

Department of Environmental Conservation

BROWNFIELD CLEANUP PROGRAM (BCP) APPLICATION FORM

DEC requires an application to request major changes to the description of the property set forth in a Brownfield Cleanup Agreement, or " <i>BCA</i> " (e.g., adding a significant amount of new property, or adding property that could affect an eligibility determination due to contamination levels or intended land use). Such application must be submitted and processed in the same manner as the original application, including the required public comment period. Is this an application to amend an existing BCA?			
Yes V No	If yes, provide existing site r	number:	
PART A (note: application is sepa	arated into Parts A and B for DEC rev	view purposes) BCP App Rev 10	
Section I. Requestor Information	on - See Instructions for Further Gui	dance DEC USE ONLY BCP SITE #:	
NAME GPL Development LLC; H Owner LLC;	Greenpoint Landing Developers LLC; Greenpoint Storage	Terminal LLC; and Greenpoint Landing Associates, L.L.C.	
ADDRESS 535 Madison Avenue	9		
CITY/TOWN New York, New Yo	ork ZIP CODE 1	0022	
PHONE (212)310-9765	FAX Not Available	E-MAIL acarsonblair@parktowergroup.com	
 Is the requestor authorized to conduct business in New York State (NYS)? Yes No If the requestor is a Corporation, LLC, LLP or other entity requiring authorization from the NYS Department of State to conduct business in NYS, the requestor's name must appear, exactly as given above, in the <u>NYS Department of State's Corporation & Business Entity Database</u>. A print-out of entity information from the database must be submitted to the New York State Department of Environmental Conservation (DEC) with the application to document that the requestor is authorized to do business in NYS. Please note: If the requestor is an LLC, the members/owners names need to be provided on a separate attachment. Attachment A Do all individuals that will be certifying documents meet the requirements detailed below? Yes No Individuals that will be certifying BCP documents, as well as their employers, meet the requirements of Section 1.5 of <i>DER-10: Technical Guidance for Site Investigation and Remediation</i> and Article 145 of New York State Education Law. Documents that are not properly certified will be not approved under the BCP. 			
Section II. Project Description	Attachment B		
1. What stage is the project start	ing at? Investigation	Remediation	
NOTE: If the project is proposed to start at the remediation stage, a Remedial Investigation Report (RIR) at a minimum is required to be attached, resulting in a 30-day public comment period. If an Alternatives Analysis and Remedial Work Plan are also attached (see DER-10 / Technical Guidance for Site Investigation and Remediation for further guidance) then a 45-day public comment period is required.			
2. If a final RIR is included, please verify it meets the requirements of Environmental Conservation Law			
(ECL) Article 27-1415(2): Yes No RIR not included			
3. Please attach a short description of the overall development project, including:			
the date that the remedial program is to start; and			
the date the Certificate of Completion is anticipated.			

Section III. Property's Environmental History

All applications **must include** an Investigation Report (per ECL 27-1407(1)). The report must be sufficient to establish contamination of environmental media on the site above applicable Standards, Criteria and Guidance (SCGs) based on the reasonably anticipated use of the property.

To the extent that existing information/studies/reports are available to the requestor, please attach the following (*please submit the information requested in this section in electronic format only*):

1. **Reports:** an example of an Investigation Report is a Phase II Environmental Site Assessment report prepared in accordance with the latest American Society for Testing and Materials standard (ASTM E1903). **Please submit a separate electronic copy of each report in Portable Document Format (PDF).**

2. SAMPLING DATA: INDICATE KNOWN CONTAMINANTS AND THE MEDIA WHICH ARE KNOWN TO HAVE BEEN AFFECTED. LABORATORY REPORTS SHOULD BE REFERENCED AND COPIES INCLUDED.

Contaminant Category	Soil	Groundwater	Soil Gas
Petroleum			Х
Chlorinated Solvents			
Other VOCs			Х
SVOCs	Х		
Metals	Х	Х	
Pesticides			
PCBs			
Other*			
*Please describe: See Attachment C			
 3. FOR EACH IMPACTED MEDIUM INDICATED ABOVE, INCLUDE A SITE DRAWING INDICATING: SAMPLE LOCATION Attachment C DATE OF SAMPLING EVENT KEY CONTAMINANTS AND CONCENTRATION DETECTED FOR SOIL, HIGHLIGHT IF ABOVE REASONABLY ANTICIPATED USE FOR GROUNDWATER, HIGHLIGHT EXCEEDANCES OF 6NYCRR PART 703.5 FOR SOIL GAS/ SOIL VAPOR/ INDOOR AIR, HIGHLIGHT IF ABOVE MITIGATE LEVELS ON THE NEW YORK STATE DEPARTMENT OF HEALTH MATRIX THESE DRAWINGS ARE TO BE REPRESENTATIVE OF ALL DATA BEING RELIED UPON TO MAKE THE CASE THAT THE SITE IS IN NEED OF REMEDIATION UNDER THE BCP. DRAWINGS SHOULD NOT BE BIGGER THAN 11" X 17". THESE DRAWINGS SHOULD BE PREPARED IN ACCORDANCE WITH ANY GUIDANCE PROVIDED. ARE THE REQUIRED MAPS INCLUDED WITH THE APPLICATION?* (*answering No will result in an incomplete application) Yes No 			
Coal Gas Manufacturing Salvage Yard Landfill	I⊡Manufacturing ∐Ag ☐Bulk Plant ☐Pir ☐Tannery ☐Ele	ectroplating	ner Station 1
Other: See Attachment C			

Section IV. Property Information - See Instructions for Further Guidance Attachment D					
PROPOSED SITE NAME 45 Commercial Street					
ADDRESS/LOCATION 45 Commercial Street					
CITY/TOWN Brooklyn, New York ZIP C	ODE 11	222			
MUNICIPALITY(IF MORE THAN ONE, LIST ALL): New	York				
COUNTY Kings	S	ITE SIZE (AC	RES) 1.02		
LATITUDE (degrees/minutes/seconds)	LONG	ITUDE (degre	es/minutes/se	econds)	
40 ° 44 ' 13.1 "	73	0	57	í	28.6 "
Complete tax map information for all tax parcels included proposed, please indicate as such by inserting "P/O" in f include the acreage for that portion of the tax parcel in the PER THE APPLICATION INSTRUCTIONS.	within th ront of th corresp	ne proposed s e lot number onding far rig	site boundary in the approp ht column.AT	 If a portion briate box below TTACH REQU 	of any lot is ow, and only IRED MAPS
Parcel Address		Section No.	Block No.	Lot No.	Acreage
45 Commercial Street			2472	70	1.02
1. Do the proposed site boundaries correspond to tax map metes and bounds? ✓ Yes □ No If no, please attach an accurate map of the propsed site.					
2. Is the required property map attached to the application? ✓ ✓ Yes □ No (application will not be processed without map)					
3. Is the property within a designated Environmental Zone (En-zone) pursuant to Tax Law 21(b)(6)? (See <u>DEC's website</u> for more information) Yes No					
If yes, identify census tract :					
Percentage of property in En-zone (check one):	0-49	9%	50-99%	100%)
4. Is this application one of multiple applications for a large development project, where the development project spans more than 25 acres (see additional criteria in BCP application instructions)?Yes ✓ No					
If yes, identify name of properties (and site numbers if available) in related BCP applications:					
5. Is the contamination from groundwater or soil vapor solely emanating from property other than the site subject to the present application?					
6. Has the property previously been remediated pursuant to Titles 9, 13, or 14 of ECL Article 27, Title 5 of ECL Article 56, or Article 12 of Navigation Law? If yes, attach relevant supporting documentation. Yes					
7. Are there any lands under water? ☐ Yes ✓ No If yes, these lands should be clearly delineated on the site map. ✓					

Se	Section IV. Property Information (continued)			
8.	Are there any easements or existing rights of way that would preclude remediati If yes, identify here and attach appropriate information.	on in these areas? ☐Yes ✔No		
	Easement/Right-of-way Holder	escription		
9.	List of Permits issued by the DEC or USEPA Relating to the Proposed Site (typ information)	e here or attach		
	Type Issuing Agency	Description		
	-			
 Property Description and Environmental Assessment – please refer to application instructions for the proper format of <u>each</u> narrative requested. 				
	Are the Property Description and Environmental Assessment narratives include in the prescribed format ?	ed 🖌 Yes 🗌 No		
	Note: Questions 11 through 13 only pertain to sites located within the five counties comp	rising New York City		
11.	Is the requestor seeking a determination that the site is eligible for tangible property credits?	perty tax 🖌 Yes 🔄 No		
	If yes, requestor must answer questions on the supplement at the end of this fo	rm.		
12.	Is the Requestor now, or will the Requestor in the future, seek a determi that the property is Upside Down?	nation Yes 🖌 No		
13.	If you have answered Yes to Question 12, above, is an independent app of the value of the property, as of the date of application, prepared under hypothetical condition that the property is not contaminated, included wit application?	raisal Yes No r the h the		
no pa a o eli	OTE: If a tangible property tax credit determination is not being requested articipate in the BCP, the applicant may seek this determination at any tim certificate of completion by using the BCP Amendment Application, <u>excention</u> igibility under the underutilized category.	in the application to e before issuance of <u>ot</u> for sites seeking		
lf an	ny changes to Section IV are required prior to application approval, a new page, i	nitialed by each requestor		

must be submitted. -AAAA Initials of each Requestor Az

BCP application - PART B (note: application is separated into Parts A and B for DEC review purposes)

Section V. Additional Requesto See Instructions for Further Gui	r Information dance	BCP SITE NAME: BCP SITE #	DEC USE ONLY
NAME OF REQUESTOR'S AUTHORIZED REPRESENTATIVE Anne Carson Blair			
ADDRESS 535 Madison Avenue			Attachment E
CITY/TOWN New York, New Yor	k		ZIP CODE 10022
PHONE (212)310-9768	FAX Not Availa	able	E-MAIL acarsonblair@parktowergroup.com
NAME OF REQUESTOR'S CONSUL	TANT Mimi Raygorode	etsky, Langan Engineering, Environmer	ntal, Surveying, Landscape Architecture and Geology, D.P.C.
ADDRESS 360 West 31st Street,	8th Floor		
CITY/TOWN New York, New York	k		ZIP CODE 10001
PHONE (212)479-5400	FAX (212)579	9-5444	E-MAIL mraygorodetsky@langan.com
NAME OF REQUESTOR'S ATTORN	ey Mark A. Che	ertok, Sive Paget & Rie	sel
ADDRESS 560 Lexington Avenue	, 15th Floor		
CITY/TOWN New York, New Yor	k		ZIP CODE 10022
PHONE (646)378-7228	FAX Not Availa	able	E-MAIL mchertok@sprlaw.com
Section VI. Current Property Owner/Operator Information – if not a Requestor			
CURRENT OWNER'S NAME H Owr	ner LLC		OWNERSHIP START DATE: 4/23/2018
ADDRESS 535 Madison Avenue			
CITY/TOWN New York, NY		ZIP CODE 1	0022
PHONE (212)310-9768	FAX Not Avail	able	E-MAIL acarsonblair@parktowergroup.com
CURRENT OPERATOR'S NAME CO	nsigli Construc	tion Co., Inc.	
ADDRESS 333 Seventh Avenue,	17th Floor		
CITY/TOWN New York, New Yor	k	ZIP CODE 1	0001
PHONE (516)330-8067	FAX Not Availa	able	E-MAIL rconner@consigli.com
PROVIDE A LIST OF PREVIOUS PROPERTY OWNERS AND OPERATORS WITH NAMES, LAST KNOWN ADDRESSES AND TELEPHONE NUMBERS AS AN ATTACHMENT. DESCRIBE REQUESTOR'S RELATIONSHIP, TO EACH PREVIOUS OWNER AND OPERATOR, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND PREVIOUS OWNER AND OPERATOR. IF NO RELATIONSHIP, PUT "NONE". IF REQUESTOR IS NOT THE CURRENT OWNER, DESCRIBE REQUESTOR'S RELATIONSHIP TO THE CURRENT OWNER, INCLUDING ANY RELATIONSHIP BETWEEN REQUESTOR'S CORPORATE MEMBERS AND THE CURRENT OWNER.			
Section VII. Requestor Eligibility	Information (F	Please refer to ECL § 2	7-1407)
 If answering "yes" to any of the following questions, please provide an explanation as an attachment. 1. Are any enforcement actions pending against the requestor regarding this site?YesNo 2. Is the requestor subject to an existing order for the investigation, removal or remediation of contamination at the site?YesNo 3. Is the requestor subject to an outstanding claim by the Spill Fund for this site? Any questions regarding whether a party is subject to a spill claim should be discussed with the Spill Fund AdministratorYesNo 			

Section VII. Requestor Eligibility Information (continued) Attachment F

- 4. Has the requestor been determined in an administrative, civil or criminal proceeding to be in violation of i) any provision of the ECL Article 27; ii) any order or determination; iii) any regulation implementing Title 14; or iv) any similar statute, regulation of the state or federal government? If so, provide an explanation on a separate attachment. Yes ✓ No
- 5. Has the requestor previously been denied entry to the BCP? If so, include information relative to the application, such as name, address, DEC assigned site number, the reason for denial, and other relevant information. ☐ Yes ✔ No
- 6. Has the requestor been found in a civil proceeding to have committed a negligent or intentionally tortious act involving the handling, storing, treating, disposing or transporting of contaminants?
- 7. Has the requestor been convicted of a criminal offense i) involving the handling, storing, treating, disposing or transporting of contaminants; or ii) that involves a violent felony, fraud, bribery, perjury, theft, or offense against public administration (as that term is used in Article 195 of the Penal Law) under federal law or the laws of any state?
- 8. Has the requestor knowingly falsified statements or concealed material facts in any matter within the jurisdiction of DEC, or submitted a false statement or made use of or made a false statement in connection with any document or application submitted to DEC?
- 9. Is the requestor an individual or entity of the type set forth in ECL 27-1407.9 (f) that committed an act or failed to act, and such act or failure to act could be the basis for denial of a BCP application? Yes V No
- 10. Was the requestor's participation in any remedial program under DEC's oversight terminated by DEC or by a court for failure to substantially comply with an agreement or order?
- 11. Are there any unregistered bulk storage tanks on-site which require registration?

THE REQUESTOR MUST CERTIFY THAT HE/SHE IS EITHER A PARTICIPANT OR VOLUNTEER IN ACCORDANCE WITH ECL 27-1405 (1) BY CHECKING ONE OF THE BOXES BELOW:

Yes 🔽 No

PARTICIPANT	VOLUNTEER
A requestor who either 1) was the owner of the site at the time of the disposal of hazardous waste or discharge of petroleum or 2) is otherwise a person responsible for the contamination, unless the liability arises solely as a result of ownership, operation of, or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.	requestor whose liability arises solely as a result of ownership, operation of or involvement with the site subsequent to the disposal of hazardous waste or discharge of petroleum.
	NOTE: By checking this box, a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site certifies that he/she has exercised appropriate care with respect to the hazardous waste found at the facility by taking reasonable steps to: i) stop any continuing discharge; ii) prevent any threatened future release; iii) prevent or limit human, environmental, or natural resource exposure to any previously released hazardous waste.
	If a requestor whose liability arises solely as a result of ownership, operation of or involvement with the site, submit a statement describing why you should be considered a volunteer – be specific as to the appropriate care taken.

Section VII. Requestor Eligibility Information (continued)	
Requestor Relationship to Property (check one):	
If requestor is not the current site owner, proof of site access sufficient to complete the remediation m be submitted . Proof must show that the requestor will have access to the property before signing the BCA and throughout the BCP project, including the ability to place an easement on the site Is this proof attached	i ust A ed?
Yes No	
Note: a purchase contract does not suffice as proof of access.	
Section VIII. Property Eligibility Information - See Instructions for Further Guidance	
 Is / was the property, or any portion of the property, listed on the National Priorities List? If yes, please provide relevant information as an attachment. 	
 Is / was the property, or any portion of the property, listed on the NYS Registry of Inactive Hazardous Waste Disposal Sites pursuant to ECL 27-1305?	
 3. Is / was the property subject to a permit under ECL Article 27, Title 9, other than an Interim Status facility?	
4. If the answer to question 2 or 3 above is yes, is the site owned by a volunteer as defined under ECL 27 1405(1)(b), or under contract to be transferred to a volunteer? Attach any information available to the requestor related to previous owners or operators of the facility or property and their financial viability, including any bankruptcy filing and corporate dissolution documentation.	-
5. Is the property subject to a cleanup order under Navigation Law Article 12 or ECL Article 17 Title 10? If yes, please provide: Order #Yes Volume No	
6. Is the property subject to a state or federal enforcement action related to hazardous waste or petroleur If yes, please provide explanation as an attachment.	n?
Section IX. Contact List Information Attachment G	
 To be considered complete, the application must include the Brownfield Site Contact List in accordance with <u>DER-23 / Citizen Participation Handbook for Remedial Programs</u>. Please attach, at a minimum, the name and addresses of the following: The chief executive officer and planning board chairperson of each county, city, town and village in which the property is located. Residents, owners, and occupants of the property and properties adjacent to the property. Local news media from which the community typically obtains information. The public water supplier which services the area in which the property is located. Any person who has requested to be placed on the contact list. The administrator of any school or day care facility located on or near the property. The location of a document repository for the project (e.g., local library). If the site is located in a city with a population of one million or more, add the appropriate community board as an additional document repository. In addition, attach a copy of an acknowledgement from each repository indicating that it agrees to act as the document repository for the site. 	th s ich g

Section X. Land Use Factors Attachment H	
 What is the current municipal zoning designation for the site? <u>R6/R8/C2-4</u> What uses are allowed by the current zoning? (Check boxes, below) Residential Commercial Industrial If zoning change is imminent, please provide documentation from the appropriate zoning a 	uthority.
 Current Use: Residential Commercial Industrial Vacant Recreational (checapply) Attach a summary of current business operations or uses, with an emphasis on iden possible contaminant source areas. If operations or uses have ceased, provide the descent of the source areas. 	ck all that tifying ate.
3. Reasonably anticipated use Post Remediation: Residential Commercial Industrial that apply) Attach a statement detailing the specific proposed use.	(check all
If residential, does it qualify as single family housing?	Yes 🖌 No
4. Do current historical and/or recent development patterns support the proposed use?	✔Yes No
SEE ATTACHMENT H	
 Is the proposed use consistent with applicable zoning laws/maps? Briefly explain below, or attach additional information and documentation if necessary. SEE ATTACHMENT H 	✔Yes No
6. Is the proposed use consistent with applicable comprehensive community master plans, local waterfront revitalization plans, or other adopted land use plans? Briefly explain below, or attach additional information and documentation if necessary.	₽ Yes No
SEE ATTACHMENT H	

Al. Statement of Certification and Signatu
--

(By requestor who is an individual)

If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the *DER-32*, *Brownfield Cleanup Program Applications and Agreements*; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Date: _____

Signature: _____

Print Name:_____

(By a requestor other than an individual)

I hereby affirm that I am <u>Authorized Signatory</u> (title) of <u>H Owner LLC</u> (entity); that I am authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the *DER-32, Brownfield Cleanup Program Applications and Agreements*; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.

Date: Jin. 2, 2020 Signature:	
Print Name:Matthew Mayer	

SUBMITTAL INFORMATION:

- **Two (2)** copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF), must be sent to:
 - Chief, Site Control Section
 - o New York State Department of Environmental Conservation
 - o Division of Environmental Remediation
 - o 625 Broadway
 - o Albany, NY 12233-7020

FOR DEC USE ONLY	
BCP SITE T&A CODE:	LEAD OFFICE:

9(i)

XI. Statement o	Certification	and Signatures
-----------------	----------------------	----------------

(By requestor who is an individual)

If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Date: _____

Signature:

Print Name:

(By a requestor other than an individual)

I hereby affirm that I am Authorized Signatory (title) of GPL Development LLC (entity); that I am authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law. L m

Date: Jan. 2, 2020 Signature: Print Name: Matthew Mayer

SUBMITTAL INFORMATION:

- Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF), must be sent to:
 - Chief, Site Control Section
 - o New York State Department of Environmental Conservation
 - Division of Environmental Remediation
 - o 625 Broadway
 - Albany, NY 12233-7020

FOR DEC USE ONLY BCP SITE T&A CODE:______ LEAD OFFICE:

XI. Statement of Certification and Signatures
(By requestor who is an individual)
If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the <i>DER-32</i> , <i>Brownfield Cleanup Program Applications and Agreements</i> ; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.
Date: Signature:
Print Name:
(By a requestor other than an individual)
authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the
<i>DER-32, Brownfield Cleanup Program Applications and Agreements</i> ; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA.
the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this
form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the
Penal Law.
Date: 161. 2, 2022 Signature:
Print Name:Matthew Mayer

SUBMITTAL INFORMATION:

- **Two (2)** copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF), must be sent to:
 - Chief, Site Control Section
 - o New York State Department of Environmental Conservation
 - o Division of Environmental Remediation
 - o 625 Broadway
 - Albany, NY 12233-7020

FOR	DEC	USE	ONLY
BCP	SITE	T&A	CODE:

LEAD OFFICE:

XI. Statement of Certification and Signatures

(By requestor who is an individual)

If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the *DER-32*, *Brownfield Cleanup Program Applications and Agreements*; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Date: _____

Signature: _____

Print Name:_____

(By a requestor other than an individual)

I hereby affirm that I am <u>Authorized Signatory</u> (title) of <u>Greenpoint Storage Terminal LLC</u> (entity); that I am authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the *DER-32, Brownfield Cleanup Program Applications and Agreements*; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.

