SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

for

1921 ATLANTIC AVENUE Brooklyn, New York NYSDEC BCP Site No. C224279

Prepared For:

DTF Atlantic, LLC c/o Dabar Development Partners 315 Madison Avenue, 3rd Floor New York, New York

Prepared By:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. 300 Kimball Drive Parsippany, New Jersey 07054 NJ Certificate of Authorization No. 24GA27996400

Christopher McMahon, CHMM Associate

Steven A. Ciambruschini, PG Principal / Vice President

April 2020 100681201

300 Kimball Drive

Parsippany, NJ 07054

T: 973.560.4900

F: 973.560.4901

www.langan.com

New Jersey • New York • Connecticut • Massachusetts • Pennsylvania • Washington, DC • West Virginia • Ohio • Florida • Texas • Colorado • Arizona • Washington • California Athens • Calgary • Dubai • London • Panama

TABLE OF CONTENTS

PAGE NO.

CERTIFICATIONi						
1.0	INTRODUCTION1					
2.0	SITE DESCRIPTION					
	2.1	Physical Setting				
	2.2	Site Stratigraphy and Hydrogeology Surrounding Property Land Use				
	2.3					
	2.4	Historical Site Usage				
3.0	PROPO	OSED REDEVELOPMENT PLAN				
4.0	PREVI	VIOUS ENVIRONMENTAL INVESTIGATIONS				
5.0	SUMN	MARY OF AREAS OF CONCERN				
6.0	SUPPL	EMENTAL R	EMEDIAL INVESTIGATION12			
	6.1	Geophysical Survey Investigation14				
	6.2 Soil Investigation		ation15			
		6.2.1 Soil I	oring Investigation Methodology15			
		6.2.2 Soil 9	ampling Methodology16			
	6.3	Groundwater Investigation17				
		6.3.1 Moni	toring Well Installation and Development Methodology17			
		6.3.2 Grou	ndwater Sampling Methodology18			
	6.4	Soil Vapor Investigation19				
		6.4.1 Soil V	/apor Implant Installation and Sampling Procedures19			
		6.4.2 Amb	ent Air Sampling Procedures20			
	6.5	Quality Assurance Samples and Data Validation				
	6.6	Laboratory	Analytical Results24			
		6.6.1 Soil /	Analytical Results24			
		6.6.2 Grou	ndwater Analytical Results27			
		6.6.3 Soil \	/apor Analytical Results29			
		6.6.4 Data	Usability30			
	6.7	Evaluation o	f Areas of Concern30			

LANGAN

TABLE OF CONTENTS

7.0	QUA	QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT				
	7.1	Current Conditions				
	7.2	Proposed Conditions				
	7.3	Summary of Environmental Conditions				
	7.4	Conceptual Site Model	34			
		7.4.1 Potential Sources of Contamination	34			
		7.4.2 Exposure Media	34			
		7.4.3 Receptor Populations	35			
	7.5	Potential Exposure Pathways – On-Site	35			
		7.5.1 Current Conditions	35			
		7.5.2 Construction/Remediation Conditions	36			
		7.5.3 Proposed Future Conditions	36			
	7.6	.6 Potential Exposure Pathways – Off-Site				
	7.7	Evaluation of Human Health Exposure	37			
		7.7.1 Current Conditions	38			
		7.7.2 Construction/Remediation Activities	38			
		7.7.3 Proposed Future Conditions	38			
		7.7.4 Human Health Exposure Assessment Conclusions	39			
8.0	NATURE AND EXTENT OF CONTAMINATION					
	8.1	Soil Contamination				
	8.2	Groundwater Contamination				
	8.3	.3 Soil Vapor Contamination				
9.0	CON	CONCLUSIONS				

LANGAN

TABLE OF CONTENTS

TABLES

- Table 1
 Sample Summary and Rationale
- Table 2A
 Soil Analytical Results
- Table 2B
 Soil Analytical Results Emerging Contaminants
- Table 3A
 Groundwater Analytical Results
- Table 3B
 Groundwater Analytical Results Emerging Contaminants
- Table 4Soil Vapor Analytical Results

FIGURES

- Figure 1 Site Location Map
- Figure 2A Subsurface Profile A-A'
- Figure 2B Subsurface Profile B-B'
- Figure 3 Potentiometric Surface Map
- Figure 4 Adjacent Property and Surrounding Land Use Map
- Figure 5 Site Plan/AOC and Sample Location Plan
- Figure 6 Soil Analytical Results
- Figure 7 Potentiometric Surface Map and Groundwater Analytical Results
- Figure 8 Soil Vapor Analytical Results

APPENDICES

- Appendix A Geophysical Report
- Appendix B Boring and Well Logs
- Appendix C Groundwater Sampling Field Logs
- Appendix D Soil Vapor Sampling Field Logs
- Appendix E Laboratory Data Reports
- Appendix F Data Usability Summary Reports
- Appendix G Daily Reports
- Appendix H Historical Data and Boring Logs

\\langan.com\data\PAR\data2\100681201\Project Data_Discipline\Environmental\Reports\2020-04 - SRIR\1921 Atlantic Avenue - Supplemental Remedial Investigation Report_FINAL 2020-04-07.docx

CERTIFICATION

I, Steven A. Ciambruschini, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules, and Regulations Part 375 and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Sliambre

Steven A. Ciambruschini, P.G.

LANGAN

1.0 INTRODUCTION

On behalf of DTF Atlantic, LLC (the Volunteer), Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C. (Langan), has prepared this Supplemental Remedial Investigation (SRI) Report for the ±0.69-acre property located at 1921 Atlantic Avenue (Figure 1), Brooklyn, New York (hereinafter the "Site"). DTF Atlantic, LLC is participating in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) as a Volunteer as defined in ECL 27-1405 (1)(b) and as identified in the executed Brownfield Cleanup Agreement dated 26 November 2018. The Site is identified in the BCP as Site No. C224279.

The SRI was conducted in accordance with the 9 July 2019 SRI Work Plan (SRIWP) prepared by Langan and approved by the NYSDEC on 8 August 2019. The investigation was completed to further characterize and delineate contamination at the Site based on the DEC's comments provided in a 10 December 2018 letter from Daniel McNally of the Division of Environmental Remediation. This investigation supplements the findings of the 2018 Remedial Investigation completed by P.W. Grosser Consulting Inc. and was conducted in accordance with the process and requirements identified in the NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (May 2010) and the New York State Department of Health (NYSDOH) "Guidance for Evaluating Soil Vapor Intrusion in the State of New York, with updates" (October 2006).

2.0 SITE DESCRIPTION

2.1 Physical Setting

The Site is located in the Bedford-Stuyvesant neighborhood of Brooklyn, New York and is identified as Block 1557, Lots 1-4, 23, 26, 28, and 31 through 38 on the NYC Brooklyn Borough Tax Map. The Site has an area of approximately 30,164-square feet (\pm 0.69-acres) and is primarily vacant land. The Site cover consists primarily of vegetation and exposed soil, with the exception of an asphalt paved area in the northeastern portion of the Site. A two-story residential building on Lot 2 and a three-story residential building on Lot 38 and associated one-story private garages, were recently demolished in support of the proposed redevelopment of the Site. The Site is currently zoned for manufacturing and residential use (M1-1/R7D) and is within the Atlantic Avenue Special Mixed-Use District (MX-10). A Site Location Map is provided as Figure 1.

2.2 Site Stratigraphy and Hydrogeology

According to a Site survey prepared by Surveying Co., LLP dated 30 June 2017, the Site slopes gently downward from the southeast (elevation el +83.5-feet) to the northwest (elevation el +75.5-feet). Site elevation ranges from between approximately 75.5-feet and 80.5-feet above sea level along the northern property boundary, between approximately 75.5-feet and 79.9-feet above sea level along the western property boundary, between approximately 79.9-feet and 83.5-feet along the southern property boundary, and from between 80.5-feet and 83.5-feet above sea level along the eastern property boundary. All elevations are North American Vertical Datum of 1988 (NAVD 88).

The "Surficial Geologic Map of New York" by the New York State Museum State Geological Survey indicates that the surficial geology at the Site consists of till, which is a relatively impermeable layer comprised of poorly sorted clay, silt, sand, gravel, and boulders. According to the 1994 Bedrock and Engineering Geologic Maps of New York County and Parts of Kings and Queens Counties, New York, and Parts of Bergen and Hudson Counties, New Jersey by Charles A. Baskerville, bedrock underlying the Site is part of the Hartland Formation, which consists of interbedded units of schist.

Based on findings of this supplemental remedial investigation and previous environmental investigations, the Site stratigraphy consists of a historic fill layer extending as deep as 9 feet below grade and underlain by a layer of sand with varying amounts of silt and gravel. Soil borings during this investigation were advanced to typical depth of 20- to 22-feet below ground surface with a maximum boring depth of 80-feet. Bedrock was not encountered in any of the soil borings advanced. Borings logs are provided in Appendix B and subsurface profiles are provided in Figures 2A and 2B.

Langan installed geotechnical borings at a nearby site to depths of up to 102feet below sidewalk grade, corresponding to approximate elevation el +3.5-feet NAVD 88. Bedrock was not encountered in any of the geotechnical borings and is expected to be encountered at the subject Site at depths greater than 80-feet below current Site grades.

Groundwater was encountered in monitoring wells at depths ranging from 70.45 to 71.83 feet below ground surface during this investigation. Groundwater observations are consistent with those observed during the June 2018 Remedial Investigation by P.W. Grosser. Although Site topography gently slopes downward to the northwest, the groundwater flow direction was determined to be to the east-southeast based on measurements collected by P.W. Grosser in February 2018 and by Langan in March 2020. A potentiometric surface map is provided as Figure 3.

Groundwater in this part of New York City is not used as a potable (drinking) water source. The potable water supply is provided to the Site by the City of New York and is derived from surface impoundments in the Croton, Catskill, and Delaware watersheds.

2.3 Surrounding Property Land Use

The Site is bound by two- and three-story residential buildings to the north, Bancroft Place followed by a two-story auto repair facility and parking lots at street level to the east, Atlantic Avenue and the Long Island Rail Road (LIRR) followed by two one-story mixed-use commercial and office buildings to the south, and by Prescott Place followed by a vacant lot at street level and a onestory auto repair facility to the west. An adjacent property and surrounding land use map is provided as Figure 4.

The general area surrounding the Site consists of mixed-use residential/commercial buildings and automobile repair facilities. Public infrastructure (storm drains, sewers, and underground utility lines) exists within The nearest sensitive receptor is the streets surrounding the Site. Shirley Chisholm Day Care Center Inc., located approximately 345-feet south of the Site across Atlantic Avenue and the LIRR tracks. Sensitive receptors, as defined in DER-10, located within a half-mile of the Site include those listed below:

Number	Name	Address	
Number	(Approximate distance from Site)		
1	PS -28 The Warren	1001 Herkimer Street,	
I	(approximately 0.05-miles north of the Site)	Brooklyn, NY 11233	
2	Bishop Sexton Head Start	933 Herkimer Street,	
2	(approximately 0.10-miles northwest of the Site)	Brooklyn, NY 11233	
3	PS 040 George W Carver	265 Ralph Avenue,	
0	(approximately 0.17-miles north of the Site)	Brooklyn, NY 11233	
1	IS 271 John M Coleman	1137 Herkimer Street,	
4	(approximately 0.20-miles east-northeast of the Site)	Brooklyn, NY 11233	
Б	PS 012	430 Howard Avenue,	
5	(approximately 0.25-miles south of the Site)	Brooklyn, NY 11233	
6	The Family and Life Center	411 Howard Avenue,	
0	(approximately 0.25-miles south of the Site)	Brooklyn, NY 11233	
7	PS 178 St. Clair Mckelway	2163 Dean Street,	
7	(approximately 0.25-miles southeast of the Site)	Brooklyn, NY 11233	
Q	Brevoort Children's Center	250 Ralph Avenue,	
0	(approximately 0.25-miles northwest of the Site)	Brooklyn, NY 11233	
a	BCS Atlantic Avenue Early Learning Center	1825 Atlantic Avenue,	
5	(approximately 0.25-miles west of the Site)	Brooklyn, NY 11233	
10	PS 021 Crispus Attucks	180 Chauncey Street,	
10	(approximately 0.33-miles northwest of the Site)	Brooklyn, NY 11233	
11	Shirley Chisholm Child Care Center Site 5 Advent Center	265 Sumpter Street,	
	(approximately 0.36-miles northeast of the Site)	Brooklyn, NY 11233	
12	PS 137 Rachel Jean Mitchell	121 Saratoga Avenue,	
12	(approximately 0.36-miles north-northeast of the Site)	Brooklyn, NY 11233	
13	IS 055 Ocean Hill Brownsville	2021 Bergen Street,	
15	(approximately 0.40-miles southeast of the Site)	Brooklyn, NY 11233	
1/	PS 191 Paul Robeson	1600 Park Place,	
14	(approximately 0.40-miles south-southwest of the Site)	Brooklyn, NY 11233	
15	PS 335 Granville T Woods	130 Rochester Avenue,	
	(approximately 0.41-miles southwest of the Site)	Brooklyn, NY 11213	
16	Shirley Chisholm Child Care Center Site 4 Somers	33 Somers Street,	
10	(approximately 0.43-miles northeast of the Site)	Brooklyn, NY 11233	

2.4 Historical Site Usage

The Site was historically occupied by residential dwellings from prior to 1888 to 1934 and by mixed-use commercial and residential buildings between 1934 and 2005. In 1934, the Site is listed in the city directory abstract report (provided in the April 2017 Phase I Environmental Site Assessment prepared by P.W. Grosser) as having an oil and gasoline service station occupying Lot 37. Lot 37 was historically occupied by Ben VI Service Station and Lot 38 was historically operated by CYS Auto Body Shop. The Site has been vacant since 2006 with the exception of the residential buildings identified above. Lot 1 (located on Prescott Place between Lots 2 and 38) has a gated entrance along Prescott Place.

3.0 PROPOSED REDEVELOPMENT PLAN

The Site is proposed to be developed with a 100% affordable housing residential building. The proposed use of the ground floor is as a grocery store, community facility containing housing assistance organization offices, an art gallery, welfare services, and an aquaponics farm. A parking garage containing 44 spaces will also be developed in the basement level. Remediation of the Site will be completed in accordance with the Remedial Action Workplan (RAWP).

4.0 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

The following environmental assessment and investigation reports have been completed for the Site:

- Phase I Environmental Site Assessment (Block 1557, Lots 3, 4, 23, 26, 28, and 31 through 37), dated April 2017, prepared by P.W. Grosser Consulting Inc. on behalf of NYCOER;
- Phase I Environmental Site Assessment (Block 1557, Lots 1, 2, and 38), dated November 2017, prepared by P.W. Grosser Consulting Inc. on behalf of DTF Atlantic, LLC;
- Phase II Environmental Site Assessment (Block 1557, Lots 1, 2, and 38), dated March 2018, prepared by P.W. Grosser Consulting, Inc. on behalf of DTF Atlantic, LLC; and,

• Remedial Investigation Report (Block 1557, Lots 1 through 4, 23, 26, 28, and 31 through 38), dated June 2018, prepared by P.W. Grosser Consulting, Inc. on behalf of NYCOER and DTF Atlantic, LLC c/o Dabar Development Partners.

Summaries of environmental findings of these reports are provided below. A summary of the laboratory analytical results collected as part of the previous investigations are provided in the Tables provided in Appendix H. Sample locations are provided in Figure 5.

Phase I ESA (Block 1557, Lots 3, 4, 23, 26, 28, and 31 through 37)

The 2017 Phase I ESA was prepared on behalf of NYCOER and included all of the parcels currently owned by NYCHPD. Areas of Concern (AOCs) identified in the Phase I ESA were assessed in the June 2018 Remedial Investigation Report (RIR). The Phase I ESA identified areas of waste dumping on portions of Lots 32, 33, 35, and 36 and vehicles in various stages of disrepair and debris piles containing tires, construction debris, containerized automotive fluids and unspecified solid waste were identified.

Phase I ESA (Block 1557, Lots 1, 2, and 38)

The P.W. Grosser Phase I ESA included the three privately owned parcels and identified the presence of an abandoned fill port in the Prescott Place sidewalk adjacent to the west of Lot 2 (21 Prescott Place). The Lot 1 (23 Prescott Place) parcel was observed to be vacant land and contained areas of waste dumping associated with auto repair. The Lot 38 portion of the Site (1911 Atlantic Avenue) was identified as a gasoline service station in 1934 based on review of the City Directory Report. This parcel was also identified on historical Sanborn Maps as having a gasoline underground storage tank (UST) of unspecified capacity within an auto garage between 1951 and 1978. Potential subsurface impacts associated with any undocumented prior release from the UST and historic usage of this parcel as a potential gasoline service station/auto repair facility was identified as a recognized environmental condition (REC).

The adjacent site to the south across Atlantic Avenue was historically occupied by the Gold Seal commercial laundry between 1932 and 1980. The Phase I ESA identified the former commercial laundry (listed in the NYSDEC Site Remediation Database as NYSDEC BCP Site No. C224162 – DCA 1 Apartments) as a potential off-Site source of groundwater and soil vapor impacts to the subject property.

Phase II Environmental Site Assessment (Lots 1, 2 and 38)

Based on the findings of the Phase I ESAs prepared for the privately owned lots discussed above (Lots 1, 2, and 38), P.W. Grosser completed a Phase II Environmental Site Assessment in February 2018. The Phase II included completion of a geophysical survey to identify the potential USTs on Lots 2 and 38, completion of six soil borings to depths ranging from 6- to 20-feet below existing grades, collection of twelve soil samples for laboratory analysis, installation of two soil vapor sampling points in Lot 38 (to a depth of approximately 5-feet below grade), and collection of two soil vapor samples for laboratory analysis. Copies of the boring logs completed as part of this investigation are provided in Appendix H.

The geophysical survey identified potential USTs consisting of an approximately 3-foot by 6-foot metallic subsurface anomaly below the Prescott Place sidewalk adjacent to Lot 2 and an approximately 7-foot by 9-foot subsurface metallic anomaly in the garage on Lot 38. Soil borings advanced in the vicinity of the subsurface anomalies identified historic fill to depths of up to 6-feet below grade. No evidence of petroleum impacts in soil (i.e. odor, staining, and elevated volatile organic compounds (VOCs) as measured with a photoionization detector were identified. Groundwater was not encountered in any of the soil borings completed as part of the Phase II investigation and groundwater samples were not collected for laboratory analysis.

VOCs, polychlorinated biphenyls (PCBs), and herbicides were not detected at concentrations exceeding the NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) in any of the soil samples collected. Semi-volatile organic compounds (SVOCs), consistent in concentration and distribution with the presence of contaminated historic fill, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected in two soil samples collected from 0- to 2-feet below grade. These SVOCs were detected at concentrations exceeding NYSDEC Restricted Use SCOs (RUSCOs) for Restricted Residential use. The metals trivalent chromium, mercury, copper, lead, and zinc were detected exceeding the NYSDEC Unrestricted Use SCOs in all six soil borings at depths of up to 20-feet below grade.

Soil vapor samples also revealed concentrations of benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) at concentrations up to 300 micrograms per cubic meter (μ g/m3), tetrachloroethene (PCE) at a concentration of 0.31 μ g/m3, and carbon tetrachloride at a concentration of 0.44 μ g/m3.

Based on the findings of the Phase II, including the detection of geophysical anomalies consistent with potential USTs, identification of a UST on historical Sanborn Maps on Lot 38, and detection of BTEX in soil vapor on Lot 38, P.W. Grosser concluded that a historical release likely occurred from the UST below Lot 38. According to the March 2018 Phase II ESA, the potential release from the UST below Lot 38 (1911 Atlantic Avenue and 31 Prescott Place) was not reported to NYSDEC and a spill case was not assigned. The address 20 Prescott Place, located adjacent to the west of the subject property, is listed in the NYSDEC Spills database as "Vacant Commercial Land – Phase II" which was reported on 10 August 2018 and assigned Spill No. 1805096 by NYSDEC. It is unclear if this spill case is associated with the Site and was inaccurately reported to NYSDEC. Spill No. 1805096 has not yet been administratively closed by NYSDEC. If this spill is determined to be associated with this Site, then the spill will be closed during the planned Site remediation.

Remedial Investigation Report (Block 1557, Lots 1 through 4, 23, 26, 28, and 31 through 38)

Based on the findings of the previous environmental investigations discussed above, a Remedial Investigation was completed by P.W. Grosser on behalf of NYCOER and DTF Atlantic, LLC c/o Dabar Development Partners to satisfy the NYC OER E-Designation Program requirements and to evaluate the potential for inclusion of the Site into the NYSDEC BCP. A total of 21 soil borings, four groundwater monitoring wells, and eight soil vapor sampling points were installed during the investigation and a minimum of one soil boring was installed on each of the fifteen lots comprising the Site. A total of 39 soil samples, four groundwater samples, and eight soil vapor samples were collected and submitted for laboratory analysis. Copies of the boring logs completed as part of this investigation are provided in Appendix H.

Acetone was detected exceeding the NYSDEC Unrestricted Use SCO in one soil sample in the northeast portion of the Site (Lot 23) from the 0- to 2-foot depth interval. No other VOCs were detected in soil at concentrations exceeding the NYSDEC Unrestricted Use SCOs or RUSCOs.

SVOCs commonly associated with contaminated historic fill material including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene and pyrene were detected in soil samples collected from between 0- to 2-feet bgs at concentrations exceeding NYSDEC RUSCOs for Restricted Residential use. Benzo(a)pyrene and benzo(b)fluoranthene were detected in 13 and 14 soil samples,

respectively, and were evenly distributed throughout the Site. Benzo(a)anthracene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected in one soil sample collected from the 6- to 8-foot depth interval in the north-central portion of the Site at concentrations exceeding the NYSDEC RUSCOs for Restricted Residential use.

The metals barium, lead, cadmium and mercury were detected in shallow (0- to 2-feet bgs) soil samples at concentrations exceeding NYSDEC RUSCOs for Restricted Residential use. Of these metals, barium and lead were detected in 10 and 12 soil samples, respectively, and were evenly distributed throughout the Site in the shallow depth interval. Mercury and manganese were detected in one sample collected from 6-to 8-feet bgs, and nickel was detected in one sample collected from 12- to 14-feet bgs exceeding the NYSDEC RUSCOs for Restricted Residential Use.

Arsenic, cadmium, copper, trivalent chromium, total chromium, lead, mercury, manganese, and zinc were detected in soil samples collected from the shallow (0- to 2-foot), intermediate (4- to 6-foot, 5- to 7-foot, and 6- to 8-foot), and deep (12- to 14-foot) depth intervals at concentrations exceeding the NYSDEC Unrestricted Use SCOs. Additionally, hexavalent chromium was detected in one soil sample collected from the 5-to 7-foot depth interval exceeding the NYSDEC Unrestricted Use SCOs.

The pesticides alpha-chlordane, gamma-chlordane, and total chlordane were detected from the 0- to 2-foot depth interval in one soil sample collected from the southeast portion of the Site, and the pesticide dieldrin was detected from the 6- to 8-foot depth interval in one soil sample collected from the northeast portion of the Site at concentrations exceeding the NYSDEC RUSCOs for Restricted Residential Use. Pesticides detected at concentrations exceeding the NYSDEC Unrestricted Use SCOs were detected in shallow (0- to 2-foot) soil samples for p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, alpha-chlordane, total chlordane, gamma-chlordane, and aldrin. Additionally, exceedances of the NYSDEC Unrestricted Use SCOs were reported from the 6- to 8-foot depth interval for p,p'-DDD in one sample, and for p,p'-DDE, and p,p'-DDT in one sample.

PCBs were detected in the shallow 0- to 2-foot depth interval at concentrations exceeding the NYSDEC RUSCOs for Restricted Residential Use for aroclor-1254 and total aroclor in one sample at the central portion of the Site. Additionally, exceedances of the NYSDEC Unrestricted Use SCOs were reported for samples collected from the 0- to 2-foot depth interval for aroclor-1254, aroclor-1260, and total aroclor.

LANGAN

Soil sample analytical results exceeding the NYSDEC Unrestricted Use SCOs for SVOCs and metals were detected throughout the Site. Lead was detected on all 15 parcels of the Site exceeding the NYSDEC RUSCOs for Restricted Residential use and exceeding the NYSDEC RUSCOs for Industrial use in one sample collected from Lot 37, which is adjacent to the east of the residential building on Lot 38.

Groundwater sample analytical results did not identify VOCs, SVOCs, pesticides, herbicides, or PCBs at concentrations above laboratory detection limits, with the exception of trace concentrations of chloroform, detected at concentrations below the NYSDEC Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs"). Dissolved concentrations of the metals sodium and manganese were detected in groundwater at concentrations exceeding the SGVs, but were not attributed to the presence of historic fill or potential impacts from historical Site use.

Soil vapor sample analytical results detected petroleum-related VOCs (BTEX) and the chlorinated VOCs PCE, trichloroethene (TCE), methylene chloride, and carbon tetrachloride at concentrations below the New York State Department of Health (NYSDOH) soil vapor intrusion guidance levels which would require monitoring or mitigation. The soil vapor samples were collected from soil vapor sampling points installed at approximately 5-feet below sidewalk grade and no indoor air or ambient air samples were collected concurrently during the soil vapor sampling event. As such, the soil vapor analytical results cannot be directly compared to the NYSDOH vapor intrusion guidance matrices.

5.0 SUMMARY OF AREAS OF CONCERN

Based on Site observations, the Site development history, and the findings of the previous environmental reports, AOCs were identified and investigated during the previous environmental investigations and are described in detail below. AOC locations are provided on Figure 5.

AOC 1: Gasoline Underground Storage Tanks

According to Sanborn Maps a gasoline tank was present in the southwestern portion of the Site on Lot 38 between 1951 and 1965. The geophysical survey completed during the 2018 RI identified the presence of an approximately 7-foot by 9-foot metallic anomaly consistent with the presence of an UST. Contaminants of concern typically

associated with gasoline USTs include petroleum-related VOCs which were identified in the RIR as existing in soil vapor.

Historical soil vapor analytical results indicate that impacts may be present from the gasoline UST. Analytical results include detections of chlorinated VOCs, although detections were below the NYSDOH guidance values that would require monitoring or mitigation; elevated concentrations of BTEX were also identified. Based on the nature and concentration of compounds observed in the soil vapor samples, a significant soil vapor threat to potential on-Site or off-Site receptors does not exist. The detected impacts in the surficial soil, including Unrestricted Use SCOs and RUSCOs exceedances for SVOCs, pesticides, PCBs, and metals, may also be associated with the presence of historic fill. Groundwater was not evaluated in the vicinity of the gasoline underground storage tank as part of the RI. As a soil sample could not be collected directly beneath the identified anomaly (former UST), petroleum impacts may be encountered during tank removal.

AOC 2: Fuel Oil Underground Storage Tank

A fuel oil tank fill port was observed in the sidewalk adjacent to the building on Lot 2 during the 2017 Phase I ESA. A geophysical survey completed during the 2018 RI confirmed the presence of an approximately 4-foot by 6-foot metallic anomaly consistent with a UST. Contaminants of concern associated with fuel oil USTs include VOCs and SVOCs.

Historical analytical results did not identify petroleum impacts in the area of the anomaly indicative of a release from the UST; however, a soil sample could not be collected directly beneath the former UST.

AOC 3: Dumping and Debris Piles

Extensive dumping of vehicles in varying stages of disrepair and debris piles consisting of tires, construction debris, various containers of automotive fluids, and miscellaneous solid waste were observed on Lots 1, 32, 33, 35, and 36 during previous Site inspections. AOC-3 consists of several debris piles which are identified as AOC-3A, AOC-3B, and AOC-3C. AOC-3A is located on Lot 1 and is approximately 16-feet by 90-feet; AOC-3B is located on Lots 32 and 33 and is approximately 22-feet by 22-feet; and AOC-3C is located on Lots 35 and 36 and is approximately 15-feet.

Soil analytical data from the 2018 RI, including exceedances of SVOCs, PCBs, pesticides, and metals above Unrestricted Use SCOs and/or RUSCOs, confirmed the presence of surficial impacts, which may have resulted from the presence of the observed debris. The detected impacts in soil may also be associated with the presence of contaminated historic fill. Groundwater, which was encountered approximately 70-feet bgs, was evaluated in the relative vicinity of the debris piles. Dissolved metals were detected in groundwater at concentrations exceeding the SGVs; however, due to the depth of groundwater, these detections are not attributed to the presence of the debris piles and are likely attributable to naturally occurring background concentrations.

AOC 4: Historic Fill

Material from unknown sources was used as backfill during various phases of the Site development history. Historical soil sample analytical results exceeding the Unrestricted Use SCOs and RUSCOs for SVOCs, pesticides, PCBs, and metals were detected throughout the Site in shallow (0 to 2 feet bgs) and intermediate (4 to 6 feet, 5 to 7 feet, and 6 to 8 feet) samples. The historic fill layer was visually observed up to approximately 9-feet bgs at the Site and predominantly consisted of brown silty sand with concrete, brick, and construction debris.

6.0 SUPPLEMENTAL REMEDIAL INVESTIGATION

The SRI was completed to supplement findings and further investigate the impacts identified in the June 2018 RI and address the requirements for additional investigation and reporting provided in a 10 December 2018 letter from Daniel McNally of the NYSDEC Division of Environmental Remediation. These requirements were subsequently addressed in the 9 July 2019 SRIWP prepared by Langan and approved by the NYSDEC on 8 August 2019.

The objectives of the SRI included:

- Determining if a source area in soil or groundwater exists;
- Confirming the assumed groundwater flow direction;
- Characterizing the nature and vertical and lateral extents of the impacts in soil and groundwater;

- Based on the groundwater flow direction and groundwater analytical results, determining if groundwater impacts are confined within the Site boundaries or have the potential to migrate off-Site; and,
- Determining if a vapor intrusion condition exists that would require mitigation.

AOC 2 was not evaluated as part of this SRI based on comments received from the NYSDEC in their 10 December 2018 letter. Characterization of the demolition debris stockpiles associated with AOC 3 was included as part of the SRIWP; however, this scope was not completed as the stockpiles associated with automobile repair activities were removed from the Site prior to the transfer of ownership (which occurred following the completion of the 2018 RIR) and the remaining soil/vegetation stockpiles were spread across the surface of the site during Site demolition activities. This condition was reported to the NYSDEC and the characterization of the remaining stockpile materials will be addressed by completion of waste characterization sampling prior to Site remediation and soil excavation activities. Additionally, NYSDEC did not request further evaluation of AOC 2 and is thus not included in this SRI.

The scope of work for the SRI consisted of:

- A limited ground-penetrating radar (GPR) survey within the vicinity of soil boring locations, in the areas of the two potential USTs, and in limited areas across the Site to investigate the location of subsurface utilities and drainage systems;
- Advancement of six soil borings (LSB-1 through LSB-6) and collection of 13 soil samples (including two duplicate samples) for VOC, SVOC, pesticides, herbicides, PCBs, TAL metals, 1,4-dioxane, and PFAS analysis;
- Installation of two groundwater monitoring wells (LMW-1 and LMW-2) and collection of six groundwater samples (including one duplicate sample) from the two newly installed monitoring wells and the three previously installed monitoring wells for VOC, SVOC, pesticides, herbicides, PCBs, total and dissolved TAL metals, 1,4-dioxane, and PFAS analysis; and,
- Installation of eight soil vapor sampling points (LSV-1 through LSV-8) and collection of nine soil vapor samples (including one duplicate sample) for VOC analysis.

The results of the geophysical survey are discussed in Section 6.1. Soil, groundwater, and soil vapor sampling procedures are discussed in Sections 6.2, 6.3, and 6.4, respectively. Quality assurance procedures implemented during this investigation and data validation (Data Usability Summary Reports [DUSRs]) that were completed are discussed in Section 6.5 and results of soil, groundwater, and soil vapor sampling are discussed in Section 6.6. The locations of all soil, groundwater, and soil vapor samples collected during this investigation are shown on Figure 5. A summary of the laboratory analytical data provided for this investigation are summarized in Tables 2A through 4 and are shown on Figures 6 through 8. All samples were analyzed by a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory. Daily Reports of work performed are provided in Appendix G.

6.1 Geophysical Survey Investigation

A limited geophysical survey was completed on 16 March 2020 by Hager-Richter Geoscience, Inc. of Fords, New Jersey using electromagnetic surveying equipment (i.e., the Radiodetection RD 7000 series precision utility location [PUL] instrument) and ground penetrating radar (i.e., the Geophysical Survey Systems, Inc. UtilityScan HS system). The purpose of the geophysical survey was to investigate areas of potential USTs as well as provide utility clearance for the investigation. A copy of the geophysical investigation report is provided in Appendix A.

The geophysical survey identified the presence of linear reflections typical of subsurface utilities or segments of subsurface utilities. Subsurface metallic anomalies consistent with the presence of USTs were not identified within the geophysical survey area during this investigation, including in the areas of AOC 1 and AOC 2 where USTs were previously identified. The suspected gasoline UST associated with AOC 1 was identified in previous investigations beneath the former on-Site building. As building demolition has recently occurred and the elevation in this area was raised to maintain Site grades, this UST is likely located deeper than the effective depth of penetration of the GPR signal, which is about 3 to 4 feet below ground surface. A large anomaly was detected west of the LSVV-6 location; however due to the depth of the anomaly and the limitations of the GPR signal, this could not be confirmed as a UST. The UST associated with AOC 2 was also identified in previous investigations, although was not identified during this SRI.

6.2 Soil Investigation

As requested in Comment 3 of the 10 December 2018 DEC comment letter, additional soil borings were installed to development depth at the northeastern portion of the Site, southeastern portion of the Site, and southwestern portion of the Site. These borings were installed to assess AOC 4 and supplement the historical Site wide soil assessment previously performed.

Six soil borings (LSB-1 through LSB-6) were completed between 16 and 18 March 2020 by AARCO Environmental Services Corp. of Lindenhurst, New York (AARCO). Soil borings were completed to a depths corresponding to the two-foot interval beyond the proposed development excavation depth. Soil boring LMW-1 was also installed on 16 March 2020 for the construction of a groundwater monitoring well. A sampling plan identifying the location, depth and sampling rationale for the completed borings is provided in Table 1 and boring locations are shown on Figures 5 and 6. Subsurface profiles are provided in Figures 2A and 2B.

6.2.1 Soil Boring Investigation Methodology

Borings were completed by using a GeoProbe®8140LC Sonic track mounted drill rig (LSB-3 through LSB-6) and GeoProbe®7822DT trackmounted direct push drill rig (LSB-1 and LSB-2). Soil borings LSB-1 through LSB-4 and LSB-6 were completed to approximately 20-feet bgs and soil boring LSB-5 was completed to approximately 22-feet bgs according to development depths. A soil boring was also logged for the installation of LMW-1, which was completed to 80-feet bgs using the GeoProbe®8140LC Sonic track mounted drill rig. Monitoring well MW-001, previously installed by P.W. Grosser, was determined to be damaged upon inspection and was replaced with LMW-2 during the SRI. Details regarding well installation are provided in Section 6.3.1.

Discrete soil samples were collected from the surface to the final depth of each boring and were visually classified for soil type, grain size, texture, and moisture content. At the locations completed with the direct push drill rig, continuous macrocore samples were collected in 5-foot long acetate liners to the bottom of each boring. At locations completed with the sonic drill rig, continuous subsurface samples were collected by advancing the drilling casing containing a single use

flexible polyethylene sleeve. Soil cuttings exhibiting no gross impacts were placed back into boreholes after completion of the investigation.

Field screening of soil during sample collection for VOCs using a field calibrated PID equipped with a 10.6-electron volt (eV) lamp was completed during the installation of all six test borings. PID readings of 0.1 to 0.5 ppm above background were observed in LSB-3, LSB-4, and LSB-6 and readings of 0.1 to 0.6 ppm above background were observed in LSB-5. No PID readings above background were measured in LSB-1 and LSB-2. PID readings of 0.1 to 1.2 ppm above background were also observed in LMW-1. Petroleum-like impacts, as evidenced by odors, staining, and/or sheen, were not encountered during this investigation. Soil boring logs are provided in Appendix B.

6.2.2 Soil Sampling Methodology

A total of 13 discrete soil samples (including one blind duplicate samples) were collected from the borings for laboratory analysis. Two soil samples were collected at each boring (with the exception of the duplicate samples) from the bottom 2-feet of the fill layer and from the 2-foot interval corresponding to the proposed Site development excavation.

Samples submitted for VOC analysis were collected from a discrete six-inch interval directly from the polyethylene sleeve or acetate liner via laboratory-supplied Terra Core soil samplers. PFAs samples were also collected directly from the polyethylene sleeve or acetate liner using dedicated nitrile gloves to limit the potential for cross contamination. The remaining two-foot sample interval volume was homogenized and placed in appropriate laboratory-supplied containers for all additional analyses. The sample containers were labeled, placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of $4\pm 2^{\circ}$ C). The sample coolers were picked up and delivered via courier under standard chain-of-custody protocol to by York Analytical Laboratories, Inc. of Stratford, Connecticut, a NYSDOH ELAP-certified analytical laboratory (ELAP ID No. 10854). In addition, QA/QC samples including one duplicate, one field blank, and two trip blanks were collected.

Soil samples from all of the borings were analyzed for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane. A sample summary is provided as Table 1.

6.3 Groundwater Investigation

As requested in Comment 1 of the 10 December 2018 DEC letter, one additional groundwater monitoring well, LMW-1, was installed in direct proximity of the previously identified on-Site suspected gasoline UST associated with AOC 1. MW-001, previously installed by P.W. Grosser, was observed to be damaged at the surface upon Site inspection. The remnants of the two-inch PVC riser was observed in the general area of the monitoring well location; however, the flush-mounted protective casing or j-plug were missing. Langan attempted to gauge the remaining well to determine if the integrity of the well had been compromised and an obstruction was encountered approximately three-feet below ground surface. As the well was determined to have been destroyed, a replacement well (LMW-2) was installed at this location during the SRI. Additionally, as requested in Comment 2 of the DEC letter, an additional round of groundwater sampling was completed at all on-Site locations previously sampled, in addition to the additional monitoring well installed as part of this SRI.

A Langan field engineer documented the installation of permanent groundwater monitoring well LMW-1 and LMW-2 by AARCO on 16 March 2020 and 17 March 2020, respectively. Monitoring well locations are provided on Figures 5 and 7, and construction logs are included in Appendix B.

6.3.1 Monitoring Well Installation and Development Methodology

Monitoring wells LMW-1 and LMW-2 were installed via Sonic drilling to approximately 80 feet bgs and 70 feet bgs, respectively, which corresponded to approximately 7.5-feet into the groundwater table as observed within the soil borings. Both wells were constructed with 15-feet of 2-inch diameter 0.010-inch slot schedule 40 PVC well screen and the remainder of the well was constructed of 2-inch diameter schedule 40 PVC riser. The well annulus around the screen of both wells was backfilled with No. 2 sand to a depth corresponding to approximately 2-feet above the screened interval. A 2-foot thick hydrated bentonite seal was installed above the sand pack. The remaining annulus was backfilled with soil

cuttings developed during well drilling activities and placed at depths generally consistent with which the cuttings were retrieved. The monitoring wells were finished with flush-mount metal protective casings and concrete.

Following well construction completion, each well on Site was developed by removing a total of three to ten well volumes using a whale pump and dedicated polyethylene tubing, or until the groundwater was relatively free of silt. Purged groundwater from development activities was discharged to the vegetated Site surface as the historic data only identified limited metals concentrations above groundwater standards and no impacts (odor, sheen, and/or product) were observed in the wells.

All groundwater monitoring wells were surveyed by a licensed surveyor and synoptically gauged with an oil/water interface probe on 18 March 2020. Groundwater was encountered at depths ranging from approximately 70.45 to 71.83 feet bgs corresponding with approximately el +6.76 and el +10.23. Groundwater flow direction was determined to be towards the east-southeast. A potentiometric surface map is provided as Figure 3.

Groundwater monitoring well locations are shown on Figure 7. Well construction details are provided in Appendix B.

6.3.2 Groundwater Sampling Methodology

Groundwater samples were collected on 22 March 2020, five days following well development activities, completed on 17 March 2020. Samples were collected in accordance with the procedures in the USEPA's low-flow groundwater sampling procedure ("Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells", EQASOP-GW 001, 19 January 2010) to allow for collection of a representative sample. Monitoring wells were purged and physical/chemical parameters (e.g., temperature, dissolved oxygen, oxygen reduction potential, and turbidity) were allowed to stabilize to ranges specified in the USEPA guidance before sampling, or until one hour of parameter readings were obtained if stabilization did not occur. Water level readings were not obtained during purging activities to prevent PFAs contamination. Monitoring wells were purged using dedicated bladder pumps with dedicated polyethylene bladders and high density

polyethylene tubing. PFAs samples were collected using dedicated nitrile gloves to limit cross contamination. No notable field observations of impacts were identified during purging and sample collection. Purge water was discharged to the vegetated Site surface. Low flow groundwater sampling parameter sheets are provided in Appendix C.

Six groundwater samples (including one blind duplicate sample) were collected into laboratory-supplied glassware, packed with ice to maintain a temperature of ±4°C, and transported via courier service to York under chain-of-custody protocol. QA/QC samples including one duplicate, one field blank, and one trip blank were collected. Groundwater samples were analyzed for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane.

6.4 Soil Vapor Investigation

As requested in Comment 4 of the December 2018 DEC letter, additional soil vapor sampling was performed at or just below Site development depth in accordance with NYSDOH Guidance of Soil Vapor Intrusion to supplement the historical Site wide soil vapor assessment previously performed.

Eight exterior soil vapor sampling points (LSV-1 through LSV-8) were installed to the development depth corresponding to approximately 16- to 20-feet bgs; however, due to excessive levels of moisture in the subsurface, soil vapor samples could not be collected. Based on this soil vapor sample points were installed between 1.5 and 4 feet bgs rather than the proposed development depth. One duplicate soil vapor and one ambient air sample were collected for QA/QC purposes. Sampling was conducted in general accordance with the NYSDOH October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in New York.

6.4.1 Soil Vapor Implant Installation and Sampling Procedures

Temporary soil vapor sampling points LSV-1 through LSV-8 were installed on 18 March 2020 by AARCO and sampled on 20 March 2020 by Langan. Soil vapor points were installed to the proposed development depth of approximately 16- to 20-feet bgs. Following the completion of their construction, purging was attempted in accordance with the methodology discussed below. Purging of the points installed to the proposed development depth was unsuccessful due to excessive

moisture encountered in the native sand material at depths of approximately 5-feet bgs to the proposed development depth of approximately 20-feet bgs. As such, the temporary soil vapor points were attempted at successively shallower depths until a soil vapor sample could be successfully retrieved. The resulting depth for each of the soil vapor sampling points installed as part of this SRI ranged from 1.5- to 4-feet bgs. Each of the soil vapor points was installed via direct push drilling. Temporary soil vapor sampling points were installed using Teflon-lined polyethylene tubing connected to a dedicated expendable six-inch stainless steel screen. No. 1 sand was used to backfill up to approximately one-foot above the screened interval followed by a hydrated granular bentonite clay seal to the ground surface.

Prior to sampling, each soil vapor sampling point was tightness tested using the helium tracer gas method and purged at a flow rate of <200-ml per minute. No evidence of helium breakthrough (i.e., helium concentrations above 5%) was observed in any of the sample locations before sample collection. PID readings for VOCs collected from the purged soil vapor were measured at concentrations ranging from 120 ppb (LSV-6) to 1,535 ppb (LSV-6) during field screening of each location. Soil vapor sampling locations are shown on Figure 8 and soil vapor sampling field logs are provided in Appendix D.

Soil vapor samples were collected in laboratory-cleaned and certified evacuated 6-L stainless steel summa canisters with regulators supplied by York and were laboratory analyzed for VOCs via USEPA TO-15 Method. The regulators were set to collect each sample over a 2-hour sampling period (a flow-rate of <200-ml per minute) as per USEPA/ITRC soil vapor sampling guidance. Each soil vapor sample was numbered and recorded in a field log book. Samples were transferred to the laboratory immediately after field sampling was completed, and stored at a maximum room temperature of 30° Celsius. Chain-of-custody forms were utilized to document custody for the acquisition, possession, and analysis.

6.4.2 Ambient Air Sampling Procedures

Concurrently with soil vapor sampling, an ambient air sample was collected to evaluate external influences on soil vapor quality for quality assurance purposes.

The ambient air sample was collected in a laboratory-cleaned and certified evacuated 6-L stainless steel summa canister with regulators supplied by York and were laboratory analyzed for VOCs via USEPA TO-15 Method. The regulators were set to collect the sample over an 8-hour sampling period (a flow-rate of <12.5-ml per minute). The sample was numbered and recorded in a field log book and subsequently transferred to the laboratory immediately after field sampling was completed, and stored at a maximum room temperature of 30° Celsius. Chain-of-custody forms were utilized to document custody for the acquisition, possession, and analysis.

6.5 Quality Assurance Samples and Data Validation

All soil, groundwater, and soil vapor sampling devices were properly decontaminated according to NYSDEC and ASTM (ASTM D-5088-90) guidelines prior to each sampling location. For soil sampling this included the use of a dedicated acetate liner within a stainless steel macrocore sampling device for the locations drilled with the direct push drill rig or a dedicated flexible polyethylene sleeve within the drilling casing for the locations drilled with the Sonic rig. Soil samples were then placed in glassware supplied by the laboratory. For groundwater, all non-dedicated sampling equipment was thoroughly washed with an alconox/water solution wash to remove residual groundwater, followed by successive rinses of distilled/deionized water. For soil vapor, dedicated expendable six-inch stainless steel screens and tubing were used.

Each sample was numbered and recorded in a field log book. Soil and groundwater samples were transferred to the laboratory immediately after field sampling was completed, and were stored at a maximum of 4° Celsius. Soil vapor samples were transferred to the laboratory immediately after field sampling was completed, and were stored at a maximum room temperature of 30° Celsius. Chain-of-custody forms were utilized to document custody for the acquisition, possession and analysis.

Quality assurance (trip blanks) and quality control samples (field blank samples, duplicate samples, matrix spike/matrix spike duplicate [MS/MSD] samples, and ambient air samples) were incorporated into the sampling events and consisted of two field blanks (one for soil and one for groundwater), three

duplicate samples (one for soil, one for groundwater, and one for soil vapor), three trip blanks (two for soil and one for groundwater), one MS/MSD for soil, and one ambient air sample for soil vapor. Additionally, three equipment blanks (two for soil and one for groundwater) for PFAs analysis were collected.

A soil duplicate sample was collected from the LSB-6B location for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane analysis; the analytical results were consistent with those reported for the LSB-6B sample with the exception of aluminum, barium, calcium, total chromium, trivalent chromium, cobalt, magnesium, manganese, nickel, potassium, sodium, vanadium, zinc, and perfluorooctanesulfonic acid (PFOS) which were compared to precision criteria and subsequently qualified. The soil sampling field blank was also collected and analyzed for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane. The metals potassium and mercury and the PFAs compounds N-MeFOSAA, Perfluoro-n-butanoic acid (PFBA), and Perfluoropentanoic acid (PFPeA) were detected. Two trip blanks were collected and analyzed for VOCs, and no detections were reported in the samples. The two equipment blank samples were collected and analyzed for PFAs. PFBA and PFPeA were detected in both samples collected. Perfluorooctanesulfonic acid (PFOS) was detected in the sample collected on 18 March 2020. Data usability is discussed in Section 6.6.4.

A groundwater duplicate sample was collected from the LMW-1 location for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane analysis; the analytical results were consistent with those reported for the LMW-1 sample with the exception of tert butyl alcohol and caprolactam which were compared to precision criteria and subsequently qualified. A field blank was also collected and analyzed for TCL VOCs, TCL SVOCs, pesticides, PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, PFAs, and 1,4-dioxane. The PFAs compounds PFBA, PFOA, and PFPeA were detected in the field blank. Two trip blanks were collected and analyzed for VOCs, and no detections were reported in the samples. An equipment blank sample was collected and analyzed for PFAs. PFBA and PFPeA were detected in the sample collected. Data usability is discussed in Section 6.6.4.

A soil vapor duplicate sample was collected from sampling point LSV-1 for VOC analysis; select target compounds including benzene, carbon disulfide, chloroethane, n-hexane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2-hexanone, 4-ethyltoluene, acetone, ethylbenzene, isopropanol, methyl ethyl ketone, m-p-xylene, n-heptane, o-xylene, styrene, tetrachloroethylene, and toluene were compared to precision criteria and subsequently qualified. The ambient air sample was collected for VOCs. Compounds detected in the sample include 1,2,4-trimethylbenzene, 4-ethyltoluene, acetone, benzene, carbon tetrachloride, chloromethane, cyclohexane, dichlorodifluoromethane, ethylbenzene, isopropanol, m,p-xylene, methyl ethyl ketone, methyl methacrylate, methylene chloride, n-heptane, n-hexane, o-xylene, tetrachloroethene, toluene, trichloroethene, and trichlorofluoromethane. These compounds were also detected in corresponding soil vapor samples collected. Data usability is discussed in Section 6.6.4.

Analytical data was submitted to a Langan validator for review in accordance with USEPA and NYSDEC validation protocols. A DUSR was prepared for each delivery group following data validation. The DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain-of-custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method. For each of the organic analytical methods, the following was assessed:

- Holding times
- Instrument tuning
- Instrument calibrations
- Blank results
- System monitoring compounds or surrogate recovery compounds (as applicable)
- Internal standard recovery results
- MS/MSD results
- Target compound identification
- Chromatogram quality
- Compound quantization and reported detection limits
- System performance
- Results verification

DUSRs are provided in Appendix F. Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

After data validation was complete, validated data was used to prepare the tables and figures included in this report.

6.6 Laboratory Analytical Results

Summaries of the laboratory analytical results for soil, groundwater, and soil vapor are provided in Tables 2A, 2B, 3A, 3B, and 4 and are shown on Figures 6, 7, and 8. Analytical results are discussed in detail below. The complete laboratory analytical packages are provided in Appendix E.

6.6.1 Soil Analytical Results

All soil analytical results were compared to the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and Protection of Groundwater SCOs and are summarized in Table 2A and on Figure 6. Duplicate soil samples results are not included in the discussion as these samples are collected for quality assurance/quality control verification of the laboratory results only and are discussed in Section 6.5.

<u>VOCs</u>

Analytical results revealed no exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

<u>SVOCs</u>

Analytical results revealed exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs for polycyclic aromatic hydrocarbons (PAHs), a subset of SVOCs typically indicative of historic fill.

Protection of Groundwater SCO exceedances include benzo(a)anthracene (2.35 milligrams per kilogram [mg/kg] - 22 mg/kg), benzo(b)fluoranthene (1.94 mg/kg - 10.9 mg/kg), benzo(k)fluoranthene (3 mg/kg), and chrysene (1.99 mg/kg). Restricted Residential RUSCO exceedances include benzo(a)pyrene (2.01 mg/kg - 14.1 mg/kg), benzo(k)fluoranthene (4.03 mg/kg - 8.99 mg/kg), chrysene (7.3 mg/kg - 25.5 mg/kg), dibenzo(a,h,)anthracene (0.488 mg/kg - 3.03 mg/kg), and indeno(1,2,3c,d)pyrene (1.29 mg/kg - 5.28 mg/kg). Unrestricted Use SCO exceedances include benzo(k)fluoranthene (1.66 mg/kg). PAH exceedances were limited to the shallow samples collected within the historic fill layer, no exceedances of SVOCs were detected in the soil samples collected in native material in the depth interval corresponding to that directly beneath the proposed development depth. The sample collected from LSB-5, located in the southwestern portion of the Site, from 2 to 4 feet bgs exhibited the highest concentrations of PAHs.

<u>Pesticides</u>

Analytical results revealed exceedances of the NYSDEC Unrestricted Use SCOs for pesticides. The compounds 4,4'-DDD (0.00422 mg/kg – 0.0453 mg/kg), 4,4'-DDE (0.00678 mg/kg – 0.015 mg/kg), 4,4'-DDT (0.00848 mg/kg – 0.0483 mg/kg), and dieldrin (0.00707 mg/kg) were identified in exceedances on the Unrestricted Use SCOs. Pesticide exceedances were limited to the shallow samples collected within the historic fill layer, no exceedances of SVOCs were detected in the soil samples collected in native material in the depth interval corresponding to that directly beneath the proposed development depth. The sample collected from LSB-2, located in the northeastern portion of the Site, from

2 to 4 feet bgs exhibited the highest concentrations of pesticides. Additionally, no exceedances of the NYSDEC Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs were identified for pesticides.

<u>Herbicides</u>

Analytical results revealed no exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

<u>PCBs</u>

Analytical results revealed no exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

Inorganics

Analytical results revealed exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs for metals. Protection of Groundwater SCO exceedances include barium (1,650 mg/kg) and lead (632 mg/kg – 1,500 mg/kg). Restricted Residential RUSCO exceedances include barium (441 mg/kg – 581 mg/kg). Unrestricted Use SCO exceedances include hexavalent chromium (1.19 mg/kg), trivalent chromium (33.6 mg/kg), copper (68.4 mg/kg – 88.6 mg/kg), mercury (0.264 mg/kg – 0.663 mg/kg), nickel (30.9 mg/kg), and zinc (384 mg/kg – 620 mg/kg). Inorganic exceedances were limited to the shallow samples collected within the historic fill layer, no exceedances of SVOCs were detected in the soil samples collected in native material in the depth interval corresponding to that directly beneath the proposed development depth.

Emerging Contaminants (1,4-dioxane and PFAs: 21-Compound List)

Thirteen soil samples (including one duplicate) were sampled for emerging contaminants per- and polyfluoroalkyl substances (PFAs) and 1,4-dioxane per NYSDEC's initiative to understand the presence of these constituents in the environment across New York State. There are currently no NYSDEC SCOs for these compounds in soil. Analytical results are shown in Table 2B and Figure 6,

The compound 1,4-dioxane was not detected in primary soil samples. PFAs compounds were detected in all soil samples collected except the sample collected from LSB-4 from 16 to 18 feet bgs. Compounds detected in soil samples ranged from 0.0661 μ g/kg of perfluorodecanoic acid to 3.71 μ g/kg of perfluorooctanesulfonic acid in LSB-2 from 2 to 4 feet bgs. PFAs compounds were also detected in select equipment and field blank samples, including perfluoropentanoic acid, perfluorobutanoic acid, N-methyl perfluorooctane- sulfonamidoacetic acid, and perfluorooctanesulfonic acid. Associated primary sample result were qualified appropriately based on concentrations of the aforementioned analytes. Total PFAs concentrations ranged from 0.0663 μ g/kg in LSB-1 from 16 to 18 feet bgs to 3.7761 μ g/kg in LSB-2 from 2 to 4 feet bgs.

Conclusions

Impacts indicative of contaminated historic fill are present on Site. Exceedances of the analytes associated with contaminated historic fill, including PAHs, pesticides, and metals, were detected within the contaminated historic fill layer. No exceedances above the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs were detected in native samples collected from 16 to 20 feet bgs during the investigation. Total PFAs concentrations ranged from 0.0663 µg/kg in LSB-1 from 16 to 18 feet bgs to 3.7761 µg/kg in LSB-2 from 2 to 4 feet bgs.

6.6.2 Groundwater Analytical Results

All groundwater analytical results were compared to the NYSDEC SGVs and are summarized in Table 3A and on Figure 7. Duplicate groundwater samples results are not included in the discussion as these results are discussed in detail in Section 6.5.

<u>VOCs</u>

Analytical results revealed no exceedances of the NYSDEC SGVs.

SVOCs

Analytical results revealed no exceedances of the NYSDEC SGVs.

Pesticides

Analytical results revealed no exceedances of the NYSDEC SGVs.

<u>Herbicides</u>

Analytical results revealed no exceedances of the NYSDEC SGVs.

PCBs

Analytical results revealed no exceedances of the NYSDEC SGVs.

Inorganics

Analytical results revealed exceedances of the NYSDEC SGVs for metals in all groundwater samples collected during the investigation. Exceedances include total chromium (117 µg/L), iron (1,330 µg/L – 31,400 µg/L), lead (41.5 µg/L), magnesium (46,300 µg/L – 74,900 µg/L), dissolved magnesium (40,700 µg/L – 81,000 µg/L), manganese (312 µg/L – 1,490 µg/L), dissolved manganese (310 µg/L - 315 µg/L), sodium (118,000 µg/L – 254,000 µg/L), and dissolved sodium (119,000 µg/L – 255,000 µg/L). Due to the depth of groundwater, and the lack of protection of groundwater exceedances in soil within the shallow native material, the detections of metals are attributed to naturally occurring background concentrations.

