0.73	2.8	0.81	NT		NT		NT		NT		NT		NT	
TCLP Extraction for METALS EPA 1311																	
Dilution Factor																	
TCLP Extraction	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Total Solids						%		%		%		%		%		%	
Dilution Factor						1		1		1		1		1		1	
% Solids	~	~	~	~	~	89.7		91.7		90.5		93.3		90.6		91	

Table 4 Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site DEC Site No. C224241

Sample ID						P-04 (4-6)		P-05 (0-2)		P-05 (2-4)		P-05 (4-6)		P-06 (0-2)		P-06 (2-4)	
Sampling Date	Part 375	5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022	2				
Client Matrix	UUSCOs	RSC0s	PGSCOs	CSC0s	RRSC0s	Soil		Soil		Soil		Soil		Soil	1	Soil	
						Result	Q										
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg											
Dilution Factor						1		1		1		1		1		1	
Arsenic	13	16	16	16	16	5.12		4.36		2.43		7.22		5.73		3.86	
Barium	350	350	820	400	400	96.4		208		54.3		97		188		104	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.341	U	2.01		0.359	U	0.352	U	1.32		0.333	U
Chromium	~	~	~	~	~	16.4	В	66.3	В	19.9	В	19.3	В	19.6	В	20.4	В
Lead	63	400	450	1000	400	71.9		226		32.6		40.6		473		102	
Selenium	3.9	36	4	1500	180	2.84	U	2.81	U	2.99	U	2.94	U	2.85	U	2.78	U
Silver	2	36	8.3	1500	180	0.569	U	0.561	U	0.599	U	0.587	U	0.57	U	0.556	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Arsenic	13	16	16	16	16	NT		NT		NT		NT		NT	i	NT	
Barium	350	350	820	400	400	NT		NT		NT		NT		NT	i	NT	
Cadmium	2.5	2.5	7.5	9.3	4.3	NT											
Chromium	~	~	~	~	~	NT											
Lead	63	400	450	1000	400	NT											
Selenium	3.9	36	4	1500	180	NT											
Silver	2	36	8.3	1500	180	NT											
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg											
Dilution Factor						1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.184		0.175		0.121		0.066		0.243		0.217	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Mercury	0.18	0.81	0.73	2.8	0.81	NT											
TCLP Extraction for METALS EPA 1311																	
Dilution Factor																	
TCLP Extraction	~	~	~	~	~	NT		NT		NT	İ	NT		NT		NT	
Total Solids						%		%		%		%		%		%	
Dilution Factor						1		1		1		1		1		1	
% Solids	~	~	~	~	~	87.9		89.1		83.5		85.1		87.8		90	$\overline{}$

Sample ID						P-06 (4-6)		P-07 (0-2)		P-07 (2-4)		P-07 (4-6)		P-08 (0-2)		P-08 (2-4)	
Sampling Date	Part 375	5/23/2022	:	5/23/2022		5/23/2022		5/23/2022		5/23/2022)	5/23/2022	2				
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSCOs	Soil											
						Result	Q										
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg											
Dilution Factor						1		1		1		1		1		1	
Arsenic	13	16	16	16	16	24.2		5.15		1.73		4.52		5.3		20.6	
Barium	350	350	820	400	400	132		150		51.2		76.4		256		7,020	
Cadmium	2.5	2.5	7.5	9.3	4.3	2.55		1.29		0.485		0.346	U	3.42		26.2	
Chromium	~	~	~	~	~	17.3	В	17.6	В	11.9	В	18.6	В	25.1	В	107	В
Lead	63	400	450	1000	400	10,300		205		55.6		35.3		318		13,600	
Selenium	3.9	36	4	1500	180	2.77	U	2.85	U	2.76	U	2.88	U	3.2	U	2.930	U
Silver	2	36	8.3	1500	180	0.563		0.569	U	0.552	U	0.577	U	0.64	U	4.64	
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Arsenic	13	16	16	16	16	NT											
Barium	350	350	820	400	400	NT											
Cadmium	2.5	2.5	7.5	9.3	4.3	NT											
Chromium	~	~	~	~	~	NT											
Lead	63	400	450	1000	400	NT											
Selenium	3.9	36	4	1500	180	NT											
Silver	2	36	8.3	1500	180	NT											
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg											
Dilution Factor						1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.275		0.458		0.0677		0.0585		1.15		5.84	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Mercury	0.18	0.81	0.73	2.8	0.81	NT											
TCLP Extraction for METALS EPA 1311																	
Dilution Factor																	
TCLP Extraction	~	~	~	~	~	NT											
Total Solids						%		%		%		%		%		%	
Dilution Factor						1		1		1		1		1		1	
% Solids	~	~	~	~	~	90.3		87.9		90.7		86.7		78.2	_	85.4	

Sample ID						P-08 (4-6)		P-08 (6-6.5)		P-09 (0-2)		P-09 (2-4)		P-09 (4-6)		P-09 (6-6.5)	
Sampling Date	Part 375	5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022		5/23/2022					
Client Matrix	UUSCOs	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil		Soil		Soil		Soil	
						Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Arsenic	13	16	16	16	16	5.03		1.63	U	22.1		6.97		8.38		1.95	
Barium	350	350	820	400	400	339		54.9		988		426		200		51.6	
Cadmium	2.5	2.5	7.5	9.3	4.3	2.41		0.326	U	12.4		0.357	U	0.446		0.328	U
Chromium	~	~	~	~	~	21.3	В	8.97	В	77.3		18.6		23.6		16.1	
Lead	63	400	450	1000	400	444		47		2,250		745		213		4.17	
Selenium	3.9	36	4	1500	180	2.88	U	2.72	U	3.18	U	2.97	U	2.84	U	2.74	U
Silver	2	36	8.3	1500	180	0.575	U	0.544	U	1.02		0.595	U	0.568	U	0.547	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Arsenic	13	16	16	16	16	NT		NT		NT		NT		NT		NT	
Barium	350	350	820	400	400	NT		NT		NT		NT		NT		NT	
Cadmium	2.5	2.5	7.5	9.3	4.3	NT		NT		NT		NT		NT		NT	
Chromium	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Lead	63	400	450	1000	400	NT		NT		NT		NT		NT		NT	
Selenium	3.9	36	4	1500	180	NT		NT		NT		NT		NT		NT	
Silver	2	36	8.3	1500	180	NT		NT		NT		NT		NT		NT	
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.875		0.0326	U	0.595		0.577		0.335		0.0328	U
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg												
Dilution Factor																	
Mercury	0.18	0.81	0.73	2.8	0.81	NT		NT		NT		NT		NT		NT	
TCLP Extraction for METALS EPA 1311																	
Dilution Factor																	
TCLP Extraction	~	~	~	~	~	NT		NT		NT		NT		NT		NT	
Total Solids						%		%		%		%		%		%	
Dilution Factor						1		1		1		1		1		1	
% Solids	~	~	~	~	~	86.9		91.9		78.5		84		88		91.4	

Sample ID						P-11 (0-2)	P-11 (2-4)	P-11 (4-6)	P-12 (0-2)	P-12 (2-4)	P-12 (4-6)
Sampling Date	Part 375	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				
Client Matrix	UUSCOs	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil	Soil	Soil	Soil	Soil	Soil
						Result Q					
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Arsenic	13	16	16	16	16	2.45	5.51	6.49	23.5	5.22	3.64
Barium	350	350	820	400	400	43.1	87.8	76	660	92.8	55.2
Cadmium	2.5	2.5	7.5	9.3	4.3	1.28	0.345 U	0.336 U	15.9	0.338 U	0.342 U
Chromium	~	~	~	~	~	11.6	13.1	26.8	94.7	23.3	14.3
Lead	63	400	450	1000	400	26.1	155	34.3	1,730	155	33
Selenium	3.9	36	4	1500	180	2.57 U	7.38	2.8 U	2.8 U	2.82 U	2.85 U
Silver	2	36	8.3	1500	180	0.515 U	0.575 U	0.56 U	0.56 U	0.564 U	0.57 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Mercury	0.18	0.81	0.73	2.8	0.81	0.0471	1.09	0.143	0.679	0.0888	0.149
Total Solids						%	%	%	%	%	%
Dilution Factor						1	1	1	1	1	1
% Solids	~	~	~	~	~	97.2	86.9	89.3	89.3	88.6	87.7

Table 4 Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site DEC Site No. C224241

Sample ID						P-13 (0-2)		P-13 (2-4)		P-13 (4-6)		P-14 (0-2)	P-14 (2-4)	P-14 (4-6	3)
Sampling Date	Part 375	5/24/2022		5/24/2022		5/24/2022		5/24/2022	5/24/202	2	5/24/202	22				
Client Matrix	UUSC0s	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil		Soil	Soil		Soil	
						Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1	1		1	
Arsenic	13	16	16	16	16	3.28		2.48		1.9		2.66	2.86		4.78	
Barium	350	350	820	400	400	51.8		41.1		38.1		140	43.5		149	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.332	U	0.341	U	0.335	U	0.325 U	0.327	U	0.342	U
Chromium	~	~	~	~	~	21.5		17.6		14.4		17.9	23.9		19.3	
Lead	63	400	450	1000	400	26.3		9.32		7.51		34.9	10.4		124	
Selenium	3.9	36	4	1500	180	2.77	U	2.84	U	2.79	U	2.71 U	2.72	U	2.85	U
Silver	2	36	8.3	1500	180	0.554	U	0.568	U	0.559	U	0.542 U	0.545	U	0.57	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1	1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0594		0.0341	U	0.139		0.0334	0.0374		0.0557	
Total Solids						%		%		%		%	%		%	
Dilution Factor						1		1		1		1	1		1	
% Solids	~	~	~	~	~	90.3		88		89.5		92.2	91.8		87.8	

Sample ID						P-15 (0-2)	P-15 (2-4)	P-15 (4-6)	P-16 (0-2)	P-16 (2-4)	P-16 (4-6)
Sampling Date	Part 375	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				
Client Matrix	UUSCOs	RSC0s	PGSCOs	CSC0s	RRSCOs	Soil	Soil	Soil	Soil	Soil	Soil
						Result Q					
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Arsenic	13	16	16	16	16	4.86	4.78	7.64	7.97	4.76	6.17
Barium	350	350	820	400	400	143	196	91.2	2,300	279	601
Cadmium	2.5	2.5	7.5	9.3	4.3	0.417	11.3	0.348 U	2.13	0.421	1.13
Chromium	~	~	~	~	~	21.5	21.2	24.9	18.9	19.1	24.3
Lead	63	400	450	1000	400	146	195	89.5	530	256	14,100
Selenium	3.9	36	4	1500	180	2.76 U	2.86 U	2.9 U	2.85 U	2.82 U	2.85 U
Silver	2	36	8.3	1500	180	0.552 U	0.572 U	0.58 U	0.57 U	0.564 U	0.57 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Mercury	0.18	0.81	0.73	2.8	0.81	0.3	0.198	0.233	1.84	0.277	0.555
Total Solids						%	%	%	%	%	%
Dilution Factor						1	1	1	1	1	1
% Solids	~	~	~	~	~	90.6	87.4	86.2	87.7	88.6	87.7

Sample ID						P-17 (0-2)	P-17 (2-4)	P-17 (4-6)	P-18 (0-2)	P-18 (2-4)	P-18 (4-6)
Sampling Date	Part 375	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				
Client Matrix	UUSCOs	RSCOs	PGSCOs	CSC0s	RRSCOs	Soil	Soil	Soil	Soil	Soil	Soil
						Result Q	Result Q	Result Q	Result Q	Result Ç	Result Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Arsenic	13	16	16	16	16	3.18	5.25	6.53	19.2	21.2	5.33
Barium	350	350	820	400	400	201	542	408	987	1,480	399
Cadmium	2.5	2.5	7.5	9.3	4.3	0.333 U	0.361	0.612	12.2	12.5	0.372
Chromium	~	~	~	~	~	17.3	20.1	23.6	52.5	47.2	24.2
Lead	63	400	450	1000	400	81.2	205	409	1,680	2,880	216
Selenium	3.9	36	4	1500	180	2.78 U	2.85 U	2.91 U	3.07 U	2.8 L	J 2.91 U
Silver	2	36	8.3	1500	180	0.556 U	0.571 U	0.583 U	0.615 U	0.559 L	J 0.582 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Mercury	0.18	0.81	0.73	2.8	0.81	0.217	0.365	0.396	1.02	0.612	0.288
Total Solids						%	%	%	%	%	%
Dilution Factor						1	1	1	1	1	1
% Solids	~	~	~	~	~	90	87.6	85.8	81.3	89.4	85.8

Sample ID						P-19 (0-2)	P-19 (2-4)	P-19 (4-6)	P-20 (0-2)	P-20 (2-4)	P-20 (4-6)
Sampling Date	Part 375	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022				
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSC0s	Soil	Soil	Soil	Soil	Soil	Soil
						Result Q					
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor							1	1	1	1	1
Arsenic	13	16	16	16	16	19.9	5.73	14.7	7.06	8.15	6.43
Barium	350	350	820	400	400	1,040	524	1,980	82.5	82.7	71
Cadmium	2.5	2.5	7.5	9.3	4.3	14.1	0.506	1.43	1.22	0.355 U	0.353 U
Chromium	~	~	~	~	~	36.300	20.6	20.9	22.4	21.2	20.9
Lead	63	400	450	1000	400	4,110	394	680	54	54.8	44.8
Selenium	3.9	36	4	1500	180	2.800 U	2.82 U	2.97 U	2.71 U	2.96 U	2.94 U
Silver	2	36	8.3	1500	180	0.559 U	0.564 U	0.594 U	0.541 U	0.592 U	0.589 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1	1	1	1	1	1
Mercury	0.18	0.81	0.73	2.8	0.81	0.547	0.669	0.643	1.23	0.119	0.298
Total Solids						%	%	%	%	%	%
Dilution Factor						1 1	1	1	1	1	1
% Solids	~	~	~	~	~	89.4	88.7	84.2	92.4	84.5	84.9

Comple ID						P-16 (6-6.5 ft)		P-17 (6-6.5 ft)		P-18 (6-6.5 f	+\
Sample ID	Part 375	8/12/2022	1	8/12/2022		8/12/2022					
Sampling Date Client Matrix	UUSCOs	RSCOs	PGSCOs	CSCOs	RRSCOs	Soil		8/ 12/ 2022 Soil		8/ 12/ 2022 Soil	•
Chefic Matrix	003008	NSCOS	F43003	CSCOS	NNOUS	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	Ų	mg/Kg	Ų	mg/Kg	Ų
Dilution Factor						1		1		1	
Arsenic	13	16	16	16	16	1.33	U	1.39		14.8	U
Barium	350	350	820	400	400	16.8		187		666	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.266	U	0.534		2.95	U
Chromium	~	~	~	~	~	12.1		15.2		84.8	
Lead	63	400	450	1000	400	7.41		59.8		116	
Selenium	3.9	36	4	1500	180	2.22	U	2.22	U	24.6	U
Silver	2	36	8.3	1500	180	0.444	U	0.444	U	4.92	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L		mg/L		mg/L	
Dilution Factor	<u> </u>	1		1		1					
Arsenic	13	16	16	16	16	0.375	U	0.375	U	0.375	U
Barium	350	350	820	400	400	0.625	U	0.625	U	0.625	U
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075	U	0.075	U	0.075	U
Chromium	~	~	~	~	~	0.125	U	0.125	U	0.125	U
Lead	63	400	450	1000	400	0.125	U	0.125	U	5.780	
Selenium	3.9	36	4	1500	180	0.625	U	0.625	U	0.625	U
Silver	2	36	8.3	1500	180	0.125	U	0.125	U	0.125	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0314	U	0.239		0.0307	U
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L		mg/L		mg/L	
Dilution Factor						1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002	U	0.0002	U	0.0002	U
TCLP Extraction for METALS EPA 1311						N/A		N/A		N/A	
Dilution Factor						1		1		1	
TCLP Extraction	~	~	~	~	~	Completed		Completed		Completed	
Total Solids						%		%		%	
Dilution Factor						1		1		1	
% Solids	~	~	~	~	~	95.5		93.9		97.7	

Table 4 Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site DEC Site No. C224241

						D 40 (0 F 7)	D 40 (7.0)	-	D 40 4 (0 0 F	-\	D 40 4 (7.0)		D 40 0 (0 0 F)		D 40 0 (7.0)	-	D 40 0 (0 0 E)	1	D 40 0 (7 0)	
Sample ID						P-18 (6.5-7)	P-18 (7-8)		P-18.1 (6-6.5	o)	P-18.1 (7-8)		P-18.2 (6-6.5))	P-18.2 (7-8)		P-18.3 (6-6.5)		P-18.3 (7-8)	
Sampling Date	Part 375	9/1/2022	9/1/2022		9/1/2022		9/1/2022		9/1/2022		9/1/2022		9/1/2022		9/1/2022					
Client Matrix	UUSCOs	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil	Soil		Soil		Soil		Soil		Soil		Soil		Soil	
						Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1	1		1		1		1		1		1		1	
Arsenic	13	16	16	16	16	1.42 U	3.19		1.92		2.42		1.37	U	3.01		5.03		9.2	
Barium	350	350	820	400	400	86.5	1,040		90.5		74.6		74		438		1,140		403	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.284 U	0.293	U	0.28	U	0.272	U	0.274	U	0.283	U	0.286	U	0.289	U
Chromium	~	~	~	~	~	19.3	25.7		14.8		15.4		18		15.2		21		19.9	
Lead	63	400	450	1000	400	31.9	99.6		75.4		54		33.3		124		839	J	170	
Selenium	3.9	36	4	1500	180	2.37 UJ	2.44	UJ	2.34	UJ	2.27	UJ	2.290	UJ	2.36	UJ	2.38	UJ	2.41	UJ
Silver	2	36	8.3	1500	180	0.473 U	0.488	U	0.467	U	0.453	U	0.457	U	0.472	U	0.476	U	0.481	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L		mg/L		mg/L		mg/L		mg/L		mg/L		mg/L	
Dilution Factor						1	1		1		1		1		1		1		1	
Arsenic	13	16	16	16	16	0.375 U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U
Barium	350	350	820	400	400	0.864	1.82		0.654		0.625	U	0.625	U	1.3		0.901		0.661	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075 U	0.075	U	0.075	U	0.075	U	0.075	U	0.075	U	0.075	U	0.075	U
Chromium	~	~	~	~	~	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Lead	63	400	450	1000	400	0.125 U	0.287	В	0.125	U	0.125	U	0.125	U	0.125	U	0.197	В	0.125	U
Selenium	3.9	36	4	1500	180	0.625 U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U
Silver	2	36	8.3	1500	180	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1	1		1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0537	0.132		0.317		0.205		0.0563		0.257		0.209		0.34	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L		mg/L		mg/L		mg/L		mg/L		mg/L		mg/L	
Dilution Factor						1	1		1		1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002 U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
TCLP Extraction for METALS EPA 1311						N/A	N/A		N/A		N/A		N/A		N/A		N/A		N/A	
Dilution Factor						1	1		1		1		1		1		1		1	
TCLP Extraction	~	~	~	~	~	Completed	Completed		Completed		Completed		Completed		Completed		Completed		Completed	
Total Solids						%	%		%		%		%		%		%		%	
Dilution Factor						1	1		1		1		1		1		1		1	
% Solids	~	~	~	~	~	88	85.3		89.2		92		91.1		88.3		87.5		86.6	

Sample ID						P-21 (0-2)		P-21 (2-4)		P-21 (4-6)		P-21 (6-8)	P-22 (0-2)	P-22 (2-4)	P-22 (4-6	,)	P-22 (6-8)	
Sampling Date	Part 375	6/3/2022		6/3/2022		6/3/2022		6/3/2022	6/3/2022	6/3/2022	6/3/202	2	6/3/2022					
Client Matrix	UUSC0s	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil		Soil	Soil	Soil	Soil		Soil	
						Result	Q	Result	Q	Result (Q	Result (Result Q	Result (Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1	1	1	1		1	
Arsenic	13	16	16	16	16	1.7	U	1.66	U	1.66 l	U	1.65 L	2.41	1.67 L	1.7	U	1.61	U
Barium	350	350	820	400	400	165		62.8		59.2		43.9	2,010	272	68.1		26.7	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.339	U	0.331	U	0.333 l	U	0.33 L	0.338 U	0.335 L	0.341	U	0.322	U
Chromium	~	~	~	~	~	20.1		15.5		19.9		23.1	17.7	17.1	18.6		14.8	
Lead	63	400	450	1000	400	296	В	55.7	В	6.21 E	В	7.51 E	235 B	99.5 E	12.8	В	10.2	В
Selenium	3.9	36	4	1500	180	2.83	U	2.76	U	2.77 l	U	2.75 L	2.82 U	2.79 L	2.84	U	2.68	U
Silver	2	36	8.3	1500	180	0.565	U	0.552	U	0.555 l	U	0.55 L	0.564 U	0.558 L	0.568	U	0.537	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	
Dilution Factor						1		1		1		1	1	1	1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.128		0.0998		0.0333 l	U	0.033 L	0.236	0.66	0.0341	U	0.0322	U
Total Solids						%		%		%		%	%	%	%		%	
Dilution Factor						1		1		1		1	1	1	1		1	
% Solids	~	~	~	~	~	88.5		90.6		90.1		90.8	88.7	89.6	88		93.1	

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II

Site DEC Site No. C224241

Sample ID						P-23 (4-6)	Ī	P-23 (6-8)		P-24 (4-6)		P-24 (6-8)		P-25 (0-2)	
Sampling Date	Part 375	6/29/2022		6/29/2022		6/29/2022		6/29/2022		6/29/2022					
Client Matrix	UUSC0s	RSC0s	PGSCOs	CSC0s	RRSCOs	Soil									
						Result	Q								
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg									
Dilution Factor						1		1		1		1		1	
Arsenic	13	16	16	16	16	10.6		1.67	U	6.87		3.14		2.44	
Barium	350	350	820	400	400	175		66.9		75.1		69.7		93.7	
Cadmium	2.5	2.5	7.5	9.3	4.3	8.53		1.24		0.345	U	0.326	U	0.544	
Chromium	~	~	~	~	~	469		20.4		14.6		20.3		17.2	
Lead	63	400	450	1000	400	187		9.79		45.6		88.6		89.7	
Selenium	3.9	36	4	1500	180	2.89	U	2.78	U	2.88	U	2.72	U	2.65	U
Silver	2	36	8.3	1500	180	0.579	U	0.555	U	0.576	U	0.544	U	0.531	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L									
Dilution Factor						1									
Arsenic	13	16	16	16	16	0.375	U	NT		NT		NT		NT	
Barium	350	350	820	400	400	0.85		NT		NT		NT		NT	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075	U	NT		NT		NT		NT	
Chromium	~	~	~	~	~	0.125	U	NT		NT		NT		NT	
Lead	63	400	450	1000	400	0.132		NT		NT		NT		NT	
Selenium	3.9	36	4	1500	180	0.625	U	NT		NT		NT		NT	
Silver	2	36	8.3	1500	180	0.125	U	NT		NT		NT		NT	
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg									
Dilution Factor						1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.257		0.0333	U	0.0345	U	0.0528		0.206	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L									
Dilution Factor						1									
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002	U	NT		NT		NT		NT	
TCLP Extraction for METALS EPA 1311						N/A									
Dilution Factor						1									
TCLP Extraction	~	~	~	~	~	Completed		NT		NT		NT		NT	
Total Solids						%		%		%		%		%	
Dilution Factor						1		1		1		1		1	
% Solids	~	~	~	~	~	86.4		90		86.8		91.9		94.2	

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site

DEC Site No. C224241

Sample ID						P-25 (4-6)	1	P-25 (6-8)	P-26	6 (0-2)	P-2	7 (0-2)	
Sampling Date	Part 375	6/29/2022		6/29/2022		/2022	_	/2022					
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSC0s	Soil		Soil	•	, Soil		Soil	
						Result	Q		Q Resi				Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/l	५g	mg/	Kg	
Dilution Factor						1		1	1		1		
Arsenic	13	16	16	16	16	1.77	U	1.64	1.6	S U	1.6	3	U
Barium	350	350	820	400	400	66.3		16.1	64.	7	39.	7	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.353	U	0.328	0.3	2 U	0.3	2	U
Chromium	~	~	~	~	~	20.4		12.5	18.	4	16.	1	
Lead	63	400	450	1000	400	9.28		3.36	39.	9	17.	5	
Selenium	3.9	36	4	1500	180	2.94	U	2.73	2.6	7 U	2.6	7	U
Silver	2	36	8.3	1500	180	0.588	U	0.547	0.53	3 U	0.53	33	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg								
Dilution Factor													
Arsenic	13	16	16	16	16	NT		NT	NT	•	N		
Barium	350	350	820	400	400	NT		NT	NT	•	N		
Cadmium	2.5	2.5	7.5	9.3	4.3	NT		NT	NT		N	9	
Chromium	~	~	~	~	~	NT		NT	NT		N		
Lead	63	400	450	1000	400	NT		NT	NT		N	-	
Selenium	3.9	36	4	1500	180	NT		NT	NT		N	-	
Silver	2	36	8.3	1500	180	NT		NT	NT		N	-	
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/l	Яg	mg/	Kg	
Dilution Factor						1		1	1		1		
Mercury	0.18	0.81	0.73	2.8	0.81	0.142		0.0442	0.07	86	0.12	25	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg								
Dilution Factor													
Mercury	0.18	0.81	0.73	2.8	0.81	NT		NT	NT		N	-	
TCLP Extraction for METALS EPA 1311													
Dilution Factor													
TCLP Extraction	~	~	~	~	~	NT		NT	NT		N		
Total Solids						%		%	%		%		
Dilution Factor						1		1	1		1		
% Solids	~	~	~	~	~	85		91.5	93.	8	93.	8	

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site DEC Site No. C224241

Sample ID						P-28 (0-2)	P-28 (2-4)		P-28 (4-6)		P-28 (6-8)		P-29 (0-2)		P-29 (2-4)	,
Sampling Date	Part 375	7/8/2022	7/8/2022		7/8/2022		7/8/2022		7/8/2022		7/8/2022					
Client Matrix	UUSCOs	RSCOs	PGSC0s	CSC0s	RRSCOs	Soil	Soil									
onone widenx						Result 0		0	Result	0	Result	0	Result	0	Result	0
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	Ì	mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	4.79	2.12		4.89		3.110		1.65	U	13.9	
Barium	350	350	820	400	400	1,080	38.9		111		56.3		59.3		402	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.816	0.946		0.473		0.964		0.855		2.69	
Chromium	~	~	~	~	~	20.2	10.5		17.3		14.7		15.8		25.6	
Lead	63	400	450	1000	400	213	37.3		162		32.5	ĺ	15.9		677	
Selenium	3.9	36	4	1500	180	2.8 U	2.63	U	2.77	U	2.77	U	2.75	U	2.91	U
Silver	2	36	8.3	1500	180	0.559 U	0.526	U	0.554	U	0.554	U	0.55	U	0.582	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L									
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	0.375 U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U
Barium	350	350	820	400	400	2.6	0.625	U	0.655		0.625	U	0.625	U	0.806	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075 U	0.075	U	0.075	U	0.075	U	0.075	U	0.075	U
Chromium	~	~	~	~	~	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Lead	63	400	450	1000	400	0.166	0.169		1.15		0.125	U	0.125	U	0.378	
Selenium	3.9	36	4	1500	180	0.625 U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U
Silver	2	36	8.3	1500	180	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg									
Dilution Factor						1	1		1		1		1		1	-
Mercury	0.18	0.81	0.73	2.8	0.81	0.38	0.0316	U	0.202		0.116		0.0499		1.97	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L									
Dilution Factor						1	1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002 U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
TCLP Extraction for METALS EPA 1311						N/A	N/A									
Dilution Factor						1	1		1		1		1		1	
TCLP Extraction	~	~	~	~	~	Completed	Completed									
Total Solids						%	%		%		%		%		%	
Dilution Factor						1	1		1		1		1		1	
% Solids	~	~	~	~	~	89.4	95		90.3		90.3		91		85.9	

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site

DEC Site No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID						P-29 (4-6)	P-29 (6-8)		P-30 (0-2)		P-30 (2-4)		P-30 (4-6)		P-30 (6-8)	$\overline{}$
Sampling Date	Part 375	7/8/2022	7/8/2022		7/8/2022		7/8/2022		7/8/2022		7/8/2022					
Client Matrix	UUSCOs	RSC0s	PGSCOs	CSC0s	RRSCOs	Soil	Soil									
						Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg									
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	3.51	2.63		5.93		4.36		5.64		4.18	
Barium	350	350	820	400	400	64.1	36.2		280		231		387		65.9	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.425	0.326	U	0.777		0.770		0.81		0.333	U
Chromium	~	~	~	~	~	14.3	19.6		19		18.9		21.6		15.6	
Lead	63	400	450	1000	400	65.9	12		229		240		297		50.2	
Selenium	3.9	36	4	1500	180	2.68 U	2.72	U	2.77	U	2.78	U	2.83	U	2.78	U
Silver	2	36	8.3	1500	180	0.536 U	0.544	U	0.553	U	0.555	U	0.566	U	0.556	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L									
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	0.375 U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U
Barium	350	350	820	400	400	0.625 U	0.625	U	0.867		0.853		0.795		0.625	U
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075 U	0.075	U	0.075	U	0.0750	U	0.075	U	0.075	U
Chromium	~	~	~	~	~	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Lead	63	400	450	1000	400	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Selenium	3.9	36	4	1500	180	0.625 U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U
Silver	2	36	8.3	1500	180	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg									
Dilution Factor						1	1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0698	0.0326	U	0.432		0.356		0.436		0.131	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L									
Dilution Factor						1	1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002 U	0.0002	U	0.0002	U	0.00020	U	0.0002	U	0.0002	U
TCLP Extraction for METALS EPA 1311						N/A	N/A									
Dilution Factor						1	1		1		1		1		1	
TCLP Extraction	~	~	~	~	~	Completed	Completed									
Total Solids						%	%		%		%		%		%	
Dilution Factor						1	1		1		1		1		1	
% Solids	~	~	~	~	~	93.2	92		90.4		90		88.4		90	

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site

DEC Site No. C224241

Sample ID						P-31 (0-2)	P-31 (2-4)	P-31 (4-6)	P-31 (6-8)		P-32 (0-2)		P-32 (2-4)
Sampling Date	Part 375	7/8/2022	7/8/2022	7/8/2	022	7/8/2022		7/8/2022		7/8/2022				
Client Matrix	UUSCOs	RSC0s	PGSCOs	CSC0s	RRSCOs	Soil	Soil	So	I	Soil		Soil		Soil
						Result Q	Result	Q Result	Q	Result	Q	Result	Q	Result Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg
Dilution Factor						1	1	1		1		1		1
Arsenic	13	16	16	16	16	8.77	8.18	5.27		1.75		5.08		6.18
Barium	350	350	820	400	400	387	302	286		53.5		560		1,010
Cadmium	2.5	2.5	7.5	9.3	4.3	0.64	0.98	0.773		0.335	U	1.33		2.71
Chromium	~	~	~	~	~	21.6	18.5	21.5		19.5		25.2		26.2
Lead	63	400	450	1000	400	400	254	208		15		516		677
Selenium	3.9	36	4	1500	180	2.85 U	2.81	U 2.81	U	2.79	U	2.66	U	2.72 U
Silver	2	36	8.3	1500	180	0.571 U	0.562	U 0.562	U	0.558	U	0.533	U	0.544 U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L	mg/L		mg/L		mg/L		mg/L
Dilution Factor						1	1	1		1		1		1
Arsenic	13	16	16	16	16	0.375 U	0.375	U 0.375	U	0.375	U	0.375	U	0.375 U
Barium	350	350	820	400	400	1.2	0.851	0.625	U	0.625	U	0.859		0.945
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075 U	0.075	U 0.075	U	0.075	U	0.075	U	0.075 U
Chromium	~	~	~	~	~	0.125 U	0.125	U 0.125	U	0.125	U	0.125	U	0.125 U
Lead	63	400	450	1000	400	0.315	0.125	U 0.212		0.125	U	0.210	В	0.285 B
Selenium	3.9	36	4	1500	180	0.625 U	0.625	U 0.625	U	0.625	U	0.625	U	0.625 U
Silver	2	36	8.3	1500	180	0.125 U	0.125	U 0.125	U	0.125	U	0.125	U	0.125 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg
Dilution Factor						1	1	1		1		1		1
Mercury	0.18	0.81	0.73	2.8	0.81	0.32	0.327	0.181		0.0377		0.337		0.457
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L	mg/L		mg/L		mg/L		mg/L
Dilution Factor						1	1	1		1		1		1
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002 U	0.0002	U 0.0002	U	0.0002	U	0.0002	U	0.0002 U
TCLP Extraction for METALS EPA 1311						N/A	N/A	N/A		N/A		N/A		N/A
Dilution Factor						1	1	1		1		1		1
TCLP Extraction	~	~	~	~	~	Completed	Completed	Complete	ed	Completed		Completed		Completed
Total Solids						%	%	%		%		%		%
Dilution Factor						1	1	1		1		1		1
% Solids	~	~	~	~	~	87.6	89	89		89.6		93.9		92

Supplemental Soil Sampling Results - HCLA Borings Analytical Results Summary Ebenezer Plaza II Site

DEC Site No. C224241

Sample ID						P-32 (4-6)	P-32 (6-8)		P-33 (0-2)		P-33 (2-4)		P-33 (4-6)		P-33 (6-8)	$\overline{}$
Sampling Date	Part 375	7/8/2022	7/8/2022		7/8/2022		7/8/2022		7/8/2022		7/8/2022					
Client Matrix	UUSCOs	RSCOs	PGSCOs	CSC0s	RRSCOs	Soil	Soil		Soil		Soil		Soil	+	Soil	
						Result Q	Result	Q		Q	Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	3.79	3.42		3.84		4.1		7.48		2.24	
Barium	350	350	820	400	400	336	70.2		233		422		639		88.2	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.554	0.342	U	0.83		1.72		0.52		0.333	U
Chromium	~	~	~	~	~	26.2	15.1		19.8		20.8		24.4		17.9	
Lead	63	400	450	1000	400	248	24.6		203	3.00	1,100		5,910		35.4	
Selenium	3.9	36	4	1500	180	2.89 U	2.85	U	2.71	U	2.71	U	2.89	U	2.77	U
Silver	2	36	8.3	1500	180	0.578 U	0.57	U	0.543	U	0.542	U	0.578	U	0.554	U
Metals, TCLP RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L		mg/L		mg/L		mg/L		mg/L	
Dilution Factor						1	1		1		1		1		1	
Arsenic	13	16	16	16	16	0.375 U	0.375	U	0.375	U	0.375	U	0.375	U	0.375	U
Barium	350	350	820	400	400	1.18	0.625	U	1.52		2.97		1.3		1.14	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.075 U	0.075	U	0.075	U	0.075	U	0.075	U	0.075	U
Chromium	~	~	~	~	~	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Lead	63	400	450	1000	400	0.507 B	0.125	U	3.15	В	13.2	В	1.91	В	0.429	В
Selenium	3.9	36	4	1500	180	0.625 U	0.625	U	0.625	U	0.625	U	0.625	U	0.625	U
Silver	2	36	8.3	1500	180	0.125 U	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1	1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.282	0.0934		0.186		1.470		0.592		0.0646	
Mercury, TCLP	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/L	mg/L		mg/L		mg/L		mg/L		mg/L	
Dilution Factor						1	1		1		1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.0002 U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
TCLP Extraction for METALS EPA 1311						N/A	N/A		N/A		N/A		N/A		N/A	
Dilution Factor						1	1		1		1		1		1	
TCLP Extraction	~	~	~	~	~	Completed	Completed		Completed		Completed		Completed		Completed	
Total Solids						%	%		%		%		%		%	
Dilution Factor						1	1		1		1		1		1	
% Solids	~	~	~	~	~	86.5	87.7		92.1		92.3		86.6		90.2	

Sample ID						D-01 (0-2)		D-01 (2-4)		D-01 (4-6)	D-02 (0-2)	D-02 (2-4)	D-02 (4-6)
Sampling Date	Part 375	5/23/2022		5/23/2022	:	5/23/2022	5/23/2022	5/23/2022	5/23/2022				
Client Matrix	UUSCOs	RSC0s	PGSC0s	CSC0s	RRSCOs	Soil		Soil		Soil	Soil	Soil	Soil
						Result	Q	Result	Q	Result Q	Result Q	Result Q	Result Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1		1		1	1	1	1
Arsenic	13	16	16	16	16	4.93		4.69		2.49	3.68	3.91	4.68
Barium	350	350	820	400	400	66.1		74.2		95.1	110	86.6	133
Cadmium	2.5	2.5	7.5	9.3	4.3	0.333	U	0.34	U	0.353 U	0.33 U	6.43	0.347 U
Chromium	~	~	~	~	~	21.9		18.8		27	19.2	18.7	24.9
Lead	63	400	450	1000	400	56.5		53		118	104	119	71.8
Selenium	3.9	36	4	1500	180	2.780	U	2.83	U	2.95 U	2.75 U	2.81 U	2.89 U
Silver	2	36	8.3	1500	180	0.555	U	0.566	U	0.589 U	0.55 U	0.562 U	0.579 U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						1		1		1	1	1	1
Mercury	0.18	0.81	0.73	2.8	0.81	0.288		0.136		0.135	0.245	0.115	0.14
Total Solids						%		%		%	%	%	%
Dilution Factor						1		1		1	1	1	1
% Solids	~	~	~	~	~	90		88.3		84.9	91	88.9	86.4

Sample ID						DTP-01 (0-2)		DTP-01 (2-4)		DTP-01 (4-6)	\Box
Sampling Date	Part 375	5/23/2022		5/23/2022		5/23/2022					
Client Matrix	UUSC0s	RSC0s	PGSCOs	CSC0s	RRSCOs	Soil		Soil		Soil	
						Result	Q	Result	Q	Result	Q
Metals, RCRA	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1	
Arsenic	13	16	16	16	16	14.5		2.62		5.65	
Barium	350	350	820	400	400	335		114		115	
Cadmium	2.5	2.5	7.5	9.3	4.3	0.491		0.346	U	0.359	U
Chromium	~	~	~	~	~	28.7		15.5		20.6	
Lead	63	400	450	1000	400	339		157		81.6	
Selenium	3.9	36	4	1500	180	3.49	U	2.880	U	2.99	U
Silver	2	36	8.3	1500	180	0.699	U	0.577	U	0.599	U
Mercury by 7473	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	
Dilution Factor						1		1		1	
Mercury	0.18	0.81	0.73	2.8	0.81	0.159		0.617		0.253	
Total Solids						%		%		%	
Dilution Factor						1		1		1	
% Solids	~	~	~	~	~	71.6		86.7		83.5	

Supplemental Soil Sampling Results - HCL Borings Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, NY

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Part 375 UUSCOs Unrestricted Use Soil Cleanup Objective

Part 375 RSCOs Residential Soil Cleanup Objective

Part 375 PGSCOs Protection of Groundwater Soil Cleanup Objective

Part 375 CSCOs Commercial Use Soil Cleanup Objectives

Part 375 RRSCOs Restricted Residential Soil Cleanup Objective

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

used for analysis

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

UUSCO= NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives

RRSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives -Restricted Residential

RSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Residential

CSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Commercial

PGSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Protection of GW

Table 5 Waste Disposal Volumes and Facilities Ebenezer Plaza 2 BCP No. C224241

Facility #											
Name / Location	Bays	hore	Posi	llico	Clean	Earth	ACV				
Type of Waste Solid	Contamin	ated C&D	Non Hazardous C	ontaminated Soil	Non Hazardous C	ontaminated Soil	Non Hazardous Contaminated Soil				
or Liquid											
(Trucks and	Trucks	Tons	Trucks	Tons	Trucks	Tons	Trucks	Tons			
Tonnage)	TTUCKS	10115	Hucks	10115	TTUCKS	10115	TTUCKS	10115			
Total	153	4,511.32	398 11554.84		78	2300.37	10 272.39				

Table 5 Waste Disposal Volumes and Facilities Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

ACV Hazardous Lead Contaminated Soil Trucks Tons		_	Century Waste lated Concrete	•	ark ial Clean Soil		SR al Clean Soil	Impact Reuse NJ residential Clean Soil			
Trucks	Tons	Trucks	Tpms	Trucks	Tons	Trucks	Tons	Trucks	Tons		
26	675.79	10	214.67	164 4930.73		132	4036.69	136 4196.44			

Table 6A Waste Characterization - Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID	COMP-1		COMP-2		COMP-3		COMP-4		COMP-5	
·	3/23/2022		3/23/2022		3/24/2022		3/24/2022		3/24/2022	
Sampling Date			3/23/2022 Soil		3/24/2022 Soil		3/24/2022 Soil		3/24/2022 Soil	
Client Matrix	Soil Result	Q	Result	0	Result	Q	Result	Q	Result	0
Compound VOA, 8260 MASTER	mg/Kg	Ų	mg/Kg	Ų	mg/Kg	Ų	mg/Kg	l v	mg/Kg	٧
Dilution Factor	1		1		1		1		1	
1,1,1,2-Tetrachloroethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.00370 0.00370	U	0.00210 0.00210	U	0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00370	U	0.00210	U	0.00300	U	0.00240	Ü	0.00270	U
1,1,2-Trichloroethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,1-Dichloroethane 1,1-Dichloroethylene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
1,2,3-Trichlorobenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,2,3-Trichloropropane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
1,2-Dibromo-3-chloropropane	0.00370	U	0.00210	U	0.00300	U	0.00240	Ü	0.00270	U
1,2-Dibromoethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,2-Dichlorosthana	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
1,2-Dichloroethane 1,2-Dichloropropane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,3,5-Trimethylbenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,3-Dichlorobenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
1,4-Dichlorobenzene 1,4-Dioxane	0.00370 0.0740	U	0.00210 0.0410	U	0.00300 0.0600	U	0.00240 0.0480	U	0.00270 0.0530	U
2-Butanone	0.00370	U	0.00210	U	0.00300	U	0.00240	Ü	0.00270	U
2-Hexanone	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
4-Methyl-2-pentanone Acetone	0.00370 0.00740	U	0.00210 0.00410	U	0.00300 0.00600	U	0.00240 0.00480	U	0.00270 0.00530	U
Acrolein	0.00740	U	0.00410	U	0.00600	U	0.00480	U	0.00530	U
Acrylonitrile	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Benzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Bromochloromethane Bromodichloromethane	0.00370 0.00370	U	0.00210 0.00210	U	0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Bromoform	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Bromomethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Carbon disulfide	0.00370 0.00370	U	0.00210 0.00210	U	0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Carbon tetrachloride Chlorobenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Chloroethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Chloroform	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Chloromethane cis-1,2-Dichloroethylene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
cis-1,3-Dichloropropylene	0.00370	U	0.00210	U	0.00300	U	0.00240	Ü	0.00270	U
Cyclohexane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Dibromochloromethane Dibromomethane	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Dichlorodifluoromethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Ethyl Benzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Hexachlorobutadiene Isopropylbenzene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Methyl acetate	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Methyl tert-butyl ether (MTBE)	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Methylcyclohexane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Methylene chloride n-Butylbenzene	0.00800 0.00370	J	0.00410 0.00210	U	0.00600 0.00300	U	0.00480 0.00240	U	0.00530 0.00270	U
n-Propylbenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	Ü	0.00270	U
o-Xylene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
p- & m- Xylenes p-Isopropyltoluene	0.00740 0.00370	U	0.00410 0.00210	U	0.00600 0.00300	U	0.00480 0.00240	U	0.00530 0.00270	U
sec-Butylbenzene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Styrene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
tert-Butyl alcohol (TBA)	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
tert-Butylbenzene Tetrachloroethylene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Toluene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
trans-1,2-Dichloroethylene	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
trans-1,3-Dichloropropylene Trichloroethylene	0.00370 0.00370	U	0.00210 0.00210	U	0.00300 0.00300	U	0.00240 0.00240	U	0.00270 0.00270	U
Trichlorofluoromethane	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Vinyl Chloride	0.00370	U	0.00210	U	0.00300	U	0.00240	U	0.00270	U
Xylenes, Total	0.0110	U	0.00620	U	0.00910	U	0.00720	U	0.00800	U
Volatile Organics, Tentatively Identified Cmpds. Dilution Factor	mg/kg 1		mg/kg 1	++	mg/kg 1	+	mg/kg 1	++	mg/kg 1	+
Tentatively Identified Compounds	0	U	0	U	0	U	0	U	0	U
Semi-Volatiles, Tentatively Identified Cmpds.	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	口口
Dilution Factor Tentetively Identified Companyeds	2		2	U	2	+,,	2		2	
Tentatively Identified Compounds	0	U	0	U	0	U	0	U	0	U

Table 6A Waste Characterization - Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

Sample ID	COMP-1		COMP-2		COMP-3		COMP-4		COMP-5	
Sampling Date	3/23/2022		3/23/2022		3/24/2022		3/24/2022		3/24/2022	
Client Matrix	Soil		Soil		Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
SVOA, 8270 MASTER Dilution Factor	mg/Kg 2		mg/Kg 2		mg/Kg 2		mg/Kg 2		mg/Kg 10	
1,1-Biphenyl	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	0.0865 0.0433	U	0.0869 0.0436	U	0.0918 0.0460	U	0.103 0.0517	U	0.0936 0.0469	U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine (as Azobenzene)	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
1,3-Dichlorobenzene	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	0.0433 0.0865	U	0.0436 0.0869	U	0.0460 0.0918	U	0.0517 0.103	U	0.0469 0.0936	U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
2,4-Dichlorophenol	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
2,4-Dimethylphenol 2,4-Dinitrophenol	0.0433 0.0865	U	0.0436 0.0869	U	0.0460 0.0918	U	0.0517 0.103	U	0.0469 0.0936	U
2,4-Dinitrotoluene 2.6-Dinitrotoluene	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
2-Chloronaphthalene	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
2-Chlorophenol 2-Methylnaphthalene	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0888	JD	0.0517 0.0517	U	0.0469 0.0469	U
2-Methylphenol 2-Nitroaniline	0.0433 0.0865	U	0.0436 0.0869	U	0.0460 0.0918	U	0.0517 0.103	U	0.0469 0.0936	U
2-Nitrophenol	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
3- & 4-Methylphenols 3,3-Dichlorobenzidine	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
3-Nitroaniline	0.0865 0.0865	U	0.0869 0.0869	U	0.0918 0.0918	U	0.103 0.103	U	0.0936 0.0936	U
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
4-Chloro-3-methylphenol 4-Chloroaniline	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
4-Chlorophenyl phenyl ether	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
4-Nitroaniline 4-Nitrophenol	0.0865 0.0865	U	0.0869 0.0869	U	0.0918 0.0918	U	0.103 0.103	U	0.0936 0.0936	U
Acenaphthene Acenaphthylene	0.0433 0.0567	JD	0.0438 0.0820	JD	0.145 0.112	D D	0.124 0.0517	D U	0.0469 0.107	U
Acetophenone	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Aniline Anthracene	0.173 0.144	U D	0.174 0.187	U D	0.184 0.511	U D	0.206 0.349	U D	0.187 0.162	U D
Atrazine	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Benzaldehyde Benzidine	0.0433 0.173	U	0.0436 0.174	U	0.0460 0.184	U	0.0517 0.206	U	0.0469 0.187	U
Benzo(a)anthracene Benzo(a)pyrene	0.451 0.486	D D	0.413 0.446	D D	0.906 0.897	D D	0.666 0.603	D D	0.375 0.427	D D
Benzo(b)fluoranthene	0.488	D	0.379	D	0.755	D	0.618	D	0.437	D
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.346 0.442	D D	0.277 0.384	D D	0.667 0.672	D D	0.335 0.482	D D	0.498 0.430	D D
Benzoic acid	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
Benzyl alcohol Benzyl butyl phthalate	0.0433	U	0.447	D	0.461	D	0.0517	U	1.240	D
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
Bis(2-chloroisopropyl)ether	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Bis(2-ethylhexyl)phthalate Caprolactam	0.0433 0.0865	U	0.0436 0.0869	U	0.0460 0.0918	U	1.180 0.103	D U	10.600 0.0936	D U
Carbazole Chrysene	0.0878 0.451	D D	0.0855 0.396	JD D	0.152 0.893	D D	0.213 0.596	D D	0.0673 0.411	JD D
Dibenzo(a,h)anthracene	0.115	D	0.0868	JD	0.208	D	0.0874	JD	0.129	D
Dibenzofuran Diethyl phthalate	0.0433 0.0433	U	0.0436 0.0436	U	0.0661 0.0460	JD	0.0517 0.0517	U	0.0469 0.0469	U
Dimethyl phthalate	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Di-n-butyl phthalate Di-n-octyl phthalate	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0644	JD D
Fluoranthene Fluorene	0.952 0.0433	D U	1 0.0521	D JD	2.130 0.159	D D	1.650 0.143	D D	0.817 0.0469	D U
Hexachlorobenzene	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Hexachlorobutadiene Hexachlorocyclopentadiene	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
Hexachloroethane	0.0433 0.364	U	0.0436 0.324	U D	0.0460 0.683	U	0.0517 0.394	U D	0.0469 0.439	U D
Indeno(1,2,3-cd)pyrene Isophorone	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Naphthalene Nitrobenzene	0.0433 0.0433	U	0.0436 0.0436	U	0.0565 0.0460	JD	0.0635 0.0517	JD	0.0469 0.0469	U
N-Nitrosodimethylamine	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
N-nitroso-di-n-propylamine N-Nitrosodiphenylamine	0.0433 0.0433	U	0.0436 0.0436	U	0.0460 0.0460	U	0.0517 0.0517	U	0.0469 0.0469	U
Pentachlorophenol Phenanthrene	0.0433 0.564	U	0.0436 0.603	U D	0.0460 1.810	U	0.0517 1.370	U	0.0469 0.501	U
Phenol	0.0433	U	0.0436	U	0.0460	U	0.0517	U	0.0469	U
Pyrene Pyridine	0.651 0.173	D U	0.620 0.174	U	1.520 0.184	D U	1.070 0.206	D U	0.685 0.187	D U
PEST, 8081 MASTER	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor 4,4'-DDD	5 0.00175	U	5 0.00173	U	5 0.00183	U	5 0.00205	U	5 0.0146	D
4,4'-DDE 4,4'-DDT	0.00175 0.00175	U	0.00173 0.00537	U	0.00183 0.00516	U	0.00205 0.00205	U	0.00182 0.00182	U
Aldrin	0.00175	U	0.00173	U	0.00183	U	0.00205	U	0.00182	U
alpha-BHC alpha-Chlordane	0.00175 0.0112	U D	0.00173 0.0311	U D	0.00183 0.0105	U D	0.00205 0.00205	U	0.00182 0.00182	U
beta-BHC	0.00175 0.0513	U	0.00173 NT	U	0.00183 0.0883	U	0.00205	U	0.00182	U
Chlordane, total delta-BHC	0.00175	U	0.00173	U	0.00183	U	0.0411 0.00205	U	0.0364 0.00182	U
Dieldrin Endosulfan I	0.00175 0.00175	U	0.00669 0.00173	D U	0.00183 0.00183	U	0.00205 0.00205	U	0.00182 0.00182	U
· · · · · · · · · · · · · · · · · · ·	0.00175	U	0.00173	U	0.00183	U	0.00205	U	0.00182	U
Endosulfan II		U	0.00173	U	0.00183	U	0.00205	U	0.00182	U
Endosulfan II	0.00175 0.00175	U	0.00173	U	0.00183	U	0.00205	U	0.00182	1 0
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde	0.00175 0.00175	U	0.00173	U	0.00183	U	0.00205	U	0.00182	U
Endosulfan II Endosulfan sulfate Endrin	0.00175 0.00175 0.00175 0.00175	U U U	0.00173 0.00173 0.00173		0.00183 0.00183 0.00183	U U U	0.00205 0.00205 0.00205	U U U	0.00182 0.00182 0.00182	U U U
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane	0.00175 0.00175 0.00175 0.00175 0.00175	U U U D	0.00173 0.00173 0.00173 0.0271	U U U D	0.00183 0.00183 0.00183 0.0170	U U U D	0.00205 0.00205 0.00205 0.00205	U U U U	0.00182 0.00182 0.00182 0.00182	U U U
Endosulfan II Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane)	0.00175 0.00175 0.00175 0.00175	U U U	0.00173 0.00173 0.00173	U U U	0.00183 0.00183 0.00183	U U U	0.00205 0.00205 0.00205	U U U	0.00182 0.00182 0.00182	U U U

Table 6A Waste Characterization - Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

	00140.4		00140.0		20140.0		20140.4		00140.5	
Sample ID	COMP-1		COMP-2		COMP-3		COMP-4		COMP-5	
Sampling Date	3/23/2022		3/23/2022		3/24/2022		3/24/2022		3/24/2022	
Client Matrix	Soil		Soil		Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
NJDEP EPH (Cat. 2 Non-Fractionated)	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
Dilution Factor Total EPH	2 308	D	1 74.300		1 196		<u>1</u> 294		10 1,990	D
Metals, Target Analyte	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	+
Dilution Factor	1		1		1		1		1	
Aluminum Antimony	8,740 3.880		4,780 3.630	+ -	12,600 9.050	+	10,900 3.130	U	3,210 10.500	
Arsenic	4.330		1.940		4.730		2	0	4.230	
Barium	106		92.600		236		213		278	
Beryllium	0.0530	U	0.0530	U	0.0560	U	0.0630	U	0.0570	U
Cadmium Calcium	0.494 17,400		0.316 7,380	U	1.730 15,300		0.376 23,900	U	1.820 24,500	
Chromium	18.800		11.300		31.200		18.500		98.500	
Cobalt	6.820		4.840		12.700		6.490		3.490	
Copper	49.700		21		102		25.700		295	
Iron Lead	15,200 90.300		12,100 85		28,900 236		14,300 90		8,630 279	
Magnesium	3,690		1,820		6,230		3,950		4,160	
Manganese	250		204		466		290		135	
Nickel Potassium	17.300 1,280	В	29 682	В	38.300 2,830	В	21 1,030	В	77.300 440	В
Selenium	2.660	n R	2.630	n B	2,830	n R	3.130	n R	2.830	n B
Silver	0.532	U	0.526	U	0.558	U	0.626	U	0.567	U
Sodium	229		104		343		241		319	
Thallium Vanadium	2.660 28.500	U	2.630 13.100	U	2.790 39.800	U	3.130 22.500	U	2.830 10.300	U
Zinc	28.500		13.100	+	39.800	+	175	\vdash	520	
Metals, TCLP RCRA	mg/L		mg/L		mg/L		mg/L		mg/L	
Dilution Factor	1		1		1		1		1	
Arsenic Barium	0.375 0.625	U	0.375 0.625	U	0.375 0.625	U	0.375 0.625	U	0.375 0.625	U
Cadmium	0.0750	U	0.0750	U	0.0750	U	0.0750	U	0.0750	U
Chromium	0.125	U	0.125	U	0.125	U	0.125	U	0.125	U
Lead	0.125	U	0.125	U	0.125	U	0.125	U	0.258	
Selenium Silver	0.625 0.125	U	0.625 0.125	U	0.625 0.125	U	0.625 0.125	U	0.625 0.125	U
Mercury by 7473	mg/Kg		mg/Kg	1	mg/Kg	1	mg/Kg		mg/Kg	-
Dilution Factor	1		1		1		1		1	
Mercury	0.0926		0.279		0.416		0.104		0.415	
Mercury, TCLP Dilution Factor	mg/L 1		mg/L 1		mg/L 1		mg/L 1		mg/L 1	
Mercury	0.00048		0.00039		0.00030		0.00034		0.00042	
Chromium, Hexavalent	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor	1		1	.	11	١	1	.	1	
Chromium, Hexavalent Corrosivity (pH) by SM 4500/EPA 9045D	0.532 pH units	U	0.526 pH units	U	0.558 pH units	U	0.626 pH units	U	0.567 pH units	U
Dilution Factor	1		1		1		1		1	
рН	7.930		7.850		7.950		7.620		8.180	
Cyanide, Total	mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor Cyanide, total	0.532	U	<u>1</u> 0.526	U	<u>1</u> 0.558	U	<u>1</u> 0.626	U	<u>1</u> 0.567	U
Ignitability	None		None	1	None	1	None		None	-
Dilution Factor	1		1		1		1		1	
Ignitability	Non-Ignit.		Non-Ignit.	$oldsymbol{\sqcup}$	Non-Ignit.	$oldsymbol{\perp}$	Non-Ignit.	$oxed{oxed}$	Non-Ignit.	
Reactivity-Cyanide Dilution Factor	mg/kg 1		mg/kg 1	+	mg/kg 1	+	mg/kg 1	\vdash	mg/kg 1	
Reactivity - Cyanide	0.250	U	0.250	U	0.250	U	0.250	U	0.250	U
Reactivity-Sulfide	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
Dilution Factor	1		1		11	1	1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1	
Reactivity - Sulfide TCLP Extraction for METALS EPA 1311	15 N/A	U	15 N/A	U	15 N/A	U	15 N/A	U	15 N/A	U
Dilution Factor	1		1		1		1		1	
TCLP Extraction	Completed		Completed		Completed		Completed		Completed	
Temperature	°C		°C		°C		°C		°C	
Dilution Factor Temperature	1 21.300		1 21.100		20.700		<u>1</u> 21.300		20.700	
Total Solids	%		%	\parallel	%	+	%	H	%	
Dilution Factor	1		1		1		1		1	
% Solids	93.900		95 mg/Kg	+	89.600	+	79.800	$\vdash \vdash$	88.200	
PCB, 8082 MASTER Dilution Factor	mg/Kg 1		mg/Kg 1	+	mg/Kg 1	+	mg/Kg 1	\vdash	mg/Kg 1	+
Aroclor 1016	0.0177	U	0.0175	U	0.0185	U	0.0207	U	0.0184	U
Aroclor 1221	0.0177	U	0.0175	U	0.0185	U	0.0207	U	0.0184	U
Aroclar 1242	0.0177	U	0.0175	U	0.0185	U	0.0207	U	0.0184	U
Aroclor 1242 Aroclor 1248	0.0177 0.0177	U	0.0175 0.0175	U	0.0185 0.0185	U	0.0207 0.0207	U	0.0184 0.0184	U
Aroclor 1254	0.0177	U	0.0175	U	0.0185	U	0.0207	U	0.0184	U
Aroclor 1260	0.0177	U	0.0175	U	0.0196		0.0207	U	0.0242	
Total PCBs	0.0177	U	0.0175	U	0.0196		0.0207	U	0.0242	