Date: Jan 2, 2020	Signature: Mi
Print Name: Matthew May	er

SUBMITTAL INFORMATION:

- Two (2) copies, one paper copy with original signatures and one electronic copy in Portable Document Format (PDF), must be sent to:
 - Chief, Site Control Section
 - o New York State Department of Environmental Conservation
 - o Division of Environmental Remediation
 - o 625 Broadway
 - o Albany, NY 12233-7020

FOR	DEC	USE	ONLY
BCP	SITE	T&A	CODE:

LEAD OFFICE:

XI. Statement of Certification and Signatures

(By requestor who is an individual)

If this application is approved, I hererby acknowledge and agree: (1) to execute a Brownfield Cleanup Agreement (BCA) within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to section 210.45 of the Penal Law.

Date: _____

Signature:

Print Name:

(By a requestor other than an individual)

I hereby affirm that I am Authorized Signatory (title) of Greenpoint Landing Associates, L.L.C. (entity); that I am authorized by that entity to make this application and execute the Brownfield Cleanup Agreement (BCA) and all subsequent amendments; that this application was prepared by me or under my supervision and direction. If this application is approved, I acknowledge and agree: (1) to execute a BCA within 60 days of the date of DEC's approval letter; (2) to the general terms and conditions set forth in the DER-32, Brownfield Cleanup Program Applications and Agreements; and (3) that in the event of a conflict between the general terms and conditions of participation and the terms contained in a site-specific BCA, the terms in the site-specific BCA shall control. Further, I hereby affirm that information provided on this form and its attachments is true and complete to the best of my knowledge and belief. I am aware that any false statement made herein is punishable as a Class A misdemeanor pursuant to Section 210.45 of the Penal Law.

Date: 161.21202	Signature:	n	
Print Name: Matthew Maye	er		

SUBMITTAL INFORMATION:

- Two (2) copies, one paper copy with original signatures and one electronic copy in Portable • Document Format (PDF), must be sent to:
 - Chief, Site Control Section
 - o New York State Department of Environmental Conservation
 - Division of Environmental Remediation
 - o 625 Broadway
 - Albany, NY 12233-7020

FOR DEC USE ONLY BCP SITE T&A CODE:______ LEAD OFFICE:_____

Supplemental Questions for Sites Seeking Tangible Property Credits in New

York City ONLY. Sufficient information to demonstrate that the site meets one or more of the criteria identified in ECL 27 1407(1-a) must be submitted if requestor is seeking this determination.

BCP App Rev 10

Property is in Bronx, Kings, New York, Queens, or Richmond counties.	✔ Yes No									
Requestor seeks a determination that the site is eligible for the tangible prope brownfield redevelopment tax credit.	erty credit component of the Yes 🗌 No									
Please answer questions below and provide documentation necessary to s	support answers.									
1. Is at least 50% of the site area located within an environmental zone pursuant to NYS Tax Law 21(b Please see <u>DEC's website</u> for more information. ☐ Yes ✔										
2. Is the property upside down or underutilized as defined below? Upside	e Down? 🗌 Yes 🗹 No									
From ECL 27-1405(31):										
"Upside down" shall mean a property where the projected and incurred cost remediation which is protective for the anticipated use of the property equals or percent of its independent appraised value, as of the date of submission of the a in the brownfield cleanup program, developed under the hypothetical condition to contaminated.	of the investigation and exceeds seventy-five application for participation that the property is not									
From 6 NYCRR 375-3.2(I) as of August 12, 2016: (Please note: Eligibility dete underutilized category can only be made at the time of application)	ermination for the									
 375-3.2: (I) "Underutilized" means, as of the date of application, real property fifty percent of the permissible floor area of the building or buildings is cert have been used under the applicable base zoning for at least three years which zoning has been in effect for at least three years; and (1) the proposed use is at least 75 percent for industrial uses; or (2) at which: (i) the proposed use is at least 75 percent for commercial or commercial a (ii) the proposed development could not take place without substantial gov certified by the municipality in which the site is located; and (iii) one or more of the following conditions exists, as certified by the applic (a) property tax payments have been in arrears for at least five years immapplication; (b) a building is presently condemned, or presently exhibits documented s certified by a professional engineer, which present a public health or safet (c) there are no structures. "Substantial government assistance" shall mean a substantial loan, grant, land purchase cost exemption or waiver, or tax credit, or some combinatic governmental entity. 	y on which no more than tified by the applicant to prior to the application, and industrial uses; vernment assistance, as cant: ediately prior to the structural deficiencies, as by hazard; or land purchase subsidy, on thereof, from a									

Supplemental Questions for Sites Seeking Tangible Property Credits in New York City (continued)

3. If you are seeking a formal determination as to whether your project is eligible for Tangible Property Tax Credits based in whole or in part on its status as an affordable housing project (defined below), you must attach the regulatory agreement with the appropriate housing agency (typically, these would be with the New York City Department of Housing, Preservation and Development; the New York State Housing Trust Fund Corporation; the New York State Department of Housing and Community Renewal; or the New York State Housing Finance Agency, though other entities may be acceptable pending Department review). Check appropriate box, below:

Project is an Affordable Housing Project - Regulatory Agreement Attached;

Project is Planned as Affordable Housing, But Agreement is Not Yet Available* (*Checking this box will result in a "pending" status. The Regulatory Agreement will need to be provided to the Department and the Brownfield Cleanup Agreement will need to be amended prior to issuance of the CoC in order for a positive determination to be made.); Attachment H

This is Not an Affordable Housing Project.

From 6 NYCRR 375- 3.2(a) as of August 12, 2016:

(a) "Affordable housing project" means, for purposes of this part, title fourteen of article twenty seven of the environmental conservation law and section twenty-one of the tax law only, a project that is developed for residential use or mixed residential use that must include affordable residential rental units and/or affordable home ownership units.

(1) Affordable residential rental projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which defines (i) a percentage of the residential rental units in the affordable housing project to be dedicated to (ii) tenants at a defined maximum percentage of the area median income based on the occupants' households annual gross income.

(2) Affordable home ownership projects under this subdivision must be subject to a federal, state, or local government housing agency's affordable housing program, or a local government's regulatory agreement or legally binding restriction, which sets affordable units aside for home owners at a defined maximum percentage of the area median income.

(3) "Area median income" means, for purposes of this subdivision, the area median income for the primary metropolitan statistical area, or for the county if located outside a metropolitan statistical area, as determined by the United States department of housing and urban development, or its successor, for a family of four, as adjusted for family size.

BCP Application Summary (for DEC use only)					
Site Name: 45 Commercial Street City: Brooklyn, New York	Zip: 11222				
Tax Block & LotSection (if applicable):Block:	ock & Lot n (if applicable): Block: 2472 Lot:				
Requestor Name: GPL Development LLC; H Owner LLC; Greenpoint Landing Developers LLC; Gree City: New York, New York	anpoint Storage Terminal LLC; Requestor Address: Zip: 10022	535 Madison Avenue Email: acarsonblair@parktowergroup.com			
Requestor's Representative (for billing purpos Name: Anne Carson Blair Address:	535 Madison Avenue	Fmail: accorditionations.com			
Requestor's Attorney	2-19. 10022				
City: New York, New York	Zip: 10022	Email: mchertok@sprlaw.com			
Requestor's Consultant Name: Mini Raygorodetsky, Langan Engineering, Environmental, Surveying, Landscape Ard Address: City: New York, New York Percentage claimed within an En-Zone: DER Determination: Agree Disa Requestor's Requested Status: Voluntee DER/OGC Determination: Agree Notes: For NYC Sites, is the Requestor Seeking	360 West 31st Street, 8th Floor Zip: 10001 0% □<50% □ 50-99% agree er □ Participant] Disagree Tangible Property Credits: ☑	Email: mraygorodetsky@langan.com			
Does Requestor Claim Property is Upside DER/OGC Determination: Agree	Down: Yes INO Disagree Undetermined				
Does Requestor Claim Property is Under DER/OGC Determination: Agree	utilized: ☐ Yes ☑ No Disagree ☐ Undetermined				
Does Requestor Claim Affordable Housin DER/OGC Determination: Agree Notes:	n g Status: 	Planned, No Contract ined			

ATTACHMENT A

SECTION I: REQUESTOR INFORMATION

The Requestors are New York limited liability companies. The Requestors and their members are listed below:

- GPL Development LLC
 - Sole member: Greenpoint Landing Associates, L.L.C.
 - Members: Alexandra Klein and Marian Klein
- H Owner LLC
 - Sole member: Greenpoint Landing Associates, L.L.C.
 - Members: Alexandra Klein and Marian Klein
- Greenpoint Landing Developers LLC
 - Sole member: Greenpoint Landing Associates, L.L.C.
 - Members: Alexandra Klein and Marian Klein
- Greenpoint Storage Terminal LLC
 - o Sole member: Park Tower Management, Ltd
- Greenpoint Landing Associates, L.L.C.
 - Members: Alexandra Klein and Marian Klein

Copies of the entity information for the Requestors from the NYS Department of State Division of Corporations are included with this attachment. Copies of site access letters are included with this attachment.

ATTACHMENT A

SUPPORTING DOCUMENTATION

1. NYS Department of State – Business Entity Information of:

- a. GPL Development LLC
- b. H Owner LLC
- c. Greenpoint Landing Developers LLC
- d. Greenpoint Storage Terminal LLC
- e. Greenpoint Landing Associates, L.L.C.

2. Site Access Letters from:

- a. GPL Development LLC
- b. Greenpoint Landing Developers LLC
- c. Greenpoint Storage Terminal LLC
- d. Greenpoint Landing Associates, L.L.C.

GPL Development LLC 535 Madison Avenue, 35th Floor New York, NY 10022

Re: Block 2472, Lot 70 ("Site")

This letter confirms that GPL Development LLC, their respective managers, officers, employees agents, representatives, and consultants have access to the above-referenced Site area to implement any investigation or remedial work required and/or authorized by the New York State Department of Environmental Conservation (NYSDEC) pursuant to the Brownfield Cleanup Program (BCP), the ability to place an environmental easement on the Site, and to otherwise comply with all obligations under the Brownfield Cleanup Agreement (BCA) from the date hereof until such time as the BCA is terminated or NYSDEC issues a Certificate of Completion ("COC").

Sincerely,

By:

Matthew W. Mayer Authorized Representative

Greenpoint Landing Developers LLC 535 Madison Avenue, 35th Floor New York, NY 10022

Re: Block 2472, Lot 70 ("Site")

This letter confirms that Greenpoint Landing Developers LLC, their respective managers, officers, employees agents, representatives, and consultants have access to the above-referenced Site area to implement any investigation or remedial work required and/or authorized by the New York State Department of Environmental Conservation (NYSDEC) pursuant to the Brownfield Cleanup Program (BCP), the ability to place an environmental easement on the Site, and to otherwise comply with all obligations under the Brownfield Cleanup Agreement (BCA) from the date hereof until such time as the BCA is terminated or NYSDEC issues a Certificate of Completion ("COC").

Sincerely,

Matthew W. Mayer Authorized Representative

Greenpoint Storage Terminal LLC 535 Madison Avenue, 35th Floor New York, NY 10022

Re: Block 2472, Lot 70 ("Site")

This letter confirms that Greenpoint Storage Terminal LLC, their respective managers, officers, employees agents, representatives, and consultants have access to the above-referenced Site area to implement any investigation or remedial work required and/or authorized by the New York State Department of Environmental Conservation (NYSDEC) pursuant to the Brownfield Cleanup Program (BCP), the ability to place an environmental easement on the Site, and to otherwise comply with all obligations under the Brownfield Cleanup Agreement (BCA) from the date hereof until such time as the BCA is terminated or NYSDEC issues a Certificate of Completion ("COC").

Sincerely,

Matthew W. Mayer Authorized Representative

Greenpoint Landing Associates L.L.C. 535 Madison Avenue, 35th Floor New York, NY 10022

Re: Block 2472, Lot 70 ("Site")

This letter confirms that Greenpoint Landing Associates L.L.C., their respective managers, officers, employees agents, representatives, and consultants have access to the above-referenced Site area to implement any investigation or remedial work required and/or authorized by the New York State Department of Environmental Conservation (NYSDEC) pursuant to the Brownfield Cleanup Program (BCP), the ability to place an environmental easement on the Site, and to otherwise comply with all obligations under the Brownfield Cleanup Agreement (BCA) from the date hereof until such time as the BCA is terminated or NYSDEC issues a Certificate of Completion ("COC").

Sincerely,

By:

Matthew W. Mayer Authorized Representative

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through October 31, 2019.

Selected Entity Name: GPL DEVELOPMENT LLC
Selected Entity Status InformationCurrent Entity Name:GPL DEVELOPMENT LLCDOS ID #:5623039Initial DOS Filing Date:SEPTEMBER 18, 2019County:NEW YORKJurisdiction:NEW YORKEntity Type:DOMESTIC LIMITED LIABILITY COMPANYCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) C/O UNITED CORPORATE SERVICES, INC. 10 BANK STREET, SUITE 560 WHITE PLAINS, NEW YORK, 10606

Registered Agent

NONE

This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address(es) of the original members, however this information is not recorded and only available by <u>viewing the certificate.</u>

*Stock Information

Entity Information

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameSEP 18, 2019ActualGPL DEVELOPMENT LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through November 6, 2019.

Selected Entity Name: H OWNER LLC Selected Entity Status Information							
Current Entity Name:	H OWNER LLC						
DOS ID #:	4664791						
Initial DOS Filing Date:	NOVEMBER 12, 2014						
County:	WESTCHESTER						
Jurisdiction:	NEW YORK						
Entity Type:	DOMESTIC LIMITED LIABILITY COMPANY						
Current Entity Status:	ACTIVE						

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) C/O UNITED CORPORATE SERVICES, INC. 10 BANK STREET, SUITE 560 WHITE PLAINS, NEW YORK, 10606

Registered Agent

NONE

This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address(es) of the original members, however this information is not recorded and only available by <u>viewing the certificate.</u>

*Stock Information

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameNOV 12, 2014ActualH OWNER LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through November 6, 2019.

Selected Entity Name: GREENPOINT LANDING DEVELOPERS LLC
Selected Entity Status InformationCurrent Entity Name:GREENPOINT LANDING DEVELOPERS LLC
DOS ID #:DOS ID #:4443423Initial DOS Filing Date:AUGUST 09, 2013County:NEW YORKJurisdiction:NEW YORKEntity Type:DOMESTIC LIMITED LIABILITY COMPANYCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) C T CORPORATION SYSTEM 28 LIBERTY ST. NEW YORK, NEW YORK, 10005

Registered Agent

C T CORPORATION SYSTEM 28 LIBERTY ST. NEW YORK, NEW YORK, 10005

> This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address(es) of the original members, however this information is not recorded and only available by <u>viewing the certificate</u>.

> > *Stock Information

of Shares Type of Stock **\$** Value per Share

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameAUG 09, 2013ActualGREENPOINT LANDING DEVELOPERS LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through November 6, 2019.

Selected Entity Name: GREENPOINT STORAGE TERMINAL LLC
Selected Entity Status InformationCurrent Entity Name:GREENPOINT STORAGE TERMINAL LLC
DOS ID #:DOS ID #:3280009Initial DOS Filing Date:NOVEMBER 10, 2005County:NEW YORKJurisdiction:NEW YORKEntity Type:DOMESTIC LIMITED LIABILITY COMPANYCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) C T CORPORATION SYSTEM 28 LIBERTY ST. NEW YORK, NEW YORK, 10005

Registered Agent

C T CORPORATION SYSTEM 28 LIBERTY ST. NEW YORK, NEW YORK, 10005

> This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address(es) of the original members, however this information is not recorded and only available by <u>viewing the certificate</u>.

> > *Stock Information

of Shares Type of Stock **\$** Value per Share

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing DateName TypeEntity NameNOV 10, 2005ActualGREENPOINT STORAGE TERMINAL LLC

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

NYS Department of State

Division of Corporations

Entity Information

The information contained in this database is current through November 6, 2019.

Selected Entity Name: GREENPOINT LANDING ASSOCIATES, L.L.C.
Selected Entity Status InformationCurrent Entity Name:GREENPOINT LANDING ASSOCIATES, L.L.C.
DOS ID #:DOS ID #:2887953Initial DOS Filing Date:MARCH 28, 2003County:NEW YORKJurisdiction:NEW YORKEntity Type:DOMESTIC LIMITED LIABILITY COMPANYCurrent Entity Status:ACTIVE

Selected Entity Address Information

DOS Process (Address to which DOS will mail process if accepted on behalf of the entity) C/O PARK TOWER MGMT LTD 535 MADISON AVE 35TH FL NEW YORK, NEW YORK, 10022

Registered Agent

PARK TOWER RELATY CORP ATTN CHAIRMAN 27TH FL 499 PARK AVE NEW YORK, NEW YORK, 00000

> This office does not require or maintain information regarding the names and addresses of members or managers of nonprofessional limited liability companies. Professional limited liability companies must include the name(s) and address(es) of the original members, however this information is not recorded and only available by <u>viewing the certificate.</u>

***Stock Information**

of Shares Type of Stock \$ Value per Share

No Information Available

*Stock information is applicable to domestic business corporations.

Name History

Filing Date	Name Type	Entity Name
OCT 22, 2003	Actual	GREENPOINT LANDING ASSOCIATES, L.L.C.
MAR 28, 2003	Actual	PARK TOWER GREENPOINT ASSOCIATES, L.L.C.

A **Fictitious** name must be used when the **Actual** name of a foreign entity is unavailable for use in New York State. The entity must use the fictitious name when conducting its activities or business in New York State.

NOTE: New York State does not issue organizational identification numbers.

Search Results New Search

<u>Services/Programs</u> | <u>Privacy Policy</u> | <u>Accessibility Policy</u> | <u>Disclaimer</u> | <u>Return to DOS</u> <u>Homepage</u> | <u>Contact Us</u>

ATTACHMENT B SECTION II: PROJECT DESCRIPTION

Item 3 Response

Purpose and Scope of Project

The purpose of the project is to develop a contaminated parcel of land into a mixed use residential and commercial development while implementing remedial measures that are protective of human health and the environment. The current development plan includes removal of contaminated soil/fill and construction of one mixed-use residential building with 374 residential units (100% affordable housing for families earning under 90% of the annual median income) and ground floor retail. The building will comprise a 6-story podium (no cellar) with a 22-story tower set back from Commercial Street. The building footprint is about 32,000 square feet in area and the remainder of the tax lot (12,600 square feet) will be open, landscaped space.

An E-Designation (E-317) for hazardous materials, noise, and air quality was placed on the site pursuant to the Revised Negative Declaration dated November 6, 2013 (CEQR No. 14DCP004K). This new E-Designation supercedes the E-Designation (E-138) previously assigned to the site in connection with the May 11, 2005 Greenpoint-Williamsburg Rezoning (04DCP003K).

Estimated Project Schedule

An estimated project schedule is included as an attachment. The remedial program is anticipated to begin with the remedial investigation in early 2020. The project is expected to obtain its Certificate of Completion by end of 2021.

