Matthew M. Carroll, PE &

121 West 27th Street, 702 New York, NY 10001 (646) 606-2332

March 28, 2023; revised May 4, 2023

Jared Donaldson, Assistant Engineer Division of Environmental Remediation NYS Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7015

Re: Soil Vapor Extraction (SVE) Remedial Design Document 3200 Atlantic Avenue – Brooklyn, NY Block 4154, Lot 28 BCP Site # C224289

Dear Jared:

In accordance with the approved May 2020 Remedial Action Work Plan (RAWP) prepared by Matthew M. Carroll, PE and Tenen Environmental, LLC (Tenen), the remedy includes the completion of a pilot test to design a soil vapor extraction (SVE) system as well as the installation and operation under a Design Document. Implementation of SVE applying a vacuum to induce removal of volatile organic compounds (VOCs) from unsaturated soils. A pilot test was completed to determine the radius of influence (ROI) within the existing soils in order to treat petroleum-related VOCs in soil.

Background

As documented in Tenen's Remedial Investigation (RI) Report (RIR), petroleum-related VOCs were detected in the soil above their respective Part 375 Protection of Groundwater soil cleanup objectives (SCOs) in the northwest portion (petroleum source area) of the Site.

The highest concentrations of total VOCs and benzene, toluene, ethylbenzene and xylenes (collectively known as BTEX) were detected in on-site soil boring MW-6-S1, located adjacent to the underground storage tanks (USTs) located at the Site. During the RI, BTEX was detected at a maximum total concentration of 1,544 micrograms per kilogram (mg/kg) in boring MW-6-S1 in the 15 to 20 feet below grade (ft-bg) interval.

SVE Pilot Test

The objective of the pilot test was to gain information sufficient to specify the full scale treatment system elements. The pilot test provided site-specific data that assisted in determining the ROI, well placement and system design.

The pilot test was completed in August 2022 by Tenen and included three stages at four wells screened from 15 to 25 ft-bg. Test results are incorporated into the SVE Pilot Test Report by EnviroTrac Engineering PE PC of Yaphank, NY and included in Attachment 1. Pilot test locations are shown on Figure 1 of the Pilot Test Report. Laboratory deliverables for effluent samples collected during the pilot test are included in Attachment 2.

The results of the pilot test indicated a full-scale SVE system "can serve as an effective means of remediation for the remaining area of contamination." The pilot test indicated that an effective ROI of 35 feet would be attainable with a minimum vacuum of ten inches of water column (in-wc) at 55 cubic feet per minute (cfm).

SVE Design

The system will consist of four SVE wells located within the remaining impacted soil interval (all soils above 15 ft-bg and in most areas to 17 ft-bg have been excavated; the USTs were also disposed off-site). The wells are generally located at the same locations as those in the pilot test. The SVE wells will be constructed of 10-slot, two-inch diameter PVE. Three vacuum monitoring points (VMPs) will be installed. The SVE wells and VMPs are shown on Figures 3 and 4 of the Pilot Test Report.

The wells will be connected via two-inch diameter sub-grade PVC piping and above-grade galvanized steel piping to a three-inch diameter galvanized manifold header with ball valves to balance the vacuum and flow between the extraction points. The manifolded flow will go through a moisture separator, an air filter and a two-horsepower regenerative blower and then treated through two 55-gallon vapor phase carbon absorbers connected in series. The exhaust will be above the roof of the new building. The system layout is shown in Figure 5 of the Pilot Test Report.

The SVE system was installed following excavation of the cellar level (including the soil source area) and will be operated during building construction. The location of the equipment (blower, controls, carbon drums) will be on the first floor in an enclosure; however, the exhaust height will be variable. If operation of the system is to continue post building construction, the final location of the equipment will be included in the Site Management Plan (SMP).

Treatment Zone

The treatment zone based on the Remedial Investigation (RI) findings is approximately 4,000 square feet, as shown on Figure 1. The actual area to be treated will be approximately 10,000 square feet, as also shown on Figure 1. The treatment interval will be approximately 3 to 11 feet below cellar slab grade (or approximately 18 to 25 ft-bg). The well construction and treatment depth are shown on Figure 10.

SVE System Components

The SVE components and layouts are shown on Figures 7 through 10. IThe SVE system includes a 5 hp regenerative blower (Ametek-Rotron model EN757F72XL-7AT16). The blower will include a dual connection inline filter (Ametek-Rotron model 515254) to prevent abrasion of the vanes during operation. The specification sheets for the blower are included in the Pilot Test Report. The SVE system will operate at approximately 220 cfm and 40 in-wc (to account for system losses).

The effluent from the blower will be treated through two vapor phase granular activated charcoal (GAC) units in series before discharging to the atmosphere. Each carbon vessel contains 170-175 pounds of virgin vapor phase carbon (TIGG Corporation, Econosorb-V or similar). The drums will connected in series and include a sampling port located between the two units.

Treated effluent will be discharged though a two-inch diameter PVC pipe which will extend approximately three feet above the highest building level and at least ten feet from any air intake.

System Start-up

Following installation of the SVE system, the following actions will be completed during system start-up:

- check all exposed/visible piping for evidence of damage, cracks or leaks;
- turn system on and off to ensure the controls are functioning properly;
- record the vacuum reading at blower;
- record vacuum readings at the VMPs; and,
- collect photoioniziation detector (PID) readings before, between and after the carbon vessels.

The system testing described above will be conducted whenever the SVE system is restarted including after any significant changes are made to the system.

A visual inspection of the complete system will be conducted during each monitoring event. SVE system components to be monitored include, but are not limited to, the following:

- vacuum blower;
- observable system piping;
- vacuum gauges at blower;
- control switches; and
- PID readings before, between and after the carbon vessels.

The SVE system components are not adjustable and the regenerative blower shall not be serviced or repaired at the Site. The manifold contains ball valves that can be adjusted to balance the flow in the subsurface.

Remedial Performance Monitoring

Vapor samples will be collected on a quarterly basis to evaluate the performance of the system during the first six months of operation. PID readings and vapor samples will be collected from the system influent (before the carbon canisters), between the carbon canisters and from the system effluent (after the carbon canisters). Air samples will be submitted to a NYSDOH ELAP-certified laboratory for analysis of VOCs by USEPA Method TO-15.

Initial vapor concentrations will be high as accumulated vapors are removed with accelerated carbon depletion rates. Carbon usage will diminish over the first month as the accumulated vapors are removed soils. Carbon drums will be set up in series and PID readings and vapor samples collected between the drums will be utilized to determine when breakthrough occurs at the first drum. When this occurs, the drum will be changed out and shipped back to the supplier for regeneration. If nuisance odors are observed from the discharge at any time, operation of the system will be temporarily halted until the situation is remedied by changing out the carbon or through other necessary repairs / actions (loose valve / fitting, broken pipe, etc.).

Reporting

Laboratory reports will include ASP Category B data deliverables for use in the preparation of data usability summary reports (DUSRs). All results will be provided in accordance with the NYSDEC Environmental Information Management System (EIMS) electronic data deliverable (EDD) format.

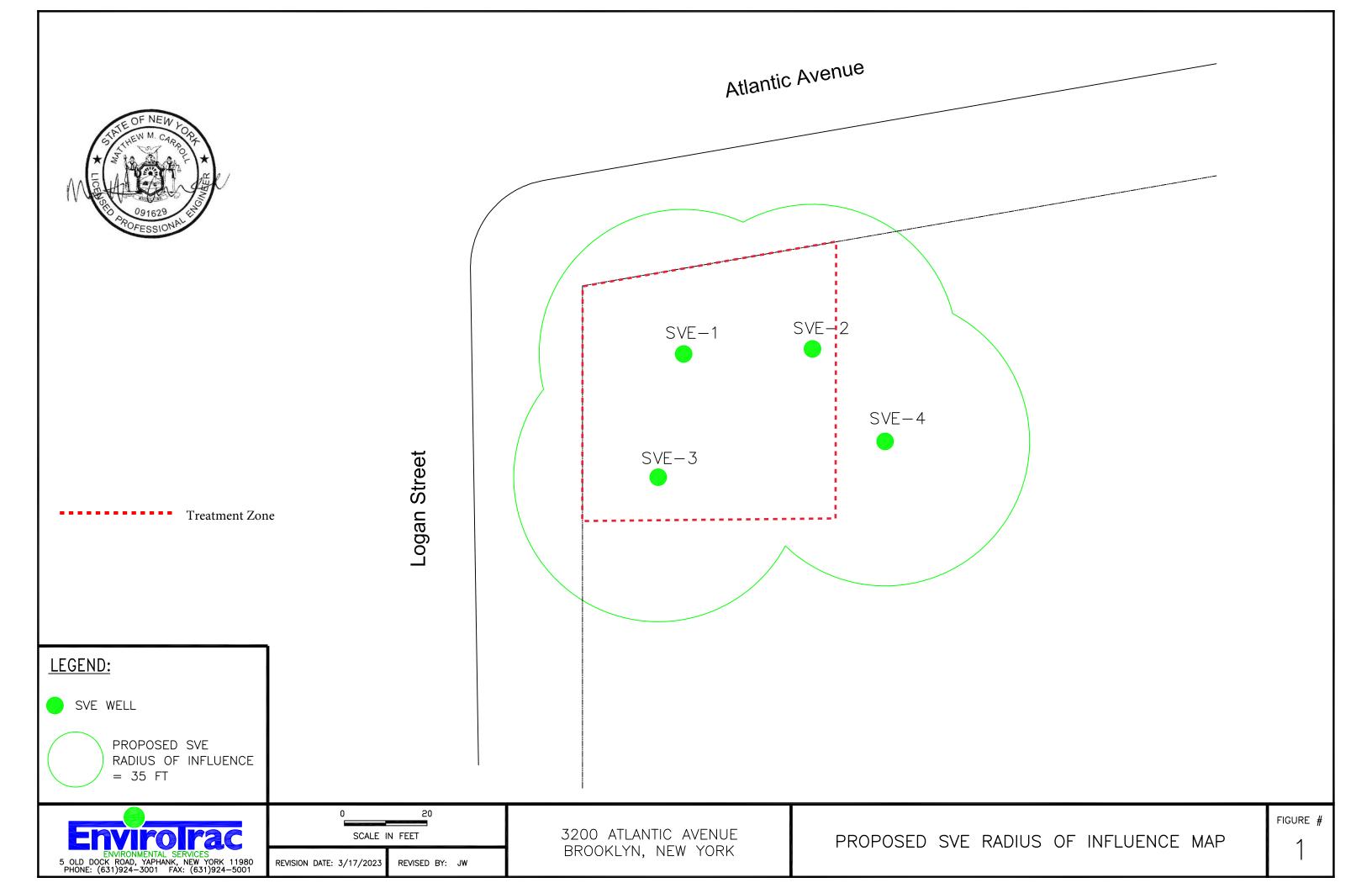
A letter report will be prepared after each quarterly air sampling event and will include, at a minimum:

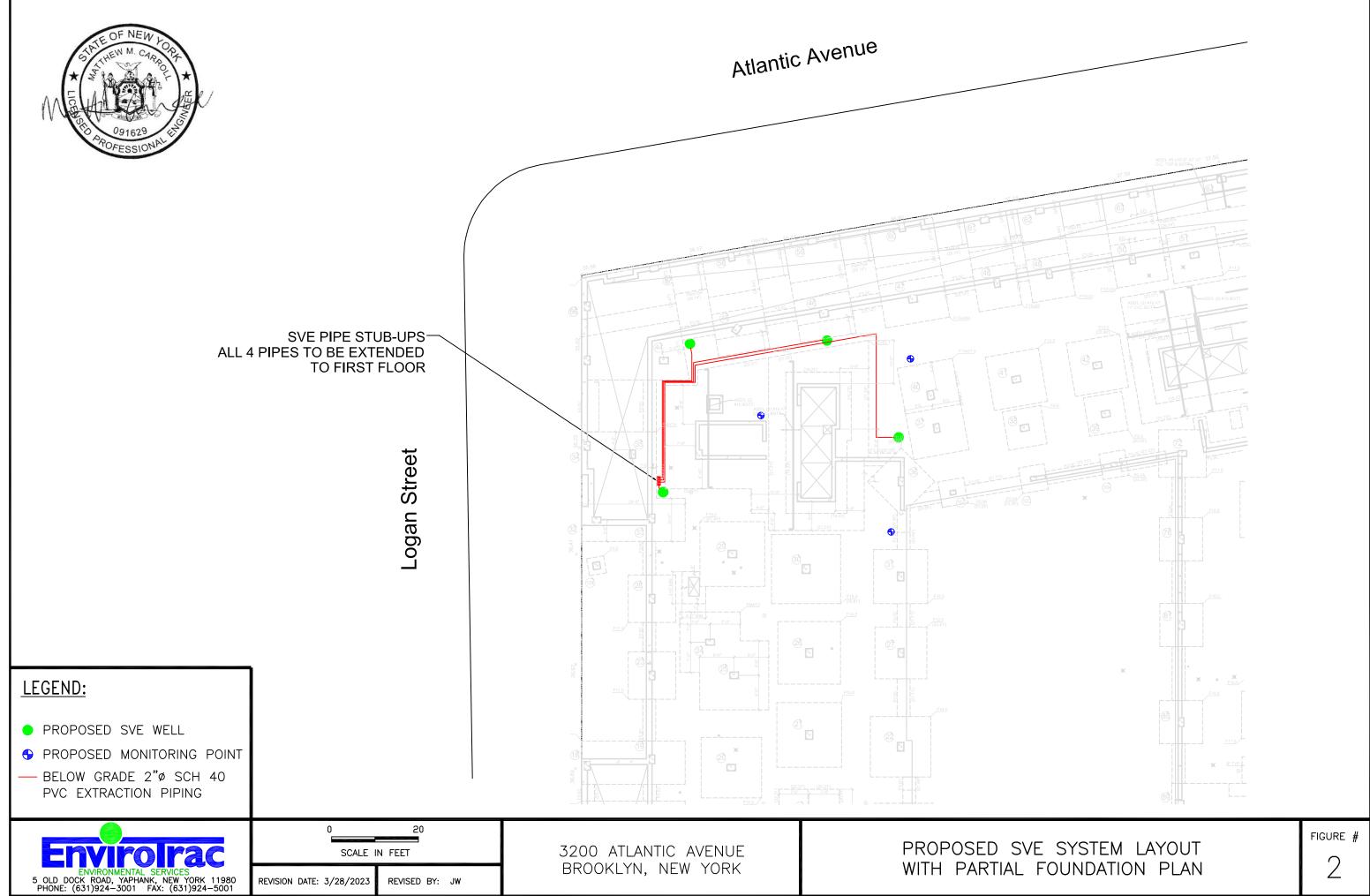
- date of event;
- personnel conducting sampling;
- description of the activities performed;
- description of samples collected;
- copies of all field forms;
- sampling results in comparison to appropriate standards/criteria;
- a figure illustrating the sample type and sampling locations;
- copies of all laboratory data deliverables;
- any observations, conclusions, or recommendations; and
- a determination as to whether conditions have changed since the last reporting event.