Sample ID		COMP-WC2A (5-10)	COMP-WC2A (10-15	5) COMP-WC3A (5-10)	COMP-WC3A (10-15)	COMP-WC8A (5-10)	COMP-WC8A (10-15)	COMP-WC4A (5-10)	COMP-WC4A (10-15)	WC2A-04 (7-8)	WC2A-04 (13-14)	WC3A-03 (8-9)	WC3A-03 (13-14)	WC8A-01 (7-8) WC8A-01 (11-12)	WC4A-01 (8-9)	WC4A-01 (13-14)
Sampling Date	7	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022
	Units	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll
Client Matrix Compound		Result	2 Result	Q Result (Q Result Q		Result Q		+		Q Result Q	1		Q Result	Q Result Q	Result (
Miscellaneous/Inorganics		resuit	2 Result	Q Result (Z Result Q	result Q	result Q	resuit Q	Result Q	Result	Q Result Q	Result	Q Result	Q Result	Q Result Q	result (2 Result
Percent Solid	%	85	84	91	82	90	82	86	82								
Corrosivity	Pos/Neg	Negative L	l Negative	U Negative L	J Negative U	Negative U	Negative U										
Flash Point	Degree F	>200	>200	>200	>200	>200	>200	>200	>200								
Ignitability	degree F	Passed L 7.62	Passed 7.47	U Passed L 7.55	7.47 Passed U	Passed U 7.7	Passed U 7.58	Passed U 7.34	Passed U 7.47								
pH at 25C - Soil Reactivity Cvanide	pH Units mg/Kg	7.02 < 5	1.47	U <5 L	7.47 J < 6 U		< 6 U								++		
Reactivity Sulfide	mg/Kg	< 20 L	< 20	U < 20 L	J < 20 U	< 20 U	< 20 U										
Reactivity	Pos/Neg	Negative L	Negative Negative	U Negative L	J Negative U	Negative U	Negative U										
Redox Potential	mV	81.2	83.2	89.3	230	117	125	127	120								
Total Cyanide (SW9010C Distill.)	mg/Kg	< 0.53 L	< 0.60	U < 0.46 L	J < 0.51 U	< 0.56 U	< 0.61 U	< 0.58 U	< 0.61 U								
Metals, Total Aluminum	mg/Kg	5.130	4.240	3.860	3,990	3.590	3.630	3.890	4.090								
Antimony	mg/Kg	< 3.6 L	< 3.9	.,,,,,,	J < 3.7 U	-,	< 4.0 U	-,	,								
Arsenic	mg/Kg	1.09	< 0.78	U < 0.78 L	0.84	< 0.74 U	< 0.79 U										
Barium	mg/Kg	21.5	28.1	15	22.3	14.2	22.3	21.4	26.1								
Beryllium	mg/Kg	0.33	0.26	J 0.21 .	J 0.26 J	0.21 J	0.25 J										1
Calaium	mg/Kg	0.64 799	0.69 714	0.47 732	0.74 680	0.43 595	0.64 557	0.53 721	0.69 622			-		+			+
Calcium Chromium	mg/Kg mg/Kg	11.9	9.54	11.8	11	8.53	12.7	8.67	9.53					+	++		+
Chromium, Hexavalent	mg/Kg	< 0.40 L	< 0.43	U < 0.43 L	J < 0.44 U	< 0.43 U	< 0.43 U		< 0.49 U								
Cobalt	mg/Kg	4.4	4.52	3.53	3.93	3.65	4.29	3.72	4.74								
Copper	mg/kg	11.6	9.9	8.2	9.6	7.3	7.2	8.6	10								1
Iron Lead	mg/Kg	13,100 3.6	13,500 3.3	8,890 2.9	15,000 3.8	7,980 2.5	12,300	10,600 3.4	14,500 3.5						++		
Magnesium	mg/Kg mg/Kg	2,610	1,720	2,030	1,650	2,310	1,580	1,900	1,690						++		
Manganese	mg/Kg	102	195	181	209	218	265	103	121								
Mercury	mg/Kg	< 0.03 L	< 0.03	U < 0.03 L	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U								
Nickel	mg/Kg	16.8	15.1	17.3	15.6	18.8	14.9	13.9	15.9								
Potassium	mg/Kg	909	578	544 U < 1.6	564 J < 1.5 U	521	626 < 1.6 U	531	626						++		
Selenium Silver	mg/Kg	< 1.5 L < 0.36 L	/ < 1.6 / < 0.39	U < 0.39 L	J < 1.5 U J < 0.37 U		< 1.6 U < 0.40 U		< 1.5 U < 0.39 U								
Sodium	mg/Kg mg/Kg	88	130	69	95	67	103	69	85								
Thallium	mg/Kg	< 1.5 l		U < 1.6	< 1.5 U		< 1.6 U										
Vanadium	mg/Kg	21.4	16.5	11.7	16.5	10.7	15.1	12.2	17								
Zinc	mg/Kg	15.1	23.1	11.8	22.3	11.2	21.4	14.2	19.4								
Metals, TCLP TCLP Arsenic	md/l	< 0.10 U	< 0.10	U < 0.10 L	J < 0.10 U	< 0.10 U	< 0.10 U	< 0.10 U	< 0.10 U								
TCLP Barium	mg/L mg/L	0.23	0.42	0.19	0.2	0.11	0.14	0.29	0.29								
TCLP Cadmium	mg/L	< 0.050 L		U < 0.050 L	J < 0.050 U		< 0.050 U										
TCLP Chromium	mg/L		< 0.10	U < 0.10 L	J < 0.10 U		< 0.10 U										
TCLP Lead	mg/L	< 0.10 U		U < 0.10 L	J < 0.10 U		< 0.10 U										
TCLP Mercury	mg/L	< 0.0002 L < 0.10 L		U < 0.0002 L U < 0.10 L	J < 0.0002 U J < 0.10 U	< 0.0002 U < 0.10 U	< 0.0002 U < 0.10 U										
TCLP Selenium TCLP Silver	mg/L mg/L		< 0.10	U < 0.10 U	V < 0.10 U		< 0.10 U										
SVOA TICS	IIIg/ L	10.20	1 0.20	0 10.20		- 0.20	10.20	7 0.20	10.20								
11-Tricosene	ug/Kg								1,200 JN								
1-Docosene	ug/Kg	1.100			4.000	1,200 JN	1	1,400 JN	1,400 JN								1
1-Nonadecene 1-Nonadecene Isomer (RT 7.493)	ug/Kg	1,100 J 1,000 J			1,800 JN 1,600 JN		+					-		+			+
1-Nonadecene Isomer (RT 7.493) 1-Octadecene	ug/Kg ug/Kg	1,000	N .		1,000 JN	1,000 JN								+			+
2-Pentanone, 4-hydroxy-4-methyl-	ug/Kg	510 JN			IA 810 JNA			490 JN/	A 540 JNA								
5-Eicosene, (E)-	ug/Kg			JN 1,400 J	N 360 JN		1,300 JN										
5-Octadecene, (E)-	ug/Kg		670	JN 1,300 J													
9-Eicosene, (E)-	ug/Kg	1,300 JN	IC 890 .	310 J JNC 1,700 JN	N IC 2,000 JNC	1,100 JN	1,100 JN C 1,200 JNC										1
Benzoic acid, 4-ethoxy-, ethyl est Heneicosane	ug/Kg ug/Kg	1,300	090	1,700 Jr	360 JN		1,200 JN	1,400 JN	1,400 JNC					+			+ +
unknown hydrocarbon	ug/Kg ug/Kg	450 JN	IC 350 .	JNC 570 JN	IC 720 JNC				320 JNC								
PCBs By SW8082A																	
PCB-1016	mg/Kg	< 0.077 L	< 0.078	U < 0.072 L	J < 0.079 U	< 0.074 U	< 0.079 U	< 0.076 U	< 0.08 U								
PCB-1221	mg/Kg	< 0.077 U	< 0.078	U < 0.072 L	J < 0.079 U	< 0.074 U	< 0.079 U	< 0.076 U	< 0.08 U								
PCB-1232	mg/Kg	< 0.077 L < 0.077 L	0.078 0.078	U < 0.072 L U < 0.072 L	J < 0.079 U J < 0.079 U	< 0.074 U < 0.074 U	< 0.079 U < 0.079 U	< 0.076 U < 0.076 U	< 0.08 U < 0.08 U						++		+
PCB-1242 PCB-1248	mg/Kg	< 0.077 L	< 0.078 I < 0.078	U < 0.072 L	0.079 U 0 < 0.079 U	< 0.074 U	< 0.079 U < 0.079 U		< 0.08 U		+	-		+	++		+
PCB-1248 PCB-1254	mg/Kg mg/Kg	< 0.077 L	< 0.078	U < 0.072 L	0.079 U	< 0.074 U	< 0.079 U							1	++		1
PCB-1260	mg/Kg	< 0.077 L		U < 0.072 L	J < 0.079 U		< 0.079 U										1
PCB-1262	mg/Kg	< 0.077 L		U < 0.072 L	J < 0.079 U		< 0.079 U		. 0.00								
PCB-1268	mg/Kg	< 0.077 L	< 0.078	U < 0.072 L	J < 0.079 U	< 0.074 U	< 0.079 U	< 0.076 U	< 0.08 U								

Sample ID		COMP-WC2A (5-10	O) COMP-WC2A (10-1	5) COMP-WC3A (5-10)	COMP-WC3A (10-15)	COMP-WC8A (5-10)	COMP-WC8A (10-15)	COMP-WC4A (5-10) COMP-WC4A (10-15)	WC2A-04 (7-8)	WC2A-04 (13-14)	WC3A-03 (8-9)	WC3A-03 (13-14)	WC8A-01 (7-8)	WC8A-01 (11-12)	WC4A-01 (8-9)	WC4A-01 (13-14)
Sampling Date		7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022
Client Matrix	Units	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll
Compound		Result	O Result	O Result	D Result C	Result 0	Result 0		O Result O		O Result O			Result C		Result 0) Result
		Result	Q Result	Q Result (Z Result (nesuit Q	resuit Q	Result	Q Result Q	resuit	Q Result Q	resuit Q	Result Q	result (nesuit Q	nesuit Q	Result
Volatiles By SW8260C 1,1,1-Trichloroethane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,1,2,2-Tetrachloroethane	mg/Kg									< 0.0046	U < 0.0045 U		< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,1,2-Trichloroethane	mg/Kg									< 0.0046	U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
1,1-Dichloroethane	mg/Kg										U < 0.0045 U			< 0.0048 U		< 0.0049 U	< 0.0039
1,1-Dichloroethene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2,3-Trichlorobenzene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2,4-Trichlorobenzene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2-Dibromo-3-chloropropane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2-Dibromoethane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2-Dichlorobenzene	mg/Kg									< 0.0046	U < 0.0045 U		< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,2-Dichloroethane	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
1,2-Dichloropropane	mg/Kg									< 0.0046	U < 0.0045 U			< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,3-Dichlorobenzene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
1,4-Dichlorobenzene	mg/Kg										U < 0.0045 U			< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
2-Hexanone	mg/Kg										U < 0.022 U		< 0.023 U	< 0.024 U		< 0.024 U	< 0.02
4-Methyl-2-pentanone	mg/Kg									0.000	U < 0.022 U		< 0.023 U < 0.023 U	< 0.024 U	< 0.029 U 0.0058 JS	< 0.024 U 0.0089 JS	< 0.02 S < 0.02
Acetone	mg/Kg										JS < 0.022 U			< 0.024 U			
Benzene	mg/Kg									. 0.00 10	U < 0.0045 U	10.0012	10.0010	< 0.0048 U	. 0.0000	< 0.0049 U	< 0.0039
Bromochloromethane	mg/Kg									1 0.0010	U < 0.0045 U U < 0.0045 U	- 0.00 IL	< 0.0045 U < 0.0045 U	< 0.0048 U	10.0000	< 0.0049 U	< 0.0039 < 0.0039
Bromodichloromethane	mg/Kg										U < 0.0045 U U < 0.0045 U		< 0.0045 U	< 0.0048 U < 0.0048 U		< 0.0049 U < 0.0049 U	0.0039 I 0 < 0.0039 I
Bromoform	mg/Kg										U < 0.0045 U			< 0.0048 U		< 0.0049 U	< 0.0039
Bromomethane Carbon Disulfide	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
	mg/Kg mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Carbon tetrachloride	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
Chlorobenzene Chloroethane	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
Chloroform	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
Chloromethane	mg/Kg										U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
cis-1,2-Dichloroethene	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039
cis-1,3-Dichloropropene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Cyclohexane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Dibromochloromethane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Dichlorodifluoromethane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Ethylbenzene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U		< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039 U
Isopropylbenzene	mg/Kg										U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039 U
m&p-Xylene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039
Methyl ethyl ketone	mg/Kg										U < 0.027 U		< 0.027 U	< 0.029 U		< 0.029 U	< 0.023 I
Methyl t-butyl ether (MTBE)	mg/Kg									< 0.0091	U < 0.0089 U	< 0.0083 U	< 0.009 U	< 0.0095 U	< 0.012 U	< 0.0097 U	< 0.0078 I
Methylacetate	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U		< 0.0049 U	< 0.0039 L
Methylcyclohexane	mg/Kg										U < 0.0045 U			< 0.0048 U		< 0.0049 U	< 0.0039 L
Methylene chloride	mg/Kg										S < 0.0045 U	0.024 S	< 0.0045 U	0.0054 S	0.029 S	0.028 S	0.017
o-Xylene	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039 L
Styrene	mg/Kg										U < 0.0045 U		< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039 L
Tetrachloroethene	mg/Kg	1				1	1			< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U < 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U < 0.0049 U	(< 0.0039 L
Toluene	mg/Kg									< 0.0046 < 0.0046	U < 0.0045 U	< 0.0042 U < 0.0042 U	< 0.0045 U	< 0.0048 U < 0.0048 U	< 0.0058 U < 0.0058 U	< 0.0049 U	< 0.0039 L
Total Xylenes	mg/Kg	+						1			U < 0.0045 U U < 0.0045 U			< 0.0048 U			< 0.0039 L
trans-1,2-Dichloroethene	mg/Kg									< 0.0046	U < 0.0045 U U < 0.0045 U	< 0.0042 U < 0.0042 U	< 0.0045 U < 0.0045 U	< 0.0048 U	< 0.0058 U < 0.0058 U	< 0.0049 U < 0.0049 U	0.0039 U 0.0039 U
trans-1,3-Dichloropropene	mg/Kg					+				< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	0.0039 L
Trichloroethene	mg/Kg					+				< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	0.0039 L
Trichlorofluoromethane	mg/Kg					+				< 0.0046	U < 0.0045 U		< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	0.0039 L
Trichlorotrifluoroethane	mg/Kg									< 0.0046	U < 0.0045 U	< 0.0042 U	< 0.0045 U	< 0.0048 U	< 0.0058 U	< 0.0049 U	< 0.0039 L
Vinyl chloride	mg/Kg					1	1	1	1	\ U.UU4U	0 \ \ 0.0040 \ 0	\ U.UU42 U	\ U.UU45 U	\ U.UU40 U	< 0.0000 U	\ U.UU45 U	\ U.UU35 U

Samplie ID Sampling Date Client Matrix Compound Semivolatiles By SW8270D 1,1-Biphenyl 1,2-4,5-Tetrachlorobenzene 2,2-0-yolysid-Chioropropane) 2,3-4,6-tertachlorophenol 2,4-5-Trichlorophenol 2,4-6-Trichlorophenol	Units	COMP-WC2A (5-10) 7/11/2022 Soll	7/11/2022	7/11/2022	7/11/2022				COMP-WC4A (10-15)	WC2A-04 (7-8)	WC2A-04 (13-14)		WC3A-03 (13-14)	WC8A-01 (7-8)	WC8A-01 (11-12)	WC4A-01 (8-9)	WC4A-01 (13-14)
Client Matrix Compound Semivolatiles By SW8270D 1,1-Bipheny 1,2-4,5-Tetrachlorobenzene 2,2-Oxybis (7-binorpropane) 2,3-4,6-Tetrichlorophenoi 2,4-6-Trichlorophenoi	Units					7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022
Semivolatiles By SW8270D 1.1-Biphenyi 1.2.4.5-Testachlorobenzene 2.2-Oxybis(1-Chioropropane) 2.3.4.6-tertachlorophenol 2.4.5-Trichlorophenol			Soll	Soll	Soll	Soll	Soll	Soli	Soll	Soll	Soll	Soll	Soli	Soll	Soll	Soll	Soll
Semivolatiles By SW8270D 1.1-Biphenyi 1.2.4.5-Testachlorobenzene 2.2-Oxybis(1-Chioropropane) 2.3.4.6-tertachlorophenol 2.4.5-Trichlorophenol		Result	Q Result C	Q Result	Q Result Q		Result Q	Result Q	Result Q	Result Q	+	Q Result	Q Result Q		Q Result Q	Result Q	Result
1,2,4,5-Tetrachlorobenzene 2,2'-Oxybis(1-Chloropropane) 2,3,4,6-tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		40.07			U < 0.28 U	* O OC 11	< 0.28 U	< 0.26 U	< 0.28 U								
2,3,4,6-tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U												
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 I	U < 0.28 U			< 0.26 U									
2,4,6-Trichlorophenol	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U		< 0.28 U < 0.28 U	< 0.26 U < 0.26 U									
	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 l	U < 0.16 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
2,4-Dichlorophenol	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 U	U < 0.16 U U < 0.28 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
2,4-Dimethylphenol 2,4-Dinitrophenol	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U								
2,4-Dinitrotoluene	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 l	U < 0.16 U												
2,6-Dinitrotoluene 2-Chloronaphthalene	mg/Kg mg/Kg	< 0.16 < 0.27	U < 0.16 U U < 0.27 U	J < 0.15 U J < 0.25 U	U < 0.16 U U < 0.28 U		< 0.16 U < 0.28 U	< 0.15 U < 0.26 U			-						
2-Chlorophenol	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
2-Methylnaphthalene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 U	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U									
2-Methylphenol (o-cresol) 2-Nitroaniline	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U								
2-Nitrophenol	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	mg/Kg mg/Kg	< 0.27 < 0.16	U < 0.27 U U < 0.16 U	J < 0.25 U J < 0.15 U	U < 0.28 U U < 0.16 U		< 0.28 U < 0.16 U	< 0.26 U < 0.15 U									
3-Nitroaniline	mg/Kg	< 0.78	U < 0.78 U	J < 0.73 I	U < 0.81 U		< 0.8 U	< 0.76 U	< 0.81 U								
4,6-Dinitro-2-methylphenol	mg/Kg		U < 0.27 U		U < 0.28 U												
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U		1						
4-Chloroaniline	mg/Kg	< 0.78	U < 0.78 U	J < 0.73 I	U < 0.81 U	< 0.73 U	< 0.8 U	< 0.76 U	< 0.81 U								
4-Chlorophenyl phenyl ether 4-Nitroaniline	mg/Kg mg/Kg		U < 0.27 U U < 2 U		U < 0.28 U U < 2 U		< 0.28 U				+		+				+
4-Nitrophenol	mg/Kg	< 0.27	U < 0.27 U	J < 0.25	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Acenaphthylene	mg/Kg		U < 0.27 U U < 0.16 U	J < 0.25 L J < 0.15 L	U < 0.28 U U < 0.16 U		< 0.28 U < 0.16 U										
Acetophenone	mg/Kg mg/Kg		U < 0.16 U U < 0.27 U	J < 0.15 U	U < 0.16 U U < 0.28 U	0.20	< 0.16 U < 0.28 U				1						
Anthracene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Atrazine Benz(a)anthracene	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U								
Benzaldehyde	mg/Kg mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 L	U < 0.16 U	< 0.15 U											
Benzo(b)fluoranthene Benzo(ghi)perylene	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U			< 0.26 U < 0.26 U			+						<u> </u>
Benzo(k)fluoranthene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Benzyl butyl phthalate Bis(2-chloroethoxy)methane	mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U								
Bis(2-chloroethyl)ether	mg/Kg mg/Kg	< 0.16	U < 0.16 U	J < 0.15	U < 0.16 U	< 0.15 U		< 0.15 U	< 0.16 U								
Bis(2-ethylhexyl)phthalate	mg/Kg	. 0.21	U < 0.27 U	J < 0.25 I	U < 0.28 U		< 0.28 U		. 0.20								
Caprolactam Carbazole	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U			< 0.26 U < 0.26 U									
Chrysene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Dibenz(a,h)anthracene Dibenzofuran	mg/Kg		U < 0.16 U U < 0.27 U	J < 0.15 U J < 0.25 U	U < 0.16 U U < 0.28 U		< 0.16 U < 0.28 U										
Diethyl phthalate	mg/Kg mg/Kg	< 0.27	U < 0.27 U U < 0.27 U	J < 0.25	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Dimethylphthalate	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 U	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Di-n-butylphthalate Di-n-octylphthalate	mg/Kg mg/Kg		U < 0.27 U U < 0.27 U	9.29	U < 0.28 U U < 0.28 U		< 0.28 U < 0.28 U				-						
Fluoranthene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 l	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Fluorene Hexachlorobenzene	mg/Kg	< 0.27	U < 0.27 U U < 0.16 U	J < 0.25 L J < 0.15 L	U < 0.28 U U < 0.16 U		< 0.28 U	< 0.26 U < 0.15 U									
Hexachlorobutadiene	mg/Kg mg/Kg	0.20	U < 0.27 U	J < 0.25	U < 0.28 U	0.20	< 0.28 U	< 0.15 U									
Hexachlorocyclopentadiene	mg/Kg	< 0.27	U < 0.27 U	J < 0.25 I	U < 0.28 U	< 0.26 U	< 0.28 U	< 0.26 U	< 0.28 U								
Hexachloroethane Indeno(1,2,3-cd)pyrene	mg/Kg mg/Kg	< 0.16 < 0.27	U < 0.16 U U < 0.27 U	J < 0.15 U J < 0.25 U	U < 0.16 U U < 0.28 U	< 0.15 U < 0.26 U	< 0.16 U < 0.28 U	< 0.15 U < 0.26 U	< 0.16 U < 0.28 U								
Isophorone	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 l	U < 0.16 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
Naphthalene	mg/Kg		U < 0.27 U U < 0.16 U	J < 0.25 U J < 0.15 U	U < 0.28 U U < 0.16 U												
Nitrobenzene N-Nitrosodimethylamine	mg/Kg mg/Kg		U < 0.16 U U < 0.27 U	J < 0.15	U < 0.16 U U < 0.28 U		< 0.16 U	< 0.15 U < 0.26 U									
N-Nitrosodi-n-propylamine	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 l	U < 0.16 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
N-Nitrosodiphenylamine Pentachlorophenol	mg/Kg mg/Kg	< 0.16 < 0.27	U < 0.16 U U < 0.27 U	J < 0.15 U J < 0.25 U	U < 0.16 U U < 0.28 U	< 0.15 U < 0.26 U	< 0.16 U < 0.28 U	< 0.15 U < 0.26 U	< 0.16 U < 0.28 U		+						+
Phenanthrene	mg/Kg	< 0.16	U < 0.16 U	J < 0.15 l	U < 0.16 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
Phenol Pyrene	mg/Kg	< 0.27 < 0.27	U < 0.27 U U < 0.27 U	J < 0.25 U J < 0.25 U	U < 0.28 U U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U	< 0.26 U < 0.26 U	< 0.28 U < 0.28 U		1						
Pesticides - Soil by SW8081B	mg/Kg	NO.21	S 50.21 U	, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V.20	- U.20 U	- U.20 U	- 0.20	- U.20 U								
4,4' -DDD	mg/Kg		U < 0.0024 U U < 0.0024 U		U < 0.0024 U			< 0.0023 U						-			
4,4' -DDE 4,4' -DDT	mg/Kg mg/Kg	< 0.0023 < 0.0023		J < 0.0022 U J < 0.0022 U	U < 0.0024 U U < 0.0024 U	< 0.0022 U	< 0.0024 U < 0.0024 U	< 0.0023 U < 0.0023 U	< 0.0024 U < 0.0024 U		+						+
a-BHC	mg/Kg	< 0.0077	U < 0.0078 U	J < 0.0022 U J < 0.0072 U J < 0.0036 U	U < 0.0079 U U < 0.004 U												
a-Chlordane	mg/Kg	< 0.0039 < 0.0039	U < 0.0039 U U < 0.0039 U	J < 0.0036 U J < 0.0036 U		< 0.0037 U < 0.0037 U	< 0.004 U < 0.004 U	< 0.0076 U < 0.0038 U < 0.0038 U	< 0.004 U < 0.004 U								
Alachlor Aldrin	mg/Kg mg/Kg		U < 0.0039 U		U < 0.004 U	< 0.0037 U	< 0.004 U	< 0.0038 U	< 0.004 U				+ +				
b-BHC	mg/Kg	< 0.0077	U < 0.0078 U	J < 0.0072 U	U < 0.0079 U	< 0.0074 U	< 0.0079 U	< 0.0076 U	< 0.008 U								
Chlordane d-BHC	mg/Kg mg/Kg	< 0.039 < 0.0077	U < 0.039 U U < 0.0078 U	J < 0.036 L J < 0.0072 L	U < 0.04 U U < 0.0079 U	< 0.0074	< 0.04 U < 0.0079 U				1		+				+
Dieldrin	mg/Kg	< 0.0039	U < 0.0039 U	< 0.0036	U < 0.0079 U < 0.0079 U	< 0.0074 U	< 0.004	< 0.0038 U	< 0.004 U								
Endosulfan I	mg/Kg	< 0.0077	U < 0.0078 U	J < 0.0072 U	U < 0.0079 U	< 0.0074 U		< 0.0076 U	< 0.008 U								
Endosulfan II Endosulfan sulfate	mg/Kg mg/Kg	< 0.0077 < 0.0077	U < 0.0078 U U < 0.0078 U	J < 0.0072 U J < 0.0072 U	U < 0.0079 U U < 0.0079 U	< 0.0074 U < 0.0074 U	< 0.0079 U < 0.0079 U	< 0.0076 U < 0.0076 U	< 0.008 U < 0.008 U								
Endrin	mg/Kg	< 0.0077	U < 0.0078 U	J < 0.0072 L	U < 0.0079 U	< 0.0074 U < 0.0074 U	< 0.0079 U	< 0.0076 U									
Endrin aldehyde	mg/Kg		U < 0.0078 U U < 0.0078 U		U < 0.0079 U U < 0.0079 U					< 0.068 U	< 0.067	U < 0.062	U < 0.068 U	< 0.071	U < 0.086 U	< 0.073 U	< 0.059
Endrin ketone g-BHC	mg/Kg mg/Kg	< 0.0015	U < 0.0016 U		U < 0.0016 U	< 0.0015 U	< 0.0016 U	< 0.0015 U			1						
g-Chlordane	mg/Kg	< 0.0039	U < 0.0039 U	J < 0.0036 U	U < 0.004 U	< 0.0037 U	< 0.004 U	< 0.0038 U	< 0.004 U								
Heptachlor Heptachlor epoxide	mg/Kg mg/Kg	< 0.0077 < 0.0077	U < 0.0078 U U < 0.0078 U	J < 0.0072 U J < 0.0072 U	U < 0.0079 U U < 0.0079 U	< 0.0074 U < 0.0074 U					1		+				+
Methoxychlor	mg/Kg mg/Kg	< 0.039	U < 0.039 U	J < 0.036 U	U < 0.04 U	< 0.037	< 0.04 U	< 0.038 U									
Toxaphene	mg/Kg	< 0.15	U < 0.16 U		U < 0.16 U	< 0.15 U	< 0.16 U	< 0.15 U	< 0.16 U								
NJ EPH Category 1 (Fuel #2/Diesel) By NJEP >C28-C40	PH 10-08 R3 mg/kg	< 11	U < 12 U	J < 11 I	U < 12 U	< 11 U	< 12 U	< 12 U	< 12 U		1						
	mg/kg	17	23	12	18	18	29	26	32								
C9-C28	mg/kg	17	23	12	18	18	29	26	32								
Total EPH 1-4 Dioxane		1	1	1	1				1	< 0.068 U	< 0.067	U < 0.062		< 0.071	U < 0.086 U	< 0.073 U	< 0.059

Sample ID		COMP WC5A (5-1)	O) COMP WC5A (10-15)	COMP WC9A (5-10)	COMP WC94 (1	0-15)	COMP WC10A (5-10)	COMP WC10A (10-15)	COMP WC11A (5-10)	COMP WC11A (10-15)	WC5A-03 (8-9)	WC54-03	3 (13-14)	WC9A-03 (7-8)	V	WC9A-03 (11-11)	WC11A-02 (8-9)	WC11A-02 (13-14)	WC10A-04 (7-8)	WC10A-04 (11-12)
Sampling Date		7/12/2022	7/12/202		7/12/2022	7/12/202		7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/		7/12/2022	•	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022
	Units			22			2														
Client Matrix		Soll	Soll		Soll	Soll		Soll	Soll	Soll	Soll	Soll		oll	Soll		Soll	Soll	Soll	Soll	Soll
Compound		Result	Q Result	Q	Result	Result	Q	Result Q	Result Q	Result Q	Result Q	Result	Q Resu	lt Q	Result	Q	Result Q	Result	Q Result Q	Result	Q Result (
Miscellaneous/Inorganics Percent Solid	96	86	85		88	83		87	84	93	86										mg/kg
Corrosivity	Pos/Neg	Negative	U Negative	U	Negative I	Negative	U	Negative U		Negative U											
Flash Point	Degree F	>200	>200		>200	>200		>200	>200	>200	>200										
Ignitability	degree F	Passed	U Passed	U	Passed l	Passed	U	Passed U		Passed U											
pH at 25C - Soil	pH Units	7.31	7.36		7.57	7.54		7.4	7.49	6.6	7.3										
Reactivity Cyanide	mg/Kg	< 6	U < 5	U	< 5 l	< 6	U	< 5 U		< 5 U											
Reactivity Sulfide	mg/Kg	< 20	U < 20	U	< 20 U	< 20	U	< 20 U		< 20 U											
Reactivity Redox Potential	Pos/Neg	Negative 275	U Negative 251	U	Negative U	Negative 275	U	Negative U 282	Negative U 253	Negative U 263	Negative U 253										
Total Cyanide (SW9010C Distill.)	mV mg/Kg	< 0.58	U < 0.53	- 11	< 0.52	< 0.60	U	< 0.57 U													
Metals, Total	mg/Kg	1 0.50	0 10.55		10.02	1 0.00	Ü	10.57	1 0.00	10.45	1 0.55										
Aluminum	mg/Kg	3,660	3,050		3,540	3,660		4,130	3,370	4,200	2,980										
Antimony	mg/Kg	< 3.9	U < 4.1	U	< 3.9 l	< 4.2	U	< 3.8 U	< 4.0 U	< 3.2 U	< 3.9 U										
Arsenic	mg/Kg	0.85	< 0.82	U	< 0.78	< 0.85	U	< 0.76 U													
Barium	mg/Kg	16.8	16.4		15.7	20.1		30.5	20.8	24.4	17.3						·				
Beryllium	mg/Kg	0.21	J 0.19	J	0.21	0.21	J	0.25 J		0.22 J						$\sqcup \sqcup$					
Cadmium	mg/Kg	0.64 466	0.65		0.55	0.63		0.66	0.86	0.62	0.66	1				\vdash					
Calcium	mg/Kg	466 12.6	575 8.3		711 9.55	461 8,89		718 11	584 8.8	646 9.42	476 7.97					\vdash					
Chromium Chromium, Hexavalent	mg/Kg	< 0.42	U < 0.46	- 11	9.55 < 0.44	8.89	- 11	< 0.40 U	< 0.42 U	9.42 < 0.40 U	< 0.44 U	1				\vdash					
Cobalt	mg/Kg mg/Kg	3.58	3.43	- 1	4.12	3.77	- 0	4.96	4.11	4.17	3.26										+
Copper	mg/kg	9	7.2		8.9	6.8		9.7	8.9	9.8	6.6	1									
Iron	mg/Kg	8,950	8,980		6,500	8,920		9,220	13,600	9,080	9,950										
Lead	mg/Kg	2.8	2.5		2.4	2.6		2.8	3.2	2.7	2.2										
Magnesium	mg/Kg	1,550	1,310		2,030	1,400		1,700	1,420	1,790	1,270										
Manganese	mg/Kg	124	149		347	267		479	199	294	250										
Mercury	mg/Kg	< 0.03 15.2	U < 0.03	U	< 0.03 L	< 0.03	U	< 0.03 U	< 0.03 U 15.5	< 0.03 U	< 0.03 U										
Nickel	mg/Kg	15.2 497	513		18.8 520	15.9 564	_	16.2 625	15.5 534	685	12.6 490										
Potassium Selenium	mg/Kg mg/Kg	< 1.6	U < 1.6	- 11	< 1.6 U	< 1.7	U	< 1.5 U													
Silver	mg/Kg	< 0.39	U < 0.41	Ü	< 0.39 U	< 0.42	U	< 0.38 U													
Sodium	mg/Kg	93	77		83	96		82	103	91	90										
Thallium	mg/Kg		U < 1.6	U	< 1.6	< 1.7	U	< 1.5 U													
Vanadium	mg/Kg	12.5	13.4		10.4	11.2		13.5	14.7	14.7	11.3										
Zinc	mg/Kg	12.5	13.2		13.4	14.7		14.1	17.4	14	12.2										
Metals, TCLP																					
TCLP Arsenic TCLP Barium	mg/L	< 0.10 0.2	U < 0.10 0.21	U	< 0.10 U	< 0.10 0.21	U	< 0.10 U 0.25	< 0.10 U 0.17	< 0.10 U 0.23	< 0.10 U 0.15										
TCLP Cadmium	mg/L	< 0.050	U < 0.050	- 11	< 0.050 U	< 0.050	U	< 0.050 U													
TCLP Cadmium	mg/L mg/L	< 0.10	U < 0.10	U	< 0.10 U	< 0.10	U	< 0.10 U													
TCLP Lead	mg/L	< 0.10	U < 0.10	Ü	< 0.10 U	< 0.10	U	< 0.10 U		< 0.10 U											
TCLP Mercury	mg/L	< 0.0002	U < 0.0002	U	< 0.0002 U	< 0.0002	U	< 0.0002 U													
TCLP Selenium	mg/L	< 0.10	U < 0.10	U	< 0.10 l	< 0.10	U	< 0.10 U	< 0.10 U	< 0.10 U	< 0.10 U										
TCLP Silver	mg/L	< 0.10	U < 0.10	U	< 0.10 l	< 0.10	U	< 0.10 U	< 0.10 U	< 0.10 U	< 0.10 U										
SVOA TICS							$\perp \perp 1$														
11-Tricosene	ug/Kg						-			1 000											
1-Docosene	ug/Kg	1,500	JN 1,700	IN	1,700 J	N 1,100	JN			1,200 JN	2,000 JN					\vdash					
1-Nonadecene 1-Nonadecene Isomer (RT 7.493)	ug/Kg	1,500	J,700	NIC	350 J		NIC				2,000	1				\vdash					
1-Nonadecene isomer (RT 7.493) 1-Octadecene	ug/Kg ug/Kg		1,600	IN	330 3	1	+			1,100 JN						\vdash					+
2-Pentanone, 4-hydroxy-4-methyl-	ug/Kg	860	JNA 840	JNA	860 JN	IA 1,400	JNA	550 JNA	1,300 JNA			A									
5-Eicosene, (E)-	ug/Kg					, , ,			1,400 JN												
5-Octadecene, (E)-	ug/Kg	1,400	JN		1,600 J	N 1,000	JN														
9-Eicosene, (E)-	ug/Kg		340	JN							1,900 JN						·				
Benzoic acid, 4-ethoxy-, ethyl est	ug/Kg	1,700	JNC 2,000	JNC	2,000	1,600	JNC	1,400 JNC	1,500 JNC			D									
Heneicosane	ug/Kg	600	JNC 360	JNC	330	1	-	590 JNC	690 JNC	430 JNC	840 JN	Ü									
unknown hydrocarbon	ug/Kg	1		-+			\rightarrow									\vdash					
PCBs By SW8082A PCB-1016	mg/Kg	< 0.078	U < 0.076	- 111	< 0.075 U	< 0.079	U	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U	 									+
PCB-1016 PCB-1221	mg/Kg mg/Kg	< 0.078	U < 0.076	II	< 0.075 U	< 0.079	U	< 0.076 U		< 0.07 U	< 0.076 U			-		\vdash					+
PCB-1221 PCB-1232	mg/Kg	< 0.078	U < 0.076	Ü	< 0.075	< 0.079	Ü	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U										
PCB-1242	mg/Kg	< 0.078	U < 0.076	Ū	< 0.075	< 0.079	Ū	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U										
PCB-1248	mg/Kg	< 0.078	U < 0.076	U	< 0.075 l	< 0.079	U	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U										
PCB-1254	mg/Kg	< 0.078	U < 0.076	U	< 0.075 l	< 0.079	U	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U										
PCB-1260	mg/Kg	< 0.078	U < 0.076	U	< 0.075	< 0.079	U	< 0.076 U	< 0.077 U	< 0.07 U											
PCB-1262	mg/Kg		U < 0.076	U	< 0.075 l	< 0.079	U	< 0.076 U		. 0.01											
PCB-1268	mg/Kg	< 0.078	U < 0.076	U	< 0.075 l	< 0.079	U	< 0.076 U	< 0.077 U	< 0.07 U	< 0.076 U										

Sample ID		COMP WC5A (5-1)	.O) C	OMP WC5A (10-1	L5)	COMP WC9A (5-:	LO)	COMP WC9A (10	-15)	COMP WC10A (5-10)) C	OMP WC10A (10-15)) C	COMP WC11A (5-10)	COMP WC11A (10-15)	WC5A-03	3 (8-9)	V	WC5A-03 (13-14)	W	(C9A-03 (7-8)		WC9A-03 (11-11)		WC11A-02 (8-9)	1	VC11A-02 (13-14)		WC10A-04 (7-8)	٧	WC10A-04 (11-12)
Sampling Date		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022	7/12/2022	7/12/2	2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022		7/12/2022
Client Matrix	Units	Soll		Soll		Soll		Soll		Soll		Soll		Soll	Soll	Sol			Soil		Soll		Soll		Soll		Soll		Soil		Soll
Compound		Result		Result		Result		Result		Result	_	Result C	_	Result 0	Result 0	Result		0	Result C	_	Result	_	Result	_	Result		Result 0		Result C		Result 0
		Result	V	Result	V	Result	V	Result	Ų	result	Ų	result (ų –	resuit Q	resuit Q	Resuit		Ų	result (Ų	Result	V	Result	Ų	Result	Ų	resuit Q		result (result Q
Volatiles By SW8260C							+						_			< 0.004	7		< 0.0042 U		0.0046		< 0.0045		< 0.005		< 0.0047 U		< 0.0045 U	_	< 0.0039 U
1,1,1-Trichloroethane	mg/Kg						+						_			< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,1,2,2-Tetrachloroethane	mg/Kg						+						_			< 0.004					0.0046	U	< 0.0045	II	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,1,2-Trichloroethane	mg/Kg						+						_			< 0.004		-			0.0046	U	< 0.0045	II	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,1-Dichloroethane	mg/Kg						+						_			< 0.004		II			0.0046	U	< 0.0045	II	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,1-Dichloroethene	mg/Kg						+						_			< 0.004		U			0.0046	U	< 0.0045	II	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,2,3-Trichlorobenzene	mg/Kg				1											< 0.004		U	< 0.0042 U		0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,2,4-Trichlorobenzene	mg/Kg				1											< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		
1,2-Dibromo-3-chloropropane	mg/Kg				1											< 0.004		II				U		U		U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U < 0.0039 U
1,2-Dibromoethane	mg/Kg															< 0.004		-			0.0046	U	< 0.0045 < 0.0045	U	< 0.005 < 0.005	U		,			
1,2-Dichlorobenzene	mg/Kg																	U			0.0046	U	< 0.0045	U		U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,2-Dichloroethane	mg/Kg															< 0.004		U	< 0.0042 U		0.0046	U		U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,2-Dichloropropane	mg/Kg								\bot				_			< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,3-Dichlorobenzene	mg/Kg		$\perp \perp$		\vdash		$\bot\bot$		\perp							< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
1,4-Dichlorobenzene	mg/Kg															< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
2-Hexanone	mg/Kg						$\bot\bot$		\perp				_			< 0.023		U	< 0.021 U		< 0.023	U	< 0.023	U	< 0.025	U	< 0.024 U	J	< 0.023 U		< 0.02 U
4-Methyl-2-pentanone	mg/Kg															< 0.023		U			< 0.023	U	< 0.023	U	< 0.025	U	< 0.024 U	J	< 0.023 U		< 0.02 U
Acetone	mg/Kg															< 0.023		U	. 0.021		0.0093	JS	< 0.023	U	< 0.025	U	0.0058 JS	S	0.0084 J	3	< 0.02 U
Benzene	mg/Kg															< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Bromochloromethane	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Bromodichloromethane	mg/Kg															< 0.004	7	U	< 0.0042 U		0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Bromoform	mg/Kg															< 0.004		U	10.0042		0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Bromomethane	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Carbon Disulfide	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Carbon tetrachloride	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Chlorobenzene	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Chloroethane	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	1	< 0.0039 U
Chloroform	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Chloromethane	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
cis-1,2-Dichloroethene	mg/Kg															< 0.004	7	U	< 0.0042 U	J <	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
cis-1,3-Dichloropropene	mg/Kg															< 0.004	7	U	< 0.0042 U	J 4	0.0046	Ü	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Cyclohexane	mg/Kg															< 0.004	7	U	< 0.0042 U	J <	0.0046	IJ	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Dibromochloromethane	mg/Kg															< 0.004		Ū			0.0046	U	< 0.0045	Ü	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Dichlorodifluoromethane	mg/Kg															< 0.004		Ü	< 0.0042 U		0.0046	U	< 0.0045	Ü	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Ethylbenzene	mg/Kg						++									< 0.004		Ü			0.0046	Ŭ.	< 0.0045	ĬI.	< 0.005	II .	< 0.0047 U		< 0.0045 U		< 0.0039 U
Isopropylbenzene	mg/Kg						+						_			< 0.004					0.0046	ii i	< 0.0045	II	< 0.005	II	< 0.0047 U	,	< 0.0045 U		< 0.0039 U
m&p-Xvlene	mg/Kg						+						_			< 0.004		U			0.0046	ii i	< 0.0045	II	< 0.005	II	< 0.0047 U	,	< 0.0045 U	_	< 0.0039 U
Methyl ethyl ketone		+	++-		++		++		+		-		+			< 0.004		U	< 0.0042 U		< 0.0046	11	< 0.0045	II	< 0.003	ii i	< 0.0047 U	1	< 0.0045 U	1	< 0.0039 U
Methyl t-butyl ether (MTBE)	mg/Kg	+	++-		++		++		+		-		+			< 0.002		U			0.0092	11	< 0.009	U	< 0.0099	ii i	< 0.0094 U	1	< 0.027 U	1	< 0.023 U
Methylacetate	mg/Kg		+				+		++				+			< 0.003					0.0092		< 0.005	ii i	< 0.005	II	< 0.0094 U	<u>, </u>	< 0.005 U		< 0.0078 U
	mg/Kg	_	++-				++		++		-		+			< 0.004		U			0.0046	U II	< 0.0045	U U	< 0.005	U U	< 0.0047 U		< 0.0045 U	_	< 0.0039 U
Methylcyclohexane Methylcyclohexane	mg/Kg		++-		++		++		+		_		+			< 0.004		U			0.0046	0	< 0.0045	U	0.005	0	0.019 S	,	0.019		< 0.0039 U
Methylene chloride	mg/Kg	+	++-		\vdash		++		+				+			< 0.004		-			0.027	J	< 0.0045	U	< 0.011	3	< 0.019 S			_	
o-Xylene	mg/Kg	-	++-		++		++		+		_		_					U				U		U		U		,		_	
Styrene	mg/Kg	+			\vdash		++		+				_			< 0.004					0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	< 0.0045 U	_	< 0.0039 U
Tetrachloroethene	mg/Kg		+		$\perp \perp$		+		\bot				_			< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	,	0.0011		< 0.0039 U
Toluene	mg/Kg		$\perp \perp$		\vdash		$\bot\bot$		\perp							< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	_	< 0.0039 U
Total Xylenes	mg/Kg		\vdash		$\perp \perp$		++		\perp				_			< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	_	< 0.0039 U
trans-1,2-Dichloroethene	mg/Kg						$\bot\bot$									< 0.004					0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U	_	< 0.0039 U
trans-1,3-Dichloropropene	mg/Kg						\bot									< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Trichloroethene	mg/Kg															< 0.004		U			0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Trichlorofluoromethane	mg/Kg								ЩТ							< 0.004		U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U]	< 0.0045 U		< 0.0039 U
Trichlorotrifluoroethane	mg/Kg												Т			< 0.004	7	U	< 0.0042 U	J	0.0046	υ	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U
Vinyl chloride	mg/Kg															< 0.004	7	U	< 0.0042 U	J	0.0046	U	< 0.0045	U	< 0.005	U	< 0.0047 U	J	< 0.0045 U		< 0.0039 U

[T			1				1
Sample ID	_	COMP WC5A (5-10		•) COMP WC10A (5-10)				WC5A-03 (8-9)	WC5A-03 (13-14)		WC9A-03 (11-11)	WC11A-02 (8-9)		WC10A-04 (7-8)	WC10A-04 (11-12)
Sampling Date	Units	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022	7/12/2022
Client Matrix		Soll	Soli	Soli	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll
Compound		Result	Q Result	Q Result	Q Result	Q Result (Q Result Q	Result Q	Result Q	Result C) Result	Q Result	Q Result Q	Result	Q Result Q	Result Q	Result Q
Semivolatiles By SW8270D 1,1-Biphenyl	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
1,2,4,5-Tetrachlorobenzene	mg/Kg	< 0.27	U < 0.27	U < 0.26		U < 0.27 U											
2,2'-0xybis(1-Chloropropane) 2,3,4,6-tetrachlorophenol	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L											
2,4,5-Trichlorophenol	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 U	J < 0.28 U	< 0.25 U	< 0.4 U								
2,4,6-Trichlorophenol	mg/Kg	< 0.15	U < 0.16	U < 0.15	U < 0.24	U < 0.15 L		< 0.14 U	< 0.23 U								
2,4-Dichlorophenol 2,4-Dimethylphenol	mg/Kg mg/Kg	< 0.15 < 0.27	U < 0.16 U < 0.27	U < 0.15 U < 0.26	U < 0.24 U < 0.42	U < 0.15 L U < 0.27 L		< 0.14 U < 0.25 U	< 0.23 U < 0.4 U								
2,4-Dinitrophenol	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
2,4-Dinitrotoluene 2,6-Dinitrotoluene	mg/Kg	< 0.15	U < 0.16 U < 0.16	U < 0.15 U < 0.15		U < 0.15 L U < 0.15 L		< 0.14 U									
2-Chloronaphthalene	mg/Kg mg/Kg	< 0.15 < 0.27	U < 0.27	U < 0.26		U < 0.15 L U < 0.27 L											
2-Chlorophenol	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
2-Methylnaphthalene 2-Methylphenol (o-cresol)	mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26	U < 0.42 U < 0.42	U < 0.27 L U < 0.27 L		< 0.25 U < 0.25 U	< 0.4 U								
2-Nitroaniline	mg/Kg mg/Kg	< 0.27	U < 0.27	U < 0.26		U < 0.27 L		< 0.25 U	< 0.4 U								
2-Nitrophenol	mg/Kg	< 0.27		U < 0.26		U < 0.27 L											
3&4-Methylphenol (m&p-cresol) 3,3'-Dichlorobenzidine	mg/Kg mg/Kg	< 0.27 < 0.15	U < 0.27 U < 0.16	U < 0.26 U < 0.15		U < 0.27 L U < 0.15 L		< 0.25 U < 0.14 U									
3-Nitroaniline	mg/Kg	< 0.77	U < 0.78	U < 0.75	U < 1.2	U < 0.76 L	J < 0.79 U	< 0.71 U	< 1.1 U								
4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L		1 1 1									
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	mg/Kg mg/Kg	< 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26	U < 0.42 U < 0.42	U < 0.27 L U < 0.27 L		< 0.25 U < 0.25 U	< 0.4 U								+ +
4-Chloroaniline	mg/Kg	< 0.77	U < 0.78	U < 0.75	U < 1.2	U < 0.76 L	J < 0.79 U	< 0.71 U	< 1.1 U								
4-Chlorophenyl phenyl ether 4-Nitroaniline	mg/Kg mg/Kg	< 0.27 < 1.9	U < 0.27 U < 2	U < 0.26 U < 1.9		U < 0.27 L U < 1.9 L									\perp		
4-Nitrophenol	mg/Kg mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L											+ +
Acenaphthene	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U									
Acetophenone	mg/Kg mg/Kg	< 0.15 < 0.27	U < 0.16 U < 0.27	U < 0.15 U < 0.26		U < 0.15 L U < 0.27 L											+
Anthracene	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
Atrazine	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L		< 0.25 U	< 0.4 U								
Benz(a)anthracene Benzaldehyde	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L		< 0.25 U < 0.25 U	< 0.4 U < 0.4 U								+ +
	mg/Kg	< 0.15	U < 0.16	U < 0.15		U < 0.15 L											
Benzo(shi)pendene	mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L											
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/Kg mg/Kg	< 0.27	U < 0.27	U < 0.26		U < 0.27 L											
Benzyl butyl phthalate	mg/Kg	< 0.27	U < 0.27	U < 0.26		U < 0.27 L		< 0.25 U									
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	mg/Kg mg/Kg	< 0.27 < 0.15	U < 0.27 U < 0.16	U < 0.26 U < 0.15	U < 0.42 U < 0.24	U < 0.27 L U < 0.15 L		< 0.25 U < 0.14 U	< 0.4 U < 0.23 U								
Bis(2-ethylhexyl)phthalate	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
Caprolactam	mg/Kg	< 0.27	U < 0.27	U < 0.26		U < 0.27 L											
Carbazole Chrysene	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L		< 0.25 U < 0.25 U									
Dibenz(a,h)anthracene	mg/Kg	< 0.15		U < 0.15	U < 0.24	U < 0.15 L	J < 0.16 U	< 0.14 U	< 0.23 U								
Dibenzofuran Diethyl phthalate	mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26	U < 0.42 U < 0.42	U < 0.27 L U < 0.27 L		< 0.25 U < 0.25 U	< 0.4 U < 0.4 U								
Dimethylphthalate	mg/Kg mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
Di-n-butylphthalate	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L											
Di-n-octylphthalate Fluoranthene	mg/Kg mg/Kg	< 0.27 < 0.27	U < 0.27 U < 0.27	U < 0.26 U < 0.26		U < 0.27 L U < 0.27 L											
Fluorene	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
Hexachlorobenzene Hexachlorobutadiene	mg/Kg	< 0.15 < 0.27	U < 0.16 U < 0.27	U < 0.15 U < 0.26		U < 0.15 L U < 0.27 L		1									
Hexachlorocyclopentadiene	mg/Kg mg/Kg	< 0.27	U < 0.27 U < 0.27	U < 0.26	U < 0.42	U < 0.27 L U < 0.27 L		< 0.25 U	< 0.4 U								
Hexachloroethane	mg/Kg	< 0.15	U < 0.16	U < 0.15	U < 0.24	U < 0.15 L	J < 0.16 U	< 0.14 U	< 0.23 U								
Indeno(1,2,3-cd)pyrene	mg/Kg	< 0.27 < 0.15	U < 0.27 U < 0.16	U < 0.26 U < 0.15		U < 0.27 L U < 0.15 L		< 0.25 U < 0.14 U	< 0.4 U < 0.23 U								
Isophorone Naphthalene	mg/Kg mg/Kg	< 0.15	U < 0.27	U < 0.26		U < 0.27 L											
Nitrobenzene	mg/Kg	< 0.15	U < 0.16	U < 0.15		U < 0.15 U		< 0.14 U									
N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	mg/Kg mg/Kg	< 0.27 < 0.15	U < 0.27 U < 0.16	U < 0.26 U < 0.15		U < 0.27 L U < 0.15 L		2									
N-Nitrosodiphenylamine	mg/Kg	< 0.15	U < 0.16	U < 0.15	U < 0.24	U < 0.15 L	J < 0.16 U	< 0.14 U	< 0.23 U								
Pentachlorophenol	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L U < 0.15 L		< 0.25 U	< 0.4 U		_			1			
Phenanthrene Phenol	mg/Kg mg/Kg	< 0.15 < 0.27	U < 0.16 U < 0.27	U < 0.15 U < 0.26		U < 0.15 L U < 0.27 L		< 0.14 U < 0.25 U	< 0.23 U < 0.4 U								+ +
Pyrene	mg/Kg	< 0.27	U < 0.27	U < 0.26	U < 0.42	U < 0.27 L	J < 0.28 U	< 0.25 U	< 0.4 U								
Pesticides - Soil by SW8081B	ma/Va	< 0.0023	U < 0.0023	U < 0.0023	U < 0.0024	U < 0.0023 L	J < 0.0023 U	< 0.0021 U	< 0.0023 U								+
4,4' -DDD 4,4' -DDE	mg/Kg mg/Kg			U < 0.0023		U < 0.0023 L	J < 0.0023 U		< 0.0023 U								+ +
4,4' -DDT	mg/Kg	< 0.0023	U < 0.0023		U < 0.0024	U < 0.0023 L	J < 0.0023 U	< 0.0021 U									
a-BHC a-Chlordane	mg/Kg mg/Kg	< 0.0078 < 0.0039	U < 0.0076 U < 0.0038	U < 0.0075 U < 0.0038		U < 0.0076 L U < 0.0038 L		< 0.007 U < 0.0035 U	< 0.0076 U < 0.0038 U								+
Alachlor	mg/Kg mg/Kg	< 0.0039	U < 0.0038	U < 0.0038	U < 0.004	U < 0.0038 L	J < 0.0039 U	< 0.0035 U	< 0.0038 U					<u> </u>			
Aldrin	mg/Kg		U < 0.0038		U < 0.004												
b-BHC Chlordane	mg/Kg mg/Kg	< 0.0078 < 0.039		U < 0.0075 U < 0.038	U < 0.0079 U < 0.04	U < 0.038 L	J < 0.039 U										+ +
d-BHC	mg/Kg	< 0.0078	U < 0.0076	U < 0.0075	U < 0.0079	U < 0.0076 L	J < 0.0077 U	< 0.007 U	< 0.0076 U								
Dieldrin Endosulfan I	mg/Kg	< 0.0039 < 0.0078	U < 0.0038 U < 0.0076	U < 0.0038 U < 0.0075	U < 0.004	U < 0.0038 L U < 0.0076 L		< 0.0035 U	< 0.0038 U		_			1			
Endosulfan I Endosulfan II	mg/Kg mg/Kg	< 0.0078	U < 0.0076	U < 0.0075	U < 0.0079	U < 0.0076 L											+ +
Endosulfan sulfate	mg/Kg	< 0.0078	U < 0.0076	U < 0.0075	U < 0.0079	U < 0.0076 L	J < 0.0077 U	< 0.007 U	< 0.0076 U								
Endrin	mg/Kg		U < 0.0076 U < 0.0076	U < 0.0075 U < 0.0075		U < 0.0076 L U < 0.0076 L											+
Endrin aldehyde Endrin ketone	mg/Kg mg/Kg	< 0.0078	U < 0.0076	U < 0.0075	U < 0.0079	U < 0.0076 L	J < 0.0077 U	< 0.007 U						<u></u>			<u> </u>
g-BHC	mg/Kg	< 0.0016	U < 0.0015	U < 0.0015	U < 0.0016	U < 0.0015 L	J < 0.0015 U	< 0.0014 U	< 0.0015 U					1			
g-Chlordane Heptachlor	mg/Kg mg/Kg	< 0.0039 < 0.0078	U < 0.0038 U < 0.0076	U < 0.0038 U < 0.0075	U < 0.004 U < 0.0079	U < 0.0038 L U < 0.0076 L		< 0.0035 U < 0.007 U		+	+			+			+
Heptachlor epoxide	mg/Kg mg/Kg	< 0.0078	U < 0.0076	U < 0.0075	U < 0.0079	U < 0.0076 L	J < 0.0077 U	< 0.007 U	< 0.0076 U								
Methoxychlor	mg/Kg	< 0.039	U < 0.038	U < 0.038	U < 0.04	U < 0.038 L	J < 0.039 U	< 0.035 U	< 0.038 U								
Toxaphene NI FPH Category 1 (Fuel #2/Diesel) By NIF	mg/Kg	< 0.16	U < 0.15	U < 0.15	U < 0.16	U < 0.15 L	J < 0.15 U	< 0.14 U	< 0.15 U	 				-			+
NJ EPH Category 1 (Fuel #2/Diesel) By NJE >C28-C40	PH 10-08 R3 mg/kg	< 12	U < 12	U < 11	U < 12	U <11 U	J < 12 U	< 11 U	< 12 U		<u> </u>			<u> </u>			<u> </u>
C9-C28	mg/kg			U < 11	U < 12	U < 11 L	J < 12 U	< 11 U									
Total EPH 1-4 Dioxane	mg/kg	< 12	U < 12	U < 11	U < 12	U <11 U) <12 U	< 11 U	< 12 U	 				-			+
1,4-dioxane	mg/Kg									< 0.07 U	< 0.062	U < 0.069	U < 0.068 U	< 0.074	U < 0.071 U	< 0.068 U	< 0.059 U
		_										-					

Sample ID		COMP WC6A (5-10)	COMP WC6B (10-15)	COMP WC7A (5-10)	COMP WC7B (10-15)	COMP WC7PA (5-10)	COMP WC7PB (10-15)	WC6A-03 (8-9)	WC6B-03 (13-14)	WC7A-03 (7-8)	WC7B-03 (11-12)	WC7PA-04 (7-8)	WC7PB-04 (11-12)
Sampling Date		7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022
	Units	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll
Client Matrix													
Compound Missellaneaus (Inergenies		Result Q	•			Result Q	-	Result Q	-	Result Q			Q Result (
Miscellaneous/Inorganics Percent Solid	%	mg/kg 95	mg/kg 81	mg/Kg 91	mg/Kg 82	mg/kg 93	mg/kg 84	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/kg	mg/Kg
Corrosivity	Pos/Neg	Negative	Negative	Negative	Negative	Negative	Negative						
Flash Point	Degree F	>200	>200	>200	>200	>200	>200						
gnitability	degree F	Passed 7.36	Passed 7.53	Passed 7.04	Passed 7.4	Passed 7.15	Passed 6.99						
oH at 25C - Soil Reactivity Cyanide	pH Units mg/Kg	< 5	7.55 < 6	7.04 < 5	< 6	7.15 < 5	< 6						
Reactivity Sulfide	mg/Kg	< 20	< 20	< 20	< 20	< 20	< 20						
Reactivity	Pos/Neg	Negative	Negative	Negative	Negative	Negative	Negative						
Redox Potential	mV	212	202	220	180	134	98.4						
Total Cyanide (SW9010C Distill.) Metals, Total	mg/Kg	< 0.53	< 0.62	< 0.55	< 0.61	< 0.54	< 0.60						
Aluminum	mg/Kg	4,040	4,200	4,390	3,450	4,380	3,770						
Antimony	mg/Kg	< 3.4	< 3.7	< 3.4	< 3.7	< 3.3	< 3.8						
Arsenic	mg/Kg	< 0.67	< 0.74	< 0.68	< 0.74	< 0.66	< 0.75						
Barium	mg/Kg	28.2	21.4	25.7	21.7	23.8	20.7						
Beryllium Cadmium	mg/Kg mg/Kg	< 0.27 0.65	< 0.30 0.88	< 0.27 0.71	< 0.30 0.79	< 0.26 0.72	< 0.30 0.8					 	
Calcium	mg/Kg mg/Kg	663	598	703	509	833	692		+			+	+
Chromium	mg/Kg	10.4	12.4	11.7	7.33	13.1	9.66						
Chromium, Hexavalent	mg/Kg												
Cobalt	mg/Kg	4.22	5.51 8.7	4.2 9.7	3.89 7.6	4.81	4.98						
Copper ron	mg/kg mg/Kg	9.6 8,650	12,700	10,100	15,900	9.1 10,600	8.1 12,800					+	
_ead	mg/Kg	4.37	3.52	4.55	2.99	5.62	4.85						
Magnesium	mg/Kg	1,890	1,570	2,030	1,310	2,170	1,600						
Manganese	mg/Kg	293	309	268	189	267	274						
Mercury	mg/Kg	< 0.03 18.5	< 0.03	< 0.03 17.1	< 0.03	< 0.03 26.7	< 0.03						
Nickel Potassium	mg/Kg mg/Kg	669	18.1 746	708	14.1 523	600	16.8 578						
Selenium	mg/Kg	< 1.3	< 1.5	< 1.4	< 1.5	< 1.3	< 1.5						
Silver	mg/Kg	< 0.34	< 0.37	< 0.34	< 0.37	< 0.33	< 0.38						
Sodium	mg/Kg	79.4	70.3	113	91.5	106	88.1						
Thallium	mg/Kg	< 3.0 14.3	< 3.3 15.3	< 3.1 14.6	< 3.3 15.7	< 3.0 14.4	< 3.4 19						
Vanadium Zinc	mg/Kg mg/Kg	13.9	20.7	14.6	16.9	14.4	17.9						
Metals, TCLP	6/1.6												
TCLP Arsenic	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						
TCLP Barium	mg/L	0.45	0.16	0.45	0.4	0.38	0.38						
TCLP Cadmium TCLP Chromium	mg/L	< 0.050 < 0.10											
TCLP Lead	mg/L mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						
CCLP Mercury	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002						
TCLP Selenium	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						
TCLP Silver	mg/L	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						
SVOA TICS 11-Tricosene	ug/Kg												
1-Docosene	ug/Kg												
L-Nonadecene	ug/Kg												
L-Nonadecene Isomer (RT 7.493)	ug/Kg												
L-Octadecene 2-Pentanone, 4-hydroxy-4-methyl-	ug/Kg												
5-Pentanone, 4-nydroxy-4-metnyi- 5-Eicosene, (E)-	ug/Kg ug/Kg												
Octadecene, (E)-	ug/Kg												
-Eicosene, (E)-	ug/Kg												
enzoic acid, 4-ethoxy-, ethyl est	ug/Kg												
leneicosane	ug/Kg												
nknown hydrocarbon PCBs By SW8082A	ug/Kg												
PCB-1016	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						
CB-1221	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						
CB-1232	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						
PCB-1242	mg/Kg	< 0.35 < 0.35	< 0.4 < 0.4	< 0.36 < 0.36	< 0.4 < 0.4	< 0.36 < 0.36	< 0.39 < 0.39						
PCB-1248 PCB-1254	mg/Kg mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						
PCB-1260	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39			+			
PCB-1262	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						
CB-1268	mg/Kg	< 0.35	< 0.4	< 0.36	< 0.4	< 0.36	< 0.39						

Semple Color March Color March Color Col	Sample ID		COMP WC6A (5-10)	COMP WC6B (10-1	5) COMP WC7A (5-10) COMP WC7B (10	-15) COMP WC7PA	(5-10) COMP WC7PB (10-15)	WC6A-03 (8-9)	WC6B-03 (13-14)	WC7A-03 (7-8)	WC7B-03 (11-12)	WC7PA-04 (7-8)	WC7PB-04 (11-12)
Companies	Sampling Date		7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/20	22 7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022
Value Valu	Client Matrix	Units	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll	Soll
1.1 Proposed company	Compound		Result	Q Result	Q Result	Q Result	Q Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
1.1 Proposed company	Volatiles By SW8260C			-										
1.1.2 Persolvemente mg/kg		mg/Kg							< 0.0052	< 0.004	< 0.0048	< 0.0043	< 0.61	< 1.6
1.1.2 Processores									< 0.0052	< 0.004	< 0.0048	< 0.0043	< 0.61	< 1.6
\$1,000 \$	1,1,2-Trichloroethane	mg/Kg							< 0.0052	< 0.004	< 0.0048	< 0.0043	< 0.61	< 1.6
1.2.3 Post International C.00005	1,1-Dichloroethane	mg/Kg												< 1.6
1.2.4 Enterospension mg/rd														
1.2 Demonstratives 0.776		mg/Kg												
1.2 Determediation		mg/Kg												
1.50 Descriptors 1.50 Per 1														
1.50 1.50														
1.20 Interformerse														
1.3 Definitionisments														
1.4 Chairméannaine														
Effection														
Exhibity 2-portations														
Retorie														
Second														
Bromochiomoretheme mg/Mg														
Semonto-incomentance														
Strongerhame														
Edmonthstane														
Carbon Disurified mg/Rg														
Carbon tetrachionice														
Chicorethrene														
Chlorostane														
Chloroform mg/kg														
Chloromethane														
Institution														
15.1.3.10chlorogropene														
Cyclobrane														
Ditromochloromethane														
Dichrordifucromethane														
Ethylbenzene														
Sopropilenzene mg/Kg														
mg/kg														
Methyl ethyl ethyl ethyl ethyl ethyl ethyl pethyl														
Methyls-bulylether (MTBE) mg/kg														
Methylacetate mg/Kg			1				1							
Methyloptohexane mg/kg			1				1							
Methylene chloride mg/Kg < 0.026						-								
oxylene mg/Kg < 0.0052 < 0.004 < 0.0048 < 0.0043 < 0.61 < 1.6 Itruchloroethene mg/Kg < 0.0052			1	+			1							
Styrene mg/Kg			1	+			1							
Tetrachloroethene mg/Kg			1	+			1							
Toluen														
Total Xylenes mg/Kg							++							
Trans-1_2-Dichloroethene mg/Kg							++							
trans-1,3-Dichloropropene mg/Kg < 0.0052							++							
Trichtorothene mg/Kg														
Trichlorofluoromethane mg/kg < 0.0052 < 0.004 < 0.0048 < 0.0043 < 0.61 < 1.6 Trichlorotrifluoroethane mg/kg < 0.0052			1											
Trichlorotrifluoroethane mg/Kg < < 0.0052 < 0.004 < 0.0048 < 0.0043 < 0.61 < 1.6			1	+			1							
			1	+			1							
	Vinyl chloride	mg/kg mg/Kg				+	1		< 0.0052	< 0.004	< 0.0048	< 0.0043	< 0.61	< 1.6