ATTACHMENT B

SUPPORTING DOCUMENTATION

1. Estimated Project Schedule

Project Schedule Brownfield Cleanup Program Application 45 Commercial Street Brooklyn, New York

		2019 2020							2021										
ltem	Action	NOV DEC	JAN	FEB	MAR	APR MAY	NUL	JUL	AUG	ост	NOV	JAN	FEB	MAR	MAYK	JUN	JUL	SEP	רו
	45 Commercial Street																		
1	BCP Application and RIWP - Preparation and Submittal																		
2	NYSDEC Review/Completeness Determination																		
3	BCP Application and RIWP Public Comment Period																		
4	BCP Agreement																		
5	CPP - Preparation and Submittal																		
6	RI - Implementation																		
7	RIR and RAWP - Preparation and Submittal																		
8	RIR and RAWP - NYSDEC Review and Public Comment Period																		
9	RAWP Implementation/Construction																		
10	FER/SMP/EE and COC									-									

Notes:

- 1. BCP = Brownfield Cleanup Program
- 2. NYSDEC = New York State Department of Environmental Conservation
- 3. RIWP = Remedial Investigation Work Plan
- 4. CPP = Citizen Participation Plan
- 5. RI = Remedial Investigation
- 6. RIR = Remedial Investigation Report
- 7. RAWP = Remedial Action Work Plan
- 8. FER = Final Engineering Report
- 9. SMP = Site Management Plan
- 10. EE= Environmental Easement
- 11. COC = Certificate of Completion

Assumptions

We assume NYSDEC will be the lead agency for environmental review; the New York City Office of Environmental Remediation will defer to OER for Hazardous Materials E-Designation reivew.
 Permits for the new building will be obtained by others prior to approval of the RAWP by NYSDEC

ATTACHMENT C

SECTION III: PROPERTY'S ENVIRONMENTAL HISTORY

Item 1 Response

The following environmental reports and investigations were reviewed and are summarized below:

- Phase I Environmental Site Assessment Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated July 2001
- Supplemental Subsurface (Phase II) Investigation Report Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc., dated April 2004
- "Area-Wide" Remedial Investigation Report Parcels D1, D2, E3, F, G, and H, prepared by Langan, dated May 19, 2014
- Subsurface Investigation 45 Commercial Street, performed by Langan, dated September 2019

July 2001 Phase I Environmental Site Assessment Report – Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc.

AKRF, Inc. was retained by Park Tower Realty Corporation to perform an Environmental Site Assessment of a 21-acre former lumber yard (including lands underwater) in the Greenpoint neighborhood of Brooklyn, New York. The upland acres that comprise the former lumber yard are the Greenpoint Landing development property and include the site.

Coal and lumber storage were the primary uses of the 21-acre subject property (including the site) for more than 100 years from the late 1800s until about 1980, when the lumber yard operations were phased out and the owner (Lumber Exchange Terminal, Inc.) began to lease portions of the subject property to tenants for materials and heavy construction equipment and machinery storage. At the time of the Phase I Environmental Site Assessment (ESA), the site used for truck/vehicle parking and the storage of scaffolding materials.

The Phase I ESA concluded that releases of petroleum or hazardous substances may be present on the former lumber yard (including the site) as the result of historical uses of the subject property and surrounding area. Several 55-gallon drums of lube oil and car maintenance activities (minor auto repairs, truck washing, and tire changes) were observed on the site during the Phase I site reconnaissance.
<u>April 2004 Supplemental Subsurface (Phase II) Investigation Report- Greenpoint Lumber Yard,</u> <u>Brooklyn, New York, prepared by AKRF, Inc.</u>

This Phase II Investigation Report included findings from the *Phase II Site Investigation Report, prepared by AKRF, dated October 2, 2001.* This subsurface investigation was performed across the larger Greenpoint Landing development property and included the completion of two soil borings (B15 and MW15A) and one groundwater monitoring well (MW15A), and collection of four soil samples and one groundwater sample within the site. Soil samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and target analyte list (TAL) metals. Groundwater samples were analyzed for VOCs, SVOCs, pesticides, PCBs, and TAL metals. Sample locations are shown on Figures C1 through C-3.

- Historic fill was identified in both borings completed at the site and was composed of varying amounts of sand, silt, and gravel with brick, coal, concrete, slag, and wood. Historic fill was observed immediately below the asphalt and concrete cap to boring termination depths of about 15 feet bgs in boring B15 and about 10 feet bgs in MW15A.
- No VOCs exceeded the New York State Department of Environmental Conservation (NYSDEC) Part 375-6.8(b) Unrestricted Use (UU) or NYSDEC Part 375-6.8(b) Restricted Use Restricted-Residential (RURR) Soil Cleanup Objectives (SCOs).
- Seven semivolatile organic compounds (SVOCs) (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and ideno(1,2-c,d)pyrene) exceeded the UU and/or RURR SCOs in soil samples collected from boring MW15A. Total SVOCs were detected at a concentration of 49.55 milligrams per kilogram (mg/kg) in MW15A. No SVOCs exceeded UU and/or RURR SCOs in soil samples collected from B15. Total PCBs exceeded the UU SCO (but not the RURR SCO) in a soil sample collected from the 0.5- to 2- foot interval in boring B15. Two pesticides, 4,4'-DDD and 4,4'-DDE, exceeded the UU SCOs (but not the RURR SCO) in soil samples collected from the 0.5- to 2-foot interval in B15. Total SCOs in soil samples collected from the 0.5- to 2-foot interval in boring B15. Two pesticides, 4,4'-DDD and 4,4'-DDE, exceeded the UU SCOs (but not the RURR SCO) in soil samples collected from the 0.5- to 2-foot interval in boring B15. Two pesticides, 4,4'-DDD and 4,4'-DDE, exceeded the UU SCOs (but not the RURR SCO) in soil samples collected from the 0.5- to 2-foot interval in B15. Two pesticides and 4,4'-DDE, exceeded the UU SCOs (but not the RURR SCO) in soil samples collected from the 0.5- to 2-foot interval in B15. Two pesticides are collected from the 0.5- to 2-foot interval in MW15A. Metals (including copper, lead, mercury, nickel, and/or zinc) exceeded the UU and/or RURR SCOs in all soil samples with the exception of one soil sample collected from the 8- to 9-foot interval in boring B15.
- VOCs, SVOCs, PCBs, and pesticides were not detected in the groundwater sample collected from MW15A. Three metals (iron, manganese, and sodium) exceeded the 6 New York Codes, Rules, and Regulations (NYCRR) Part 703.5, which are included in the NYSDEC Technical Operational and Guidance Series (TOGS) Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA waters (collectively referred to as

NYSDEC SGVs) at total and dissolved concentrations in MW15.

<u>May 19, 2014 "Area-Wide" Remedial Investigation Report - Parcels D1, D2, E3, F, G, and H,</u> <u>Brooklyn, New York, prepared by Langan</u>

This RIR included findings from the *Interim Phase 1 RIR for Parcels D1, D2, E3, F, G, and H, Brooklyn, New York, prepared by Langan, dated January 17, 2014* and the *Interim Phase 2 RIR for Parcels D1, D2, E3, F, G, and H, Brooklyn, New York, prepared by Langan, dated April 4, 2014.* This investigation was completed across six development parcels within the Greenpoint Landing development property and included the completion of one soil boring and groundwater monitoring well (SB-20/MW20) and one soil vapor point (SV-9), and the collection of three soil samples, one groundwater sample, and one soil vapor sample within the site. Soil samples were analyzed for VOCs, SVOCs, PCBs, pesticides, and TAL metals. Groundwater samples were analyzed for VOCs, SVOCs, pesticides, PCBs, and TAL metals.

- Historic fill identified in the soil boring was composed of varying amounts of sand, silt, gravel, and clay with ash, coal, and concrete and was observed directly below the concrete cap to a depth of about 10 feet bgs. Historic fill was underlain by native soil composed of varying amounts of sand, silt, and clay to a boring termination depth of about 15 feet bgs.
- No VOCs were detected above the UU or RURR SCOs. Eight SVOCs (3-methylphenol/4-methylphenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and ideno(1,2,3-cd)pyrene) exceeded the UU and/or RURR SCOs in one or both soil samples. Total SVOCs were detected at a maximum concentration of 219.16 mg/kg in a sample collected from the 0-to 2-foot interval in boring SB-20. Five metals (arsenic, copper, lead, mercury, and zinc) exceeded the UU SCOs in one or both soil samples; lead also exceeded the RURR SCO in soil collected from the 3- to 5-foot depth interval in boring SB-20. Pesticides and herbicides were not detected in soil samples.
- VOCs and SVOCs were not detected above the NYSDEC TOGS SGVs. PCBs, pesticides, and herbicides were not detected in groundwater. Four metals (iron, magnesium, manganese, and sodium) exceeded the NYSDEC TOGS SGVs at total and dissolved concentrations in MW20.
- Thirteen petroleum, ketone, and solvent-related VOCs (including 2,2,4-trimethylpentane, 2-butanone, acetone, benzene, carbon disulfide, chloromethane, cyclohexane, heptane, n-hexane, p- & m-xylene, propylene, toluene, and trichlorofluoromethane) were detected

in soil vapor collected from SV-9; however, no New York State Department of Health (NYSDOH) standards or guidance values exist for these compounds.

 Soil vapor sample SV-9 was evaluated using the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion. The NYSDOH Guidance document contains Decision Matrices that evaluate eight VOCs – carbon tetrachloride, trichloroethene (TCE), cis-1,2-dichloroethene, 1,1-dichloroethene, tetrachloroethene (PCE), 1,1,1-trichloroethane, methylene chloride, and vinyl chloride. None of the 8 VOCs were detected in soil vapor sample SV-9. The NYSDOH Guidance also include Air Guideline Values (AGVs) for three VOCs (methylene chloride, PCE, and TCE); none of the compounds with 3 VOCs were detected in soil vapor sample SV-9.

September 2019 Subsurface Investigation – 45 Commercial Street, performed by Langan

This investigation was performed on the site only and included the completion of 15 soil borings (LB01 through LB15) and collection of 32 soil samples (including quality assurance/quality control [QA/QC] samples). Soil samples were analyzed for VOCs, SVOCs, and TAL metals.

- Historic fill identified in the soil borings was composed of varying amounts of sand, silt and gravel, with ash, asphalt, coal, concrete, wood, and slag and was observed directly below the concrete and asphalt cap to a depth of about 15 feet bgs.
- Two VOCs (acetone and total xylenes) exceeded the UU but not the RURR SCOs in one or more soil samples.
- Eight SVOCs (3-methylphenol/4-methylphenol, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene) exceeded the UU and/or RURR SCOs in one or more soil samples. With the exception of 3-methylphenol/4-methylphenol, all SVOCs were detected in at least one boring at concentrations exceeding the RURR SCOs.
- Seven inorganics (including arsenic, trivalent chromium, copper, lead, mercury, nickel, and zinc) exceeded the UU and/or RURR SCOs in one or more soil samples. Of these inorganics, arsenic, copper, lead, mercury, and nickel were detected at concentrations exceeding the RURR SCOs in one or more soil samples.
- Based on field observations and review of analytical data that identified staining, odors and PID readings in one boring and the detection of one petroleum related compound (total xylenes) in soil; a spill was reported to NYSDEC (Spill No. 1906491).

Item 2 Response

Laboratory analytical data reports for soil from the September 2019 Subsurface Investigation completed by Langan are included in this attachment. Laboratory analytical data reports for soil, groundwater, and vapor from the May 2014 RI are included in Appendix I, J, K, and L of the Remedial Investigation Report (RIR) included in this attachment. Laboratory analytical data reports for soil and groundwater from the April 2004 Supplemental Subsurface (Phase II) Investigation are included as in Appendix C of the April 2004 Supplemental Subsurface (Phase II) Investigation Report included in this attachment.

Item 3 Response

Soil

The soil analytical results were compared to the Unrestricted Use SCOs and Restricted-Use

Restricted Residential SCOs. The soil results are presented in Tables C-1 and C-2 and Figure C-1.

The following contaminants were detected at concentrations exceeding Unrestricted Use and/or Restricted-Use Restricted Residential SCOs; analytes exceeding the Restricted-Use Restricted Residential SCOs are **bolded**:

- <u>VOCs:</u> Acetone and total xylenes
- <u>SVOCs:</u> 3-methylphenol/4-methylphenol, (m&p cresol), **benzo(a)anthracene**, **benzo(a)pyrene**, **benzo(b)fluoranthene**, **benzo(k)fluoranthene**, **chrysene**, **dibenz(a,h)anthracene**, **indeno(1,2,3-c,d)pyrene**, and naphthalene.
- <u>Pesticides:</u> 4,4'-DDD and 4,4'-DDE
- <u>PCBs:</u> Total PCBs
- <u>Metals:</u> **Arsenic**, **barium**, trivalent chromium, **copper**, **lead**, **mercury**, nickel, selenium, silver, and zinc

<u>Groundwater</u>

The groundwater results are presented in Figure C-2 and are summarized below by analyte category. The following contaminants were detected at concentrations exceeding the NYSDEC SGVs:

- <u>VOCs:</u> None
- <u>SVOCs:</u> None
- <u>PCBs:</u> None
- <u>Pesticides:</u> None
- Metals (total and dissolved): Iron, magnesium, manganese, and sodium

<u>Soil Vapor</u>

Thirteen petroleum, ketone, and/or solvent-related VOCs (including 2,2,4-trimethylpentane, 2butanone, acetone, benzene, carbon disulfide, chloromethane, cyclohexane, heptane, n-hexane, p- & m-xylene, propylene, toluene, and trichlorofluoromethane) were detected in soil vapor collected from SV-9.

Soil vapor sample SV-9 was evaluated using the NYSDOH Guidance for Evaluating Soil Vapor Intrusion. The NYSDOH Guidance document contains Decision Matrices that evaluate eight VOCs – carbon tetrachloride, TCE, cis-1,2-dichloroethene, 1,1-dichloroethene, PCE, 1,1,1-trichloroethane, methylene chloride, and vinyl chloride. None of the 8 VOCs were detected in soil vapor sample SV-9. The NYSDOH Guidance also include AGVs for three VOCs (methylene chloride, PCE, and TCE); none of the compounds with 3 VOCs were detected in soil vapor sample SV-9.

The soil vapor results are presented in Figure C-3.

Item 4 Response

Coal and lumber storage were the primary uses of the site for more than 100 years from the late 1800s until about 1980. At the time of the Phase I ESA in 2001, the site was used for truck/vehicle parking and the storage of scaffolding materials. The site is currently used to store construction trailers and materials for the ongoing Parcel H3 redevelopment.

ATTACHMENT C

SUPPORTING DOCUMENTATION

1. Figures

- a. Figure C-1 Soil Sample Locations and Analytical Results Map
- b. Figure C-2 Groundwater Sample Locations and Analytical Results Map
- c. Figure C-3 Soil Vapor Sample Locations and Analytical Results Map

2. Tables

- a. Table C-1 Soil Sample Analytical Results Summary VOCs & SVOCs
- b. Table C-2 Soil Sample Analytical Results Summary Inorganics
- c. Table C-3 Groundwater Sample Analytical Results Summary
- d. Table C-4 Soil Vapor Sample Analytical Results Summary
- 3. Phase I Environmental Site Assessment Report (AKRF, July 2001) (ON CD)
- 4. Supplemental Subsurface (Phase II) Investigation Report (AKRF, April 2004) (ON CD)
- 5. Remedial Investigation Report (Langan, May 2014) (ON CD)
- 6. Subsurface Investigation Documentation (Langan, September 2019) (ON CD)

Filename: \\langan.com\data\NYC\data0\170229024\Project Data\CAD\24\SheetFiles\Environmental\BCP Application\Figure 1 - Previous Soil Sample Locations and Analytical Results Map.dwg Date: 11/1/2019 Time: 13:42 User: wkim Style Table: Langan.stb Layout: ANSIB-BL

T: 212.479.5400 F: 212.479.5444 www.langan.com

1				
 ND:	7	I		8
	APPROXIMATE DE	VELOPMENT F	PROPERTY BO	UNDARY
·	APPROXIMATE SIT	E BOUNDARY		
	APPROXIMATE TAX	K LOT BOUND	ARY	
	APPROXIMATE SO	IL BORING LO	CATION AND	ID
n15 🔶	PREVIOUS SOIL BC AND ID (AKRF PHA	RING AND M SE II, 2004)	ONITORING W	ELL LOCATION
20/MW-20	PREVIOUS SOIL BC AND ID (LANGAN R	ORING AND MOREMEDIAL INV	ONITORING W ESTIGATION,	/ELL LOCATION 2014)
<u>S</u> :				
BASE MAP S DRAWING, I NORTH ARF ELEVATIONS VERTICAL D ABOVE MEA BY THE UNI SOIL SAMPI STATE DEPA OF THE COI (NYCRR) PA USE-RESTRI ONLY DETE SAMPLES E BOLDED. mg/kg = MII VOCs = VOI SVOCs = SE PCBs = POL bgs = BELO ND = NOT D NE = NONE J = THE ANA NUMERICAI IN THE SAM	SOURCES: TOPOGR. DATED MAY 25, 201 SOW SHOWS TRUE I S SHOWN IN THE FI S SHOWN IN THE FI DATUM OF 1988 (NA' AN SEA LEVEL DATL TED STATES GEOLC LE ANALYTICAL RES ARTMENT OF ENVIR MPILATION OF NEW RT 375 UNRESTRICT ICTED RESIDENTIAL CTED ANALYTES AR XCEEDING THE NYS XCEEDING THE NYS XCEEDING THE NYS XCEEDING THE NYS LLIGRAMS PER KILC LATILE ORGANIC CC MIVOLATILE ORGAN YCHLORINATED BIF W GRADE SURFACE DETECTED EXCEEDANCE ALYTE WAS POSITIV L VALUE IS THE APP IPLE.	APHIC BOUNE 8, PREPARED NORTH. GURE ARE BA VD88), WHICH JM AT SANDY JGIC SURVEY (SULTS ARE CC ONMENTAL C (YORK CODES TED USE (UU) , (RURR) SOIL (TED USE (TE	DARY & UTILIT BY LANGAN. SED IN NORTH IS APPROXIM HOOK, NEW J USGS NGVD 1 MPARED TO ONSERVATIO S, RULES AND AND RESTRIC CLEANUP OB. 5 UU SCOS AF 5 RURR SCOS NDS ED AND THE A DNCENTRATIC	Y SURVEY H AMERICAN IATELY 1.1 FEET JERSEY AS DEFINED J929). THE NEW YORK N (NYSDEC) TITLE 6 REGULATIONS TED JECTIVES (SCOs). RE BOLDED. ARE SHADED AND
	ANALYTE	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted-Residential SCOs	
	Acetone Total Yulanas	0.05	100	
	SVOCs (mg/kg)	0.26	100	
E	Benzo(a)Anthracene Benzo(a)Pyrene	0.33	1	
5	Benzo(b)Fluoranthene Benzo(k)Fluoranthene	1	1	
	Chrysene Dibenz(a b)Anthracene	0.8	3.9	
ļ	indeno(1,2,3-c,d)Pyrene	0.33	0.33	
	norganics (mg/kg)	12	100	
Ē	Barium Chromium. Trivalent	350 30	400 180	
l.	Copper	50 63	270	
ľ	Mercury Nickel	0.18	0.81	
4	Selenium Silver	3.9 2	180 180	
	Zinc Pesticides (mg/kg)	109	10,000	
	4,4' -DDD 4,4' -DDE	0.0033 0.0033	13 8.9	
1	PCBs (mg/kg) Total PCBs	0.1	1	
L				

 IAL
 Figure Title
 Project No.
 Figure No.

 SOIL SAMPLE LOCATIONS AND ANALYTICAL RESULTS MAP
 Date 10/23/2019
 Figure No.