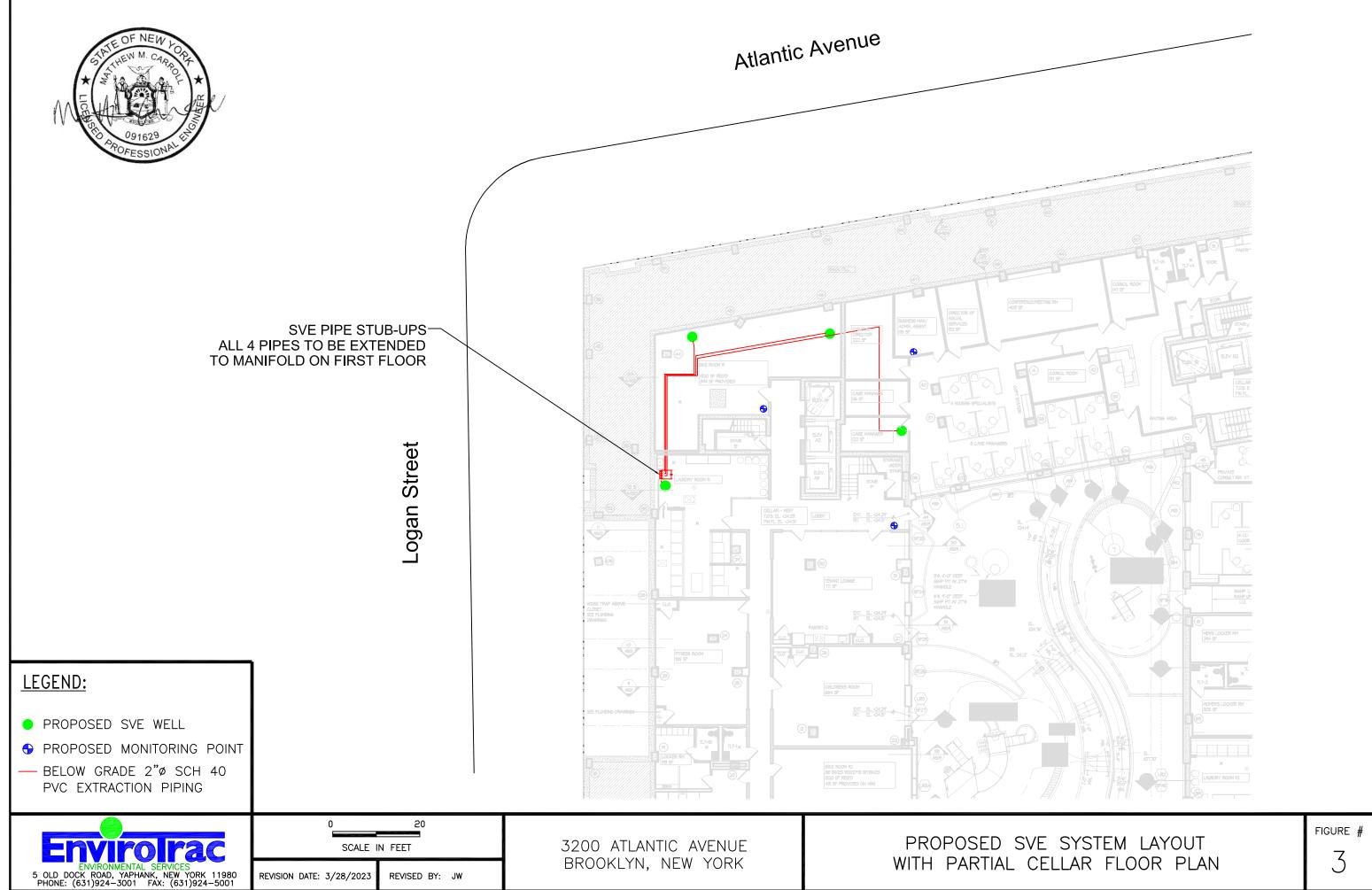
All performance monitoring and/or final post-remedial sampling analysis will be included in the Final Engineering Report (FER) and, if necessary, in post-Certificate of Completion (COC) Period Review Reports (PRRs).

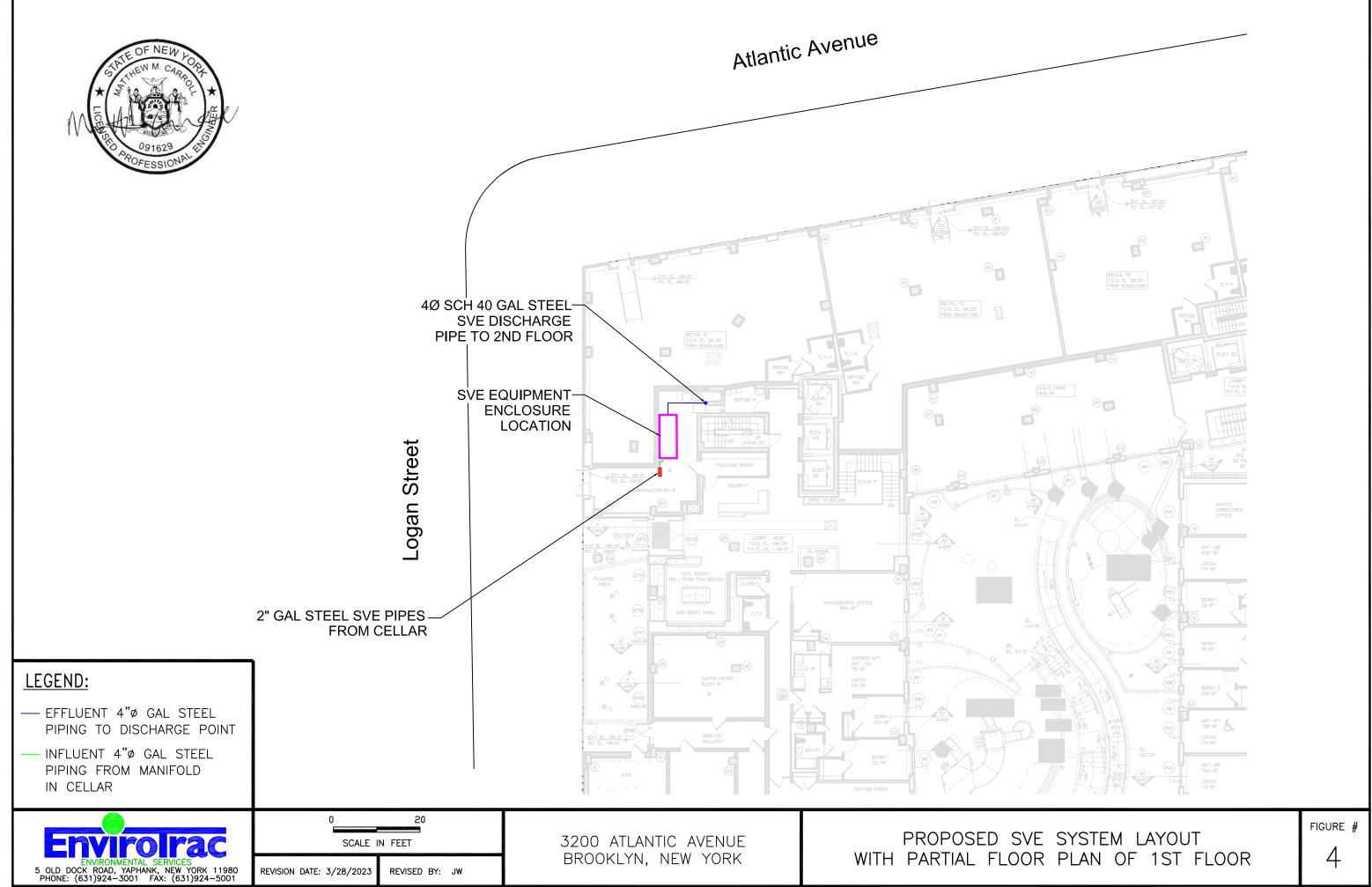
Conclusions

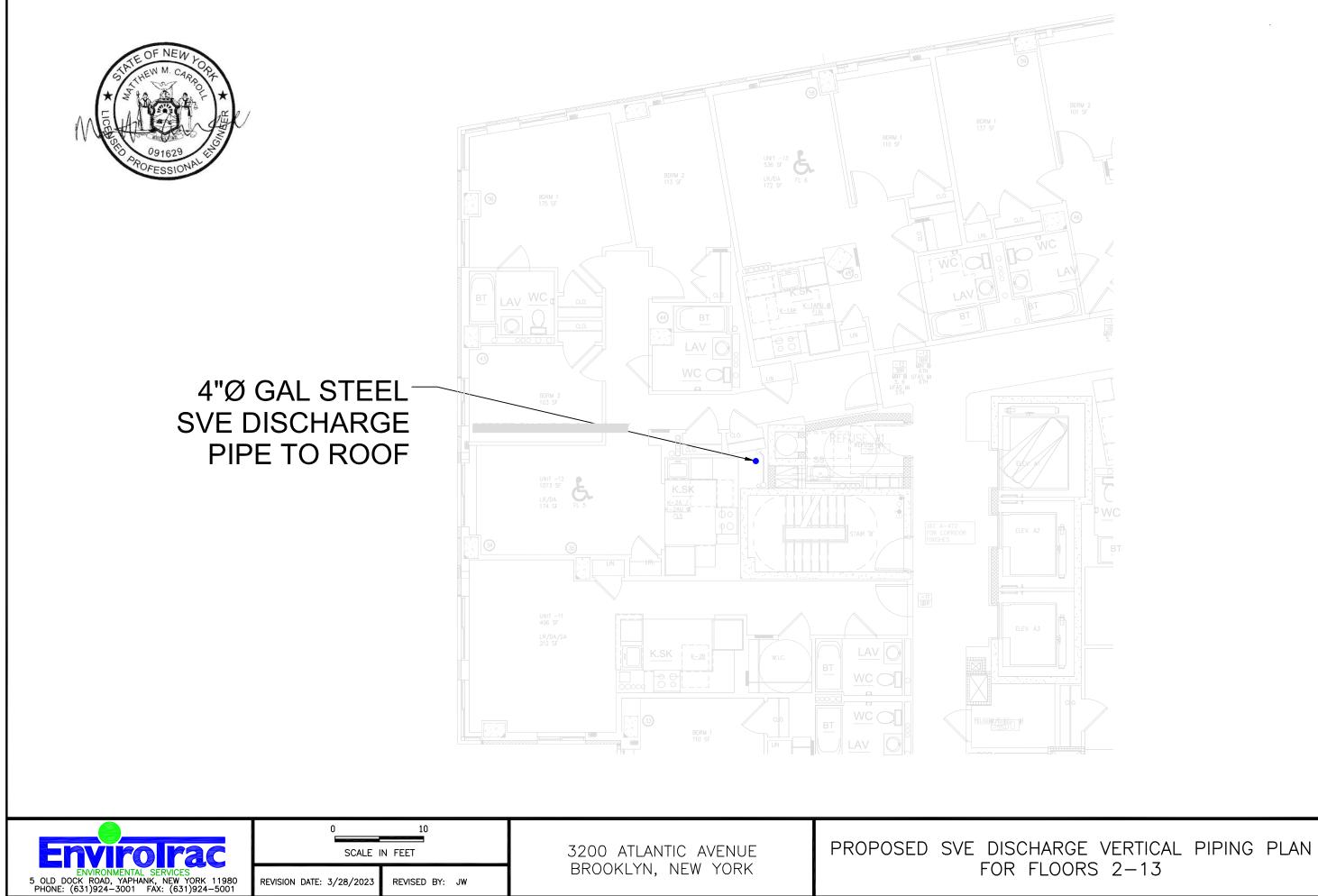
SVE is a viable alternative for remediation of petroleum-related VOCs in soil. The SVE system will treat remaining contaminated soil below 15 ft-bg and above the groundwater interface. The pilot test demonstrated that an effective ROI of 35 feet can be achieved. The selected SVE components will be installed and operated to treat the remaining petroleum-related VOCs in soil.

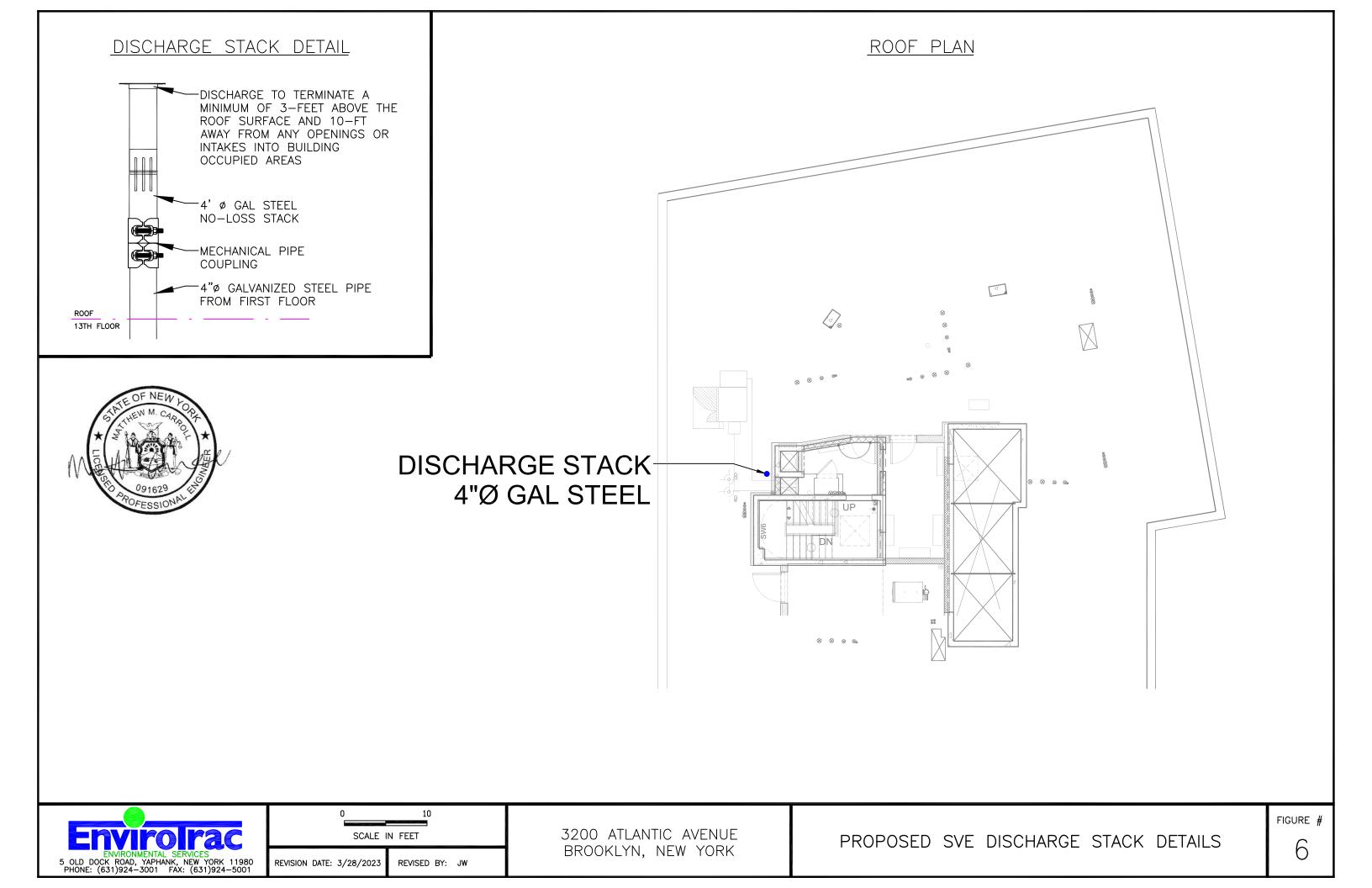

Please contact us if you require any additional information.