Sample ID		COMP WC6A (5-10)	COMP WC6B (10-15)	COMP WC7A (5-10)	COMP WC7B (10-15)	COMP WC7PA (5-10)	COMP WC7PB (10-15)	WC6A-03 (8-9)	WC6B-03 (13-14)	WC7A-03 (7-8)	WC7B-03 (11-12)	WC7PA-04 (7-8)	WC7PB-04 (11-12
ampling Date		7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022	7/13/2022
lient Matrix	Units	Soll	Soll	Soll	Soll	Soli	Soll	Soll	Soll	Soll	Soll	Soll	Soll
ompound		Result	Q Result Q	Result (Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result	Result
emivolatiles By SW8270D		.004		. 0.05	.000		.0.07						
1-Biphenyl 2,4,5-Tetrachlorobenzene	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
2'-0xybis(1-Chloropropane)	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
3,4,6-tetrachlorophenol 4,5-Trichlorophenol	mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
,4,6-Trichlorophenol	mg/Kg mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
,4-Dichlorophenol	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
,4-Dimethylphenol ,4-Dinitrophenol	mg/Kg	< 0.24 < 0.55	< 0.28 < 0.64	< 0.25 < 0.57	< 0.28	< 0.25 < 0.56	< 0.27 < 0.62						
,4-Dinitrotoluene	mg/Kg mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
,6-Dinitrotoluene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
!-Chloronaphthalene !-Chlorophenol	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
-Methylnaphthalene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	9.2	1.9						
2-Methylphenol (o-cresol)	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
2-Nitroaniline 2-Nitrophenol	mg/Kg mg/Kg	< 0.55 < 0.24	< 0.64 < 0.28	< 0.57 < 0.25	< 0.64 < 0.28	< 0.56 < 0.25	< 0.62 < 0.27						
&4-Methylphenol (m&p-cresol)	mg/Kg	< 0.34	< 0.4	< 0.36	< 0.4	< 0.35	< 0.39						
3,3'-Dichlorobenzidine 3-Nitroaniline	mg/Kg mg/Kg	< 0.41 < 0.55	< 0.48 < 0.64	< 0.43 < 0.57	< 0.48 < 0.64	< 0.42 < 0.56	< 0.47 < 0.62						
,6-Dinitro-2-methylphenol	mg/Kg	< 1	< 1.2	<1	< 1.2	<1	< 1.1						
-Bromophenyl phenyl ether	mg/Kg	< 0.34	< 0.4	< 0.36	< 0.4	< 0.35	< 0.39						
-Chloro-3-methylphenol -Chloroaniline	mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
-Chlorophenyl phenyl ether	mg/Kg mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27		+			+	
-Nitroaniline	mg/Kg	< 0.55	< 0.64	< 0.57	< 0.64	< 0.56	< 0.62						
-Nitrophenol cenaphthene	mg/Kg mg/Kg	< 1 < 0.24	< 1.2 < 0.28	< 1 < 0.25	< 1.2 < 0.28	< 1 < 0.25	< 1.1 < 0.27		+				
Acenaphthylene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Acetophenone	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
anthracene strazine	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
Benz(a)anthracene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Benzaldehyde	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
lenzo(b)fluoranthene	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
Benzo(ghi)perylene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
lenzo(k)fluoranthene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
lenzyl butyl phthalate	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
is(2-chloroethoxy)methane is(2-chloroethyl)ether	mg/Kg mg/Kg	< 0.24 < 0.34	< 0.28 < 0.4	< 0.25 < 0.36	< 0.28 < 0.4	< 0.25 < 0.35	< 0.27 < 0.39						
is(2-ethylhexyl)phthalate	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
aprolactam	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
arbazole Phrysene	mg/Kg mg/Kg	< 0.34 < 0.24	< 0.4 < 0.28	< 0.36 < 0.25	< 0.4 < 0.28	< 0.35 < 0.25	< 0.39 < 0.27						
Dibenz(a,h)anthracene	mg/Kg	< 0.17	< 0.2	< 0.18	< 0.2	< 0.18	< 0.19						
Dibenzofuran	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Diethyl phthalate Dimethylphthalate	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
Di-n-butylphthalate	mg/Kg	< 0.69	< 0.8	< 0.72	< 0.8	< 0.7	< 0.78						
Di-n-octylphthalate	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Fluoranthene Fluorene	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
Hexachlorobenzene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
lexachlorobutadiene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Hexachlorocyclopentadiene Hexachloroethane	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	< 0.25 < 0.25	< 0.27 < 0.27						
ndeno(1,2,3-cd)pyrene	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
sophorone	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
Naphthalene Nitrobenzene	mg/Kg mg/Kg	< 0.24 < 0.24	< 0.28 < 0.28	< 0.25 < 0.25	< 0.28 < 0.28	5.2 < 0.25	1.3						
-Nitrosodimethylamine	mg/Kg	< 0.34	< 0.4	< 0.36	< 0.4	< 0.35	< 0.39						
-Nitrosodi-n-propylamine	mg/Kg	< 0.17	< 0.2	< 0.18	< 0.2	< 0.18	< 0.19						
I-Nitrosodiphenylamine Pentachlorophenol	mg/Kg	< 0.34 < 0.34	< 0.4 < 0.4	< 0.36 < 0.36	< 0.4 < 0.4	< 0.35 < 0.35	< 0.39 < 0.39						
henanthrene	mg/Kg mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
henol	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27						
yrene esticides - Soil by SW8081B	mg/Kg	< 0.24	< 0.28	< 0.25	< 0.28	< 0.25	< 0.27			 			1
esticides - Soil by SW8081B ,4' -DDD	mg/Kg	< 0.0021	< 0.0024	< 0.0021	< 0.0024	< 0.0021	< 0.0024						
,4'-DDE	mg/Kg	< 0.0021	< 0.0024	< 0.0021	< 0.0024	< 0.0021	< 0.0024						
4'-DDT BHC	mg/Kg	< 0.0021 < 0.0069	< 0.0024 < 0.008	< 0.0021 < 0.0071	< 0.0024 < 0.008	< 0.0021 < 0.0072	< 0.0024 < 0.0079		\perp	T		1	1
Chlordane	mg/Kg mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079					+	
achlor	mg/Kg	< 0.0035	< 0.004	< 0.0036	< 0.004	< 0.0036	< 0.0039						
drin BHC	mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079	T	 	<u> </u>		 	
BHC nlordane	mg/Kg mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079					+	
BHC	mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079						
eldrin	mg/Kg	< 0.0035 < 0.0069	< 0.004 < 0.008	< 0.0036 < 0.0071	< 0.004 < 0.008	< 0.0036 < 0.0072	< 0.0039 < 0.0079		\perp	T		1	
ndosulfan I ndosulfan II	mg/Kg mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079					+	
ndosulfan sulfate	mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079						
ndrin	mg/Kg	< 0.0069	< 0.008	< 0.0071	< 0.008	< 0.0072	< 0.0079						
ndrin aldehyde ndrin ketone	mg/Kg mg/Kg	< 0.0069 < 0.0069	< 0.008 < 0.008	< 0.0071 < 0.0071	< 0.008 < 0.008	< 0.0072 < 0.0072	< 0.0079 < 0.0079		+				
BHC	mg/Kg mg/Kg	< 0.0069	< 0.0016	< 0.0071	< 0.0016	< 0.0072	< 0.0079						
-Chlordane	mg/Kg	< 0.0035	< 0.004	< 0.0036	< 0.004	< 0.0036	< 0.0039						
eptachlor	mg/Kg	< 0.0069 < 0.0069	< 0.008 < 0.008	< 0.0071 < 0.0071	< 0.008 < 0.008	< 0.0072 < 0.0072	< 0.0079 < 0.0079			 			
eptachlor epoxide lethoxychlor	mg/Kg mg/Kg	< 0.0069	< 0.008	< 0.036	< 0.008	< 0.0072	< 0.0079		+			+	
oxaphene	mg/Kg	< 0.14	< 0.16	< 0.14	< 0.16	< 0.14	< 0.16						
U EPH Category 1 (Fuel #2/Diesel) By NJE	PH 10-08 R3	Z 40	< 10	< 11	< 10	2.11	< 12		\perp	T		1	
-C28-C40 :9-C28	mg/kg mg/kg	< 10 < 10	< 12 < 12	< 11 < 11	< 12 < 12	< 11 300	< 12 < 12					+	
		< 10	< 12	< 11	< 12	300	< 12						
otal EPH	mg/kg												

Sample ID	WC1-02 (0-5)	WC1-03 (10-15)	WC1-04 (5-10)	WC2-01 (0-5)	WC-2 (2-3)	WC-3 (2-3)	WC4-04 (3-4)	WC5-03 (0-1)	WC4-04 (COMP)	WC5 (COMP)	WC1 (COMP) (0-5)	WC1 (COMP) (5-10)	WC1 (COMP) (10-15)	WC2 (COMP)	WC3 (COMP)
	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022
Sampling Date Client Matrix	Soil	Soil	Soil	Soll	Soll	Soil	Soil	Soll	Soll	Soil	Soll	Soil	Soil	Soil	Soll
Compound	Result 0	Q Result C		· · · · · · · · · · · · · · · · · · ·	Result		Q Result C		Result 0	Result 0	+	<u> </u>		-	O Result O
VOA, 8260 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	noont Q	Rodale	2 Roourt Q	- Rooalt Q	Roduit	2 Noout	y Rooan y
Dilution Factor	1	1 J 0.00260 L	1 0.00220 U	1 0.00230 U	1 0.00240	1	1 U 0.00230 U	1 J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.00240 U 0.00240 U	J 0.00260 L		0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,1,2,2-Tetrachloroethane	0.00240 U	J 0.00260 L	0.000=0	0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00240 U	J 0.00260 L		0.00200	0.00240	0.00230		J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane 1,1-Dichloroethane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.00220 U 0.00220 U	0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,1-Dichloroethylene	0.00240 U	J 0.00260 L			0.00240		U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,1-Dichloropropylene	0.00240 U	J 0.00260 L		0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.000=0	0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,2,4,5-Tetramethylbenzene	0.00240 U	J 0.00260 L		0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,2,4-Trichlorobenzene	0.00240 U	J 0.00260 L		0.00230 U	0.00240 I	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.00220	0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L	0.00200 0	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,2-Dibromoethane	0.00240 U	J 0.00260 L		0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	0.00240 U	J 0.00260 L	******	0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U	0.00240 I	0.00230	U 0.00230 L U 0.00230 L	J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,2-Dichloropropane 1.3.5-Trimethylbenzene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U 0.00230 U	0.00240	J 0.00230 J 0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,3-Dichlorobenzene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
1,3-Dichloropropane	0.00240 U	J 0.00260 L		0.00230 U	0.00240	0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
1,4-Dichlorobenzene 1,4-Dioxane	0.00240 U 0.0480 U	J 0.00260 L J 0.0520 L		0.00230 U 0.0450 U	0.00240 I	J 0.00230 J 0.0460	U 0.00230 L U 0.0460 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
2,2-Dichloropropane	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
2-Butanone	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
2-Chloroethylvinyl ether 2-Chlorotoluene	0.00950 U 0.00240 U	J 0.0100 L J 0.00260 L		0.00910 U 0.00230 U	0.00960 I	J 0.00920 J 0.00230	U 0.00930 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
2-Hexanone	0.00240 U	J 0.00260 L	******	0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
4-Chlorotoluene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
4-Methyl-2-pentanone Acetone	0.00240 U 0.00480 J	J 0.00260 L J 0.00970 J	0.00220 U 0.00450 U	0.00230 U 0.00450 U	0.00240 I	J 0.00230 J 0.00460	U 0.00230 L U 0.00460 L	J 0.00230 U J 0.00450 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Acrolein	0.00480 J	J 0.00520 L		0.00450 U	0.00640		U 0.00460 L	0.00100	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Acrylonitrile	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Allyl chloride	0.00240 U	J 0.00260 L	******	0.00230 U	0.00240	0.00230	U 0.00230 L		NT	NT N T	NT NT	NT	NT NT	NT NT	NT
Benzene Bromobenzene	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L	J 0.00230 U J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Bromochloromethane	0.00240 U	J 0.00260 L		0.00230 U	0.00240	0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Bromodichloromethane	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Bromoform Bromomethane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Carbon disulfide	0.00240 U	J 0.00260 L		0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Carbon tetrachloride	0.00240 U		0.00220 U	0.00230 U	0.00240	0.00230		J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Chlorobenzene Chloroethane	0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Chloroform	0.00240 U	J 0.00260 L		0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Chloromethane	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
cis-1,2-Dichloroethylene cis-1,3-Dichloropropylene	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Cyclohexane	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Dibromochloromethane	0.00240 U	J 0.00260 L	0.00220	0.00230 U	0.00240 I	J 0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Dibromomethane Dishlaradifluoremethana	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.00220 0	0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Dichlorodifluoromethane Dijsopropyl ether (DIPE)	0.00240 U		0.00220 U		0.00240	J 0.00230 J 0.00370	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Ethanol	0.0380 U	J 0.0420 L		0.0360 U	0.0380	J 0.0370	U 0.0370 L		NT	NT	NT	NT	NT	NT	NT
Ethyl Benzene	0.00240 U	J 0.00260 L			0.002.10			J 0.00230 U	NT NT	NT NT	NT	NT	NT	NT	NT NT
Ethyl tert-butyl ether (ETBE) Hexachlorobutadiene	0.00380 U 0.00240 U	J 0.00420 L J 0.00260 L	0.00360 U 0.00220 U	0.00360 U 0.00230 U	0.00380 I	J 0.00370 J 0.00230	U 0.00370 L U 0.00230 L	0.00000	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Iodomethane	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene Mathyl agotato	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Methyl acetate Methyl Methacrylate	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.00220 U 0.00220 U	0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L U 0.00230 L	J 0.00230 U J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Methyl tert-butyl ether (MTBE)	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Methylcyclohexane Methylene chloride	0.00240 U 0.0260	0.00260 L 0.0310	0.00220 U 0.0240	0.00230 U 0.0210	0.00240 I	0.00230 0.0230	U 0.00230 L 0.0210	0.00230 U 0.0280	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Metnylene chloride Naphthalene	0.0260 0.00240 U	J 0.00260 L		0.0210 0.00230 U	0.00240	J 0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
n-Butylbenzene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
n-Propylbenzene o-Xylene	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L	0.00220 U 0.00220 U	0.00230 U 0.00230 U	0.00240 I		U 0.00230 L	J 0.00230 U J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
p- & m- Xylenes	0.00240 U		0.00220 U					J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
p-Diethylbenzene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
p-Ethyltoluene p-Isopropyltoluene	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
p-isopropyitoluene sec-Butylbenzene	0.00240 U	J 0.00260 L		0.00230 U	0.00240		U 0.00230 L U 0.00230 L		NI NT	NT NT	NI NT	NI NT	NI NT	NI NT	NI NT
Styrene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240 I	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
tert-Amyl alcohol (TAA)	0.0380 U	J 0.0420 L J 0.00420 L		*******	0.0380		U 0.0370 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
tert-Amyl methyl ether (TAME) tert-Butyl alcohol (TBA)	0.00380 U 0.00240 U		0.00360 U 0.00220 U	0.00000	0.00000	0.00010		J 0.00360 U J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
tert-Butylbenzene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethylene	0.00240 U		0.00220 U		0.00240	0.00200		J 0.00230 U	NT	NT	NT	NT	NT	NT	NT NT
Tetrahydrofuran Toluene	0.00480 U 0.00240 U	J 0.00520 L J 0.00260 L	0.00450 U 0.00220 U		0.00480 I		U 0.00460 L U 0.00230 L	J 0.00450 U J 0.00230 U	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
trans-1,2-Dichloroethylene	0.00240 U	J 0.00260 L			0.00240		U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
trans-1,3-Dichloropropylene	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
trans-1,4-dichloro-2-butene Trichloroethylene	0.00240 U	J 0.00260 L	******	0.00230 U	0.00240	0.00230	U 0.00230 L		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Trichloroethylene Trichlorofluoromethane	0.00240 U 0.00240 U	J 0.00260 L J 0.00260 L		0.00230 U 0.00230 U	0.00240 I	J 0.00230 J 0.00230	0.00200	J 0.00230 U J 0.00230 U	NI NT	NT NT	NI NT	NI NT	NI NT	NI NT	NI NT
Vinyl acetate	0.00240 U	J 0.00260 L	0.00220 U	0.00230 U	0.00240	J 0.00230	U 0.00230 L	J 0.00230 U	NT	NT	NT	NT	NT	NT	NT
Vinyl Chloride	0.00240 U	J 0.00260 L	0.00220	0.00230 U	0.00240	0.00230	U 0.00230 L		NT	NT	NT	NT	NT	NT	NT
Xylenes, Total	0.00720 U	J 0.00780 L	0.00670 U	0.00680 U	0.00720	0.00690	U 0.00690 L	J 0.00680 U	NT	NT	NT	NT	NT	NT	NT

Sample ID	WC1-02 (0-5)	WC1-03 (10-15)	WC1-04 (5-10)	WC2-01 (0-5)	WC-2 (2-3)	WC-3 (2-3)	WC4-04 (3-4)	WC5-03 (0-1)	WC4-04 (COMP)	WC5 (COMP)	WC1 (COMP) (0-5)	WC1 (COMP) (5-10)	WC1 (COMP) (10-15)	WC2 (COMP)	WC3 (COMP)
Sampling Date	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022
Client Matrix	Soll	Soll	Soil	Soll	Soll	Soil	Soll	Soll	Soll	Soll	Soll	Soll	Soil	Soll	Soll
Compound	Result Q	Result Q		Q Result C	+		Result Q	Result Q		1	Result (Result Q	Result Q
VOA, TCLP MASTER	•	,				,		,	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor 1,1-Dichloroethylene	NT	NT	NT	NT	NT	NT	NT	NT	10 0.0250 U	10 0.0250 U	10 0.0250	10 J 0.0250 U	10 0.0250 U	10 0.0250 U	10 0.0250 U
1,2-Dichloroethane	NT	NT NT	NT	NT	NT	NT	NT NT	NT	0.0250 U	0.0250 U	0.0250 U	J 0.0250 U	0.0250 U	0.0250 U	0.0250 U
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.0250 U	0.0250 U	0.0250 l	J 0.0250 U	0.0250 U	0.0250 U	0.0250 U
2-Butanone Benzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0250 U 0.0250 U	0.0250 U	0.0250 U	J 0.0250 U J 0.0250 U	0.0250 U 0.0250 U	0.0250 U 0.0250 U	0.0250 U 0.0250 U
Carbon tetrachloride	NT	NT	NT	NT	NT	NT	NT	NT	0.0250 U					0.0250 U	0.0250 U
Chlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.0250 U	0.0250 U	0.0250 U	0.0200	0.0250 U	0.0250 U	0.0250 U
Chloroform Tetrachloroethylene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0250 U 0.0250 U	0.0250 U	0.0250 L 0.0250 L	J 0.0250 U J 0.0250 U	0.0200	0.0250 U 0.0250 U	0.0250 U 0.0250 U
Trichloroethylene	NT	NT	NT	NT	NT	NT	NT	NT	0.0250 U	0.0250 U	0.0250 l	0.0250 U		0.0250 U	0.0250 U
Vinyl Chloride	NT	NT	NT	NT	NT	NT	NT	NT	0.0250 U	0.0250 U	0.0250 l	J 0.0250 U	0.0250 U	0.0250 U	0.0250 U
Volatile Organics, Tentatively Identified Cmpds. Dilution Factor	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1							
Tentatively Identified Compounds	0 U	0 U	0	U 0 L	0 U	0 U	0 U	0 U	NT	NT	NT	NT	NT	NT	NT
Semi-Volatiles, Tentatively Identified Cmpds.									mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor Tentatively Identified Compounds	NT	NT	NT	NT	NT	NT	NT	NT	0 U	0 U	0 1	J 0 U	0 U	0 U	0 U
SVOA, 8270 MASTER									mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor 1,1-Biphenyl	NT	NT	NT	NT	NT	NT	NT	NT	2 0.0463 U	2 0.0454 U	2 0.0461	2 J 0.0443 U	2 0.0448 U	2 0.0463 U	2 0.0463 U
1,1-Bipnenyi 1,2,4,5-Tetrachlorobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U					0.0463 U 0.0924 U	0.0463 U
1,2,4-Trichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0461 l	J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
1,2-Dichlorobenzene 1,2-Diphenylhydrazine (as Azobenzene)	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0454 U	0.0461 U	J 0.0443 U J 0.0443 U	0.0448 U 0.0448 U	0.0463 U 0.0463 U	0.0463 U 0.0463 U
1,3-Dichlorobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U				+ + +	0.0463 U	0.0463 U
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0461 l	J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0925 U 0.0925 U	0.0906 U	0.0919 U	J 0.0884 U J 0.0884 U	0.0894 U 0.0894 U	0.0924 U 0.0924 U	0.0923 U 0.0923 U
2,4,5-Trichlorophenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0925 U	0.0906 U	0.0919 U	J 0.0443 U	0.0448 U	0.0924 U	0.0923 U
2,4,6-Trichlorophenol	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0701	0.0110	0.0 1 10	0.0463 U	0.0463 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0454 U	0.0461 U	J 0.0443 U J 0.0443 U		0.0463 U 0.0463 U	0.0463 U 0.0463 U
2,4-Dinitrophenol	NT	NT NT	NT	NT	NT NT	NT	NT NT	NT	0.0463 U		0.0919 U			0.0924 U	0.0923 U
2,4-Dinitrotoluene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 0	0.0701	0.0440	0.0440 0	0.0463 U	0.0463 U
2,6-Dinitrotoluene 2-Chloronaphthalene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0454 U	0.0461 U	J 0.0443 U J 0.0443 U	0.0448 U 0.0448 U	0.0463 U	0.0463 U 0.0463 U
2-Chlorophenol	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U					0.0463 U	0.0463 U
2-Methylnaphthalene	NT	NT	NT	NT	NT	NT	NT	NT	0.0591 JE	0.0454 U	0.0461 l	J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
2-Methylphenol 2-Nitroaniline	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0925 U	0.0454 U	0.0461 U	0.0110	0.0448 U 0.0894 U	0.0463 U 0.0924 U	0.0463 U 0.0923 U
2-Nitrophenol	NT	NT	NT	NT	NT	NT	NT	NT	0.0923 U	0.0454 U		0.0001	0.0001	0.0463 U	0.0923 U
3- & 4-Methylphenois	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0 10 1			0.01.0	0.0463 U	0.0100
3,3-Dichlorobenzidine 3-Nitroaniline	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0925 U	0.0454 U	0.0101	J 0.0443 U J 0.0884 U	0.0110	0.0463 U 0.0924 U	0.0463 U 0.0923 U
4,6-Dinitro-2-methylphenol	NT	NT	NT	NT	NT	NT	NT	NT	0.0925 U				0.0894 U	0.0924 U	0.0923 U
4-Bromophenyl phenyl ether	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 0	0.0701	0.0110	0.01.0	0.0463 U	0.0463 U
4-Chloro-3-methylphenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0454 U	0.0461 U	J 0.0443 U J 0.0443 U	0.0448 U 0.0448 U	0.0463 U 0.0463 U	0.0463 U 0.0463 U
4-Chloroaniline 4-Chlorophenyl phenyl ether	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U				0.0463 U	0.0463 U
4-Nitroaniline	NT	NT	NT	NT	NT	NT	NT	NT	0.0925 U	0.0906 U				0.0924 U	0.0923 U
4-Nitrophenol Acenaphthene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0925 U 0.196 D	0.0906 U 0.0454 U	0.0919 U	J 0.0884 U J 0.0443 U	0.0894 U 0.0448 U	0.0924 U 0.0658 ID	0.0923 U 0.0463 U
Acenaphthylene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U		J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
Acetophenone	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0461 l	J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
Aniline Anthracene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.185 U 0.584 D	0.181 U 0.0454 U	0.184 U	J 0.177 U J 0.0443 U	0.1.0	0.185 U 0.112 D	0.185 U 0.0517 JD
Atrazine	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U		0.0461 l		0.0448 U	0.0463 U	0.0463 U
Benzaldehyde	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0461 U	0.0110	0.0448 U	0.0463 U	0.0463 U
Benzidine Benzo(a)anthracene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.185 U 1.050 D	0.181 U 0.0454 U	0.184 U	U 0.177 U 0.0443 U	0.179 U 0.0448 U	0.185 U 0.320 D	0.185 U 0.204 D
Benzo(a)pyrene	NT	NT	NT	NT	NT NT	NT NT	NT	NT	0.877 D					0.253 D	
Benzo(b)fluoranthene	NT	NT	NT	NT	NT	NT	NT	NT	0.718 D	0.0 10 1	0.120		0.01.0	0.175 D	0.178 D
Benzo(g,h,i)perylene Benzo(k)fluoranthene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.472 D 0.743 D					0.149 D 0.185 D	
Benzoic acid	NT	NT NT	NT	NT	NT	NT	NT	NT	0.743 D 0.0463 U					0.0463 U	
Benzyl alcohol	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U					0.0463 U	
Benzyl butyl phthalate Bis(2-chloroethoxy)methane	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0 10 1	0.0461 U		0.0448 U 0.0448 U	0.0463 U	0.0463 U 0.0463 U
Bis(2-chloroethyl)ether	NT	NT NT	NT	NT	NT	NT	NT	NT	0.0463 U					0.0463 U	0.0463 U
Bis(2-chloroisopropyl)ether	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	0.0463 U	0.0 10 1	0.0101	0.0443 U	0.0110	0.0463 U	0.0463 U
Bis(2-ethylhexyl)phthalate Caprolactam	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0925 U		*******			0.0463 U 0.0924 U	0.0463 U 0.0923 U
Carbazole	NT	NT NT	NT	NT	NT	NT	NT	NT	0.0925 D					0.0924 U	0.0923 U
Chrysene	NT	NT	NT	NT	NT	NT	NT	NT	0.976 D	0.0 10 1	0.193	0.0110	0.0110	0.365 D	0.212 D
Cresols, total Dibenzo(a,h)anthracene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0925 U 0.196 D					0.0924 U 0.0554 JD	0.0020 0
Dibenzofuran	NT	NT NT	NT	NT	NT NT	NT	NT	NT	0.140 D					0.0463 U	
Diethyl phthalate	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U					0.0463 U	*******
Dimethyl phthalate Di-n-butyl phthalate	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U				***************************************	0.0463 U	0.0463 U 0.0463 U
Di-n-octyl phthalate	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U					0.0463 U	0.0463 U
Diphenylamine	NT	NT	NT	NT	NT	NT	NT	NT	0.0925 U	0.0906 U	0.0919 l	J 0.0884 U	0.0894 U	0.0924 U	0.0923 U
Fluoranthene Fluorene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	2.470 D 0.277 D					0.535 D 0.0591 JD	
Hexachlorobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.277 D				+ + +	0.0591 JD 0.0463 U	
Hexachlorobutadiene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0461 l	J 0.0443 U	0.0448 U	0.0463 U	0.0463 U
Hexachlorocyclopentadiene	NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT	0.0463 U	0.0 10 1	0.0101		0.01.0	0.0463 U	0.0100
Hexachloroethane Indeno(1,2,3-cd)pyrene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.421 D	0.0454 U 0.0454 U				0.0463 U 0.111 D	0.0463 U 0.116 D
	1 191 1	181	141	181	181	1 191	181	(1)	J.721 D	, 3.0-0-	J.000J	_ 3.03 0	0.0440	0.111 D	0.110

December 10	W04 00 (0 E)	W04 00 (40 4E)	WO4 04 (F 40)	W00 04 (0 E)	WO O (O O)	W0 2 (0 2)	W04.04.(0.4)	WOE 02 (0.4)	W04.04 (00MP)	WOE (OOME)	W04 (00MP) (0 E)	WO4 (00MP) (F 40)	W04 (00MP) (40 4E)	14/00 (0014P)	WOO (OOMB)
Sample ID	WC1-02 (0-5)	WC1-03 (10-15)	WC1-04 (5-10)	WC2-01 (0-5)	WC-2 (2-3)	WC-3 (2-3)	WC4-04 (3-4)	WC5-03 (0-1)	WC4-04 (COMP)	WC5 (COMP)	WC1 (COMP) (0-5)	WC1 (COMP) (5-10)	WC1 (COMP) (10-15)	WC2 (COMP)	WC3 (COMP)
Sampling Date	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022
Client Matrix	Soll	Soil	Soll	Soil	Soll	Soil	Soll	Soll	Soil	Soll	Soll	Soil	Soil	Soll	Soil
Compound Isophorone	Result Q	Result Q	Result Q	Result (Result (Q Result	Q Result	Q Result Q	Result Q 0.0463 U	Result 0.0454 U	Result Q 0.0461 U				Q Result Q U 0.0463 U
Naphthalene	NT	NT	NT	NT	NT	NT	NT	NT	0.0613 JE	0.0454 U		0.0443 U			U 0.0463 U
Nitrobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	0.0101	0.0110	0.0448 U		U 0.0463 U
N-Nitrosodimethylamine N-nitroso-di-n-propylamine	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0463 U 0.0463 U	0.0454 U	0.0461 U	0.0443 U	0.0448 U		U 0.0463 U U 0.0463 U
N-Nitrosodiphenylamine	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U		******			U 0.0463 U
Parathion	NT	NT	NT	NT	NT	NT	NT	NT	0.0463 U	0.0454 U	***************************************				U 0.0463 U
Pentachloronitrobenzene Pentachlorophenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0925 U 0.0463 U	0.0906 U 0.0454 U	0.0919 U 0.0461 U	U 0.0884 U 0.0443 U	0.0001	*****	U 0.0923 U U 0.0463 U
Phenanthrene	NT	NT	NT	NT	NT	NT	NT	NT	2.520 D	0.0454 L	0.228 D	0.0443 U	0.0448 U		D 0.232 D
Phenol	NT	NT	NT	NT	NT	NT	NT NT	NT	0.0463 U	0.0454 U	0.0461 U	0.0443 U		*******	U 0.0463 U
Propargite Pyrene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.185 U 1.790 D	0.181 U	0.101	0.211	0.179 U 0.0448 U		U 0.185 U D 0.342 D
Pyridine	NT	NT	NT	NT	NT	NT	NT	NT	0.185 U	0.181 U	0.184 U	0.177 U	0.179 U	0.185	U 0.185 U
Resorcinol	NT	NT	NT	NT	NT	NT	NT	NT	0.185 U	0.181 U	0.101	0.211	0.170		U 0.185 U mg/L
SVOA, TCLP MASTER Dilution Factor									mg/L 1	1 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	1
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 U	0.00500 L	0.00500 U	0.00000			U 0.00500 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00500 U 0.00500 U	0.00500 L	0.00500 U	0.00500 U 0.00500 U	0.00500 U		U 0.00500 U U 0.00500 U
2,4-Dinitrotoluene	NT NT	NT NT	NT	NT NT	NT	NT	NT	NT	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U		U 0.00500 U
2-Methylphenol	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500	U 0.00500 U
3- & 4-Methylphenols Cresols, total	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00500 U 0.0200 U	0.00500 L 0.0200 L	0.00500 U 0.0200 U	0.00500 U 0.0200 U	0.00500 U 0.0200 U	0.00500 0.0200	U 0.00500 U U 0.0200 U
Hexachlorobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0200 U	0.00500 L	0.00500 U	0.00500 U	0.0200 U		U 0.00500 U
Hexachlorobutadiene	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500	U 0.00500 U
Hexachloroethane Nitrobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00250 U 0.00500 U	0.00250 L 0.00500 L	0.00250 U 0.00500 U	0.00250 U 0.00500 U	0.00250 U 0.00500 U	0.00200	U 0.00250 U U 0.00500 U
Pentachlorophenol	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 U	0.00500 L	0.00500 U	0.00500 U	0.00500 U		U 0.00500 U
Pyridine	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U		U 0.00500 U
PEST, 8081 MASTER Dilution Factor									mg/Kg 5	mg/Kg 5	mg/Kg	mg/Kg 5	mg/Kg 5	mg/Kg 5	mg/Kg 5
4,4'-DDD	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U	-	U 0.00182 U
4,4'-DDE	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00104 0	J 0.00175 U	0.00111		U 0.00182 U
4,4'-DDT Aldrin	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00183 U 0.00183 U	0.00176 U	0.00184 U	0.00175 U 0.00175 U	0.00177 U 0.00177 U	*****	U 0.00182 U U 0.00182 U
alpha-BHC	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U		0.00175 U			U 0.00182 U
alpha-Chlordane	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U	*****	U 0.00182 U
beta-BHC Chlordane, total	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00183 U 0.0366 U	0.00176 U	0.00101	0.00175 U 0.0351 U			U 0.00182 U U 0.0364 U
delta-BHC	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U			0.0000		U 0.00182 U
Dieldrin	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00101	0.00175 U			U 0.00182 U
Endosulfan I Endosulfan II	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00183 U 0.00183 U	0.00176 U	0.00184 U	0.00175 U 0.00175 U			U 0.00182 U U 0.00182 U
Endosulfan sulfate	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U		U 0.00182 U
Endrin	NT NT	NT	NT	NT	NT	NT	NT NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U		U 0.00182 U
Endrin aldehyde Endrin ketone	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00183 U 0.00183 U	0.00176 U	0.00184 U	0.00175 U 0.00175 U	0.00177 U 0.00177 U		U 0.00182 U U 0.00182 U
gamma-BHC (Lindane)	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U		U 0.00182 U
gamma-Chlordane	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U		0.00101	U 0.00182 U
Heptachlor Heptachlor epoxide	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00183 U 0.00183 U	0.00176 U	0.00184 U	0.00175 U 0.00175 U	0.00177 U 0.00177 U		U 0.00182 U U 0.00182 U
Methoxychlor	NT	NT	NT	NT	NT	NT	NT	NT	0.00183 U	0.00176 U	0.00184 U	0.00175 U	0.00177 U	0.00181	U 0.00182 U
Toxaphene	NT	NT	NT	NT	NT	NT	NT	NT	0.183 U	0.176 U	0.184 U	0.175 U	0.177 U		U 0.182 U
PEST, TCLP MASTER Dilution Factor									mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1	mg/L 1
Endrin	NT	NT	NT	NT	NT	NT	NT	NT	0.00004 U	0.00004 U	0.00004 U	0.00004 U	0.00004 U		U 0.00004 U
gamma-BHC (Lindane)	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00004 U 0.00004 U	0.00004 U	0.00004 U	U 0.00004 U 0.00004 U	0.00004 U 0.00004 U		U 0.00004 U U 0.00004 U
Heptachlor Heptachlor epoxide	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.00004 U	0.00004 U	0.00004 U	0.00004 U	0.00004 U	0.00004	U 0.00004 U
Methoxychlor	NT	NT	NT	NT	NT	NT	NT	NT	0.00004 U	0.00004 U	0.00004 U	0.00004 U	0.00004 U	0.00004	U 0.00004 U
Toxaphene NJDEP EPH (Cat. 2 Non-Fractionated)	NT	NT	NT	NT	NT	NT	NT	NT	0.00111 U mg/kg	0.00111 U	0.00111 U	0.00111 U mg/kg	0.00111 U mg/kg	0.00111 mg/kg	U 0.00111 U mg/kg
Dilution Factor	 	†	 	+	1	+		+	mg/kg 1	тg/кg 1	тg/кg 1	тg/кg 1	mg/kg 1	mg/kg 1	mg/kg 1
Total EPH	NT	NT	NT	NT	NT	NT	NT	NT	99.900	52.700 U		52.100 U		00.000	92
Metals, Target Analyte Dilution Factor	 	+	+	+	+	1	+		mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1
Aluminum	NT	NT	NT	NT	NT	NT	NT	NT	10,100	15,700	10,600	4,640	4,630	9,720	9,040
Antimony	NT	NT	NT	NT	NT	NT	NT	NT	2.820 U	2.740 U	2.800 U	J 2.680 U	2.720 U	2.820	U 2.810 U
Arsenic Barium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	5.260 88.500	2.910 55	5.070 128	1.610 U 25.300	1.630 U 35.700	4.780 147	3.780 78.400
Beryllium	NT NT	NT NT		NT NT	NT NT	NT NT		NT NT	0.0560 U			0.0540 U			0.0560 U
Cadmium	NT	NT	NT	NT	NT	NT	NT	NT	0.338 U	0.329 U	0.336 U	0.322 U	0.327 U	0.486	0.338 U
Calcium Chromium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	4,170 21.500	1,740 41	8,020 18.800	716 13.500	826 11.100	2,050 19	2,420 22
Cobalt	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	7.410	11.100	6.980	7.230	4.660	7.590	7.830
Copper	NT	NT	NT	NT	NT	NT	NT	NT	26.400	19.100	37.300	9.780	8.790	35.300	30.400
Iron	NT	NT	NT	NT	NT	NT	NT	NT NT	22,900	28,500	23,300	11,100	10,300	20,000	27,500
Lead Magnesium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	112 2,730	16.200 9,260	806 2.330	2,040	1.840 2,090	88.400 2.400	137 2,400
Magnesium Manganese	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	372	9,260 479	398	2,040	2,090	431	377
Nickel	NT	NT	NT	NT	NT	NT	NT	NT	15.400	22.500	14.700	26.300	16.400	14.300	13.900
Potassium Selenium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	1,350 2.820 U	2,290 2.740 U	864 1 2.800 U	568 J 2.680 U	729 2.720 U	1,050 2.820	1,040 U 2.810 U
Silver	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	2.820 U	0.548 U					U 2.810 U
Sodium	NT	NT	NT	NT	NT	NT	NT	NT	83.900	402	129	61.600	79.100	112	105
Thallium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	2.820 U	2.740 L		2.000	2.120		U 2.810 U
Vanadium Zine	NI NT	NI NT	NT NT	NI NT	NT NT	NT NT	NI NT	NT NT	29.600 91.700	48.500 48.800	26.200 133	13.300 14.800	15.200 15.300	27.500 310	31.800 124
Zinc	INI	INI	INI	INI	INI	NI	INI	INI	91.100	40.600	700	14.600	10.500	210	124

Sample ID	WC1-02 (0-5)	WC1-03 (10-15)	WC1-04 (5-10)	WC2-01 (0-5)	WC-2 (2-3)	WC-3 (2-3)	WC4-04 (3-4)	WC5-03 (0-1)	WC4-04 (COMP)	WC5 (COMP)	WC1 (COMP) (0-5)	WC1 (COMP) (5-10)	WC1 (COMP) (10-15)	WC2 (COMP)	WC3 (COMP)
	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022	5/23/2022
Sampling Date		+	1			1				5/23/2022 Soil					
Client Matrix	Soil	Soil	Soil	Soll	Soll	Soil	Soll	Soll	Soil		Soll	Soil	Soll	Soil	Soll
Compound Metals, TCLP RCRA	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result (Q Result (Q Result Q mg/L	Result Q mg/L	Result Q mg/L	Result Q mg/L	Result Q mg/L
Dilution Factor									1	1	1	1	1	1	1
Arsenic	NT	NT	NT	NT	NT	NT	NT	NT	0.375 I		J 0.375 U			0.375 U	0.375 U
Barium	NT	NT	NT NT	NT	NT	NT	NT NT	NT NT	0.666	0.020	0.697	0.625 U	0.020	0.625 U	0.625 U
Cadmium Chromium	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT		U 0.0750 U U 0.125 U	J 0.0750 U J 0.125 U		0.0750 U 0.125 U	0.0750 U 0.125 U	0.0750 U 0.125 U
Lead	NT	NT	NT	NT	NT	NT	NT	NT	0.197		J 0.224	0.167	0.125 U	0.125 U	
Selenium	NT	NT	NT	NT	NT	NT	NT	NT	0.625 I		J 0.625 U			0.625 U	0.625 U
Silver	NT	NT	NT	NT	NT	NT	NT	NT	0.125 I		J 0.125 U	*******	******	0.125 U	0.125 U
Mercury by 7473 Dilution Factor					+				mg/Kg 1	mg/Kg 1	mg/Kg	mg/Kg	mg/Kg 1	mg/Kg	mg/Kg
Mercury	NT	NT	NT	NT	NT	NT	NT	NT	0.138	0.0923	0.177	0.0322 U	0.0327 U	0.179	0.253
Mercury, TCLP									mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor									1	1	1	1	1	1	1
Mercury	NT	NT	NT	NT	NT	NT	NT	NT	0.00020	U 0.00020 L	J 0.00020 U	0.00020 0	0.00020 U	0.00020 U	0.00020 U
Chromium, Hexavalent Dilution Factor					+				mg/Kg 1	mg/Kg 1	mg/Kg	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1
Chromium, Hexavalent	NT	NT	NT	NT	NT	NT	NT	NT	0.564 I	U 0.548 I	J 0.560 U	0.537 U	0.545 U	0.563 U	0.563 U
Chromium, Trivalent									mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor		1 17	N.T.		N.T.		N.T	N=	1	1	1 10.000	1 10.500	1	1	1
Chromium, Trivalent	NT	NT	NT	NT	NT	NT	NT	NT	21.500	41	18.800	13.500	11.100	19	22
Corrosivity (pH) by SM 4500/EPA 9045D Dilution Factor		+ +	 	+ +	+	 			pH units 1	pH units 1	pH units 1	pH units 1	pH units 1	pH units 1	pH units 1
рН	NT	NT	NT	NT	NT	NT	NT	NT	7.380	7.340	7.860	6.430	6.170	7.410	7.370
Cyanide, Total									mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor		N.T.		N.T.			N.T.		1	1 0.540	1 2500	1	1 0.545	1 0.500	1
Cyanide, total Ignitability	NT	NT	NT	NT	NT	NT	NT	NT	0.564 U None	U 0.548 U None	J 0.560 U None	0.537 U None	0.545 U None	0.563 U None	0.563 U None
Dilution Factor									1	1	1	1	1	1	1
Ignitability	NT	NT	NT	NT	NT	NT	NT	NT	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.
Paint Filter Test									None	None	None	None	None	None	None
Dilution Factor Paint Filter Test	NT	NT	NT	NT	NT	NT	NT	NT	No Free Liquid	No Free Liquid	No Free Liquid	No Free Liquid	No Free Liquid	No Free Liquid	No Free Liquid
Reactivity-Cyanide									mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor									1	1	1	1	1	1	1
Reactivity - Cyanide Reactivity-Sulfide	NT	NT	NT	NT	NT	NT	NT	NT	0.250 I mg/kg	U 0.250 I	J 0.250 U mg/kg	0.250 U mg/kg	0.250 U mg/kg	0.250 U mg/kg	0.250 U mg/kg
Dilution Factor					+				111g/kg	111g/kg	1 1	1 1	1 1	1 1	1 1
Reactivity - Sulfide	NT	NT	NT	NT	NT	NT	NT	NT	15 I	0 10 1	J 15 U		10	15 U	15 U
TCLP Extraction for METALS EPA 1311									N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dilution Factor TCLP Extraction	NT	NT	NT	NT	NT	NT	NT	NT	1 Completed	1 Completed	1 Completed	1 Completed	1 Completed	1 Completed	1 Completed
TCLP Extraction for SVOCS/PEST/HERB	INI	INI	IVI	INI	INI	INI	INI	INI	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dilution Factor									1	1	1	1	1	1	1
TCLP Extraction	NT	NT	NT	NT	NT	NT	NT	NT	Completed	Completed	Completed	Completed	Completed	Completed	Completed
TCLP Extraction for VOA by EPA 1311 ZHE Dilution Factor					+				N/A 1	N/A 1	N/A 1	N/A 1	N/A 1	N/A 1	N/A 1
TCLP Extraction	NT	NT	NT	NT	NT	NT	NT	NT	Completed	Completed	Completed	Completed	Completed	Completed	Completed
Temperature									°C	°C	°C	°C	°C	°C	°C
Dilution Factor	NT	NT	NT	NT	NT	NT	NT	NT	1 23.100	1 23.200	1 23.400	23.300	1 23.400	1 23.400	1 23.400
Temperature Total Solids	WI %	W W	W1 %	%	W W	%	%	%	23.100	23.200	23.400	23.300	23.400	23.400	23.400
Dilution Factor	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
% Solids	87.500	96.800	88	90.700	92.300	87.200	83.500	92.700	88.700	91.200	89.300	93.100	91.800	88.700	88.900
HERB, 8151 MASTER									mg/Kg 1	mg/Kg 1	mg/Kg	mg/Kg	mg/Kg 1	mg/Kg	mg/Kg
Dilution Factor 2,4,5-T	NT	NT	NT	NT	NT	NT	NT	NT	0.0224		J 0.0220 U	0.0211 U		0.0225 U	0.0224 U
2,4,5-TP (Silvex)	NT	NT	NT	NT	NT	NT	NT	NT	0.0224 I	U 0.0215 l	J 0.0220 U	0.0211 U		0.0225 U	0.0224 U
2,4-D	NT	NT	NT	NT	NT	NT	NT	NT	0.0224	U 0.0215 I	J 0.0220 U	0.0211 U	0.0214 U	0.0225 U	0.0224 U
HERB, TCLP MASTER		+		+	+	 			mg/L 1	mg/L 1	mg/L	mg/L	mg/L 1	mg/L 1	mg/L 1
Dilution Factor 2.4.5-TP (Silvex)	NT	NT	NT	NT	NT	NT	NT	NT	0.00500	U 0.00500 U	J 0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U
2,4-D	NT	NT	NT	NT	NT	NT	NT	NT	0.00500 I		J 0.00500 U			0.00500 U	
PCB, 8082 MASTER									6/./6	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	AIT	NT	NIT	NT	NT	NT	NT	NIT	1 0.0195	1 0.0179	1 0.0195 11	1 0.0177 11	1 0.0179 11	1 0.0192 11	1 0.0194 11
Aroclor 1016 Aroclor 1221	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.0185 U		J 0.0185 U J 0.0185 U			0.0182 U 0.0182 U	0.0184 U 0.0184 U
Aroclor 1232	NT	NT	NT	NT	NT	NT	NT	NT			J 0.0185 U			0.0182 U	
Aroclor 1242	NT	NT	NT	NT	NT	NT	NT	NT	0.0185 I	U 0.0178 I	J 0.0185 U	0.0177 U	0.0179 U	0.0182 U	0.0101
Arcelor 1248	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT		U 0.0178 U					
Aroclor 1254	NI NT	NI NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT		U 0.0178 U 0.0178					0.0184 U 0.0184 U
Aroclor 1260															

Sample ID	WC6-01 (0-1)	WC7-03 (0-1)	WC8-03 (1-2)	WC9-03 (0-1)	WC11-03 (1-1.5)	WC-09-5 (0-5)	SS-01 (0-5)	WC6-COMP (0-5)	WC7-COMP (0-5)	WC8-COMP (0-5)	WC9-COMP (0-5)	WC10-COMP (0-5)	WC11-COMP (0-5)
Sampling Date	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022
Client Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound	Result Q	Result Q		Q Result Q	Result Q		Result Q	Result Q	Result Q			Result Q	
VOA, 8260 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	1100dit Q	riodait Q	Hoodit Q	TOOGIT Q	- Hoodit	2 Roodic Q	rtocait Q	riodan Q
Dilution Factor	111g/ Rg	1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1								
1,1,1,2-Tetrachloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,1,1-Trichloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,1,2,2-Tetrachloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	 	NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,1,2-Trichloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,1-Dichloroethylene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,1-Dichloropropylene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2,3-Trichlorobenzene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2,3-Trichloropropane	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4,5-Tetramethylbenzene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Trichlorobenzene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2,4-Trimethylbenzene	0.00620	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
1,2-Dibromo-3-chloropropane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,2-Dibromoethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
1,2-Dichlorobenzene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,2-Dichloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,2-Dichloropropane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
1,3,5-Trimethylbenzene	0.00380 J	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,3-Dichlorobenzene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,3-Dichloropropane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
1,4-Dichlorobenzene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
1,4-Dioxane	0.0500 U	0.0530 U		U 0.0470 U	0.0410 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
2,2-Dichloropropane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
2-Butanone	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
2-Chloroethylvinyl ether	0.0100 U	0.0110 U		U 0.00950 U	0.00820 U		NT	NT	NT	NT	NT	NT	NT
2-Chlorotoluene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
2-Hexanone	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
4-Chlorotoluene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
4-Methyl-2-pentanone	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Acetone	0.00500 U	0.00530 U		U 0.00470 U	0.00410 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
Acrolein	0.00500 U	0.00530 U		U 0.00470 U	0.00410 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
Acrylonitrile	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT NT	NT	NT	NT	NT
Allyl chloride	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT NT	NT NT	NT	NT	NT	NT
Benzene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT NT	NT	NT	NT	NT
Bromobenzene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT
Bromochloromethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U 0.00210 U	<u> </u>	NT NT	NT NT		NT NT	NT	<u> </u>	NT NT
Bromodichloromethane Bromoform	0.00250 U 0.00250 U	0.00270 U 0.00270 U		U 0.00240 U U 0.00240 U	0.00210 U 0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
	0.00250 U			U 0.00240 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT
Bromomethane Carbon disulfide	0.00250 U	0.00270 U 0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT
Carbon tetrachloride	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT	NT	NT	NT	NT	NT NT
	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT
Chlorobenzene Chloroethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	 	NT NT	NT NT	NT NT	NT	NT NT	NT	NT NT
Chloroform	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT	NT	NT	NT	NT	NT NT
Chloromethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
cis-1,2-Dichloroethylene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
cis-1,3-Dichloropropylene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Cyclohexane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Dibromochloromethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Dibromomethane	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	 	NT	NT	NT	NT	NT	NT	NT
Dichlorodifluoromethane	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
Diisopropyl ether (DIPE)	0.00400 U			U 0.00380 U		NT	NT	NT	NT	NT	NT	NT	NT
Ethanol	0.0400 U			U 0.0380 U			NT	NT	NT	NT	NT	NT	NT
Ethyl Benzene	0.00250 U	0.0170	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
Ethyl tert-butyl ether (ETBE)	0.00400 U	+		U 0.00380 U	0.00330 U	NT	NT	NT	NT	NT	NT	NT	NT
Hexachlorobutadiene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
lodomethane	0.00250 U			U 0.00240 U			NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
Methyl acetate	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
Methyl Methacrylate	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
Methyl tert-butyl ether (MTBE)	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Methylcyclohexane	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Methylene chloride	0.0110	0.00560 J		0.0140	0.0150	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	0.00250 U	0.00270 U	0.00220	U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
n-Butylbenzene	0.00250 U			U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
n-Propylbenzene	0.00250 U			U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
o-Xylene	0.00250 U		0.00220	U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
p- & m- Xylenes	0.00500 U	0.0900	0.00450	U 0.00470 U	0.00590 J	NT	NT	NT	NT	NT	NT	NT	NT

Sample ID	WC6-01 (0-1)	WC7-03 (0-1)	WC8-03 (1-2)	WC9-03 (0-1)	WC11-03 (1-1.5)	WC-09-5 (0-5)	SS-01 (0-5)	WC6-COMP (0-5)	WC7-COMP (0-5)	WC8-COMP (0-5)	WC9-COMP (0-5)	WC10-COMP (0-5)	WC11-COMP (0-5)
Sampling Date	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022
Client Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
p-Diethylbenzene	0.00280 J	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
p-Ethyltoluene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT NT	NT	NT	NT	NT NT	NT
p-Isopropyltoluene sec-Butylbenzene	0.00250 U 0.00250 U	0.00270 U 0.00270 U		U 0.00240 U U 0.00240 U	0.00210 U 0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Styrene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
tert-Amyl alcohol (TAA)	0.0400 U	0.0430 U		U 0.0380 U	0.0330 U		NT	NT	NT	NT	NT	NT	NT
tert-Amyl methyl ether (TAME)	0.00400 U	0.00430 U		U 0.00380 U	0.00330 U		NT	NT	NT	NT	NT	NT	NT
tert-Butyl alcohol (TBA)	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
tert-Butylbenzene	0.00250 U	0.00270 U		U 0.00240 U U 0.00240 U	0.00210 U 0.00210 U		NT NT	NT	NT	NT NT	NT	NT	NT NT
Tetrachloroethylene Tetrahydrofuran	0.00250 U 0.00500 U	0.00270 U 0.00530 U		U 0.00240 U U 0.00470 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Toluene	0.00390 J	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
trans-1,2-Dichloroethylene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	NT	NT	NT	NT	NT	NT	NT	NT
trans-1,3-Dichloropropylene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
trans-1,4-dichloro-2-butene	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U	<u> </u>	NT	NT	NT	NT	NT	NT	NT
Trichloroethylene Trichloroethylene	0.00250 U 0.00250 U	0.00270 U 0.00270 U		U 0.00240 U U 0.00240 U	0.00210 U 0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Trichlorofluoromethane Vinyl acetate	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Vinyl Chloride	0.00250 U	0.00270 U		U 0.00240 U	0.00210 U		NT	NT	NT	NT	NT	NT	NT
Xylenes, Total	0.00750 U	0.130	0.00670	U 0.00710 U	0.00790 J		NT	NT	NT	NT	NT	NT	NT
VOA, TCLP MASTER						mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor	N=	NT		N=		10	N	10	10	10	10	10	10
1,1-Dichloroethylene	NT NT	NT NT	NT NT	NT NT	NT NT	0.0250 U	NT NT	0.0250 U	0.0250 U 0.0250 U			0.0250 U 0.0250 U	0.0250 U 0.0250 U
1,2-Dichloroethane 1,4-Dichlorobenzene	NT NT	NT NT	NT	NT	NT	0.0250 U 0.0250 U	NT	0.0250 U 0.0250 U	0.0250 U 0.0250 U	+	U 0.0250 U 0.0250 U	0.0250 U	
2-Butanone	NT	NT	NT	NT	NT	0.0250 U	NT	0.0250 U	0.0250 U		U 0.0250 U	0.0250 U	
Benzene	NT	NT	NT	NT	NT	0.0250 U	NT	0.0250 U	0.0250 U		J 0.0250 U	0.0250 U	
Carbon tetrachloride	NT	NT	NT	NT	NT	0.0250 U		0.0250 U	0.0250 U		*******	0.0250 U	0.0200
Chlorobenzene	NT	NT	NT	NT	NT	0.0250 U		0.0250 U	0.0250 U			0.0250 U	
Chloroform Tetrachloroethylene	NT NT	NT NT	NT NT	NT NT	NT NT	0.0250 U 0.0250 U		0.0250 U 0.0250 U	0.0250 U 0.0250 U			0.0250 U 0.0250 U	
Trichloroethylene	NT NT	NT NT	NT NT	NT NT	NT	0.0250 U	NT	0.0250 U	0.0250 U			0.0250 U	
Vinyl Chloride	NT	NT	NT	NT	NT	0.0250 U	NT	0.0250 U	0.0250 U		U 0.0250 U	0.0250 U	
Volatile Organics, Tentatively Identified Cmpds.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg								
Dilution Factor	1	1	1	1	1								
dimethyl Heptane isomer	O U	NT O	NT	NT NT	NT	NT	NT NT	NT	NT	NT NT	NT	NT	NT NT
ethyl dimethyl Benzene Isom Ethyl Methyl Benzene isomer	0 U	0 U		NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Methyl Indan isomer	NT U	0 0		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tentatively Identified Compounds	0 U	0 U	0	U 0 U	0 U	NT	NT	NT	NT	NT	NT	NT	NT
Semi-Volatiles, Tentatively Identified Cmpds.						mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor						2		2	2	2	2	2	2
Tentatively Identified Compounds Unknown PAH RT 10.6	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	O U	0 U NT	0 U	J NT NT	O U	NT 0.793 JD
Unknown PAH RT 11.0	NT NT	NT NT	NT NT	NT NT	NT	1.220 JD		NT NT	NT NT	NT NT	NT NT	NT NT	0.795 JD
Unknown PAH RT 11.1	NT	NT	NT	NT	NT	1.360 JE		NT	NT	NT	NT	NT	NT
Unknown PAH RT 11.2	NT	NT	NT	NT	NT	3.330 JE	NT	NT	NT	NT	NT	NT	NT
Unknown PAH RT 11.5	NT	NT	NT	NT	NT	0.833 JD		NT	NT	NT	NT	NT	NT
Unknown PAH RT 12.1	NT NT	NT NT	NT	NT NT	NT	NT 1000	NT NT	NT NT	NT	NT	NT	NT NT	1.270 JD
Unknown PAH RT 13.1 Unknown PAH RT 13.3	NT NT	NT NT	NT NT	NT NT	NT NT	1.390 JE 2.990 JE	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
Unknown PAH RT 13.5 (01)	NT NT	NT NT	NT	NT NT	NT	1.220 JE	NT NT	NT NT	NT NT	NT NT	NT	NT	NT NT
Unknown PAH RT 13.5 (02)	NT	NT	NT	NT	NT	1.290 JE	NT	NT	NT	NT	NT	NT	NT
Unknown PAH RT 13.8	NT	NT	NT	NT	NT	0.827 JD	NT	NT	NT	NT	NT	NT	NT
Unknown PAH RT 14.4	NT	NT	NT	NT	NT	0.762 JD		NT	NT	NT	NT	NT	NT
Unknown PAH RT 14.7	NT	NT NT	NT	NT NT	NT NT	0.813 JE		NT NT	NT NT	NT	NT NT	NT	NT 0.032
Unknown PAH RT 14.9 Unknown PAH RT 16.1	NT NT	NT NT	NT NT	NT NT	NT NT	0.872 JE 1.500 JE		NT NT	NT NT	NT NT	NT NT	NT NT	0.932 JD NT
Unknown PAH RT 16.1 Unknown PAH RT 16.8	NT NT	NT NT	NT NT	NT NT	NT NT	NT JL	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.972 JD
Unknown PAH RT 16.9	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.970 JD	NT	NT SB
Unknown PAH RT 17.7	NT	NT	NT	NT	NT	1.640 JD	NT	NT	NT	NT	NT	NT	NT
Unknown PAH RT 18.1	NT	NT	NT	NT	NT	4.840 JD		NT	NT	NT	NT	NT	NT
Unknown PAH RT 9.5 Unknown PAH RT 9.6	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	1.020 JD
	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.180 JD
Unknown PAH RT 9.8	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	1.480 JD

Table 6A Waste Characterization - Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, NY