 70 NEW YORK
 MA
 Checked By WK

Filename: \\langan.com\data\NYC\data0\170229024\Project Data\CAD\24\SheetFiles\Environmental\BCP Application\Figure 2 - Previous Groundwater Sample Locations and Analytical Results Map.dwg Date: 11/1/2019 Time: 13:44 User: wkim Style Table: Langan.stb Layout: ANSIB-BL

			1	
ļ	7		I	8
LEGEND	<u>.</u>			
	APPROXIMATE DEVELO	OPME	NT PROPERTY BOU	INDARY
	APPROXIMATE SITE BC	סאט	ARY	
		T BOI	JNDARY	
MW15	5 PREVIOUS MONITORIN	G WE	LL LOCATION AND	ID (AKRF PHASE
Ť	II, 2004)			
SB-20/1	WW-20 PREVIOUS SOIL BORING	g ani	D MONITORING WE	
Ð	AND ID (LANGAN REME	EDIAL	INVESTIGATION, 20	014)
NOTES:				
1 04				
т. БА DF	AWING, DATED MAY 25, 2018, PF	REPA	RED BY LANGAN.	SURVET
2. NC 3 FL	ORTH ARROW SHOWS TRUE NOR	TH. e ari	E BASED IN NORTH	ΔΜΕΒΙΟΔΝ
VE	RTICAL DATUM OF 1988 (NAVD88	3), WH		ATELY 1.1
FE AS	ET ABOVE MEAN SEA LEVEL DAT S DEFINED BY THE UNITED STATE	UM A S GE(AT SANDY HOOK, NE DLOGIC SURVEY (US	EW JERSEY SGS NGVD
19:	29).			
4. GF TH	IE 6 NEW YORK CODES, RULES A	ND R	EGULATIONS (NYCF	R) PART
70 EN	3.5 WHICH ARE INCLUDED IN THE	E NEV	V YORK STATE DEP.	ARTMENT OF
OF	PERATIONAL GUIDANCE SERIES (1	TOGS) AMBIENT WATER	QUALITY
ST SH	ANDARDS AND GUIDANCE VALUI IOWN IN THE TABLE BELOW.	ES (S(GVs) FOR CLASS GA	WATERS, AS
5. CC	NCENTRATIONS OF ANALYTES E	XCEE	DING THEIR RESPE	CTIVE SGVs
6. ON	ILY ANALYTES EXCEEDING THE N	IYSDE	EC SGVs ARE SHOW	/N.
7. μg, 8 VC	/L = MICROGRAMS PER LITER		20	
9. SV	OCs = SEMIVOLATILE ORGANIC (COMP	POUNDS	
10. PC 11. ba	Bs = POLYCHLORINATED BIPHEN s = BELOW GRADE SURFACE	IYLS		
12. NC) = NOT DETECTED			
13. NE	E = NON-EXCEEDANCE			
				1
	ANALYTE	Stan	dards and Guidance	e
			Values (SGVs)	
Inorg	ganics (μg/L)		0.3	-
Magr	nesium		35	
Mang Sodiu	ganese um		0.3 20	
				-
	Figure Title		Project No. 170229024	Figure No.
IAL	GROUNDWATER SAMP	LE	Date 10/23/2019	\mathbf{C}
	LOCATIONS AND		Drawn By	L-2
70	ANALY I ICAL RESULTS M	AP	MA Checked By	
NEW YORK			ŴК	

LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

Filename: \\langan.com\data\NYC\data0\170229024\Project Data\CAD\24\SheetFiles\Environmental\BCP Application\Figure 3 - Previous Soil Vapor Sample Locations and Analytical Results Map.dwg Date: 11/1/2019 Time: 13:45 User: wkim Style Table: Langan.stb Layout: ANSIB-BL

	7		8
ND	<u>.</u>		
	APPROXIMATE DEVELOPM	IENT PROPERTY BOU	JNDARY
	- APPROXIMATE SITE BOUN	DARY	
	— APPROXIMATE TAX LOT BO	DUNDARY	
+	PREVIOUS SOIL VAPOR SA REMEDIAL INVESTIGATION	MPLING LOCATION / , 2014)	and ID (Langan
ASE RAN OR LERIT S 29 HRON N M ON L M ON L M ON L M ON L	MAP SOURCES: TOPOGRAPHIC BOU VING, DATED MAY 25, 2018, PREPAR 'H ARROW SHOWS TRUE NORTH. ATIONS SHOWN IN THE FIGURE ARE ICAL DATUM OF 1988 (NAVD88), WH ABOVE MEAN SEA LEVEL DATUM AT EFINED BY THE UNITED STATES GEO VEW YORK STATE DEPARTMENT OF 'IDE STANDARDS NOR GUIDANCE VA POUNDS. / DETECTED ANALYTES ARE SHOWN 3 = MICROGRAMS PER CUBIC METEF = VOLATILE ORGANIC COMPOUND	JNDARY & UTILITY S ED BY LANGAN. BASED IN NORTH A ICH IS APPROXIMAT I SANDY HOOK, NEV LOGIC SURVEY (USO HEALTH (NYSDOH) I ALUES FOR THESE	URVEY MERICAN ELY 1.1 V JERSEY 3S NGVD XOES NOT
	Figure Title SOIL VAPOR SAMPLE LOCATIONS AND ANALYTICAL RESULTS	Project No. 170229024 Date 10/23/2019 Drawn By	Figure No.
	LOCATIONS AND ANALYTICAL RESULTS	Date 10/23/2019 Drawn By MA	C-3

MAP

Checked By

Location		NVSDEC Part 375	LB01	LB01	LB02	LB02	LB03	LB03	LB04	LB04	LB05	LB05	LB05	LB06
Sample ID	NYSDEC Part 375	Restricted Use	LB01_0.5-2.5	LB01_6.0-8.0	LB02_1.0-3.0	LB02_6.0-8.0	LB03_1.0-3.0	LB03_4.0-6.0	LB04_1.0-3.0	LB04_4.0-6.0	LB05_2.0-4.0	SODUP01_090319	LB05_6.0-8.0	LB06_1.0-3.0
Laboratory ID Sample Date	Unrestricted Use	Restricted-	L1940080-04 9/3/2019	L1940080-05 9/3/2019	L1940231-02 9/4/2019	L1940231-03 9/4/2019	L1940231-04 9/4/2019	L1940231-05 9/4/2019	L1940231-06 9/4/2019	L1940231-07	L1940080-06 9/3/2019	L1940080-01 9/3/2019	L1940080-07 9/3/2019	L1940080-08 9/3/2019
Sample Depth (feet bgs)	3005	Residential SCOs	0.5-2.5	6-8	1-3	6-8	1-3	4-6	1-3	4-6	2-4	2-4	6-8	1-3
Volatile Organic Compounds (mg/kg)														
1,2,4,5-Tetramethylbenzene	~	~	0.0021 U.	0.003 U	0.0024 U	0.0022 U	0.0028 U	0.0021 U	0.0025 U	0.0022 U	0.0021 U.	J 0.002 UJ	0.0031 UJ	0.00031 J
1,2,4-Trimethylbenzene	3.6	52	0.0021 U	0.003 U	0.0024 U	0.0022 U	0.0028 U	0.0021 U	0.0025 U	0.0022 U	0.0021 U	0.002 U	0.0031 U	0.0011 J
1,2-Dichloroethane	0.02	3.1	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 U
1,3,5-Irimethylbenzene (Mesitylene)	8.4	52	0.0021 U	0.003 U	0.0024 U	0.0022 U	0.0028 U	0.0021 U	0.0025 U	0.0022 U	0.0021 U	0.002 U	0.0031 U	0.0014 J
1,4-Dietnyi Benzene 4-Ethyltoluene	~	~	0.0021 0.	0.003 U	0.0024 0	0.0022 0	0.0028 0	0.0021 0	0.0025 U	0.0022 0	0.0021 0.	0.002 00	0.0031 UJ	0.00044 J
Acetone	0.05	100	0.062	0.04 J	0.0074 J	0.0022 U	0.087 J	0.065 J	0.014 J	0.022 U	0.065	0.086	0.18	0.0027 000
Benzene	0.06	4.8	0.00053 U	0.00068 J	0.0006 U	0.00055 U	0.0007 U	0.00053 U	0.00062 U	0.00055 U	0.00025 J	0.002 J	0.00078 U	0.00068 U
Cymene	~	~	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
Ethylbenzene	1	41	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
Isopropylbenzene (Cumene)	~	~	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
Mathyl Ethyl Katana (2 Butanana)	~ 0.12	~ 100	0.0021 0	0.003 0	0.0024 0	0.0022 0	0.0028 0	0.0021 0	0.0025 0	0.0022 0	0.0021 0	0.002 0	0.0031 0	0.0027 UJ
Nanhthalene	12	100	0.0042 U	0.0059 U	0.012 03 0.0048 U	0.0044 U	0.0056 U	0.0093 J	0.012 03	0.0044 U	0.0073 3	0.001 U	0.0062 U	0.0032 J
n-Butylbenzene	12	100	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
n-Propylbenzene	3.9	100	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
o-Xylene (1,2-Dimethylbenzene)	~	~	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
Sec-Butylbenzene	11	100	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 UJ
I-Butylbenzene Tort Butyl Methyl Ethor	5.9	100	0.0021 U	0.003 U	0.0024 U	0.0022 U	0.0028 U	0.0021 U	0.0025 U	0.0022 U	0.0021 0	0.002 U	0.0031 U	0.0027 UJ
Tetrachloroethene (PCE)	0.93	100	0.0021 0	0.003 0	0.0024 0	0.00026 J	0.0028 0	0.0021 0	0.0025 0	0.0022 0	0.0021 0	0.002 0	0.0031 0	0.0027 0
Toluene	0.7	100	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.00096 J	0.0016 U	0.0014 UJ
Total 1,2-Dichloroethene (Cis and Trans)	~	~	0.0011 U	0.0015 U	0.00028 J	0.00027 J	0.0014 U	0.0011 U	0.00061 J	0.00032 J	0.001 U	0.001 U	0.0016 U	0.0014 U
Total Xylenes	0.26	100	0.0011 U	0.0015 U	0.0012 U	0.0011 U	0.0014 U	0.0011 U	0.0012 U	0.0011 U	0.001 U	0.001 U	0.0016 U	0.0014 U
Trans-1,2-Dichloroethene	0.19	100	0.0016 U	0.0022 U	0.00028 J	0.00027 J	0.0021 U	0.0016 U	0.00061 J	0.00032 J	0.0016 U	0.0015 U	0.0023 U	0.002 U
Semivolatile Organic Compounds (mg/k	(g)	1	0.10	0.001	0.10	0.10	0.01	0.10	0.00	0.07	0.10	0.10	0.10	0.000
1,2,4-Thchlorobenzene	~ 11	~ 100	0.18 U	0.061 J	0.19 U	0.19 U	0.21 0	0.18 U	0.36 U	0.37 U	0.18 0	0.16 U	0.18 U	0.086 J
1,3-Dichlorobenzene	2.4	49	0.18 U	0.053 J	0.19 U	0.19 U	0.21 U	0.18 U	0.36 U	0.37 U	0.18 U	0.16 U	0.18 U	0.087 J
1,4-Dichlorobenzene	1.8	13	0.18 U	0.18 U	0.19 U	0.19 U	0.076 J	0.18 U	0.36 U	0.37 U	0.18 U	0.16 U	0.18 U	0.1 J
2,4-Dimethylphenol	~	~	0.18 U	0.18 U	0.19 U	0.19 U	0.21 U	0.18 U	0.13 J	0.14 J	0.18 U	0.16 U	0.18 U	0.18 U
2-Chloronaphthalene	~	~	0.18 U	0.18 U	0.19 U	0.19 U	0.21 U	0.18 U	0.36 U	0.37 U	0.18 U	0.16 U	0.18 U	0.18 U
2-Methylnaphthalene	~	~	0.086 J	1.2	0.11 J	0.038 J	0.28	0.65	1.9	1.9	0.19 J	0.36	0.82	1.3
3 & 4 Methylphenol (m&p Cresol)	0.33	100	0.18 U	0.058 J	0.13 0	0.19 0	0.037 .1	0.059 .1	0.21 .1	0.007 5	0.18 0	0.034 .1	0.033 J	0.008 J
3-Methylphenol (m-Cresol)	0.33	100	NA	NA	NA	NA	NA	NA						
4,6-Dinitro-2-Methylphenol	~	~	0.46 R	0.46 R	0.5 U	0.5 U	0.55 U	0.46 U	0.95 U	0.96 U	0.46 R	0.43 R	0.48 R	0.48 R
Acenaphthene	20	100	0.36	1.8	0.2	0.068 J	0.68	0.68	6.7	4.3	0.22	0.4	1.9	0.49
Acenaphthylene	100	100	0.38	2	0.14 J	0.03 J	0.48	0.49	0.3	1.9	0.21	0.14	1.1	0.21
	~	~	0.067 J	0.18 U	0.19 U	0.19 U	0.21 U	0.18 U	0.36 U	0.3/ U	0.18 U	0.16 U	0.18 U	0.18 U
Benzaldehyde	~	100	NA	4.0 NA	0.45 NA	NA NA	NA	Z.Z NA	9.9 NA	9.0 NA	0.59 J	NA J	3.7 NA	0.8 NA
Benzo(a)Anthracene	1	1	6.8	12	1.5	0.27	4.9	5.5	15	16	1.6 J	2.9 J	11	2.8
Benzo(a)Pyrene	1	1	11	11	1.3	0.2	4.3	4.6	14	14	1.3 J	2.6 J	15	2.4
Benzo(b)Fluoranthene	1	1	16	13	1.7	0.22	5.3	6.2	16	18	1.8 J	3.3 J	19	3.6
Benzo(g,h,i)Perylene	100	100	4.5	4.3	0.99	0.13 J	2.6	3.1	8.9	10	0.74 J	1.5 J	14	1.4
Benzo(k)Fluoranthene	0.8	3.9	2.6	1.9	0.55	0.0/2 J	1.8	2	4.6	6	0.54 J	1.1 J	2.9	1
Biphenyl (Diphenyl)	~ ~	~ ~	0.044 .1	0.38 J	0.62 0	0.62 0	0.09 0	0.57 0	0.66 J	0.65 J	0.055 .1	0.54 0	0.35 J	0.59 0
Bis(2-Ethylhexyl) Phthalate	~	~	0.2	0.18 U	0.3	0.19 U	0.37 J	0.18 UJ	0.36 UJ	0.37 UJ	0.18 U	0.16 U	0.18 U	0.34
Carbazole	~	~	0.64	1.6	0.18 J	0.048 J	0.49	0.86	4.4	4.3	0.22	0.35	1.8	0.51
Chrysene	1	3.9	6	6.1	1.3	0.23	4.2	4.9	14	15	1.4 J	2.7 J	11	2.9
Dibenz(a,h)Anthracene	0.33	0.33	1.2	1.1	0.25	0.11 U	0.64	0.74	1.9	2.3	0.17 J	0.37 J	2.2	0.38
Dibenzofuran Dimentul Dhthelete	/	59	0.18	1.8	0.12 J	0.045 J	0.54	1	4.1	3./	0.16 J	0.43	1./	0.47
Di-N-Butyl Phthalate	~	~	0.18 0	0.18 11	0.19 0	0.19 0	0.21 0	0.18 0	0.36	0.37 U	0.18 0	0.16	0.16 U	0.16 0
Fluoranthene	100	100	20	25	2.5	0.45	8.8	12	41	44	3.2 J	5.8 J	23	4.9
Fluorene	30	100	0.25	2.4	0.18 J	0.063 J	0.74	1.3	5.4	4.4	0.23 J	0.61 J	2.3	0.63
Hexachlorocyclopentadiene	~	~	0.5 R	0.51 R	0.55 UJ	0.55 UJ	0.61 U	0.5 U	1 U	1U	0.5 R	0.47 R	0.53 R	0.52 R
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	4.8	4.6	1	0.12 J	2.9	3.4	9.5	11	0.76 J	1.5 J	14	1.4
Naphthalene	12	100	0.25	2./	0.19	0.098 J	0.43	0.78	4.1	4	0.28	0.51	1.6	0.94
Phenanthrene	~ 100	~ 100	0.14 U 5.3	22	1.15 U	0.15 0	6.3	10	46	0.3 U 43	16	37 1	0.15 U 18	0.15 U 4.1
Phenol	0.33	100	0.18 U	0.14 J	0.19 U	0.19 U	0.21 U	0.18 U	0.11 J	0.1 J	0.18 U	0.16 U	0.065 J	0.18 U
Pyrene	100	100	19	23	2.2	0.43	8	10	37	38	2.7 J	4.9 J	19	4.5