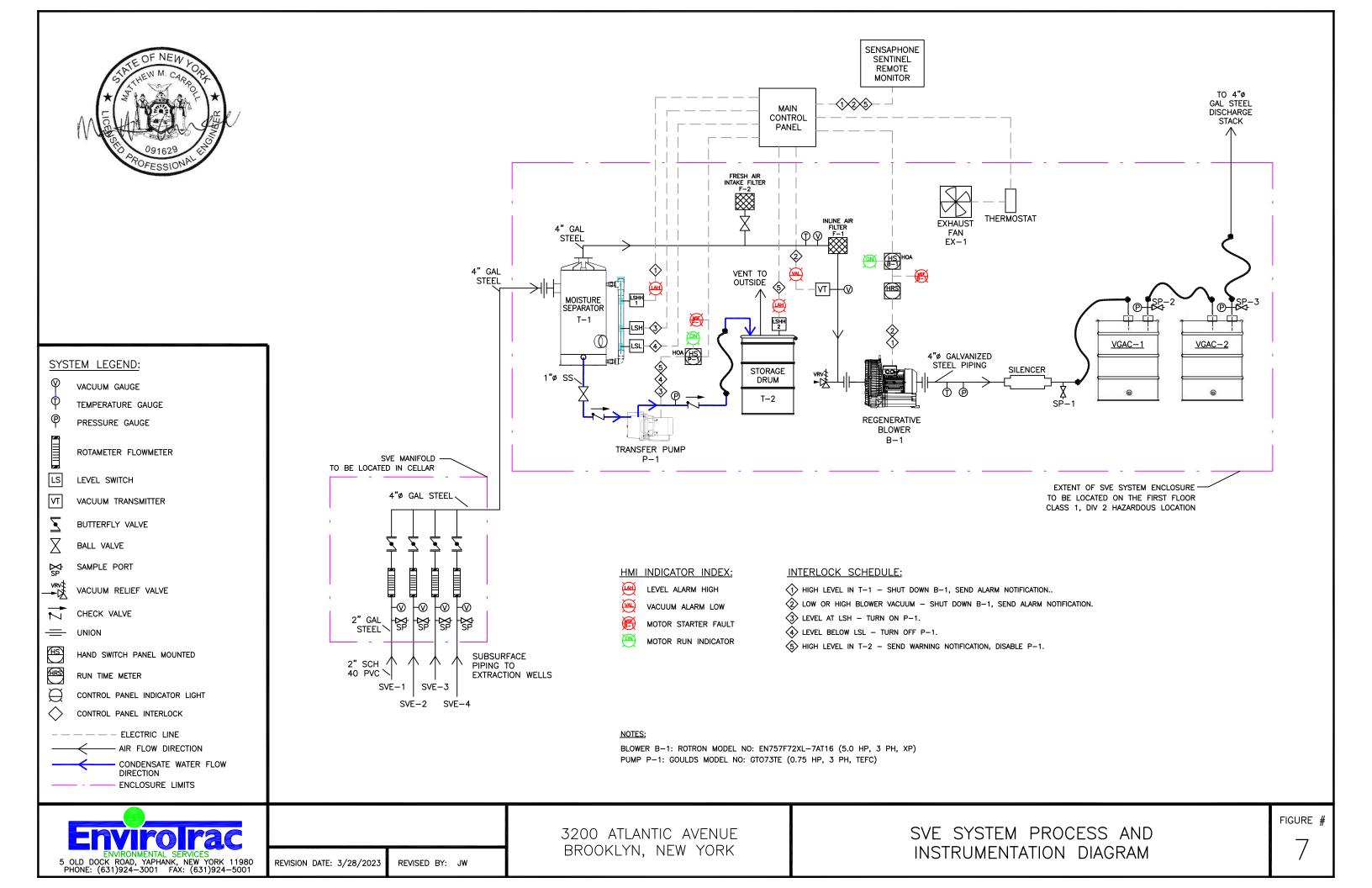

Sincerely, Tenen Environmental, LLC

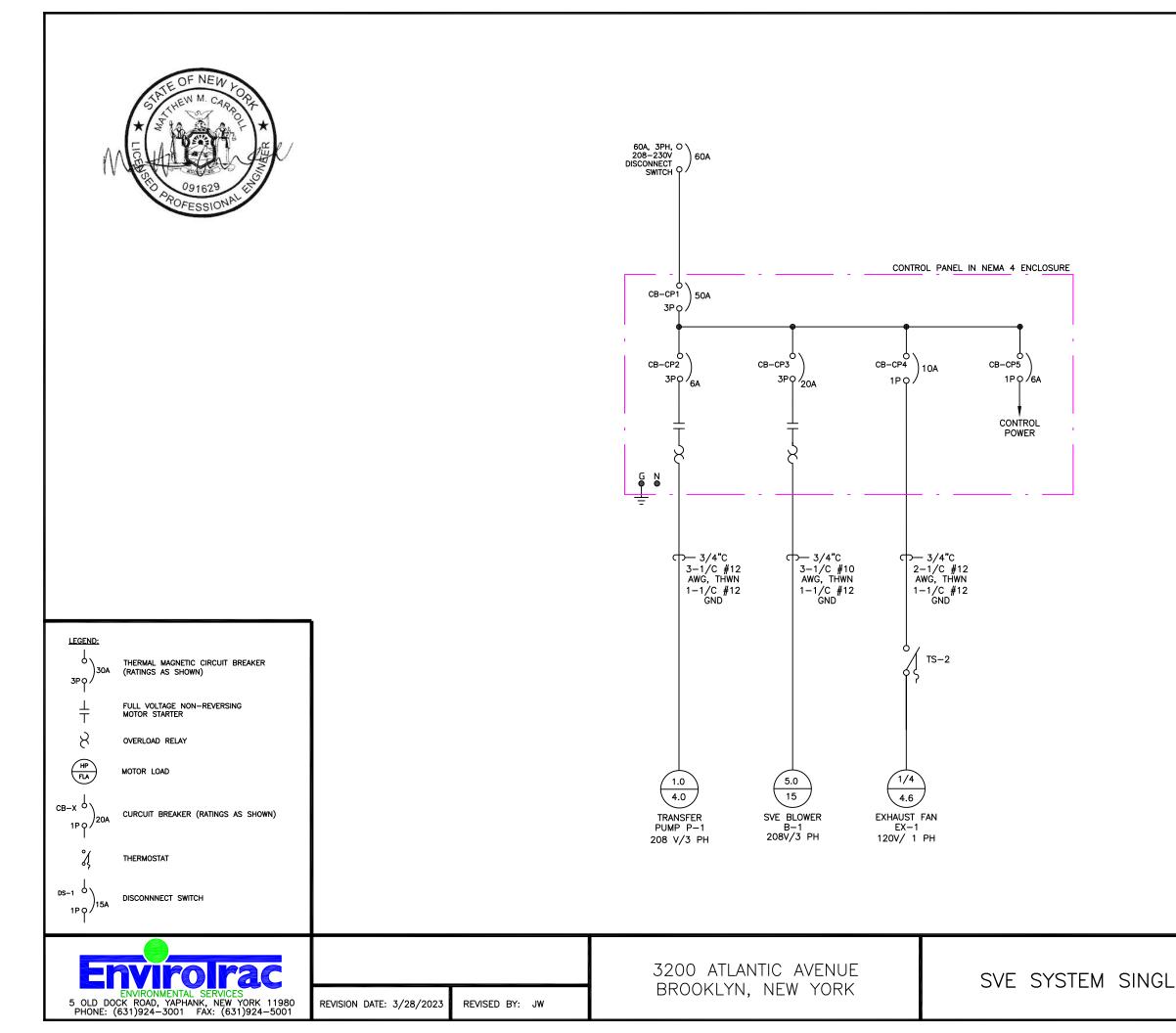



Matthew Carroll, P.E. Principal / Environmental Engineer

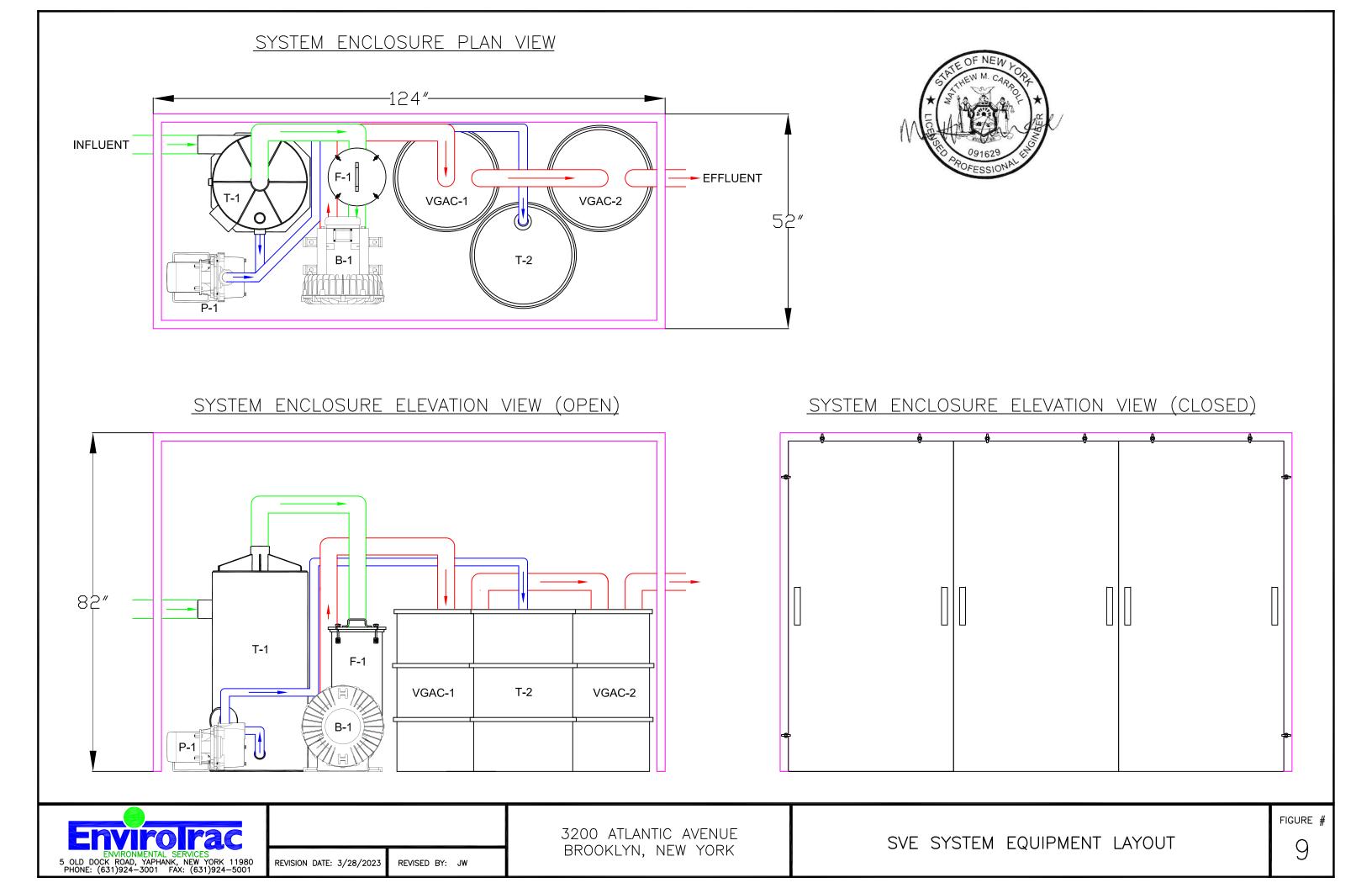

Attachment 1: SVE Pilot Test Report Attachment 2: Laboratory Deliverables

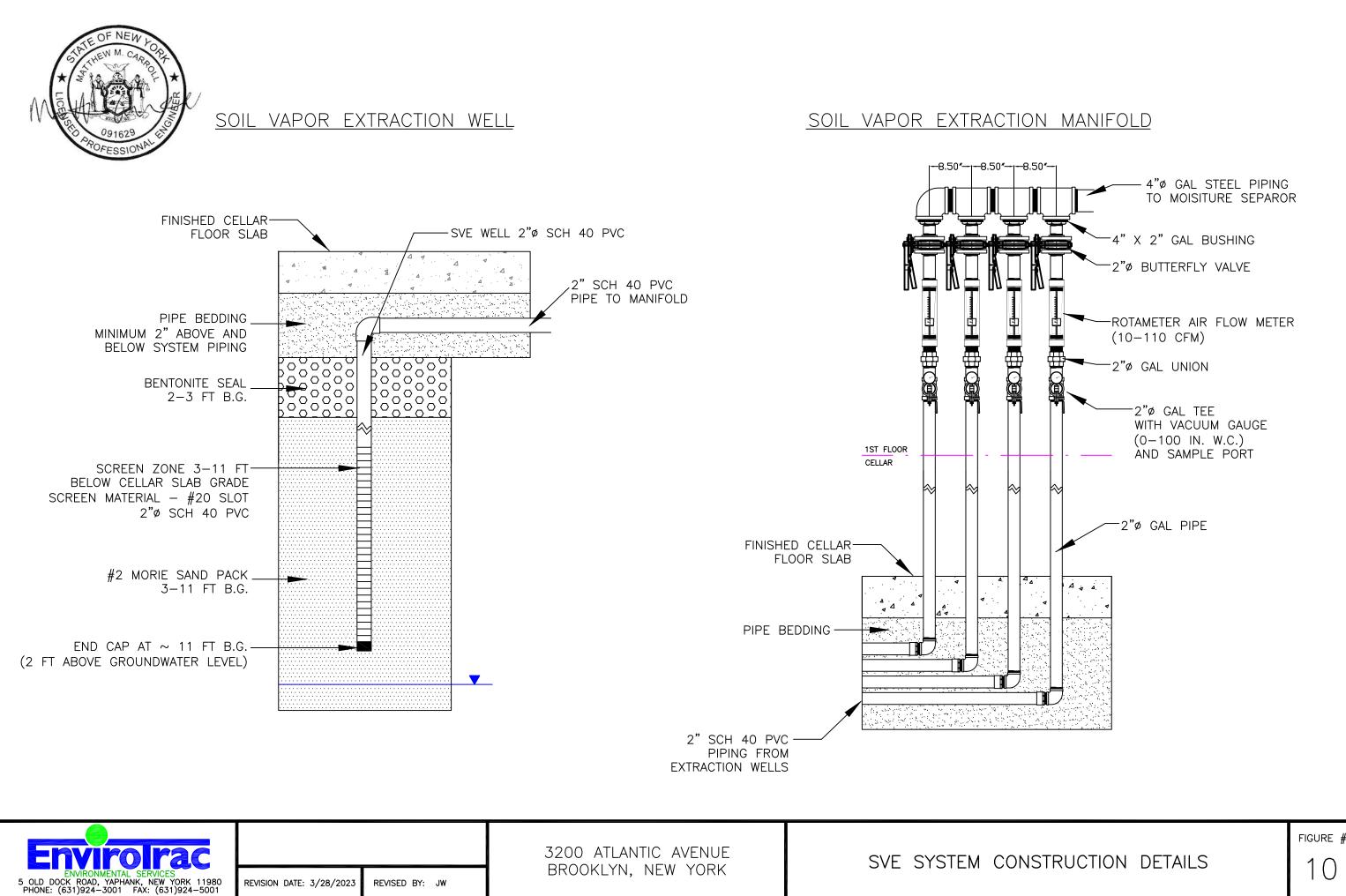



REVISION DATE: 3/28/2023


REVISED BY: JW

FOR FLOORS 2-13





SVE SYSTEM SINGLE LINE POWER DIAGRAM

FIGURE #

8

Attachment 1: SVE Pilot Test Report

Soil Vapor Extraction (SVE) Pilot Test Report

Site:

3200 Atlantic Avenue Brooklyn, New York

Prepared for:

Tenen Environmental 121 West 27th Street, Suite 702 New York, New York 10001

Prepared by:

EnviroTrac Engineering PE PC 5 Old Dock Road Yaphank, NY 11980

March 2023

Soil Vapor Extraction (SVE) Pilot Test Report 3200 Atlantic Avenue, Brooklyn, New York.

PURPOSE

This report is intended to summarize the results of the SVE pilot study that was conducted by Tenen Environmental on August 22, 2022. The purpose of the test was to determine the feasibility of implementing a full scale SVE system as a viable means of remediating the remaining areas of contamination. The results of this study were used to determine the required operating parameters and layout for the final remediation system.

PILOT TEST SPECIFICATIONS

1. Soil Vapor Extraction Equipment

 Extraction Blower – Ametek Rotron Inc. Model #DR505AW58M, Regenerative Vacuum Blower (2-HP, 115/230V, 1 Phase).

0	Max Flow:	150 SCFM
0	Max Vac:	70 "H ₂ O

2. Test Wells

Four (4) soil vapor extraction wells (SVE-1, SVE-2, SVE-3, and SVE-4) were tested. Each well was screened from 15-25' below grade. To monitor the subsurface vacuum response, several vacuum monitoring points were installed extending radially outward from the test points. The location of each test well can be seen in **Figure 1**.

SVE/SVE TESTING METHODOLOGY

Each extraction well was tested at varying operational conditions. During each test, the vacuum blower was configured to operate at three different steps of increasing flow and vacuum. During each step, operating parameters such as applied flow, vacuum, and subsurface vacuum responses were recorded. Due to the limits of the monitoring instruments used some of the applied vacuum readings were estimated based on the blower performance curve and the performance of the other test wells. For remedial design purposes the applied vacuum and extraction flow rate for each step were entered as the following:

<u>SVE-1</u>

- Step 1 3.5 "H₂O Wellhead Vacuum, 36 cfm Extraction Flow Rate.
- Step 2 14 "H₂O Wellhead Vacuum, 90 cfm Extraction Flow Rate.
- Step 3 20 "H₂O Wellhead Vacuum, 127 cfm Extraction Flow Rate.