Emerging Contaminants (1,4-dioxane and PFAs: 21-Compound List)

Groundwater samples collected from all monitoring wells were sampled for emerging contaminants PFAs and 1,4-dioxane per NYSDEC's initiative to understand the presence of these constituents in the environment across New York State. There are no NYSDEC TOGS SGVs for these compounds. Analytical results are shown in Table 3B and Figure 7.

The compound 1,4-dioxane was not detected in groundwater samples. PFAs compounds were detected in all groundwater samples collected. Compounds detected in groundwater samples ranged from 0.000515 μ g/L of sodium 1H, 1H,2H,2H-perfluorooctane sulfonate (6:2) in MW-004 to 0.0489 μ g/L of perfluorooctanoic acid in MW-003. Total PFAs concentrations ranged from 97.335 ng/L in MW-004 to 143.73 ng/L in MW-003.

Conclusions

Analytical results revealed no exceedances of the NYSDEC SGVs for VOCs, SVOCs, pesticides, herbicides, and PCBs. Metals were detected in exceedance of NYSDEC SGVs, although these exceedances are likely attributable to naturally occurring background concentrations due to the depth of groundwater. According to the NYSDEC Guidelines Sampling and Analysis of PFAs dated January 2020, further assessment of PFAs is not needed if individual PFAs compounds are detected below 100 ng/L and the total concentration of PFAs compounds are detected below 500 ng/L. As neither of these thresholds were identified, further assessment of PFAs is not needed at the site.

6.6.3 Soil Vapor Analytical Results

Exterior soil vapor analytical results were compared to NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion Matrices A through C dated October 2006 and revised in May 2017. These results are summarized in Table 4 and are shown on Figure 8.

Although not collected from the proposed development depth, the shallow soil vapor results identified elevated concentrations of petroleum-related VOCs including BTEX at cumulative concentrations that ranged from 1.28 microgram per cubic meter (μ g/m³) to 215 μ g/m³. BTEX compounds were detected in all soil vapor samples collected. Additional petroleum-related VOCs including 1,2,4-trimethylbenzene (19.2 μ g/m³– 97 μ g/m³) and 1,3,5-trimethylbenzene (5.03 μ g/m³– 74.4 μ g/m³) were also detected. The highest concentrations of petroleum related compounds were identified in LSV-1 located within the northwestern portion of the Site.

The VOCs cis-1,2-dichloroethene and 1,1-dichloroethene were not detected in any of the soil vapor samples. According to the NYSDOH Soil Vapor Intrusion Matrix A, TCE (0.312 μ g/m³) and carbon tetrachloride (0.386 μ g/m³ – 0.528 μ g/m³) concentrations in soil vapor were identified below the monitoring and/or mitigation threshold. According to the NYSDOH Soil Vapor Intrusion Matrix B, PCE (3.99 μ g/m³ – 34.6 μ g/m³), 1,1,1-trichloroethane (0.945 μ g/m³), and methylene chloride (1.12 μ g/m³ – 2.62 μ g/m³) concentrations in soil vapor wapor were identified below the monitoring and/or mitigation threshold.

According to the NYSDOH Soil Vapor Intrusion Matrix C, vinyl chloride $(1.65 \ \mu g/m^3)$ concentrations in soil vapor were identified below the monitoring and/or mitigation threshold.

Conclusions

Results of the soil vapor evaluation did not evaluate the soil vapor conditions at development depth due to the presence of excessive soil moisture content at that depth. The shallow soil vapor evaluation did not identify any impacts that would require monitoring or mitigation per the NYSDOH guidance values; however, elevated concentrations of BTEX were identified in the sample results.

6.6.4 Data Usability

The DUSRs were prepared in accordance with DER-10 and reviewed by Langan's in-house validator before issuance. The DUSRs presented the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of deficiencies for each analytical method. DUSRs for the SRI are provided in Appendix F.

All data are considered usable, as qualified, with the exception of the rejected results which includes the VOC acrolein in all primary groundwater samples collected and associated field blanks and trip blanks. SVOC analytes associated with the surrogate perylene-d12, including benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-c,d)pyrene, were also considered rejected. Some data qualifiers were appended to the reported results, which have been included in the respective data summary tables (Tables 2A through 4). Copies of the DUSRs are included in Appendix F.

6.7 Evaluation of Areas of Concern

This section discusses the results of the SRI with respect to the AOCs described in detail in Section 5.0. As discussed previously, AOC 2 did not require further investigation and AOC 3 will be evaluated as part of the pre-development waste characterization of soil for disposal purposes. This additional evaluation of soil will be documented in the forthcoming RAWP.

AOC 1: Gasoline Underground Storage Tank

According to Sanborn Maps provided in the 2017 Phase I ESA by P.W. Grosser, a gasoline UST was present in the southwestern portion of the Site on Lot 38 between 1951 and 1965. During the 2018 RI by P.W. Grosser, a geophysical survey confirmed the presence of an approximately 7-foot by 9-foot metallic anomaly consistent with the presence of an UST.

Historical soil vapor analytical results indicate that impacts may be present from the gasoline UST. Analytical results include detections of chlorinated VOCs, although detections were below the NYSDOH guidance values that would require monitoring or mitigation; elevated concentrations of BTEX were also identified. Based on the nature and concentration of compounds observed in the soil vapor samples, a significant soil vapor threat to potential on-Site or off-Site receptors does not exist. The detected impacts in the surficial soil, including Unrestricted Use SCOs and RUSCOs exceedances for SVOCs, pesticides, PCBs, and metals, may also be associated with the presence of contaminated historic fill. Groundwater was not evaluated in the vicinity of the gasoline underground storage tank as part of the RI. As a soil sample could not be collected directly beneath the identified anomaly (former UST), petroleum impacts may be encountered during tank removal.

The results of the geophysical survey conducted as part of this SRI in this area did not identify the location of this suspected UST. A total of two soil borings (LSB-5 and LSB-6) were completed downgradient of the suspected UST during the SRI and analytical results revealed no petroleum related VOCs above Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs. Analytical results from LMW-1, installed downgradient of the suspected UST, revealed no petroleum related VOCs above NYSDEC SGVs. Metals were detected above NYSDEC SGVs, however, due to the depth of groundwater, these detections are likely attributable to naturally occurring background concentrations. Soil vapor analytical results from LSV-5, downgradient of the suspected UST, and LSV-6, northeast of the suspected UST, did not identify any impacts that would require monitoring or mitigation per the NYSDOH guidance values; however, elevated concentrations of BTEX were identified in the sample results. Soil and soil vapor analytical results are consistent with previous investigations and did not identify a spill release source. Groundwater conditions in the vicinity of UST were not evaluated in previous

investigations, although results from this SRI are not indicative of a spill release to the source area.

AOC 4: Historic Fill

Historical soil sample analytical results exceeding the Unrestricted Use SCOs and RUSCOs for SVOCs, pesticides, PCBs, and metals were detected throughout the Site in shallow (0 to 2 feet bgs) and intermediate (4 to 6 feet, 5 to 7 feet, and 6 to 8 feet) samples. The historic fill layer was visually observed up to approximately 9-feet bgs at the Site and predominantly consisted of brown silty sand with concrete, brick, and construction debris.

Contaminated historic fill characteristics and contaminants observed during this investigation are consistent with results of previous investigations. Exceedances of analytes associated with historic fill, including PAHs, pesticides, and metals, above the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs were detected within the historic fill layer.

The results of this investigation were also used to perform a Site wide assessment of soil, groundwater, and soil vapor. The findings of this investigation are consistent with findings of previous investigations. Impacts indicative historic fill are present on Site, the contaminated historic fill is underlain by a native sand with varying amounts of silt and gravel. Laboratory analytical results of samples collected from this material at development depth did not identify any exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

Metals in groundwater were detected in exceedance of NYSDEC SGVs, although these exceedances are likely attributable to naturally occurring background concentrations due to the depth of groundwater. Results of the shallow soil vapor evaluation did not identify any impacts that would require monitoring or mitigation per the NYSDOH guidance values; however, elevated concentrations of BTEX were identified in the sample results.

7.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future Site and off-Site conditions, in accordance with the May 2010 NYSDEC Final DER-10 Technical Guidance for Site Investigation and Remediation. The assessment includes an evaluation of potential sources and migration pathways of Site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-Site and off-Site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, completion of an FWRIA was not required for the Site.

7.1 Current Conditions

The Site is located in the Bedford-Stuyvesant neighborhood of Brooklyn, New York and is identified as Block 1557, Lots 1-4, 23, 26, 28, and 31 through 38 on the NYC Brooklyn Borough Tax Map. The Site has an area of approximately 30,164-square feet (\pm 0.69-acres) and is primarily vacant land. The Site cover consists primarily of vegetation and exposed soil with the exception of an asphalt paved area in the northeastern portion of the Site. The Site is currently zoned for manufacturing and residential use (M1-1/R7D) and is within the Atlantic Avenue Special Mixed-Use District (MX-10).

7.2 Proposed Conditions

The Site is proposed to be developed with a 100% affordable housing residential building. A parking garage containing 44 spaces will also be developed in the basement level. The proposed use of the ground floor is as a grocery store, community facility containing housing assistance organization offices, an art gallery, welfare services, and an aquaponics farm.

7.3 Summary of Environmental Conditions

SVOCs, metals, PCBs, and pesticides were detected at concentrations above the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or PG SCOs in soil samples collected from historic fill. The compound distribution and contaminant concentrations detected are typical of fill material in New York City. Metals were detected in groundwater at concentrations above the NYSDEC

SGVs. Due to the depth of groundwater, detections of metals are likely attributable to naturally occurring background concentrations. Shallow soil vapor sample analytical results detected VOCs at concentrations below the NYSDOH soil vapor intrusion guidance levels which would require monitoring or mitigation in addition to petroleum-related VOCs (BTEX) for which there are no NYSDOH guidance values.

7.4 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the SRI and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways.

7.4.1 Potential Sources of Contamination

Potential sources of contamination have been identified and include past uses of the Site contaminated historic fill material and historical petroleum bulk storage. Historical on-Site and adjacent site use for auto wrecking, auto painting, and auto repair facilities including gasoline and fuel oil storage are potential sources of SVOCs in soil and petroleumrelated and chlorinated VOCs in soil vapor. The Site-wide presence of historic fill has been established as a source of SVOCs, PCBs, pesticides, and metals in soil. Due to the depth of groundwater, detections of metals are likely attributable to naturally occurring background concentrations. Groundwater is not considered to be impacted by contamination caused by historic fill or historical Site operations based on available analytical results.

7.4.2 Exposure Media

Impacted media include soil and soil vapor. Analytical data indicates that historic fill material contains SVOCs, pesticides, PCBs, and metals at concentrations greater than the Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or the Protection of Groundwater SCOs. Soil vapor at the Site is impacted with petroleum-related VOCs (BTEX) and the chlorinated VOCs PCE, TCE, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and vinyl chloride; however, concentrations detected are at concentrations below which the New York

State Department of Health (NYSDOH) soil vapor intrusion guidance levels which would require monitoring or mitigation.

7.4.3 Receptor Populations

The Site currently consists of vacant land. The Site is enclosed in fencing with restricted access to authorized guests and personnel investigating environmental conditions. During Site development and remediation, human receptors will be limited to construction and remediation workers, authorized guests, design team members visiting the Site, and the public adjacent to the Site. Under future conditions, receptors will include the new building occupants, visitors to the building, and building management/maintenance employees.

7.5 Potential Exposure Pathways – On-Site

7.5.1 Current Conditions

Human exposure to contaminated soil is currently limited as the Site is vacant and secured with fencing. In areas where human exposure to contaminated soil is possible, the potential exposure pathway for dermal absorption, inhalation and ingestion is controlled by limiting Site access and through implementation of a HASP by those handling Site media (i.e., investigation).

Due to the depth of groundwater, and the fact that detections of metals are attributed to naturally occurring background concentrations, there is no pathway of exposure to groundwater. Additionally, groundwater in New York City is not used as a potable water source, hence there is no complete exposure pathway under current Site conditions. However, there is a potential exposure pathway through dermal absorption, inhalation, and ingestion during investigative groundwater sampling, but it is controlled by limiting Site access and through the implementation of the HASP during sampling.

Because the Site is currently vacant and lacking enclosed spaces, there are minimal current on-Site exposure pathways for soil vapor intrusion. Soil vapor that may penetrate through the unpaved surface of the Site primarily migrates vertically through the subsurface and will dissipate and dilute with ambient air. Any remaining potential exposure pathways through dermal absorption and inhalation is controlled by limiting Site

access and through the implementation of a HASP during groundintrusive work.

7.5.2 Construction/Remediation Conditions

Construction and remediation may result in potential exposures to Site contaminants in the absence of a Health and Safety Plan (HASP) and a Community Air Monitoring Plan (CAMP). Construction and remedial activities will likely include excavation and off-Site disposal of impacted soil, and construction of foundation components. In the absence of a HASP and CAMP, this scenario presents the potential for exposure of soil contaminants to construction and remediation workers via dermal absorption, ingestion, and inhalation of vapors and particulate matter. This exposure pathway will be marginalized through the implementation of the HASP, CAMP, and vapor and dust suppression techniques.

7.5.3 Proposed Future Conditions

Currently, the contemplated project includes a 100% affordable housing residential building with a commercial ground floor. New development will incorporate a cover system across the Site and vapor mitigation measures. These measures will prevent human exposure to impacted soil and groundwater and potential soil vapor intrusion.

There is no pathway for ingesting groundwater contaminants, since the Site and surrounding areas obtain their drinking water supply from surface water reservoirs located upstate and not from groundwater.

Based on results of the previous investigations and this SRI, it is anticipated that a Track 1 cleanup will be achieved; however, if Track 1 cannot be achieved, institutional controls and/or engineering controls will be included in the remedy to reach Track 4 cleanup and to prevent exposure to any remaining residual contamination.

7.6 Potential Exposure Pathways – Off-Site

Soil vapor may migrate off-Site vertically through the subsurface and dissipate and dilute with ambient air in instances where the Site surface is compromised or during Site construction/remediation.

The potential off-Site migration of Site soil contaminants is not expected to result in a complete exposure pathway for current, construction and remediation, or future conditions for the following reasons:

- The Site is located in an urban area and predominantly covered with continuous relatively impervious surface covering (i.e. building foundations and concrete paving)
- During Site redevelopment remediation and construction, the following protective measures will be implemented:
 - A Site-specific HASP including a CAMP will be implemented to protect on-Site personnel and to monitor the perimeter of the site to mitigate off-Site migration of particulates and VOCs during construction.
 - Air monitoring will be conducted for particulates (i.e., dust) and VOCs during intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-Site migration of soil and vapors.
 - Vehicle tires and undercarriages will be washed as necessary prior to leaving the Site to prevent tracking material off-Site.
 - A soil erosion/sediment control plan will be implemented during construction to control off-Site migration of soil.

7.7 Evaluation of Human Health Exposure

Based upon the CSM and the review of environmental data, partial on-Site exposure pathways appear to be present under current conditions, and in the absence of institutional and engineering controls, complete on-Site exposure pathways could potentially exist in construction/remediation and future conditions.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population.

7.7.1 Current Conditions

Contaminant sources include contaminated historic fill with elevated levels of SVOCs, metals, PCBs and pesticides; PAHs and metals impacted soil and groundwater; and VOC-impacted soil vapor.

Contaminant release and transport mechanisms include contaminated soil transported as dust (dermal, ingestion, inhalation), and existing soil vapor contaminants (inhalation). Under current conditions, the likelihood of human exposure is limited, as site access is restricted to employees, ownership and authorized visitors.

7.7.2 Construction/Remediation Activities

During remedial construction, points of exposure include disturbed and exposed soil during excavation and dust and organic vapors generated during soil excavation and off-Site disposal. Routes of exposure include ingestion and dermal absorption of contaminated soil, inhalation of organic vapors arising from contaminated soil, and inhalation of dust arising from contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the Site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by limiting Site access and through implementation of appropriate health and safety measures, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages before they leave the Site to prevent off-Site soil tracking, maintaining Site security, and wearing the appropriate personal protective equipment (PPE).

7.7.3 Proposed Future Conditions

Remedial construction is expected to remove all on-Site contaminants. After construction, residual contaminants may remain on-Site if a Track 1 remedy is not achieved, and to a lesser extent, would include those listed under current conditions. Contaminant release and transport mechanisms include penetrations through the building foundations and any remaining exposed soil. If protective measures and remediation are not implemented, points of exposure include potential cracks in the

proposed building foundation and exposure during any future soildisturbing activities. Routes of exposure may include inhalation of vapors entering the buildings or dust during any soil-disturbing work. The receptor population includes the building tenants, property employees, visitors and maintenance workers. If a Track 1 remedy is not achieved, the possible routes of exposure can be avoided or mitigated by proper installation of soil vapor mitigation measures, construction and maintenance of a composite cover system (i.e., concrete or at least two feet of clean soil), and implementation of a Site Management Plan.

7.7.4 Human Health Exposure Assessment Conclusions

- 1. Under current conditions, there is a marginal risk for exposure. The primary exposure pathways are for dermal contact, ingestion and inhalation of soil or soil vapor by Site construction and remediation workers. Exposure to groundwater is limited to those completing investigation activities. The exposure risks can be avoided or minimized by limiting Site access and implementing the appropriate health and safety and vapor and dust suppression measures outlined in a Site-specific HASP and CAMP during ground-intrusive activities
- 2. In the absence of protective measures, there is a moderate risk of exposure during the construction and remediation activities. The primary exposure pathways are:
 - Dermal contact, ingestion and inhalation of contaminated soil, groundwater, or soil vapor by Site visitors and construction and remediation workers.
 - Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the Site.

These exposure pathways can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety plans, implementing vapor and dust suppression techniques, and using Site security to control access.

3. A complete exposure pathway is possible for the migration of Site contaminants to off-Site human receptors during the remedial construction phase. During this phase, Site access will be limited to authorized visitors and workers and protective measures will be used

during construction to prevent completion of this pathway, including following a Site-specific HASP and implementation of a CAMP.

4. The existence of a complete exposure pathway for Site contaminants to human receptors during proposed future conditions is unlikely, as the majority of on-Site sources of contamination will be excavated and transported for off-Site disposal. If a Track 1 remedy is not achieved, residual Site soil will be capped by a composite cover (i.e., concrete building slab, two feet of clean soil). Regional groundwater is not used as a potable water source in this part of New York City. It is not anticipated that dewatering will be required; the proposed building is not expected to be set within the groundwater table, which will minimize exposure to groundwater. The potential pathway for soil vapor intrusion into the buildings will be minimized for occupied portions of the building basement by the Track 1 soil source removal remedy and a vapor barrier. Additionally, the ventilation system in the parking garage will bring fresh air into the parking garage to help dissipate any vapors trapped in the basement level of the planned development from potential off-Site sources after the remediation.

8.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater and soil vapor contamination. The nature and extent of the contamination is derived from a combination of field observations, historical analytical data, and analytical data that was discussed in Section 6.6.

8.1 Soil Contamination

Historic Fill Material

Acetone was detected exceeding the NYSDEC Unrestricted Use SCO in one soil sample in the northeast portion of the Site from the 0- to 2-foot depth interval. No other VOCs were detected in soil at concentrations exceeding the Unrestricted Use SCOs, Restricted Residential RUSCOs, or Protection of Groundwater SCOs. SVOCs commonly associated with the presence of historic fill material including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene and pyrene were detected in soil samples collected within the historic fill layer throughout the Site footprint at concentrations exceeding the Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

Metals including arsenic, barium, cadmium, total chromium, hexavalent chromium, copper, lead, manganese, nickel, mercury, and zinc were detected in historic fill soil samples collected throughout the Site footprint at concentrations exceeding Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs.

Pesticides detected at concentrations exceeding the Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs were detected in historic fill samples including 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, aldrin, dieldrin, and alpha-chlordane.

PCBs were detected in historic fill samples collected at concentrations exceeding the Unrestricted Use SCOs and in one shallow soil sample at a concentration exceeding the Restricted Residential RUSCOs. PCBs were not detected above the Unrestricted Use SCOs or Restricted Use RUSCOs in any of the deeper samples collected.

Herbicides were not detected above the Unrestricted Use SCOs in any of the samples collected.

Soil sample analytical results exceeding the Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs for SVOCs, pesticides, PCBs, and metals were detected throughout the Site in shallow (0 to32 feet bgs) and intermediate (4 to 6 feet, 5 to 7 feet, and 6 to 8 feet) samples and are attributed to the presence of a contaminated historic fill layer observed up to 9 feet in depth at the Site. Although laboratory analytical results of samples collected from the native material at development depth provided as part of this SRI did not identify any exceedances of the NYSDEC Unrestricted Use SCOs, Restricted Residential RUSCOs, and/or Protection of Groundwater

SCOs, previous investigations did identify exceedances of the Track 1 SCOs in native material down to depths of 20 feet bgs.

8.2 Groundwater Contamination

Groundwater sample analytical results did not identify the presence of VOCs, SVOCs, pesticides, herbicides, or PCBs at concentrations above laboratory detection limits, with the exception of trace concentrations of chloroform, detected at concentrations below the SGV. Metals including total chromium, iron, lead, magnesium, dissolved magnesium, manganese, dissolved magnesium, sodium, dissolved sodium, and dissolved iron and manganese combined were detected in groundwater at concentrations exceeding the SGVs; however, due to the depth of groundwater, these detections are not attributed to the presence of historic fill or potential impacts from historical Site use and are likely attributable to naturally occurring background concentrations.

8.3 Soil Vapor Contamination

Shallow soil vapor sample analytical results detected chlorinated VOCs including PCE, TCE, methylene chloride, 1,1,1-trichloroethane, carbon tetrachloride, and vinyl chloride at concentrations below the NYSDOH soil vapor intrusion guidance levels which would require monitoring or mitigation in addition to petroleum-related VOCs (BTEX) for which there are no NYSDOH guidance values.

9.0 CONCLUSIONS

<u>Stratigraphy</u>: A historic fill layer as deep as 9 feet is underlain by a layer of native sand with varying amounts of silt and gravel. Bedrock was not encountered in any of the soil borings advanced during the previous investigation or this SRI.

<u>Hydrogeology</u>: Depth to groundwater ranges from about 70.45 to 71.83 feet below current Site grade. Although Site topography gently slopes downward to the northwest, the groundwater flow direction was determined to be to the east-southeast based on groundwater elevation data.

<u>Historic Fill Quality</u>: Up to 9 feet of fill material was identified below surface cover. Contaminants related to historic fill material include SVOCs, metals, PCBs and pesticides, which were detected at concentrations above Unrestricted Use SCOs,

Restricted Residential RUSCOs, and/or Protection of Groundwater SCOs within this layer.

<u>Groundwater Quality</u>: Results of the groundwater evaluation completed as part of the previous investigations and this SRI did not identify any impacts, with exception of metals that are determined to be result of background conditions and/or suspended solids.

<u>Soil Vapor Quality</u>: Results of the soil vapor evaluation completed as part of the previous investigations and this SRI did not identify any impacts that would require monitoring or mitigation per the NYSDOH guidance values; however, elevated concentrations of BTEX were identified in the sample results.

Sufficient analytical data were gathered during the RI, together with previous studies, to establish soil cleanup levels and to develop a remedy for the Site. The final remedy will be detailed in the forthcoming Remedial Action Work Plan (RAWP) to be prepared in accordance with NYS BCP guidelines. The remedy will need to address contaminated historic fill impacted with SVOCs, metals, PCBs, and pesticides and VOC-impacted soil vapor.

\langan.com\data\PAR\data2\100681201\Project Data_Discipline\Environmental\Reports\2020-04 - SRIR\1921 Atlantic Avenue - Supplemental Remedial Investigation Report_FINAL 2020-04-07.docx

LANGAN

TABLES

LANGAN

Table 1 Supplemental Remedial Investigation Sample Summary and Rationale

1912 Atlantic Avenue Brooklyn, New York NYSDEC BSP Site No.: C224279 Langan Project No.: 100681201

Matrix	Soil Boring Sample Name		Sample Depth (ft bgs)	Material	Rationale	Analysis				
	LSB-1	LSB-1A	2 - 4	Fill	Investigation of AOC 4 and site wide soil assessment					
	LOD I	LSB-1B	16 - 18	Native		VOCs				
	LSB-2	LSB-2A	2 - 4	Fill	Investigation of AOC 4 and site wide soil assessment	SVOCs				
	200 2	LSB-2B	16 - 18	Native		Pesticides				
	ISB 3	LSB-3A	1 - 3	Fill	Investigation of AOC 4 and site wide soil assessment	PCBs				
Soil	L3D-3	LSB-3B	16 - 18	Native		Herbicides				
3011	ISB /	LSB-4A	1 - 3	Fill	Investigation of AOC 4 and site wide soil assessment	TAL Metals				
	L3D-4	LSB-4B	16 - 18	Native		Cyanide				
	I SR 5	LSB-5A	2 - 4	Fill		Hex./Tri. Chromium				
	L3D-5	LSB-5B	20 - 22	Native	Investigation of AOC 1, AOC 4, and site wide soil assessment	PFAs 1.4 Discuss				
		LSB-6A	2 - 4	Fill	Investigation of AOC-1, AOC-4, and site wide soli assessment	1,4-Dioxane				
	L3B-0	LSB-6B	16 - 18	Native						
		LMW-1	73		Investigation of AOC-1 and site wide groundwater assessment	VOCs SVOCs				
		LMW-2	73			Pesticides PCBs				
Groundwater		MW-002 73			Site wide groundwater assessment	Herbicides Total and Dissolved TAL Metals				
		MW-003 78				Cyanide Hex./Tri. Chromium				
		MW-004	73			1,4-Dioxane				
		LSV-1	3							
		LSV-2	4		Site wide soil vapor assessment					
		LSV-3	2							
Soil Vapor		LSV-4	2			VOCs				
Soil Vapor		LSV-5	2		Evaluation of AOC-1 and site wide soil vanor assessment	v003				
		LSV-6 3								
		LSV-7	1.5		Site wide seil vaper assessment					
		LSV-8	4							

Table 2B Supplemental Remedial Investigation Soil Sample Analytical Results Summary - Emerging Contaminants

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No.: 100681201

Location	LSB-1		LSB-1		LSB-2		LSB-2		LSB-3		LSB-3		LSB-4		LSB-4		LSB-5	LSI	3-5		LSB-6		LSB-6		LSB-6	
Sample ID	012_LSB-1A_2020	00318	013_LSB-1B_2020	00318	014_LSB-2A_2020	00318	015_LSB-2B_202003	318	008_LSB-3A_2020	0317	009_LSB-3B_20200	0317	006_LSB-4A_2020	00317	007_LSB-4B_2020	0317	004_LSB-5A_20200317	005_LSB-5E	_20200317	001	_LSB-6A_20200317	7 0	002_LSB-6B_2020031	7	003_DUP-1_202	.00317
Laboratory ID	20C0847-01		20C0847-02	2	20C0847-03		20C0847-04		20C0787-08		20C0787-09		20C0787-06		20C0787-07		20C0787-04	20C07	87-05		20C0787-01		20C0787-02		20C0787-0	3
Sample Date	3/18/2020		3/18/2020		3/18/2020		3/18/2020		3/17/2020		3/17/2020		3/17/2020		3/17/2020		3/17/2020	3/17/	2020		3/17/2020		3/17/2020		3/17/2020	1
Sample Depth (feet bgs)	2-4		16-18		2-4		16-18		1-3		16-18		1-3		16-18		2-4	20-	22		2-4		16-18		16-18	
Semivolatile Organic Compounds (µg/kg)																	-									-
1,4-Dioxane (P-Dioxane)	9.52	U	9.62	U	9.35	U	9.62	U	9.35	U	9.8	U	9.8	U	9.26	U	9.35 U	9.62	l	U	9.35	U	9.8	U	9.52	U
Per and Polyfluoroalkyl Substances (µg/kg)																										
N-ethyl perfluorooctane- sulfonamidoacetic acid (NEtFOSAA)	0.323	JD	0.109	U	0.112	U	0.109	U	0.105	U	0.107	U	0.107	U	0.105	U	0.106 U	0.109	l	U	0.11	U	0.108	U	0.108	U
Perfluorobutanoic acid (PFBA)	0.407	U	0.191	U	0.196	U	0.19	U	0.209	J	0.187	U	0.188	U	0.184	U	0.199 J	0.191	l	U	0.224	J	0.19	U	0.19	U
Perfluorodecanoic acid (PFDA)	0.114	U	0.0534	U	0.0661	J	0.0534	U	0.0683	J	0.0525	U	0.0528	U	0.0515	U	0.0895 J	0.0534	1 I	U	0.0541	U	0.0533	U	0.0532	U
Perfluoroheptanoic acid (PFHpA)	0.101	U	0.0475	U	0.0488	U	0.0474	U	0.0669	J	0.0467	U	0.0469	U	0.0458	U	0.0461 U	0.047	5 (U	0.048	U	0.0473	U	0.0473	U
Perfluorohexanoic Acid (PFHxA)	0.147	U	0.0688	U	0.0707	U	0.0687	U	0.17	J	0.0676	U	0.068	U	0.0663	U	0.0668 U	0.068	3 (U	0.289	J	0.0686	U	0.0685	U
Perfluorononanoic Acid (PFNA)	0.133	U	0.0624	U	0.0641	U	0.0623	U	0.0902	J	0.0614	U	0.0617	U	0.0602	U	0.0606 U	0.0624	t í	U	0.0631	U	0.0622	U	0.0621	U
Perfluorooctanesulfonic acid (PFOS)	0.89	JD	0.0663	J	3.71		0.0926	J	0.896		0.0449	U	0.267	J	0.0441	U	0.751	0.121		J	0.139	J	0.0818	J	0.0455	UJ
Perfluorooctanoic Acid (PFOA)	0.172	U	0.0806	U	0.536	U	0.521	U	0.632		0.091	J	0.0796	U	0.0777	U	0.125 J	0.080	5 I	U	0.103	J	0.136	J	0.111	J
Perfluoropentanoic Acid (PFPeA)	0.205	U	0.0959	U	0.0985	U	0.0958	U	0.14	J	0.0943	U	0.0948	U	0.0925	U	0.104 J	0.095	ə i	U	0.219	J	0.0956	U	0.0955	U

Notes: 1. Only detected analytes are shown in the table. 2. Sample 003_DUP-1_20200317 is a duplicate sample of 002_LSB-6B_20200317. 3. ug/kg = micrograms per kiogram

Qualifiers: D = The concentration reported is a result of a diluted sample. J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise. U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 2A Supplemental Remedial Investigation Soil Sample Analytical Results Summary

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No.: 100681201

				Langan	I FIO	Ject NO 100081201					
Location Sample ID Laboratory ID Sample Date	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted-	NYSDEC Part 375 Protection of Groundwater SCOs	LSB-1 012_LSB-1A_202003 20C0847-01 3/18/2020	818	LSB-1 013_LSB-1B_20200318 20C0847-02 3/18/2020	;	LSB-2 014_LSB-2A_20200318 20C0847-03 3/18/2020	LSB-2 015_LSB-2B_20200318 20C0847-04 3/18/2020	LSB-3 008_LSB-3A_20200317 20C0787-08 3/17/2020	LSB-3 009_LSB-3B_20200317 20C0787-09 3/17/2020
Sample Depth (feet bgs)		Residential SCOs		2-4		16-18		2-4	16-18	1-3	16-18
Volatile Organic Compounds (mg/kg)											
Acetone	0.05	100	0.05	0.0052	UJ	0.0036	UJ	0.02 J	0.0039 U	J 0.0039 U	J 0.0038 UJ
Bromoform	~	~	~	0.0026	U	0.0018	U	0.0022 U	0.0019 L	J 0.0019 F	R 0.0019 R
Ethanol	~	~	~	0.042	UJ	0.029	UJ	0.034 UJ	0.031 U	J 0.044 J	0.049 J
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.12	0.0026	U	0.0018	U	0.004 J	0.0019 L	J 0.0019 L	J 0.0019 U
Naphthalene	12	100	12	0.0026	U	0.0018	U	0.17	0.0034	0.0019 L	J 0.0019 U
Semivolatile Organic Compounds (mg/kg)											
2-Methylnaphthalene	~	~	~	0.341	D	0.0467	U	0.452 D	0.0471 L	J 0.0471 L	J 0.0457 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.0552	JD	0.0467	U	0.0487 U	0.0471 l	J 0.0471 L	J 0.0457 U
Acenaphthene	20	100	98	0.729	D	0.0467	U	2.05 D	0.0471 l	J 0.0548 JI	O 0.0457 U
Acenaphthylene	100	100	107	0.636	D	0.0467	U	0.539 D	0.0471 l	J 0.136 E	0 0.0457 U
Anthracene	100	100	1,000	2.25	D	0.0467	U	5.11 D	0.0471 L	J 0.192 E	0.0457 U
Benzo(a)Anthracene	1	1	1	<u>8.03</u>	D	0.0467	U	<u>8.22</u> D	0.0471 L	J 0.691 E	0.0457 U
Benzo(a)Pyrene	1	1	22	6.9	D	0.0467	U	5.67 D	0.0471 L	J 0.5 E	0.0457 U
Benzo(b)Fluoranthene	1	1	1.7	<u>5.92</u>	D	0.0467	U	<u>4.42</u> D	0.0471 L	J 0.586 E	0.0457 U
Benzo(g,h,i)Perylene	100	100	1,000	2.84	D	0.0467	U	3.11 D	0.0471 L	J 0.395 D	0.0457 U
Benzo(k)Fluoranthene	0.8	3.9	1.7	<u>3</u>	D	0.0467	U	<u>4.03</u> D	0.0471 L	J 0.472 D	0.0457 U
Biphenyl (Diphenyl)	~	~	~	0.0821	JD	0.0467	U	0.23 D	0.0471 L	J 0.0471 L	J 0.0457 U
Bis(2-Ethylhexyl) Phthalate	~	~	~	0.0828	J	0.0467	UJ	0.438 J	0.0471 U	J 0.0471 U	J 0.0457 U
Carbazole	~	~	~	1.13	D	0.0467	U	0.76 D	0.0471 U	0.112	0.0457 U
Chrysene	1	3.9	1	7.3	D	0.0467	ũ	7.47 D	0.0471	0.726	0.0457 U
Dibenz(a h)Anthracene	0.33	0.33	1 000	1 15	D	0.0467	ŭ	135 D	0.0471	0 146	0.0457 U
Dibenzofuran	7	59	210	0.619	D	0.0467	ŭ	1.43 D	0.0471	0.0471	0.0457 U
Fluoranthene	100	100	1,000	16.4	D	0.0467	Ŭ	18.2 D	0.0471	184	0.0457
Fluorene	30	100	386	1 12	р	0.0467	ŭ	274 D	0.0471	0.0563	0.0457
Indone/1 2 2 c d)Pyrono	0.5	0.5	0.2	4.92		0.0467		4.52	0.0471	0.0000 51	0.0457
Naphthalana	12	100	12	0.627		0.0467	0.5	1.26	0.0471	0.0471	0.0457 U
	12	100	12	0.027		0.0467	0	1.20 D	0.0471	0.0471	0.0457 0
n-initrosou-in-Propylamine	~	~ 100	~ 1 000	0.0481	0	0.0467	0	0.131 D	0.0471	1.00	0.0457 0
Phenanthrene	100	100	1,000	11.2	D	0.0467	0	19.9 D	0.0471	1.08 L	0.0457 0
Pyrene	100	100	1,000	13.2	D	0.0467	U	13.2 D	0.0471	J 1.53	0.0457 0
	0.0000	10	14	0.0140	D	0.00104		0.0452	0.00196	0.00105	0.00101
	0.0033	13	14	0.0142	D	0.00184	0	0.0453	0.00186	0.00185	0.00181 0
4,4 -DDE	0.0033	8.9	17	0.00678	0	0.00184	0	0.015	0.00186	0.00185	0.00181 0
	0.0033	7.9	136	0.00191	0	0.00184	0	0.00848 DF	0.00186	0.00185	0.00181 0
Alpha Chlordane	0.094	4.2	2.9	0.00191	U	0.00184	U	0.00194 U	0.00186 U	J 0.00185 U	J 0.00181 U
Chlordane (alpha and gamma)	~	~	~	0.0382	U	0.0368	U	0.0387 U	0.0373 (J 0.037 L	0.0362 0
Dieldrin	0.005	0.2	0.1	0.00191	U	0.00184	U	0.00707 D	0.00186	J 0.00185 L	J 0.00181 U
Gamma-Chlordane	~	~	~	0.00191	U	0.00184	U	0.00194 U	0.00186 U	J 0.00185 L	J 0.00181 U
Herbicides (mg/kg)	~	~	~	ND		ND		ND	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)											
PCB-1260 (Aroclor 1260)	~	~	~	0.0193	U	0.0186	U	0.0453	0.0188 U	J 0.018/ U	J 0.0183 U
Total PCBs	0.1	1	3.2	0.0193	U	0.0186	U	0.0453	0.0188 L	J 0.0187 L	J 0.0183 U
Inorganics (mg/kg)						1			1	1	1
Aluminum	~	~	~	8,290		5,670		6,390	6,610	6,750	5,580
Arsenic	13	16	16	6.92	_	1.68	U	5.28	1.7 l	J 4.66	1.66 U
Barium	350	400	820	441		41.7		<u>1,650</u>	31.1	581	33
Cadmium	2.5	4.3	7.5	0.749		0.336	U	1.9	0.34 L	J 1.3	0.332 U
Calcium	~	~	~	8,500		1,600		35,600	1,990	2,870	1,340
Chromium, Hexavalent	1	110	19	0.585	U	0.56	U	0.597 U	0.567 L	J 0.567 L	J 0.553 U
Chromium, Total	~	~	~	23.5		17.1		33.6	19.2	19.6	17
Chromium, Trivalent	30	180	~	23.5		17.1		33.6	19.2	19.6	17
Cobalt	~	~	~	7.22		9.33		5.2	7.79	7.28	7.75
Copper	50	270	1,720	85.5		13.5		88.6	14.6	68.4	12.6
Cyanide	27	27	40	17		0.56	U	0.597 U	0.567 L	J 0.567 L	J 0.553 U
Iron	~	~	~	23,500		27,200		19,300	20,500	23,400	22,600
Lead	63	400	450	<u>646</u>		7.2		<u>1,500</u>	6.59	<u>632</u>	5.92
Magnesium	~	~	~	3,330		1,890		5,370	2,780	1,740	2,140
Manganese	1,600	2,000	2,000	189		632		262	249	371	332
Mercury	0.18	0.81	0.73	0.413		0.0336	U	0.663	0.034 1	0.264	0.0332
, Nickel	30	310	130	30.9		16 1	-	29.3	14.5	17.1	13.4
Potassium	~	~	~	1 200		880		850	1 180	736	1 240
Sodium				154		426		162	248	79.1	108
Vanadium	~	~		27.2		30.2		55.3	29.8	29.7	26.4
Zinc	~ 109	10,000	2 4 20	324		32.1		863	23.0	620	20.4
Conoral Chomistry (%)	109	10,000	∠,400	304		32.1		000	27.0	020	23
Solids Percent				85 5		80.2	T	83.8	88.2	88.2	90.3
	~	~	~	60.0		03.3		03.0	00.2	00.2	30.3

Table 2A Supplemental Remedial Investigation Soil Sample Analytical Results Summary

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No.: 100681201

					Langan Project No.: 1	00681201				
Location Sample ID Laboratory ID Sample Date	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted-	NYSDEC Part 375 Protection of Groundwater SCOs	LSB-4 006_LSB-4A_20200317 20C0787-06 3/17/2020	LSB-4 007_LSB-4B_20200317 20C0787-07 3/17/2020	LSB-5 004_LSB-5A_20200317 20C0787-04 3/17/2020	LSB-5 005_LSB-5B_20200317 20C0787-05 3/17/2020	LSB-6 001_LSB-6A_20200317 20C0787-01 3/17/2020	LSB-6 002_LSB-6B_20200317 20C0787-02 3/17/2020	LSB-6 003_DUP-1_20200317 20C0787-03 3/17/2020
Sample Depth (feet bgs)		Residential SCOs		1-3	16-18	2-4	20-22	2-4	16-18	16-18
Volatile Organic Compounds (mg/kg)										
Acetone	0.05	100	0.05	0.005	JJ 0.0036 U	J 0.0053 UJ	0.0037 UJ	0.0057 J	0.0038 UJ	0.0037 UJ
Bromoform	~	~	~	0.0025	R 0.0018 U	0.0027 R	0.0019 R	0.0025 R	0.0019 R	0.0018 R
Ethanol	~	~	~	0.058	J 0.029 U	0.1	0.062	0.082	0.055 J	0.057 J
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.12	0.0025	J 0.0018 U	J 0.0027 U	0.0019 U	0.0025 U	0.0019 U	0.0018 U
Naphthalene	12	100	12	0.0025	J 0.0018 U	0.0046 J	0.0019 U	0.0025 U	0.0019 U	0.0018 U
Semivolatile Organic Compounds (mg/kg)						-				
2-Methylnaphthalene	~	~	~	0.0459	J 0.0458 U	2.32 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
3 & 4 Methylphenol (m&p Cresol)	0.33	100	~	0.0459	J 0.0458 U	0.0448 U	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Acenaphthene	20	100	98	0.0459	J 0.0458 U	7.68 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Actemantinyiene	100	100	107	0.0819	0.0458	0.336 D	0.0453 0	0.0452 0	0.0454 0	0.0453 0
Anthracene	100	100	1,000	0.206	0.0458	10.4 D	0.0453 0	0.0452 0	0.0454 0	0.0453 U
Benzo(a)Pyrene	1	1	22	<u>2.35</u> 2.01	0.0458		0.0453 0	0.0678 ID	0.0454 0	0.0453 0
Benzo(b)Eluoranthene	1	1	17	1.94	0.0458	10.9	0.0453 U	0.0678 3D	0.0454 0	0.0453
Benzo(a h i)Pen/lene	100	100	1.000	<u>1.34</u> 1.24	0.0458	<u>10.3</u> 6.91 D	0.0453	0.0049 3D	0.0454 0	0.0453
Benzo(k)Eluoranthene	0.8	3.9	1 7	1 66	0.0458	8 99 D	0.0453	0.0649	0.0454	0.0453
Biphenyl (Diphenyl)	~	~	~	0.0459	0.0458	0.325 D	0.0453	0.0452	0.0454 U	0.0453
Bis(2-Ethylbexyl) Phthalate	~	~	~	0.0459	0.0458	1 14	0.0453	0.0452	0.0454	0.0453
Carbazole	~	~	~	0.0615	D 0.0458	1.17 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Chrysene	1	3.9	1	1.99	0.0458	25.5 D	0.0453 U	0.0844 JD	0.0454 U	0.0453 U
Dibenz(a,h)Anthracene	0.33	0.33	1.000	0.488	0.0458	3.03 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Dibenzofuran	7	59	210	0.0459	J 0.0458 U	0.746 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Fluoranthene	100	100	1,000	3.09	D 0.0458 U	34.9 D	0.0881 JD	0.171 D	0.0454 U	0.0453 U
Fluorene	30	100	386	0.0459	J 0.0458 U	4.89 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	8.2	1.29	0.0458 U	5.28 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Naphthalene	12	100	12	0.0459	J 0.0458 U	0.874 D	0.0453 U	0.0452 U	0.0454 U	0.0453 U
n-Nitrosodi-N-Propylamine	~	~	~	0.0459	J 0.0458 U	0.0448 U	0.0453 U	0.0452 U	0.0454 U	0.0453 U
Phenanthrene	100	100	1,000	0.358	D 0.0458 U	52.1 D	0.123 D	0.105 D	0.0454 U	0.0453 U
Pyrene	100	100	1,000	2.81	D 0.0458 U	50.9 D	0.122 D	0.157 D	0.0454 U	0.0453 U
Pesticides (mg/kg)		-								
4,4'-DDD	0.0033	13	14	0.00179	J 0.00179 U	0.00422 J	0.00179 U	0.00183 U	0.00177 U	0.00178 U
4,4'-DDE	0.0033	8.9	17	0.00179	J 0.00179 U	0.00179 UJ	0.00179 U	0.00183 U	0.00177 U	0.00178 U
4,4'-DDT	0.0033	7.9	136	0.00179	J 0.00179 U	0.0483 J	0.00179 U	0.00183 U	0.00177 U	0.00178 U
Alpha Chlordane	0.094	4.2	2.9	0.001/9	J 0.00179 U	0.0128 J	0.001/9 U	0.00183 U	0.001// U	0.001/8 U
Chlordane (alpha and gamma)	~	~	~	0.0357	J 0.0357 U	0.068 D	0.0357 0	0.0367 0	0.0355 U	0.0355 U
Dieldrin Gewene Oblemland	0.005	0.2	0.1	0.00179	J 0.00179 U	0.001/9 UJ	0.00179 U	0.00183 0	0.00177 U	0.00178 U
Gamma-Chiordane	~	~	~	0.00179		0.00892 J	0.00179 0	0.00183 0	0.00177 0	0.00178 0
Reliable ring/kg)	~	~	~	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Araclar 1260)				0.018	0.018	0.0181	0.018	0.0185	0.0179	0.0179
Total PCBs	0.1	1	3.2	0.018	0.018	0.0181	0.018	0.0185	0.0179	0.0179
Inorganics (mg/kg)	0.1	1	0.2	0.010	0.010 0	0.0101 0	0.010 0	0.0100 0	0.0170 0	0.0170 0
Aluminum	~	~	~	7.650	5,190	4.270	7.240	6.670	5.540 J	8.520 J
Arsenic	13	16	16	1.65	J 1.65 U	1.64 U	1.65 U	1.67 U	1.64 U	1.64 U
Barium	350	400	820	54.8	26	36.3	34.9 J	43.1	25.8 J	43.6 J
Cadmium	2.5	4.3	7.5	0.33	J 0.33 U	0.328 U	0.33 U	0.334 U	0.329 U	0.328 U
Calcium	~	~	~	1,080	1,410	6,470	2,700 J	1,700	1,750 J	2,340 J
Chromium, Hexavalent	1	110	19	0.551	J 0.55 U	0.547 U	1.19	0.557 U	0.548 U	0.547 U
Chromium, Total	~	~	~	28.4	17	11	20.8 J	17.8	14.8 J	19.8 J
Chromium, Trivalent	30	180	~	28.4	17	11	19.6	17.8	14.8 J	19.8 J
Cobalt	~	~	~	7.77	8.03	5.29	9.2 J	8.56	10.3 J	9.8 J
Copper	50	270	1,720	14.6	13.4	11.3	25.4 J	14.2	12.5	14.6
Cyanide	27	27	40	1.77	0.55 U	0.547 U	0.551 UJ	0.557 U	0.548 U	0.547 U
Iron	~	~	~	28,000	32,200	13,000	23,800 J	23,700	46,600 J	24,500 J
Lead	63	400	450	10.1	6.95	47.8	7.72 J	7.75	6.5	6.6
Magnesium	~	~	~	1,680	1,720	2,010	3,560 J	2,430	3,350 J	4,740 J
Manganese	1,600	2,000	2,000	595	368	359	292 J	521	810 J	419 J
Mercury	0.18	0.81	0.73	0.638	0.033 U	0.0728	0.033 U	0.0334 U	0.0329 U	0.0328 U
Nickel	30	310	130	11.9	13.2	9.41	14.8 J	14.8	14 J	22 J
Potassium	~	~	~	/02	843	408	1,770 J	1,230	913 J	2,240 J
Souium Vapadium	~	~	~	/1.5	103	02.9	390 J	101	109 J	549 J
Zine	109	~ 10.000	~ 2 /190	30.7 34 3	30.3 28 Q	19.2	32.4 J	27.4	20.1 J 33.3 I	27 5 J
General Chemistry (%)	100	10,000	2,400	07.0	20.0	102	02.0 J	20	00.0 0	21.0 0
Solids, Percent	~	~	~	90.8	90.9	91.4	90.8	89.7	91.2	91.3

Table 2A Supplemental Remedial Investigation Soil Sample Analytical Results Summary

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No.: 100681201

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use, Restricted Use Restricted-Residential and Protection of Groundwater Soil Cleanup Objectives (SCO).

- 2. Only detected analytes are shown in the table.
- 3. Detected analytical results above Unrestricted Use SCOs are bolded.
- 4. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.
- 5. Detected analytical results above Protection of Groundwater SCOs are underlined.
- 6. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 7. Sample 003_DUP-1_20200317 is a duplicate sample of 002_LSB-6B_20200317.
- 8. \sim = Regulatory limit for this analyte does not exist
- 9. bgs = below grade surface

10. mg/kg = milligrams per kilogram

- 11. % = percent
- 12. ND = Not detected

Qualifiers:

D = The concentration reported is a result of a diluted sample.

P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.

R – The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 3A Supplemental Remedial Investigation Groundwater Sample Analytical Results Summary

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No · 100681201

				Langan	iiojecti	100001201							
Location Sample ID Laboratory ID Sample Date	NYSDEC SGVs	LMW-1 029_LMW-1_20200 20C0964-01 3/22/2020	322	LMW-1 034_DUP-1_20200 20C0964-06 3/22/2020	0322	LMW-2 030_LMW-2_2020 20C0964-02 3/22/2020	0322	MW-002 031_MW-002_2020 20C0964-03 3/22/2020	00322	MW-003 032_MW-003_202 20C0964-04 3/22/2020	00322	MW-004 033_MW-004_202 20C0964-05 3/22/2020	200322 5
Volatile Organic Compounds (µg/L)													
Acrolein	5	0.2	R	0.2	R	0.2	R	0.2	R	0.2	R	0.2	R
Chloroform	7	0.7		0.65		0.49	J	0.78		1.18		0.22	J
Methyl Ethyl Ketone (2-Butanone)	50	0.78		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Tert-Butyl Alcohol	~	1.7	J	3.69	J	0.5	U	0.5	U	0.5	U	0.5	U
Semivolatile Organic Compounds (µg/L)											_		
Benzo(a)Pyrene	0	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Benzo(b)Fluoranthene	0.002	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Benzo(g,h,i)Perylene	~	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Benzo(k)Fluoranthene	0.002	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Bis(2-Ethylhexyl) Phthalate	5	0.5	U	0.526	U	0.649		0.526	U	0.526	U	0.556	U
Caprolactam	~	16.1	J	6.81	J	9.55		8.55		2.63	U	5.48	J
Dibenz(a,h)Anthracene	~	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Fluorene	50	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.211		0.0556	U
ndeno(1,2,3-c,d)Pyrene	0.002	0.05	U	0.0526	U	0.0541	U	0.0526	U	0.0526	R	0.0556	U
Naphthalene	10	0.05		0.0526	U	0.0541	U	0.0526	U	0.0526	U	0.0556	U
Pesticides (µg/L)	~	ND		ND		ND		ND		ND		ND	
Herbicides (µg/L)	~	ND		ND		ND		ND		ND		ND	
Polychlorinated Biphenyls (µg/L)	~	ND		ND		ND		ND		ND		ND	
norganics (µg/L)													
Aluminum	~	149		151		1,270		10,700		165		484	
Aluminum (Dissolved)	~	59		89.8		97.9		55.6	U	104		161	
Arsenic	25	1.11	U	1.11	U	1.17		5.69		1.11	U	1.11	U
Barium	1,000	58.9		65.2		73.6		260		51.6		111	
Barium (Dissolved)	1,000	62.6		61.7		46.1		66.6		51		103	
Calcium	~	80,800	В	86,700	В	49,400	В	99,400	В	98,100	В	168,000	В
Calcium (Dissolved)	~	81,200		84,000		49,900		82,100		102,000		178,000	
Chromium, Total	50	5.56	U	5.56	U	6.73		117		5.56	U	5.56	U
Chromium, Trivalent	~	10	U	10	U	10	U	117		10	U	10	U
Cobalt	~	4.44	U	4.44	U	4.44	U	27.8		4.44	U	4.44	U
Copper	200	22.2	U	22.2	U	22.2	U	61.3		22.2	U	22.2	U
Cyanide	200	10	UJ	10	UJ	10	UJ	13.7	J	10	UJ	10	U.
ron	300	278	U	278	U	2,910		31,400		278	U	1,330	
ron (Dissolved)	300	278	U	278	U	284		278	U	278	U	278	U
Lead	25	5.56	U	5.56	U	5.56	U	41.5		5.56	U	5.56	U
Magnesium	35,000	25,500		28,000		19,600		50,900		46,300		74,900	
Magnesium (Dissolved)	35,000	25,400		27,300		19,300		40,700		47,600		81,000	
Manganese	300	312		318		242		1,490		12.6		54.8	
Manganese (Dissolved)	300	315		310		152		9.14		5.56	U	8.79	
Mercury	0.7	0.31		0.2	U	0.2	U	0.2	U	0.2		0.2	U
Mercury (Dissolved)	0.7	0.2	U	0.2	U	0.3084		0.2	U	0.2	U	0.2	U
Nickel	100	11.1	U	11.1	U	11.1	U	76.1		11.1	U	11.1	U
Potassium	~	6,800		7,000		4,710		6,460		3,350		3,930	
Potassium (Dissolved)	~	6,820		6,880		4,340		3,350		3,340		4,060	
Selenium	10	1.6		1.11	U	1.11	U	2.96		3.56		1.11	U
Selenium (Dissolved)	10	1.19		1.11	U	1.42		2.67		3.14		1.81	
Sodium	20,000	118,000		126,000		170,000		161,000		254,000		191,000	
Sodium (Dissolved)	20,000	119,000		121,000		170,000		154,000		255,000		196,000	
Vanadium	~	11.1	U	11.1	U	11.1	U	35		11.1	U	11.1	U
Zinc	2,000	27.8	U	27.8	U	27.8	U	257		27.8	U	27.8	U
Zinc (Dissolved)	2,000	27.8	U	27.8	U	28.8		31.7		27.8	U	27.8	U

Notes:

1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein

collectively referenced as "NYSDEC SGVs"). 2. Only detected analytes are shown in the table.

3. Detected analytical results above NYSDEC SGVs are bolded and shaded.

4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.

5. Sample 034_DUP-1_20200322 is a duplicate sample of 029_LMW-1_20200322.

6. \sim = Regulatory limit for this analyte does not exist

7. ug/l = micrograms per liter
8. ND = Not detected

 Qualifiers:

 B = The analyte was found in the associated analysis batch blank.

 R - The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

 J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

 UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

 UT - The sample concentration for results impacted by blank cor

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 3B Supplemental Remedial Investigation Groundwater Sample Analytical Results Summary - Emerging Contaminants

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279

Langan Project No.: 100681201												
Location Sample ID Laboratory ID Sample Date	LMW-1 029_LMW-1_2020 20C0964-01 3/22/2020	LMW-1 034_DUP-1_2020 20C0964-06 3/22/2020)0322 ;	LMW-2 030_LMW-2_2020 20C0964-02 3/22/2020	00322	MW-002 031_MW-002_202 20C0964-03 3/22/2020	00322	MW-003 032_MW-003_20200322 20C0964-04 3/22/2020		MW-004 033_MW-004_20200322 20C0964-05 3/22/2020		
Semivolatile Organic Compounds (ng/L)												
1,4-Dioxane (P-Dioxane)	667	U	667	U	2000	U	200	U	200	U	200	U
Per and Polyfluoroalkyl Substances (ng/L)												
N-ethyl perfluorooctane- sulfonamidoacetic acid (NEtFOSAA)	1.11	U	1.11	U	0.557	U	0.557	U	2.1		0.557	U
N-methyl perfluorooctane- sulfonamidoacetic acid (NMeFOSAA)	1.06	UJ	1.06	UJ	0.529	UJ	0.529	UJ	2.22	J	0.529	UJ
Perfluorobutanesulfonic Acid (PFBS)	6.7	D	6.94	D	14.4		19.1		14.9		4.35	
Perfluorodecanoic acid (PFDA)	1.05	U	1.05	U	0.524	U	0.524	U	0.788	J	0.524	U
Perfluoroheptanesulfonic acid (PFHpS)	0.83	U	0.83	U	0.415	U	0.415	U	0.913	J	0.415	U
Perfluoroheptanoic acid (PFHpA)	25.4	D	24.9	D	16.9		12.2		19.6		16.1	
Perfluorohexanesulfonic Acid (PFHxS)	8.34	D	8.29	D	6.12		9.05		15.4		4.97	
Perfluorohexanoic Acid (PFHxA)	19	D	19.7	D	19		14.3		21		17.4	
Perfluorononanoic Acid (PFNA)	1.15	U	1.15	U	0.574	U	1.75	J	2.43		0.574	U
Perfluorooctanesulfonic acid (PFOS)	4.63	U	4.61	U	3.54	U	11.5		7.99	U	2.07	U
Perfluorooctanoic Acid (PFOA)	43.9	D	44.6	D	47.9		36.5		48.9		34.8	
Perfluoropentanoic Acid (PFPeA)	19.6	D	19.6	D	25.6		15.2		19.4		19.2	
Perfluorotetradecanoic Acid (PFTA)	1.06	U	1.06	U	0.531	UJ	0.531	U	0.676	J	0.531	U
Perfluoroundecanoic Acid (PFUnA)	1.31	U	1.31	U	0.657	U	0.657	U	0.866	J	0.657	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	2.26	J	2.14	J	0.492	UJ	0.492	UJ	0.492	UJ	0.515	J

Notes:

1. Only detected analytes are shown in the table.

2. Sample 034_DUP-1_20200322 is a duplicate sample of 029_LMW-1_20200322.

3. ng/l = nanograms per liter

4. ND = Not detected

<u>Qualifiers:</u>

D = The concentration reported is a result of a diluted sample.

