DERBY TEXTILE CORP. NYSDEC SITE NO. C224266A 168 8TH STREET, BROOKLYN, NY 11215

OFF-SITE SOIL VAPOR INTRUSION REPORT

PREPARED FOR:

Derby Textile Corp. 41 Varick Avenue, Brooklyn, New York 11237 derbytextile@gmail.com

SUBMITTED TO:

Wendi Zheng NYSDEC 47-40 21st Street Long Island City, New York 11101

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

Usman Chaudhry, Senior Hydrogeologist Thomas Melia, PG, Senior Project Manager

PWGC Project Number: DTC2101

uchaudhry@pwgrosser.com thomasm@pwgrosser.com

MAY 2022

OFF-SITE SOIL VAPOR INTRUSION REPORT 168 8TH STREET, BROOKLYN, NEW YORK 11215

TABLE OF CONTENTS

PAGE

1.0	INTROD	DUCTION	2			
2.0	BACKGROUND					
	2.1 2.2	Site Description and Features Physical Setting	3 3			
	2.3 Previous Environmental Reports					
		2.3.1 203 9 Street, Brooklyn, NY	3 4			
	2.4	Land Use and Environmental History	4			
3.0	WORK I	PERFORMED AND RATIONALE	5			
	3.1 3.2	Scope of Assessment Soil Vapor Intrusion Survey	5 5			
	-	3.2.1 Sampling Protocol	5 6			
4.0	CONCLU	JSIONS AND RECOMMENDATIONS	8			
	4.1 4.2	Conclusions Recommendations	8 8			
5.0	REFERE	NCES	9			
6.0	LIMITA	ΓΙΟΝS1	.0			

OFF-SITE SOIL VAPOR INTRUSION REPORT 168 8TH STREET, BROOKLYN, NEW YORK 11215

FIGURES

FIGURE 1	Site Location Map
FIGURE 2	Site Plan
FIGURE 3	Sub-slab Vapor and Air Sample Detections
TABLES	
TABLE 1	Sub-slab Vapor and Air Sample Analytical Results – VOCs
TABLE 2	Sub-slab Vapor and Indoor Air Sample Matrices

APPENDICES

APPENDIX A	Right of Entry Request
APPENDIX B	Off-site Soil Vapor Intrusion Report by AMC Engineering PLLC
APPENDIX C	Indoor Air Quality Questionnaire and Building Inventory
APPENDIX D	Laboratory Data Report

CERTIFICATION

I, <u>Thomas Melia, PG</u>, certify that I am currently a Qualified Environmental Professional (QEP) as defined in 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 and that this Off-site Soil Vapor Intrusion Report (SVIR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

12 ne

Signature

5-6-2022

Date

1.0 INTRODUCTION

Derby Textile Corp. (Client) retained P.W. Grosser Consulting, Inc. (PWGC) to conduct an Off-Site Soil Vapor Intrusion (SVI) Survey for the properties located at 193 9th Street and 174 8th Street, Brooklyn, New York. The purpose of the Off-Site SVI Survey was to determine if Chlorinated Volatile Organic Compounds (CVOCs) solvent vapors from the former Derby Textile Site (168 8th Street, Brooklyn, New York) are migrating into adjacent buildings.

PWGC performed the Off-Site SVI Survey only at 193 9th Street as access to the building at 174 8th Street was denied. The Off-Site SVI Survey was performed in accordance with an Off-Site Soil Vapor Intrusion Work Plan (SVIWP) prepared by Environmental Business Consultants (EBC) in December 2019. The reply to PWGC's right of entry request from the owner at 174 8th Street is attached as **Appendix A**.

Work was conducted in accordance with the New York State Department of Environmental Conservation's (NYSDEC's) Division of Environmental Remediation's (DER's) Technical Guidance for Site Investigation and Remediation, May 2010 (DER-10), and the New York State Department of Health's (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006).

2.0 BACKGROUND

2.1 Site Description and Features

The property sampled as part of the Off-Site SVI Survey consists of one parcel located at 193 9th Street in Brooklyn, New York. The subject property is located in the Borough of Brooklyn and Kings County and is identified in the New York City Tax Map as Block 1003, Lots 64. The property measures approximately 0.16 acres and is occupied by a two-story community building currently used as Veterans of Foreign Wars (VFW) hall with a full basement. A Site Location Map is included as **Figure 1**.

2.2 Physical Setting

The subject property slopes to the west with an elevation of approximately twenty-four feet above mean sea level and is underlain by urban fill and glacial terrain.

2.3 Previous Environmental Reports

An Off-Site SVI Report was submitted to NYSDEC by AMC Engineering PLLC (AMC) on July 6, 2021, the offsite soil vapor intrusion sampling was performed at 230 9th Street and 193 9th Street, Brooklyn, NY. The summary of the Off-site SVIR findings are as follows:

2.3.1 203 9th Street, Brooklyn, NY

An onsite inspection and sampling were conducted by Environmental Business Consultants (EBC) on October 8, 2020. At the time of inspection, the property was developed with a 5-story mixed-use commercial and residential building with a basement. To evaluate the vapor intrusion potentials, one sub-slab soil vapor sample (SS2) and one co-located indoor air sample (IA2) were collected from the basement of the building and one outdoor ambient air sample (OA2) was collected from immediately outside the building. The indoor and outdoor air samples were collected directly into 6-litter SUMMA[®] canisters fitted with a 24-hour flow regulator. The sub-slab soil vapor sample was collected from a sub-slab gas implant installed immediately under the basement slab.

The analytical results indicated the presence of BTEX compounds and CVOCs in the sub-slab vapor, indoor air and outdoor air sample. The analytical results for the sub-slab vapor and indoor air samples for the CVOCs were evaluated using the NYSDOH Soil Vapor/Indoor Air decision matrices, the decision matrices indicated that the concentrations of the detected CVOCs fall within the "No Further Action" category of each matrix.

2.3.2 193 9th Street, Brooklyn, NY

An onsite inspection and sampling were conducted by Environmental Business Consultants (EBC) on October 8, 2020. At the time of inspection, the property was developed with a 2-story public facility with a basement. To evaluate the vapor intrusion potential, one sub-slab soil vapor sample (SS3) and one co-located indoor air sample (IA3) were collected from the basement of the building and one outdoor ambient air sample (OA3) was collected from immediately outside the building. The indoor and outdoor air samples were collected directly into 6-litter SUMMA[®] canisters fitted with a 24-hour flow regulator. The sub-slab soil vapor sample was collected from a sub-slab gas implant installed immediately under the basement slab.

The analytical results indicated the presence of BTEX compounds and CVOCs in the sub-slab vapor, indoor air and outdoor air sample. The analytical results for the sub-slab vapor and indoor air samples for the CVOCs were evaluated using the NYSDOH Soil Vapor/Indoor Air decision matrices, the decision matrices indicated that the concentrations of the detected CVOCs fall within the "Identify Source(s) and Resample or Mitigate".

Based on these findings, AMC recommended resampling the building at 193 9th Street and to make an additional attempt to sample the adjacent building at 174 8th Street. The Off-site Soil Vapor Intrusion report by AMC is included as **Appendix B**.

2.4 Land Use and Environmental History

The offsite property (193 9th Street) at the time of the inspection is developed with a 2-story public facility, currently occupied by a VFW hall with a full basement. The basement contained two storage closets and a soda fountain machine that feeds the bar on the 1st floor. A small sump pit with a pump was identified on the east of the staircase, few cracks and two small 1-inch holes were observed in the basement slab. The 1st floor of the building consisted of a bar and social area. The 2nd floor is utilized as an office space. A copy of the indoor air questionnaire completed during the inspection is included as **Appendix C**.

3.0 WORK PERFORMED AND RATIONALE

3.1 Scope of Assessment

The SVI Survey was focused on the building at 193 9th Street (VFW Hall), adjacent to the southeast of the Former Derby Textile Site to determine if CVOC vapors are migrating into adjacent residential and community buildings.

Fieldwork was performed on January 19 and 20, 2022.

3.2 Soil Vapor Intrusion Survey

To evaluate potential vapor intrusion at 193 9th Street, a soil vapor intrusion investigation was performed which included the collection of one sub-slab soil vapor sample (SV-1) below the basement floor slab, one indoor air sample (IA-1) in the vicinity of the sub-slab vapor sample and one outdoor air sample (OA-1). Sample locations are illustrated in **Figure 2**.

3.2.1 Sampling Protocol

Sampling was conducted in accordance with the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in New York State," (NYSDOH Guidance) October 2006. The sub-slab sample was collected into 6-liter Summa® vacuum canisters fitted with a 24-hour flow controller. The SUMMA® canisters were batch-certified clean by the laboratory. Proper quality assurance (QA) / quality control (QC) protocols were followed during the collection of samples to prevent cross-contamination in the field. The samples were submitted to Alpha Analytical of Westboro, Massachusetts for analysis of volatile organic compounds (VOCs) by USEPA Method TO-15.

For the sub-slab soil vapor sample, a temporary soil vapor probe was installed through the basement floor of the building at 193 9th street to a depth of two inches below the bottom of the slab to capture vapors potentially accumulating beneath the building's foundation. The soil vapor probe was composed of polyethylene tubing which was shrouded with #2 morie sand and sealed with a bentonite slurry. Prior to sampling, the integrity of the sampling port seal was tested using tracer gas analysis. The environment surrounding the seal was enriched with a tracer gas, helium, as readings were collected through the sampling probe with a portable helium detector. Tracer gas readings collected from the soil vapor probe were acceptable indicating the seal was intact and the sampling probes were acceptable for sample collection.

After the initial tracer gas test was performed, one to three volumes of the sample tubing were purged prior to collecting samples. Flow rates for both purging and collecting did not exceed 0.2 liters per minute to minimize potential indoor air infiltration during sampling.

One indoor air sample (IA-1) was collected concurrently with the sub-slab vapor sample. The indoor air sample was collected from a height representing the breathing zone (between 3 and 5 feet above the floor).

One outdoor air sample (OA-1) was collected at an upwind location in order to determine the potential contribution of outdoor air quality on the indoor air. Sampling personnel avoided lingering in the sampling area. The outdoor air sample was collected concurrently with the sub-slab vapor and indoor air samples.

3.2.2 Analytical Results

The primary method for the evaluation of sub-slab vapor and indoor air data in New York State is the use of Soil Vapor / Indoor Air Matrices provided in the NYSDOH Guidance document. The matrices incorporate both subslab vapor concentrations and their corresponding indoor air concentrations in a table to formulate an appropriate action for a sampling site. Matrices have been developed for 1,1-dichlorothene, cis-1,2dichloroethene, vinyl chloride, tetrachloroethene, trichloroethene, 1,1,1-trichloroethane, and carbon tetrachloride. Although matrices have not yet been developed for other compounds, consideration is given to the comparisons between the sub-slab vapor and indoor air concentrations to determine if vapor intrusion is occurring.

The analytical results show that CVOCs, tetrachloroethane (PCE) was detected in the sub-slab vapor sample at 23.1 μ g/m³. PCE was detected in indoor air sample (IA-1) at 3.49 μ g/m³ and outdoor air sample (OA-1) at 3.72 μ g/m³. Carbon tetrachloride was detected in IA-1 at 0.478 μ g/m³ and OA-1 at 0.516 μ g/m³. The sub-slab vapor, indoor and outdoor air sample detections are included in **Figure 3**.

Evaluation of the PCE and carbon tetrachloride results in sub-slab vapor sample (SV-1) and indoor air sample (IA-1) using the NYSDOH decision matrices indicated that the concentrations of the detected CVOCs fall within the "No Further Action" category of each matrix.

7

The sampling results and analysis included in the Off-site SVIR submitted to the DEC by AMC on July 6, 2021, were reviewed by PWGC. The analytical results of the sub-slab soil vapor (SS2), indoor air (IA2) and outdoor air (OA2) samples collected from the 203 9th street site indicated the presence of BTEX compounds with a maximum concentration of 14.92 μ g/m³ in the sub-slab vapor sample. CVOCs were also detected in sub-slab soil vapor(SS2), indoor air (IA2) and outdoor air (OA2) samples collected from the 203 9th street site. CVOCs were also detected in sub-slab soil vapor(SS2), indoor air (IA2) and outdoor air (OA2) samples collected from the 203 9th Street site. In the sub-slab vapor samples, TCE was detected at a concentration of 4.41 μ g/m³, PCE was detected at a concentration of 2.32 μ g/m³, carbon tetrachloride at a concentration of 0.46 μ g/m³ and methylene chloride was detected at a concentration of 2.84 μ g/m³. The indoor air sample contained TCE at a concentration of 0.32 μ g/m³, PCE at a concentration of 2.84 μ g/m³ and carbon tetrachloride at a concentration of 0.41 μ g/m³. The sub-slab vapor, indoor and outdoor air sample detections are included in **Figure 3**.

Evaluation of the TCE, PCE, methylene chloride and carbon tetrachloride results in sub-slab vapor sample (SS2) and indoor air sample (IA2) using the NYSDOH decision matrices indicated that the concentrations of the detected CVOCs fall within the "No Further Action" category of each matrix.

Analytical results for the sub-slab vapor samples and sub-slab vapor/indoor air matrices are detailed on **Tables 1** and **2**. The laboratory data report is included in **Appendix D**.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

PWGC performed an offsite soil vapor intrusion survey for the property located at 193 9th Street, Brooklyn, New York. The scope of the work was based upon the Off-Site Soil Vapor Intrusion Work Plan (SVIWP) prepared by Environmental Business Consultants (EBC) in December 2019. The SVI Survey was performed to determine if CVOC vapors are migrating into the building at 193 9th Street from the Former Derby Textile site located to the east.

The VIS consisted of the collection and analysis of one sub-slab vapor sample (SV-1), one indoor air sample (IA-1) and one outdoor air sample (OA-1).

PCE was detected in all three samples (SV-1, IA-1, OA-1), whereas carbon tetrachloride was detected in only two samples (IA-1, OA-1). Based on evaluation of the PCE and carbon tetrachloride detected in the sub-slab vapor sample and indoor air sample using NYSDOH decision matrices, a vapor intrusion condition does not appear to be present at the subject site.

4.2 Recommendations

Based on the conclusions detailed above, PWGC believes that no further action regarding soil vapor beneath the building at 193 9th Street.

5.0 REFERENCES

DER-10 / Technical Guidance for Site Investigation and Remediation.

NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006).

Off-site Soil Vapor Intrusion Report by AMC Engineering PLLC (July 6, 2021)

Soil Vapor Intrusion Work Plan by EBC (December 2019)

6.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on the data described in this report. These opinions have been arrived at in accordance with currently accepted engineering and hydrogeologic standards and practices applicable to this location, and are subject to the following inherent limitations:

- The data presented in this report are from visual inspections and examination of records prepared by others. The passage of time, manifestation of latent conditions, or occurrence of future events may require further exploration of the site, analysis of data, and re-evaluation of the findings, observations, and conclusions presented in this report.
- 2. The data reported and the findings, observations, and conclusions expressed are limited by the scope of work. The scope of work was defined by the request of the client.
- 3. No warranty or guarantee, whether expressed or implied, is made with respect to the data reported, findings, observations, or conclusions. These are based solely upon site conditions in existence at the time of the investigation, and other information obtained and reviewed by PWGC.
- 4. The conclusions presented in this report are professional opinions based on data described in this report. They are intended only for the purpose, site location, and project indicated. This report is not a definitive study of contamination at the site and should not be interpreted as such.
- 5. This report is based, in part, on information supplied to PWGC by third-party sources. While efforts have been made to substantiate this third-party information, PWGC cannot attest to the completeness or accuracy of information provided by others.

FIGURES

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C. LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

TABLES

Table 1Sub Slab Vapor SamplingAnalytical - Volatile Organic Compounds193 9th Street and 203 9th StreetBrooklyn, New York

Site Location:			193 9 th Str	reet				203 9 th Street			193 9 th Street	
Client Sample ID:	SV-1		IA-1		OA-1		SS2	IA2	OA2	SS3	IA3	OA3
Sample Type:	Sub Sla	ıb	Indoor		Outdoo	or	Sub Slab	Indoor	Outdoor	Sub Slab	Indoor	Outdoor
Laboratory ID:	L2203288	3-03	L2203288	-02	L2203288	8-01	CG95109	CG95105	CG95108	CH01858	CH01857	CH01856
Sampled By:	PWG	2	PWGC		PWGC	2	EBC	EBC	EBC	EBC	EBC	EBC
Sampling Date:	1/20/20	22	1/20/202	22	1/20/20	22	10/8/2020	10/8/2020	10/8/2020	10/20/2020	10/20/2020	10/20/2020
Volatile Organics in Air in μg/m ³					1							
1,1,1-Trichloroethane	1.09	<u>U</u>	0.109	<u>U</u>	0.109	U	ND	ND	ND	1.63	ND	ND
1,1,2,2-Tetrachloroethane	1.37	<u> </u>	1.37	0	1.37	U	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	1.09	<u> </u>	1.09	<u> </u>	1.09	U	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	0.809	0	0.809	0	0.809	0	ND	ND	ND	ND	ND	
1,1-Dichloroethene	0.793	<u> </u>	0.079		0.079	0						
1,2,4-Trimothylbonzono	5.7	0	0.083		0.083	0	3.07	1.23		1.67	1 16	
1,2,4-Trimethylbenzene	1.54	U	1.54	<u> </u>	1.54	U	5.07 ND	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	1.2	<u>U</u>	1.2	<u>U</u>	1.01	U	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.809	U	0.809	U	0.809	U	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.924	U	0.924	U	0.924	U	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	1.3		0.983	U	0.983	U	ND	ND	ND	ND	ND	ND
1,3-Butadiene	0.442	U	0.442	U	0.442	U	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	1.2	U	1.2	U	1.2	U	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1.2	U	1.2	U	1.2	U	ND	ND	ND	143	175	ND
1,4-Dioxane	0.721	U	0.721	U	0.721	U	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane	0.934	U	0.934	U	0.934	U	ND	ND	ND	ND	ND	ND
2-Butanone	2.46		1.47	U	1.47	U	ND	ND	ND	ND	ND	ND
2-Hexanone	0.82	U	0.82	U	0.82	U	ND	ND	ND	ND	ND	ND
3-Chloropropene	0.626	U	0.626	<u> </u>	0.626	U	ND	ND	ND	ND	ND	ND
4-Ethyltoluene	2.07		0.983	<u> </u>	0.983	0	2.8	1.5	ND	1.41	1.15	ND
4-Methyl-2-pentanone	2.05	U	2.05	U	2.05	U	4.09	ND 42.7	ND 6.2	ND 61.2	ND 24.2	ND
Acetone	0.620		0.30		0.30		94.7	42.7 ND	0.2	1.66	24.2	5.15 ND
Benzyl chloride	1.04		1.039	11	1.04	11						
Bromodichloromethane	1 34	<u> </u>	1.04	<u> </u>	1.04	<u></u> П	ND	ND	ND	ND	ND	
Bromoform	2.07	<u>U</u>	2.07	<u>U</u>	2.07	U	ND	ND	ND	ND	ND	ND
Bromomethane	0.777	U	0.777	U	0.777	U	ND	ND	ND	ND	ND	ND
Carbon disulfide	1.18		0.623	U	0.623	U	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	1.26	U	0.478		0.516		0.46	0.41	0.43	0.53	0.41	0.47
Chlorobenzene	0.921	U	0.921	U	0.921	U	ND	ND	ND	ND	ND	ND
Chloroethane	0.528	U	0.528	U	0.528	U	ND	ND	ND	ND	ND	ND
Chloroform	10.4		0.977	U	0.977	U	2.6	ND	ND	7.47	1.22	ND
Chloromethane	0.413	U	1.11		1.11		ND	1.06	1.12	9.74	ND	ND
cis-1,2-Dichloroethene	0.793	U	0.079	U	0.079	U	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.908	<u> </u>	0.908	<u>U</u>	0.908	U	ND	ND	ND	ND	ND	ND
Cyclohexane	0.688	<u> </u>	0.688	<u> </u>	0.688	U	ND	ND	ND	ND	ND	ND
Dibromochloromethane	1.7	U	1.7	U	1.7	U	ND	ND	ND	ND 2.01	ND	ND 1.70
Ethanol	2.12		2.00		2.00		1.43	1.59	1.45	2.01	2.13	1.79
	1.8		1.8	11	1.8	11	233	02.9 ND	19.0 ND		2.66	22.0 ND
Ethylhenzene	0.869	<u> </u>	0.869	<u>U</u>	0.869	U	1.6	1.05	ND	ND	2.00 ND	
Freon-113	1.53	U	1.53	U	1.53	U	NA	NA	NA	NA	NA	NA
Freon-114	1.4	U	1.4	U	1.4	U	NA	NA	NA	NA	NA	NA
Heptane	5.74		0.82	U	0.82	U	1.1	ND	ND	1.65	1.11	ND
Hexachlorobutadiene	2.13	U	2.13	U	2.13	U	ND	ND	ND	ND	ND	ND
Isopropanol	10.5		4.06		4.06		18.2	90.4	4.03	13.3	24.1	4.45
Methyl tert butyl ether	0.721	U	0.721	U	0.721	U	ND	ND	ND	ND	ND	ND
Methylene chloride	1.74	U	1.74	U	1.74	U	14.3	ND	ND	ND	ND	ND
n-Hexane	0.71	U	0.71	U	0.71	U	ND	ND	ND	ND	ND	ND
o-Xylene	3.07		0.869	U	0.869	U	2.27	1.29	ND	1.69	1.02	ND
p/m-Xylene -	3.25		1.74	0	1.74	U	6.38	4.18	1.27	3.53	2.44	ND
Styrene	1.01		0.852	<u> </u>	0.852	0	ND	ND	ND	ND	ND	ND
Tertiary butyl Alconol	0.43		1.52	U	1.52	0		ND 2.94	ND 2.91	ND 2.01	ND	1.07
Tetrabydrofuran	23.1 1 /17	11	3.49 1 17	11	3.1Z	11	2.32 8.31	2.04 1.29	2.01 ND			
	2.05	0	1.47	0	1.47	0	4.67	2.03	2.04	3.2	1.95	1.57
trans-1.2-Dichloroethene	0.793	IJ	0.793	U	0.793	U	ND	2.00 ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.908	<u>U</u>	0.908	<u></u>	0.908	U	ND	ND	ND	ND	ND	ND
Trichloroethene	1.07	U	0.107	U	0.107	U	4.41	0.32	ND	2.53	1.73	ND
Trichlorofluoromethane	1.41	-	1.31	-	1.31		5.01	1.65	1.55	1.25	1.26	1.23
Vinyl bromide	0.874	U	0.874	U	0.874	U	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.511	U	0.051	U	0.051	U	ND	ND	ND	ND	ND	ND