<u>SVE-2</u>

- Step 1 3.1 "H₂O Wellhead Vacuum, 32 cfm Extraction Flow Rate.
- Step 2 15.1 "H₂O Wellhead Vacuum, 102 cfm Extraction Flow Rate.
- Step 3 22.1 "H₂O Wellhead Vacuum, 153 cfm Extraction Flow Rate.

SVE-3

- Step 1 2.7 "H₂O Wellhead Vacuum, 29 cfm Extraction Flow Rate. •
- Step 2 15.4 "H₂O Wellhead Vacuum, 91 cfm Extraction Flow Rate. •
- Step 3 20.4 "H₂O Wellhead Vacuum, 123 cfm Extraction Flow Rate.

SVE-4

- Step 1 3.5 "H₂O Wellhead Vacuum, 27 cfm Extraction Flow Rate.
- Step 2 9.9 "H₂O Wellhead Vacuum, 69 cfm Extraction Flow Rate.
- Step 3 11.7 "H₂O Wellhead Vacuum. 131 cfm Extraction Flow Rate.

During each step vacuum influence was recorded from all monitoring points utilizing a handheld digital manometer. Due to monitoring point MP-4 never showing a vacuum response, the data recorded from it was not used in the system design calculations.

PILOT TESTING RESULTS

The field data collected during the SVE pilot test is included as an attachment to this report. Flow and vacuum readings were recorded during each step of the SVE test, while vacuum influence was measured at each observation point. A copy of the pilot test data analysis, along with the associated data plots, are also included as attachments to this report.

To determine the performance requirements at the proposed SVE extraction wells, the pilot test data was used to generate a semi-logarithmic plot of the sub-slab vacuum response vs. the distance from the extraction well. From this plot the effective Radius of Influence (ROI) of each pilot test step is determined by finding the radial distance where the vacuum response equals 0.10° H₂O vacuum response.

In order to have vacuum influence coverage over the complete area of concern an ROI of 35 ft was chosen for each extraction well. To produce an ROI of 35 ft each well had the following minimum performance requirements:

- SVE-1 wellhead vacuum of 7.0 "H₂O, extraction flow rate of 54 cfm.
- SVE-2 wellhead vacuum of 7.8 "H₂O, extraction flow rate of 60 cfm.
- SVE-3 wellhead vacuum of 9.9 "H₂O, extraction flow rate of 66 cfm. •
- SVE-4 wellhead vacuum of 5.0 "H₂O, extraction flow rate of 39 cfm.

CONCLUSIONS

Based on the results tabulated, the pilot testing performed demonstrates that a full-scale SVE system can serve as an effective means of remediation for the remaining area of contamination. If a target ROI of 35 feet is selected for each proposed extraction point, it was determined that a minimum vacuum of 10 "H2O and average extraction air flow rate of 55 CFM would need to be applied at each point. Figure 2 shows the proposed radius of influence coverage.

Recommended Design Parameters (each extraction point):

- Target Radius of Influence (ROI): 35 feet • 10.0 "H₂O
- Applied Vacuum:
- Average Extraction Flow Rate: 55 CFM

Recommended Design Parameters (Total System Performance, 4 Wells):

- Target Radius of Influence (ROI):
- Fan Vacuum:
- Fan Total Flow Rate:
- Proposed Extraction Blower: Ametek Rotron Model #EN757F72XL

SVE SYSTEM SPECIIFCATIONS

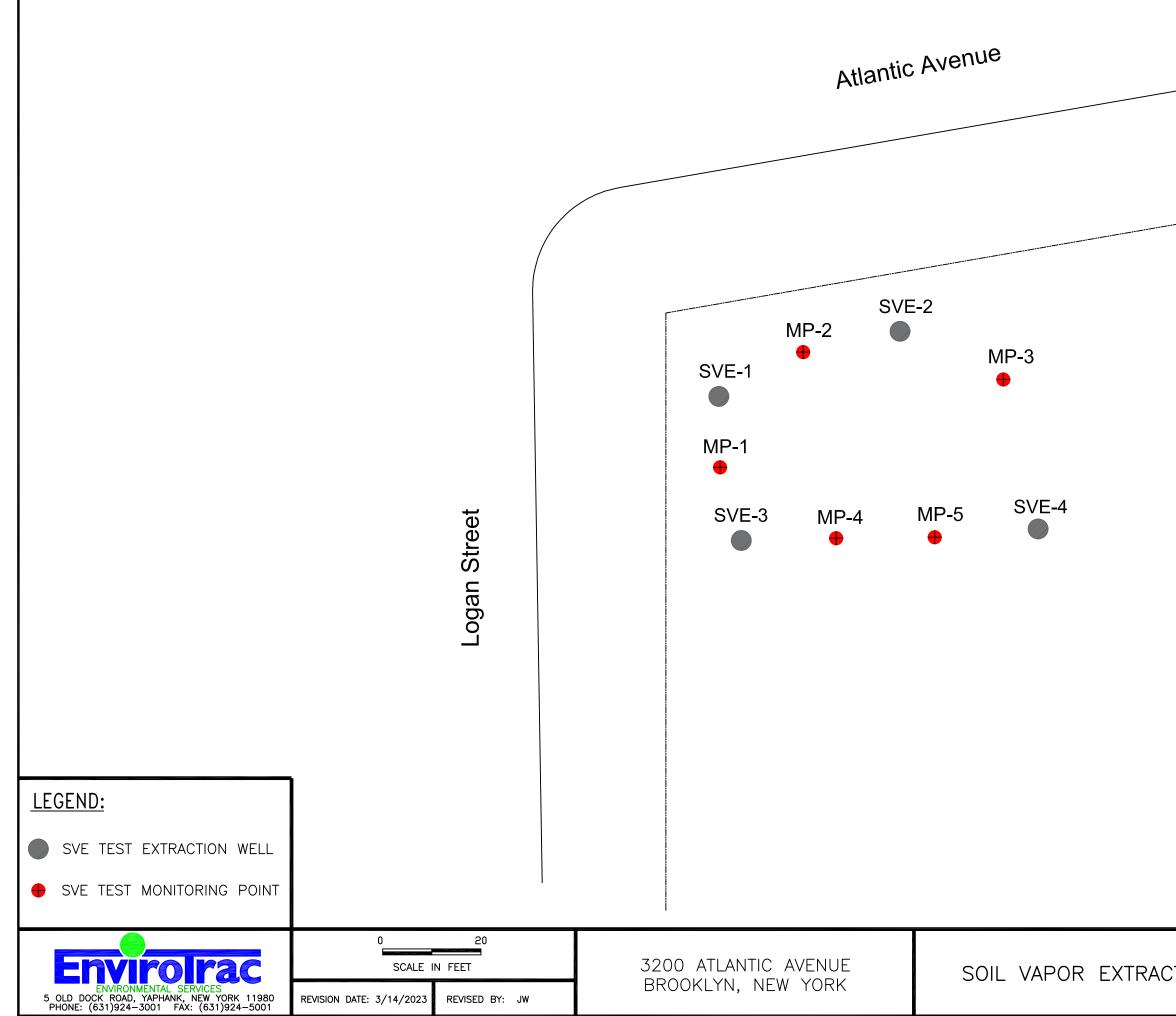
To provide adequate coverage of the remaining area of contamination it is proposed to install a full-scale remediation system consisting of four (4) 2-inch diameter SVE wells. Each well will be piped to a common manifold using 2-inch diameter SCH 40 PVC pipe below grade and 2" galvanized steel pipe above grade. The manifold header shall be constructed of 3-inch diameter SCH 40 galvanized steel pipe. Each leg of the manifold shall contain a butterfly valve, vacuum gauge, and air flow meter. The common header pipe shall be piped to the system equipment room that will house the moisture separator, air filter, extraction blower, carbon vessels, transfer pump, and condensate storage drum. The effluent pipe shall exhaust to the atmosphere at a location that is at least 2-feet above the roofline and 10-ft from any opening to the building occupied spaces.

To monitor the system performance three (3) vacuum monitoring points (VMPs) should be installed in the locations indicated in **Figures 3 & 4. Figure 5** is the system process flow diagram. A specification sheet for the proposed extraction blower is attached.

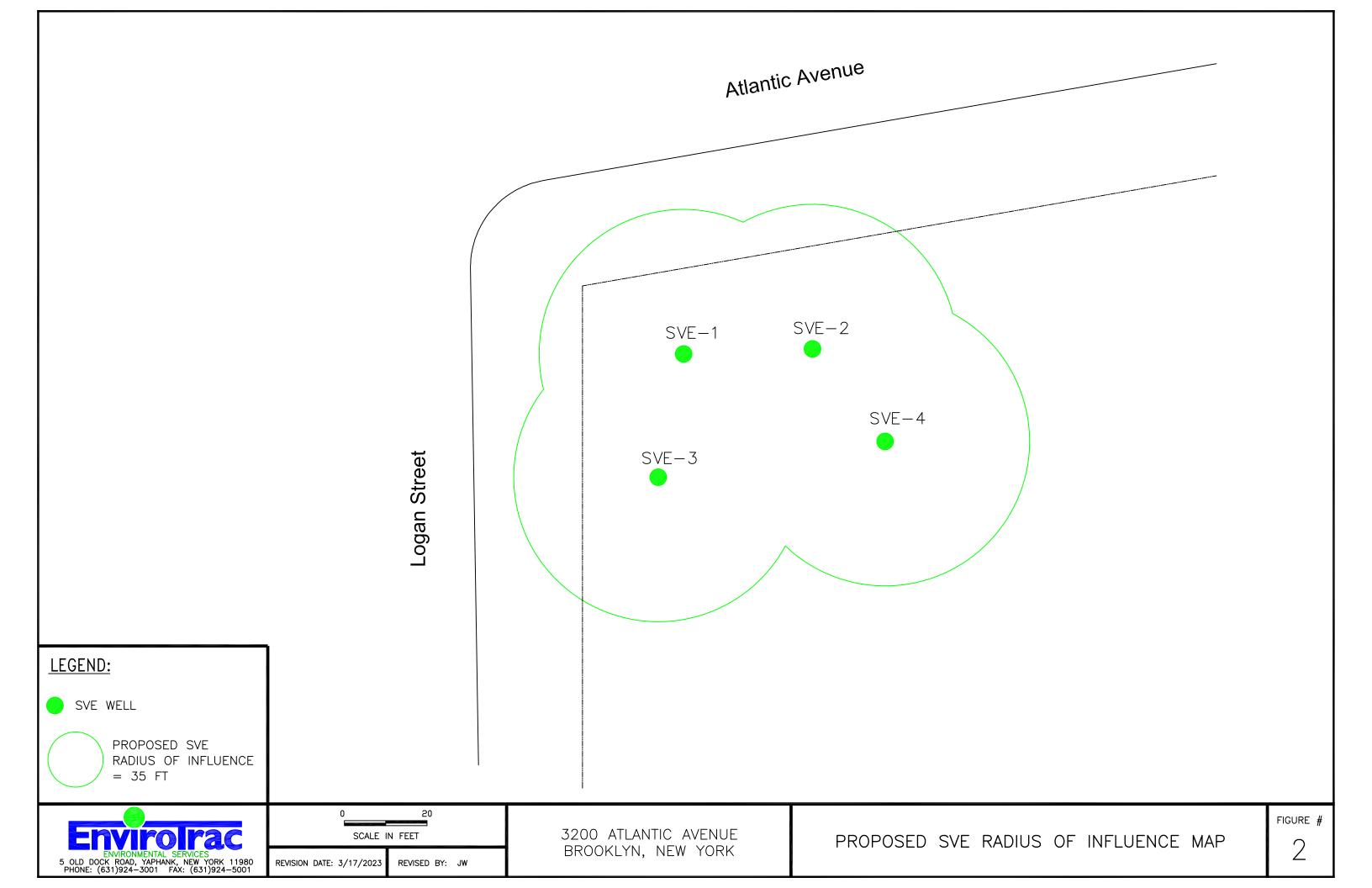
35 feet (per well) 40 "H₂O (inc. SF for system losses) 220 CFM