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 4 Supplemental Remedial Investigation Soil Vapor Sample Analytical Results Summary

1921 Atlantic Avenue Brooklyn, New York NYSDEC BCP Site No.: C224279 Langan Project No.: 100681201

						g														
Location		AMBIENT-	1	LSV-1		LSV-1		LSV-2		LSV-3		LSV-4		LSV-5		LSV-6		LSV-7		LSV-8
Sample ID	NYSDOH Decision	028_AMBIEN	T-1	019_LSV-1	1	020_DUP-1	02	1_LSV-2		022_LSV-	3	023_LSV-	4	024_LSV	-5	025_LSV-	6	026_LSV-	7	027_LSV-8
Laboratory ID	Matrices Minimum	20C0947-10)	20C0947-0	1	20C0947-02	200	0947-03		20C0947-0)4	20C0947-0)5	20C0947-0	06	20C0947-0	7	20C0947-0	08	20C0947-09
Sample Date	Concentrations	3/20/2020		3/20/2020)	3/20/2020	3/2	20/2020		3/20/2020	0	3/20/202	0	3/20/202	0	3/20/2020)	3/20/202	0	3/20/2020
Sample Type		AA		SV		SV		SV		SV		SV		SV		SV		SV		SV
Volatile Organic Compounds (µg/m ³)																				
1,1,1-Trichloroethane	100	0.544	U	0.836	U	0.846 U	0.0	303	U	0.763	U	0.945	D	0.878	U	0.792	U	0.838	U	0.872 U
1,2,4-Trimethylbenzene	~	0.686	D	48	J	97 J	20	0.5	D	51.9	D	54.7	D	54.8	D	58.2	D	49.9	D	19.2 D
1,3,5-Trimethylbenzene (Mesitylene)	~	0.49	U	40.8	J	74.4 J	6.	58	D	14.9	D	40.5	D	15.3	D	17.1	D	13.6	D	5.03 D
1,3-Butadiene	~	0.662	U	1.02	U	1.03 U	2.	05	D	0.928	U	0.958	U	1.07	U	0.964	U	1.02	U	1.06 U
2-Hexanone	~	0.817	U	1.26	UJ	3.43 J	1.	21	U	2.75	D	2.48	D	4.81	D	4.04	D	3.4	D	3.34 D
4-Ethyltoluene	~	0.637	D	43.5	J	87.6 J	17	7.4	D	32.4	D	37.8	D	35.6	D	38.8	D	30.6	D	16 D
Acetone	~	6.44	D	51.5	J	67.9 J	1	04	D	48.8	D	59.9	D	169	D	45.6	D	60.2	D	73.8 D
Benzene	~	1.11	D	132	J	162 J	22	2.5	D	1.97	D	22.6	D	1.39	D	2.32	D	5.2	D	1.28 D
Bromodichloromethane	~	0.668	U	1.03	U	1.04 U	0.9	985	U	5.34	D	0.967	U	1.08	U	0.973	U	1.03	U	1.07 U
Carbon Disulfide	~	0.31	U	4.53	J	5.74 J	1	08	D	0.958	D	1.89	D	5.01	D	3.21	D	2.01	D	1.1 D
Carbon Tetrachloride	6	0.502	D	0.241	U	0.244 U	0.2	231	U	0.528	D	0.454	D	0.253	U	0.457	D	0.386	D	0.402 D
Chloroethane	~	0.263	U	3.11	J	3.93 J	0.3	388	U	0.369	U	0.381	U	0.425	U	0.383	U	0.405	U	0.422 U
Chloroform	~	0.487	U	0.748	U	0.757 U	0.7	718	U	127	D	0.846	D	1.73	D	1.99	D	2.4	D	0.781 U
Chloromethane	~	1.24	D	0.316	U	0.32 U	0.9	516	D	0.289	U	0.895	D	0.332	U	0.3	U	0.317	U	0.759 D
Cyclohexane	~	0.377	D	2.37	D	2.83 D	1	18	D	1.25	D	1.39	D	0.776	D	1.05	D	1.06	D	0.605 D
Dichlorodifluoromethane	~	1.73	D	1.97	D	2.22 D	9.	24	D	2.28	D	2.14	D	2.31	D	2.08	D	2.2	D	2.37 D
Ethyl Acetate	~	0.718	U	1.1	U	1.12 U	1.	06	U	1.01	U	1.04	U	1.16	U	1.05	U	1.11	U	1.67 D
Ethylbenzene	~	0.693	D	79.6	J	116 J	2	27	D	68.6	D	56.7	D	13.6	D	12.5	D	37.6	D	14.9 D
Isopropanol	~	5.66	D	17.1	J	8.69 J	6.	76	D	0.756	D	3.44	D	1.23	D	1.82	D	0.755	U	36.8 D
M,P-Xylene	~	2.08	D	144	J	212 J	4	5.8	D	34	D	154	D	33.8	D	41.1	D	31.3	D	60.7 D
Methyl Ethyl Ketone (2-Butanone)	~	0.97	D	13.4	J	18 J	4	1	D	11.8	D	12.6	D	24.2	D	12.8	D	13.8	D	14.6 D
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	0.408	U	0.628	U	0.635 U	0.6	503	U	0.573	U	0.592	U	0.989	D	0.595	U	0.629	U	0.786 D
Methyl Methacrylate	~	0.816	D	0.627	U	0.635 U	0.6	602	U	0.572	U	0.591	U	0.659	U	0.892	D	4.78	D	37.6 D
Methylene Chloride	100	4.47	D	1.44	D	1.29 D	1.	02	U	2.62	D	1.25	D	1.29	D	2.07	D	1.12	D	1.28 D
n-Heptane	~	0.654	D	32.4	J	48.9 J	1	55	D	40.1	D	29.1	D	39.8	D	40.1	D	35.9	D	3.6 D
n-Hexane	~	1.12	D	14.1	J	17.7 J	3	95	D	3.2	D	3.46	D	2.61	D	3.22	D	2.54	D	3.33 D
o-Xylene (1,2-Dimethylbenzene)	~	0.779	D	76.7	J	115 J	20).6	D	15	D	80.4	D	16.1	D	17.8	D	13.9	D	21 D
Styrene	~	0.425	U	8.81	J	13.1 J	3.	07	D	0.596	D	9.35	D	0.892	D	1.05	D	0.981	D	3 D
Tetrachloroethene (PCE)	100	20.2	J	6.44	J	3.99 J	24	1.7	D	17.4	D	17.3	D	4.15	D	7.98	D	23.8	D	34.6 D
Tetrahydrofuran	~	0.588	U	1.08	D	1.1 D	0.0	368	U	0.825	U	0.852	D	1.09	D	0.985	D	1.04	D	0.943 U
Toluene	~	2.93	D	166	J	215 J	24	1.3	D	19.1	D	86	D	17.9	D	20.5	D	16.1	D	22.5 D
Trichloroethene (TCE)	6	0.268	D	0.206	U	0.208 U	0.1	198	U	0.188	U	0.194	U	0.216	U	0.312	D	0.206	U	0.215 U
Trichlorofluoromethane	~	1.34	D	1.89	D	2 D	0.9	909	D	1.57	D	1.54	D	1.45	D	1.47	D	1.38	D	1.89 D
Vinyl Chloride	6	0.0637	U	0.0979	U	0.0991 U	1.	65	D	0.0893	U	0.0923	U	0.103	U	0.0928	U	0.0981	U	0.102 U

Notes:

1. Soil vapor sample analytical results are compared to the minimum soil vapor concentrations recommending mitigation as set forth in the New York State

Department of Health (NYSDOH) October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

Ambient air sample analytical results are shown for reference only.

3. Only detected analytes are shown in the table.

4. Detected analytical results above the minimum soil vapor concentrations recommending mitigation are bolded and shaded.

5. Analytical results with reporting limits (RL) above the minimum soil vapor concentrations recommending mitigation are italicized.

6. Sample 020_DUP-1 is a duplicate of parent sample 019_LSV-1.

7. ~ = Regulatory limit for this analyte does not exist

8. ug/m3= micrograms per cubic meter

9. AA = Ambient Air

10. SV = Soil Vapor

Qualifiers:

D - The concentration reported is a result of a diluted sample.

J – The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

FIGURES

LANGAN

Path: \Langan.com\data\PAR\data2\100681201\Project Data\ArcGIS\MXD\Environmental_Figures\2019-09 RAP\Figure 1 - Site Location Map.mxd Date: 11/12/2019 User: ibaker Time: 9:35:12 AM

Filename: \\langan.com\data\PAR\data2\100681201\Project Data\CAD\01\SheetFiles\Environmental\100681201-NI201-0101.dwg Date: 4/2/2020 Time: 09:08 User: acofrancesco Style Table: Langan.stb Layout: A-A

	Drawing Title	Project No. 100681201	Drawing No.	
UE 1, 23, 38 YORK	SUBSURFACE PROFILE A-A'	Date 04/01/2020 Drawn By AC Checked By AK	2A	S 2020 Landan

Filename: \\langan.com\data\PAR\data2\100681201\Project Data\CAD\01\SheetFiles\Environmental\100681201-NI201-0101.dwg Date: 4/2/2020 Time: 09:07 User: acofrancesco Style Table: Langan.stb Layout: B-B

	1921 ATLANTIC AVENUE SITE BOUNDARY
\oplus	LANGAN SOIL BORING SAMPLE LOCATION
+	LANGAN MONITORING WELL LOCATION
	LANGAN SOIL VAPOR SAMPLE LOCATION
Θ	LANGAN AMBIENT AIR SAMPLE LOCATION
OTE	

TIOMETRIC ACE MAP	100681201 te 4/3/2020 ale 1 " = 30 ' awn By IHB	3

Path: \\Langan.com\data\PAR\data2\100681201\Project Data\ArcGIS\MXD\Environmental_Figures\2020-03 - RIR\Figure 4 - Adjacent Property and Surrounding Land Use.mxd Date: 4/2/2020 User: ibaker Time: 10:4

Street,	No. of Concession, Name		Service of	
Sample ID	014 LSB-2A 20200318	015 LSB-2B 20200318		No. of Street, or other
Sample Date	3/18/2020	3/18/2020		AN AL
Sample Depth (feet bgs) VOCs (mg/kg)	2-4 NE	16-18 NE	W	
SVOCs (mg/kg)				
Benzo(a)Anthracene Benzo(a)Pyrene	<u>8.22</u> D 5.67 D	ND ND		
Benzo(b)Fluoranthene	<u>4.42</u> D	ND	S	
Benzo(k)Fluoranthene Chrysene	<u>4.03</u> D 7.47 D	ND ND	CARD CONTRACTOR	and the second
Dibenz(a,h)Anthracene	1.35 D	ND	10000	
Indeno(1,2,3-c,d)Pyrene Pesticides (mg/kg)	4.52 J	ND	199	HEAL MARCE
4,4'-DDD	0.0453 D	ND	C.Sul R	the later of
4,4'-DDE 4 4'-DDT	0.015 D 0.00848 DP	ND ND	A HALF LAND	and the second second
Dieldrin	0.00707 D	ND	LAS TREES	I States
Herbicides (mg/kg) PCBs (mg/kg)	ND	ND ND	and the state of the	Contraction of the
Inorganics (mg/kg)			A ROLANS	146 T
Barium Chromium Trivalent	<u>1,650</u> 33.6	NE	Str. Stationer	1.1.1.1.1
Copper	88.6	NE	white -	
Lead Mercury	<u>1,500</u> 0.663	NE ND	THE REAL	A STORE AND
Zinc	863	NE		
PFAS (µg/kg)	0.0661	ND	Harristen -	ALC'SS.
Perfluorooctanesulfonic acid	3.71	0.0926 J	16 1	- Tradillare
ACCOUNTS OF 140	AND VERSON	ALCONT OF	a station	State -
107	THE ALL	b. Tool		
	Finishing Providence	an in a strict	SAC 20 PC	States Inc.
ATTACK AND A	Sample ID	008_LSB-3A_202	00317 009_LSB-3	B_20200317
and the second se	Sample Date	3/17/2020	3/1	//2020
and the second	VOCs (mg/kg)	NE	NE	>-18
Charles of the local division of the local d	SVOCs (mg/kg)	NE	ND	2
	Herbicides (mg/kg)	ND	ND	1
and the second	PCBs (mg/kg)	ND	ND	1
I STRA	Barium	581	NE	1
Contraction of the Contraction o	Copper	68.4	NE	-
and the second second	Mercury	0.264	ND	1.1
	Zinc	620	NE	100
	Perfluorobutanoic acid	0.209	J ND	1
	Perfluorodecanoic acid	0.0683	J ND	200
	Perfluorohexanoic Acid	0.17	J ND	in state
	Perfluorononanoic Acid Perfluorooctanesulfonic	0.0902 acid 0.896	J ND	1
	Perfluorooctanoic Acid	0.632	0.09	1 J
A North Contraction of the local division of	Perfluoropentanoic Acid	0.14	JND	17
and the second se	of the local division of the	and the second second		· []
007_LSB-4B_20200317	The second second	A Laboration		-
3/17/2020	1 10 01	arters and Ca		and the second second
ND			A Day of S	JES .
ND		THE	-	March 1
ND			and the second second	the second
ND ND		and the second s	S Provense	-
ND	other subscriptions			1
ND ND	The Party of the P	NAME AND ADDRESS OF	No. of Concession, Name	
ND	Charles of the owner	The second s	The Party Party	Contraction in which the Real Property lies in which the Real Property lies in the Real Property
ND ND	All PROPERTY AND INCOME.	and the state of t	Constant Party	and the second
	Statement of the local division in which the local division in the	Statement of the local division of the local	A STATE	A Province
ND	40		0	40
ND				
	A STREET ST	SCAL	E IN FEET	
III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII	The second second	and the second s		
	Project N		Figure	
	1	00681201	_	
	Date	41010000		
NAIVTIC		4/2/2020	6	
	Scale	4 " - 40 ')
SUITS		1 " = 40 '	-	
	Drawn B	y U I F		
		IHB		

© 2012 Lands

0				12 10
nple ID	031_MW-002_2020	00322	J	E
nple Date Cs (µg/L)	3/22/2020 NE		Ň	and the second
OC (µg/L)	NE	and and the second		
ticides (µg/L) bicides (µa/L)	ND			>E
3s (μg/L)	ND			
rganics (µg/L) omium_Total	117		S S	The second
	31,400		The state of the s	A State of the
d	41.5 50.900		A CARLES AND A CARLES	1 Carlos
gnesium (Dissolved)	40,700		The second second	E. Martin
nganese	1,490		Allowed Distances in the second second	
lium (Dissolved)	154,000	· 法任		South Martin
AS (ng/L)	10.1		A Stellar Barriel	
fluoroheptanoic acid	12.2			同時の
fluorohexanesulfonic Acid	9.05		STATISTICS N	1.1.1
fluorononanoic Acid	14.3	J	LE LEBE	a contract
fluorooctanesulfonic acid	11.5		Mar and and and	間目的言語
fluorooctanoic Acid fluoropentanoic Acid	36.5 15.2		1	CALL OF THE
	A Real	ALL AND THE	Mellin and and and and	
Statements in the state of the state	A DECEMBER OF	- CARLES	Agentine the	- And
		Part Barrison	No. The Contract of the Contra	1 ETA
C	Sample ID	D Jate	032_MW-003_202 3/22/2020	200322
15	VOCs (µg	/L)	NE	
1	SVOC (µg	g/L)	NE	100
	Herbicides	s (µg/L) :s (µg/L)	ND	
/ Installes	PCBs (µg/	/L)	ND	
「「「「「「「「「「「」」」	Inorganics	s (µg/L)	46 200	
	Magnesiur	m (Dissolved)	40,500	1
101010	Sodium	N' I B	254,000	
	PFAS (ng)	/L)	255,000	
	N-ethyl pe	erfluorooctane- sulfonamidoacetic	acid 2.1	1
	N-methyl p Perfluorob	perfluorooctane- sulfonamidoace autanesulfonic Acid	tic acid 2.22 14.9	J
	Perfluorod	lecanoic acid	0.788	J
	Perfluoroh	neptanesulfonic acid	0.913	J
	Perfluoroh	nexanesulfonic Acid	15.4	
and the second second	Perfluoroh	nexanoic Acid	21	the state
Jean I and	Perfluoroo	octanoic Acid	48.9	·La
	Perfluorop	pentanoic Acid	19.4	- 19
States of the second	Perfluorou	Indecanoic Acid	0.866	J
		the transmission	A REAL PROPERTY AND	Miles La
		ML.	12 and a second and	II
			n ?	
Sample ID Sample Date		033_MW-004_20200322 3/22/2020		
VOCs (µg/L)		NE		
Pesticides (µg/L)		ND	Internal Contraction	and and
Herbicides (µg/L)		ND		
Inorganics (µg/L)		ND		
Iron		1,330	and the second s	
Magnesium (Dissolved)		81,000	and the state of the state	1
Sodium		191,000	10	and a second second second
PFAS (ng/L)		130,000		and the
Perfluorobutanesulfonic Acia	d	4.35	-	9-10-11
Perfluorohexanesulfonic Aci	id	4.97	and the second s	and the second second
Perfluorohexanoic Acid		17.4 34.8		
Perfluoropentanoic Acid		19.2	14	Constantion of
Sodium 1H,1H,2H,2H-Perflu	uorooctane Sulfonate (6	6:2) 0.515 J		
and the second second	A State State	AND	A CONTRACTOR OF THE OWNER	State of the local division of the local div
CONTRACTOR OF STREET	A DESCRIPTION OF	A DE CONTRACTOR DE CONTRACTOR	A REAL PROPERTY AND INCOME.	
		Project No.	Figure	
		100681201	-	
NIIOMEI	KIC	Date		
		4/3/2020		
	г h	Scale	─ │ /	
	/ATED	1 " = 40 '		

IHB

	Sample ID Sample Date	021_LSV-2 3/20/2020		1.200
	Sample Type VOCs (µg/m³) 1,1,1-Trichloroethane 1,1-Dichloroethane 1,2 4-Trimethylbenzene	ND ND 20.5 D		
	1,3,5-Trimethylbenzene (Mesitylene) 1,3-Butadiene 4-Ethyltoluene Acetone	6.58 D 2.05 D 17.4 D	w<	E
	Benzene Carbon Disulfide Carbon Tetrachloride Chloromethane	22.5 D 108 D ND 0.516 D	1	Ś
the second of	Cis-1,2-Dichloroethene Cyclohexane Dichlorodifluoromethane Ethylbenzene	ND 118 D 9.24 D 27 D		
	Isopropanol M.P-Xylene Methyl Ethyl Ketone (2-Butanone) Methylene Chloride	6.76 D 45.8 D 41 D ND	(gen-	State of the local division of the local div
-	n-Heptane n-Hexane o-Xylene (1,2-Dimethylbenzene) Styrene	155 D 395 D 20.6 D 3.07 D		The part of the
-	Tetrachloroethene (PCE) Toluene Trichloroethene (TCE) Trichlorofluoromethane	24.7 D 24.3 D ND 0.909 D		
	Vinyl Chloride	1.65 D	1.16	and an
	- CE	Sample ID Sample Date Sample Type VOCs (µg/m ³)		027_LSV-8 3/20/2020 SV
		1,1,1-Trichloroethane 1,1-Dichloroethene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesite	vlene)	ND ND 19.2 D 5.03 D
		2-Hexanone 4-Ethyltoluene Acetone Benzene		3.34 D 16 D 73.8 D 1.28 D
		Carbon Disulfide Carbon Tetrachloride Chloromethane Cis-1,2-Dichloroethene		1.1 D 0.402 D 0.759 D ND
		Cyclohexane Dichlorodifluoromethane Ethyl Acetate Ethylbenzene		0.605 D 2.37 D 1.67 D 14.9 D
		Isopropanol M,P-Xylene Methyl Ethyl Ketone (2-Butano Methyl Isobutyl Ketone (4-Meti	ne) hyl-2-Pentanone)	36.8 D 60.7 D 14.6 D 0.786 D
		Methyl Methacrylate Methylene Chloride n-Heptane n-Hexane		37.6 D 1.28 D 3.6 D 3.33 D
	1	Styrene Tetrachloroethene (PCE) Toluene Tightergethene (TCE)	8)	21 D 3 D 34.6 D 22.5 D
(Interes		Trichlorofluoromethane Vinyl Chloride		1.89 D ND
Sample ID	023_LSV-4	Sample ID Sample Date Sample Type VOCs (ug/m ³)	022_LSV 3/20/20 SV	V-3 J20
Sample Date Sample Type VOCs (µg/m ³) 1.1.1-Trichloroethane	3/20/2020 SV 0.945 D	1,1,1-Trichloroethane 1,1-Dichloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesity	ND ND 51.9 Iene) 14.9	D
1,1-Dichloroethene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene (Mesitylene) 2-Hexanone	ND 54.7 D 40.5 D 2.48 D	2-Hexanone 4-Ethyltoluene Acetone Benzene	2.75 32.4 48.8 1.97	
4-Ethyltoluene Acetone Benzene Carbon Disulfide	37.8 D 59.9 D 22.6 D 1.89 D	Bromodichloromethane Carbon Disulfide Carbon Tetrachloride Chloroform	5.34 0.958 0.528 127	
Carbon Tetrachloride Chloroform Chloromethane Cis-1 2-Dichloroethene	0.454 D 0.846 D 0.895 D	Cis-1,2-Dichloroethene Cyclohexane Dichlorodifluoromethane Ethylbenzene	1.25 2.28 68.6	
Cyclohexane Dichlorodifluoromethane Ethylbenzene Isogroganni	1.39 D 2.14 D 56.7 D 3.44 D	M,P-Xylene Methyl Ethyl Ketone (2-Butanon Methylene Chloride n-Heptane	34 11.8 2.62 40 1	
M,P-Xylene Methyl Ethyl Ketone (2-Butanone) Methylene Chloride	154 D 12.6 D 1.25 D	n-Hexane o-Xylene (1,2-Dimethylbenzene) Styrene Tetrachloroethene (PCE)	3.2 15 0.596 17.4	
n-Hexane o-Xylene (1,2-Dimethylbenzene) Styrene Tetraphyrenethono (PCE)	3.46 D 80.4 D 9.35 D	Toluene Trichloroethene (TCE) Trichlorofluoromethane Vinyl Chloride	19.1 ND 1.57 ND	D
Tetrahydrofuran Toluene Trichloroethene (TCE)	0.852 D 86 D ND		16	14
Trichlorotluoromethane Vinyl Chloride	1.54 D ND	THE AT NO	ELECTION OF	P Marines
Project No. Figure 100681201				
L VAPOR		2/2020		8
ALYTICAL	Drawn By	" = 40 '		0
ESULTS		IHB		

2012 Langai

APPENDIX A

Geophysical Report

LANGAN

HAGER-RICHTER GEOSCIENCE, INC.

GEOPHYSICAL SURVEY 1921 ATLANTIC AVENUE BROOKLYN, NEW YORK

Prepared for:

LANGAN 300 Kimball Drive, 4th Floor Parsippany, New Jersey 07054

Prepared by:

Hager-Richter Geoscience, Inc. dba HR Geological Services in New York 846 Main Street Fords, New Jersey 08863

File 19AM15 March 2020

© 2020 Hager-Richter GEOSCIENCE, INC. (dba HR Geological Services in New York)

HAGER-RICHTER GEOSCIENCE, INC.

March 30, 2020 File 19AM15

Tel: 973.560.4871 Cell: 201.214.2166 Email: asandve@LANGAN.com

RE: Geophysical Survey 1921 Atlantic Avenue Brooklyn, New York

Dear Ms. Sandve:

Ashley Sandve

LANGAN

Senior Staff Engineer

300 Kimball Drive, 4th Floor

Parsippany, New Jersey 07054

In this report, we summarize the results of a geophysical survey conducted on March 16, 2020 by Hager-Richter Geoscience, Inc., dba HR Geological Services in NY (HRGS), at the above referenced site for LANGAN. The scope of the project and area of interest were specified by LANGAN.

INTRODUCTION

The site is located at 1921 Atlantic Avenue in Brooklyn, New York. The site consists of several vacant properties divided by chain link fences. No structures were present, and the ground cover varied between asphalt, grass, and debris. Figure 1 shows the general location of the site. LANGAN is planning to install fifteen (15) borings within the area. Prior to drilling, LANGAN requested a geophysical survey to determine the locations of subsurface utilities in the accessible portions of the specified areas of interest (AOIs). Most of the AOIs measured approximately 20-ft by 20-ft and each one encompassed a proposed boring location. One of the AOIs was larger and encompassed multiple boring locations. Potential utilities and other features detected in the vicinity of proposed borings were marked on the ground at the time of the survey.

LANGAN was also interested in attempting to locate the extents of two (2) previously identified underground storage tanks (USTs). One of the areas was the larger AOI located in the southwest corner of the lots. The second area was a located on a portion of the sidewalk along Prescott Place.

OBJECTIVES

The objectives of the geophysical survey were 1) to detect and, if detected, to locate utilities and other subsurface obstructions in the accessible portions of 20 ft by 20 ft areas centered at 15 proposed boring locations and 2) to detect and, if detected, to locate the extents of two (2) previously identified USTs.

THE SURVEY

José Carlos Cambero Calzada, P.G., and Amanda Fabian, P.G., of HRGS conducted the field operations on March 16, 2020. The project was coordinated with Ms. Ashley Sandve of LANGAN. Ms. Molly Gutelius, also of LANGAN, was present for the survey and specified the proposed boring locations.

The geophysical survey was conducted using two (2) complementary geophysical methods: ground penetrating radar (GPR) and precision utility location (PUL).

GPR data were acquired in two mutually perpendicular directions and spaced no more than 5 feet apart across the accessible portions of the AOIs. The GPR method is useful for detecting both metallic and non-metallic subsurface objects.

The PUL system was used for tracking utilities in the AOIs by connecting the transmitter to surface features such as valves and hydrants and by scanning the AOI for the presence of live electric lines. When possible, manholes and catch basins present on site were opened to observe the orientation of subsurface utilities.

The proposed locations of the boreholes were marked in the field, by LANGAN, at the beginning of the survey. Figure 2 shows the locations of the GPR traverses and the integrated interpretation of the geophysical data. Utilities and other features detected in the vicinity of proposed borings were marked on the ground at the time of the survey. LANGAN was notified where proposed boring locations conflicted with detected utilities or features.

EQUIPMENT AND PROCEDURES

GPR. The GPR survey was conducted using a Geophysical Survey Systems, Inc. UtilityScan HS system with a 350 MHz Hyper Stacking digital antenna and a 60 ns time window. The system includes a survey wheel that triggers the recording of the data at fixed intervals, thereby ensuring the accuracy of the locations of features detected along the survey lines.

GPR uses a high-frequency electromagnetic pulse (referred to herein as "radar signal") transmitted from a radar antenna to probe the subsurface. The transmitted radar signals are reflected from subsurface interfaces of materials with contrasting electrical properties. Travel times of the radar signal can be converted to approximate depth below the surface by correlation with targets of known depths and by a curve matching routine. We monitor the acquisition of GPR data in the field and record the GPR data digitally for subsequent processing. Interpretation of the records is based on the nature and intensity of the reflected signals and on the resulting patterns.

Data from the GPR survey were processed using RADAN 7.4 GPR processing software from Geophysical Survey Systems, Inc. We reviewed profile images of the GPR data. Interpretation of the records is based on the nature and intensity of the reflected signals and on the resulting patterns.

PUL. The PUL survey was conducted using a Radiodetection RD 7000 series PUL instrument. The RD 7000 series consists of separate transmitter and receiver. The system can be used in "passive" and "active" modes to locate buried pipes by detecting electromagnetic signals carried by the pipes. In the "passive" mode, only the receiver unit is used to detect signals carried by the pipe from nearby power lines, live signals transmitted along underground power cables, or very low frequency radio signals resulting from long wave radio transmissions that flow along buried conductors. In the "active" mode of operation, the transmitter is used to induce a signal on a target pipe, and the receiver is used to trace the signal along the length of the pipe. Our system uses a 10W transmitter.

LIMITATIONS OF THE METHOD

HRGS MAKES NO GUARANTEE THAT ALL TARGETS WERE DETECTED IN THIS SURVEY. HRGS IS NOT RESPONSIBLE FOR DETECTING TARGETS THAT CANNOT BE DETECTED BY THE METHODS EMPLOYED OR BECAUSE OF SITE CONDITIONS. GPR SIGNAL PENETRATION MIGHT NOT BE SUFFICIENT TO DETECT ALL TARGETS.

Field mark-outs. Utilities and other features detected by the GPR and PUL methods at the time of the survey are marked in the field. Adverse weather and site conditions (rain, uneven surfaces, high traffic, etc.) can hamper in-field interpretation. Field markings made on wet pavement, sand or gravel surfaces, or in active construction zones may not last. HRGS is not responsible for maintaining field markings after leaving the work area.

GPR. There are limitations of the GPR technique as used to detect and/or locate targets such as those of the objectives of this survey: (1) surface conditions, (2) electrical conductivity of the ground, (3) contrast of the electrical properties of the target and the surrounding soil, and (4) spacing of the traverses. Of these restrictions, only the last is controllable by us.

The condition of the ground surface can affect the quality of the GPR data and the depth of penetration of the GPR signal. Sites covered with snow piles, high grass, bushes, landscape structures, debris, obstacles, soil mounds, etc. limit the survey access and the coupling of the GPR antenna with the ground. In many cases, the GPR signal will not penetrate below concrete pavement, especially inside buildings, and a target may not be detectable. The GPR method also commonly does not provide useful data under canopies found at some facilities. GPR surveys
inside buildings may be severely constrained by space limitations and interference from abovegrade structures.

The electrical conductivity of the ground determines the attenuation of the GPR signals and thereby limits the maximum depth of exploration. For example, the GPR signal does not penetrate clay-rich soils and targets buried in clay might not be detected.

A definite contrast in the electrical conductivities of the surrounding ground and the target material is required to obtain a reflection of the GPR signal. If the contrast is too small, possibly due to construction details or deeply corroded metal in the target, then the reflection may be too weak to recognize, and the target can be missed. In many cases, plastic, clay, asbestos concrete (transite), brick-lined, stone-lined, and other non-metallic utilities cannot be detected.

Spacing of the traverses is limited by access at many sites, but where flexibility of traverse spacing is possible, the spacing is adjusted to the size of the target. The GPR operator controls the spacing between lines, and the design of the survey is based on the dimensions of the smallest feature of interest. Targets with dimensions smaller than the spacing between GPR survey lines can be missed.

PUL. The PUL equipment cannot detect non-metallic utilities, such as pipes constructed of vitrified clay, transite, plastic, PVC, fiberglass, and unreinforced concrete, when used in passive mode alone. Such pipes can be detected if a wire tracer is installed with access to such tracer for transmission of a signal or where access (such as floor drains and clean-outs) permits insertion of a device on which a signal can be transmitted.

In some, but not all, cases, the subsurface utility designation equipment cannot detect metal utilities reliably under reinforced concrete because the signal couples onto the metal reinforcing in the concrete. Similarly, the method commonly cannot be used adjacent to grounded metal structures such as chain link fences and metal guardrails.

In congested areas, where several utilities are bundled or located within a short distance, the signal transmitted on one utility can couple onto adjacent utilities, and the accuracy of the location indicated by the instrument decreases.

RESULTS

The geophysical survey was conducted using the GPR and PUL methods across the accessible portions of the specified AOIs. The proposed locations of the boreholes were marked in the field by LANGAN at the beginning of the survey. Utilities and other features detected in the vicinity of proposed borings were marked on the ground at the time of the survey. Figure 2 shows the locations of the GPR traverses and an integrated interpretation of the geophysical data.

GPR. The locations of the GPR traverses and the integrated interpretation of the geophysical data are shown in Figure 2. Apparent GPR signal penetration was variable, with reflections received

for about 20 - 30 nanoseconds. Based upon velocity matching calibrations made for the area of interest, the GPR signal penetration is estimated to have been about 3 to 4 feet.

The GPR records exhibit linear alignments of reflections interpreted as possible utilities or segments of utilities. Where they are unidentified, they are shown as bold black dashed lines. Several utilities were noted within GPR records and were marked in field accordingly.

Scattered unidentified buried objects also were detected and are shown as red x's in Figure 2. No USTs were detected in the two (2) AOIs encompassing the locations of the previously identified USTs. A large unidentified buried object was located to the west of LSV-6, in an area somewhat close to one of the previously identified USTs. Whether USTs, utilities, or other features occur at a depth greater than the effective depth of penetration of the GPR signal (~3 to 4 feet) or in areas inaccessible to the geophysical survey cannot be determined from the geophysical data.

PUL. The PUL transmitter was attached to conduits located in or near the AOIs, such as light poles, gas meter, fire hydrants, etc. The PUL survey was also conducted in "passive" mode to detect signals carried by utilities from nearby power lines. Where possible, manholes and catch basins were opened to observe visual alignment of sewer and drain utilities.

CONCLUSIONS

Based upon the geophysical survey performed by HRGS at 1921 Atlantic Avenue in Brooklyn, New York, we conclude that:

- Segments of unidentified utilities were detected.
- Numerous scattered buried objects were detected.
- No USTs with: (1) electrical properties sufficiently contrasting with the surrounding soils to produce GPR reflections, or (2) a capacity of 500 gallons or more was detected within the effective depth of penetration of the GPR signal, about 3 to 4 feet.
- Whether additional USTs, utilities, or other features occur at a depth greater than the effective depth of penetration of the GPR signal (~3 to 4 feet) or in areas inaccessible to the geophysical survey cannot be determined from the geophysical data.

LIMITATIONS ON USE OF THE REPORT

This letter report was prepared for the exclusive use of LANGAN and its client (collectively, the Client). No other party shall be entitled to rely on this Report, or any information, documents, records, data, interpretations, advice or opinions given to the Client by Hager-Richter Geoscience, Inc. (HRGS) in the performance of its work. The Report relates solely to the specific project for which HRGS has been retained and shall not be used or relied upon by the Client or any third party for any variation or extension of this project, any other project or any other

Geophysical Survey 1921 Atlantic Avenue Brooklyn, New York File 19AM15 Page 6

purpose without the express written permission of HRGS. Any unpermitted use by the Client or any third party shall be at the Client's or such third party's own risk and without any liability to HRGS.

HRGS has used reasonable care, skill, competence and judgment in the performance of its services for this project consistent with professional standards for those providing similar services at the same time, in the same locale, and under like circumstances. Unless otherwise stated, the work performed by HRGS should be understood to be exploratory and interpretational in character and any results, findings or recommendations contained in this Report or resulting from the work proposed may include decisions which are judgmental in nature and not necessarily based solely on pure science or engineering. It should be noted that our conclusions might be modified if subsurface conditions were better delineated with additional subsurface exploration including, but not limited to, test pits, soil borings with collection of soil and water samples, and laboratory testing.

Except as expressly provided in this limitations section, HRGS makes no other representation or warranty of any kind whatsoever, oral or written, expressed or implied; and all implied warranties of merchantability and fitness for a particular purpose, are hereby disclaimed.

If you have any questions or comments on this letter report, please contact us at your convenience. It has been a pleasure to work with LANGAN on this project. We look forward to working with you again in the future.

Sincerely, HAGER-RICHTER GEOSCIENCE, INC. dba HR Geological Services in NY

Amarke Jalin

Amanda Fabian, P.G. (NY 000567) Geophysicist

Attachments: Figures 1-2

APPENDIX B

Boring and Well Logs

L	A	NGA	٩N	Log	of E	Boring			LSB-1			Sheet 1	of	1
Project					Pr	oject No.								
Locatio	2	1921 Atlantic Avenue	3			ovation a	nd Do	tum	100681202	2				
LUCALIO	1	Brooklyn NY					iu Da	um	Approx 80		880			
Drilling	Compa	ny			Da	ate Starte	d		7.000		Date F	Finished		
D		AARCO Environmen	tal Services, Corp.				<u> </u>		3/18/20		<u> </u>	D "	3/18/20	
Drilling	Equipm	Cooprobe 7822 DT				mpietion	Depti	n	20 ft		ROCK	Depth		
Size an	d Type	of Bit			NI	imber of s	Samn	les	Disturbed		Un	disturbed	Core	
Casing	Diamet	2-inch Direct Push er (in)		Casing Depth (ft)			Jump	100	First		Co	 mpletion	24 HR.	
		2 inch			W	ater Leve	l (ft.)		$\overline{\underline{\nabla}}$			<u> </u>	Ī	
Casing	Hamme	er	Weight (lbs)	Drop (in)	Dr	Illing Fore	eman	т	om Soickol					
Sample	r	1.75" x 5' Acetate Ma	acrocore Liner		Fie	eld Engine	eer	-	UIII Gelekel					
Sample	r Hamn	ner	Weight (lbs)	Drop (in)		1		Ν	/lolly Guteliu	JS		1		
Sol RIAL	Elev.					Depth	Ē		Sample Da	ata 🛛		Re	marks	
MATE SYME	(ft)		Sample Description	on		Scale	lumb	Type	Recov (in) Penet resis	Read	ding m)	(Drilling Fluid, Fluid Loss, Drilli	Depth of Cas ng Resistance	ing, e, etc.)
	8	Dark brown f-m SA	ND, trace fine grave	el, brick fragments,		- 0 -				0.	0	Started drill	ing on 3/18	8/2020.
	X	Asphalt (moist) [FI	LL]	-		Ē	_			0.	0			
	X					F' 3	-			0.	0			
	â					- 2 -		ORE		0.	0	012 SB-1	A collecter	1 from
	X					E	-	ROC	36	0.	0	2- to 4-feet	bgs. Discr	ete
	X					- 3 -		MAC		0.	0	3-feet bgs.	Discrete P	2.5- to FAS
3000	X					E				0.	PID Remarks (prilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) 0.0 0.0 Started drilling on 3/18/2020 0.0 0.0 0.0 0.12_LSB-1A collected from 0.0 2- to 4-feet bgs. Discrete 0.0 2- to 4-feet bgs. Discrete 0.0 3-feet bgs. Discrete PFAS 0.0 collected from 3- to 3.5-feet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		5-feet	
		Brown f-m SAND,	trace f-m gravel (mo	pist)		- 4				0.	0.0 Started drilling on 3/18/2020 0.0 0.0 0.0 0.0 0.0 0.12_LSB-1A collected from 0.0 2- to 4-feet bgs. Discrete 0.0 2- to 4-feet bgs. Discrete 0.0 3-feet bgs. Discrete PFAS 0.0 collected from 3- to 3.5-feet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
5			trace f-m gravel (we			- 5 -				0.	0			
		BIOWIT-III SAND,	lace I-III glavel (we							0.	0			
						- 6 -				0.	0			
						- 7 -		믭		0.	0			
Ś.						E		SOCC	48	0.	0			
						- 8 -	-	MACF		0.	0			
2								-		0.	0			
						- 9 -	-			0.	0			
						- 10 -				0.	0			
		Brown I-m SAND,	trace siit, trace i-m ç	gravel (moist)		-	-			0.	0			
						- 11 -				0.	0			
						- 12	-	문		0.	0			
ה 						E		000	õ	0.	U N			
\$						- 13 -		ACR	•	0.	0			
<u>.</u>								2		0.	0			
						- 14 -				0.	0			
	:					- 15 -	1			0.	U N			
							1			0.	0			
						- 16 -	1			0.	0	013_LSB-1	3 collected	d from
						Ē ,_	1	ž		0.	0	16- to 18-fe	et bgs. Dis	screte 17- to
						F 17 -	1	COF	φ	0.	0	17.5-feet bo	s Discret	e PFAS
<u>ç</u>						- 18 -	1	ACR	4	0. 0	0	collected from 18-feet bas	om 17.5- to)
§						F	-	Σ		0.	0			
						- 19 -	1			0.	0	Bottom of b	oring at 20)-feet
						E				0.	0	bgs on 3/18	/2020.	<u></u>

L	A	NGA	٩N	Log	of E	Boring			LS	B-2			Sheet	1	of	1
Project					Pr	oject No.			400	004000						
Location	1	1921 Atlantic Avenue	3		Ele	evation ar	nd Da	atum	100	681202	2					
Drilling (<u>`omna</u>	Brooklyn, NY				to Starto	4		Арр	orox. 80	' NAV	D88	Finishod			
Drining	Jonipa	AARCO Environmen	Ital Services, Corp.				u		3	/18/20		Date	Fillisheu	3/	18/20	
Drilling E	Equipm	ent			Co	ompletion	Dept	h				Rock	Depth			
Size and	і Туре	of Bit			NI	umber of 9	Samr		Dist	20 ft urbed		Un	disturbed	0	 Core	
Casing I	Diamet	2-inch Direct Push er (in)		Casing Depth (ft)				103	First	t		Co	- mpletion	- 2	24 HR.	
Casing	Jomm	2 inch	Weight (lbs)	Drop (in)	Dr	illing Fore	eman		$ \underline{\nabla}$	-			<u> </u>	-	Ţ	
Sampler						ining i ore	inan	Т	om S	Seickel						
Sampler	Hamn	<u>1.75" x 5' Acetate Ma</u> ner	Acrocore Liner Weight (lbs)	Drop (in)	_ Fie	eld Engine	eer		4	Quitalia						
								N	/ioliy Sa	mple Da	is ata					
POIT: LOG MATERIA SYMBOI	Elev. (ft)		Sample Description	on		Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PI Read (pp	D ding m)	h Drilling Fl) Fluid Loss, D	(ema uid, Dep Drilling R	I IKS oth of Casin Resistance,	ig, etc.)
Ĩ		Dark brown f-m SA	ND, trace fine grave	el, brick fragments,		E 0 -					0. 0	0	Started D	rilling	on 3/18	/2020.
	×××]			- 1 -					0.	0				
-	×××										0.	0				
	V V							rocore	36		0. 0.	0 0	014_LSB 2- to 4-fe	-2A co et bas	ollected s. Discre	from te
	₹ ₹					- 3 -		Mac			0.	0	VOCs co 3-feet Di	llected	d from 2	.5- to
3	¥ ¥ ¥										0.	0	collected	from	3- to 3.5	-feet
]	Brown f-m SAND,	trace f-m gravel (mo	pist)			_				0. 0.	0	bys.			
		Brown f-m SAND,	trace f-m gravel (we	\overline{t}		- 5 -	_				0.	0				
Z			Ū (,		- 6 -					0.	0				
12120											0. 0.	0				
						- 7 -		core			0.	0				
						- 8 -		Macro	48		0. 0	0				
											0.	0				
V I V						- 9 -					0.	0				
						- 10 -					0. 0	0 0				
		Brown f-m SAND,	trace silt, trace f-m g	gravel (moist)							0.	0				
						- 11 -					0.	0				
						- 12 -		ē			0. 0.	0 0				
								Icroco	60		0.	0				
						- 13 -		Ma			0.	0				
						- 14 -					0. 0.	0				
											0.	0				
71800						- 15 -					0.	0	015_LSB	-2B co		from
]					- 16 -					0. 0.	0	VOCs co	llected	d from 1	7- to
									Í		0.	0	collected	from	17.5- to	10
						- 17 - -		ocore	œ		0.	0	18-feet b	js.		
						- 18 -		Macr	4		0. 0.	0				
	1										0.	0				
	1					- 19 -			Í		0.	0	Bottom of	f borir	ng at 20-	feet
¥						E 20 -	-				0.	U	bys on 3/	10/20	ZU.	

					Log of	f Bori	ing			LS	B-3			Sheet 1	of	1
roject		1021 Atlantic Avon				Projec	t No.			100	69120	2				
ocation		1921 Allantic Aven	ue			Elevat	ion an	nd Da	tum	100	001202	2				
		Brooklyn, NY				D-4- 0	N			App	rox. 82	2' NAVE	088 Data 5	Turinta al		
	ompar		antal Services Corr			Date S	started	נ		3	/17/20	ľ	Jate F	-Inisnea	3/17/20	
rilling E	quipm	ent	antal Gervices, Corp			Compl	letion	Dept	n	0	11/20	F	Rock [Depth	5/17/20	
	_	Geoprobe Sonic Ri	g								20 ft		· · · ·			
ize and	I ype (of Bit 4-inch Sonic Bit				Numbe	er of S	Samp	les	Dist	urbed		Uno	disturbed	Core	
asing D	iamete	er (in) 4 inch		Casing De	pth (ft)	Water	Level	(ft.)		First			Cor	mpletion	24 HR.	
asing H	lamme	er	Weight (lbs)	Drop (in)	Drilling	g Fore	man		<u> </u>				<u> </u>	<u> </u>	
ampler			Sonic Sleeve			<u> </u>			Т	om S	Seickel					
ampler	Hamm	ner	Weight (lbs)	Drop (in)	Field E	ngine	er	N		Gutalii	10				
7.									IV	Sa	mple Da	ata				
MBOI	Elev. (ft)		Sample Descrip	otion		D	epth icale	nber	/be	У С С	netr. sist /6in	PID Readi	na	(Drilling Fluid,	NAIKS Depth of Casii	ng,
™©	()	D			(1.)	\perp	0 —	Nur	ŕ	Ee 	Pe BL	(ppn	1)	Fluid Loss, Drillin	ng Resistance,	, etc.)
>>>>		Brown f-m SAND [FILL]	, trace t-m gravel, t	DRICK Tragments	s (dry)	F						0.0				1202
						F	1 -	1		ĺ		0.1		008_LSB-34	collected	from
						Ē			0			0.1		1- to 3-feet to VOCs collect	ogs. Discre ted from 1	ete 5- to
						F	2 -		ocore	õ		0.2		2-feet bgs. [Discrete PF	AS
\times				trace fine area		_ Ē_	3 -		Macr			0.0		bgs.	m 2- lo 2.5	s-ieel
		Grayish brown in	ie SAND, trace sit,	trace line grav	ei (ury)	Ē	-					0.2				
						Ē	4 -					0.0				
						E	5 -	_				0.1				
						E	5					0.0				
						F	6 -					0.3				
						-	_ =					0.2				
						Ē	7 -		ocore	0		0.3				
•••••						Ē	8 -		Macr	9		0.2				
						Ē	-					0.4				
						Ē	9 -					0.5				
•••••						Ē	10					0.2				
						Ē	10 -					0.2				
						E	11 -					0.3				
						Ē	-			Í		0.2				
						Ē	12 -	1	ocore	0		0.2				
						E	- 13 -	1	Macru	õ		0.3 0.2				
						F	-	1		Í		0.2				
						F	14 -	1		Í		0.3				
						F	- - -			Í		0.3				
						Ē	10 -					0.4 ∩ 4				
						Ē	16 -			Í		0.4		009 I SB-3F	3 collected	from
						Ē	-			Í		0.3		16- to 18-fee	et bgs. Dis	crete
						Ē	17 -		ocore			0.3		17.5-feet bg	s. Discrete	PFA
						E			Macro	90		0.4		collected fro	m 17.5- to)
						Ē			<	Í		0.2				
						Ē	19 -					0.4		Bottom of bo	orina at 20	-feet
•••••						_	-			-						

L		4	NGA	4 N		Log	of E	Boring			LS	B-4		;	Sheet	I	of	1
Proje	ct		1921 Atlantic Avenu	le			Pr	oject No.			100	681202	>					
Locat	ion		5 11 11/				Ele	evation an	d Da	tum								
Drillin	ig Co	mpar	Brooklyn, NY y				Da	ite Starteo	1		Арр	orox. 82	<u>NAVD</u>	88 ate Fi	inished			
Drillin	a Fa	uinm	AARCO Environme	ntal Services, Corp	D.		- Cc	moletion	Dentl	h	3	/17/20	R	ock D)enth	3/17	7/20	
Drimit	ig Lq	upm	Geoprobe Sonic Rig	g				mpletion	Бери			20 ft			opu1			
Size a	and 1	Гуре	of Bit 4-inch Sonic Bit				Nu	Imber of S	Samp	les	Dist	urbed		Und	listurbed	Cor	re	
Casir	ng Dia	amete	er (in) 4 inch		Ca	asing Depth (ft) 	W	ater Level	(ft.)		Firs	t -		Con	npletion	24 	HR.	
Casir	ng Ha	amme	r	Weight (lbs)		Drop (in)	Dr	illing Fore	man	т	om (Soickol						
Samp			Dedicated Plastic S	ionic Sleeve		Drop (in)	_ Fie	eld Engine	er	- 1		JEICKEI						
Samp	bier F	amm	ier						1	N	/lolly Sa	Guteliu ample Da	is ata					
POIL: LOG - MATERIAL SYMBOL	E	∃lev. (ft)		Sample Descrip	otion			Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID Readin (ppm)	ig)	Re (Drilling Fluid Fluid Loss, Drill	mark , Depth ing Res	S of Casing istance, el	, tc.)
	\otimes		Brown f-c SAND,	trace f-c gravel (dr	y) [FILL	-]							0.0 0.0		Started Dril	ling o	n 3/17/2	2020.
								- 1 -					0.0		006_LSB-4	A coll	ected fr	rom
										e			0.0		1- to 3-feet VOCs colle	bgs. I cted f	Discrete from 1.5	∍ 5- to
										acroco	60		0.1		2-feet bgs. collected fr	Discre om 2-	ete PFA to 2.5-1	√S feet
	×		Brown f-m SAND,	, trace silt, trace fin	e grave	el (dry)		3 -		W			0.0		bgs.			
								4 -					0.0					
													0.1					
								- 5 -					0.0 0.0					
								6 -					0.0					
								- 7 -		ē			0.0					
§										acroco	60		0.0					
								8 -		W			0.1					
T z								9 -					0.0					
													0.0					
													0.0					
								- 11 -					0.1					
								- 12 -		ore			0.0 0.0					
										acroco	60		0.2					
								- 13 -		Σ			0.3 0.3					
								- 14 -					0.2					
								- 15 -					0.0					
8000													0.0					
								- 16 -					0.0		007_LSB-4	B coll	ected fr	om
								- 17 -		ore			0.2 0.2		VOCs colle	cted f	from 16	.5- to
										acroct	60		0.3		collected fr	om 17	7- to	AO
								- 18 -		Z			0.2 0.5		17.5-Teet b	ys.		
CAN.								- 19 -					0.3		Bottom of b	oring	at 20-fe	eet
								E 20 -					0.2		bgs on 3/17	7/2020).	