Location Sample ID Laboratory ID Sample Date Sample Depth (feet bos)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	LB06 LB06_6.0-8.0 L1940080-09 9/3/2019 6-8	LB07 LB07_1.0-3.0 L1940080-10 9/3/2019 1-3	LB07 LB07_6.0-8.0 L1940080-11 9/3/2019 6-8	LB08 LB08_0.0-2.0 L1940080-12 9/3/2019 0-2	LB08 LB08_4.0-6.0 L1940080-13 9/3/2019 4-6	LB08 SODUP02_090319 L1940080-02 9/3/2019 4-6	LB09 LB09_1.0-3.0 L1940080-14 9/3/2019 1-3	LB09 LB09_6.0-8.0 L1940080-15 9/3/2019 6-8	LB10 LB10_2.0-4.0 L1940231-08 9/4/2019 2-4
Volatile Organic Compounds (mg/kg)				-		-	-		-		
1.2.4.5-Tetramethylbenzene	~	~	0.0032 UJ	0.0018 U	0.0022 U	0.002 U	0.0024 U	0.0023 U	0.0018 UJ	0.0047 UJ	0.0022 U
1.2.4-Trimethylbenzene	3.6	52	0.0032 U	0.0018 U	0.0022 U	0.002 U	0.0024 U	0.0023 U	0.0018 U	0.0047 UJ	0.0022 U
1.2-Dichloroethane	0.02	3.1	0.0016 U	0.00091 U	0.0011 U	0.00098 U	0.0012 U	0.0012 U	0.00092 U	0.0024 U	0.0011 U
1.3.5-Trimethylbenzene (Mesitylene)	8.4	52	0.0032 U	0.0018 U	0.0022	0.002 U	0.0024	0.0023	0.0018 U	0.0047 U.I	0.0022
1.4-Diethyl Benzene	~	~	0.0032 UJ	0.0018 U	0.0022 U	0.002 U	0.0024 U	0.0023 U	0.0018 UJ	0.0047 UJ	0.0022 U
4-Ethyltoluene	~	~	0.0032 U.I	0.0018 U	0.0022	0.002 U	0.0024	0.0023	0.0018 U.I	0.0047 U.I	0.0022
Acetone	0.05	100	0.041	0.045	0.047 .1	0.062	0.036	0.056	0.058	0.11	0.05 .1
Benzene	0.06	4.8	0.00081 U	0.0045 U	0.00055 U	0.00049	0.0006 U	0.00058 U	0.00046 U	0.0012 U	0.0004
Cymene	~	~	0.0016 U	0.00091 U	0.0011 U	0.00098 U	0.0012 U	0.0012 U	0.00092 U	0.0024 U.I	0.0011 U
Ethylbenzene	1	41	0.0016 U	0.00091 U	0.0011 U	0.00098 U	0.0012 U	0.0012 U	0.00092 U	0.0024 U	0.0011 U
Isopropylbenzene (Cumene)	~	~	0.0016 U	0.00091 U	0.0011 U	0.00098 U	0.0012 U	0.0012 U	0.00092 U	0.0024 UJ	0.0011 U
M.P-Xvlene	~	~	0.0032 U	0.0018 U	0.0022 U	0.002 U	0.0024 U	0.0023 U	0.0018 U	0.0047 U	0.0022 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.016 U	0.0091 UJ	0.011 UJ	0.0059 J	0.012 U.	0.012 UJ	0.0092 U	0.024 U	0.0045 J
Nanhthalene	12	100	0.0064	0.0036	0.0044	0.0039	0.0048	0.0047	0.0037 U	0.0094 111	0.0045
n-Butylbenzene	12	100	0.0016	0.00091	0.0011	0.00098	0.0012	0.0012	0.00092	0.0024 111	0.0011
n-Propylbenzene	39	100	0.0016	0.00091	0.0011	0.00098	0.0012 U	0.0012 U	0.00092	0.0024 00	0.0011
o-Xylene (1.2-Dimethylbenzene)	5.5	100	0.0016	0.00091	0.0011 U	0.00030 0	0.0012 U	0.0012 U	0.00032 0	0.0024 00	0.0011 U
Sec-Butylbenzene	11	100	0.0016	0.00091	0.0011 U	0.00030 0	0.0012 U	0.0012 U	0.00032 0	0.0024 0	0.0011 U
T-Butylbenzene	59	100	0.0010 0	0.0018	0.0011 0	0.00000 0	0.0012 0	0.0012 0	0.0018	0.0024 03	0.0011 0
Tert-Butyl Methyl Ether	0.93	100	0.0032 U	0.0018	0.0022 0	0.002 U	0.0024 U	0.0023 U	0.0018	0.0047 03	0.0022 0
Tetrachloroethene (PCE)	13	19	0.00032 0	0.00045	0.0022 0	0.002 0	0.0024 0	0.0025 0	0.0016 U	0.0047 0	0.0022 0
Teluene	0.7	100	0.0016	0.00043 0	0.0011	0.00040 U	0.0012	0.00030 0	0.00040 0	0.0012 0	0.0011
Total 1.2 Dichloroothono (Cis and Trans)	0.7	100	0.0016	0.00091 U	0.0011 U	0.00038 0	0.0012 U	0.0012 U	0.00032 0	0.0024 0	0.0011 U
Total Yylonos	0.26	~ 100	0.0016	0.00091 U	0.0011 U	0.00038 0	0.0012 U	0.0012 U	0.00032 0	0.0024 0	0.0011 U
Trans 1.2 Dichloroothono	0.20	100	0.0010 0	0.00031 0	0.0011 0	0.00038 0	0.0012 0	0.0012 0	0.00032 0	0.0024 0	0.0017 U
Semivolatile Organic Compounds (mg/k	(a)	100	0.0024 0	0.0014 0	0.0010 0	0.0015 0	0.0018 0	0.0017 0	0.0014 0	0.0035 0	0.0017 0
1.2.4 Trichlerobenzone	9/		0.2 11	0.10	0.10	0.19 11	0.10	0.17	0.10 11	0.19	0.19 11
1,2,4-mcnorobenzene	~ 1 1	~ 100	0.2 0	0.19 U	0.19 U	0.18 0	0.18 0	0.17 U	0.18 U	0.10 U	0.16 0
1,2-Dichlorobenzone	2.4	100	0.2 0	0.19 U	0.19 U	0.18 U	0.18 0	0.17 U	0.18 0	0.18 0	0.034 J
1 4 Dichlorobenzene	2.4	40	0.2 U	0.19 U	0.19 U	0.18 U	0.18 U	0.17 U	0.18 U	0.18 U	0.18 0
2.4 Dimethylphonel	1.0	15	0.2 0	0.13 0	0.13 0	0.18 U	0.18 0	0.17 U	0.18 0	0.18 0	0.037 5
2,4-Dimetryphenol	ĩ	~	0.2 0	0.14 J	0.13 J	0.18 U	0.18 0	0.17 U	0.18 0	0.18 0	0.18 0
2-Chloronaphthalene	~	~	0.2 0	0.19 0	0.19 0	0.16 0	0.16 0	0.17 0	0.16 0	0.10 0	0.10 0
2-Methylaborol (c. Crocol)	~	~ 100	0.2 J	2.4	0.12	0.1 J	0.21 J	0.1 J	0.049 J	0.37	0.39
2-Wethylphenol (0-Cresol)	0.33	100	0.2 0	0.11 J	0.12 J	0.16 0	0.009 J	0.061	0.16 U	0.16 U	0.16 0
3 & 4 Methylphenol (map cresol)	0.33	100	0.057 J	0.30	0.33	0.03 J	0.20	0.001 J	0.20 0	0.040 J	0.050 J
4 6 Dipitro 2 Mothylphonol	0.33	100	NA 0.52 P	0.40 P	0.40 P	NA 0.47 P	0.47 P	NA P	0.40 P	0.47 P	0.49 11
	~	~ 100	0.53 h	0.49 h	0.49 h	0.47 h	0.47 n	0.44 n	0.46 h	0.47 n	0.46 U
Acenaphthelese	20	100	0.57	4.8	10	0.11 J	0.63	0.37	0.088 J	0.86	0.11 J
Acenaphthylene	100	100	0.01	1.7	1.3	0.37	2 J	0.00 J	0.14 J	0.49	0.049 J
Acetophenone	~	~ 100	0.2 0	0.19 0	0.19 0	0.18 0	0.18 0	0.17 0	0.18 0	0.18 0	0.18 0
Anthracene	100	100	1.8	12	6.9	0.38	2.1 J	I.I J	0.26	2.9	0.23
Benzaldenyde	~	~	NA	NA 00	NA 00	NA	NA 15	NA	NA	NA	NA 0.40
Benzo(a)Anthracene		1	4.5	23	22	1.1	15 J	4.5	1	6.2	0.48
Benzo(a)Pyrene		1	4.4	18	18	1.1	15 J	4.5	0.93	5	0.39
Benzo(b)Fluorantnene	1	1	5.6	24	24	1.2	18 J	5.8 J	1.2	0.0	0.5
Benzo(g,h,i)Perylene	100	100	2.4	5.4	6.1	0.6	5 J	2.4 J	0.52	2.6	0.29
Benzo(k)Fluoranthene	0.8	3.9	1.8	2.5	2.5	0.53	2.7 J	1.5 J	0.47	1.8	0.19
Benzoic Acid	~	~	0.66 U	0.61 U	0.61 U	0.59 U	0.58 U	0.56 U	0.59 U	0.58 U	0.6 U
Biphenyl (Diphenyl)	~	~	0.073 J	0.74	1.1	0.41 U	0.06/ J	0.39 U	0.42 U	0.12 J	0.068 J
Bis(2-Ethylhexyl) Phthalate	~	~	0.2 U	0.19 U	0.19 U	0.18 U	0.18 U	0.1/ U	0.16 J	0.18 U	0.4
Carbazole	~	~	0.57	3.5	3.7	0.098 J	0.66	0.34	0.07 J	1.3	0.087 J
Chrysene	1	3.9	4.4	20	20	1	12 J	3.5 J	0.88	5	0.47
Dibenz(a,h)Anthracene	0.33	0.33	0.6	1.9	1.7	0.13	1.6 J	0.57 J	0.12	0.61	0.084 J
Dibenzofuran	7	59	0.4	3.4	0.19 U	0.09 J	0.31	0.18	0.055 J	0.61	0.16 J
Dimethyl Phthalate	~	~	0.2 U	0.19 U	0.19 U	0.18 U	0.18 U	0.17 U	0.18 U	0.18 U	0.18 U
Di-N-Butyl Phthalate	~	~	0.2 U	0.19 U	0.19 U	0.18 U	0.18 U	0.17 U	0.18 U	0.18 U	0.04 J
Fluoranthene	100	100	8	48	54	2	21 J	6.6 J	1.7	17	0.92
Fluorene	30	100	0.61	4.4	4.1	0.1 J	0.51	0.28	0.072 J	1	0.2
Hexachlorocyclopentadiene	~	~	0.58 R	0.54 R	0.54 R	0.52 R	0.51 R	0.49 R	0.52 R	0.52 R	0.53 UJ
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	2.6	6.2	6.4	0.6	5.6 J	2.6 J	0.51	3	0.3
Naphthalene	12	100	0.86	4.1	13	0.22	0.76 J	0.3 J	0.082 J	0.58	0.29
n-Nitrosodiphenylamine	~	~	0.16 U	0.15 U	0.15 U	0.14 U	0.14 U	0.14 U	0.15 U	0.14 U	0.1 J
Phenanthrene	100	100	5.3	49	64	1.1	5.2	3.4	0.76	13	0.84
Phenol	0.33	100	0.2 U	0.2	0.14 J	0.18 U	0.15 J	0.17 U	0.18 U	0.18 U	0.18 U
Pyrene	100	100	7.3	44	47	1.9	22 J	6.4 J	1.6	16	0.93

LB10 LB10_6.0-8. L1940231-09 9/4/2019 6-8	0 9	LB11 LB11_1.0-3. L1940231-1 9/4/2019 1-3	0 0	LB11 LB11_6.0-4 L1940231- 9/4/2019 6-8	3.0 11 9
0.0029 0.0011 0.0048 0.0008 0.00031 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0029 0.0029 0.00072 0.0014 0.00061 0.0014	$\begin{matrix} 1\\ $	0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.061 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0023 0.0023 0.0023 0.00058 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012		0.13 0.021 0.063 0.13 0.042 0.63 0.025 0.028 0.0092 0.04 0.63 0.028 0.063 0.063 0.13 0.032 0.063 0.063 0.063 0.063 0.04 0.095	υ
0.93 0.93 0.93 0.93 0.93 0.58 0.93 1.3 NA 2.4 0.3 0.14 0.93 0.59 NA		0.18 0.074 0.18 0.044 0.18 0.18 1.8 0.18 0.26 NA 0.26 NA 0.48 0.24 0.14 0.18 0.67 NA		0.2 0.2 0.034 0.2 0.17 0.2 0.2 0.2 0.2 NA 0.51 0.18 0.2 0.35 NA 0.35 NA 0.83	CL C CCLCCLCC
1.2 1.8 0.82 0.47 3 2.1 0.93 0.18 1.7 0.2	J C C C C C C C C C C C C C C C C C C C	1.1 1.5 0.76 0.38 0.6 0.41 0.58 0.21 1.1 0.19	U	0.57 0.79 0.39 0.21 0.64 0.05 0.16 0.14 0.71 0.12	L L L
0.3 0.93 0.2 3 0.37 2.6 0.74	L L L L L L L L L L L L L L L L L L L	0.86 0.18 0.18 2 0.32 0.53 0.79	U U U	0.22 0.2 0.13 1.4 0.22 0.56 0.42	U J U
0.72 0.74 2.5 <i>0.93</i> 2.6	J U U	1.3 0.15 1.9 0.18 2	U U	0.28 0.16 1.4 0.2 1.4	U U

Location Sample ID	NVSDEC Part 375	NYSDEC Part 375	LB12	LB12	LB13	LB13	LB14	LB14	LB15	LB15	SB-20 SB-20_0-2	SB-20 SB-20_3-5	SB-20 SB-20 8-10
Laboratory ID	Unrestricted Use	Restricted Use Restricted-	L1940231-12	L1940231-13	L1940231-14	L1940231-15	L1940231-16	L1940231-17	L1940231-18	L1940231-19	L1404281-01	L1404281-05	L1404281-02
Sample Date Sample Depth (feet bgs)	SCOs	Residential SCOs	9/4/2019 2-4	9/4/2019 6-8	9/4/2019 1-3	9/4/2019 4-6	1-3	6-8	1-3	9/4/2019 5-7	0-2	3-5	8-10
Volatile Organic Compounds (mg/kg)													
1,2,4,5-Tetramethylbenzene 1 2 4-Trimethylbenzene	~	~ 52	0.0032 U 0.0032 U	0.0022 U 0.0022 U	0.0034 UJ 0.0034 UJ	3.1 0.76	0.003 U 0.003 U	0.0036 U 0.0036 U	0.0031 U 0.0031 U	0.0036 U 0.0036 U	0.0063 U 0.0079 U	0.0064 U 0.0081 U	0.0055 U 0.0068 U
1,2-Dichloroethane	0.02	3.1	0.0016 U	0.0011 U	0.0017 U	0.086 U	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0016 U	0.0014 U
1,3,5-Trimethylbenzene (Mesitylene)	8.4	52	0.0032 U	0.0022 U	0.0034 UJ	0.64	0.003 U	0.0036 U	0.0031 U	0.0036 U	0.0079 U	0.0081 U	0.0068 U
1,4-Diethyl Benzene 4 Ethyltoluopo	~	~	0.0032 U	0.0022 U	0.0034 UJ	0.64	0.003 U	0.0036 U	0.0031 U	0.0036 U	0.0063 U	0.0064 U	0.0055 U
Acetone	~ 0.05	~ 100	0.0032 U 0.079 J	0.0022 0	0.0034 03 0.15 J	0.38 0.86 U	0.003 0 0.015 U	0.0030 U	0.0031 U	0.053	0.0055 U	0.0092 J	0.0053 J
Benzene	0.06	4.8	0.00079 U	0.00056 U	0.0003 J	0.053	0.00074 U	0.00091 U	0.00077 U	0.00089 U	0.0016 U	0.0016 U	0.0014 U
Cymene	~	~	0.0016 U	0.0011 U	0.0017 UJ	0.092	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0016 U	0.0014 U
Ethylbenzene Isopropylbenzene (Cumene)	1	41	0.0016 U	0.0011 U	0.0017 UJ	0.033 J	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0016 U	0.0014 U
M,P-Xylene	~	~	0.0032 U	0.0022 U	0.0034 UJ	0.21	0.003 U	0.0036 U	0.0031 U	0.0036 U	0.0032 U	0.0032 U	0.0027 U
Methyl Ethyl Ketone (2-Butanone)	0.12	100	0.0035 J	0.011 UJ	0.0051 J	<i>0.86</i> UJ	0.015 UJ	0.018 UJ	0.015 UJ	0.018 UJ	0.016 U	0.016 U	0.014 U
Naphthalene	12	100	0.0063 U	0.0044 U	0.0068 UJ	0.18 J	0.0059 U	0.0073 U	0.0062 U	0.0071 U	0.0017 J	0.0081 U	0.0068 U
n-Butylbenzene	12	100	0.0016 U	0.0011 U	0.0017 UJ	0.18	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0016 U	0.0014 U
o-Xylene (1,2-Dimethylbenzene)	~	~	0.0016 U	0.0011 U	0.0017 UJ	0.082 J	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0032 U	0.0032 U	0.0014 U
Sec-Butylbenzene	11	100	0.0016 U	0.0011 U	0.0017 UJ	0.2	0.0015 U	0.0018 U	0.0015 U	0.0018 U	0.0016 U	0.0016 U	0.0014 U
T-Butylbenzene	5.9	100	0.0032 U	0.0022 U	0.0034 UJ	0.061 J	0.003 U	0.0036 U	0.0031 U	0.0036 U	0.0079 U	0.0081 U	0.0068 U
Tert-Butyl Methyl Ether	0.93	100	0.0032 U	0.0022 U	0.0034 U	0.1/ U	0.003 U	0.0036 U	0.0031 U	0.0036 U	0.0032 U	0.0032 U	0.002/ U
Toluene	0.7	100	0.0016 U	0.00032 J	0.00085 05 0.0012 J	0.045 U	0.0015 U	0.0018 U	0.0015 U	0.00089 U	0.0010 U	0.0010 U	0.0014 U
Total 1,2-Dichloroethene (Cis and Trans)	~	~	0.0016 U	0.0011 U	0.0017 U	0.086 U	0.0015 U	0.00039 J	0.0015 U	0.00039 J	NA	NA	NA
Total Xylenes	0.26	100	0.0016 U	0.0011 U	0.0017 U	0.29 J	0.0015 U	0.0018 U	0.0015 U	0.0018 U	NA	NA	NA
Trans-1,2-Dichloroethene	0.19	100	0.0024 U	0.0017 U	0.0025 U	0.13 U	0.0022 U	0.00039 J	0.0023 U	0.00039 J	0.0024 U	0.0024 U	0.002 U
1,2,4-Trichlorobenzene	~	~	1 U	0.18 U	0.18 U	0.19 U	0.37 U	0.18 J	0.18 U	0.36 U	0.37 U	0.19 U	0.19 U
1,2-Dichlorobenzene	1.1	100	1 U	0.18 U	0.18 U	0.19 U	0.37 U	0.18 J	0.18 U	0.36 U	0.37 U	0.19 U	0.19 U
1,3-Dichlorobenzene	2.4	49	1 U	0.18 U	0.18 U	0.19 U	0.37 U	0.16 J	0.18 U	0.36 U	0.37 U	0.19 U	0.19 U
1,4-Dichlorobenzene 2,4 Dimethylphonel	1.8	13	1 U	0.18 U	0.035 J	0.19 U	0.37 U	0.094 J	0.18 U	0.36 U	0.3/ U	0.19 U	0.19 U
2-Chloronaphthalene	~	~	1 U	0.18 U	0.18 U	0.19 U	0.37 U	0.021 J	0.18 U	0.36 U	0.37 U	0.19 U	0.19 U
2-Methylnaphthalene	~	~	2	0.058 J	0.37	0.29	2	0.23 U	0.38	0.22 J	1.5	0.2 J	0.23 U
2-Methylphenol (o-Cresol)	0.33	100	1 U	0.18 U	0.033 J	0.19 U	0.37 U	0.19 U	0.18 U	0.36 U	0.15 J	0.19 U	0.19 U
3 & 4 Methylphenol (m&p Cresol) 3-Methylphenol (m-Cresol)	0.33	100	0.23 J	0.26 U NA	0.094 J	0.27 U	0.066 J	0.27 U	0.09 J	0.52 U NA	NA 0.48 I	NA 0.27 II	NA 0.28 U
4,6-Dinitro-2-Methylphenol	~	~	2.7 U	0.47 U	0.47 U	0.49 U	0.96 U	0.5 U	0.48 U	0.94 U	0.97 U	0.48 U	0.5 U
Acenaphthene	20	100	5.5	0.16	0.45	0.25	2.8	0.15 U	0.37	0.36	2.6	0.4	0.21
Acenaphthylene	100	100	2.4	0.082 J	0.36	0.11 J	1.9	0.034 J	0.72	0.59	3.8	0.21	0.094 J
Acetophenone	~ 100	~ 100	1 U	0.18 U	0.18 U	0.19 U	0.3/ U	0.19 U	0.18 U	0.056 J	0.18 J	0.19 U	0.19 U
Benzaldehyde	~	~	NA	NA	NA	NA	NA	NA	NA NA	NA	1.4	0.25 U	0.25 U
Benzo(a)Anthracene	1	1	28	0.9	3.1	1.4	17	0.18	2.8	2.9	13	2	0.99
Benzo(a)Pyrene	1	1	25	0.69	2.6	1.3	15	0.14 J	2.9	2.9	13	1.8	0.98
Benzo(a hi)Pendene	1	1	32 15	0.88	3.2 1.6	1.9	16	0.19	3.6	3.7	16 8.4	0.98	0.58
Benzo(k)Fluoranthene	0.8	3.9	9.8	0.33	1	0.43	5.4	0.076 J	1.4	1.2	5.9	0.82	0.48
Benzoic Acid	~	~	3.3 U	0.59 U	0.59 U	0.61 U	1.2 U	0.62 U	0.59 U	1.2 U	1 J	0.6 U	0.62 U
Biphenyl (Diphenyl)	~	~	0.58 J	0.41 U	0.13 J	0.085 J	0.7 J	0.43 U	0.15 J	0.084 J	0.41 J	0.42 U	0.44 U
Bis(2-Ethylhexyl) Phthalate Carbazole	~	~	1 U	0.18 U	0.21	0.19 0	0.37 UJ	0.19 U	0.18 U	0.18 J	0.37 U	0.19 U	0.19 U
Chrysene	1	3.9	25	0.76	2.9	1.4	15	0.16	3.2	2.8	14	2.4	1.1
Dibenz(a,h)Anthracene	0.33	0.33	3.4	0.098 J	0.51	0.27	2.3	0.026 J	0.56	0.39	1.8	0.28	0.16
Dibenzofuran	7	59	3.8	0.13 J	0.45	0.16 J	1.6	0.023 J	0.52	0.39	2.5	0.4	0.099 J
Dimethyl Phthalate Di N. Rutul Phthalata	~	~	1 U	0.18 U	0.18 U	0.19 U	0.37 U	0.19 U	0.18 U	0.35 J	0.37 U	0.19 U	0.19 U
Fluoranthene	~ 100	~ 100	58	1.8	5.5	2.5	38	0.13 0	5.3	7.2	39	4.8	2.3
Fluorene	30	100	6	0.18	0.5	0.28	4.5	0.026 J	0.5	0.47	3.1	0.47	0.14 J
Hexachlorocyclopentadiene	~	~	2.9 U	0.52 UJ	0.52 UJ	0.54 UJ	1 U	0.54 UJ	0.52 UJ	1 U	1.1 U	0.53 U	0.55 U
Indeno(1,2,3-c,d)Pyrene	0.5	0.5	15	0.53	1.7	1.1 0.7E	10	0.12 J	2.2	1.8	9.1	1.1	0.6
n-Nitrosodiphenvlamine	~	~	4.4 0.82 U	0.14 U	0.15	0.15 U	0.29	0.15	0.15 U	0.29 11	0.3 II	0.3 0.15 U	0.15
Phenanthrene	100	100	52	1.7	4.2	1.9	39	0.29	5	5.5	34	4.6	1.9
Phenol	0.33	100	0.16 J	0.18 U	0.049 J	0.096 J	0.37 U	0.19 U	0.038 J	0.36 U	0.37 U	0.19 U	0.19 U
Pyrene	100	100	50	1.5	5.1	2.2	40	0.32	4.8	6.2	34	4	2

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO). 2. Criterion comparisons for 3- & 4-methylphenol (m&p cresol) are provided for reference. Promulgated SCOs are for 3-methylphenol (m-cresol) and 4methylphenol (p-cresol).

3. Only detected analytes are shown in the table.

4. Detected analytical results above Unrestricted Use SCOs are bolded.

5. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.

6. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.

7. Sample SODUP01_090319 is a duplicate sample of LB05_2.0-4.0 and sample SODUP02_090319 is a duplicate sample of LB08_4.0-6.0.