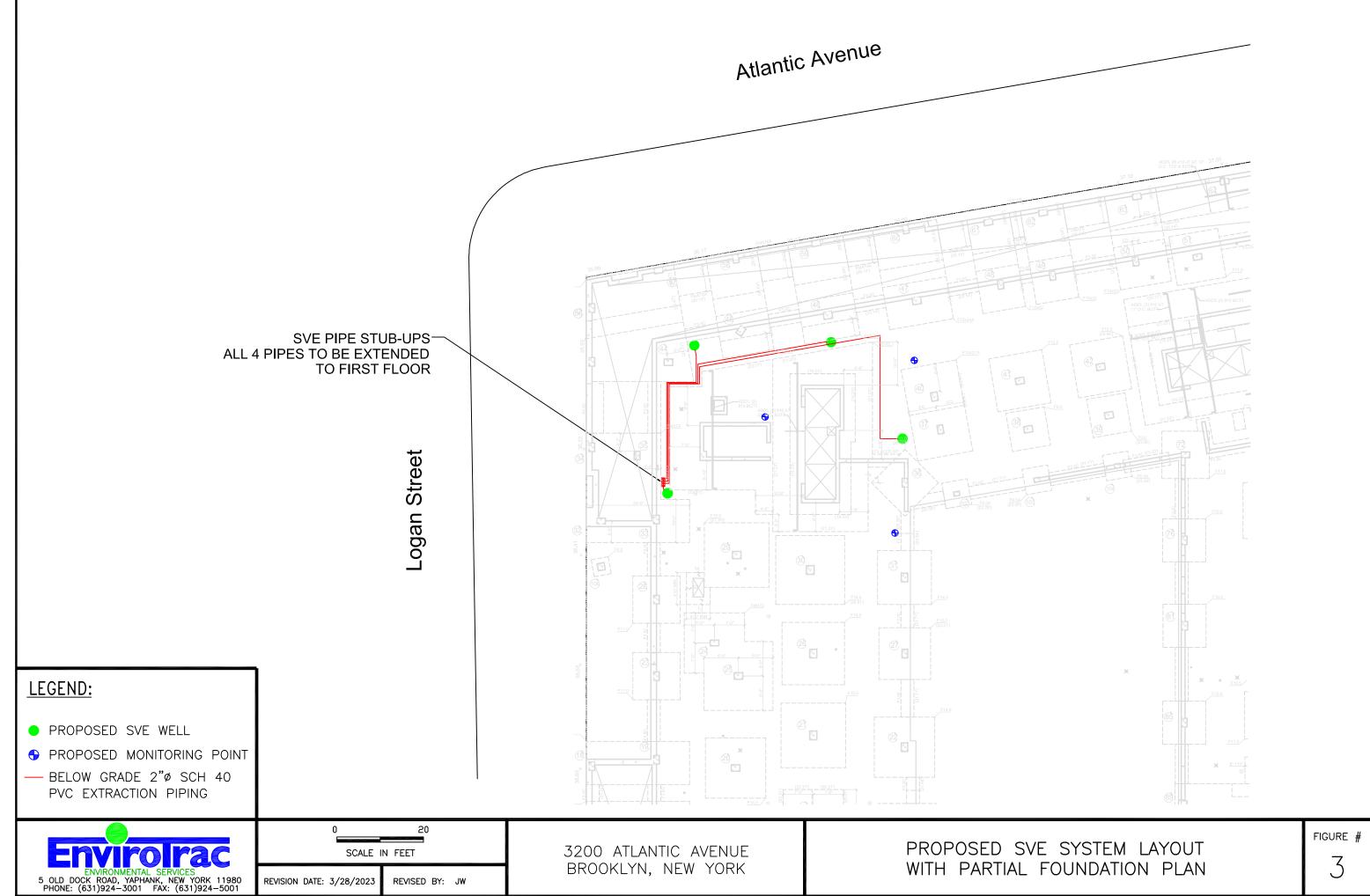
FIGURES

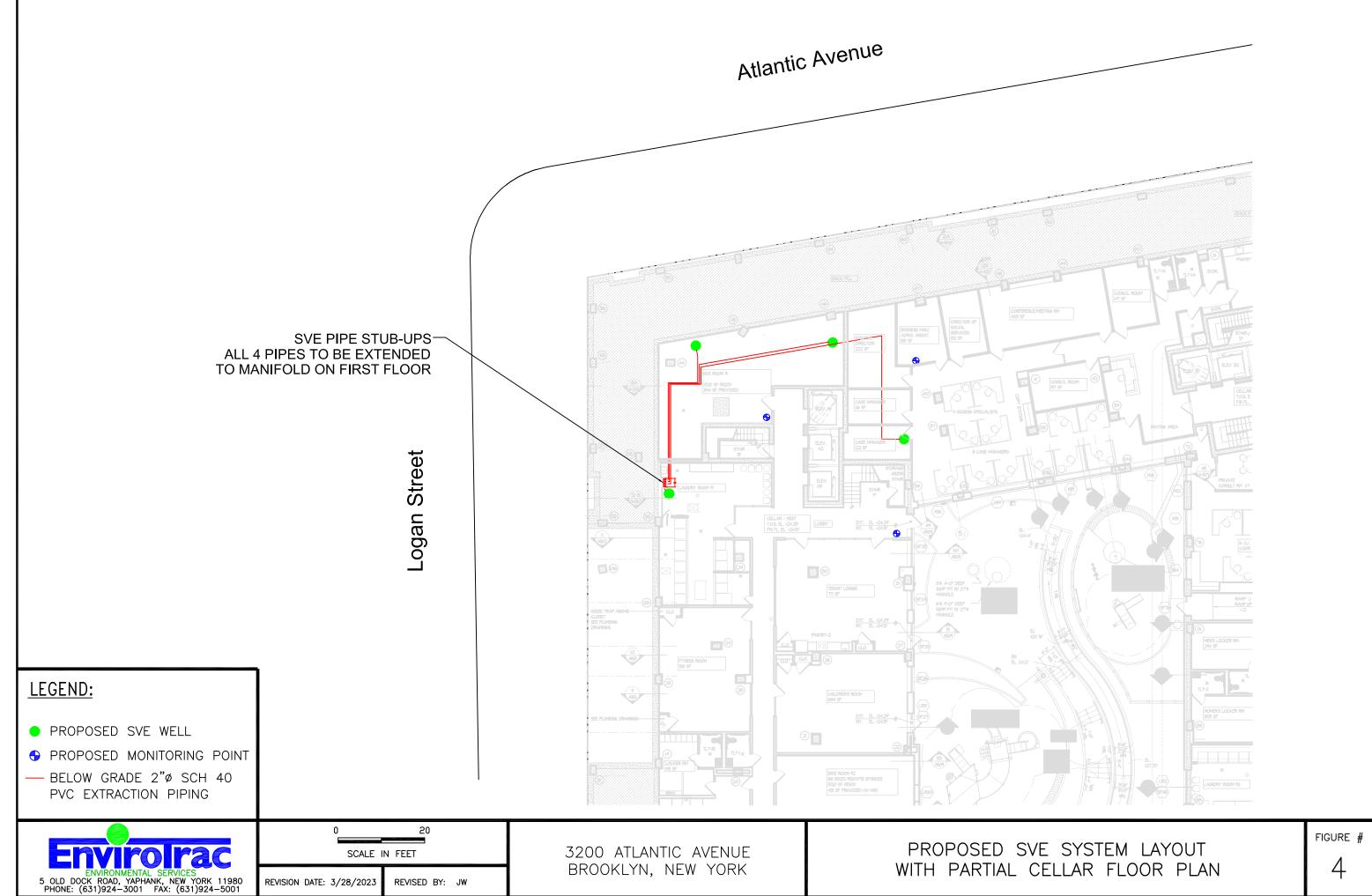
- Figure 1: Soil Vapor Extraction Pilot Test Layout •
- Figure 2: Proposed SVE Radius of Influence Map
- Figure 3: Proposed SVE System Layout with Foundation Plan
- Figure 3: Proposed SVE System Layout with Cellar Floor Plan
- Figure 4: SVE System Process Flow Diagram


ATTACHMENTS

- SVE Pilot Test Data
 SVE Pilot Test Data Analysis
- 3. Proposed SVE Blower Specification Sheet


FIGURES





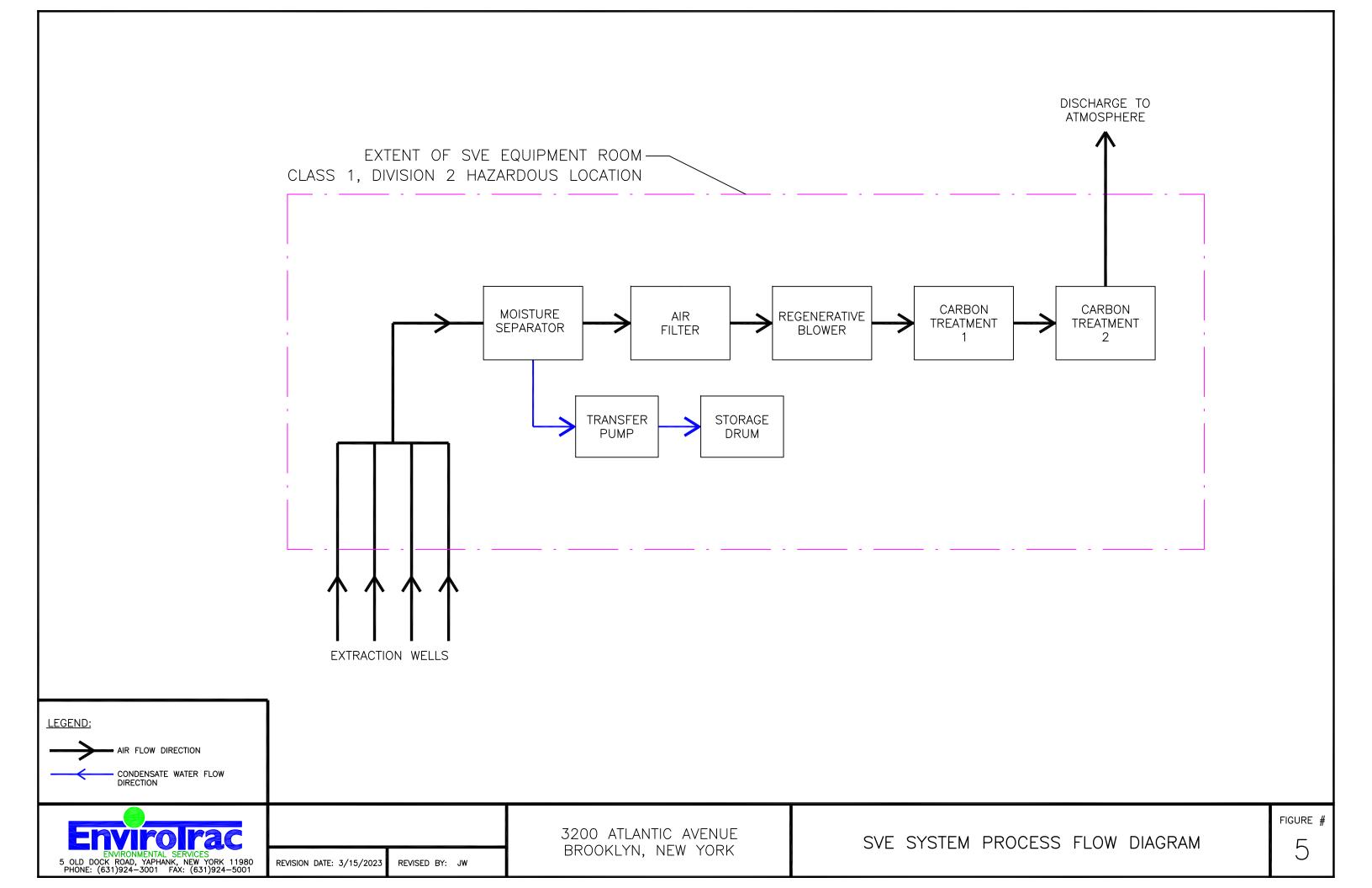

SOIL VAPOR EXTRACTION PILOT TEST LAYOUT

FIGURE #

ATTACHMENTS

Atlantic Chestnut - Lot 1 250 Euclid Avenue, Brooklyn, NY L1-SVE-08 Pilot Test Worksheet

Pilot Test Data - SVE-1			
Pliot lest Data - SVE-1			
Site: 3200 Atlantic Avenue	Weather:	Overcast/Light Rain	_
Brooklyn, New York	Temperature:	72-22 °F	_
Personnel: M. Carroll, V. Chang, Z. Madeira	Barometric Pressure:	29.95 inHg	_
Date: 8/22/2022	Wind Speed/Direction:	West @ 4-9 mph	_
Stop Toot: 1 (100% Dilution)			
Step Test: 1 (100% Dilution)	_		
SVE Well ID	Applied Vacuum (in. H₂O)	Air Flow (SCFM)	
SVE-1	3.457	36.13	
Vapor Monitoring Point ID	Induced Vacuum (in. H ₂ O)	Distance (ft)	Direction
MP-1	0.495	8.8	S
MP-2	0.396	11.6	NE
MP-3	0.104	32.9	E
MP-4	0.000	21.7	SE
MP-5	0.085	29.9	SE
SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)	7
SVE-1	13.979	90.21	_
Vapor Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	1.489	8.8	S
MP-2	1.135	11.6	NE
MP-3	0.308	32.9	E
MP-4	0.000	21.7	SE
MP-5	0.279	29.9	SE
Step Test: 3 (0% Dilution)	_		
SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)]
SVE-1	> 15 (Out of Range)	127.47	
Vapor Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	2.174	8.8	S
MP-2	1.632	11.6	NE
MP-3	0.442	32.9	E
MP-4	0.000	21.7	SE
MP-5	0.382	29.9	SE

Atlantic Chestnut - Lot 1

250 Euclid Avenue, Brooklyn, NY L1-SVE-08 Pilot Test Worksheet

Pilot Test Data - SVE-2			
Site: 3200 Atlantic Avenue	Weather:	Overcast/Light Rain	
Brooklyn, New York	Temperature:	72-22 °F	-
Personnel: M. Carroll, V. Chang, Z. Madeira	Barometric Pressure:	29.95 inHg	-
Date: 8/22/2022	Wind Speed/Direction:	West @ 4-9 mph	-
Step Test: 1 (100% Dilution)	_		-
SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)	7
SVE-2	3.066	21.78	
Vapor Monitoring Point ID	Induced Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	0.110	25.5	SW
MP-2	0.222	10.4	W
MP-3	0.157	13.7	SE
MP-4 MP-5	0.000	25.3 24.3	SSW SSE
SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)	7
SVE-2	> 15 (Out of Range)	102.18	_
Vapor Monitoring Point ID	Net Vacuum (in. H ₂ O)	Distance (ft)	Direction
MP-1	0.507	25.3	SW
MP-2	0.936	10.4	W
MP-3	0.710	13.7	SE
MP-4 MP-5	0.000	25.3 24.3	SSW
Step Test: <u>3 (0% Dilution)</u>		24.3	SSE
SVE Well ID	Applied Vacuum (in. H₂O)	Air Flow (SCFM)	
SVE-2	> 15 (Out of Range)	152.97	
Vapor Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	0.781	25.3	SW
MP-2	1.404	10.4	W
MP-3 MP-4	1.088 0.000	13.7 25.3	SE SSW
IVIE-4			

Atlantic Chestnut - Lot 1

250 Euclid Avenue, Brooklyn, NY L1-SVE-08 Pilot Test Worksheet

Pilot Test D	ata - SVE-3			
Site: 32	200 Atlantic Avenue	Weather:	Overcast/Light Rain	
Br	ooklyn, New York	Temperature:	72-22 °F	
Personnel: M	. Carroll, V. Chang, Z. Madeira	Barometric Pressure:	29.95 inHg	-
Date: 8/	22/2022	Wind Speed/Direction:	West @ 4-9 mph	
Step Test: 1	(100% Dilution)	_		
	SVE Well ID	Applied Vacuum (in. H₂O)	Air Flow (SCFM)]
	SVE-3	-	29	
Vapo	or Monitoring Point ID	Induced Vacuum (in. H ₂ O)	Distance (ft)	Direction
	MP-1	0.325	8.2	Ν
	MP-2	0.136	22.7	NNE
	MP-3	0.071	34.7	NE
	MP-4 MP-5	0.000 0.099	<u>11.4</u> 22.1	E
	SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)]
	SVE-3	-	91	
Vapo	or Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
	MP-1	1.413	8.2	Ν
	MP-2	0.472	22.7	NNE
	MP-3 MP-4	0.281	34.7	NE
	MP-5	0.000 0.331	<u>11.4</u> 22.1	E
Step Test: 3		Applied Vacuum	Air Flow (SCFM)]
		(in. H ₂ O)		-
Vapo	SVE-3 or Monitoring Point ID	- Net Vacuum (in. H₂O)	123 Distance (ft)	Direction
	MP-1	2.182	8.2	N
	MP-2	0.728	22.7	NNE
	MP-3	0.430	34.7	NE
	MP-4	0.000	11.4	E
	MP-5	0.515	22.1	E

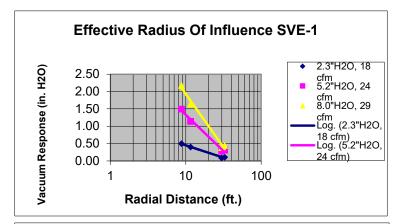
Atlantic Chestnut - Lot 1

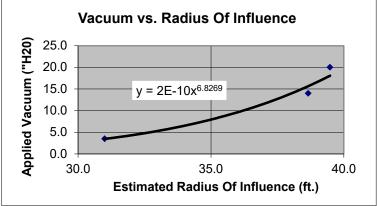
250 Euclid Avenue, Brooklyn, NY L1-SVE-08 Pilot Test Worksheet

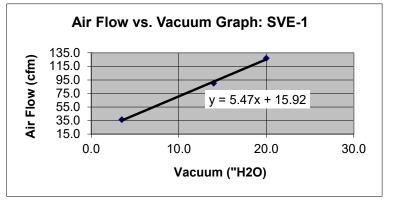
Pilot Test Data - SVE-4			
Site: 3200 Atlantic Avenue	Weather:	Overcast/Light Rain	
Brooklyn, New York	Temperature:	72-22 °F	
Personnel: M. Carroll, V. Chang, Z. Madeira	Barometric Pressure:	29.95 inHg	-
Date: 8/22/2022	Wind Speed/Direction:	West @ 4-9 mph	
Step Test: 1 (100% Dilution)	_		
SVE Well ID	Applied Vacuum (in. H₂O)	Air Flow (SCFM)	
SVE-4	3.505	27	
Vapor Monitoring Point ID	Induced Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	0.077	36.4	NW
MP-2	0.084	32.8	WNW
MP-3	0.281	16.9	N
MP-4 MP-5	0.000	22.5 11.4	W W
SVE Well ID	Applied Vacuum (in. H ₂ O)	Air Flow (SCFM)	1
SVE-4	9.87	69	
Vapor Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	0.293	36.4	NW
MP-2	0.255	32.8	WNW
MP-3 MP-4	0.859	16.9	N
MP-5	0.000	<u>22.5</u> 11.4	W
Step Test: 3 (0% Dilution)	Applied Vacuum		7
SVE Well ID	(in. H ₂ O)	Air Flow (SCFM)	
SVE-4	11.702	131	
Vapor Monitoring Point ID	Net Vacuum (in. H₂O)	Distance (ft)	Direction
MP-1	0.490	36.4	NW
MP-2	0.410	32.8	WNW
MP-3 MP-4	1.453 0.000	16.9 22.5	N W
MP-5	2.272	11.4	W

Summary of Soil Vapor Extraction Pilot Test Data 3200 Atlantic Avenue Brooklyn, New York