Sample ID	WC6-01 (0-1)	WC7-03 (0-1)	WC8-03 (1-2)	WC9-03 (0-1)	WC11-03 (1-1.5)	WC-09-5 (0-5)	SS-01 (0-5)	WC6-COMP (0-5)	WC7-COMP (0-5)	WC8-COMP (0-5)	WC9-COMP (0-5)	WC10-COMP (0-5)	WC11-COMP (0-5)
Sampling Date	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022
												1	
Client Matrix	Soil Result 0	Soil Result 0	Soil Booult 0	Soil Result (Soil O Result O	Soil Result 0	Soil Popult 0	Soil Beaute C	Soil Beauty 0	Soil Result Q	Soil Booult 0	Soil Popult 0	Soil Result C
Compound SVOA. 8270 MASTER	Result Q	Result Q	Result Q	Result () Result Q	Result Q mg/Kg	Result Q	Result Q mg/Kg	Result Q	Result Q mg/Kg	Result Q mg/Kg	Result Q mg/Kg	Result C
Dilution Factor						10		2	2	2	2	2	5
1,1-Biphenyl	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0540 JE
1,2,4,5-Tetrachlorobenzene	NT	NT NT	NT	NT	NT	0.0950 U	NT	0.0938 U		0.0936 U			0.0926 L
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0476 U	NT NT	0.0470 U 0.0470 U		0.0469 U 0.0469 U			0.0464 L
1,2-Diphenylhydrazine (as Azobenzene)	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
1,3-Dichlorobenzene	NT	NT	NT	NT	NT	0.0476 U		0.0470 U		0.0469 U	0.0472 U	0.0470 U	0.0464 L
1,4-Dichlorobenzene	NT	NT NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol	NT NT	NT NT	NT NT	NT NT	NT NT	NT 0.0950 U	NT NT	0.0938 U		0.0936 U 0.0936 U			0.253 D 0.0926 U
2,4,5-Trichlorophenol	NT	NT NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
2,4,6-Trichlorophenol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
2,4-Dichlorophenol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
2,4-Dimethylphenol 2,4-Dinitrophenol	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0950 U	NT NT	0.0470 U 0.0938 U		0.0469 U 0.0936 U			0.0464 L 0.0926 L
2,4-Dinitrophenoi	NT NT	NT	NT	NT	NT	0.0930 U	NT	0.0470 U		0.0469 U			0.0926 C
2,6-Dinitrotoluene	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
2-Chloronaphthalene	NT	NT	NT	NT	NT NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
2-Chlorophenol 2-Methylnaphthalene	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.107 D	NT NT	0.0470 U 0.0470 U		0.0469 U 0.0469 U			0.0464 L 0.275 D
2-Methylphenol	NI NT	NT NT	NT NT	NT NT	NT NT	0.107 D 0.0476 U	NT NT	0.0470 U		0.0469 U			0.275 L 0.0464 L
2-Nitroaniline	NT	NT	NT	NT	NT	0.0950 U	NT	0.0938 U		0.0936 U	******		0.0926 L
2-Nitrophenol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
3- & 4-Methylphenols	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
3,3-Dichlorobenzidine 3-Nitroaniline	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0950 U	NT NT	0.0470 U 0.0938 U		0.0469 U 0.0936 U			0.0464 L 0.0926 L
4,6-Dinitro-2-methylphenol	NT	NT	NT NT	NT	NT NT	0.0950 U	NT NT	0.0938 U		0.0936 U	0.0941 U		0.0926 U
4-Bromophenyl phenyl ether	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
4-Chloro-3-methylphenol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U	0.0472 U		0.0464 L
4-Chloroaniline	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0476 U	NT NT	0.0470 U 0.0470 U		0.0469 U 0.0469 U			0.0464 L
4-Chlorophenyl phenyl ether 4-Nitroaniline	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U		0.0470 U 0.0938 U		0.0469 U			0.0464 C
4-Nitrophenol	NT	NT	NT	NT	NT	0.0950 U	NT	0.0938 U		0.0936 U			0.0926 L
Acenaphthene	NT	NT	NT	NT	NT	0.562 D	NT	0.0470 U		0.110 D			0.437 E
Acenaphthylene	NT	NT	NT	NT	NT	0.372 D	NT	0.0578 JE		0.0469 U			0.0464 L
Acetophenone Aniline	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.190 U	NT NT	0.0470 U 0.188 U		0.0469 U 0.187 U			0.0464 L 0.185 L
Anthracene	NT NT	NT NT	NT NT	NT	NT NT	1.980 D	NT	0.188 D		0.183 D			0.185 C
Atrazine	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
Benzaldehyde	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
Benzidine	NT	NT	NT	NT	NT	0.190 U	NT	0.188 U		0.187 U			0.185 L
Benzo(a)anthracene	NT	NT	NT	NT	NT	5.200 D	NT	1.190		0.513 D			1.920
Benzo(a)pyrene	NT	NT	NT	NT	NT	5.040 D	NT	1.430		0.598 D			1.970
Benzo(b)fluoranthene	NT	NT	NT	NT	NT NT	4.130 D	NT	1.300 D		0.453 D	1.640 D		1.650 C
Benzo(g,h,i)perylene Benzo(k)fluoranthene	NT NT	NT NT	NT NT	NT NT	NT NT	2.970 D 4.170 D	NT NT	0.653 D		0.315 D 0.481 D			0.915 D
Benzoic acid	NT	NT NT	NT	NT	NT NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
Benzyl alcohol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
Benzyl butyl phthalate	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U	0.0466 U	0.0469 U	0.0472 U	0.0470 U	0.0464 L
Bis(2-chloroethoxy)methane	NT	NT	NT	NT	NT NT	0.0476 U		0.0470 U		0.0469 U			0.0464 L
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0476 U	NT NT	0.0470 U 0.0470 U		0.0469 U 0.0469 U			0.0464 L 0.0464 L
Bis(2-ethylhexyl)phthalate	NT NT	NT NT	NT NT	NT	NT NT	0.0476 U	NT NT	0.0470 U		0.0469 U	0.0472 U	+	0.0464 U
Caprolactam	NT	NT	NT	NT	NT	0.0950 U		0.0938 U		0.0936 U			0.0926 L
Carbazole	NT	NT	NT	NT	NT	0.630 D		0.0470 U		0.0659 JD			0.307
Chrysene	NT	NT	NT	NT	NT	4.740 D	NT	1.130		0.499 D			1.990
Cresols, total	NT NT	NT	NT NT	NT NT	NT NT	NT 1 130 D	NT NT	0.0938 U		0.0936 U			0.0926 L
Dibenzo(a,h)anthracene Dibenzofuran	NT NT	NT NT	NT NT	NT NT	NT NT	1.130 D 0.340 D	NT NT	0.267 D		0.135 D 0.0469 U			0.436 D
Diethyl phthalate	NT NT	NT NT	NT NT	NT	NT NT	0.0476 U	NT NT	0.0470 U		0.0469 U			0.194 L
Dimethyl phthalate	NT	NT	NT	NT	NT	0.0476 U		0.0470 U		0.0469 U			0.417 D
Di-n-butyl phthalate	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U		0.0469 U			0.0464 L
Di-n-octyl phthalate	NT NT	NT NT	NT NT	NT	NT NT	0.0476 U		0.0470 U		0.0469 U			0.0464 L
Diphenylamine Fluoranthene	NT NT	NT NT	NT NT	NT NT	NT NT	NT 11.100 D	NT NT	0.0938 U 2.030 D		0.0936 U 0.935 D			0.0926 L 3.510 D
Fluorene	NT	NT	NT	NT	NT	0.832 D		0.0683 JE		0.0898 JD			0.422 D
Hexachlorobenzene	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U	0.0466 U	0.0469 U	0.0472 U	0.0470 U	0.0464 L
Hexachlorobutadiene	NT NT	NT	NT	NT	NT	0.0476 U		0.0470 U		0.0469 U			0.0464 L
Hexachlorocyclopentadiene Hexachlorocythane	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0476 U		0.0470 U 0.0470 U		0.0469 U 0.0469 U			0.0464 L 0.0464 L
Hexachloroethane Indeno(1,2,3-cd)pyrene	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 2.900 D	NT NT	0.0470 U 0.914 D		0.0469 U 0.425 D			1.080
Isophorone	NT NT	NT	NT NT	NT	NT NT	0.0476 U		0.914 L		0.425 D			0.0464 L
Naphthalene	NT	NT	NT	NT	NT	0.161 D		0.0470 U		0.121 D			0.232 D
Nitrobenzene	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U	0.0466 U	0.0469 U	0.0472 U	0.0470 U	0.0464 L
N-Nitrosodimethylamine	NT	NT	NT	NT	NT	0.0476 U		0.0470 U		0.0469 U			0.0464 L
N-nitroso-di-n-propylamine	NT NT	NT NT	NT NT	NT NT	NT NT	0.0476 U 0.0476 U		0.0470 U		0.0469 U 0.0469 U			0.0464 L 0.0464 L
N-Nitrosodiphenylamine	IN I	NT	INI	NT	NT	0.0476	NT	0.0470 U	U.0400 U	0.0469	0.0472 U	0.0470 U	U.U464

Table 6A

Waste Characterization - Analytical Results Summary

						penezer Plaza 2 P No. C224241		•					
					589 Christop	her Avenue, Brook	dyn, NY						
Sample ID	WC6-01 (0-1)	WC7-03 (0-1)	WC8-03 (1-2)	WC9-03 (0-1)	WC11-03 (1-1.5)	WC-09-5 (0-5)	SS-01 (0-5)	WC6-COMP (0-5)	WC7-COMP (0-5)	WC8-COMP (0-5)	WC9-COMP (0-5)	WC10-COMP (0-5)	WC11-COMP (0-5)
Sampling Date	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022
Client Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound	Result Q) Result Q		Q Result Q		Result	Q Result Q		Result Q			
Phenanthrene	NT	NT	NT	NT	NT	6.690 D	NT	0.731 D	0.0466 U	0.742 D	1.570 D	0.666 D	4.380
Phenol	NT	NT	NT	NT	NT	0.0476 U	NT	0.0470 U	0.0466 U	0.0469 U		0.0470 U	0.0464 U
Pyrene	NT	NT	NT	NT	NT	8.520 D	NT	1.680 D		0.783 D			
Pyridine	NT NT	NT	NT	NT	NT	0.190 U	NT	0.188 U	0.186 U	0.187 U			
SVOA, TCLP MASTER	Ni Ni	101	100	1111		mg/L	141	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor			+			1		1	1	1	1	1	1
1,4-Dichlorobenzene	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	0.00500 U		0.00500 U
2.4.5-Trichlorophenol	NT NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U			0.00500 L				
2,4,5-1richlorophenol	NI NT	NT NT	NT NT	NT NT	NI NT	0.00500 U	NT NT	0.00500 U	0.00500 U	0.00625 U			0.00500 L
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7													
2,4-Dinitrotoluene	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U		0.00625 U			
2-Methylphenol	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U			0.00500 L
3- & 4-Methylphenols	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U			0.00500 L
Cresols, total	NT	NT	NT	NT	NT	0.0200 U	NT	0.0200 U		0.0250 U			0.0200 L
Hexachlorobenzene	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	**********		0.00500 L
Hexachlorobutadiene	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	0.00500 U	0.00500 U	0.00500 U
Hexachloroethane	NT	NT	NT	NT	NT	0.00250 U	NT	0.00250 U	0.00250 U	0.00312 U	0.00250 U	0.00250 U	0.00250 L
Nitrobenzene	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	0.00500 U	0.00500 U	0.00500 U
Pentachlorophenol	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	0.00500 U	0.00500 U	0.00500 U
Pyridine	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	0.00500 U	0.00625 U	0.00500 U	0.00500 U	0.00500 U
PEST, 8081 MASTER			1			mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor						5		5	5	5	5	5	5
4,4'-DDD	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 U
4.4'-DDE	NT NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 U
4.4'-DDT	NT NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 L
Aldrin	NT NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U		0.00186 U			
	NT NT	NT NT	NT NT	NT NT	NT NT		NT						
alpha-BHC						0.00186 U		0.00183 U	0.00184 U				
alpha-Chlordane	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	******		0.00181 L
beta-BHC	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	***********	0.00186 U			
Chlordane, total	NT	NT	NT	NT	NT	0.0372 U	NT	0.0366 U	0.0369 U	0.0372 U			0.0000
delta-BHC	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 L
Dieldrin	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			
Endosulfan I	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	0.00187 U	0.00187 U	
Endosulfan II	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	0.00187 U	0.00187 U	0.00181 L
Endosulfan sulfate	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	0.00187 U	0.00187 U	0.00181 L
Endrin	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	0.00187 U	0.00187 U	0.00181 L
Endrin aldehyde	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U	0.00187 U	0.00187 U	0.00181 L
Endrin ketone	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 L
gamma-BHC (Lindane)	NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			0.00181 U
gamma-Chlordane	NT NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U	0.00184 U	0.00186 U			
Heptachlor	NT NT	NT	NT	NT	NT	0.00186 U	NT	0.00183 U		0.00186 U			0.00181 U
Heptachlor epoxide	NT NT	NT NT	NT NT	NT NT	NT NT	0.00186 U	NT NT	0.00183 U	0.00184 U	0.00186 U			0.00181
<u> </u>	NT NT	0.00186 U	NT	0.00183 U		0.00186 U	*********						
Methoxychlor	NI NT	NI NT	NI NT	NT NT	NI NT		NT NT	0.00183 U 0.183 U					0.00181 U
Toxaphene	IN I	INI	INI	IN I	INI	 	IN I		0.184 U				
PEST, TCLP MASTER						mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor		1			1	1		1	1	1	1	1	1

3- & 4-Methylphenols	NT	NT	NT	NT	NT	0.00500	U NT	0.00500	U 0.00500	U 0.00625	U 0.00500 U	J 0.00500 U	J 0.00500 L
Cresols, total	NT	NT	NT	NT	NT		U NT	0.0200	U 0.0200		U 0.0200 U		
Hexachlorobenzene	NT	NT	NT	NT	NT		U NT	0.00500	U 0.00500		U 0.00500 U		
Hexachlorobutadiene	NT	NT	NT	NT	NT		U NT	0.00500	U 0.00500		U 0.00500 U		
Hexachloroethane	NT	NT	NT	NT	NT		U NT	0.00250	U 0.00250	+ +	U 0.00250 U		
Vitrobenzene	NT	NT	NT	NT	NT		U NT	0.00500	U 0.00500		U 0.00500 U		
Pentachlorophenol	NT	NT	NT	NT	NT		U NT	0.00500	U 0.00500	+ +	U 0.00500 U		
Pyridine	NT	NT	NT	NT	NT		U NT	0.00500	U 0.00500		U 0.00500 U		
PEST. 8081 MASTER	INI	INI	INI	INI	INI	mg/Kg	U INI	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	+		+			- 111g/Ng	+	5	5	5 5	5	5	
4,4'-DDD	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	J 0.00187 U	
	NT	NT	NT NT	NT NT	NT NT		U NT	0.00183	U 0.00184		U 0.00187 U		
4,4'-DDE	NT NT	NT NT	NT NT	NT NT	NT NT		U NT				U 0.00187 U		
1,4'-DDT								0.00183	U 0.00184				
Aldrin	NT	NT	NT	NT	NT NT		U NT	0.00183	U 0.00184		U 0.00187 U		
alpha-BHC	NT	NT	NT	NT	NT NT		U NT	0.00183	U 0.00184		U 0.00187 U		
alpha-Chlordane	NT	NT	NT	NT	NT NT		U NT	0.00183	U 0.00184		U 0.00187 U		
peta-BHC	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	********	
Chlordane, total	NT	NT	NT	NT	NT NT		U NT	0.0366	U 0.0369		U 0.0374 U		
delta-BHC	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U		
Dieldrin	NT	NT	NT	NT	NT	***************************************	U NT	0.00183	U 0.00184		U 0.00187 U	0.00201	
ndosulfan I	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	J 0.00187 U	
ndosulfan II	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	0.00201	
ndosulfan sulfate	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	********	
ndrin	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U		
indrin aldehyde	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	************	
Indrin ketone	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	J 0.00187 U	J 0.00181 L
gamma-BHC (Lindane)	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	************	
gamma-Chlordane	NT	NT	NT	NT	NT	0.00186	U NT	0.00183	U 0.00184	U 0.00186	U 0.00187 U	J 0.00187 U	J 0.00181 L
Heptachlor	NT	NT	NT	NT	NT		U NT	0.00183	U 0.00184		U 0.00187 U	0.00101	
leptachlor epoxide	NT	NT	NT	NT	NT	0.00186	U NT	0.00183	U 0.00184	U 0.00186	U 0.00187 U	J 0.00187 U	J 0.00181 L
Methoxychlor	NT	NT	NT	NT	NT	0.00186	U NT	0.00183	U 0.00184	U 0.00186	U 0.00187 U	J 0.00187 U	J 0.00181 L
oxaphene	NT	NT	NT	NT	NT	0.186	U NT	0.183	U 0.184	U 0.186	U 0.187 U	U 0.187 U	J 0.181 L
PEST, TCLP MASTER						mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor						1		1	1	1	1	1	1
Endrin	NT	NT	NT	NT	NT	0.00004	U NT	0.00004	U 0.00004	U 0.00004	U 0.00004 U	J 0.00004 U	J 0.00004 L
gamma-BHC (Lindane)	NT	NT	NT	NT	NT	0.00004	U NT	0.00004	U 0.00004	U 0.00004	U 0.00004 U	J 0.00004 U	J 0.00004 L
Heptachlor	NT	NT	NT	NT	NT	0.00004	U NT	0.00004	U 0.00004	U 0.00004	U 0.00004 U	0.00004 U	J 0.00004 L
Heptachlor epoxide	NT	NT	NT	NT	NT	0.00004	U NT	0.00004	U 0.00004	U 0.00004	U 0.00004 U	0.00004 U	J 0.00004 L
Methoxychlor	NT	NT	NT	NT	NT	0.00004	U NT	0.00004	U 0.00004	U 0.00004	U 0.00004 U	U 0.00004 U	J 0.00004 L
Toxaphene	NT	NT	NT	NT	NT	0.00111	U NT	0.00111	U 0.00111	U 0.00100	U 0.00100 U	0.00111 U	J 0.00111 L
NJDEP EPH (Cat. 2 Non-Fractionated)						mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor						5	1	1	1 1	1 1	10	1	1
Total EPH	NT	NT	NT	NT	NT		D NT	67.100	55.300	77.100	1,740 D	373	208
Metals, RCRA						mg/Kg	mg/Kg	- 011200		111200	2,110	+	1 200
Dilution Factor				<u> </u>		1	1	+	++	 	++	+	+
Arsenic	NT	NT	NT	NT	NT	23.700	4.490	NT	NT	NT	NT	NT	NT
Barium	NT	NT	NT	NT	NT	1,000	189	NT	NT	NT	NT	NT	NT
Cadmium	NT	NT	NT	NT	NT	10.600	0.448	NT	NT	NT	NT	NT	NT
Chromium	NT	NT	NT	NT	NT	40.500	19.600	NT	NT	NT	NT	NT	NT
Lead	NT	NT	NT	NT	NT	2,500	157	NT	NT	NT	NT	NT	NT
Selenium	NT	NT	NT	NT	NT			U NT	NT	NT	NT	NT	NT
Silver	NT	NT	NT	NT	NT			U NT	NT	NT	NT	NT	NT
	INI	INI	11/1	INT	INI		0.300				mg/Kg		mg/Kg
Metals, Target Analyte		1	+	+	+	mg/Kg 1	+ +	mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg	mg/kg 1
Dilution Factor	NIT	NIT	NIT	NT	NIT		NIT	12 200			8,830	12 900	
Muminum	NT NT	NT NT	NT NT	NT NT	NT NT	13,600	NT NT	12,300	9,770	11,000		13,800	10,300
antimony						2.870	U NT	2.840	U 2.820			J 2.850 U	
rsenic	NT	NT	NT	NT	NT	23.700	NT	4.810	1.690	U 5.820	4.400	2.820	3.150
Barium	NT	NT	NT	NT	NT	1,000	NT	85.900	70	86.400	298	100	118
Beryllium	NT	NT	NT	NT	NT	0.798	NT	0.321	0.239	0.390	0.284	0.228	0.303
Padmium	NT	NT	NT	NT	NT	10.600	NT	0.341	U 2.790		U 0.886	0.341 U	J 0.336 L
Calcium	NT	NT	NT	NT	NT	48,300	NT	3,100	1,760	2,960	7,460	4,330	6,730
Chromium	NT	NT	NT	NT	NT	40.500	NT	18.200	22.700	15.700	21.300	21.900	19.400
obalt	NT	NT	NT NT	NT	NT	12.400	NT	5.950	7.910	5.150	6.540	6.890	7.050
opper	NT	NT	NT	NT	NT	4,490	NT	19.400	18.300	20.200	78.400	23.800	27.300
on	NT	NT	NT	NT	NT	118,000	E NT	21,200	24,900	14,300	21,800	22,700	28,700
ead	NT	NT	NT	NT	NT	2,500	NT	111	40.400	63.900	388	107	108
Magnesium	NT	NT	NT	NT	NT	10,500	NT	1,830	2,190	1,790	1,980	2,620	2,410
Manganese	NT	NT	NT	NT	NT	1,220	NT	420	433	498	335	343	476
lickel	NT	NT	NT	NT	NT	57.300	NT	12.300	15.100	13.600	19.900	14.700	13.200
nono.		NT	NT	NT	NT	1,300	NT	748	916	666	728	1,080	1,020
otaccium								140	910	000	120	T.000	1,020
Potassium Gelenium	NT NT	NT	NT	NT	NT	2.870	U NT	2.840	U 2.820		U 2.860 U		

Sample ID	WC6-01 (0-1)	WC7-03 (0-1)	WC8-03 (1-2)	WC9-03 (0-1)	WC11-03 (1-1.5)	WC-09-5 (0-5)	SS-01 (0-5)	WC6-COMP (0-5)	WC7-COMP (0-5)	WC8-COMP (0-5)	WC9-COMP (0-5)	WC10-COMP (0-5)	WC11-COMP (0-5)
Sample ID	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022	5/24/2022
Sampling Date										1			
Client Matrix	Soil Result Q	Soil Result Q	Soil Result Q	Soil Result Q	Soil Result Q	Soil Result Q	Soil Result Q	Soil Result Q					
Compound Silver	NT NT	NT V	NT V	NT V	NT V	0.574 U	NT V	0.568 U		0.567 U	0.572 U		
Sodium	NT	NT	NT	NT	NT	576	NT	290	173	81.100	146	111	156
Thallium Vanadium	NT NT	NT NT	NT NT	NT NT	NT NT	2.870 U 48	NT NT	2.840 U 24.300	2.820 U 32.600	2.830 U 21	2.860 U 24.400	2.850 U 28.400	2.800 U 27.700
Zinc	NT	NT	NT NT	NT NT	NT NT	2,400	NT NT	51.900	202	55.400	507	92.100	135
Metals, TCLP RCRA						mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor	NT	NT	NIT	NT	NIT	1	1	1	1	1	1	1	1
Arsenic Barium	NT NT	NT NT	NT NT	NT NT	NT NT	0.375 U 1.540	0.375 U	0.375 U 0.625 U		0.375 U 0.697	0.375 U 1.170	0.375 U 0.758	0.375 U 0.625 U
Cadmium	NT	NT	NT	NT	NT	0.0750 U	0.0750 U	J 0.0750 U	0.0750 U	0.0750 U	0.0750 U	0.0750 U	0.0750 U
Chromium	NT NT	NT NT	NT NT	NT NT	NT NT	0.125 U 2.130	0.125 U 0.519	0.125 U 0.125 U		0.125 U 0.127	0.125 U 1.400	0.125 U 0.185	0.125 U 0.352
Lead Selenium	NT	NT	NT NT	NT	NT	0.625 U	0.625 U	J 0.625 U	0.196 0.625 U	0.625 U	0.625 U		0.625 U
Silver	NT	NT	NT	NT	NT	0.125 U	0.125 U	J 0.125 U	 	0.125 U	0.125 U		
Mercury by 7473 Dilution Factor						mg/Kg	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1
Mercury	NT	NT	NT	NT	NT	0.517	5.870	0.176	0.0425	0.207	0.424	0.160	0.252
Mercury, TCLP						mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L
Dilution Factor	N/T	NIT	NIT	NIT	NIT	1	1	1	1	1	1	NT	1
Mercury Chromium, Hexavalent	NT	NT	NT	NT	NT	0.00020 U mg/Kg	0.00020 U	0.00020 U mg/Kg	0.00020 U mg/Kg	0.00020 U mg/Kg	0.00020 U mg/Kg	NT mg/Kg	0.00020 U mg/Kg
Dilution Factor						1		1	1	1	1	1	1
Chromium, Hexavalent	NT	NT	NT	NT	NT	0.574 U	NT	0.568 U	0.565 U	0.567 U	0.572 U	0.569 U	0.561 U
Chromium, Trivalent Dilution Factor	+					mg/Kg 1		mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1
Chromium, Trivalent	NT	NT	NT	NT	NT	40.500	NT	18.200	22.700	15.700	21.300	21.900	19.400
Corrosivity (pH) by SM 4500/EPA 9045D						pH units		pH units	pH units	pH units	pH units	pH units	pH units
Dilution Factor	NT	NT	NT	NT	NT	1 7.480	NT	1 7.160	6.300	7.680	7.470	7.790	1 8.080
Cyanide, Total						mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	NT	NT	NIT	NT	NIT	1	NT	1	1	1	1	1	1
Cyanide, total Ignitability	NT	NT	NT	NT	NT	0.574 U None	NT	0.568 U None	0.565 U None	0.567 U None	0.572 U None	0.569 U None	0.561 U None
Dilution Factor						1		1	1	1	1	1	1
Ignitability	NT	NT	NT	NT	NT	Non-Ignit.	NT	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.	Non-Ignit.
Paint Filter Test Dilution Factor						None 1		None 1	None 1	None 1	None 1	None 1	None 1
Paint Filter Test	NT	NT	NT	NT	NT	0.0500 U	NT	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Reactivity-Cyanide Dilution Factor						mg/kg 1		mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1	mg/kg 1
Reactivity - Cyanide	NT	NT	NT	NT	NT	0.250 U	NT	0.250 U	0.250 U	0.250 U	0.250 U	0.250 U	0.250 U
Reactivity-Sulfide						mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor Reactivity - Sulfide	NT	NT	NT	NT	NT	1 15 U	NT	1 15 U	1 15 U	1 15 U	1 15 U	1 15 U	1 15 U
TCLP Extraction for METALS EPA 1311	NI I	141	IXI	101	IXI	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dilution Factor						1	1	1	1	1	1	1	1
TCLP Extraction TCLP Extraction for SVOCS/PEST/HERB	NT	NT	NT	NT	NT	Completed N/A	Completed	Completed N/A	Completed N/A	Completed N/A	Completed N/A	Completed N/A	Completed N/A
Dilution Factor						1		1	1	1	1	1	1
TCLP Extraction	NT	NT	NT	NT	NT	Completed	NT	Completed	Completed	Completed	Completed	Completed	Completed
TCLP Extraction for VOA by EPA 1311 ZHE Dilution Factor						N/A 1		N/A 1	N/A 1	N/A 1	N/A 1	N/A 1	N/A 1
TCLP Extraction	NT	NT	NT	NT	NT	Completed	NT	Completed	Completed	Completed	Completed	Completed	Completed
Temperature Dilution Factor						°C		°C 1	°C	°C	°C	°C	°C
Temperature	NT	NT	NT	NT	NT	23.300	NT	23.500	23.100	22.900	22.900	22.900	23
Total Solids	%	%	%	%	%	%	%	%	%	%	%	%	%
Dilution Factor % Solids	86.700	1 94.100	1 89.300	1 96.100	92.400	1 87.200	1 85	1 88	1 88.500	1 88.200	1 87.400	1 87.900	1 89.200
HERB, 8151 MASTER	55.700	34.100	55.550	30.100	32.700	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	N-	NT	NIT	NT	NIT	1	NT	1	1	1	1	1	1
2,4,5-T 2,4,5-TP (Silvex)	NT NT	NT NT	NT NT	NT NT	NT NT	0.0228 U 0.0228 U	NT NT	0.0226 U 0.0226 U		0.0221 U 0.0221 U	0.0225 U 0.0225 U		
2,4-D	NT	NT	NT	NT	NT	0.0228 U		0.0226 U		0.0221 U	0.0225 U		
HERB, TCLP MASTER						mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Dilution Factor 2,4,5-TP (Silvex)	NT	NT	NT	NT	NT	0.00500 U	NT	0.00500 U	1 0.00500 U	1 0.00500 U	0.00500 U	1 0.00500 U	1 0.00500 U
2,4-D	NT	NT	NT	NT	NT	0.00500 U		0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U	0.00500 U
PCB, 8082 MASTER						mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor Aroclor 1016	NT	NT	NT	NT	NT	1 0.0188 U	NT	0.0185 U	1 0.0186 U	1 0.0188 U	1 0.0189 U	1 0.0188 U	1 0.0183 U
Aroclor 1221	NT	NT	NT	NT	NT	0.0188 U	NT	0.0185 U	0.0186 U	0.0188 U	0.0189 U	0.0188 U	0.0183 U
Arcelor 1232	NT NT	NT NT	NT NT	NT NT	NT NT	0.0188 U		0.0185 U		0.0188 U 0.0188 U	0.0189 U 0.0189 U		
Aroclor 1242 Aroclor 1248	NT NT	NT NT	NT NT	NT NT	NT NT	0.0188 U 0.0188 U		0.0185 U 0.0185 U		0.0188 U	0.0189 U 0.0565	0.0188 U 0.0188 U	
Aroclor 1254	NT	NT	NT	NT	NT	0.0188 U	NT	0.0185 U	0.0186 U	0.0188 U	0.0189 U	0.0188 U	0.0183 U
Aroclor 1260	NT NT	NT NT	NT NT	NT NT	NT NT	0.0188 U		0.0185 U			0.0280	0.0188 U	
Total PCBs	NT	NT	NT	NT	NT	0.0188 U	NT	0.0185 U	0.0186 U	0.0188 U	0.0845	0.0188 U	0.0183 U

Sample ID		W043 (E 40)		W042 /40 45		W040 /E 40\		W040 (40 4F)		W012 02 (6.7.5	١	W042 02 (40 4	3 41	W042 02 (9 0 #	, 1	WC12 02 /44 40 4	A+)
Sampling Date		WC13 (5-10)		WC13 (10-15)		WC12 (5-10)		WC12 (10-15)		WC13-03 (6-7 ft)	WC13-03 (12-1	•	WC12-03 (8-9 ft	:)	WC12-03 (11-12 f	t)
Client Matrix	1	8/12/2022 Soil		8/12/2022 Soil		8/12/2022 Soll		8/12/2022 Soil		8/12/202 Soll		8/12/2022 Soil		8/12/2022 Soll		8/12/2022 Soll	_
Compound	CAS Number	Result	Q	Result	Q	Result	Q	Result	Q		Q	Result	Q	Result	Q	Result	Q
VOA, 8260 MASTER Dilution Factor										mg/Kg 1		mg/Kg 1	+	mg/Kg 1		mg/Kg 1	_
1,1,1,2-Tetrachloroethane	630-20-6 71-55-6	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260 0.00260	U	0.00260 0.00260	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	79-34-5	NT		NT		NT		NT		0.00320	Ü	0.00270	U	0.00260	U	0.00260	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,1,2-Trichloroethane	76-13-1 79-00-5	NT NT	+	NT NT	+	NT NT	-	NT NT	-	0.00320 0.00320	U	0.00270 0.00270	U	*****	U	0.00260 0.00260	U
1,1-Dichloroethane 1,1-Dichloroethylene	75-34-3 75-35-4	NT NT	\square	NT NT	\blacksquare	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
1,2,3-Trichlorobenzene	87-61-6	NT		NT		NT		NT		0.00320	U	0.00270	Ü	0.00260	U	0.00260	U
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	96-18-4 120-82-1	NT NT	+	NT NT		NT NT	-	NT NT		0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	95-63-6 96-12-8	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U	0.00260 0.00260	U
1,2-Dibromoethane	106-93-4	NT		NT		NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
1,2-Dichlorobenzene 1,2-Dichloroethane	95-50-1 107-06-2	NT NT	+	NT NT	+	NT NT	-	NT NT	-	0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
1,2-Dichloropropane	78-87-5 108-67-8	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U		U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	541-73-1	NT		NT		NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
1,4-Dichlorobenzene 1,4-Dioxane	106-46-7 123-91-1	NT NT	+	NT NT	+	NT NT	-	NT NT	-	0.00320 0.0640	U	0.00270 0.0540	U		U	0.00260 0.0530	U
2-Butanone	78-93-3	NT		NT	\blacksquare	NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
2-Hexanone 4-Methyl-2-pentanone	591-78-6 108-10-1	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U	0.00260 0.00260	U
Acetone Acrolein	67-64-1 107-02-8	NT NT		NT NT	+	NT NT		NT NT		0.0130 0.00640	U	0.00820 0.00540	J		U	0.0140 0.00530	U
Acrylonitrile	107-13-1	NT		NT		NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
Benzene Bromochloromethane	71-43-2 74-97-5	NT NT	H	NT NT	廿	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U	0.00260 0.00260	U
Bromodichloromethane Bromoform	75-27-4 75-25-2	NT NT	+	NT NT	+	NT NT	-	NT NT	+	0.00320 0.00320	U	0.00270 0.00270	U	*****	U	0.00260 0.00260	U
Bromomethane	74-83-9	NT	H	NT	$\downarrow \downarrow \downarrow$	NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
Carbon disulfide Carbon tetrachloride	75-15-0 56-23-5	NT NT	Ħ	NT NT	世	NT NT		NT NT	L	0.00320 0.00320	U	0.00270 0.00270	U	0.00260	Ü	0.00260 0.00260	U
Chlorobenzene Chloroethane	108-90-7 75-00-3	NT NT	$+$ \exists	NT NT	$+ \mathbb{I}$	NT NT	+	NT NT	F	0.00320 0.00320	U	0.00270 0.00270	U	*****	U	0.00260 0.00260	U
Chloroform	67-66-3	NT	H	NT	$\downarrow \downarrow$	NT		NT	L	0.00320	U	0.00270	U	0.00260	U	0.00260	U
Chloromethane cis-1,2-Dichloroethylene	74-87-3 156-59-2	NT NT	\Box	NT NT	\Box	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U		U
cis-1,3-Dichloropropylene Cyclohexane	10061-01-5 110-82-7	NT NT	$+$ $\overline{1}$	NT NT	$+ \overline{1}$	NT NT	-	NT NT	+	0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
Dibromochloromethane	124-48-1	NT		NT		NT		NT		0.00320	U		Ü	0.00260	U	0.00260	U
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	NT NT		NT NT	\pm	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260 0.00260	U	0.00260	U
Ethyl Benzene Hexachlorobutadiene	100-41-4 87-68-3	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260 0.00260	U	0.00260 0.00260	U
Isopropylbenzene	98-82-8	NT		NT	Ħ	NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
Methyl acetate Methyl tert-butyl ether (MTBE)	79-20-9 1634-04-4	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
Methylcyclohexane Methylene chloride	108-87-2 75-09-2	NT NT		NT NT	+	NT NT		NT NT		0.00320 0.00640	U	0.00270 0.00540	U		U	0.00260 0.00530	U
n-Butylbenzene	104-51-8	NT		NT		NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
n-Propylbenzene o-Xylene	103-65-1 95-47-6	NT NT	+	NT NT	+	NT NT	-	NT NT	+	0.00320 0.00320	U	0.00270 0.00270	U	0.00260 0.00260	U	0.00260 0.00260	U
p- & m- Xylenes p-Isopropyltoluene	179601-23-1 99-87-6	NT NT		NT NT		NT NT		NT NT		0.00640 0.00320	U	0.00540 0.00270	U	0.00510 0.00260	U	0.00530 0.00260	U
sec-Butylbenzene	135-98-8	NT		NT		NT		NT		0.00320	U	0.00270	Ü	0.00260	Ü	0.00260	Ü
Styrene tert-Butyl alcohol (TBA)	100-42-5 75-65-0	NT NT		NT NT	\pm	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U	0.00260	U
tert-Butylbenzene Tetrachloroethylene	98-06-6 127-18-4	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
Toluene	108-88-3	NT		NT		NT		NT		0.00320	U	0.00270	U	0.00260	U	0.00260	U
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	156-60-5 10061-02-6	NT NT		NT NT		NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U	0.00260	U	0.00260 0.00260	U
Trichloroethylene Trichlorofluoromethane	79-01-6 75-69-4	NT NT	\blacksquare	NT NT	H	NT NT		NT NT		0.00320 0.00320	U	0.00270 0.00270	U		U	0.00260 0.00260	U
Vinyl Chloride	75-01-4	NT		NT		NT		NT		0.00320	U	0.00270	Ü	0.00260	Ü	0.00260	U
Xylenes, Total Volatile Organics, Tentatively Identified Cmpds.	1330-20-7	NT		NT		NT		NT		0.00960 mg/kg	U	0.00810 mg/kg	U	0.00770 mg/kg	U	0.00790 mg/kg	U
Dilution Factor Tentatively Identified Compounds		NT		NT		NT		NT		1 0	U	0	Ш	1 0	Ш	0	U
SVOA, 8270 MASTER		mg/Kg		mg/Kg		mg/Kg		mg/Kg		0	Ü	Ů	Ť	Ü	Ŭ	0	Ĭ
Dilution Factor 1,1-Biphenyl	92-52-4	2 0.0432	U	2 0.0446	U	2 0.0434	U	2 0.0437	U	NT		NT	士	NT		NT	H
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	95-94-3 120-82-1	0.0863 0.0432	U	0.0889 0.0446	U	0.0865 0.0434	U		U		H	NT NT	+	NT NT	H	NT NT	H
1,2-Dichlorobenzene	95-50-1	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	工	NT		NT	
1,2-Diphenylhydrazine (as Azobenzene) 1,3-Dichlorobenzene	122-66-7 541-73-1	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437	U	NT		NT NT	士	NT NT		NT NT	
1,4-Dichlorobenzene 2,3,4,6-Tetrachlorophenol	106-46-7 58-90-2	0.0432 0.0863	U	0.0446 0.0889	U	0.0434 0.0865	U		U			NT NT	+	NT NT		NT NT	-
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U		U			NT NT	4	NT NT		NT NT	
2,4-Dichlorophenol	120-83-2	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	土	NT		NT	
2,4-Dimethylphenol 2,4-Dinitrophenol	105-67-9 51-28-5	0.0432 0.0863	U	0.0446 0.0889	U	0.0434 0.0865	U		U			NT NT	+	NT NT	\vdash	NT NT	-
2,4-Dinitrotoluene 2,6-Dinitrotoluene	121-14-2 606-20-2	0.0432 0.0432	U	0.0446 0.0446	U	1.070 1.470	D D		U	NT NT		NT NT	4	NT NT		NT NT	
2-Chloronaphthalene	91-58-7	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT		NT		NT	
2-Chlorophenol 2-Methylnaphthalene	95-57-8 91-57-6	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U		U			NT NT	+	NT NT		NT NT	-
2-Methylphenol 2-Nitroaniline	95-48-7 88-74-4	0.0432 0.0863	U	0.0446 0.0889	U	0.0434 0.0865	U	0.0437	U	NT		NT NT	7	NT NT	H	NT NT	
2-Nitrophenol	88-75-5	0.0432	Ü	0.0446	U	0.0434	U	0.0437	U	NT		NT	丰	NT	Ħ	NT	
3- & 4-Methylphenols 3,3-Dichlorobenzidine	65794-96-9 91-94-1	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U		U		<u> </u>	NT NT	+	NT NT	H	NT NT	\vdash
3-Nitroaniline 4,6-Dinitro-2-methylphenol	99-09-2 534-52-1	0.0863 0.0863	U	0.0889	U	0.0865 0.0865	U	0.0872	U	NT		NT NT	7	NT NT	H	NT NT	F
4-Bromophenyl phenyl ether	101-55-3	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	士	NT	Ħ	NT	
4-Chloro-3-methylphenol 4-Chloroaniline	59-50-7 106-47-8	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U		U		L	NT NT	\pm	NT NT	H	NT NT	F
4-Chlorophenyl phenyl ether 4-Nitroaniline	7005-72-3 100-01-6	0.0432 0.0863	U	0.0446 0.0889	U	0.0434 0.0865	U	0.0437	U	NT		NT NT	Ŧ	NT NT	П	NT NT	F
	100-02-7	0.0863	U	0.0889	U	0.0865	U	0.0872	U	NT		NT	丰	NT	Ħ	NT	
4-Nitrophenol	83-32-9 208-96-8	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U		U			NT NT	+	NT NT	H	NT NT	\vdash
4-Nutrophenoi Acenaphthene Acenaphthylene		0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	#	NT	Н	NT	F
Acenaphthene Acenaphthylene Acetophenone	98-86-2 62-53-3		1.1	0.470													
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene	62-53-3 120-12-7	0.173 0.0432	U	0.178 0.0446	U	0.173 0.227	D	0.0437	U	NT		NT NT	士	NT NT		NT NT	L.
Acenaphthene Acenaphthylene Acetophenone Aniline Anithracene Atrazine	62-53-3	0.173						0.0437 0.0437		NT NT		NT NT	#			NT NT	<u> </u>
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde Benzidine	62-53-3 120-12-7 1912-24-9 100-52-7 92-87-5	0.173 0.0432 0.0432 0.0432 0.173	U U U	0.0446 0.0446 0.0446 0.178	U U U	0.227 0.0434 0.0434 0.173	U U U	0.0437 0.0437 0.0437 0.175	U U U	NT NT NT NT		NT NT NT		NT NT NT NT		NT NT NT NT	
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Atrazine Benzaldehyde	62-53-3 120-12-7 1912-24-9 100-52-7	0.173 0.0432 0.0432 0.0432	U U U	0.0446 0.0446 0.0446	UUU	0.227 0.0434 0.0434	D U U	0.0437 0.0437 0.0437 0.175 0.0437 0.0437	U U U	NT NT NT NT		NT NT NT	‡ ‡	NT NT NT		NT NT NT	

Sample ID		WC13 (5-10)		WC13 (10-15)	WC12 (5-10)		WC12 (10-15)		WC13-03 (6-7 ft)		WC13-03 (12-13 ft)	WC12-03 (8-9 ft)	WC12-03 (11-12 ft)
Sampling Date		8/12/2022	\rightarrow	8/12/2022		8/12/2022		8/12/2022		8/12/202		8/12/2022	8/12/2022	_	8/12/2022
Client Matrix	212.11	Soil	1.0	Soil	1.0	Soil	1.	Soil	Ι.	Soil		Soil	Soil		Soil
Compound Benzo(k)fluoranthene	CAS Number 207-08-9	Result 0.0432	Q U	Result 0.0446	Q U	Result 0.0719	Q JD	Result 0.0437	Q U	Result NT	Q	Result NT	Q Result NT	Q	Result NT
Benzoic acid Benzyl alcohol	65-85-0 100-51-6	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Benzyl butyl phthalate	85-68-7	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	NT		NT
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	111-91-1 111-44-4	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Bis(2-chloroisopropyl)ether Bis(2-ethylhexyl)phthalate	108-60-1 117-81-7	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0906	U	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Caprolactam	105-60-2	0.0863	U	0.0889	U	0.0865	U	0.0872	U	NT		NT	NT		NT
Carbazole Chrysene	86-74-8 218-01-9	0.0432 0.0432	U	0.0446	U	0.0434 0.105	U D	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Dibenzo(a,h)anthracene	53-70-3	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	NT		NT
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Dimethyl phthalate Di-n-butyl phthalate	131-11-3 84-74-2	0.0432 0.0432	U	0.0446 0.0446	U	0.376 0.0434	D	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Di-n-octyl phthalate	117-84-0	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	NT		NT
Fluoranthene Fluorene	206-44-0 86-73-7	0.0432 0.0432	U	0.0446 0.0446	U	0.242 0.0434	D U	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Hexachlorobenzene	118-74-1 87-68-3	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U	NT		NT NT	NT NT		NT NT
Hexachlorobutadiene Hexachlorocyclopentadiene	77-47-4	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT NT		NT	NT		NT
Hexachloroethane Indeno(1,2,3-cd)pyrene	67-72-1 193-39-5	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0470	JD	0.0437 0.0437	U	NT NT		NT NT	NT NT		NT NT
Isophorone	78-59-1	0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT	NT		NT
Naphthalene Nitrobenzene	91-20-3 98-95-3	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U	NT NT		NT NT	NT NT	H	NT NT
N-Nitrosodimethylamine	62-75-9 621-64-7	0.0432	U	0.0446 0.0446	U	0.0434 0.0434	U	0.0437 0.0437	U			NT	NT NT	H	NT NT
N-nitroso-di-n-propylamine N-Nitrosodiphenylamine	86-30-6	0.0432 0.0432	U	0.0446	U	0.0434	U	0.0437	U	NT		NT NT	NT		NT
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	0.0432 0.0432	U	0.0446 0.0446	U	0.0434 0.223	U	0.0437 0.0437	U	NT NT		NT NT	NT NT	П	NT NT
Phenol	108-95-2	0.0432	Ü	0.0446	U	0.0434	U	0.0437	U	NT		NT	NT		NT
Pyrene Pyridine	129-00-0 110-86-1	0.0432 0.173	U	0.0446 0.178	U	0.194 0.173	D U	0.0437 0.175	U	NT NT		NT NT	NT NT	Н	NT NT
PEST, 8081 MASTER		mg/Kg	Ť	mg/Kg	Ť	mg/Kg	Ť	mg/Kg	Ĭ					П	
Dilution Factor 4,4'-DDD	72-54-8	5 0.00171	U	5 0.00179	U	5 0.00173	U	5 0.00175	U	NT		NT	NT	H	NT
4,4'-DDE 4,4'-DDT	72-55-9 50-29-3	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT	П	NT NT
Aldrin	309-00-2	0.00171	U	0.00179	U	0.00173	U	0.00175	U	NT		NT	NT	Ш	NT
alpha-BHC alpha-Chlordane	319-84-6 5103-71-9	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT		NT NT
beta-BHC	319-85-7	0.00171	U	0.00179	U	0.00173	U	0.00175	U	NT		NT	NT		NT
Chlordane, total delta-BHC	12789-03-6 319-86-8	0.0341 0.00171	U	0.0358 0.00179	U	0.0347 0.00173	U	0.0350 0.00175	U	NT NT		NT NT	NT NT		NT NT
Dieldrin Endosulfan I	60-57-1 959-98-8	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT		NT NT
Endosulfan II	33213-65-9	0.00171	U	0.00179	U	0.00173	U	0.00175	U	NT		NT	NT		NT
Endosulfan sulfate Endrin	1031-07-8 72-20-8	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT		NT NT
Endrin aldehyde	7421-93-4	0.00171	U	0.00179	U	0.00173	U	0.00175	U	NT		NT	NT		NT
Endrin ketone gamma-BHC (Lindane)	53494-70-5 58-89-9	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT		NT NT
gamma-Chlordane Hentachlor	5566-34-7 76-44-8	0.00171 0.00171	U	0.00179 0.00179	U	0.00173 0.00173	U	0.00175 0.00175	U	NT NT		NT NT	NT NT		NT NT
Heptachlor epoxide	1024-57-3	0.00171	U	0.00179	U	0.00173	U	0.00175	U	NT		NT	NT		NT
Methoxychlor Toxaphene	72-43-5 8001-35-2	0.00171 0.171	U	0.00179 0.179	U	0.00173 0.173	U	0.00175 0.175	U	NT NT		NT NT	NT NT		NT NT
NJDEP EPH (Cat. 2 Non-Fractionated)	5552552	mg/kg	Ľ	mg/kg	Ť	mg/kg	Ŭ	mg/kg	Ľ						
Dilution Factor Total EPH		1 48.500	U	49.900	U	1 51.200	U	1 53.200	U	NT		NT	NT		NT
Metals, Target Analyte Dilution Factor		mg/Kg 1	\blacksquare	mg/Kg 1	\blacksquare	mg/Kg 1		mg/Kg 1							
Aluminum	7429-90-5	5,130		4,480		6,300		82,400		NT		NT	NT		NT
Antimony Arsenic	7440-36-0 7440-38-2	2.640 1.580	U	2.720 1.630	U	2.680 1.610	U	31 22.900	U	NT NT		NT NT	NT NT		NT NT
Barium	7440-39-3	19.500		21.300		28.500	0	252		NT		NT	NT		NT
Beryllium Cadmium	7440-41-7 7440-43-9	0.0530 0.317	U	0.0540 0.326	U	0.0540 0.322	U	0.620 3.720	U	NT NT		NT NT	NT NT		NT NT
Calcium	7440-70-2	765	0	984	0	778	U	51,300	U	NT		NT	NT		NT
Chromium Cobalt	7440-47-3 7440-48-4	9.990 5.420	$+ \mathbb{I}$	10.300 4.740	$+$ $\overline{1}$	15.800 5.890	+	140 58.600	+	NT NT		NT NT	NT NT	H	NT NT
Copper	7440-50-8	9.840	口	9.240	廿	10.400		134		NT		NT	NT		NT
Iron Lead	7439-89-6 7439-92-1	10,400 5.380	Ħ	7,990 4.270	H	10,200 9.260		106,000 53.800	+	NT NT		NT NT	NT NT	H	NT NT
Magnesium	7439-95-4	2,020	目	2,500	Ħ	2,220		28,900		NT		NT	NT		NT
Manganese Nickel	7439-96-5 7440-02-0	325 11.700	++	260 15.300	+	255 18.500	+	2,810 186	+	NT NT		NT NT	NT NT	${\mathbb H}$	NT NT
Potassium	7440-09-7	559	В	613	В	477	В	8,370	В	NT		NT	NT	H	NT
Selenium	7782-49-2	2.640	U	2.720	U	2.680	U	31	U			NT	NT NT	μĪ	NT
Silver Sodium	7440-22-4 7440-23-5	0.528 52.800	U	0.544 54.400	U	0.536 66.700	U	6.200 620	U	NT NT		NT NT	NT NT	Н	NT NT
Thallium	7440-28-0	2.640	Ü	2.720	U	2.680	U	31	U	NT		NT	NT	П	NT
Vanadium Zinc	7440-62-2 7440-66-6	14.700 16.900	+	10.100 14	+	14.100 91.200		165 244	+	NT NT		NT NT	NT NT	Н	NT NT
Metals, TCLP RCRA		mg/L	Ħ	mg/L	Ħ	mg/L		mg/L							
Dilution Factor Arsenic	7440-38-2	0.375	U	0.375	U	0.375	U	1 0.375	U	NT		NT	NT	H	NT
Barium Cadmium	7440-39-3 7440-43-9	0.625 0.0750	U	0.625 0.0750	U	0.625 0.0750	U	0.625 0.0750	U	NT NT		NT NT	NT NT	П	NT NT
Chromium	7440-47-3	0.125	U	0.125	U	0.125	U	0.125	U	NT		NT	NT	П	NT
Lead Selenium	7439-92-1 7782-49-2	1.890 0.625	U	0.207 0.625	U	0.125 0.625	U	1.270 0.625	U	NT NT		NT NT	NT NT	H	NT NT
Silver	7440-22-4	0.125	Ü	0.125	U	0.125	U	0.125	U	NT		NT	NT		NT
Mercury by 7473 Dilution Factor		mg/Kg 1	計	mg/Kg 1	廾	mg/Kg 1	╆	mg/Kg 1	\pm				<u> </u>	H	
Mercury	7439-97-6	0.0311	U	0.0326	U	0.0316	U	0.0322	U	NT		NT	NT	П	NT
Mercury, TCLP Dilution Factor		mg/L 1	廿	mg/L 1	Ħ	mg/L 1		mg/L 1						H	
Mercury Chromium, Hexavalent	7439-97-6	0.00020 mg/Kg	U	0.00020 mg/Kg	U	0.00020 mg/Kg	U	0.00020 mg/Kg	U	NT		NT	NT	H	NT
Dilution Factor	10510	1	Ħ	1		1		1	T.						
Chromium, Hexavalent Corrosivity (pH) by SM 4500/EPA 9045D	18540-29-9	0.519 pH units	U	0.544 pH units	U	0.527 pH units	U	0.537 pH units	U	NT		NT	NT	Н	NT
Dilution Factor		1 5.800	Ħ	1 5.840	Ħ	1 5.970		1 6.340		NT		NT	NT	П	NT
Cyanide, Total		mg/Kg	Ħ	mg/Kg	Ħ	mg/Kg		mg/Kg		INI		INI	INI	\Box	INI
Dilution Factor Cvanide, total	57-12-5	1 0.519	U	1 0.544	U	1 0.527	11	1 0.537	U	NT		NT	NT	H	NT
Ignitability	31-12-0	None	J	None		None	J	None	0	INI		INI	INI	H	INI
Dilution Factor		1		1		1		1						-	

								ı		T		1	Г		
Sample ID		WC13 (5-10)		WC13 (10-15)		WC12 (5-10)		WC12 (10-15)		WC13-03 (6-7 ft)		WC13-03 (12-13 ft)	WC12-03 (8-9 ft)		WC12-03 (11-12 ft)
Sampling Date		8/12/2022		8/12/2022		8/12/2022		8/12/2022		8/12/202		8/12/2022	8/12/2022		8/12/2022
Client Matrix		Soil		Soil		Soil		Soil		Soil		Soil	Soil		Soll
Compound	CAS Number	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result (Result	Q	Result
Reactivity-Cyanide Dilution Factor		mg/kg 1	+	mg/kg 1	+	mg/kg 1		mg/kg 1							
Reactivity - Cyanide		0.250	U	0.250	U	0.250	U	0.250	U	NT		NT	NT		NT
Reactivity-Sulfide Dilution Factor		mg/kg 1	+	mg/kg 1	+	mg/kg 1		mg/kg 1						\vdash	
Reactivity - Sulfide		15	U	15	U	15	U	15	U	NT		NT	NT		NT
TCLP Extraction for METALS EPA 1311 Dilution Factor		N/A 1	+	N/A 1	\vdash	N/A 1	<u> </u>	N/A 1							
TCLP Extraction		Completed		Completed		Completed		Completed		NT		NT	NT		NT
Temperature		°C 1	1	°C 1		°C 1		°C 1					-		
Dilution Factor Temperature		22.400		22.500		22.500		22.800		NT		NT	NT		NT
Total Solids		% 1		% 1		% 1		% 1		%		% 1	% 1		% 1
Dilution Factor % Solids	solids	96.400	+	91.900	H	94.800		93.100		1 94.200		96.500	95.900		94
PCB, 8082 MASTER		mg/Kg		mg/Kg		mg/Kg		mg/Kg							
Dilution Factor Aroclor 1016	12674-11-2	0.0172	U	0.0181	U	0.0175	U	1 0.0177	U	NT		NT	NT		NT
Aroclor 1221	11104-28-2	0.0172	U	0.0181	U	0.0175	U	0.0177	U	NT		NT	NT		NT
Aroclor 1232 Aroclor 1242	11141-16-5 53469-21-9	0.0172 0.0172	U	0.0181 0.0181	U	0.0175 0.0175	U	0.0177 0.0177	U			NT NT	NT NT		NT NT
Aroclor 1248	12672-29-6	0.0172	U	0.0181	U	0.0175	U	0.0177	U	NT		NT	NT		NT
Aroclor 1254 Aroclor 1260	11097-69-1 11096-82-5	0.0172 0.0172	U	0.0181 0.0181	U	0.0175 0.0175	U		U	NT NT		NT NT	NT NT	\vdash	NT NT
Total PCBs	1336-36-3	0.0172	U	0.0181	Ü	0.0175	Ü	0.0177	Ü	NT		NT	NT		NT
Calcium Chromium	7440-70-2 7440-47-3	NT NT	+	NT NT	\vdash	NT NT		NT NT	H	NT NT		NT NT	NT NT	$\vdash \vdash$	NT NT
Cobalt	7440-48-4	NT	廿	NT	口	NT		NT	П	NT		NT	NT		NT
Copper Iron	7440-50-8 7439-89-6	NT NT	H	NT NT	幵	NT NT		NT NT	HĪ	NT NT	\exists	NT NT	NT NT	H	NT NT
Iron Lead	7439-92-1	NT	士	NT	計	NT		NT	H	NT		NT	NT	ᅡ	NT
Magnesium	7439-95-4	NT	H	NT	H	NT	F	NT	П	NT		NT	NT	H	NT
Manganese Nickel	7439-96-5 7440-02-0	NT NT	<u>t</u> +	NT NT	$^{+}$	NT NT	\vdash	NT NT	Н	NT NT		NT NT	NT NT	H	NT NT
Potassium	7440-09-7	NT	Дİ	NT		NT		NT		NT		NT	NT		NT
Selenium Silver	7782-49-2 7440-22-4	NT NT	++	NT NT	\vdash	NT NT	\vdash	NT NT	H	NT NT	-	NT NT	NT NT	\forall	NT NT
Sodium	7440-23-5	NT	H	NT	H	NT		NT	Ш	NT		NT	NT		NT
Thallium Vanadium	7440-28-0 7440-62-2	NT NT	++	NT NT	\vdash	NT NT	\vdash	NT NT	Н	NT NT	-	NT NT	NT NT	\vdash	NT NT
Zinc	7440-66-6	NT	Ħ	NT	Ħ	NT		NT		NT		NT	NT		NT
Metals, TCLP RCRA Dilution Factor			++		\vdash		-		H		-		1	\vdash	
Arsenic	7440-38-2	NT		NT		NT		NT		NT		NT	NT		NT
Barium Cadmium	7440-39-3 7440-43-9	NT NT	+ +	NT NT	\vdash	NT NT		NT NT		NT NT		NT NT	NT NT	\vdash	NT NT
Chromium	7440-47-3	NT		NT		NT		NT		NT		NT	NT		NT
Lead Selenium	7439-92-1 7782-49-2	NT NT	1	NT NT		NT NT		NT NT		NT NT		NT NT	NT NT		NT NT
Silver	7440-22-4	NT		NT		NT		NT		NT		NT	NT		NT
Mercury by 7473					igspace										
Dilution Factor Mercury	7439-97-6	NT	+	NT		NT		NT		NT		NT	NT		NT
Mercury, TCLP			\Box												
Dilution Factor Mercury	7439-97-6	NT	++	NT	+	NT		NT		NT		NT	NT	H	NT
Chromium, Hexavalent															
Dilution Factor Chromium, Hexavalent	18540-29-9	NT	+ +	NT	+	NT		NT		NT		NT	NT		NT
Chromium, Trivalent															
Dilution Factor Chromium, Trivalent	16065-83-1	NT	++	NT	+	NT		NT		NT		NT	NT		NT
Corrosivity (pH) by SM 4500/EPA 9045D															
Dilution Factor DH		NT	+ +	NT	+	NT		NT		NT		NT	NT		NT
Cyanide, Total															
Dilution Factor Cyanide, total	57-12-5	NT	+	NT	+	NT		NT		NT		NT	NT	\vdash	NT
Ignitability															
Dilution Factor Ignitability		NT	+	NT	+	NT		NT		NT		NT	NT	\vdash	NT
Paint Filter Test															
Dilution Factor Paint Filter Test		NT	++	NT	\vdash	NT	1	NT	Н	NT	_	NT	NT	\vdash	NT
Reactivity-Cyanide		141	\Box	141	Ħ	141		141		131		131	INI	П	187
Dilution Factor Reactivity - Cyanide		NT	₩	NT	$+\mathbb{I}$	NT	\vdash	NT	Н	NT	\exists	NT	NT	H	NT
Reactivity-Sulfide		131	Ħ	191	Ħ	131		131		191		131	181	Ш	181
Dilution Factor Reactivity - Sulfide		NT	++	NT	\vdash	NT		NT	H	NT	_	NT	NT	H	NT
TCLP Extraction for METALS EPA 1311		141	廿	141	Ħ	141	L	141		131		131	INI	Ш	187
Dilution Factor TCLP Extraction		NT	H	NT	盰	NT		NT	HĪ	NT	Ī	NT	NT	H	NT
TCLP Extraction for SVOCS/PEST/HERB		INI	廿	INI	Ħ	INI		INI	H	INI		INI	INI	ᅡ	INT
Dilution Factor TCLP Extraction		NT	H	NT	H	NT	L	NT	П	NT		NT	NT	П	NT
TCLP Extraction TCLP Extraction for VOA by EPA 1311 ZHE		INI	$\pm \pm$	INI	旪	INI	t	INI	Н	INI		INI	INI	Н	INI
Dilution Factor		A)T	H	N/T	H	NIT		AIT		NIT		NIT	N.T.	H	AIT
TCLP Extraction Temperature		NT	++	NT	\vdash	NT	\vdash	NT	H	NT	+	NT	NT	\vdash	NT
Dilution Factor			Ħ		Ħ	•								П	
Temperature Total Solids		NT %	++	NT %	\vdash	NT %	-	NT %	H	NT %	-	NT %	NT %	\vdash	NT %
Dilution Factor		1	Ħ	1		1		1		1		1	1		1
% Solids HERB, 8151 MASTER	solids	87.500	++	96.800	+	88	1	90.700	Н	92.300	_	87.200	83.500	H	92.700
Dilution Factor			\Box		Ħ									П	
2,4,5-T 2,4,5-TP (Silvex)	93-76-5 93-72-1	NT NT	+	NT NT	\vdash	NT NT		NT NT	H	NT NT		NT NT	NT NT	$\vdash \vdash$	NT NT
2,4-D	93-72-1	NT NT	廿	NT NT	Ħ	NT NT		NT NT	H	NT NT		NT NT	NT NT	H	NT NT
HERB, TCLP MASTER			H		H		F		П				1	H	
Dilution Factor 2,4,5-TP (Silvex)	93-72-1	NT	$\pm \pm$	NT	$^{+}$	NT	\vdash	NT	H	NT		NT	NT	┢╫	NT
2,4-D	94-75-7	NT	Ħ	NT	Ħ	NT		NT		NT NT		NT	NT	Ħ	NT
PCB, 8082 MASTER Dilution Factor			++		\vdash		1		H		-	-	1	\vdash	
Aroclor 1016	12674-11-2	NT	Ш	NT	Ħ	NT		NT		NT		NT	NT		NT
Aroclor 1221 Aroclor 1232	11104-28-2 11141-16-5	NT NT	++	NT NT	\vdash	NT NT	1	NT NT	Н	NT NT	_	NT NT	NT NT	\vdash	NT NT
Aroclor 1242	53469-21-9	NT	Ш	NT	Ħ	NT		NT		NT		NT	NT	Ш	NT
Aroclor 1248 Aroclor 1254	12672-29-6 11097-69-1	NT NT	$+$ \Box	NT NT	$+$ $\bar{1}$	NT NT	F	NT NT	H	NT NT	\dashv	NT NT	NT NT	H	NT NT
Arocior 1254 Arocior 1260	11097-69-1	NT	Ħ	NT NT	Ħ	NT NT	L	NT NT	H	NT NT		NT NT	NT NT	H	NT NT
Total PCBs	1336-36-3	NT				NT		NT					NT		

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

E=result is estimated and cannot be accurately reported due to levels encountered or interferences

P=this flag is used for pesticide and PCB (Aroclor) target compounds when there is a % difference for detected concentrations that exceed method dictated limits between the two GC columns used for analysis

NT=this indicates the analyte was not a target for this sample

- ~=this indicates that no regulatory limit has been established for this analyte
- a) on form 1 when the compound is reported above the MDL, but below the PQL, and
- b) on the Tentatively Identified Compounds (TIC) form for all compounds identified.
- N: The concentration is based on the response fo the nearest internal. This flag is used on the TIC form for all compounds identified.
- S: This compound is a solvent that is used in the laboratory. Laboratory contamination is suspected if concentration is less than five times the reporting level.