8. ~ = Regulatory limit for this analyte does not exist

9. bgs = below grade surface

10. mg/kg = milligrams per kilogram

11. NA = Not analyzed

Qualifiers:

R – The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ – The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise. U – The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 2 BCP Application Soil Sample Analytical Results Summary – PCBs, Pesticides, Herbicides & Inorganics

Location Sample ID Laboratory ID Sample Date Sample Dath (feat bac)	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted- Residential SCOs	LB01 LB01_0.5-2.5 L1940080-04 9/3/2019	LB01 LB01_6.0- L1940080 9/3/201	8.0 -05 9	LB02 LB02_1.0-3.0 L1940231-02 9/4/2019	LB02 LB02_6.0-8.0 L1940231-03 9/4/2019	LB03 LB03_1.0-3.0 L1940231-04 9/4/2019	LB03 LB03_4.0-6.0 L1940231-05 9/4/2019	LB04 LB04_1.0-3.0 L1940231-06 9/4/2019	LB04 L194 9/4	.B04 -4.0-6.0 0231-07 1/2019	LB05 LB05_2.0-4 L1940080-1 9/3/2019	4.0 06 9	LB05 SODUP01_090319 L1940080-01 9/3/2019 2.4	LB05 LB05_6.0-8 L1940080- 9/3/2019	3.0 07	LB06 LB06_1.0-3 L1940080-0 9/3/2019	.0 08
Sample Depth (leet bgs)			0.5-2.5	0-0 NIA		1-3 NIA	0-0	1-3 NIA	4-0	1-3 NA	N	4-0 ^	2-4		Z-4	0-0 NIA		1-3 NA	
Herbicides (mg/kg)	~	~	NA	NA		NA NA	NA NA	NA NA	NA	NA NA	IN/	A N	NA			NA		NA	
Polychlorinated Binhenyls (mg/kg)	~	~	ΝA	ΝA		NA	ΝA	NA	ΝA	ΝA	N	Δ	ΝA		NΔ	NA		ΝA	
Inorganics (mg/kg)				NA		NA .	INA.	NA.		IN-A	1.17		IN/A		NA .	NA NA		INA.	
Aluminum	~	~	6 640	2 490		5 760	2 950	7 240	3 780	5 800	5.2	80	2 500		2 240	4 010		4 270	
Antimony	~	~	2.86	1 1 55	1	4.15 L	0.568	1 32	2.63	0.93	1 28	50 I	1 79		1 78	1 19	1	2.81	I.
Arsenic	13	16	22.00	15.7	J.	30.7	9.8 .1	13.9	13.8	5.72	22	8 J	17.5	. J	21.4	12.8	J	20	Ĵ
Barium	350	400	160	35.9	U	134 J	41.6 .1	114 J	140	42.5	86	5 J	86.3	Ū	80.4	84.7	Ű	462	Ŭ
Bervllium	7.2	72	0.58	0 126	.1	3.51 J	0.158	0.233 J	0.166	0.368	02	83 J	0 131	.1	0.166 .J	0.846	- E	0.163	
Cadmium	2.5	4.3	0.84	UJ 0.428	J	0.656 J	0.261 J	0.629 J	0.865	0.78	0.5	92 J	0.819	ŰJ	0.792 UJ	0.882	UJ	0.857	Ū.J
Calcium	~	~	1.320	J 2.450	J	8.560 J	9.710	6.680	2.410	7.510	33.8	300	4.370	J	4.790 J	60.000	J	15.000	J
Chromium, Hexavalent	1	110	0.854	U 0.859	Ū	0.445 J	0.939 U.	1.04 U.	0.865 U	J 0.884 U	J 0.9	12 UJ	0.852	Ŭ	0.811 U	0.896	Ŭ	0.891	Ū
Chromium, Total	~	~	33.1	J 11.8	J	45.6 J	7.83 J	16.7 J	12	8.94	J 15	.9 J	7.03	J	9.91 J	21.9	J	10.4	J
Chromium, Trivalent	30	180	33	12	-	45 J	7.8	17	12	8.9	16	5	7	-	9.9	22	-	10	
Cobalt	~	~	6.3	6.3		29.8 J	5.12 J	8.83 J	5.66	13.6	J 10	.8 J	3.38	J	7.15 J	8.23		3.09	
Copper	50	270	107	J 275	J	489 J	31.8	88.7	105	85.1	14	5	38.1	J	45.8 J	119	J	39.4	J
Cvanide	27	27	NA	NA	-	NA	NA	NA	NA	NA	N	Ą	NA	-	NA	NA		NA	
Iron	~	~	22,500	13,500		35.300	11.400	22.000	16.800	15.200	36.0	000	14,100	J	8.380 J	16,400		52,200	
Lead	63	400	262	J 206	J	444 J	55.5	273	342	403	16	5	214	J	165 J	248	J	1,710	J
Magnesium	~	~	1,500	530		1,800 J	1,130 J	2,670 J	1,230	1,310	J 18,0	J00 J	893		1,420	25,400		2,770	_
Manganese	1,600	2,000	146	168		270	268	193	211	347	21	0	55.7		48.2	197		265	
Mercury	0.18	0.81	1.98	J 0.798	J	0.745	2.25	1.17	2.49	0.581	0.4	54	0.202	J	0.2 J	0.546	J	0.236	J
Nickel	30	310	14.5	9.11		61.2 J	11.2 J	17 J	13.8 J	26.7	J 14	.2 J	6.25		9.04	15.6		9.48	
Potassium	~	~	711	363		880 J	431 J	1,230 J	691	382	J 85	2 J	473		435	663		418	
Selenium	3.9	180	0.647	J 0.503	J	1.16 J	0.745 J	0.893 J	0.74	1.75	J 1.2	.8 J	1.95		2.09	2.05		0.814	J
Silver	2	180	0.84	U 0.839	U	0.328 J	0.932 U	1.01 U	0.832 L	J 0.877	J 0.8	84 U	0.819	U	0.792 U	0.882	U	0.857	U
Sodium	~	~	243	190		456 J	116 J	616 J	300 J	106	J 18	1 J	116	J	144 J	279		327	
Thallium	~	~	1.68	U 1.68	U	1.88 U	1.86 U	2.03 U	1.66 L	J 1.75	J 1.7	7 U	1.64	U	1.58 U	1.76	U	1.71	U
Vanadium	~	~	24.8	21.4		30.6 J	14.3 J	27 J	16.6 J	13	J 29	.9 J	10.3		10.4	17.7		17.7	
Zinc	109	10,000	175	481		3,070 J	58.9	210	392	255	13	1	188		280	402		565	

Table 2 BCP Application Soil Sample Analytical Results Summary – PCBs, Pesticides, Herbicides & Inorganics

Location Sample ID	NYSDEC Part 375	NYSDEC Part 375 Restricted Use	LB06 LB06_6.0-8.0	LB07 LB07_1.0-3.0	LB07 LB07_6.0-8.0	LB08 LB08_0.0-2.0	LB08 LB08_4.0-6.0	LB08 SODUP02_090319	LB09 LB09_1.0-3.0	LB09 LB09_6.0-8.0	LB10 LB10_2.0-4.0	LB10 LB10_6.0-8.0	LB11 LB11_1.0-3.0	LB11 LB11_6.0-8.0
Laboratory ID	Unrestricted Use	Restricted-	L1940080-09	L1940080-10	L1940080-11	L1940080-12	L1940080-13	L1940080-02	L1940080-14	L1940080-15	L1940231-08	L1940231-09	L1940231-10	L1940231-11
Sample Date	SCOs	Residential SCOs	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/3/2019	9/4/2019	9/4/2019	9/4/2019	9/4/2019
Sample Depth (feet bgs)			6-8	1-3	6-8	0-2	4-6	4-6	1-3	6-8	2-4	6-8	1-3	6-8
Pesticides (mg/kg)	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Herbicides (mg/kg)	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls (mg/kg)	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics (mg/kg)						1	1	1	r	1	1		1	
Aluminum	~	~	1,400	3,180	5,750	5,860	4,760	4,760	5,460	4,480	2,680	7,110	2,100	3,610
Antimony	~	~	0.69	J 0.698	J 1.96 J	1.73 J	0.831 J	0.587 J	2.29 J	1.36 J	1.15 J	1.3 J	1 J	2.36 J
Arsenic	13	16	7.26	J 4.16	J 20.2 J	J	10.3 J	7.49 J	37.3 J	10.6 J	10.3 J	13.1 J	9.59 J	60.5 J
Barium	350	400	72.8	26.9	59.3	440	60.2	48.6	154	52.1	103 J	136 J	78.1 J	106 J
Beryllium	7.2	72	0.086	J 0.154	J 0.313 J	0.426 J	0.136 J	0.133 J	0.234 J	0.164 J	1.96 J	2.26 J	0.11 J	0.127 J
Cadmium	2.5	4.3	0.958	UJ 0.907	UJ 0.87 UJ	0.869 UJ	0.848 U.	J 0.783 UJ	0.834 UJ	0.819 UJ	0.456 J	0.499 J	0.467 J	0.499 J
Calcium	~	~	35,000	J 1,940	J 16,500 J	26,100 J	48,000 J	57,800 J	24,900 J	17,200 J	127,000	14,700	6,050	9,690
Chromium, Hexavalent	1	110	0.996	U 0.907	U 0.918 U	0.883 U	0.875 U	0.839 U	0.888 U	0.885 U	0.901 UJ	0.914 UJ	0.91 UJ	0.965 UJ
Chromium, Total	~	~	4.59	J 8.73	J 10.9 J	18.5 J	32.5 J	9.2 J	15.5 J	13.4 J	9.77 J	42.7 J	5.64 J	14.2 J
Chromium, Trivalent	30	180	4.6	8.7	11	18	32 J	9.2 J	16	13	9.8	43	5.6	14
Cobalt	~	~	3.32	5.46	14.1	8.91	3.44	3.26	6.06	5.51	5.9 J	15.9 J	3.34 J	4.01 J
Copper	50	270	39.9	J 27.9	J 61.6 J	179 J	29 J	21.3 J	67.2 J	48.5 J	89.4	196	34.8	52.2
Cyanide	27	27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	~	~	6,630	8,340	18,500	16,200	12,800	11,000	18,600	14,600	15,000	20,300	8,840	32,600
Lead	63	400	273	J 310	J 112 J	502 J	114 J	165 J	306 J	107 J	244	273	177	182
Magnesium	~	~	1,220	1,360	2,430	9,990	9,350	7,570	11,700	3,810	46,600 J	2,510 J	907 J	1,640 J
Manganese	1,600	2,000	52.8	123	519	300	347	389	182	215	169	177	59.9	81.4
Mercury	0.18	0.81	1.59	J 0.167	J 0.191 J	0.472 J	0.278 J	0.098 J	0.609 J	0.173 J	0.17	0.216	0.072 U	0.158
Nickel	30	310	7.88	13	24.7	17.2	8.92	6.7	15.8	19.2	15 J	30.8 J	8.36 J	9.48 J
Potassium	~	~	164	J 407	656	719	754	750	788	548	408 J	810 J	260 J	565 J
Selenium	3.9	180	0.68	J 1.81	U 1.07 J	0.513 J	1.21 J	1.18 J	1.48 J	0.311 J	0.411 J	1.32 J	0.382 J	7.26
Silver	2	180	0.958	U 0.907	U 0.87 U	0.869 U	0.848 U	0.783 U	0.834 U	0.819 U	0.894 U	0.907 U	0.849 U	0.345 J
Sodium	~	~	189	J 282	160 J	131 J	271	305	155 J	327	223 J	361 J	116 J	192 J
Thallium	~	~	1.92	U 1.81	U 1.74 U	1.74 U	1.7 U	1.57 U	1.67 U	1.64 U	1.79 U	1.81 U	1.7 U	1.81 U
Vanadium	~	~	6.08	10.4	16.9	19.5	16.3	13.7	25.2	20.1	17.1 J	26.7 J	12 J	46.7 J
Zinc	109	10,000	65.5	76.6	301	705	68	62.4	194	53.8	493	1,310	180	57

Table 2 BCP Application Soil Sample Analytical Results Summary – PCBs, Pesticides, Herbicides & Inorganics

Location Sample ID Laboratory ID Sample Date	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use Restricted-	LB12 LB12_2.0-4. L1940231-1 9/4/2019	0 2	LB12 LB12_6.0-8 L1940231- 9/4/2019	3.0 13	LB13 LB13_1.0-3 L1940231- 9/4/2019	3.0 14 9	LB13 LB13_4.0-6 L1940231-' 9/4/2019	6.0 15	LB14 LB14_1.0- L1940231- 9/4/2011	3.0 •16 9	LB14 LB14_6.0-8.0 L1940231-17 9/4/2019)	LB15 LB15_1.0-3 L1940231- 9/4/2019	3.0 18	LB15 LB15_5.0-7 L1940231- 9/4/2019	7.0 19 9	SB-20 SB-20_0- L1404281- 2/27/201	-2 -01 4	SB-20 SB-20_3-5 L1404281-0 2/27/2014	;)5	SB-20 SB-20_8- L1404281 2/27/201	10 -02 14
Sample Depth (feet bgs)		Residential SCOS	2-4		6-8		1-3		4-6		1-3		6-8		1-3		5-7		0-2		3-5		8-10	
Pesticides (mg/kg)	~	~	NA		NA		NA		NA		NA		NA		NA		NA		ND		ND		ND	
Herbicides (mg/kg)	~	~	NA		NA		NA		NA		NA		NA		NA		NA		ND		ND		ND	
Polychlorinated Biphenyls (mg/kg)	~	~	NA		NA		NA		NA		NA		NA		NA		NA		ND		ND		ND	
Inorganics (mg/kg)																								
Aluminum	~	~	7,800		8,880		3,620		5,470		5,160		4,810		4,920		5,240		4,400		13,000		8,000	
Antimony	~	~	1.26	J	1.58	J	1.36	J	3.23	J	0.95	J	1.07	J	0.376	J	0.513	J	2.7	J	1.1	J	4.5	U
Arsenic	13	16	9.75	J	17	J	13.7	J	19.4	J	11.2	J	7.32	J	7.38	J	6.11	J	11		15		5.6	
Barium	350	400	585	J	94.7	J	53.8	J	192	J	45.8	J	53.9	J	56.1	J	60.1	J	45		85		24	
Beryllium	7.2	72	0.321	J	0.333	J	0.197	J	0.485	J	0.124	J	0.186	J	0.289	J	0.471	J	0.13	J	0.96		0.41	J
Cadmium	2.5	4.3	2.28		1.17		0.412	J	0.996		0.382	J	0.524	J	0.402	J	0.496	J	0.86	U	0.11	J	0.9	U
Calcium	~	~	5,060		26,500		8,600		25,500		1,460		4,430		15,200		23,600		1,200		22,000		5,800	
Chromium, Hexavalent	1	110	0.996	UJ	0.898	UJ	0.899	UJ	0.928	UJ	0.909	UJ	0.924	UJ	0.889	UJ	0.874	UJ	0.91	U	0.9	U	0.94	U
Chromium, Total	~	~	23.8	J	13.9	J	8.7	J	20	J	19.2	J	9.28	J	7.47	J	16	J	23		10		10	
Chromium, Trivalent	30	180	24		14		8.7		20		19		9.3		7.5		16		NA		NA		NA	
Cobalt	~	~	13.1	J	9.29	J	6.09	J	5.79	J	3.85	J	7.75	J	6.46	J	5.94	J	3.1		10		18	
Copper	50	270	61.9		112		71.8		599		30.5		31.5		74.4		169		50		170		54	
Cyanide	27	27	NA		NA		NA		NA		NA		NA		NA		NA		1.1	U	0.26	J	1.2	U
Iron	~	~	24,400		23,400		14,100		17,500		30,400		31,500		16,500		9,470		33,000		25,000		19,000	
Lead	63	400	771		1,030		206		480		45.3		103		85.1		118		90		780		73	
Magnesium	~	~	4,680	J	7,730	J	1,230	J	2,750	J	1,440	J	1,260	J	8,460	J	11,600	J	1,200		2,000		2,300	
Manganese	1,600	2,000	945		288		127		342		112		201		193		194		64		440		390	
Mercury	0.18	0.81	0.506		2.59		0.206		0.726		1.2		0.061	J	0.092		0.129		0.36		0.77		0.08	U
Nickel	30	310	24.9	J	17.9	J	11.5	J	17	J	10	J	15.7	J	14	J	12.7	J	8.3		15		16	
Potassium	~	~	1,240	J	1,650	J	487	J	515	J	845	J	471	J	390	J	274	J	600		970		740	
Selenium	3.9	180	0.603	J	0.394	J	0.9	J	2.02		1.78	U	1.78	U	0.534	J	0.479	J	0.64	J	0.71	J	1.8	U
Silver	2	180	0.35	J	0.877	U	0.858	U	3.34		0.888	U	0.888	U	0.875	U	0.841	U	0.86	U	0.87	U	0.9	U
Sodium	~	~	162	J	732	J	137	J	362	J	136	J	68.1	J	255	J	136	J	130	J	1,300		110	J
Thallium	~	~	0.72	J	1.75	U	1.72	U	1.73	U	1.78	U	1.78	U	1.75	U	1.68	U	1.7	U	1.7	U	1.8	U
Vanadium	~	~	28.9	J	23	J	14.9	J	27.5	J	28.7	J	21	J	23.1	J	32.5	J	24		14		15	
Zinc	109	10,000	489		1,890		145		322		38.7		107		140		164		41		140		110	

Table 2

BCP Application Soil Sample Analytical Results Summary – PCBs, Pesticides, Herbicides & Inorganics

45 Commercial Street Brooklyn, New York

Langan Project No.: 170229024

Notes:

1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Restricted-Residential Soil Cleanup Objectives (SCO).

2. Only detected analytes are shown in the table.

- 3. Detected analytical results above Unrestricted Use SCOs are bolded.
- 4. Detected analytical results above Restricted Use Restricted-Residential SCOs are shaded.
- 5. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 6. Sample SODUP01_090319 is a duplicate sample of LB05_2.0-4.0 and sample SODUP02_090319 is a duplicate sample of LB08_4.0-6.0.

7. \sim = Regulatory limit for this analyte does not exist

8. bgs = below grade surface

9. mg/kg = milligrams per kilogram

10. NA = Not analyzed

11. ND = Not detected

Qualifiers:

J - The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

UJ - The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.

U - The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 3 BCP Application

Groundwater Sample Analytical Results Summary - VOCs, SVOCs, PCBs, Pesticides, Herbicides & Inorganics

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Location		MW20	
Sample ID	NYSDEC	MW20_03071	4
Laboratory ID	SGVs	L1404879-04	
Sample Date		3/7/2014	
Volatile Organic Compounds (µg/L)			
Acetone	50	2.2	J
Tert-Butyl Methyl Ether	10	0.92	J
Semivolatile Organic Compounds (µg/L)			
Anthracene	50	0.09	J
Fluoranthene	50	0.14	J
Fluorene	50	0.09	J
Phenanthrene	50	0.2	
Pyrene	50	0.13	J
Pesticides (µg/L)	~	ND	
Herbicides (µg/L)	~	ND	
Polychlorinated Biphenyls (µg/L)	~	ND	
Inorganics (µg/L)		_	
Aluminum	~	220	
Aluminum (Dissolved)	~	2.55	J
Antimony	3	0.41	J
Antimony (Dissolved)	3	0.34	J
Arsenic	25	3.72	
Arsenic (Dissolved)	25	2.04	
Barium	1,000	102.9	
Barium (Dissolved)	1,000	102.6	
Cadmium	5	0.06	J
Cadmium (Dissolved)	5	0.05	J
Calcium	~	197,000	
Calcium (Dissolved)	~	197,000	
Chromium, Total	50	0.74	J
Chromium, Total (Dissolved)	50	0.34	J
Cobalt	~	2.07	
Cobalt (Dissolved)	~	2.09	
Copper	200	1.28	
Copper (Dissolved)	200	1.17	
Cyanide	200	19	
Iron	300	5,030	
Iron (Dissolved)	300	982	
Lead	25	2.88	
Magnesium	35,000	44,300	
Magnesium (Dissolved)	35,000	44,200	
Manganese	300	5,718	
Manganese (Dissolved)	300	5,636	
Nickel	100	3.7	
Nickel (Dissolved)	100	3.74	
Potassium	~	16,000	
Potassium (Dissolved)	~	16,600	
Selenium	10	2.84	J
Selenium (Dissolved)	10	3.03	J
Sodium	20,000	451,000	
Sodium (Dissolved)	20,000	450,000	
Thallium	0.5	0.05	J
Thallium (Dissolved)	0.5	0.05	J
Vanadium	~	0.33	J
Zinc	2,000	18.01	
Zinc (Dissolved)	2,000	18.6	

Notes:

1. Groundwater sample analytical results are compared to the New York State

Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (herein collectively referenced as "NYSDEC SGVs").