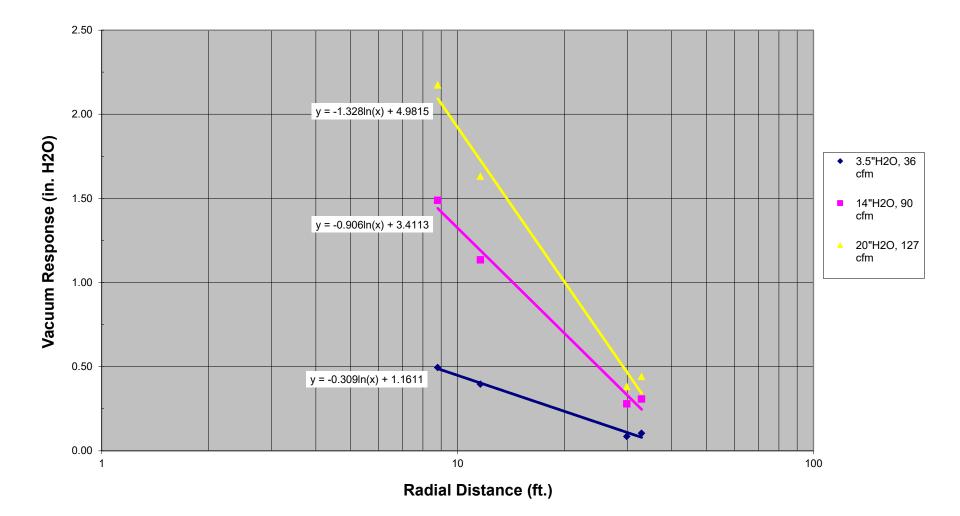
Test Date:	8/22/2022
Performed By:	Tenen Environmental
Extraction Well:	SVE-1
Wellhead Vacuum ("H2O):	2.3 to 8.0
Vapor Discharge Flow (scfm):	18 to 29


SVE Design Data


	Vacuum	Vacuum	Vacuum
	Response 1	Response 2	Response 3
	3.5" H2O	14" H2O	20" H2O
	Applied	Applied	Applied
Radial	Vacuum, 36	Vacuum, 90	Vacuum, 127
Distance (ft.)	scfm ("H2O)	scfm ("H2O)	scfm ("H2O)
Distance (ft.) 8.8	scfm ("H2O) 0.50	scfm ("H2O) 1.49	scfm ("H2O) 2.17
8.8	0.50	1.49	2.17


Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
31.0	3.5	36.0
38.7	14.0	90.0
39.5	20.0	127.0

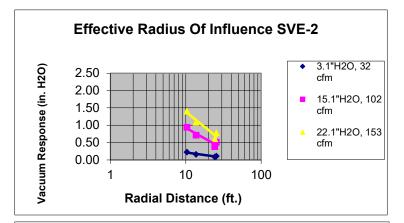
Desired Radius of Influence = 35 ft @ ROI = 35 ft, Applied Vacuum = 7.0"H2O @ 7.0"H2O Vacuum, Flow Rate = 54.0 cfm

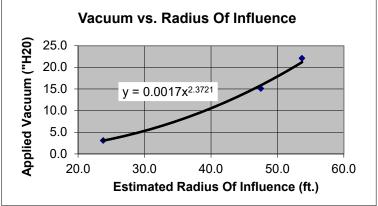

Note: For SVE ROI is the radial distance where the vacuum response equals 0.10" H2O.

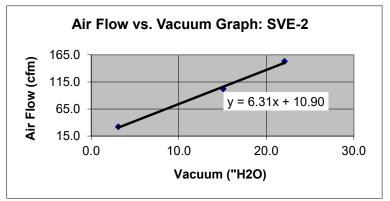
Effective Radius Of Influence SVE-1

Summary of Soil Vapor Extraction Pilot Test Data 3200 Atlantic Avenue Brooklyn, New York

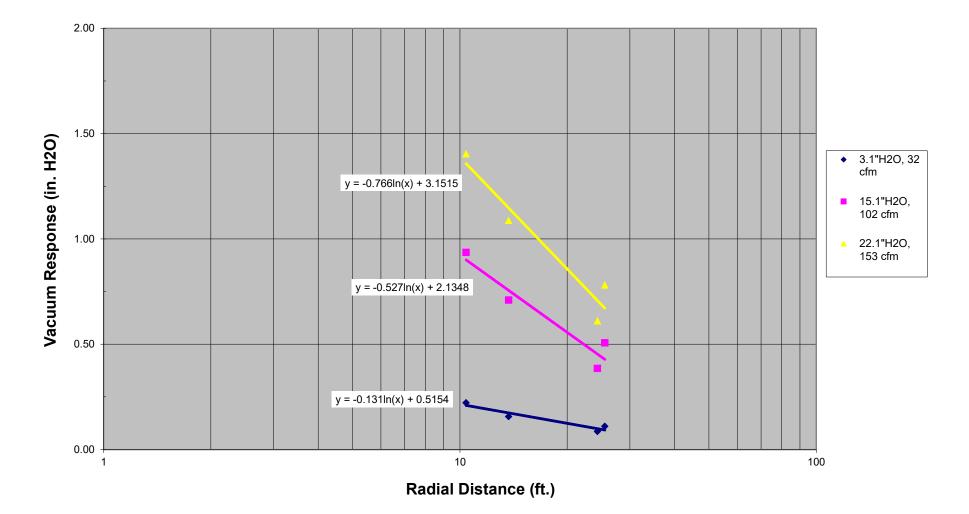
Test Date:	8/22/2022
Performed By:	Tenen Environmental
Extraction Well:	SVE-2
Wellhead Vacuum ("H2O):	3.1 to 22.1
Vapor Discharge Flow (scfm):	32 to 153


SVE Design Data


	Vacuum	Vacuum	Vacuum
	Response 1	Response 2	Response 3
	3.1" H2O	15.1" H2O	22.1" H2O
	Applied	Applied	Applied
Radial	Vacuum, 32	Vacuum, 102	Vacuum, 153
Distance (ft.)	scfm ("H2O)	scfm ("H2O)	scfm ("H2O)
10.4	0.22	0.94	1.40
13.7	0.16	0.71	1.09
24.3	0.09	0.39	0.61


Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
23.8	3.1	32.0
47.5	15.1	102.0
53.7	22.1	153.0

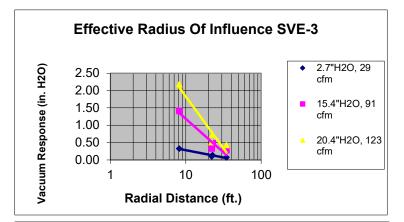
Desired Radius of Influence = 35 ft @ ROI = 35 ft, Applied Vacuum = 7.8"H2O @ 7.8"H2O Vacuum, Flow Rate = 60.2 cfm

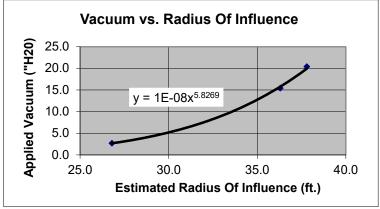

Note: For SVE ROI is the radial distance where the vacuum response equals 0.10" H2O.

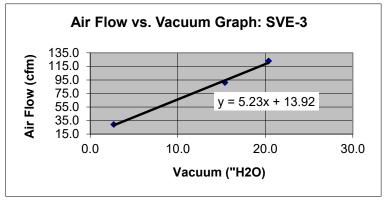
Effective Radius Of Influence SVE-2

Summary of Soil Vapor Extraction Pilot Test Data 3200 Atlantic Avenue Brooklyn, New York

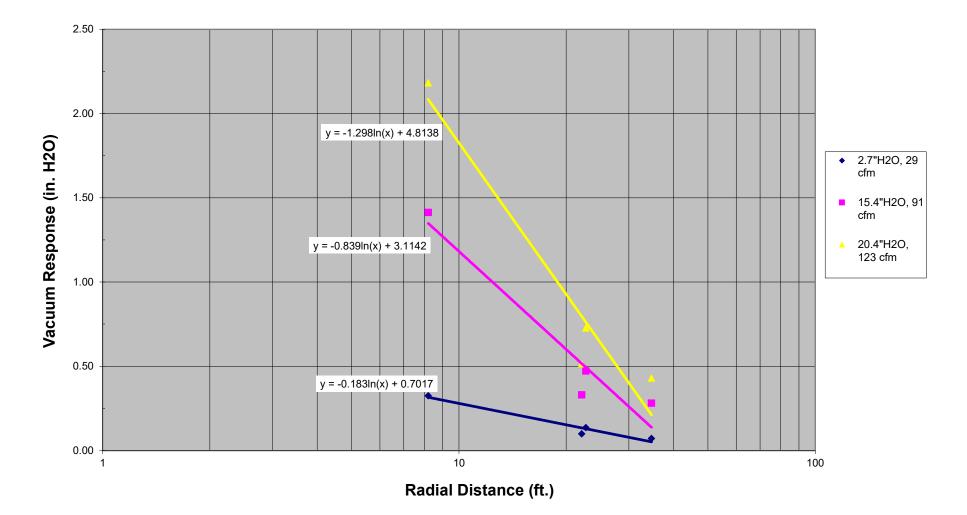
Test Date:	8/22/2022
Performed By:	Tenen Environmental
Extraction Well:	SVE-3
Wellhead Vacuum ("H2O):	2.7 to 20.4
Vapor Discharge Flow (scfm):	29 to 123


SVE Design Data


	Vacuum	Vacuum	Vacuum
	Response 1	Response 2	Response 3
	2.7" H2O	15.4" H2O	20.4" H2O
	Applied	Applied	Applied
Radial	Vacuum, 29	Vacuum, 91	Vacuum, 123
Distance (ft.)	scfm ("H2O)	scfm ("H2O)	scfm ("H2O)
8.2	0.33	4 4 4	0.40
0.2	0.33	1.41	2.18
22.1	0.33	0.33	2.18 0.52
0			


Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
26.8	2.7	29.0
36.3	15.4	91.0
37.8	20.4	123.0

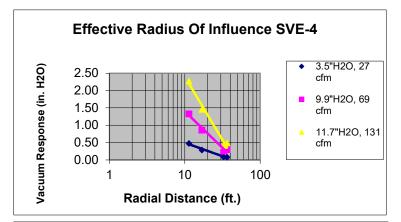
Desired Radius of Influence = 35 ft @ ROI = 35 ft, Applied Vacuum = 9.9"H2O @ 9.9"H2O Vacuum, Flow Rate = 65.9 cfm

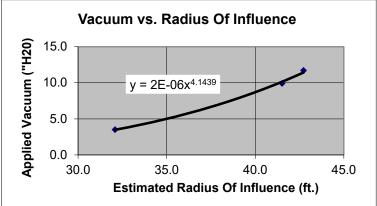

Note: For SVE ROI is the radial distance where the vacuum response equals 0.10" H2O.

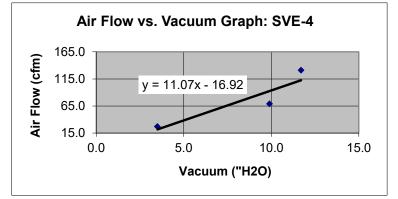
Effective Radius Of Influence SVE-3

Summary of Soil Vapor Extraction Pilot Test Data 3200 Atlantic Avenue Brooklyn, New York

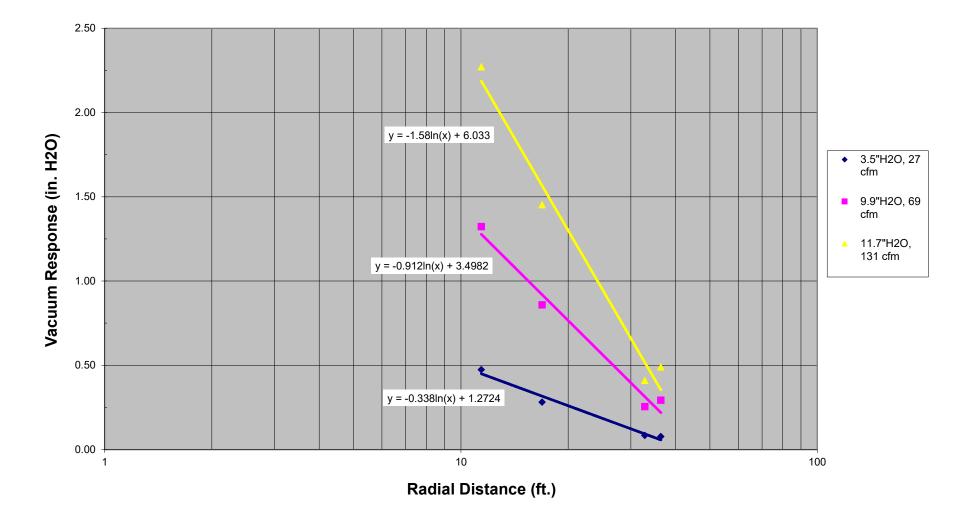
Test Date:	8/22/2022
Performed By:	Tenen Environmental
Extraction Well:	SVE-4
Wellhead Vacuum ("H2O):	3.5 to 11.7
Vapor Discharge Flow (scfm):	27 to 131

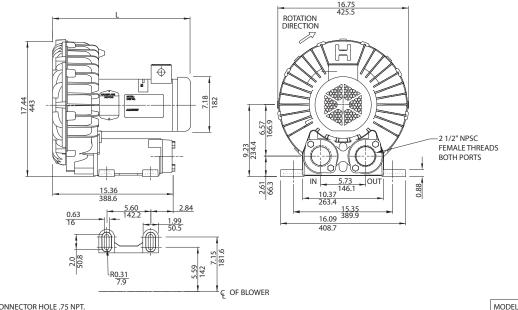

SVE Design Data


	Vacuum	Vacuum	Vacuum
	Response 1	Response 2	Response 3
	3.5" H2O	9.9" H2O	11.7" H2O
	Applied	Applied	Applied
Radial	Vacuum, 27	Vacuum, 69	Vacuum, 131
Distance (ft.)	scfm ("H2O)	scfm ("H2O)	scfm ("H2O)
Distance (ft.) 11.4	scfm ("H2O) 0.47	scfm ("H2O) 1.32	scfm ("H2O) 2.27
11.4	0.47	1.32	2.27


Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
32.1	3.5	27.0
41.5	9.9	69.0
42.7	11.7	131.0

Desired Radius of Influence = 35 ft @ ROI = 35 ft, Applied Vacuum = 5.0"H2O @ 5.0"H2O Vacuum, Flow Rate = 38.5 cfm


Note: For SVE ROI is the radial distance where the vacuum response equals 0.10" H2O.


Effective Radius Of Influence SVE-4

ROTRON®

EN 757 & CP 757

3.0 / 5.0 HP Sealed Regenerative w/Explosion-Proof Motor

Specification

TERMINAL BOX CONNECTOR HOLE .75 NPT. 2 DRAWING NOT TO SCALE CONT DRAWING NOT TO SCALE, CONTACT FACTORY FOR SCALE CAD DRAWING.