L	4	/V/	4/V	Log	ofE	Boring			LS	B-5			Sheet	1	of	2
Project					Pr	oject No.										
Location		1921 Atlantic Aven	ue		Ele	evation an	d Da	tum	100	681202	2					
		Brooklyn, NY							Арр	rox. 80	' NAV	D88				
Drilling C	Compai		untal Camilana Cam		Da	ate Starteo	1		2	147100		Date	Finished	~	47/00	
Drilling E	quipm	ent	ental Services, Corp.		Co	mpletion I	Deptl	h	3	/1//20		Rock	Depth	3	/1//20	
		Geoprobe Sonic Ri	ig							22 ft						
Size and	Туре	of Bit 4-inch Sonic Bit			Nu	Imber of S	Samp	les	Dist	urbed		Un	ndisturbed		Core	
Casing [Diamet	er (in) 4 inch		Casing Depth (ft)	w	ater Level	(ft.)		First	t		Co	ompletion		24 HR.	
Casing H	lamme	er	Weight (lbs)	Drop (in)	Dr	illing Fore	man						_			
Sampler		Dedicated Plastic S	Sonic Sleeve		Fie	eld Engine	er	Т	om S	Seickel						
Sampler	Hamm	ner	Weight (lbs)	Drop (in)			.01	Μ	lolly	Guteliu	IS					
S-I⊒T	_								Sa	mple Da	ata		-	Rem	arks	
ATER	Elev. (ft)		Sample Descrip	tion		Depth Scale	Imber	ype	ecov.	enetr. esist L/6in	PI Read	D ling	(Drilling F	luid, De	epth of Casi	ng,
≥‴ XXXXX		Brown f a SAND	traco f m gravel br	ick fragmonts (dn/)		<u> </u>	ž	-	ж	<u>а - п</u>	(pp)	n) D	Started I	Drillin	$\frac{1}{2}$ on $3/17$	/2020
		[FILL]	, liace i-ili giavei, bi	ick fragments (dry)							0.	- D			g 011 0/11	12020.
						<u>- 1 -</u>					0.	2				
											0.	2				
						F 2 -		ocore	õ		0.	U N	004_LSE	8-5A	collected	from
						- 3 -		Macr			0.	2	VOCs co	llecte	ed from 2	- to
						=					0.	2	2.5-feet l	ogs. I from	Discrete 1 2.5- to 3	PFAS 3-feet
						- 4 -					0.	1	bgs.			
											0.	1				
		Brown f-m SAND), trace silt, trace fine	e gravel (dry)		E 5 -					0.:	2				
						6 -					0.	2 4				
											0.	1				
						- 7 -		core			0.	0				
								acroo	60		0.	D				
						- 8 -		Σ			0.:	2				
						- 9 -					0.	5 N				
											0.	3				
						- 10 -	ļ				0.	4				
						E .					0.	3				
						- 11					0.4	4				
						- 12 -		e			0.	2 1				
								crocc	60		0.	1				
						- 13 -		Ma			0.	3				
											0.4	4				
						F 14 -					0.	6 5				
						- 15 -					0.	0				
						Ē					0.	2				
						- 16 -					0.	2				
						- 17 -		0	Í		0.	0				
						E'' =		rocore	ő		0.	3 4				
						- 18 -		Maci			0.	5				
						É					0.	4				
		Tannish brown f-	m SAND, trace fine	gravel (dry)		<u>-</u> 19 -			Í		0.	5				
						Ë . E	1				0.	2				

	A		Log of Boring		L	SB-5		Sheet 2 of	2
Project		1921 Atlantic Avenue	Project No.		1(0068120	2		
Location		Brooklyn, NY	Elevation an	d Dat	um A	pprox. 8)' NAVD88		
			I			Sample D	ata	Demerika	
MATERI	Elev. (ft)	Sample Description	Depth Scale	Number	Type Recov.	(in) Penetr. resist BL/6in	PID Reading (ppm)	(Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc	c.)
					core		0.0	20- to 22-feet bgs. Discret	om ete
			- 21 -		Macro	77	0.3 0.5	20.5-feet bgs. Discrete P collected from 20.5- to	FAS
			22					21-feet bgs. Bottom of boring at 22-fe	et
			- 23 -					bgs on 3/17/2020.	
			- 24 -						
			- 25 -						
			- 26 -						
			- 27 -						
			- 28 -						
			- 29 -						
			- 30 -						
I			- 31 -						
			- 32 -						
			- 33 -						
			- 34 -						
			35						
			- 36 -						
1									
			- 38 -						
			- 39 -						
			40 -						
			- 41 -						
			- 42 -						
			- 42 						
			- 43 -						
			- 44 -						
			⊧=						

	L	4	NG/	4 N		log	of F	Borina			LS	B-6			Sheet	1	of	1
F	roiect					209 (Pr	oiect No.										
			1921 Atlantic Aven	ue				-,			100	68120	2					
L	ocation		-				Ele	evation a	nd Da	itum								
			Brooklyn, NY								Арр	orox. 80)' NAV	D88				
ľ	rilling C	ompai		antal Camilana Cam			Da	ite Starte	d		2	147/00		Date I	Finished	2/4	7/00	
	rilling E	quipm	ent	ental Services, Corp.			Cc	mpletion	Dept	h	3	/1//20		Rock	Depth	3/1	//20	
	5	• •	Geoprobe Sonic R	ia					'			20 ft						
S	ize and	Туре	of Bit	5			Nu	mber of s	Samp	les	Dist	urbed		Un	ndisturbed	Co	ore	
	asing C)iamet	4-inch Sonic Bit		Cas	sing Depth (ft)	-				Firs	t		Co		- 24	HR.	
			4 inch				W	ater Leve	el (ft.)		∇	-			<u> </u>		L	
C	asing H	lamme	er	Weight (lbs)		Drop (in)	Dr	illing Fore	eman	_								
z	ampler		Dedicated Plastic S	Sonic Sleeve			Fie	eld Engine	eer	I	om S	Seickel						
NGA NGA	ampler	Hamm	ner	Weight (lbs)		Drop (in)	1	ia Liigiin		Ν	/lollv	Guteliı	JS					
	₹					I				_	Sa	mple Da	ata			omor	(O	
Ě	MBC	Elev. (ft)		Sample Descrip	tion			Depth Scale	nber	/pe	vo Li	netr. sist /6in	PI Read	D dina	(Drilling Flu	uid, Depth	n of Casing	g,
ebol	₹ώ	()							ΝN	ŕ.	Re ,	Pe BL	(pp	m)	Fluid Loss, D	rilling Re	sistance, e	etc.)
<u> </u>			Brown f-c SAND	, trace f-c gravel (dry	/)[FILL]			Ē	1				0.	0	Started D	rilling o	on 3/177	2020.
₹₿				como conorata (dr.)				- 1 -	1				0.	0				
-8			Gray I-III SAND,	some concrete (dry)				E i	-				0.	1				
			Brown f-m SAND	, trace silt, trace f-c	aravel.	trace concrete		2 -	-	ore			0.	1	001 LSB-	-6A col	llected	from
			(dry) [FILL]	,	J ,			E	-	acroc	60		0.	3	2- to 4-fee	et bgs.	Discret	te 5 to
Ň								- 3 -	1	Ř			0.	5	3-feet bgs	s. Disci	rete PF	AS
G B									_				0.	4	collected	from 3	- to 3.5	-feet
₩ K								- 4 -	-				0.	4 1	bys.			
	XXX							- 5 -	-				0.	, 0				
z.			Brown line SAINL	J, trace silt (moist)				Ę	-				0.	0				
507								6 -	-				0.	0				
0681									-				0.	1				
SV10								- 7 -	-	core			0.	1				
ŏ.								-	-	Aacro	00		0.	1				
GIN									-	2			0.	0				
Z.								- 9 -	-				0.	1				
								E :	-				0.	1				
								- 10 -	-				0.	0				
								Ε	-				0.	0				
								F 11 -	-				0.	1				
								- 12 -	-	e			0. n	י 1				
								È	1	roco	60		0.	0				
A.								- 13 -	1	Мас			0.	1				
								E	1				0.	0				
Ž.								- 14 -	1				0.	0				
									-				0.	1				
1900								E 15 -	-				0.	U A				
								- 16 -	1				0.	5	002 100	6P	llootod	from
								Ē	-				0.	4	16- to 18-	feet bo	js. Disc	rete
Ϋ́Ε.								- 17 -	-	ore			0.	3	VOCs col	lected	from 16	3- to PFAS
A A								E	1	acroc	60		0.	3	collected	from 1	6.5- to	1170
								- 18 -	1	Ma			0.	2	17-feet bo	js.		
zl:								É 40	-				0.	2				
NGA								E 19 -	-				0.	2	Bottom of	boring	g at 20-i	feet
¥.								E 20 -	-				0.	۷	593 01 3/			

LA	4/V <i>L</i> a/		Log	of Boring			LM	W-1			Sheet	1	of	4
Project				Project No.										
Location	1921 Atlantic Avenu	le		Elevation a	nd Da	itum	100	681202	2					
	Brooklyn, NY						79.9	9' NA	/D88					
Drilling Corr	npany			Date Starte	d		0	40/00	[Date	Finished		0.14.0.10.0	
Drilling Equi	ipment	ntal Services, Corp.		Completion	Dept	h	3	/16/20	6	Rock	< Depth		3/16/20	
	Geoprobe Sonic Rig	9						80 ft						
Size and Ty	/pe of Bit 4-inch Sonic Bit			Number of	Samp	les	Dist	urbed		U	Indisturbed		Core	
Casing Diar	meter (in) 4 inch		Casing Depth (ft)	Water Leve	el (ft.)		First	t	70	C	ompletion		24 HR.	
Casing Han	nmer_	Weight (lbs)	Drop (in)	Drilling For	eman									
Sampler	Dedicated Plastic S	onic Sleeve		Field Engin	oor	Т	om S	Seickel						
Sampler Ha	ammer	Weight (lbs)	Drop (in)		CCI	N	1ollv	Guteliı	IS					
							Sa	mple Da	ata		_	Rem	arks	
IT: LO	ev. ft)	Sample Description	I	Depth Scale	umber	ype	ecov.	enetr. esist L/6in	PID Read) ing	(Drilling	Fluid, C	Depth of Casin	ig,
8+ [™] ≤ B	Brown f-c SAND	trace f-m gravel brick f	ragments (moist)	0 -	ž		Ř	<u>а - п</u>	(ppn) 0.0	n))	Started	Drillir	$\frac{1}{100} \frac{1}{100} \frac{1}$	/2020
≤	[FILL]	liace i-ili giavei, blick i	ragments (moist)	-	_				0.0)	Olariou	Brinn		,2020.
				- 1 -	-				0.0)				
₩ ₩ ₩ ₩ +7	78.0				_	0			0.0)				
	Gray f-m SAND, t	race f-m gravel (moist)	[FILL]		-	ocore	20		0.0)				
				- 3 -	-	Maci			0.0)				
				-	-				0.0)				
り <u> ()</u> () () () () () () () () () ()	Brown fine SAND	, trace silt, trace f-c gra	vel (moist)		-				0.0)				
	75.0				-				0.0)				
ELN:	Brown f-m SAND,	trace silt (moist)			-				0.0)				
101 1				6 -	-				0.0)				
06812				Ē	-				0.0)				
SV10				- 7 -	-	core			0.0)				
	72.0				-	lacro	00		0.0)				
GIN	Tannish brown fin	e SAND, trace silt (moi	st)		-	2			0.0)				
				- 9 -	-				0.3	3				
NME				E	-				0.3	3				
	Gray fine SAND, t	trace fine gravel (moist))		_				0.0)				
				- - 11 -	-				0.0)				
				- ''	-				0.0)				
DISC				- 12 -	-	ore			0.0)				
A				-	_	acroc	60		0.0)				
				- 13 -	-	Ë			0.0)				
				- 14 -	_				0.0)				
HIPH					-				0.0)				
+++++++++++++++++++++++++++++++++++++++	^{65.0}	f-m SAND, trace silt (m			-				0.0)				
1006	3, 3,	, (,		-				0.0)				
				- 16 -	-				0.0)				
ARIC				- 17 -	-	e			0.0	, t				
				-	-	croco	60		0.2	2				
				- 18 -	-	Ma			0.4	ļ				
Z					-		Í		0.0)				
NGA				- 19 -	-				0.1					
}	60.0			E_ ₂₀ -	-				0.1	•				

.

LA	NGAN	Log of	Boring			LM	W-1		Sheet
Project		ſ	Project No.						
	1921 Atlantic Avenue					100	68120	2	
Location		E	Elevation an	d Da	itum				
	Brooklyn, NY					79.9	99' NA'	VD88	
						Sa	mple Da	ata	
Elev SXMBOL (ft) +60.0	Sample Description		Depth Scale	Number	Type	Recov. (in)	Penetr. resist BL/6in	PID Reading (ppm)	(Drillin Fluid Lo:
	Brown f-m SAND (moist)		- 20 -					0.0	
			F -	-				0.0	
			[04]	1					1

2 of

ERIAL BOL	Elev	Sample Description	Depth	Jer	e	Sa	mple Da	PID	Remarks
MATE	(ft) +60		Scale	Numt	Typ	Recc (in)	Pene resi: BL/6	Reading (ppm)	(Urilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.)
	<u> </u>	Brown f-m SAND (moist)	- <u>-</u>	1				0.0	
			- 21 -					0.0	
			E					0.0	
			- 22 -		ore			0.0	
7			Ē		croco	60		0.0	
IGA			- 23 -		Mai			0.0	
- LA			E :					0.0	
Log			- 24 -	1				0.0	
port:								0.0	
R. S.			= 25 -					0.0	
∑ L			- 26 -					0.0	
11:25			20					0.0	
4	+53		- 27 -		e			0.0	
1/202		Grayish brown I-m SAND, trace silt (moist)			croco	60		0.0	
3/3			- 28 -	1	Mae			0.0	
2			E					0.0	
U. I.			- 29 -					0.0	
RIN			E					0.0	
			- 30 -					0.0	
5			- 31 -					0.0	
3812								0.1	
/100			- 32 -		ore			0.0	
OGS.			= :		croco	60		0.0	
Fri			- 33 -		Ma			0.0	
AL/G			Ē					0.0	
			- 34 -					0.0	
NON .			- 35 -					0.0	
HAN								0.0	
			- 36 -					0.4	
			= :	1				0.7	
			- 37 -	-	core			0.5	
TA				-	acro	60		0.6	
			- 38 -		≥			0.3	
OLEC .			- 39 -	-				0.0	
RITER :								0.0	
8120			- 40 -					0.3	
1006			= :					0.3	
TA2			- 41 -					0.4	
R'DA				1				0.4	
A/PA			F 42 -	1	ocore	0		0.4	
DAT			43 -	1	Macro	Ō		0.5	
MOC.								1.2	
SAN.C			- 44 -	-				0.9	
ANG								0.3	
≥⊡…	**•1	1	45 -	I	1				1

oject			Proiect No.									
ojoor		1921 Atlantic Avenue	110,000110.			100	68120	2				
ocation			Elevation a	nd Da	atum	70 0						
		Brookiyn, NY	<u> </u>	_		79.5	99' NA	VD88	1			
BOL	Elev.	October December	Depth	Ē	0	5a	imple Da	PID	-	Rema	rks	
MATE SYM	(ft)	Sample Description	Scale	Mumb	Type	Reco (in)	Pene resis BL/6	Reading (ppm)	(Drilling) Fluid Loss	Fluid, Dep , Drilling R	oth of Casing esistance, e	g, etc.)
	100.0		45 - 	-				0.3				
			- 46 -	-				0.3				
			Ē	-				0.4				
••••			- 47 -	-	core			0.3				
			Ē	-	acroc	60		0.3				
			- 48 -	-	Σ			0.3				
			- 49 -	-				0.3				
			Ē	-				0.5				
			- 50 -	-				0.0				
				-				0.3				
			- 51 -	-				0.2				
			- 52 -	-	ore			0.3				
			Ē	-	croco	60		0.2				
			- 53 -	-	Ma			0.3				
			- - 54 -	-				0.4				
			_ 54	-				0.5				
	+25.0	Brown f-c SAND trace fine gravel (dn)	55 -	_				0.0				
			E	-				0.4				
			- 56 -	-				0.4				
			- 57 -	-	ē			0.4				
				-	croco	60		0.3				
			- 58 -	-	Ma			0.0				
			Ē ro	=				0.2				
			- 59 -	-				0.0				
			- 60 -]				0.2				
			Ē	3				0.3				
			- 61 -	-				0.2				
			- 62 -	-	e			0.3				
				-	crocol	60		0.0				
			- 63 -	-	Мас			0.4				
			Ē "	-				0.3				
			F 64 -	-				0.2				
			65 -	1				0.2				
			Ē	-				0.3				
			66 -	-				0.4				
			67	-	d)			0.6				
			Ē	-	rocore	30		0.6 0.7				
			68 -	-	Maci			0.7				
			E	-				1.0				
			- 69 -	-				12				

LA	N	6	A	N	
Ductort					_

			g of Boring _			LM	W-1		Sheet	4	of	4
Project			Project No.			100	00400	2				
Location	1	1921 Atlantic Avenue	Elevation and	l Da	tum	100	68120	2				
		Brooklyn, NY				79.9	9' NA	VD88				
2 A					1	Sa	mple Da	ata	_	Rema	rks	
ATER	Elev. (ft)	Sample Description	Depth Scale	umber	Lype	ecov.	enetr. esist L/6in	PID Reading	(Drilling	Fluid, Dep	th of Casing	l, htc.)
≥ ∽	+10.0	Brown f-c SAND trace fine gravel (moist)		ź	'	R	<u> </u>	(ppm) 0.0		, Dhining N		
								0.0				
			- /1 -					0.1				
			- 72 -		ore			0.2				
					acroc	60		0.0				
ÖNA ANG			- 73 -		Σ			0.0				
1 - <u>6</u> 0-			- 74 -					0.2				
port: I								0.1				
R			- 75					0.0				
99 PM			- 76 -					0.0				
4:11:2								0.1				
2020			- 77 -		ocore	0		0.2				
3/31/			- 78 -		Macr	e		0.2				
LI CI								0.2				
			- 79 -					0.2				
	0.0							0.0	Bottom	of borir	n at 80-f	eet
									bgs on	3/16/20	20.	001
81201			- 81 -									
/1006			82 -									
LOGS												
GINT			- 83 -									
NTAL			84									
ONME												
NVIRC												
INE/E			86 -									
SCIPL												
DAT			- 88 -									
DUECI												
1/PRC			- 09 -									
58120			- 90 -									
2/100												
DATA												
PAR			- 92 -									
DATA												
COM												
IGAN.			<u>-</u> 94 -									
//LAN			<u>95</u>									

LANGAN

WELL CONSTRUCTION SUMMARY

Well No. LMW-1

						<u> </u>					
Project	1921 Atlantic A	venue				Project No.		10068	31202		
Location	Brooklyn, NY					Elevation And D	atum	80.34 NA	VD88		
Drilling Agency	AARCO Enviro	nmental Services. Cor	0.			Date Started	/16/2020	Date Finished 3/16	/2020		
Drilling Equipment	t Cooprobe Soni					Driller		Tom S			
Size And Type of	Bit					Inspector					
Method of Installa	4-inch Sonic Bi							Molly Gu	itelius		
Drilled to 80- sand backfill 0.35-feet bgs	-feet bgs. 15-feet of 2 led to 63-feet bgs. Be s. Manhole installed a	-inch 10-slot schedule 40 P ntonite seal installed from 6 and secured with concrete.	/C scree 1- to 63-	en install feet bgs	led. 65-f . Soil cu	eet of 2-inch s ttings backfille	olid schedule 40 ad above seal. Ri:	PVC riser installed ser cut to approximation	. No. 2 ately		
Method of Well Do	evelopment whale pump with ded	icated tubing to purge water	until sec	diment fr	ee: appl	oximately 15	gallons purged.				
					oo, app.	ominatory ro	ganono pargoa.				
Type of Casing PVC Sche	edule 40	Diameter 2 inch	Type of Na	f Backfill N tive Ma	^{naterial}						
Type of Screen		Diameter	Type of	f Seal Mat	erial						
Borehole Diamete	er		Be Type of	ntonite f Filter Ma	terial						
		4 inch	#2	Sand		1					
Top of Casing	Elevation 79.99'	0.35' bgs		Well D	Details		Soil / Rock Cla	assification	Depth (ft)		
Top of Seal	Elevation 19.34'	Depth 61' bgs				F			0.35		
Top of Filter	Elevation 17.34'	Depth 63' bgs					NATIVE				
Top of Screen	Elevation 15.34'	^{Depth} 65' bgs									
Bottom of Filter	Elevation 0.34'	Depth 80' bgs									
Bottom of Well	Elevation -0.01'	Depth 80' bgs									
Screen Length	15.0'	Slot Size 10-slot									
	GROUNDWATE (Measured from	R ELEVATIONS (ft)	 								
Elevation 8.69'	DTW 71.30'	Date 3/22/2020 9:20:00 AM	1								
Elevation	DTW	Date	$\left \right $								
Elevation	DTW	Date	$\left \right $								
Elevation	DTW	Date							61 63 65		
Elevation	DTW	Date									
Elevation	DTW	Date							80		

LANGAN

WELL CONSTRUCTION SUMMARY

Well No. LMW-2

Р	roiect							Proiec	t No.		
		1921 Atlantic A	/enue					,		100681	202
L	ocation	Brooklyn, NY						Elevat	ion And Datum	77.56 NAVI	D88
D	rilling Agency	AARCO Enviro	nmental Services. Cor	0.				Date S	Started 3/17/2020	Date Finished 3/17/2	020
	rilling Equipment	Cooprobo Soni	Pig					Driller		I Tom Soir	skol
s S	ze And Type of E	Bit						Inspec	stor	Tom Seid	
	ethod of Installati	4-inch Sonic Bi								Molly Gute	lius
	Drilled to 77-f sand backfille 0.35-feet bgs	eet bgs. 15-feet of 2 ad to 60-feet bgs. Be . Manhole installed a	-inch 10-slot schedule 40 P\ ntonite seal installed from 58 nd secured with concrete.	/C so 3- to	cree 60-	en in feet	nstalled. 62- bgs. Soil cu	feet of ittings	2-inch solid schedule 40 backfilled above seal. Ris	PVC riser installed. N ser cut to approximate	o. 2 ly
Nepoll. Lug - LA	ethod of Well De	velopment									
2020 3.43.01 5.11	Driller used w	hale pump with dedi	cated tubing to purge water	until	sec	dime	ent free; app	roxima	ately 15 gallons purged.		
ר בֿ נייד וּ	ype of Casing PVC Sche	dule 40	Diameter 2 inch	Тур	be of Na	f Bac tive	kfill Material Material				
	ype of Screen		Diameter	Тур	be of	f Sea	I Material				
	0.010-SIOt		2 inch	Tvr	Be	nto F Filte	nite er Material				
			4 inch	196	#2	Sa	nd				
	op of Casing	Elevation 77.21'	Depth 0.35' bgs			W	ell Details		Soil / Rock Cla	assification	Depth (ft)
T	op of Seal	Elevation 19.56'	Depth 58' bgs						FILL		0.35
T	op of Filter	Elevation 17.56'	Depth 60' bgs				_		NATIVE		4
	op of Screen	Elevation 15.56'	Depth 62' bgs								
B	ottom of Filter	Elevation 0.56'	Depth 77' bgs								
B	ottom of Well	Elevation 0.21'	Depth 77' bgs								
S	creen Length	15.0'	Slot Size 10-slot								
			R ELEVATIONS (ft)								
ÊE	evation	DTW		1							
	o./o' evation	70.45' DTW	3/22/2020 4:05:00 PM Date	-							
	evation	DTW	Date								
	evation	DTW	Date								58 60 62
	evation	DTW	Date								
E	evation	DTW	Date								77

APPENDIX C

Groundwater Sampling Field Logs

LOW FLOW SAMPLING FIELD PARAMETER MEASUREMENTS											
Project:	1921 Atlantic A	ve	Site Location	n: Brooklyn, NY		Well N	lo: LMW-1		Date:	3/22/2020	
Job Number:	100681202		Weathe	r: 45, Sunny		Sampler(s): MG				
Initial DTW (ft):	71.30		Well Depth (ft	:): 80		Pump Depth (i	ft): ~73				
Background PID (ppm):	U.UU	10	Well PID (ppm): 0.3		Screen Interval (1	nt): 65-80				
water Quality Weter.	Holiba O -52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	rater Quality Meter IL	J. JONANI NIVI		Weil Diameter (i	<u>n). 2</u>				
	TEMP.	рН	ORP	COND.	Turbidity	DO	DTW	٥			
TIME	°C	(std. Units)	(mV)	(mS/cm)	(NTU)	(mg/L)	(ft)	(mL/m)	COLOR?	ODOR?	NOTES
9:10		<u> </u>						200	<u> </u>		Begin Purging
9:20	13.72	6.30	-462.0	0.689	58.2	0.43	-	200	clear	none	
9:25	14.06	6.31	-492.0	0.679	57.0	0.30	-	200	clear	none	
9:30	14.30	6.30	-495.0	0.697	52.2	0.22	-	200	clear	none	
9:35	14.40	6.29	-479.0	0.717	44.2	0.19	-	200	clear	none	
9:40	14.55	6.30	-441.0	0.757	27.6	0.21		200	clear	none	
9:45	14.58	6.30	-443.0	0.761	25.1	0.21		200	clear	none	
9.50	14.63	6.33	-428.0	0 795	10.8	0.26		200	clear	none	
9:55	14.65	6.32	-424	0.80	9.6	0.20		200	clear	none	
10:00	14.62	6.22	425	0.00	10.1	0.27	·	200	cloar	nono	Stable
10.00	14.03	0.32	-420	0.80	10.1	0.20		200	Clear	none	Stable
	<u> </u>	++-				l			+		
	<u> </u>	++-				<u> </u>	•		<u>+</u>	<u> </u>	
	<u>+</u>	· 				¦			÷	<u> </u>	
									+		
									_		
	i 					i 			_	 	
	 					 			<u> </u>		
	l	<u> </u>							L		
		1							1		
	*	1									
		1							<u>+</u>		
		++-							+		
		++-							<u>+</u>		
	<u>+</u>	╋╍╍╍╸╋╸				<u> </u>			+	<u> </u>	
	<u> </u>	·╆				 	·		+	<u> </u>	
	. /	0.1	. / 10>//	. /	. / 10 NTU	. / 100/			+	 	
	+/- 3 %	+/- 0.1 pH	+/- 10 mV	+/- 3 %	+/- 10 N10	+/- 10%	<0.3 drawdown		1		1
Notes: DTW readings were not co	ollected due to F	PFAS sample collect	tion								
Sample Number:		029_LMW-1	1	Sample Time:		10:05	Sample Analyses:	TCL VOC, TCL Total and D	SVOC, TCL Per issolved TAL M Chromium, 1,4	sticides, TCL etals, Cyanide -Dioxane, PF/	PCBs, Herbicides, , Hex/Trivalent AS
QA/QC Sample Number:		034_DUP-1		QA/QC Sample Time:		10:10	QA/QC Sample Analyses:	Total and D	issolved TAL M Chromium, 1,4	sticides, TCL etals, Cyanide -Dioxane, PF/	-CBS, Herbicides, , Hex/Trivalent AS

	LOW FLOW SAMPLING FIELD PARAMETER MEASUREMENTS											
Project	1921 Atlantic A	Ve	Site Location:	Brooklyn NY		Well No	· I MW-2		Date [.]	3/22/2020		
Job Number:	100681202		Weather:	45, Sunny		Sampler(s)	: MG		Bute.	0/22/2020		
Initial DTW (ft):	70.45		Well Depth (ft):	80		Pump Depth (ft)	: ~73					
Background PID (ppm):	0.00		Well PID (ppm):	0.0		Screen Interval (ft)	: 62-77					
Water Quality Meter:	Horiba U -52	۱ ۱	Nater Quality Meter ID:	98KXKTKM		Well Diameter (in)	: 2			ļ		
	TEMP		OPP	COND	Turbidity	DO	DTW					
TIME	°C	(std. Units)	(mV)	(mS/cm)	(NTU)	(ma/L)	(ft)	(mL/m)	COLOB?	ODOB?	NOTES	
16:05				(200			Begin Purging	
16:15	1/1 38	8.64	-644.0	0.560	515.0	0.75	++	200	light brown	none	Bogint diging	
16:20	14.30	9.72	636.0	0.500	432.0	0.75	++	200	light brown	none	+	
16:25	14.47	0.75	-030.0	0.547	432.0	0.00	++	200	light brown	none	+	
10.25	14.04	0.00	-003.0	0.511	232.0	0.00	++	200	light brown	none	+	
16:30	14.48	8.87	-661.0	0.502	/5.0	0.00	++	200	clear	none	+	
16:35	14.54	8.85	-632.0	0.503	22.1	0.00		200	clear	none	<u> </u>	
16:40	14.53	8.83	-630.0	0.508	23.4	0.00	÷	200	clear	none	<u>+</u>	
16:45	14.62	8.77	-626.0	0.505	22.0	0.00		200	clear	none	Stable	
										Ĺ	ļ	
			i +			 				 	4	
		<u> </u>					<u> </u>		<u> </u>	ĺ		
			i 1							ĺ		
											1	
		·		İ			<u>†</u>				<u>†</u>	
		†	[††		†	ſ	†	
		• • • • • • • • • • • • • • • • • • • •	}				++		+	<u> </u>	+	
		•					++				+	
			<u>.</u>	l		 	. <u>+</u>		.+	<u> </u>	+	
							.+		+	<u> </u>	÷	
			i 				++		+	 .	+	
												
			i +	 		 					 +	
		<u> </u>	<u> </u>				<u> </u>		<u> </u>	<u> </u>	<u> </u>	
		<u> </u>	i I	i I			<u> </u>		<u> </u>	Í	<u> </u>	
										ł		
			/	*			1				1	
	+/-3%	+/- 0.1 pH	+/- 10 mV	+/- 3%	+/- 10 NTU	+/- 10%	<0.3' drawdown		+		+	
			<u> </u>	•		· · ·	· · · · · ·		·		<u> </u>	
Notes:										-		
DTW readings were not co	llected due to F	PFAS sample colle	ction									
-												
								TCL VOC. TCL	SVOC. TCL Pe	sticides. TCL !	PCBs. Herbicides.	
Sample Number:		030 LMW	<i>I-</i> 2	Sample Time:		16:50	Sample	Total and D	issolved TAL M	etals, Cyanide	e, Hex/Trivalent	
		_					Analyses:		Chromium, 1,4	-Dioxane, PF/	AS	
				OA/OC Sample			OA/OC Sample					
QA/QC Sample Number:				Time:			Analyses:					
							. ,					

	LOW FLOW SAMPLING FIELD PARAMETER MEASUREMENTS											
Project:	1921 Atlantic A	Ve	Site Location	Brooklyn NY		Well N	lo: MW-002		Date:	3/22/2020		
Job Number:	100681202		Weather	: 45, Sunny		Sampler(s): MG		2410.	0/22/2020		
Initial DTW (ft):	70.84		Well Depth (ft)	: 80		Pump Depth (f	ft): ~73					
Background PID (ppm):	0.00		Well PID (ppm)	: 0.0		Screen Interval (f	ft): 65-80					
Water Quality Meter:	Horiba U -52	v	Vater Quality Meter ID	: 98KXKTKM		Well Diameter (i	n): 2					
											T	
ТІМЕ	TEMP. °C	pH (std. Units)	ORP (mV)	COND. (mS/cm)	Turbidity (NTU)	DO (mg/L)	DTW (ft)	Q (mL/m)	COLOR?	ODOR?	NOTES	
14:25							—	200			Begin Purging	
14:35	15.88	6.91	365.0	1.460	196.0	9.16	-	200	light brown	none		
14:40	15.20	7.11	355.0	1.410	101.0	9.02	-	200	light brown	none		
14:45	15.22	7.38	342.0	1.310	43.0	8.83		200	light brown	none	<u> </u>	
14:50	15.45	7.53	338.0	1.287	22.4	8.64		200	clear	none	+	
14.55	15.48	7.62	328.0	1 265	15.6	8 45		200	clear	none		
15:00	15.52	7.65	320.0	1 258	7.8	8.76		200	clear	none	+	
15:05	15.32	7.05	212.0	1.250	5.6	9.07		200	clear	nono	+	
15.05	15.47	7.05	313.0	1.251	5.0	3.07		200	cieai	none		
15:10	15.55	7.67	304.0	1.25	2.3	7.88		200	clear	none	+	
15:15	15.64	7.68	298.0	1.24	0.0	7.69		200	clear	none	+	
15:20	15.69	7.68	295.0	1.24	0.0	7.50		200	clear	none	+	
15:25	15.62	7.68	290.0	1.24	0.0	7.31		200	clear	none	↓	
							+				¦ +	
	<u> </u>	<u> </u>					<u> </u>		<u> </u>			
											i 	
									1			
	1	1							1		†	
		1							1		*	
		·									+	
		· 							*********		+	
	+	· † †							+		+	
		· <u>+</u> <u>+</u>					++		+		+	
		· 							.+		+	
		·									+	
	+/-3%	+/- 0.1 pH	+/- 10 mV	+/-3%	+/- 10 NIU	+/- 10%	<0.3 drawdown		1		1	
Notes:												
DTW readings were not co Parameters did not reach s	ollected due to F stability. Sample	PFAS sample collec s were collected at	tion iter 1 hour of purging.									
Sample Number:		031_MW-00	02	Sample Time:		15:30	Sample Analyses:	TCL VOC, TCL Total and D	SVOC, TCL Pes issolved TAL M Chromium, 1,4	sticides, TCL I etals, Cyanide -Dioxane, PFA	PCBs, Herbicides, e, Hex/Trivalent AS	
QA/QC Sample Number:				QA/QC Sample Time:			QA/QC Sample Analyses:					

LOW FLOW SAMPLING FIELD PARAMETER MEASUREMENTS

Project:	1921 Atlantic A	ve.	Site Location	1: Brooklyn, NY		Well No:	MW-003		Date:	3/22/2020	
Job Number:	100681202		Weathe	r: 45, Sunny		Sampler(s):	MG				
Initial DTW (ft):	71.83		Well Depth (ft): 80		Pump Depth (ft):	~78				
Background PID (ppm):	0.00		Well PID (ppm): 0.5		Screen Interval (ft):	70-85				
water Quality weter:		v	vater Quality Weter IL	98NAN I NIVI		weil Diameter (in):	Z				
	TEMP	nH	ORP	COND	Turbidity	DO	DTW	0	1	1	
TIME	°C	(std. Units)	(mV)	(mS/cm)	(NTU)	(ma/L)	(ft)	(mL/m)	COLOB?	ODOB?	NOTES
13:00								200			Begin Purging
13:10	13 25	7.56	287 0	1 240	0.0	6.27		200	clear	none	Bogint diging
13:15	13.33	7.60	289.0	1.380	0.0	6.05		200	clear	none	
13:20	13.48	7.50	200.0	1.540	0.0	5.00	┟ <u>├</u> †	200	clear	none	<u>+</u>
12:25	12.40	7.52	200.0	1.340	0.0	5.07	++	200	oloar	none	
13.25	13.07	7.42	299.0	1.750	0.0	0.00 E 04		200	ciear	none	<u>+</u>
13:30	13.80	7.40	312.0	1.770	0.0	5.84	└	200	clear	none	<u>+</u>
13:35	13.79	7.42	313.0	1.770	0.0	5.85	<u>├</u>	200	clear	none	
13:40	13.86	7.38	322.0	1.780	0.0	5.77		200	clear	none	Stable
		·					ļ		÷		
						i 			÷	<u> </u>	i
							ļ 		+		<u>.</u>
							ļ		∔		
									<u>_</u>		
						! 	 		<u> </u>		
						 	<u> </u>		<u> </u>		
									1		
	1								1		
	1	*					•		+		+
	+						<u>+</u>		+		
	†	††					††		†	f	÷
	+	+					<u>++</u>		+		+
	+								+		
	+						<u>++</u>		+		
	+	<u>+</u> +					<u>++</u>		+	<u> </u>	<u>+</u>
	+								+		
			(10) V		(40 NTU	4.40%			÷		
	+/- 3%	+/- 0.1 pH	+/- 10 mV	+/- 3%	+/- 10 N10	+/- 10%	<0.3 drawdowni		!	!	<u>!</u>
Notes:											
140(03.											
DTW readings were not c	ollected due to F	FAS sample collec	tion								
	Т			1			<u>г</u>			cticidos TCL	CBs Harbisides
Sample Number		032 M/M/	03	Sample Time:		13.45	Sample	Total and D	issolved TAL M	etals Cvanide	Hex/Trivalent
oumpie reamber.		002_11111100		oumpie mile.			Analyses:		Chromium, 1.4	I-Dioxane. PF4	AS
				04/0C Sample			04/0C Sample				
QA/QC Sample Number:				Time:			Analyses:				

LOW FLOW SAMPLING FIELD PARAMETER MEASUREMENTS

Project:	1921 Atlantic A	ve.	Site Location	: Brooklyn, NY		Well N	No: MW-004		Date:	3/22/2020	
Job Number:	100681202		Weather	: 45, Sunny		Sampler	(s): MG				
Initial DTW (ft):	70.45		Well Depth (ft)	: 80		Pump Depth (ft): ~73				
Background PID (ppm):	0.00		Well PID (ppm)	: 0.0		Screen Interval (ft): 65-80				
water Quality weter:			water Quality Meter ID	98KAK I KIVI		well Diameter (i	n): 2				
	TEMP	рН	ORP	COND	Turbidity	DO	DTW	0			
TIME	°C	(std. Units)	(mV)	(mS/cm)	(NTU)	(mg/L)	(ft)	(mL/m)	COLOR?	ODOR?	NOTES
10:45	-	-		-	-	_	-	200			Begin Purging
10:55	10.09	6.42	-38.0	1.060	7.7	5.74	-	200	clear	none	
11:00	10.13	6.50	-14.0	1.100	4.0	4.45	-	200	clear	none	
11:05	10.44	6.56	2.0	2.110	0.0	4.40	-	200	clear	none	
11:10	10.90	6.51	59.0	2.230	0.0	4.37	_	200	clear	none	
11:15	11.03	6.37	87.0	2.280	0.0	4.19		200	clear	none	
11:20	11.18	6.34	105.0	2.280	0.0	4.07		200	clear	none	
11:25	11.28	6.31	106.0	2.270	0.0	4.00	_	200	clear	none	
11:30	11.33	6.33	110	2.27	0.0	4.01		200	clear	none	Stable
	1			1					1	[
				1					1		
									1		
				1					1		
									1		
									1		
									1		
									+		+
									+		+
	<u> </u>	<u> </u>							1	[<u> </u>
	+						++		1		
									+		
									+	<u></u>	
	†	t							1	<u></u>	+
		<u> </u>		1					1	<u></u>	+
	+/- 3%	+/- 0.1 pH	+/- 10 mV	+/- 3%	+/- 10 NTU	+/- 10%	<0.3' drawdown		†	L	+
	•			· · · · ·	•	·			•	•	•
Notes:											
DTW readings were not c	ollected due to F	FAS sample colled	ction								
							Sample	TCL VOC, TCL	SVOC, TCL Pe	sticides, TCL I	PCBs, Herbicides,
Sample Number:		035_MW-0	04	Sample Time:		11:35	Analyses:	Total and D	issolved TAL M	etals, Cyanide	e, Hex/Trivalent
	+						,		Unromium, 1,4	HUIOxane, PFA	42
QA/QC Sample Number:				QA/QC Sample			QA/QC Sample				
				Lime:			Analyses:				

APPENDIX D

Soil Vapor Sampling Field Logs

SUMMA CANISTER SAMPLING FIELD DATA SHEET

Site: 1921 Atlantic Avenue, Brooklyn, NY

Samplers: MG

Date: 3/20/2020

Sample #	019_LSV-1	020_DUP-1	021_LSV-2	022_LSV-3	023_LSV-4
Location	LSV-1	LSV 1	LSV-2	LSV-3	LSV-4
Summa Canister ID	16696	28849	23997	24058	20944
Flow Controller ID	Y48	3542	Y39	Y43	7270
Sample Depth (b.g.s.)	3	3	4	2	2
Additional Tubing Added	NO/ • How much	NO/	NO/	NO/ YE - How much	NO/ VEP- How much
Purge Time (Start)	7:23	7:23	<u>~2</u> 9:20	~ <u>~</u> 10:00	~ <u>~</u> 8:45
Purge Time (Stop)	7:28	7:28	9:25	10:05	8:50
Total Purge Time (min)	5	5	5	5	5
Purge Volume	1 L	1 L	1 L	1 L	1 L
PID Test of Purge Air	244 ppb	244 ppb	1535 ppb	247 ppb	190 ppb
Initial Tracer Gas Results in sampling line	0%	0%	0%	0%	0%
Initial Tracer Gas Results in shroud	97.8%	97.8%	94.5%	96.8%	94.7%
Pressure Gauge - before sampling	-30.0	-29.76	-27.0	-30	-28.9
Sample Time (Start)	7:35	7:35	9:30	10:40	8:55
Sample Time (Stop)	9:35	9:35	11:17	13:00	10:47
Total Sample Time (min)	120	120	107	140	112
Pressure Gauge - after sampling	-4.91	-4.83	-4.83	-4	-3.3
Sample Volume	6 L	6 L	6 L	6 L	6 L
Canister Pressure Went to Ambient Pressure?	YES NO	YES NO	YES NO	YES NO	YES NO
Final Tracer Gas Results in sampling line					
Final Tracer Gas Results in shroud			-	-	-
Associated Ambient Air Sample Number	028_Ambient-1	028_Ambient-1	028_Ambient-1	028_Ambient-1	028_Ambient-1
Weather 24 hours before and during sampling		40	s-50s, overcast, r	ain	
General Comments					

SUMMA CANISTER SAMPLING FIELD DATA SHEET

Site: 1921 Atlantic Avenue, Brooklyn, NY

Samplers: MG

Date: 3/20/2020

Sample #	024 SV-5	025 LSV-6	026 LSV-7	027 LSV-8	028 Ambient-1
					020_, «Indione i
	L3V-5	L3V-0	L3V-7	L3V-0	
Summa Canister ID	23156	28310	¥1127	18309	23801
Flow Controller ID	7268	Y47	Y20	Y16	7422
Sample Depth (b.g.s.)	2	3	1.5	4	
Additional Tubing Added	NO/	NO/ Veg - How much	NO/	NO/	YES - How much
	~2	~2	~2	~2	
Purge Time (Start)	8:25	/:55	/:40	9:00	\/
Purge Time (Stop)	8:30	8:00	7:45	9:05	
Total Purge Time (min)	5	5	5	5	\backslash
Purge Volume	1 L	1 L	1 L	1 L	
PID Test of Purge Air	172 ppb	120 ppb	151 ppb	190 ppb	\land
Initial Tracer Gas Results in sampling line	0%	0%	0%	0%	
Initial Tracer Gas Results in shroud	94.6%	95.0%	99.4%	99.6%	
Pressure Gauge - before sampling	-29.38	-29.5	-30.1	-28.6	-30.1
Sample Time (Start)	8:35	8:10	7:50	9:10	7:15
Sample Time (Stop)	10:30	10:08	9:58	11:00	15:15
Total Sample Time (min)	115	118	128	110	480
Pressure Gauge - after sampling	-4.44	-3.52	-4.6	-4.07	4
Sample Volume	6 L	6 L	6 L	6 L	6 L
Canister Pressure Went to Ambient Pressure?	YES NO	YES NO	YES NO	YES NO	YES NO
Final Tracer Gas Results in sampling line					
Final Tracer Gas Results in shroud					
Associated Ambient Air Sample Number	028_Ambient-1	028_Ambient-1	028_Ambient-1	028_Ambient-1	
Weather 24 hours before and during sampling		40	s-50s, overcast, r	ain	
General Comments					

APPENDIX E

Laboratory Data Reports

APPENDIX F

Data Usability Summary Reports

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: March 30, 2020

Re: Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in March 2020 by Langan Engineering and Environmental Services ("Langan") at the 1921 Atlantic Avenue site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854 and 12058) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), perand polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6020B
- Mercury by SW-846 Method 7473
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 2 of 33

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
20C0787	20C0787-01	001_LSB- 6A_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-02	002_LSB- 6B_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-03	003_DUP- 1_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-04	004_LSB- 5A_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-05	005_LSB- 5B_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-06	006_LSB- 4A_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-07	007_LSB- 4B_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-08	008_LSB- 3A_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-09	009_LSB- 3B_20200317	3/17/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0787	20C0787-10	010_EB-1_20200317	3/17/2020	PFAS
20C0787	20C0787-11	011_TB-1_20200317	3/17/2020	VOCs
20C0847	20C0847-01	012_LSB- 1A_20200318	3/18/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0847	20C0847-02	013_LSB- 1B_20200318	3/18/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0847	20C0847-03	014_LSB- 2A_20200318	3/18/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
20C0847	20C0847-04	015_LSB- 2B_20200318	3/18/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0847	20C0847-05	016_FB-1_20200318	3/18/2020	VOCs, SVOCs, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, Cyanide, CrVI, CrIII,%S
20C0847	20C0847-06	017_EB-2_20200318	3/18/2020	PFAS
20C0847	20C0847-07	018_TB-2_20200318	3/18/2020	VOCs

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (October 2016, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, trip blank, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
001_LSB- 6A_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 5 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
001_LSB- 6A_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
001_LSB- 6A_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
001_LSB- 6A_20200317	SW8260C	107-02-8	Acrolein	UJ
001_LSB- 6A_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
001_LSB- 6A_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
001_LSB- 6A_20200317	SW8260C	67-64-1	Acetone	J
001_LSB- 6A_20200317	SW8260C	75-25-2	Bromoform	R
001_LSB- 6A_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
001_LSB- 6A_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
001_LSB- 6A_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
001_LSB- 6A_20200317	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
001_LSB- 6A_20200317	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
001_LSB- 6A_20200317	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
001_LSB- 6A_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
001_LSB- 6A_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
001_LSB- 6A_20200317	SW8270D	87-86-5	Pentachlorophenol	UJ
002_LSB- 6B_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
002_LSB- 6B_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
002_LSB- 6B_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
002_LSB- 6B_20200317	SW8260C	67-64-1	Acetone	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 6 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
002_LSB- 6B_20200317	SW8260C	107-02-8	Acrolein	UJ
002_LSB- 6B_20200317	SW6010B	7429-90-5	Aluminum	J
002_LSB- 6B_20200317	SW6010B	7440-39-3	Barium	J
002_LSB- 6B_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
002_LSB- 6B_20200317	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
002_LSB- 6B_20200317	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
002_LSB- 6B_20200317	SW8260C	75-25-2	Bromoform	R
002_LSB- 6B_20200317	SW6010B	7440-70-2	Calcium	J
002_LSB- 6B_20200317	SW6010B	7440-47-3	Chromium, Total	J
002_LSB- 6B_20200317	CALC_METAL S	16065-83-1	Chromium, Trivalent	J
002_LSB- 6B_20200317	SW6010B	7440-48-4	Cobalt	J
002_LSB- 6B_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
002_LSB- 6B_20200317	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
002_LSB- 6B_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
002_LSB- 6B_20200317	SW6010B	7439-89-6	Iron	J
002_LSB- 6B_20200317	SW6010B	7439-95-4	Magnesium	J
002_LSB- 6B_20200317	SW6010B	7439-96-5	Manganese	J
002_LSB- 6B_20200317	SW6010B	7440-02-0	Nickel	J
002_LSB- 6B_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
002_LSB- 6B_20200317	SW8270D	87-86-5	Pentachlorophenol	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 7 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
002_LSB- 6B_20200317	E537M	1763-23-1	Perfluorooctanesulfonic acid	J
002_LSB- 6B_20200317	SW6010B	7440-09-7	Potassium	J
002_LSB- 6B_20200317	SW6010B	7440-23-5	Sodium	J
002_LSB- 6B_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
002_LSB- 6B_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
002_LSB- 6B_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
002_LSB- 6B_20200317	SW6010B	7440-62-2	Vanadium	J
002_LSB- 6B_20200317	SW6010B	7440-66-6	Zinc	J
003_DUP- 1_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
003_DUP- 1_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
003_DUP- 1_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
003_DUP- 1_20200317	SW8260C	67-64-1	Acetone	UJ
003_DUP- 1_20200317	SW8260C	107-02-8	Acrolein	UJ
003_DUP- 1_20200317	SW6010B	7429-90-5	Aluminum	J
003_DUP- 1_20200317	SW6010B	7440-39-3	Barium	J
003_DUP- 1_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
003_DUP- 1_20200317	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
003_DUP- 1_20200317	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
003_DUP- 1_20200317	SW8260C	75-25-2	Bromoform	R
003_DUP- 1_20200317	SW6010B	7440-70-2	Calcium	J

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 8 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
003_DUP- 1_20200317	SW6010B	7440-47-3	Chromium, Total	J
003_DUP- 1_20200317	CALC_METAL S	16065-83-1	Chromium, Trivalent	J
003_DUP- 1_20200317	SW6010B	7440-48-4	Cobalt	J
003_DUP- 1_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
003_DUP- 1_20200317	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
003_DUP- 1_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
003_DUP- 1_20200317	SW6010B	7439-89-6	Iron	J
003_DUP- 1_20200317	SW6010B	7439-95-4	Magnesium	J
003_DUP- 1_20200317	SW6010B	7439-96-5	Manganese	J
003_DUP- 1_20200317	SW6010B	7440-02-0	Nickel	J
003_DUP- 1_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
003_DUP- 1_20200317	SW8270D	87-86-5	Pentachlorophenol	UJ
003_DUP- 1_20200317	E537M	1763-23-1	Perfluorooctanesulfonic acid	UJ
003_DUP- 1_20200317	SW6010B	7440-09-7	Potassium	J
003_DUP- 1_20200317	SW6010B	7440-23-5	Sodium	J
003_DUP- 1_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
003_DUP- 1_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
003_DUP- 1_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
003_DUP- 1_20200317	SW6010B	7440-62-2	Vanadium	J
003_DUP- 1_20200317	SW6010B	7440-66-6	Zinc	J

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 9 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
004_LSB- 5A_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
004_LSB- 5A_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
004_LSB- 5A_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
004_LSB- 5A_20200317	SW8081B	1024-57-3	Heptachlor Epoxide	UJ
004_LSB- 5A_20200317	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
004_LSB- 5A_20200317	SW8081B	309-00-2	Aldrin	UJ
004_LSB- 5A_20200317	SW8081B	319-84-6	Alpha BHC (Alpha Hexachlorocyclohexane)	UJ
004_LSB- 5A_20200317	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
004_LSB- 5A_20200317	SW8081B	319-86-8	Delta Bhc (Delta Hexachlorocyclohexane)	UJ
004_LSB- 5A_20200317	SW8081B	50-29-3	4,4'-DDT	J
004_LSB- 5A_20200317	SW8081B	5103-71-9	Alpha Chlordane	J
004_LSB- 5A_20200317	SW8081B	53494-70-5	Endrin Ketone	UJ
004_LSB- 5A_20200317	SW8081B	5566-34-7	Gamma-Chlordane	J
004_LSB- 5A_20200317	SW8081B	58-89-9	Gamma Bhc (Lindane)	UJ
004_LSB- 5A_20200317	SW8081B	60-57-1	Dieldrin	UJ
004_LSB- 5A_20200317	SW8081B	72-20-8	Endrin	UJ
004_LSB- 5A_20200317	SW8081B	72-43-5	Methoxychlor	UJ
004_LSB- 5A_20200317	SW8081B	72-54-8	4,4'-DDD	J
004_LSB- 5A_20200317	SW8081B	72-55-9	4,4'-DDE	UJ
004_LSB- 5A_20200317	SW8081B	7421-93-4	Endrin Aldehyde	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 10 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
004_LSB- 5A_20200317	SW8081B	76-44-8	Heptachlor	UJ
004_LSB- 5A_20200317	SW8260C	107-02-8	Acrolein	UJ
004_LSB- 5A_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
004_LSB- 5A_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
004_LSB- 5A_20200317	SW8260C	67-64-1	Acetone	UJ
004_LSB- 5A_20200317	SW8260C	75-25-2	Bromoform	R
004_LSB- 5A_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
004_LSB- 5A_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
004_LSB- 5A_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
004_LSB- 5A_20200317	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
004_LSB- 5A_20200317	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	J
004_LSB- 5A_20200317	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
004_LSB- 5A_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
004_LSB- 5A_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
004_LSB- 5A_20200317	SW8270D	87-86-5	Pentachlorophenol	UJ
005_LSB- 5B_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
005_LSB- 5B_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
005_LSB- 5B_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
005_LSB- 5B_20200317	SW6010B	7429-90-5	Aluminum	J
005_LSB- 5B_20200317	SW6010B	7439-89-6	Iron	J

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 11 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
005_LSB- 5B_20200317	SW6010B	7439-92-1	Lead	J
005_LSB- 5B_20200317	SW6010B	7439-95-4	Magnesium	J
005_LSB- 5B_20200317	SW6010B	7439-96-5	Manganese	J
005_LSB- 5B_20200317	SW6010B	7440-02-0	Nickel	J
005_LSB- 5B_20200317	SW6010B	7440-09-7	Potassium	J
005_LSB- 5B_20200317	SW6010B	7440-23-5	Sodium	J
005_LSB- 5B_20200317	SW6010B	7440-36-0	Antimony	UJ
005_LSB- 5B_20200317	SW6010B	7440-39-3	Barium	J
005_LSB- 5B_20200317	SW6010B	7440-41-7	Beryllium	UJ
005_LSB- 5B_20200317	SW6010B	7440-47-3	Chromium, Total	J
005_LSB- 5B_20200317	SW6010B	7440-48-4	Cobalt	J
005_LSB- 5B_20200317	SW6010B	7440-50-8	Copper	J
005_LSB- 5B_20200317	SW6010B	7440-62-2	Vanadium	J
005_LSB- 5B_20200317	SW6010B	7440-66-6	Zinc	J
005_LSB- 5B_20200317	SW6010B	7440-70-2	Calcium	J
005_LSB- 5B_20200317	SW8260C	107-02-8	Acrolein	UJ
005_LSB- 5B_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
005_LSB- 5B_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
005_LSB- 5B_20200317	SW8260C	67-64-1	Acetone	UJ
005_LSB- 5B_20200317	SW8260C	75-25-2	Bromoform	R