Sample ID	WC1-03 (10-15	5)	WC1 (COMP) (10)-15)	WC2 (COMP)	WC3 (COMP))
Sampling Date	5/23/2022		5/23/2022		5/23/2022		5/23/2022	
Client Matrix	Soil		Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q	Result	Q
VOA, 8260 MASTER	mg/Kg	+	Nesuit	- 4	Nesuit	 	Result	+
Dilution Factor	1							土
1,1,1,2-Tetrachloroethane	0.00260	U	NT	$\perp \perp \perp$	NT	\perp	NT	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.00260 0.00260	U	NT NT		NT NT	++	NT NT	+
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.00260	U	NT		NT		NT	+
1,1,2-Trichloroethane	0.00260	U	NT		NT		NT	
1,1-Dichloroethane	0.00260	U	NT	++	NT NT	++	NT NT	$+\!\!\!-$
1,1-Dichloroethylene 1,1-Dichloropropylene	0.00260 0.00260	U	NT NT	+	NT	+	NT	$+\!\!-$
1,2,3-Trichlorobenzene	0.00260	U	NT		NT		NT	
1,2,3-Trichloropropane	0.00260	U	NT		NT		NT	
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	0.00260 0.00260	U	NT NT	++	NT NT	++	NT NT	$+\!\!\!-$
1,2,4-Trimethylbenzene	0.00260	U	NT		NT		NT	+
1,2-Dibromo-3-chloropropane	0.00260	U	NT		NT		NT	
1,2-Dibromoethane	0.00260	U	NT	++	NT	++	NT	+
1,2-Dichlorobenzene 1,2-Dichloroethane	0.00260 0.00260	U	NT NT		NT NT	+	NT NT	+
1,2-Dichloropropane	0.00260	U	NT		NT		NT	
1,3,5-Trimethylbenzene	0.00260	U	NT	\bot	NT		NT	$\overline{\bot}$
1,3-Dichlorobenzene 1,3-Dichloropropane	0.00260 0.00260	U	NT NT	++	NT NT	++	NT NT	+
1,4-Dichlorobenzene	0.00260	U	NT	++	NT	++	NT	+
1,4-Dioxane	0.0520	Ü	NT		NT		NT	工
2,2-Dichloropropane	0.00260	U	NT	$+ \Gamma$	NT		NT	+
2-Butanone 2-Chloroethylvinyl ether	0.00260 0.0100	U	NT NT	++	NT NT	++	NT NT	$+\!\!\!\!-$
2-Chlorotoluene	0.00260	U	NT	++	NT	++	NT	+
2-Hexanone	0.00260	U	NT		NT		NT	工
4-Chlorotoluene	0.00260	U	NT		NT	+	NT	$+\!\!\!-$
4-Methyl-2-pentanone Acetone	0.00260 0.00970	U	NT NT	++	NT NT	++	NT NT	$+\!\!-$
Acrolein	0.00520	U	NT		NT		NT	+
Acrylonitrile	0.00260	U	NT		NT		NT	
Allyl chloride	0.00260	U	NT	++	NT	++	NT	+
Benzene Bromobenzene	0.00260 0.00260	U	NT NT		NT NT	+	NT NT	+
Bromochloromethane	0.00260	Ü	NT		NT		NT	
Bromodichloromethane	0.00260	U	NT		NT		NT	
Bromoform Bromomethane	0.00260 0.00260	U	NT NT	-	NT NT	++	NT NT	$+\!\!\!-$
Carbon disulfide	0.00260	U	NT		NT		NT	+
Carbon tetrachloride	0.00260	U	NT		NT		NT	
Chlorobenzene	0.00260	U	NT NT	$\perp \perp \perp$	NT NT	\perp	NT	
Chloroethane Chloroform	0.00260 0.00260	U	NT NT	+	NT NT	++	NT NT	$+\!\!\!-$
Chloromethane	0.00260	U	NT		NT	++	NT	+
cis-1,2-Dichloroethylene	0.00260	U	NT		NT		NT	
cis-1,3-Dichloropropylene	0.00260	U	NT		NT	++	NT	+
Cyclohexane Dibromochloromethane	0.00260 0.00260	U	NT NT	+	NT NT	+	NT NT	+
Dibromomethane	0.00260	U	NT		NT		NT	
Dichlorodifluoromethane	0.00260	U	NT		NT		NT	
Diisopropyl ether (DIPE) Ethanol	0.00420 0.0420	U	NT NT	-	NT NT		NT NT	$+\!\!\!-$
Ethyl Benzene	0.0420	U	NT	++	NT	++	NT	+
Ethyl tert-butyl ether (ETBE)	0.00420	U	NT		NT		NT	
Hexachlorobutadiene	0.00260	U	NT	$+\Gamma$	NT	+	NT	+
lodomethane Isopropylbenzene	0.00260 0.00260	U	NT NT	++	NT NT	+	NT NT	+
Methyl acetate	0.00260	U	NT		NT		NT	
Methyl Methacrylate	0.00260	U	NT		NT		NT	工
Methyl tert-butyl ether (MTBE)	0.00260	U	NT NT	++	NT NT	++	NT NT	+
Methylcyclohexane Methylene chloride	0.00260 0.0310	U	NI NT	++	NT NT	++	NT NT	+
Naphthalene	0.00260	U	NT		NT		NT	
n-Butylbenzene	0.00260	U	NT		NT		NT	工
n-Propylbenzene	0.00260 0.00260	U	NT NT	++	NT NT	+	NT NT	+
o-Xylene p- & m- Xylenes	0.00260	U	NT NT	++	NT NT	++	NT NT	+
p-Diethylbenzene	0.00260	U	NT		NT		NT	士
p-Ethyltoluene	0.00260	U	NT		NT		NT	$\overline{\bot}$
p-IsopropyItoluene sec-ButyIbenzene	0.00260 0.00260	U	NT NT	++	NT NT	++	NT NT	$+\!\!\!-$
Styrene	0.00260	U	NT	++	NT NT	++	NT NT	+
tert-Amyl alcohol (TAA)	0.0420	Ü	NT		NT		NT	工
tert-Amyl methyl ether (TAME)	0.00420	U	NT	$+$ \Box	NT	$+$ \mp	NT	<u> </u>
tert-Butyl alcohol (TBA) tert-Butylbenzene	0.00260 0.00260	U	NT NT	++	NT NT	+	NT NT	$+\!\!\!-$
Tetrachloroethylene	0.00260	U	NT	++	NT	++	NT	+
Tetrahydrofuran	0.00520	Ü	NT		NT		NT	工
Toluene C. Dickless at the least	0.00260	U	NT	$+ \overline{\perp}$	NT	+	NT	+
trans-1,2-Dichloroethylene trans-1,3-Dichloropropylene	0.00260 0.00260	U	NT NT	++	NT NT		NT NT	+
			INI		INI		151.1	

Sample ID	WC1-03 (10-1	5)	WC1 (COMP) (10	-15)	WC2 (COMP)	WC3 (COMP	')
Sampling Date	5/23/2022		5/23/2022		5/23/2022		5/23/2022	<u> </u>
Client Matrix	Soil		Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q	Result	Q
Trichloroethylene	0.00260	U	NT	+	NT	+	NT	┯
Trichlorofluoromethane	0.00260	Ü	NT		NT		NT	
Vinyl acetate	0.00260	U	NT NT	++	NT NT	\perp	NT NT	
Vinyl Chloride Xylenes, Total	0.00260 0.00780	U	NT NT	++	NT NT	+	NT NT	
VOA, TCLP MASTER	0.00780	+ + +	mg/L	+	mg/L		mg/L	
Dilution Factor			10		10		10	
1,1-Dichloroethylene	NT N T	+	0.0250	U	0.0250	U	0.0250	U
1,2-Dichloroethane 1,4-Dichlorobenzene	NT NT		0.0250 0.0250	U	0.0250 0.0250	U	0.0250 0.0250	U
2-Butanone	NT		0.0250	U	0.0250	U	0.0250	U
Benzene	NT		0.0250	U	0.0250	U	0.0250	U
Carbon tetrachloride Chlorobenzene	NT NT		0.0250 0.0250	U	0.0250 0.0250	U	0.0250 0.0250	U
Chloroform	NT		0.0250	U	0.0250	U	0.0250	U
Tetrachloroethylene	NT		0.0250	U	0.0250	U	0.0250	U
Trichloroethylene	NT		0.0250	U	0.0250	U	0.0250	U
Vinyl Chloride Volatile Organics, Tentatively Identified Cmpds.	NT mg/kg	+	0.0250	U	0.0250	U	0.0250	U
Dilution Factor	1	_				_		
Tentatively Identified Compounds	0	U	NT		NT		NT	
Semi-Volatiles, Tentatively Identified Cmpds.		+	mg/kg	++	mg/kg 1	++	mg/kg 1	-
Dilution Factor Tentatively Identified Compounds	NT	++	0	U	0	U	0	U
SVOA, 8270 MASTER			mg/Kg		mg/Kg		mg/Kg	
Dilution Factor		\Box	2		2		2	
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	NT NT	+	0.0448 0.0894	U	0.0463 0.0924	U	0.0463 0.0923	U
1,2,4-Trichlorobenzene	NT		0.0448	U	0.0924	U	0.0923	U
1,2-Dichlorobenzene	NT		0.0448	U	0.0463	U	0.0463	U
1,2-Diphenylhydrazine (as Azobenzene)	NT		0.0448	U	0.0463	U	0.0463	U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NT NT	+	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
1-Methylnaphthalene	NT	+	0.0894	U	0.0924	U	0.0923	U
2,3,4,6-Tetrachlorophenol	NT		0.0894	U	0.0924	U	0.0923	U
2,4,5-Trichlorophenol	NT	+	0.0448	U	0.0463	U	0.0463	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	NT NT		0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
2,4-Dimethylphenol	NT		0.0448	U	0.0463	U	0.0463	U
2,4-Dinitrophenol	NT		0.0894	U	0.0924	U	0.0923	U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NT NT	+	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
2-Chloronaphthalene	NT		0.0448	U	0.0463	U	0.0463	U
2-Chlorophenol	NT		0.0448	U	0.0463	U	0.0463	U
2-Methylnaphthalene	NT	\perp	0.0448	U	0.0463	U	0.0463	U
2-Methylphenol 2-Nitroaniline	NT NT	+	0.0448 0.0894	U	0.0463 0.0924	U	0.0463 0.0923	U
2-Nitrophenol	NT	+ +	0.0448	U	0.0463	U	0.0463	U
3- & 4-Methylphenols	NT		0.0448	U	0.0463	U	0.0463	U
3,3-Dichlorobenzidine 3-Nitroaniline	NT NT	+	0.0448 0.0894	U	0.0463 0.0924	U	0.0463 0.0923	U
4,6-Dinitro-2-methylphenol	NT	+	0.0894	U	0.0924		0.0923	U
4-Bromophenyl phenyl ether	NT		0.0448	U	0.0463	U	0.0463	Ü
4-Chloro-3-methylphenol	NT		0.0448	U	0.0463	U	0.0463	U
4-Chloroaniline 4-Chlorophenyl phenyl ether	NT NT		0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
4-Nitroaniline	NT	_ 	0.0448	U	0.0924	U	0.0463	U
4-Nitrophenol	NT		0.0894	U	0.0924	U	0.0923	U
Acenaphthylone	NT NT	+	0.0448	U	0.0658	JD U	0.0463	U
Acenaphthylene Acetophenone	NT NT	++	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
Aniline	NT		0.179	U	0.185	U	0.185	U
Anthracene	NT		0.0448	U	0.112	D	0.0517	JD
Atrazine Benzaldehyde	NT NT	+	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
Benzidine	NT	++	0.0448	U	0.185	U	0.185	U
Benzo(a)anthracene	NT		0.0448	U	0.320	D	0.204	D
Benzo(a)pyrene	NT	+	0.0448	U	0.253	D	0.210	D
Benzo(b)fluoranthene Benzo(g,h,i)perylene	NT NT	++	0.0448 0.0448	U	0.175 0.149	D	0.178 0.138	D D
Benzo(k)fluoranthene	NT		0.0448	U	0.185	D	0.176	D
Benzoic acid	NT	\Box	0.0448	U	0.0463	U	0.0463	U
Benzyl alcohol Renzyl butyl phthalate	NT NT	+	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
Benzyl butyl phthalate Bis(2-chloroethoxy)methane	NT NT	++	0.0448	U	0.0463	U	0.0463	U
Bis(2-chloroethyl)ether	NT		0.0448	U	0.0463	U	0.0463	Ü
Bis(2-chloroisopropyl)ether	NT	+	0.0448	U	0.0463	U	0.0463	U
Bis(2-ethylhexyl)phthalate	NT NT	++	0.0448	U	0.0463 0.0924	U	0.0463 0.0923	U
Canrolactam	- INI	- I - I	0.0054	ı U I	0.0324	ı U I	0.0323	ľ
Caprolactam Carbazole	NT		0.0448	U	0.0463	U	0.0463	U
·			0.0448 0.0448 0.0894	U U U	0.0463 0.365 0.0924	U D		U D

Sample ID	WC1-03 (10-15)		WC1 (COMP) (10	-15)	WC2 (COMP)		WC3 (COMP)
Sampling Date	5/23/2022		5/23/2022		5/23/2022		5/23/2022	
Client Matrix	Soil		Soil		Soil		Soil	
	Result	٦	Result		Result		Result	\Box
Compound Dibenzofuran	NT	Q	0.0448	Q U	0.0463	Q U	0.0463	Q U
Diethyl phthalate	NT		0.0448	U	0.0463	U	0.0463	U
Dimethyl phthalate	NT		0.0448	U	0.0463	U	0.0463	U
Di-n-butyl phthalate	NT		0.0448	U	0.0463	U	0.0463	U
Di-n-octyl phthalate	NT NT	\vdash	0.0448 0.0894	U	0.0463 0.0924	U	0.0463 0.0923	U
Diphenylamine Fluoranthene	NT NT	\vdash	0.0894	U	0.535	U D	0.406	U D
Fluorene	NT		0.0448	U	0.0591	JD	0.0463	U
Hexachlorobenzene	NT		0.0448	U	0.0463	U	0.0463	U
Hexachlorobutadiene	NT		0.0448	U	0.0463	U	0.0463	U
Hexachlorocyclopentadiene Hexachloroethane	NT NT		0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
Indeno(1,2,3-cd)pyrene	NT		0.0448	U	0.111	D	0.116	D
Isophorone	NT		0.0448	U	0.0463	U	0.0463	U
Naphthalene	NT		0.0448	U	0.0463	U	0.0463	U
Nitrobenzene N-Nitrosodimethylamine	NT NT	\vdash	0.0448 0.0448	U	0.0463 0.0463	U	0.0463 0.0463	U
N-nitroso-di-n-propylamine	NT	H	0.0448	U	0.0463	U	0.0463	U
N-Nitrosodiphenylamine	NT		0.0448	U	0.0463	U	0.0463	U
Parathion	NT		0.0448	U	0.0463	U	0.0463	U
Pentachloronitrobenzene Pentachloronhanol	NT NT	$\vdash\vdash$	0.0894	U	0.0924	U	0.0923 0.0463	U
Pentachlorophenol Phenanthrene	NT NT	Н	0.0448 0.0448	U	0.0463 0.727	U D	0.0463	U D
Phenol	NT		0.0448	U	0.0463	U	0.0463	U
Propargite	NT		0.179	U	0.185	U	0.185	U
Pyrene	NT	\vdash	0.0448	U	0.670	D	0.342	D
Pyridine Resorcinol	NT NT	\vdash	0.179 0.179	U	0.185 0.185	U	0.185 0.185	U
SVOA, TCLP MASTER	INI	Н	mg/L	+ + +	mg/L		mg/L	+
Dilution Factor			1		1		1	
1,4-Dichlorobenzene	NT		0.00500	U	0.00500	U	0.00500	U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	NT NT	\vdash	0.00500 0.00500	U	0.00500 0.00500	U	0.00500 0.00500	U
2,4-Dinitrotoluene	NT		0.00500	U	0.00500	U	0.00500	U
2-Methylphenol	NT		0.00500	U	0.00500	U	0.00500	U
3- & 4-Methylphenols	NT		0.00500	U	0.00500	U	0.00500	U
Cresols, total	NT		0.0200	U	0.0200	U	0.0200	U
Hexachlorobenzene Hexachlorobutadiene	NT NT		0.00500 0.00500	U	0.00500 0.00500	U	0.00500 0.00500	U
Hexachloroethane	NT		0.00250	U	0.00250	U	0.00250	U
Nitrobenzene	NT		0.00500	U	0.00500	U	0.00500	U
Pentachlorophenol	NT	\perp	0.00500	U	0.00500	U	0.00500	U
Pyridine PEST, 8081 MASTER	NT		0.00500 mg/Kg	U	0.00500 mg/Kg	U	0.00500 mg/Kg	U
Dilution Factor			5	+	5		5	
4,4'-DDD	NT		0.00177	U	0.00181	U	0.00182	U
4,4'-DDE	NT		0.00177	U	0.00181	U	0.00182	U
4,4'-DDT Aldrin	NT NT		0.00177 0.00177	U	0.00181 0.00181	U	0.00182 0.00182	U
alpha-BHC	NT		0.00177	U	0.00181	U	0.00182	U
alpha-Chlordane	NT		0.00177	U	0.00181	U	0.00182	U
beta-BHC	NT		0.00177	U	0.00181	U	0.00182	U
Chlordane, total delta-BHC	NT NT	\vdash	0.0355 0.00177	U	0.0361 0.00181	U	0.0364 0.00182	U
Dieldrin	NT		0.00177	U	0.00181	U	0.00182	U
Endosulfan I	NT		0.00177	U	0.00181	U	0.00182	U
Endosulfan II	NT		0.00177	U	0.00181	U	0.00182	U
Endosulfan sulfate	NT		0.00177	U	0.00181	U	0.00182	U
Endrin Endrin aldehyde	NT NT	\vdash	0.00177 0.00177	U	0.00181 0.00181	U	0.00182 0.00182	U
Endrin ketone	NT		0.00177	U	0.00181	U	0.00182	U
gamma-BHC (Lindane)	NT	П	0.00177	U	0.00181	U	0.00182	U
gamma-Chlordane	NT NT	$\vdash\vdash$	0.00177	U	0.00181	U	0.00182	U
Heptachlor Heptachlor epoxide	NT NT	\vdash	0.00177 0.00177	U	0.00181 0.00181	U	0.00182 0.00182	U
Methoxychlor	NT NT	\vdash	0.00177	U	0.00181	U	0.00182	U
Toxaphene	NT		0.177	U	0.181	U	0.182	U
PEST, TCLP MASTER		П	mg/L	\Box	mg/L	\Box	mg/L	
Dilution Factor	NIT	\vdash	1	++	1 0 00004	 	1	-
Endrin gamma-BHC (Lindane)	NT NT	\vdash	0.00004 0.00004	U	0.00004 0.00004	U	0.00004 0.00004	U
Heptachlor	NT	Н	0.00004	U	0.00004	U	0.00004	U
Heptachlor epoxide	NT		0.00004	U	0.00004	U	0.00004	U
Methoxychlor Toyonkono	NT	\vdash	0.00004	U	0.00004	U	0.00004	υ :
Toxaphene NJDEP EPH (Cat. 2 Non-Fractionated)	NT	Н	0.00111 mg/kg	U	0.00111 mg/kg	U	0.00111 mg/kg	U
Dilution Factor		H	1 mg/ kg	++	1 Ing/ kg	++	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\dashv
Total EPH	NT		50	U	86.300		92	
Metals, Target Analyte		igsqcup	mg/Kg	$+$ $\overline{1}$	mg/Kg	$+ \overline{1}$	mg/Kg	<u> </u>
Dilution Factor	NIT	\vdash	1 4 630	++	9.720	+	9.040	—
Aluminum Antimony	NT NT	\vdash	4,630 2.720	U	9,720 2.820	U	9,040 2.810	U
Arsenic	NT		1.630	U	4.780	_ ~	3.780	
Barium	NT		35.700		147	\Box	78.400	
Beryllium	NT	Щ	0.0540	U	0.0570	$\downarrow \downarrow \downarrow$	0.0560	U
Cadmium Calcium	NT NT	$\vdash\vdash$	0.327 826	U	0.486	+	0.338	U
Chromium	NT NT	Н	11.100	++	2,050 19	++	2,420 22	+
I O I I O I I I I I I I I I I I I I I I	111							1 '

Sample ID	WC1-03 (10-15)	1	WC1 (COMP) (10-1	L5)	WC2 (COMP)		WC3 (COMP)	
Sampling Date	5/23/2022		5/23/2022		5/23/2022		5/23/2022	
Client Matrix	Soil		Soil		Soil		Soil	
Compound	Result	Q	Result	Q	Result	Q	Result	Q
Copper	NT	Ì	8.790		35.300	Ė	30.400	Ţ
Iron	NT	$\vdash\vdash$	10,300		20,000 88.400	\vdash	27,500 137	+
Lead Magnesium	NT NT	Н	1.840 2,090	+	2,400	+	2,400	+
Manganese	NT		297		431		377	
Nickel Potassium	NT NT	\square	16.400 729		14.300 1,050		13.900 1,040	+
Selenium	NT		2.720	U	2.820	U	2.810	U
Silver	NT		0.545	U	0.563	U	0.563	U
Sodium Thallium	NT NT	\vdash	79.100 2.720	U	2.820	U	105 2.810	U
Vanadium	NT		15.200	Ŭ	27.500		31.800	Ť
Zinc	NT	Ш	15.300		310	Ш	124	
Metals, TCLP RCRA Dilution Factor			mg/L 1		mg/L 1		mg/L 1	
Arsenic	NT		0.375	U	0.375	U	0.375	U
Barium	NT		0.625	U	0.625	U	0.625	U
Cadmium Chromium	NT NT		0.0750 0.125	U	0.0750 0.125	U	0.0750 0.125	U
Lead	NT		0.125	U	0.125	U	0.125	U
Selenium Silver	NT NT	$\vdash \vdash$	0.625 0.125	U	0.625 0.125	U	0.625 0.125	U
Mercury by 7473	INI		0.125 mg/Kg		mg/Kg	J	0.125 mg/Kg	
Dilution Factor		П	1	П	1	Д	1	\perp
Mercury TCLP	NT	$\vdash \vdash$	0.0327	U	0.179	+	0.253	+
Mercury, TCLP Dilution Factor			mg/L 1	$\pm \pm$	mg/L 1	\pm	mg/L 1	_
Mercury	NT		0.00020	U	0.00020	U	0.00020	U
Chromium, Hexavalent Dilution Factor		\vdash	mg/Kg 1		mg/Kg 1	+	mg/Kg 1	+
Chromium, Hexavalent	NT		0.545	U	0.563	U	0.563	U
Chromium, Trivalent		$\vdash \vdash$	mg/Kg 1		mg/Kg	\perp	mg/Kg 1	_
Dilution Factor Chromium, Trivalent	NT	H	11.100		1 19		22	+
Corrosivity (pH) by SM 4500/EPA 9045D			pH units		pH units		pH units	
Dilution Factor pH	NT	\vdash	<u>1</u> 6.170		<u>1</u> 7.410	+	<u>1</u> 7.370	+
Cyanide, Total	IVI		mg/Kg		mg/Kg		mg/Kg	
Dilution Factor	NT		1	 	1		1	—
Cyanide, total Ignitability	NT		0.545 None	U	0.563 None	U	0.563 None	U
Dilution Factor			1		1		1	
Ignitability Paint Filter Test	NT		Non-Ignit. None		Non-Ignit. None	+	Non-Ignit. None	-
Dilution Factor			1		1		1	
Paint Filter Test	NT	\square	No Free Liquid		No Free Liquid		No Free Liquid	+
Reactivity-Cyanide Dilution Factor		\Box	mg/kg 1		mg/kg 1	+	mg/kg 1	+
Reactivity - Cyanide	NT		0.250	U	0.250	U	0.250	U
Reactivity-Sulfide Dilution Factor		\vdash	mg/kg 1		mg/kg 1	+	mg/kg 1	+
Reactivity - Sulfide	NT		15	U	15	U	15	U
TCLP Extraction for METALS EPA 1311		Н	N/A 1		N/A 1	+	N/A 1	
Dilution Factor TCLP Extraction	NT	H	Completed		Completed		Completed	+
TCLP Extraction for SVOCS/PEST/HERB			N/A		N/A		N/A	
Dilution Factor TCLP Extraction	NT	\vdash	1 Completed		1 Completed	+	1 Completed	+
TCLP Extraction for VOA by EPA 1311 ZHE	111	口	N/A	口	N/A		N/A	士
Dilution Factor TCLP Extraction	NT	$\vdash \vdash$	1 Completed	+	1 Completed	+	1 Completed	+
TCLP Extraction Temperature	IN I	\vdash	Completed °C	+	Completed °C	+	Completed °C	+
Dilution Factor		П	1	П	1	П	1	\blacksquare
Temperature Total Solids	NT %	$\vdash \vdash$	23.400	++	23.400	+	23.400	+
Dilution Factor	1	口	1	口	1	\Box	1	士
% Solids HERB, 8151 MASTER	96.800	$oxed{\Box}$	91.800	$+ \overline{1}$	88.700	$+\bar{-}$	88.900	+
Dilution Factor			mg/Kg 1		mg/Kg 1	+	mg/Kg 1	
2,4,5-T	NT		0.0214	U	0.0225	U	0.0224	U
2,4,5-TP (Silvex) 2,4-D	NT NT	$\vdash \vdash$	0.0214 0.0214	U	0.0225 0.0225	U	0.0224 0.0224	U
HERB, TCLP MASTER	111		mg/L		0.0225 mg/L		mg/L	
Dilution Factor	AIT		1		1		1	Ī.,
2,4,5-TP (Silvex) 2,4-D	NT NT	\vdash	0.00500 0.00500	U	0.00500 0.00500	U	0.00500 0.00500	U
PCB, 8082 MASTER		口	mg/Kg		mg/Kg	Ť	mg/Kg	Ť
Dilution Factor	NIT	\Box	1		1		1	U
Aroclor 1016 Aroclor 1221	NT NT	$\vdash \vdash$	0.0179 0.0179	U	0.0182 0.0182	U	0.0184 0.0184	U
Aroclor 1232	NT	П	0.0179	U	0.0182	U	0.0184	U
Aroclor 1242 Aroclor 1248	NT NT	$\vdash \vdash$	0.0179 0.0179	U	0.0182 0.0182	U	0.0184 0.0184	U
Aroclor 1248 Aroclor 1254	NT NT	$\vdash \vdash$	0.0179	U	0.0182	U	0.0184	U
Aroclor 1260	NT		0.0179	U	0.0182	U	0.0184	U
Total PCBs	NT		0.0179		0.0182		0.0184	U

Commis ID		COMP WOOM (40	4 E\	COMP WOOM (40	1 E \	WCOA O4 (42 44)	W024 02 (42 44)	`	COMP WC104 (10	45)	COMP W0114 (10	4 E \	W0114 00 (12.1	4)	COMP WOOD (10.15)	WOCD 02 (42 44)
Sample ID		COMP-WC2A (10		COMP-WC3A (10	-15)	WC2A-04 (13-14)	WC3A-03 (13-14))	COMP WC10A (10-:	15)	COMP WC11A (10-	15)	WC11A-02 (13-1	4)	COMP WC6B (10-15)	WC6B-03 (13-14)
Sampling Date	Units	7/11/2022		7/11/2022		7/11/2022	7/11/2022		7/12/2022		7/12/2022		7/12/2022		7/13/2022	7/13/2022
Client Matrix		Soil		Soil		Soil	Soil		Soil		Soil		Soil		Soil	Soil
Compound		Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q	`	Result Q
Miscellaneous/Inorganics Percent Solid	0/2	84		82					84	+	86			+	mg/kg 81	mg/Kg
Corrosivity	Pos/Neg	Negative	U	Negative	U				Negative	U	Negative Negative	U		+	Negative	
Flash Point	Degree F	>200		>200					>200		>200				>200	
Ignitability	degree F	Passed	U	Passed	U				Passed	U	Passed	U			Passed	
pH at 25C - Soil	pH Units	7.47 < 6	11	7.47 < 6	- 11				7.49 < 6	+	7.3	11		+	7.53 < 6	
Reactivity Cyanide Reactivity Sulfide	mg/Kg mg/Kg	< 20	U	< 20	U				< 20	U	< 5 < 20	U			< 20	
Reactivity	Pos/Neg	Negative	U	Negative	Ü				Negative	Ü	Negative	U			Negative	
Redox Potential	mV	83.2		230					253		253				202	
Total Cyanide (SW9010C Distill.)	mg/Kg	< 0.60	U	< 0.51	U				< 0.60	U	< 0.53	U			< 0.62	
Metals, Total Aluminum	ma/Ka	4,240		3,990					3,370	+	2,980				4,200	
Antimony	mg/Kg mg/Kg	< 3.9	U	< 3.7	U				< 4.0	U	< 3.9	U		+	< 3.7	
Arsenic	mg/Kg	< 0.78	U	0.84				t	< 0.80	U	< 0.79	U		1	< 0.74	
Barium	mg/Kg	28.1		22.3					20.8		17.3				21.4	
Beryllium	mg/Kg	0.26	J	0.26	J				0.24	J	0.21	J			< 0.30	
Cadmium	mg/Kg	0.69 714		0.74 680	+		1		0.86 584	++	0.66 476	1		+	0.88 598	
Calcium Chromium	mg/Kg mg/Kg	9.54		11	+		1		8.8	++	7.97	+		+	12.4	
Chromium, Hexavalent	mg/Kg	< 0.43	U	< 0.44	U		1		< 0.42	U	< 0.44	U		+		
Cobalt	mg/Kg	4.52		3.93					4.11		3.26				5.51	
Copper	mg/kg	9.9		9.6					8.9	\prod	6.6	igsquare		\perp	8.7	
Iron	mg/Kg	13,500 3.3		15,000 3.8	+		1		13,600 3.2	++	9,950 2.2	1		+	12,700 3.52	
Lead Magnesium	mg/Kg mg/Kg	1,720		3.8 1,650	+		+		1,420	++	1,270	\vdash		+	1,570	
Manganese	mg/Kg	195		209	+		1		199	++	250			+	309	
Mercury	mg/Kg	< 0.03	U	< 0.03	U				< 0.03	U	< 0.03	U			< 0.03	
Nickel	mg/Kg	15.1		15.6					15.5	\Box	12.6				18.1	
Potassium	mg/Kg	578 < 1.6	11	564	- 11				534 < 1.6	++	490 < 1.6	-		+	746	
Selenium Silver	mg/Kg mg/Kg	< 0.39	U	< 1.5 < 0.37	U				< 0.40	U	< 0.39	U		+	< 1.5 < 0.37	
Sodium	mg/Kg	130		95	+				103	+ + +	90			+	70.3	
Thallium	mg/Kg	< 1.6	U	< 1.5	U				< 1.6	U	< 1.6	U			< 3.3	
Vanadium	mg/Kg	16.5		16.5					14.7	$\perp \perp$	11.3				15.3	
Zinc Metals, TCLP	mg/Kg	23.1		22.3					17.4	++	12.2			+	20.7	
TCLP Arsenic	mg/L	< 0.10	U	< 0.10	U				< 0.10	U	< 0.10	U		+	< 0.10	
TCLP Barium	mg/L	0.42		0.2					0.17		0.15				0.16	
TCLP Cadmium	mg/L	< 0.050	U	< 0.050	U				< 0.050	U	< 0.050	U			< 0.050	
TCLP Chromium	mg/L	< 0.10	U	< 0.10	U				< 0.10	U	< 0.10	U :		4	< 0.10	
TCLP Lead TCLP Mercury	mg/L mg/L	< 0.10 < 0.0002	U	< 0.10 < 0.0002	U				< 0.10 < 0.0002	U	< 0.10 < 0.0002	U		+	< 0.10 < 0.0002	
TCLP Selenium	mg/L	< 0.10	U	< 0.10	Ü				< 0.10	U	< 0.10	U		+	< 0.10	
TCLP Silver	mg/L	< 0.10	U	< 0.10	U				< 0.10	U	< 0.10	U			< 0.10	
SVOA TICS										$oxed{\Box}$		igsqcup		ullet		
11-Tricosene	ug/Kg		+		+			_		++		-		+-	1	
1-Docosene 1-Nonadecene	ug/Kg ug/Kg			1,800	JN		1			++	2,000	JN		+		
1-Nonadecene Isomer (RT 7.493)	ug/Kg ug/Kg			1,600	JN		<u> </u>			++	2,000	314		+		
1-Octadecene	ug/Kg			,												
2-Pentanone, 4-hydroxy-4-methyl-	ug/Kg	480	JNA	810	JNA				1,300	JNA	860	JNA				
5-Eicosene, (E)-	ug/Kg	720 670	JN	360	JN		-		1,400	JN		1		+		
5-Octadecene, (E)- 9-Eicosene, (E)-	ug/Kg ug/Kg	670	JN		+		+			++	1,900	JN		+		
Benzoic acid, 4-ethoxy-, ethyl est	ug/Kg ug/Kg	890	JNC	2,000	JNC				1,500	JNC	2,300	JNC		+		
Heneicosane	ug/Kg			360	JN				690	JNC	840	JNC				
unknown hydrocarbon	ug/Kg	350	JNC	720	JNC											
PCBs By SW8082A		< 0.078	11	< 0.079	111		-		< 0.077		< 0.076	11		+	< 0.4	
PCB-1016 PCB-1221	mg/Kg mg/Kg	< 0.078	U	< 0.079	U		+	\vdash	< 0.077	U	< 0.076	U		+	< 0.4 < 0.4	
PCB-1221 PCB-1232	mg/Kg	< 0.078	U	< 0.079	U				< 0.077	U	< 0.076	U		+	< 0.4	
PCB-1242	mg/Kg	< 0.078	U	< 0.079	U				< 0.077	U	< 0.076	U			< 0.4	
PCB-1248	mg/Kg	< 0.078	U	< 0.079	U				< 0.077	U	< 0.076	U			< 0.4	
PCB-1254	mg/Kg	< 0.078	U	< 0.079	U				< 0.077	U		U		\perp	< 0.4	
PCB-1260 PCB-1262	mg/Kg	< 0.078 < 0.078	U	< 0.079 < 0.079	U		 		< 0.077 < 0.077	U	< 0.076 < 0.076	U		+	< 0.4 < 0.4	
PCB-1262 PCB-1268	mg/Kg mg/Kg	< 0.078	U	< 0.079	U		<u> </u>		< 0.077	U	< 0.076	U			< 0.4	

Sample ID		COMP-WC2A (10-:		COMP-WC3A (10-15)							161		1 = \	\M\C44 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 1	COMP MOSD (40 4E)	WOOD 00 (40 44)
Compling Data		7/11/2022	13)	7/11/2022	vv	C2A-04 (13-14)		WC3A-03 (13-14	.)	7/12/2022	T2)	7/12/2022	-15)	WC11A-02 (13-1	4)	COMP WC6B (10-15)	WC6B-03 (13-14)
Sampling Date	Units	, ,				7/11/2022		7/11/2022		, ,		<u> </u>		7/12/2022		7/13/2022	7/13/2022
Client Matrix		Soil		Soil		Soil		Soil		Soil	_	Soil		Soil		Soil	Soil
Compound		Result	Q	Result Q	5	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result Q
Volatiles By SW8260C 1,1,1-Trichloroethane	mg/Kg					< 0.0045 U	IJ	< 0.0045	U				+	< 0.0047	U		< 0.004
1,1,2,2-Tetrachloroethane	mg/Kg						U	< 0.0045	U					< 0.0047	Ü		< 0.004
1,1,2-Trichloroethane	mg/Kg						U	< 0.0045	U				\Box	< 0.0047	U		< 0.004
1,1-Dichloroethane	mg/Kg		+			< 0.0045 U	U	< 0.0045 < 0.0045	U		+		+	< 0.0047 < 0.0047	U		< 0.004 < 0.004
1,1-Dichloroethene 1,2,3-Trichlorobenzene	mg/Kg mg/Kg					< 0.0045 C		< 0.0045	U					< 0.0047	U		< 0.004
1,2,4-Trichlorobenzene	mg/Kg						Ü	< 0.0045	U					< 0.0047	U		< 0.004
1,2-Dibromo-3-chloropropane	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
1,2-Dibromoethane	mg/Kg						U	< 0.0045 < 0.0045	U					< 0.0047 < 0.0047	U		< 0.004 < 0.004
1,2-Dichlorobenzene 1,2-Dichloroethane	mg/Kg mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
1,2-Dichloropropane	mg/Kg					< 0.0045	_	< 0.0045	U					< 0.0047	U		< 0.004
1,3-Dichlorobenzene	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
1,4-Dichlorobenzene	mg/Kg					< 0.0045 l	_	< 0.0045	U					< 0.0047	U		< 0.004
2-Hexanone 4-Methyl-2-pentanone	mg/Kg mg/Kg						U U	< 0.023 < 0.023	U					< 0.024 < 0.024	U		< 0.02 < 0.02
Acetone	mg/Kg						U	< 0.023	U					0.0058	JS		< 0.04
Benzene	mg/Kg						U	< 0.0045	U				\Box	< 0.0047	U		< 0.004
Bromochloromethane	mg/Kg		+			< 0.0045 U	U	< 0.0045 < 0.0045	U		++		+	< 0.0047 < 0.0047	U		< 0.004 < 0.004
Bromodichloromethane Bromoform	mg/Kg mg/Kg	+	+				U	< 0.0045	U		++		+	< 0.0047	U		< 0.004
Bromomethane	mg/Kg	<u> </u>				< 0.0045	_	< 0.0045	U					< 0.0047	U		< 0.004
Carbon Disulfide	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
Carbon tetrachloride	mg/Kg	1	+				U U	< 0.0045 < 0.0045	U		++		+	< 0.0047 < 0.0047	U		< 0.004 < 0.004
Chlorobenzene Chloroethane	mg/Kg mg/Kg					< 0.0045 C		< 0.0045	U					< 0.0047	U		< 0.004
Chloroform	mg/Kg					< 0.0045	U	< 0.0045	U					< 0.0047	Ü		< 0.004
Chloromethane	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
cis-1,2-Dichloroethene	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
cis-1,3-Dichloropropene Cyclohexane	mg/Kg mg/Kg					< 0.0045 U	_	< 0.0045 < 0.0045	U					< 0.0047 < 0.0047	U		< 0.004 < 0.004
Dibromochloromethane	mg/Kg					< 0.0045	_	< 0.0045	U					< 0.0047	Ü		< 0.004
Dichlorodifluoromethane	mg/Kg					< 0.0045 l	_	< 0.0045	U					< 0.0047	U		< 0.004
Ethylbenzene	mg/Kg						U	< 0.0045 < 0.0045	U					< 0.0047 < 0.0047	U		< 0.004 < 0.004
Isopropylbenzene m&p-Xylene	mg/Kg mg/Kg						U U	< 0.0045	U					< 0.0047	U		< 0.004
Methyl ethyl ketone	mg/Kg						U	< 0.027	U					< 0.028	Ü		< 0.024
Methyl t-butyl ether (MTBE)	mg/Kg						U	< 0.009	U					< 0.0094	U		< 0.008
Methylacetate Methylacetate	mg/Kg					< 0.0045 U	U U	< 0.0045 < 0.0045	U					< 0.0047 < 0.0047	U		< 0.0032 < 0.004
Methylcyclohexane Methylene chloride	mg/Kg mg/Kg		+				U	< 0.0045	U		+			0.019	U		< 0.02
o-Xylene	mg/Kg					< 0.0045		< 0.0045	U					< 0.0047	U		< 0.004
Styrene	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
Tetrachloroethene Toluene	mg/Kg mg/Kg					< 0.0045 U	U	< 0.0045 < 0.0045	U					< 0.0047 < 0.0047	U		< 0.004 < 0.004
Total Xylenes	mg/Kg						U	< 0.0045	U					< 0.0047	U		< 0.004
trans-1,2-Dichloroethene	mg/Kg					< 0.0045		< 0.0045	U					< 0.0047	U		< 0.004
trans-1,3-Dichloropropene	mg/Kg		$\downarrow \Box$			< 0.0045 U		< 0.0045	U				$+\Box$	< 0.0047	U		< 0.004
Trichloroethene Trichlorofluoromethane	mg/Kg mg/Kg		+			< 0.0045 U	_	< 0.0045 < 0.0045	U		++		+	< 0.0047 < 0.0047	U		< 0.004 < 0.004
Trichlorotrifluoroethane	mg/Kg	†	+			< 0.0045 L	U U	< 0.0045	U		++		+	< 0.0047	U		< 0.004
Vinyl chloride	mg/Kg					< 0.0045 l	U	< 0.0045	U					< 0.0047	U		< 0.004
Semivolatiles By SW8270D	no et /1/ et	< 0.07	1,,	Z 0 00						× 0.00	1	- 0 1	1,,		-	Z 0 00	
1,1-Biphenyl 1,2,4,5-Tetrachlorobenzene	mg/Kg mg/Kg	< 0.27 < 0.27	U	< 0.28 U < 0.28 U						< 0.28 < 0.28	U	< 0.4 < 0.4	U		+	< 0.28 < 0.28	
2,2'-Oxybis(1-Chloropropane)	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U			< 0.28	
2,3,4,6-tetrachlorophenol	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U			< 0.28	
2,4,5-Trichlorophenol	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U		-	< 0.28 < 0.28	
2,4,6-Trichlorophenol 2,4-Dichlorophenol	mg/Kg mg/Kg	< 0.16 < 0.16	U	< 0.16 U < 0.16 U	_					< 0.16 < 0.16	U	< 0.23 < 0.23	U		1	< 0.28 < 0.28	
2,4-Dimethylphenol	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U			< 0.28	
2,4-Dinitrophenol	mg/Kg	< 0.27	U	< 0.28 U	J					< 0.28	U	< 0.4	U			< 0.64	
2,4-Dinitrotoluene	mg/Kg	< 0.16	U	< 0.16 U						< 0.16	U	< 0.23	U		1	< 0.28	
2,6-Dinitrotoluene 2-Chloronaphthalene	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 U < 0.28 U						< 0.16 < 0.28	U	< 0.23 < 0.4	U		1	< 0.28 < 0.28	
2-Chlorophenol	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U		1	< 0.28	
2-Methylnaphthalene	mg/Kg	< 0.27	U	< 0.28 U	J					< 0.28	U	< 0.4	U			< 0.28	
2-Methylphenol (o-cresol)	mg/Kg	< 0.27	U	< 0.28 U						< 0.28	U	< 0.4	U		_	< 0.28	
2-Nitroaniline 2-Nitrophenol	mg/Kg mg/Kg	< 0.27 < 0.27	U	< 0.28 U < 0.28 U						< 0.28 < 0.28	U	< 0.4 < 0.4	U		-	< 0.64 < 0.28	
3&4-Methylphenol (m&p-cresol)	mg/Kg	< 0.27	U	< 0.28 U	_					< 0.28	U	< 0.4	U		+	< 0.4	
, , , ,		< 0.16	U	< 0.16 U	_				1	< 0.16	Ü	< 0.23	U		1	< 0.48	
3,3'-Dichlorobenzidine	mg/Kg	< 0.78		< 0.81 U	_					< 0.79			U		_	< 0.64	

										4=\		4=: 1		•		
Sample ID		COMP-WC2A (10-:	15)	COMP-WC3A (10	-15)	WC2A-04 (13-14)	WC3A-03 (13-14	·)	COMP WC10A (10-	15)	COMP WC11A (10-1	15)	WC11A-02 (13-14	1)	COMP WC6B (10-15)	WC6B-03 (13-14)
Sampling Date	Units	7/11/2022		7/11/2022		7/11/2022	7/11/2022		7/12/2022		7/12/2022		7/12/2022		7/13/2022	7/13/2022
Client Matrix		Soil		Soil		Soil	Soil		Soil		Soil		Soil		Soil	Soil
Compound		Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result Q
4-Bromophenyl phenyl ether	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.4	
4-Chloro-3-methylphenol 4-Chloroaniline	mg/Kg mg/Kg	< 0.27 < 0.78	U	< 0.28 < 0.81	U			-	< 0.28 < 0.79	U		U			< 0.28 < 0.28	
4-Chlorophenyl phenyl ether	mg/Kg	< 0.78	U	< 0.28	U				< 0.79	U		U			< 0.28	
4-Nitroaniline	mg/Kg	< 2	U	< 2	U				< 2	U	< 2.9	U			< 0.64	
4-Nitrophenol	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 1.2	
Acenaphthene	mg/Kg	< 0.27	U	< 0.28	U			4	< 0.28	U		U			< 0.28	
Acenaphthylene Acetophenone	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 < 0.28	U				< 0.16 < 0.28	U	< 0.23 < 0.4	U			< 0.28 < 0.28	
Anthracene	mg/Kg	< 0.27	U	< 0.28	U			+	< 0.28	U		U			< 0.28	
Atrazine	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Benz(a)anthracene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Benzaldehyde	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Benzo(b)fluoranthene	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 < 0.28	U			+	< 0.16 < 0.28	U		U		-	< 0.28 < 0.28	
Benzo(ghi)perylene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Benzo(k)fluoranthene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.28	
Benzyl butyl phthalate	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Bis(2-chloroethoxy)methane	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Bis(2-chloroethyl)ether Bis(2-ethylhexyl)phthalate	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 < 0.28	U			+	< 0.16 < 0.28	U		U			< 0.4 < 0.28	
Caprolactam	mg/Kg	< 0.27	U	< 0.28	U			+	< 0.28	U		U		\vdash	< 0.28	
Carbazole	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.4	
Chrysene	mg/Kg	< 0.27	U	< 0.28	U		_		< 0.28	U		U	_		< 0.28	
Dibenz(a,h)anthracene Dibenzofuran	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 < 0.28	U				< 0.16 < 0.28	U	< 0.23 < 0.4	U			< 0.2 < 0.28	
Diethyl phthalate	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.28	
Dimethylphthalate	mg/Kg	< 0.27	U	< 0.28	U			1	< 0.28	Ü	< 0.4	Ü			< 0.28	
Di-n-butylphthalate	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.8	
Di-n-octylphthalate	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.28	
Fluoranthene Fluorene	mg/Kg	< 0.27 < 0.27	U	< 0.28 < 0.28	U			-	< 0.28 < 0.28	U		U			< 0.28 < 0.28	
Hexachlorobenzene	mg/Kg mg/Kg	< 0.16	U	< 0.16	U				< 0.16	U		U			< 0.28	
Hexachlorobutadiene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Hexachlorocyclopentadiene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Hexachloroethane	mg/Kg	< 0.16	U	< 0.16	U			-	< 0.16	U		U			< 0.28	
Indeno(1,2,3-cd)pyrene Isophorone	mg/Kg mg/Kg	< 0.27 < 0.16	U	< 0.28 < 0.16	U				< 0.28 < 0.16	U		U			< 0.28 < 0.28	
Naphthalene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Nitrobenzene	mg/Kg	< 0.16	U	< 0.16	U				< 0.16	U		U			< 0.28	
N-Nitrosodimethylamine	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.4	
N-Nitrosodi-n-propylamine	mg/Kg	< 0.16	U	< 0.16	U			-	< 0.16	U	< 0.23	U			< 0.2	
N-Nitrosodiphenylamine Pentachlorophenol	mg/Kg mg/Kg	< 0.16 < 0.27	U	< 0.16 < 0.28	U			+	< 0.16 < 0.28	U		U			< 0.4 < 0.4	
Phenanthrene	mg/Kg	< 0.16	U	< 0.16	U			1	< 0.16	Ü		U			< 0.28	
Phenol	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U		U			< 0.28	
Pyrene	mg/Kg	< 0.27	U	< 0.28	U				< 0.28	U	< 0.4	U			< 0.28	
Pesticides - Soil by SW8081B	ma/Ka	< 0.0024	U	< 0.0024	- 11				< 0.0023	U	< 0.0023	U			< 0.0024	
4,4' -DDD 4,4' -DDE	mg/Kg mg/Kg	< 0.0024	U	< 0.0024	U			+	< 0.0023	U	< 0.0023	U		\vdash	< 0.0024	
4,4' -DDT	mg/Kg	< 0.0024	U	< 0.0024	U				< 0.0023	U	< 0.0023	U			< 0.0024	
a-BHC	mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U	< 0.0076	U			< 0.008	
a-Chlordane	mg/Kg	< 0.0039	U	< 0.004	U				< 0.0039	U	< 0.0038 < 0.0038	U			< 0.004 < 0.004	
Alachlor Aldrin	mg/Kg mg/Kg	< 0.0039 < 0.0039	U	< 0.004 < 0.004	U			+	< 0.0039 < 0.0039	U	< 0.0038	U			\ U.UU4	
b-BHC	mg/Kg	< 0.0039	U	< 0.004	U			+	< 0.0039	U	< 0.0038	U			< 0.008	
Chlordane	mg/Kg	< 0.039	U	< 0.04	U				< 0.039	U	< 0.038	U			< 0.04	
d-BHC	mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U		U			< 0.008	
Dieldrin Endesylfen I	mg/Kg	< 0.0039 < 0.0078	U	< 0.004 < 0.0079	U				< 0.0039 < 0.0077	U		U			< 0.004 < 0.008	
Endosulfan I Endosulfan II	mg/Kg mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U	< 0.0076	U			< 0.008	
Endosulfan sulfate	mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U	< 0.0076	U			< 0.008	
Endrin	mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U	< 0.0076	U			< 0.008	
Endrin aldehyde	mg/Kg	< 0.0078	U	< 0.0079	U	< 0.067 U	< 0.068	U	< 0.0077	U	< 0.0076	U			< 0.008	
Endrin ketone g-BHC	mg/Kg	< 0.0078 < 0.0016	U	< 0.0079 < 0.0016	U			+	< 0.0077 < 0.0015	U		U		<u> </u>	< 0.008 < 0.0016	
g-BHC g-Chlordane	mg/Kg mg/Kg	< 0.0016	U	< 0.0016	U				< 0.0015	U		U			< 0.0016	
Heptachlor	mg/Kg	< 0.0039	U	< 0.004	U				< 0.0039	U		U			< 0.004	
Heptachlor epoxide	mg/Kg	< 0.0078	U	< 0.0079	U				< 0.0077	U	< 0.0076	U			< 0.008	
Methoxychlor	mg/Kg	< 0.039	U	< 0.04	U			ļ	< 0.039	U		U			< 0.04	
Toxaphene	mg/Kg	< 0.16	U	< 0.16	U				< 0.15	U	< 0.15	U			< 0.16	
NJ EPH Category 1 (Fuel #2/Diesel) By NJE >C28-C40	<u>PH 10-08 R3</u> mg/kg	< 12	U	< 12	U				< 12	U	< 12	U			< 12	
C9-C28	mg/kg	23	Ť	18	<u> </u>				< 12	U	< 12	U			< 12	
Total EPH	mg/kg	23		18					< 12	U		U			< 12	
1-4 Dioxane			$\downarrow \overline{}$					ļ		<u> </u>				ļ		
1,4-dioxane	mg/Kg	1				< 0.067 U	< 0.068	U	I	1	I		< 0.071	U		< 0.06

Sample ID						CS-1 (6.5')	CS-2 (6.5')		CS-3 (6.5')	CS-4 (6.5')	CS-5 (6.5')	CS-6 (6.5')	CS-7 (6.5')	CS-8 (6.5')	CS-9 (6.5')
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	8/19/2022	8/19/2022		8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022
Client Matrix	RRSCOs	RSCOs	UUSCOs	PGSC0s	CSC0s	Soil	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor 1,1,1-Trichloroethane	100	100	0.68	0.68	500	1 0.00250 U	0.00290	U	0.00310 U	0.00260 U	1 0.00290 U	0.00270 U	1 0.00290 U	0.00270 U	1 0.00280 U
1,1-Dichloroethane	26	19	0.08	0.08	240	0.00250 U	0.00290	U	0.00310 U		0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
1,1-Dichloroethylene	100	100	0.33	0.33	500	0.00250 U	0.00290	U	0.00310 U	***************************************	0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
1,2,4-Trimethylbenzene 1,2-Dichlorobenzene	52 100	47 100	3.6 1.1	3.6 1.1	190 500	0.00250 U 0.00250 U	0.00290 0.00290	U	0.00310 U		0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00280 U 0.00280 U
1,2-Dichloroethane	3.1	2.3	0.02	0.02	30	0.00250 U	0.00290	U	0.00310 U		0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
1,3,5-Trimethylbenzene	52	47	8.4	8.4	190	0.00250 U		U	0.00310 U	0.00200		0.00270 U	0.00200	0.00270 U	0.00280 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	49 13	17 9.8	2.4 1.8	2.4 1.8	280 130	0.00250 U 0.00250 U	0.00290 0.00290	U	0.00310 U	***********	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00280 U 0.00280 U
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0500 U	0.0580	Ü	0.0620 U	0.0530 U	0.0570 U	0.0540 U	0.0570 U	0.0530 U	0.0560 U
2-Butanone	100	100	0.12	0.12	500	0.00250 U	0.00290	U	0.00310 U		0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
Acetone Benzene	100 4.8	100 2.9	0.05 0.06	0.05 0.06	500 44	0.00940 J 0.00250 U	0.01400 0.00290	U	0.03300 0.00310	0.01100 0.00260 U	0.02400 0.00290 U	0.01300 0.00270 U	0.00710 J 0.00290 U	0.01300 0.00270 U	0.00870 J 0.00280 U
Carbon tetrachloride	2.4	1.4	0.76	0.76	22	0.00250 U		Ü	0.00310 U			0.00270 U		0.00270 U	0.00280 U
Chlorobenzene	100	100	1.1	1.1	500	0.00250 U		U	0.00310 U		0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
Chloroform cis-1,2-Dichloroethylene	49 100	10 59	0.37 0.25	0.37 0.25	350 500	0.00250 U 0.00250 U	0.00290 0.00290	U	0.00310 U	0.00260 U 0.00260 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00280 U 0.00280 U
Ethyl Benzene	41	30	1	1	390	0.00250 U	0.00290	Ü	0.00310 U	0.00260 U	0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
Methyl tert-butyl ether (MTBE)	100 100	62 51	0.93	0.93	500 500	0.00250 U 0.00500 U	0.00290 0.00580	U	0.00310 U	0.00260 U 0.00530 U	0.00290 U 0.00570 U	0.00270 U 0.00540 U	0.00290 U 0.00570 U	0.00270 U 0.00530 U	0.00280 U 0.00560 U
Methylene chloride Naphthalene	100	51 100	0.05 12	0.05 12	500	0.00500 U 0.00250 U	0.00580	U	0.00620 U 0.00310 U		0.00570 U	0.00540 U	0.00570 U 0.00290 U	0.00530 U 0.00270 U	0.00560 U 0.00280 U
n-Butylbenzene	100	100	12	12	500	0.00250 U	0.00290	U	0.00310 U	0.00260 U	0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
n-Propylbenzene	100	100	3.9	3.9	500	0.00250 U		U	0.00310 U			0.00270 U	0.00200	0.00270 U	0.00280 U
o-Xylene p- & m- Xylenes	~	~	~	~	~	0.00250 U 0.00500 U		U	0.00310 U 0.00620 U			0.00270 U 0.00540 U	***************************************	0.00270 U 0.00530 U	0.00280 U 0.00560 U
sec-Butylbenzene	100	100	11	11	500	0.00250 U	0.00290	U	0.00310 U	0.00260 U	0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
tert-Butylbenzene	100 19	100 5.5	5.9 1.3	5.9 1.3	500 150	0.00250 U 0.00250 U	0.00290 0.00290	U	0.00310 U		0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00280 U 0.00280 U
Tetrachloroethylene Toluene	100	100	0.7	0.7	500	0.00250 U	0.00290	U	0.00310 U		0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
trans-1,2-Dichloroethylene	100	100	0.19	0.19	500	0.00250 U	0.00290	U	0.00310 U	0.00200	0.00290 U	0.00270 U	0.00290 U	0.00270 U	0.00280 U
Trichloroethylene Vinyl Chloride	0.9	10 0.21	0.47	0.47	200 13	0.00250 U 0.00250 U	0.00290 0.00290	U	0.00310 U		0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00290 U 0.00290 U	0.00270 U 0.00270 U	0.00280 U 0.00280 U
Xylenes, Total	100	100	0.02	1.6	500	0.00250 U	0.00290	U	0.00930 U		0.00290 U	0.00270 U		0.00270 U	0.00280 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor 1,4-Dioxane	13	9.8	0.1	0.1	130	1 0.0189 U	0.0196	U	0.0196 U	0.0196 U	0.0183 U	0.0187 U	0.0183 U	0.0198 U	0.0198 U
SVOA, 8270 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg	Ű	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor	100	100	0.22	0.22	E00	2 0.0427 U	2 0.0435	U	0.0494 U	2 0.0422 U	2 0.0416 U	2 0.0425 U	0.0429 U	2 0.0419 U	2 0.0412 U
2-Methylphenol 3- & 4-Methylphenols	100 100	100 34	0.33	0.33	500 500	0.0427 U 0.0427 U	0.0435	U	0.0494 U	0.0422 U	0.0416 U	0.0425 U	0.0429 U 0.0429 U	0.0419 U 0.0419 U	0.0412 U 0.0412 U
Acenaphthene	100	100	20	98	500	0.0427 U	0.0435	U	0.0494 U		0.0416 U	0.0425 U		0.0419 U	0.0412 U
Acenaphthylene Anthracene	100 100	100 100	100 100	107 1000	500 500	0.0427 U 0.0427 U	0.0435 0.0435	U	0.0494 U		0.0416 U 0.0416 U	0.0425 U 0.0425 U	0.0429 U 0.0429 U	0.0419 U 0.0419 U	0.0412 U 0.0412 U
Benzo(a)anthracene	1	1	1	1	5.6	0.0427 U	0.0435	U	0.0494 U	0.0422 U	0.0416 U	0.0425 U	0.0429 U	0.0419 U	0.0412 U
Benzo(a)pyrene	1	1	1	22	1	0.0427 U	0.0435	U	0.0494 U	0.0422 U	0.0416 U	0.0425 U	0.0429 U	0.0419 U	0.0412 U
Benzo(b)fluoranthene Benzo(g,h,i)perylene	100	100	100	1.7 1000	5.6 500	0.0427 U 0.0427 U	0.0435 0.0435	U	0.0494 U		0.0416 U 0.0416 U	0.0425 U 0.0425 U	0.0429 U 0.0429 U	0.0419 U 0.0419 U	0.0412 U 0.0412 U
Benzo(k)fluoranthene	3.9	1	0.8	1.7	56	0.0427 U		U	0.0494 U			0.0425 U		0.0419 U	0.0412 U
Chrysene	3.9	1	1	1	56	0.0427 U	0.0435	U	0.0494 U		0.0416 U	0.0425 U	***************************************	0.0419 U	
Dibenzo(a,h)anthracene Dibenzofuran	0.33 59	0.33 14	0.33	1000 210	0.56 350	0.0427 U 0.0427 U	0.0435 0.0435	U	0.0494 U		0.0416 U 0.0416 U	0.0425 U 0.0425 U	0.0429 U 0.0429 U	0.0419 U 0.0419 U	0.0412 U 0.0412 U
Fluoranthene	100	100	100	1000	500	0.0427 U	0.0435	U	0.0494 U		0.0416 U	0.0425 U	0.0429 U	0.0419 U	0.0493 JD
Fluorene	100	100	30	386	500	0.0427 U	0.0435	U	0.0494 U	0.0422 U	0.0416 U	0.0425 U	0.0429 U	0.0419 U	0.0412 U
Hexachlorobenzene Indeno(1,2,3-cd)pyrene	1.2 0.5	0.33 0.5	0.33 0.5	3.2 8.2	6 5.6	0.0427 U 0.0427 U		U	0.0494 U			0.0425 U 0.0425 U		0.0419 U 0.0419 U	
Naphthalene	100	100	12	12	500	0.0427 U		U	0.0494 U			0.0425 U		0.0419 U	
Pentachlorophenol	6.7	2.4	0.8	0.8	6.7	0.0427 U		U	0.0494 U			0.0425 U		0.0419 U	
Phenanthrene Phenol	100 100	100 100	100 0.33	1000 0.33	500 500	0.0427 U 0.0427 U		U	0.0494 U			0.0425 U 0.0425 U	***************************************	0.0419 U 0.0419 U	
Pyrene	100	100	100	1000	500	0.0427 U	0.0435	U	0.0494 U			0.0425 U	0.0429 U	0.0419 U	0.0412 U
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor 4,4'-DDD	13	2.6	0.0033	14	92	5 0.00167 U	5 0.00171	U	5 0.00198 U	5 0.00165 U	5 0.00162 U	5 0.00168 U	5 0.00171 U	5 0.00167 U	5 0.00164 U
4,4'-DDE	8.9	1.8	0.0033	17	62	0.00167 U	0.00171	U	0.00198 U	0.00165 U	0.00162 U	0.00168 U	0.00171 U	0.00167 U	0.00164 U
4,4'-DDT Aldrin	7.9 0.097	1.7 0.019	0.0033 0.005	136 0.19	47 0.68	0.00167 U 0.00167 U		U	0.00198 U			0.00168 U 0.00168 U		0.00167 U 0.00167 U	
alpha-BHC	0.097	0.019	0.005	0.19	3.4	0.00167 U		U	0.00198 U			0.00168 U		0.00167 U	0.00164 U
alpha-Chlordane	4.2	0.91	0.094	2.9	24	0.00167 U	0.00171	U	0.00198 U	0.00165 U	0.00162 U	0.00168 U	0.00171 U	0.00167 U	0.00164 U
beta-BHC delta-BHC	0.36 100	0.072 100	0.036 0.04	0.09 0.25	3 500	0.00167 U 0.00167 U	0.00171 0.00171	U	0.00198 U			0.00168 U 0.00168 U	0.00171 U 0.00171 U	0.00167 U 0.00167 U	0.00164 U 0.00164 U
delta-BHC Dieldrin	0.2	0.039	0.04	0.25	1.4	0.00167 U		U	0.00198 U			0.00168 U		0.00167 U 0.00167 U	
Endosulfan I	24	4.8	2.4	102	200	0.00167 U	0.00171	U	0.00198 U	0.00165 U	0.00162 U	0.00168 U	0.00171 U	0.00167 U	0.00164 U
Endosulfan II Endosulfan sulfate	24 24	4.8 4.8	2.4 2.4	102 1000	200 200	0.00167 U 0.00167 U		U	0.00198 U			0.00168 U 0.00168 U		0.00167 U 0.00167 U	
Endosultan sultate Endrin	11	2.2	0.014	0.06	89	0.00167 U		U	0.00198 U			0.00168 U 0.00168 U		0.00167 U	
gamma-BHC (Lindane)	1.3	0.28	0.1	0.1	9.2	0.00167 U	0.00171	U	0.00198 U	0.00165 U	0.00162 U	0.00168 U	0.00171 U	0.00167 U	0.00164 U
Heptachlor	2.1	0.42	0.042	0.38	15	0.00167 U	0.00171	U	0.00198 U	0.00165 U	0.00162 U	0.00168 U	0.00171 U	0.00167 U	0.00164 U