Notes:

Units are in ug/m³.

U - Not detected at the reported detection limit for the sample.

ND - Not Detected

NA - Not Analyzed

The Yellow highlighted values indicate exceedance of NYSDOH Soil Vapor/Indoor Air Decision Matrices .

Table 2Sub Slab Vapor / Indoor Air Decision MatricesSV-1/IA-1 and SS2/IA2

193 9th Street, Brooklyn, New York Sampled by PWGC									
NYSDOH Decision Matrix A			Indoor Air Concentration - Carbon Tetrachloride (µg/m ³)						
Sample Location SV-1/IA-1			< 0.2	0.2 to < 1	1 and Above				
				0.478					
					3. IDENTIFY				
de on	< 6	1 26	1 No further Action	2 No Eurther Action	SOURCE(S) and				
lab atii on n3)		1.20			RESAMPLE or				
b-S htr: http:// bch g/m					MITIGATE				
Su nce c. (u	6 to < 60		4. No Further Action	5. MONITOR	6. MITIGATE				
L CO					0				
	60 and Above		7. MITIGATE	8. MITIGATE	9. MITIGATE				
NYSDOH Decision Matrix B			Indoor Air Concer	ntration - Tetrachloroethene (PCE) ($\mu g/m^3$)				
Sample Location SV-1/IA-1			< 3	3 to < 10	10 and Above				
				3.49					
- ene					S. IDENTIFT				
b ithe m3	< 100	23.1	1. No further Action	2. No Further Action					
Sla rroe J/Jug/									
ub- ent hlo ((MITIGATE				
Si Dice PCE	100 to < 1,000		4. No Further Action	5. MONITOR	6. MITIGATE				
CC CC Tret	1 000 and Abovo								
·	203 9th S	treet Br	rooklyn New York Sample	ed by FBC	9. WITIGATE				
NVSDOH Decision Matrix A	200 501 0	пссі, ві		entration - Carbon Tetrachlori	de (ug/m ³)				
Sample Location SS2/IA2					1 and Above				
			< 0.2	0.2 t0 < 1	I and Above				
				0.41	3. IDENTIFY				
e J	< 6	0.46			SOURCE(S) and				
ab tiou n 3)			1. No further Action	2. No Further Action	RESAMPLE or				
-Sla Itra bo hlo 'm'					MITIGATE				
sub cen car .rac .rac									
s onn Tet	6 to < 60		4. No Further Action	5. MONITOR	6. MITIGATE				
0	60 and Above		7. MITIGATE	8. MITIGATE	9. MITIGATE				
NYSDOH Decision Matrix A			Indoor Air Conce	entration - Trichloroethene (T	CE) (μg/m³)				
Sample Location SS2/IA2			< 0.2	0.2 to < 1	1 and Above				
				0.32					
- l - l - l - l - l - l - l - l - l - l					3. IDENTIFY				
b ior m3	< 6	4.41	1 No further Action	2 No Eurther Action	SOURCE(S) and				
Sla trat oet			1. No further Action	2. No Fultier Action	RESAMPLE or				
ub- cent lor.					MITIGATE				
S onc ich TCI	6 to < 60		4. No Further Action	5. MONITOR	6. MITIGATE				
C	60 and Above		7. MITIGATE	8. MITIGATE	9. MITIGATE				
NYSDOH Decision Matrix B			Indoor Air Concent	tration - Methylene Chloride	(PCE) (μg/m³)				
Sample Location SS2/IA2			< 3	3 to < 10	10 and Above				
			ND						
- C					3. IDENTIFY				
ab itio ene de 3)	< 100	14.3	1. No further Action	2. No Further Action	SOURCE(S) and				
		14.5			RESAMPLE or				
Sub cer letl (ug					MITIGATE				
Son	100 to < 1,000		4. No Further Action	5. MONITOR	6. MITIGATE				
	1,000 and Above		7. MITIGATE	8. MIIIGAIE	9. MITIGATE				
Sample Location SS2/142					10 and Above				
Sample Location 332/IA2			284	3 10 < 10					
			2.04		3. IDENTIFY				
on ethe		2.32			SOURCE(S) and				
lab atii nroe ug/	< 100		1. No further Action	2. No Further Action	RESAMPLE or				
b-S intr hlo E) (
Su nce rac PCI	100 to < 1 000		4. No Further Action	5. MONITOR	6. MITIGATE				
Co Tet	1.000 and Above		7. MITIGATE	8. MITIGATE	9. MITIGATE				
	,								

APPENDIX A RIGHT OF ENTRY REQUEST

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C. LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

January 4, 2022

Mr. Timothy Sohn 174 8th Street Brooklyn, New York 11215

RE: Right of Entry Request Property: 174 8th Street, Brooklyn, NY Adjacent to 168 8th Street NYSDEC Site No. C224266A 168 8th Street, Brooklyn, NY

Mr. Sohn,

P.W. Grosser Consulting ("PWGC") is forwarding you this access request. PWGC understands that you are the owner of the Property referenced above, which is located in the vicinity of the New York State Department of Environmental Conservation (NYSDEC) site No. C224266A located at 168 8th Street, Brooklyn, NY.

The 168 8th Street, Brooklyn, NY site is currently in the New York State Brownfield Cleanup Program (BCP) and is identified as site No. C224266A. PWGC is conducting an investigation of subsurface environmental conditions in the vicinity of 168 8th Street, Brooklyn, NY at the direction of the NYSDEC, New York State Department of Health (NYSDOH), as well as with the previous owner of the 168 8th Street site, Derby Textile Corp.

As part of this investigation, PWGC hereby requests your permission to perform a sub-slab vapor intrusion investigation at your Property to determine if vapor intrusion conditions exist at your site that could be emanating from the BCP site. The investigation involves drilling a one-half-inch diameter hole through the basement concrete slab and into the sub-slab soil at your property. Tubing will be inserted into the drill hole and connected to a sampler that will collect a soil vapor sample over a 24-hour period. An indoor air sample will also be collected within the same time frame in the vicinity of the drill hole. Once the sampling period is over, the tubing and samplers will be removed from the Property and the drill hole will be sealed with concrete. PWGC will attempt to place the drill hole location in an inconspicuous location. Example photographs of the sampling equipment is provided as Attachment A. **This sampling will be performed at no cost to you.**

PWGC agrees that in performing this work, it will take all reasonable measures to avoid damage to your property and/or interference with the present use of your property. PWGC will indemnify, and hold you harmless from and against any loss, cost, damage, or expense arising out of the work on your property caused by PWGC's negligence, error and omissions. PWGC is willing to provide a general liability certificate of insurance. Upon completion of its investigation, PWGC will remove its equipment and restore your property to its condition prior to commencement of the work, including sealing the hole in the concrete slab.

Whether you consent to or refuse PWGC's request, please check the appropriate box, sign at the space provided below, and return this letter to me by January 17, 2021. A self-addressed envelope is provided for your convenience.

If you allow access, your signature will serve to grant PWGC (including their respective employees) permission to enter unto your property for the purpose of performing the work described above. You may

PHONE: 631.589.6353

PWGROSSER.COM

BOHEMIA, NY 11716

1

P.W. GROSSER CONSULTING, INC.

P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C.

revoke this permission at any time. If you have any questions about the terms of this letter or would like further information about PWGC's proposed work, please do not hesitate to contact Usman Chaudhry at the address in the footer of this letter or at (631) 609-1870. If you have any questions regarding the BCP site, please contact the NYSDEC project manager, Wendi Y Zheng, at <u>Wendi.Zheng@dec.ny.gov</u>. If you have any health-related questions, please contact the NYSDOH project manager, Sarita Wagh, at <u>Sarita.Wagh@health.ny.gov</u>.

Regards, P.W. GROSSER CONSULTING

Usman Chaudhry Senior Hydrogeologist

Enclosures:

cc: Alexander Fried, Derby Textile Corp.

Wendi Y Zheng, New York State Department of Environmental Conservation (NYSDEC) Jane H. O'Connell, P.G. New York State Department of Environmental Conservation (NYSDEC) Sarita Wagh, New York State Department of Health (NYSDOH)

I have read the preceding letter and represent and warrant that I have full authority to enter into this Access Agreement. I hereby grant PWGC and their respective employees to enter onto my Property under the terms described above.

I have read the preceding letter and hereby do not grant PWGC, permission to enter onto my Property under the terms described above.

Print Name: _	TIMOTHY SOHN	9
Title:	Owner, 174 Shst.	
Date:	1721	
Telephone:	646-403-9927	
E-mail:	Sohn management C gmail, co	m
On-site Contac	ct Personal:	9.1

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C.

PHONE: 631.589.6353 630 JOHNSON AVENUE, STE 7 PWGROSSER.COM BOHEMIA, NY 11716

2

LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

ATTACHMENT A

Image 1: View of an example of sub-slab soil for sampling drill hole.

Image 2: View of an example of sub-slab vapor sampling equipment.

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C. PHONE: 631.589.6353 630 JOHNSON AVENUE, STE 7 BOHEMIA, NY 11716

3

LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

APPENDIX B OFF-SITE SVIR BY AMC ENGINEERING PLLC

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C. LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

July 6, 2021

Wendi Zheng NYSDEC 47-40 21st Street Long Island City, NY 11101

Re: Off-Site Soil Vapor Intrusion Report Former Derby Textile Offsite 168 8th Street, Brooklyn, NY

Dear Ms. Zheng:

Introduction

In accordance with the Off-Site Soil Vapor Intrusion Work Plan (SVIWP) prepared by EBC (dated December 2019), a soil vapor intrusion analysis was performed at the following properties to determine if chlorinated solvent vapors from the former Derby Textile Site (168 8th Street, Brooklyn, NY) are migrating into adjacent residential and community buildings.

203 9th Street, Brooklyn, NY - 5-Story Residential Building 193 9th Street, Brooklyn, NY - 2-Story VFW Hall

The EBC sampler was denied access to the property located at 174 8th Street, Brooklyn, NY. The following report summarizes the data from the remaining two properties.

203 9th Street, Brooklyn, NY - 5-Story Residential Building

An on-site inspection of the building and basement for the building located at 203 9th Street, Brooklyn, NY was conducted on October 8, 2020. At the time of the inspection, the property was developed with a 5-story mixed use (residential & commercial) building occupied by a dojo and a yoga studio on the 1st floor and residential apartments on the 2nd through 5th floors. The basement level was finished, and consisted of a gym/recreational room, a bike storage room, an elevator, one storage room with chain-link subdividers, and a utility room. A copy of the indoor air questionnaire completed during the inspection is included in Attachment A.

On October 8, 2020, one sub-slab soil gas sample (SS2) and one co-located indoor air sample (IA2) was collected from basement of the building and one outdoor ambient air sample (OA2) was collected from immediately outside of the building. The indoor and outdoor air samples were collected directly into 6-liter Summa® canisters fitted with a 24-hour flow regulator, set at an approximate height of 3 to 5 ft above grade to simulate the height of the human breathing zone. The indoor air sample and outdoor air sample were collected at the same time as the sub-slab soil gas sample.

The sub-slab soil gas sample (SS2) was collected from a sub-slab soil gas implant (SS2) installed immediately beneath the basement slab by drilling a $\frac{1}{2}$ inch hole through the concrete slab with a

handheld drill and then inserting a ¹/₄ inch polyethylene to no more than 2 inches below the base of the slab. The tubing was then sealed at the surface with hydrated granular bentonite. Prior to sampling, the sub-slab soil gas implant was tested to ensure a proper surface seal had been obtained. In accordance with NYSDOH guidance (NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006), a tracer gas (helium) was used as a quality assurance/quality control device to verify the integrity of the sampling point seal prior to collecting the sample. No helium was detected indicating a tight seal.

Following verification that the surface seal was tight, each soil vapor probe was purged using a MultiRAE meter at a rate of 0.2 liters per minute to evacuate at least three sampling tube volumes. After purging, a 6-liter Summa® canister, fitted with a 24-hour flow regulator, was attached to the surface tube of the sub-slab soil gas implant. Prior to initiating sample collection, sample identification, canister number, date and start time were recorded on a tag attached to each Summa® canister, in a bound field notebook, and the chain of custody. Sampling then proceeded by fully opening the flow control valve (laboratory calibrated to collect sample over a 24-hr time period) on the Summa® canister for the indoor air sample (IA2), outdoor air sample (OA2) and sub-slab soil gas sample (SS2).

When the vacuum level in each Summa® canister was between 1 and 3 inches of mercury (each sample was collected between 23.5 hrs and 24 hrs), the flow controller valve was closed, and the sample end time and end vacuum were recorded on the tag, in a bound field notebook, and the chain of custody. Sampling The three samples were submitted to Phoenix Environmental Laboratories, Inc. (Phoenix) located at 587 East Middle Turnpike, Manchester, CT (NY Cert No. 11301) for laboratory analysis of VOCs EPA Method TO-15. A copy of the laboratory analytical report is included in Attachment C. Table 1 compares the analytical results to the compounds listed in Table 3.1 Air Guidance Values derived by the New York State Department of Health (NYSDOH) located in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion, dated October 2006 and the revised NYSDOH Decision Matrices dated May 2017. Sampling locations and all detections are shown on Figure 3.

The sub-slab soil gas sample (SS2) contained low levels of several petroleum related VOCs, with a total benzene, ethyl benzene, toluene, and xylenes (BTEX) concentration of 14.92 micrograms per cubic meter (μ g/m³). BTEX compounds were also detected in the two remaining indoor and outdoor air samples at low concentrations. The presence of these compounds is indicative of typical urban background levels and is not representative of an environmental concern.

Chlorinated VOCs detected within the sub-slab soil gas sample (SS2) include trichloroethene (TCE) at 4.41 μ g/m³, carbon tetrachloride at 0.46 μ g/m³, tetrachloroethene (PCE) at 2.32 μ g/m³, and methylene chloride at 14.3 μ g/m³. The indoor air ambient samples contained the chlorinated VOCs TCE at 0.32 μ g/m³, carbon tetrachloride at 0.41 μ g/m³, and PCE at 2.84 μ g/m³. The indoor air concentration for TCE is below the NYSDOH guideline of 2 μ g/m³, and the indoor air concentration for PCE is below the NYSDOH guideline of 30 μ g/m³.

The results for the sub-slab and indoor air samples for these compounds were compared to NYSDOH Soil Vapor/Indoor Air Decision Matrix A and Matrix B. For TCE and carbon tetrachloride, a sub-slab detection below $6 \ \mu g/m^3$ and ambient air concentration below $1 \ \mu g/m^3$ indicates that no further action is required. For PCE and methylene chloride a sub-slab detection

below 100 μ g/m³ and ambient air concentration below 10 μ g/m³ indicates that no further action is required.

Based on Soil Vapor/Indoor Air Matrix A and Matrix B (May 2017) and the TCE, carbon tetrachloride, PCE, and methylene chloride concentrations detected in indoor air sample IA2 and sub-slab soil gas sample SS2 collected within the building at 203 9th Street, Brooklyn, NY, NYSDOH recommends "No further action".

193 9th Street, Brooklyn, NY - 2-Story VFW Hall

EBC conducted an on-site inspection of the building and basement for the building located at 193 9th Street, Brooklyn, NY on October 8, 2020. At the time of the inspection, the property was developed with a 2-story public facility currently occupied by a VFW hall with a full basement. The basement was unfinished but contained two storage closets and a soda fountain machine that feeds the bar on the 1st floor. No active windows were identified, and the drop ceiling prevented inspection of the HVAC system. EBC noted a small sump with a pump and a few cracks in the basement slab. The buildings 1st floor consists of a bar and social area. The 2nd floor is utilized as an office. A copy of the indoor air questionnaire completed during the inspection is included in Attachment A.

On October 20, 2020, EBC collected one sub-slab soil gas sample from below the basement slab of the building (SS3), and one indoor (IA3) air sample from the basement, and one outdoor ambient air sample (OA3). The indoor and outdoor air samples were collected directly into 6-liter Summa® canisters fitted with a 24-hour flow regulator, set at an approximate height of 3 to 5 ft above grade to simulate the height of the human breathing zone. The indoor air sample and outdoor air sample were collected at the same time as the sub-slab soil gas sample.