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 12 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
005_LSB- 5B_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
005_LSB- 5B_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
005_LSB- 5B_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
005_LSB- 5B_20200317	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
005_LSB- 5B_20200317	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
005_LSB- 5B_20200317	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
005_LSB- 5B_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
005_LSB- 5B_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
005_LSB- 5B_20200317	SW8270D	87-86-5	Pentachlorophenol	UJ
005_LSB- 5B_20200317	SW9010	57-12-5	Cyanide	UJ
006_LSB- 4A_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
006_LSB- 4A_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
006_LSB- 4A_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
006_LSB- 4A_20200317	SW8260C	107-02-8	Acrolein	UJ
006_LSB- 4A_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
006_LSB- 4A_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
006_LSB- 4A_20200317	SW8260C	67-64-1	Acetone	UJ
006_LSB- 4A_20200317	SW8260C	75-25-2	Bromoform	R
006_LSB- 4A_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
006_LSB- 4A_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 13 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
006_LSB- 4A_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
006_LSB- 4A_20200317	SW8270D	110-86-1	Pyridine	UJ
006_LSB- 4A_20200317	SW8270D	111-91-1	Bis(2-Chloroethoxy) Methane	UJ
006_LSB- 4A_20200317	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
006_LSB- 4A_20200317	SW8270D	122-66-7	1,2-Diphenylhydrazine	UJ
006_LSB- 4A_20200317	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
006_LSB- 4A_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
006_LSB- 4A_20200317	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
006_LSB- 4A_20200317	SW8270D	62-75-9	n-Nitrosodimethylamine	UJ
006_LSB- 4A_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
006_LSB- 4A_20200317	SW8270D	86-30-6	n-Nitrosodiphenylamine	UJ
006_LSB- 4A_20200317	SW8270D	92-87-5	Benzidine	UJ
007_LSB- 4B_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
007_LSB- 4B_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
007_LSB- 4B_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
007_LSB- 4B_20200317	SW8260C	107-02-8	Acrolein	UJ
007_LSB- 4B_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
007_LSB- 4B_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
007_LSB- 4B_20200317	SW8260C	67-64-1	Acetone	UJ
007_LSB- 4B_20200317	SW8260C	74-87-3	Chloromethane	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 14 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
007_LSB- 4B_20200317	SW8260C	75-01-4	Vinyl Chloride	UJ
007_LSB- 4B_20200317	SW8260C	75-15-0	Carbon Disulfide	UJ
007_LSB- 4B_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
007_LSB- 4B_20200317	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
007_LSB- 4B_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
007_LSB- 4B_20200317	SW8270D	110-86-1	Pyridine	UJ
007_LSB- 4B_20200317	SW8270D	111-91-1	Bis(2-Chloroethoxy) Methane	UJ
007_LSB- 4B_20200317	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
007_LSB- 4B_20200317	SW8270D	122-66-7	1,2-Diphenylhydrazine	UJ
007_LSB- 4B_20200317	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
007_LSB- 4B_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
007_LSB- 4B_20200317	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
007_LSB- 4B_20200317	SW8270D	62-75-9	n-Nitrosodimethylamine	UJ
007_LSB- 4B_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
007_LSB- 4B_20200317	SW8270D	86-30-6	n-Nitrosodiphenylamine	UJ
007_LSB- 4B_20200317	SW8270D	92-87-5	Benzidine	UJ
008_LSB- 3A_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
008_LSB- 3A_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
008_LSB- 3A_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
008_LSB- 3A_20200317	SW8260C	107-02-8	Acrolein	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 15 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
008_LSB- 3A_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
008_LSB- 3A_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
008_LSB- 3A_20200317	SW8260C	67-64-1	Acetone	UJ
008_LSB- 3A_20200317	SW8260C	75-25-2	Bromoform	R
008_LSB- 3A_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
008_LSB- 3A_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
008_LSB- 3A_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
008_LSB- 3A_20200317	SW8270D	110-86-1	Pyridine	UJ
008_LSB- 3A_20200317	SW8270D	111-91-1	Bis(2-Chloroethoxy) Methane	UJ
008_LSB- 3A_20200317	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
008_LSB- 3A_20200317	SW8270D	122-66-7	1,2-Diphenylhydrazine	UJ
008_LSB- 3A_20200317	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
008_LSB- 3A_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
008_LSB- 3A_20200317	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
008_LSB- 3A_20200317	SW8270D	62-75-9	n-Nitrosodimethylamine	UJ
008_LSB- 3A_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
008_LSB- 3A_20200317	SW8270D	86-30-6	n-Nitrosodiphenylamine	UJ
008_LSB- 3A_20200317	SW8270D	92-87-5	Benzidine	UJ
009_LSB- 3B_20200317	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
009_LSB- 3B_20200317	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 16 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
009_LSB- 3B_20200317	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
009_LSB- 3B_20200317	SW8260C	107-02-8	Acrolein	UJ
009_LSB- 3B_20200317	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
009_LSB- 3B_20200317	SW8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
009_LSB- 3B_20200317	SW8260C	67-64-1	Acetone	UJ
009_LSB- 3B_20200317	SW8260C	75-25-2	Bromoform	R
009_LSB- 3B_20200317	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
009_LSB- 3B_20200317	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
009_LSB- 3B_20200317	SW8270D	100-52-7	Benzaldehyde	UJ
009_LSB- 3B_20200317	SW8270D	110-86-1	Pyridine	UJ
009_LSB- 3B_20200317	SW8270D	111-91-1	Bis(2-Chloroethoxy) Methane	UJ
009_LSB- 3B_20200317	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
009_LSB- 3B_20200317	SW8270D	122-66-7	1,2-Diphenylhydrazine	UJ
009_LSB- 3B_20200317	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
009_LSB- 3B_20200317	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
009_LSB- 3B_20200317	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
009_LSB- 3B_20200317	SW8270D	62-75-9	n-Nitrosodimethylamine	UJ
009_LSB- 3B_20200317	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
009_LSB- 3B_20200317	SW8270D	86-30-6	n-Nitrosodiphenylamine	UJ
009_LSB- 3B_20200317	SW8270D	92-87-5	Benzidine	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 17 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
010_EB-1_20200317	E537M	2706-90-3	Perfluoropentanoic Acid	U (2)
010_EB-1_20200317	E537M	375-22-4	Perfluorobutanoic acid	U (2.68)
012_LSB- 1A_20200318	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
012_LSB- 1A_20200318	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
012_LSB- 1A_20200318	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
012_LSB- 1A_20200318	SW8260C	107-02-8	Acrolein	UJ
012_LSB- 1A_20200318	SW8260C	108-05-4	Vinyl Acetate	UJ
012_LSB- 1A_20200318	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
012_LSB- 1A_20200318	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
012_LSB- 1A_20200318	SW8260C	594-20-7	2,2-Dichloropropane	UJ
012_LSB- 1A_20200318	SW8260C	64-17-5	Ethanol	UJ
012_LSB- 1A_20200318	SW8260C	67-64-1	Acetone	UJ
012_LSB- 1A_20200318	SW8260C	74-87-3	Chloromethane	UJ
012_LSB- 1A_20200318	SW8260C	75-01-4	Vinyl Chloride	UJ
012_LSB- 1A_20200318	SW8260C	75-15-0	Carbon Disulfide	UJ
012_LSB- 1A_20200318	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
012_LSB- 1A_20200318	SW8270D	100-01-6	4-Nitroaniline	UJ
012_LSB- 1A_20200318	SW8270D	100-02-7	4-Nitrophenol	UJ
012_LSB- 1A_20200318	SW8270D	100-52-7	Benzaldehyde	UJ
012_LSB- 1A_20200318	SW8270D	110-86-1	Pyridine	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 18 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
012_LSB- 1A_20200318	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	J
012_LSB- 1A_20200318	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
012_LSB- 1A_20200318	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
012_LSB- 1A_20200318	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
012_LSB- 1A_20200318	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
012_LSB- 1A_20200318	SW8270D	58-90-2	2,3,4,6-Tetrachlorophenol	UJ
012_LSB- 1A_20200318	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
012_LSB- 1A_20200318	SW8270D	65-85-0	Benzoic Acid	UJ
012_LSB- 1A_20200318	SW8270D	85-68-7	Benzyl Butyl Phthalate	UJ
012_LSB- 1A_20200318	SW8270D	88-74-4	2-Nitroaniline	UJ
012_LSB- 1A_20200318	SW8270D	88-75-5	2-Nitrophenol	UJ
012_LSB- 1A_20200318	SW8270D	92-87-5	Benzidine	UJ
012_LSB- 1A_20200318	SW8270D	99-09-2	3-Nitroaniline	UJ
012_LSB- 1A_20200318	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
013_LSB- 1B_20200318	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
013_LSB- 1B_20200318	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
013_LSB- 1B_20200318	E537M	754-91-6	Perfluorooctanesulfonamide	UJ
013_LSB- 1B_20200318	SW8260C	107-02-8	Acrolein	UJ
013_LSB- 1B_20200318	SW8260C	108-05-4	Vinyl Acetate	UJ
013_LSB- 1B_20200318	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 19 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
013_LSB- 1B_20200318	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
013_LSB- 1B_20200318	SW8260C	594-20-7	2,2-Dichloropropane	UJ
013_LSB- 1B_20200318	SW8260C	64-17-5	Ethanol	UJ
013_LSB- 1B_20200318	SW8260C	67-64-1	Acetone	UJ
013_LSB- 1B_20200318	SW8260C	74-87-3	Chloromethane	UJ
013_LSB- 1B_20200318	SW8260C	75-01-4	Vinyl Chloride	UJ
013_LSB- 1B_20200318	SW8260C	75-15-0	Carbon Disulfide	UJ
013_LSB- 1B_20200318	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
013_LSB- 1B_20200318	SW8270D	100-01-6	4-Nitroaniline	UJ
013_LSB- 1B_20200318	SW8270D	100-02-7	4-Nitrophenol	UJ
013_LSB- 1B_20200318	SW8270D	100-52-7	Benzaldehyde	UJ
013_LSB- 1B_20200318	SW8270D	110-86-1	Pyridine	UJ
013_LSB- 1B_20200318	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
013_LSB- 1B_20200318	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
013_LSB- 1B_20200318	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
013_LSB- 1B_20200318	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
013_LSB- 1B_20200318	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
013_LSB- 1B_20200318	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
013_LSB- 1B_20200318	SW8270D	58-90-2	2,3,4,6-Tetrachlorophenol	UJ
013_LSB- 1B_20200318	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 20 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
013_LSB- 1B_20200318	SW8270D	65-85-0	Benzoic Acid	UJ
013_LSB- 1B_20200318	SW8270D	85-68-7	Benzyl Butyl Phthalate	UJ
013_LSB- 1B_20200318	SW8270D	88-74-4	2-Nitroaniline	UJ
013_LSB- 1B_20200318	SW8270D	88-75-5	2-Nitrophenol	UJ
013_LSB- 1B_20200318	SW8270D	92-87-5	Benzidine	UJ
013_LSB- 1B_20200318	SW8270D	99-09-2	3-Nitroaniline	UJ
014_LSB- 2A_20200318	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
014_LSB- 2A_20200318	E537M	335-67-1	Perfluorooctanoic Acid	U (0.536)
014_LSB- 2A_20200318	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
014_LSB- 2A_20200318	E537M	754-91-6	Perfluorooctanesulfonamide	UJ
014_LSB- 2A_20200318	SW8260C	107-02-8	Acrolein	UJ
014_LSB- 2A_20200318	SW8260C	108-05-4	Vinyl Acetate	UJ
014_LSB- 2A_20200318	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
014_LSB- 2A_20200318	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
014_LSB- 2A_20200318	SW8260C	594-20-7	2,2-Dichloropropane	UJ
014_LSB- 2A_20200318	SW8260C	64-17-5	Ethanol	UJ
014_LSB- 2A_20200318	SW8260C	67-64-1	Acetone	J
014_LSB- 2A_20200318	SW8260C	74-87-3	Chloromethane	UJ
014_LSB- 2A_20200318	SW8260C	75-01-4	Vinyl Chloride	UJ
014_LSB- 2A_20200318	SW8260C	75-15-0	Carbon Disulfide	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 21 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
014_LSB- 2A_20200318	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
014_LSB- 2A_20200318	SW8270D	100-01-6	4-Nitroaniline	UJ
014_LSB- 2A_20200318	SW8270D	100-02-7	4-Nitrophenol	UJ
014_LSB- 2A_20200318	SW8270D	100-52-7	Benzaldehyde	UJ
014_LSB- 2A_20200318	SW8270D	110-86-1	Pyridine	UJ
014_LSB- 2A_20200318	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	J
014_LSB- 2A_20200318	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
014_LSB- 2A_20200318	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
014_LSB- 2A_20200318	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
014_LSB- 2A_20200318	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
014_LSB- 2A_20200318	SW8270D	58-90-2	2,3,4,6-Tetrachlorophenol	UJ
014_LSB- 2A_20200318	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
014_LSB- 2A_20200318	SW8270D	65-85-0	Benzoic Acid	UJ
014_LSB- 2A_20200318	SW8270D	85-68-7	Benzyl Butyl Phthalate	UJ
014_LSB- 2A_20200318	SW8270D	88-74-4	2-Nitroaniline	UJ
014_LSB- 2A_20200318	SW8270D	88-75-5	2-Nitrophenol	UJ
014_LSB- 2A_20200318	SW8270D	92-87-5	Benzidine	UJ
014_LSB- 2A_20200318	SW8270D	99-09-2	3-Nitroaniline	UJ
014_LSB- 2A_20200318	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	J
015_LSB- 2B_20200318	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 22 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
015_LSB- 2B_20200318	E537M	335-67-1	Perfluorooctanoic Acid	U (0.521)
015_LSB- 2B_20200318	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
015_LSB- 2B_20200318	SW8260C	107-02-8	Acrolein	UJ
015_LSB- 2B_20200318	SW8260C	108-05-4	Vinyl Acetate	UJ
015_LSB- 2B_20200318	SW8260C	110-75-8	2-Chloroethyl Vinyl Ether	UJ
015_LSB- 2B_20200318	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
015_LSB- 2B_20200318	SW8260C	594-20-7	2,2-Dichloropropane	UJ
015_LSB- 2B_20200318	SW8260C	64-17-5	Ethanol	UJ
015_LSB- 2B_20200318	SW8260C	67-64-1	Acetone	UJ
015_LSB- 2B_20200318	SW8260C	74-87-3	Chloromethane	UJ
015_LSB- 2B_20200318	SW8260C	75-01-4	Vinyl Chloride	UJ
015_LSB- 2B_20200318	SW8260C	75-15-0	Carbon Disulfide	UJ
015_LSB- 2B_20200318	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
015_LSB- 2B_20200318	SW8270D	100-01-6	4-Nitroaniline	UJ
015_LSB- 2B_20200318	SW8270D	100-02-7	4-Nitrophenol	UJ
015_LSB- 2B_20200318	SW8270D	100-52-7	Benzaldehyde	UJ
015_LSB- 2B_20200318	SW8270D	110-86-1	Pyridine	UJ
015_LSB- 2B_20200318	SW8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
015_LSB- 2B_20200318	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
015_LSB- 2B_20200318	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 23 of 33

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
015_LSB- 2B_20200318	SW8270D	193-39-5	Indeno(1,2,3-c,d)Pyrene	UJ
015_LSB- 2B_20200318	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
015_LSB- 2B_20200318	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
015_LSB- 2B_20200318	SW8270D	58-90-2	2,3,4,6-Tetrachlorophenol	UJ
015_LSB- 2B_20200318	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
015_LSB- 2B_20200318	SW8270D	65-85-0	Benzoic Acid	UJ
015_LSB- 2B_20200318	SW8270D	85-68-7	Benzyl Butyl Phthalate	UJ
015_LSB- 2B_20200318	SW8270D	88-74-4	2-Nitroaniline	UJ
015_LSB- 2B_20200318	SW8270D	88-75-5	2-Nitrophenol	UJ
015_LSB- 2B_20200318	SW8270D	92-87-5	Benzidine	UJ
015_LSB- 2B_20200318	SW8270D	99-09-2	3-Nitroaniline	UJ
016_FB-1_20200318	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	U (2)
016_FB-1_20200318	E537M	2706-90-3	Perfluoropentanoic Acid	U (2)
016_FB-1_20200318	E537M	375-22-4	Perfluorobutanoic acid	U (2.68)
017_EB-2_20200318	E537M	2706-90-3	Perfluoropentanoic Acid	U (2)
017_EB-2_20200318	E537M	375-22-4	Perfluorobutanoic acid	U (2.82)

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The section below describes the major deficiencies that were identified.

VOCs by SW-846 Method 8260C

<u>20C0787</u>

The continuing calibration verification (CCV) analyzed on 2/17/2020 at 19:56 exhibited a response factor (RF) below the control limit for bromoform (0.0828338). The associated results in sample

001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, 005_LSB-5B_20200317, 006_LSB-4A_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "R".

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C

20C0787

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) for batch BC01322 exhibited a percent recovery below the lower control limit (LCL) for acrolein (4.76%, 4.84%). The associated results in sample 001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, 005_LSB-5B_20200317, 006_LSB-4A_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BC01324 exhibited a percent recovery below the LCL for acrolein (4.25%, 4.53%). The associated results in sample 007_LSB-4B_20200317 are qualified as "UJ" based on potential low bias.

The CCV analyzed on 2/17/2020 at 19:56 exhibited percent differences (%Ds) above the control limit for 1,1,1,2-tetrachloroethane (22.3%), 2-butanone (-26.7%), 2-chloroethylvinyl ether (-21.5%), acetone (-20.7%), acrolein (-59.6%), carbon disulfide (-20.1%), chloromethane (-28.6%), dichlorodifluoromethane (-51.2%), and vinyl chloride (-20.6%). The associated results in sample 007_LSB-4B_20200317 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/17/2020 at 19:56 exhibited %Ds above the control limit for 1,1,1,2-tetrachloroethane (21.1%), 2-chloroethylvinyl ether (-21.3%), acetone (-26.7%), acrolein (-33.1%), dichlorodifluoromethane (-37.7%), and tert-butyl alcohol (-28.3%). The associated results in sample 001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, 005_LSB-5B_20200317, 006_LSB-4A_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "J" or "UJ" based on potential indeterminate bias.

<u>20C0847</u>

The CCV analyzed on 2/17/2020 at 19:56 exhibited %Ds above the control limit for 1,2,4-trichlorobenzene (-23.3%), 2,2-dichloropropane (-28.9%), 2-chloroethylvinyl ether (-30.9%), acetone (-23.2%), acrolein (-38.1%), carbon disulfide (-25.7%), chloromethane (-30.1%), dichlorodifluoromethane (-54.5%), ethanol (-20.5%), vinyl acetate (20.6%), and vinyl chloride (-23.3%). The associated results in sample 012_LSB-1A_20200318, 013_LSB-1B_20200318, 014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "J" or "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM

<u>20C0787</u>

The CCV analyzed on 2/5/2020 at 15:02 exhibited %Ds above the control limit for 4,6-dinitro-2methylphenol (24.2%), benzaldehyde (-35%), bis(2-chloroisopropyl)ether (49.1%), bis(2ethylhexyl)phthalate (26.5%), di-n-octyl phthalate (42%), hexachlorocyclopentadiene (-20.3%), and pentachlorophenol (-39%). The associated results in sample 001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, and 005_LSB-5B_20200317 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 2/9/2020 at 10:54 exhibited %Ds above the control limit for 1,2diphenylhydrazine (-24.4%), 2,4-dinitrophenol (91.1%), 2,4-dinitrotoluene (48.7%), 2,6dinitrotoluene (42.4%), 4,6-dinitro-2-methylphenol (36%), benzaldehyde (-44.1%), benzidine (-36.8%), bis(2-chloroethoxy)methane (-23.1%), hexachlorocyclopentadiene (-50.8%), nnitrosodimethylamine (-23%), n-nitrosodiphenylamine (-22.5%), and pyridine (-28.2%). The associated results in sample 006_LSB-4A_20200317, 007_LSB-4B_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "UJ" based on potential indeterminate bias.

<u>20C0847</u>

The LCS/LCSD for batch BC01279 exhibited a percent recovery below the LCL for benzoic acid (19.9%, 19.1%). The associated results in sample 012_LSB-1A_20200318, 013_LSB-1B_20200318, 014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BC01279 exhibited a RPD above the control limit for benzaldehyde (62.6%). The associated results in sample 012_LSB-1A_20200318, 013_LSB-1B_20200318,

014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/12/2020 at 00:54 exhibited %Ds above the control limit for 2,3,4,6-tetrachlorophenol (21.3%), 2,4-dinitrophenol (98.6%), 2,4-dinitrotoluene (45.8%), 2,6-dinitrotoluene (39.3%), 2-nitroaniline (38.7%), 2-nitrophenol (31.5%), 3-nitroaniline (25.1%), 4,6-dinitro-2-methylphenol (72.6%), 4-nitroaniline (26.2%), 4-nitrophenol (26.2%), benzaldehyde (-33.4%), benzidine (-40.3%), benzoic acid (66.6%), benzyl butyl phthalate (36.9%), bis(2-ethylhexyl)phthalate (41.1%), di-n-octyl phthalate (71.3%), indeno(1,2,3-cd)pyrene (22%), and pyridine (-20.9%). The associated results in sample 012_LSB-1A_20200318, 013_LSB-1B_20200318, 014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "J" or "UJ" based on potential indeterminate bias.

PFAS by USEPA Method 537M

<u>20C0787</u>

The method blank (MB) for batch BC01106-BLK1 exhibited detections of perfluoro-n-butanoic acid (PFBA) (2.65 ug/L), perfluorooctanoic acid (PFOA) (0.545 ug/L), and perfluoropentanoic acid (PFPeA) (0.864 ug/L). The associated results in sample 010_EB-1_20200317 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The CCV analyzed on Y0C2324-CCV1 exhibited %Ds above the control limit for 1h,1h,2h,2hperfluorodecanesulfonic acid (8:2 FTS) (60.8%) and 1h,1h,2h,2h-perfluorooctanesulfonic acid (6:2 FTS) (78.2%). The associated results in sample 001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, 005_LSB-5B_20200317, 006_LSB-4A_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on Y0C2324-CCV3 exhibited %Ds above the control limit for 8:2 FTS (57.1%), 6:2 FTS (73.3%), and N-MeFOSAA (32.2%). The associated results in sample 001_LSB-6A_20200317, 002_LSB-6B_20200317, 003_DUP-1_20200317, 004_LSB-5A_20200317, 005_LSB-5B_20200317, 006_LSB-4A_20200317, 008_LSB-3A_20200317, and 009_LSB-3B_20200317 are qualified as "UJ" based on potential indeterminate bias.

<u>20C0847</u>

The field blank (FB) (017_EB-2_20200318) exhibited a detection of perfluorooctanesulfonic acid (PFOS) (0.480 ng/l). The associated results in sample 014_LSB-2A_20200318 and 015_LSB-2B_20200318 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch BC01269-BLK1 exhibited detections of N-MeFOSAA (0.542 ng/l), PFPeA (0.876 ng/l), and perfluorobutanoic acid (PFBA) (2.84 ng/l). The associated results in sample 016_FB-1_20200318 and 017_EB-2_20200318 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The sample 013_LSB-1B_20200318 exhibited a percent recovery below the LCL for the surrogate perfluoro-1-[13c8]octanesulfonamide (M8FOSA) (9.77%). The associated results are qualified as "UJ" based on potential low bias.

The sample 014_LSB-2A_20200318 exhibited a percent recovery below the LCL for the surrogate m8fosa (9.77%). The associated results are qualified as "UJ" based on potential low bias.

The CCV analyzed on 3/13/2020 at 17:39 exhibited %Ds above the control limit for 8:2 FTS (61.6%) and 6:2 FTS (76.1%). The associated results in sample 013_LSB-1B_20200318, 014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/13/2020 at 17:39 exhibited %Ds above the control limit for 8:2 FTS (62.5%) and 6:2 FTS (79.1%). The associated results in sample 013_LSB-1B_20200318, 014_LSB-2A_20200318, and 015_LSB-2B_20200318 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/13/2020 at 17:39 exhibited %Ds above the control limit for 8:2 FTS (66.3%), 6:2 FTS (93.8%), and N-MeFOSAA (39.5%). The associated results in sample 012_LSB-1A_20200318 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/13/2020 at 17:39 exhibited %Ds above the control limit for 8:2 FTS (62.2%), 6:2 FTS (88.6%), and N-MeFOSAA (33.9%). The associated results in sample 012_LSB-1A_20200318 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B

20C0787

The sample 004_LSB-5A_20200317 exhibited a percent recovery below the LCL for the surrogate tetrachloro-m-xylene (28.3%). The associated results are qualified as "J" or "UJ" based on potential low bias.

Metals by SW-846 Method 6020B

<u>20C0787</u>

The matrix spike (MS) for batch 005_LSB-5B_20200317 exhibited percent recoveries below the LCL for sodium (-0.958%), antimony (27.2%), and beryllium (66%). The associated results in sample are qualified as "J" or "UJ" based on potential low bias.

The serial dilution performed on sample 005_LSB-5B_20200317 exhibited percent recoveries above the upper control limit (UCL) for aluminum (11.8%), barium (25.1%), calcium (11.2%), chromium (18.4%), cobalt (22.2%), copper (13.7%), iron (11.5%), lead (18.4%), magnesium (10.7%), manganese (21.7%), nickel (30.9%), potassium (14.6%), sodium (15.5%), vanadium (16.8%), and zinc (29.1%). The associated results are qualified as "J" based on potential indeterminate bias.

Cyanide by SW-846 Method 9012B

<u>20C0787</u>

The MS for batch 005_LSB-5B_20200317 exhibited a percent recovery below the LCL for cyanide, total (60.1%). The associated results in sample 005_LSB-5B_20200317 are qualified as "UJ" based on potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C

<u>20C0787</u>

The matrix spike/matrix spike duplicate (MS/MSD) for batch 005_LSB-5B_20200317 exhibited a percent recovery below the LCL for acrolein (4.29%, 3.59%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The LCSD for batch BC01322 exhibited a percent recovery above the UCL for bromodichloromethane (125%). The associated results are non-detections. No qualification is necessary.

The LCS for batch BC01324 exhibited percent recoveries above the UCL for 1,1,1,2-tetrachloroethane (131%) and bromodichloromethane (127%). The associated results are non-detections. No qualification is necessary.

<u>20C0847</u>

The MB for batch BC01326-BLK2 exhibited a detection of methylene chloride (0.0057 mg/kg). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch BC01326 exhibited a percent recovery above the UCL for bromodichloromethane (127%, 126%). The associated results are non-detections. No qualification is necessary.

The LCSD for batch BC01326 exhibited a percent recovery above the UCL for 1,1,1,2-tetrachloroethane (130%). The associated results are non-detections. No qualification is necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM

<u>20C0787</u>

The MS/MSD for batch 005_LSB-5B_20200317 exhibited a RPD above the control limit for benzoic acid (30.5%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

<u>20C0847</u>

The sample 012_LSB-1A_20200318 exhibited a percent recovery below the LCL for the surrogate phenol-d5 (5%). The other 012_LSB-1A_20200318 surrogates were recovered within the control limits. No qualification is necessary.

The LCS for batch BC01279 exhibited percent recoveries above the UCL for 4,6-dinitro-2methylphenol (146%) and di-n-octyl phthalate (142%). The associated results are non-detections. No qualification is necessary.

PFAS by USEPA Method 537M

20C0787

The sample 001_LSB-6A_20200317 exhibited a percent recovery above the UCL for the surrogate m2-6:2 FTS (481%). The associated results are non-detections. No qualification is necessary.

The sample 002_LSB-6B_20200317 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (607%) and m2-8:2 FTS (164%). The associated results are non-detections. No qualification is necessary.

The sample 003_DUP-1_20200317 exhibited a percent recovery above the UCL for the surrogate m2-6:2 FTS (534%). The associated results are non-detections. No qualification is necessary.

The sample 004_LSB-5A_20200317 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (609%) and m2-8:2 FTS (657%). The associated results are non-detections. No qualification is necessary.

The sample 005_LSB-5B_20200317 exhibited a percent recovery above the UCL for the surrogate m2-6:2 FTS (588%). The associated results are non-detections. No qualification is necessary.

The sample 006_LSB-4A_20200317 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (589%) and m2-8:2 FTS (152%). The associated results are non-detections. No qualification is necessary.

The sample 007_LSB-4B_20200317 exhibited a percent recovery above the UCL for the surrogate m2-6:2 FTS (600%). The associated results are non-detections. No qualification is necessary.

The sample 008_LSB-3A_20200317 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (572%) and m2-8:2 FTS (520%). The associated results are non-detections. No qualification is necessary.

The sample 009_LSB-3B_20200317 exhibited a percent recovery above the UCL for the surrogate m2-6:2 FTS (614%). The associated results are non-detections. No qualification is necessary.

<u>20C0847</u>

The MB for batch BC01269-BLK1 exhibited a detection of n-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA (0.664 ng/l). The associated results are non-detections. No qualification is necessary.

The sample 013_LSB-1B_20200318 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (568%) and m2-8:2 FTS (181%). The associated results are non-detections. No qualification is necessary.

The sample 014_LSB-2A_20200318 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (568%) and m2-8:2 FTS (181%). The associated results are non-detections. No qualification is necessary.

The sample 015_LSB-2B_20200318 exhibited percent recoveries above the UCL for the surrogates m2-6:2 FTS (566%) and m2-8:2 FTS (178%). The associated results are non-detections. No qualification is necessary.

The sample 012_LSB-1A_20200318 exhibited percent recoveries above the UCL for the surrogates d3-N-MeFOSAA (152%), m2-6:2 FTS (754%), and m2-8:2 FTS (940%). The associated results are non-detections. No qualification is necessary.

Metals by SW-846 Method 6020B

<u>20C0787</u>

The MB for batch BC01068-BLK1 exhibited a detection of calcium (6.36 mg/kg). The associated results are >10X the contamination. No qualification is necessary.

The MS/MSD for batch 005_LSB-5B_20200317 exhibited percent recoveries below the LCL for aluminum (-353%), calcium (-1360%), magnesium (-591%), manganese (18.4%), and potassium (-613%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

20C0847

The FB (016_FB-1_20200318) exhibited a detection of potassium (0.0913 mg/l). The associated results are >10X the contamination. No qualification is necessary.

Mercury by SW-846 Method 7473

20C0847

The FB (016_FB-1_20200318) exhibited a detection of mercury (0.00029 mg/l). The associated results are >10X the contamination. No qualification is necessary.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than $\pm 2X$ the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50% for soil. The following field duplicate and parent sample pairs were compared to the precision criteria:

• 002_LSB-6B_20200317 and 003_DUP-1_20200317

The field duplicate and parent sample (002_LSB-6B_20200317 and 003_DUP-1_20200317) exhibited absolute differences above the RL for aluminum (2980 mg/kg), barium (17.8 mg/kg), calcium (590 mg/kg), chromium, total (5 mg/kg), chromium, trivalent (5 mg/kg), cobalt (0.5 mg/kg), iron (22100 mg/kg), magnesium (1390 mg/kg), manganese (391 mg/kg), nickel (8 mg/kg), potassium (1327 mg/kg), sodium (390 mg/kg), vanadium (7.9 mg/kg), and zinc (5.8 mg/kg). The associated results are qualified as "J" based on potential indeterminate bias.

The field duplicate and parent sample (002_LSB-6B_20200317 and 003_DUP-1_20200317) exhibited a RPD above the control limit for PFOS (146%). The associated results are qualified as "J" or "UJ" based on potential indeterminate bias.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 99.78%.

Signed:

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, NY March 2020 Soil Samples Langan Project No.: 100681201 March 30, 2020 Page 33 of 33

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: April 1, 2020

Re: Data Usability Summary Report For 1921 Atlantic Avenue March 2020 Groundwater Samples Langan Project No.: 100681201

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in March 2020 by Langan Engineering and Environmental Services ("Langan") at the 1921 Atlantic Avenue site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), 1,4-dioxane, perand polyfluoroalkyl substances (PFAS), herbicides, polychlorinated biphenyls (PCBs), pesticides, total and dissolved metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- 1,4-Dioxane by SW-846 Method 8270D SIM
- PFAS by USEPA Method 537M
- Herbicides by SW-846 Method 8151A
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D and 6020B
- Mercury by SW-846 Method 7473
- Cyanide by Standard Method 4500 CN C/E
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
20C0964	20C0964-01	029_LMW-1_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-02	030_LMW-2_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-03	031_MW-002_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-04	032_MW-003_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-05	033_MW-004_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-06	034_DUP-1_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-07	035_FB-2_20200322	3/22/2020	VOCs, SVOCs, 1,4-Dioxane, PFAS, Herbicides, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
20C0964	20C0964-08	036_TB-3_20200322	3/22/2020	VOCs
20C0964	20C0964-09	037_EB-3_20200322	3/22/2020	PFAS

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Validating Chlorinated Herbicides" (December 2016)

LANGAN

2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, isotope dilution recoveries, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, field blank, trip blank, and equipment blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
029_LMW- 1_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
029_LMW- 1_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (10.5)
029_LMW- 1_20200322	E537M	1763-23-1	Perfluorooctanesulfonic acid	U (4.63)
029_LMW- 1_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
029_LMW- 1_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	J
029_LMW- 1_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
029_LMW- 1_20200322	SW8260C	67-64-1	Acetone	U (2.22)
029_LMW- 1_20200322	SW8260C	107-02-8	Acrolein	R
029_LMW- 1_20200322	SW8260C	110-82-7	Cyclohexane	UJ
029_LMW- 1_20200322	SW8260C	75-65-0	Tert-Butyl Alcohol	J
029_LMW- 1_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
029_LMW- 1_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
029_LMW- 1_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
029_LMW- 1_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
029_LMW- 1_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
029_LMW- 1_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
029_LMW- 1_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
029_LMW- 1_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
029_LMW- 1_20200322	SW8270D	105-60-2	Caprolactam	J
029_LMW- 1_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
029_LMW- 1_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
029_LMW- 1_20200322	SW9010	57-12-5	Cyanide	UJ
030_LMW- 2_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
030_LMW- 2_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (13.5)
030_LMW- 2_20200322	E537M	307-55-1	Perfluorododecanoic Acid	UJ
030_LMW- 2_20200322	E537M	1763-23-1	Perfluorooctanesulfonic acid	U (3.54)
030_LMW- 2_20200322	E537M	376-06-7	Perfluorotetradecanoic Acid	UJ
030_LMW- 2_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
030_LMW- 2_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
030_LMW- 2_20200322	SW8081B	72-54-8	4,4'-DDD	UJ
030_LMW- 2_20200322	SW8081B	72-55-9	4,4'-DDE	UJ
030_LMW- 2_20200322	SW8081B	50-29-3	4,4'-DDT	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
030_LMW- 2_20200322	SW8081B	309-00-2	Aldrin	UJ
030_LMW- 2_20200322	SW8081B	319-84-6	Alpha BHC (Alpha Hexachlorocyclohexane)	UJ
030_LMW- 2_20200322	SW8081B	5103-71-9	Alpha Chlordane	UJ
030_LMW- 2_20200322	SW8081B	959-98-8	Alpha Endosulfan	UJ
030_LMW- 2_20200322	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
030_LMW- 2_20200322	SW8081B	33213-65-9	Beta Endosulfan	UJ
030_LMW- 2_20200322	SW8081B	57-74-9	Chlordane (alpha and gamma)	UJ
030_LMW- 2_20200322	SW8081B	319-86-8	Delta Bhc (Delta Hexachlorocyclohexane)	UJ
030_LMW- 2_20200322	SW8081B	60-57-1	Dieldrin	UJ
030_LMW- 2_20200322	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
030_LMW- 2_20200322	SW8081B	72-20-8	Endrin	UJ
030_LMW- 2_20200322	SW8081B	7421-93-4	Endrin Aldehyde	UJ
030_LMW- 2_20200322	SW8081B	53494-70-5	Endrin Ketone	UJ
030_LMW- 2_20200322	SW8081B	58-89-9	Gamma Bhc (Lindane)	UJ
030_LMW- 2_20200322	SW8081B	5566-34-7	Gamma-Chlordane	UJ
030_LMW- 2_20200322	SW8081B	76-44-8	Heptachlor	UJ
030_LMW- 2_20200322	SW8081B	1024-57-3	Heptachlor Epoxide	UJ
030_LMW- 2_20200322	SW8081B	72-43-5	Methoxychlor	UJ
030_LMW- 2_20200322	SW8081B	8001-35-2	Toxaphene	UJ
030_LMW- 2_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
030_LMW- 2_20200322	SW8260C	67-64-1	Acetone	U (2.00)
030_LMW- 2_20200322	SW8260C	107-02-8	Acrolein	R
030_LMW- 2_20200322	SW8260C	110-82-7	Cyclohexane	UJ
030_LMW- 2_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
030_LMW- 2_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
030_LMW- 2_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
030_LMW- 2_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
030_LMW- 2_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
030_LMW- 2_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
030_LMW- 2_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
030_LMW- 2_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
030_LMW- 2_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
030_LMW- 2_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
030_LMW- 2_20200322	SW9010	57-12-5	Cyanide	UJ
031_MW- 002_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
031_MW- 002_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (11.2)
031_MW- 002_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
031_MW- 002_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
031_MW- 002_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
031_MW- 002_20200322	SW8260C	107-02-8	Acrolein	R

Data Usability Summary Report For 1921 Atlantic Avenue March 2020 Groundwater Samples Langan Project No.: 100681201 April 1, 2020 Page 8 of 17

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
031_MW- 002_20200322	SW8260C	110-82-7	Cyclohexane	UJ
031_MW- 002_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
031_MW- 002_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
031_MW- 002_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
031_MW- 002_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
031_MW- 002_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
031_MW- 002_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
031_MW- 002_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
031_MW- 002_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
031_MW- 002_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
031_MW- 002_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
031_MW- 002_20200322	SW9010	57-12-5	Cyanide	J
032_MW- 003_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	J
032_MW- 003_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (13.3)
032_MW- 003_20200322	E537M	1763-23-1	Perfluorooctanesulfonic acid	U (7.99)
032_MW- 003_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
032_MW- 003_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
032_MW- 003_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
032_MW- 003_20200322	SW8260C	107-02-8	Acrolein	R
032_MW- 003_20200322	SW8260C	110-82-7	Cyclohexane	UJ

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
032_MW- 003_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
032_MW- 003_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
032_MW- 003_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
032_MW- 003_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
032_MW- 003_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
032_MW- 003_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
032_MW- 003_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
032_MW- 003_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
032_MW- 003_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
032_MW- 003_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
032_MW- 003_20200322	SW8270DSIM	50-32-8	Benzo(a)Pyrene	R
032_MW- 003_20200322	SW8270DSIM	205-99-2	Benzo(b)Fluoranthene	R
032_MW- 003_20200322	SW8270DSIM	191-24-2	Benzo(g,h,i)Perylene	R
032_MW- 003_20200322	SW8270DSIM	207-08-9	Benzo(k)Fluoranthene	R
032_MW- 003_20200322	SW8270DSIM	53-70-3	Dibenz(a,h)Anthracene	R
032_MW- 003_20200322	SW8270DSIM	193-39-5	Indeno(1,2,3-c,d)Pyrene	R
032_MW- 003_20200322	SW9010	57-12-5	Cyanide	UJ
033_MW- 004_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
033_MW- 004_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (17.4)
033_MW- 004_20200322	E537M	1763-23-1	Perfluorooctanesulfonic acid	U (2.07)
Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
-------------------------	----------	------------	--	------------------------
033_MW- 004_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
033_MW- 004_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	J
033_MW- 004_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
033_MW- 004_20200322	SW8260C	107-02-8	Acrolein	R
033_MW- 004_20200322	SW8260C	110-82-7	Cyclohexane	UJ
033_MW- 004_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
033_MW- 004_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
033_MW- 004_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
033_MW- 004_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
033_MW- 004_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
033_MW- 004_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
033_MW- 004_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
033_MW- 004_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
033_MW- 004_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
033_MW- 004_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
033_MW- 004_20200322	SW9010	57-12-5	Cyanide	UJ
034_DUP- 1_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
034_DUP- 1_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (11.9)
034_DUP- 1_20200322	E537M	1763-23-1	Perfluorooctanesulfonic acid	U (4.61)
034_DUP- 1_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ

LANGAN

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
034_DUP- 1_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	J
034_DUP- 1_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
034_DUP- 1_20200322	SW8260C	67-64-1	Acetone	U (2.52)
034_DUP- 1_20200322	SW8260C	107-02-8	Acrolein	R
034_DUP- 1_20200322	SW8260C	110-82-7	Cyclohexane	UJ
034_DUP- 1_20200322	SW8260C	75-65-0	Tert-Butyl Alcohol	J
034_DUP- 1_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
034_DUP- 1_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
034_DUP- 1_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
034_DUP- 1_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
034_DUP- 1_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
034_DUP- 1_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
034_DUP- 1_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
034_DUP- 1_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
034_DUP- 1_20200322	SW8270D	105-60-2	Caprolactam	J
034_DUP- 1_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
034_DUP- 1_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
034_DUP- 1_20200322	SW9010	57-12-5	Cyanide	UJ
035_FB-2_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
035_FB-2_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (2.60)
035_FB-2_20200322	E537M	2706-90-3	Perfluoropentanoic Acid	U (2.00)

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
035_FB-2_20200322	E537M	376-06-7	Perfluorotetradecanoic Acid	UJ
035_FB-2_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
035_FB-2_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ
035_FB-2_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
035_FB-2_20200322	SW8260C	107-02-8	Acrolein	R
035_FB-2_20200322	SW8260C	110-82-7	Cyclohexane	UJ
035_FB-2_20200322	SW8270D	121-14-2	2,4-Dinitrotoluene	UJ
035_FB-2_20200322	SW8270D	606-20-2	2,6-Dinitrotoluene	UJ
035_FB-2_20200322	SW8270D	91-94-1	3,3'-Dichlorobenzidine	UJ
035_FB-2_20200322	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
035_FB-2_20200322	SW8270D	62-53-3	Aniline (Phenylamine, Aminobenzene)	UJ
035_FB-2_20200322	SW8270D	100-52-7	Benzaldehyde	UJ
035_FB-2_20200322	SW8270D	65-85-0	Benzoic Acid	UJ
035_FB-2_20200322	SW8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
035_FB-2_20200322	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
035_FB-2_20200322	SW8270D	77-47-4	Hexachlorocyclopentadiene	UJ
035_FB-2_20200322	SW9010	57-12-5	Cyanide	UJ
036_TB-3_20200322	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
036_TB-3_20200322	SW8260C	107-02-8	Acrolein	R
036_TB-3_20200322	SW8260C	110-82-7	Cyclohexane	UJ
037_EB-3_20200322	E537M	2355-31-9	N-methyl perfluorooctane- sulfonamidoacetic acid	UJ
037_EB-3_20200322	E537M	375-22-4	Perfluorobutanoic acid	U (2.47)
037_EB-3_20200322	E537M	2706-90-3	Perfluoropentanoic Acid	U (2.00)
037_EB-3_20200322	E537M	39108-34-4	Sodium 1H,1H,2H,2H- Perfluorodecane Sulfonate (8:2)	UJ
037_EB-3_20200322	E537M	27619-97-2	Sodium 1H,1H,2H,2H- Perfluorooctane Sulfonate (6:2)	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The section below describes the major deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The laboratory control sample and duplicate (LCS/LCSD) for batch BC01400 exhibited a percent recovery below 10% for acrolein (6.21%, 5.98%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, 035_FB-2_20200322, and 036_TB-3_20200322 are rejected.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The sample 032_MW-003_20200322 exhibited a percent recovery below 20% for the internal standard perylene-d12 (0%). The associated non-detect sample results for compounds quantitated by perylene-d12 are rejected based on potential loss of instrument sensitivity.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The field blank (035_FB-2_20200322) exhibited a detection of acetone (1.87 ug/L). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, and 034_DUP-1_20200322 are qualified as "U" at the higher of the sample concentration and the reporting limit based on potential blank contamination.

The field duplicate and parent sample (029_LMW-1_20200322 and 034_DUP-1_20200322) exhibited an absolute difference above the RL for tert-butyl alcohol (1.99 ug/L). The associated results are qualified as "J" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 3/23/2020 at 11:28 exhibited percent drifts (%Ds) above the control limit for 1,4-dioxane (20.8%) and cyclohexane (180%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, 035_FB-2_20200322, and 036_TB-3_20200322 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The LCS for batch BC01343 exhibited a percent recovery below the lower control limit (LCL) for benzoic acid (27.5%). The associated results in samples 029_LMW-1_20200322, 030_LMW-

2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, and 035_FB-2_20200322 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BC01343 exhibited a relative percent difference (RPD) above the control limit for aniline (36.6%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, and 035_FB-2_20200322 are qualified as "UJ" based on potential indeterminate bias.

The field duplicate and parent sample (029_LMW-1_20200322 and 034_DUP-1_20200322) exhibited an absolute difference above the RL for caprolactam (9.29 ug/L). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 3/24/2020 at 09:09 exhibited %Ds above the control limit for 2,4dinitrotoluene (27.0%), 2,6-dinitrotoluene (25.6%), 3,3-dichlorobenzidine (21.0%), 4,6-dinitro-2methylphenol (30.6%), benzaldehyde (-38.7%), bis(2-chloroisopropyl)ether (46.1%), di-n-octyl phthalate (43.8%), and hexachlorocyclopentadiene (-26.3%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, and 035_FB-2_20200322 are qualified as "UJ" based on potential indeterminate bias.

PFAS by USEPA Method 537M:

The method blank (MB) for batch BC01345 exhibited a detection of perfluorooctanesulfonic acid (0.991 ng/L). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 032_MW-003_20200322, 033_MW-004_20200322, and 034_DUP-1_20200322 are qualified as "U" at the sample concentration based on potential blank contamination.

The MB for batch BC01345 exhibited a detection of perfluoropentanoic acid (0.819 ng/L). The associated results in samples 035_FB-2_20200322 and 037_EB-3_20200322 are qualified as "U" at the reporting limit based on potential blank contamination.

The MB for batch BC01345 exhibited a detection of perfluorobutanoic acid (2.60 ng/L). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, 035_FB-2_20200322, and 037_EB-3_20200322 are qualified as "U" at the sample concentration based on potential blank contamination.

LANGAN

The sample 030_LMW-2_20200322 exhibited percent recoveries below the LCL for the standard isotopes perfluoro-n-[1,2-13c2]dodecanoic acid (14.6%) and 13c2-perfluorotetradecanoic acid (5.45%). The associated results are qualified as "UJ" based on potential low bias.

The sample 035_FB-2_20200322 exhibited a percent recovery below the LCL for the standard isotope 13c2-perfluorotetradecanoic acid (6.87%). The associated results are qualified as "UJ" based on potential low bias.

The sample 029_LMW-1_20200322 exhibited a percent recovery above the upper control limit UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (426%). The associated results are qualified as "J" based on potential high bias.

The sample 034_DUP-1_20200322 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (435%). The associated results are qualified as "J" based on potential high bias.

The CCV analyzed on 3/24/2020 at 16:37 exhibited a %D above the control limit for 1h,1h,2h,2hperfluorooctanesulfonic acid (94.0%). The associated results in samples 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 035_FB-2_20200322, and 037_EB-3_20200322 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 3/24/2020 at 16:37 exhibited %Ds above the control limit for 1h,1h,2h,2h-perfluorodecanesulfonic acid (68.5%), 1h,1h,2h,2h-perfluorooctanesulfonic acid (94.0%), and n-mefosaa (31.1%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, 035_FB-2_20200322, and 037_EB-3_20200322 are qualified as "J" or "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The sample 030_LMW-2_20200322 exhibited a percent recovery below the LCL for the surrogate decachlorobiphenyl (29.5%). The associated results are qualified as "UJ" based on potential low bias.

Cyanide by Standard Method 4500 CN C/E:

The MS for batch BC01375 exhibited a percent recovery below the LCL for cyanide (47.8%). The associated results in samples 029_LMW-1_20200322, 030_LMW-2_20200322, 031_MW-002_20200322, 032_MW-003_20200322, 033_MW-004_20200322, 034_DUP-1_20200322, and 035_FB-2_20200322 are qualified as "J" or "UJ" based on potential low bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The initial calibration verification analyzed on 3/21/2020 at 21:54 exhibited a %D above the control limit for acrolein (-95.4%). The associated results were previously qualified. No further action is necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The sample 032_MW-003_20200322 exhibited a percent recovery above the UCL for the surrogate terphenyl-d14 (108%). The other two base/neutral extractable surrogates were recovered within the control limits. No qualification is necessary.

PFAS by USEPA Method 537M:

The field blank (035_FB-2_20200322) exhibited a detection of perfluorooctanoic acid (0.747 ng/L). The associated results are >10X the contamination. No qualification is necessary.

The sample 031_MW-002_20200322 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (200%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (188%). The associated results are non-detections. No qualification is necessary.

The sample 032_MW-003_20200322 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (153%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (166%). The associated results are non-detections. No qualification is necessary.

The sample 033_MW-004_20200322 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (161%). The associated results are non-detections. No qualification is necessary.

The sample 035_FB-2_20200322 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (161%) and sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (164%). The associated results are non-detections. No qualification is necessary.

The sample 037_EB-3_20200322 exhibited percent recoveries above the UCL for the standard isotopes sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-octane sulfonate (155%) and sodium

1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (175%). The associated results are non-detections. No qualification is necessary.

The sample 029_LMW-1_20200322 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (397%). The associated results are non-detections. No qualification is necessary.

The sample 034_DUP-1_20200322 exhibited a percent recovery above the UCL for the standard isotope sodium 1h,1h,2h,2h-perfluoro-1-[1,2-13c2]-decane sulfonate (462%). The associated results are non-detections. No qualification is necessary.

Metals by SW-846 Method 6010D and 6020B:

The MB for batch BC01362 exhibited a detection of total calcium (0.170 mg/L). The associated results are >10X the contamination. No qualification is necessary.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than $\pm 1X$ the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30%. The following field duplicate and parent sample pairs were compared to the precision criteria:

• 029_LMW-1_20200322 and 034_DUP-1_20200322: tert-butyl alcohol, caprolactam

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 99.3%.

Signed:

Emily Strake, CEP Senior Project Chemist

LANGAN

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Allyson Kritzer, Langan Senior Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: March 26, 2020

Re: Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, New York March 2020 Air Samples Langan Project No.: 100681201

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of air samples collected in March 2020 by Langan Engineering and Environmental Services ("Langan") at the 1921 Atlantic Avenue site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854 and 12058) for volatile organic compounds (VOCs) by the method specified below.

• VOCs by USEPA Method TO-15

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
20C0947	20C0947-01	019_LSV-1	3/20/2020	VOCs
20C0947	20C0947-02	020_DUP-1	3/20/2020	VOCs
20C0947	20C0947-03	021_LSV-2	3/20/2020	VOCs
20C0947	20C0947-04	022_LSV-3	3/20/2020	VOCs
20C0947	20C0947-05	023_LSV-4	3/20/2020	VOCs
20C0947	20C0947-06	024_LSV-5	3/20/2020	VOCs
20C0947	20C0947-07	025_LSV-6	3/20/2020	VOCs
20C0947	20C0947-08	026_LSV-7	3/20/2020	VOCs
20C0947	20C0947-09	027_LSV-8	3/20/2020	VOCs
20C0947	20C0947-10	028_Ambient-1	3/20/2020	VOCs

TABLE 1: SAMPLE SUMMARY

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15" (September 2016, Revision 6), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the method employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, chromatograms, field duplicate sample results, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

LANGAN

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
019_LSV-1	TO15	95-63-6	1,2,4-Trimethylbenzene	J
019_LSV-1	TO15	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	J
019_LSV-1	TO15	591-78-6	2-Hexanone	UJ
019_LSV-1	TO15	622-96-8	4-Ethyltoluene	J
020_DUP-1	TO15	95-63-6	1,2,4-Trimethylbenzene	J
020_DUP-1	TO15	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	J
020_DUP-1	TO15	591-78-6	2-Hexanone	J
020_DUP-1	TO15	622-96-8	4-Ethyltoluene	J
020_DUP-1	TO15	67-64-1	Acetone	J
028_AMBIENT-1	TO15	127-18-4	Tetrachloroethylene (PCE)	J
019_LSV-1	TO15	67-64-1	Acetone	J
019_LSV-1	TO15	71-43-2	Benzene	J
019_LSV-1	TO15	100-44-7	Benzyl Chloride	UJ
019_LSV-1	TO15	75-15-0	Carbon Disulfide	J
019_LSV-1	TO15	75-00-3	Chloroethane	J
019_LSV-1	TO15	100-41-4	Ethylbenzene	J
019_LSV-1	TO15	67-63-0	lsopropanol	J
019_LSV-1	TO15	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
019_LSV-1	TO15	136777-61-2	M-P-Xylene	J
019_LSV-1	TO15	142-82-5	N-Heptane	J
019_LSV-1	TO15	110-54-3	N-Hexane	J
019_LSV-1	TO15	95-47-6	O-Xylene (1,2-Dimethylbenzene)	J
019_LSV-1	TO15	100-42-5	Styrene	J
019_LSV-1	TO15	127-18-4	Tetrachloroethylene (PCE)	J
019_LSV-1	TO15	108-88-3	Toluene	J
020_DUP-1	TO15	71-43-2	Benzene	J
020_DUP-1	TO15	100-44-7	Benzyl Chloride	UJ
020_DUP-1	TO15	75-15-0	Carbon Disulfide	J

Data Usability Summary Report For 1921 Atlantic Avenue Brooklyn, New York March 2020 Air Samples Langan Project No.: 100681201 March 26, 2020 Page 4 of 6

Client Sample ID	Analysis	CAS #	Analyte	Validator Qualifier
020_DUP-1	TO15	75-00-3	Chloroethane	J
020_DUP-1	TO15	100-41-4	Ethylbenzene	J
020_DUP-1	TO15	67-63-0	Isopropanol	J
020_DUP-1	TO15	78-93-3	Methyl Ethyl Ketone (2- Butanone)	J
020_DUP-1	TO15	136777-61-2	M-P-Xylene	J
020_DUP-1	TO15	142-82-5	N-Heptane	J
020_DUP-1	TO15	110-54-3	N-Hexane	J
020_DUP-1	TO15	95-47-6	O-Xylene (1,2-Dimethylbenzene)	J
020_DUP-1	TO15	100-42-5	Styrene	J
020_DUP-1	TO15	127-18-4	Tetrachloroethylene (PCE)	J
020_DUP-1	TO15	108-88-3	Toluene	J
021_LSV-2	TO15	100-44-7	Benzyl Chloride	UJ
022_LSV-3	TO15	100-44-7	Benzyl Chloride	UJ
023_LSV-4	TO15	100-44-7	Benzyl Chloride	UJ
024_LSV-5	TO15	100-44-7	Benzyl Chloride	UJ
025_LSV-6	TO15	100-44-7	Benzyl Chloride	UJ
026_LSV-7	TO15	100-44-7	Benzyl Chloride	UJ
027_LSV-8	TO15	100-44-7	Benzyl Chloride	UJ
028_AMBIENT-1	TO15	100-44-7	Benzyl Chloride	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by USEPA Method TO-15:

20C0947

The laboratory duplicate and parent sample (028_Ambient-1) exhibited a relative percent difference (RPD) above the control limit for tetrachloroethylene (26.7%). The associated results are qualified as "J" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 3/20/2020 at 02:45 exhibited a percent difference (%D) above the control limit for benzyl chloride (32.1%). The associated results in sample 019_LSV-1, 020_DUP-1, 021_LSV-2, 022_LSV-3, 023_LSV-4, 024_LSV-5, 025_LSV-6, 026_LSV-7, 027_LSV-8, 028_AMBIENT-1 are qualified as "UJ" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The secton below describes the other deficiencies that were identified.

The laboratory noted the final vacuum for samples 022_LSV-3, 023_LSV-4, and 025_LSV-6 were recorded as less than -2 inches Hg upon receipt by the laboratory. The time integrated sampling may be affected and no reflect proper sampling over the time period. This information does not require qualification, however it is noted for completeness.

COMMENTS:

One field duplicate and parent sample pair was collected and analyzed for all parameters. For results less than 5X the reporting limit (RL), analytes meet the precision criteria if the absolute difference is less than $\pm 1X$ the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 25% for air. The following field duplicate and parent sample pairs were compared to the precision criteria:

• 019_LSV-1 and 020_DUP-1

The field duplicate and parent sample (019_LSV-1 and 020_DUP-1) exhibited absolute differences above the RL for benzene (30 ug/m³), carbon disulfide (1.21 ug/m³), chloroethane (0.82 ug/m³), and n-hexane (3.6 ug/m³). The field duplicate and parent sample also exhibited RPDs above the control limit for 1,2,4-trimethylbenzene (68%), 1,3,5-trimethylbenzene (58%), 2-hexanone (93%), 4-ethyltoluene (67%), acetone (27%), ethylbenzene (37%), isopropanol (65%), methyl ethyl ketone (29%), m-p-xylene (38%), n-heptane (41%), o-xylene (40%), styrene (39%),

tetrachloroethylene (57%), and toluene (26%). The associated results are qualified as "J" or "UJ" based on potential indeterminate bias.

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified, with the exception of the rejected results. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%. Signed:

Emily Strake, CEP Senior Project Chemist

APPENDIX G

Daily Reports

LANGAN

DAILY STATUS REPORT

		WEATHER	R Snow	Rain		Overcast		Partly Cloudy		Bright Sun	х	
Prepared By: Molly Gu	telius	TEMP.	< 32	32-50	X	50-70		70-85		>85		
Langan Project No: 100681201		ŀ	^{>} roject:	1921 A	\tla	ntic Ave.	D	Date:	03/	16/2020		
NYSDEC BCP Site No: C224279		E	E-Number	E-526			Т	ïme:	6:3	0 – 14:0	0	

Consultant:	PERSONNEL ON SITE:
Langan Engineering, Environmental, Surveying,	Langan: Molly Gutelius (Environmental)
Landscape Architecture and Geology, D.P.C.	AARCO: Tom Seickel, William Cabrom
	Hager Richter: Jose Cambero, Amanda Fabian

Site Activities

- Langan mobilized to the site with AARCO Environmental Services Corp. (AARCO), the environmental drilling contractor, and Hager-Richter Geoscience Inc. (Hager-Richter), the geophysical survey contractor.
- Hager-Richter conducted a geophysical survey throughout the site.
- AARCO used a Geoprobe Sonic drill rig to advance LMW-1 to 80 feet below ground surface (ft bgs). A 2-inch diameter PVC monitoring well (LMW-1) was installed to 80 ft bgs, with a screen from 65- to 80-ft bgs. No impacts were observed during installation of LMW-1.
- AARCO used a Geoprobe Sonic drill rig to advance LMW-2 to 77 ft bgs. AARCO will continue installation of LMW-2 on 17 March 2020. No impacts were observed during installation of LMW-2.

Samples Collected

• None

Community Air Monitoring Program (CAMP)

- Langan implemented the CAMP during soil disturbance. CAMP equipment consisted of a DustTrack II and photoionization detector (PID) at a dedicated location on the downwind perimeter of the site, as well as a personal DataRam (pDR) and photoionization detector (PID) at a work zone monitoring station.
- No VOC or dust concentrations were detected in exceedance of the daily short-term exposure limit (STEL) at the downwind CAMP station.

Problems Encountered

• None

Activities Scheduled for Next Day

• AARCO will continue installation of LMW-2 and begin installation of soil borings.

SITE MAP

Page 2 of 2 \\Langan.com\data\PAR\data2\100681201\Project Data_Discipline\Environmental\Reports\2020-04 - SRIR\Appendix G - Daily Reports\Archive\2020-03-16 Daily Report.docx

DAILY STATUS REPORT

Langan Engineering, Environmental, Surveying,

Landscape Architecture and Geology, D.P.C.

		WEATHER	Snow		Rain	х	Overcast		Partly Cloudy		Bright Sun	
Prepared By: Molly Gu	telius	TEMP.	< 32		32-50	Х	50-70		70-85		>85	
Langan Project No: 100681201		Project:			1921 Atlantic Ave.			D	Date:	03/	17/2020	
NYSDEC BCP Site No:	C224279	E	-Number	:	E-526			Т	ïme:	6:3	0 – 13:30)

Consultant:

PERSONNEL ON SITE:

Langan: Molly Gutelius (Environmental) AARCO: Tom Seickel, William Cabrom

Site Activities

- AARCO installed a 2-inch diameter PVC monitoring well (LMW-2) to 77-feet below ground surface (ft bgs), with a screen from 62- to 77-ft bgs. No impacts were observed during installation of LMW-2.
- AARCO used a Geoprobe Sonic drill rig to advance soil borings LSB-3, LSB-4, and LSB-6 to 20 ft bgs and LSB-5 to 22 ft bgs. Two samples were collected from each boring, one from the observed historic fill layer and the second from the proposed development depth, for the following parameters: target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated biphenyls (PCBs), herbicides, target analyte list (TAL) metals, cyanide, hexavalent chromium, trivalent chromium, per- and polyfluoroalkyl substances (PFAS), and 1,4dioxane. No impacts were observed during installation of soil borings LSB-3, LSB-4, LSB-5, and LSB-6.
- AARCO used a submersible pump to develop LMW-1 and LMW-2; approximately ~15 gallons was purged from each permanent monitoring well.

Samples Collected

- Soil sample 001_LSB-6A was collected from 2- to 4-ft bgs, a discrete soil sample for VOCs analysis was collected from 2.5- to 3.0-ft bgs, and a discrete soil sample for PFAS analysis was collected from 3.0- to 3.5-ft bgs.
- Soil sample 002_LSB-6B and 003_DUP-1 were collected from 16- to 18-ft bgs, a discrete soil sample for VOCs analysis was collected from 16- to 16.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 16.5- to 17-ft bgs.
- Soil sample 004_LSB-5A was collected from 2- to 4-ft bgs, a discrete soil sample for VOCs analysis was collected from 2- to 2.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 2.5- to 3- ft bgs.
- Soil sample 005_LSB-5B was collected from 20- to 22-ft bgs, a discrete soil sample for VOCs analysis was collected from 20- to 20.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 20.5- to 21-ft bgs. Additional volume was collected for MS/MSD.
- Soil sample 006_LSB-4A was collected from 1- to 3-ft bgs, a discrete soil sample for VOCs analysis was collected from 1.5- to 2.0-ft bgs, and a discrete soil sample for PFAS analysis was collected from 2.0- to 2.5-ft bgs.
- Soil sample 007_LSB-4B was collected from 16- to 18-ft bgs, a discrete soil sample for VOCs analysis was collected from 16.5- to 17-ft bgs, and a discrete soil sample for PFAS analysis was collected from 17- to 17.5-ft bgs.
- Soil sample 008_LSB-3A was collected from 1- to 3-ft bgs, a discrete soil sample for VOCs analysis was collected from 1.5- to 2.0-ft bgs, and a discrete soil sample for PFAS analysis was collected from 2- to 2.5-ft bgs.

- Soil sample 009_LSB-3B was collected from 16- to 18-ft bgs, a discrete soil sample for VOCs analysis was collected from 17- to 17.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 17.5- to 18-ft bgs.
- An equipment blank sample, 010_EB-1, was collected from the cutter head of the drill rig tooling.

Community Air Monitoring Program (CAMP)

- Langan implemented the CAMP during soil disturbance. CAMP equipment consisted of a DustTrack II and photoionization detector (PID) at a dedicated location on the downwind perimeter of the site. The work zone monitoring station was not implemented due to heavy precipitation.
- No VOC or dust concentrations were detected in exceedance of the daily short-term exposure limit (STEL) at the downwind CAMP station.