Sample ID						CS-1 (6.5')		CS-2 (6.5')	CS-3 (6.5')	_	CS-4 (6.5')		CS-5 (6.5')	CS-6 (6.5')		CS-7 (6.5')		CS-8 (6.5')		CS-9 (6.5')
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	8/19/2022		8/19/2022	8/19/2022		8/19/2022		8/19/2022	8/19/2022		8/19/2022		8/19/2022		8/19/2022
Client Matrix	RRSCOs	RSCOs	UUSC0s	PGSC0s	CSC0s	Soil		Soil	Soil		Soil		Soil	Soil		Soil		Soil		Soil
Compound						Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg		mg/kg		mg/kg
Dilution Factor Arsenic	16	16	13	16	16	1 1.650	U	1 1.580 U	1 1.840	U	1 1.570	U	1 1.550 U	1.600	U	1.610	U	1 1.660	U	1 1.500 U
Barium	400	350	350	820	400	20.900	U	23.500	45.400	U	22.400	U	16.100	24.100	U	30.400	U	32.800	U	31.900
Beryllium	72	14	7.2	47	590	0.0550	U	0.0530 U		U		U	0.0520 U	0.0530	U	0.0540	U	0.0550	U	0.0500 U
Cadmium	4.3	2.5	2.5	7.5	9.3	0.330	U	0.315 U		U		U	0.311 U	0.320	U	0.322	U	0.331	U	0.301 U
Chromium	~	~	~	~	~	9.350		9.990	10.800		9.320		8.740	7.850		9.890		12.400		10.700
Copper Lead	270 400	270 400	50 63	1720 450	270 1000	8.540 8.040		9.780 11.600	10.900 10.900		10.100 9.150		9.330 6.130	7.920 4.180		9.200 14.600		14.300 9.820		7.890 5.670
Manganese	2000	2000	1600	2000	10000	269		251	349		267		117	179		251		317		251
Nickel	310	140	30	130	310	8.480		8.230	11.700		12.700		9.190	9.450		9.970		17.600		10.200
Selenium	180	36	3.9	4	1500	2.750	U	2.630 U		U		U	2.590 U	2.670	U	2.690	U	2.760	U	2.510 U
Silver	180	36	2	8.3	1500	0.551	U	0.526 U		U	****	U	0.518 U	0.533	U	0.537	U	0.552	U	0.501 U
Zinc Mercury by 7473	10000 mg/kg	2200 mg/kg	109 mg/kg	2480 mg/Kg	10000 mg/kg	14.900 mg/kg		21.300 mg/kg	21.900 mg/kg	_	21.500 mg/kg	_	19.400 mg/kg	13.900 mg/kg		24.700 mg/kg		23.200 mg/kg		16.100 mg/kg
Dilution Factor	s/ ns	1116/1/6	mg/ng	1116/11/6	1115/ NS	1		1	1	\dashv	1	1	1	1 1		1 1		1		1
Mercury	0.81	0.81	0.18	0.73	2.8	0.0308	U	0.0606	0.0361	U	0.0304	U	0.0301 U	0.0309	U	0.0312	U	0.0309	U	0.0301 U
Chromium, Hexavalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	\Box	mg/Kg	mg/Kg	[mg/Kg		mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg
Dilution Factor Chromium, Hexavalent	110	22	1	19	400	1 0.514	U	0.526 U	1 0.602		0.507	П	1 0.501 U	0.516	U	0.520	U	0.515	- 11	0.501 U
Chromium, Hexavalent Chromium, Trivalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	J	0.526 U mg/Kg	mg/Kg	U	mg/Kg	-	mg/Kg	mg/Kg	U	mg/Kg	U	mg/Kg	U	0.501 U mg/Kg
Dilution Factor				0/ 1.16		1		1	1		1		1	1		1	t	1		1
Chromium, Trivalent	180	36	30	~	1500	9.350		9.990	10.800		9.320		8.740	7.850		9.890		12.400		10.700
Cyanide, Total	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg		mg/kg		mg/kg
Dilution Factor Cyanide, total	27	27	27	40	27	0.514	U	0.526 U	0.602	11	0.507	П	0.501 U	0.516	U	0.520	U	0.515	- 11	0.501 U
Total Solids	21	21	21	40	21	%	- 0	%	%	0	%	0	%	%	U	%	-	%	- 0	%
Dilution Factor						1		1	1		1		1	1		1		1		1
% Solids	~	~	~	~	~	97.300		95.100	83.000		98.600		99.800	97.000		96.200		97.100		99.700
HERB, 8151 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	_	mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg
Dilution Factor 2,4,5-TP (Silvex)	100	58	3.8	3.8	500	0.0203	U	0.0210 U	0.0238	U	0.0200	U	1 0.0199 U	0.0205	U	0.0207	U	0.0203	U	0.0199 U
PCB, 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg	Ť	mg/kg		mg/kg	mg/kg	Ü	mg/kg		mg/kg		mg/kg
Dilution Factor					- 0	1		1	1		1		1	1		1		1		1
Aroclor 1016	~	~	~	~	~	0.0168	U	0.0173 U		U	****	U	0.0164 U	0.0170	U	0.0173	U	0.0168	U	0.0166 U
Aroclor 1221	~	~	~	~	~	0.0168 0.0168	U	0.0173 U		U		U	0.0164 U 0.0164 U	0.0170 0.0170	U	0.0173 0.0173	U	0.0168 0.0168	U	0.0166 U 0.0166 U
Aroclor 1232 Aroclor 1242	~	~	~	~	~	0.0168	U	0.0173 U 0.0173 U		IJ		U	0.0164 U 0.0164 U	0.0170	IJ	0.0173	U	0.0168	U	0.0166 U 0.0166 U
Aroclor 1248	~	~	~	~	~	0.0168	U	0.0173 U		U		U	0.0164 U	0.0170	U	0.0173	U	0.0168	U	0.0166 U
Aroclor 1254	~	~	~	~	~	0.0168	U	0.0173 U	0.0200	U	****	U	0.0164 U	0.0170	U	0.0173	U	0.0168	U	0.0166 U
Aroclor 1260	~	~	~	~	~	0.0168	U	0.0173 U		U		U	0.0164 U	0.0170	U	0.0173	U	0.0168	U	0.0166 U
Total PCBs PFAS, NYSDEC Target List	1	1	0.1	3.2	1	0.0168 mg/kg	U	0.0173 U		U		U	0.0164 U	0.0170 mg/kg	U	0.0173	U	0.0168	U	0.0166 U mg/kg
Dilution Factor	1					111g/kg		mg/kg 1	mg/kg 1	\dashv	mg/kg 1	+	mg/kg 1	тід/к <u>д</u>		mg/kg 1		mg/kg 1		111g/ kg
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00026	U	0.00026 U		U	0.00025	U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
N-EtFOSAA N-MeFOSAA	~	~	~	~	~	0.00026 0.00026	U	0.00026 U		U		U	0.00024 U 0.00024 U	0.00024 0.00024	U	0.00024 0.00024	U	0.00026	U	0.00024 U 0.00024 U
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00026	U	0.00026 U 0.00026 U		U		U	0.00024 U 0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00026 0.00026	U	0.00026 U		U		U	0.00024 U 0.00024 U	0.00024 0.00024	U	0.00024 0.00024	U	0.00026 0.00026	U	0.00024 U 0.00024 U
Perfluorododecarioic acid (PFDoA) Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	Ü	0.00024 U
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluorononanoic acid (PFNA) Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00026 0.00026	U	0.00026 U 0.00045	0.00029 0.00070	U	0.00025 0.00026	U	0.00024 U 0.00084	0.00024 0.00024	U	0.00024 0.00024	U	0.00026 0.00026	U	0.00024 U 0.00024 U
Perfluorooctanies acid (PFOA)	~	~	~	~	~	0.00026	U	0.00045 0.00026 U		U		U	0.00084 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	Ü	0.00024 U
Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	0.00026	U	0.00026 U	0.00029	U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	0.00026	U	0.00026 U		U		U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U
Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00026	U	0.00026 U	0.00029	U	0.00025	U	0.00024 U	0.00024	U	0.00024	U	0.00026	U	0.00024 U

Sample ID	_		ĺ			CS-Field Dup	CS-10 (6.5')		CS-11 (6.5')	CS-12 (6.5')	CS-13 (6.5')	CS-14 (6.5')	CS-15 (6.5')	CS-16 (6.5')	CS-17 (6.5')
Sampling Date	Part 375	Dort 275	Dort 275	Part 375	Part 375	8/19/2022	8/24/2022		8/24/2022	8/24/2022	8/24/2022	8/24/2022	8/24/2022	8/24/2022	8/24/2022
Client Matrix	RRSCOs	Part 375 RSC0s	Part 375 UUSCOs	PGSCOs	CSC0s	Soil	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound	-					Result Q		0	Result Q		Result Q	Result Q		Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor	400	100	0.00	0.00	500	1	1		1	1	1	1	1	1	1
1,1,1-Trichloroethane 1,1-Dichloroethane	100 26	100 19	0.68 0.27	0.68 0.27	500 240	0.00270 U 0.00270 U	0.00250 0.00250	U	0.00260 U 0.00260 U		0.00240 U 0.00240 U	0.00290 U 0.00290 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00250 U 0.00250 U
1,1-Dichloroethylene	100	100	0.33	0.33	500	0.00270 U	0.00250	Ü	0.00260 U		0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
1,2,4-Trimethylbenzene 1.2-Dichlorobenzene	52 100	47 100	3.6 1.1	3.6 1.1	190	0.00270 U 0.00270 U	0.00250 0.00250	U	0.00260 U 0.00260 U		0.00240 U 0.00240 U	0.00290 U 0.00290 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00250 U 0.00250 U
1,2-Dichloroethane	3.1	2.3	0.02	0.02	500 30	0.00270 U	0.00250	U	0.00260 U		0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U 0.00250 U
1,3,5-Trimethylbenzene	52	47	8.4	8.4	190	0.00270 U	0.00250	U	0.00260 U	0.00250 U	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	49 13	17 9.8	2.4 1.8	2.4 1.8	280 130	0.00270 U 0.00270 U	0.00250 0.00250	U	0.00260 U 0.00260 U	***********	0.00240 U 0.00240 U	0.00290 U 0.00290 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00250 U 0.00250 U
1,4-Dictrioroberizerie	13	9.8	0.1	0.1	130	0.0540 U	0.00250	U	0.0530 U	0.00250 U	0.00240 U	0.00290 U	0.0530 U	0.00280 U	0.00250 U
2-Butanone	100	100	0.12	0.12	500	0.00270 U	0.00250	U	0.00260 U	***********	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Acetone Benzene	100 4.8	100 2.9	0.05 0.06	0.05 0.06	500 44	0.02200 0.00270 U	0.01900 0.00250	U	0.01000 J 0.00260 U	0.01500 0.00250 U	0.01100 0.00240 U	0.02200 0.00290 U	0.02300 0.00260 U	0.00570 U 0.00280 U	0.00510 U 0.00250 U
Carbon tetrachloride	2.4	1.4	0.76	0.76	22	0.00270 U		U	0.00260 U			0.00290 U	0.00260 U	0.00280 U	0.00250 U
Chlorobenzene	100	100	1.1	1.1	500	0.00270 U		U	0.00260 U		***************************************	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Chloroform cis-1,2-Dichloroethylene	49 100	10 59	0.37 0.25	0.37 0.25	350 500	0.00270 U 0.00270 U	0.00250 0.00250	U	0.00260 U 0.00260 U	0.00250 U 0.00250 U	0.00240 U 0.00240 U	0.00290 U 0.00290 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00250 U 0.00250 U
Ethyl Benzene	41	30	1	1	390	0.00270 U	0.00250	U	0.00260 U		0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Methyl tert-butyl ether (MTBE)	100	62	0.93	0.93	500	0.00270 U	0.00250	U	0.00260 U	0.00250 U	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Methylene chloride Naphthalene	100 100	51 100	0.05 12	0.05 12	500 500	0.00540 U 0.00270 U	0.00510 0.00250	U	0.00530 U 0.00260 U	0.00500 U 0.00250 U	0.00480 U 0.00240 U	0.00570 U 0.00290 U	0.00530 U 0.00260 U	0.01400 0.00280 U	0.00510 U 0.00250 U
n-Butylbenzene	100	100	12	12	500	0.00270 U	0.00250	U	0.00260 U	0.00250 U	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
n-Propylbenzene	100	100	3.9	3.9	500	0.00270 U		U	0.00260 U			0.00290 U	0.00260 U	0.00280 U	0.00250 U
o-Xylene p- & m- Xylenes	~	~	~	~	~	0.00270 U 0.00540 U	0.00250 0.00510	U	0.00260 U 0.00530 U			0.00290 U 0.00570 U	0.00260 U 0.00530 U	0.00280 U 0.00570 U	0.00250 U 0.00510 U
sec-Butylbenzene	100	100	11	11	500	0.00340 U	0.00250	U	0.00360 U		0.00480 U	0.00370 U	0.00350 U	0.00370 U	0.00310 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.00270 U	0.00250	U	0.00260 U	***************************************	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Tetrachloroethylene Toluene	19 100	5.5 100	1.3 0.7	1.3 0.7	150 500	0.00270 U 0.00270 U	0.00250 0.00580	U	0.00260 U 0.00260 U		0.00240 U 0.00240 U	0.00290 U 0.00290 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00250 U 0.00250 U
trans-1,2-Dichloroethylene	100	100	0.19	0.19	500	0.00270 U	0.00250	U	0.00260 U		0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Trichloroethylene	21	10	0.47	0.47	200	0.00270 U	0.00250	U	0.00260 U	***************************************	0.00240 U	0.00290 U	0.00260 U	0.00280 U	0.00250 U
Vinyl Chloride Xylenes, Total	0.9 100	0.21 100	0.02 0.26	0.02 1.6	13 500	0.00270 U 0.00800 U	0.00250 0.00760	U	0.00260 U 0.00790 U		0.00240 U 0.00720 U	0.00290 U 0.00860 U	0.00260 U 0.00790 U	0.00280 U 0.00850 U	0.00250 U 0.00760 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor						1	1		1	1	1	1	1	1	1
1,4-Dioxane SVOA, 8270 MASTER	13 mg/kg	9.8 mg/kg	0.1 mg/kg	0.1 mg/Kg	130 mg/kg	0.0185 U mg/kg	0.0194 mg/kg	U	0.0198 U mg/kg	0.0194 U mg/kg	0.0185 U mg/kg	0.0183 U mg/kg	0.0190 U mg/kg	0.0198 U mg/kg	0.0198 U mg/kg
Dilution Factor	8/ 1.8	6/6		6/6		2	2		2	2	2	2	2	2	2
2-Methylphenol	100	100	0.33	0.33	500	0.0421 U	0.0422	U	0.0423 U	******	0.0422 U	0.0439 U	0.0440 U	0.0442 U	0.0425 U
3- & 4-Methylphenols Acenaphthene	100 100	34 100	0.33 20	0.33 98	500 500	0.0421 U 0.0421 U	0.0422 0.0422	U	0.0423 U 0.0423 U	0.0424 U 0.0424 U	0.0422 U 0.0422 U	0.0439 U 0.0439 U	0.0440 U 0.0440 U	0.0442 U 0.0442 U	0.0425 U 0.0425 U
Acenaphthylene	100	100	100	107	500	0.0421 U	0.0422	U	0.0423 U		0.0422 U	0.0439 U	0.0440 U	0.0442 U	0.0425 U
Anthracene	100	100	100	1000	500	0.0421 U	0.0422	U	0.0423 U	******		0.0560 JD		0.0442 U	0.0425 U
Benzo(a)anthracene Benzo(a)pyrene	1 1	1	1	22	5.6 1	0.0421 U 0.0421 U	0.0424 0.0451	JD	0.0423 U 0.0423 U	0.0424 U 0.0424 U	0.0422 U 0.0422 U	0.2310 D 0.2520 D	0.0646 JD 0.0569 JD	0.1080 D 0.0868 JD	0.0425 U 0.0425 U
Benzo(b)fluoranthene	1	1	1	1.7	5.6	0.0421 U	0.0422	U	0.0423 U		0.0422 U	0.2120 D	0.0491 JD	0.0748 JD	0.0425 U
Benzo(g,h,i)perylene	100	100	100	1000	500	0.0421 U	0.0422	U	0.0423 U	******	0.0422 U	0.1430 D	0.00.10 35	0.0522 JD	0.0425 U
Benzo(k)fluoranthene Chrysene	3.9 3.9	1	0.8	1.7	56 56	0.0421 U 0.0421 U	0.0422 0.0422	U	0.0423 U 0.0423 U	0.0 12 1	0.0422 U 0.0422 U	0.1910 D 0.2410 D		0.0811 JD 0.1110 D	0.0425 U 0.0425 U
Dibenzo(a,h)anthracene	0.33	0.33	0.33	1000	0.56	0.0421 U	0.0422	U	0.0423 U		0.0422 U	0.0462 JD	0.0440 U	0.0442 U	0.0425 U
Dibenzofuran	59	14	7	210	350	0.0421 U	0.0422	U	0.0423 U		0.0422 U	0.0439 U	0.0440 U	0.0442 U	0.0425 U
Fluoranthene Fluorene	100 100	100 100	100 30	1000 386	500 500	0.0421 U 0.0421 U	0.0693 0.0422	JD U	0.0423 U 0.0423 U	0.0424 U 0.0424 U	0.0422 U 0.0422 U	0.4300 D 0.0439 U	0.0779 JD 0.0440 U	0.1730 D 0.0442 U	0.0425 U 0.0425 U
Hexachlorobenzene	1.2	0.33	0.33	3.2	6	0.0421 U	0.0422	U	0.0423 U		0.0422 U	0.0439 U	***************************************	0.0442 U	0.0425 U
Indeno(1,2,3-cd)pyrene Naphthalene	0.5 100	0.5 100	0.5 12	8.2 12	5.6 500	0.0421 U 0.0421 U		U	0.0423 U 0.0423 U			0.1610 D 0.0439 U		0.0442 U 0.0442 U	0.0425 U 0.0425 U
Pentachlorophenol	6.7	2.4	0.8	0.8	6.7	0.0421 U		U	0.0423 U			0.0439 U		0.0442 U	0.0425 U
Phenanthrene	100	100	100	1000	500	0.0421 U	0.0422	U	0.0423 U	0.0424 U	0.0422 U	0.2720 D	0.0440 U	0.1190 D	0.0425 U
Phenol Pyrene	100 100	100 100	0.33 100	0.33 1000	500 500	0.0421 U 0.0421 U	0.0422 0.0478	JD	0.0423 U 0.0423 U			0.0439 U 0.3780 D		0.0442 U 0.1700 D	0.0425 U 0.0425 U
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	0.0421 0 mg/kg	mg/kg	טנ	mg/kg	0.0424 0 mg/kg	0.0422 0 mg/kg	mg/kg	mg/kg	0.1700 D mg/kg	0.0425 U mg/kg
Dilution Factor						5	5		5	5	5	5	5	5	5
4,4'-DDD 4,4'-DDE	13 8.9	2.6 1.8	0.0033 0.0033	14 17	92 62	0.00168 U 0.00168 U		U	0.00164 U 0.00164 U			0.00176 U 0.00176 U	0.002.0	0.00176 U 0.00176 U	0.00168 U 0.00168 U
4,4'-DDT	7.9	1.7	0.0033	136	47	0.00168 U		U	0.00164 U			0.00176 U		0.00176 U	0.00168 U
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00168 U	0.00167	U	0.00164 U	0.00167 U	0.00166 U	0.00176 U	0.00175 U	0.00176 U	0.00168 U
alpha-BHC alpha-Chlordane	0.48 4.2	0.097 0.91	0.02 0.094	0.02 2.9	3.4 24	0.00168 U 0.00168 U		U	0.00164 U 0.00164 U			0.00176 U 0.00176 U	0.00175 U 0.00175 U	0.00176 U 0.00176 U	0.00168 U 0.00168 U
beta-BHC	0.36	0.91	0.094	0.09	3	0.00168 U	0.00167	U	0.00164 U			0.00176 U	0.00175 U	0.00176 U	0.00168 U
delta-BHC	100	100	0.04	0.25	500	0.00168 U	0.00167	U	0.00164 U	0.00167 U	0.00166 U	0.00176 U	0.00175 U	0.00176 U	0.00168 U
Dieldrin Endosulfan I	0.2	0.039	0.005	0.1 102	1.4 200	0.00168 U 0.00168 U		U	0.00164 U 0.00164 U			0.00176 U 0.00176 U	0.00175 U 0.00175 U	0.00176 U	0.00168 U 0.00168 U
Endosulfan I Endosulfan II	24 24	4.8 4.8	2.4 2.4	102	200	0.00168 U		U	0.00164 U 0.00164 U			0.00176 U		0.00176 U 0.00176 U	0.00168 U 0.00168 U
Endosulfan sulfate	24	4.8	2.4	1000	200	0.00168 U	0.00167	U	0.00164 U	0.00167 U	0.00166 U	0.00176 U	0.00175 U	0.00176 U	0.00168 U
Endrin	11	2.2	0.014	0.06	89	0.00168 U		U	0.00164 U			0.00176 U		0.00176 U	0.00168 U
gamma-BHC (Lindane) Heptachlor	1.3 2.1	0.28 0.42	0.1 0.042	0.1 0.38	9.2 15	0.00168 U 0.00168 U	0.00167 0.00167	U	0.00164 U 0.00164 U			0.00176 U 0.00176 U	0.00175 U 0.00175 U	0.00176 U 0.00176 U	0.00168 U 0.00168 U
-p					_~						0				

Sample ID						CS-Field Dup		CS-10 (6.5')	CS-11 (6.5')		CS-12 (6.5')		CS-13 (6.5')	CS-14 (6.5')	ı	CS-15 (6.5')	CS-16 (6.	50 1	CS-17 (6.5')
Sampling Date	B. 1075	D. 4 075	D. 1075	D. 1075	D. 1075	8/19/2022		8/24/2022	8/24/2022	_	8/24/2022		8/24/2022	8/24/2022		8/24/2022	8/24/202		8/24/2022
Client Matrix	Part 375 RRSCOs	Part 375 RSC0s	Part 375 UUSCOs	Part 375 PGSC0s	Part 375 CSC0s	Soil		Soil	Soil		Soil		Soil	Soil		Soil	Soil	-	Soil
			00000	1 40000	3000					_					_			-	
Compound Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	Result mg/kg	Q	Result (Result mg/kg	Q	Result mg/kg	Q	Result Q mg/kg	Result mg/kg	Q	Result Q mg/kg	Result mg/kg	Q	Result Q mg/kg
Dilution Factor	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	1		1	1		1		1	1		1	1		1
Arsenic	16	16	13	16	16	1.560	U	1.610 l		U	1.610	U	1.59 U	1.63	U	1.640 U	2.080		1.580 U
Barium	400 72	350	350	820	400	19.200 0.0520	- 11	36.900 0.0540 U	14.800 0.0510		25.400 0.0540		17.90	68.60	- 11	77.60 0.06 U	86.70 0.0540		14.700 0.0530 U
Beryllium Cadmium	4.3	14 2.5	7.2 2.5	47 7.5	590 9.3	0.0520	U	0.0540 L 0.322 L		U	0.0540	U	0.05 U 0.32 U	0.05	U	0.06 U 0.33 U	0.0540	U	0.0530 U 0.316 U
Chromium	~	~	~	~	~	10.200		11.500	10.100	Ŭ	13.200		10.90	16.70	Ŭ	28.60	17.60	Ť	10.400
Copper	270	270	50	1720	270	9.230		12.300	7.850		8.280		9.86	12.20		17.60	18.70		6.850
Lead Manganese	400 2000	400 2000	63 1600	450 2000	1000 10000	7.380 236		21.800 248	6.270 209		13.700 197		8.20 254.00	38.70 795.00		49.70 291.00	70.4 314		5.660 182
Nickel	310	140	30	130	310	10.400		18.900	18.300		21.200		20.60	17.80		20.10	18.30	-	16.900
Selenium	180	36	3.9	4	1500	2.600	U	2.680 l	2.550	U	2.690	U	2.64 U	2.72	U	2.73 U	2.68	U	2.640 U
Silver	180	36	2	8.3	1500	0.521	U	0.536 L	****	U	0.538	U	0.53 U	0.55	U	0.55 U	0.536	U	0.527 U
Mercury by 7473	10000 mg/kg	2200 mg/kg	109 mg/kg	2480 mg/Kg	10000 mg/kg	16.600 mg/kg		37.300 mg/kg	20.000 mg/kg		24.200 mg/kg		18.60 mg/kg	56.80 mg/kg		68.10 mg/kg	82.10 mg/kg		15.900 mg/kg
Dilution Factor	IIIg/ Ng	IIIg/ ng	IIIg/ ng	mg/ng	IIIg/ Ng	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1	\dashv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	1	1 1		1	1		1
Mercury	0.81	0.81	0.18	0.73	2.8	0.0307	U	0.0311 l		U	0.0306	U	0.0307 U	0.1100		0.0552	0.1280		0.0306 U
Chromium, Hexavalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	_	mg/Kg	mg/Kg	[mg/Kg	mg/Kg		mg/Kg
Dilution Factor Chromium, Hexavalent	110	22	1	19	400	1 0.512	U	1 0.518 U	0.511	U	0.511	U	1 0.511 U	0.536	U	1 0.537 U	0.536	U	0.510 U
Chromium, Trivalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	Ü	mg/Kg	mg/Kg	3	mg/Kg	mg/Kg		mg/Kg
Dilution Factor						1		1	1		1		1	1		1	1		1
Chromium, Trivalent	180	36	30	~	1500	10.200		11.500	10.100		13.200		10.900	16.800		28.600	17.600		10.400
Cyanide, Total Dilution Factor	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg 1		mg/kg 1	mg/kg 1		mg/kg 1		mg/kg 1	mg/kg 1		mg/kg 1	mg/kg 1		mg/kg 1
Cvanide, total	27	27	27	40	27	0.512	U	0.518 l		U	0.511	U	0.511 U	0.536	U	0.537 U	0.536	U	0.510 U
Total Solids						%		%	%		%		%	%		%	%		%
Dilution Factor						1		1	1		1		1	1		1	1		1
% Solids HERB, 8151 MASTER	~ ma/Ka	~ ma/ka	~ ma/ka	~ ma/ka	~ mg/Kg	97.700		96.500	97.900		97.900 mg/kg		97.800	93.400 mg/Kg		93.100	93.300		98.100
Dilution Factor	mg/Kg	mg/Kg	mg/Kg	mg/Kg	IIIg/ Ng	mg/Kg 1		mg/Kg 1	mg/Kg 1		mg/Kg 1		mg/Kg 1	1		mg/Kg 1	mg/Kg 1	-	mg/Kg 1
2,4,5-TP (Silvex)	100	58	3.8	3.8	500	0.0202	U	0.0204 l	0.0201	U	0.0201	U	0.0203 U	0.0213	U	0.0214 U	0.0212	U	0.0201 U
PCB, 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	mg/kg		mg/kg
Dilution Factor Aroclor 1016	~	~	~	~	~	1 0.0170	U	0.0168 U	0.0166	U	<u>1</u> 0.0169	U	1 0.0168 U	0.0178	U	1 0.0177 U	0.0178	U	0.0169 U
Aroclor 1016 Aroclor 1221	~	~	~	~	~	0.0170	U	0.0168 L		U	0.0169	U	0.0168 U	0.0178	U	0.0177 U	0.0178	U	0.0169 U
Aroclor 1232	~	~	~	~	~	0.0170	U	0.0168 l	0.0166	U	0.0169	U	0.0168 U	0.0178	U	0.0177 U	0.0178	U	0.0169 U
Aroclor 1242	~	~	~	~	~	0.0170	U	0.0168 L		U	0.0169	U	0.0168 U	0.0178	U	0.0177 U	0.0178	U	0.0169 U
Aroclor 1248 Aroclor 1254	~	~	~	~	~	0.0170 0.0170	U	0.0168 U		U	0.0169 0.0169	U	0.0168 U 0.0168 U	0.0178 0.0178	U	0.0177 U 0.0177 U	0.0178 0.0178	U	0.0169 U 0.0169 U
Aroclor 1260	~	~	~	~	~	0.0170	U	0.0168 U		U	0.0169	U	0.0168 U	0.0178	U	0.0318	0.0178	U	0.0169 U
Total PCBs	1	1	0.1	3.2	1	0.0170	U	0.0168 l	0.0166	U	0.0169	U	0.0168 U	0.0178	U	0.0318	0.0178	U	0.0169 U
PFAS, NYSDEC Target List								mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	mg/kg		mg/kg
Dilution Factor 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	NT		0.00025 U	0.00024	U	0.00025	U	1 0.00025 U	0.00026	U	1 0.00026 U	0.00026	U	0.00025 U
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
N-EtFOSAA	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	Ü	0.00025 U
N-MeFOSAA	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluoro-1-decanesulfonic acid (PFDS) Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	NT NT		0.00025 L		U	0.00025 0.00025	U	0.00025 U 0.00025 U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00026 0.00026	U	0.00025 U 0.00025 U
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	NT		0.00025 U		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	NT NT		0.00025 L	0.00004	U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	NT		0.00025 U	0.00024	U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	NT		0.00025 l	0.00024	U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	Ü	0.00025 U
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorononanoic acid (PFNA) Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	NT NT		0.00025 U		U	0.00025 0.00040	U	0.00025 U 0.00025 U	0.00026 0.00048	U	0.00026 U 0.00050	0.00026 0.00079	U	0.00025 U 0.00032
Perfluorooctanesuironic acid (PFOS) Perfluorooctanoic acid (PFOA)	~	~	~	~	~	NT NT		0.00108 0.00025 U		U	0.00040	U	0.00025 U	0.00048	U	0.00050 0.00026 U	0.00079	U	0.00032 0.00025 U
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	Ü	0.00025 U
Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	NT		0.00025 L		U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U
Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	NT		0.00025 l	0.00024	U	0.00025	U	0.00025 U	0.00026	U	0.00026 U	0.00026	U	0.00025 U

Sample ID						CS-18 (6.5')	CS-19 (6.5')	ı	CS-4-Field Dup	CS-20 (6.5')	CS-21 (6.5')	CS-22 (6.5')	CS-23 (6.5')	CS-24 (6.5')	CS-25 (6.5')
Sampling Date	D-+ 075	D-+ 075	D-+ 075	D-+ 075	D-+ 075	8/24/2022	8/24/2022		8/24/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022
Client Matrix	Part 375 RRSCOs	Part 375 RSCOs	Part 375 UUSCOs	Part 375 PGSC0s	Part 375 CSC0s	Soil	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q		0	Result Q			Result Q		Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor						1	1			1	1	1	1	1	1
1,1,1-Trichloroethane 1,1-Dichloroethane	100 26	100 19	0.68 0.27	0.68 0.27	500 240	0.00250 U 0.00250 U	0.00250 0.00250	U	NT NT	0.00270 U 0.00270 U		0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U
1,1-Dichloroethylene	100	100	0.33	0.33	500	0.00250 U		Ü	NT	0.00270 U		0.00250 U	0.00250 U	0.00250 U	0.00260 U
1,2,4-Trimethylbenzene	52	47	3.6	3.6	190	0.00250 U	0.00250	U	NT	0.00270 U	***************************************	0.00250 U	0.00250 U	0.00250 U	0.00260 U
1,2-Dichlorobenzene 1,2-Dichloroethane	100 3.1	100 2.3	1.1 0.02	1.1 0.02	500 30	0.00250 U 0.00250 U	0.00250 0.00250	U	NT NT	0.00270 U 0.00270 U		0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U
1,3,5-Trimethylbenzene	52	47	8.4	8.4	190	0.00250 U		U	NT	0.00270 U		0.00250 U		0.00250 U	0.00260 U
1,3-Dichlorobenzene	49	17	2.4	2.4	280	0.00250 U	0.00250	U	NT	0.00270 U		0.00250 U	0.00250 U	0.00250 U	0.00260 U
1,4-Dichlorobenzene 1,4-Dioxane	13 13	9.8 9.8	1.8 0.1	1.8 0.1	130 130	0.00250 U 0.0500 U	0.00250 0.0500	U	NT NT	0.00270 U 0.0540 U		0.00250 U 0.0500 U	0.00250 U 0.0500 U	0.00250 U 0.0500 U	0.00260 U 0.0520 U
2-Butanone	100	100	0.12	0.12	500	0.00250 U	0.00250	U	NT	0.00270 U	0.00250 U	0.00250 U	0.00250 U	0.00250 U	0.00260 U
Acetone	100	100	0.05	0.05	500	0.00500 U 0.00250 U	0.00500	U	NT	0.03400	0.02000	0.00890 J	0.00700 J	0.01700	0.00520 U
Benzene Carbon tetrachloride	4.8 2.4	2.9 1.4	0.06 0.76	0.06 0.76	44 22	0.00250 U 0.00250 U	0.00200	U	NT NT	0.00270 U 0.00270 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U
Chlorobenzene	100	100	1.1	1.1	500	0.00250 U		U	NT	0.00270 U		0.00250 U	0.00250 U	0.00250 U	0.00260 U
Chloroform	49	10	0.37	0.37	350	0.00250 U		U	NT	0.00270 U		0.00250 U		0.00250 U	0.00260 U
cis-1,2-Dichloroethylene Ethyl Benzene	100 41	59 30	0.25	0.25	500 390	0.00250 U 0.00250 U	0.00250 0.00250	U	NT NT	0.00270 U 0.00270 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U
Methyl tert-butyl ether (MTBE)	100	62	0.93	0.93	500	0.00250 U	0.00250	U	NT	0.00270 U	0.00250 U	0.00250 U	0.00250 U	0.00250 U	0.00260 U
Methylene chloride Naphthalene	100 100	51 100	0.05 12	0.05 12	500 500	0.01400 0.00250 U	0.01500 0.00250	U	NT NT	0.03600 0.00270 U	0.02200 0.00250 U	0.03700 0.00250 U	0.02600 0.00250 U	0.01100 0.00250 U	0.01800 0.00260 U
n-Butylbenzene	100	100	12	12	500	0.00250 U	0.00250	U	NT NT	0.00270 U		0.00250 U	0.00250 U	0.00250 U	0.00260 U
n-Propylbenzene	100	100	3.9	3.9	500	0.00250 U	0.00250	U	NT	0.00270 U	0.00250 U	0.00250 U	0.00250 U	0.00250 U	0.00260 U
o-Xylene p- & m- Xylenes	~	~	~	~	~	0.00250 U 0.00500 U		U	NT NT	0.00270 U 0.00540 U		0.00250 U 0.00500 U		0.00250 U 0.00500 U	0.00260 U 0.00520 U
sec-Butylbenzene	100	100	11	11	500	0.00300 U	0.00250	U	NT	0.00270 U		0.00300 U	0.00300 U	0.00300 U	0.00320 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.00250 U		U	NT	0.00270 U	***************************************	0.00250 U	0.00250 U	0.00250 U	0.00260 U
Tetrachloroethylene Toluene	19 100	5.5 100	1.3 0.7	1.3 0.7	150 500	0.00250 U 0.00250 U	0.00250 0.00250	U	NT NT	0.00270 U 0.00270 U	***********	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U
trans-1,2-Dichloroethylene	100	100	0.19	0.19	500	0.00250 U	0.00250	U	NT	0.00270 U		0.00250 U	0.00250 U	0.00250 U	0.00260 U
Trichloroethylene	21	10	0.47	0.47	200	0.00250 U	0.00250	U	NT	0.00270 U	0.00250 U	0.00250 U	0.00250 U	0.00250 U	0.00260 U
Vinyl Chloride Xylenes, Total	0.9 100	0.21 100	0.02 0.26	0.02 1.6	13 500	0.00250 U 0.00750 U	0.00250 0.00750	U	NT NT	0.00270 U 0.00800 U		0.00250 U 0.00750 U	0.00200 0	0.00250 U 0.00750 U	0.00260 U 0.00780 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg	- 0	INI	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Dilution Factor						1	1			1	1	1	1	1	1
1,4-Dioxane SVOA, 8270 MASTER	13 mg/kg	9.8 mg/kg	0.1 mg/kg	0.1 mg/Kg	130 mg/kg	0.0196 U mg/kg	0.0198 mg/kg	U	NT	0.0198 U mg/kg	0.0187 U mg/kg	0.0190 U mg/kg	0.0189 U mg/kg	0.0187 U mg/kg	0.0187 U mg/kg
Dilution Factor	IIIg/ Ng	mg/ ng	1116/116	1116/11/6	1115/115	2	2			2	2	2	2	2	2
2-Methylphenol	100	100	0.33	0.33	500	0.0428 U		U	NT	0.0425 U	******	0.0428 U	****	0.0421 U	0.0429 U
3- & 4-Methylphenols Acenaphthene	100 100	34 100	0.33 20	0.33 98	500 500	0.0428 U 0.1280 D		U	NT NT	0.0425 U 0.0425 U	*******	0.0428 U 0.0428 U	0.0424 U 0.0424 U	0.0421 U 0.0421 U	0.0429 U 0.0429 U
Acenaphthylene	100	100	100	107	500	0.0642 JD		U	NT	0.0425 U		0.0428 U	0.0424 U	0.0421 U	0.0429 U
Anthracene	100	100	100	1000	500	0.3750 D		U	NT	0.0425 U		0.0428 U	0.0424 U	0.0421 U	0.0429 U
Benzo(a)anthracene Benzo(a)pyrene	1	1 1	1	22	5.6 1	0.5050 D 0.4990 D	0.0477 0.0436	JD	NT NT	0.1400 D 0.1210 D		0.0428 U 0.0428 U	0.0424 U 0.0424 U	0.0421 U 0.0421 U	0.0513 JD 0.0458 JD
Benzo(b)fluoranthene	1	1	1	1.7	5.6	0.3740 D		U	NT	0.1020 D		0.0428 U	0.0424 U	0.0421 U	0.0429 U
Benzo(g,h,i)perylene	100	100	100	1000	500	0.0908 D		U	NT	0.1590 D	******	0.0428 U	0.0424 U	0.0421 U	0.0429 U
Benzo(k)fluoranthene Chrysene	3.9	1 1	0.8	1.7	56 56	0.3840 D 0.4820 D		JD	NT NT	0.0996 D 0.1590 D		0.0428 U 0.0428 U	0.0.12.1	0.0421 U 0.0421 U	0.0429 U 0.0540 JD
Dibenzo(a,h)anthracene	0.33	0.33	0.33	1000	0.56	0.0874 D		U	NT	0.0425 U		0.0428 U		0.0421 U	0.0429 U
Dibenzofuran	59 100	14	7	210	350	0.1200 D	0.0428	U	NT	0.0425 U		0.0428 U	0.0424 U	0.0421 U	0.0429 U
Fluoranthene Fluorene	100	100 100	100 30	1000 386	500 500	1.3100 D 0.1700 D	0.0968 0.0428	D U	NT NT	0.1930 D 0.0425 U	0.1540 D	0.0428 U 0.0428 U	0.0424 U 0.0424 U	0.0421 U 0.0421 U	0.0711 JD 0.0429 U
Hexachlorobenzene	1.2	0.33	0.33	3.2	6	0.0428 U	0.0428	U	NT	0.0425 U		0.0428 U	0.0424 U	0.0421 U	0.0429 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	8.2 12	5.6	0.3090 D		U	NT	0.1080 D		0.0428 U		0.0421 U	0.0429 U
Naphthalene Pentachlorophenol	100 6.7	100 2.4	0.8	0.8	500 6.7	0.0428 U 0.0428 U		U	NT NT	0.0425 U 0.0425 U		0.0428 U 0.0428 U		0.0421 U 0.0421 U	0.0429 U 0.0429 U
Phenanthrene	100	100	100	1000	500	1.4300 D	0.0730	JD	NT	0.1420 D	0.1560 D	0.0428 U	0.0424 U	0.0421 U	0.0458 JD
Phenol	100 100	100 100	0.33 100	0.33 1000	500 500	0.0428 U 0.9000 D		JD	NT NT	0.0425 U 0.2250 D		0.0428 U 0.0428 U		0.0421 U 0.0421 U	0.0429 U 0.0916 D
Pyrene PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	0.0784 mg/kg	JU	NI	0.2250 D mg/kg	0.1440 D mg/kg	0.0428 U mg/kg	0.0424 U mg/kg	0.0421 U mg/kg	0.0916 D
Dilution Factor						5	5			5	5	5	5	5	5
4,4'-DDD	13	2.6	0.0033	14	92	0.00168 U		U	NT	0.00165 U		0.00168 U	0.00201	0.00167 U	0.00169 U
4,4'-DDE 4,4'-DDT	8.9 7.9	1.8 1.7	0.0033	17 136	62 47	0.00168 U 0.00168 U		U	NT NT	0.00165 U 0.00165 U		0.00168 U 0.00168 U		0.00167 U 0.00167 U	0.00169 U 0.00169 U
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00168 U	0.00165	U	NT	0.00165 U	0.00169 U	0.00168 U	0.00167 U	0.00167 U	0.00169 U
alpha-BHC	0.48	0.097	0.02	0.02	3.4	0.00168 U		U	NT	0.00165 U		0.00168 U	***************************************	0.00167 U	0.00169 U
alpha-Chlordane beta-BHC	4.2 0.36	0.91 0.072	0.094 0.036	2.9 0.09	24 3	0.00168 U 0.00168 U	0.00165 0.00165	U	NT NT	0.00165 U 0.00165 U		0.00168 U 0.00168 U	0.00167 U 0.00167 U	0.00167 U 0.00167 U	0.00169 U 0.00169 U
delta-BHC	100	100	0.04	0.25	500	0.00168 U	0.00165	U	NT	0.00165 U	0.00169 U	0.00168 U	0.00167 U	0.00167 U	0.00169 U
Dieldrin Endoculfon I	0.2	0.039	0.005	0.1	1.4	0.00168 U		U	NT NT	0.00165 U		0.00168 U	0.00201	0.00167 U	0.00169 U
Endosulfan I Endosulfan II	24	4.8 4.8	2.4	102 102	200 200	0.00168 U 0.00168 U		U	NT NT	0.00165 U 0.00165 U		0.00168 U 0.00168 U		0.00167 U 0.00167 U	0.00169 U 0.00169 U
Endosulfan sulfate	24	4.8	2.4	1000	200	0.00168 U	0.00165	Ü	NT	0.00165 U	0.00169 U	0.00168 U	0.00167 U	0.00167 U	0.00169 U
Endrin	11	2.2	0.014	0.06	89	0.00168 U		U	NT	0.00165 U		0.00168 U		0.00167 U	0.00169 U
gamma-BHC (Lindane) Heptachlor	1.3 2.1	0.28 0.42	0.1 0.042	0.1 0.38	9.2 15	0.00168 U 0.00168 U		U	NT NT	0.00165 U 0.00165 U		0.00168 U 0.00168 U	*********	0.00167 U 0.00167 U	0.00169 U 0.00169 U
. p x		, 0	J.U FZ	0.00			0.00100			1.30200 0	2.30200				1.17200

Parelle Pare																
Section	Sample ID						CS-18 (6.5')	CS-19 (6.5')		CS-4-Field Dup	CS-20 (6.5')	CS-21 (6.5')	CS-22 (6.5')	CS-23 (6.5')	CS-24 (6.5')	CS-25 (6.5')
Company Comp	Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	8/24/2022	8/24/2022	!	8/24/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022	8/31/2022
Main Note 1984 19	Client Matrix	RRSCOs	RSCOs	UUSCOs	PGSC0s	CSC0s	Soil	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
Debts Part	Compound						Result Q	Result	Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Description	Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Description																
Fernish									U							
Description									- 11							
Property Property	•															
Sept		_														
Name	Copper	270	270	50	1720	270	12.500	8.910				8.490	8.650	6.360	8.040	9.530
Section 15																
Parent 150 38 33 4 150 250 17 2700 17 250 1 2.500 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.500 2.500 1 2.500 1 2.500 1 2.500 1 2.500 1 2.50																
Performed 100 250 75 75 75 75 75 75 75																
Process 1000 1500																
March 1947 1967									- 0							
Debte Page	Mercury by 7473	_														
Personal Research Section Sect	Dilution Factor						1	1			1	1	1	1	1	1
Disper Net	,	_							U	NT						
Demonstrate 1.0 22 2 3 3 400 50.54 2 0.212 0 177 50.512 0 0.232 0 0.203 0 0.232 0 0.200 0 0.252 0 0.250 0 0.252 0.252		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg										
Common C		110	22	1	10	400			- 11	NT						
Control Cont		_		mg/Kg					U	INI						
Comment 190 38 30 - 1500 12.400 9.470 NT 10.200 20.300 9.880 7.790 8.500 12.700 12.400 9.470 NT 10.200 20.300 9.880 7.790 8.500 12.700 1	·	1116/116	1116/116	1116/1116	1116/11/6	1116/116										
Delian Freder		180	36	30	~	1500				NT						10.700
Commission 27 27 27 40 27 0.514 0.518 U 0.515 U 0.515 U 0.515 U 0.516 U U U U U U U U U	Cyanide, Total	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Total Solids												1				
Dilution Feeder		27	27	27	40	27			U							
Foliable Part Par																
HERR, BLSS MATER mg/kg mg/		~	~	~	~	~						-				_
Dilution Festor				mg/Kg	mg/Kg					33.000						
PRESENTED May																
Shiftign Feater		100	58	3.8	3.8	500	0.0205 U	0.0200	U	NT	0.0204 U	0.0204 U	0.0203 U	0.0203 U	0.0203 U	0.0206 U
Receipt 1316	•	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg					7. 7	mg/kg				
Rocker 1292										NIT		1				
Acrost 1232																
Arodor 12428																
Arcelor 1254		~	~	~	~	~										
Arcelor 120	Aroclor 1248	~	~	~	~	~	0.0170 U	0.0167	U	NT	0.0167 U	0.0170 U	0.0169 U	0.0169 U	0.0168 U	0.0170 U
Total PCBs 1 1 1 0.1 3.2 1 0.0170 U 0.0167 U NT 0.0167 U 0.0170 U 0.0169 U 0.0169 U 0.0168 U 0.0168 U 0.0170 NFRS. MYDRS MYRS MYRS MYRS MYRS MYRS MYRS MYRS MY		~	~	~	~	~			U	NT						
PFAS, MSDEC Target List																
Dilution Factor		1	1	0.1	3.2	1			U							
H.1.H.2.H.2.Herflurordeanesulfonic acid (B2.FTS)																
H. H. H. H. Perfluoroctanesulfonic acid (6:2 FTS)		~	~	~	~	~			U							_
NMECSAA		~	~	~	~	~			U							
Perfluoro-1-decanesulfonic acid (PFDS)		~	~	~	~	~	0.00025 U	0.00025	U	0.00023 U	0.00025 U	0.00026 U	0.00025 U	0.00025 U	0.00024 U	0.00024 U
Perfluoro1-heptanesulfonic acid (PFHpS)																
Perfluoro-1-octanesulfonamide (FOSA)	` '															
Perfluorobutanesulfonic acid (PFBS)																
Perfluorodecanoic acid (PFDA)	\ /			~												
Perfluoroheptanoic acid (PFHpA)			~	~	~											
Perfluorohexanesulfonic acid (PFHxS)	Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00025 U	0.00025	U	0.00023 U	0.00025 U	0.00026 U	0.00025 U	0.00025 U	0.00024 U	0.00024 U
Perfluorohexanoic acid (PFIXA)	Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~		*********	U					***************************************		
Perfluoro-n-butanoic acid (PFBA)	` '															
Perfluoronanoic acid (PFNA) ~<																
Perfluoroctanesulfonic acid (PFOS) ~																
Perfluoroctanoic acid (PFOA) ~ ~ ~ ~ ~ ~ ~ 0.00025 U 0.00025 U 0.00026 U 0.00025 U 0.00024 U 0.00025 U 0.00025 U 0.00025 U 0.00026 U 0.00025 U 0.00024 U 0.00024 U 0.00025 U 0.00025 U 0.00025 U 0.00025 U 0.00025 U 0.00026 U 0.00025 U 0.00024 U 0.00025 U 0.00024 U 0.00025 U	` '															
Perfluoropentanoic acid (PFPA) ~ ~ ~ ~ ~ ~ ~ ~ 0.00025 U 0.00025																
Perfluorotetradecanoic acid (PFTA) ~ ~ ~ ~ ~ ~ ~ 0.00025 U 0.00025 U 0.00025 U 0.00026 U 0.00025 U 0.00024 U 0.00025 U 0.00024 U 0.00024 U 0.00024 U 0.00025 U																
		~_	~	~	~	~										
Perfluoroundecanoic acid (PFUnA)	,	~	~	~	~	~	0.00025 U		U		0.00025 U	0.00037			0.00024 U	
	Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00025 U	0.00025	U	0.00023 U	0.00025 U	0.00026 U	0.00025 U	0.00025 U	0.00024 U	0.00024 U

Part	Sample ID						CS-26 (6.5')	CS-27 (6.5')		CS-28 (6.5')	CS-29 (6.5')	CS-29 Field Dup	CS-30 (6.5')	CS-31 (6.5')	CS-31.2 (11')	CS-31.2 DUP
Services 100 1	,	Port 275	Port 275	Do# 275	Port 275	Do# 275	, ,	, ,		· · · · ·		<u> </u>	, ,	, ,	, ,	
STREAM 19 1 19 1 19 1 19 1 19 1 19 1 19 1 19		#1 TO THE PARTY OF										+ · · · · · · · · · · · · · · · · · · ·			, ,	
32 September 1-15									0							
Here Area 19	VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg							_			
Temperature	Dilution Factor						_					1	_			1
Temperane																
256 100																
Additional part of the part of	1,2,4-Trimethylbenzene															
1	,	1										***************************************				
Addresser 19																
Affance 10 15 17 18 17 18 17 18 18 18	1,3-Dichlorobenzene															
March Marc																
Service 19 1 19 19 19 19 19 19 19 19 19 19 19 1	· ·															
**************************************	Acetone								Ŭ							
State																
Tractors																
Single england																
with present part of the p	cis-1,2-Dichloroethylene			0.25	0.25											
Semble effection 160 170 170 170 170 170 170 170	,			1	1 002											
purimente 18 10 17 17 20 10 10 10 10 10 10 10	Methylene chloride								J							
Procedure 100 120 131 13 13 13 13 13 13	Naphthalene	100	100	12	12	500	0.00250 U	0.00250		0.00270 U	0.00340 U	0.00260 U	0.00280 U	0.00250 U	0.00290 U	0.00300 U
	n-Butylbenzene															
Company Comp	·	1		~	~											
Proceedings	sec-Butylbenzene															
Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·															
Part Part	Toluene															
Proceedings	trans-1,2-Dichloroethylene	1				500						***************************************		0.00250 U		
Proceedings 100 10	· · · · · · · · · · · · · · · · · · ·															
Part Part	,															
A continue	Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil															
MARCH MORESTER mg/sq	Dilution Factor	40	0.0	0.4	0.4	100						1				
Part Part									U							
S. A. Ambrigarenes 100 34 0.33 0.33 0.00 0.0044 U 0.0049 U 0.0043 U 0.0049 U 0.0044 U 0.0048 U 0.0049 U 0.	Dilution Factor															
	7.1															
Semighthymen 100 100 100 100 107 590 0.0424 U 0.0430 U 0.0431 U 0.0438 U 0.0548 U 0.0448 U 0.0434 U 0.0448 U 0.04																
Internationary Fig.	Acenaphthylene															
International present	Anthracene		100													
Intermetation			1	1												
Permosification	Benzo(b)fluoranthene	-		1		-										
Infreserie 3.9 1 1 1 5 56 0.0424 U 0.3390 D 0.2100 D 0.7370 D 0.6510 D 0.2090 D 0.7950 D 0.0434 U 0.0434 U 0.0436 U 0.0436 D 0.04	Benzo(g,h,i)perylene		100													
Description Description																
Demonstruries 59	·															
Second Company 100 100 30 388 500 0.0424 U 0.0453 D 0.0431 U 0.0458 D 0.0747 D 0.0593 D 0.1580 D 0.0434 U 0.0454 U 0.0459 U 0.0449	Dibenzofuran	59	14	7	210	350	0.0424 U	0.0430	U	0.0431 U	0.0439 U	0.0429 U	0.0444 U	0.1070 D	0.0434 U	0.0434 U
Resemblorobersenee	Fluoranthene								D							
	Hexachlorobenzene								U U							
Pertachlorophenol 6.7 2.4 0.8 0.8 6.7 0.0424 U 0.0430 U 0.0431 U 0.0439 U 0.0429 U 0.0444 U 0.0455 U 0.0434 U 0.0434 U 0.0436 U 0.0466 U 0.046	Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	8.2	5.6	0.0424 U	0.2000	D	0.1620 D	0.3290 D	0.3590 D	0.1270 D	0.5520 D	0.0434 U	0.0434 U
Phenanthrene 100 100 100 100 100 500 0.424 U 0.5390 D 0.1680 D 1.0800 D 1.0300 D 0.4000 D 1.3000 D 0.4034 U 0.0434 U 0.4066 U 0.4066 U 0.4066 U 0.4065 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4043 U 0.4045 U 0.4045 U 0.4045 U 0.4045 U 0.4045 U 0.4043 U 0.4043 U 0.4045 U 0.4	Naphthalene															
Phenol 100 100 0.33 0.33 500 0.0424 U 0.0430 U 0.0431 U 0.0439 U 0.0429 U 0.0444 U 0.0455 U 0.0434 U 0.0434 U 0.0439 U 0.0446 U 0.0429 U 0.0444 U 0.0455 U 0.0434 U 0.0434 U 0.0439 U 0.0439 U 0.0429 U 0.0444 U 0.0455 U 0.0434 U 0.0434 U 0.0439 U 0.0439 U 0.0444 U 0.0445 U 0.0434 U 0																
Description Description	Phenol										0.0439 U	0.0429 U		0.0455 U	0.0434 U	
Solution Solution	Pyrene								D							
A-DDD		mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg										
A-DE 8.9 1.8 0.0033 17 62 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U 0.40170 U 0.40		13	2.6	0.0033	14	92			U							
Addrin 0.097 0.019 0.005 0.19 0.68 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U U U U U U U U U	4,4'-DDE	8.9	1.8	0.0033		62	0.00165 U	0.00165		0.00167 U	0.00170 U	0.00169 U	0.00178 U	0.00180 U	0.00171 U	0.00172 U
Independent 10	- 7															
Indicate 1.0	alpha-BHC															
Pelta-BHC 100 100 0.04 0.25 500 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U 0.00172 U 0.00173 U 0.00174 U 0.00174 U 0.00174 U 0.00175 U	alpha-Chlordane	4.2	0.91	0.094	2.9		0.00165 U	0.00165		0.00167 U	0.00170 U	0.00169 U	0.00178 U	0.00180 U	0.00171 U	0.00172 U
Deletrin Deletrin	beta-BHC															
Indosulfan I 24 4.8 2.4 102 200 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U 0.00180 II 0.00172 U 0.00180 II 0.00172 U 0.00180 II 0.00172 U 0.00180 II 0.00172 II 0.00180 II 0.00172 II 0.00180 II 0.00180 II 0.00180 II 0.00180 II 0.00180 II 0.00180 II 0.00172 II 0.00180 II 0.																
Indosulfan sulfate 24 4.8 2.4 1000 200 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U 0.00171 U 0.00172 U 0.00171 U 0.00172 U 0.00171 U 0.00172 U 0.00171 U 0.00172 U 0.00171 U 0.00172	Endosulfan I															
Endrin 11 2.2 0.014 0.06 89 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U (gamma-BHC (Lindane) 1.3 0.28 0.1 0.1 9.2 0.00165 U 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U	1111															
(amma-BHC (Lindane) 1.3 0.28 0.1 0.1 9.2 0.00165 U 0.00165 U 0.00167 U 0.00170 U 0.00169 U 0.00178 U 0.00180 U 0.00171 U 0.00172 U																
	gamma-BHC (Lindane)															
	Heptachlor								U							