The sub-slab soil gas sample (SS3) was collected from a sub-slab soil gas implant (SS2) installed immediately beneath the basement slab by drilling a ½ inch hole through the concrete slab with a handheld drill and then inserting a ¼ inch polyethylene to no more than 2 inches below the base of the slab. The tubing was then sealed at the surface with hydrated granular bentonite. Prior to sampling, the sub-slab soil gas implant was tested to ensure a proper surface seal had been obtained. In accordance with NYSDOH guidance (NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, February 2005), a tracer gas (helium) was used as a quality assurance/quality control device to verify the integrity of the sampling point seal prior to collecting the sample. No helium was detected indicating a tight seal.

Following verification that the surface seal was tight, each soil vapor probe was purged using a MultiRAE meter at a rate of 0.2 liters per minute to evacuate at least three sampling tube volumes. After purging, a 6-liter Summa® canister, fitted with a 24-hour flow regulator, was attached to the surface tube of the sub-slab soil gas implant. Prior to initiating sample collection, sample identification, canister number, date and start time were recorded on a tag attached to each Summa® canister, in a bound field notebook, and the chain of custody. Sampling then proceeded by fully opening the flow control valve (laboratory calibrated to collect sample over a 24-hr time period) on the Summa® canister for the indoor air sample (IA3), outdoor air sample (OA3) and sub-slab soil gas sample (SV3).

When the vacuum level in each Summa[®] canister was between 1 and 3 inches of mercury (each sample was collected between 23.5 hrs and 24 hrs), the flow controller valve was closed, and the sample end time and end vacuum were recorded on the tag, in a bound field notebook, and the chain of custody. The three samples were submitted to Phoenix Environmental Laboratories, Inc. (Phoenix) located at 587 East Middle Turnpike, Manchester, CT (NY Cert No. 11301) for laboratory analysis of VOCs EPA Method TO-15. A copy of the laboratory analytical report is included in Attachment C. Table 3 compares analytical results to the compounds listed in Table 3.1 Air Guidance Values derived by the New York State Department of Health (NYSDOH) located in the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion, dated October 2006 and the revised NYSDOH Decision Matrices dated May 2017. Sampling locations and detections are shown on Figure 3.

The sub-slab soil gas sample (SS3) contained low levels of several petroleum related VOCs, with BTEX concentration of 10.08 μ g/m³. BTEX compounds were also detected in the two remaining indoor and outdoor air samples at low concentrations. The presence of these compounds is indicative of typical urban background levels and is not representative of an environmental concern.

The sub-slab soil gas sample contained the chlorinated VOCs TCE at 2.53 μ g/m³, carbon tetrachloride at 0.53 μ g/m³, and PCE at 2.01 μ g/m³. The indoor air ambient samples contained the chlorinated VOCs TCE at 1.73 μ g/m³, carbon tetrachloride at 0.41 μ g/m³, and PCE at 1.17 μ g/m³. The indoor air concentration for TCE is below the NYSDOH guideline of 2 μ g/m³, and the indoor air concentration for PCE is below the NYSDOH guideline of 30 μ g/m³.

The results for the sub-slab soil gas and indoor air samples for these compounds were compared to the NYSDOH Soil Vapor/Indoor Air Decision Matrices A and B (as applicable for the specific compound). For tetrachloroethene (PCE), a sub-slab detection below 100 μ g/m³ and ambient air concentration below 10 μ g/m³ indicates that no further action is required. For TCE and carbon tetrachloride, a sub-slab detection below 6 μ g/m³ and ambient air concentration below 1 μ g/m³ indicates that no further action is required.

Based on Soil Vapor/Indoor Air Matrix A (May 2017) and the TCE concentrations detected in subslab soil gas sample SS3 and indoor air sample IA3 within the building located at 193 9th Street, Brooklyn, NY, NYSDOH recommends "Identify Source(s) and Resample or Mitigate".

Conclusions

A sub-slab soil gas sample (SS2), and indoor air sample (IA2) were collected from within the building located at 203 9th Street, Brooklyn, NY, and an outdoor ambient air sample (OA2) was collected from immediately outside of the building. Based on the results, "No further action" is required.

A sub-slab soil gas sample (SS3), and indoor air sample (IA3) were collected from within the building located at 193 9th Street, Brooklyn, NY, and an outdoor ambient air sample (OA3) was collected from immediately outside the building. Based on Soil Vapor/Indoor Air Matrix A (May 2017) and the TCE concentrations detected in sub-slab soil gas sample SS3 and indoor air sample IA3 within the building located at 193 9th Street, Brooklyn, NY, NYSDOH recommends "Identify Source(s) and Resample or Mitigate". Re-sampling of sub-slab soil gas and indoor air of the 193 9th Street building during the 2021 heating season is recommended. In addition, any potential source

for the TCE detected within the indoor sample should be identified, and any preferential pathways which may need to be sealed (such as cracks in the building slab or utility entry points) should be identified.

An additional attempt to obtain access to the 174 8th Street building should be made, and if access is obtained, both sub-slab soil gas and indoor air should be sampled during the 2021 heating season.

Please call if you have any questions or if you wish to discuss the findings of this report.

Sincerely, Ariel Czemerinski, PE AMC Engineering PLLC

TABLES

TABLE 1 Sub-Slab Soil Gas and Ambient Air Analytical Results Volatile Organic Compounds 203 9th Street, Brooklyn

COMPOUNDS	NYSDOH Maximum Sub- Slab Value	SS2 10/8/20	2 020	IA2	2 020	OA2 10/8/2020		
	(µg/m ³) ^(a)	Result	RL	Result	RL	Result	RL	
1,1,1,2-Tetrachloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1,1-Trichloroethane	100	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1,2,2-Tetrachloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1,2- I richloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1-Dichloroethene		< 0.20	0.20	< 0.20	0.20	< 0.20	0.20	
1.2.4-Trichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2,4-Trimethylbenzene		3.07	1.00	1.23	1.00	< 1.00	1.00	
1,2-Dibromoethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichloropropane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichlorotetrafluoroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,3,5- I rimethylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,3-Butadiene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1.4-Dichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,4-Dioxane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
2-Hexanone		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
4-Ethyltoluene		2.8	1.00	1.5	1.00	< 1.00	1.00	
4-Isopropyltoluene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
4-Methyl-2-pentanone		4.09	1.00	< 1.00	1.00	< 1.00	1.00	
Acetone		94.7	1.00	42.7	1.00	6.2	1.00	
Acrylonitrile		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Benzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Benzyl Chloride		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Bromoform		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Bromomethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Carbon Disulfide		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Carbon Tetrachloride	5	0.46	0.20	0.41	0.20	0.43	0.20	
Chlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Chloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Chloroform		2.6	1.00	< 1.00	1.00	< 1.00	1.00	
Chloromethane		< 1.00	1.00	1.06	1.00	1.12	1.00	
cis-1,2-Dichloroethene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
cis-1,3-Dichloropropene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Dibromochloromethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Dichlorodifluromethane		1.43	1.00	1.59	1.00	1.45	1.00	
Ethanol		235	1.00	82.9	1.00	19.6	1.00	
Ethyl Acetate		2.12	1.00	< 1.00	1.00	< 1.00	1.00	
Ethylbenzene		1.6	1.00	1.05	1.00	< 1.00	1.00	
Heptane		1.1	1.00	< 1.00	1.00	< 1.00	1.00	
Hexachlorobutadiene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Hexane		3.29	1.00	< 1.00	1.00	1.01	1.00	
Isopropylalcohol		18.2 < 1.00	1.00	90.4	1.00	4.03	1.00	
Isopropyidenzene		6.38	1.00	4.18	1.00	1.27	1.00	
Methyl Ethyl Ketone		7.69	1.00	< 1.00	1.00	< 1.00	1.00	
MTBE		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Methylene Chloride		14.3	3.00	< 3.00	3.00	< 3.00	3.00	
n-Butylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Xylene (o)		2.27	1.00	1.29	1.00	< 1.00	1.00	
Propylene		2.94	1.00	< 1.00	1.00	< 1.00	1.00	
sec-Butylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Styrene		< 1.00	0.25	< 1.00 2 84	0.25	< 1.00 2 94	0.25	
I etrachioroethene	30	8 31	1.00	1 38	1.00	< 1.00	1.00	
Toluene		4.67	1.00	2.03	1.00	2.04	1.00	
trans-1.2-Dichloroethene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
trans-1,3-Dichloropropene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Trichloroethene	2	4.41	0.20	0.32	0.20	< 0.20	0.20	
Trichlorofluoromethane		5.01	1.00	1.65	1.00	1.55	1.00	
Trichlorotrifluoroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Vinyl Chloride		< 0.20	0.20	< 0.20	0.20	< 0.20	0.20	
BTEX		14.9	2	8.5	5	3.31	I	

Notes: NA No guidance value or standard available (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State

TABLE 2 Sub-Slab Soil Gas and Ambient Air Analytical Results Volatile Organic Compounds 193 9th Street, Brooklyn

		SS	3	IA3		OA3 10/20/2020		
COMPOUNDS	NYSDOH Maximum Sub- Slab Value	10/20/2	020	10/20/2	020			
		(µg/m	3)	(µg/m	3)	(µg/m	3)	
	(µg/m ³) ^(a)	Result	RL	Result	RL	Result	RL	
1,1,1,2-letrachloroethane	100	1.63	1.00	< 1.00	1.00	< 1.00	1.00	
1,1,1-Thchloroethane	100	< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1,2-Trichloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1-Dichloroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,1-Dichloroethene		< 0.20	0.20	< 0.20	0.20	< 0.20	0.20	
1,2,4-Trichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2,4-Trimethylbenzene		1.67	1.00	1.16	1.00	< 1.00	1.00	
1,2-Dibromoethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,2-Dichloropropage		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1.2-Dichlorotetrafluoroethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,3,5-Trimethylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,3-Butadiene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,3-Dichlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
1,4-Dichlorobenzene		143	1.00	175	1.00	< 1.00	1.00	
1,4-Dioxane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
2-Hexanone		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
4-Ethyltoluene		1.41 < 1.00	1.00	1.15	1.00	< 1.00	1.00	
4-isopropyitoluene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
4-metriyi-2-peritanone		61.2	1.00	24.2	1.00	5.15	1.00	
Acrylonitrile		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Benzene		1.66	1.00	< 1.00	1.00	< 1.00	1.00	
Benzyl Chloride		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Bromodichloromethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Bromoform		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Bromomethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Carbon Disulfide		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Carbon Tetrachloride	5	0.53	0.20	0.41	0.20	0.47	0.20	
Chlorobenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Chloroethane		7 47	1.00	1 22	1.00	< 1.00	1.00	
Chloromethane		9.74	1.00	< 1.00	1.00	< 1.00	1.00	
cis-1.2-Dichloroethene		< 0.20	0.20	< 0.20	0.20	< 0.20	0.20	
cis-1,3-Dichloropropene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Cyclohexane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Dibromochloromethane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Dichlorodifluromethane		2.01	1.00	2.13	1.00	1.79	1.00	
Ethanol		341	5.01	115	1.00	22.6	1.00	
Ethyl Acetate		< 1.00	1.00	2.66	1.00	< 1.00	1.00	
Ethylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Heptane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Hexane		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Isopropylalcohol		13.3	1.00	24.1	1.00	4.45	1.00	
Isopropylbenzene		< 1.00	1.00	1.06	1.00	< 1.00	1.00	
Xylene (m&p)		3.53	1.00	2.44	1.00	< 1.00	1.00	
Methyl Ethyl Ketone		7.1	1.00	< 1.00	1.00	< 1.00	1.00	
МТВЕ		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Methylene Chloride		< 3.00	3.00	< 3.00	3.00	< 3.00	3.00	
n-Butylbenzene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Xylene (o)		1.69	5.01	< 1.02	1.00	< 1.00	1.00	
riopylene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Styrene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Tetrachloroethene	30	2.01	0.25	1.17	0.25	1.07	0.25	
Tetrahydrofuran		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Toluene		3.2	1.00	1.95	1.00	1.57	1.00	
trans-1,2-Dichloroethene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
trans-1,3-Dichloropropene		< 1.00	1.00	< 1.00	1.00	< 1.00	1.00	
Trichloroethene	2	2.53	0.20	1.73	0.20	< 0.20	0.20	
Trichlorofluoromethane		1.25	1.00	1.26	1.00	1.23	1.00	
I richlorotrifluoroethane		< 1.00	0.20	< 0.20	0.00	< 0.20	0.20	
VINYI Chloride		< 0.20 10 0	0.20 8	~ U.2U	U.2U	- U.2U	U.ZU	
DILA			-	0.4		1.57		

Notes: NA No guidance value or standard available (a) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006. New York State

FIGURES

ENVIRONMENTAL BUSINESS CONSULTANTS

FIGURE 1 SITE LO

SITE LOCATION MAP

Scale: 1 inch = 30 feet

<u>ATTACHMENT A:</u> INDOOR AIR QUALITY QUESTIONNAIRE

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

193 9th St. BK NY

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Derek	Merler		Date/Time Prepa	ared $10/8/20$	1:00pm
Preparer's Affiliation EB	C		Phone NoPhone No	5)45.7-914	9
Purpose of Investigation					
1. OCCUPANT:					
Interviewed: Y/N					
Last Name:		First Name:			
Address:					
County:	_				
Home Phone:	Offi	ice Phone:	4	-	
Number of Occupants/perso	ons at this location	on A	Age of Occupants	3	
2 OWNER OF LANDLO	DD. (Chack if	same as occurs	ant)		
Interviewed: V	KD. (Check II	same as occupe	unt)		
Last Name:		First Name:			
Address:					
County:	C.				
Home Phone:	— Of	fice Phone:			
3. BUILDING CHARAC	FERISTICS				
Type of Building: (Circle :	appropriate resp	onse)			
Residential Industrial	School Church	Other:	cial/Multi-use FW P ost-		

OSR - 3

2

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:
If multiple units, how man	ny?	
If the property is commer	cial, type?	
Business Type(s) Vet	erans of Foreign l	Jars Post
Does it include residen	ces (i.e., multi-use)? Y /	N If yes, how many?
Other characteristics:		
Number of floors 2	Bui	Iding age <u>507</u>
Is the building insulated	d? Y/N Hor	w air tight? Tight / Average Not Tight
4. AIRFLOW		
Use air current tubes or t	racer smoke to evaluate	airflow patterns and qualitatively desc

cribe: Us

Airflow between floors Some air flow between floors due to thin drop ceiling. Airflow near source Limited air flow incellar, no windows and only one door for access. Side walk cellar access remains closed except for deliveries. Outdoor air infiltration Rear of building has fans at windows for ventilation. Wall mounted A/Cs also contribute to outdoor air infiltration Infiltration into air ducts Air ducts not visible due to drop ceiling. Cieiling vents are intact and in working condition.

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finisl	ned
j. Sump present?	(y)/ N			

k. Water in sump?

(Y/N / not applicable

Basement/Lowest level depth below grade: 10 (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Sump present in cellar, approximately 2x2 and 3' deep.

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used is			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fueled	by: Natural Gas		
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other
Air conditioning: C	Central Air Window units	Open Windows	None

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(Y)/N

Ductwork not visible due to drop ceiling. intact and in working condition. Distribution d ducts ducts 1st Floor across cei 00 ina

7. OCCUPANCY

Basement	Utilities and storage
1 st Floor	Bar and social area
2 nd Floor	Office
3 rd Floor	
4 th Floor	

		•
b. Does the garage have a separate heating unit?		Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has the building ever had a fire?		Y / (N) When?
e. Is a kerosene or unvented gas space heater present?		Y / Where?
f. Is there a workshop or hobby/craft area?	Y / 🕅	Where & Type?
g. Is there smoking in the building?	Y / 🕅	How frequently?
h. Have cleaning products been used recently?	Y /🕲	When & Type?
i. Have cosmetic products been used recently?	Y 🔕	When & Type?

		0		
j. Has painting/sta	ining been done in the last 6 months?	Y/N	Where & When?	
k. Is there new carpet, drapes or other textiles?			Where & When?	
l. Have air fresheners been used recently?			When & Type?	
m. Is there a kitchen exhaust fan?			If yes, where vented? Roof	
n. Is there a bathroom exhaust fan?			If yes, where vented? Roof	
o. Is there a clothes dryer?			If yes, is it vented outside? Y / N	
p. Has there been	a pesticide application?	Y/D	When & Type?	
Are there odors in If yes, please desc	the building? cribe:	Y /🕅	* · · ·	
Do any of the buildi (e.g., chemical manuf boiler mechanic, pest	ng occupants use solvents at work? facturing or laboratory, auto mechanic or icide application, cosmetologist	Y /N auto body	y shop, painting, fuel oil delivery,	
If yes, what types of	of solvents are used?			
If yes, are their clo	thes washed at work?	Y /Ø		
Do any of the buildi response) Yes, use dry- Yes, use dry- Yes, work at	ng occupants regularly use or work at cleaning regularly (weekly) cleaning infrequently (monthly or less) a dry-cleaning service	a dry-cle	aning service? (Circle appropriate	
Is there a radon mit Is the system active	igation system for the building/structu or passive? Active/Passive	ire? Y (P	Date of Installation:	
9. WATER AND SH	EWAGE			
Water Supply:	Public Water Drilled Well Driv	ven Well	Dug Well Other:	
Sewage Disposal:	Public Sewer Septic Tank Lead	ch Field	Dry Well Other:	
10. RELOCATION	INFORMATION (for oil spill residen	tial emer	gency)	
a. Provide reaso	ons why relocation is recommended:	_		
b. Residents cho	oose to: remain in home relocate to f	friends/far	nily relocate to hotel/motel	
c. Responsibilit	y for costs associated with reimbursem	ent expla	ined? Y / N	
d. Relocation pa	ackage provided and explained to resid	lents?	Y/N	

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Mikiral 3000 PID

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
				-		
		1				
		-			-	
		-				

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

8

203 9th St. BK NY

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Derek	Merker Date/Time Prepare	d 10/8/2012:00p
Preparer's Affiliation EB	Phone No. (516)	457-9140
Purpose of Investigation	Vite	-
1. OCCUPANT:		
Interviewed: Y/🕥		
Last Name:	First Name:	
Address:		
County:		
Home Phone:	Office Phone:	
Number of Occupants/person	s at this location Age of Occupants	
A OWNER OF LANDI OF	D. (Check if some as occupant)	
Interviewed: V	D. (Check II same as occupant)	
Last Name:	First Name:	
Address:		
County:		
Home Phone:	Office Phone:	
3. BUILDING CHARACT	ERISTICS	
Type of Building: (Circle ap	opropriate response)	
Residential	School Commercial/Multi-use Church Other:	

OSR-3

If the property is residenti	al, type? (Circle appropri	ate response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:
If multiple units, how man	ıy?	
If the property is commer- Business Type(s) \underline{j} ; \underline{v}	cial, type? Jitsy Class,	loga Class
Does it include residen	ces (i.e., multi-use)? (1)/	N If yes, how many?
Other characteristics:		
Number of floors \overline{S}	Bui	lding age
Is the building insulated	1? V/N Hor	w air tight? (Tigh) / Average / Not Tight
4. AIRFLOW		
Use air current tubes or t	racer smoke to evaluate	airflow patterns and qualitatively describe:
Airflow between floors Distribution duc to no Free air flo	ts present on 1 ow between Floor	walls throughout building. Limited
Airflow near source Ceiling Aucts pr Free air Flow	resent in cellor, between floors.	as well as elevator. No other
Outdoor air infiltration No ontdoor air A/C mits or F	in fil tration,	new building with no window

Infiltration into air ducts Air Jucts not visible, vents in good working condition

2

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade constructio	n: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered wit	h
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially fin	nished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applicable)		
	12			

Basement/Lowest level depth below grade: 12 (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Limited soil vapor entry points. New building with very Hhick cellar slab.