Problems Encountered

• None

Activities Scheduled for Next Day

• AARCO will continue installation of soil borings and soil vapor points.

SITE MAP

DAILY STATUS REPORT

		WEATHER	Snow		Rain		Overcast		Partly Cloudy	х	Bright Sun		
Prepared By: Molly Gut	telius	TEMP.	< 32		32-50		50-70	X	70-85		>85		
Langan Project No: 100681201		Р	roject:		1921 A	١tla	ntic Ave.	D	Date:	03/	18/2020		
NYSDEC BCP Site No:	C224279	E	-Number	:	E-526			Т	ïme:	6:3	0 – 15:30	C	

Consultant:

PERSONNEL ON SITE:

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Langan: Molly Gutelius (Environmental) AARCO: Tom Seickel, William Cabrom

Site Activities.

- AARCO used a Geoprobe drill rig to advance soil borings LSB-1 and LSB-2 to 20 ft bgs. Two samples
 were collected from each boring, one from the observed historic fill layer and the second from the
 proposed development depth, for the following parameters: target compound list (TCL) volatile organic
 compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated
 biphenyls (PCBs), herbicides, target analyte list (TAL) metals, cyanide, hexavalent chromium, trivalent
 chromium, per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane. No impacts were observed
 during installation of soil borings LSB-1 and LSB-2.
- AARCO used a submersible pump to develop MW-002; approximately ~15 gallons was purged from the permanent monitoring well.
- AARCO used a Geoprobe drill rig to advance soil vapor points, LSV-1 through LSV-8. LSV-1 and LSV-6 were installed to 3-feet bgs, LSV-3, LSV-4, and LSV-5 were installed to 2-feet bgs, LSV-2 and LSV-8 were installed to 4-feet bgs, and LSV-7 was installed to 1.5-feet bgs.

Samples Collected

- Soil sample 012_LSB-1A was collected from 2- to 4-ft bgs, a discrete soil sample for VOCs analysis was collected from 2.5- to 3.0-ft bgs, and a discrete soil sample for PFAS analysis was collected from 3.0- to 3.5-ft bgs.
- Soil sample 013_LSB-1B was collected from 16- to 18-ft bgs, a discrete soil sample for VOCs analysis was collected from 17- to 17.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 17.5- to 18-ft bgs.
- Soil sample 014_LSB-2A was collected from 2- to 4-ft bgs, a discrete soil sample for VOCs analysis was collected from 2.5- to 3-ft bgs, and a discrete soil sample for PFAS analysis was collected from 3- to 3.5- ft bgs.
- Soil sample 015_LSB-2B was collected from 16- to 18-ft bgs, a discrete soil sample for VOCs analysis was collected from 17- to 17.5-ft bgs, and a discrete soil sample for PFAS analysis was collected from 17.5- to 18-ft bgs.
- An equipment blank sample, 017_EB-2, was collected from a macrocore liner for PFAS analysis.
- A field blank sample, 016_FB-1, was collected for the following parameters: target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated biphenyls (PCBs), herbicides, target analyte list (TAL) metals, cyanide, hexavalent chromium, trivalent chromium, per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane.

Community Air Monitoring Program (CAMP)

• Langan implemented the CAMP during soil disturbance. CAMP equipment consisted of a DustTrack II and photoionization detector (PID) at a dedicated location on the downwind perimeter of the site, as well

- as a personal DataRam (pDR) and photoionization detector (PID) at a work zone monitoring station.
- No VOC or dust concentrations were detected in exceedance of the daily short-term exposure limit (STEL) at the downwind CAMP station.

Problems Encountered

• None

Activities Scheduled for Next Day

• None, soil vapor sampling to occur on 20 March 2020.

SITE MAP

DAILY STATUS REPORT

		WEATHER	Snow		Rain		Overcast		Partly Cloudy	x	Bright Sun		
Prepared By: Molly Gu	telius	TEMP.	< 32		32-50		50-70	X	70-85		>85		
Langan Project No:	100681201	P	roject:		1921 A	tla	ntic Ave.	D	Date:	03/	20/2020		
NYSDEC BCP Site No:	C224279	E	-Number	:	E-526			Т	ime:	6:3	0 – 15:30	C	

Consultant:PERSONNEL ON SITE:Langan Engineering, Environmental, Surveying,Langan: Molly Gutelius (Environmental)Landscape Architecture and Geology, D.P.C.Langan: Molly Gutelius (Environmental)

Site Activities.

• Langan collected soil vapor samples using 6 L Summa canisters at LSV-1 through LSV-8.

Samples Collected

- Soil vapor sample 019_LSV-1 and 020_DUP-1 were collected from 7:35AM 9:35AM for TO-15 VOC analysis.
- Soil vapor sample 021_LSV-2 was collected from 9:30AM 11:17AM for TO-15 VOC analysis.
- Soil vapor sample 022_LSV-3 was collected from 10:40AM 13:00PM for TO-15 VOC analysis.
- Soil vapor sample 023_LSV-4 was collected from 8:55AM 10:47AM for TO-15 VOC analysis.
- Soil vapor sample 024_LSV-5 was collected from 8:35AM 10:30AM for TO-15 VOC analysis.
- Soil vapor sample 025_LSV-6 was collected from 8:10AM 10:08AM for TO-15 VOC analysis.
- Soil vapor sample 026_LSV-7 was collected from 7:50AM 9:58AM for TO-15 VOC analysis.
- Soil vapor sample 027_LSV-8 was collected from 9:10AM 11:00AM for TO-15 VOC analysis.
- Outdoor Ambient air sample 028_Ambient-1 was collected from 7:15AM 15:15PM for TO-15 VOC analysis.

Community Air Monitoring Program (CAMP)

No soil disturbance occurred, therefore Langan did not implement CAMP.

Problems Encountered

• None

Activities Scheduled for Next Day

• None, groundwater sampling to occur on 22 March 2020.

SITE MAP

DAILY STATUS REPORT

		ER Snow		Rain		Overcast		Partly Cloudy	х	Bright Sun		
Prepared By: Molly Gutelius	TEMP.	< 32		32-50	X	50-70		70-85		>85		
Langan Project No: 100681201		Project:		1921 Atlantic Ave.			Date: 03/		3/22/2020			
NYSDEC BCP Site No: C224279		E-Number	:	E-526			Т	ime:	6:4	5 – 17:30)	

Consultant:

PERSONNEL ON SITE:

Langan: Molly Gutelius (Environmental)

Langan Engineering, Environmental, Surveying, Landscape Architecture and Geology, D.P.C.

Site Activities.

 Langan collected groundwater samples from LMW-1, LMW-2, MW-002, MW-003, and MW-004 for the following parameters: target compound list (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated biphenyls (PCBs), herbicides, total and dissolved target analyte list (TAL) metals, cyanide, hexavalent chromium, trivalent chromium, per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane.

Samples Collected

- Groundwater samples 029_LMW-1 and 034_DUP-1 were collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Groundwater sample 030_LMW-2 was collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Groundwater sample 031_MW-002 was collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Groundwater sample 032_MW-003 was collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Groundwater sample 033_MW-004 was collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Field blank 035_FB-2 was collected for the following parameters: TCL VOCs, TCL, SVOCs, TCL Pesticides, TCL PCBs, herbicides, total and dissolved TAL metals, cyanide, hexavalent chromium, trivalent chromium, 1,4-dioxane, and PFAS.
- Trip blank 036_TB-3 was collected for TCL VOCs.
- Equipment blank 037_EB-3 was collected for PFAS.

Community Air Monitoring Program (CAMP)

No soil disturbance occurred, therefore Langan did not implement CAMP.

Problems Encountered

• None

Activities Scheduled for Next Day

• None

SITE MAP

APPENDIX H

Historical Data and Boring Logs

LANGAN

Sample ID:		NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives			SB001	SB001	SB002	SB002	SB003	SB003	SB003	SB004	SB004	SB005	DUP001 (SB005)	SB005	SB006	SB006		
Laboratory Sample Number:		I have a first start of	Protect	tion of Public Heal	Ith - Restricted Us	e SCOs	AD01080-008	AD01080-009	AD01080-010	AD01080-011	AD01080-001	AD01080-002	AD01080-003	AD01080-004	AD01080-005	AD01080-006	AD01080-007	AD01080-019	AD01080-014	AD01080-015
Sample Date:	CAS Number	Unrestricted	Posidontial	Restricted-	Commoraial	Inductrial	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
Sample Depth (ft bgs):		Use	Residential	Residential	Commercial	industriai	0-2	6-8	0-2	5-7	0-2	6-8	12-14	0-2	12-14	0-2	0-2	6-8	0-2	5-7
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg 0	1 mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg C	ם mg/kg D	mg/kg Q	mg/kg Q	mg/kg Q
Volatile Organics, NJDEP/TCL/Part 375 List																				
1,1,1-Trichloroethane	71-55-6	0.68	100	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,1,2,2-Tetrachloroethane	79-34-5		35				0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1		100				0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,1,2-Trichloroethane	79-00-5						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,1-Dichloroethane	75-34-3	0.27	19	26	240	480	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,1-Dichloroethylene	75-35-4	0.33	100	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2,3-Trichlorobenzene	87-61-6						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2,4-Trichlorobenzene	120-82-1						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	190		0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 L	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
1,2-Dibromo-3-chloropropane	96-12-8						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2-Dibromoethane	106-93-4	—	—				0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 L	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
1,2-Dichlorobenzene	95-50-1	1.1	100	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 U	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2-Dichloroethane	107-06-2	0.02	2.3	3.1	30	60	0.003/ U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,2-Dichloropropane	/8-8/-5	-					0.003/ U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
1,3,5-I rimetnyibenzene	108-67-8	8.4	47	52	190	380	0.0019 0	0.0011 0	0.0016 0	0.0013 0	0.0016 0	0.0016 0	0.0014 0	0.0013 0	0.0017 0	0.0015 0	0.0016 0	0.0012 0	0.0021 0	0.0018 U
1,3-Dichlorobenzene	106 46 7	2.4	17	49	200		0.0037 U	0.0022 U	0.0032 0	0.0026 0	0.0031 0	0.0031 0	0.0029 U	0.0027 U	0.0033 0	0.003 0	0.0031 0	0.0023 0	0.0042 0	0.0037 U
1,4-Dichlorobenzene	100-40-7	0.1	9.0	13	130	250	0.0037 0	0.0022 0	0.0032 0	0.0026 0	0.0031 0	0.0031 0	0.0029 0	0.0027 0	0.0033 0	0.003		0.0023 0	0.0042 0	0.0037 0
2-Butanone	78-93-3	0.12	100	100	500	1.000	0.0037 11	0.0022 11	0.0032	0.026	0.0031	0.0031	0.029 11	0.027 11	0.0033 U	0.003		0.023	0.0042	0.0037 11
2-Hevanone	591-78-6	0.12	100	100			0.0037 U	0.0022 0	0.0032 U	0.0020 0	0.0031	0.0031 U	0.0020 0	0.0027 0	0.0033 U	0.003	0.0031	0.0023 U	0.0042 0	0.0037 U
4-Methyl-2-pentanone	108-10-1						0.0037 U	0.0022 0	0.0032 U	0.0020 0	0.0031	0.0031 U	0.0023 0	0.0027 0	0.0033	0.003	0.0031 U	0.0023 U	0.0042 0	0.0037 U
	67-64-1	0.05	100	100	500	1 000	0.17 D	0.011 11	0.016	0.013	0.016	0.016	0.014	0.013 11	0.017	0.015	0.016	0.012	0.021	0.018
Benzene	71-43-2	0.06	2.9	4.8	44	89	0.0019 U	0.0011 U	0.0016	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015	0.0016 U	0.0012 U	0.0021 U	0.0018 U
Bromochloromethane	74-97-5						0.0037 U	0.0022	0.0032	0.0026	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	0.0031 U	0.0023	0.0042	0.0037 U
Bromodichloromethane	75-27-4						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Bromoform	75-25-2						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Bromomethane	74-83-9						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Carbon disulfide	75-15-0		100				0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Carbon tetrachloride	56-23-5	0.76	1.4	2.4	22	44	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Chlorobenzene	108-90-7	1.1	100	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Chloroethane	75-00-3						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Chloroform	67-66-3	0.37	10	49	350	700	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Chloromethane	74-87-3						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
cis-1,2-Dichloroethylene	156-59-2	0.25	59	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
cis-1,3-Dichloropropylene	10061-01-5						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Cyclohexane	110-82-7						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Dibromochloromethane	124-48-1						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Dichlorodifluoromethane	75-71-8						0.0037 UJ	0.0022 U	0.0032 U	0.0026 U	0.0031 U.	J 0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Ethyl Benzene	100-41-4	1	30	41	390		0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 U	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
Isopropylbenzene	98-82-8		100				0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015	0.0016 U	0.0012 U	0.0021 U	0.0018 U
Nethyl tort butyl other (MTRE)	/9-20-9	0.02		100		1 000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	0.0031 U	0.0023 U	0.0042 U	0.0037 U
Methylovelebovene	1034-04-4	0.93	02	100	500	1,000	0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0021	0.0014 U	0.0013 U	0.0017 U	0.0015 0		0.0012 U	0.0021 U	0.0018 U
Methylene chloride	108-87-2	0.05	 51	100	500	1 000	0.0037 U	0.0022 U	0.0032 U	0.0026 0	0.0031 U	0.0031 U	0.0029 0	0.0027 U	0.0033 0	0.003 0		0.0023 0	0.0042 U	0.0037 U
n-Butylenzene	104-51-8	12	100	100	500	1,000	0.0037 0	0.0027	0.0032 0	0.0020 0	0.0031 0	0.0031 0	0.0035 D	0.0027 0	0.0043 D	0.003		0.0023 0	0.0042 0	0.0037 0
n-Propylbenzene	103-65-1	3.9	100	100	500	1,000	0.0019 U	0.0011 U	0.0016	0.0013 U	0.0016	0.0016	0.0014 U	0.0013 U	0.0017 U	0.0015	0.0016	0.0012 0	0.0021 0	0.0018 U
o-Xvlene	95-47-6	0.26	100	100	500	1,000	0.0019 11	0.0011 U	0.0016	0.0013	0.0016	0.0016	0.0014 U	0.0013 U	0.0017 U	0.0015	0.0016	0.0012 U	0.0021 0	0.0018
n- & m- Xylenes	179601-23-1	0.26	100	100	500	1,000	0.0019 11	0.0011 U	0.0016	0.0013	0.0016	0.0016	0.0014 U	0.0013	0.0017	0.0015	0.0016	0.0012 U	0.0021 U	0.0018
sec-Butylbenzene	135-98-8	11	100	100	500	1,000	0.0019 U	0.0011 U	0.0016	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015	0.0016 U	0.0012 U	0.0021 U	0.0018 U
Styrene	100-42-5	<u> </u>					0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
tert-Butylbenzene	98-06-6	5.9	100	100	500	1.000	0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 U	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
Tetrachloroethylene	127-18-4	1.3	5.5	19	150		0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Toluene	108-88-3	0.7	100	100	500	1,000	0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 L	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
trans-1,2-Dichloroethylene	156-60-5	0.19	100	100	500	1,000	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
trans-1,3-Dichloropropylene	10061-02-6						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Trichloroethylene	79-01-6	0.47	10	21	200	400	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Trichlorofluoromethane	75-69-4						0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Vinyl Chloride	75-01-4	0.02	0.21	0.9	13	27	0.0037 U	0.0022 U	0.0032 U	0.0026 U	0.0031 U	0.0031 U	0.0029 U	0.0027 U	0.0033 U	0.003 L	J 0.0031 U	0.0023 U	0.0042 U	0.0037 U
Xylenes, Total	1330-20-7	0.26	100	100	500	1,000	0.0019 U	0.0011 U	0.0016 U	0.0013 U	0.0016 U	0.0016 U	0.0014 U	0.0013 U	0.0017 U	0.0015 L	J 0.0016 U	0.0012 U	0.0021 U	0.0018 U
																<u> </u>				

Sample ID:		NYSDEC	Subpart 375-6 R	emedial Program	Soil Cleanup Ob	jectives	SB001	SB001	SB002	SB002	SB003	SB003	SB003	SB004	SB004	SB005	DUP001 (SB005)	SB005	SB006	SB006
Laboratory Sample Number:		Uprostriated	Protecti	on of Public Heal	th - Restricted Us	e SCOs	AD01080-008	AD01080-009	AD01080-010	AD01080-011	AD01080-001	AD01080-002	AD01080-003	AD01080-004	AD01080-005	AD01080-006	AD01080-007	AD01080-019	AD01080-014	AD01080-015
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
Sample Depth (ft bgs):			noonaonna	Residential	Controlat		0-2	6-8	0-2	5-7	0-2	6-8	12-14	0-2	12-14	0-2	0-2	6-8	0-2	5-7
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg ()	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q						
1 1'-Binbenyl	92-52-4						0.2 11	0.11	0.18	0.037 11	0.19 11	0.037 11	0.037 11	0.78 11	0.037 11	0.19 11	0.19 11	0.036 11	0.11	0.036 11
1.2.4.5-Tetrachlorobenzene	95-94-3	_	Ξ		_		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2,3,4,6-Tetrachlorophenol	58-90-2						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2,4,5-Trichlorophenol	95-95-4		100				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2,4,6-Trichlorophenol	88-06-2	-	-				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2,4-Dichlorophenol	120-83-2		100				0.049 U	0.027 U	0.044 U	0.0092 U	0.048 U	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
2,4-Dimethylphenol	105-67-9						0.049 U	0.027 U	0.044 U	0.0092 U	0.048 U	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
2,4-Dinitrophenol	51-28-5		100				0.98 UJ	0.55 U	0.89 U	0.18 U	0.96 UJ	0.18 U	0.19 U	3.9 U	0.19 U	0.93 U	0.94 U	0.18 U	0.56 U	0.18 U
2.6-Dinitrotoluene	606-20-2		1.03				0.2 0	0.11 U	0.18 U	0.037 0	0.19 U	0.037 0	0.037 0	0.78 11	0.037 0	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2-Chloronaphthalene	91-58-7						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2-Chlorophenol	95-57-8	-	100		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2-Methylnaphthalene	91-57-6		0.41				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2-Methylphenol	95-48-7	0.33	100	100	500	1,000	0.049 U	0.027 U	0.044 U	0.0092 U	0.048 U	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
2-Nitroaniline	88-74-4		-		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
2-Nitrophenol	88-75-5					1,000,000	0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.03/ U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
3.3'-Dichlorobenzidine	91-94-1			100,000	500,000		0.045 0	0.027 0	0.044 0	0.0032 0	0.048 0	0.0032 0	0.0033 0	0.78 11	0.0033 0	0.040 0	0.047 0	0.0091 0	0.028 0	0.0091 0
3-Nitroaniline	99-09-2						0.2 U.J	0.11 U	0.18 U	0.037 U	0.19 U.J	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
4-Chloroaniline	106-47-8		100		-		0.049 U	0.027 U	0.044 U	0.0092 U	0.048 U	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
4,6-Dinitro-2-methylphenol	534-52-1						0.98 UJ	0.55 U	0.89 U	0.18 U	0.96 UJ	0.18 U	0.19 U	3.9 U	0.19 U	0.93 U	0.94 U	0.18 U	0.56 U	0.18 U
4-Bromophenyl phenyl ether	101-55-3	-	-		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
4-Chlorophenyl phenyl ether	7005-72-3	-	-		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
4-Chloro-3-methylphenol	59-50-7						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
	100-01-0						0.2 0	0.11 U	0.18 U	0.037 0	0.19 U	0.037 0	0.037 0	0.78 U	0.037 0	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Acenaphthene	83-32-9	20	100	100	500	1 000	0.2 0	0.11 U	0.10 U	0.037 U	0.15 D	0.037 U	0.037 U	1.5 D	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Acenaphthylene	208-96-8	100	100	100	500	1,000	0.38 D	0.11 U	0.24 D	0.037 U	0.28 D	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Acetophenone	98-86-2						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Anthracene	120-12-7	100	100	100	500	1,000	0.66 D	0.11 U	0.52 D	0.037 U	1.2 D	0.037 U	0.037 U	4.4 D	0.037 U	0.33 D	0.42 D	0.036 U	0.11 U	0.036 U
Atrazine	1912-24-9	-	-		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Benzaldehyde	100-52-7						0.2 UJ	0.11 U	0.18 U	0.037 U	0.19 UJ	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Benzo(a)pyrene	50-32-8	1	1	1	5.0 1	1.1	2.6 D	0.17 D	2.3 D	0.18	3./ D	0.037 0	0.037 0	87 D	0.037 0	1.4 D	1.7 D	0.036 U	0.35 D	0.036 U
Benzo(b)fluoranthene	205-99-2	1	1	1	5.6	11	2.1 D	0.13 D	2.1 D	0.10	42 D	0.037 U	0.037 U	12 D	0.037 U	1.5 D	1.3 D	0.036 U	0.44 D	0.036 U
Benzo(g,h,i)perylene	191-24-2	100	100	100	500	1,000	1.2 D	0.11 U	1.3 D	0.11	2 D	0.037 U	0.037 U	4.8 D	0.037 U	0.92 D	1 D	0.036 U	0.27 D	0.036 U
Benzo(k)fluoranthene	207-08-9	0.8	1	3.9	56	110	0.9 D	0.11 U	0.94 D	0.072	1.6 D	0.037 U	0.037 U	4 D	0.037 U	0.54 D	0.66 D	0.036 U	0.14 D	0.036 U
Benzyl butyl phthalate	85-68-7	-	100		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.24 D	0.39 D	0.036 U	0.2 D	0.036 U
Bis(2-chloroethoxy)methane	111-91-1	-	-		-		0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Bis(2-chloroethyl)ether	111-44-4						0.049 U	0.027 U	0.044 U	0.0092 U	0.048 U	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
Bis(2-ethylbexyl)phthalate	117-81-7						0.2 UJ	0.11 U	0.18 U	0.037 0	0.19 00	0.037 0	0.037 0	0.78 U	0.037 0	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Caprolactam	105-60-2						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Carbazole	86-74-8						0.29 D	0.11 U	0.32 D	0.037 U	0.55 D	0.037 U	0.037 U	2.6 D	0.037 U	0.21 D	0.26 D	0.036 U	0.11 U	0.036 U
Chrysene	218-01-9	1	1	3.9	56	110	3 D	0.19 D	2.2 D	0.18	3.5 D	0.037 U	0.037 U	10 D	0.037 U	1.4 D	1.7 D	0.036 U	0.35 D	0.036 U
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	0.33	0.56	1.1	0.35 D	0.11 U	0.35 D	0.037 U	0.57 D	0.037 U	0.037 U	1.3 D	0.037 U	0.22 D	0.25 D	0.036 U	0.11 U	0.036 U
Dibenzoturan Disthul abthalata	132-64-9	7	14	59	350	1,000	0.19 D	0.027 U	0.12 D	0.0092 U	0.38 D	0.0092 U	0.0093 U	1.1 D	0.0093 U	0.083 D	0.11 D	0.0091 U	0.028 U	0.0091 U
Directivi pritrialate	04-00-2		100				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Di-n-butyl phthalate	84-74-2		100				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.0092 U	0.0093 U	0.78 U	0.0093 U	0.13 D	0.13 0 0.21 D	0.0091 U	0.11 U	0.0091 U
Di-n-octyl phthalate	117-84-0		100				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Fluoranthene	206-44-0	100	100	100	500	1,000	5.1 D	0.3 D	5.1 D	0.32	8.5 D	0.037 U	0.037 U	29 D	0.037 U	2.8 D	3.2 D	0.036 U	0.65 D	0.051
Fluorene	86-73-7	30	100	100	500	1,000	0.66 D	0.11 U	0.24 D	0.037 U	0.57 D	0.037 U	0.037 U	1.7 D	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Hexachlorobenzene	118-74-1	0.33	0.33	1.2	6	12	0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Hexachlorobutadiene	87-68-3						0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Hexachlorocyclopentadiene	67-72-1						0.2 UJ	0.11 U	0.18 U	0.037 0	0.19 UJ	0.037 0	0.037 0	0.78 U	0.037 0	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	0.5	5.6	11	1 D	0.11 1	1.2 D	0.099	1.8 D	0.037 11	0.037 11	4.4 D	0.037 11	0.76 D	0.88 D	0.036 11	0.18 0	0.036 11
Isophorone	78-59-1		100				0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Naphthalene	91-20-3	12	100	100	500	1,000	0.24 D	0.027 U	0.076 D	0.0092 U	0.3 D	0.0092 U	0.0093 U	0.75 D	0.0093 U	0.076 D	0.079 D	0.0091 U	0.028 U	0.0091 U
Nitrobenzene	98-95-3		3.7	15	69	140	0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
N-nitroso-di-n-propylamine	621-64-7				-		0.049 UJ	0.027 U	0.044 U	0.0092 U	0.048 UJ	0.0092 U	0.0093 U	0.2 U	0.0093 U	0.046 U	0.047 U	0.0091 U	0.028 U	0.0091 U
N-Nitrosodiphenylamine	86-30-6	-			-	_	0.2 U	0.11 U	0.18 U	0.037 U	0.19 U	0.037 U	0.037 U	0.78 U	0.037 U	0.19 U	0.19 U	0.036 U	0.11 U	0.036 U
Pentachiorophenol	87-86-5	0.8	2.4	6.7	6.7	55	0.98 UJ	0.55 U	0.89 U	0.18 U	0.96 UJ	0.18 U	0.19 U	3.9 U	0.19 U	0.93 U	0.94 U	0.18 U	0.56 U	0.18 U
Phenol	108-95-2	0.33	100	100	500	1,000	0.2	0.11	0.18	0.037	0.19	0.037 11	0.037 11	0.78 11	0.037 11	0.19	0.19	0.036	0.11	0.036
Pyrene	129-00-0	100	100	100	500	1,000	6 D	0.34 D	4.1 D	0.29	7 D	0.037 U	0.037 U	24 D	0.037 U	2.6 D	2.9 D	0.036 U	0.61 D	0.055
											_			_		_				

Sample ID:	NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives					SB001	SB001	SB002	SB002	SB003	SB003	SB003	SB004	SB004	SB005	DUP001 (SB005)	SB005	SB006	SB006	
Laboratory Sample Number:		Unrestricted	Protect	ion of Public Heal	Ith - Restricted Us	se SCOs	AD01080-008	AD01080-009	AD01080-010	AD01080-011	AD01080-001	AD01080-002	AD01080-003	AD01080-004	AD01080-005	AD01080-006	AD01080-007	AD01080-019	AD01080-014	AD01080-015
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017	11/9/2017
Sample Depth (ft bgs):		ma/ka	ma/ka	Residential	ma/ka	malka	0-2	6-8 ma/ka	0-2	5-/	0-2	6-8 ma/ka	12-14 ma/ka	0-2	12-14 ma/ka	0-2	0-2	6-8 ma/ka	0-2	5-/ ma/ka 0
Herbicides, NJDEP/TCL/Part 375 List		ilig/kg	iiig/kg	mg/kg	iiig/kg	iiig/kg	ilig/kg C2	ilig/kg C2	ilig/kg C2	ilig/kg C2	111g/kg 02	2 Hig/kg C2	iiig/kg Q	ilig/kg C2	ilig/kg C	2 mg/kg C	2 1119/kg 02	ilig/kg C2	iiig/kg c	2 mg/kg 02
2,4,5-T	93-76-5		100				0.012 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.012 U	0.011 L	0.011 U	0.011 U	0.011 U	0.011 U	J 0.011 U
2,4,5-TP (Silvex)	93-72-1	3.8	58	100	500	1,000	0.012 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.012 U	0.011 L	0.011 U	0.011 U	0.011 U	0.011 U	J 0.011 U
2,4-D	94-75-7	-	100				0.012 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.012 U	0.011 L	0.011 U	0.011 U	0.011 U	0.011 U	J 0.011 U
Dicamba	1918-00-9	—	-				0.012 UJ	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U	0.012 U	0.011 L	0.011 0	0.011 U	0.011 U	0.011 0	J 0.011 U
Pesticides, EPA TCL List																				
4,4'-DDD	72-54-8	0.0033	2.6	13	92	180	0.1	0.0053	0.0087 J	0.0027 U	0.0029 U	0.0027 U	0.0028 U	0.063	0.0028 L	0.0058	0.0028 U	0.0027 U	0.0076	J 0.0027 U
4,4'-DDE	72-55-9	0.0033	1.8	8.9	62	120	0.036	0.0033 J	0.026	0.0053	0.0029 U	0.0027 U	0.0028 U	0.038	0.0028 L	0.01	0.011	0.0027 U	0.037	0.0027 U
4,4'-DDT	50-29-3	0.0033	1.7	7.9	47	94	0.0029 U	0.0027 U	0.037	0.0088 J	0.0029 U	0.0027 U	0.0028 U	0.17	0.0028 L	0.014 J	0.04 J	0.0027 U	0.16	0.0027 U
Aldrin	309-00-2	0.005	0.019	0.097	0.68	1.4	0.009	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056	J 0.0054 U
alpha-Chlordane	5103-71-9	0.02	0.097	0.40 4.2	3.4 24	0.0 47	0.0012 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0056	0.0012 0	0.0011	0.0068	0.0011 0	0.0011 0	0.0011 0	0.0054 U
beta-BHC	319-85-7	0.036	0.072	0.36	3	14	0.0012 U	0.0011 U	0.0011 U	0.0011 U	0.0011 U	0.0011 U	0.0011 U	0.0012 U	0.0011	0.0011 U	0.0011 U	0.0011 U	0.0011 U	J 0.0011 U
Chlordane, total	57-74-9						0.036	0.0055 U	0.01	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.044	0.0056 L	0.0068	0.01	0.0054 U	0.033	0.0054 U
delta-BHC	319-86-8	0.04	100	100	500	1,000	0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Dieldrin Endesulfen I	60-57-1	0.005	0.039	0.2	1.4	2.8	0.013 J	0.023	0.0011 U	0.0011 U	0.0011 U	0.0011 U	0.0011 U	0.0012 U	0.0011	0.0011 U	0.0011 U	0.0011 U	0.0094	J 0.0011 U
Endosulfan II	33213-65-9	2.4	4.0	24	200	920	0.0059 U	0.0055 U	0.0053	0.0055 U	0.0057 U	0.0055 U	0.0056	0.0059 U	0.0056	0.0056	0.0056	0.0054 U	0.0056	0.0054 U
Endosulfan sulfate	1031-07-8	2.4	4.8	24	200	920	0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056	0.0056 U	0.0056 U	0.0054 U	0.0056	J 0.0054 U
Endrin	72-20-8	0.014	2.2	11	89	410	0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Endrin aldehyde	7421-93-4						0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Endrin ketone	53494-70-5						0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
gamma-Chlordane	5566-34-7	0.1	0.28	1.5	9.2		0.0012 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0056 U	0.0012 0	0.0056	0.0011 0	0.0056 U	0.0011 0	0.0011	0.0054 U
Heptachlor	76-44-8		0.42	2.1	15	29	0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Heptachlor epoxide	1024-57-3		0.077				0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Methoxychlor	72-43-5		100				0.0059 U	0.0055 U	0.0053 U	0.0055 U	0.0057 U	0.0055 U	0.0056 U	0.0059 U	0.0056 L	0.0056 U	0.0056 U	0.0054 U	0.0056 U	J 0.0054 U
Toxaphene	8001-35-2						0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028 U	0.028 U	0.028 U	0.027 U	0.028 U	J 0.027 U
PCBs, EPA TCL List																				
Aroclor 1016	12674-11-2	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028 L	0.028 U	0.028 U	0.027 U	0.028 l	J 0.027 U
Aroclor 1221	11104-28-2	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028 L	0.028 U	0.028 U	0.027 U	0.028 l	J 0.027 U
Aroclor 1232	11141-16-5	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028 L	0.028 U	0.028 U	0.027 U	0.028 U	J 0.027 U
Aroclor 1242 Aroclor 1248	53469-21-9	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028	0.028 0	0.028 U	0.027 U	0.028	J 0.027 U
Aroclor 1254	11097-69-1	0.1	1	1	1	25	0.32	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028	0.028 0	0.028 U	0.027 U	0.028	J 0.027 U
Aroclor 1260	11096-82-5	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028	0.18	0.2	0.027 U	0.028 U	J 0.027 U
Aroclor 1262	37324-23-5	0.1	1	1	1	25	0.029 U	0.027 U	0.027 U	0.027 U	0.029 U	0.027 U	0.028 U	0.066	0.028 L	0.028 U	0.028 U	0.027 U	0.028 l	J 0.027 U
Aroclor 1268	11100-14-4	0.1	1	1	1	25	0.029 U	0.027 U	0.1	0.027 U	0.029 U	0.027 U	0.028 U	0.029 U	0.028 L	0.028 U	0.028 U	0.027 U	0.028 U	J 0.027 U
Total PCBs	1336-36-3	0.1	1	1	1	25	0.32	0.027 0	0.1	0.027 0	0.029 0	0.027 0	0.028 0	0.066	0.028 C	0.18	0.2	0.027 0	0.028 (J 0.027 U
Metals, Target Analyte																				
Aluminum	7429-90-5						12,000 J	6,900	11,000	8,500	8,800 J	7,300	5,800	10,000	7,200	5,900	8,000	7,600	5,000	7,400
Antimony	7440-36-0	—	-		-		6.3 J	0.88 U	0.85 U	0.88 U	0.92 U.	J 0.88 U	0.89 U	3.2	0.89 L	1.6	2.2	0.87 U	1.1	0.87 U
Arsenic	7440-38-2	13	16 350	16	16 400	16	7.9	2.2	5 820	2.2	5.9	1.7	1.8	8.6	1.8	9.5	8.5	2.1	6.4	1.9
Beryllium	7440-41-7	7.2	14	72	590	2,700	0.39 .1	0.3	0.21 U	0.25	0.32 .J	0.32	0.32	0.31	0.26	0.36	0.3	0.45 D	0.27	0.27
Cadmium	7440-43-9	2.5	2.5	4.3	9.3	60	2.9	0.44 U	8	1.4	1.2	0.44 U	0.44 U	3.1	0.44 L	4.6	3.8	0.43 U	2.7	0.43 U
Calcium	7440-70-2						88,000 J	5,500	40,000	3,300	3,500	1,700	1,800	32,000	2,300	19,000	30,000	1,100 U	35,000	2,100
Chromium Hexavalent	/440-47-3	30	36	180	1500	6,800	31	32	30	22	25	23	18	36	30	24	27	21	16	20
Chromium, Trivalent	16065-83-1	30	36	180	1500	6,800	31	32	30	19	25	23	18	36	30	24	27	21	16	20
Cobalt	7440-48-4	-	30				6.6	8.4	8.3	8.1	11	10	9.4	8.2	11	4.8	6.6	8.1	4.4	9.4
Copper	7440-50-8	50	270	270	270	10,000	190 J	28	150	29	70 J	24	21	110	23	84	110	18	51	24
Iron	7439-89-6	-	2,000		-		35,000 J	35,000	37,000	27,000	37,000 J	44,000	35,000	35,000	60,000	26,000	35,000	37,000	19,000	33,000
Lead	7439-92-1	63	400	400	1,000	3,900	9 100 J	59 2 900	5 200	3 100	530 J	/.6 3.100	8.7	1,800	12	1,900	3,500	/.6 2 300	920 2 800	29
Magnesium	7439-96-5	1,600	2,000	2,000	10,000	10,000	840 I	2,500	360	270	2,400 J 840 I	520	2,500	600	530	2,300	470	2,300	2,000	630
Mercury	7439-97-6	0.18	0.81	0.81	2.8	5.7	0.66	0.092 U	0.3	0.092 U	1.6	0.092 U	0.093 U	0.47	0.093 L	1.5	1.1	0.091 U	1.1	0.091 U
Nickel	7440-02-0	30	140	310	310	10,000	23 J	17	27	16	19 J	15	14	26	18	19	29	15	15	15
Potassium	7440-09-7	-			—		1,400	1,400	5,000	2,400	1,200	1,400	1,100	1,400	1,300	740	900	1,300	560	1,300
Selenium	7782-49-2	3.9	36	180	1,500	6,800	2.4 UJ	2.2 U	2.9	2.2 U	2.3 U.	J 2.2 U	2.2 U	2.4 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	J 2.2 U
Sodium	7440-22-4	2	36	180	1,500	6,800	290 11	0.22 U 270 U	0.93	0.22 U 270 U	290 11	0.22 U	0.22 U	290 11	0.22 U	0./1 280 U	280 1	0.22 U 270 U	280 1	U.22 U
Thallium	7440-28-0						0.47 U	0.44 U	0.43 U	0.44 U	0.46 U	0.44 U	0.44 U	0.47 U	0.44	0.44 U	0.45 U	0.43 U	0.45 U	J 0.43 U
Vanadium	7440-62-2		100		-		33 J	40	32	31	37 J	39	33	38	44	36	48	40	20	36
Zinc	7440-66-6	109	2,200	10,000	10,000	10,000	720 J	67	710	110	530 J	45	36	1,300	40	930	1,200	38	470	51
Concret Chamister																				
Cvanide, total	57-12-5	27	27	27	27	10,000	0.39	0.26	0.45	0.26	0.31	0.26	0.27	0.59	0.27	0.54	0.53	0.26	0.27	J 0.26 U
	2. 12.0												, 0							0 0

Notes: Soil Cleanup Objectives are taken from the NYSDEC Subpart 375-6 Remedial Program SCOs (Revised Brownfields) criteria are from the NYSDEC Soil Cleanup Objective Tables 375-6.8(a) and 375-6.8(b), last revised 14 December 2006 and the NYSDEC CP-51 Soil Cleanup Guidance dated 21 October 2010. If bgs - feet below ground surface ---: Criteria not established for the analyte

NA: Not analyzed

U: The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
 D: Compound analyzed at a secondary dilution factor.
 B: analyte found in the analysis batch blank

*: Analytical results for these compounds are reported by the laboratory as both VOCs and SVOCs. NYSDEC only provides SCOs for these compounds as VOCs; therefore, the SVOC analytical reusits for these compounds are screened against the VOC SCOs Total Chromium is compared to the Trivalent Chromium SCOs for screening purposes.

Italicized results indicate Reporting Limits (RL) greater than or equal to the most stringent criteria.

Sample ID:		NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives			SB007	SB007	SB008	SB008	SB009	SB009	SB010	SB010	SB011	SB011	SB012	SB012	SB013	SB013		
Laboratory Sample Number:			Protect	ion of Public Heal	th Restricted Us	se SCOs	AD01210-001	AD01210-002	AD01210-003	AD01210-004	AD01210-005	AD01210-006	AD01210-007	AD01210-008	AD01210-009	AD01210-010	AD02620-001	AD02620-002	AD02620-003	AD02620-004
Sample Date:	CAS Number	Unrestricted		Restricted-			11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	2/14/2018	2/14/2018	2/14/2018	2/14/2018
Sample Depth (ft bos);		Use	Residential	Residential	Commercial	Industrial	0-2	6-8	0-2	12-14	0-2	12-14	0-2	6-8	0-2	12-14	0-2	2-4	0-2	4-6
Units:		ma/ka	ma/ka	ma/ka	ma/ka	ma/ka	ma/ka Q	ma/ka C	ma/ka Q	ma/ka C	2 ma/ka Q	ma/ka Q								
Volatile Organics, NJDEP/TCL/Part 375 List		<u> </u>	¥ ¥	¥ ¥	¥ ¥		0, 0	<u> </u>	<u> </u>		0,0	0, 0		0.0	5, 5	0, 0	5, 5	0, 0	0, 0	0,0
1.1.1-Trichloroethane	71-55-6	0.68	100	100	500	1.000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1.1.2.2-Tetrachloroethane	79-34-5	_	35		_		0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1.1.2-Trichloro-1.2.2-trifluoroethane (Freon 113)	76-13-1		100				0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1.1.2-Trichloroethane	79-00-5		_				0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1.1-Dichloroethane	75-34-3	0.27	19	26	240	480	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,1-Dichloroethylene	75-35-4	0.33	100	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,2,3-Trichlorobenzene	87-61-6						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,2,4-Trichlorobenzene	120-82-1						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	190	380	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
1,2-Dibromo-3-chloropropane	96-12-8						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U.	0.0019 U	J 0.0025 U.	0.0020 UJ
1,2-Dibromoethane	106-93-4						0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
1,2-Dichlorobenzene	95-50-1	1.1	100	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,2-Dichloroethane	107-06-2	0.02	2.3	3.1	30	60	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,2-Dichloropropane	78-87-5						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,3,5-Trimethylbenzene	108-67-8	8.4	47	52	190		0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
1,3-Dichlorobenzene	541-73-1	2.4	17	49	280	560	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,4-Dichlorobenzene	106-46-7	1.8	9.8	13	130	250	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
1,4-Dioxane	123-91-1	0.1	9.8	13	130	250	0.14 U	0.13 U	0.29 U	0.10 U	0.14 U	0.11 U	0.15 U	0.14 U	0.15 U	0.12 U	0.11 U.	0.097 U	J 0.13 UJ	0.098 UJ
2-Butanone	78-93-3	0.12	100	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
2-Hexanone	591-78-6						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
4-Methyl-2-pentanone	108-10-1						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.0030 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Acetone	67-64-1	0.05	100	100	500	1,000	0.014 U	0.013 U	0.029 U	0.010 U	0.014 U	0.011 U	0.015 U	0.014 U	0.015 U	0.012 U	0.011 U	0.0097 L	0.013 U	0.0098 U
Benzene	71-43-2	0.06	2.9	4.8	44	89	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
Bromochloromethane	74-97-5						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Bromodichloromethane	75-27-4						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Bromoform	75-25-2						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Bromomethane	74-83-9						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Carbon disulfide	75-15-0		100				0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Carbon tetrachloride	56-23-5	0.76	1.4	2.4	22	44	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Chlorobenzene	108-90-7	1.1	100	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Chloroethane	75-00-3						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Chloroform	67-66-3	0.37	10	49	350	700	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Chloromethane	74-87-3						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
cis-1,2-Dichloroethylene	156-59-2	0.25	59	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
cis-1,3-Dichloropropylene	10061-01-5						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Cyclohexane	110-82-7						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Dibromochloromethane	124-48-1						0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Dichlorodifluoromethane	75-71-8		<u></u>				0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U.	0.0019 U	J 0.0025 UJ	0.0020 UJ
Ethyl Benzene	100-41-4	1	30	41	390		0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
Isopropylbenzene	98-82-8		100				0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
Methyl acetate	79-20-9				-		0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
IVietnyi tert-butyl ether (MIBE)	1634-04-4	0.93	62	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 L	0.0013 U	0.00098 U
Methylcyclohexane	108-87-2				-		0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019 L	0.0025 U	0.0020 U
Ivietnyiene chloride	/5-09-2	0.05	51	100	500	1,000	0.0027 U	0.0026 U	0.005/ U	0.0021 U	0.0028 U	0.0030 D	0.0029 U	0.0028 U	0.00/6 D	0.0027	0.0022 U	0.0019	0.0025 U	0.0020 U
n-Butylbenzene	104-51-8	12	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097 (0.0013 0	0.00098 U
n-Propylbenzene	103-65-1	3.9	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097	0.0013 U	0.00098 U
o-Xylene	95-47-6	0.26	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097	0.0013 U	0.00098 U
p- & m- Xylenes	1/9601-23-1	0.26	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 U	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.00097	0.0013 U	0.00098 U
sec-Butylbenzene	135-98-8	11	100	100	500	1,000	0.0014 0	0.0013 0	0.0029 0	0.0010 0	0.0014 0	0.0011 0	0.0015 0	0.0014 U	0.0015 0	0.0012 U	0.0011 0	0.00097 (0.0013 0	0.00098 0
Styrene	100-42-5		-				0.0027 U	0.0026 U	0.005/ U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
tert-Butyidenzeñe	98-06-6	5.9	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 U	0.0010 0	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.0009/ 0	0.0013 U	0.00098 U
i etrachioroethylene	127-18-4	1.3	5.5	19	150	300	0.002/ U	0.0026 U	0.005/ U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
trans 1.2 Disblaraathulana	108-88-3	0.7	100	100	500	1,000	0.0014 U	0.0013 U	0.0029 0	0.0010 0	0.0014 U	0.0011 U	0.0015 U	0.0014 U	0.0015 U	0.0012 U	0.0011 U	0.0009/ 0	0.0013 U	0.00098 U
trans-1,2-Dichloroethylene	10061.00.0	0.19	100	100	500	1,000	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023	0.0022 U	0.0019	0.0025 U	0.0020 U
trans- r, s-Dicnioropropylene	70.01.6	0.47				400	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
Trichlereflueremethene	79-01-0	0.47	10	21	200	400	0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
Vinul Chlorida	75-09-4	0.02	0.21				0.0027 U	0.0026 U	0.0057 U	0.0021 U	0.0028 U	0.0021 U	0.0029 0	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
Villanda Total	1220.20.7	0.02	100	0.9	13	1 000	0.0027 U	0.0026 U	0.005/ U	0.0021 U	0.0028 U	0.0021 U	0.0029 U	0.0028 U	0.003 U	0.0023 U	0.0022 U	0.0019	0.0025 U	0.0020 U
Ayrenes, Total	1330-20-7	0.26	100	100	500	1,000	0.0014 U	0.0013 0	0.0029 0	0.0010 0	0.0014 0	0.0011 0	0.0015 0	0.0014 U	0.0015 U	0.0012 0	0.0011 0	0.00097 (0.0013 0	0.00098 0
								1	1		1		1			1	1			1

Sample ID:		NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives				SB007	SB007	SB008	SB008	SB009	SB009	SB010	SB010	SB011	SB011	SB012	SB012	SB013	SB013	
Laboratory Sample Number:		Uprestricted	Protecti	ion of Public Heal	Ith - Restricted Us	se SCOs	AD01210-001	AD01210-002	AD01210-003	AD01210-004	AD01210-005	AD01210-006	AD01210-007	AD01210-008	AD01210-009	AD01210-010	AD02620-001	AD02620-002	AD02620-003	AD02620-004
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	2/14/2018	2/14/2018	2/14/2018	2/14/2018
Sample Depth (ft bgs):		030	nesidentia	Residential	Commercial	maastnar	0-2	6-8	0-2	12-14	0-2	12-14	0-2	6-8	0-2	12-14	0-2	2-4	0-2	4-6
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Ω	mg/kg Ω	mg/kg Q	mg/kg Ω	mg/kg Ω	mg/kg Q	mg/kg Q	mg/kg Ω	mg/kg Q	mg/kg Q	mg/kg Ω	mg/kg Q	mg/kg Q	mg/kg Q
Semi-Volatiles, NJDEP/TCL/Part 375 List	00 50 4						2.0 11	0.007	0.5	0.007	0.00	0.007	0.00	0.000	1.0	0.007	0.000	0.000	0.040	0.007
1,1 -Bipnenyi	92-52-4				-		3.0 U	0.037 0	2.5 U	0.037 0	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 0	0.039 0	0.038 0	0.040 0	0.037 U
	58-90-2						3.0 U	0.037 U	2.5 U	0.037 0	0.39 0	0.037 U	0.38 11	0.036	1.9 0	0.037 U	0.039 U	0.038 U	0.040 0	0.037 0
2.4.5-Trichlorophenol	95-95-4		100				3.0 U	0.037 U	2.5 0	0.037 0	0.39 11	0.037 U	0.38 11	0.036	1.0 1	0.037 0	0.039	0.038	0.040 U	0.037 0
2.4.6-Trichlorophenol	88-06-2						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.0 U	0.037 U	0.039	0.038 U	0.040 U	0.037 U
2.4-Dichlorophenol	120-83-2		100				0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 UJ	0.0095 U	0.0099 U.	0.0094 UJ
2,4-Dimethylphenol	105-67-9						0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 U	0.0095 U	0.0099 U	0.0094 U
2,4-Dinitrophenol	51-28-5		100				15 U	0.19 U	13 U	0.19 U	2.0 U	0.19 U	1.9 U	0.18 U	9.6 U	0.19 U	0.19 UJ	0.19 UJ	0.20 UJ	0.19 UJ
2,4-Dinitrotoluene	121-14-2						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
2,6-Dinitrotoluene	606-20-2		1.03				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
2-Chloronaphthalene	91-58-7						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 UJ	0.038 UJ	0.040 UJ	0.037 UJ
2-Chlorophenol	95-57-8		100				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
2-Methylnaphthalene	91-57-6		0.41				9.0 D	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.068	1.9 U	0.037 U	0.039 UJ	0.038 UJ	0.094 J	0.037 UJ
2-Methylphenol	95-48-7	0.33	100	100	500	1,000	0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 U	0.0095 U	0.0099 U	0.0094 U
2-Nitroaniline	88-74-4						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
	88-/5-5			100.000		1 000 000	3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.03/ U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 UJ	0.038 U	0.040 U	0.037 U
3- & 4-ivietnyiphenois	01 04 1	330	34,000	100,000	500,000	1,000,000	0.75 U	0.0093 0	0.64 0	0.0093 0	0.098 0	0.0094 0	0.096 U	0.011	0.46 0	0.0094 0	0.0097 0	0.0095 0	0.010	0.0094 0
3-Nitroaniline	99-09-2						3.0 0	0.037 U	2.5 U	0.037 0	0.39 U	0.037 U	0.38 11	0.036 U	1.9 0	0.037 U	0.039 0	0.038 U	0.040 0	0.037 0
4-Chloroaniline	106-47-8		100				0.75	0.0093	0.64 11	0.0093	0.098	0.0094	0.096	0.0091	0.48 11	0.0094	0.0097	0.0095	0.0099	0.0094 11
4.6-Dinitro-2-methylphenol	534-52-1				_		15 11	0.19 11	13 11	0.19 11	2.0 11	0.19 11	1.9 11	0.18 11	9.6 11	0.19 11	0.19 111	0.19 11	0.20 11	0.19 11
4-Bromophenyl phenyl ether	101-55-3						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
4-Chlorophenyl phenyl ether	7005-72-3						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 UJ	0.040 UJ	0.037 UJ
4-Chloro-3-methylphenol	59-50-7						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
4-Nitroaniline	100-01-6						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
4-Nitrophenol	100-02-7						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Acenaphthene	83-32-9	20	100	100	500	1,000	25 D	0.084	5.0 D	0.037 U	1.0 D	0.037 U	1.2 D	0.21	6.5 D	0.037 U	0.039 U	0.038 U	0.28	0.037 U
Acenaphthylene	208-96-8	100	100	100	500	1,000	8.0 D	0.037 U	4.4 D	0.037 U	0.60 D	0.037 U	0.50 D	0.10	2.8 D	0.037 U	0.039 U	0.038 U	0.052	0.037 U
Acetophenone	98-86-2	-					3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Anthracene	120-12-7	100	100	100	500	1,000	50 D	0.18	15 D	0.037 U	2.5 D	0.037 U	2.6 D	0.42	17 D	0.037 U	0.039 0	0.038 0.0	0.70 J	0.037 UJ
Reprodebude	100 52 7						3.0 U	0.037 0	2.5 U	0.037 0	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 0	0.039 0	0.038 0	0.040 0	0.037 U
Benzo(a)anthracene	56-55-3	1	1		5.6	11	100 D	0.037 0	52 D	0.037 0	0.39 0	0.037 U	7.6 D	12	T.9 0	0.037 U	0.039 0	0.038 U	19	0.037 0
Benzo(a)pyrene	50-32-8	1	1	1	1	11	84 D	0.32	49 D	0.037 U	6.3 D	0.037 U	62 D	0.98	50 D	0.037 U	0.081	0.038	1.5	0.037 0
Benzo(b)fluoranthene	205-99-2	1	1	1	5.6	11	110 D	0.33	72 D	0.037 U	9.4 D	0.037 U	8.2 D	1.3	75 D	0.037 U	0.1	0.038 U	1.9	0.037 U
Benzo(g,h,i)perylene	191-24-2	100	100	100	500	1,000	51 D	0.18	28 D	0.037 U	4.2 D	0.037 U	3.8 D	0.64	39 D	0.037 U	0.06	0.038 U	0.83	0.037 U
Benzo(k)fluoranthene	207-08-9	0.8	1	3.9	56	110	37 D	0.13	22 D	0.037 U	2.7 D	0.037 U	2.1 D	0.43	23 D	0.037 U	0.039 U	0.038 U	0.65	0.037 U
Benzyl butyl phthalate	85-68-7		100				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.053	0.037 U
Bis(2-chloroethoxy)methane	111-91-1						3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Bis(2-chloroethyl)ether	111-44-4						0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 U	0.0095 U	0.0099 U	0.0094 U
Bis(2-chloroisopropyl)ether	108-60-1	—			-		3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 UJ	0.038 UJ	0.040 UJ	0.037 UJ
Bis(2-ethylnexyl)phthalate	117-81-7		50				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 0	0.038 U	0.14	0.037 U
Carborola	105-60-2				-		3.0 U	0.037 0	2.5 U	0.037 0	0.39 0	0.037 U	0.38 0	0.036 0	1.9 U	0.037 0	0.039 0	0.038 0	0.040 0	0.037 U
Chrysene	218-01-9	1	1	3.9		110	110 D	0.31	51 D	0.037 0	0.30 D	0.037 U	0.34 D	12	5.0 D	0.037 U	0.039 0	0.038 11	20 1	0.037 0
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	0.33	0.56	1.1	16 D	0.049	84 D	0.037 U	13 D	0.037 U	12 D	0.20	97 D	0.037 U	0.039	0.038 U	0.26	0.037 U
Dibenzofuran	132-64-9	7	14	59	350	1,000	16 D	0.057	3.2 D	0.0093 U	0.46 D	0.0094 U	0.58 D	0.15	4.4 D	0.0094 U	0.0097 UJ	0.0095 UJ	0.17 J	0.0094 UJ
Diethyl phthalate	84-66-2		100				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Dimethyl phthalate	131-11-3		100				3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Di-n-butyl phthalate	84-74-2		100				0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 U	0.0095 U	0.064	0.0094 U
Di-n-octyl phthalate	117-84-0		100		-		3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Fluoranthene	206-44-0	100	100	100	500	1,000	240 D	0.67	110 D	0.037 U	17 D	0.037 U	13 D	2.2	120 D	0.037 U	0.19 J	0.038 U	3.7	0.037 U
Fluorene	86-73-7	30	100	100	500	1,000	29 D	0.10	6.1 D	0.037 U	1.1 D	0.037 U	1.2 D	0.22	6.3 D	0.037 U	0.039 U	0.038 U	0.29	0.037 U
Hexachlorobenzene	118-74-1	0.33	0.33	1.2	6	12	3.0 0	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Hexachloroputadiene	87-08-3				-		3.0 U	0.037 0	2.5 U	0.037 U	0.39 U	0.037 0	0.38 U	0.036 U	1.9 U	0.037 0	0.039 0	0.038 0	0.040 0	0.037 U
Hexachloroethane	67-72-1						3.0 U	0.037 0	2.5 U	0.037 0	0.39 0	0.037 U	0.38 11	0.036 U	1.9 U	0.037 0	0.039 U	0.038 U	0.040 0	0.037 0
Indeno(1.2.3-cd)pyrene	193-39-5	0.5	0.5	0.5	5.6	11	45 D	0.037 0	2.0 0	0.037 11	38 D	0.037 11	36	0.000 0	34	0.037 11	0.046	0.038 11	0.040 0	0.037 11
Isophorone	78-59-1		100		-		3.0 11	0.037 11	2.5 11	0.037 11	0.39 11	0.037 11	0.38	0.036 11	1.9 11	0.037 11	0.039 11	0.038 11	0.040 11	0.037 11
Naphthalene	91-20-3	12	100	100	500	1,000	14 D	0.036	1.8 D	0.0093 U	0.15 D	0.0094 U	0.69 D	0.14	3.7 D	0.0094 U	0.0097 U	0.0095 U	0.14	0.14
Nitrobenzene	98-95-3		3.7	15	69	140	3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 UJ	0.038 U	0.040 U	0.037 U
N-nitroso-di-n-propylamine	621-64-7						0.75 U	0.0093 U	0.64 U	0.0093 U	0.098 U	0.0094 U	0.096 U	0.0091 U	0.48 U	0.0094 U	0.0097 U	0.0095 U	0.0099 U	0.0094 U
N-Nitrosodiphenylamine	86-30-6				-		3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Pentachlorophenol	87-86-5	0.8	2.4	6.7	6.7	55	15 U	0.19 U	13 U	0.19 U	2 U	0.19 U	1.9 U	0.18 U	9.6 U	0.19 U	0.19 U	0.19 U	0.200 U	0.19 U
Phenanthrene	85-01-8	100	100	100	500	1,000	240 D	0.80	65 D	0.037 U	13 D	0.037 U	12 D	2.1	79 D	0.037 U	0.12 J	0.038 U	3.5	0.037 U
Phenol	108-95-2	0.33	100	100	500	1,000	3.0 U	0.037 U	2.5 U	0.037 U	0.39 U	0.037 U	0.38 U	0.036 U	1.9 U	0.037 U	0.039 U	0.038 U	0.040 U	0.037 U
Pyrene	129-00-0	100	100	100	500	1,000	220 D	0.72	91 D	0.037 U	17 D	0.037 U	15 D	2.4	110 D	0.037 U	0.17	0.038 U	3.7	0.037 U
								1		1	1		1		1	1		1	1	1