Sample ID						CS-26 (6.5')		CS-27 (6.5')	CS-28 (6.5')	_	CS-29 (6.5')	CS-29 Field Dup	CS-30 (6.5')	CS-31 (6		CS-31.2 (11')		CS-31.2 DUP
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	8/31/2022		8/31/2022	8/31/2022		8/31/2022	8/31/2022	9/28/2022	9/28/20	22	10/7/2022		10/7/2022
Client Matrix	RRSCOs	RSCOs	UUSC0s	PGSC0s	CSC0s	Soil		Soil	Soil		Soil	Soil	Soil	Soil		Soil		Soil
Compound						Result	Q	Result Q	Result	Q	Result Q	Result Q	Result	Q Result	Q	Result	Q	Result Q
Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg		mg/Kg		mg/Kg
Dilution Factor Arsenic	16	16	13	16	16	1 1.530	U	1 1.550 U	1 1.550	U	2.00	2.28	3.250	3.770		2.40		1 1.570 U
Barium	400	350	350	820	400	18.500		63.200	61.400	-	85.80	90.60	127.00	194.000		12.80		12.300
Beryllium	72	14	7.2	47	590	0.0510	U	0.0520 U		U	0.05 U			0.1180		0.05	U	0.0520 U
Cadmium	4.3	2.5	2.5	7.5	9.3	0.305	U	0.310 U			0.32 U		0.33		U	0.31	U	0.313 U
Chromium	~	~	-	4700	~	8.610		14.300	15.200		15.80	15.70	19.80		В	13.20		12.300
Copper Lead	270 400	270 400	50 63	1720 450	270 1000	7.880 5.520		17.800 55.000	14.200 45.100		19.00 75.2	22.90 82.40	23.70 270	37.000 176		12.10 6.16		10.600 5.730
Manganese	2000	2000	1600	2000	10000	217		272	285		319	324.00	322.00	359		249		216
Nickel	310	140	30	130	310	16.400		14.400	10.000		10.000	8.89	15.70	16.500		20.700		19.900
Selenium	180	36	3.9	4	1500	2.540	U	2.580 U		U	2.640 U		2.71		U	2.610	U	2.610 U
Silver	180	36	2	8.3	1500	0.509	U	0.516 U		U	0.527 U	****	0.54	0.546 257	U	0.522	U	0.522 U
Zinc Mercury by 7473	10000 mg/kg	2200 mg/kg	109 mg/kg	2480 mg/Kg	10000 mg/kg	13.900 mg/kg		76.100 mg/kg	56.700 mg/kg	-	84.300 mg/kg	96.90 mg/kg	94.90 mg/kg	257 mg/kg		18.000 mg/Kg		15.600 mg/Kg
Dilution Factor	8/ 1/8	5/ 1/5	8/ 1/8	8/1/8	6/ 1/6	1		1	1	_	1	1	1	1	<u> </u>	1		1
Mercury	0.81	0.81	0.18	0.73	2.8	0.0305	U	0.0792	0.1090		0.0970	0.1170	0.1190	0.735		0.0313	U	0.0313 U
Chromium, Hexavalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	_ _	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg
Dilution Factor Chromium, Hexavalent	110	22	1	19	400	0.509	U	0.516 U	0.517	11	0.527 U	0.519 U	1 0.542	1 0.546	U	0.522	- 11	1 0.522 U
Chromium, Trivalent	mg/Kg	22 mg/Kg	mg/Kg	mg/Kg	mg/Kg	0.509 mg/Kg	J	0.516 U mg/Kg	mg/Kg	U	0.527 U mg/Kg	0.519 U mg/Kg	mg/Kg	mg/Kg	U	mg/Kg	U	0.522 U mg/Kg
Dilution Factor	5/1/5	6/1/6	6/1/6	6/1/6	6/ 1/6	1		1	1	$\neg \vdash$	1	1	1	1		1		1
Chromium, Trivalent	180	36	30	~	1500	8.610		14.300	15.200		15.800	15.700	19.800	19.300	Î	13.200		12.300
Cyanide, Total	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg		mg/Kg		mg/Kg
Dilution Factor	27	07	27	40	27	0.509	U	1 0.516	0.517		1 0.527 U	0.519 U	0.542	0.546	- 11	1 0 522		0.522 U
Cyanide, total Total Solids	21	27	27	40	27	%	U	0.516 U	%	U	% %	0.519 U	0.542 %	0.546	U	0.522 %	U	%
Dilution Factor						1		1	1	_	1	1	1	1		1		1
% Solids	~	~	~	~	~	98.300		96.800	96.600		94.800	96.400	92.300	91.600		95.700		95.800
HERB, 8151 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg
Dilution Factor 2,4,5-TP (Silvex)	100	E0	2.0	2.0	E00	1 0 0 0 0 0 0		1 0.0001	1		1 0 0 0 0 0 0 0	0.0206 U	0.0215	1 0.0014	- 11	1 0 0 0 0 0 0		0.0208 U
PCB, 8082 MASTER	100 mg/kg	58 mg/kg	3.8 mg/kg	3.8 mg/Kg	500 mg/kg	0.0200 mg/kg	U	0.0201 U mg/kg	0.0202 mg/kg	U	0.0209 U mg/kg	0.0206 U mg/kg	mg/kg	0.0214 mg/kg	U	0.0205 mg/Kg	U	mg/Kg
Dilution Factor		8/ 1/8	8/8	6/ 1.6	8/8	1		1	1		1	1	1	1		1		1
Aroclor 1016	~	~	~	~	~	0.0167	U	0.0167 U	0.0168	U	0.0171 U	0.0171 U	0.0180	0.0181	U	0.0172	U	0.0173 U
Aroclor 1221	~	~	~	~	~	0.0167	U	0.0167 U		U	0.0171 U		0.0180	0.0101	U	0.0172	U	0.0173 U
Aroclor 1232 Aroclor 1242	~	~	~	~	~	0.0167 0.0167	U	0.0167 U 0.0167 U		U	0.0171 U 0.0171 U		0.0180 0.0180		U	0.0172 0.0172	U	0.0173 U 0.0173 U
Aroclor 1242 Aroclor 1248	~	~	~	~	~	0.0167	U	0.0167 U 0.0167 U		U	0.0171 U 0.0171 U		0.0180		U	0.0172	U	0.0173 U
Aroclor 1254	~	~	~	~	~	0.0167	U	0.0167 U		Ü	0.0171 U		0.0180		U	0.0172	Ü	0.0173 U
Aroclor 1260	~	~	~	~	~	0.0167	U	0.0167 U	0.0168	U	0.0171 U	0.0171 U	0.0180	0.0181	U	0.0172	U	0.0173 U
Total PCBs	1	1	0.1	3.2	1	0.0167	U	0.0167 U		U	0.0171 U	******	0.0180		U	0.0172	U	0.0173 U
PFAS, NYSDEC Target List	1					mg/kg 1		mg/kg 1	mg/kg 1		mg/kg 1	mg/kg 1	mg/kg 1	mg/kg		mg/kg 1		
Dilution Factor 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00026	J 0.00060	+	0.00025	U	NT
1H,1H,2H,Perfluorooctanesulfonic acid (6:2 FTS)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U			0.00063		0.00025	U	NT
N-EtFOSAA	~	~	~	~	~	0.00024	U	0.00025 U	0.00025	U	0.00026 U	0.00025 U	0.00026	0.00027	U	0.00025	U	NT
N-MeFOSAA	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00026		U	0.00025	U	NT
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00024 0.00024	U	0.00025 U 0.00025 U		U	0.00026 U 0.00026 U		0.00026 0.00026		U	0.00025 0.00025	U	NT NT
Perfluoro-1-heptanesulfonic acid (PFHpS) Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	0.00024	U	0.00025 U 0.00025 U		U	0.00026 U		0.00026	_	U	0.00025	U	NT NT
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00026		U	0.00025	U	NT
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00024	Ü	0.00025 U	0.00025	U	0.00026 U	0.00025 U	0.00026	0.00027	Ü	0.00025	U	NT
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00026		U	0.00025	U	NT
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	0.00024 0.00024	U	0.00025 U 0.00025 U		U	0.00026 U			J 0.00027 J 0.00027	U	0.00025 0.00025	U	NT NT
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U 0.00026 U			J 0.00027 J 0.00027	U	0.00025	U	NT NT
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00026		U	0.00025	U	NT
Perfluorononanoic acid (PFNA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U			0.00104		0.00025	Ü	NT
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U		0.00043	0.00393		0.00025	U	NT
Perfluoroctanoic acid (PFOA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U			0.00028		0.00025	U	NT
Perfluoropentanoic acid (PFPeA) Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U 0.00026 U		0.00026 0.00026	J 0.00027 J 0.00027	U	0.00025 0.00025	U	NT NT
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	0.00024 0.00024	U	0.00025 U 0.00025 U		U	0.00026 U 0.00026 U			J 0.00027 J 0.00027	U	0.00025	U	NT NT
Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00024	U	0.00025 U		U	0.00026 U			0.00027	J	0.00025	U	NT
	-									- 1				. 0.00002	i			

Sample ID						CS-32 (6.5')	CS-33 (6.5')	1	CS-34 (6.5')	CS-34.2 (11')	CS-35 (6.5')	CS-35.2 (12')	CS-36 (6.5')	CS-36.2 (12')	CS-36.2 Dup
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	9/28/2022	9/28/2022		9/28/2022	10/7/2022	9/28/2022	10/12/2022	9/28/2022	10/12/2022	10/12/2022
Client Matrix	RRSCOs	RSC0s	UUSCOs	PGSC0s	CSC0s	Soil	Soil		Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q		0	Result Q		Result Q	Result Q		Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/Kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg
Dilution Factor						1	1		1	1	1	1	1	1	1
1,1,1-Trichloroethane 1.1-Dichloroethane	100 26	100	0.68 0.27	0.68 0.27	500 240	0.00310 U 0.00310 U	0.00320 0.00320	U	0.00260 U 0.00260 U	0.00270 U 0.00270 U	0.00310 U	0.00250 U 0.00250 U	0.00280 U 0.00280 U	0.00310 U 0.00310 U	0.00350 U 0.00350 U
1,1-Dichloroethylene	100	19 100	0.27	0.27	500	0.00310 U		U	0.00260 U		0.00310 U 0.00310 U	0.00250 U			0.00350 U
1,2,4-Trimethylbenzene	52	47	3.6	3.6	190	0.00310 U	0.00320	U	0.00260 U		0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
1,2-Dichlorobenzene	100	100	1.1	1.1	500	0.00310 U	0.00320	U	0.00260 U	0.00270 U	0.00310 U	0.00250 U	0.00280 U	0.00310 U	
1,2-Dichloroethane 1.3.5-Trimethylbenzene	3.1 52	2.3 47	0.02 8.4	0.02 8.4	30 190	0.00310 U 0.00310 U		U	0.00260 U 0.00260 U			0.00250 U 0.00250 U	0.00200 0		
1,3-Dichlorobenzene	49	17	2.4	2.4	280	0.00310 U		U	0.00260 U			0.00250 U			
1,4-Dichlorobenzene	13	9.8	1.8	1.8	130	0.00310 U	0.00320	U	0.00260 U	0.00270 U	0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0610 U	0.0630	U	0.0510 U	***************************************	0.0620 U	0.0490 U	0.0560 U	0.0610 U	0.0700 U
2-Butanone Acetone	100 100	100 100	0.12 0.05	0.12 0.05	500 500	0.00310 U 0.00610 U	0.00320 0.00630	U	0.00260 U 0.00510 U		0.00310 U 0.00620 U	0.00250 U 0.00490 U	0.00280 U 0.00560 U	0.00310 U 0.00610 U	0.00350 U 0.01600
Benzene	4.8	2.9	0.06	0.06	44	0.00310 U	0.00320	U	0.00310 U	0.00340 U	0.00310 U	0.00250 U	0.00380 U	0.00010 U	0.01000 0.00350 U
Carbon tetrachloride	2.4	1.4	0.76	0.76	22	0.00310 U		U	0.00260 U	***************************************	0.00310 U	0.00250 U	0.00280 U	0.00310 U	
Chlorobenzene	100	100	1.1	1.1	500	0.00310 U		U	0.00260 U			0.00250 U	0.00200		
Chloroform cis-1,2-Dichloroethylene	49 100	10 59	0.37 0.25	0.37 0.25	350 500	0.00310 U 0.00310 U		U	0.00260 U 0.00260 U		0.00310 U 0.00310 U	0.00250 U 0.00250 U	***************************************		
Ethyl Benzene	41	30	1	1	390	0.00310 U	0.00320	U	0.00260 U	0.00270 U	0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
Methyl tert-butyl ether (MTBE)	100	62	0.93	0.93	500	0.00310 U	0.00320	U	0.00260 U	***************************************	0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
Methylene chloride	100	51	0.05	0.05	500	0.02800 0.00310	0.02900	- 11	0.02400	0.02300	0.03700	0.02300	0.02900	0.02000	0.01600 0.00350 U
Naphthalene n-Butylbenzene	100 100	100 100	12 12	12 12	500 500	0.00310 U 0.00310 U	0.00320 0.00320	U	0.00260 U 0.00260 U	0.00270 U 0.00270 U	0.00310 U 0.00310 U	0.00250 U 0.00250 U	0.00280 U 0.00280 U	0.00310 U 0.00310 U	***************************************
n-Propylbenzene	100	100	3.9	3.9	500	0.00310 U	0.00320	U	0.00260 U		0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
o-Xylene	~	~	~	~	~	0.00310 U		U	0.00260 U	0.00270 U		0.00250 U			
p- & m- Xylenes sec-Butylbenzene	100	100	~ 11	~ 11	500	0.00610 U 0.00310 U	0.00630 0.00320	U	0.00510 U 0.00260 U		0.00620 U 0.00310 U	0.00490 U 0.00250 U	0.00560 U 0.00280 U	0.00610 U 0.00310 U	0.00700 U 0.00350 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.00310 U	0.00320	U	0.00260 U	0.00270 U	0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
Tetrachloroethylene	19	5.5	1.3	1.3	150	0.00310 U		U	0.00260 U		0.00310 U	0.00250 U		0.00310 U	
Toluene	100	100	0.7	0.7	500	0.00310 U	0.00320	U	0.00260 U	***************************************	0.00310 U	0.00250 U	0.00280 U	0.00310 U	0.00350 U
trans-1,2-Dichloroethylene Trichloroethylene	100 21	100 10	0.19 0.47	0.19 0.47	500 200	0.00310 U 0.00310 U		U	0.00260 U 0.00260 U		0.00310 U 0.00310 U	0.00250 U 0.00250 U	0.00280 U 0.00280 U	0.00310 U 0.00310 U	
Vinvl Chloride	0.9	0.21	0.02	0.02	13	0.00310 U		U	0.00260 U			0.00250 U			
Xylenes, Total	100	100	0.26	1.6	500	0.00920 U	0.00950	U	0.00770 U	0.00810 U	0.00930 U	0.00740 U	0.00840 U	0.00920 U	0.01000 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/Kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg
Dilution Factor 1,4-Dioxane	13	9.8	0.1	0.1	130	1 0.0198 U	0.0192	U	0.0192 U	0.0198 U	0.0198 U	0.0194 U	0.0196 U	1 0.0183 U	0.0190 U
SVOA, 8270 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/Kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg
Dilution Factor						2	2		2	2	2	2	5	2	2
2-Methylphenol 3- & 4-Methylphenols	100 100	100 34	0.33	0.33	500 500	0.0445 U 0.0445 U		U	0.0448 U		0.0454 U 0.0454 U	0.0434 U	0.0447 U 0.0447 U	0.0422 U 0.0422 U	
Acenaphthene	100	100	20	98	500	0.0445 U	0.0453	U	0.1720 D		0.0454 U	0.0434 U			
Acenaphthylene	100	100	100	107	500	0.0445 U		U	0.0993 D			0.0434 U	***************************************		
Anthracene	100	100	100	1000	500	0.0445 U	0.0453	U	0.4760 D		0.2860 D	0.0434 U	0.6450 D		
Benzo(a)anthracene Benzo(a)pyrene	1	1	1	1 22	5.6 1	0.0696 JD 0.0639 JD		D D	1.22 D 1.14 D			0.0434 U 0.0434 U			0.0428 U 0.0428 U
Benzo(b)fluoranthene	1	1	1	1.7	5.6	0.0511 JD		D	0.8840 D		0.7610 D	0.0434 U	0.9990 D		0.0428 U
Benzo(g,h,i)perylene	100	100	100	1000	500	0.0445 U	0.0636	JD	0.5340 D			0.0434 U	0.6620 D		0.0428 U
Benzo(k)fluoranthene	3.9	1	0.8	1.7	56	0.0445 U		D	0.903 D	0.0	0.7840 D	0.0434 U	2.00	0.0422 U	0.0428 U
Chrysene Dibenzo(a.h)anthracene	3.9 0.33	0.33	0.33	1000	56 0.56	0.0632 JD 0.0445 U	0.1470 0.0453	D U	0.1340 D	*******	0.9850 D 0.0507 JD	0.0434 U	0.0649 JD	0.0422 U 0.0422 U	0.0428 U 0.0428 U
Dibenzofuran	59	14	7	210	350	0.0445 U	0.0453	U	0.0700 JD		0.0492 JD	0.0434 U	0.1380 D	0.0422 U	0.0428 U
Fluoranthene	100	100	100	1000	500	0.1040 D	0.2500	D	2.2900 D	0.0446 U	1.8200 D	0.0434 U	3.2400 D	0.0422 U	0.0428 U
Fluorene Hexachlorobenzene	100 1.2	0.33	0.33	386 3.2	500 6	0.0445 U 0.0445 U	0.0453 0.0453	U	0.1740 D 0.0448 U		0.1040 D 0.0454 U	0.0434 U 0.0434 U	0.2580 D 0.0447 U	0.0422 U 0.0422 U	0.0428 U 0.0428 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.55	8.2	5.6	0.0445 U		JD	0.663 D			0.0434 U			
Naphthalene	100	100	12	12	500	0.0445 U	0.0453	U	0.0448 U	0.0446 U	0.0492 JD	0.0434 U	0.0814 JD	0.0422 U	0.0428 U
Pentachlorophenol	6.7	2.4	0.8	0.8	6.7	0.0445 U		U	0.0448 U			0.0434 U			
Phenanthrene Phenol	100 100	100 100	100 0.33	1000 0.33	500 500	0.0732 JD 0.0445 U	0.2110 0.0453	D U	1.8700 D 0.0448 U		1.1600 D 0.0454 U	0.0434 U 0.0434 U	2.7700 D 0.0447 U		
Pyrene	100	100	100	1000	500	0.1220 D		D	2.4900 D			0.0434 U			
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/Kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg
Dilution Factor	12	2.6	0.0022	14	00	5 0.00180 U	5 0.00180	U	5 0.00174 II	5 0.00175 U	5 0.00361 D	5	5 0.00174 U	5 0.00169 U	5
4,4'-DDD 4,4'-DDE	13 8.9	2.6 1.8	0.0033	17	92 62	0.00180 U 0.00180 U		U	0.00174 U 0.00174 U	0.002.0		0.00169 U 0.00169 U			
4,4'-DDT	7.9	1.7	0.0033	136	47	0.00180 U		U	0.00212 D			0.00169 U			
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00180 U		U	0.00174 U			0.00169 U			
alpha-BHC alpha-Chlordane	0.48 4.2	0.097 0.91	0.02 0.094	0.02 2.9	3.4 24	0.00180 U 0.00180 U		U	0.00174 U 0.00174 U			0.00169 U 0.00169 U	0.00174 U 0.00174 U		
aipna-Chiordane beta-BHC	0.36	0.91	0.094	0.09	3	0.00180 U		U	0.00174 U 0.00174 U			0.00169 U			
delta-BHC	100	100	0.04	0.25	500	0.00180 U		Ü	0.00174 U			0.00169 U			
Dieldrin	0.2	0.039	0.005	0.1	1.4	0.00180 U		U	0.00174 U			0.00169 U	0.00271		
Endosulfan I	24	4.8 4.8	2.4	102 102	200	0.00180 U		U	0.00174 U			0.00169 U			
Endosulfan II Endosulfan sulfate	24 24	4.8	2.4	1000	200	0.00180 U 0.00180 U		U	0.00174 U 0.00174 U			0.00169 U 0.00169 U			
Endrin	11	2.2	0.014	0.06	89	0.00180 U		U	0.00174 U		0.00179 U	0.00169 U	0.00174 U		
gamma-BHC (Lindane)	1.3	0.28	0.1	0.1	9.2	0.00180 U	0.00180	Ü	0.00174 U	0.00175 U	0.00179 U	0.00169 U	0.00174 U	0.00169 U	0.00169 U
Heptachlor	2.1	0.42	0.042	0.38	15	0.00180 U	0.00180	U	0.00174 U	0.00175 U	0.00179 U	0.00169 U	0.00174 U	0.00169 U	0.00169 U

									_											
Sample ID						CS-32 (6.5')		CS-33 (6.5')	CS-34 (6.5')		CS-34.2 (11')		CS-35 (6.5')	CS-35.2 (12')		CS-36 (6.5')		CS-36.2 (12')		CS-36.2 Dup
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	9/28/2022		9/28/2022	9/28/2022		10/7/2022		9/28/2022	10/12/2022		9/28/2022		10/12/2022		10/12/2022
Client Matrix	RRSCOs	RSCOs	UUSCOs	PGSC0s	CSC0s	Soil		Soil	Soil		Soil		Soil	Soil		Soil		Soil		Soil
Compound						Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q
Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/Kg		mg/kg	mg/Kg		mg/kg		mg/Kg		mg/Kg
Dilution Factor Arsenic	16	16	13	16	16	2.410		2.71	1 6.45		1 3.330		1 3.930	1.310	U	1 1.610	U	1.300	U	1.300 U
Barium	400	350	350	820	400	130.000		139.00	257.00	t	37.500		229.000	14.600	Ü	23.500	-	26.700		28.200
Beryllium	72	14	7.2	47	590	0.0550	U	0.06 U	0.05	U	0.0540	U	0.0540 U	0.0440	U	0.0540	U	0.0440	U	0.0440 U
Cadmium	4.3	2.5	2.5	7.5	9.3	0.328	U	0.33 U			0.321	U	0.327 U	0.262	U	0.322	U	0.260	U	0.261 U
Chromium	270	270	50	~ 1720	270	18.500 15.600	В	18.60 B	22.20 35.50	В	17.400 10.700		21.200 B 55.9	10.300 11.200		12.500 8.410		8.940 12.300		10.000 11.600
Copper Lead	400	400	63	450	1000	42.500		89.60	157		9.350		320	6.970		12.200		9.800		13.800
Manganese	2000	2000	1600	2000	10000	244		308.00	448.00		192		349	262		245		349		248
Nickel	310	140	30	130	310	14.900		16.20	16.40		17.000		23.200	16.700		19.900		18.800		17.600
Selenium	180	36	3.9	4	1500	2.730	U	2.74 U		U	2.680	U	2.720 U	2.190	U	2.690	U	2.170	U	2.170 U
Silver Zinc	180 10000	36 2200	2 109	8.3 2480	1500 10000	0.547 60.000	U	0.55 U	0.54 917	U	0.536 20.900	U	0.545 U 357	0.441 17.800	U	0.537 25.300	U	0.437 21.900	U	0.438 U 25.100
Mercury by 7473	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/Kg		mg/kg	mg/Kg		25.300 mg/kg				mg/Kg
Dilution Factor	3	30	3	3	3	1		1	1		1		1	1		1		1		1
Mercury	0.81	0.81	0.18	0.73	2.8	0.0940		0.297	0.224		0.0321	U	0.344	0.0315	U	0.0472		0.0312	U	0.0313 U
Chromium, Hexavalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	_	mg/Kg		mg/Kg	mg/Kg		mg/Kg		mg/Kg		mg/Kg
Dilution Factor Chromium, Hexavalent	110	22	1	19	400	<u>1</u> 0.547	U	0.547 U	1 0.541	IJ	0.536	U	1 0.545 U	0.525	U	1 0.537	U	0.520	U	1 0.522 U
Chromium, Trivalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	J	mg/Kg	Ŭ	mg/Kg	mg/Kg	Ť	mg/Kg	Ť	mg/Kg	Ť	mg/Kg
Dilution Factor						1		1	1		1		1	1		1		1		1
Chromium, Trivalent	180	36	30	~	1500	18.500		18.600	22.200		17.400		21.200	10.300		12.500		8.940		10.000
Cyanide, Total	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/Kg		mg/kg 1	mg/Kg 1		mg/kg		mg/Kg		mg/Kg
Dilution Factor Cyanide, total	27	27	27	40	27	0.547	U	0.547 U	0.541	U	0.536	U	0.545 U	9.450		0.537	U	0.520	U	0.522 U
Total Solids						%		%	%	Ť	%		%	%		%		%		%
Dilution Factor						1		1	1		1		1	1		1		1		1
% Solids	~	~	~	~	~	91.400		91.400	92.400		93.300		91.800	95.300		93.100		96.200		95.900
HERB, 8151 MASTER Dilution Factor	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg 1		mg/Kg 1	mg/Kg 1		mg/Kg 1		mg/Kg 1	mg/Kg 1		mg/Kg 1		mg/Kg 1		mg/Kg 1
2,4,5-TP (Silvex)	100	58	3.8	3.8	500	0.0214	U	0.0215 U		U	0.0213	U	0.0214 U	0.0209	U	0.0214	U	0.0203	U	0.0208 U
PCB, 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg		mg/kg	mg/kg		mg/Kg		mg/kg	mg/Kg		mg/kg		mg/Kg		mg/Kg
Dilution Factor	~	~		~	~	1		1	1		1		1	1		1		1		1
Aroclor 1016 Aroclor 1221	~	~	~	~	~	0.0182 0.0182	U	0.0182 U		U	0.0177 0.0177	U	0.0180 U 0.0180 U	0.0171 0.0171	U	0.0175 0.0175	U	0.0171 0.0171	U	0.0171 U 0.0171 U
Aroclor 1221 Aroclor 1232	~	~	~	~	~	0.0182	U	0.0182 U		U	0.0177	U	0.0180 U	0.0171	U	0.0175	U	0.0171	U	0.0171 U
Aroclor 1242	~	~	~	~	~	0.0182	U	0.0182 U		U	0.0177	U	0.0180 U	0.0171	U	0.0175	U	0.0171	U	0.0171 U
Aroclor 1248	~	~	~	~	~	0.0182	U	0.0182 U		U	0.0177	U	0.0180 U	0.0171	U	0.0710		0.0171	U	0.0171 U
Aroclor 1254 Aroclor 1260	~	~	~	~	~	0.0182 0.0182	U	0.0182 U		U	0.0177 0.0177	U	0.0395 0.0290	0.0171 0.0171	U	0.0636 0.0175	- 11	0.0171 0.0171	U	0.0171 U 0.0171 U
Total PCBs	1	1	0.1	3.2	1	0.0182	U	0.0182 U		U	0.0177	U	0.0290	0.0171	U	0.135	U	0.0171	U	0.0171 U
PFAS, NYSDEC Target List			0.2	0.2		mg/kg	_ ĭ	mg/kg	mg/kg	Ŭ	mg/kg		mg/kg	mg/kg	Ŭ	mg/kg		mg/kg	Ť	0.01.1
Dilution Factor						1		1	1		1		1	1		1		1		
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS) N-EtFOSAA	~	~	~	~	~	0.00027 0.00027	U	0.00027 U		U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 0.00025	U	0.00025 0.00025	U	0.00025 0.00025	U	NT NT
N-MeFOSAA	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluoro-1-octanesulfonamide (FOSA) Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00027 0.00027	U	0.00027 U		U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 0.00025	U	0.00025 0.00025	U	0.00025 0.00025	U	NT NT
Perfluorobutanesulfonic acid (PFBS) Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT NT
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluorohexanoic acid (PFHxA) Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00027 0.00027	U	0.00027 U		U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 0.00025	U	0.00025 0.00025	U	0.00025 0.00025	U	NT NT
Perfluoro-n-butanoic acid (PFNA) Perfluorononanoic acid (PFNA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT NT
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00165		0.00051	0.00020		0.00020		0.00156	0.00025	U	0.00202		0.00025	J	NT
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	0.00034		0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00025	U	0.00025	U	NT
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	0.00027 0.00027	U	0.00027 U		U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 0.00025	U	0.00025 0.00030	U	0.00025 0.00025	U	NT NT
Perfluoroundecanoic acid (PFInDA) Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00027	U	0.00027 U		U	0.00026	U	0.00026 U	0.00025	U	0.00030	U	0.00025	J U	NT NT
omacroanacoanolo aola (i i olin)		Į.	ı	l		0.00021	J	0.00021	0.00020	J	0.00020	J	0.00020	0.00020	U	0.00020	Ŭ	0.00020	Ü	111

Sample ID						CS-37 (6.5')	CS-38 (6.5')	CS-39 (6.5')	CS-38 (6.5')	CS-39 (6.5')	CS-40 (7.5')	CS-41 (6.5')	CS-42 (9.5')	CS-43 (9.5')
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	9/28/2022	9/28/2022	9/28/2022	10/6/2022	10/6/2022	10/6/2022	10/6/2022	10/6/2022	10/6/2022
Client Matrix	RRSCOs	RSCOs	UUSCOs	PGSCOs	CSC0s	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q		Result (Result Q	Result Q		Result Q	Result Q
VOA, 8260 MASTER Dilution Factor	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg 1	mg/kg 1	mg/kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1	mg/Kg 1
1,1,1-Trichloroethane	100	100	0.68	0.68	500	0.00260 U	0.00220 U	0.00250 L	0.00260 U	0.00270 U	0.00260 U	0.00250 U	0.00270 U	0.00250 U
1,1-Dichloroethane	26	19	0.27	0.27	240	0.00260 U	***************************************	0.00250 L		0.00270 U	0.00260 U	***********	0.00270 U	0.00250 U
1,1-Dichloroethylene 1,2,4-Trimethylbenzene	100 52	100 47	0.33 3.6	0.33 3.6	500 190	0.00260 U 0.00260 U	***************************************	0.00250 L 0.00250 L		0.00270 U 0.00270 U	0.00260 U 0.00260 U		0.00270 U 0.00270 U	0.00250 U 0.00250 U
1,2-Dichlorobenzene	100	100	1.1	1.1	500	0.00260 U		0.00250 L	0.00260 U	0.00270 U	0.00260 U		0.00270 U	0.00250 U
1,2-Dichloroethane	3.1	2.3	0.02	0.02	30	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	52 49	47 17	8.4 2.4	8.4 2.4	190 280	0.00260 U 0.00260 U		0.00250 L 0.00250 L	0.00260 U 0.00260 U	0.00270 U 0.00270 U	0.00260 U 0.00260 U		0.00270 U 0.00270 U	0.00250 U 0.00250 U
1,4-Dichlorobenzene	13	9.8	1.8	1.8	130	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0520 U	0.0430 U	0.0500 L	0.0520 U	0.0530 U	0.0530 U	0.0490 U	0.0540 U	0.0500 U
2-Butanone Acetone	100 100	100 100	0.12 0.05	0.12 0.05	500 500	0.00260 U 0.00520 U		0.00250 L 0.00500 L		0.00270 U 0.00530 U	0.00260 U 0.00530 U		0.00270 U 0.00540 U	0.00250 U 0.00500 U
Benzene	4.8	2.9	0.06	0.06	44	0.00260 U			0.00260 U	0.00270 U	0.00260 U		0.00270 U	0.00250 U
Carbon tetrachloride	2.4	1.4	0.76	0.76	22	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
Chloroform	100 49	100 10	1.1 0.37	1.1 0.37	500 350	0.00260 U 0.00260 U	0.00220	0.00250 L 0.00250 L	0.00260 U 0.00260 U	0.00270 U 0.00270 U	0.00260 U 0.00260 U	0.00250 U 0.00250 U	0.00270 U 0.00270 U	0.00250 U 0.00250 U
Chloroform cis-1,2-Dichloroethylene	100	59	0.37	0.37	500	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
Ethyl Benzene	41	30	1	1	390	0.00260 U	0.00220 U	0.00250 L	0.00260 U	0.00270 U	0.00260 U	0.00250 U	0.00270 U	0.00250 U
Methyl tert-butyl ether (MTBE)	100	62	0.93	0.93	500	0.00260 U	0.00220 U	0.00250 L	0.00260 U	0.00270 U	0.00260 U	0.00250 U	0.00270 U	0.00250 U
Methylene chloride Naphthalene	100 100	51 100	0.05 12	0.05 12	500 500	0.03100 0.00260 U	0.01800 0.00220 U	0.01600 0.00250 L	0.03300 0.00260 U	0.03900 0.00270 U	0.01400 0.00260 U	0.02800 0.00250 U	0.04100 0.00270 U	0.00830 J 0.00250 U
n-Butylbenzene	100	100	12	12	500	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
n-Propylbenzene	100	100	3.9	3.9	500	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
o-Xylene p- & m- Xylenes	~	~	~	~	~	0.00260 U 0.00520 U		0.00250 L 0.00500 L		0.00270 U 0.00530 U	0.00260 U 0.00530 U		0.00270 U 0.00540 U	0.00250 U 0.00500 U
sec-Butylbenzene	100	100	11	11	500	0.00320 U	0.00430 U	0.00500 L		0.00530 U	0.00360 U		0.00340 U	0.00300 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.00260 U	***************************************	0.00250 L	***************************************	0.00270 U	0.00260 U	***********	0.00270 U	0.00250 U
Tetrachloroethylene	19	5.5	1.3	1.3	150	0.00260 U	0.00220 U	0.00250 L	0.00260 U	0.00270 U	0.00260 U	0.00200	0.00270 U	0.00250 U
Toluene trans-1,2-Dichloroethylene	100 100	100 100	0.7 0.19	0.7 0.19	500 500	0.00260 U 0.00260 U	0.00220 U 0.00220 U	0.00250 L 0.00250 L	0.00200	0.00270 U 0.00270 U	0.00260 U 0.00260 U	0.00250 U 0.00250 U	0.00270 U 0.00270 U	0.00250 U 0.00250 U
Trichloroethylene	21	10	0.47	0.47	200	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
Vinyl Chloride	0.9	0.21	0.02	0.02	13	0.00260 U		0.00250 L		0.00270 U	0.00260 U		0.00270 U	0.00250 U
Xylenes, Total Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	100 mg/kg	100 mg/kg	0.26 mg/kg	1.6 mg/Kg	500 mg/kg	0.00780 U mg/kg	0.00650 U mg/kg	0.00750 L mg/kg	0.00780 U mg/Kg	0.00800 U mg/Kg	0.00790 U mg/Kg	0.00740 U mg/Kg	0.00810 U mg/Kg	0.00750 U mg/Kg
Dilution Factor	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	mg/ ng	IIIg/ Ng	1	1	1	1	1	1	1	1	1
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0194 U	0.0192 U	0.0196 L		0.0189 U	0.0185 U		0.0194 U	0.0183 U
SVOA, 8270 MASTER Dilution Factor	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg 2	mg/kg 2	mg/kg 2	mg/Kg	mg/Kg 2	mg/Kg 2	mg/Kg	mg/Kg 2	mg/Kg 2
2-Methylphenol	100	100	0.33	0.33	500	0.0440 U		0.0442 L		0.0450 U	0.0479 U		0.0435 U	0.0440 U
3- & 4-Methylphenols	100	34	0.33	0.33	500	0.0440 U			0.0479 U	0.0450 U	0.0479 U		0.0435 U	0.0440 U
Acenaphthene Acenaphthylene	100 100	100 100	20 100	98 107	500 500	0.0440 U		0.0442 L 0.0442 L		0.0450 U 0.0450 U	0.0479 U 0.0479 U		0.0435 U 0.0435 U	0.0440 U 0.0440 U
Anthracene	100	100	100	1000	500	0.0440 U		0.0442 C		0.0450 U	0.0479 U		0.0435 U	0.0440 U
Benzo(a)anthracene	1	1	1	1	5.6	0.0440 U	0.3740 D	0.3540	0.0479 U	0.0450 U	0.0479 U	0.0438 U	0.0435 U	0.0440 U
Benzo(a)pyrene	1	1	1	22	1	0.0440 U			0.0479 U	0.0450 U	0.0479 U		0.0435 U	0.0440 U
Benzo(b)fluoranthene Benzo(g,h,i)perylene	100	100	100	1.7 1000	5.6 500	0.0440 U 0.0440 U	0.2580 D 0.1920 D	0.2820 E	*******	0.0450 U 0.0450 U	0.0479 U 0.0479 U	0.0438 U 0.0438 U	0.0435 U 0.0435 U	0.0440 U 0.0440 U
Benzo(k)fluoranthene	3.9	1	0.8	1.7	56	0.0440 U		0.2900		0.0450 U	0.0479 U			0.0440 U
Chrysene	3.9	1	1	1	56	0.0440 U		0.3660		0.0450 U	0.0479 U		0.0435 U	0.0440 U
Dibenzo(a,h)anthracene Dibenzofuran	0.33 59	0.33 14	0.33	1000 210	0.56 350	0.0440 U 0.0440 U	*******	0.0442 L 0.0442 L		0.0450 U 0.0450 U	0.0479 U 0.0479 U	0.0438 U 0.0438 U	0.0435 U 0.0435 U	0.0440 U 0.0440 U
Fluoranthene	100	100	100	1000	500	0.0440 U	0.7700 D	0.6480		0.0450 U	0.0479 U		0.0435 U	0.0440 U
Fluorene	100	100	30	386	500	0.0440 U	0.0441 U	0.0442 L		0.0450 U	0.0479 U		0.0435 U	0.0440 U
Hexachlorobenzene Indeno(1,2,3-cd)pyrene	1.2 0.5	0.33	0.33	3.2 8.2	6 5.6	0.0440 U 0.0440 U		0.0442 L 0.1980 E	0.0479 U 0.0479 U	0.0450 U 0.0450 U	0.0479 U 0.0479 U		0.0435 U 0.0435 U	0.0440 U 0.0440 U
Naphthalene	100	100	12	12	500	0.0440 U		0.0442 L		0.0450 U	0.0479 U			0.0440 U
Pentachlorophenol	6.7	2.4	0.8	0.8	6.7	0.0440 U	0.0441 U	0.0442 L	0.0479 U	0.0450 U	0.0479 U	0.0438 U	0.0435 U	0.0440 U
Phenanthrene Phonal	100 100	100	100	1000	500 500	0.0440 U 0.0440 U		0.3540 E 0.0442 L		0.0450 U 0.0450 U	0.0479 U 0.0479 U		0.0435 U 0.0435 U	0.0440 U 0.0440 U
Phenol Pyrene	100	100 100	0.33 100	0.33 1000	500	0.0440 U 0.0440 U	0.0441 U 0.7330 D	0.0442 C		0.0450 U	0.0479 U 0.0542 JD		0.0435 U 0.0435 U	0.0440 U 0.0440 U
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	40	0.0	0.0000	4.4	00	5	5	5	5	5	5	5	5	5
4,4'-DDD 4,4'-DDE	13 8.9	2.6 1.8	0.0033	14 17	92 62	0.00173 U 0.00173 U	0.00174 U 0.00174 U	0.00174 L 0.00174 L	0.00190 U 0.00190 U	0.00177 U 0.00177 U	0.00187 U 0.00187 U		0.00171 U 0.00171 U	0.00172 U 0.00172 U
4,4'-DDT	7.9	1.7	0.0033	136	47	0.00173 U	0.00174 U	0.00174 L	0.00190 U	0.00177 U	0.00187 U	0.00173 U	0.00171 U	0.00172 U
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00173 U		0.00174 L			0.00187 U			0.00172 U
alpha-BHC alpha-Chlordane	0.48 4.2	0.097 0.91	0.02	0.02 2.9	3.4 24	0.00173 U 0.00173 U		0.00174 L 0.00174 L	0.00190 U 0.00190 U		0.00187 U 0.00187 U			0.00172 U 0.00172 U
beta-BHC	0.36	0.072	0.036	0.09	3	0.00173 U		0.00174 L		0.00177 U	0.00187 U		0.00171 U	0.00172 U
delta-BHC	100	100	0.04	0.25	500	0.00173 U	0.00174 U	0.00174 l	0.00190 U	0.00177 U	0.00187 U	0.00173 U	0.00171 U	0.00172 U
Dieldrin Endosulfan I	0.2 24	0.039 4.8	0.005 2.4	0.1 102	1.4 200	0.00173 U 0.00173 U		0.00174 L 0.00174 L		0.00177 U 0.00177 U	0.00187 U 0.00187 U		0.00171 U 0.00171 U	0.00172 U 0.00172 U
Endosulfan I Endosulfan II	24	4.8	2.4	102	200	0.00173 U		0.00174 L			0.00187 U 0.00187 U			0.00172 U 0.00172 U
Endosulfan sulfate	24	4.8	2.4	1000	200	0.00173 U	0.00174 U	0.00174 l	0.00190 U	0.00177 U	0.00187 U	0.00173 U	0.00171 U	0.00172 U
Endrin	11	2.2	0.014	0.06	89	0.00173 U		0.00174 L		0.00177 U	0.00187 U			0.00172 U
gamma-BHC (Lindane) Heptachlor	1.3 2.1	0.28 0.42	0.1	0.1	9.2 15	0.00173 U 0.00173 U			0.00190 U 0.00190 U	0.00177 U 0.00177 U	0.00187 U 0.00187 U		0.00171 U 0.00171 U	0.00172 U 0.00172 U
ropasiioi	۷.٦	U.72	0.042	0.56	10	0.00110 0	0.00174 0	0.00114 C	0.00100 0	0.00111	0.00101 0	0.00173 0	0.001/1 0	0.00172 0

Sample ID						CS-37 (6.5')	CS-38 (6.5')	_	CS-39 (6.5')		CS-38 (6.5')	CS-39 (6.		CS-40 (7.5')	CS-41 (6.5')	CS-42 (9.5	•	CS-43 (9.5')
Sampling Date	Part 375 9/28/2022	9/28/2022	!	9/28/2022		10/6/2022	10/6/202	22	10/6/2022	10/6/2022	10/6/202	2	10/6/2022					
Client Matrix	RRSCOs	RSCOs	UUSC0s	PGSC0s	CSC0s	Soil	Soil		Soil		Soil	Soil		Soil	Soil	Soil		Soil
Compound						Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result Q	Result Q	Result	Q	Result Q
Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg
Dilution Factor	16	40	42	40	40	1 1 500 11	1		1		1 070	1		1	1 1 500 11	1 1 570		1
Arsenic Barium	16 400	16 350	13 350	16 820	16 400	1.580 U 19.500	2.090 46.000		2.540 76.500	_	1.970 39.000	1.680 41.200		4.820 93.100	1.590 U 28.000	1.570 12.800	U	1.600 U 17.100
Beryllium	72	14	7.2	47	590	0.0530 U	0.0530	U		U	0.0580 U	0.0540	U	0.1360	0.0530 U	0.0520	U	0.0530 U
Cadmium	4.3	2.5	2.5	7.5	9.3	0.317 U	0.318	U		U	0.347 U	0.325	U	0.345 U	0.319 U	0.313	U	0.319 U
Chromium	~	~	~	~	~	14.600	17.100		15.7		14.200	17.500		16.800	11.200	11.100		8.550
Copper	270	270	50	1720	270	8.160	13.200		23.3		8.610	8.810		26.400	9.770	7.960		7.280
Lead	400	400	63	450	1000	7.750	27.400		65.1		8.060	10.600		70.2	6.530	5.360	-	4.910
Manganese Nickel	2000 310	2000 140	1600 30	2000 130	10000 310	336 13.500	330 14.900	-	336 14.8		148 23.000	286 18.900	-	516 15.500	209 16.500	197 22.400	-	185 14.200
Selenium	180	36	3.9	4	1500	2.640 U	2.650	U		U	2.890 U	2.710	U	2.870 U		2.610	U	2.660 U
Silver	180	36	2	8.3	1500	0.528 U	0.530	U	0.531	U	0.579 U	0.542	U	0.575 U	0.532 U	0.522	U	0.532 U
Zinc	10000	2200	109	2480	10000	17.900	42.500		92.100		36.600	25.700		57.300	22.300	14.800		13.500
Mercury by 7473	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg
Dilution Factor	0.04	0.04	0.40	0.70	2.0	1 0.0217	1		0.1120		0.0544	1 0.0335		1 0.10	1 0.0210 !!	1 0.0313		1 0.0310
Mercury Chromium, Hexavalent	0.81 mg/Kg	0.81 mg/Kg	0.18 mg/Kg	0.73 mg/Kg	2.8 mg/Kg	0.0317 U	0.0482 mg/Kg		0.1120 mg/Kg		0.0544 mg/Kg	0.0325 mg/Kg	U	0.19 mg/Kg	0.0319 U mg/Kg	0.0313 mg/Kg	U	0.0319 U mg/Kg
Dilution Factor	mg/r\g	mg/r\g	mg/Kg	mg/Kg	ilig/ r\g	mg/Kg 1	1 1		111g/ r.g		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ilig/kg	1 1		nig/ng 1
Chromium, Hexavalent	110	22	1	19	400	0.528 U	0.530	U	0.531	U	0.579 U	0.542	U	0.575 U	0.532 U	0.522	U	0.532 U
Chromium, Trivalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg
Dilution Factor						1	1		1		1	1		1	1	1		1
Chromium, Trivalent	180	36	30	~	1500	14.600	17.100		15.700		14.200	17.500		16.800	11.200	11.100		8.550
Cyanide, Total Dilution Factor	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/kg	mg/kg		mg/kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg 1	mg/Kg 1		mg/Kg
Cyanide, total	27	27	27	40	27	0.528 U	0.530	П	0.531	U	0.579 U	0.542	П	0.575 U	0.532 U	0.522	U	0.532 U
Total Solids				40	21	%	%	-	%		%	%		%	%	%	Ü	%
Dilution Factor						1	1		1		1	1		1	1	1		1
% Solids	~	~	~	~	~	94.700	94.400		94.200		86.400	92.300		87.000	94.100	95.800		94.000
HERB, 8151 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg
Dilution Factor 2,4,5-TP (Silvex)	100	58	3.8	3.8	E00	0.0208 U	0.0208	U	0.0211	U	0.0228 U	0.0212	U	0.0229 U	1 0.0208 U	0.0207	U	0.0209 U
PCB. 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	500 mg/kg	mg/kg	mg/kg	- 0	mg/kg	-	mg/Kg	mg/Kg	U	mg/Kg	mg/Kg	mg/Kg	U	mg/Kg
Dilution Factor	1116/116	1116/116	1116/116	1116/11/6	1116/116	1	1		1		1	1		1	1	1		1
Aroclor 1016	~	~	~	~	~	0.0175 U	0.0176	U	0.0175	U	0.0192 U	0.0179	U	0.0188 U	0.0175 U	0.0172	U	0.0174 U
Aroclor 1221	~	~	~	~	~	0.0175 U		U		U	0.0192 U	0.0179	U	0.0188 U	0.0175 U	0.0172	U	0.0174 U
Aroclor 1232	~	~	~	~	~	0.0175 U	0.0176	U		U	0.0192 U	0.0179	U	0.0188 U		0.0172	U	0.0174 U
Arcelor 1242	~	~	~	~	~	0.0175 U	0.0176	U		U	0.0192 U	0.0179	U	0.0188 U	0.0175 U	0.0172	U	0.0174 U
Aroclor 1248 Aroclor 1254	~	~	~	~	~	0.0175 U 0.0175 U	0.0176 0.0176	U	0.0175 0.0175	U	0.0192 U 0.0192 U	0.0179 0.0179	U	0.0188 U 0.0188 U	0.0175 U 0.0175 U	0.0172 0.0172	U	0.0174 U 0.0174 U
Aroclor 1260	~	~	~	~	~	0.0450	0.0176	U		U	0.0192 U	0.0179	U	0.0188 U	0.0175 U	0.0172	U	0.0174 U
Total PCBs	1	1	0.1	3.2	1	0.0450	0.0176	U		Ü	0.0192 U	0.0179	U	0.0188 U	0.0175 U	0.0172	Ü	0.0174 U
PFAS, NYSDEC Target List						mg/kg	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	mg/kg	mg/kg		mg/kg
Dilution Factor						1	1		1		1	1		1	1	1		1
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00024 U	0.00025	U	0.00026	U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS) N-EtFOSAA	~	~	~	~	~	0.00024 U 0.00024 U	0.00025 0.00025	U		U	0.00027 U 0.00027 U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00025 0.00025	U	0.00024 U 0.00024 U
N-MeFOSAA	~	~	~	~	~	0.00024 U	0.00025	U		U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00024 U	0.00025	Ü		Ü	0.00027 U	0.00026	Ü	0.00026 U	0.00025 U	0.00025	Ü	0.00024 U
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00024 U	0.00025	U	0.00026	U	0.00027 U	0.00026	U	0.00026 U	0.00025 J	0.00025	U	0.00024 U
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	0.00024 U	0.00025	U	0.00026	U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00024 U	0.00025	U	*******	U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00024 U	0.00025	U	0.00026	U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluorododecanoic acid (PFDoA) Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	0.00024 U 0.00024 U	0.00025 0.00025	U	0.00026 0.00026	U	0.00027 U 0.00027 U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00025 0.00025	U	0.00024 U 0.00024 U
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	0.00024 U		U		U	0.00027 U		U	0.00026 U		0.00025	U	0.00024 U
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00024 U		U		U	0.00027 J		U	0.00026 U		0.00025	U	0.00024 U
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00024 U	0.00025	U		U	0.00027 U	0.00026	U	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluorononanoic acid (PFNA)	~	~	~	~	~	0.00024 U	0.00025	U		U	0.00027 U		U	0.00026 U	0.00025 J	0.00025	U	0.00024 U
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00075	0.00054		0.00058		0.00336	0.00026	U	0.00026 U		0.00025	U	0.00024 U
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	0.00024 U		U		U	0.00027 J	0.00026	U	0.00026 J	0.00031	0.00025	U	0.00024 U
Perfluoropentanoic acid (PFPeA) Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	0.00024 U 0.00024 U		U		U	0.00027 U 0.00027 U	0.00026 0.00026	U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00025 0.00025	U	0.00024 U 0.00024 U
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTA)	~	~	~	~	~	0.00024 U		U		U	0.00027 J		J	0.00026 U	0.00025 U	0.00025	U	0.00024 U
Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00024 U	0.00025	U		U	0.00027 U		U	0.00026 U		0.00025	U	0.00024 U
		,																

Table 7 Post-Excavation Soil Sampling Results Ebenezer Plaza 2 BCP No. C224241

589 Christopher Avenue, Brooklyn, NY

G						00.44.0.50	00.44.50.11.0	00 45 440 50			00.40.(44)	00.40.4411		00.50.51.15	00.400.4450
Sample ID	_					CS-44 (9.5')	CS-44 Field Dup	CS-45 (13.5')	CS-46 (12.5')	CS-47 (11')	CS-48 (11')	CS-49 (11')	CS-50 (13')	CS-50 Field Dup	CS-100 (15')
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	10/6/2022	10/6/2022	10/12/2022	10/17/2022	10/17/2022	10/17/2022	10/17/2022	10/17/2022	10/17/2022	11/15/2022
Client Matrix	RRSC0s	RSC0s	UUSC0s	PGSCOs	CSC0s	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	400	100	0.00	0.00	500	1	1	1	1	1	1	1 0.00000	1	1	1 0 00000
1,1,1-Trichloroethane 1,1-Dichloroethane	100 26	100 19	0.68 0.27	0.68	500 240	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00240 U 0.00240 U	0.00260 U 0.00260 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00270 U 0.00270 U	0.00260 U 0.00260 U
1,1-Dichloroethylene	100	100	0.27	0.33	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
1,2,4-Trimethylbenzene	52	47	3.6	3.6	190	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
1,2-Dichlorobenzene	100	100	1.1	1.1	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
1,2-Dichloroethane	3.1	2.3	0.02	0.02	30	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	52 49	47 17	8.4 2.4	8.4 2.4	190 280	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00240 U 0.00240 U	0.00200	0.00250 U 0.00250 U	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00270 U 0.00270 U	0.00260 U 0.00260 U
1,4-Dichlorobenzene	13	9.8	1.8	1.8	130	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0520 U	0.0520 U	0.0470 U	0.0520 U	0.0510 U	0.0530 U	0.0510 U	0.0550 U	0.0530 U	0.0520 U
2-Butanone	100	100	0.12	0.12	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Acetone	100	100	0.05	0.05	500	0.00520 U	0.00520 U	0.00470 U	0.00540 J	0.01100	0.01200	0.00790 J	0.01100	0.03700	0.00610 J
Benzene Carbon tetrachloride	4.8 2.4	2.9 1.4	0.06 0.76	0.06 0.76	44 22	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00240 U 0.00240 U	0.00260 U 0.00260 U	0.00250 U 0.00250 U	0.00260 U 0.00260 U	0.00260 U 0.00260 U	0.00280 U 0.00280 U	0.00270 U 0.00270 U	0.00260 U 0.00260 U
Chlorobenzene	100	100	1.1	1.1	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Chloroform	49	10	0.37	0.37	350	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
cis-1,2-Dichloroethylene	100	59	0.25	0.25	500	0.00260 U	0.00260 U	0.00240 U		0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Ethyl Benzene	41	30	1	1	390	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Methyl tert-butyl ether (MTBE) Methylene chloride	100 100	62 51	0.93 0.05	0.93 0.05	500 500	0.00260 U 0.00960 J	0.00260 U 0.04300	0.00240 U 0.01000	0.00260 U 0.00920 J	0.00250 U 0.00510 U	0.00260 U 0.01000 J	0.00260 U 0.00620 J	0.00280 U 0.00850 J	0.00270 U 0.00530 U	0.00260 U 0.00520 U
Naphthalene	100	100	12	12	500	0.00960 J 0.00260 U	0.04300 0.00260 U	0.01000 0.00240 U	0.00920 J 0.00260 U	0.00510 U	0.01000 J	0.00620 J	0.00850 J	0.00530 U	0.00520 U
n-Butylbenzene	100	100	12	12	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
n-Propylbenzene	100	100	3.9	3.9	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
o-Xylene	~	~	~	~	~	0.00260 U	0.00260 U	0.00240 U		0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
p- & m- Xylenes sec-Butylbenzene	100	100	~ 11	~ 11	~ 500	0.00520 U 0.00260 U	0.00520 U 0.00260 U	0.00470 U 0.00240 U	0.00520 U 0.00260 U	0.00510 U 0.00250 U	0.00530 U 0.00260 U	0.00510 U 0.00260 U	0.00550 U 0.00280 U	0.00530 U 0.00270 U	0.00520 U 0.00260 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Tetrachloroethylene	19	5.5	1.3	1.3	150	0.00260 U	0.00260 U	0.00240 U		0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Toluene	100	100	0.7	0.7	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
trans-1,2-Dichloroethylene	100	100	0.19	0.19	500	0.00260 U	0.00260 U	0.00240 U	0.00260 U	0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Trichloroethylene	21	10	0.47	0.47	200	0.00260 U	0.00260 U	0.00240 U		0.00250 U	0.00260 U	0.00260 U	0.00280 U	0.00270 U	0.00260 U
Vinyl Chloride Xylenes, Total	0.9 100	0.21 100	0.02 0.26	0.02 1.6	13 500	0.00260 U 0.00790 U	0.00260 U 0.00780 U	0.00240 U 0.00710 U	0.00260 U 0.00780 U	0.00250 U 0.00760 U	0.00260 U 0.00790 U	0.00260 U 0.00770 U	0.00280 U 0.00830 U	0.00270 U 0.00800 U	0.00260 U 0.00790 U
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	<i>a a</i>	0 0				1	1	1	1	1	1	1	1	1	1
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0198 U	0.0198 U	0.0189 U	0.0190 U	0.0189 U	0.0190 U	0.0192 U	0.0189 U	0.0198 U	0.0198 U
SVOA, 8270 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg 2	mg/Kg 2	mg/Kg 2	mg/Kg 2	mg/Kg 2	mg/Kg	mg/Kg 2	mg/Kg	mg/Kg	mg/Kg 2
Dilution Factor 2-Methylphenol	100	100	0.33	0.33	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
3- & 4-Methylphenols	100	34	0.33	0.33	500	0.0431 U	0.0435 U	0.0473 U		0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Acenaphthene	100	100	20	98	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Acenaphthylene	100	100	100	107	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Anthracene	100	100	100	1000	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Benzo(a)anthracene Benzo(a)pyrene	1	1	1	22	5.6 1	0.0431 U 0.0431 U	0.0435 U 0.0435 U	0.0473 U 0.0473 U	0.0433 U 0.0433 U	0.0430 U 0.0430 U	0.0450 U 0.0450 U	0.0416 U 0.0416 U	0.0434 U 0.0434 U	0.0424 U 0.0424 U	0.0438 U 0.0438 U
Benzo(b)fluoranthene	1	1	1	1.7	5.6	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Benzo(g,h,i)perylene	100	100	100	1000	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Benzo(k)fluoranthene	3.9	1	0.8	1.7	56	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Chrysene	3.9	1	1	1	56	0.0431 U	0.0435 U	0.0473 U		0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Dibenzo(a,h)anthracene Dibenzofuran	0.33 59	0.33 14	0.33	1000 210	0.56 350	0.0431 U 0.0431 U	0.0435 U 0.0435 U	0.0473 U 0.0473 U	0.0433 U 0.0433 U	0.0430 U 0.0430 U	0.0450 U 0.0450 U	0.0416 U 0.0416 U	0.0434 U 0.0434 U	0.0424 U 0.0424 U	0.0438 U 0.0438 U
Fluoranthene	100	100	100	1000	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Fluorene	100	100	30	386	500	0.0431 U	0.0435 U	0.0473 U	0.0433 U	0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Hexachlorobenzene	1.2	0.33	0.33	3.2	6	0.0431 U	0.0435 U	0.0473 U	0.0433 U		0.0450 U	0.0416 U		0.0424 U	0.0438 U
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	8.2	5.6	0.0431 U	0.0435 U	0.0473 U		0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Naphthalene Pentachlorophanol	100 6.7	100 2.4	12	0.8	500 6.7	0.0431 U 0.0431 U	0.0435 U 0.0435 U	0.0473 U 0.0473 U			0.0450 U 0.0450 U	0.0416 U 0.0416 U	0.0434 U 0.0434 U	0.0424 U 0.0424 U	0.0438 U 0.0438 U
Pentachlorophenol Phenanthrene	100	100	0.8 100	1000	500	0.0431 U	0.0435 U	0.0473 U			0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Phenol	100	100	0.33	0.33	500	0.0431 U	0.0435 U	0.0473 U			0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
Pyrene	100	100	100	1000	500	0.0431 U	0.0435 U	0.0473 U		0.0430 U	0.0450 U	0.0416 U	0.0434 U	0.0424 U	0.0438 U
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor	40	0.0	0.0000	4.4	00	5	5	5	5	5	5	5	5	5	5
4,4'-DDD 4,4'-DDE	13 8.9	2.6 1.8	0.0033	14 17	92 62	0.00170 U 0.00170 U	0.00172 U 0.00172 U	0.00186 U 0.00186 U	0.00171 U 0.00171 U	0.00170 U 0.00170 U	0.00178 U 0.00178 U	0.00168 U 0.00168 U	0.00169 U 0.00169 U	0.00168 U 0.00168 U	0.00173 U 0.00173 U
4,4'-DDT	7.9	1.7	0.0033	136	47	0.00170 U	0.00172 U	0.00186 U				0.00168 U		0.00168 U	0.00173 U
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00170 U	0.00172 U	0.00186 U			0.00178 U	0.00168 U		0.00168 U	0.00173 U
alpha-BHC	0.48	0.097	0.02	0.02	3.4	0.00170 U	0.00172 U	0.00186 U			0.00178 U	0.00168 U		0.00168 U	0.00173 U
alpha-Chlordane	4.2	0.91	0.094	2.9	24	0.00170 U	0.00172 U	0.00186 U			0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173 U
beta-BHC	0.36	0.072	0.036	0.09	3	0.00170 U	0.00172 U	0.00186 U			0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173 U
delta-BHC	100 0.2	100 0.039	0.04 0.005	0.25 0.1	500 1.4	0.00170 U 0.00170 U	0.00172 U 0.00172 U	0.00186 U 0.00186 U			0.00178 U 0.00178 U	0.00168 U 0.00168 U	0.00169 U 0.00169 U	0.00168 U 0.00168 U	0.00173 U 0.00173 U
Dieldrin		4.8	2.4	102	200	0.00170 U	0.00172 U	0.00186 U			0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173 U
Dieldrin Endosulfan I	24														0.00173 U
	24	4.8	2.4	102	200	0.00170 U	0.00172 U	0.00186 U	0.00171 U	0.00170 U	0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173
Endosulfan I	24 24	4.8 4.8	2.4 2.4	102 1000	200 200	0.00170 U	0.00172 U	0.00186 U	0.00171 U	0.00170 U	0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173 U
Endosulfan I Endosulfan II Endosulfan sulfate Endrin	24 24 11	4.8 4.8 2.2	2.4 0.014	1000 0.06	200 89	0.00170 U 0.00170 U	0.00172 U 0.00172 U	0.00186 U 0.00186 U	0.00171 U 0.00171 U	0.00170 U 0.00170 U	0.00178 U 0.00178 U	0.00168 U 0.00168 U	0.00169 U 0.00169 U	0.00168 U 0.00168 U	0.00173 U 0.00173 U
Endosulfan I Endosulfan II Endosulfan sulfate	24 24	4.8 4.8	2.4	1000	200	0.00170 U	0.00172 U	0.00186 U	0.00171 U 0.00171 U 0.00171 U	0.00170 U	0.00178 U	0.00168 U	0.00169 U	0.00168 U	0.00173 U