2. Only detected analytes are shown in the table.

3. Detected analytical results above NYSDEC SGVs are bolded and shaded.

4. Analytical results with reporting limits (RL) above NYSDEC SGVs are

5. \sim = Regulatory limit for this analyte does not exist

6. μ g/L = micrograms per liter

7. ND = Not detected

Qualifiers:

J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration. U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 4 BCP Application Soil Vapor Sample Analytical Results Summary – VOCs

45 Commercial Street Brooklyn, New York Langan Project No.: 170229024

Location Sample ID Laboratory ID Sample Date Sample Type	NYSDOH AGVs	NYSDOH Decision Matrices Minimum Concentrations	SV-9 SV-9_20130918 L1318455-04 9/18/2013 SV
Volatile Organic Compounds (µg/m³)			
2,2,4-Trimethylpentane	~	~	2.9
Acetone	~	~	224
Benzene	~	~	3.17
Carbon Disulfide	~	~	211
Chloromethane	~	~	1.52
Cyclohexane	~	~	2.8
M,P-Xylene	~	~	5.82
Methyl Ethyl Ketone (2-Butanone)	~	~	10.4
n-Heptane	~	~	4.18
n-Hexane	~	~	5.57
Propylene	~	~	22.7
Toluene	~	~	16.2
Trichlorofluoromethane	~	~	3.53

Notes:

1. Soil vapor sample analytical results are compared to the New York State Department of Health (NYSDOH) Air Guideline Values (AGVs) as set forth in the NYSDOH October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York and subsequent updates (2013, 2015) and to the minimum soil vapor concentrations recommending mitigation as set forth in the NYSDOH October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York and subsequent updates (2013, 2015) and to the minimum soil vapor concentrations recommending mitigation as set forth in the NYSDOH October 2006 Guidance for Evaluating Soil Vapor Intrusion in the State of New York Decision Matrices for Sub-Slab Vapor and Indoor Air and subsequent updates (2017).

2. Only detected analytes are shown in the table.

3. No analytical results were detected above the NYSDOH AGVs or the minimum soil vapor concentrations recommending mitigation.

4. ~ = Regulatory limit for this analyte does not exist

5. μ g/m³ = micrograms per cubic meter

6. SV = Soil Vapor

ATTACHMENT D

SECTION IV: PROPERTY INFORMATION

The reference point for the given latitude (40°44'13.1") and longitude (73°57'28.6") is the approximate center of the site.

Figure D-1 is a Digital Tax Map from the New York City Department of Finance showing the site boundary and its tax block and lots.

Figure D-2 is a United States Geological Survey (USGS) 7.5 minute quadrangle map showing the location of the site.

Figure D-3 provides a property base map that shows i) a distance of at least 1,000 feet around the site at a scale no smaller than one inch equal to 200 feet; and ii) map scale, north arrow orientation, date, and location of the property with respect to adjacent streets and roadways.

Figure D-4 provides a property base map that shows i) site boundary lines with adjacent property owners identified; and ii) surrounding property land uses.

Item 1 Response

The site boundary corresponds to tax map metes and bounds. Attached for reference is the relevant New York City tax map (Figure D-1). The property is identified by Borough of Brooklyn Tax Block 2472, Lot 70.

Item 2 Response

Figure D-2 is the required property base map.

Item 6 Response

The spills database, maintained and updated by NYSDEC, is an inventory of sites where spills were identified and reported to the NYSDEC. The site is listed under Spill Nos. 19-06491. Spill No. 19-06491 was reported on September 25, 2019 based on field observations during the September 2019 Subsurface Investigation and subsequent analytical data review. The spill is related to an unknown source and likely attributed to historical fill. The spill will be remediated as part of the remedial action under the BCP.

Item 10 Response

Location:

The site is located at 45 Commercial Street in the Greenpoint neighborhood of Brooklyn, New York and occupies the Borough of Brooklyn Tax Block 2472, Lot 70. The site is bound by Parcel H3 (Block 2472, Lots 200 and 475) to the north followed by Newtown Creek, an active NYC transit authority parking lot to the east (Block 2472, Lot 425), Commercial Street to the south, and Parcel G1 (Block 2472, Lots 80, 90, and 100) to the west.

Site Features:

The site encompasses an approximate area of about 44,600 square feet and is paved with concrete and asphalt. According to survey data, most of the site is at an elevation (el.) of about el. 11 to 13 feet¹; the high point of the site is el. 13.91 feet proximate to Commercial Street in the southern part of the site.

Current Zoning and Land Use:

According to the New York City Department of City Planning (NYCDCP) Zoning Map 12c, dated August 8, 2018, the site is currently located in an R6/R8/C2-4 mixed-use residential and commercial district.

Past Use of the Site:

Coal and lumber storage were the primary uses of the Greenpoint Landing development property including the site) for more than 100 years from the late 1800s until about 1980, when the lumber yard operations were phased out and the owner (Lumber Exchange Terminal, Inc.) began to lease portions of the Greenpoint Landing development property to tenants for materials and heavy construction equipment and machinery storage. At the time of the Phase I ESA in 2001, the site was used for truck/vehicle parking and the storage of scaffolding materials. The site is currently used to stage construction trailers and materials for the ongoing Parcel H3 redevelopment.

Site Geology and Hydrogeology:

Based on borings advanced at the site, the stratigraphy underlying the site consists of a surficial layer of historic fill material overlying native fine- to coarse-grained sandy soil and silty soil. The surficial historic fill is composed of varying amounts of sand and silt from surface grade to depths of 10 to 15 feet below grade surface (bgs) (terminus of deepest boring). Bedrock was not encountered during any environmental investigations performed at the site. Groundwater was encountered at about 13 feet bgs in previous investigations. Groundwater flow is estimated to be from the south to north, toward the confluence of the East River and Newtown Creek. Potable water is provided to the site by the City of New York.

¹ North American Vertical Datum of 1988 (NAVD88). Datum refers to the North American Vertical Datum of 1988 which is approximately 1.1 feet above mean sea level datum at Sandy Hook, New Jersey as defined by the United States Geologic Survey (USGS NGVD 1929).

Environmental Assessment:

Known or suspected sources of contamination include: 1) a historical lumber yard use of the site; 2) historic fill; 3) petroleum contamination in soil; and 4) potential off-site sources of contamination.

<u>Soil</u>

Visual, olfactory and photoionization detector (PID) evidence of petroleum impacts were apparent in one soil boring (LB-13). PID readings ranged from 5.1 parts per million (ppm) to 161 ppm between an interval of 4 to 5.5 feet below grade surface (bgs). The residual petroleum contamination are likely related to historical fill or an unidentified off-site source.

A surficial layer of historic fill, ranging in thickness from surface grade to depths of 10 to 15 feet bgs (terminus of deepest borings), is present immediately beneath the asphalt and concrete cap and is composed of varying amounts of sand, silt, and gravel with ash, asphalt, brick, coal, concrete, slag, and wood.

Two VOCs (acetone and total xylenes) were detected above the UU but not the RURR SCOs. Acetone is a common laboratory contaminant; however total xylenes may be related to an unknown petroleum source or historic fill.

Three SVOCs; 3- and 4-methylphenol, m-cresol, and naphthalene, were detected above UU but not RURR SCOs. Six SVOCs, were detected above the UU SCOs in soil samples. Benzo(a)anthracene was detected at a maximum of 28 mg/kg as compared to the RURR SCO of 1 mg/kg. Benzo(a)pyrene was detected at a maximum of 25 mg/kg as compared to the RURR SCO of 1 mg/kg. Benzo(b)fluoranthene was detected at a maximum of 32 mg/kg as compared to the RURR SCO of 1 mg/kg. Benzo(k)fluoranthene was detected at a maximum of 32 mg/kg as compared to the RURR SCO of 3.9 mg/kg. Chrysene was detected at a maximum of 25 mg/kg as compared to the RURR SCO of 3.9 mg/kg. Dibenz(a,h)anthracene was detected at a maximum of 3.4 mg/kg as compared to the RURR SCO of 0.33 mg/kg. Indeno(1,2,3-c,d)pyrene was detected at a maximum of 15 mg/kg as compared to the RURR SCO of 0.5 mg/kg. These SVOCs may be related to historic use or the historic fill.

Two pesticides (4,4'-DDD and 4,4'-DDE) and total PCBs were detected above the UU but not the RURR SCOs. The presence of pesticides may be related to surficial application of pesticides at the site.

Total PCBs were detected above the UU but not the RURR SCOs. The presence of PCBs may be related to historic fill.

Five metals; trivalent chromium, nickel, selenium, silver, and zinc, were detected above UU but not RURR SCOs. Five metals were detected above the RURR SCOs. Arsenic was detected at a maximum of 60.5 mg/kg as compared to the RURR SCO of 16 mg/kg. Barium was detected at

Brownfield Cleanup Program Application 45 Commercial Street Brooklyn, NY

a maximum of 585 mg/kg as compared to the RURR SCO of 400 mg/kg. Copper was detected at a maximum of 599 mg/kg as compared to the RURR SCO of 270 mg/kg. Lead was detected at a maximum of 1,710 mg/kg as compared to the RURR SCO of 400 mg/kg. Mercury was detected at a maximum of 2.59 mg/kg as compared to the RURR SCO of 0.81 mg/kg.

<u>Groundwater</u>

Four metals (iron, magnesium, manganese, and sodium) were detected at total and dissolvedphase concentrations in groundwater above the NYSDEC SGVs.

No VOCs, SVOCs, PCBs, pesticides, or herbicides exceeded the NYSDEC SGVs.

<u>Soil Vapor</u>

Thirteen petroleum-, ketone-, and solvent-related VOCs (including 2,2,4-trimethylpentane, 2butanone, acetone, benzene, carbon disulfide, chloromethane, cyclohexane, heptane, n-hexane, p- & m-xylene, propylene, toluene, and trichlorofluoromethane) were detected in soil vapor collected from SV-9. Acetone was detected at the highest concentration (224 micrograms per cubic meter [µg/m³]), as compared to other VOCs. Concentrations of other VOCs ranged from 1 to 22 µg/m³.

ATTACHMENT D

SUPPORTING DOCUMENTATION

1. Figures

- a. Figure D-1 –Tax Map
- b. Figure D-2 Site Location Map
- c. Figure D-3 Site Map with 1000-Foot Radius
- d. Figure D-4 Adjacent Property and Surrounding Land Use Map

SCALE IN FEET

Filename: \\langan.com\data\NYC\data0\170229024\Project Data\CAD\24\SheetFiles\Environmental\BCP Application\Figure 4 - Tax Map.dwg Date: 1 11/1/2019 II

BROOKLYN

T: 212.479.5400 F: 212.479.5444 www.langan.com

7

APPROXIMATE SITE BOUNDARY

1. BASE MAP ACCESSED FROM GIS.NYC.GOV/TAXMAP/MAP ON OCTOBER THE SITE CONSISTS OF TAX BLOCK 2472 LOT 70.

8

IAL 70	Figure Title	Project No. 170229024 Date 10/23/2019 Drawn By MA Checked By WK	Figure No. D-1	2018 Langan
NEW TORK				0
n/Figure 4 - Tax Man dwg. Date: 11/1/2010. Time: 13:47. User: wkim. Style Table: Langan stb. Lavout: ANSIB-BL				

WARNING: IT IS A VIOLATION OF THE NYS EDUCATION LAW ARTICLE 145 FOR ANY PERSON, UNLESS HE IS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS ITEM IN ANY WAY.

	7		8
END:			
	APPROXIMATE SITE BOUN	DARY	
	1,000-FOOT RADIUS		
'FS'			

1. BASE MAP ACCESSED FROM WWW.OASISNYC.NET/MAPS ON OCTOBER 7, 2019.

жĸ	Figure Title SITE MAP WITH 1000-FOOT RADIUS	Project No. 170229024 Date 10/14/2019 Drawn By MA Checked By WK	Figure No. D-3	
-foot Radius dwg. Date: 11/1/2019. Time: 13:49. User: wkim. Style Table: Langan stb. Lavout: ANSIB-BL				

Filename: \\langan.com\data\NYC\data0\170229024\Project Data\CAD\24\SheetFiles\Environmental\BCP Application\Figure 7 - Adjacent Property and Surrounding Land Use Map.d

KINGS COUNT

T: 212.479.5400 F: 212.479.5444 www.langan.com

BROOKLYN

NFW Y

	7 8
ID:	
	APPROXIMATE SITE BOUNDARY
	1- & 2-FAMILY RESIDENTIAL
	MULTI-FAMILY RESIDENTIAL
	MIXED USE
	OPEN SPACE & OUTDOOR RECREATION
	COMMERCIAL
	INSTITUTIONS
	INDUSTRIAL
	PARKING
	TRANSPORTATION/UTILITIES
	VACANT LOTS

1. BASE MAP ACCESSED FROM WWW.OASISNYC.NET/MAPS ON OCTOBER 7, 2019.

	Figure Title	Project No. 170229024	Figure No.	
	ADJACENT PROPERTY	Date 10/14/2019		
	AND SUKKOUNDING	Drawn By MA	D-4	andan
ORK		Checked By WK		© 2018

ATTACHMENT E

SECTION VI: CURRENT PROPERTY OWNER/OPERATOR INFORMATION

Current Site Owner

The Requestor is the current owner. The current owner of the site is H Owner LLC.

Previous Property Owners

A review of ownership records for the proposed site identified H Owner LLC as the present owner. Deed information for Borough of Brooklyn Block 2472, Lot 70 is listed in the following table.

Date	First Party	Second Party	Relationship	
4/23/2018	<u>Greenpoint Partners H, LLC</u> 535 Madison Avenue New York, NY 10022 (212) 310-9765	<u>H Owner LLC</u> 535 Madison Avenue New York, NY 10022 (212) 310-9765	Affiliated Company	
4/11/2018	4/11/2018H Owner LLC 535 Madison Avenue New York, NY 10022 (212) 310-9765Greenpoint Partners H, LLC 535 Madison Avenue New York, NY 10022 (212) 310-9765		Affiliated Company	
5/28/2015	<u>Greenpoint Landing Associates,</u> <u>L.L.C.</u> 535 Madison Avenue New York, NY 10022 (212) 310-9765	<u>H Owner LLC</u> 535 Madison Avenue New York, NY 10022 (212) 310-9765	Affiliated Company	
At least 1880s - 2005	<u>Lumber Exchange Terminal</u> Address and Phone Number Unknown	Not Available	None	

Reference: New York City Department of Finance Automated City Register Information System (ACRIS) website: https://a836-acris.nyc.gov/DS/DocumentSearch/Index and Phase I Environmental Site Assessment Report – Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated July 2001

Current Site Operator

The site is currently operated by Consigli Construction Co., Inc. for staging of construction trailers and materials for the ongoing redevelopment of Parcel H3.

Previous Property Operators

Name	Relationship to Property	Address and Phone Number	Relationship to Applicant	
Consigli Construction Co., Inc.	None	333 7 th Avenue, 17th Floor New York, NY 10001 (516)330-8067	None	
Lumber Exchange Terminal, Inc.	Previous Operator (1880s-2005)	Unknown	None	

Reference: Phase I Environmental Site Assessment Report – Greenpoint Lumber Yard, Brooklyn, New York, prepared by AKRF, Inc. dated July 2001

Brownfield Cleanup Program Application 45 Commercial Street Brooklyn, NY

ATTACHMENT E

SUPPORTING DOCUMENTATION

1. Deed

NYC DEPARTMENT OF OFFICE OF THE CITY R This page is part of the instrume Register will rely on the informat by you on this page for purposes this instrument. The information will control for indexing purpose of any conflict with the rest of the	F FINANCE REGISTER nt. The City ation provided of indexing on this page es in the event ne document.		201804250009	93001001E9CB	
D	RECORD	ING AND ENDU	<u>RSEWIENT COVERT</u>	AGE D	PAGE I OF 5
Document TD: 20180425000 Document Type: DEED Document Page Count: 4	093001	Document D	ate: 04-23-2018	Preparation	Date: 04-25-2018
PRESENTER:			RETURN TO:		
FIDELITY NATIONAL TITH 485 LEXINGTON AVENUE NEW YORK, NY 10017 212-481-5858 kat.lam@fnf.com/ title no. 50	FIDELITY NATIONAL TITLE INS. COMPANY 485 LEXINGTON AVENUE, 18TH FLOOR NEW YORK, NY 10017 212-481-5858 kat.lam@fnf.com/ title no. 50889-AC				
		PROPER'	ГУ ДАТА		
Borough Block	Lot	Unit A	ddress		
BROOKLYN 2472	70 Entire	e Lot N	A COMMERCIAL ST	TREET	
CROSS REFERENCE DATA					
PARTIESGRANTOR/SELLER:GRANTEE/BUYER:GREENPOINT PARTNERS H LLCH OWNER LLCC/O:.PARK TOWER GROUP, 535 MADISON AVENUEC/O:.PARK TOWER GROUP, 535 MADISON AVENUENEW YORK, NY 10022NEW YORK, NY 10022					
		FEES A	ND TAXES		
Mortgogo			Eiling East		
Nortgage :	ا م	0.00	ring ree:	¢	250.00
Tavable Merterer	3	0.00		۵ کست میں ۲۰۰۰	250.00
Taxable Wortgage Amount:	3	0.00	HINT C Keal Property I	ranster Tax:	A AA
Exemption:				\$	0.00
TAXES: County (Basic):	\$	0.00	NYS Real Estate Trai	nsfer Tax:	
City (Additional):	\$	0.00	ļ	\$	0.00
Spec (Additional):	\$	0.00	RECO	RDED OR FILED IN	THE OFFICE
TASF:	\$	0.00		THE CITY REGISTI	ER OF THE
MTA:	\$	0.00	J AMAN		
NYCTA:	\$	0.00		Reported/Filed	01 27 2019 10.00
Additional MRT:	\$	0.00		City Dovietor Elle M	04-27-2018 10:00
TOTAL:	\$	0.00		Uny Register File No.	(CKFN): 2018000140675
Recording Fee	Ś	57.00	- HARCENIA	\sim	20100001400/5
A ffidavit Fee	φ \$	0.00		(In A ITT MIN	
Alluavit Fee.	L D	0.00		ynning	~~
				City Register Offic	cial Signature

<u>DEED</u>

THIS INDENTURE, made as of April 23, 2018, by GREENPOINT PARTNERS H LLC, a Delaware limited liability company, having an address of 535 Madison Avenue, 35th floor, New York, New York 10022 (hereinafter referred to as "<u>Grantor</u>"), to H OWNER LLC, a New York limited liability company, having an address of 535 Madison Avenue, 35th floor, New York, New York 10022 (hereinafter referred to as "<u>Grantee</u>").

WITNESSETH, that Grantee transferred certain real property to Grantor pursuant to that certain Deed, dated as of April 11, 2018 and recorded on April 16, 2018 as CRFN 2018000125896 (the "<u>April 11 Deed</u>"), which April 11 Deed inadvertently transferred Grantee's right, title and interest in and to Block 2472, Lot 70;

WITNESSETH, that, Grantor, in order to correct the inadvertent inclusion of Block 2472, Lot 70 in the April 11 Deed, and in consideration of Ten and No/100 Dollars (\$10.00), lawful money of the United States, paid by Grantee, does hereby grant and release unto Grantee, the heirs or successors and assigns of Grantee forever:

ALL that certain plot, piece or parcel of land with the building and improvements thereon erected, situate, lying and being, more particularly described on <u>Exhibit A</u> attached hereto and made a part hereof (the "<u>Premises</u>");

TOGETHER WITH all right, title and interest, if any, of Grantor in and to any streets and roads abutting the Premises to the center lines thereof;

TOGETHER WITH the appurtenances and all the estate and rights of Grantor in and to the Premises.

TO HAVE AND TO HOLD the Premises unto Grantee, the heirs or successors and assigns of Grantee forever.

AND Grantor, in compliance with Section 13 of the Lien Law, covenants that Grantor will receive the consideration for this conveyance and will hold the right to receive such consideration as a trust fund to be applied first for the purpose of paying the cost of the improvements at the Premises and will apply the same first to the payment of the cost of the improvements before using any part of the total of the same for any other purpose.

[NO FURTHER TEXT ON THIS PAGE]

Exhibit A

Legal Description

Lot 70:

BEGINNING AT A POINT ON THE NORTHERLY SIDE OF COMMERCIAL STREET (MAPPED 70 FEET WIDE), DISTANT 663.25 FEET (COMPUTED) WESTERLY FROM THE INTERSECTION OF SAID NORTHERLY SIDE OF COMMERCIAL STREET WITH THE WESTERLY SIDE OF MANHATTAN AVENUE, SAID POINT BEING THE POINT OR PLACE OF BEGINNING; THENCE

WESTERLY, ALONG SAID NORTHERLY SIDE OF COMMERCIAL STREET, A DISTANCE OF 210.78 FEET TO A POINT; THENCE

NORTHWESTERLY, FORMING AN INTERIOR ANGLE OF 90° WITH THE PREVIOUS COURSE, A DISTANCE OF 211.59 FEET TO A POINT; THENCE

NORTHEASTERLY, FORMING AN INTERIOR ANGLE OF 90° WITH THE PREVIOUS COURSE, A DISTANCE OF 210.78 FEET TO A POINT; THENCE

SOUTHEASTERLY, FORMING AN INTERIOR ANGLE OF 90° WITH THE PREVIOUS COURSE, A DISTANCE OF 211.59 FEET TO A POINT, SAID POINT BEING THE POINT OR PLACE OF BEGINNING.