Sample ID:	NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives				SB007	SB007	SB008	SB008	SB009	SB009	SB010	SB010	SB011	SB011	SB012	SB012	SB013	SB013		
Laboratory Sample Number:		Unrestricted	Protect	tion of Public Heal	th Restricted Us	se SCOs	AD01210-001	AD01210-002	AD01210-003	AD01210-004	AD01210-005	AD01210-006	AD01210-007	AD01210-008	AD01210-009	AD01210-010	AD02620-001	AD02620-002	AD02620-003	AD02620-004
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	11/16/2017	2/14/2018	2/14/2018	2/14/2018	2/14/2018
Sample Depth (ft bgs):				Residential	e e i i i i i i i i i i i i i i i i i i	industrial	0-2	6-8	0-2	12-14	0-2	12-14	0-2	6-8	0-2	12-14	0-2	2-4	0-2	4-6
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	1 mg/kg Q	mg/kg Q	1 mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg C	mg/kg Q	mg/kg Q
Herbicides, NJDEP/TCL/Part 375 List	00 76 F		100				0.012	0.011	0.017	0.011	0.012	0.011	0.011	0.011	0.011	0.011	0.012	0.011	0.012	0.011
2,4,5-1 2,4,5-TP (Silvey)	93-70-5		58	100		1 000	0.012 U	0.011 U	0.017 U	0.011 U	0.012 0	0.011 U	0.012 0	0.011	0.012 0	0.011 U				
2.4-D	94-75-7		100				0.012 U	0.011 U	0.017 U	0.011 U	0.012 U	0.011 U	0.012 U	0.011	0.012 U	0.011 U				
Dicamba	1918-00-9						0.012 U	0.011 U	0.017 U	0.011 U	0.012 U	0.011 U	0.012 U	U 0.011 U	0.012 U	U.0.011 U.U				
							0.012 0	0.011 0	0.017 0	0.011 0	0.012 0	0.011 0	0.011 0	0.011 0	0.011 0	0.011 0	0.012 00	0.011 0	0.012 00	0.011 00
Pesticides, EPA TCL List																				
4,4'-DDD	72-54-8	0.0033	2.6	13	92	180	0.034 J	0.0028 U	0.015 J	0.0028 U	0.038 J	0.0028 U	0.0029 U	0.0027 U	0.0029 U	0.0028 U	0.0029 U	0.0028 L	0.003 U	0.0028 U
4,4'-DDE	72-55-9	0.0033	1.8	8.9	62	120	0.057	0.0028 U	0.058	0.0028 U	0.028 J	0.0028 U	0.0063	0.0027 U	0.0029 U	0.0028 U	0.0029 U	0.0028 U	0.003 U	0.0028 U
4,4'-DDT	50-29-3	0.0033	1.7	7.9	47	94	0.055 J	0.0028 U	0.034 J	0.0028 U	0.031 J	0.0028 U	0.015 J	0.0027 U	0.0029 U	0.0028 U	0.0033 J	0.0028 L	0.0064 J	0.0028 U
Aldrin	309-00-2	0.005	0.019	0.097	0.68	1.4	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U	0.0056 U
alpha-BHC	319-84-6	0.02	0.097	0.48	3.4	6.8	0.0012 0	0.0011 0	0.001/ 0	0.0011 U	0.0012 0	0.0011 0	0.0011 0	0.0011 U	0.0011 U	0.0011 0	0.0012 U	0.0011 0	0.0012 U	0.0011 0
alpha-Chlordane	319-85-7	0.094	0.91	4.2	24	47	0.044 J	0.0056 0	0.087 J	0.0056 0	0.021	0.0056 0	0.020	0.0054 0	0.0057 0	0.0056 0	0.0058 0	0.0057 0	0.006 0	0.0056 0
Chlordane total	57-74-9	0.030	0.072	0.30			0.0012 0	0.0056	0.0017 0	0.0056	0.0012 0	0.0056 U	0.034	0.0054 11	0.0011 0	0.0011 0	0.0012 0	0.0011 0	0.0012 0	0.0056
delta-BHC	319-86-8	0.04	100	100	500	1.000	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057	0.006 U	0.0056 U
Dieldrin	60-57-1	0.005	0.039	0.2	1.4	2.8	0.0012 U	0.0011 U	0.068 J	0.0011 U	0.0012 U	0.0011 U	0.0012 U	0.0011 L	0.0012 U	0.0011 U				
Endosulfan I	959-98-8	2.4	4.8	24	200	920	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U	0.0056 U
Endosulfan II	33213-65-9	2.4	4.8	24	200	920	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U	0.0056 U
Endosulfan sulfate	1031-07-8	2.4	4.8	24	200	920	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U	0.0056 U
Endrin	72-20-8	0.014	2.2	11	89	410	0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U.	J 0.0056 U
Endrin aldehyde	7421-93-4	-			-		0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U	0.0056 U
Endrin Ketone	53494-70-5	0.1		1.2			0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U.	0.0056 U
gamma-BHC (Lindane)	58-89-9	0.1	0.28	1.3	9.2	23	0.0012 0	0.0011 0	0.0017 0	0.0011 0	0.0012 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0011 0	0.0012 0	0.0011 0	0.0012 0	0.0011 0
Hentachlor	76-44-8		0.42	21		29	0.020 J	0.0056	0.004	0.0056	0.0059 11	0.0056 U	0.0057	0.0054 0	0.0057 U	0.0056	0.0058 U	0.0057 L	0.006	0.0056
Heptachlor epoxide	1024-57-3		0.077				0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057	0.006 U	0.0056 U
Methoxychlor	72-43-5		100				0.0060 U	0.0056 U	0.0085 U	0.0056 U	0.0059 U	0.0056 U	0.0057 U	0.0054 U	0.0057 U	0.0056 U	0.0058 U	0.0057 L	0.006 U.	J 0.0056 U
Toxaphene	8001-35-2						0.030 U	0.028 U	0.042 U	0.028 U	0.029 U	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028 L	0.03 U	0.028 U
PCBs, EPA TCL List																				
Aroclor 1016	12674-11-2	0.1	1	1	1	25	0.030 U	0.028 U	0.042 U	0.028 U	0.029 U	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028	0.030 U	0.028 U
Aroclor 1221	11104-28-2	0.1	1	1	1	25	0.030 U	0.028 U	0.042 U	0.028 U	0.029 0	0.028 U	0.029 0	0.027 U	0.029 0	0.028 0	0.029 0	0.028	0.030 0	0.028 U
Aroclor 1232	53/69-21-9	0.1	1	1	1	25	0.030 0	0.028 U	0.042 0	0.028 U	0.029 0	0.028 U	0.029 0	0.027 0	0.029 0	0.028 U	0.029 0	0.028	0.030 0	0.028 U
Aroclor 1242	12672-29-6	0.1	1	1	1	25	0.030 U	0.020 U	0.042 U	0.028 U	0.029 U	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028	0.030 U	0.028 U
Aroclor 1254	11097-69-1	0.1	1	1	1	25	1.9	0.028 U	0.042 U	0.028 U	0.093	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028	0.030 U	0.028 U
Aroclor 1260	11096-82-5	0.1	1	1	1	25	0.030 U	0.028 U	0.042 U	0.028 U	0.029 U	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028 L	0.030 U	0.028 U
Aroclor 1262	37324-23-5	0.1	1	1	1	25	0.030 U	0.028 U	0.042 U	0.028 U	0.062	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028 L	0.030 U	0.028 U
Aroclor 1268	11100-14-4	0.1	1	1	1	25	0.030 U	0.028 U	0.042 U	0.028 U	0.029 U	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028 L	0.030 U	0.028 U
Total PCBs	1336-36-3	0.1	1	1	1	25	1.9	0.028 U	0.042 U	0.028 U	0.16	0.028 U	0.029 U	0.027 U	0.029 U	0.028 U	0.029 U	0.028 L	0.030 U	0.028 U
Motols Target Applyte																				
Aluminum	7429-90-5						13 000	13 000	11 000	14 000	4 400	7 700	5 800	6 200	3 800	14 000	8 100	3 000	4 900	3 900
Antimony	7440-36-0						0.96 U	0.89 U	1.4 U	0.89 U	0.94 U	0.9 U	0.92 U	0.87 U	0.92 U	0.9 U	0.93 U	0.91 L	0.95 U	0.90 U
Arsenic	7440-38-2	13	16	16	16	16	10	2.5	16	1.8	7.6	1.1	6.2	1.5	9.3	3.5	3.2	1.2	2.2	1.2
Barium	7440-39-3	350	350	400	400	10,000	1,500	110	1,600	45	540	42	330	75	2,100	85	67	21	77	27
Beryllium	7440-41-7	7.2	14	72	590	2,700	0.29	0.45	0.34 U	0.39	0.42	0.25	0.40	0.23	0.23 U	0.66	0.30	0.23 L	0.24 U	0.25
Cadmium	7440-43-9	2.5	2.5	4.3	9.3	60	1.2	0.44 U	2.5	0.44 U	2.2	0.45 U	0.76	0.43 U	0.96	0.45 U	1.5	0.45 L	2.1	0.45 U
Calcium	/440-70-2			100	1500	6.000	/1,000	1,800	120,000	4,200	3,000	1,900	22,000	1,800	80,000	1,100 U	3,700	1,100 L	9,200	1,100 U
Chromium Hovovalant	/440-47-3	30	36	180	1500	6,800	44	54	40	30	22	29		20	24	58	24	9.6	13	13
Chromium Trivalent	16065-83-1	30	36	180	1500	6 800	44	54	40	30	22	29	17	20	24	58	24	96	13	13
Cobalt	7440-48-4		30				7.1	15	19	11	4.9	11	5.2	25	2.9 11	19	9.0	3.2	6.8	5.8
Copper	7440-50-8	50	270	270	270	10,000	140	33	160	17	94	28	43	26	98	43	23	9.1	37	12
Iron	7439-89-6	_	2,000				41,000	76,000	120,000	30,000	33,000	47,000	21,000	59,000	19,000	73,000	34,000	13,000	17,000	18,000
Lead	7439-92-1	63	400	400	1,000	3,900	2,100	16	2,900	8.8	1,200	10	340	55	570	15	36	9.2	130	5.6 U
Magnesium	7439-95-4						7,300	3,300	8,600	8,000	1,200	3,000	9,200	1,700	30,000	4,500	5,700	1,200	1,800	1,300
Manganese	7439-96-5	1,600	2,000	2,000	10,000	10,000	600	1,700	670	560	300	440	330	2,700	310	1,300	880	240	270	370
Mercury	7439-97-6	0.18	0.81	0.81	2.8	5.7	1.8	0.093 U	1.3	0.093 U	1.0	0.094 U	0.89	1.0	0.86	0.094 U	0.097 U	0.095 L	0.12	0.094 U
NICKEI	/440-02-0	30	140	310	310	10,000	24	24	26	23	13	18	13	16	11	35	18	6.7	18	9.0
Potassium	/440-09-/			1.00	1 500	6 000	1,400	1,300	1,300	4,300	590 U	1,300	//0	//0	5/0 U	2,100	960	660	850	/90
Silver	7/02-49-2	3.9	30	180	1,500	6,800	3.7 0.26	2.2 U	0.76 U	2.2 U	2.4 U	0.22 U	2.3 U	2.2 U	2.3 U	2.2 0	2.3 U	2.3	2.4 U	2.2 U
Sodium	7440-22-4	2		100	1,300		300 11	280 11	420 11	910	290 11	280 11	290 11	270 11	290 11	2 200	350	310	340	910
Thallium	7440-28-0						0.48 U	0.44 U	0.68 U	0.44 U	0.47 U	0.45 U	0.46 U	0.43 U	0.46 U	0.45 U	0.47 U	0.45 L	0.48 U	0.45 U
Vanadium	7440-62-2		100				48	72	46	45	29	54	27	41	24	92	42	16	25	20
Zinc	7440-66-6	109	2,200	10,000	10,000	10,000	1,100	69	2,400	48	670	50	300	86	830	82	65	21	900	28
	1													1				1		
General Chemistry	F7 10 F	07	07	07	07	10,000	0.20	0.07	0.41	0.07	0.30	0.07	0.20	0.00	0.4	0.07	0.20	0.07	0.00	0.07
Cyanice, total	07-12-0	27	27	27	27	10,000	0.29 U	U.27 U	U.41 U	U.2/ U	U.28 U	U.27 U	U.28 U	0.20 U	0.4	U.27 U	U.28 U	U.27 L	0.29 0	U.27 U

Notes: Soil Cleanup Objectives are taken from the NYSDEC Subpart 375-6 Remedial Program SCOs (Revised Brownfields) criteria are from the NYSDEC Soil Cleanup Objective Tables 375-6.8(a ft bgs - feet below ground surface ---: Criteria not established for the analyte

NA: Not analyzed

U: The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination. J: The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. D: Compound analyzed at a secondary dilution factor. B: analyte found in the analysis batch blank

2: Analytic results or these compounds are reported by the laboratory as both VOCs and SVOCs. NYSDEC only provides SCOs for these compounds as VOCs; therefore, the SVOC and Total Chromium is compared to the Trivalent Chromium SCOs for screening purposes.

Italicized results indicate Reporting Limits (RL) greater than or equal to the most stringent criteria.

Sample ID:	NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives					SB014	DUP001 (SB014)	SB014	SB015	SB015	SB016	SB016	SB017	SB017	SB018	SB019	SB020	SB021	
Laboratory Sample Number:			Protect	ion of Public Hea	Ith - Restricted U	se SCOs	AD02620-007	AD02620-006	AD02620-008	AD02718-001	AD02718-002	AD02718-005	AD02718-006	AD02718-006	AD02718-008	AD03020-001	AD03020-004	AD03020-005	AD03020-006
Sample Date:	CAS Number	Unrestricted		Restricted-			2/14/2018	2/14/2018	2/14/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	3/12/2018	3/12/2018	3/12/2018	3/12/2018
Sample Depth (ft bgs):		Use	Residential	Residential	Commercial	Industrial	0-2	0-2	4-6	6-8	18-20	13-15	18-20	8-10	12-14	0-2	0-2	0-2	0-2
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Q	mg/kg Q	mg/kg (2 mg/kg Q	mg/kg Q	mg/kg Q	mg/kg C	2 mg/kg C	Q mg/kg (a mg/kg a	mg/kg C	mg/kg Q	mg/kg Q
Volatile Organics, NJDEP/TCL/Part 375 List																			
1,1,1-Trichloroethane	71-55-6	0.68	100	100	500	1,000	0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,1,2,2-Tetrachloroethane	79-34-5		35				0.0024 U	0.0029 U	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 U	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1		100				0.0024 U	0.0029 U	0.0023 U	J 0.0021 U.	J 0.0020 U.	0.0018 U.	0.0018 U	IJ 0.0019 U	JJ 0.0019 U	JJ 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
1,1,2-Trichloroethane	79-00-5						0.0024 U	0.0029 U	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 U	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,1-Dichloroethane	75-34-3	0.27	19	26	240	480	0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,1-Dichloroethylene	75-35-4	0.33	100	100	500	1,000	0.0024 U	0.0029 U	0.0023 l	J 0.0021 U.	J 0.0020 UJ	0.0018 UJ	0.0018 U	JJ 0.0019 U	JJ 0.0019 U	JJ 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,2,3-Trichlorobenzene	87-61-6						0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,2,4-Trichlorobenzene	120-82-1		-				0.0024 U	0.0029 U	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	52	190	380	0.0012 U	0.0015 U	0.0011 l	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
1,2-Dibromo-3-chloropropane	96-12-8		-			—	0.0024 UJ	0.0029 U.	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
1,2-Dibromoethane	106-93-4		-			-	0.0012 U	0.0015 U	0.0011 0	0.00083 U	0.000// U	0.00069 U	0.00070 (J 0.000/2 U	U 0.00076 U	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
1,2-Dichlorobenzene	95-50-1	1.1	100	100	500	1,000	0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018	J 0.0019 U	0 0.0019 0	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
1,2-Dichloroethane	107-06-2	0.02	2.3	3.1	30	60	0.0024 U	0.0029 0	0.0023	0.0021 0	0.0020 U	0.0018 U	0.0018	0.0019	0 0.0019 0	0.0024 0	0.0031 0	0.0027 U	0.0026 U
1,2-Dichloropropane	100.67.0						0.0024 0	0.0029 0	0.0023	0.0021 0	0.0020 0	0.0018 U	0.0018	0.0019		0 0.0024 0	0.0031 0	0.0027 0	0.0026 0
1,3,5-Tillfiethylbenzene	5/1 72 1	0.4	47	52	190	560	0.0012 0	0.0015 0	0.0011 0	0.0011 0	0.00096 0	0.00086 0	0.0009	0.00093		0.0012 0	0.0016 0.	J 0.0014 U.	0.0013 00
1 4-Dichlorobenzene	106-46-7	2.4	9.8	40	130	250	0.0024 0	0.0029 0	0.0023		0.0020 0	0.0018 0	0.0018				0.0031 0.		
1 4-Dioxane	123-91-1	0.1	9.8	13	130	250	0.0024 0	0.0023 0	0.0023		0.0020 0	0.0018 0					0.0031 0.		0.0020 00
2-Butanone	78-93-3	0.12	100	100	500	1,000	0.024 11	0.0029	0.0023	0.0074	0.0020	0.0018	0.0018	J 0.0019 I	U 0.0019 U	0.024	0.0031	0.0027	0.026
2-Hexanone	591-78-6	0.12		100		1,000	0.0024 U	0.0029	0.0023	0.0021	0.0020 0	0.0018	0.0018	0.0010		0.0024 0	0.0031	0.0027 U	0.0026
4-Methyl-2-pentanone	108-10-1						0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 U	U 0.0024 U	0.0031	0.0027 U	0.0026 U
Acetone	67-64-1	0.05	100	100	500	1.000	0.012 U	0.015 U	0.011	J 0.024 J	0.0098 U.	0.0088 U	0.0090 U	U 0.0093 U	JJ 0.0097 U	JJ 0.012 U	0.016	0.014 U	0.013 U
Benzene	71-43-2	0.06	2.9	4.8	44	89	0.0012 U	0.0015 U	0.0011	0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
Bromochloromethane	74-97-5						0.0024 U	0.0029 U	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
Bromodichloromethane	75-27-4						0.0024 U	0.0029 U	0.0023 U	J 0.0021 U.	J 0.0020 U.	0.0018 U.	0.0018 U	IJ 0.0019 U	JJ 0.0019 U	JJ 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Bromoform	75-25-2		-				0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U.	J 0.0031 U	J 0.0027 UJ	0.0026 UJ
Bromomethane	74-83-9						0.0024 U	0.0029 U	0.0023 l	J 0.0021 U.	J 0.0020 UJ	0.0018 U.	0.0018 U	J 0.0019 U	JJ 0.0019 U	JJ 0.0024 U	0.0031 U	J 0.0027 UJ	0.0026 UJ
Carbon disulfide	75-15-0		100				0.0024 U	0.0029 U	0.0023 U	J 0.0021 U.	J 0.0020 U.	0.0018 U.	0.0018 U	IJ 0.0019 U	JJ 0.0019 U	JJ 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
Carbon tetrachloride	56-23-5	0.76	1.4	2.4	22	44	0.0024 U	0.0029 U	0.0023 U	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Chlorobenzene	108-90-7	1.1	100	100	500	1,000	0.0024 U	0.0029 U	0.0023 U	J 0.0011 U	0.00098 U	0.00088 U	0.0009 L	J 0.00093 L	U 0.00097 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Chloroethane	75-00-3						0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Chloroform	67-66-3	0.37	10	49	350	700	0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Chloromethane	74-87-3						0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
cis-1,2-Dichloroethylene	156-59-2	0.25	59	100	500	1,000	0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018 U	J 0.0019 U	U 0.0019 U	U 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
cis-1,3-Dichloropropylene	10061-01-5						0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018	J 0.0019 U	U 0.0019 U	U 0.0024 U.	0.0031 U	0.0027 U	0.0026 U
Cyclonexane	110-82-7		-			_	0.0024 0	0.0029 0	0.0023	0.0021 0	0.0020 0	0.0018 0	0.0018	0.0019		0 0.0024 0	0.0031 0	0.0027 0	0.0026 U
Dibloridifilioromethano	75 71 9						0.0024 0	0.0029 0	0.0023	0.0021 0	0.0020 0	0.0018 U	0.0018			0.0024 0	0.0031 0	0.0027 0	0.0026 U
Ethyl Benzene	100-41-4	1			390	780	0.0024 03	0.0029 0.	0.0023	J 0.0021 0.	0.0020 0.	0.0018 0.	0.0018 0	0.0019 0		0.0024 0	0.0031 0	0.0027 0	0.0026 0
Isopropylhenzene	98-82-8		100	41		700	0.0012 0	0.0015 U	0.0011		0.00098 U	0.00088 U	0.00090	0.00093			0.0016	0.0014 0.	0.0013 00
Methyl acetate	79-20-9						0.0024 11	0.0029	0.0023	0.0021	0.0020 11	0.0018	0.0018	0.0019	JJ 0.0019 U	1 0.0024 11	0.0031	0.0027	0.0026
Methyl tert-butyl ether (MTBE)	1634-04-4	0.93	62	100	500	1,000	0.0012 U	0.0015 U	0.0011	0.0011 U	0.00098 U	0.00088 U	0.00090 l	J 0.00093 I	U 0.00097 l	U 0.0012 U	0.0016	0.0014 U	0.0013 U
Methylcyclohexane	108-87-2						0.0024 U	0.0029 U	0.0023	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
Methylene chloride	75-09-2	0.05	51	100	500	1,000	0.0024 U	0.0029 U	0.0023 U	J 0.0021 U.	J 0.0020 U.	0.0018 U.	0.0018 U	U 0.0019 U	JJ 0.0019 U	JJ 0.0024 U	0.0031 U	0.0027 U	0.0026 U
n-Butylbenzene	104-51-8	12	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 l	J 0.0011 U.	J 0.00098 UJ	0.00088 UJ	0.00090 U	J 0.00093 U	JJ 0.00097 U	JJ 0.0012 U	0.0016 U	0.0014 U	0.0013 U
n-Propylbenzene	103-65-1	3.9	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 l	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
o-Xylene	95-47-6	0.26	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 U	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U.	J 0.0016 U	J 0.0014 UJ	0.0013 UJ
p- & m- Xylenes	179601-23-1	0.26	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 U	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U.	J 0.0016 U	J 0.0014 U.	0.0013 UJ
sec-Butylbenzene	135-98-8	11	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 l	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
Styrene	100-42-5						0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
tert-Butylbenzene	98-06-6	5.9	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 U	J 0.0011 U	0.00098 U	0.00088 U	0.00090 L	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
Tetrachloroethylene	127-18-4	1.3	5.5	19	150	300	0.0024 U	0.0029 U	0.0023 l	J 0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 L	U 0.0024 U.	J 0.0031 U	0.0027 U	0.0026 U
Toluene	108-88-3	0.7	100	100	500	1,000	0.0012 U	0.0015 U	0.0011 U	0.0011 U	0.00098 U	0.00088 U	0.00090	J 0.00093 L	U 0.00097 L	U 0.0012 U	0.0016 U	0.0014 U	0.0013 U
trans-1,2-Dichloroethylene	156-60-5	0.19	100	100	500	1,000	0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018 L	J 0.0019 L	U 0.0019 U	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
trans-1,3-Dichloropropylene	10061-02-6						0.0024 U	0.0029 U	0.0023 0	0.0021 U	0.0020 U	0.0018 U	0.0018 L	U.U019 L	U 0.0019 L	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
	/9-01-6	0.47	10	21	200	400	0.0024 U	0.0029 U	0.0023	0.0021 U	0.0020 U	0.0018 U	0.0018 U	0.0019 U	U 0.0019 U	U 0.0024 U	0.0031 U	0.002/ U	0.0026 U
I richlorotiuoromethane	/5-69-4	0.02	0.21		10		0.0024 U	0.0029 U	0.0023	0.0021 U.	0.0020 U	0.0018 U.	0.0018 0	U 0.0019 U	JJ 0.0019 U	U 0.0024 U	0.0031 U	0.0027 U	0.0026 U
	1330-20-7	0.02	100	100	500	1 000	0.0024 U	0.0029 U	0.0023		0.0020 0.	0.0018 U	0.0018 0	0.0019 0		0.0024 U	0.0031 0	0.0027 U	0.0026 U
Aylenes, rotal	1330-20-7	0.20	100	100	500	1,000	0.0012 0	0.0015 0	0.0011 0	0.0011 0	0.00036 0	0.00066 0	0.00030 0	0.00033 0	0.00037 (0.0012 0	0.0010 0	0.0014 0	0.0013 0
L	1							1	1	1	1	1			1	1	1	1	
TABLE 1 SUMMARY OF HISTORICAL SOIL ANALYTICAL RESULTS 1921 Atlantic Avenue Brooklyn, New York

Sample ID:		NYSDEC	C Subpart 375-6 R	Remedial Program	n Soil Cleanup O	bjectives	SB014	DUP001 (SB014)	SB014	SB015	SB015	SB016	SB016	SB017	SB017	SB018	SB019	SB020	SB021
Laboratory Sample Number:		Uprestricted	Protecti	ion of Public Heal	Ith - Restricted U	Jse SCOs	AD02620-007	AD02620-006	AD02620-008	AD02718-001	AD02718-002	AD02718-005	AD02718-006	AD02718-006	AD02718-008	AD03020-001	AD03020-004	AD03020-005	AD03020-006
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	2/14/2018	2/14/2018	2/14/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	3/12/2018	3/12/2018	3/12/2018	3/12/2018
Sample Depth (ft bgs):				Residential		industrial	0-2	0-2	4-6	6-8	18-20	13-15	18-20	8-10	12-14	0-2	0-2	0-2	0-2
Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg ()	mg/kg C	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q	mg/kg Q
1 1'-Binhenvl	92-52-4						0.040 11	0.12	0.037 11	0.041 11	0.037	0.037 11	0.039 11	0.039	0.037 11	0.04 11	0.83	0.21	0.12
1.2.4.5-Tetrachlorobenzene	95-94-3						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2,3,4,6-Tetrachlorophenol	58-90-2						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2,4,5-Trichlorophenol	95-95-4		100				0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2,4,6-Trichlorophenol	88-06-2		-			-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2,4-Dichlorophenol	120-83-2	-	100			-	0.010 U.	0.031 UJ	0.0094 UJ	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.0099 U	0.21 U	0.052 U	0.029 U
2,4-Dimethylphenol	105-67-9						0.010 0	0.031 0	0.0094 0	0.010 U	0.0094 U	0.0094 U	0.0098 0	0.0098 0	0.0093 0	0.0099 0	0.21 U	0.052 U	0.029 U
2.4-Dinitrophenor	121-14-2		100				0.20 0.	0.62 0.3	0.19 03	0.20 0	0.19 0	0.19 0	0.20 0	0.20 0	0.19 0	0.2 0	4.2 U	0.21 11	0.59 0
2.6-Dinitrotoluene	606-20-2		1.03				0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2-Chloronaphthalene	91-58-7						0.040 U.	0.12 UJ	0.037 UJ	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2-Chlorophenol	95-57-8		100			-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
2-Methylnaphthalene	91-57-6		0.41			—	0.040 U.	0.12 UJ	0.037 UJ	0.041 U	0.037 UJ	0.037 U	0.039 U	0.039 U	0.037 U	0.22	1.8 D	0.23 D	0.12 U
2-Methylphenol	95-48-7	0.33	100	100	500	1,000	0.010 U	0.031 U	0.0094 U	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.0099 U	0.21 U	0.052 U	0.029 U
2-Nitrophonol	88-74-4						0.040 U	0.12 U	0.037 U	0.041 U	0.037 UJ	0.037 0	0.039 U	0.039 0	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
3- & 4-Methylphenols	65794-96-9	330	34,000	100.000	500,000	1 000 000	0.040 U	0.12 U	0.0094 U	0.041 U	0.0094 U.I	0.0094 U	0.0098 U	0.0098	0.0093 U	0.04 0	0.21 U	0.052 U	0.029 U
3,3'-Dichlorobenzidine	91-94-1						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
3-Nitroaniline	99-09-2					-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
4-Chloroaniline	106-47-8	-	100			-	0.010 U	0.031 U	0.0094 U	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.0099 U	0.21 U	0.052 U	0.029 U
4,6-Dinitro-2-methylphenol	534-52-1		-			-	0.20 U	0.62 U	0.19 U	0.20 U	0.19 UJ	0.19 U	0.20 U	0.20 U	0.19 U	0.2 UJ	4.2 U	1 UJ	0.59 U
4-Bromophenyl phenyl ether	101-55-3						0.040 U	0.12 U	0.037 UJ	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
4-Chloro-3-methylphenol	59-50-7		_				0.040 0.	0.12 0.3	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
4-Nitroaniline	100-01-6						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
4-Nitrophenol	100-02-7						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Acenaphthene	83-32-9	20	100	100	500	1,000	0.099	0.73 D	0.048	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.4	3.8 D	0.95 D	0.24 D
Acenaphthylene	208-96-8	100	100	100	500	1,000	0.073	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.043	1.5 D	0.66 D	0.21 D
Acetophenone	98-86-2						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.12	0.83 U	0.21 U	0.21 U
Atrazine	1912-24-9				500	1,000	0.21 5	0.12	0.037 11	0.041 U	0.037 0	0.037 U	0.039 0	0.039 0	0.037 U	0.04 11	0.83	0.21	0.12
Benzaldehyde	100-52-7					_	0.040 U	0.12 UJ	0.037 U	0.041 UJ	0.037 UJ	0.037 U	0.039 U	J 0.039 U.	J 0.037 UJ	J 0.04 UJ	0.83 UJ	0.21 UJ	0.12 UJ
Benzo(a)anthracene	56-55-3	1	1	1	5.6	11	0.80	2.4 D	0.32	0.044	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	1.8	24 D	8.7 D	2.2 D
Benzo(a)pyrene	50-32-8	1	1	1	1	1.1	0.81 J	2.2 JD	0.31 J	0.041	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	1.6	20 D	7.2 D	2 D
Benzo(b)fluoranthene	205-99-2	1	1	1	5.6	11	1.2	3.1 D	0.43	0.058	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	2	25 D	9.8 D	2.8 D
Benzo(g,h,i)perylene Benzo(k)fluoranthene	191-24-2	100	100	100	500	1,000	0.54	1.3 D	0.18	0.025	0.0094 U	0.0094 U	0.0098 U	0.0098 0	0.0093 U	0.91	12 D	3.9 D	1 D
Benzyl butyl obthalate	85-68-7		100				0.33	0.12 U	0.13 0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.74	11 D	0.21 U	1.3 D
Bis(2-chloroethoxy)methane	111-91-1		-				0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Bis(2-chloroethyl)ether	111-44-4					-	0.010 U	0.031 U	0.0094 U	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.0099 U	0.21 U	0.052 U	0.029 U
Bis(2-chloroisopropyl)ether	108-60-1		-			-	0.040 U.	0.12 UJ	U 0.037 UJ	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Bis(2-ethylhexyl)phthalate	117-81-7	-	50			-	0.11	0.12 U	0.037 U	0.041 U	0.037 U	0.044	0.039 U	0.039 U	0.037 U	0.79	23 D	1.1 D	0.39 D
Carbozolo	105-60-2						0.040 0	0.12 U	0.037 0	0.041 U	0.037 0	0.037 U	0.039 U	0.039 0	0.037 U	0.081	0.83 0	0.21 U	0.12 0
Chrysene	218-01-9		1	3.9		110	0.13	24 .0	0.33	0.041 0	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	17	2.5 D	89 D	2.3 D
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	0.33	0.56	1.1	0.14	0.38 D	0.052	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.26	3.9 D	1.3 D	0.33 D
Dibenzofuran	132-64-9	7	14	59	350	1,000	0.051 J	0.32 JD	0.034 J	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.21	2.4 D	0.58 D	0.12 D
Diethyl phthalate	84-66-2		100			-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Dimethyl phthalate	131-11-3		100			-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Di-n-butyl phthalate	84-74-2		100			_	0.010 U	0.031 U	0.0094 U	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.048	6.4 D	0.052 U	0.0/1 D
Eluoranthene	206-44-0	100	100	100	500	1 000	1.9	60 D	0.037 0	0.041 0	0.037 0	0.037 U	0.039 0	0.039 0	0.037 U	3.7	46 D	17 D	4.2 D
Fluorene	86-73-7	30	100	100	500	1,000	0.085	0.54 D	0.040	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.28	4.4 D	0.93 D	0.22 D
Hexachlorobenzene	118-74-1	0.33	0.33	1.2	6	12	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Hexachlorobutadiene	87-68-3					-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Hexachlorocyclopentadiene	77-47-4						0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 UJ	0.83 UJ	0.21 UJ	0.12 UJ
Hexachloroethane	67-72-1		-				0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Indeno(1,2,3-cd)pyrene	78-59-1	0.5	0.5	0.5	3.0		0.49	0.12 U	0.17	0.041 U	0.037 U	0.037 U	0.039 U	0.039 0	0.037 U	0.85	0.83	3.8 D	0.12
Naphthalene	91-20-3	12	100	100	500	1,000	0.040	0.17	0.021	0.010	0.0094 11	0.0094 11	0.0098 11	0.0098	0.0093	0.17	2.1 D	0.37 D	0.21 D
Nitrobenzene	98-95-3		3.7	15	69	140	0.040 U	0.12 U	0.037 U	0.041 U	0.037 UJ	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 UJ	0.12 U
N-nitroso-di-n-propylamine	621-64-7		-				0.010 U	0.031 U	0.0094 U	0.010 U	0.0094 U	0.0094 U	0.0098 U	0.0098 U	0.0093 U	0.0099 U	0.21 U	0.052 U	0.029 U
N-Nitrosodiphenylamine	86-30-6	-	-			-	0.040 U	0.12 U	0.037 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.04 U	0.83 U	0.21 U	0.12 U
Pentachlorophenol	87-86-5	0.8	2.4	6.7	6.7	55	0.20 U	0.62 U	0.19 U	0.041 U	0.037 U	0.037 U	0.039 U	0.039 U	0.037 U	0.2 U	4.2 UJ	1 U	0.59 UJ
Phonol	85-01-8	100	100	100	500	1,000	1.3	5.6 D	0.43	0.054	0.037 U	0.03/ U	0.039 U	0.039 U	0.03/ U	3.4	43 D	14 D	2.9 D
Pyrene	129-00-0	100	100	100	500	1,000	0.040 U 1 7	51 D	0.037 0	0.041 0	0.037 U	0.037 U	0.039 0	0.039 0	0.037 U	0.04 U 3.5	46	16	41
,	000					.,			0.02	0.000	0.007	0.007	0.000 0	0.000 0	0.007	0.0			0

TABLE 1 SUMMARY OF HISTORICAL SOIL ANALYTICAL RESULTS 1921 Atlantic Avenue Brooklyn, New York

Sample ID:		NYSDE	C Subpart 375-6	Remedial Program	n Soil Cleanup Ol	bjectives	SB014	DUP001 (SB014)	SB014	SB015	SB015	SB016	SB016	SB017	SB017	SB018	SB019	SB020	SB021
Laboratory Sample Number:		Unrestricted	Protect	tion of Public Hea	Ith - Restricted U	se SCOs	AD02620-007	AD02620-006	AD02620-008	AD02718-001	AD02718-002	AD02718-005	AD02718-006	AD02718-006	AD02718-008	AD03020-001	AD03020-004	AD03020-005	AD03020-006
Sample Date:	CAS Number	Use	Residential	Restricted-	Commercial	Industrial	2/14/2018	2/14/2018	2/14/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	2/19/2018	3/12/2018	3/12/2018	3/12/2018	3/12/2018
Sample Depth (ft bgs):		ma llea	ma (ka	Residential	ma (ka	ma llun	0-2	0-2	4-6	6-8	18-20	13-15	18-20	8-10	12-14	0-2	0-2	0-2	0-2
Herbicides, NJDEP/TCL/Part 375 List		iiig/kg	iiig/kg	iiig/kg	iiig/kg	iiig/kg	ilig/kg C2	iiig/kg C2	ilig/kg Q	iiig/kg Q	iiig/kg C	2 Hig/kg C	2 mg/kg C	2 111g/kg (i iiig/kg Q	ilig/kg Q	ilig/kg Q
2,4,5-T	93-76-5		100				0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.011 U	J 0.012 L	J 0.012 U	U 0.011 U	U 0.012 U	0.013 U	0.013 U	0.012 U
2,4,5-TP (Silvex)	93-72-1	3.8	58	100	500	1,000	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.011 U	J 0.012 L	J 0.012 U	U 0.011 U	U 0.012 U	0.013 U	0.013 U	0.012 U
2,4-D	94-75-7		100				0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.011 U	J 0.012 L	J 0.012 U	U 0.011 l	U 0.012 U	0.013 U	0.013 U	0.012 U
Dicamba	1918-00-9		-		-		0.012 UJ	0.012 UJ	U 0.011 UJ	J 0.012 U.	J 0.011 U.	J 0.011 U.	J 0.012 U	U 0.012 U	JJ 0.011 L	JJ 0.012 U.	J 0.013 UJ	0.013 UJ	0.012 UJ
Pasticidas EPA TCL List																			
4 4'-DDD	72-54-8	0.0033	2.6	13	92	180	0.0030 U	0.0031 U	0.0028 U	0.0030 U	0.0028 U	0.0028 U	J 0.0029 L	0.0029	U 0.0028 U	U 0.003 U	0.19 JD	0.0031 U	0.29 U
4,4'-DDE	72-55-9	0.0033	1.8	8.9	62	120	0.013	0.017	0.0028 U	0.0030 U	0.0028 U	0.0028 U	J 0.0029 L	J 0.0029	U 0.0028 U	U 0.012 J	0.38 D	0.065	0.29 U
4,4'-DDT	50-29-3	0.0033	1.7	7.9	47	94	0.012 J	0.025	0.0028 U	0.0030 U	0.0028 U	0.0028 U	J 0.0029 L	J 0.0029 I	U 0.0028 U	0.084	2.3 D	0.21	0.29 U
Aldrin	309-00-2	0.005	0.019	0.097	0.68	1.4	0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	0.0059 L	J 0.0059 U	U 0.0056 U	U 0.006 U	0.13 U	0.0063 U	0.59 U
alpha-BHC	319-84-6	0.02	0.097	0.48	3.4	6.8	0.0012 U	0.0013 U	0.0011 U	0.0012 U	0.0011 U	0.0011 U	0.0012	0.0012	U 0.0011 U	U 0.0012 U	0.025 U	0.0013 U	0.12 U
apna-Chiordane	210 95 7	0.094	0.91	4.2	24	47	0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 0	0.0059	0.0059		U 0.0065 J	0.3 JL	0.017 J	0.12 UU
Chlordane, total	57-74-9	0.030	0.072	0.30	-		0.0012 U	0.0013 U	0.0056 U	0.0012 U	0.0056 U	0.0056	0.0012 0	0.0012	U 0.0056 U	0.0012 0	0.69 D	0.0013 0	24 D
delta-BHC	319-86-8	0.04	100	100	500	1,000	0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	0.0059 L	J 0.0059	U 0.0056 U	U 0.006 U	0.13 U	0.0063 U	0.59 U
Dieldrin	60-57-1	0.005	0.039	0.2	1.4	2.8	0.0012 U	0.0013 U	0.0011 U	0.0012 U	0.0011 U	0.0011 U	J 0.0012 L	J 0.0012 U	U 0.0011 l	U 0.0012 U	0.025 U	0.012 J	0.12 U
Endosulfan I	959-98-8	2.4	4.8	24	200	920	0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	J 0.0059 L	J 0.0059 U	U 0.0056 U	U 0.006 U	0.13 U	0.0063 U	0.59 U
Endosulfan II	33213-65-9	2.4	4.8	24	200		0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	0.0059 L	0.0059	U 0.0056 l	U 0.006 U	0.13 U	0.0063 U	0.59 U
Endosuitan suitate	72 20 0	2.4	4.8	24	200	920	0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U			0.0059			0.13 U	0.0063 U	0.59 U
Endrin aldehvde	7421-93-4	0.014	2.2				0.0060 UJ	0.0063 U	0.0056 UJ	0.0061 U	0.0056	0.0056	0.0059	J 0.0059 I	U 0.0056 U	0.006 0	0.13 U	0.0063 11	0.59 00
Endrin ketone	53494-70-5						0.0060 UJ	0.0063 UJ	0.0056 UJ	J 0.0061 U	0.0056 U	0.0056 U	J 0.0059 L	J 0.0059 I	U 0.0056 U	U 0.006 U	0.13 U.	0.0063 U	0.59 UJ
gamma-BHC (Lindane)	58-89-9	0.1	0.28	1.3	9.2	23	0.0012 U	0.0013 U	0.0011 U	0.0012 U	0.0011 U	0.0011 U	J 0.0012 L	J 0.0012 U	U 0.0011 U	U 0.0012 U	0.025 U	0.0013 U	0.12 U
gamma-Chlordane	5566-34-7		-				0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	J 0.0059 L	J 0.0059 U	U 0.0056 l	U 0.0094	0.39 D	0.027	13 D
Heptachlor	76-44-8		0.42	2.1	15	29	0.0060 UJ	0.0063 UJ	0.0056 UJ	J 0.0061 U	0.0056 U	0.0056 U	J 0.0059 L	J 0.0059 U	U 0.0056 U	U 0.006 U	0.13 U	0.0063 U	0.59 U
Heptachlor epoxide	1024-57-3		0.077				0.0060 U	0.0063 U	0.0056 U	0.0061 U	0.0056 U	0.0056 U	0.0059	0.0059	U 0.0056 U	U 0.006 U	0.13 U	0.0063 U	0.59 U
Toxanbene	8001-35-2		100				0.0060 03	0.0083 00	0.0056 0.0	0.0001 0	0.0056 0	0.0056 0	0.0059	0.0059			0.13 0.	0.031	2.9 11
roxupiterte	0001 00 2						0.000 0	0.001 0	0.020 0	0.000 0	0.020 0	0.020 0	0.020	0.020	0.020	0.00 0	0.00 0	0.001 0	2.0 0
PCBs, EPA TCL List																			
Aroclor 1016	12674-11-2	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	J 0.029 L	J 0.029 I	U 0.028 l	U 0.03 U	0.031 U	0.031 U	0.029 U
Aroclor 1221	11104-28-2	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	J 0.029 L	J 0.029	U 0.028 l	U 0.03 U	0.031 U	0.031 U	0.029 U
Aroclor 1232	11141-16-5	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028	0.029	0.029	U 0.028 U	U 0.03 U	0.031 U	0.031 U	0.029 U
Aroclor 1242 Aroclor 1248	12672-29-6	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 0	0.028 U	0.028 0	0.029	0.029	0 0.028 0		0.031 U	0.031 U	0.029 0
Aroclor 1254	11097-69-1	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	0.029	J 0.029	U 0.028 U	U 0.03 U	0.79	0.42	0.029 U
Aroclor 1260	11096-82-5	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	J 0.029 L	J 0.029 U	U 0.028 l	U 0.03 U	0.031 U	0.031 U	0.029 U
Aroclor 1262	37324-23-5	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	J 0.029 L	J 0.029 I	U 0.028 l	U 0.03 U	0.031 U	0.031 U	0.029 U
Aroclor 1268	11100-14-4	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 U	0.028 U	J 0.029 L	J 0.029 U	U 0.028 U	U 0.03 U	0.031 U	0.031 U	0.029 U
Total PCBs	1336-36-3	0.1	1	1	1	25	0.030 U	0.031 U	0.028 U	0.030 U	0.028 0	0.028 0	0.029 0	0.029	0 0.028 0	0.03 0	0.79	0.42	0.029 U
Metals Target Analyte																			
Aluminum	7429-90-5						5,200	5,900	4,600	13,000 J	7,000 J	11,000 J	12,000	J 8,100	J 4,800 .	J 5,600	13,000	3,200	4,100
Antimony	7440-36-0		-				0.96 U	1.0 U	0.90 U	0.98 U.	J 0.90 U.	J 0.90 U.	J 0.94 U	J 0.94 L	JJ 0.89 L	JJ 0.95 U.	J 1 U.	1 UJ	0.94 UJ
Arsenic	7440-38-2	13	16	16	16	16	8.5	13	4.5	5.8 J	1.5 J	1.7 J	3.0	J 1.9 .	J 1.2 .	J 4.6 J	5.8 J	4.7 J	4.4 J
Barium	7440-39-3	350	350	400	400	10,000	190	220	47	64 J	47 J	66 J	65	J 51	J 28 .	J 330 J	1,600 J	440 J	320 J
Beryllium	/440-41-7	7.2	14	72	590	2,700	0.27	0.30	0.34	0.56 J	0.34 J	0.34 J	0.29	0.36	J 0.27	J 0.24	0.34	0.28	0.3
Calcium	7440-43-9	2.5	2.5	4.3	9.5		0.48 U	1.700	1.100	0.49 U	1.400	2,300	4,200	1,200	1,200	20,000	160,000 IF	5.600 I	1.∠ J 87.000 I
Chromium	7440-47-3	30	36	180	1500	6,800	13	16	15	260	24	38	41	28	20	24	36	14	13
Chromium, Hexavalent	18540-29-9	1	22	110	400	800	1.2 U	1.2 U	1.1 U	1.2 U.	J 1.1 U.	J 1.1 U.	J 1.2 U	U 1.2 L	JJ 1.1 L	JJ 1.2 U	1.2 U	1.2 U	1.2 U
Chromium, Trivalent	16065-83-1	30	36	180	1500	6,800	13	16	15	260	24	38	41	28	20	24	36	14	13
Cobalt	7440-48-4		30		-	—	4.6	5.0	5.3	11	10	11	19	10	7.8	6.6	12	3.1 U	4.5
Copper	7440-50-8	50	270	270	270		59	58	20	26	18	22	35	21	16	59 J	71 J	59 J	64 J
l ead	7439-09-0	63	400	400	1,000	3 900	430	560	69	28	9.5	11	1/1	10	56	660 J	7 500 J	680	590 J
Magnesium	7439-95-4						1,300	1,300	1,200	2,800 J	2,600 J	5,500 J	4,600	2,900	J 2,100	J 2,900 J	29,000 J	1,700 J	1,700 J
Manganese	7439-96-5	1,600	2,000	2,000	10,000	10,000	280	280	400	390 J	490 J	660 J	690	J 940	J 380 .	J 300 J	1,900 J	170 J	260 J
Mercury	7439-97-6	0.18	0.81	0.81	2.8	5.7	0.8	0.76	0.18	0.1 U	0.094 U	0.094 U	J 0.098 L	J 0.098 I	U 0.093 U	0.32	0.9	0.6	0.57
Nickel	7440-02-0	30	140	310	310	10,000	9.5	10	9.1	21	16	23	28	19	13	17	22	10	12
Potassium	7440-09-7	-	-		-	-	730	670	580	960	1,300	2,400	1,500	1,200	850	710	1,600	620 U	590 U
Selenium	//82-49-2	3.9	36	180	1,500	6,800	2.4 U	2.5 U	2.2 U	2.4 U.		J 2.2 U	J 2.4 U	U 2.4 U	JJ 2.2 L	JJ 2.4 U	2.5 U	2.5 U	2.4 U
Sodium	7440-22-4	2		100	1,500	0,800	350	380	390	300 11	750	420	350	290 1	U 280 I	300 11	760	310 U	290 11
Thallium	7440-28-0						0.48 U	0.50 U	0.45 U	0.49 U	0.45 U	0.45 U	J 0.47 L	J 0.47	U 0.44 U	U 0.48 U	0.5 U	0.5 U	0.47 U
Vanadium	7440-62-2		100				27	31	22	53	44	58	50	61	33	23	43	15	21
Zinc	7440-66-6	109	2,200	10,000	10,000	10,000	150	170	84	52 J	46 J	56 J	59 .	J 61 .	J 35 .	J 2,700	5,600	440	400
General Chemistry	E7 10 F	07	07	07	07	10,000	0.20	0.20	0.07	0.20	0.07	0.07	0.00	0.00	0.07	0.77	0.07	0.2	0.00
Cyaniue, lotai	07-12-0	27	27	27	27	10,000	0.29 U	0.30 0	U.2/ U	0.29 U	U.27 U	U.27 U	υ.28 Ι	U.28 U	u U.27 l	0.//	0.37	U.3 U	U.∠d U

Notes: Soil Cleanup Objectives are taken from the NYSDEC Subpart 375-6 Remedial Program SCOs (Revised Brownfields) criteria are from the NYSDEC Soil Cleanup Objective Tables 375-6.8(a ft bgs - feet below ground surface ---: Criteria not established for the analyte

NA: Not analyzed

U: The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination. J: The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. D: Compound analyzed at a secondary dilution factor.

B: analyte found in the analysis batch blank

*: Analytic realistic realistic balance compounds are reported by the laboratory as both VOCs and SVOCs. NYSDEC only provides SCOs for these compounds as VOCs; therefore, the SVOC and Total Chromium is compared to the Trivalent Chromium SCOs for screening purposes.

Italicized results indicate Reporting Limits (RL) greater than or equal to the most stringent criteria.