Sample ID						CS-44 (9.5')	CS-44 Field Dup	CS-45 (13.5°	n I	CS-46 (12.5')	CS-47 (11')		CS-48 (11')	CS-49 (11')	CS-50 (13')		CS-50 Field Dup	CS-100 (15')
Sampling Date	Part 375	Dort 275	Dort 275	Dom 275	Part 375	10/6/2022	10/6/2022	10/12/2022	•	10/17/2022	10/17/2022		10/17/2022	10/17/2022	10/17/2022		10/17/2022	11/15/2022
Client Matrix	RRSC0s	Part 375 RSC0s	Part 375 UUSC0s	Part 375 PGSC0s	CSCOs	Soil	Soil	Soil		Soil	Soil		Soil	Soil	Soil		Soil	Soil
					-	Result Q	Result Q	-	0	Result 0		0	Result 0		Result	Q	Result Q	Result Q
Compound Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	٧_	mg/Kg	mg/Kg	٧	mg/Kg	mg/Kg	mg/Kg	· ·	mg/Kg	mg/Kg
Dilution Factor	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	IIIg/ Ng	1	1	1		1	1		1	1	1		1 1	1
Arsenic	16	16	13	16	16	2.150	1.580 U		U	1.420	1.810		2.850	2.130	1.640		2.320	1.340 U
Barium	400	350	350	820	400	17.400	13.200	20.600		13.000	15.400		13.600	21.100	17.000		18.500	25.200
Beryllium O-deriver	72	14	7.2	47	590	0.0520 U	0.0530 U	0.0480	U	0.0440 U	0.0440	U	0.0460 U	0.0430 U	0.0440	U	0.0440 U	0.4240
Cadmium Chromium	4.3	2.5	2.5	7.5 ~	9.3	0.312 U 14.200	0.315 U 10.400	0.285 12.800	U	0.260 U 8.330	0.261 7.680	U	0.273 U 13.300	0.256 U 13.000	0.261 7.690	U	0.261 U 8.290	0.267 U 13.100
Copper	270	270	50	1720	270	9.940	7.710	10.100		7.990	6.510		9.320	10.900	8.070		9.990	7.020
Lead	400	400	63	450	1000	6.230	4.490	4.980		4.670	4.220		5.900	6.600	6.720		5.760	4.550
Manganese	2000	2000	1600	2000	10000	261	216	61		221	205		294	558	221		215	94
Nickel Selenium	310 180	140 36	30 3.9	130 4	310 1500	23.500 2.600 U	16.500 2.630 U	15.200 2.380	- 11	19.500 2.170 U	12.600 2.170	- 11	20.800 2.270 U	32.2 2.130 U	14.700 2.170	- 11	21.300 2.170 U	17.300 2.220 U
Silver	180	36	2	8.3	1500	2.600 U 0.519 U	0.526 U		U	0.437 U	_	U	0.458 U		0.438	U	0.438 U	0.449 U
Zinc	10000	2200	109	2480	10000	17.600	13.900	13.500	Ť	16.200	13.300	Ť	15.300	15.100	14.600	Ť	15.900	14.400
Mercury by 7473	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg
Dilution Factor			2.12			1	1	1		1	1		1	1	1		1	1
Mercury Chromium, Hexavalent	0.81	0.81	0.18	0.73	2.8	0.0312 U	0.0315 U	0.0343	U	0.0312 U	0.0313	U	0.0327 U	0.0307 U	0.0313	U	0.0313 U	0.0320 U
Dilution Factor	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg 1	mg/Kg 1	mg/Kg 1	 -	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1
Chromium, Hexavalent	110	22	1	19	400	0.519 U	0.526 U		U	0.520 U		U	0.545 U		0.521	U	0.522 U	0.534 U
Chromium, Trivalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg
Dilution Factor					4=0.0	1	1	1		1	1		1	1	1		1	1
Chromium, Trivalent	180	36	30	~ md/l/d	1500	14.200	10.400	12.800		8.330	7.680		13.300	13.000	7.690		8.290	13.100
Cyanide, Total Dilution Factor	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1
Cyanide, total	27	27	27	40	27	0.519 U	0.526 U	+	U	0.520 U		U	0.545 U	0.512 U	0.521	U	0.522 U	0.534 U
Total Solids						%	%	%		%	%		%	%	%		%	%
Dilution Factor						1	1	1		1	1		1	1	1		1	1
% Solids	~	~	~	~	~	96.300	95.100	87.600		96.200	95.800		91.700	97.600	95.900		95.800	93.600
HERB, 8151 MASTER Dilution Factor	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1	mg/Kg 1		mg/Kg 1	mg/Kg 1
2,4,5-TP (Silvex)	100	58	3.8	3.8	500	0.0202 U	0.0210 U	0.0228	U	0.0207 U	0.0208	U	0.0217 U	0.0200 U	0.0206	U	0.0207 U	0.0210 U
PCB, 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg
Dilution Factor						1	1	1		1	1		1	1	1		1	1
Aroclor 1016	~	~	~	~	~	0.0172 U	0.0173 U	****	U	0.0173 U	****	U	0.0179 U	****	0.0170	U	0.0169 U	0.0174 U
Aroclor 1221 Aroclor 1232	~	~	~	~	~	0.0172 U 0.0172 U	0.0173 U 0.0173 U	0.0100	U	0.0173 U 0.0173 U	0.01.2	U	0.0179 U 0.0179 U		0.0170 0.0170	U	0.0169 U 0.0169 U	0.0174 U 0.0174 U
Aroclor 1242	~	~	~	~	~	0.0172 U	0.0173 U	0.0188	U	0.0173 U	0.0172	U U	0.0179 U	0.0170 U	0.0170	U	0.0169 U	0.0174 U
Aroclor 1248	~	~	~	~	~	0.0172 U	0.0173 U	0.0188	U	0.0173 U	0.0172	U	0.0179 U	0.0170 U	0.0170	U	0.0169 U	0.0174 U
Aroclor 1254	~	~	~	~	~	0.0172 U	0.0173 U	0.0188	U	0.0173 U	0.0172	U	0.0179 U	0.0170 U	0.0170	U	0.0169 U	0.0174 U
Aroclor 1260	~	~	~	~	~	0.0172 U	0.0173 U	0.0188	U	0.0173 U	0.01.2	U	0.0179 U	0.0170 U	0.0170	U	0.0169 U	0.0174 U
Total PCBs	1	1	0.1	3.2	1	0.0172 U	0.0173 U	0.0188	U	0.0173 U	0.01.2	U	0.0179 U	0.0170 U	0.0170	U	0.0169 U	0.0174 U
PFAS, NYSDEC Target List Dilution Factor						mg/kg 1		mg/kg 1		mg/kg 1	mg/kg 1		mg/kg 1	mg/kg 1	mg/kg 1		mg/kg 1	mg/kg 1
1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	_	U	0.00026 U		0.00024	U	0.00024 U	0.00026 U
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	~	~	~	~	0.00025 J	NT	0.00028	U	0.00026 U	0.00025	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
N-EtFOSAA	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	******	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
N-MeFOSAA	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	0.00025	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
Perfluoro-1-decanesulfonic acid (PFDS) Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00025 U 0.00025 U	NT NT	0.00028 0.00028	U	0.00026 U		U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00024 0.00024	U	0.00024 U 0.00024 U	0.00026 U 0.00026 U
Perfluoro-1-neptanesulfonic acid (PFIps) Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	_	Ü	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
Perfluorobutanesulfonic acid (PFBS)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	_	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	******	U	0.00026 U		0.00024	U	0.00024 U	0.00026 U
Perfluorododecanoic acid (PFDoA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U	0.00025	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U	0.00026 U
Perfluoroheytanoic acid (PFHpA)	~	~	~	~	~	0.00025 U 0.00025 U	NT NT	0.00028 0.00028	U	0.00026 U	0.00025	U	0.00026 U	0.00025 U	0.00024	U	0.00024 U 0.00024 U	0.00026 U
Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00025 U 0.00025 U	NT NT	0.00028	U	0.00026 U 0.00026 U		U	0.00026 U 0.00026 U		0.00024 0.00024	U	0.00024 U 0.00024 U	0.00026 U 0.00026 U
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U		U	0.00026 U		0.00024	U	0.00024 U	0.00026 U
Perfluorononanoic acid (PFNA)	~	~	~	~	~	0.00025 U	NT	0.00028	j	0.00026 U		U	0.00026 U		0.00024	Ü	0.00024 U	0.00026 U
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U		U	0.00026 U	0.00020	0.00024	U	0.00024 U	0.00026 U
Perfluorooctanoic acid (PFOA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U		U	0.00026 U		0.00024	U	0.00024 U	
Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	0.00025 U	NT NT	0.00028 0.00028	U	0.00026 U 0.00026 U	_	U	0.00026 U		0.00024	U	0.00024 U 0.00024 U	0.00026 U
Perfluorotetradecanoic acid (PFTA) Perfluorotridecanoic acid (PFTrDA)	~	~	~	~	~	0.00025 U 0.00025 J	NT NT	0.00028	U	0.00026 U 0.00026 U		U	0.00026 U 0.00026 U	0.00025 U	0.00024 0.00024	U	0.00024 U 0.00024 U	0.00026 U 0.00026 U
Perfluoroundecanoic acid (PFUnA)	~	~	~	~	~	0.00025 U	NT	0.00028	U	0.00026 U		U	0.00026 U		0.00024	U	0.00024 U	
							***	00020				- 1				<u> </u>		

G								1		T	1					1
Sample ID					-	CS-101 (15')	CS-102 (15')	CS-103 (15')	CS-103 Field Dup	CS-104 (15')	CS-51	CS-52	CS-53	CS-54	CS-Duplicate	CS-55
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	11/15/2022	11/15/2022	11/15/2022	11/15/2022	11/15/2022	5/25/2023	5/25/2023	5/25/2023	5/25/2023	5/25/2023	5/25/2023
Client Matrix	RRSCOs	RSC0s	UUSC0s	PGSC0s	CSCOs	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
VOA, 8260 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor	100	100	0.00	0.00	500	500	500	100	100	100	0.00052	0.00052	0.0000	0.0000	0.00044	0.00054
1,1,1-Trichloroethane 1,1-Dichloroethane	100 26	100 19	0.68 0.27	0.68 0.27	500 240	0.26 U 0.26 U	0.31 U 0.31 U	0.30 U 0.30 U	0.27 U	0.27 U 0.27 U	0.00053 U 0.001 U	0.00053 U 0.0011 U	0.0006 U 0.0012 U	0.0006 U 0.0012 U	*******	0.00054 U 0.0011 U
1,1-Dichloroethylene	100	100	0.33	0.33	500	0.26 U	0.31 U	0.30 U	0.27 U	0.27 U	0.001 U	0.0011 U		0.0012 U		0.0011 U
1,2,4-Trimethylbenzene	52	47	3.6	3.6	190	30 D	36 D	12 D			0.0021 U	0.0021 U		0.0024 U		
1,2-Dichlorobenzene	100	100	1.1	1.1	500	0.26 U	0.31 U	0.30 U	0.27 U	0.27 U	0.0021 U	0.0021 U	0.0024 U	0.0024 U	***************************************	0.0021 U
1,2-Dichloroethane	3.1	2.3	0.02	0.02	30	0.26 U	0.31 U		0.2.		0.001 U	0.0011 U	******	0.0012		
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	52 49	47 17	8.4 2.4	8.4 2.4	190 280	65.00 D 0.26 U	55 D 0.31 U	31 D 0.30 U		0.27 U 0.27 U	0.0021 U 0.0021 U	0.0021 U	*****	0.0021		
1,4-Dichlorobenzene	13	9.8	1.8	1.8	130	0.26 U	0.31 U	0.30 U	0.27 U	0.27 U		0.0021 U				
1,4-Dioxane	13	9.8	0.1	0.1	130	5.20 U	6.10 U		5.50 U	5.40 U	0.084 U	0.085 U				
2-Butanone	100	100	0.12	0.12	500	0.26 U	0.31 U		0.27 U		0.01 U	0.011 U	O.O.E.	******		
Acetone	100	100	0.05	0.05	500	0.52 U	0.61 U	0.59 U	0.00	****	0.01	0.011 U	0.011	0.00640 J	0.00950	0.011 U
Benzene Carbon tetrachloride	4.8 2.4	2.9 1.4	0.06 0.76	0.06 0.76	44 22	0.26 U 0.26 U	0.31 U 0.31 U		0.2.	U.E.	0.00000	0.00053 U	0.0000	0.0000	0.00011	0.0000
Chlorobenzene	100	100	1.1	1.1	500	0.26 U	0.31 U					0.00053 U				
Chloroform	49	10	0.37	0.37	350	0.26 U	0.31 U	0.30 U	0.27 U	0.27 U	0.0016 U	0.0016 U				
cis-1,2-Dichloroethylene	100	59	0.25	0.25	500	0.26 U	0.31 U		V V		0.001 U	0.0011 U	******	***************************************		
Ethyl Benzene	41	30	1	1	390	3.2 D	7.3 D				0.001 U	0.0011 U		***************************************		
Methyl tert-butyl ether (MTBE) Methylene chloride	100 100	62 51	0.93	0.93	500 500	0.26 U 0.52 U	0.31 U 0.61 U	0.30 U 0.59 U	0.27 U	0.27 U 0.54 U	0.0021 U 0.0024 J	0.0021 U		0.0024 U 0.006 U		0.0021 U 0.0054 U
Naphthalene	100	100	12	12	500	3.60 D	0.61 U				0.0024 J	0.0053 U		0.006 U		0.0054 U
n-Butylbenzene	100	100	12	12	500	7.80 D	5.90 D	2.50 D		1.40 D	0.001 U	0.0011 U		0.0012 U		
n-Propylbenzene	100	100	3.9	3.9	500	3.70 D	3.20 D		2.20	0.27 U	0.001 U	0.0011 U	******	***************************************		
o-Xylene	~	~	~	~	~	0.99 D	0.85 D		V V	· · · · · ·	0.001 U	0.0011 U		***************************************		
p- & m- Xylenes sec-Butylbenzene	100	100	~ 11	~ 11	~ 500	12.00 D 5.30 D	17.00 D 3.90 D	5.30 D 2.00 D	7.40 D 2.40 D	0.54 U 2.10 D	0.0021 U 0.001 U	0.0021 U		0.0024 U 0.0012 U		0.0021 U 0.0011 U
tert-Butylbenzene	100	100	5.9	5.9	500	0.78 D	0.41 JD		0.27 U	0.45 JD		0.0011 U		0.0012 U		
Tetrachloroethylene	19	5.5	1.3	1.3	150	0.26 U	0.31 U		0.27 U	0.43 JB	0.00053	0.00	0.00150	0.0006 U		0.00095
Toluene	100	100	0.7	0.7	500	0.26 U	0.31 U	0.30 U	0.27 U	0.27 U	0.001 U	0.0011 U	0.0012 U	0.0012 U	0.00088 U	0.0011 U
trans-1,2-Dichloroethylene	100	100	0.19	0.19	500	0.26 U	0.31 U	0.30 U	0.27 U	· · · · · ·	0.0016 U	0.0016 U	*********	0.0010	***************************************	***************************************
Trichloroethylene	21	10	0.47	0.47	200	0.26 U	0.31 U		0.2.		0.00053 U	0.00053 U		0.0000		
Vinyl Chloride Xylenes, Total	0.9 100	0.21 100	0.02 0.26	0.02 1.6	13 500	0.26 U	0.31 U		0.27 U	0.27 U 0.80 U	0.001 U 0.001 U	0.0011 U	0.0012	0.0012		
Semi-Volatiles, 1,4-Dioxane 8270 SIM-Soil	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	0.001	0.0011	0.0012	0.0012	0.00000	0.0022
Dilution Factor		Ü				1	1	1	1	1						
1,4-Dioxane	13	9.8	0.1	0.1	130	0.0192 U	0.0196 U	0.0198 U	0.0192 U	0.0187 U						
SVOA, 8270 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg 2	mg/Kg	mg/Kg 20	mg/Kg 20	mg/Kg						
Dilution Factor 2-Methylphenol	100	100	0.33	0.33	500	0.0419 U	0.0436 U	0.365 U	0.0432 U	0.0430 U	0.18 U	0.18 U	0.2 U	0.2 U	0.19 U	0.2 U
3- & 4-Methylphenols	100	34	0.33	0.33	500	0.0419 U	0.0436 U		0.0432 U		0.26 U	0.26 U				
Acenaphthene	100	100	20	98	500	0.0419 U	0.0459 JD	0.365 U	0.0432 U	0.0430 U	0.14 U	0.15 U	0.16 U	0.16 U	0.0260 J	0.1600 U
Acenaphthylene	100	100	100	107	500	0.0419 U	0.0436 U	0.365 U	0.0432 U		0.14 U	0.15 U				
Anthracene	100	100	100	1000	500	0.0419 U	0.0436 U	0.365 U	0.0432 U	0.0430 U	0.11 U	0.11 U	0.12 U	0.0430 J	0.0540 J	0.12 U
Benzo(a)anthracene Benzo(a)pyrene	1 1	1	1	22	5.6 1	0.0419 U 0.0419 U	0.0436 U 0.0436 U	0.365 U 0.365 U	0.0432 U 0.0432 U		0.088 J 0.08 J	0.0640 J 0.0540 J	0.0870 J 0.0720 J	0.1500 0.1300 J	0.1800 0.1600	0.0900 J 0.0780 J
Benzo(b)fluoranthene	1	1	1	1.7	5.6	0.0419 U	0.0436 U	0.365 U	0.0432 U		0.083 J	0.0630 J	0.0840 J	0.1500	0.1600	0.0880 J
Benzo(g,h,i)perylene	100	100	100	1000	500	0.0419 U	0.0436 U	0.365 U	0.0432 U	0.0430 U	0.052 J	0.0380 J	0.0470 J	0.0840 J	0.0860 J	0.0510 J
Benzo(k)fluoranthene	3.9	1	0.8	1.7	56	0.0419 U	0.0436 U	0.365 U	0.0.02		0.03 J	0.11 U	*****	3.0.100	0.0660 J	0.0340 J
Chrysene	3.9	1	1	1000	56	0.0419 U	0.0436 U			***************************************		0.0590 J			0.1900	0.0950 J
Dibenzo(a,h)anthracene Dibenzofuran	0.33 59	0.33 14	0.33 7	1000 210	0.56 350	0.0419 U 0.0419 U	0.0436 U 0.0436 U	0.365 U 0.365 U	0.0432 U 0.0432 U	0.0430 U 0.0430 U	0.11 U 0.18 U	0.11 U 0.18 U				0.12 U 0.2 U
Fluoranthene	100	100	100	1000	500	0.0419 U	0.0436 U	0.365 U	0.0432 U	0.0430 U	0.14	0.1000 J	0.1500	0.2600	0.2700	0.1500
Fluorene	100	100	30	386	500	0.0419 U	0.0612 JD	0.365 U	0.0558 JD		0.18 U	0.18 U	0.2 U	0.0190 J	0.0260 J	0.2000 U
Hexachlorobenzene	1.2	0.33	0.33	3.2	6	0.0419 U	0.0436 U		0.0.02							
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	8.2	5.6	0.0419 U	0.0436 U					0.0390 J	***************************************		***************************************	***************************************
Naphthalene Pentachlorophenol	100 6.7	100 2.4	12 0.8	12 0.8	500 6.7	0.8970 D 0.0419 U	1.1600 D 0.0436 U		5.7100 D 0.0432 U		0.0042 U 0.14 U	0.0042 U 0.15 U				
Phenanthrene	100	100	100	1000	500	0.0419 U	0.0436 U					0.15 U			0.15	0.16 U
Phenol	100	100	0.33	0.33	500	0.0419 U	0.0436 U		0.0432 U		0.12 U	0.18 U			0.19 U	
Pyrene	100	100	100	1000	500	0.0419 U	0.0436 U	0.365 U	0.0432 U	0.0430 U	0.15	0.1000 J	0.1500	0.2900	0.2900	0.1600
PEST, 8081 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor 4,4'-DDD	13	2.6	0.0033	14	92	5 0.00165 U	5 0.00169 U	5 0.00170 U	5 0.00169 U	5 0.00169 U	0.0017 U	0.0017 U	0.00195 U	0.00187 U	0.00184 U	0.0019 U
4,4'-DDE	8.9	1.8	0.0033	17	62	0.00165 U	0.00169 U					0.0017 U				
4,4'-DDT	7.9	1.7	0.0033	136	47	0.00165 U	0.00169 U									
Aldrin	0.097	0.019	0.005	0.19	0.68	0.00165 U	0.00404 D	0.00170 U	0.00169 U	0.00169 U	0.0017 U	0.0017 U	0.00195 U	0.00187 U	0.00184 U	0.0019 U
alpha-BHC	0.48	0.097	0.02	0.02	3.4	0.00165 U	0.00169 U									
alpha-Chlordane	4.2	0.91	0.094	2.9	24	0.00165 U	0.00169 U					0.00075 J	0.00243 U		0.00213 J	
beta-BHC delta-BHC	0.36 100	0.072 100	0.036 0.04	0.09 0.25	3 500	0.00165 U 0.00165 U	0.00169 U 0.00169 U					0.0017 U				
Dieldrin	0.2	0.039	0.005	0.25	1.4	0.00165 U	0.00169 U					0.0017 U				
Endosulfan I	24	4.8	2.4	102	200	0.00165 U	0.00169 U									
Endosulfan II	24	4.8	2.4	102	200	0.00165 U	0.00169 U	0.00170 U	0.00169 U	0.00169 U	0.0017 U	0.0017 U	0.00195 U	0.00187 U	0.00184 U	
Endosulfan sulfate	24	4.8	2.4	1000	200	0.00165 U	0.00169 U									
Endrin	11	2.2	0.014	0.06	89	0.00165 U	0.00169 U		**********			0.000707 U				
gamma-BHC (Lindane) Hentachlor	1.3 2.1	0.28 0.42	0.1 0.042	0.1	9.2 15	0.00165 U 0.00165 U	0.00169 U 0.00169 U		0.00169 U 0.00169 U			0.000707 U 0.000848 U				
Heptachlor	∠.⊥	0.42	0.042	0.36	13	0.00105 0	0.00109 0	0.00170 0	0.00109 0	0.00109 0	0.000851 0	0.000646	0.000913 0	0.000935 0	0.000919 0	0.000346 U

Sample ID	_				<u> </u>	CS-101 (15')	CS-102 (15')	CS-103 (15')	CS-103 Field Dup	CS-104 (15')	CS-51	CS-52	CS-53	CS-54	CS-Duplicate	CS-55
Sampling Date	Part 375	Part 375	Part 375	Part 375	Part 375	11/15/2022	11/15/2022	11/15/2022	11/15/2022	11/15/2022	5/25/2023	5/25/2023	5/25/2023	5/25/2023	5/25/2023	5/25/2023
Client Matrix	RRSCOs	RSC0s	UUSCOs	PGSC0s	CSC0s	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Compound						Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result () Result Q	Result Q	Result
Metals, NYSDEC Part 375	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor	16	4.0	12	10	46	1	1 210 !!	1 1 210 11	1 1 200 11	1 270	4.40	4.45	0.40	0.7	2.4	0.40
Arsenic Barium	16 400	16 350	13 350	16 820	16 400	1.960 19.300	1.310 U 23.900	1.310 U 21.200	1.300 U 19.100	1.370 20.300	1.12 20.8	1.15 38.4	2.18 42.5	2.7 48.4	3.1 46.5	2.46 40.8
Beryllium	72	14	7.2	47	590	0.4080	0.4000	0.3870	0.3880	0.4080	0.0980 J	0.09 J	0.1340	0.1440 J	0.1820 J	0.1460
Cadmium	4.3	2.5	2.5	7.5	9.3	0.255 U	0.262 U	0.262 U	0.261 U	0.262 U		0.857 U		0.150 J	0.134 J	0.113
Chromium	~	~	~	~	~	10.400	9.350	14.700	12.100	10.900	7.94	6.38	10	10.5	10.2	9.47
Copper	270	270	50	1720	270	9.300	8.670	7.960	8.340	8.370	8.09	7.43	12.6	14.0	13.1	12.2
Lead	400	400	63	450	1000	12.800	19.100	20.500	21.200	19.500	8.98	14	32	44.5	40.6	39.8
Manganese	2000	2000	1600	2000	10000	296	149	128	143	328	209	270	213	196	251	199
Nickel Selenium	310 180	140 36	30 3.9	130 4	310 1500	19.100 2.130 U	17.500 2.180 U	19.600 2.180 U	16.100 2.170 U	18.000 2.180 U	12.7 1.68 U	12.8 1.71 U	12.1 1.93	12.8 J 1.88 U	12.3 1.79 U	14.3 1.87
Silver	180	36	2	8.3	1500	0.429 U	0.440 U			0.440 U		0.428 U	0.482 U			0.467
Zinc	10000	2200	109	2480	10000	14.900	14.900	15.200	14.200	14.5	18.6	23.3	48.2	52.2	45.4	41.1
Mercury by 7473	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor						1	1	1	1	1	-					•
Mercury	0.81	0.81	0.18	0.73	2.8	0.0306 U	0.0314 U	0.0315 U	0.0313 U	0.0314 U	0.083 U	0.08 U	0.093 L	0.1170	0.0700 J	0.0640
Chromium, Hexavalent	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor Chromium, Havayalant	110	22	1	10	400	0.510 U	<u>1</u> 0.524 U	1 0.524 U	0.522 U	0.522	0.318 J	0.0	0.992 L	J 0.97 U	0.198 J	0.989
Chromium, Hexavalent Chromium, Trivalent	110 mg/Kg	22 mg/Kg	mg/Kg	19 mg/Kg	mg/Kg	0.510 U mg/Kg	0.524 U mg/Kg	0.524 U mg/Kg	0.522 U mg/Kg	0.523 U mg/Kg	U.318 J	0.9 U	U.992 l	0.97 0	0.19Q]	0.969
Dilution Factor	mg/ng	IIIg/ Ng	1115/115	IIIg/ Ng	mg/ Ng	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1	1 1			<u> </u>			
Chromium, Trivalent	180	36	30	~	1500	10.400	9.350	14.700	12.100	10.900	7.62 J	6.38	10	10.5	10 J	9.47
Cyanide, Total	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor						1	1	1	1	1						
Cyanide, total	27	27	27	40	27	0.510 U	0.524 U	0.524 U	0.522 U	0.523 U	1.1 U	1 U	1.1 l	J 1.2 U	1.1 U	1.2
Total Solids						%	%	%	%	%						
Dilution Factor % Solids	~	~	~	~	~	98.000	95.500	95.300	95.800	95.6	91.3	88.9	80.6	82.5	85.8	80.9
HERB, 8151 MASTER	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	91.5	00.9	80.6	62.5	00.0	60.9
Dilution Factor	8/8		6/ 1.6	6/6	5/5	1	1	1	1	1						
2,4,5-TP (Silvex)	100	58	3.8	3.8	500	0.0200 U	0.0205 U	0.0206 U	0.0205 U	0.0205 U	0.178 U	0.185 U	0.205 l	J 0.199 U	0.189 U	0.2
PCB, 8082 MASTER	mg/kg	mg/kg	mg/kg	mg/Kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg						
Dilution Factor						1	1	1	1	1						
Aroclor 1016	~	~	~	~	~	0.0167 U	0.0171 U	0.0171 U	0.0170 U	0.0171 U		0.0517 U	0.0589 L	J 0.0568 U	******	0.0605
Aroclor 1221 Aroclor 1232	~	~	~	~	~	0.0167 U 0.0167 U	0.0171 U 0.0171 U		0.02.0	0.0171 U 0.0171 U	0.0001	0.0517 U 0.0517 U	0.0589 U	J 0.0568 U J 0.0568 U	0.00 10	0.0605 0.0605
Aroclor 1232 Aroclor 1242	~	~	~	~	~	0.0167 U	0.0171 U			0.0171 U						0.0605
Aroclor 1248	~	~	~	~	~	0.0167 U	0.0171 U		0.0170 U	0.0171 U			0.0589	J 0.0568 U		0.0605
Aroclor 1254	~	~	~	~	~	0.0167 U	0.0171 U			0.0171 U		0.0517 U	0.0589 L	J 0.0568 U		0.0605
Aroclor 1260	~	~	~	~	~	0.0167 U	0.0171 U		0.0170 U	0.0171 U		0.0517 U	0.0589 l	J 0.0568 U	0.0549 U	0.0605
Total PCBs	1	1	0.1	3.2	1	0.0167 U	0.0171 U		0.01.0	0.0171 U	0.0537 U	0.0517 U	0.0589 L	J 0.0568 U	0.0549 U	0.0605
PFAS, NYSDEC Target List	1					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
Dilution Factor 1H,1H,2H,2H-Perfluorodecanesulfonic acid (8:2 FTS)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U	0.000785 U	0.000796 U	0.000783 L	J 0.000799 U	0.000793 U	0.000782
1H,1H,2H,2H-Perfluorooctanesulfonic acid (6:2 FTS)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U		0.000796 U	0.000783 U	J 0.000799 U		0.000782
N-EtFOSAA	~	~	~	~	~	0.00024 U	0.00026 U			0.00025 U		0.000100	0.000100	0.000100	0.000700	3.000102
N-MeFOSAA	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U					<u> </u>	
Perfluoro-1-decanesulfonic acid (PFDS)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U		0.000199 U	0.000196 l	J 0.0002 U		0.000196
Perfluoro-1-heptanesulfonic acid (PFHpS)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U	0.000196 U	0.000199 U	0.000196 U	J 0.0002 U	0.000198 U	0.000196
Perfluoro-1-octanesulfonamide (FOSA)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U	0.000196 U	0.000199 U	0.000196 L	J 0.0002 U	0.000100	0.000196
Perfluorobutanesulfonic acid (PFBS) Perfluorodecanoic acid (PFDA)	~	~	~	~	~	0.00024 U 0.00024 U	0.00026 U 0.00026 U	0.00025 U 0.00025 U	0.00024 U 0.00024 U	0.00096 0.00025 U	0.000196 U 0.000196 U	0.000199 U 0.000199 U	0.000196 U	J 0.0002 U J 0.0002 U	0.000198 U 0.000198 U	0.000196 0.000196
Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDA)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U		0.00025 U		0.000199 U		J 0.0002 U		0.000196
Perfluoroheptanoic acid (PFHpA)	~	~	~	~	~	0.00024 U	0.00026 U			0.00025 U		0.000199 U		J 0.0002 U		0.000196
Perfluorohexanesulfonic acid (PFHxS)	~	~	~	~	~	0.00024 U	0.00026 U			0.00025 U				J 0.0002 U		0.000196
Perfluorohexanoic acid (PFHxA)	~	~	~	~	~	0.00024 U	0.00026 U	0.00025 U	0.00024 U	0.00025 U	0.000196 U	0.000199 U	0.000196 L	J 0.0002 U	0.000198 U	0.00007
Perfluoro-n-butanoic acid (PFBA)	~	~	~	~	~	0.00024 U	0.00026 U		0.00024 U	0.00025 U	0.000785 U	0.000796 U	0.000783 L	J 0.000799 U		0.000782
Perfluorononanoic acid (PFNA)	~	~	~	~	~	0.00024 U	0.00026 U		0.00024 U	0.00025 U	0.000196 U	0.000199 U	0.000196 U	J 0.0002 U		0.000196
Perfluorooctanesulfonic acid (PFOS)	~	~	~	~	~	0.00024 U	0.00026 U		0.00024 U	0.00025 U		0.0001	0.00020	0.00011 J	0.0001	0.00020
Perfluorooctanoic acid (PFOA) Perfluoropentanoic acid (PFPeA)	~	~	~	~	~	0.00024 U 0.00024 U	0.00026 U 0.00026 U			0.00025 U 0.00025 U		0.000199 U 0.000199 U	0.00000	U 0.0002 U 0.0002 U		0.000196 0.000196
Perfluoropentanoic acid (PFPeA) Perfluorotetradecanoic acid (PFTA)	~	~	~	~	~	0.00024 U	0.00026 U 0.00026 U					***********		_		0.000196
i emuorotetrauecanoic aciu (PFTA)	~				~		0.00026 U									0.000196
Perfluorotridecanoic acid (PFTrDA)	~	~	~	~		0.00024 U		0.00025 U	0.00024 U	0.00025 U				J 0.0002 U	0.000198 U	

Table 7

Post Excavation Confirmation Soil samples - Analytical Results Summary Ebenezer Plaza 2 BCP No. C224241 589 Christopher Avenue, Brooklyn, NY

NOTES:

Any Regulatory Exceedences are color coded by Regulation

Q is the Qualifier Column with definitions as follows:

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) data is estimated U=analyte not detected at or above the level indicated

~=this indicates that no regulatory limit has been established for this analyte

UUSCO= NYSDEC Part 375 Unrestricted Use Soil Cleanup Objectives
RRSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives -Restricted Residential
RSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Residential
CSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Commercial
PGSCO= NYSDEC Part 375 Restricted Use Soil Cleanup Objectives-Protection of GW

Date	Hauler License Plate	Actual Weight (tons)	Weight Ticket Number	Origin	Material Type
11/7/2022	TR[?]80H	20.45	1229244 / 100851785	Tully Environmental	Quarry stone
11/7/2022	AX630Z	20.64	1229245 / 100851788	Tully Environmental	Quarry stone
11/7/2022	AY773S	20.72	1229245 / 100851789	Tully Environmental	Quarry stone
11/7/2022	AW754A	21.13	1229247 / 100851792	Tully Environmental	Quarry stone
11/7/2022	AU148N	26.55	1229250 / 100851800	Tully Environmental	Quarry stone
11/7/2022	AX771Y	25.21	1229256 / 100851819	Tully Environmental	Quarry stone
11/7/2022	AU205L	21.21	1229296 / 100851893	Tully Environmental	Quarry stone
11/7/2022	AX489Z	21.04	1229292 / 100851894	Tully Environmental	Quarry stone
11/7/2022	AX603Z	21.34	1229299 / 1008551902	Tully Environmental	Quarry stone
11/7/2022	AT380H	20.59	1229298 / 100851907	Tully Environmental	Quarry stone
11/7/2022	AU514N	21.39	1229307 / 100851902	Tully Environmental	Quarry stone
11/7/2022	AX462J	24.92	1229308 / 100851919	Tully Environmental	Quarry stone
11/7/2022	AT485Y	24.33	1229315 / 100851942	Tully Environmental	Quarry stone
11/8/2022	AX777Y	25.81	1229225 / 100851989	Tully Environmental	Quarry stone
11/8/2022	AX771Y	24.43	1229880 / 100852000	Tully Environmental	Quarry stone
11/8/2022	AX185Y	23.51	1229327 / 100852001	Tully Environmental	Quarry stone
11/9/2022	AX489Z	20.93	1229375 / 100852118	Tully Environmental	Quarry stone
11/9/2022	AT773S	21.13	1229383 / 100852125	Tully Environmental	Quarry stone
11/9/2022	AU740U	20.18	1229384 / 100852131	Tully Environmental	Quarry stone
11/9/2022	AW819K	20.18	1229384 / 100852131	Tully Environmental	Quarry stone
11/9/2022	AX630Z	21.43	1229388 / 100852133	Tully Environmental	Quarry stone
11/9/2022	AR497D	20.96	1229389 / 100852138	Tully Environmental	<u> </u>
11/9/2022		<u> </u>	1229389 / 100852138	<u> </u>	Quarry stone
	AT308H	20.13	· · · · · · · · · · · · · · · · · · ·	Tully Environmental	Quarry stone
11/9/2022	AW754A	21.4	1229391 / 100852141	Tully Environmental	Quarry stone
11/9/2022	AU522A	22	1229393 / 100852143	Tully Environmental	Quarry stone
11/9/2022	AT184B	25.11	1229399 / 100852151	Tully Environmental	Quarry stone
11/9/2022	AU205L	24.2	1229400 / 100852160	Tully Environmental	Quarry stone
11/10/2022	AU453S	21.78	1229466 / 100852353	Tully Environmental	Quarry stone
11/10/2022	AS687P	22.2	1229467 / 100852357	Tully Environmental	Quarry stone
11/10/2022	AT380H	21.89	1229469 / 100852359	Tully Environmental	Quarry stone
11/10/2022	AW636F	21.44	1229472 / 100852360	Tully Environmental	Quarry stone
11/10/2022	AR497D	21.84	1229475 / 100852364	Tully Environmental	Quarry stone
11/10/2022	AT184B	27.59	1229478 / 100852368	Tully Environmental	Quarry stone
11/10/2022	AU450S	24.43	1229481 / 100852375	Tully Environmental	Quarry stone
11/10/2022	AT380H	24.41	1229493 / 100852445	Tully Environmental	Quarry stone
11/17/2022		20.2	1229795 / 100853236	Tully Environmental	Quarry stone
11/17/2022		23.18	100853242	Tully Environmental	Quarry stone
11/17/2022		21.39	1229804 / 100853258	Tully Environmental	Quarry stone
11/17/2022		21.07	1229807 / 100853259	Tully Environmental	Quarry stone
11/17/2022		23.47	100853260	Tully Environmental	Quarry stone
11/17/2022		21.48	1229809 / 100853263	Tully Environmental	Quarry stone
11/17/2022		21.49	1229810 / 100853264	Tully Environmental	Quarry stone
11/17/2022		23.77	1229811 / 100853265	Tully Environmental	Quarry stone
11/17/2022		26.96	1229818 / 100853270	Tully Environmental	Quarry stone
11/17/2022		24.58	100853272	Tully Environmental	Quarry stone
11/17/2022		24.11	1229821 / 100853273	Tully Environmental	Quarry stone
11/17/2022		24.23	100853275	Tully Environmental	Quarry stone
11/17/2022		24.23	1229825 / 100853276	Tully Environmental	Quarry stone
11/17/2022		27.42	100853279	Tully Environmental	Quarry stone
	AVE70V			<u> </u>	
11/18/2022	AX578K	24.33	1229875 / 100853413	Tully Environmental	Quarry stone
11/18/2022	AW882K	24.11	1229885 / 100853424	Tully Environmental	Quarry stone
11/18/2022	AX578K	24.17	1229886 / 100853426	Tully Environmental	Quarry stone
11/18/2022	AU575G	25.41	1229888 / 100853427	Tully Environmental	Quarry stone
11/18/2022	AX847G	24	1229891 / 100853429	Tully Environmental	Quarry stone
11/18/2022	AX531P	27.23	1229890 / 100853430	Tully Environmental	Quarry stone
11/18/2022	AX532P	25.46	1229892 / 100853431	Tully Environmental	Quarry stone
11/18/2022	AW883X	25.7	1229901 / 100852444	Tully Environmental	Quarry stone
11/18/2022	AT524M	20.94	1229903 / 100853452	Tully Environmental	Quarry stone
11/18/2022	AY992B	21.24	1229906 / 100853465	Tully Environmental	Quarry stone
11/21/2022	AW399D	27.75	1229980 / 100853625	Tully Environmental	Quarry stone

Date	Hauler License Plate	Actual Weight (tons)	Weight Ticket Number	Origin	Material Type
11/21/2022	AW390D	26.74	1229982 / 100853626	Tully Environmental	Quarry stone
11/21/2022	AW400D	28.23	1229983 / 100853627	Tully Environmental	Quarry stone
11/21/2022	AX589Z	25.46	1229993 / 100853630	Tully Environmental	Quarry stone
11/21/2022	AT591Y	26.07	1229994 / 100853636	Tully Environmental	Quarry stone
11/21/2022	AT250E	27.32	1229995 / 100853637	Tully Environmental	Quarry stone
11/21/2022	AT773S	27.28	1229997 / 100853638	Tully Environmental	Quarry stone
11/21/2022	AR497D	25.89	1229998 / 100853640	Tully Environmental	Quarry stone
11/21/2022	AW658X	23.59 25.75	1230001 / 100853647 1230002 / 100853648	Tully Environmental	Quarry stone
11/21/2022 11/22/2022	AT184B AS421Z	23.99	1230002 / 100853848	Tully Environmental Tully Environmental	Quarry stone Quarry stone
11/22/2022	AT992B	23.83	1230003 / 100853821	Tully Environmental	Quarry stone
11/22/2022	AX532P	23.55	1230071 / 100853828	Tully Environmental	Quarry stone
11/22/2022	AK847G	25.62	1230081 / 100853842	Tully Environmental	Quarry stone
11/22/2022	AT524M	27.06	1230089 / 100853861	Tully Environmental	Quarry stone
11/22/2022	AT524M	20.48	1230086 / 100853904	Tully Environmental	Quarry stone
11/23/2022	AS421Z	24.33	1230[?] / 100854005	Tully Environmental	Quarry stone
11/23/2022	AU129V	23.04	12301 [?] / 100854021	Tully Environmental	Quarry stone
11/23/2022	AF523M	25.04	1230159 / 100854023	Tully Environmental	Quarry stone
11/23/2022	AX523P	19.08	1230151 / 100854027	Tully Environmental	Quarry stone
11/23/2022	AT524M	24.82	1230163 / 100854033	Tully Environmental	Quarry stone
11/28/2022	AW399D	24.78	100854183	Tully Environmental	Quarry stone
11/28/2022	AU144R	24.97	100854191	Tully Environmental	Quarry stone
11/28/2022	AX402W	26.77	100854193	Tully Environmental	Quarry stone
11/28/2022	AX122P	24.97	100854195	Tully Environmental	Quarry stone
11/28/2022	41174014	25.48	100854196	Tully Environmental	Quarry stone
11/28/2022 11/28/2022	AU742M AU143R	24.94 25.25	100854197 100854201	Tully Environmental Tully Environmental	Quarry stone
11/28/2022	AU143K AX5[?]Z	26.46	100854201	Tully Environmental	Quarry stone Quarry stone
11/28/2022	AAJ[:]Z	25.32	100854202	Tully Environmental	Quarry stone Quarry stone
11/28/2022	AU742M	25.78	100854206	Tully Environmental	Quarry stone
11/28/2022	AX489Z	25.55	100854237	Tully Environmental	Quarry stone
11/28/2022	AX489Z	26.26	100854287	Tully Environmental	Quarry stone
2/22/2023	AX866A	24.26	6204649	Impact Reuse and Recovery Center	·
2/22/2023	AX385x	27.23	6204650	Impact Reuse and Recovery Center	Structural Fill - Bluestone
2/22/2023	AX906X	25.7	6204651	Impact Reuse and Recovery Center	Structural Fill - Bluestone
2/24/2023	AX532P	24.41	6204813	Impact Reuse and Recovery Center	Structural Fill - Bluestone
2/24/2023	AX906X	26.7	6204817	Impact Reuse and Recovery Center	
2/24/2023	AX457G	26.92	6204830	Impact Reuse and Recovery Center	
2/24/2023	AX384F	25.94	6204831	Impact Reuse and Recovery Center	
2/24/2023	AX698F	25.85	6204832	Impact Reuse and Recovery Center	
3/1/2023	AW660X	26.15	205105	Impact Reuse and Recovery Center	
3/1/2023	AX122P	25.57	205106	Impact Reuse and Recovery Center	
3/1/2023 3/1/2023	AX118P AW400D	25.52 24.66	205109	Impact Reuse and Recovery Center Impact Reuse and Recovery Center	
3/1/2023	AW399D	24.66	205111 205113	Impact Reuse and Recovery Center	
3/1/2023	AX402W	26.38	205113	Impact Reuse and Recovery Center	
3/1/2023	AW270H	24.53	205115	Impact Reuse and Recovery Center	
3/1/2023	AX540W	25.64	205116	Impact Reuse and Recovery Center	
3/1/2023	AW659X	24.04	205117	Impact Reuse and Recovery Center	
3/1/2023	AX119P	24.72	205118	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/3/2023	AT773S	24.48	6206693	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/3/2023	AT380H	26.16	6206698	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/3/2023	AS126P	26.5	6206751	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/3/2023	AT380H	24.24	6206755	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/3/2023	AT773S	24.71	6206756	Impact Reuse and Recovery Center	
4/4/2023	AT184B	25.54	6206762	Impact Reuse and Recovery Center	
4/4/2023	AX489Z	24.79	6206782	Impact Reuse and Recovery Center	
4/4/2023	AX532Z	22.16	6206804	Impact Reuse and Recovery Center	
4/4/2023	AW256P	24.61	6206805	Impact Reuse and Recovery Center	
4/4/2023	AW799P	26.14	6206806	Impact Reuse and Recovery Center	
4/4/2023	AT380H	24.37	6206839 6206840	Impact Reuse and Recovery Center Impact Reuse and Recovery Center	
4/4/2023 4/4/2023	AT250E AS126P	26.54 26.45	6206840	Impact Reuse and Recovery Center	
4/4/2023	A3120F AT773S	25.09	6206842	Impact Reuse and Recovery Center	
772023	.117733	25.05	32000-72	pase rease and recovery center	Structural Fill - Bluestone

Date	Hauler License Plate	Actual Weight (tons)	Weight Ticket Number	Origin	Material Type
4/5/2023	AX185Y	25.25	6206875	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AS126P	23.8	6206884	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AT380H	22.48	6206901	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AT184B	25.34	6206902	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AU148N	23.6	6206904	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AW755A	23.7	6206905	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/5/2023	AS126P	25.32	6206906	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/6/2023	AT250E	25.44	6206926	Impact Reuse and Recovery Center	
4/6/2023	AW755A	24.54	6206957	Impact Reuse and Recovery Center	
4/6/2023	AX630Z	25.43	6206960	Impact Reuse and Recovery Center	
4/6/2023	AU148N	24.53	6206963	Impact Reuse and Recovery Center	
4/6/2023	AT184B	25.3	6206964	Impact Reuse and Recovery Center	
4/7/2023	AT250E	24.55	6206975	Impact Reuse and Recovery Center	
4/7/2023	AY687J	25.45	6206980	Impact Reuse and Recovery Center	
4/10/2023	AT250E	25.95	6207045	Impact Reuse and Recovery Center	
4/10/2023	AS126P	23.95	6207048	Impact Reuse and Recovery Center	
4/10/2023	AX489Z	24.31	6207065	Impact Reuse and Recovery Center	
4/10/2023	AW256P	24.86	6207075	Impact Reuse and Recovery Center	
4/10/2023	AW417A AX532Z	25.78 24.34	6207076 6207077	Impact Reuse and Recovery Center	
4/10/2023 4/10/2023	AY687J	24.34	6207116	Impact Reuse and Recovery Center Impact Reuse and Recovery Center	
4/10/2023	AT380H	24.83	6207117	Impact Reuse and Recovery Center	
4/11/2023	AX630Z	25.79	6207177	Impact Reuse and Recovery Center	
4/11/2023	AW754A	25.84	6207171	Impact Reuse and Recovery Center	
4/11/2023	AT773S	26.23	6207172	Impact Reuse and Recovery Center	
4/17/2023	AR497D	23.3	6207471	Impact Reuse and Recovery Center	
4/17/2023	AS126P	25.16	6207472	Impact Reuse and Recovery Center	
4/17/2023	AT773S	25.32	6207474	Impact Reuse and Recovery Center	
4/17/2023	AT184B	25.91	6207483	Impact Reuse and Recovery Center	
4/17/2023	AT250E	25.57	6207598	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/17/2023	AW395K	26.19	6207599	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/18/2023	AX532Z	25	6207611	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/20/2023	AW256P	25.98	6207933	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/20/2023	AX532Z	25.26	6207936	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/20/2023	AU206H	24.96	6207939	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/20/2023	AY996C	25.57	6207940	Impact Reuse and Recovery Center	Structural Fill - Bluestone
4/20/2023	AX564M	26.43	6207950	Impact Reuse and Recovery Center	
4/20/2023	AT250E	23.11	6208078	Impact Reuse and Recovery Center	
4/21/2023	AR497D	25.73	6208225	Impact Reuse and Recovery Center	
4/21/2023	AW417A	23.14	6208230	Impact Reuse and Recovery Center	
4/21/2023	AS126P	23	6208232	Impact Reuse and Recovery Center	
4/21/2023	AW256P	24.13	6208233	Impact Reuse and Recovery Center	
5/4/2023	AT380H	26.39	6209561	Impact Reuse and Recovery Center	
5/4/2023	AW755A	26	6209550 6209549	Impact Reuse and Recovery Center Impact Reuse and Recovery Center	
5/4/2023	AT250E AT184B	25.78 25.22		Impact Reuse and Recovery Center	
5/4/2023 5/5/2023	AR497D	23.22	6209541 6209747	Impact Reuse and Recovery Center	1
5/5/2023	AT380H	25.17	6209743	Impact Reuse and Recovery Center	
5/8/2023	AT184B	24.52	6209932	Impact Reuse and Recovery Center	
5/8/2023	AT380H	25.09	6209916	Impact Reuse and Recovery Center	
5/22/2023	AT184B	23.89	6211562	Impact Reuse and Recovery Center	
5/22/2023	AW417A	25.67	6211563	Impact Reuse and Recovery Center	
5/22/2023	AR497D	23.2	6211564	Impact Reuse and Recovery Center	
5/22/2023	AW755A	24.98	6211565	Impact Reuse and Recovery Center	
5/22/2023	AS126P	25.24	6211566	Impact Reuse and Recovery Center	
5/22/2023	AU745M	23.06	6211716	Impact Reuse and Recovery Center	
5/22/2023	AW400D	23.01	6211718	Impact Reuse and Recovery Center	
5/22/2023	AY326F	23.32	6211724	Impact Reuse and Recovery Center	
5/22/2023	AY284A	23.85	6211731	Impact Reuse and Recovery Center	
5/22/2023	AX402W	25.24	6211741	Impact Reuse and Recovery Center	

Date	Hauler License Plate	Actual Weight (tons)	Weight Ticket Number	Origin	Material Type
6/6/2023	AT184B	25.27	6212893	Impact Reuse and Recovery Center	Structural Fill - Bluestone
6/6/2023	AT250E	24.45	6212895	Impact Reuse and Recovery Center	Structural Fill - Bluestone
6/6/2023	AW755A	21.22	6212903	Impact Reuse and Recovery Center	Structural Fill - Bluestone
6/6/2023	AT773S	23.96	6212924	Impact Reuse and Recovery Center	
6/7/2023	AT380H	26.01	6212937	Impact Reuse and Recovery Center	
6/7/2023	AP552Y	25.42	6212977	Impact Reuse and Recovery Center	
6/7/2023	AX406N	23.19	6212978	Impact Reuse and Recovery Center	
6/7/2023	AW858W	24.45	6212980	Impact Reuse and Recovery Center	
6/22/2023	AY687J AU148N	25.41 24.36	6214047	Impact Reuse and Recovery Center	
6/22/2023 6/22/2023	AU148N AT773S	24.30	6214048 6214049	Impact Reuse and Recovery Center Impact Reuse and Recovery Center	
8/24/2023	AX908X	25.41	6217108	Impact Reuse and Recovery Center	
9/7/2023	AX866A	25.17	6217765	Impact Reuse and Recovery Center	
9/7/2023	AT523M	24.07	6217766	Impact Reuse and Recovery Center	
9/7/2023	AX385F	23.5	6217767	Impact Reuse and Recovery Center	
9/7/2023	AX907X	25.39	6217772	Impact Reuse and Recovery Center	Structural Fill - Bluestone
6/17/2024	AT477J	25.16	100045645	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW262N	25.29	100045646	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AU857D	25.66	100045647	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AU422T	25.27	100045648	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AP552Y	25.62	100045649	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AY843W	25.83	100045650	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW858W	24.59	100045651	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AY189N	25.07	100045652	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024 6/17/2024	AW854W AX630Z	26.17 25.12	100045653 100045660	Impact Materials Jersey City Impact Materials Jersey City	Structural Fill - Bluestone Structural Fill - Bluestone
6/17/2024	AT184B	25.12	100045661	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AT380H	26.09	100045662	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW755A	25.14	100045663	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AX532Z	24.7	100045664	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW799P	24.31	100045665	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AX489Z	24.86	100045666	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW256P	23.64	100045667	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AY687J	24.49	100045668	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AT250E	25.01	100045669	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AU148N	25.85	100045670	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW417A	26.27	100045671	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW395K	25.16	100045676	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW754A AX630Z	25.15 25.36	100045677 100045678	Impact Materials Jersey City Impact Materials Jersey City	Structural Fill - Bluestone Structural Fill - Bluestone
6/17/2024 6/17/2024	AW755A	22.85	100045681	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AT380H	26.21	100045685	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW256P	23.89	100045687	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AW799P	25.83	100045688	Impact Materials Jersey City	Structural Fill - Bluestone
6/17/2024	AU205L	25	100045686	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AU750G	25.72	100045690	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AW421C	25.11	100045695	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AW823D	26.06	100045700	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AU148N	25	100045701	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AX630Z	24.16	100045703	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AW799P	25.2	100045705	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AT380H	23.87	100045706	Impact Materials Jersey City	Structural Fill Bluestone
6/18/2024 6/18/2024	AW754A AU205L	25.12 24.77	100045707 100045708	Impact Materials Jersey City Impact Materials Jersey City	Structural Fill - Bluestone Structural Fill - Bluestone
6/18/2024 6/18/2024	AU205L AW395K	25.81	100045708	Impact Materials Jersey City Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AU548H	26.28	100045716	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AT477J	26.21	100045717	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AU857D	24.54	100045720	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AW854W	24.26	100045721	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AR175A	25.42	100045726	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AW256P	24.35	100045727	Impact Materials Jersey City	Structural Fill - Bluestone
6/18/2024	AX532Z	24.44	100045728	Impact Materials Jersey City	Structural Fill - Bluestone

Date	Hauler License Plate	Actual Weight (tons)	Weight Ticket Number	Origin	Material Type
6/19/2024	AW754A	25.23	100045729	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW395K	25.89	100045730	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU205L	24.93	100045735	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW417A	25.82	100045737	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW799P	25.7	100045738	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AX630Z	24.91	100045739	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AT380H	25.22	100045740	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AY237Z	25.62	100045741	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AT250E	25.45	100045743	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU857D	25.05	100045744	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU148N	24.91	100045745	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AT184B	27.08	100056746	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AX489Z	25.2	100046947	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AY687J	24.69	100045748	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AR175A	25.12	100045749	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW755A	25.14	100045751	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AX532Z	25.23	100045757	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW754A	25.22	100045758	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AY928L	25.4	100045759	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW894F	24.77	100045760	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AX630Z	24.96	100045763	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW256P	24.77	100045764	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AT250E	25.17	100045765	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU148N	24.45	100045766	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU587D	26.2	100045769	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AX489Z	24.98	100045770	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AU548H	22.65	100045771	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AW845W	23.81	100045772	Impact Materials Jersey City	Structural Fill - Bluestone
6/19/2024	AY189N	24.64	100045773	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AR175A	26.23	100045774	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AU750G	25.98	100045775	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AX845D	26.33	100045776	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AX630Z	26.41	100045784	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AU163G	27.17	100045785	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AY928L	25.85	100045788	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AW894F	24.11	100045791	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AU148N	26.09	100045794	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AT250E	23.62	100045796	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AW395K	24.51	100045801	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AW954A	26.3	100045802	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AY237Z	24.59	100045803	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AX489Z	26.44	100045804	Impact Materials Jersey City	Structural Fill - Bluestone
6/20/2024	AU857D	24.47	100045805	Impact Materials Jersey City	Structural Fill - Bluestone
6/21/2024	AU857D	25.9	100045826	Impact Materials Jersey City	Structural Fill - Bluestone
6/21/2024	AT477J	26.24	100045823	Impact Materials Jersey City	Structural Fill - Bluestone
6/21/2024	AU548H	26.28	100045829	Impact Materials Jersey City	Structural Fill - Bluestone

Total (tons)	7198.57
(CY)	5110.9847

Sample ID				CS-29		CS-49		CS-101		CS-102		CS-103		TB-1	
Sampling Date	Part 375	Part 375	Part 375	8/31/2022	8/31/2022		10/17/2022		2	11/15/2022		11/15/202	2	5/25/2022	!
Sample Depth (ft bgs)	RRSCOs	UUSCOs	PGSC0s	6.5		6.5		17		17		17		17-19	
VOA, 8260 MASTER															
Dilution Factor				1		1		500		500		100		200	
1,1-Dichloroethane	26	0.27	0.27					0.26	U	0.31	U	0.30	U	0.46	U
1,2,4-Trimethylbenzene	52	3.6	3.6	0.0034	U	0.0026	U	30	D	36	D	12	D	53	D
1,3,5-Trimethylbenzene	52	8.4	8.4	0.0034	U	0.0026	U	65	D	55	D	31	D	15	D
Benzene	4.8	0.06	0.06					0.26	U	0.31	U	0.30	U	2.7	D
Ethyl Benzene	41	1	1	0.0034	U	0.0026	U	3.2	D	7.3	D	2.6	D	12	D
Methylene chloride	100	0.05	0.05					0.52	U	0.61	U	0.59	U	0.92	U
Naphthalene	100	12	12	0.0034	U	0.0026	U	3.6	D	0.750	JD	16	D	9.8	D
n-Butylbenzene	100	12	12					7.80	D	5.90	D	2.50	D	2.2	D
n-Propylbenzene	100	3.9	3.9					3.70	D	3.20	D	1.70	D	7.3	D
Toluene	100	0.7	0.7					0.26	U	0.31	U	0.30	U	38	D
Xylenes, Total	100	0.26	1.6	0.0100	U	0.0077	U	13	D	17	D	5.3	D	83	D
SVOA, 8270 MASTER	-														
Dilution Factor				2		2		2		2		20		2	
Naphthalene	100	12	12	0.0439	U	0.0416	U	0.897	D	1.160	D	48.1	D	1.53	D
Metals, NYSDEC Part 375	-														
Dilution Factor				1		1		1		1		1		1	
Lead	400	63	450	75.2		6.6		12.8		19.1		20.5		32.1	
Manganese	2000	1600	2000	319		558		296		149		128		180	
Nickel	310	30	130	10		32.2		19.1		17.5		19.6		10.9	
Zinc	10000	109	2480	84.3		15.1		14.9		14.9		15.2		32.9	
Mercury by 7473															
Dilution Factor				1		1		1		1		1		1	
Mercury	0.81	0.18	0.73	0.0970		0.0307	U	0.0306	U	0.0314	U	0.0315	U	0.0343	U

Table 9
Remanining Soil Contamination
Ebenezer Plaza 2
BCP No. C224241
589 Christopher Avenue, Brooklyn, NY

Sample ID				TB-1		TB-1		TB-1		TB-1 TB-2 5/25/2022 5/25/2022			TB-6		TB-6		TB-6		TB-6		
Sampling Date	Part 375 RRSC0s	Part 375 UUSCOs	Part 375 PGSC0s	5/25/2022		5/25/2022		5/25/2022				5/25/2022		5/25/2022		5/25/2022		5/25/2022		5/25/2022	
Sample Depth (ft bgs)	RRSCUS	UUSCUS	PGSCOS	19-21		21-23		23-25		25-27		17-19		17-19		19-21		21-23		25-27	
VOA, 8260 MASTER															•						
Dilution Factor				500		500		200		1		1000		2000		1000		1000		200	
1,1-Dichloroethane	26	0.27	0.27	1.5	U	0.52	U	0.51	U	0.0031	U	2.6	U	0.5	U	0.25	U	0.58	U	0.58	U
1,2,4-Trimethylbenzene	52	3.6	3.6	5.5	D	110	D	0.84	JD	0.045		7.7	D	240	D	370	D	420	D	35	D
1,3,5-Trimethylbenzene	52	8.4	8.4	2.9	JD	29	D	0.51	U	0.011		100	D	200	D	93	D	160	D	12	D
Benzene	4.8	0.06	0.06	1.5	U	3.8	D	0.51	U	0.0031	U	2.6	U	0.5	U	0.25	U	0.58	U	0.58	U
Ethyl Benzene	41	1	1	2.1	JD	24	D	0.51	U	0.0046	J	310	D	270	D	57	D	160	D	11	D
Methylene chloride	100	0.05	0.05	3	U	1	U	1.7	JD	0.052		5.2	U	2.7	D	0.53	JD	5.2	D	14	D
Naphthalene	100	12	12	2.1	JD	19	D	0.51	U	0.052		170	D	140	D	69	D	110	D	8.1	D
n-Butylbenzene	100	12	12	7.1	D	3.9	D	0.51	U	0.0042	J	26	D	18	D	16	D	29	D	1.6	D
n-Propylbenzene	100	3.9	3.9	32	D	13	D	0.51	U	0.004	J	120	D	100	D	48	D	100	D	6.8	D
Toluene	100	0.7	0.7	3.8	D	80	D	0.52	JD	0.014		2.6	U	0.5	U	0.25	U	0.58	U	0.58	U
Xylenes, Total	100	0.26	1.6	8.8	JD	160	D	1.5	U	0.027		13	JD	53	D	66	D	160	D	6.1	D
SVOA, 8270 MASTER	-		•																		
Dilution Factor				2		2		2		2		2		2		20		20		2	
Naphthalene	100	12	12	1.85	D	1.19	D	0.385	D	0.0507	U	1.84	D	1.95	D	9.06	D	15.5	D	2.82	D
Metals, NYSDEC Part 375	-	-	•																		
Dilution Factor				1		1		1		1		1		1		1		1		1	
Lead	400	63	450	37.2		13.4		2.46		0.794		6.3		3.39		8.28		3.46		1.15	
Manganese	2000	1600	2000	179		236		133		244		130		392		213		139		111	
Nickel	310	30	130	13.1		13.1		18.8		7.59		16.8		16.6		17.8		16.8		6.6	
Zinc	10000	109	2480	33.7		24		16.8		12.4		13.7		11.4		15.3		12.3		7.73	
Mercury by 7473																					
Dilution Factor				1		1		1		1		1		1		1		1		1	
Mercury	0.81	0.18	0.73	0.0362	U	0.0346	U	0.0367	U	0.0365	U	0.0342	U	0.0341	U	0.0356	U	0.0355	U	0.0362	U

Table 9
Remanining Soil Contamination
Ebenezer Plaza 2
BCP No. C224241
589 Christopher Avenue, Brooklyn, NY

Sample ID				TB-6		TB-6		TB-5		TB-5		TB-5	TB-8	TB-13	TB-13	
Sampling Date	Part 375	Part 375	3/23/2022 3/23/2022 3/20/2022		5/26/2022		5/26/2022	5/26/2022	5/26/2022	5/26/2022						
Sample Depth (ft bgs)	RRSCOs	UUSC0s	PGSC0s	27-29		29-31		19-21		21-23		23-25	19-21	17-19	19-21	
VOA, 8260 MASTER											1			<u> </u>		
Dilution Factor				100		100		1		100		1	1	100	100	
1,1-Dichloroethane	26	0.27	0.27	0.31	U	0.23	U	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
1,2,4-Trimethylbenzene	52	3.6	3.6	27	D	3.8	D	0.0027	U	1	D	0.003 U	0.0024 U	0.29 U	0.3	
1,3,5-Trimethylbenzene	52	8.4	8.4	11	D	1.7	D	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
Benzene	4.8	0.06	0.06	0.31	U	0.23	U	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
Ethyl Benzene	41	1	1	11	D	2	D	0.0027	U	0.31	JD	0.003 U	0.0024 U	0.29 U	0.3	
Methylene chloride	100	0.05	0.05	0.84	JD	3.4	D	0.29	BE	2.9	D	0.077 B	0.16	1.2 D	0.91	
Naphthalene	100	12	12	8.2	D	1.1	D	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
n-Butylbenzene	100	12	12	1.9	D	0.26	JD	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
n-Propylbenzene	100	3.9	3.9	5.8	D	0.93	D	0.0027	U	0.31	JD	0.003 U	0.0024 U	0.29 U	0.3	
Toluene	100	0.7	0.7	0.31	U	0.23	U	0.0027	U	0.27	U	0.003 U	0.0024 U	0.29 U	0.3	
Xylenes, Total	100	0.26	1.6	4.5	D	0.74	JD	0.0081	U	0.8	U	0.0089 U	0.0073 U	0.86 U	0.89	
SVOA, 8270 MASTER	•															
Dilution Factor				2		2		2		2		2	2	2	2	
Naphthalene	100	12	12	0.767	D	0.0485	U	0.0485	U	0.05	U	0.0519 U	0.0491 U	0.0484 U	0.049	
Metals, NYSDEC Part 375	•								•				•			
Dilution Factor				1		1		1		1		1	1	1	1	
Lead	400	63	450	1.96		0.582	U	2.99		2.29		1.88	2.16	2.66	2.03	
Manganese	2000	1600	2000	120		293		405		230		110	111	229	194	
Nickel	310	30	130	8.3		6.52		18.2		19		17.2	16.1	17.8	20.1	
Zinc	10000	109	2480	9.9		13		17.4		17.7		12.8	30.5	16.2	13.8	
Mercury by 7473			-		'						<u> </u>		•	•		
Dilution Factor				1		1		1		1		1	1	1	1	
Mercury	0.81	0.18	0.73	0.0361	U	0.0349	U	0.0358	U	0.0361	U	0.0377 U	0.0354 U	0.0357 U	0.0357	

Table 10
Remaining Groundwater Contamination
Site Management Plan
Ebenezer Plaza 2 (EP-2)
BCP Site No. C224241
589 Christopher Avenue, Brooklyn, NY

SAMPLE ID:		MW-18F	R-D	MW-18R-S			
LAB ID:	NY-AWQS	L240433	2-09	L2404332-10 1/25/2024			
COLLECTION DATE:		1/25/20)24				
ANALYTE	(ug/l)	Conc	Q	Conc Q			
VOLATILE ORGANICS BY GC/MS							
1,2,4,5-Tetramethylbenzene	5	0.91	J	86			
1,2,4-Trimethylbenzene	5	9.7		14			
Ethylbenzene	5	0.74	J	7.4			
Naphthalene	10	1.4	J	73			
p/m-Xylene	5	1	J	18			

Notes:

* Comparison is not performed on parameters with non-numeric criteria.

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004.

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated Highlighted cells exceed NY-AWQS.