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard Wo		ump a radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel us	ed is:			
Natural Gas Electric Wood	Fuel O Propar Coal	bil ne	Kerosene Solar	
Domestic hot water tank fu	eled by:			
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? () N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Air ducts not visible. All vents are new and in yord working condition. Querall ductwork in good condition.

7. OCCUPANCY

Is basement/	Nowest level occupied? Full-time Occasionally Seldon Almost Never
Level	General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)
Basement	Gym, bike storage, Mtilities
1 st Floor	Elevator, Mail boxes.
2 nd Floor	Apartments
3 rd Floor	Apartments
4 th Floor	Apartments.

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

Y / 🕅	
Y/N/NA	
Y / N / NA Please specify	
Y (N When?	<u></u> _;;
Y / Where?	
(V/N Where & Type? Baseme.	it, Utility Voow
Y 🕅 How frequently?	
Y / 🕅 When & Type?	
Y 🔊 When & Type?	
	Y / N / NA Y / N / NA Y / N / NA Please specify Y / N When? Y / N Where & Type? <u>Basemer</u> Y / N Where & Type? Y / N When & Type? Y / N When & Type?

4

j. Has painting/sta	ining been done in the last 6 months?	Y/D	Where & When?
k. Is there new car	pet, drapes or other textiles?	Y /🕅	Where & When?
l. Have air freshen	ers been used recently?	Y / 🕅	When & Type?
m. Is there a kitch	en exhaust fan?	Y / 🕅	If yes, where vented?
n. Is there a bath	room exhaust fan?	$\sqrt[n]{N}$	If yes, where vented? <u>ROPF</u>
o. Is there a clothe	es dryer?	Y / 🕅	If yes, is it vented outside? Y / N
p. Has there been	a pesticide application?	Y / 🕅	When & Type?
Are there odors in If yes, please des	n the building? cribe:	Y /Ø	
Do any of the buildi (e.g., chemical manu boiler mechanic, pest	ng occupants use solvents at work? facturing or laboratory, auto mechanic or icide application, cosmetologist	Y 🔊 auto body	y shop, painting, fuel oil delivery,
If yes, what types	of solvents are used?		
If yes, are their clo	thes washed at work?	Y / 🕅	
Do any of the build response) Yes, use dry Yes, use dry	-cleaning infrequently (monthly or less)	a dry-cle	aning service? (Circle appropriate
Is there a radon mi Is the system active	tigation system for the building/structu or passive? Active/Passive	ure?Y/N	N Date of Installation:
9. WATER AND SI	EWAGE		
Water Supply:	Public Water Drilled Well Driv	ven Well	Dug Well Other:
Sewage Disposal:	Public Sewer Septic Tank Lead	ch Field	Dry Well Other:
10. RELOCATION	INFORMATION (for oil spill residen	tial emer	gency)
a. Provide reas	ons why relocation is recommended:		
b. Residents ch	oose to: remain in home relocate to t	friends/fai	mily relocate to hotel/motel
c. Responsibilit	y for costs associated with reimbursem	ent expla	nined? Y / N
d. Relocation p	ackage provided and explained to resid	lents?	Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
			_			
		-			-	
					-	
-						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

P:\Sections\SIS\Oil Spills\Guidance Docs\OSR-3.doc

8

<u>ATTACHMENT B:</u> <u>NYSDOH Final Guidance on</u> <u>Soil Vapor Intrusion</u>

Soil Vapor/Indoor Air Matrix A May 2017

Analytes Assigned:

Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)						
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 to < 1	1 and above				
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE				
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE				
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE				

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX A Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix B May 2017

Analytes Assigned:

Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)						
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 3	3 to < 10	10 and above				
< 100	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE				
100 to < 1,000	4. No further action	5. MONITOR	6. MITIGATE				
1,000 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE				

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX B Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 1 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

Soil Vapor/Indoor Air Matrix C

May 2017

Analytes Assigned:

Vinyl Chloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)					
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)	< 0.2	0.2 and above				
< 6	1. No further action	2. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE				
6 to < 60	3. MONITOR	4. MITIGATE				
60 and above	5. MITIGATE	6. MITIGATE				

No further action: No additional actions are recommended to address human exposures.

Identify Source(s) and Resample or Mitigate: We recommend that reasonable and practical actions be taken to identify the source(s) affecting the indoor air quality and that actions be implemented to reduce indoor air concentrations to within background ranges. For example, if an indoor or outdoor air source is identified, we recommend the appropriate party implement actions to reduce the levels. In the event that indoor or outdoor sources are not readily identified or confirmed, resampling (which might include additional sub-slab vapor and indoor air sampling locations) is recommended to demonstrate that SVI mitigation actions are not needed. Based on the information available, mitigation might also be recommended when soil vapor intrusion cannot be ruled out.

Monitor: We recommend monitoring (sampling on a recurring basis), including but not necessarily limited to sub-slab vapor, basement air and outdoor air sampling, to determine whether concentrations in the indoor air or sub-slab vapor have changed and/or to evaluate temporal influences. Monitoring might also be recommended to determine whether existing building conditions (e.g., positive pressure heating, ventilation and air-conditioning systems) are maintaining the desired mitigation endpoint and to determine whether changes are needed. The type and frequency of monitoring is determined based on site-, building- and analyte-specific information, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

Mitigate: We recommend mitigation to minimize current or potential exposures associated with soil vapor intrusion. The most common mitigation methods are sealing preferential pathways in conjunction with installing a sub-slab depressurization system and changing the pressurization of the building in conjunction with monitoring. The type, or combination of types, of mitigation is determined on a building-specific basis, taking into account building construction and operating conditions. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

These general recommendations are made with consideration being given to the additional notes on page 2.

MATRIX C Page 1 of 2

This matrix summarizes actions recommended to address current and potential exposures related to soil vapor intrusion. To use the matrix appropriately as a tool in the decision-making process, the following should be noted:

- [1] The matrix is generic. As such, it may be appropriate to modify a recommended action to accommodate analyte-specific, building-specific conditions (e.g., dirt floor in basement, crawl spaces, thick slabs, current occupancy, etc.), and/or factors provided in Section 3.2 of the guidance (e.g., current land use, environmental conditions, etc.). For example, collection of additional samples may be recommended when the matrix indicates "no further action" for a particular building, but the results of adjacent buildings (especially sub-slab vapor results) indicate a need to take actions to address exposures related to soil vapor intrusion. Mitigation might be recommended when the results of multiple contaminants indicate monitoring is recommended. Proactive actions may be proposed at any time. For example, the party implementing the actions may decide to install sub-slab depressurization systems on buildings where the matrix indicates "no further action" or "monitoring." Such an action might be undertaken for reasons other than public health (e.g., seeking community acceptance, reducing costs, etc.). However, actions implemented in lieu of sampling will typically be expected to be captured in the final engineering report and site management plan, and might not rule out the need for post-implementation sampling (e.g., to document effectiveness or to support terminating the action).
- [2] Actions provided in the matrix are specific to addressing human exposures. Implementation of these actions does not preclude investigating possible sources of soil vapor contamination, nor does it preclude remediating contaminated soil vapor or the source of soil vapor contamination.
- [3] Appropriate care should be taken during all aspects of sample collection to ensure that high quality data are obtained. Since the data are being used in the decision-making process, the laboratory analyzing the environmental samples must have current Environmental Laboratory Approval Program (ELAP) certification for the appropriate analyte and environmental matrix combinations. Furthermore, samples should be analyzed by methods that can achieve a minimum reporting limit of 0.20 microgram per cubic meter for indoor and outdoor air samples. For sub-slab vapor samples and dirt floor soil vapor samples, a minimum reporting limit of 1 microgram per cubic meter is recommended.
- [4] Sub-slab vapor and indoor air samples are typically collected when the likelihood of soil vapor intrusion is considered to be the greatest (i.e., worst-case conditions). If samples are collected at other times (typically, samples collected outside of the heating season), then resampling during worst-case conditions might be appropriate to verify that actions taken to address exposures related to soil vapor intrusion are protective of human health.
- [5] When current exposures are attributed to sources other than soil vapor intrusion, the agencies should be given documentation (e.g., applicable environmental data, completed indoor air sampling questionnaire, digital photographs, etc.) to support a proposed action other than that provided in the matrix box and to support agency assessment and follow-up.
- [6] The party responsible for implementing the recommended actions will differ depending upon several factors, including but not limited to the following: the identified source of the volatile chemicals, the environmental remediation program, and analyte-specific, site-specific and building-specific factors.

<u>ATTACHMENT C:</u> LABORATORY REPORT

Monday, November 16, 2020

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Project ID:193 9TH ST BK NYSDG ID:GCH01856Sample ID#s:CH01856 - CH01858

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants Project: 193 9TH ST BK NY Laboratory Project: GCH01856

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 16, 2020

SDG I.D.: GCH01856

Environmental Business Consultants 193 9TH ST BK NY

Methodology Summary

Volatiles in Air

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-15, Second Edition, U. S. Environmental Protection Agency, January 1999.

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

NY Analytical Services Protocol Format

November 16, 2020

SDG I.D.: GCH01856

Environmental Business Consultants 193 9TH ST BK NY

Laboratory Chronicle

Sampla	Analysis	Collection	Prep	Analysis	Ameliant	Hold Time
Sample	Allalysis	Date	Date	Date	Analyst	iviet
CH01856	Volatiles (TO15)	10/20/20	10/23/20	10/23/20	KCA	Y
CH01857	Volatiles (TO15)	10/20/20	10/23/20	10/23/20	KCA	Y
CH01858	Volatiles (TO15)	10/20/20	10/23/20	10/23/20	KCA	Y

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

November 16, 2020

SDG I.D.: GCH01856

Project ID: 193 9TH ST BK NY

Client Id	Lab Id	Matrix
OA3	CH01856	AIR
IA3	CH01857	AIR
SS3	CH01858	AIR

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

Canister Id:

Project ID:

November 16, 2020

369

193 9TH ST BK NY

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	Date	Time	
Matrix:	AIR	Collected by:	DM	10/20/20	10:45
Location Code:	EBC	Received by:	В	10/22/20	14:56
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:			_		

SDG ID: GCH01856 Phoenix ID: CH01856

Client ID: OA3										
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/23/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/23/20	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/23/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	
Acetone	2.17	0.421	0.421	5.15	1.00	1.00	10/23/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/23/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/23/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/23/20	KCA	1	

Project ID: 193 9TH ST BK NY

	ppbv	ppbv	LOD/	ug/m3	ug/m3LOD/					
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/23/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/23/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Tetrachloride	0.075	0.032	0.032	0.47	0.20	0.20	10/23/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/23/20	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	10/23/20	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	10/23/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/23/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/23/20	KCA	1	
Dichlorodifluoromethane	0.363	0.202	0.202	1.79	1.00	1.00	10/23/20	KCA	1	
Ethanol	12.0	0.531	0.531	22.6	1.00	1.00	10/23/20	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/23/20	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/23/20	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	10/23/20	KCA	1	
Isopropylalcohol	1.81	0.407	0.407	4.45	1.00	1.00	10/23/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
m,p-Xylene	ND	0.230	0.230	ND	1.00	1.00	10/23/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/23/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/23/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	10/23/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/23/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/23/20	KCA	1	
Tetrachloroethene	0.158	0.037	0.037	1.07	0.25	0.25	10/23/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/23/20	KCA	1	1
Toluene	0.417	0.266	0.266	1.57	1.00	1.00	10/23/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/23/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	10/23/20	KCA	1	
Trichlorofluoromethane	0.219	0.178	0.178	1.23	1.00	1.00	10/23/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/23/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/23/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	99	%	%	99	%	%	10/23/20	KCA	1	
% IS-1,4-Difluorobenzene	93	%	%	93	%	%	10/23/20	KCA	1	
% IS-Bromochloromethane	93	%	%	93	%	%	10/23/20	KCA	1	
% IS-Chlorobenzene-d5	92	%	%	92	%	%	10/23/20	KCA	1	

Project ID: 193 9TH ST BK NY Phoenix I.D.: CH01856 Client ID: OA3 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director November 16, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

November 16, 2020

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	DM	10/20/20	10:40
Location Code:	EBC	Received by:	В	10/22/20	14:56
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:			-		0011040

Canister Id:	19924	
Project ID:	193 9TH ST BK NY	
Client ID:	IA3	

Laboratory Data

SDG ID: GCH01856 Phoenix ID: CH01857

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/23/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/23/20	KCA	1	
1,2,4-Trimethylbenzene	0.237	0.204	0.204	1.16	1.00	1.00	10/23/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/23/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,4-Dichlorobenzene	29.2	0.166	0.166	175	1.00	1.00	10/23/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	1
4-Ethyltoluene	0.234	0.204	0.204	1.15	1.00	1.00	10/23/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	
Acetone	10.2	0.421	0.421	24.2	1.00	1.00	10/23/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/23/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/23/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/23/20	KCA	1	

Project ID: 193 9TH ST BK NY

Client ID: IA3

	ppbv	ppbv	LOD/	ug/m3	ug/m3LOD/					
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/23/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/23/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Tetrachloride	0.066	0.032	0.032	0.41	0.20	0.20	10/23/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/23/20	KCA	1	
Chloroform	0.251	0.205	0.205	1.22	1.00	1.00	10/23/20	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	10/23/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/23/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/23/20	KCA	1	
Dichlorodifluoromethane	0.432	0.202	0.202	2.13	1.00	1.00	10/23/20	KCA	1	
Ethanol	61.1	E 0.531	0.531	115	1.00	1.00	10/23/20	KCA	1	1
Ethyl acetate	0.740	0.278	0.278	2.66	1.00	1.00	10/23/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/23/20	KCA	1	
Heptane	0.271	0.244	0.244	1.11	1.00	1.00	10/23/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/23/20	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	10/23/20	KCA	1	
Isopropylalcohol	9.83	0.407	0.407	24.1	1.00	1.00	10/23/20	KCA	1	
Isopropylbenzene	0.215	0.204	0.204	1.06	1.00	1.00	10/23/20	KCA	1	
m,p-Xylene	0.562	0.230	0.230	2.44	1.00	1.00	10/23/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/23/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/23/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
o-Xylene	0.235	0.230	0.230	1.02	1.00	1.00	10/23/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/23/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/23/20	KCA	1	
Tetrachloroethene	0.172	0.037	0.037	1.17	0.25	0.25	10/23/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/23/20	KCA	1	1
Toluene	0.518	0.266	0.266	1.95	1.00	1.00	10/23/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/23/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Trichloroethene	0.323	0.037	0.037	1.73	0.20	0.20	10/23/20	KCA	1	
Trichlorofluoromethane	0.224	0.178	0.178	1.26	1.00	1.00	10/23/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/23/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/23/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	98	%	%	98	%	%	10/23/20	KCA	1	
% IS-1,4-Difluorobenzene	93	%	%	93	%	%	10/23/20	KCA	1	
% IS-Bromochloromethane	93	%	%	93	%	%	10/23/20	KCA	1	
% IS-Chlorobenzene-d5	93	%	%	93	%	%	10/23/20	KCA	1	
Project ID: 193 9TH ST BK NY Phoenix I.D.: CH01857 Client ID: IA3 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis Shiller, Laboratory Director November 16, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report

Client ID:

November 16, 2020

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Informa	ation	Custody Inform	nation	Date	Time
Matrix:	AIR	Collected by:	DM	10/20/20	10:34
Location Code:	EBC	Received by:	В	10/22/20	14:56
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:					0011040

Canister Id:	28599	
Project ID:	193 9TH ST BK NY	

SS3

Laboratory Data

SDG ID: GCH01856 Phoenix ID: CH01858

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	B LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	1
1,1,1-Trichloroethane	0.299	0.183	0.183	1.63	1.00	1.00	10/23/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/23/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/23/20	KCA	1	
1,2,4-Trimethylbenzene	0.340	0.204	0.204	1.67	1.00	1.00	10/23/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/23/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/23/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/23/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/23/20	KCA	1	
1,4-Dichlorobenzene	23.8	0.166	0.166	143	1.00	1.00	10/23/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	1
4-Ethyltoluene	0.287	0.204	0.204	1.41	1.00	1.00	10/23/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/23/20	KCA	1	
Acetone	25.8	0.421	0.421	61.2	1.00	1.00	10/23/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/23/20	KCA	1	
Benzene	0.519	0.313	0.313	1.66	1.00	1.00	10/23/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/23/20	KCA	1	

Project ID: 193 9TH ST BK NY

	ppbv	ppbv	LOD/	ug/m3	ug/m	3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/23/20	KCA	1	_
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/23/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/23/20	KCA	1	
Carbon Tetrachloride	0.085	0.032	0.032	0.53	0.20	0.20	10/23/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/23/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/23/20	KCA	1	
Chloroform	1.53	0.205	0.205	7.47	1.00	1.00	10/23/20	KCA	1	
Chloromethane	4.72	0.485	0.485	9.7	1.00	1.00	10/23/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/23/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/23/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/23/20	KCA	1	
Dichlorodifluoromethane	0.407	0.202	0.202	2.01	1.00	1.00	10/23/20	KCA	1	
Ethanol	181	2.66	2.66	341	5.01	5.01	10/23/20	KCA	5	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/23/20	KCA	1	
Heptane	0.404	0.244	0.244	1.65	1.00	1.00	10/23/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/23/20	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	10/23/20	KCA	1	
Isopropylalcohol	5.41	0.407	0.407	13.3	1.00	1.00	10/23/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/23/20	KCA	1	
m,p-Xylene	0.813	0.230	0.230	3.53	1.00	1.00	10/23/20	KCA	1	
Methyl Ethyl Ketone	2.41	0.339	0.339	7.10	1.00	1.00	10/23/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/23/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/23/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
o-Xylene	0.389	0.230	0.230	1.69	1.00	1.00	10/23/20	KCA	1	
Propylene	159	2.91	2.91	273	5.01	5.01	10/23/20	KCA	5	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/23/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/23/20	KCA	1	
Tetrachloroethene	0.296	0.037	0.037	2.01	0.25	0.25	10/23/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/23/20	KCA	1	1
Toluene	0.849	0.266	0.266	3.20	1.00	1.00	10/23/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/23/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/23/20	KCA	1	
Trichloroethene	0.472	0.037	0.037	2.53	0.20	0.20	10/23/20	KCA	1	
Trichlorofluoromethane	0.223	0.178	0.178	1.25	1.00	1.00	10/23/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/23/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/23/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	101	%	%	101	%	%	10/23/20	KCA	1	
% IS-1,4-Difluorobenzene	92	%	%	92	%	%	10/23/20	KCA	1	
% IS-Bromochloromethane	90	%	%	90	%	%	10/23/20	KCA	1	
% IS-Chlorobenzene-d5	89	%	%	89	%	%	10/23/20	KCA	1	
% Bromofluorobenzene (5x)	100	%	%	100	%	%	10/23/20	KCA	5	
% IS-1,4-Difluorobenzene (5x)	92	%	%	92	%	%	10/23/20	KCA	5	
% IS-Bromochloromethane (5x)	91	%	%	91	%	%	10/23/20	KCA	5	
% IS-Chlorobenzene-d5 (5x)	92	%	%	92	%	%	10/23/20	KCA	5	

Project ID: 193 9TH ST BK NY Phoenix I.D.: CH01858 Client ID: SS3 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The canister was received under no vacuum, therefore sample results may not be representative.