3 CONTACT FACTORY FOR BLOWER MODEL LENGTHS NOT SHOWN.

Unite

	Part/Model Number		
57M86XL	EN757F72XL	CP757FW72XLR	CP757FU72XLR
81177	081174	081180	081181
P-CS	XP-CS	CHEM XP-SS	CHEM XP-SS

EN757M72XL EN757F72XL

- Peerine and and a second s						
Motor Enclosure - Shaft	-	XP-CS	XP-CS	XP-CS	CHEM XP-SS	CHEM XP-SS
Mtl. Horsepower	-	3.0	3.0	5.0	5.0	3.0
Voltage	AC	208-230/460	575	208-230/460	208-230/460	208-230/460
Phase - Frequency	-	Three-60 Hz	Three-60 Hz	Three - 60 Hz	Three-60 Hz	Three - 60 Hz
nsulation Class	-	В	В	В	В	B
NEMA Rated Motor Amps	Amps (A)	7.2/3.6	3.0	14/7	14/7	7.2/3.6
Service Factor	-	1.0	1.0	1.0	1.0	1.0
Maximum Blower Amps	Amps (A)	10/5	4.0	15/7.5	15/7.5	10/5
ocked Rotor Amps	Amps (A)	54/47	22	152/76	152/76	54/27
Starter Size		0/0	0	1/1	1/1	0/0
Shipping Woight	Lbs	158	158	158	158	158
Shipping Weight	Kg	71.7	71.7	71.7	71.7	71.7

EN7

Voltage - ROTRON motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 190-208/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

Operating Temperatures - Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

Maximum Blower Amps - Corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

XP Motor Class - Group - See Explosive Atmosphere Classification Chart in Section I

EN757M72XL

081176

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

L (IN/MM)

19.72/500.9 21.00/533.4

Environmental / Chemical Processing Blowers

EN 757 & CP 757

3.0 / 5.0 HP Sealed Regenerative w/Explosion-Proof Motor

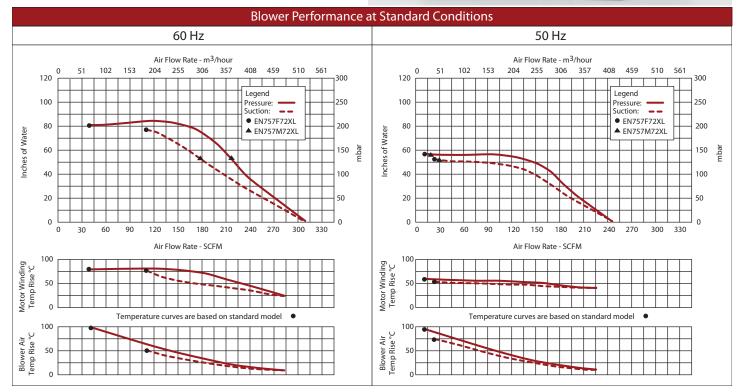
FEATURES

- Manufactured in the USA ISO 9001 and NAFTA compliant
- Maximum flow: 310 SCFM
- Maximum pressure: 80 IWG
- Maximum vacuum: 75 IWG
- Standard motor: 5.0 HP, explosion-proof
- Cast aluminum blower housing, impeller , cover & manifold; cast iron flanges (threaded); teflon[®] lip seal
- UL & CSA approved motor with permanently sealed ball bearings for explosive gas atmospheres Class I Group D minimum
- Sealed blower assembly
- Quiet operation within OSHA standards

MOTOR OPTIONS

- International voltage & frequency (Hz)
- Chemical duty, high efficiency, inverter duty or industry-specific designs
- · Various horsepowers for application-specific needs

BLOWER OPTIONS


- Corrosion resistant surface treatments & sealing options
- Remote drive (motorless) models .
- · Slip-on or face flanges for application-specific needs

ACCESSORIES


- Flowmeters reading in SCFM
- Filters & moisture separators .
- Pressure gauges, vacuum gauges, & relief valves .
- Switches air flow, pressure, vacuum, or temperature
- External mufflers for additional silencing .
- Air knives (used on blow-off applications)
- Variable frequency drive package

ROTRON®

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and applications. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

Attachment 2: Laboratory Deliverables

ANALYTICAL REPORT

Lab Number:	L2245378
Client:	Tenen Environmental, LLC
	121 West 27th Street
	Suite 702
	New York City, NY 10001
ATTN:	Matthew Carroll
Phone:	(646) 606-2332
Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified
Report Date:	08/31/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:08312215:40

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

Lab Number:	L2245378
Report Date:	08/31/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2245378-01	SVE-1	SOIL_VAPOR	BKLYN, NY	08/22/22 12:30	08/22/22
L2245378-02	SVE-2	SOIL_VAPOR	BKLYN, NY	08/22/22 13:30	08/22/22
L2245378-03	SVE-3	SOIL_VAPOR	BKLYN, NY	08/22/22 14:30	08/22/22
L2245378-04	SVE-4	SOIL_VAPOR	BKLYN, NY	08/22/22 15:30	08/22/22

Project Name: 3200 ATLANTIC AVE Project Number: Not Specified Lab Number: L2245378 Report Date: 08/31/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 3200 ATLANTIC AVE Project Number: Not Specified
 Lab Number:
 L2245378

 Report Date:
 08/31/22

Case Narrative (continued)

Volatile Organics in Air

L2245378-01D through 04D: Samples were transferred from a Tedlar bag into a fused silica lined canister upon receipt in order to extend the holding time for analysis.

L2245378-01D,02D,03D,04D2: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2245378-04D: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 08/31/22

AIR

Serial_No:08312215:40

 Project Name:
 3200 ATLANTIC AVE
 Lab Number:
 L2245378

 Project Number:
 Not Specified
 Report Date:
 08/31/22

SAMPLE RESULTS

Lab ID:	L2245378-01	D
Client ID:	SVE-1	
Sample Location:	BKLYN, NY	

Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	08/30/22 00:53
Analyst:	TS

Date Collected:	08/22/22 12:30
Date Received:	08/22/22
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	4550		ND	22500			22730
Chloromethane	ND	4550		ND	9400			22730
Freon-114	ND	4550		ND	31800			22730
Vinyl chloride	ND	4550		ND	11600			22730
1,3-Butadiene	ND	4550		ND	10100			22730
Bromomethane	ND	4550		ND	17700			22730
Chloroethane	ND	4550		ND	12000			22730
Ethanol	ND	114000		ND	215000			22730
Vinyl bromide	ND	4550		ND	19900			22730
Acetone	ND	22700		ND	53900			22730
Trichlorofluoromethane	ND	4550		ND	25600			22730
Isopropanol	ND	11400		ND	28000			22730
1,1-Dichloroethene	ND	4550		ND	18000			22730
Tertiary butyl Alcohol	ND	11400		ND	34600			22730
Methylene chloride	ND	11400		ND	39600			22730
3-Chloropropene	ND	4550		ND	14200			22730
Carbon disulfide	ND	4550		ND	14200			22730
Freon-113	ND	4550		ND	34900			22730
trans-1,2-Dichloroethene	ND	4550		ND	18000			22730
1,1-Dichloroethane	ND	4550		ND	18400			22730
Methyl tert butyl ether	ND	4550		ND	16400			22730
2-Butanone	ND	11400		ND	33600			22730
cis-1,2-Dichloroethene	ND	4550		ND	18000			22730

08/22/22 12:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2245378-01DClient ID:SVE-1Sample Location:BKLYN, NY

		ppbV		ug/m3		i		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	ND	11400		ND	41100			22730
Chloroform	ND	4550		ND	22200			22730
Tetrahydrofuran	ND	11400		ND	33600			22730
1,2-Dichloroethane	ND	4550		ND	18400			22730
n-Hexane	764000	4550		2690000	16000			22730
1,1,1-Trichloroethane	ND	4550		ND	24800			22730
Benzene	182000	4550		581000	14500			22730
Carbon tetrachloride	ND	4550		ND	28600			22730
Cyclohexane	384000	4550		1320000	15700			22730
1,2-Dichloropropane	ND	4550		ND	21000			22730
Bromodichloromethane	ND	4550		ND	30500			22730
1,4-Dioxane	ND	4550		ND	16400			22730
Trichloroethene	ND	4550		ND	24500			22730
2,2,4-Trimethylpentane	876000	4550		4090000	21300			22730
Heptane	398000	4550		1630000	18600			22730
cis-1,3-Dichloropropene	ND	4550		ND	20700			22730
4-Methyl-2-pentanone	ND	11400		ND	46700			22730
trans-1,3-Dichloropropene	ND	4550		ND	20700			22730
1,1,2-Trichloroethane	ND	4550		ND	24800			22730
Toluene	95000	4550		358000	17100			22730
2-Hexanone	ND	4550		ND	18600			22730
Dibromochloromethane	ND	4550		ND	38800			22730
1,2-Dibromoethane	ND	4550		ND	35000			22730
Tetrachloroethene	ND	4550		ND	30900			22730
Chlorobenzene	ND	4550		ND	21000			22730
Ethylbenzene	60200	4550		261000	19800			22730

08/22/22 12:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2245378-01 D Client ID: SVE-1 Sample Location: BKLYN, NY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	171000	9090		743000	39500			22730
Bromoform	ND	4550		ND	47000			22730
Styrene	ND	4550		ND	19400			22730
1,1,2,2-Tetrachloroethane	ND	4550		ND	31200			22730
o-Xylene	37100	4550		161000	19800			22730
4-Ethyltoluene	ND	4550		ND	22400			22730
1,3,5-Trimethylbenzene	5500	4550		27000	22400			22730
1,2,4-Trimethylbenzene	13800	4550		67800	22400			22730
Benzyl chloride	ND	4550		ND	23600			22730
1,3-Dichlorobenzene	ND	4550		ND	27400			22730
1,4-Dichlorobenzene	ND	4550		ND	27400			22730
1,2-Dichlorobenzene	ND	4550		ND	27400			22730
1,2,4-Trichlorobenzene	ND	4550		ND	33800			22730
Hexachlorobutadiene	ND	4550		ND	48500			22730

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	101		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	106		60-140

Serial_No:08312215:40

 Project Name:
 3200 ATLANTIC AVE
 Lab Number:
 L2245378

 Project Number:
 Not Specified
 Report Date:
 08/31/22

SAMPLE RESULTS

Lab ID:	L2245378-02	D
Client ID:	SVE-2	
Sample Location:	BKLYN, NY	

Soil_Vapor

08/30/22 08:50

48,TO-15

Sample Depth:

Anaytical Method:

Analytical Date:

Matrix:

Date Collected:	08/22/22 13:30
Date Received:	08/22/22
Field Prep:	Not Specified

Analyst:	TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield La	b							
Dichlorodifluoromethane		ND	5000		ND	24700			25000
Chloromethane		ND	5000		ND	10300			25000
Freon-114		ND	5000		ND	34900			25000
Vinyl chloride		ND	5000		ND	12800			25000
1,3-Butadiene		ND	5000		ND	11100			25000
Bromomethane		ND	5000		ND	19400			25000
Chloroethane		ND	5000		ND	13200			25000
Ethanol		ND	125000		ND	236000			25000
Vinyl bromide		ND	5000		ND	21900			25000
Acetone		ND	25000		ND	59400			25000
Trichlorofluoromethane		ND	5000		ND	28100			25000
Isopropanol		ND	12500		ND	30700			25000
1,1-Dichloroethene		ND	5000		ND	19800			25000
Tertiary butyl Alcohol		ND	12500		ND	37900			25000
Methylene chloride		ND	12500		ND	43400			25000
3-Chloropropene		ND	5000		ND	15700			25000
Carbon disulfide		ND	5000		ND	15600			25000
Freon-113		ND	5000		ND	38300			25000
trans-1,2-Dichloroethene		ND	5000		ND	19800			25000
1,1-Dichloroethane		ND	5000		ND	20200			25000
Methyl tert butyl ether		ND	5000		ND	18000			25000
2-Butanone		ND	12500		ND	36900			25000
cis-1,2-Dichloroethene		ND	5000		ND	19800			25000

08/22/22 13:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2245378-02 D Client ID: SVE-2 Sample Location: BKLYN, NY

		ррьУ			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Ethyl Acetate	ND	12500		ND	45000			25000
Chloroform	ND	5000		ND	24400			25000
Tetrahydrofuran	ND	12500		ND	36900			25000
1,2-Dichloroethane	ND	5000		ND	20200			25000
n-Hexane	1140000	5000		4020000	17600			25000
1,1,1-Trichloroethane	ND	5000		ND	27300			25000
Benzene	232000	5000		741000	16000			25000
Carbon tetrachloride	ND	5000		ND	31500			25000
Cyclohexane	522000	5000		1800000	17200			25000
1,2-Dichloropropane	ND	5000		ND	23100			25000
Bromodichloromethane	ND	5000		ND	33500			25000
1,4-Dioxane	ND	5000		ND	18000			25000
Trichloroethene	ND	5000		ND	26900			25000
2,2,4-Trimethylpentane	1240000	5000		5790000	23400			25000
Heptane	638000	5000		2610000	20500			25000
cis-1,3-Dichloropropene	ND	5000		ND	22700			25000
4-Methyl-2-pentanone	ND	12500		ND	51200			25000
trans-1,3-Dichloropropene	ND	5000		ND	22700			25000
1,1,2-Trichloroethane	ND	5000		ND	27300			25000
Toluene	9220	5000		34700	18800			25000
2-Hexanone	ND	5000		ND	20500			25000
Dibromochloromethane	ND	5000		ND	42600			25000
1,2-Dibromoethane	ND	5000		ND	38400			25000
Tetrachloroethene	ND	5000		ND	33900			25000
Chlorobenzene	ND	5000		ND	23000			25000
Ethylbenzene	77200	5000		335000	21700			25000
	77200	5000		335000	21700			25000

08/22/22 13:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2245378-02 D Client ID: SVE-2 Sample Location: BKLYN, NY

Sample Depth:								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	104000	10000		452000	43400			25000
Bromoform	ND	5000		ND	51700			25000
Styrene	ND	5000		ND	21300			25000
1,1,2,2-Tetrachloroethane	ND	5000		ND	34300			25000
o-Xylene	8020	5000		34800	21700			25000
4-Ethyltoluene	ND	5000		ND	24600			25000
1,3,5-Trimethylbenzene	ND	5000		ND	24600			25000
1,2,4-Trimethylbenzene	9780	5000		48100	24600			25000
Benzyl chloride	ND	5000		ND	25900			25000
1,3-Dichlorobenzene	ND	5000		ND	30100			25000
1,4-Dichlorobenzene	ND	5000		ND	30100			25000
1,2-Dichlorobenzene	ND	5000		ND	30100			25000
1,2,4-Trichlorobenzene	ND	5000		ND	37100			25000
Hexachlorobutadiene	ND	5000		ND	53300			25000

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	101		60-140

Serial_No:08312215:40

 Project Name:
 3200 ATLANTIC AVE
 Lab Number:
 L2245378

 Project Number:
 Not Specified
 Report Date:
 08/31/22

SAMPLE RESULTS

Lab ID:	L2245378-03	D
Client ID:	SVE-3	
Sample Location:	BKLYN, NY	

Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	08/30/22 01:57
Analyst:	TS

Date Collected:	08/22/22 14:30
Date Received:	08/22/22
Field Prep:	Not Specified

		and M						
		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	2500		ND	12400			12500
Chloromethane	ND	2500		ND	5160			12500
Freon-114	ND	2500		ND	17500			12500
Vinyl chloride	ND	2500		ND	6390			12500
1,3-Butadiene	ND	2500		ND	5530			12500
Bromomethane	ND	2500		ND	9710			12500
Chloroethane	ND	2500		ND	6600			12500
Ethanol	ND	62500		ND	118000			12500
Vinyl bromide	ND	2500		ND	10900			12500
Acetone	ND	12500		ND	29700			12500
Trichlorofluoromethane	ND	2500		ND	14000			12500
Isopropanol	ND	6250		ND	15400			12500
1,1-Dichloroethene	ND	2500		ND	9910			12500
Tertiary butyl Alcohol	ND	6250		ND	18900			12500
Methylene chloride	ND	6250		ND	21700			12500
3-Chloropropene	ND	2500		ND	7830			12500
Carbon disulfide	ND	2500		ND	7790			12500
Freon-113	ND	2500		ND	19200			12500
trans-1,2-Dichloroethene	ND	2500		ND	9910			12500
1,1-Dichloroethane	ND	2500		ND	10100			12500
Methyl tert butyl ether	ND	2500		ND	9010			12500
2-Butanone	ND	6250		ND	18400			12500
cis-1,2-Dichloroethene	ND	2500		ND	9910			12500

08/22/22 14:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2245378-03DClient ID:SVE-3Sample Location:BKLYN, NY

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Ethyl Acetate	ND	6250		ND	22500			12500
Chloroform	ND	2500		ND	12200			12500
Tetrahydrofuran	ND	6250		ND	18400			12500
1,2-Dichloroethane	ND	2500		ND	10100			12500
n-Hexane	1100000	2500		3880000	8810			12500
1,1,1-Trichloroethane	ND	2500		ND	13600			12500
Benzene	194000	2500		620000	7990			12500
Carbon tetrachloride	ND	2500		ND	15700			12500
Cyclohexane	454000	2500		1560000	8610			12500
1,2-Dichloropropane	ND	2500		ND	11600			12500
Bromodichloromethane	ND	2500		ND	16700			12500
1,4-Dioxane	ND	2500		ND	9010			12500
Trichloroethene	ND	2500		ND	13400			12500
2,2,4-Trimethylpentane	982000	2500		4590000	11700			12500
Heptane	475000	2500		1950000	10200			12500
cis-1,3-Dichloropropene	ND	2500		ND	11300			12500
4-Methyl-2-pentanone	ND	6250		ND	25600			12500
trans-1,3-Dichloropropene	ND	2500		ND	11300			12500
1,1,2-Trichloroethane	ND	2500		ND	13600			12500
Toluene	33700	2500		127000	9420			12500
2-Hexanone	ND	2500		ND	10200			12500
Dibromochloromethane	ND	2500		ND	21300			12500
1,2-Dibromoethane	ND	2500		ND	19200			12500
Tetrachloroethene	ND	2500		ND	17000			12500
Chlorobenzene	ND	2500		ND	11500			12500
Ethylbenzene	57000	2500		248000	10900			12500