TABLE 2 SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS 1921 ATLANTIC AVENUE BROOKLYN, NEW YORK

Sample ID: Laboratory Sample Number:	CAS Number	TOGS 1.1.1	Part 703	Ground Water Quality	MW001 AD01573-001/-008	MW002 AD01573-002/-00	DUP (MW002) 9 AD01573-005/-01	MW003 2 AD01714-001/-003	MW004 2 AD01714-003/-004
Sampling Date: Units:		ug/L	ug/L	Standards' ug/L	12/6/2017 ug/L Q	12/6/2017 ug/L C	12/6/2017 ug/L Q	12/13/2017 ug/L Q	12/13/2017 ug/L Q
Volatile Organic Compounds (VOCs) 1,1-Dichloroethane	75-34-3	5	5	5	1 U	1 U	1 U	1 UJ	1 U
1,1-Dichloroethene 1,1,1-Trichloroethane	75-35-4 71-55-6	5 5	5 5	5 5	1 U 1 U	1 U 1 U	1 U 1 U	1 UJ 1 UJ	1 U 1 U
1,1,2-Trichloroethane	79-00-5 79-34-5	1	1	1	1 U	1 U	1 U	1 U	1 U
1,2,2-Dichlorobenzene	95-50-1 107.06.2	3	3	3	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane 1,2-Dichloroethene (cis)	156-59-2	0.6	0.6 5	0.6 5	0.5 U 1 U	0.5 U	0.5 U 1 U	0.5 U 1 UJ	0.5 U 1 U
1,2-Dichloroethene (trans) 1,2-Dichloropropane	156-60-5 78-87-5	5 1	5 1	5 1	1 U 1 U	1 U 1 U	1 U 1 U	1 UJ 1 U	1 U 1 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	96-12-8 106-93-4	0.04 0.0006	0.04 0.0006	0.04 0.0006	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2,3-Trichlorobenzene 1,2,2-Trifluorethane (113 Freon)	87-61-6 76-13-1	5	5	5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2,4-Trichlorobenzene	120-82-1	5	5	5	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	108-67-8	5	5	5	1 U	1 U	1 U	1 U	1 U
1,3-Dichloropropene (cis) 1,3-Dichloropropene (trans)	10061-01-5 10061-02-6		0.4 0.4	0.4 0.4	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	3 3	3 3	3 3	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,4-Dioxane 2-Butanone	123-91-1 78-93-3	 50		 50	50 U 1 U	50 U 1 U	50 U 1 U	50 UJ 1 U	50 U 1 U
Acetone	67-64-1	50		50	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	74-97-5	5	5	5	1 U	1 U	1 U	1 U	1 U
Bromodicniorometnane Bromoform	75-27-4	50 50		50 50	1 U	1 U	1 U	1 UJ	1 U
Bromomethane n-Butylbenzene	74-83-9 104-51-8	5 5	5 5	5 5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Carbon Disulfide Carbon tetrachloride	75-15-0 56-23-5	 5	60 5	60 5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Chlorobenzene	108-90-7	5	5	5	1 U	1 U	1 U	1 U	1 U
Chloroform	67-66-3	7	7	7	1 U	2.6	3	3	1 U
Crilorometnane Cyclohexane	19961-13-8 110-82-7			-	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Dibromochloromethane Dichlorodifluoromethane	124-48-1 75-71-8	50 5	 5	50 5	1 U 1 U	1 U	1 U 1 II	1 U 1 II	1 U 1 U
Ethylbenzene Ethylene Dibromide	100-41-4	5	5	5	1 U	1 U	1 U	1 U	1 U 1 //
2-Hexanone	591-78-6	50		50	1 U		1 U	1 U	1 U
Nethyl acetate	98-82-8 79-20-9	5 	ь —	5	1 U	1 U	1 U 1 U	1 U	1 U 1 U
Methyl ethyl ketone (MEK / 2-butanone) Methyl tert-butyl ether	78-93-3 1634-04-4	50 		50 10	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U	1 U 0.5 U
Methylene chloride Methylcyclohexane	75-09-2 108-87-2	5	5	5	1 U 1 U	1 U 1 U	1 U 1 U	1 UJ 1 U	1 U 1 U
4-Methyl-2-Pentanone	108-10-1				1 U	1 U	1 U	1 U	1 U
Propylbenzene-n	103-65-1	5	5	5	1 U	1 U	1 U	1 U	1 U
Styrene	100-42-5	5	5	5	1 U	1 U	1 U	1 U	1 U
Tert-Butylbenzene Tetrachloroethene	98-06-6 127-18-4	5 5	5 5	5 5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Toluene Trichloroethene	108-88-3 79-01-6	5 5	5 5	5 5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
Trichlorofluoromethane (Freon 11) Vinvl Chloride	75-69-4 75-01-4	5 2	5 2	5	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1,2-Xylene (o-Xylene)	95-47-6 170601-22-1	5	5	5	1 U	1 U	1 U	1 U	1 U
Xylene (mixed)	1330-20-7	5	5	5	1 U	1 U	1 U	1 U	1 U
Semi-Volatile Organic Compounds (SVOCs)									
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	92-52-4 12408-10-5	5 5	5 5	5 5	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
2-Chloronaphthalene 2-Chlorophenol	91-58-7 95-57-8	10		10	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 UJ	2 U 2 U
2-Methylnaphthalene	91-57-6 95-48-7				2 U	2 U	2 U	2 U	2 U
2-Nitroaniline	88-74-4	5	5	5	2 U	2 U	2 U	2 U	2 U
2,3,4,6-Tetrachlorophenol	88-75-5 58-90-2				2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
2,4-Dichlorophenol 2,4-Dimethylphenol	120-83-2 105-67-9	1 1	1 1	1 1	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U 0.5 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	51-28-5 121-14-2	1 5	1 5	1 5	10 U 2 U	10 U 2 U	10 U 2 U	10 U 2 U	10 U 2 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2				2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
2,6-Dinitrotoluene 2.Nitroppilipe	606-20-2 99.09.2	5	5	5	2 U	2 U	2 U	2 U	2 U 2 U
3,3'-Dichlorobenzidine	91-94-1	5	5	5	2 U	2 U	2 U	2 U	2 U
3- & 4-Methylphenols 4-Bromophenyl phenyl ether	65794-96-9 101-55-3			1	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U	0.5 U 2 U
4-Chloro-3-methylphenol 4-Chloroaniline	59-50-7 106-47-8	 5	 5		2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U
4-Chlorophenyl phenyl ether 4-Nitroaniline	7005-72-3 100-01-6	 5	 5		2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
4-Nitrophenol 4,6-Dinitro-2-methylphenol	100-02-7 534-52-1			1	2 U 10 II	2 U 10 U	2 U 10 II	2 U 10 II	2 U 10 II
Acenaphthene	83-32-9	20		20	2 U	2 U	2 U	2 U	2 U
Acetophenone	98-86-2				2 U		2 U	2 U	2 U
Anthracene	120-12-7	7.5 50	7.5 	50	2 U 2 U		2 U 2 U	2 U	2 U 2 U
Benzalaenyae Benzo(a)anthracene	100-52-7 56-55-3	0.002		0.002	2 U 2 U	2 0	2 U 2 U	2 UJ 2 U	2 U 2 U
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	ND 0.002	ND 	ND 0.002	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	191-24-2 207-08-9	0.002		0.002	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Bis(2-chloroethoxy)methane bis(2-Chloroethyl)ether	111-91-1 111-44-4	5 1	5	5	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 UJ	2 U 0.5 U
Bis(2-chloroisopropyl)ether	39638-32-9				2 U	2 U	2 U	2 U	2 U
4-Bromophenyl phenyl ether	101-55-3				2 U	2 U	2 U	2 U	2 U 2 U
Butyl benzyl phthalate Caprolactam	85-68-7 105-60-2	50 		50 	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Carbazole 4-Chlorophenyl phenyl ether	86-74-8 7005-72-3			-	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Chrysene Dibenzo(a,h)anthracene	218-01-9 53-70-3	0.002		0.002	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	 50			0.5 U 2 II	0.5 U	0.5 U 2 II	0.5 U 2 II	0.5 U 2 II
Dimethyl phthalate	131-11-3 84-74-2	50		50	2 U	2 U	2 U	2 U	2 U
Di-n-octyl phthalate	117-84-0	50		50	2 U	2 U	2 U	2 U	2 U
Fluoranthene	206-44-0 86-73-7	50 50		50 50	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U
Hexachlorobenzene Hexachlorobutadiene	118-74-1 87-68-3	0.04 0.5	0.04 0.5	0.04 0.5	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 UJ	2 U 2 U
Hexachlorocyclopentadiene Hexachloroethane	77-47-4 67-72-1	5 5	5 5	5 5	10 U 2 U	10 U 2 U	2 U 2 II	10 UJ 2 II	10 U 2 U
Indeno(1,2,3-cd)pyrene	193-39-5 78-50 1	0.002	-	0.002	2 U	2 0	2 U	2 U	2 U 2 U
Naphthalene	91-20-3	10		10	2 U 0.5 U	0.5 U	2 U 0.5 U	2 UJ 0.5 U	∠ U 0.5 U
Nurobenzene N-nitroso-di-n-propylamine	98-95-3 621-64-7	0.4	0.4	0.4	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 UJ 0.5 U	2 U 0.5 U
n-Nitrosodiphenylamine o-Cresol(s) (2-Methylphenol)	86-30-6 95-48-7	50 	_	50 1	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U	2 U 0.5 U
Pentachlorophenol Phenanthrene	87-86-5 85-01-8	1 50	1	1 50	10 U 2 U	10 U 2 U	10 U 2 II	10 U 2 II	10 U 2 U
Phenol (total) Pyrene	108-95-2 129-00-0	1 50	1	1 50	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U	2 U 2 U

TABLE 2 SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL RESULTS 1921 ATLANTIC AVENUE BROOKLYN, NEW YORK

Sample ID:				Ground Water	MW001	MW002	DUP (MW002)	MW003	MW004
Laboratory Sample Number:	CAS Number	TOGS 1.1.1	Part 703	Quality	AD01573-001/-008	AD01573-002/-009	AD01573-005/-01	2 AD01714-001/-002	AD01714-003/-004
Sampling Date: Units:		ua/l	ug/l	Standards'	12/6/2017 ug/L 0	12/6/2017 ug/l 0	12/6/2017 ug/l 0	12/13/2017 ug/l 0	12/13/2017 ug/l 0
onno.									
Pesticides									
	/2-55-9	0.2	0.2	0.2	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
4 4'-DDD	72-54-8	0.2	0.2	0.2	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Aldrin	309-00-2	ND	ND	ND	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Alpha-BHC	319-84-6	0.01	0.01	0.01	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
alpha-Chlordane	5103-71-9				0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Beta-BHC	319-85-7	0.04	0.04	0.04	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
	57-74-9	0.05	0.05	0.05	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Dieldrin	319-86-8	0.04	0.04	0.04	0.01 0	0.01 0	0.01 0	0.011 U	0.011 U
Endosulfan I	959-98-8	0.004	0.004	0.004	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Endosulfan II	33213-65-9				0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Endosulfan Sulfate	1031-07-8				0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Endrin	72-20-8	ND	ND	ND	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Endrin aldehyde	7421-93-4	5	5	5	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Endrin ketone	53494-70-5	5	5	5	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
gamma-Chlordane	5566-34-7	0.05	0.05	0.05	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Heptachlor	76-44-8	0.04	0.04	0.04	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Heptachlor epoxide	1024-57-3	0.03	0.03	0.03	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Methoxychlor	72-43-5	35	35	35	0.01 U	0.01 U	0.01 U	0.011 U	0.011 U
Toxaphene	8001-35-2	0.06	0.06	0.06	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Polyphorinatod historyda (PCP-)									
Pcb-1016 (Araclar 1016)	12674-11-2	0.09	0.09	0.09	0.25 11	0.25 11	0.25 11	0.26 11	0.26 11
Pcb-1221 (Aroclor 1221)	11104-28-2	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Pcb-1232 (Aroclor 1232)	11141-16-5	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Pcb-1242 (Aroclor 1242)	53469-21-9	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Pcb-1248 (Aroclor 1248)	12672-29-6	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Pcb-1254 (Aroclor 1254) Pcb-1260 (Aroclor 1260)	11097-69-1	0.09	0.09	0.09	0.25 0	0.25 0	0.25 0	0.26 U	0.26 U
Pcb-1260 (Aroclor 1260)	37324-23-5	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Pcb-1268 (Aroclor 1268)	11100-14-4	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Total PCBs	1336-36-3	0.09	0.09	0.09	0.25 U	0.25 U	0.25 U	0.26 U	0.26 U
Herbicides	92 76 5	25	25	25	0.56 11	0.5 11	0.5 11	0.5 11	0.5 11
2,4,5 ⁻¹ 2 4-D	94-75-7	50	50	50	0.56 U	0.5 U	0.5 U	0.5 U	0.5 U
2,4,5,-TP (Silvex)	93-72-1	0.26	0.26	0.26	0.56 U	0.5 U	0.5 U	0.5 U	0.5 U
Dicamba	1918-00-9				0.56 U	0.5 U	0.5 U	0.5 U	0.5 U
RA . (.).									
Nietais	7/29-90-5				200 11	220	200 11	230	200 11
Antimony	7429-30-5	3	3	3	3 1/	3 11	3 1/	3 1/	3 11
Arsenic	7440-38-2	25	25	25	2 U	2 U	2 U	2 U	2 U
Barium	7440-39-3	1,000	1,000	1,000	78	75	78	50 U	92
Beryllium	7440-41-7	3		3	1 U	1 U	1 U	1 U	1 U
Cadmium	7440-43-9	5	5	5	2 U	2 U	2 U	2 U	2 U
	7440-70-2				100,000	110,000	120,000	85,000	170,000
Chromium Chromium Hovevelent	/440-47-3	50 E0	50	50 E0	50 0	50 U	50 U	25 11	25 11
Chromium, Trivalent	16065-83-1				50 U	50 U	50 U	50 U	50 U
Cobalt	7440-48-4			-	2 U	2 U	2 U	2 U	2 U
Copper	7440-50-8	200	200	200	50 U	50 U	50 U	50 U	50 U
Cyanide	57-12-5	200	200	200	20 U	20 U	20 U	21	20 U
Iron	7439-89-6	300	300	300	300 U	310	300 U	300 U	300 U
Iron and Manganese	7493-89-0/7439-90-5	25	25	25	3 11	3 11	3 11	3 11	300 0
Magnesium	7439-95-4	35.000		35.000	38,000	49,000	51,000	40,000	77,000
Manganese	7439-96-5	300	300	300	110	570	600	130	40 U
Mercury (elemental)	7439-97-6	0.7	0.7	0.7	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
	7440-02-0	100	100	100	50 U	50 U	50 U	50 U	50 U
Fotassium Selenium	/440-09-/ 7722_10 2				10 U	5,200 10 II	10 11	3,000 U 10 II	5,000 U 10 II
Silver	7440-22-4	50	50	50	20 U	20 U	20 U	20 U	20 U
Sodium	7440-23-5	20,000	20,000	20,000	170,000	110,000	120,000	180,000	170,000
Thallium	7440-28-0	0.5		0.5	2 U	2 U	2 U	2 U	2 U
Vanadium	7440-62-2	-		-	50 U	50 U	50 U	50 U	50 U
ZING	/440-66-6	2,000	_	2,000	50 0	50 U	50 U	50 U	50 U
Dissolved Metals									
Aluminum	7429-90-5				200 U	200 U	200 U	200 U	200 U
Antimony	7440-36-0	3	3	3	3 0	3 0	3 0	3 0	3 U 2 II
Barium	7440-38-2 7440-39-3	25	25	1 000	∠ 0 72	2 U 70	∠ U 70	U 50	∠ U 95
Beryllium	7440-41-7	3		3	1 U	1 U	1 U	1 U	1 U
Cadmium	7440-43-9	5	5	5	2 U	2 U	2 U	2 U	2 U
Calcium	7440-70-2			-	96,000	110,000	110,000	87,000	180,000
Chromium	7440-47-3	50	50	50	50 U	50 U	50 U	50 U	50 U
Copper	7440-48-4 7/10-50 P		200		2 U 50 U	2 U	2 U	2 U	2 U 50 U
Iron	7439-89-6	300	300	300	300 11	300 0	300 11	300 11	300 11
Iron and Manganese	7493-89-6/7439-96-5	500	500	500	92	540	540	130	300 U
Lead	7439-92-1	25	25	25	<u> </u>	<u>3</u> U	<u>3</u> U	<u>3</u> U	3 U
Magnesium	7439-95-4	35,000		35,000	36,000	48,000	48,000	40,000	79,000
Manganese	7439-96-5	300	300	300	92	540	540	130	40 U
Iviercury (elemental)	7439-97-6	0.7	0.7	0.7	0.5 U	U.5 U	0.5 U	0.5 U	0.5 U 50 U
Potassium	7440-02-0				5.000 11	5.200	5.200	5.000 11	5.000 11
Selenium	7782-49-2	10	10	10	10 U	10 U	10 U	10 U	10 U
Silver	7440-22-4	50	50	50	20 U	20 U	20 U	20 U	20 U
Sodium	7440-23-5	20,000	20,000	20,000	170,000	110,000	120,000	180,000	170,000
l hallium Vanadium	7440-28-0	0.5		0.5	2 U	2 U	2 U	2 U	2 U
Zinc	7440-66-6	2,000		2,000	50 U	50 U	50 U	50 U	50 U

NOTES:

1. DEC establishes water quality standards and other criteria for many specific substances and are found in NYS regulation 6 NYCRR Part 703.5 (current through February 15, 2016). In the absence of established water quality standards, numeric guidance values are derived and compiled in Division of Water guidance (TOGS 1.1.1) (updated June 2004). Ambient standards and guidance values are

supported by technical documents called "Fact Sheets" that are also available upon request from the NYSDEC.

http://www.dec.ny.gov/chemical/23853.html http://www.dec.ny.gov/regulations/2652.html

ug/L: micrograms per liter Exceedances of regulatory criteria are highlighted and **bold**. *Italicized* results indicate the Reporting Limit (RL) is greater than or equal to the most stringent criteria. --: Indicates that no regulatory limit has been established for this analyte NA: Compound not analyzed

Q is the Qualifier Column with definitions as follows:

D: Result is from an analysis that required a dilution J: Analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U: Analyte not detected at or above the level indicated

TABLE 3 SUMMARY OF HISTORICAL SOIL VAPOR ANALYTICAL RESULTS 1921 Atlantic Avenue Brooklyn, New York

Sample ID Lab Sample ID Sample Date	CAS Number	SV001 JC56957 12/6/201	-1 7	SV002 JC56957 12/6/201	7-2 17	SV003 JC56957 12/6/201	3 7-3 17	SV004 JC56957 12/6/201	'-4 17	SV005 JC56957-9 12/6/2017	5,	SV006 JC56957- 12/6/201	-6 7	SV007 JC61196 2/19/201	-1 8	SV008 JC61196 2/19/201	3-2 18
Sample Depth (ft bgs)		5	0	5	0	5	~	5	0	5	~	5	~	5	0	5	0
Volatile Organic Compounds (VOCs)		ug/m3	Q	ug/m3	Q	ug/m3	U	ug/m3	Q	ug/m3	Q	ug/m3	Q	ug/m3	Q	ug/m3	<u> </u>
1,1-Dichloroethane	75-34-3	0.13	U	0.13	U	0.13	U	0.45	U	0.13	U	0.53	U	0.13	U	0.13	U
1,1-Dichloroethylene	75-35-4	0.13	U	0.13	U	0.13	U	0.44	U	0.13	U	0.52	U	0.13	U	0.13	U
1,1,1-Trichloroethane	71-55-6	0.09	U	0.09	U	0.09	U	0.3	U	0.09	U	0.37	U	0.093	U	0.093	U
1,1,2,2-Tetrachloroethane	79-34-5	0.25	U	0.25	U	0.25	U	0.82	U	0.25	U	0.96	U	0.25	U	0.25	U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	76-13-1	0.18	U	0.18	U	0.18	U	0.59	U	0.18	U	0.74	U	0.18	U	0.18	U
1,1,2-I richloroethane	/9-00-5	0.12	U	0.12	U	0.12	U	0.39	U	0.12	U	0.48	U	0.12	U	0.12	U
1,2,4-Trichlorobenzene	120-82-1	0.28	U	0.28	0	0.28	0	0.89	U	0.28	U	1.11	U	0.28	U	0.28	U
1,2,4-mmethylbenzene 1,2-Dibromoethane	106-93-4	0.25	11	0.25	11	0.25	11	0.79	11	0.25		0.68		0.25	11	0.17	ш
1.2-Dichlorobenzene	95-50-1	0.17	Ŭ	0.17	Ŭ	0.17	Ű	0.54	Ŭ	0.17	ŭ	0.66	Ŭ	0.17	Ŭ	0.17	ŭ
1,2-Dichloroethane	107-06-2	0.11	U	0.11	U	0.11	U	0.34	U	0.11	U	0.45	U	0.11	U	0.11	U
1,2-Dichloropropane	78-87-5	0.15	U	0.15	U	0.15	U	0.46	U	0.15	U	0.6	U	0.15	U	0.15	U
1,2-Dichlorotetrafluoroethane	76-14-2	0.17	U	0.17	U	0.17	U	0.55	U	0.17	U	0.68	U	0.17	U	0.17	U
1,3,5-Trimethylbenzene	108-67-8	0.15	U	0.15	U	0.15	U	0.48	U	0.15	U	47		0.15	U	4.8	
1,3-Butadiene	106-99-0	0.06	U	0.06	U	0.06	U	0.2	U	0.06	U	0.24	U	0.062	U	0.062	U
1,3-Dichlorobenzene	541-73-1	0.17	U	0.17	U	0.17	U	0.56	U	0.17	U	0.72	U	0.17	U	0.17	U
1,4-Dichlorobenzene	100-46-/	0.17	U	0.17	U	0.17	U	0.5/	U	0.17	U	0.72	U	0.17	U	0.17	U
2.2.4-Trimethylpentane	540-94-1	0.17	11	2.17	U	1 1	U	20	U	0.17	U II	603	U	0.17	11	27	U
2-Butanone	78-93-3	0.12	ii i	5		37.5		25		1.9	5	29		0.38	.1	0.74	
2-Chlorotoluene	95-49-8	0.19	Ŭ	0.19	U	0.19	U	0.62	U	0.19	U	0.72	U	0.19	Ű	0.19	U
2-Hexanone	591-78-6	0.17	U	0.17	U	0.17	Ű	0.53	U	0.17	U	5.3	-	0.17	U	0.17	Ű
4-Methyl-2-pentanone	108-10-1	0.23	U	0.23	U	0.23	U	2.2	J	0.23	U	0.94	U	0.23	U	0.82	
Acetone	67-64-1	71.5		119		1,820		2,170		138		915		6.4		0.15	U
Allyl Chloride (3-Chloropropene)	107-05-1	0.12	U	0.12	U	0.12	U	0.38	U	0.12	U	0.47	U	0.12	U	0.12	U
Benzene Benzul chloride	/1-43-Z 100-44-7	0.08	0	0.08	0	0.77		2.5		0.08	U	76		0.45	J	23	
Bromodichloromethane	75-27-4	0.19	U	0.19	U U	0.11	U U	0.55	U U	0.19	ŭ	0.44	U	0.11	U	0.19	U U
Bromoethene	593-60-2	0.07	Ŭ	0.07	Ŭ	0.07	Ŭ	0.22	Ŭ	0.07	Ŭ	0.27	Ŭ	0.07	Ŭ	0.07	Ŭ
Bromoform	75-25-2	0.19	U	0.19	U	0.19	U	0.59	U	0.19	U	0.73	U	0.19	U	0.19	U
Bromomethane	74-83-9	0.13	U	0.13	U	0.13	U	0.39	U	0.13	U	0.5	U	0.13	U	0.13	UJ
Carbon disulfide	75-15-0	0.1	U	6.9		3.4		1.9	J	0.69		5.6		0.1	U	0.1	U
Carbon tetrachloride	56-23-5	0.13	U	0.13	U	0.13	U	0.4	U	0.13	U	0.5	U	0.44	J	0.13	U
Chlorobenzene	108-90-7	0.08	U	0.08	U	0.08	U	0.25	U	0.08	U	0.32	U	0.078	U	0.078	U
Chloroform	75-00-3	0.09 5 Q	U	1.5	U	11	U	0.32	0	0.09	0	0.37	0	0.095	0	0.095	
Chloromethane	74-87-3	0.13	U	0.5		0.95		3.1	0	0.13	Ŭ	0.54	U	1.1	0	1.5	0
cis-1,2-Dichloroethylene	156-59-2	0.13	Ū	0.13	U	0.13	U	0.44	U	0.13	Ū	0.52	Ŭ	0.13	U	0.13	U
cis-1,3-Dichloropropylene	10061-01-5	0.1	U	0.1	U	0.1	U	0.34	U	0.1	U	0.42	U	0.1	U	0.1	U
Cyclohexane	110-82-7	0.12	U	0.12	U	0.12	U	0.38	U	0.12	U	74.3		0.12	U	11	
Dibromochloromethane	124-48-1	0.21	U	0.21	U	0.21	U	0.69	U	0.21	U	0.85	U	0.21	U	0.21	U
Dichlorodifluoromethane	75-71-8	0.12	U	2.3		2.2		0.41	U	2.1		0.49	U	2.2		2.8	
Ethyl Alcohol	64-17-5	0.01	J	1.8		1.2		2.1	J	0.80		47.5	0	0.4	J	172	
Ethyl Benzene	100-41-4	0.1	U	0.48	J	0.1	U	1.4	J	0.83	J	290		0.1	Ŭ	22	5
Hexachlorobutadiene	87-68-3	0.26	Ū	0.26	Ū	0.26	Ū	0.83	Ū	0.26	Ū	1.02	U	0.26	Ū	0.26	U
Isooctane	540-84-1	0.12	U	2.76		1.12		20.08		0.12	U	602.53		0.12	U	27	
Isopropanol	67-63-0	0.22	U	0.22	U	0.22	U	0.71	U	0.22	U	0.88	U	1.8		1.6	
Methyl Methacrylate	80-62-6	0.18	U	0.18	U	0.18	U	0.57	U	0.18	U	0.74	U	0.18	U	0.18	U
Methyl tert-butyl ether (M I BE)	1634-04-4	0.07	U	0.07	U	0.07	U	0.22	U	0.07	U	0.27	U	0.069	U	0.069	U
n Hentane	142.92.5	0 19		0.19		2.4		14		4.2		209		0.11	U	21	
n-Hexane	142-62-5	1	0	1.2	0	1.5	5	6.7	5	1.1	0	142		0.092	U	59.6	
o-Xylene	95-47-6	0.15	U	0.65	J	0.48	J	1.4	J	2.5		338		0.15	Ū	28	
p- & m- Xylenes	179601-23-1	0.29	U	1.5		1.4		3.9		4		1,060		0.29	U	101	
p-Ethyltoluene	622-96-8	0.14	U	0.14	U	0.14	U	0.44	U	0.14	U	57		0.14	U	6.9	
Propylene	115-07-1	0.1	U	14		92.8		1,010		2.2		0.4	U	0.1	U	0.1	U
Styrene	100-42-5	0.2	U	0.2	U	0.2	U	0.64	U	0.2	U	0.77	U	0.2	U	0.2	U
Tetrachloroethylene	/ 5-65-U 127-18-/	U.U8 1 Q	U	0.08	U	9.4		0./		U./ 4.6		0.33	U	0.079	U	0.079	U
Tetrahydrofuran	109-99-9	0.13	U	0.13	U	0.13	U	0.44	U	0.13	U	0.53	U	0.13	U	0.13	ŭ
Toluene	108-88-3	0.36	J	2.7	0	2.4	0	7.5	Ŭ	0.6	J	739	0	1.3	3	126	0
trans-1,2-Dichloroethylene	156-60-5	0.1	U	0.1	U	0.1	U	0.33	U	0.1	U	0.4	U	0.1	U	0.1	U
trans-1,3-Dichloropropylene	10061-02-6	0.13	U	0.13	U	0.13	U	0.43	U	0.13	U	0.54	U	0.13	U	0.13	U
Trichloroethylene	79-01-6	0.06	U	0.75		0.54		2.6		0.18	J	1.2		0.064	U	0.064	U
Trichlorotluoromethane (Freon 11)	75-69-4	7.3		1.8		1.6		1.6	J	1.6		0.34	U	1.6		1.9	
Vinyl Chloride	75-01-4	0.09	U	0.09	U	0.09	U	0.3	U	0.1	U	0.39	U	0.095	U	0.095	U
Total Xylenes	1330-20-7	0.15	Ū	2.1	-	1.9	-	5.2	-	6.5	-	1,400	-	0.15	U	129	-

Notes: ug/m3: microgram per cubic meter

Q is the Qualifier Column with definitions as follows: J: analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated U: The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL

		6	and and		Borehole ID:	SB001	Logged By:	Daniel Johnson
					Borehole Locat	ion: 19 Prescott PI., Brooklyn, NY	Project Manager:	Richard Kampf
					Project Name:	OER1703	Project Number:	OER1703
F	2	Λ			Drilling Contrac	tor: LAWES	Drilling Method:	Geoprobe
Strateg	ic Enviro	onmenta	l and Engin	eering Solutions	Driller Name:	N/A	Sampling Method:	Macrocore
P.W	/. GRO	SSER	CONSUL	TING, INC.	Borehole Diame	eter: 2"	Borehole Depth:	10'
	630 .	Johnson	Avenue. • S	Suite 7	Start Time:	8:20	Completion Time:	8:40
Pho	Boh one: (631	emia • 1) 589-63	NY • 11716-	2618 31) 589-8705	Start Date:	11/9/2017	Completion Date:	11/9/2017
	L-Indii.		Waltoool		Latitude:		Longitude:	
Depth(ft)	Core Length	Recovery	Sample ID	Lith	ology	Lithologic Desc	ription	PID Readings
0		.67ft	SB001:0-2'			Black urban fill with asphalt a	and wood debris.	
2	5ft	° i				Urban fill with brick	debris.	0.7
						Red/brown medium sand w	ith silt, urban fill.	
	5ft	2.83ft	SB001.4-6			Urban fill with concrete an	d brick debris.	0.0
- - 10						Native brown silt wit	h gravel.	

					Borehole ID:		SB002	Logged By:	Da	niel Johnson
					Borehole Loc	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	hard Kampf
					Project Name	e:	OER1703	Project Number:	OE	R1703
	2	Λ		i C.	Drilling Contra	actor:	LAWES	Drilling Method:	Ge	oprobe
Strateg	jic Enviro	onmenta	and Engine	eering Solutions	Driller Name:		N/A	Sampling Method:	Ма	crocore
PW		SSER	CONSUL		Borehole Dia	meter:	2"	Borehole Depth:	10'	
	v. 0100		CONSOL		Start Time:		8:50	Completion Time:	9:1	0
Pho	Boh Dne: (631	Jonnson hemia • I) 589-63	NY • 11716-3 853 • Fax: (6	2618 331) 589-8705	Start Date:		11/9/2017	Completion Date:	11/	9/2017
	E-mail:	INFO@	PWGROSSE	ER.COM	Latitude:			Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID	Lith	ology		Lithologic Descrip	tion		PID Readings
	Sft	2.83ft	SB002 0-2			Ur	ban fill with concrete, asphalt, g No odor.	lass, and mica.		0
6		2.5ft	SB002:5-7				Urban fill with mica			
8-	5ft						Silt with sand and gra	vel.		0.7
9_ - - 10										

		6		I	Bo	ret	nole	e ID) :		SB003	Logged By:	Da	niel Johnson	
		HAN IN			I	Bo	reł	nole	e Lo	oca	tion:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	chard Kampf
					I	Pro	oje	ct l	Var	ne:		OER1703	Project Number:	OE	R1703
F	2	Λ		i C	I	Dri	illin	ng (Cor	tra	ctor:	LAWES	Drilling Method:	Ge	oprobe
Strateg	jic Envir	ronmenta	al and Engin	neering Solutions	I	Dri	ille	r N	am	e:		N/A	Sampling Method:	Ma	icrocore
PW	, GRC	SSER	CONSUL	TING INC	I	Bo	rel	nole	e D	iam	neter:	2"	Borehole Depth:	15'	
	620	lohnoor	Avenue	Puito 7	:	Sta	art	Tin	ne:			10:00	Completion Time:	10:	25
Pho	Bol Dne: (631	hemia • 1) 589-63	NY • 11716- 353 • Fax: (6	-2618 631) 589-8705	:	Sta	art	Da	te:			11/9/2017	Completion Date:	11/	/9/2017
	E-mail:	: INFO@	PWGROSS	ER.COM		Lat	titu	de		_			Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID	Lith	10	olo)g	y				Lithologic Descrip	tion		PID Readings
0	5ft	3.58ft	SB003.0-2									Black urban fill with asphalt a	nd top soil.		0.7
3 4 4 5											Bro	own urban fill with silty medium gravel. No odor.	sand and small		
6 7	5ft	3.83ft	SB003.6-8								Bro	own urban fill with silty medium gravel. No odor.	sand and small		0.3
9											В	rown silt with clay / fine sand. M gravel. No odor.	ledium to large		
10 11 12 13 14 15	Sft		SB003:12:14:								Bro	wn silt with clay, some fine sanc large gravel.	d with medium to	D	0.0
				<u></u>					1					I	

		6	and and		Borehole ID:		SB004	Logged By:	Dan	iel Johnson
					Borehole Loca	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Rich	hard Kampf
					Project Name	:	OER1703	Project Number:	OEF	R1703
	- \	Ν			Drilling Contra	actor:	LAWES	Drilling Method:	Geo	probe
Strateg	jic Envir	onmenta	l and Engine	eering Solutions	Driller Name:		N/A	Sampling Method:	Mac	rocore
P.V	V. GRO	SSER	CONSUL	TING, INC.	Borehole Diar	meter:	2"	Borehole Depth:	15'	
	630	Johnson	Avenue. • S	Suite 7	Start Time:		10:28	Completion Time:	10:4	5
Pho	Boh one: (631 E-mail:	nemia • 1) 589-63 INFO@	NY • 11716-2 53 • Fax: (6 PWGROSSE	2618 31) 589-8705 ER.COM	Start Date:		11/9/2017	Completion Date:	11/9	/2017
Depth(ft)	Core Length	Recovery	Sample ID	Lith	nology		Lithologic Descrip	tion		PID Readings
0 -		2.83ft	SB004.0-2				Black urban fill with asphalt and	wood debris.		
2 3 4 4 5	5ft					В	lack urban fill with silty coarse s gravel.	and, brick, and		0.0
6	5ft	3.17ft	SB004 5-7			Red	d/brown urban fill with coarse/m and small gravel. No c	edium sand, silt odor.	,	1.3
8_ 9_ 10_							Red/brown silt with sand a	and clay.		
11 12 13 14 15	5ft	3.5ft	SB0041214			E	Brown silt with sand and clay wit	h small gravel.		0.0

		(- Safe		Borehole ID:		SB005	Logged By:	Da	niel Johnson
					Borehole Loca	tion:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	hard Kampf
					Project Name:		OER1703	Project Number:	OE	R1703
	7	Λ		iC	Drilling Contract	ctor:	LAWES	Drilling Method:	Ge	oprobe
Strates	gic Envir	onmenta	al and Engir	neering Solutions	Driller Name:		N/A	Sampling Method:	Ма	crocore
P.V	V. GRC	SSER	CONSU	LTING, INC.	Borehole Diam	eter:	2"	Borehole Depth:	10'	
	630	Johnsor	Avenue. •	Suite 7	Start Time:		11:00	Completion Time:	11:	20
Ph	Bol one: (631	hemia • 1) 589-63	NY • 11716 353 • Fax: (-2618 631) 589-8705	Start Date:		11/9/2017	Completion Date:	11/	9/2017
					Latitude:			Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID	Lith	ology		Lithologic Descrip	tion		PID Readings
0	Sft	3ft	SB005.0-2				Black urban fill with brick debr	is. No odor.		0.7
3						BI	ack urban fill with medium sand concrete. No odor.	and silt, some		
6	5ft	4.08ft	SB005 6-8				Urban fill with medium sand	d and silt.		0.0
8						Br	own silt with fine sand, small to	medium gravel.		

		(- Safe		Borehole ID:		SB006	Logged By:	Daniel Johnson
					Borehole Loc	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Richard Kampf
					Project Name	:	OER1703	Project Number:	OER1703
		Л	/(•	iC.	Drilling Contra	actor:	LAWES	Drilling Method:	Geoprobe
Strateg	jic Envir	ronment	al and Engin	neering Solutions	Driller Name:		N/A	Sampling Method:	Macrocore
PW		OSSER	CONSUL	TING INC	Borehole Dia	meter	2"	Borehole Depth:	10'
	620			Puille 7	Start Time:		11:25	Completion Time:	11:56
Pho	Bo Dne: (63	ohemia • 1) 589-6	NY • 11716- 353 • Fax: (6	-2618 631) 589-8705	Start Date:		11/9/2017	Completion Date:	11/9/2017
	E-mail:	: INFO@	PWGROSS	ER.COM	Latitude:			Longitude:	
Depth(ft)	Core Length	Recovery	Sample ID	Lith	nology		Lithologic Descrip	otion	PID Readings
0	Sft	3.17ft	SB006.0-2				Black urban fill with asphalt, br	ick, concrete.	1.8
4							Brown silt with sand, concre	te, asphalt.	
6 		3.58ft	SB006.5-7		Image Image <th< th=""><th></th><th>Brown silt with sand, concre</th><th>te, asphalt.</th><th></th></th<>		Brown silt with sand, concre	te, asphalt.	
8- - 9- - 10	Sft					Bro	own silt with medium sand, sma	III to large gravel.	0.0

		(and the second		Borehole ID:		SB007	Logged By:	Michael Gaul
					Borehole Loc	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Richard Kampf
					Project Name	e:	OER1703	Project Number:	OER1703
P	7	Λ		iC	Drilling Contra	actor:	LAWES	Drilling Method:	Geoprobe
Strateg	ic Envir	onmenta	and Engin	eering Solutions	Driller Name:		N/A	Sampling Method:	Macrocore
PM			CONSUL	TING INC	Borehole Dia	meter:	2"	Borehole Depth:	10'
	. 0110		CONCOL		Start Time:		8:20	Completion Time:	8:30
Pho	Boh Boh	Jonnson hemia • 1) 589-63	NY • 11716- 353 • Fax: (6	-2618 -331) 589-8705	Start Date:		11/16/2017	Completion Date:	11/16/2017
	E-mail:	INFO@	PWGROSS	ER.COM	Latitude:			Longitude:	
Depth(ft)	Core Length	Recovery	Sample ID	Lith	ology		Lithologic Descrip	otion	PID Readings
0			17.0-2			В	rown urban fill wth wood, brick,	and sandy silt.	
2	5ft	4ft	800 800			В	rown fine silty sand with gravel,	brick, concrete.	0.0
6	5ft	4ft	SB007.6-8				Brown fine silty sand with grav	vel, brick, fill.	0.0
9									

With and the second	ael Gaul	Logged By: Mi	SB008	Borehole ID:										
Project Name: DER1703 Project Number: DER1703 Drilling Contractor: LAWES Drilling Method: Geoprobe Driller Name: N/A Sampling Method: Macrocore Borehole Diameter: 2" Borehole Depth: 10" Start Time: 8:40 Completion Time: 9:15 Start Date: 11/16/2017 Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Latitude: Longitude: Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Latitude: Latitude: Longitude: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0<	Ird Kampf	Project Manager: Rid	19 Prescott Pl., Brooklyn, NY	ocation	le Lo	reho	Во			LILL		THE		
Drilling Contractor: LAWES Drilling Method: Geoprobe Drilling Method: Geoprobe Drilling Method: Macrocore Drilling Method: Borehole Diameter: 2* Borehole Doepheit 10* Start Time: 8:40 Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Latitude: Longitude: Longitude: 0 Uput for one of the geownee week and geownee	1703	Project Number: OE	OER1703	me:	Nar	oject	Pro							
Image: Invariant N/A Sampling Method Macrocore PW. GROSSER CONJUTING, NO Differ Name: N/A Sampling Method Macrocore Borehole Diameter: 2" Borehole Depth: 10" Start Time: 8:40 Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Latitude: Latitude: Dark brown sandy silt with wood, organics, brick. PID Rea 0 Start Date: Dark brown sandy silt with wood, organics, brick. PID Rea 0 Start Date: Brown sand with gravel, brick, concrete. 0.0 0 Start Gate Brown sand with gravel, brick, concrete. 0.0 0 Start Gate Brown fine sand. 0.0	robe	Drilling Method: Ge	LAWES	ntractor:	Con	lling	Dri			C	Ι	И		
PW. GROSSER CONSULTING INC Borehole Diameter: 2" Borehole Depth: 10" Start Time: 8:40 Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Latitude: Latitude: Longitude: PID Rea 0 0 0 0 0 Dark brown sandy silt with wood, organics, brick. PID Rea 1 0<	ocore	Sampling Method: Ma	N/A	ie:	Nam	ller N	Dri	ions	ng Soluti	ngineeri	tal and Eng	ironmen	jic Env	Strate
Start Time: 8:40 Completion Time: 9:15 Start Date: 11/16/2017 Completion Date: 11/16/2017 Start Date: 11/16/2017 Completion Date: 11/16/2017 Start Date: 11/16/2017 Completion Date: 11/16/2017 Start Date: Date: Start Date: 10/16/2017 Completion Date: 11/16/2017 Start Date: Date: Date: Start Date:		Borehole Depth: 10	2"	iameter	le D	reho	Во					OSSEI		P
Understand Works Works - True (18) DBARYON Examiliar Diagnaments - Start Date: 11/16/2017 Completion Date: 11/16/2017 Uput and boot and		Completion Time: 9:1	8:40		ime:	art Ti	Sta		v o , irre	Duite			e2	
Latitude: Longitude: uputade n	/2017	Completion Date: 11	11/16/2017		ate:	art Da	Sta	5	8 589-870	716-261 x: (631)	NY • 1171 353 • Fax:	ohemia (31) 589-4	B one: (6	Ph
uput uput uput uput uput uput uput uput		Longitude:			e:	titude	La		COM	DSSER.	PWGROS	I: INFO(E-ma	
0 5 5 Brown sandy silt with wood, organics, brick. 1 5 8 0.0 3 5 6 6 4 6 6 6 5 6 6 6 7 5 6 6 6 6 6 6 7 5 6 6 6 6 6 6 7 5 6 6 6 6 7 6 6 6 7 6 7 6 7 6 7 6 7 7 6 7 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 8 7 7 7 9 9 8 7 7 7 7 7 7 7 8 7 <td>ID Readings</td> <td>iption</td> <td>Lithologic Descrip</td> <td></td> <td></td> <td>уgy</td> <td>nolo</td> <td>_itł</td> <td>L</td> <td>-</td> <td>Sample ID</td> <td>Recovery</td> <td>Core Length</td> <td>Depth(ft)</td>	ID Readings	iption	Lithologic Descrip			уgy	nolo	_itł	L	-	Sample ID	Recovery	Core Length	Depth(ft)
Brown silty sand with brick, gravel.		l, organics, brick.	ark brown sandy silt with wood,	C			· · · · · · · · · · · · · · · · · · ·				18:0-2'	 		0 -
0.0 Brown sand with gravel, brick, concrete.		ck, gravel.	Brown silty sand with brick		N N					SB00	2.51		2-	
6- 5 7- 5 8- 6 9- 8 9- 8	0.0	ck, concrete.	Brown sand with gravel, brick, concrete.										Sft	3- 3- 4- 5-
7- 5- 8- 9- Brown fine sand.		avel.	Brown sand with grav	Bro								3ft		6-
	0.0	ł.	Brown fine sand.					Sthere is a second seco				Sft	7- 8- 9-	
11- + 등 12- + 등 13- + 등 14- + 등 14- 14- + 등 14- + 등 14- 14- 14- 14- 14- 14- 14- 14- 14- 14-	0.0	acted, fine.	Brown sand, tighlty compac	1 1						12:14	3ft	5ft	11- 12- 13-	
Gray rock / rock fragments.		nents.	Gray rock / rock fragments.								SB008			
Brown fine sand.		Brown fine sand.									15			

				Borehole ID:						SB009	Logged By:	Mio	chael Gaul		
		The second secon				В	ore	eho	le l	_00	cation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	hard Kampf
_						Ρ	roje	ect	Na	me	e:	OER1703	Project Number:	OE	R1703
P		Λ		-(D	rilli	ng	Со	ntr	actor:	LAWES	Drilling Method:	Ge	oprobe
Strateg	ic Enviro	onmenta	al and Engin	eering Sol	utions	D	rille	er N	lar	ne	:	N/A	Sampling Method:	Ма	icrocore
DW		COLD	CONSUL	TINC		В	ore	eho	le [Dia	meter:	2"	Borehole Depth:	15'	
F. v	V. GRU	SSER	CONSUL	- TING, II	NC.	S	tar	t Ti	me	:		9:20	Completion Time:	9:3	0
Pho	630 . Boh one: (631	Johnsor nemia •) 589-63	NY • 11716- 353 • Fax: (6	Suite 7 -2618 531) 589-8	705	S	tar	t Da	ate	:		11/16/2017	Completion Date:	11/	/16/2017
	E-mail:	INFO@	PWGROSS	ER.COM		La	atit	ude	e :		1		Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID		Lit	hol	og	IУ				Lithologic Descrip	otion		PID Readings
0		3ft	SB009.0-2							•••••••••••••••••••••••••••••••••••••••		Dark brown sandy silt wit			
2 3 4 4	Sft			Brown fine silty sand with gravel and br								vel and brick.		0.0	
6 7 7	5ft	4ft									Brown sand with gra		0.0		
0 												Brown fine sand.			
		ft		1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>								Brown fine sand with r	nica.		
12	5ft	4	12-14						Brown fine sand with rock f		0.0				
14			SB000								Brown fine sand.				
			1	<u>u.l.l.</u>	1.1.		1-		- 1 -	1.1	u			I	

		6	and the second				Bo	orel	nol	e II	D:		SB010	Logged By:	Mic	chael Gaul
							Bo	orel	nol	e L	006	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	hard Kampf
							Pr	oje	ct	Na	me		OER1703	Project Number:	OE	R1703
		Λ					Dr	illir	ng (Соі	ntra	actor:	LAWES	Drilling Method:	Ge	oprobe
Strateg	jic Enviro	onmenta	and Engine	eering S	olution	s	Dr	ille	r N	lam	ne:		N/A	Sampling Method:	Ma	crocore
P.W	. GRO	SSER	CONSUL	TING.	INC.		Bo	orel	nol	еC	liar	neter:	2"	Borehole Depth:	10'	
	630	lohnson	Avenue - S	uite 7			Sta	art	Tir	ne:			11:06	Completion Time:	11:	25
Pho	Boh one: (631	nemia •) 589-63	NY • 11716-2 353 • Fax: (6	2618 31) 589	8705		Sta	art	Da	te:			11/16/2017	Completion Date:	11/	16/2017
	E-mail:	INFO@	PWGROSSE	R.COM	1		La	titu	Ide	:				Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID		Li	th	olo	og y	у				Lithologic Descrip	otion		PID Readings
		3ft	SB010.0-2										Dark brown sandy silt with wood and gravel.			
	5ft			· · · ·	· · · ·	 		• • • •		• • • •			Brown fine sand with brick and gravel.			0.0
6	5ft	1.5ft	SB010.5.8							1 1		Bi	rown fine sand with gravel and l	orick fragments.		0.0
8 - - 9 - - - - - - - - - - - - - - - -													Gray brown fine sar			

					Borehole ID:			SB011	Logged By:	Mio	chael Gaul				
		ALC: NO				Bc	orel	hol	e L	oca	ation:	19 Prescott Pl., Brooklyn, NY	Project Manager:	Ric	chard Kampf
			10			Pr	oje	ect	Nai	me:		OER1703	Project Number:	OE	R1703
	- 1	Λ				Dr	illir	ng (Cor	ntra	ctor:	LAWES	Drilling Method:	Ge	oprobe
Strateg	jic Envir	onment	al and Engin	eering Solutio	ons	Dr	ille	r N	am	ie:		N/A	Sampling Method:	Ма	crocore
P.W	V. GRC	DSSER		TING, INC		Bc	orel	hol	e D	ian	neter:	2"	Borehole Depth:	15'	•
	630	Johnsor	n Avenue. • \$	Suite 7		St	art	Tir	ne:			11:32	Completion Time:	12:	:00
Pho	Bo one: (63	hemia • 1) 589-6	NY • 11716- 353 • Fax: (6	2618 331) 589-8705		Sta	art	Da	ite:			11/16/2017	Completion Date:	11/	/16/2017
	E-mail.	. INFOR	FWGR033	ER.COM		La	titu	lde	:				Longitude:		
Depth(ft)	Core Length	Recovery	Sample ID	L	ith	olo) S	у				Lithologic Descri	ption		PID Readings
0 -		t	1 0-2'						· · · · · · · · · · · · · · · · · · ·		Da	ark brown sandy silt with brick	wood, organics.		
	Sft	2.5fl	SB01								Li	ight brown coarse sand with gravel, brick, mica.			0.0
3_ 										· · · · · · · · · · · · · · · · · · ·		Brown fine sand.			
5_ 6_ 7_ 8_ 9_ 10_	5ft	3ft						- - - -			Brown fine sand, tightly compacted with rock fragments.			0.0	
11- 12- 13- 14- 15-	5ft	3ft	SB011 12 14	1 1								Brown fine sand	-		0.0

		6	70		Boreh	ole ID:	SB012	Logged By:	Dan Johnson
		3	*	ž.	Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf
				00	Proje	ct Name:	DTF1801	Project Number:	DTF1801
н	21	Л	Π	610	Drillin	g Contractor:	LAWES	Drilling Method:	Manually Driven
Strate	gic Envi	ronment	al and I	Engineering Solution	Drille	r Name:	Ernesto	Sampling Method:	Discrete Grab
P.V	V. GR	OSSER		SULTING, INC.	Boreł	ole Diameter:	2"	Borehole Depth:	7.5'
	630	Johnao	n Avers	e Suite 7	Start	Time:	N/A	Completion Time:	N/A
Ph	Bone: (63	ohemia - 1) 589-6	NY - 1 353 - F	1716-2618 ax: (631) 589-8706	Start	Date:	2/14/18	Completion Date:	2/14/18
	E-mai		0	OSSERCOM	Latitu	de:	N/A	Longitude:	N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholo	ду		Lithologic Description		PID Readings
0 -		10in					Urban Fill, some brick, tr	ace asphalt	
- - 1_ - -	2ft		SB012(0-2)						
2	2ft	11in	SB012(2-4)			(Course sands, some silt, li	0.0 ppm	
	2ft	14in							
6		16:-		1 3 1 4		Co	ourse sand with little silt ar	nd trace gravel.	
- 7_ -	1.5ft	Tom			I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>				

Groundwater not encountered 2/14/18

		6	26	4	Borel	tole ID:	SB013	Logged By:	Dan Johnson					
		3	*		Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf					
		-			Proje	ct Name:	DTF1801	Project Number:	DTF1801					
F	21	Л	Π	GC	Drillin	g Contractor:	LAWES	Drilling Method:	Manually Driven					
Strateg	ic Envi	ronment	al and I	Engineering Solutions	Drille	r Name:	Ernesto	Sampling Method:	Discrete Grab					
P W		OSSEE			Boreł	ole Diameter:	2"	Borehole Depth:	6'					
				oochino, ino.	Start	Time:	N/A	Completion Time:	N/A					
Pho	630 Bone: (63) Johneo ohemia - 31) 589-6	NY - 11 353 - Fi	e Suite 7 1716-2618 ax: (631) 589-8706	Start	Date:	2/14/18	Completion Date:	2/14/18					
	E-mai	IL INFO	PWGR	OSSER.COM	Latitu	de:	N/A	Longitude:	N/A					
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	у		Lithologic Description		PID Readings					
0	2ft	10in	SB013(0-2)											
2	2ft	5in				Coars	Coarse sand, some silt, little urban fill, trace rock fragments.							
r	2ft	18in	SB013(4-6)	1 1										
0					:1:1:1:1: -				1					
			Gro	oundwater i	not er	ncountered								

		6	26	<u> </u>	Boreh	tole ID:	SB014	Logged By:	Dan Johnson
		3	*		Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf
-		-		00	Proje	ct Name:	DTF1801	Project Number:	DTF1801
н	21	Л	Π	GU	Drillin	g Contractor:	LAWES	Drilling Method:	Manually Driven
Strate	gic Envi	ronment		Ingineering Solutions	Drille	r Name:	Ernesto	Sampling Method:	Discrete Grab
PI		OSSEE		SULTING INC.	Boreh	nole Diameter:	2"	Borehole Depth:	8'
					Start	Time:	N/A	Completion Time:	N/A
Ph	Bone: (63	ohemia - 1) 589-6	NY - 1 353 - F	1716-2618 ax: (631) 589-8705	Start	Date:	2/14/18	Completion Date:	2/14/18
	E-mai		PWGR	OSSER.COM	Latitu	de:	N/A	Longitude:	N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	У		Lithologic Description	n	PID Readings
0	2ft	8in	SB014(0-2) DUP001			Urbar	n Fill with brick, some coa		
2	2ft	14in			ත් දේශය කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන කරන		Urban Fill, loamy, little br	rick and sand.	0.0 ppm
	2ft	8in	SB014(4-6)			С	oarse sand, some gravel	l, little urban fill.	0.0 ppm
6	2ft	4in					Coarse sand some gra	vel, little silt.	
8			0						

Groundwater not encountered 2/14/18

				2	Borel	tole ID:	SB015	Logged By:	Nick lannucci
		3	~	E.	Samp	ole Location:	21-23 Prescott Place	Project Manager:	Rich Kampf
-				00	Proje	ct Name:	DTF1801	Project Number:	DTF1801
н	~	Л	Π	GU	Drillin	g Contractor:	LAWES	Drilling Method:	Direct Push
Strate	gic Envi	ronment	al and	Engineering Solutions	Drille	r Name:	Ernesto	Sampling Method:	Discrete Grab
P.V	V. GRO	DSSEF		SULTING, INC.	Borel	nole Diameter:	2"	Borehole Depth:	20'
	630	Johnao	n Avers	e Suite 7	Start	Time:	N/A	Completion Time:	N/A
Ph	Bone: (63	nonia -	NY - 1 353 - F	1716-2618 ax: (631) 589-8705	Start	Date:	2/19/18	Completion Date:	2/19/18
	E-mai		(1)	USSERCOM	Latitu	de:	N/A	Longitude:	N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	у		Lithologic Description		PID Readings
0 =		1ft			×××		Urban Fill, some gravel, trace a	sphalt.	_
1 2 3 4	5ft					N	ledium to fine sand, trace grave	el. Moist.	
6							Medium to fine sand. Mois	st.	
_		3ft	5(6-8)			Mediur	m to fine sand, trace brick. Mois	t. Slight odor.	
9	5ft		SB01			Me	0.0 ppm		
11 12 13	5ft	2ft			I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I		Medium to fine sand. Mois	st	0.0 ppm
							Eine to Madium Card		_
15-							Fine to Medium Sand.		-
16-					I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I				
17-		4ft							
18-	5ft			1 1		Me	edium to fine sand. Moist. Tight	y Packed.	
19-			CIENNARY (CE-81		I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I				
20 -			Hu offic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

		6	P	2	Boreh	ole ID:	SB016	Logged By:	Nick lannucci
		3	*		Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf
-		-		00	Proje	ct Name:	DTF1801	Project Number:	DTF1801
н	21	Л	Π	GC	Drillin	g Contractor:	LAWES	Drilling Method:	Direct Push
Strate	gic Envi	ronmen	al and I	Engineering Solutions	Driller	r Name:	Ernesto	Sampling Method:	Discrete Grab
PI		OSSEE			Boreh	ole Diameter:	2"	Borehole Depth:	20'
					Start	Time:	N/A	Completion Time:	N/A
Pt	Biticone: (63	ohemia - 1) 589-6	NY - 1 353 - F	1716-2618 ax: (631) 589-8705	Start	Date:	2/19/18	Completion Date:	2/19/18
	E-mai	E INFO	PWGR	OSSER.COM	Latitu	de:	N/A	Longitude:	N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	ау		Lithologic Description	1	PID Readings
0 -					****		Urban Fill, some brick, t	race gravel.	-
1-		Зft					Medium to coarse sa	and. Dry.	
2- 3- 4-	5ft			0/0/0/	<u>~ / ~</u>		Medium to fine sand		
6 7 8 9	5ft	1ft				Medi	um to fine sand. Loosely	– 0.0 ppm	
11- 12- 13- 14-	5ft	4ft	SB016(13-15)			Medium	Moist. Tightly packed.		
15 16 17 18 19 20	5ft	2ft	SB016(18-20)			N			
			Cr/	undwator	not or	acountered			

Groundwater not encountered 2/19/18

					Boreł	nole ID:	SB017	Logged By:	Nick lannucci		
		Here and the second sec			Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf		
				00	Proje	ct Name:	DTF1801	Project Number:	DTF1801		
	21	И		GU	Drillin	g Contractor:	LAWES	Drilling Method:	Direct Push		
Strate	igic Envi	ronmen	tal and l	Engineering Solutions	Drille	r Name:	Ernesto	Sampling Method:	Discrete Grab		
P.	W. GRO	OSSE		SULTING. INC.	Boreł	ole Diameter:	2"	Borehole Depth:	15'		
	630) Johnso	n Aven	ue - Suite 7	Start	Time:	N/A	Completion Time:	N/A		
P	Bo none: (63	ohemia - 31) 589-	NY • 1 5353 • F	1716-2618 Fax: (631) 589-8705	Start	Date:	2/19/18	Completion Date:	2/19/18		
	E-mail	I: INFO(BPWGF	ROSSER.COM	Latitu	de:	N/A	Longitude:	N/A		
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	у 		Lithologic Description		PID Readings		
	5ft	3ft									
		2ft				N					
					****		Concrete.				
8-	5ft		SB017(8-10)			Medium	n to fine sand, some gravel, t	trace brick. Moist.	0.0 ppm		
10- 11- 12- 13- 13- 14- 15-	5ft	4ft	SB017(12-14)			M					
Groundwater not encountered 2/19/18											

					Boreł	nole ID:	SI	3018	Logged By:	[Dan Johnson
		HHY I			Samp	ole Location:	21-23 Pres	scott Place	Project Manager:	F	Rich Kampf
				\sim	Proje	ct Name:	D	FF1801	Project Number:	[DTF1801
	-	И		6101	Drillin	g Contractor:	P۱	VGC	Drilling Method:	Ν	Manual Tools
Strate	gic Envi	ironment	al and I	Engineering Solutions	Drille	r Name:	Da	an Johnson	Sampling Method:	[Discrete Grab
P	W GR	OSSEE		SULTING INC	Boreł	nole Diameter:	3"		Borehole Depth:	6	6'
	620			io Suito 7	Start	Time:	N	/A	Completion Time:	١	N/A
Pt	Binone: (63	ohemia • 31) 589-6	NY • 1 353 • F	1716-2618 fax: (631) 589-8705	Start	Date:	3/*	12/18	Completion Date:	3	3/12/18
	E-mai	ii: INFO@	PWGR	OSSER.COM	Latitu	de:	N/	A	Longitude:		N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholog	У		Lithologi	c Description			PID Readings
0	- 2ft	2ft	SB018 (0-2)				Urban	Fill, some coarse sa	and		0.0 ppm
			Gro	oundwater i 3/12/	not er '18	ncountered					

				4	Borehole ID:		SB019	Logged By:	Dan Johnson
		ALLEY			Samp	le Location:	21-23 Prescott Place	Project Manager:	Rich Kampf
				00	Proje	ct Name:	DTF1801	Project Number:	DTF1801
	21	И		610	Drillin	g Contractor:	PWGC	Drilling Method:	Manual Tools
Strat	egic Envi	ironmen	tal and I	Engineering Solutions	Drille	⁻ Name:	Dan Johnson	Sampling Method:	Discrete Grab
Р	W GR	OSSEF		SULTING INC	Boreł	ole Diameter:	3"	Borehole Depth:	6'
	620			io Suito 7	Start	Time:	N/A	Completion Time:	N/A
P	Bo Phone: (63	ohemia • 31) 589-6	NY • 1 353 • F	1716-2618 fax: (631) 589-8705	Start	Date:	3/12/18	Completion Date:	3/12/18
	E-mai	il: INFO@	PWGR	OSSER.COM	Latitu	de:	N/A	Longitude:	N/A
Depth(ft)	Core Length	Recovery	Sample Zone	Litholo	ју		Lithologic Description	on	PID Readings
0	- 2ft	2ft	SB019 (0.2)			Urban F	ill, significant building de	ebris, little sand and silt	0.0 ppm
			Gro	oundwater 3/12	not ei 2/18	ncountered			

				2	Borehole ID: SB020 L		Logged By:	Dan Johnson	
					Sample Location:	21-23 Prescott Place	Project Manager:	Rich Kampf	
PWGC Strategic Environmental and Engineering Solutions					Project Name:	DTF1801	Project Number:	DTF1801	
					Drilling Contractor:	PWGC	Drilling Method:	Manual Tools	
					Driller Name:	Dan Johnson	Sampling Method:	Discrete Grab	
					Borehole Diameter:	3"	Borehole Depth:	6'	
P.W. GROSSER CONSULTING, INC.					Start Time:	N/A	Completion Time:	N/A	
630 Johnson Avenue. • Suite 7 Bohemia • NY • 11716-2618					Start Date:	3/12/18	Completion Date:	3/12/18	
E-mail: INFO@PWGROSSER.COM					Latitude:	N/A	Longitude:	N/A	
Depth(ft)	Core Length	Recovery Sample Zone GoloutiT			у	Lithologic Description			
0	- - 2ft	2ft	SB020 (0-2)			Urban Fill		0.0 ppm	
3	1ft	1ft	Green			Urban Fill, pearched wate			
	3/12/18								

and the second					Borehole	ID:	SBO	21	Logged By:	Dan Johnson
					Sample Location:		21-23 Prescott Place		Project Manager:	Rich Kampf
						ame:	DTF1801		Project Number:	DTF1801
PWGC					Drilling Contractor:		PW	GC	Drilling Method:	Manual Tools
					Driller Name:		Dan	Johnson	Sampling Method:	Discrete Grab
					Borehole Diameter:		3"		Borehole Depth:	6'
P.W. GROSSER CONSULTING, INC.					Start Time:		N/A		Completion Time:	N/A
630 Johnson Avenue. • Suite 7 Bohemia • NY • 11716-2618 Phone: (631) 589-6353 • Fax: (631) 589-8705 E-mail: INFO@PWGROSSER.COM					Start Date:		3/12	/18	Completion Date:	3/12/18
					Latitude:		N/A		Longitude:	N/A
Depth(ft)	Core Length	Core Length Recovery Sample Zone Goloupit		у	Lithologic Description		PID Readings			
0	- 2ft	2ft	SB021 (0-2)				Urbar	n Fill, coarse sand		0.0 ppm
2	- 2ft	2ft					Urban Fill, brown silty sand and gravel			0.0 ppm
	Groundwater not encountered 3/12/18									