Phyllis Shiller, Laboratory Director November 16, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Canister Sampling Information

November 16, 2020

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Location Code: EBC

Project ID: 193 9TH ST BK NY

Laboratory Field Sampling Canister Reg. Chk Out Out In Start End Sampling Out Flow In Client Id Lab Id ld Date Hg Flow RPD Hg Hg Start Date End Date Hg Flow ld Type OA3 CH01856 369 6.0L 7016 10/16/20 -30 -2 3.6 3.6 0.0 -30 -2 10/20/20 10:45 10/21/20 10:24 IA3 CH01857 19924 6.0L 7018 10/16/20 -30 -1 3.6 3.7 2.7 -30 -3 10/20/20 10:40 10/21/20 10:40 SS3 CH01858 28599 6.0L 7019 10/16/20 -30 0 3.6 3.7 2.7 -30 -1 10/20/20 10:37 10/21/20 10:34

SDG I.D.: GCH01856

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Data

SDG I.D.: GCH01856

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	LCSD %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 550650 (ppbv), C	C Sam	ole No: (CH01857	(CH018	56, CH	01857,	CH018	58 (1X,	5X))					
Volatiles														
1,1,1,2-Tetrachloroethane	ND	0.150	ND	1.03	102	102	ND	ND	ND	ND	NC	70 - 130	25	
1,1,1-Trichloroethane	ND	0.180	ND	0.98	102	101	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	107	107	ND	ND	ND	ND	NC	70 - 130	25	
1,1,2-Trichloroethane	ND	0.180	ND	0.98	105	104	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethane	ND	0.250	ND	1.01	103	103	ND	ND	ND	ND	NC	70 - 130	25	
1,1-Dichloroethene	ND	0.050	ND	0.20	102	105	ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trichlorobenzene	ND	0.130	ND	0.96	93	92	ND	ND	ND	ND	NC	70 - 130	25	
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	102	103	1.16	1.19	0.237	0.243	NC	70 - 130	25	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	107	107	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorobenzene	ND	0.170	ND	1.02	103	103	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichloroethane	ND	0.250	ND	1.01	104	103	ND	ND	ND	ND	NC	70 - 130	25	
1,2-dichloropropane	ND	0.220	ND	1.02	105	105	ND	ND	ND	ND	NC	70 - 130	25	
1,2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	90	87	ND	ND	ND	ND	NC	70 - 130	25	
1,3,5-Trimethylbenzene	ND	0.200	ND	0.98	103	101	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Butadiene	ND	0.450	ND	0.99	102	103	ND	ND	ND	ND	NC	70 - 130	25	
1,3-Dichlorobenzene	ND	0.170	ND	1.02	102	102	ND	ND	ND	ND	NC	70 - 130	25	
1,4-Dichlorobenzene	ND	0.170	ND	1.02	103	102	175	172	29.2	28.7	1.7	70 - 130	25	
1,4-Dioxane	ND	0.280	ND	1.01	119	114	ND	ND	ND	ND	NC	70 - 130	25	
2-Hexanone(MBK)	ND	0.240	ND	0.98	111	111	ND	ND	ND	ND	NC	70 - 130	25	
4-Ethyltoluene	ND	0.200	ND	0.98	104	104	1.15	1.11	0.234	0.226	NC	70 - 130	25	
4-Isopropyltoluene	ND	0.180	ND	0.99	96	98	ND	ND	ND	ND	NC	70 - 130	25	
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	107	105	ND	ND	ND	ND	NC	70 - 130	25	
Acetone	ND	0.420	ND	1.00	103	103	24.2	30.1	10.2	12.7	21.8	70 - 130	25	
Acrylonitrile	ND	0.460	ND	1.00	94	95	ND	ND	ND	ND	NC	70 - 130	25	
Benzene	ND	0.310	ND	0.99	101	101	ND	ND	ND	ND	NC	70 - 130	25	
Benzyl chloride	ND	0.190	ND	0.98	120	120	ND	ND	ND	ND	NC	70 - 130	25	
Bromodichloromethane	ND	0.150	ND	1.00	110	110	ND	ND	ND	ND	NC	70 - 130	25	
Bromoform	ND	0.097	ND	1.00	114	114	ND	ND	ND	ND	NC	70 - 130	25	
Bromomethane	ND	0.260	ND	1.01	102	102	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Disulfide	ND	0.320	ND	1.00	98	101	ND	ND	ND	ND	NC	70 - 130	25	
Carbon Tetrachloride	ND	0.032	ND	0.20	104	104	0.41	0.42	0.066	0.067	NC	70 - 130	25	
Chlorobenzene	ND	0.220	ND	1.01	104	103	ND	ND	ND	ND	NC	70 - 130	25	
Chloroethane	ND	0.380	ND	1.00	103	102	ND	ND	ND	ND	NC	70 - 130	25	
Chloroform	ND	0.200	ND	0.98	103	102	1.22	1.26	0.251	0.259	NC	70 - 130	25	
Chloromethane	ND	0.480	ND	0.99	101	105	ND	1.02	ND	0.493	NC	70 - 130	25	
Cis-1,2-Dichloroethene	ND	0.050	ND	0.20	102	103	ND	ND	ND	ND	NC	70 - 130	25	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	109	109	ND	ND	ND	ND	NC	70 - 130	25	
Cyclohexane	ND	0.290	ND	1.00	103	103	ND	ND	ND	ND	NC	70 - 130	25	
Dibromochloromethane	ND	0.120	ND	1.02	113	112	ND	ND	ND	ND	NC	70 - 130	25	
Dichlorodifluoromethane	ND	0.200	ND	0.99	101	98	2.13	2.24	0.432	0.453	NC	70 - 130	25	
Ethanol	ND	0.530	ND	1.00	145	151	115 E	194	61.1 E	103	51.1	70 - 130	25	l,r

QA/QC Data

SDG I.D.: GCH01856

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	LCSD %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
Ethyl acetate	ND	0.280	ND	1.01	93	92	2.66	2.87	0.740	0.798	NC	70 - 130	25
Ethylbenzene	ND	0.230	ND	1.00	102	103	ND	ND	ND	ND	NC	70 - 130	25
Heptane	ND	0.240	ND	0.98	101	103	1.11	1.13	0.271	0.276	NC	70 - 130	25
Hexachlorobutadiene	ND	0.094	ND	1.00	87	87	ND	ND	ND	ND	NC	70 - 130	25
Hexane	ND	0.280	ND	0.99	122	108	ND	1.29	ND	0.365	NC	70 - 130	25
Isopropylalcohol	ND	0.410	ND	1.01	119	116	24.1	25.1	9.8	10.2	4.0	70 - 130	25
Isopropylbenzene	ND	0.200	ND	0.98	100	99	1.06	1.01	0.215	0.206	NC	70 - 130	25
m,p-Xylene	ND	0.230	ND	1.00	106	105	2.44	2.43	0.562	0.559	NC	70 - 130	25
Methyl Ethyl Ketone	ND	0.340	ND	1.00	101	101	ND	ND	ND	ND	NC	70 - 130	25
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	104	102	ND	ND	ND	ND	NC	70 - 130	25
Methylene Chloride	ND	0.860	ND	2.99	95	94	ND	29.5	ND	8.50	NC	70 - 130	25
n-Butylbenzene	ND	0.180	ND	0.99	101	102	ND	ND	ND	ND	NC	70 - 130	25
o-Xylene	ND	0.230	ND	1.00	104	103	1.02	1.00	0.235	0.231	NC	70 - 130	25
Propylene	ND	0.580	ND	1.00	104	108	ND	ND	ND	ND	NC	70 - 130	25
sec-Butylbenzene	ND	0.180	ND	0.99	100	100	ND	ND	ND	ND	NC	70 - 130	25
Styrene	ND	0.230	ND	0.98	103	105	ND	ND	ND	ND	NC	70 - 130	25
Tetrachloroethene	ND	0.037	ND	0.25	105	102	1.17	1.13	0.172	0.167	NC	70 - 130	25
Tetrahydrofuran	ND	0.340	ND	1.00	101	100	ND	ND	ND	ND	NC	70 - 130	25
Toluene	ND	0.270	ND	1.02	104	104	1.95	1.86	0.518	0.494	NC	70 - 130	25
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	89	107	ND	ND	ND	ND	NC	70 - 130	25
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	109	108	ND	ND	ND	ND	NC	70 - 130	25
Trichloroethene	ND	0.037	ND	0.20	106	104	1.73	1.68	0.323	0.312	3.5	70 - 130	25
Trichlorofluoromethane	ND	0.180	ND	1.01	101	102	1.26	1.40	0.224	0.250	NC	70 - 130	25
Trichlorotrifluoroethane	ND	0.130	ND	1.00	102	102	ND	ND	ND	ND	NC	70 - 130	25
Vinyl Chloride	ND	0.078	ND	0.20	104	104	ND	ND	ND	ND	NC	70 - 130	25
% Bromofluorobenzene	100	%	100	%	99	100	98	99	98	99	NC	70 - 130	25
% IS-1,4-Difluorobenzene	101	%	101	%	95	93	93	89	93	89	NC	60 - 140	25
% IS-Bromochloromethane	101	%	101	%	95	93	93	86	93	86	NC	60 - 140	25
% IS-Chlorobenzene-d5	98	%	98	%	94	92	93	89	93	89	NC	60 - 140	25

I = This parameter is outside laboratory LCS/LCSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director November 16, 2020

Monday, November 16, 2020

Criteria: NY: AIRIA, AIRSV

State: NY

Sample Criteria Exceedances Report

GCH01856 - EBC

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
CH01856	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.075	0.032	0.032	0.032	ppbv
CH01856	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.47	0.20	0.2	0.2	ug/m3
CH01857	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.323	0.037	0.037	0.037	ppbv
CH01857	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.066	0.032	0.032	0.032	ppbv
CH01857	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	1.73	0.20	0.2	0.2	ug/m3
CH01857	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.41	0.20	0.2	0.2	ug/m3
CH01858	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.472	0.037	0.037	0.037	ppbv
CH01858	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.085	0.032	0.032	0.032	ppbv
CH01858	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	2.53	0.20	0.2	0.2	ug/m3
CH01858	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.53	0.20	0.2	0.2	ug/m3

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

D1

. . .

CHAIN OF CUSTODY RECORD AIR ANALYSES 800-827-5426 mail: greg@phoentidbs.com AIR ANALYSES 800-827-5426 mail: greg@phoentidbs.com Sungled by: Project Name: [4] 7[4, 5], B[4, 1] Colspan="2">Colspan=[4] 7[4, 5], B[4, 1] Project Name: [4] 7[4, 5], B[4, 1] Colspan=[6] Sampled by: Diate Consister ID Sign (D) Consister ID Sign (D) Sampled by: DM Diate Constraints Diate Constraints Diate Constraints Diate Constraints Diate Constraints Diate Constraints Diate Diate Diate Diate <th>PHOENIX Solution PHOENIX Solution PHOENIX Solution PHOENIX Solution Internet Laboratories, Inc. Tentrommental Laboratories, Inc. Torny Calabora (M) Dr Dorigo (M) Dr Do</th>	PHOENIX Solution PHOENIX Solution PHOENIX Solution PHOENIX Solution Internet Laboratories, Inc. Tentrommental Laboratories, Inc. Torny Calabora (M) Dr Dorigo (M) Dr Do
--	--

r

Sarah Bell

y Balado <u><abalado@ebcincny.com></abalado@ebcincny.com></u> ay, October 27, 2020 10:43 AM Bell <u>@ebcincny.com: dmerker@ebcincny.com</u> liverables to SDGs

Hey Sarah,

May I please add equis and Asp B deliverables to the following:

- GCG95105 <u>203/193 9TH ST BK NY</u> GCH01856 <u>193 9TH ST BK NY</u> •
 - •

Environmental Business Consultants Cell: 631-672-9152 **Assistant Project Manager** Office: 718-532-4066 **Tony Balado** Thank you,

Friday, October 30, 2020

Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

 Project ID:
 203/193 9TH ST BK NY

 SDG ID:
 GCG95105

 Sample ID#s:
 CG95105, CG95107 - CG95110

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI-lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

NY ANALYTICAL SERVICES PROTOCOL DATA PACKAGE

Client: Environmental Business Consultants Project: 203/193 9TH ST BK NY Laboratory Project: GCG95105

NY Analytical Services Protocol Format

October 30, 2020

SDG I.D.: GCG95105

Environmental Business Consultants 203/193 9TH ST BK NY

Methodology Summary

Volatiles in Air

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-15, Second Edition, U. S. Environmental Protection Agency, January 1999.

NY Analytical Services Protocol Format

October 30, 2020

SDG I.D.: GCG95105

Environmental Business Consultants 203/193 9TH ST BK NY

Laboratory Chronicle

Sample	Analysis	Collection Date	Prep Date	Analysis Date	Analyst	Hold Time Met
CG95105	Volatiles (TO15)	10/08/20	10/13/20	10/13/20	KCA	Y
CG95106	On Hold	10/08/20	10/13/20	10/13/20		Y
CG95107	Volatiles (TO15)	10/08/20	10/13/20	10/13/20	KCA	Y
CG95108	Volatiles (TO15)	10/08/20	10/13/20	10/13/20	KCA	Y
CG95109	Volatiles (TO15)	10/08/20	10/13/20	10/13/20	KCA	Y
CG95110	Volatiles (TO15)	10/08/20	10/13/20	10/13/20	KCA	Y

Sample Id Cross Reference

October 30, 2020

SDG I.D.: GCG95105

Project ID: 203/193 9TH ST BK NY

Client Id	Lab Id	Matrix	
IA2	CG95105	AIR	
OA3	CG95107	AIR	
OA2	CG95108	AIR	
SS2	CG95109	AIR	
IA3	CG95110	AIR	

Analysis Report	
October 30, 2020	

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	DM	10/08/20	10:50
Location Code:	EBC	Received by:	В	10/12/20	14:51
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:			_		

Canister Id:	28566
Project ID:	203/193 9TH ST BK NY
Client ID:	IA2

Laboratory Data

SDG ID: GCG95105 Phoenix ID: CG95105

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/13/20	KCA	1	
1,2,4-Trimethylbenzene	0.251	0.204	0.204	1.23	1.00	1.00	10/13/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/13/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	1
4-Ethyltoluene	0.305	0.204	0.204	1.50	1.00	1.00	10/13/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Acetone	18.0	0.421	0.421	42.7	1.00	1.00	10/13/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/13/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/13/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY

	ppbv	ppbv	LOD/	ug/m3	ug/m	3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/13/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/13/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Tetrachloride	0.066	0.032	0.032	0.41	0.20	0.20	10/13/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/13/20	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	10/13/20	KCA	1	
Chloromethane	0.514	0.485	0.485	1.06	1.00	1.00	10/13/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/13/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/13/20	KCA	1	
Dichlorodifluoromethane	0.322	0.202	0.202	1.59	1.00	1.00	10/13/20	KCA	1	
Ethanol	44.0	E 0.531	0.531	82.9	1.00	1.00	10/13/20	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	1
Ethylbenzene	0.241	0.230	0.230	1.05	1.00	1.00	10/13/20	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/13/20	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	10/13/20	KCA	1	
Isopropylalcohol	36.8	0.407	0.407	90.4	1.00	1.00	10/13/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
m,p-Xylene	0.964	0.230	0.230	4.18	1.00	1.00	10/13/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/13/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
o-Xylene	0.298	0.230	0.230	1.29	1.00	1.00	10/13/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/13/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/13/20	KCA	1	
Tetrachloroethene	0.419	0.037	0.037	2.84	0.25	0.25	10/13/20	KCA	1	
Tetrahydrofuran	0.469	0.339	0.339	1.38	1.00	1.00	10/13/20	KCA	1	1
Toluene	0.539	0.266	0.266	2.03	1.00	1.00	10/13/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/13/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Trichloroethene	0.059	0.037	0.037	0.32	0.20	0.20	10/13/20	KCA	1	
Trichlorofluoromethane	0.293	0.178	0.178	1.65	1.00	1.00	10/13/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/13/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/13/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	96	%	%	96	%	%	10/13/20	KCA	1	
% IS-1,4-Difluorobenzene	111	%	%	111	%	%	10/13/20	KCA	1	
% IS-Bromochloromethane	108	%	%	108	%	%	10/13/20	KCA	1	
% IS-Chlorobenzene-d5	112	%	%	112	%	%	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY Client ID: IA2

	ppbv	ppbv	LOD/	ug/m3	ug/m3LOD/		
Parameter	Result	RL	MDL	Result	RL MDL Date/Tim	е Ву	Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

The canister was received under no vacuum, therefore sample results may not be representative.