08/22/22 14:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2245378-03 D Client ID: SVE-3 Sample Location: BKLYN, NY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL		Factor
Volatile Organics in Air - Mans	sfield Lab							
p/m-Xylene	64500	5000		280000	21700			12500
Bromoform	ND	2500		ND	25800			12500
Styrene	ND	2500		ND	10600			12500
1,1,2,2-Tetrachloroethane	ND	2500		ND	17200			12500
o-Xylene	10600	2500		46000	10900			12500
4-Ethyltoluene	ND	2500		ND	12300			12500
1,3,5-Trimethylbenzene	ND	2500		ND	12300			12500
1,2,4-Trimethylbenzene	5400	2500		26500	12300			12500
Benzyl chloride	ND	2500		ND	12900			12500
1,3-Dichlorobenzene	ND	2500		ND	15000			12500
1,4-Dichlorobenzene	ND	2500		ND	15000			12500
1,2-Dichlorobenzene	ND	2500		ND	15000			12500
1,2,4-Trichlorobenzene	ND	2500		ND	18600			12500
Hexachlorobutadiene	ND	2500		ND	26700			12500

Internal Standard	% Decevery	Qualifiar	Acceptance Criteria
Internal Standard	% Recovery	Qualifier	Unterna
1,4-Difluorobenzene	99		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	103		60-140

Serial_No:08312215:40

 Project Name:
 3200 ATLANTIC AVE
 Lab Number:
 L2245378

 Project Number:
 Not Specified
 Report Date:
 08/31/22

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2245378-04 SVE-4 BKLYN, NY	D					Collecte Receive Prep:	ed: 08/2	2/22 15:30 2/22 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15 08/30/22 02:28 TS	3							
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield L	_ab							
Dichlorodifluoromethane		ND	625.		ND	3090			3125
Chloromethane		8720	625		18000	1290			3125
Freon-114		ND	625.		ND	4370			3125
Vinyl chloride		ND	625.		ND	1600			3125
1,3-Butadiene		ND	625.		ND	1380			3125
Bromomethane		ND	625		ND	2430			3125
Chloroethane		ND	625.		ND	1650			3125
Ethanol		ND	15600		ND	29400			3125
Vinyl bromide		ND	625.		ND	2730			3125
Acetone		ND	3120		ND	7410			3125
Trichlorofluoromethane		ND	625.		ND	3510			3125
Isopropanol		ND	1560		ND	3830			3125
1,1-Dichloroethene		ND	625.		ND	2480			3125
Tertiary butyl Alcohol		ND	1560		ND	4730			3125
Methylene chloride		ND	1560		ND	5420			3125
3-Chloropropene		ND	625.		ND	1960			3125
Carbon disulfide		ND	625.		ND	1950			3125
Freon-113		ND	625.		ND	4790			3125
trans-1,2-Dichloroethene		ND	625.		ND	2480			3125
1,1-Dichloroethane		ND	625.		ND	2530			3125

ND

ND

ND

625.

1560

625.

ND

ND

ND

2250

4600

2480

3125

3125

3125

Methyl tert butyl ether

cis-1,2-Dichloroethene

2-Butanone

08/22/22 15:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

Lab Number:	L2245378
Report Date:	08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2245378-04 D Client ID: SVE-4 Sample Location: BKLYN, NY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Ethyl Acetate	ND	1560		ND	5620			3125
Chloroform	ND	625.		ND	3050			3125
Tetrahydrofuran	ND	1560		ND	4600			3125
1,2-Dichloroethane	ND	625.		ND	2530			3125
n-Hexane	1190000	625		4190000	2200		E	3125
1,1,1-Trichloroethane	ND	625.		ND	3410			3125
Benzene	386000	625		1230000	2000		E	3125
Carbon tetrachloride	ND	625.		ND	3930			3125
Cyclohexane	663000	625		2280000	2150		Е	3125
1,2-Dichloropropane	ND	625.		ND	2890			3125
Bromodichloromethane	ND	625.		ND	4190			3125
1,4-Dioxane	ND	625.		ND	2250			3125
Trichloroethene	ND	625.		ND	3360			3125
2,2,4-Trimethylpentane	921000	625		4300000	2920		E	3125
Heptane	688000	625		2820000	2560		E	3125
cis-1,3-Dichloropropene	ND	625.		ND	2840			3125
4-Methyl-2-pentanone	ND	1560		ND	6390			3125
trans-1,3-Dichloropropene	ND	625.		ND	2840			3125
1,1,2-Trichloroethane	ND	625.		ND	3410			3125
Toluene	570000	625		2150000	2360		E	3125
2-Hexanone	ND	625.		ND	2560			3125
Dibromochloromethane	ND	625.		ND	5320			3125
1,2-Dibromoethane	ND	625.		ND	4800			3125
Tetrachloroethene	ND	625.		ND	4240			3125
Chlorobenzene	ND	625.		ND	2880			3125
Ethylbenzene	74200	625		322000	2710			3125

08/22/22 15:30

Not Specified

08/22/22

Project Name:	3200 ATLANTIC AVE
Project Number:	Not Specified

Lab Number:	L2245378
Report Date:	08/31/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2245378-04DClient ID:SVE-4Sample Location:BKLYN, NY

		ppbV			ug/m3		Qualifier	Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL		
Volatile Organics in Air - Man	sfield Lab							
p/m-Xylene	177000	1250		769000	5430			3125
Bromoform	ND	625.		ND	6460			3125
Styrene	ND	625		ND	2660			3125
1,1,2,2-Tetrachloroethane	ND	625.		ND	4290			3125
o-Xylene	49900	625		217000	2710			3125
4-Ethyltoluene	2410	625		11800	3070			3125
1,3,5-Trimethylbenzene	2560	625		12600	3070			3125
1,2,4-Trimethylbenzene	6100	625		30000	3070			3125
Benzyl chloride	ND	625.		ND	3240			3125
1,3-Dichlorobenzene	ND	625.		ND	3760			3125
1,4-Dichlorobenzene	ND	625.		ND	3760			3125
1,2-Dichlorobenzene	ND	625.		ND	3760			3125
1,2,4-Trichlorobenzene	ND	625.		ND	4640			3125
Hexachlorobutadiene	ND	625.		ND	6670			3125

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	103		60-140

Serial_No:08312215:40

 Project Name:
 3200 ATLANTIC AVE
 Lab Number:
 L2245378

 Project Number:
 Not Specified
 Report Date:
 08/31/22

SAMPLE RESULTS

Lab ID:	L2245378-04	D2
Client ID:	SVE-4	
Sample Location:	BKLYN, NY	

Matrix:	Soil_Vapor
Anaytical Method:	48,TO-15
Analytical Date:	08/30/22 09:22
Analyst:	TS

Date Collected:	08/22/22 15:30
Date Received:	08/22/22
Field Prep:	Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
n-Hexane	1580000	3570		5570000	12600			17860
Benzene	362000	3570		1160000	11400			17860
Cyclohexane	681000	3570		2340000	12300			17860
2,2,4-Trimethylpentane	1350000	3570		6310000	16700			17860
Heptane	758000	3570		3110000	14600			17860
Toluene	832000	3570		3140000	13500			17860

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/29/22 14:46

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansi	field Lab for samp	ole(s): 01-	04 Batch	n: WG16810	34-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/29/22 14:46

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	Mansfield Lab for sam	ple(s): 01-	04 Batch:	WG16810)34-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

 Lab Number:
 L2245378

 Report Date:
 08/31/22

Project Number: Not Specified

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/29/22 14:46

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab for samp	ole(s): 01-	04 Batch	: WG16810	34-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis

Batch Quality Control

Project Number: Not Specified

Lab Number: L2245378 Report Date: 08/31/22

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG1681034-3 Dichlorodifluoromethane 103 70-130 --105 Chloromethane 70-130 --Freon-114 109 70-130 --Vinyl chloride 107 70-130 --1,3-Butadiene 107 70-130 --Bromomethane 104 70-130 --Chloroethane 107 70-130 --Ethanol 87 40-160 --Vinyl bromide 92 70-130 --40-160 114 Acetone --Trichlorofluoromethane 113 70-130 --Isopropanol 98 40-160 --1,1-Dichloroethene 107 70-130 --70-130 Tertiary butyl Alcohol 98 --Methylene chloride 103 70-130 --3-Chloropropene 104 70-130 --Carbon disulfide 90 70-130 --Freon-113 70-130 103 -trans-1,2-Dichloroethene 70-130 96 --1,1-Dichloroethane 104 70-130 --Methyl tert butyl ether 102 70-130 --70-130 2-Butanone 97 --107 cis-1,2-Dichloroethene 70-130 --

Lab Control Sample Analysis

Batch Quality Control

Project Number: Not Specified

Lab Number: L2245378 Report Date: 08/31/22

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG1681034-3 Ethyl Acetate 96 70-130 --Chloroform 107 70-130 --Tetrahydrofuran 95 70-130 --1,2-Dichloroethane 111 70-130 -n-Hexane 100 70-130 --1,1,1-Trichloroethane 115 70-130 --101 70-130 Benzene --Carbon tetrachloride 119 70-130 --Cyclohexane 101 70-130 _ -1,2-Dichloropropane 104 70-130 --Bromodichloromethane 107 70-130 --1,4-Dioxane 93 70-130 --Trichloroethene 104 70-130 --2,2,4-Trimethylpentane 70-130 102 --Heptane 103 70-130 -cis-1,3-Dichloropropene 112 70-130 --4-Methyl-2-pentanone 103 70-130 -trans-1,3-Dichloropropene 70-130 98 --1,1,2-Trichloroethane 70-130 105 --Toluene 94 70-130 --2-Hexanone 90 70-130 _ -Dibromochloromethane 70-130 99 --70-130 1,2-Dibromoethane 93 --

Lab Control Sample Analysis

Batch Quality Control

Project Number: Not Specified

Lab Number: L2245378 Report Date: 08/31/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04 Batch: WG1681034-3 Tetrachloroethene 95 70-130 --96 70-130 Chlorobenzene --Ethylbenzene 97 70-130 -p/m-Xylene 100 70-130 --Bromoform 99 70-130 --Styrene 70-130 96 --1,1,2,2-Tetrachloroethane 96 70-130 -o-Xylene 101 70-130 --4-Ethyltoluene 89 70-130 --98 70-130 1,3,5-Trimethylbenzene --99 1,2,4-Trimethylbenzene 70-130 --Benzyl chloride 90 70-130 --1,3-Dichlorobenzene 94 70-130 --93 70-130 1,4-Dichlorobenzene --70-130 1,2-Dichlorobenzene 93 --70-130 1,2,4-Trichlorobenzene 79 --Hexachlorobutadiene 89 70-130 --

Project Name: 3200 ATLANTIC AVE Project Number: Not Specified

Serial_No:08312215:40 Lab Number: L2245378 *Report Date:* 08/31/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler NA	Custody Seal
NA	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2245378-01A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)
L2245378-01X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-02A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-02X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-03A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-03X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-04A	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Υ	Absent		TO15-LL(30)
L2245378-04X	Tedlar Bag 5 liter-Polypropylene Fitting	NA	NA			Y	Absent		TO15-LL(30)

Project Name: 3200 ATLANTIC AVE

Project Number: Not Specified

Lab Number: L2245378

Report Date: 08/31/22

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: 3200 ATLANTIC AVE

Project Number: Not Specified

Lab Number: L2245378 **Report Date:** 08/31/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- Н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

¹

Project Name: 3200 ATLANTIC AVE

Project Number: Not Specified

Serial_No:08312215:40

Lab Number: L2245378

Report Date: 08/31/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:3200 ATLANTIC AVEProject Number:Not Specified

 Lab Number:
 L2245378

 Report Date:
 08/31/22

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08312215:40

II AND THE REAL PROPERTY OF TH	IS - SORBENT MEE	DIA			ige	Date Re	c'd in Lab	812	312	7	ALP	HA J	ob#	1	27	US	378													
CHAIN OF C	2220-110-11	nformation	9		of				_	0	-					-1-	0010													
Westborough, MA Mansfield,					1165 N 268		nformation	- Data Del	iveral	oles	-	ng Inf		-																
TEL: 508-898-9220 TEL: 508-82 FAX: 508-822-3288 508-822-32	2-9300 Project I	Name: 31	IVAN ALI	ATLC AVI	2		AX ADEX					ame	a lot of an and a solar a	ent In	nfo															
Client Information		ocation: B	CAN IA.	[PO	-																		
Client: TENEN ENVIRON		ject name a	r Droiget #	N.		1 NO.1 CO.C.	Checker:																							
Address: 21 W 27TH ST		Aanager: Manager:			01		ormats: MAIL				Deres																			
121 1121 01	702 ALPHA)uote #:	HA LINE	W CHN	where the	1 /	dd'l Delive	rabler	~					quire			ort Limits													
Phone: 646-606-233		ound Time		ŝudina	1. 1.		REPORT		æ)	- 3	tate/F	ea	-	Pro	ogram	Criteria													
Fax:	Standard	Section And the section of the		ue Date:	C. Statistics		ort to: (if diff	(JP)			-		-																	
Email: MCARNOLO TEM				Time:			POLL 1				-			-																
These samples have been pre-	viously analyzed by	Alpha:				In chr	poll 4	V. CHIN		lysis			-	1000	10.1	-	Concernation - the state													
Other Project Specific Require FLOW RATE INACURA STO TAT	ments/Comments/ TE→NEEDED Pu	Detection L MP TO IDM	imits ERCOME	VACUUM	Con	igeners	is REQUIRE /ol only)	D		0		Hg via NIOSH 6009 Mod.				Ø,	NOTE: For metals, please specify elements of interest and media type. PM-10 Filter TSP Filter MCE													
		All Colu	imns Belov	v Must Be F	illed Out			In the second	i i	Nol	(IoV	SH		5																
					Collection Collection			NO	NIO			10 Filter	0-12.40																	
ALPHA Lab ID (Lab Use Only) Samp	le ID Date	Start Time	EndTime	Flow Rate		Sample Sampler's Matrix* Initials										Sampler's Medi Initials (1					Media ID# (1)	TO-13A	PCBs (High Vol)	PCBs (Low Vol)	Hg via	Metals	PM-10 Filter	TSP FII	10-	Sample Comments (i.e. PID)
45378 -01 SVE-1	\$ 22/202	2 12:30	12:30	34min	51	SV	VC	OTEQUAR							-	X														
02 SVE -2	- 1	13:30	13:30		1	1	1	1								X														
03 SVE-3		14:30	14:30													X														
OY SVE-L	X	15:30	15:30	¥	,L	T	se	×								X														
									_	_		_																		
*SAMPLE MATRIX CODES		Air (Indoor/Oute r/Landfill Gas/SV		(1) Required fo PM- 10 and TS	rr PUF cartridge	5	Marka	Turne				-		-	_	0	Please print clearly, legibly													
a shi ce na na cobes	Other = Pleas			THE COMPANY			Media	туре	Ρ	Р	Р	1	٢	P.	r	0	and completely. Samples can													
Media Code F = Filter P = PUF Cartridge T = Sorbent Tube O = Other	- Pa	Relinqui	shed By:	d	Date/Time Received By: 8/22/022615 Margel			st al	Date/Time turnaround time clock will not start until any ambiguit are series lock. BY EXECUTING			not start until any ambiguitie , argumolved. BY EXECUTING																		
Form No: 101-20 (rev 23-MARCH 2020)		GE AN	are	20	× /29	92312051				BOUND BY ALPHA'S TERN CONDITIONS.				BOUND BY ALPHA'S TERMS 8																