ENCOMPASSING AN AREA OF 44,599 SQUARE FEET OR 1.023 ACRES, MORE OR LESS.

IN WITNESS WHEREOF, Grantor has duly executed this deed the day and year first above written.

GRANTOR:

GREENPOINT PARTNERS H LLC,

a Delaware limited liability company

LIZYANNE B DONAWA Notary Public - State of New York NO. 01D06200642 Qualified in Kings County My Commission Expires Feb 2, 2021

By: Name: MATTHEN MAYER Title: VICE President do the Sole membro

STATE OF <u>New (oak</u>) ss.: COUNTY OF <u>Kings</u>) ss.:

On the <u>23</u> day of April in the year 2018 before me, the undersigned, personally appeared <u>Mathew Gauges</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged to me that he/she executed the same in his/her capacity, and that by his/her signature on the instrument, the individual, or the person or entity upon behalf of which the individual acted, executed the instrument.

Signature and Office of individual taking acknowledgment
Deed

BLOCK:	2472
LOT:	70
COUNTY:	Kings

GREENPOINT PARTNERS H LLC

ТО

H OWNER LLC

RETURN BY MAIL TO:

Fried, Frank, Harris, Shriver & Jacobson LLP One New York Plaza New York, New York 10004 Attention: Robert J. Sorin, Esq.

NYC DEPARTMENT OF FINANCE OFFICE OF THE CITY REGISTER	201804250009300	1001S5230
SUPP	ORTING DOCUMENT COVER PAGE	PAGE 1 OF 1 Preparation Date: 04-25-2018
Document Type: DEED	Document Date. 04-25-2010	reparation Date. 04-23-2018
ASSOCIATED TAX FORM ID: 2018	042300375	
SUPPORTING DOCUMENTS SUBMI	гтед:	
DEP CUSTOMER REGISTRATION FO RP - 5217 REAL PROPERTY TRANSF	RM FOR WATER AND SEWER BILLING ER REPORT	Page Count 2 4

FOR CITY USE ONLY C1. County Code C2. Date Deed C7 / / Recorded Month Day Year C3. Book C4. Page C4. Page C7. C4. Page C7. C5. CRFN	REAL PROPERTY TRANSFER REPORT STATE OF NEW YORK STATE BOARD OF REAL PROPERTY SERVICES RP - 5217NYC
PROPERTYINFORMATION	
1. Property N/A COMMERCIAL STREET	BROOKLYN 11222 BOROUGH ZIP CODE
2. Buyer HOWNER LLC	FIRST NAME
LAST NAME / COMPANY	FIRST NAME
3. Tax Indicate where future Tax Bills are to be sent Billing if other than buyer address (at bottom of form)	FIRST NAME
STREET NUMBER AND STREET NAME CITY OR	TOWN STATE ZIP CODE
4. Indicate the number of Assessment Roll parcels transferred on the deed # of Parcels OR	Part of a Parcel 4A. Planning Board Approval - N/A for NYC 4B. Agricultural District Notice - N/A for NYC
5. Deed Property X OR ACRES	Check the boxes below as they apply: G. Ownership Type is Condominium 7. New Construction on Vacant Land
8. Seller Name GREENPOINT PARTNERS H LLC	FIRST NAME
LAST NAME / COMPANY 9. Check the box below which most accurately describes the use of the property A One Family Residential B 2 or 3 Family Residential D Non-Residential Vacant Land	FIRST NAME at the time of sale: Commercial G Entertainment / Amusement I Industrial Apartment H Community Service J Public Service
SALE INFORMATION	14. Check one or more of these conditions as applicable to transfer:
10. Sale Contract Date 4 / 23 / 2018 Month Day Year	A Sale Between Relatives or Former Relatives B Sale Between Related Companies or Partners in Business
11. Date of Sale / Transfer 4 / 23 / 2018 Month Day Year	D Buyer or Seller is Government Agency or Lending Institution E Deed Type not Warranty or Bargain and Sale (Specify Below) D Sale of Fractional and Sale (Specify Below)
12. Full Sale Price $\$$	G Significant Change in Property Between Taxable Status and Sale Dates
(Full Sale Price is the total amount paid for the property including personal property. This payment may be in the form of cash, other property or goods, or the assumption of mortgages or other obligations.) <i>Please round to the nearest whole dollar amount.</i>	H Sale of Business is Included in Sale Price I J ✓ None
13. Indicate the value of personal property included in the sale	
ASSESSMENT INFORMATION - Data should reflect the latest Final Assessme	ent Roll and Tax Bill
15. Building Class $[G, 7]$ 16. Total Assessed Value (of all parce	cels in transfer)
17. Borough, Block and Lot / Roll Identifier(s) (If more than three, attach shee	t with additional identifier(s))
BROOKLYN 2472 70]

CERTIFICATION

I certify that all of the items of information entered on this form are true and correct (to the best of my knowledge and belief) and understand that the making of any willful false statement of material fact herein will subject me to the provisions of the penal law relative to the making and filing of false instruments.

BL	JYER			BUYER'S ATTORNE	ΞY	
BUYER SIGNATURE C/O:.PARK TOWER GROUP 535 M	ADISON AVENUE	ATE	LAST NAME	FIRST N	AME	
STREET NUMBER STREET NAM	ME (AFTER SALE)		AREA CODE	TELEPHONE NUMBER		
NEW YORK	NY	10022				
CITY OR TOWN	STATE	ZIP CODE	SELLER SIGNATURE		DATE	

SIGNATURE RIDER TO NEW YORK STATE TP-584 TRANSFER TAX RETURN (con't)

<u>GRANTOR</u>:

GREENPOINT PARTNERS H LLC, a Delaware limited liability company

By: Name: MATTLE W. MATE, Title: VILE P-SIde of the Sule rente -

SIGNATURE RIDER TO NEW YORK STATE TP-584 TRANSFER TAX RETURN

GRANTEE:

H OWNER LLC, a New York limited liability company

₿y: Name: matthew, mayor te sule sent

The City of New York Department of Environmental Protection Bureau of Customer Services 59-17 Junction Boulevard Flushing, NY 11373-5108

Customer Registration Form for Water and Sewer Billing

Property and Owner Information:

- (1) Property receiving service: BOROUGH: BROOKLYN BLOCK: 2472 LOT: 70
- (2) Property Address: N/A COMMERCIAL STREET, BROOKLYN, NY 11222
- (3) Owner's Name: H OWNER LLC

Additional Name:

Affirmation:

Your water & sewer bills will be sent to the property address shown above.

Customer Billing Information:

Please Note:

- A. Water and sewer charges are the legal responsibility of the owner of a property receiving water and/or sewer service. The owner's responsibility to pay such charges is not affected by any lease, license or other arrangement, or any assignment of responsibility for payment of such charges. Water and sewer charges constitute a lien on the property until paid. In addition to legal action against the owner, a failure to pay such charges when due may result in foreclosure of the lien by the City of New York, the property being placed in a lien sale by the City or Service Termination.
- B. Original bills for water and/or sewer service will be mailed to the owner, at the property address or to an alternate mailing address. DEP will provide a duplicate copy of bills to one other party (such as a managing agent), however, any failure or delay by DEP in providing duplicate copies of bills shall in no way relieve the owner from his/her liability to pay all outstanding water and sewer charges. Contact DEP at (718) 595-7000 during business hours or visit www.nyc.gov/dep to provide us with the other party's information.

Owner's Approval:

The undersigned certifies that he/she/it is the owner of the property receiving service referenced above; that he/she/it has read and understands Paragraphs A & B under the section captioned "Customer Billing Information"; and that the information supplied by the undersigned on this form is true and complete to the best of his/her/its knowledge.

Print Name of Owner:

Signature:

_Date (mm/dd/yyyy)

Name and Title of Person Signing for Owner, if applicable:

SCS-7CRF-ACRIS REV. 8/08

SIGNATURE PAGE TO CUSTOMER REGISTRATION FORM FOR WATER AND SEWER BILLING

H OWNER LLC, a New York limited liability company Dated as of April 23, 2018

By: Name: matten moun Title: VIG Meridas of th Sole rent

ATTACHMENT F

SECTION VII: REQUESTOR ELIGIBILITY INFORMATION

Item 11 Response

According to the NYSDEC Petroleum Bulk Storage (PBS) database, no tanks are registered at the site. No underground storage tanks (USTs) or aboveground storage tanks were identified based on a review of available Sanborn maps, site inspections, or geophysical surveys conducted at the site.

Volunteer Certifications

The Requestors: GPL Development LLC; H Owner LLC; Greenpoint Landing Developers LLC; Greenpoint Storage Terminal LLC; and Greenpoint Landing Associates, L.L.C. each certifies that it is a Volunteer. As described in Attachment A, each of the other Requestors is wholly owned by or an affiliate of Greenpoint Landing Associates, L.L.C., which acquired title to the site in 2005 from Lumber Exchange, Inc., subsequent to the time when contamination found at the site was released and/or came to be located at the site.

Prior to taking title, Park Tower Realty performed environmental due diligence in the form of preparation of a Phase I Environmental Site Assessment (ESA) and Phase II Environmental Site Investigation. These studies identified the presence of historic fill at the site, but no ongoing releases or threatened future releases. Further, since acquisition by Greenpoint Landing Associates, L.L.C. in 2005, the site has been capped with asphalt and concrete, precluding exposure to site soil. When a more recent investigation in September 2019 identified staining, odors and PID readings in one boring and the detection of one petroleum related compound (total xylenes) in soil; a spill was reported to NYSDEC (Spill No. 1906491). There are no structures on the site, therefore exposure through inhalation of petroleum or other compounds detected in soil vapor is not expected.

The Requestors each qualifies as a Volunteer because they did not contribute to the contamination at the site and since taking control of the site, has taken reasonable steps to ensure that site conditions have been appropriately managed. Although the Requestors are not responsible for and did not contribute in any way to the site contamination, they seek to enter into the BCP in order to redevelop the property and fully address the environmental impacts in a manner that will ensure protection of human health and the environment consistent with the requirements of the BCP.

ATTACHMENT G

SECTION IX: CONTACT LIST INFORMATION

Item 1 Response

Chief Executive Officer

Mayor Bill de Blasio City Hall 260 Broadway Avenue New York, New York 10007

New York City Planning Commission

Marisa Lago, Chair Department of City Planning 120 Broadway 31st Floor New York, NY 10271

Borough of Brooklyn, Borough President

Eric L. Adams Brooklyn Borough Hall 209 Joralemon Street Brooklyn, NY 11201

Borough of Brooklyn, Department of Planning and Development

16 Court Street, 7th Floor Brooklyn, New York 11241

Mayor's Office of Environmental Coordination

Hilary Semel Mayor's Office of Environmental Coordination 100 Gold Street – 2nd Floor New York, NY 10038

Item 2 Response

Residents, owners, and occupants of the site and properties adjacent to the site:

The site is currently owned by H Owner LLC. The contact information for the current owner is:

Anne Carson Blair 535 Madison Avenue New York, NY 10022

The site is currently used for staging construction trailers and equipment for the ongoing Parcel H3 redevelopment. The contact information for the current operator is:

Richard Conner Consigli Construction Co., Inc. 333 Seventh Avenue, 17th Floor New York, NY 10001

Adjacent properties include:

Owners			
65 Commercial Street	New York City Transit Authority		
Brooklyn, NY 11222	, , ,		
Greenpoint Landing – Parcel G1			
37 Commercial Street	BOP Greenpoint G LLC		
Brooklyn, NY 11222			
Greenpoint Landing - Parcel H3			
Commercial Street	BOP Greenpoint H3 LLC		
Brooklyn, NY 11222			
40 Commercial Street	Enrico Manetta		
Brooklyn, NY 11222			
48 Commercial Street	Nicholas Manetta		
Brooklyn, NY 11222			
Commercial Street	Nicholas Manetta		
Brooklyn, NY 11222			
15 Clay Street	Greenport Development		
Brooklyn, NY 11222			

Operators		
65 Commercial Street Brooklyn, NY 11222	New York City Transit Authority	
Greenpoint Landing – Parcel G1 37 Commercial Street Brooklyn, NY 11222	BOP Greenpoint G LLC	
Greenpoint Landing - Parcel H3 Commercial Street Brooklyn, NY 11222	Consigli Construction Co., Inc.	
40 Commercial Street Brooklyn, NY 11222	Vacant	

Item 3 Response

Local news media from which the community typically obtains information:

Greenpoint Gazette 597 Manhhattan Ave New York, NY 11222

Item 4 Response

The public water supplier which services the area in which the property is located:

The responsibility for supplying water in New York City is shared between the NYC Department of Environmental Protection (NYCDEP), the Municipal Water Finance Authority, and the New York City Water Board:

NYCDEP Vincent Sapienza, Commissioner 59-17 Junction Boulevard Flushing, NY 11373

New York City Municipal Water Finance Authority 255 Greenwich Street, 6th Floor New York, NY 10007

New York City Water Board Department of Environmental Protection 59-17 Junction Boulevard, 8th Floor Flushing, NY 11373

Item 5 Response

Any person who has requested to be placed on the contact list:

No requests have been made by individuals for inclusion on the contact list.

Item 6 Response

The administrator of any school or day care facility located on or near the Site:

There are no schools or day care facilities located on the proposed site or within ½ mile of the site.

Item 7 Response

The location of a document repository for the project (e.g. local library):

Leonard Library 81 Devoe St. at Leonard St. Brooklyn, NY, 11211 (718) 486-6006

Brooklyn Community Board 1

Dealice Fuller, Chairperson 435 Graham Avenue Brooklyn, NY 11211 (718) 389-0009

A letter sent to the library acknowledging that they agree to act as a document repository for the project are included in this attachment. The Brooklyn Community Board 1 has agreed to act as a repository for BCP documents for the site and will sign the confirmation letter in this attachment when the draft BCP Application is provided.

ATTACHMENT G

SUPPORTING DOCUMENTATION

- 1. Signed Document Respository Request Letter to Public Library
- 2. Document Respository Request Letter to Brooklyn Community Board 1

Technical Excellence Practical Experience Client Responsiveness

October 30, 2019

Lauren Comito, Library Manager Leonard Library 81 Devoe St. at Leonard St. Brooklyn, NY, 11211

RE: Brownfield Cleanup Program Application GPL Development LLC 45 Commercial Street Brooklyn, NY 11222

Dear Ms. Comito:

We represent Greenpoint Landing Developers LLC in their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the above-referenced site. The NYSDEC requires a letter certifying that the local library is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. Please sign below and return if you are able to certify that your library would be willing and able to act as the temporary public repository for this BCP project.

Sincerely, Langan Engineering, Environmental, Surveying,

Landscape Architecture and Geology, D.P.C.

Juliahung

Julia Leung, P.E. Project Engineer

Yes, the Leonard Library is willing to act as a document repository on behalf of Greenpoint Landing Developers LLC in their cleanup of Parcel H1H2 under the NYSDEC BCP.

leste Curry/Celisto ay10/30/19

(Title)

Technical Excellence Practical Experience Client Responsiveness

November 8, 2019

Dealice Fuller, Chairperson 435 Graham Avenue Brooklyn, NY 11211 (718) 389-0009

RE: Brownfield Cleanup Program Application 45 Commercial Street Brooklyn, NY 11222

Dear Ms. Dealice Fuller:

We represent GPL Development LLC, H Owner LLC, Greenpoint Landing Developers LLC, Greenpoint Storage Terminal LLC, and Greenpoint Landing Associates, L.L.C., in their anticipated New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) application for the above-referenced site. The NYSDEC requests that a letter certifying that a local public institution is willing and able to serve as a public repository for all documents pertaining to the cleanup of this property. The documents will be pertinent to public interest and citizen participation in the BCP process for the site. We estimate that the total documents generated by the project will comprise five to ten compact disks over a 2-year period. Please sign below and return if you are able to certify that your community board would be willing and able to act as the temporary public repository for this BCP project.

Sincerely, Langan Engineering, Environmental, Surveying Landscape Architecture and Geology, D.P.C.

Julia Ling

Julia Leung, P.E. Project Engineer

Yes, the Brooklyn Community Board 1 is willing to act as a document repository on behalf of GPL Development LLC, H Owner LLC, Greenpoint Landing Developers LLC, Greenpoint Storage Terminal LLC, and Greenpoint Landing Associates, L.L.C.in their cleanup of Parcel H1H2 under the NYSDEC BCP.

(Name)

(Date)

(Title)

21 Penn Plaza, 360 West 31st Street, 8th Floor New York, NY 10001 T: 212.479.5400 F: 212.479.5444 www.langan.com New Jersey • New York • Virginia • California • Pennsylvania • Connecticut • Florida • Abu Dhabi • Athens • Doha • Dubai • Istanbul

ATTACHMENT H

SECTION X: Land Use Factors

Item 1 Response

According to the New York City Planning Commission Zoning Map 12c, the site is currently located in an R6/R8/C2-4 mixed-use residential and commercial district. The applicable zoning map is provided in this attachment. The surrounding parcels are located in the same zoning district.

Item 2 Response

The site is currently used for staging construction trailers and materials for the ongoing Parcel H3 redevelopment.

Item 3 Response

The proposed mixed-use building will have a footprint of about 32,000 square feet and the remaining 12,600 square feet will be open, landscaped space. The development will include the construction of one mixed-use residential building with 374 residential units (100% affordable housing for families earning under 90% of the annual median income) and ground floor retail. The building will comprise a 6-story podium (no cellar) with a 22-story tower set back from Commercial Street.

Item 4 Response

The proposed residential development is consistent with historical and current development patterns in the Greenpoint neighborhood. The site is part of the Greenpoint Landing development project, which covers about 21 upland acres, and includes the construction of residential (affordable and market-rate housing) buildings, a public elementary/intermediate school, new street infrastructure, new combined sewer overflow (CSO) pipes and outfalls, a public promenade along the East River, public open space, as well as bulkhead reconstruction and shoreline stabilization.

Item 5 Response

The proposed site is currently located in an R6/R8/C2-4 mixed-use residential and commercial district. The proposed development is consistent with the mixed residential, commercial and industrial neighborhood. The proposed use promotes the opportunity for workers to live in the vicinity of their work and is the highest and best use of the land.

Item 6 Response

The proposed use is consistent with Uniform Land Use Review Procedure (ULURP) actions for the Greenpoint-Williamsburg Rezoning (N 050110(A) ZRK) that include addition of affordable housing to this area.

There will be a Regulatory Agreement by and among H1H2 Owner LLC (future owner at the time of closing), New York Council for Housing Development Fund Companies (HDFC), New York City Housing Development (HDC) and New York City Department of Housing Preservation and Development (HPD) which is currently anticipated to:

- restrict the income levels of households living in the approximately 84 of the apartment units in the project to income levels which do not exceed 30% of area median income of which approximately 34 of these units will be reserved for formerly homeless tenants,
- (ii) restrict the income levels of households living in the approximately 34 of the apartment units in the project to income levels which do not exceed 40% of area median income,
- (iii) restrict the income levels of households living in the approximately 34 of the apartment units in the project to income levels which do not exceed 50% of area median income,
- (iv) restrict the income levels of households living in the approximately 34 of the apartment units in the project to income levels which do not exceed 60% of area median income,
- (v) restrict the income levels of households living in the approximately 80 of the apartment units in the project to income levels which do not exceed 80% of area median income,
- (vi) restrict the income levels of households living in the approximately 40 of the apartment units in the project to income levels which do not exceed 70% of area median income, and
- (vii) restrict the income levels of households living in the approximately 67 of the apartment units in the project to income levels which do not exceed 90% of area median income.

The Regulatory Agreement will also subject the residential units to certain marketing, use and occupancy restrictions including subjecting the residential units to certain rent stabilization laws.

ATTACHMENT H

SUPPORTING DOCUMENTATION

1. New York City Planning Commission Zoning Map 12c

- Click blue outline on map to view diagram of proposed zoning change

NOTE: Where no dimensions for zoning district boundaries appear on the zoning maps, such dimensions are deter in Article VII, Chapter 6 (Location of District Boundaries) of the Zoning Resolution.