Phyllis, Shiller, Laboratory Director October 30, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report	
October 30, 2020	

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	DM	10/08/20	10:35
Location Code:	EBC	Received by:	В	10/12/20	14:51
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P()#			_		

Project ID:	203/193 9TH ST BK NY
Client ID:	OA3

13635

Canister Id:

Laboratory Data

SDG ID: GCG95105 Phoenix ID: CG95107

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/13/20	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/13/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Acetone	2.61	0.421	0.421	6.20	1.00	1.00	10/13/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/13/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/13/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY

	ppbv	ppbv	LOD/	ug/m3	ug/m	3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/13/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/13/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Tetrachloride	0.067	0.032	0.032	0.42	0.20	0.20	10/13/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/13/20	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	10/13/20	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	10/13/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/13/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/13/20	KCA	1	
Dichlorodifluoromethane	0.310	0.202	0.202	1.53	1.00	1.00	10/13/20	KCA	1	
Ethanol	16.5	0.531	0.531	31.1	1.00	1.00	10/13/20	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/13/20	KCA	1	
Hexane	0.359	0.284	0.284	1.26	1.00	1.00	10/13/20	KCA	1	
Isopropylalcohol	1.24	0.407	0.407	3.05	1.00	1.00	10/13/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
m,p-Xylene	0.343	0.230	0.230	1.49	1.00	1.00	10/13/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/13/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/13/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/13/20	KCA	1	
Tetrachloroethene	0.489	0.037	0.037	3.31	0.25	0.25	10/13/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	1
Toluene	0.690	0.266	0.266	2.60	1.00	1.00	10/13/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/13/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	10/13/20	KCA	1	
Trichlorofluoromethane	0.273	0.178	0.178	1.53	1.00	1.00	10/13/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/13/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/13/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	97	%	%	97	%	%	10/13/20	KCA	1	
% IS-1,4-Difluorobenzene	106	%	%	106	%	%	10/13/20	KCA	1	
% IS-Bromochloromethane	106	%	%	106	%	%	10/13/20	KCA	1	
% IS-Chlorobenzene-d5	105	%	%	105	%	%	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY Phoenix I.D.: CG95107 Client ID: OA3 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director October 30, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

October 30, 2020

355

203/193 9TH ST BK NY

Canister Id:

Project ID:

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	nation	Date	Time
Matrix:	AIR	Collected by:	DM	10/08/20	10:18
Location Code:	EBC	Received by:	В	10/12/20	14:51
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:					000054

La	bor	ato	ory	D	ata

SDG ID: GCG95105 Phoenix ID: CG95108

Client ID: OA2										
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	By	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/13/20	KCA	1	
1,2,4-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/13/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	1
4-Ethyltoluene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Acetone	2.61	0.421	0.421	6.20	1.00	1.00	10/13/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/13/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/13/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY

Client ID: OA2

	ppbv	ppbv	LOD/	ug/m3	ug/m	3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/13/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/13/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Tetrachloride	0.068	0.032	0.032	0.43	0.20	0.20	10/13/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/13/20	KCA	1	
Chloroform	ND	0.205	0.205	ND	1.00	1.00	10/13/20	KCA	1	
Chloromethane	0.544	0.485	0.485	1.12	1.00	1.00	10/13/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/13/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/13/20	KCA	1	
Dichlorodifluoromethane	0.294	0.202	0.202	1.45	1.00	1.00	10/13/20	KCA	1	
Ethanol	10.4	0.531	0.531	19.6	1.00	1.00	10/13/20	KCA	1	1
Ethyl acetate	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/13/20	KCA	1	
Hexane	0.287	0.284	0.284	1.01	1.00	1.00	10/13/20	KCA	1	
Isopropylalcohol	1.64	0.407	0.407	4.03	1.00	1.00	10/13/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
m,p-Xylene	0.293	0.230	0.230	1.27	1.00	1.00	10/13/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/13/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/13/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/13/20	KCA	1	
Tetrachloroethene	0.415	0.037	0.037	2.81	0.25	0.25	10/13/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	1
Toluene	0.541	0.266	0.266	2.04	1.00	1.00	10/13/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/13/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Trichloroethene	ND	0.037	0.037	ND	0.20	0.20	10/13/20	KCA	1	
Trichlorofluoromethane	0.276	0.178	0.178	1.55	1.00	1.00	10/13/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/13/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/13/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	97	%	%	97	%	%	10/13/20	KCA	1	
% IS-1,4-Difluorobenzene	100	%	%	100	%	%	10/13/20	KCA	1	
% IS-Bromochloromethane	100	%	%	100	%	%	10/13/20	KCA	1	
% IS-Chlorobenzene-d5	98	%	%	98	%	%	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY Phoenix I.D.: CG95108 Client ID: OA2 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director October 30, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report October 30, 2020	FOR:	Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd
		Ridge NY 11961-2406

Sample Information		Custody Inform	Custody Information				
Matrix:	AIR	Collected by:	DM	10/08/20	10:50		
Location Code:	EBC	Received by:	В	10/12/20	14:51		
Rush Request:	72 Hour	Analyzed by:	see "By" below				
P.O.#:		1 - 6 - 4 - 6 - 4			000054		

28608	Labo
203/193 9TH ST BK NY	

Laboratory Data

SDG ID: GCG95105 Phoenix ID: CG95109

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m3 RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/13/20	KCA	1	
1,2,4-Trimethylbenzene	0.625	0.204	0.204	3.07	1.00	1.00	10/13/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/13/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	1
4-Ethyltoluene	0.569	0.204	0.204	2.80	1.00	1.00	10/13/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	1.00	0.244	0.244	4.09	1.00	1.00	10/13/20	KCA	1	
Acetone	39.9	0.421	0.421	94.7	1.00	1.00	10/13/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/13/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/13/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/13/20	KCA	1	

Canister Id:

Project ID:

Client ID:

SS2

Project ID: 203/193 9TH ST BK NY

Client ID: SS2

	ppbv	ppbv	LOD/	ug/m3	ug/m	3LOD/				
Parameter	Result	RL	MDL	Result	RL	MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/13/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/13/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Tetrachloride	0.073	0.032	0.032	0.46	0.20	0.20	10/13/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/13/20	KCA	1	
Chloroform	0.533	0.205	0.205	2.60	1.00	1.00	10/13/20	KCA	1	
Chloromethane	ND	0.485	0.485	ND	1.00	1.00	10/13/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/13/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/13/20	KCA	1	
Dichlorodifluoromethane	0.289	0.202	0.202	1.43	1.00	1.00	10/13/20	KCA	1	
Ethanol	125	E 0.531	0.531	235	1.00	1.00	10/13/20	KCA	1	1
Ethyl acetate	0.590	0.278	0.278	2.12	1.00	1.00	10/13/20	KCA	1	1
Ethylbenzene	0.368	0.230	0.230	1.60	1.00	1.00	10/13/20	KCA	1	
Heptane	0.269	0.244	0.244	1.10	1.00	1.00	10/13/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/13/20	KCA	1	
Hexane	0.933	0.284	0.284	3.29	1.00	1.00	10/13/20	KCA	1	
Isopropylalcohol	7.41	0.407	0.407	18.2	1.00	1.00	10/13/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
m,p-Xylene	1.47	0.230	0.230	6.38	1.00	1.00	10/13/20	KCA	1	
Methyl Ethyl Ketone	2.61	0.339	0.339	7.69	1.00	1.00	10/13/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
Methylene Chloride	4.11	0.864	0.864	14.3	3.00	3.00	10/13/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
o-Xylene	0.522	0.230	0.230	2.27	1.00	1.00	10/13/20	KCA	1	
Propylene	1.71	0.581	0.581	2.94	1.00	1.00	10/13/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/13/20	KCA	1	
Tetrachloroethene	0.342	0.037	0.037	2.32	0.25	0.25	10/13/20	KCA	1	
Tetrahydrofuran	2.82	0.339	0.339	8.31	1.00	1.00	10/13/20	KCA	1	1
Toluene	1.24	0.266	0.266	4.67	1.00	1.00	10/13/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/13/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Trichloroethene	0.821	0.037	0.037	4.41	0.20	0.20	10/13/20	KCA	1	
Trichlorofluoromethane	0.893	0.178	0.178	5.01	1.00	1.00	10/13/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/13/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/13/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	103	%	%	103	%	%	10/13/20	KCA	1	
% IS-1,4-Difluorobenzene	62	%	%	62	%	%	10/13/20	KCA	1	
% IS-Bromochloromethane	63	%	%	63	%	%	10/13/20	KCA	1	
% IS-Chlorobenzene-d5	61	%	%	61	%	%	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY Phoenix I.D.: CG95109 Client ID: SS2 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis Shiller, Laboratory Director October 30, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Analysis Report	
October 30, 2020	

13634

203/193 9TH ST BK NY

Canister Id:

Project ID:

FOR: Attn: Mr. Charles B. Sosik, P.G. **Environmental Business Consultants** 1808 Middle Country Rd Ridge NY 11961-2406

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	AIR	Collected by:	DM	10/08/20	10:30
Location Code:	EBC	Received by:	В	10/12/20	14:51
Rush Request:	72 Hour	Analyzed by:	see "By" below		
P.O.#:		1 - 1 (

La	borat	tory	<u>Data</u>
		-	

SDG ID: GCG95105 Phoenix ID: CG95110

Client ID: IA3										
Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3 LOD/ MDL	Date/Time	Ву	Dilution	
Volatiles (TO15)										
1,1,1,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	1
1,1,1-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2,2-Tetrachloroethane	ND	0.146	0.146	ND	1.00	1.00	10/13/20	KCA	1	
1,1,2-Trichloroethane	ND	0.183	0.183	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,1-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
1,2,4-Trichlorobenzene	ND	0.135	0.135	ND	1.00	1.00	10/13/20	KCA	1	
1,2,4-Trimethylbenzene	0.247	0.204	0.204	1.21	1.00	1.00	10/13/20	KCA	1	
1,2-Dibromoethane(EDB)	ND	0.130	0.130	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichloroethane	ND	0.247	0.247	ND	1.00	1.00	10/13/20	KCA	1	
1,2-dichloropropane	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
1,2-Dichlorotetrafluoroethane	ND	0.143	0.143	ND	1.00	1.00	10/13/20	KCA	1	
1,3,5-Trimethylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Butadiene	ND	0.452	0.452	ND	1.00	1.00	10/13/20	KCA	1	
1,3-Dichlorobenzene	ND	0.166	0.166	ND	1.00	1.00	10/13/20	KCA	1	
1,4-Dichlorobenzene	16.2	0.166	0.166	97.3	1.00	1.00	10/13/20	KCA	1	
1,4-Dioxane	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
2-Hexanone(MBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	1
4-Ethyltoluene	0.276	0.204	0.204	1.36	1.00	1.00	10/13/20	KCA	1	1
4-Isopropyltoluene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Acetone	3.22	0.421	0.421	7.64	1.00	1.00	10/13/20	KCA	1	
Acrylonitrile	ND	0.461	0.461	ND	1.00	1.00	10/13/20	KCA	1	
Benzene	ND	0.313	0.313	ND	1.00	1.00	10/13/20	KCA	1	
Benzyl chloride	ND	0.193	0.193	ND	1.00	1.00	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY

Parameter	ppbv Result	ppbv RL	LOD/ MDL	ug/m3 Result	ug/m: RL	3LOD/ MDL	Date/Time	Ву	Dilution	
Bromodichloromethane	ND	0.149	0.149	ND	1.00	1.00	10/13/20	KCA	1	
Bromoform	ND	0.097	0.097	ND	1.00	1.00	10/13/20	KCA	1	
Bromomethane	ND	0.258	0.258	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Disulfide	ND	0.321	0.321	ND	1.00	1.00	10/13/20	KCA	1	
Carbon Tetrachloride	0.071	0.032	0.032	0.45	0.20	0.20	10/13/20	KCA	1	
Chlorobenzene	ND	0.217	0.217	ND	1.00	1.00	10/13/20	KCA	1	
Chloroethane	ND	0.379	0.379	ND	1.00	1.00	10/13/20	KCA	1	
Chloroform	0.351	0.205	0.205	1.71	1.00	1.00	10/13/20	KCA	1	
Chloromethane	0.551	0.485	0.485	1.14	1.00	1.00	10/13/20	KCA	1	
Cis-1,2-Dichloroethene	ND	0.051	0.051	ND	0.20	0.20	10/13/20	KCA	1	
cis-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Cyclohexane	ND	0.291	0.291	ND	1.00	1.00	10/13/20	KCA	1	
Dibromochloromethane	ND	0.118	0.118	ND	1.00	1.00	10/13/20	KCA	1	
Dichlorodifluoromethane	0.345	0.202	0.202	1.71	1.00	1.00	10/13/20	KCA	1	
Ethanol	602	E 0.531	0.531	1130	1.00	1.00	10/13/20	KCA	1	1
Ethyl acetate	0.820	0.278	0.278	2.95	1.00	1.00	10/13/20	KCA	1	1
Ethylbenzene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Heptane	ND	0.244	0.244	ND	1.00	1.00	10/13/20	KCA	1	
Hexachlorobutadiene	ND	0.094	0.094	ND	1.00	1.00	10/13/20	KCA	1	
Hexane	ND	0.284	0.284	ND	1.00	1.00	10/13/20	KCA	1	
Isopropylalcohol	1.05	0.407	0.407	2.58	1.00	1.00	10/13/20	KCA	1	
Isopropylbenzene	ND	0.204	0.204	ND	1.00	1.00	10/13/20	KCA	1	
m,p-Xylene	0.499	0.230	0.230	2.17	1.00	1.00	10/13/20	KCA	1	
Methyl Ethyl Ketone	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	
Methyl tert-butyl ether(MTBE)	ND	0.278	0.278	ND	1.00	1.00	10/13/20	KCA	1	
Methylene Chloride	ND	0.864	0.864	ND	3.00	3.00	10/13/20	KCA	1	
n-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
o-Xylene	ND	0.230	0.230	ND	1.00	1.00	10/13/20	KCA	1	
Propylene	ND	0.581	0.581	ND	1.00	1.00	10/13/20	KCA	1	1
sec-Butylbenzene	ND	0.182	0.182	ND	1.00	1.00	10/13/20	KCA	1	1
Styrene	ND	0.235	0.235	ND	1.00	1.00	10/13/20	KCA	1	
Tetrachloroethene	0.395	0.037	0.037	2.68	0.25	0.25	10/13/20	KCA	1	
Tetrahydrofuran	ND	0.339	0.339	ND	1.00	1.00	10/13/20	KCA	1	1
Toluene	0.527	0.266	0.266	1.98	1.00	1.00	10/13/20	KCA	1	
Trans-1,2-Dichloroethene	ND	0.252	0.252	ND	1.00	1.00	10/13/20	KCA	1	
trans-1,3-Dichloropropene	ND	0.221	0.221	ND	1.00	1.00	10/13/20	KCA	1	
Trichloroethene	0.177	0.037	0.037	0.95	0.20	0.20	10/13/20	KCA	1	
Trichlorofluoromethane	0.293	0.178	0.178	1.65	1.00	1.00	10/13/20	KCA	1	
Trichlorotrifluoroethane	ND	0.131	0.131	ND	1.00	1.00	10/13/20	KCA	1	
Vinyl Chloride	ND	0.078	0.078	ND	0.20	0.20	10/13/20	KCA	1	
QA/QC Surrogates/Internals										
% Bromofluorobenzene	98	%	%	98	%	%	10/13/20	KCA	1	
% IS-1,4-Difluorobenzene	86	%	%	86	%	%	10/13/20	KCA	1	
% IS-Bromochloromethane	88	%	%	88	%	%	10/13/20	KCA	1	
% IS-Chlorobenzene-d5	87	%	%	87	%	%	10/13/20	KCA	1	

Project ID: 203/193 9TH ST BK NY Phoenix I.D.: CG95110 Client ID: IA3 ppbv ppbv LOD/ ug/m3 ug/m3LOD/ Parameter Result RL MDL Result RL MDL Date/Time By Dilution

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level L=Biased Low LOD=Limit of Detection MDL=Method Detection Limit1 QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

E = Estimated value quantitated above calibration range for this compound.

Phyllis Shiller, Laboratory Director October 30, 2020 Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Canister Sampling Information

October 30, 2020

FOR: Attn: Mr. Charles B. Sosik, P.G. Environmental Business Consultants 1808 Middle Country Rd Ridge NY 11961-2406

Location Code: EBC

Project ID: 203/193 9TH ST BK NY

							L	aborato	ory				Field	
Client Id	Lab Id	Canis	ster Type	Reg. Id	Chk Out Date	Out Ha	In Ha	Out Flow	In Flow	Flow RPD	Start Ho	End Ha	Sampling Start Date	Sampling End Date
IA2	CG95105	28566	6.0L	2869	10/06/20	-30	0	3.6	3.5	2.8	-30	-1	10/08/20 10:52	10/09/20 10:50
OA3	CG95107	13635	6.0L	7028	10/06/20	-30	-2	3.6	3.7	2.7	-30	-3	10/08/20 11:46	10/09/20 10:35
OA2	CG95108	355	6.0L	2935	10/06/20	-30	-2	3.6	3.6	0.0	-29	-1	10/08/20 11:21	10/09/20 10:18
SS2	CG95109	28608	6.0L	5618	10/06/20	-30	-2	3.6	3.5	2.8	-30	-1	10/08/20 10:50	10/09/20 10:50
IA3	CG95110	13634	6.0L	2994	10/06/20	-30	-2	3.6	3.6	0.0	-30	-3	10/08/20 11:42	10/09/20 10:30

SDG I.D.: GCG95105

QA/QC Report

QA/QC Data

SDG I.D.: GCG95105

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits
QA/QC Batch 549207 (ppbv), Q0	C Samp	ole No: (CG93788	(CG951	05, CG95107,	CG951	08, CG	95109,	CG951 ⁻	10)		
Volatiles												
1,1,1,2-Tetrachloroethane	ND	0.150	ND	1.03	100	ND	ND	ND	ND	NC	70 - 130	25
1,1,1-Trichloroethane	ND	0.180	ND	0.98	96	ND	ND	ND	ND	NC	70 - 130	25
1,1,2,2-Tetrachloroethane	ND	0.150	ND	1.03	112	ND	ND	ND	ND	NC	70 - 130	25
1,1,2-Trichloroethane	ND	0.180	ND	0.98	106	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethane	ND	0.250	ND	1.01	106	ND	ND	ND	ND	NC	70 - 130	25
1,1-Dichloroethene	ND	0.050	ND	0.20	104	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trichlorobenzene	ND	0.130	ND	0.96	111	ND	ND	ND	ND	NC	70 - 130	25
1,2,4-Trimethylbenzene	ND	0.200	ND	0.98	102	30.4	29.1	6.18	5.93	4.1	70 - 130	25
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorobenzene	ND	0.170	ND	1.02	102	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichloroethane	ND	0.250	ND	1.01	100	ND	ND	ND	ND	NC	70 - 130	25
1,2-dichloropropane	ND	0.220	ND	1.02	112	ND	ND	ND	ND	NC	70 - 130	25
1,2-Dichlorotetrafluoroethane	ND	0.140	ND	0.98	88	ND	ND	ND	ND	NC	70 - 130	25
1,3,5-Trimethylbenzene	ND	0.200	ND	0.98	101	11.9	11.1	2.42	2.25	7.3	70 - 130	25
1,3-Butadiene	ND	0.450	ND	0.99	109	ND	ND	ND	ND	NC	70 - 130	25
1,3-Dichlorobenzene	ND	0.170	ND	1.02	101	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dichlorobenzene	ND	0.170	ND	1.02	103	ND	ND	ND	ND	NC	70 - 130	25
1,4-Dioxane	ND	0.280	ND	1.01	121	ND	ND	ND	ND	NC	70 - 130	25
2-Hexanone(MBK)	ND	0.240	ND	0.98	124	ND	ND	ND	ND	NC	70 - 130	25
4-Ethyltoluene	ND	0.200	ND	0.98	102	27.5	26.3	5.59	5.36	4.2	70 - 130	25
4-Isopropyltoluene	ND	0.180	ND	0.99	93	1.27	1.20	0.231	0.218	NC	70 - 130	25
4-Methyl-2-pentanone(MIBK)	ND	0.240	ND	0.98	118	ND	ND	ND	ND	NC	70 - 130	25
Acetone	ND	0.420	ND	1.00	107	27.5	24.7	11.6	10.4	10.9	70 - 130	25
Acrylonitrile	ND	0.460	ND	1.00	103	ND	ND	ND	ND	NC	70 - 130	25
Benzene	ND	0.310	ND	0.99	96	ND	ND	ND	ND	NC	70 - 130	25
Benzyl chloride	ND	0.190	ND	0.98	118	ND	ND	ND	ND	NC	70 - 130	25
Bromodichloromethane	ND	0.150	ND	1.00	106	ND	ND	ND	ND	NC	70 - 130	25
Bromoform	ND	0.097	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
Bromomethane	ND	0.260	ND	1.01	106	ND	ND	ND	ND	NC	70 - 130	25
Carbon Disulfide	ND	0.320	ND	1.00	98	ND	ND	ND	ND	NC	70 - 130	25
Carbon Tetrachloride	ND	0.032	ND	0.20	96	0.53	0.50	0.085	0.079	NC	70 - 130	25
Chlorobenzene	ND	0.220	ND	1.01	102	ND	ND	ND	ND	NC	70 - 130	25
Chloroethane	ND	0.380	ND	1.00	102	ND	ND	ND	ND	NC	70 - 130	25
Chloroform	ND	0.200	ND	0.98	101	ND	ND	ND	ND	NC	70 - 130	25
Chloromethane	ND	0.480	ND	0.99	98	1.56	1.64	0.757	0.796	NC	70 - 130	25
Cis-1,2-Dichloroethene	ND	0.050	ND	0.20	99	ND	ND	ND	ND	NC	70 - 130	25
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	108	ND	ND	ND	ND	NC	70 - 130	25
Cyclohexane	ND	0.290	ND	1.00	105	ND	ND	ND	ND	NC	70 - 130	25
Dibromochloromethane	ND	0.120	ND	1.02	108	ND	ND	ND	ND	NC	70 - 130	25
Dichlorodifluoromethane	ND	0.200	ND	0.99	92	1.70	1.64	0.344	0.332	NC	70 - 130	25
Ethanol	ND	0.530	ND	1.00	164	275 E	277	146 E	147	0.7	70 - 130	25

L

October 30, 2020

QA/QC Data

SDG I.D.: GCG95105

Parameter	Blk ppbv	Blk RL ppbv	Blk ug/m3	Blk RL ug/m3	LCS %	Sar Re ug	mple sult /m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
Ethyl acetate	ND	0.280	ND	1.01	102	1.	.91	2.13	0.529	0.592	NC	70 - 130	25	
Ethylbenzene	ND	0.230	ND	1.00	103	12	2.6	12.1	2.90	2.79	3.9	70 - 130	25	
Heptane	ND	0.240	ND	0.98	111	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Hexachlorobutadiene	ND	0.094	ND	1.00	96	N	ID	ND	ND	ND	NC	70 - 130	25	
Hexane	ND	0.280	ND	0.99	119	2.	20	2.28	0.625	0.646	NC	70 - 130	25	
Isopropylalcohol	ND	0.410	ND	1.01	151	7.	57	6.58	3.08	2.68	13.9	70 - 130	25	Т
Isopropylbenzene	ND	0.200	ND	0.98	98	4.	49	4.32	0.913	0.879	NC	70 - 130	25	
m,p-Xylene	ND	0.230	ND	1.00	104	71	1.6	69.0	16.5	15.9	3.7	70 - 130	25	
Methyl Ethyl Ketone	ND	0.340	ND	1.00	119	1.	82	ND	0.619	ND	NC	70 - 130	25	
Methyl tert-butyl ether(MTBE)	ND	0.280	ND	1.01	100	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Methylene Chloride	ND	0.860	ND	2.99	95	5.	28	5.42	1.52	1.56	NC	70 - 130	25	
n-Butylbenzene	ND	0.180	ND	0.99	97	2.	10	2.21	0.382	0.402	NC	70 - 130	25	
o-Xylene	ND	0.230	ND	1.00	101	33	3.8	32.5	7.78	7.48	3.9	70 - 130	25	
Propylene	ND	0.580	ND	1.00	109	Ν	ID	ND	ND	ND	NC	70 - 130	25	
sec-Butylbenzene	ND	0.180	ND	0.99	98	2.	03	1.91	0.370	0.348	NC	70 - 130	25	
Styrene	ND	0.230	ND	0.98	104	1.	50	1.35	0.352	0.316	NC	70 - 130	25	
Tetrachloroethene	ND	0.037	ND	0.25	103	0.	52	0.43	0.076	0.064	NC	70 - 130	25	
Tetrahydrofuran	ND	0.340	ND	1.00	104	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Toluene	ND	0.270	ND	1.02	102	10	0.4	9.8	2.75	2.59	6.0	70 - 130	25	
Trans-1,2-Dichloroethene	ND	0.250	ND	0.99	106	N	ID	ND	ND	ND	NC	70 - 130	25	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	107	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Trichloroethene	ND	0.037	ND	0.20	105	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Trichlorofluoromethane	ND	0.180	ND	1.01	97	1.	46	1.52	0.260	0.271	NC	70 - 130	25	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	96	Ν	ID	ND	ND	ND	NC	70 - 130	25	
Vinyl Chloride	ND	0.078	ND	0.20	108	Ν	ID	ND	ND	ND	NC	70 - 130	25	
% Bromofluorobenzene	98	%	98	%	97	ç	97	99	97	99	NC	70 - 130	25	
% IS-1,4-Difluorobenzene	97	%	97	%	97	6	53	67	63	67	NC	60 - 140	25	
% IS-Bromochloromethane	98	%	98	%	97	6	53	69	63	69	NC	60 - 140	25	
% IS-Chlorobenzene-d5	95	%	95	%	99	6	56	70	66	70	NC	60 - 140	25	

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director October 30, 2020

Criteria: NY: AIRIA

State: NY

Sample Criteria Exceedances Report

GCG95105 - EBC

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
CG95105	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.059	0.037	0.037	0.037	ppbv
CG95105	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.066	0.032	0.032	0.032	ppbv
CG95105	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.41	0.20	0.2	0.2	ug/m3
CG95105	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.32	0.20	0.2	0.2	ug/m3
CG95107	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.067	0.032	0.032	0.032	ppbv
CG95107	\$AIR_NYTO15	Tetrachloroethene	NY / Air Guideline Values / Indor Air	0.489	0.037	0.443	0.443	ppbv
CG95107	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.42	0.20	0.2	0.2	ug/m3
CG95107	\$AIR_NYTO15	Tetrachloroethene	NY / Air Guideline Values / Indor Air	3.31	0.25	3	3	ug/m3
CG95108	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.068	0.032	0.032	0.032	ppbv
CG95108	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.43	0.20	0.2	0.2	ug/m3
CG95109	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indor Air	4.11	0.864	0.864	0.864	ppbv
CG95109	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.821	0.037	0.037	0.037	ppbv
CG95109	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.073	0.032	0.032	0.032	ppbv
CG95109	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.46	0.20	0.2	0.2	ug/m3
CG95109	\$AIR_NYTO15	Methylene Chloride	NY / Air Guideline Values / Indor Air	14.3	3.00	3	3	ug/m3
CG95109	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	4.41	0.20	0.2	0.2	ug/m3
CG95110	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.071	0.032	0.032	0.032	ppbv
CG95110	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.177	0.037	0.037	0.037	ppbv
CG95110	\$AIR_NYTO15	Trichloroethene	NY / Air Guideline Values / Indor Air	0.95	0.20	0.2	0.2	ug/m3
CG95110	\$AIR_NYTO15	Carbon Tetrachloride	NY / Air Guideline Values / Indor Air	0.45	0.20	0.2	0.2	ug/m3

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

D1

. . .

	CHAIN OF CUSTODY RECOR	D P.O.# Page of
PHOENIX T	AIR ANALYSES	Data Delivery:
270/01/00/01/00/01/01/02/02/02/06/01/05/05/06/00 S87 East Middle Tumpile, P.O. Box J.O. Manchester, CT 66040 Telephone 860.045/11/02 - Fax: 860.645.08/3	800-827-5426 email: greg@phoenixlabs.com	KEmail: File
Report to: TONY (Dalado)	Project Name: 203/193 9th St. BK NY	Data (Circle) Equis Excel Other:
Customer: DDC	Invoice to: EBC	Requested Deliverable: RCP ASP CAT B
Address:		MCP NJ Deliverables
Astorio	Sampled by: DM	Quote Number:
		A 10
Phoenix ID # Client Sample ID	Outgoing Incoming Flow Canister Canister Canister Canister Pressure Pressure Canister ID # Size (L) "Heb	Sampling Sample Canister Control Control Start Time End Time Start Chet Bad ("Heat End Chet Start Chet Chet Canister Chet Chet Chet Chet Chet Chet Chet Chet
	THIS SECTION FOR LAB USE ONLY	MATRIX ANALYSES
95105 IA2	28566 6.0 -30 0 2869 3.4	10:52 10:50 10/8 10 -30 -1 X X
95106 553	38560 -3.0 7005	11:40 10:24 10/8/20 - 30 - 1 X X
9SIOT 0A3	13635 2 2038	11:46 10:35 10(8/20 - 3 X X X
95108 0 AZ	355 -2 2935	11:21 10:18 10/8/x-29 -1 X X
Not Used	(b009 0167	
95109 552	28608 - 2 Seel8	10:50 10:50 10/2/20 -30 -1 X X
9SIC TA3	13634 1 2 - 2 2994 1	1:42 10:30 10/8/20 -30 -3 X X
Reinouished by:	Accented by:	Tipoo. Lettaart tehen all models relaceed by Dhannis Cardenamented I a hendedda. L
Derek Merker	and the second s	Hite: I putes that an mean received by Phoenix Environmental Laboratories, int. nove been precised in good working condition and agree to the terms and conditions as listed on the BACV
76	(10)	1457 Signature: Dereck Mer/901 Date: 10/9/20
State Where Samples Confected: $N\gamma$	Turnaround Triffie: Requested Criteria: (Please Circ	le) <u>Ni</u> : <u>NY</u> : <u>PA</u> : <u>VT</u> :
SPECIAL INSTRUCTIONS, OC REQUIREMENTS, REGULATOR)	XINFORMATION. 2 Day TACI/C Indoor Ai (ス)しゃくていけい) 2 Day TACI/C Indoor Ai TAC RES Residentia	E Indoor Air Residential Capor Intrusion Indoor Air Residential
	3 Day SVVC I/C Ind/Comm 4 Day SVVC RES Soil Gas:	ercial Ind/Commercial Residential Industrial Industrial Soil Gas: Non-Suth-stab
	5 Day X GWV I/C Residentia GWV CES Ind/Comm	l Residential Residential Residential Ind/Commercial Ind/Commercial
		PEL-115 Rev. 9/2019

Greg Lawrence

From:Greg LawrenceSent:Tuesday, October 13, 2020 10:42 AMTo:'abalado@ebcincny.com'Subject:Air SampleAttachments:GCG95105-ChainofCustody-1.pdf

Good Morning,

We received your sample ID SS3, Lab ID CG95106 still under vacuum at -30 in of Hg. This means that no sample was collected at this sampling point.

1

Gregory Lawrence Assistant Laboratory Director Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Direct Line: 1-860-812-0812 Website: www.phoenixlabs.com
Sarah Bell

rom: eent: o: tubject:	Anthony Balado <u><abalado@ebcincny.com></abalado@ebcincny.com></u> Tuesday, October 27, 2020 10:43 AM Sarah Bell <u>csosik@ebcincny.com: dmerker@ebcincny.com</u> Add deliverables to SDGs
---------------------------------	---

Hey Sarah,

May I please add equis and Asp B deliverables to the following:

- GCG95105 <u>203/193 9TH ST BK NY</u> GCH01856 <u>193 9TH ST BK NY</u> •
 - •

Environmental Business Consultants Cell: 631-672-9152 Office: 718-532-4066 Assistant Project Manager **Tony Balado** Thank you,

APPENDIX C INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	William Hamilton	Date/Time Prepared1-20-2022			
Preparer's Affiliation _	P.W.Grosser Consulting	Phone No. 516-216-3824			
Purpose of Investigation	onSub-Slab Vapor Sampling	5			
1. OCCUPANT:					
Interviewed: ①/ N					
Last Name:	First Name	Ray			
Address: 193 9th stree	et, Brooklyn, NY				
County: Kings					
Home Phone:	Office Phone: _	917-797-4349			
Number of Occupants/	persons at this location0	Age of Occupants			
2. OWNER OR LAN	DLORD: (Check if same as occ	upant)			
Interviewed: Y/N					
Last Name:	First Name:				
Address:					
County:					
Home Phone:	Office Phone:				
3. BUILDING CHARACTERISTICS					
Type of Building: (Ci	rcle appropriate response)				

Residential	School	Commercial/Multi-use
Industrial	Church	Other: VFW Post

If the property is residential, type? (Circle appropriate response)

	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hou Log Home	3-Fami Colonia Mobile se Townh Other: <u>-</u>	ly al Home ouses/Condos
If n	nultiple units, how many?			
If tl	he property is commercial	l, type?		
	Business Type(s) Veterar	s of Foreign War	s Post	
	Does it include residences	(i.e., multi-use)?	Y / 🔊	If yes, how many?
Oth	er characteristics:			
	Number of floors 2		Building age_9	1
	Is the building insulated?)/ N	How air tight?	Tight / Average / Not Tight
4.	AIRFLOW			
Use	air current tubes or trace	er smoke to eval	uate airflow pat	tterns and qualitatively describe:
Air	flow between floors			

Airflow between floors Some air flow between floors due to thin drop ceiling.

Airflow near source No windows and only one door for access, limited air flow in the basement.

Outdoor air infiltration

Wall mounted A/Cs and fans at the rear windows of building for ventilation.

Infiltration into air ducts

3

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick	
b. Basement type:	full	crawlspace	slab	other	
c. Basement floor:	concrete	dirt	stone	other	
d. Basement floor:	uncovered	covered	covered with	1	
e. Concrete floor:	unsealed	sealed	sealed with		
f. Foundation walls:	poured	block	stone	other	
g. Foundation walls:	unsealed	sealed	sealed with		
h. The basement is:	wet	damp	dry	moldy	
i. The basement is:	finished	unfinished	partially fini	shed	
j. Sump present?	Ý N				
k. Water in sump? Y/(N/ not applicable				
Basement/Lowest level depth below grade:(feet)					

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel us	ed is:		
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fu	eled by: <u>Natural Gas</u>		
Boiler/furnace located in:	Basement Outdoors	Main Floor	Other
Air conditioning:	Central Air Window unit	s Open Windows	None

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(Y)/N

Distribution d	lucts present across ceiling on 1st floor.			
7. OCCUP	ANCY			
Is basement/	/lowest level occupied? Full-time	Occasionally	Seldom	(Almost Never)
Level	General Use of Each Floor (e.g., fam	ilyroom, bedroo	om, laundry	, workshop, storage)
Basement	Utilities and storage			
1 st Floor	Bar and Social area			
2 nd Floor	Office			
3 rd Floor				
4 th Floor				
8. FACTOR	RS THAT MAY INFLUENCE INDOOR A	AIR OUALITY		
a. Is there	an attached garage?		Y / 🕅	
b. Does the	e garage have a separate heating unit?		Y/N/NA	
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)			Y / N NA Please speci	fy
d. Has the	building ever had a fire?		Y/N Wh	en?
e. Is a kere	osene or unvented gas space heater prese	nt?	Y/N Wh	ere?
f. Is there a workshop or hobby/craft area?			Where & T	ype?
g. Is there	smoking in the building?	YN	How freque	ntly?
h. Have cl	eaning products been used recently?	Y N	When & Ty	pe?
i. Have cos	smetic products been used recently?	YN	When & Ty	pe?

					_	
j. Has painting/st	aining been done i	nths? Y/N	Where & When	?		
k. Is there new ca	rpet, drapes or ot	Y / 🕅	Where & When	?		
l. Have air freshe	ners been used rec	cently?	Y N	When & Type?		
m. Is there a kitcl	hen exhaust fan?		(Y) N	If yes, where ve	ented? <u>Roof</u>	
n. Is there a bath	room exhaust fan	?	Ý/ N	If yes, where ve	ented? Roof	
o. Is there a cloth	es dryer?		Y/N	If yes, is it vente	ed outside? Y / N	
p. Has there been	a pesticide applic	ation?	Y / 🕅	When & Type?		
Are there odors in If yes, please des	n the building? cribe:		Y /N			
Do any of the buildi (e.g., chemical manu boiler mechanic, pest	ing occupants use a facturing or laborat ticide application, control of solvents are used	solvents at wor cory, auto mecha cosmetologist 1?	k? Y/N nic or auto body	shop, painting,	fuel oil delivery,	
If yes, what types	or sorvents are used	*•	\sim			
If yes, are their clo	othes washed at wor	·k?	Y /(N)			
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)						
Yes use dry	-cleaning regularly	(weekly)	(No		
Yes, use dry-cleaning infrequently (monthly or less) Unknown						
Yes, work at	a dry-cleaning serv	vice	_			
Is there a radon mitigation system for the building/structure? Y/N Date of Installation: Is the system active or passive? Active/Passive						
9. WATER AND SH	EWAGE					
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:	
10. RELOCATION INFORMATION (for oil spill residential emergency)						
a. Provide reasons why relocation is recommended:						
b. Residents cho	oose to: remain in h	iome reloca	te to friends/fami	ly relocate	e to hotel/motel	

c. Responsibility for costs associated with reimbursement explained? $\qquad Y\ /\ N$

d. Relocation package provided and explained to residents? $Y\ /\ N$

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____ Mini RAE lite

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Basment	Hand Sanitizer	1 gallon	New Unopened	80% Alcohol		Y
Basement	Clorox	1 gallon	New Unopened	Sodium Hypochlorite (7.5%)		Y
Basement	CO ₂ Canister		Good			Y

* Describe the condition of the product containers as **Unopened** (**UO**), **Used** (**U**), or **Deteriorated** (**D**) ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX D LABORATORY DATA REPORT

P.W. GROSSER CONSULTING, INC. P.W. GROSSER CONSULTING ENGINEER & HYDROGEOLOGIST, P.C. LONG ISLAND • MANHATTAN • SARATOGA SPRINGS • SYRACUSE • SEATTLE • SHELTON

ANALYTICAL REPORT

Lab Number:	L2203288
Client:	P. W. Grosser
	630 Johnson Avenue
	Suite 7
	Bohemia, NY 11716
ATTN:	Usman Chaudhry
Phone:	(631) 589-8705
Project Name:	DTC2201
Project Number:	DTC2101
Report Date:	02/02/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name:DTC2201Project Number:DTC2101

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2203288-01	OA-1	AIR	Not Specified	01/20/22 11:18	01/20/22
L2203288-02	IA-1	AIR	Not Specified	01/20/22 11:30	01/20/22
L2203288-03	SV-1	SOIL_VAPOR	Not Specified	01/20/22 12:33	01/20/22

Lab Number: L2203288 **Report Date:** 02/02/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: DTC2201 Project Number: DTC2101

Project Name:DTC2201Project Number:DTC2101

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on January 18, 2022. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 02/02/22

AIR

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Project Name:DTC2201Project Number:DTC2101

SAMPLE RESULTS

Lab ID:	L2203288-01
Client ID:	OA-1
Sample Location:	

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	01/31/22 20:37
Analyst:	TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.541	0.200		2.68	0.989			1
Chloromethane	0.537	0.200		1.11	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	12.8	5.00		24.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.52	1.00		8.36	2.38			1
Trichlorofluoromethane	0.234	0.200		1.31	1.12			1
Isopropanol	1.65	0.500		4.06	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

01/20/22 11:18

Not Specified

01/20/22

Lab Number: L2203288 Report Date: 02/02/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2203288-01 Client ID: OA-1 Sample Location:

DTC2201

DTC2101

S 41.

Project Name:

Project Number:

Sample Depth:		nnhV		ua/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.200	0.200		0.639	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.472	0.200		1.78	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

01/20/22 11:18

Not Specified

01/20/22

Project Name:	DTC2201
Project Number:	DTC2101

Lab Number: L2203288 Report Date: 02/02/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2203288-01 Client ID: OA-1 Sample Location:

Sample Depth:								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	94		60-140

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Project Name:DTC2201Project Number:DTC2101

SAMPLE RESULTS

Lab ID:	L2203288-01
Client ID:	OA-1
Sample Location:	

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	01/31/22 20:37
Analyst:	TS

Date Collected:	01/20/22 11:18
Date Received:	01/20/22
Field Prep:	Not Specified

	ррьV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.076	0.020		0.478	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.515	0.020		3.49	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	92		60-140

01/20/22 11:30

Not Specified

01/20/22

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Date Collected:

Date Received:

Field Prep:

Project Name:DTC2201Project Number:DTC2101

SAMPLE RESULTS

Lab ID:	L2203288-02
Client ID:	IA-1
Sample Location:	

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	01/31/22 21:16
Analyst:	TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.587	0.200		2.90	0.989			1
Chloromethane	0.499	0.200		1.03	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	161	5.00		303	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.92	1.00		11.7	2.38			1
Trichlorofluoromethane	0.237	0.200		1.33	1.12			1
Isopropanol	1.84	0.500		4.52	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	1.85	0.500		6.43	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.548	0.500		1.62	1.47			1
Ethyl Acetate	1.20	0.500		4.32	1.80			1
Chloroform	0.716	0.200		3.50	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

01/20/22 11:30

Not Specified

01/20/22

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2203288-02 Client ID: IA-1 Sample Location:

DTC2201

DTC2101

Sample Depth:

Project Name:

Project Number:

	ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.225	0.200		0.793	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	1.09	0.200		4.11	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Lab Number:
Report Date:

Date Collected:

Date Received:

Field Prep:

L2203288 02/02/22

01/20/22 11:30

Not Specified

01/20/22

SAMPLE RESULTS

Lab ID: L2203288-02 Client ID: IA-1 Sample Location:

Sample Depth:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2,4-Trimethylbenzene	0.659	0.200		3.24	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	93		60-140

Project Name: DTC2201 Project Number: DTC2101

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Project Name:DTC2201Project Number:DTC2101

SAMPLE RESULTS

L2203288-02
IA-1

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	01/31/22 21:16
Analyst:	TS

Date Collected:	01/20/22 11:30
Date Received:	01/20/22
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.082	0.020		0.516	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.549	0.020		3.72	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	90		60-140

01/20/22 12:33

Not Specified

01/20/22

 Lab Number:
 L2203288

 Report Date:
 02/02/22

Date Collected:

Date Received:

Field Prep:

Project Name: DTC2201

Project Number: DTC2101

SAMPLE RESULTS

Lab ID:	L2203288-03
Client ID:	SV-1
Sample Location:	

Sample	e Depth:
--------	----------

Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	02/01/22 04:22
Analyst:	TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.551	0.200		2.72	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	11.9	5.00		22.4	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.48	1.00		17.8	2.38			1
Trichlorofluoromethane	0.251	0.200		1.41	1.12			1
Isopropanol	4.27	0.500		10.5	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	1.79	0.500		5.43	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.379	0.200		1.18	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.833	0.500		2.46	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

01/20/22 12:33

Not Specified

01/20/22

Lab Number: L2203288 **Report Date:** 02/02/22

Date Collected:

Date Received:

Field Prep:

0.869

ND

Project Name: DTC2201 **Project Number:** DTC2101

SAMPLE RESULTS

Lab ID: L2203288-03 Client ID: SV-1 Sample Location:

Sam

Sample Depth:		nnhV			ua/m3			B 11 (1
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	2.13	0.200		10.4	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	1.40	0.200		5.74	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.544	0.200		2.05	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	3.40	0.200		23.1	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

ND

0.200

1

01/20/22 12:33

Not Specified

01/20/22

Lab Number: L2203288 Report Date: 02/02/22

Date Collected:

Date Received:

Field Prep:

Project Name: DTC2201 Project Number: DTC2101

SAMPLE RESULTS

Lab ID: L2203288-03 Client ID: SV-1 Sample Location:

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
0.748	0.400		3.25	1.74			1
ND	0.200		ND	2.07			1
0.237	0.200		1.01	0.852			1
ND	0.200		ND	1.37			1
0.707	0.200		3.07	0.869			1
0.422	0.200		2.07	0.983			1
0.265	0.200		1.30	0.983			1
1.16	0.200		5.70	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	Results ab 0.748 ND 0.237 ND 0.707 0.422 0.265 1.16 ND ND	ppbV Results RL .ab 0.748 0.400 .0.748 0.200 .0.237 0.200 .0.237 0.200 .0.707 0.200 .0.707 0.200 .0.265 0.200 .0.265 0.200 .0.200 0.200 .0.116 0.200 .0.D 0.200	ppbV Results RL MDL .ab	ppbV MDL Results Results RL MDL Results ab	ppbV ug/m3 Results RL MDL Results RL ab	ppbV ug/m3 Results RL MDL Results RL MDL ab	ppbV $ug/m3$ Results RL MDL Results RL MDL Qualifier ab 0.400 $$ 3.25 1.74 $$ $$ 0.748 0.400 $$ ND 2.07 $$ $$ ND 0.200 $$ ND 2.07 $$ $$ 0.237 0.200 $$ 1.01 0.852 $$ $$ ND 0.200 $$ ND 1.37 $$ $$ 0.707 0.200 $$ 3.07 0.869 $$ $$ 0.707 0.200 $$ 2.07 0.983 $$ $$ 0.422 0.200 $$

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	87		60-140

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/31/22 15:22

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for sample	e(s): 01-0	03 Batch:	WG15998	68-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/31/22 15:22

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for sampl	e(s): 01-0	03 Batch:	WG15998	68-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 01/31/22 15:22

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansi	field Lab for samp	ole(s): 01-	03 Batch	n: WG15998	68-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 01/31/22 16:01

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab f	or sample	(s): 01-02	Batch: W	G159986	69-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2203288 Report Date: 02/02/22

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch:	WG15998	68-3					
Dichlorodifluoromethane	94			-		70-130	-			
Chloromethane	90			-		70-130	-			
Freon-114	94			-		70-130	-			
Vinyl chloride	82			-		70-130	-			
1,3-Butadiene	88			-		70-130	-			
Bromomethane	83			-		70-130	-			
Chloroethane	85			-		70-130	-			
Ethanol	97			-		40-160	-			
Vinyl bromide	92			-		70-130	-			
Acetone	110			-		40-160	-			
Trichlorofluoromethane	99			-		70-130	-			
Isopropanol	103			-		40-160	-			
1,1-Dichloroethene	90			-		70-130	-			
Tertiary butyl Alcohol	84			-		70-130	-			
Methylene chloride	110			-		70-130	-			
3-Chloropropene	115			-		70-130	-			
Carbon disulfide	114			-		70-130	-			
Freon-113	114			-		70-130	-			
trans-1,2-Dichloroethene	94			-		70-130	-			
1,1-Dichloroethane	104			-		70-130	-			
Methyl tert butyl ether	102			-		70-130	-			
2-Butanone	99			-		70-130	-			
cis-1,2-Dichloroethene	98			-		70-130	-			

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2203288 Report Date: 02/02/22

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch:	WG15998	68-3					
Ethyl Acetate	98			-		70-130	-			
Chloroform	94			-		70-130	-			
Tetrahydrofuran	96			-		70-130	-			
1,2-Dichloroethane	103			-		70-130	-			
n-Hexane	85			-		70-130	-			
1,1,1-Trichloroethane	105			-		70-130	-			
Benzene	82			-		70-130	-			
Carbon tetrachloride	104			-		70-130	-			
Cyclohexane	84			-		70-130	-			
1,2-Dichloropropane	95			-		70-130	-			
Bromodichloromethane	96			-		70-130	-			
1,4-Dioxane	88			-		70-130	-			
Trichloroethene	91			-		70-130	-			
2,2,4-Trimethylpentane	88			-		70-130	-			
Heptane	95			-		70-130	-			
cis-1,3-Dichloropropene	100			-		70-130	-			
4-Methyl-2-pentanone	98			-		70-130	-			
trans-1,3-Dichloropropene	88			-		70-130	-			
1,1,2-Trichloroethane	99			-		70-130	-			
Toluene	88			-		70-130	-			
2-Hexanone	100			-		70-130	-			
Dibromochloromethane	110			-		70-130	-			
1,2-Dibromoethane	106			-		70-130	-			

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2203288 Report Date: 02/02/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-03 Batch: WG1599868-3 Tetrachloroethene 95 70-130 --102 70-130 Chlorobenzene --Ethylbenzene 100 70-130 -p/m-Xylene 100 70-130 --Bromoform 111 70-130 --Styrene 70-130 107 --1,1,2,2-Tetrachloroethane 94 70-130 -o-Xylene 103 70-130 --4-Ethyltoluene 107 70-130 --109 70-130 1,3,5-Trimethylbenzene --112 1,2,4-Trimethylbenzene 70-130 --Benzyl chloride 101 70-130 --1,3-Dichlorobenzene 108 70-130 --110 70-130 1,4-Dichlorobenzene --70-130 1,2-Dichlorobenzene 108 --70-130 1,2,4-Trichlorobenzene 107 --Hexachlorobutadiene 103 70-130 --

Lab Control Sample Analysis Batch Quality Control

Project Name: DTC2201 Project Number: DTC2101 Lab Number: L2203288 Report Date: 02/02/22

Parameter	LCS %Recovery	Qual	%	LCSD Recovery	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lat	o Associated sa	mple(s):	01-02	Batch:	WG1599869-3					
Vinyl chloride	79			-		70-130	-		25	
1,1-Dichloroethene	85			-		70-130	-		25	
cis-1,2-Dichloroethene	94			-		70-130	-		25	
1,1,1-Trichloroethane	99			-		70-130	-		25	
Carbon tetrachloride	95			-		70-130	-		25	
Trichloroethene	88			-		70-130	-		25	
Tetrachloroethene	90			-		70-130	-		25	

L2203288

Lab Duplicate Analysis Batch Quality Control

Project Name:DTC2201Project Number:DTC2101

Lab Number:

Report Date: 02/02/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1599868-5	QC Sample:	L2203288-02	2 Client ID:	IA-1
Dichlorodifluoromethane	0.587	0.597	ppbV	2		25
Chloromethane	0.499	0.502	ppbV	1		25
Freon-114	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethanol	161	188	ppbV	15		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	4.92	4.78	ppbV	3		25
Trichlorofluoromethane	0.237	0.236	ppbV	0		25
Isopropanol	1.84	1.83	ppbV	1		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	1.85	1.78	ppbV	4		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25

0.564

1.20

ppbV

ppbV

3

0

0.548

1.20

25

25

2-Butanone

Ethyl Acetate
Lab Duplicate Analysis Batch Quality Control

Project Name: DTC2201 Project Number: DTC2101

Lab Number: L2203288 02/02/22 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1599868-5	QC Sample:	L2203288-02	2 Client ID: IA-1
Chloroform	0.716	0.722	ppbV	1	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	0.225	0.223	ppbV	1	25
Benzene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	1.09	1.16	ppbV	6	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	Vdqq	NC	25

L2203288

Lab Duplicate Analysis Batch Quality Control

Project Name:DTC2201Project Number:DTC2101

Lab Number:

Report Date: 02/02/22

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab As	sociated sample(s): 01-03 QC	C Batch ID: WG1599868-5	QC San	nple: L2203288-	02 Client ID: IA-1
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	0.213	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	0.210	ppbV	NC	25
1,2,4-Trimethylbenzene	0.659	0.709	ppbV	7	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
Volatile Organics in Air by SIM - Mansfield	Lab Associated sample(s): 01-	02 QC Batch ID: WG159	9869-5	QC Sample: L22	203288-02 Client ID: IA-1
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.082	0.080	ppbV	2	25
Trichloroethene	ND	ND	ppbV	NC	25
Tetrachloroethene	0.549	0.573	ppbV	4	25

Project Name: DTC2201

Project Number: DTC2101

Serial_No:02022216:02 Lab Number: L2203288

Report Date: 02/02/22

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2203288-01	OA-1	02078	Flow 5	01/18/22	376439		-	-	-	Pass	3.0	2.2	31
L2203288-01	OA-1	3010	6.0L Can	01/18/22	376439	L2200666-06	Pass	-28.2	-5.7	-	-	-	-
L2203288-02	IA-1	01217	Flow 5	01/18/22	376439		-	-	-	Pass	3.0	3.0	0
L2203288-02	IA-1	3627	6.0L Can	01/18/22	376439	L2200666-06	Pass	-28.2	-5.8	-	-	-	-
L2203288-03	SV-1	01003	Flow 5	01/18/22	376439		-	-	-	Pass	3.0	2.9	3
L2203288-03	SV-1	1973	6.0L Can	01/18/22	376439	L2200666-06	Pass	-28.3	-11.9	-	-	-	-

Air Canister Certification Results Lab ID: L2200666-06 Date Collected: 01/06/22 08:00 Client ID: CAN 2324 SHELF 65 Date Received: 01/06/22 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 01/11/22 19:51 TS Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 ------Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 ---Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 1.12 ------Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane ND 0.200 ND 0.590 1 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1

Serial_No:02022216:02

L2200666

02/02/22

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Serial_No:02	2022216:02
Lab Number:	L2200666

Report Date: 02/02/22

Air Canister Certification Results

Lab ID:	L2200666-06	Date Collected:	01/06/22 08:00
Client ID:	CAN 2324 SHELF 65	Date Received:	01/06/22
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Serial_No:02	2022216:02
Lab Number:	L2200666

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Report Date: 02/02/22

Air Canister Certification Results

Lab ID:	L2200666-06	Date Collected:	01/06/22 08:00
Client ID:	CAN 2324 SHELF 65	Date Received:	01/06/22
Sample Location:		Field Prep:	Not Specified

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ıb							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Serial_No:02	2022216:02
Lab Number:	L2200666

Project Name:BATCH CANISTER CERTIFICATIONProject Number:CANISTER QC BAT

Report Date: 02/02/22

Air Canister Certification Results

Lab ID:	L2200666-06	Date Collected:	01/06/22 08:00
Client ID:	CAN 2324 SHELF 65	Date Received:	01/06/22
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial_No:02022216:02			
Project Name:	BATCH CANIST	ER CERT	FICATION	١		La	b Num	ber:	L2200666	
Project Number:	CANISTER QC I	BAT				Re	eport D	ate:	02/02/22	
		Air Can	ister Ce	rtification	Results					
Lab ID: Client ID: Sample Location:	L2200666-06 CAN 2324 SHE	LF 65				Date C Date F Field F	Collecte Receive Prep:	ed: ed:	01/06/22 08:00 01/06/22 Not Specified	
Sample Depth:										
			ppbV			ug/m3			Dilution Eactor	
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r	
Volatile Organics in	Air - Mansfield Lab									
		Re	esults	Qualifier	Units	RDL		Dilutio Facto	n r	
Tentatively Identified Con	npounds									

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

Air Canister Certification Results Lab ID: L2200666-06 Date Collected: 01/06/22 08:00 Client ID: CAN 2324 SHELF 65 Date Received: 01/06/22 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 01/11/22 19:51 Analyst: TS ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane 0.200 ND ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 1 ND 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:02022216:02

L2200666

02/02/22

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Report Date: 02/02/22

Air Canister Certification Results

Lab ID:	L2200666-06	Date Collected:	01/06/22 08:00
Client ID:	CAN 2324 SHELF 65	Date Received:	01/06/22
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	insfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Serial_No:02	2022216:02
Lab Number:	L2200666

Report Date: 02/02/22

Air Canister Certification Results

Lab ID:	L2200666-06	Date Collected:	01/06/22 08:00
Client ID:	CAN 2324 SHELF 65	Date Received:	01/06/22
Sample Location:		Field Prep:	Not Specified

	ppbV				ug/m3	Qualifier	Dilution	
Parameter	Results RL MDL R		Results	RL MDL			Factor	
Volatile Organics in Air by SIM - Man	sfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-lsopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	91		60-140

Project Name:DTC2201Project Number:DTC2101

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Present/Intact

Container Information

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2203288-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)	
L2203288-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)	
L2203288-03A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)	

YES

Serial_No:02022216:02

Project Name: DTC2201

Project Number: DTC2101

Lab Number: L2203288

Report Date: 02/02/22

GLOSSARY

Acronyms

-	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:	DTC2201	Lab Number:	L2203288
Project Number:	DTC2101	Report Date:	02/02/22

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:02022216:02

Project Name: DTC2201

Project Number: DTC2101

Lab Number: L2203288

Report Date: 02/02/22

Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: DTC2201 Project Number: DTC2101

 Lab Number:
 L2203288

 Report Date:
 02/02/22

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:02022216:02

	AIR A	NALYSIS PAGE_1_0F_1						Date Rec'd in Lab: 12122						ALPHA Job #: 2203288				
320 Forbes Blvd, M	ansfield, MA 02048	Project Information						Report Information - Data Deliverables						Billing Information				
TEL: 508-822-9300	FAX: 508-822-3288	Project Name: DTC2201					FAX ADEx Criteria Checker						Same as Client info PO #:					
Client Informatio	on and a second s	Project Location:																
Client: PWC	âC	Project #:	DT	122	01		_	(Default bas	ed on Reg	ulatory Crit	teria Indicate	d)						
Address: 630	Project Manager: Sugar Class Mana					Other Formats:						Reg	ulatory	Requiren	ents/Re	port Limits		
Bobenia, A	ALPHA Quote #:											State	/Fed	Program	Program Res / Comm			
Phone: 631-	581-6353	Turn-A	round Tin	ne		-	Repor	t to: (if differen	it than Proje	ct Manager)								
Fax:	50	/															_	
Email: inclosus	dan Dave april	Standar	rd 🗆	RUSH (inty	confirmed if pre-ay	pproved!)				_			1	ANIAI	Vele			
These samples have	ve been previously analyzed by Alpha	Date Due	¢		Time:								1	ANAL	1315	1		
Other Project S	pecific Requirements/Com	ments:					1						/ / .		0,15	h.		
Project-Specific	Target Compound List:	1										/	11		LAGen			
			-		-							_/		0.8 Mcalota				
	A		umn	s Bel	low I	Must	Bel	Filled	90	ut		1.	SIM	Gas				
(Lab Use Only)	Sample ID	End Date	COL Start Time	End Time	N Vacuum	Final	Sample Matrix*	Sampler's	s Can Size	1 D Can	1 D - Flow Controller	10.10	HON	Sulfa	Sample	Comme	nts (i.e. PID)	
03288-01	DA-1	1-70-22	11:19	11:18	3077	-748	SV	IJH	21	3010	17078	4				- ocinina.		
02	TA-1	Ĩ	11:39	11:30	30 10	-4.4	1	1	1	227	D1717	1						
nz	CIL-1	2-	17:24	12.22	50.65	10,51		1		10-13	DIAn2	1			_			
05	20-1	U.	12.21	16.97	-50.39	-12.08		V	~	(97)	01005	V						
S. L. S. This								-										
											-				-			
									-					-				
*SAMPLE	E MATRIX CODES S	A = Ambient V = Soil Vape ther = Please	Air (Indoor or/Landfill C Specify	/Outdoor) ias/SVE			Les .	c	ontaine	т Туре					Please pr complete	int clearly, I ly. Samples	egibly and s can not be	
		Relinquished By: Date/Tim				e/Time		Received By:			Da	ate/Time	<u></u>	clock will	logged in and turnaround time clock will not start until any ambi-			
	Hunson			1-20-2	2/15	NN OF	De M	e Palol- 1			1/20	122	1520	guities an submitted	guities are resolved. All samples submitted are subject to Alpha's			
Page 43 of 43	Sec. 15)	2 1003	de		1/20	18217	to yet	herry	Sile	4		1/20	22	200	See rever	d Condition rse side.	5.	
	Turne	A A	120	1/2/	2 01	120 (5	-	100	AL	1	21/	220	230				